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Abstract

Thermal atomic vapours are an experimentally simple and efficient system in

which to study wave mixing processes. We investigate a resonantly enhanced

four-wave mixing (FWM) process in rubidium vapour, which coherently converts

780 nm and 776 nm light to 5.2 µm and 420 nm.

Firstly, we use this system to explore the coherent frequency conversion of

structured light, in particular Laguerre-Gauss (LG) beams. These modes, and

more generally the orbital angular momentum (OAM) that they carry, are impor-

tant research tools for optical manipulation, imaging and communication. Previ-

ous qualitative studies have demonstrated OAM transfer from the near-infrared

pump beams to the generated 420 nm light. We investigate this further by making

the first quantitative measurements of the 420 nm transverse mode for a range

of values of pump OAM. Our results indicate that the FWM process is likely to

be an efficient source of OAM-entangled 5.2 µm and 420 nm light, with a spiral

bandwidth that increases with increasing pump OAM.

Using independently shaped pump beams, we also study FWM for more gen-

eral pump modes, including beams carrying opposite handedness of OAM, coher-

ent superpositions of LG modes, and for the first time in this system, radial LG

modes. This work shows the importance of OAM conservation and Gouy phase

matching in the FWM process, and is relevant for similar schemes involving the

inscription and storage of transverse modes in atomic vapours.

Finally, we report the first use of a ring cavity to both increase the output

power and narrow the linewidth of the generated 420 nm light. For Gaussian

pump beams, the low-finesse cavity, which is singly resonant with the 420 nm

light, increases the maximum 420 nm output power from 340 µW (single pass) to

940 µW (cavity-enhanced), and narrows the linewidth from 33 MHz (single pass)

to < 1 MHz (cavity-enhanced), resulting in a narrow linewidth, tunable light

source suitable for near resonant rubidium studies.
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Chapter 1

Introduction

When light is incident on an atom, the oscillating electric field induces an oscil-

lating atomic polarisation [1]. The relationship between the atomic polarisation

and the incident field, which is characterised by the susceptibility, determines the

optical properties of the atom. If the susceptibility is linear, the atom absorbs

or changes the phase of the light. Often, the susceptibility can be highly non-

linear [2]. In this case, the polarisation induced by one optical field can cause

the coherent generation of a new optical field at a different frequency - a process

described as wave mixing [3].

In this thesis, we study an efficient wave mixing process that can be carried

out in a rubidium vapour [4]. We use this process to coherently frequency convert

structured light, which has transverse variations in intensity and phase. If the

light is shaped so that it has helical phase fronts, the beam carries an associated

orbital angular momentum (OAM) [5], and we observe the transfer of this mo-

mentum in our wave mixing process. Structured light, and OAM in particular,

have potential applications in increasing the bandwidth of both classical [6] and

quantum communication [7].

We also investigate the effect of feedback, in the form of an external cavity, on

the wave mixing process. A low-finesse ring cavity is constructed, singly resonant

with one of the generated fields. We consider the effect of the cavity on the

linewidth, output power and transverse mode of the generated light.

1



1.1. Nonlinear Optics 2

This research lies at the intersection of nonlinear optics, structured light and

atomic physics. The remainder of the introduction will provide a brief overview

of the relevant aspects of these topics, before providing more detail on the work

presented here.

1.1 Nonlinear Optics

The optical response of a medium is nonlinear only for sufficiently intense fields,

concentrated enough in frequency space. Following the development of the laser

in 1960 [8], these conditions became more easily achievable and many demonstra-

tions of nonlinear phenomena quickly followed [9].

Wave mixing was among the first to be demonstrated. In 1961, Franken et

al. [10] passed light from one of the early ruby lasers through a quartz crystal and

observed second harmonic generation - some of the light was converted to dou-

ble the input frequency, converting two pump photons for each doubled photon.

Later experiments showed that if two pump lasers are used then light at linear

combinations of the input frequencies can be generated [11, 12], known as sum

and difference frequency generation.

The immediate application of wave mixing is to generate wavelengths that

are otherwise difficult to generate directly. In processes where the conversion

efficiency is small, the frequency converted power can be enhanced by adding

feedback to the system. Optical parametric oscillators work in much the same

way as lasers, but the gain is provided by a wave mixing process, rather than

stimulated emission [13,14].

For symmetry reasons, the simplest wave mixing process that can occur in

an atomic vapour is four-wave mixing (FWM) - energy transfer between four

optical fields [15, 16]. The FWM process investigated in this thesis is illustrated

in Fig. 1.1. Two pump fields, at 780 nm and 776 nm generate two new optical

fields at 5.2 µm and 420 nm.

Wave mixing processes are parametric; the initial and final quantum state of



1.1. Nonlinear Optics 3

Figure 1.1: (a) Input beams at 780 nm and 776 nm generate 5.2 µm and 420 nm

light via FWM in a rubidium vapour. (b) Schematic of the phase matching

condition in Eq. 1.1.2

the medium are the same. In order to conserve energy the angular frequency of

the fields in our FWM process must satisfy

ω780 + ω776 = ωB + ωIR. (1.1.1)

Furthermore, for the wave mixing process to be efficient, the generated light

must remain in phase with the pump light as the fields propagate through the

medium. This condition is known as phase matching [17], and requires that the

wave vectors of the light satisfy

k780 + k776 = kB + kIR, (1.1.2)

which is equivalent to momentum conservation. In this thesis we investigate the

wider consequences of this phase coherence in the case of FWM with structured

light.

Whenever a wave mixing process generates two new photons, the photon

pair is described by a highly correlated two-photon state [18]. For spontaneous

paramteric down conversion [19–21], where a single pump photon is converted to

two lower energy photons, this state can be entangled in a variety of degrees of

freedom, including transverse position [22] and polarisation [23, 24]. Entangled

photon pairs are an important tool and are key to processes such as quantum

teleportation [25], entanglement swapping [26, 27] and quantum key distribution

[28–30].



1.2. Structured Light 4

1.2 Structured Light

Light interacts very little with the environment, and possesses many degrees of

freedom that can be used to encode information, for example intensity, frequency,

phase or polarisation. As a result, classical states of light, transmitted via optical

fibres, are used to transfer vast amounts of information across the world every

second, whilst quantum communication relies on quantum states of light to carry

information with minimal decoherence [31].

With all communication systems, the achievable bandwidth is a critical pa-

rameter. One method of increasing the bandwidth of optical communication is

to use structured light [6,32,33], where the intensity and phase of the light varies

transversely across the beam. Examples of structured light include the Hermite-

Gauss and Laguerre-Gauss modes [34], more complex transverse patterns, and

even more general vector vortex beams [35], where the polarisation also varies

transversely. Aside from communication, structured light has many applications,

including optical tweezers [36], super resolution imaging [37] and complex trap-

ping potentials for cold atoms [38–40].

In this thesis we study the coherent frequency conversion of Laguerre-Gauss

modes, as illustrated in Fig. 1.2. These modes modes have an ei`θ transverse phase

dependence (where θ is the azimuthal coordinate in the plane perpendicular to

the direction of propagation), resulting in helical phase fronts and an associated

orbital angular momentum (OAM) of `~ [5, 41–43]. Unlike the spin angular mo-

mentum related to the polarisation of the field, OAM can take on a theoretically

infinifte number of quantised values. When these modes are used in wave mixing,

Figure 1.2: Helical phase fronts of Laguerre Gauss beams in FWM.
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conservation of transverse phase requires that the generated light must also have

helical phase fronts; the OAM carried by the pump beam is transferred to the

generated fields [44–46].

If a wave mixing process generates pairs of photons, then the OAM carried

by each is not necessarily well-defined and can take any number of values so long

as the total OAM is conserved. In this case the photon pairs are generated in an

OAM-entangled state [47, 48], with the number of entangled modes determined

by the correlated width of the OAM probability distribution of the individual

photons - the spiral bandwidth [49]. These higher dimensional entangled states,

as well as single photon OAM states, have the potential to increase both the

bandwidth and security of quantum communication [50].

1.3 Atomic Vapours

The study of atomic vapours, whether thermal or laser-cooled [51], underpins a

huge body of research. Experiments range from fundamental studies of Bose-

Einstein condensates [52] and atom interferometry [53], to developing ultra-

sensitive and precise magnetometers [54] and atomic clocks [55]. Still further

experiments are developing components necessary for future quantum networks

[30,56], including photon pair sources [57,58] and quantum memories [59,60].

Understanding, or making use of, the nonlinear interaction between light and

atoms is a central theme to many of the above research areas. When optical

fields are tuned close to atomic transitions the resonant atomic response leads to

a large nonlinear susceptibility. This allows wave mixing processes to be carried

out with significantly enhanced efficiency compared to similar processes in bulk

materials [61–63].

Resonantly enhanced four-wave mixing (FWM), which is the subject of this

thesis, has been carried out in both thermal [64–74] and cold [75–83] atomic

vapours. Like SPDC, these FWM processes have been shown to produce highly

correlated photon pairs [81–83], as well as polarisation [80] and OAM [66] entan-
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gled photons and entangled images [67]. In other experiments, FWM has been

used to generate heralded single photons [70, 71, 84], and to frequency convert

quantum states [79]. Atomic vapours also present a clean system in which to study

the frequency conversion of structured light, and the transfer of OAM [46,85–88]

and transverse images [89] between different frequencies has been demonstrated.

1.4 Thesis summary

The FWM process investigated in this thesis was first studied by Zibrov et al. in

2002 [4], and has since been carried out by many other groups [90–95]. We use a

thermal rubidium vapour to efficiently convert 780 nm and 776 nm pump beams

to 420 nm and 5.2 µm light. The four fields are quasi-resonant with a closed loop

of atomic transitions within 85Rb, resulting in a large resonant enhancement of

the wave mixing process. In an optimised experiment previously carried out at

Strathclyde, 1 mW of 420 nm emission was generated for a total pump power

of around 40 mW [92] . Although only the 420 nm light was measured in this

experiment, both the 420 nm and 5.2 µm light are generated as coherent, direc-

tional beams [4, 96]. Further work at Strathclyde [46], and elsewhere [87, 88],

has demonstrated that OAM carried by the pump beams is transferred to the

generated 420 nm field, thus confirming that this efficient frequency conversion

process is indeed phase coherent.

In this thesis we quantitatively explore the transfer of OAM in the “blue

light” FWM system. We examine, both theoretically and experimentally, the

phase matching conditions that determine the OAM carried by each generated

field. We find that this wave mixing process may be an efficient source of OAM-

entangled pairs, with a spiral bandwidth which increases with increasing pump

OAM. The frequency conversion of more general structured light is also studied,

including pump modes carrying opposite handedness of OAM, radial Laguerre-

Gauss modes and modal superpositions.

The results presented in this thesis demonstrate a means of frequency convert-
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ing and generating a range of OAM states. Although we work only with classical

light, our results will inform future experiments at the single photon level, and are

therefore of importance for the development of higher-dimensional quantum com-

munication. Understanding the coherent interaction between structured light and

atomic vapours is also relevant for transverse mode quantum memories [97–100],

where transverse states of light are mapped onto a collective excitation of an

atomic cloud, and then read out some time later. Our results are directly appli-

cable to other FWM schemes which allow frequency conversion to wavelengths

within the telecomunications band [79, 96, 101]. Frequency conversion of trans-

verse modes to these wavelengths would allow atomic systems to interface with

fibre-based communication systems [32,102].

We also study the effect of adding an external cavity to the FWM system.

With Gaussian pump beams, we find that even a low-finesse cavity (F = 3.5),

singly-resonant with the 420 nm light, nearly triples the generated 420 nm power

and narrows the linewidth to < 1 MHz. As a final experiment, we investigate

cavity-enhanced FWM with Laguerre-Gauss pump beams. This allows the pos-

sibility of controlling the cavity output mode through the phase coherence of

the FWM process. We find that the cavity output mode is determined by a

combination of the FWM process and the feedback provided by the cavity.

1.4.1 Chapter descriptions

Chapter 2: A brief overview of the theory describing FWM and the resonant

interaction between light and atoms is given.

Chapter 3: The particular FWM system under consideration is introduced in

more detail. The basic experimental setup required to carry out FWM is then

described, including the laser frequency stabilisation techniques used and the

heated rubidium cell.

Chapter 4: The digital holography techniques used to shape the near-infrared

pump beams will be detailed, including an experimental comparison of different
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hologram generation methods. The main conclusions from an additional numeri-

cal comparison are also included. Finally, the mode decomposition method used

to analyse the transverse mode of the generated 420 nm light is described. This

chapter will cover the relevant material from publications [P1] and [P2].

Chapter 5: The transfer of OAM in the FWM process is studied. A theoretical

model is developed to describe the two-photon transverse state in which the

420 nm and 5.2 µm light is generated. The results are compared to experimental

measurements of the mode decomposition of the 420 nm light. This chapter is

based on publication [P3], which is currently under consideration.

Chapter 6: Four-wave mixing with more general transverse modes is inves-

tigated, including OAM modes of opposite handedness, radial Laguerre-Gauss

modes and superpositions. The material in this chapter is currently being pre-

pared for publication [P4].

Chapter 7: A low-finesse ring cavity is added to the setup, and the effect on

the FWM conversion efficiency and 420 nm linewidth is investigated. This study

was carried out initially for Guassian pump beams, but some qualitative results

for shaped pump beams are also included. The Gaussian pump beam results in

this chapter are published in Ref. [P5].

Chapter 8: The main results and open questions from this work are summarised.

1.4.2 Publications

The work presented in this thesis has contributed to three publications:

[P5] R. F. Offer, J. W. C. Conway, E. Riis, S. Franke-Arnold, and

A. S. Arnold, “Cavity-enhanced frequency up-conversion in rubidium

vapour,” Opt. Lett. 41, 2177 (2016).

[P1] T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N.

Radwell, “Comparison of beam generation techniques using a phase

only spatial light modulator,” Opt. Express 24, 6249 (2016).
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[P2] N. Radwell, R. F. Offer, A. Selyem, and S. Franke-Arnold, “Op-

timisation of arbitrary light beam generation with spatial light mod-

ulators,” J. Opt. 19, 095605 (2017).

A further two publications are currently in preparation:

[P3] R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S.

Arnold, “Spiral bandwidth of four-wave mixing in rubidium vapour.”

arXiv[physics.atom-ph]1805.08190.

[P4] R. F. Offer, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Co-

herent beam shaping via four-wave mixing in rubidium vapour.”

1.4.3 Author contributions

The experimental work for publication [P5] was undertaken by Offer and Conway,

with the analysis of the results performed by Offer. All authors contributed to the

writing of the paper. The experimental work for publication [P1] was carried out

by Clark and Offer. Clark and Radwell carried out the majority of the analysis

of the results and the theoretical simulations, with all authors contributing to

the writing of the paper. The simulations for publication [P2] were carried out

by Radwell. All authors contributed to the interpretation of the results and the

writing of the paper. The experiment for publications [P3] and [P4] was built by

Offer, who also took the experimental data and analysed the results. Offer and

Stulga carried out the theoretical analysis, and all authors contributed to writing

the paper and interpreting the results.



Chapter 2

Four-wave mixing and

atom-light interactions

The aim of this chapter is to briefly outline the theory behind wave mixing, and

to justify the resonant enhancement of these processes that can be achieved in

atomic vapours. We start by considering the nonlinear effects which occur in a

medium with a third-order nonlinearity, and then use the semi-classical model of

a two-level atom to illustrate the resonant light-atom interaction. The content of

this chapter is standard textbook material and is drawn from Refs. [1, 2, 18].

2.1 Electric susceptibility

When an oscillating electric field, E, is incident on a medium, it induces an

oscillating polarisation per unit volume, P , given by [2, 18]

P = ε0χE, (2.1.1)

where χ is the electric susceptibility of the medium. The induced polarisation,

which is equivalent to a moving charge, in turn generates light which interferes

with the incident field. The effect this has on the propagation of E is described

by

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
, (2.1.2)

10
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which can be derived from Maxwell’s equations in the case of no free charges.

To highlight the importance of the susceptibility in describing this light-matter

interaction, we insert Eq. 2.1.1 into Eq. 2.1.2 to give

∇2E − 1 + χ

c2

∂2E

∂t2
= 0, (2.1.3)

which for a scalar field propagating in one dimension has the solution

E(z, t) = E0e
i(nkz−ωt), n =

√
1 + χ, (2.1.4)

with wave vector, k, angular frequency, ω, and refractive index, n. In general the

susceptibility is small and complex, so the refractive index can be rewritten in

terms of its real and imaginary parts as

n =
√

1 + χ ' 1 + 1/2χ = 1 + χ′/2 + iχ′′/2, χ = χ′ + iχ′′. (2.1.5)

By substituting this back into the electric field we arrive at an important result

E(z, t) = E0e
−χ′′kz/2ei(1+χ′)kz/2e−iωt. (2.1.6)

The real part of the susceptibility (in phase with the incident field) changes the

phase velocity of the field, whilst the imaginary part (out of phase with the

incident field) corresponds to absorption. There is also another possibility; if

χ′′ < 0 then the incident field experiences gain.

Far from resonance, in an isotropic medium, and for weak fields the suscep-

tibility is a simple constant of proportionality; the polarisation of the medium

responds linearly to the field. However, as the incident intensity increases, the

response of the medium can become nonlinear. This effect is usually treated via

a Taylor expansion of the susceptibility [2, 18]:

P = ε0

[
χ(1) + χ(2)E + χ(3)E2 + ...

]
E, (2.1.7a)

= ε0χ
(1)E +

[
ε0χ

(2)E2 + ε0χ
(3)E3 + ...

]
, (2.1.7b)

= P (1) + P (NL), (2.1.7c)

with the medium’s response to each order of the electric field described by each

χ(i).
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2.1.1 Third-order nonlinearity

In centrosymetric materials, such as an atomic vapour, the even χ(i) vanish and

χ(3) is the leading order nonlinearity. In this subsection we discuss some of the

effects that can occur in such a medium [15], where the nonlinear polarisation is

given by

P (NL) = ε0χ
(3)E3. (2.1.8)

Both P and E are in general vectors (or tensors), but for clarity in this section

the underline notation will be dropped.

Four-wave mixing

Most importantly for this thesis, the third-order nonlinearity can lead to Four-

wave mixing (FWM). To illustrate this, consider the effect of three incident fields

of different angular frequency, such that

E(z, t) = E1e
i(k1z−ω1t) + E2e

i(k2z−ω2t) + E3e
i(k3z−ω3t) + c.c., (2.1.9)

with ki = niωi/c. Calculating P (NL) for this incident field generates many terms

oscillating at different linear combinations of the input frequencies. One of these

terms is [2]

P (FWM) = 6ε0χ
(3)E1E2E

∗
3e
i[(k1+k2−k3)z−(ω1+ω2−ω3)t], (2.1.10)

which oscillates at a new angular frequency, ω4, such that

ω1 + ω2 = ω3 + ω4. (2.1.11)

The wave equation (Eq. 2.1.2) can be rewritten using Eq. 2.1.7c as

∇2Ei −
n2

c2

∂2Ei
∂t2

=
1

ε0c2

∂2P
(NL)
i

∂t2
, (2.1.12)

where the i subscripts indicate that the equation holds at each angular frequency,

ωi, at which E and P oscillate, and n =
√

1 + χ(1) is the linear refractive index.

The nonlinear polarisation in Eq. 2.1.10 therefore acts as a driving term, gener-

ating a new frequency component of the electric field with angular frequency ω4.
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To conserve energy, the field with frequency ω3 must also be amplified. In fact it

is not necessary to drive the FWM process with three fields, both E3 and E4 can

be generated spontaneously from the vacuum [103].

The transfer of energy between the four optical fields can be described math-

ematically by inserting P (FWM) into Eq. 2.1.12. Working in one dimension, and

under the assumption that the amplitudes Ei only vary slowly in z, we find that

dE1

dz
= iκ1E

∗
2E3E4e

−i∆kz,
dE2

dz
= iκ2E

∗
1E3E4e

−i∆kz,

dE3

dz
= iκ4E1E2E

∗
4e
i∆kz,

dE4

dz
= iκ4E1E2E

∗
3e
i∆kz,

κi =
3χ(3)ωi
nic

, ∆k = k1 + k2 − k3 − k4.

(2.1.13)

The third order nonlinearity, contained in the coupling coefficients, κi, paramet-

rically couples the amplitude of the four optical fields, allowing energy to transfer

between them.

These equations highlight some important features of FWM. Firstly, to have

maximal energy transfer, the process must be phase matched, i.e. ∆k = 0. For

perfect phase matching, the generated fields maintain a fixed phase relationship

with the polarisation created by the pump fields, allowing maximum energy to

be extracted from the pump light. Furthermore, integration of the equation for

E4 over z, shows that in the limit of no depletion of the pump fields, the intensity

of the generated light scales with the product of the intensity of the other fields,

and will grow quadratically with propagation distance.

Although we deal only with classical fields in this thesis, wave mixing pro-

cesses, and the light generated by them, are fundamentally quantum mechanical.

For a complete theoretical treatment a quantised description of the optical fields

is required, as presented in Ref. [18]. In this picture the FWM process described

above corresponds to the simultaneous annihilation of two pump photons, with

angular frequency ω1 and ω2, and creation of two new photons with angular fre-

quency ω3 and ω4 [2,103]. For energy to be conserved the two new photons must

be generated at exactly the same time, creating pairs of photons described by

a two-photon state. At the single photon level, the phase matching condition is
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equivalent to conservation of photon momentum.

Kerr lensing

Another important third-order nonlinear effect is the optical Kerr effect [2]. If

a single optical field, E(t) = E1 cos(ωt), propagates through a χ(3) medium then

the nonlinear polarisation is given by

P (NL) = ε0χ
(3)E3

1 cos3(ωt)

=
1

4
ε0χ

(3)E3
1 cos(3ωt) +

3

4
ε0χ

(3)E3
1 cos(ωt).

(2.1.14)

The first term generates an optical field with frequency 3ω - the third harmonic

of the input field. The second term generates a field at the same frequency as

the input field. This field interferes with the incident field leading to an intensity

dependent refractive index, given by

n = n0 + n2I, n2 =
3

2n2
0ε0c

χ(3). (2.1.15)

This has significant consequences for the propagation of the beam. For a Gaussian

beam, with peak intensity in the centre and decreasing intensity in the wings,

different parts of the beam experience a different refractive index. This can lead

to Kerr lensing, where, depending on the sign of n2, the beam focuses or defocuses

as it propagates [104,105].

2.2 The two-level atom

The previous section described two nonlinear effects which can occur when a

medium has a third-order nonlinear response to an incident field: FWM and

Kerr lensing. We now consider the resonant interaction between light and atoms.

This is a very different regime to the off resonant interaction described in the

previous section. The strong response of the atom leads to a large, strongly

frequency-dependent nonlinearity, but also absorption of the fields. To illustrate

this we consider the susceptibility an atomic vapour made up of a two-level atoms.
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Figure 2.1: The two-level atom with ground state |1〉 (E1 = 0), excited state

|2〉 (E2 = ~ω0), spontaneous decay rate Γ, and an incident field with angular

frequency ω.

A semi-classical approach is used, treating the light as a classical field but the

atom as a quantum mechanical object, as is described in Refs. [1, 2, 18].

Each two-level atom has a ground state |1〉, whose energy is set as the zero

energy, and an excited state |2〉 at an energy of ~ω0, as shown in Fig. 2.1. The

incident light, E(t) = εE0 cos(ωt), is a monochromatic field, linearly polarised

along ε, and is detuned from the atomic transition by ∆ = ω − ω0. The polari-

sation of each atom due to this incident electric field is described by the dipole

moment d = e r, where e is the electronic charge and r is the position vector of

the displaced electron with respect to the atom’s centre of mass. The polarisation

per unit volume of the vapour is given by P = N 〈d〉, where N is the atomic

number density. We include one incoherent process in the model: the atom can

decay from the excited state |2〉 with a decay rate Γ.

2.2.1 The density matrix

The atomic state of each atom, including its response to the incident field, is

described by the density matrix, ρ, which for a two-level atom is given by

ρ =

ρ11 ρ12

ρ21 ρ22

 . (2.2.16)

The diagonal terms ρ11 and ρ22 are the populations - the probability of finding

the atom in |1〉 or |2〉. The off diagonal terms ρ12 and ρ21 are the coherences - a



2.2. The two-level atom 16

measure of how well the phases of |1〉 and |2〉 are defined. These terms describe

the response of the atom at the driving frequency, and are directly related to the

susceptibility of the vapour by [2],

χ =
2Nd12

ε0E0

ρ̃12, d12 = −e 〈1| r̂.ε |2〉 , (2.2.17)

where d12 is the dipole matrix element.

The evolution of the density matrix elements, in the presence of the incident

electric field, is described by the optical Bloch equations [1, 2, 18]

˙̃ρ11 = −iΩ
2

(ρ̃21 − ρ̃12) + Γρ̃22, (2.2.18a)

˙̃ρ12 = −iΩ
2

(ρ̃22 − ρ̃11)− i∆ρ̃12 −
Γ

2
ρ̃12, (2.2.18b)

˙̃ρ21 = −iΩ
2

(ρ̃11 − ρ̃22) + i∆ρ̃21 −
Γ

2
ρ̃21, (2.2.18c)

˙̃ρ22 = −iΩ
2

(ρ̃12 − ρ̃21)− Γρ̃22, Ω =
d12E0

~
, (2.2.18d)

where Ω is the Rabi frequency, which characterises the strength of the coupling

between the two atomic states. These equations can be solved, with the additional

constraints that ρ11 + ρ22 = 1 and ρ21 = ρ∗12, to find the steady state response of

the atoms. In the limit ρ̇ � 0 the coherence ρ12 is given by

ρ12 = i
Ω

2

i∆ + Γ/2

∆2 + Γ2/4 + Ω2/2
. (2.2.19)

2.2.2 Frequency dependent, nonlinear susceptibility

Substituting Eq. 2.2.19 into Eq. 2.2.17 gives the susceptibility of the two-level

atom

χ = −Nd
2
12

~ε0

∆− iΓ/2
∆2 + Γ2/4 + Ω2/2

. (2.2.20)

This susceptibility contains both linear and nonlinear contributions, and is strongly

dependent in the frequency of the driving field. To highlight the intensity depen-

dence, Eq. 2.2.20 can be rewritten in terms of the saturation intensity, Isat, as

χ = −Nd
2
12

~ε0

∆− iΓ/2
∆2 + Γ2/4 (1 + I/Isat)

,
I

Isat

=
2Ω2

Γ2
. (2.2.21)
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The real and imaginary parts of Eq. 2.2.21 are plotted in Fig. 2.2, showing the

absorption and refractive index of the vapour for a range of incident intensities.

The atom absorbs light over a Lorentzian lineshape centered on zero detuning,

with the peak absorption on resonance given by [1]

α =
3Nλ2

2π

1

1 + I/Isat

, I = I0e
−αz. (2.2.22)

As the incident intensity increases the absorption saturates, and the peak absorp-

tion decreases. The decrease in absorption is accompanied by a broadening of the

absorption feature - known as power broadening. The full width half maximum

of the Lorentzian lineshape is given by [1]

∆ωFWHM = Γ
√

1 + I/Isat. (2.2.23)

The physical origin of this nonlinear response is the increasing population

of the excited state |2〉, which leads to a reduction in the net absorption with

increasing incident intensity. When the population of the ground and excited

states are equal an incoming photon is equally likely to cause stimulated emission

as it is to be absorbed and the absorption tends to zero.

Figure 2.2: Real and imaginary parts of the two-level atom susceptibility as a

function of detuning and for different values of I/Isat.
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Third order nonlinearity

Equation 2.2.20 can be separated into its linear and nonlinear parts by carry-

ing out a power series expansion in Ω2. Keeping only the first two terms, the

susceptibility becomes

χ = −Nd
2
12 (∆− iΓ/2)

~ε0 (∆2 + Γ2/4)

(
1− Ω2

2 (∆2 + Γ2/4)

)
. (2.2.24)

Equating this with χ = χ(1) + χ(3)E2
0 , shows that the effective linear and third

order susceptibilities are given by

χ(1) = −Nd
2
12 (∆− iΓ/2)

~ε0 (∆2 + Γ2/4)
, (2.2.25a)

χ(3) =
Nd4

12 (∆− iΓ/2)

2~3ε0 (∆2 + Γ2/4)2 . (2.2.25b)

Fig. 2.3 shows plots of these results. The third order susceptibility is the

opposite sign to the linear susceptibility, which stems from its origin in the satu-

ration of the optical response, and shows a strong resonant enhancement for zero

detuning.

The resonant enhancement of χ(3) is key for the work in this thesis. It allows

wave mixing to be carried out with far greater efficiency than in bulk materials.

The best demonstration of this is to note that before the use of atomic vapours,

Figure 2.3: Real (red) and imaginary (black) parts of the (a) linear, χ(1), and (b)

third-order, χ(3), contributions to the two-level atom susceptibility.
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FWM was always carried out with high power, pulsed lasers. In resonantly en-

hanced systems, wave mixing can be carried out efficiently with tens of mW of

continuous wave light [61,62].

An estimate of the third-order susceptibility of an atomic vapour can be found

by calculating χ(3) for typical values of the relevant parameters. As an example,

the required parameters for the 5S1/2 F = 3 → 5P3/2 F
′ = 4 transition in 85Rb

are shown in table 2.1, along with the calculated value for χ(3). For comparison

a typical value of χ(3) for a nonlinear crystal, CaF, is also included [2].

Dipole matrix element∗, d12 1.659× 10−29 C m

Spontaneous decay rate∗, Γ 2π × 6.066 MHz

Effective atom number†, n 2× 1013

Detuning†, ∆ 2π × 1.6 GHz

Third order susceptibility 85Rb, χ(3) 7× 10−14 m2V=2

Third order susceptibility CaF, χ(3) 7× 10−22 m2V=2

Table 2.1: Values used to calculate χ(3) for the 5S1/2 F = 3 → 5P3/2 F
′ = 4

transition in 85Rb. ∗From [106], †typical experimental values used later in this

thesis. n is calculated assuming n = NV , where N is the atomic density and V

is the interaction region.

2.2.3 Doppler broadening

In the previous calculation of χ(3) there was an implicit assumption that each

atom interacts identically with the incident field. In the case of a thermal vapour

this is not the case due to the range of atomic velocities in the vapour, which

leads to an effect known as Doppler broadening.

When a moving atom interacts with an incident optical field, the frequency

of the light in the rest frame of the atom is Doppler shifted. This Doppler shift is

given by δ = −kvz (or in vector form k.v), where k is the wavevector of the light
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and vz is the component of the atoms velocity in the direction of propagation.

As a result the atom will absorb light that is detuned from resonance by −δ in

the lab frame.

In the vapour, the atoms move at speeds described by a Maxwell-Boltzmann

distribution. For an individual atom, the probability that vz lies in the range vz

to vz + dvz is given by [1]

f(v) =
1

v̄z
√
π

exp

(
−v

2
z

v̄2
z

)
, v̄z =

√
2kBT

M
, (2.2.26)

where M is the atomic mass. This leads to a Gaussian distribution of Doppler

shifts with a FWHM, ΓD, given by

ΓD =
2
√

ln 2 v̄z
λ

. (2.2.27)

To find the susceptibility of the vapour one must average over this distribution.

At room temperature, the resulting absorption profile is the convolution of the

Gaussian distribution of Doppler shifts (ΓD ∼ 500 MHz) with the Lorentzian

absorption lineshape of each atom (Γ = 6 MHz): a Voigt profile [107]. The

example widths provided are for the 5S1/2 F = 3 → 5P3/2 F
′ = 4 transition in

85Rb.

This also means that for any particular detuning, the light interacts with only

a small fraction of the atoms - those in the velocity class whose Doppler shift is

less than the natural linewidth of the transition. This fraction is given by

Γ

ΓD
∝ Γ√

T/λ
, (2.2.28)

and therefore both the absorption and third-order nonlinearity is reduced by a

factor of ∼ 1/100.

2.3 Summary

This chapter has introduced a basic description of FWM and atom-light interac-

tions. In the first section we showed that a third-order nonlinearity allows energy
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to be transferred between four optical fields, and can also cause Kerr lensing. We

then considered the resonant interaction between light and atoms. Using the two-

level atom as an illustration, important features of the light atom-interaction were

highlighted, including saturated absorption, power broadening, Doppler broad-

ening, and, most importantly, the resonantly enhanced nonlinearity.



Chapter 3

Resonantly enhanced

four-wave mixing

This chapter describes the resonantly enhanced FWM system which forms the

basis of the work in this thesis. Rather than giving a full theoretical description

of the FWM process, which is involved and has not formed part of the work un-

dertaken for this thesis, it will be introduced in the context of previous work that

has been carried out. The following sections then describe the basic experimental

setup required to carry out resonantly enhanced FWM.

3.1 Introduction

The essence of the FWM experiment is simple, as illustrated in Fig. 3.1. Two

pump beams, one at 780 nm and the other 776 nm, copropagate through a thermal

rubidium cell. This results in the coherent generation of 5.2 µm light, which is

subsequently absorbed by the glass cell, and 420 nm light, which is observed

in the experiment. The frequency conversion process can be carried out very

efficiently, with ∼ 1 mW of 420 nm light generated for only modest pump powers

(∼ 40 mW) [92]. This corresponds to 80 µW of 5.2 µm power, assuming it is

generated solely via FWM.

The use of a thermal vapour allows high rubidium densities to be created

22
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Figure 3.1: Concept of the “blue light” FWM experiment.

with a very simple experimental setup. At room temperature, the rubidium in

the cell exists as both a solid and a gas, with some equilibrium vapour pressure.

The partial pressure of 85Rb at 20◦C is 1.6×10−5 Pa [108], which corresponds to

a number density of 4×109 cm=3. When the cell is heated, the vapour pressure

increases following an empirically derived law [108] (see Appendix B), resulting

in an increase in rubidium density. Heating the cell to 120◦C, which can be easily

achieved, results in an increase in number density by four orders of magnitude.

This allows FWM to be studied over a wide range of rubidium densities.

The relevant atomic energy levels for the resonantly enhanced FWM process

are shown in Fig. 3.2. Though all rubidium cells used in this thesis contain both

rubidium isotopes in their natural abundances (85Rb: 72% and 87Rb: 28% [109]),

we use 85Rb as it allows for more efficient wave mixing. This is due in part to

its larger abundance, but also the smaller splitting of the hyperfine ground states

which, for appropriate pump detuning, allows both states to contribute to the

FWM process.

As shown in Fig. 3.2, the 780 nm and 776 nm lasers couple to the 85Rb

5S1/2 → 5P3/2 and 5P3/2 → 5D5/2 transitions, respectively, whilst the emitted

5.2 µm and 420 nm fields are quasi-resonant with the downward cascade via the

6P3/2 state. Each atomic state is further split into hyperfine structure [1], the

spacings of which are included in Appendix A.

The efficiency of the FWM process is largely due to the low saturation inten-

sity of the 5.2 µm transition, which leads to very large nonlinearities even for low

powers. For sufficient pump intensity, FWM is also enhanced by initial amplified

spontaneous emission (ASE) on the 5.2 µm transition [4,96,110]. The lifetime of
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Figure 3.2: Relevant 85Rb atomic structure, with the natural linewidth, Γ, and

saturation intensity, Isat, for each transition.

the exited state, 5D5/2, is 240 ns, whilst the intermediate states 5P3/2 and 6P3/2

are much shorter lived, with lifetimes of 32 ns and 112 ns, respectively [4]. Pop-

ulation transfer to the excited state therefore leads to a population inversion on

the 5D5/2 → 6P3/2 transition, which in turn results in ASE of the 5.2 µm field.

This 5.2 µm light, combined with the pump fields, builds a strong three-photon

coherence on the 5S1/2 → 6P3/2 transition, leading to generation of 420 nm light.

A similar FWM process has also been carried out in cesium vapour [93,111].

As is required for a parametric wave mixing process, the four fields form a

closed loop so that the initial and final state of the atoms are identical. As such,

for energy conservation the angular frequency of the fields must satisfy

ω780 + ω776 = ωB + ωIR. (3.1.1)

The generated fields also obey the wavenumber phase matching condition

k780 + k776 = kB + kIR, (3.1.2)
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which is equivalent to momentum conservation. Due to the large difference in the

wavelength of the 420 nm and 5.2 µm fields, optimal phase matching is obtained

for copropagating pump beams. However, if a small angle is introduced between

them, then the 420 nm light is generated in a direction consistent with the above

phase matching condition [91]. The phase coherence of the FWM process is

inherent from the phase dependent coherent dynamics of the closed four-level

system [112,113]. A recent experiment has also shown that intensity correlations

present in the pump light are transferred to the 420 nm field [114].

The blue light FWM process has been studied in two regimes. In the original

experiment by Zibrov et al. in 2002 [4], and later experiments [91], the two pump

lasers are single-photon resonant with their respective transitions. This process

is usually carried out for relatively low rubidium densities (∼ 1012 cm=3), low

pump powers (∼ 10 mW), and generates ∼ µW of 420 nm emission. Theoretical

analysis of this resonant FWM experiment has been carried out in Ref. [4].

However, larger conversion efficiency is observed if the 780 nm and 776 nm

lasers are instead detuned by around ∆ = +1.6 GHz and −1.6 GHz, respec-

tively [90, 92]. Note that these are linear detunings, i.e. ∆/2π. In other words,

the 780 nm laser is detuned roughly half way between the F = 3 and F = 2 hy-

perfine ground states, but the pump lasers together are two-photon resonant with

the 5D5/2 state. This reduces the single-photon absorption of the pump beams,

allowing FWM to be carried out at higher rubidium densities (∼ 2× 1013 cm=3),

leading to a larger resonant enhancement. Coupling to both hyperfine ground

states also allows the pump light to interact with a larger fraction of the atomic

population, and removes the possibility of population being optically pumped to

a dark hyperfine ground state [115]. Due to the smaller ground state splitting

(see Appendix A), this five-level FWM process is much more efficient in 85Rb

than 87Rb. A similar FWM process has also been carried out with even further

detuned pump beams using a single 778nm pump laser [94].

The five-level FWM system has been modeled theoretically in the PhD thesis

of a previous student working on the Strathclyde FWM experiment [116], and
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also in Refs. [90] and [92]. The models show that the exact pump detunings at

which FWM occurs depends not only on single-photon absorption of the 780 nm

beam but also on the Kerr lensing it experiences as it propagates through the

cell. Peak FWM efficiency occurs where the Kerr lensing (see Sec. 2.1.1) due to

the transition from each hyperfine ground state cancels.

The generated 420 nm power is also dependent on the polarisation of the

pump beams. Experiments in Ref. [92] showed that the 420 nm output power is

maximised for co-circularly polarised pumps, but is almost completely suppressed

for pump polarisations of opposite handedness. Co-linearly polarised pump beams

can be expected to produce roughly 60% of the optimal FWM efficiency. The

420 nm output power can be further optimised by adjusting the rubidium pressure

in the cell. Whilst the third-order nonlinearity increases with increasing rubidium

density, so does the absorption of both the pump and generated fields. Previous

investigations have shown that the optimum rubidium density for FWM is around

1013 cm=3 [116], though this can be expected to vary with cell length and pump

power etc. For this rubidium density, and with co-circularly polarised pump light,

1 mW of 420 nm light can be generated for a total pump power of 40 mW [92].

With higher power pump beams (∼ 200 mW) 420 nm output powers of 9.1 mW

have been demonstrated [101].

Although the 5.2 µm light is unobserved in our experiment, it has been pre-

viously studied. Like the 420 nm light, it is generated as a coherent, directional

beam [4]. However, it has been observed to be generated both copropagating with

the pump beams and counterpropagating, providing further evidence of the role

of amplified spontaneous emission (ASE) as an initial seed for the FWM process.

There are also other FWM processes that can occur in this system. For

example, there is a second closed FWM loop which follows 5P3/2-5D5/2-6P3/2-

6S1/2 and generates coherent infrared beams at 2.73 µm and 1.37 µm, in addition

to the 5.2 µm light [95,96,117]. Branching ratios for these transitions are included

in Appendix A. Recently, FWM has been demonstrated via the 5S1/2-5P1/2-5D3/2-

6P1/2 loop [118], which generates blue light at 422 nm rather than 420 nm.



3.2. Spectroscopy 27

The remainder of this chapter describes the experimental setup required to

carry out the “blue light” FWM process. The basic experiment requires the

following components: two pump lasers, spectroscopy to monitor the laser fre-

quencies (Sec. 3.2), and a heated rubidium cell in which to carry out FWM (Sec.

3.3). The FWM process itself is relatively simple to carry out, and example traces

of the generated 420 nm emission are described in Sec. 3.4. For the work carried

out in chapters 5 and 6 it was necessary to stabilise the laser frequencies at fixed

detunings, and the laser locking techniques used to do this are described in Sec.

3.5.

At the start of my PhD an existing FWM setup was in place which was

modified and used to gather the experimental results for publication [P5] (Chapter

7). I then redesigned and rebuilt the setup for the work presented in Chapters 5

and 6, primarily to allow the lasers to be locked and for the pump beams to be

independently shaped. The following sections describe the components common

to both the old and new setups, with the full diagram of each setup given later

in Chapters 5 and 7.

3.2 Spectroscopy

The two FWM pump lasers are both extended cavity diode lasers (ECDLs). The

780 nm laser is a home built laser based on the design in Ref. [119]. It produces

around 80 mW of light with a root mean square (RMS) linewidth of 0.29 MHz

over 0.1 s. The 776 nm laser is a Toptica DL100 ECDL, which provides 110 mW

of light (RMS linewidth 1.7 MHz (0.1 s)). The linewidths were measured relative

to a passively stable cavity (Toptica Photonics FPI100 etalon).

This section introduces the saturated absorption spectroscopy and two-photon

spectroscopy used to monitor the detuning of the pump lasers.



3.2. Spectroscopy 28

3.2.1 Saturated absorption spectroscopy

Fig. 3.3 shows the saturated absorption spectroscopy [121, 122] signal recorded

when the 780 nm laser is scanned across the 5S1/2 → 5P3/2 hyperfine transitions of

both rubidium isotopes. This plot is composed of multiple traces, as the mode-hop

free tuning range of the laser was roughly 3 GHz. The inset in Fig. 3.3 (a) shows

the setup used. The 780 nm light is retroreflected through a 75 mm long, room

temperature rubidium cell, and the transmission monitored on a photodiode.

Figure 3.3: (a) Saturated absorption spectroscopy spectrum of the 780 nm transi-

tion, with zero detuning at the 85Rb 5S1/2 F = 3→ 5P3/2 F
′ = 4 transition and

I780 ' 8 mW/cm2. Inset: Experimental setup. (b)-(e) Zoomed plots of the

hyperfine features at each Doppler broadened transition, with a fitted Gaussian

background subtracted and zero detuning set to the energy centre-of-mass of each

transition. Dashed lines indicate expected detuning of features calculated using

values from [120], see appendix A. Data is averaged over 50 traces.
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The broad dips in transmission are due to Doppler broadened transitions from

the two 85Rb hyperfine ground states (F = 3 and F = 2), and the two 87Rb hy-

perfine ground states (F = 2 and F = 1) to F ′ = F, F ± 1. There are additional

small peaks in transmission due to the beam being retroreflected through the cell,

which are shown more clearly in Fig. 3.3 (b)-(e). For most detunings, the right-

propagating beam interacts with one velocity class of atoms (with longitudinal

velocity ±v), and the left-propagating beam another (∓v). Since the intensity of

the beam is relatively high (I780 ' 5Isat) the absorption coefficient of the atoms is

significantly saturated by the right-propagating beam. Close to resonance, when

the two beams interact with the same atoms (v = 0), this saturation results in a

peak in transmission of the left-propagating beam, producing the features shown

in Fig. 3.3 (b)-(e). Additional “crossover” peaks occur when the light is detuned

exactly halfway between two hyperfine states. In this case the light again inter-

acts with only one velocity class, but drives transitions to one hyperfine state on

the first pass, and the other on the return pass. Other effects also contribute to

these spectra, for example the effect of hyperfine pumping must be considered to

explain the relative height of the saturated absorption peaks [122].

3.2.2 Two-photon spectroscopy

The detuning of the 776 nm laser is monitored via two-photon spectroscopy

[123–125] of the 5S1/2 → 5D5/2 transitions [126]. Fig. 3.4 (a) shows an exam-

ple two-photon spectrum, with the experimental setup shown in the inset. The

transmission of a 10.5 mW 776 nm beam was monitored in the presence of a

counter-propagating 4.8 mW 780 nm beam. Both beams had beam waists (e−2

intensity radius) of 0.9 mm, and the 776 nm transmission was measured using a

glass plate to direct a portion of the light to a photodiode. The rubidium cell

used was 25 mm long and heated to 130◦C (see Sec. 3.3 for further details).

The x-axis in Fig. 3.4 is the two-photon detuning of the combined 780 nm and

776 nm light from the 85Rb 5S1/2 F = 3 → 5D5/2F
′ = 5 transition. The trace

was taken by scanning the 776 nm detuning with the 780 nm detuning fixed at
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Figure 3.4: (a) Two-photon spectroscopy trace. Inset: Experimental setup. (b)-

(e) Zoomed plots of the hyperfine features at each detuning labeled in (a), with

zero detuning set to the energy centre-of-mass of each transition. Dashed lines

indicate expected detuning of features calculated using values from [126], see

appendix A. Data is averaged over 100 traces.

around 1.6 GHz.

The four groups of absorption features in Fig. 3.4 correspond to the allowed

two-photon transitions from each of the rubidium hyperfine ground states. Unlike

saturated absorption spectroscopy, they are not Doppler broadened. The total

energy of a 776 nm photon and a counter-propagating 780 nm photon in the frame

of reference of an atom moving with velocity v (towards the 776 nm beam) is [1]

E = ~(ω780 − k780v + ω776 + k776v) ≈ ~(ω780 + ω776). (3.2.3)

Since the two pump lasers are of nearly the same wavelength k780 ≈ k776 and

the Doppler shifts almost exactly cancel out, with a residual shift of 7 kHz/ms−1.
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When the 780 nm and 776 nm light is two-photon resonant in the lab frame, all

velocity classes are resonant and there is significant absorption of the 776 nm

light.

3.3 Heated rubidium cell

The cell used for FWM is 25 mm long, and, as discussed in the introduction to

this chapter, the rubidium density is controlled by changing the cell temperature.

The cell is heated via power resistors connected to a constant current source. To

improve the temperature uniformity and also reduce air currents across the beam

the cell is surrounded by a metal box. This also helps to ensure that the cell

windows remain hotter than the rest of the cell, which is important as it prevents

condensation of rubidium in the optical path.

The temperature of the cell is determined by measuring the Doppler broadened

transmission spectrum of a weak (< 0.04 mW/cm2), collimated 780 nm beam

through the cell. Under these conditions, the theoretical transmission spectrum

of the 5S1/2 → 5P3/2 transitions can be calculated following theory in Ref. [127].

Fig. 3.5 shows the predicted spectrum for a range of cell temperatures. At low

temperatures, the four familiar Doppler broadened dips (see Fig. 3.3) can be seen,

but as the temperature increases the medium quickly becomes completely opaque

on resonance.

A quick and accurate temperature measurement can be made by measuring

the peak transmission near the detunings marked A and B (inset Fig. 3.5). The

transmission near detuning A is used for cell temperatures in the range 20 →

80◦C whilst for hotter cells (100 → 160◦C) the transmission near B is used. By

making multiple measurements (> 5) of the peak transmission at the appropriate

detuning an average temperature was calculated for a range of heater currents.

The results are shown in Fig. 3.6. Error bars showing the standard error in each

measurement are included but are too small to see on this scale. An empirical

parabolic fit to the data (black line), with the y-intercept fixed to 20◦C (room
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Figure 3.5: Theoretical transmission curve for a weak 780 nm beam through a

25 mm cell at different temperatures. The inset shows the temperature variation

of the peak transmission, TP , near detunings A and B.

Figure 3.6: Measured temperature of the 25 mm cell as a function of heater

current. The right hand y-axis shows the equivalent 85Rb pressure.
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temperature for 0 A), is also shown. This curve provides a calibration for the cell

temperature as a function of heater current.

For the 25 mm cell, peak FWM efficiency for linearly polarised pumps was

found to occur for a temperature of around 130◦C, depending on pump power

and focused intensity. This corresponds to a 85Rb vapour pressure of 0.12 Pa or

in terms of number density, 2.1 × 1013 cm=3. This is twice the optimal density

in Ref. [92], where FWM was carried out with circularly polarised light and a

75 mm long cell.

Two other heated cells were used for spectroscopy at various points in this

thesis, one 10 mm long and the other 75 mm. The temperature calibration curves

for these cells are included in Appendix B.

3.4 FWM signal

With the two pump lasers and heated rubidium cell in place, the FWM process

can be carried out relatively easily using the setup shown in Fig. 3.7 (a). The

pump light is combined into a single beam and then coupled through a single

mode optical fibre. The combined pump beam is then linearly polarised and

focused through the FWM cell, which is heated to 130◦C. Within the cell, FWM

generates a coherent and directional 420 nm beam. Infrared light at 5.2 µm is

also generated, but is absorbed by the glass cell. In this example a prism was

used to separate the blue light from the pump beams and the generated 420 nm

power measured on a photodiode. The 420 nm power as a function of 780 nm and

776 nm detuning is shown in Fig. 3.7 (b) and (c), respectively.

The pump beams are focused through the cell using a 2f -imaging system

consisting of two 200 mm achromatic lenses. The beam waist of 0.89 mm before

the first lens focuses to 52 µm at the centre of the rubidium cell. This combination

of lenses and waists was found to be optimal for FWM conversion efficiency in

previous work [92] - there is a trade off between the peak intensity at the focus

and the propagation length over which the intensity is sufficiently high for efficient
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FWM.

Due to the resonant enhancement, relatively low pump powers are required.

In this case, 13 mW of 780 nm light and 23 mW of 776 nm was used, which cor-

responds to peak focused intensities of 0.3 and 0.5 kW/cm2, respectively. With

these pump powers a maximum of 0.34 mW of 420 nm light was generated.

The 420 nm light is generated for a wide range of pump detunings, so long

as the combined 780 nm and 776 nm light is close to two-photon resonance with

the 5S1/2 →5D5/2 transitions. Maximum conversion efficiency occurs when the

780 nm laser is detuned roughly halfway between the two 85Rb 5S1/2 hyperfine

Figure 3.7: Example FWM signal. (a) Experimental setup, (b) 420 nm power

directly after the cell (blue) as a function of 780 nm detuning (∆776 = −1.8 GHz)

and (c) 776 nm detuning (∆780 = 1.8 GHz). Spectroscopy signals are included

for reference: 780 nm saturated absorption spectroscopy (black) and two-photon

spectroscopy (grey). AL: Achromatic lens, PD: Photodiode.
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groundstates. These detunings minimise 780 nm absorption and Kerr lensing

whilst still enabling a strong coherence to be induced on the two-photon transition

[90,92]. The optimal pump detunings for peak 420 nm power in this example were

∆780 = 1.8 GHz and ∆776 = −1.8 GHz.

Fig. 3.7 (b) shows the blue output power as a function of 780 nm detuning,

with the 776 nm detuning fixed at −1.8 GHz. The 420 nm emission is generated

over a Doppler (and power) broadened feature, with a peak in intensity when the

pump light is two-photon resonant. The blue feature has complicated substruc-

ture due to interference of different FWM pathways through the many hyperfine

states of the upper levels [72, 74]. It is further complicated by Kerr lensing, pre-

dominantly of the 780 nm beam, which affects the phase-matching of the FWM

process [92]. Peak FMW efficiency occurs close to zero Kerr lensing, which is

halfway between the two hyperfine groundstates. The position and shape of this

feature depends on various experimental parameters, including pump power, fo-

cused intensity, 776 nm detuning, cell temperature, pump polarisation and the

position of the focus in the cell.

The blue power as a function of 776 nm detuning is shown in Fig. 3.7 (c),

with ∆780 = 1.8 GHz. The 420 nm emission is generated when the pump beams

are close to two-photon resonance with the transitions from the F = 3 (near

∆776 = −1.8 GHz) and F = 2 (near ∆776 = 1.2 GHz) 5S1/2 hyperfine ground-

states.

As a side note, the two-photon spectroscopy shown here differs from the spec-

tra shown in Fig. 3.4 due to a slightly different setup. Here, rather than using

counter-propagating 780 nm and 776 nm beams, the transmission of a combined

780 nm and 776 nm beam after retroreflection through a rubidium cell (in this

case the main FWM cell) was monitored. The resulting spectra contain the same

two-photon absorption features as shown in Fig. 3.4, but also contain Doppler

broadened single-photon absorption features. In Fig. 3.7 (b) the broad peak in

transmission between 1 and 2.2 GHz is due to transmission of the 780 nm light

which is completely absorbed close to the 5S1/2 → 5P3/2 resonances. In Fig. 3.7
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(c) the broad absorption feature close to zero detuning corresponds to single pho-

ton absorption of the 776 nm light, where population has first been transferred

to the 5P3/2 state through single-photon 780 nm absorption.

3.5 Frequency Stabilisation

As well as taking traces of the FWM signal, it is useful to be able to stabilise

the frequency of the pump lasers so that a blue beam with stable intensity and

frequency can be generated. This is made non-trivial by the large detunings

required for efficient FWM - the 780 nm laser must be locked at a detuning of

around 1.6 GHz. To achieve this, a dichroic atomic vapour laser lock (DAVLL) is

used, with the detuning further monitored via a beat note measurement with a

separate 780 nm reference laser. The 776 nm laser meanwhile is locked using the

standard frequency modulation technique to one of the two-photon spectroscopy

features, so that the pump beams are two-photon resonant. This section describes

these frequency stabilisation and monitoring techniques.

3.5.1 DAVLL lock - 780 nm

In order to lock the 780 nm laser at the required detuning an approximately linear

error signal must be generated with a zero crossing roughly half-way between the

5S1/2 → 5P3/2 transitions from the 85Rb F = 3 and F = 2 hyperfine ground

states. Furthermore, because the optimal 780 nm detuning for FWM conversion

efficiency varies significantly with various experimental parameters, the frequency

of the zero crossing must also be tunable. These criteria rule out the usual

technique of frequency modulation locking to a saturated absorption feature [128],

so instead another solution was found: the DAVLL lock [129–131].

The error signal in the DAVLL lock is generated as follows (see Fig. 3.8 (a)

for the setup). Linearly polarised light propagates through a 75 mm long, room

temperature rubidium cell and parallel to the direction of an applied magnetic

field (B ' 450 G). The linearly polarised light can equally be described as an
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equal superposition of circularly polarised components of opposite handedness

(σ+ and σ−), and the quarter-waveplate and polarising beam splitter after the

rubidium cell are set so that the transmission of each handedness is measured

separately by photodiodes PD2 and PD3. The error signal is created by taking

the difference between the two photodiode signals. With no applied field the

difference signal would be zero, but the magnetic field causes the rubidium vapour

to become dichroic: the transmission spectra of the σ+ and σ− components are

shifted relative to each other.

Figure 3.8: DAVLL lock for 780 nm laser (a) Experimental setup; PBS: Polarising

beam splitter, R.T.: Room temperature. (b) Black: photodiode signals (offset

for clarity) and initial DAVLL signal taken with an early version of the difference

photodiode circuit. Note the PD2 signal is already inverted. (c) Black: the

amplified DAVLL signal obtained with the final circuit, divided 50 times to show

on the same scale. Grey traces show saturated absorption spectroscopy (in a

separate cell) as a reference, and an example FWM spectrum is included in (c),

showing the lock point aligned with peak FWM conversion efficiency. Data is

averaged over 10 traces.
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Each hyperfine energy level, F , is split into 2F + 1 magnetic sublevels (labeled

mF = −F... +F ), which correspond to different angular distributions of the

electron wavefunction [1]. In an isolated atom these sublevels are degenerate, but

the applied magnetic field breaks this degeneracy. This results in complicated

spectra [131], but the net result is that transitions from the ground to excited

state where ∆mF = +1 (which are coupled by the σ+ light due to selection

rules [1]) shift to higher energies whilst transitions where ∆mF = −1 (coupled

by σ−) shift to lower energy.

Fig. 3.8 (b) shows the PD2 and PD3 photodiode signals, which correspond to

the σ+ and σ− components, respectively, as well as a saturated absorption trace

in a separate Rb cell with no applied field for reference. Due to the limited range

of the scan, the PD2 spectrum shows only the shifted transitions from the 85Rb

F = 3 groundstate, whilst the PD3 spectrum covers only the oppositely shifted

transitions from the F = 2 groundstate. The difference between these signals

creates an error signal with a zero crossing approximately halfway between the

two hyperfine groundstates.

To allow the locking point to be tuned, a difference photodiode circuit was

developed (see Appendix C) that allows the weighting given to each photodiode

signal to be set using a variable resistor. A second stage then amplifies the signal

to increase the gradient of the error signal, which results in a tighter lock. With

this circuit the error signal shown in Fig. 3.8 (c) is generated. To lock the laser,

this signal is passed to an integrator circuit which stabilises the laser frequency

at the zero crossing. The stability of the lock is evaluated in the next subsection.

3.5.2 Beat note - 780 nm

The frequency of the 780 nm light is monitored directly by performing a beat note

measurement with a second 780 nm reference laser. This laser is in an adjacent

lab and is locked to a saturated absorption feature of the trapping transition in

87Rb (5S1/2 F = 2→ 5P3/2 F = 2, 3). The setup used for the beat note is shown

in Fig. 3.9 (a). The radio frequency (RF) signal from the photodiode is amplified
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by three 15 dB amplifiers and then monitored on an RF spectrum analyser.

The beat note measurement allows the stability of the DAVLL lock to be

determined over different timescales. Monitoring the lineshape of the beat note

itself (grey trace, Fig. 3.9 (b)) showed that locking the laser produces no sig-

nificant broadening of the laser linewidth over timescales of 1 ms. However, on

longer time scales the lock point itself wanders about the set point. The black

trace in Fig. 3.9 (b) is recorded using the “max-hold” feature on the spectrum

analyser to monitor the beat note for 1 minute. The frequency variation has a

FWHM of 7 MHz. Over even longer time scales the lock point is subject to larger

drifts. Fig. 3.9 (c) shows the drift of the peak frequency of the beat note over

half an hour. This slow drift is a downside of the DAVLL lock technique, and

Figure 3.9: Reference beat note for 780 nm laser. (a) Experimental setup; NPBS:

Non-polarising beam splitter, ND: Neutral density filter, FPD: Fast photodiode

(Thorlabs DET025A). (b) Grey: Beat note between DAVLL locked 780 nm laser

and reference laser, with Lorentzian fit (FWHM 0.96 MHz). Black: “Max-hold”

trace beat note over 1 minute, FWHM 7 MHz. (c) Slow drift of peak beat note

frequency over 35 minutes.
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stems from temperature changes of the polarisation optics. To counteract this

the DAVLL lock is always used in conjunction with the beat note measurement to

monitor and set the lock point. The stability of the DAVLL lock could possibly

be improved by using a Fresnel rhomb in place of the quarter waveplate.

3.5.3 Two-photon lock - 776 nm

Peak FWM conversion efficiency occurs when the pump lasers are two-photon

resonant with the 5D5/2 excited state. Once the 780 nm laser is locked, two-photon

resonance is ensured by stabilising the 776 nm frequency using the two-photon

spectroscopy technique described in section 3.2.

A two-photon spectroscopy trace of the 85Rb 5S1/2 F = 3→ 5D5/2 transitions

is shown in Fig. 3.10 (a). To produce an error signal for locking (with zero

crossings at the resonance frequencies) the derivative of this spectroscopy signal

must be found (Fig. 3.10 (b)). This is achieved using a lock-in detector [128]: a

50 kHz modulation is applied to the 780 nm laser frequency via the piezo, which in

turn modulates the spectroscopy signal. The product of the applied modulation

Figure 3.10: Two-photon lock to stabilise the 776 nm frequency. (a) Two-photon

spectroscopy of the 85Rb 5S1/2 F = 3→ 5D5/2 transitions. (b) Derivative signal

used for locking. The vertical dashed line indicates the lock point. Data is

averaged over 100 traces.
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and the spectroscopy signal then gives a signal proportional to the derivative.

The spectroscopy signal and derivative shown in Fig. 3.10 were taken using

a 25 mm long rubidium cell at 130◦C with 0.4 mW and 1.5 mW of 780 nm and

776 nm light, respectively. Both beams had waists of 0.9 mm, and the modulation

applied to the 780 nm laser had an RMS amplitude of ∼ 4 MHz. With this error

signal the 776 nm laser was locked so that the two pump fields were resonant

with the 85Rb 5S1/2 F = 3→ 5D5/2 F
′ = 5 transition with an RMS lock stability

inferred from the lock error signal of 0.27 MHz over 4 s.

3.6 Summary

This chapter has introduced and explained the basic building blocks of the FWM

experiment. The two pump lasers were described, as well as the spectroscopy

techniques used to monitor their frequency. The heated rubidium cell and the

method used for measuring its temperature was also introduced. With these ele-

ments the FWM signal can be generated, and an example of the FWM spectrum

obtained was provided. In the final section the methods used to stabilise the

frequency of the pump lasers were detailed. This chapter provides the founda-

tions of the experimental work for this thesis, and will be referenced later when

describing the setup for each particular experiment.



Chapter 4

Structured light

Building on the basic FWM experiment, the bulk of this thesis studies the effect of

adding transverse phase and intensity structure to the pump beams. In particular,

we study the transverse mode of the generated 420 nm light when the pump light

is shaped into Laguerre-Gauss (LG) modes. Following an introduction to LG

modes in Sec. 4.1, the remainder of this chapter introduces the experimental

setup and analysis used to carry out these experiments.

The development of the beam shaping setup contributed to the publication

of two papers, Refs. [P1] and [P2]. The first, which will be discussed in Sec. 4.2,

compares different methods of generating phase-only holograms. For this work

my main contribution was working with T. W. Clark to take the experimental

data, as well as preliminary input into the experimental software and the analysis

of the results. In this chapter we present the experimental results from this paper

which are most relevant to the work in this thesis. This work is discussed more

fully in the thesis of T. W. Clark [132].

The second paper, Ref. [P2], compares the hologram generation methods over

a wide range of simulated experimental conditions. My main contribution to this

work was in the discussion and interpretation of the results. Therefore we present

only the main conclusions of this paper in Sec. 4.3, with the focus on how the

results informed the development of the FWM beam shaping setup.

The final element required for the FWM experiment is a method of quanti-
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tatively measuring the mode decomposition of the generated 420 nm light, and,

for comparison, the shaped pump beams. The experimental setup and analysis

developed to do this will be described in Sec. 4.4, and is also discussed in Ref. [P3].

4.1 Laguerre-Gauss modes

Ignoring polarisation, the electric field of an optical beam propagating along z,

and with transverse coordinates rt, can be written as

E(rt, z, t) = u(rt, z)e
i(kz−ωt). (4.1.1)

The complex field oscillates in time and in z, and has some finite distribution in

the transverse plane, which is described by u(rt, z).

For certain transverse distributions, known as transverse modes, u(rt, z) re-

mains the same, apart from a scale factor, as the beam propagates. The simplest

of these distributions can be found by solving the paraxial wave equation, [34]

∇2
tu(rt, z) + 2ik

∂u(rt, z)

∂z
= 0. (4.1.2)

This is a simplified form of the wave equation introduced in Sec. 2.1 under the

assumption that the variation of u(rt, z) along z is slower than both the fast eikz

oscillation along z and the transverse variations in rt.

In cylindrical coordinates the most compact solutions are the Laguerre-Gauss

modes, which have the form [133],

LG`
p(r, θ, z) =

C`
p

w

(
r
√

2

w

)|`|
L|`|p

[
2r2

w2

]
e−

r2

w2 +i(kz+`θ+ΦS+ΦG)

Normalisation factor : C`
p =

√
2p!/π(p+ |`|)!

Beam width : w = w0

√
1 + (z/zR)2, Beam waist : w0,

Rayleigh range : zR = πw2
0/λ

Spherical wavefronts : ΦS = kr2z/(2(z2 + z2
R))

Gouy phase : ΦG = −(2p+ |`|+ 1) arctan(z/zR)

Associated Laguerre polynomial : L|`|p =

p∑
j=0

(−1)j
(
p+|l|
p−j

) xj
j!

(4.1.3)
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If Eq. 4.1.2 is instead solved in Cartesian coordinates then the familiar Hermite-

Gauss modes are found [34].

The transverse intensity and phase of the lower order LG modes are shown

in Fig. 4.1. Each mode is described by two integers, −∞ < ` < +∞ and p ≥ 0.

Apart from the fundamental mode, the intensity profiles are ring shaped, with the

p index determining the number of radial nodes. The ` index directly determines

the transverse phase of the beam via the eilθ term. The phase of each mode

varies azimuthally, with the phase ramping linearly from 0 to 2π ` times around

the circumference of the beam. For |`| > 0, the phase is therefore undefined at

the centre of the beam, resulting in a zero in intensity. Although not shown, the

sign of ` affects only the sign of the azimuthal phase variation, with the intensity

profile dependent on |`|.

The propagation of the fundamental LG0
0 (Gaussian) mode along z is shown

in Fig. 4.2 (a). The overall scaling of the transverse profile is set by the beam

waist, w0, which is the 1/e2 intensity radius at z = 0. As the beam propagates

it expands due to diffraction such that after one Rayleigh range, zR, the beam

width is
√

2w0, but the transverse profile is otherwise unchanged.

As the beam propagates through the focus it also undergoes a phase shift of

1

0

0

Figure 4.1: Transverse intensity, I, and phase, φ, of the Laguerre-Gauss modes

for 0 ≤ ` ≤ 2 and p ≤ 2.
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Figure 4.2: (a) Normalised intensity variation and (b) Gouy phase shift of the

LG0
0 mode propagating along z.

π relative to a plane wave. This is captured by the Gouy phase term in Eq. 4.1.3,

the z-dependence of which is plotted in Fig. 4.2 (b). Due to the finite extent

of the beam at the focus, it can be described as a superposition of plane waves

propagating at a range of (small) angles relative to the z-axis. As a result, the

beam must propagate further in order to undergo the same phase shift as a plane

wave traveling directly along z, and the phase of the beam is therefore delayed.

The magnitude of this phase shift increases for higher order modes, with the total

phase shift given by −(2p+ |`|+ 1)π.

4.1.1 Orbital angular momentum

An important feature of the LG modes is that they carry orbital angular momen-

tum (OAM) [41–43]. Light can carry both linear and angular momentum, and,

in the paraxial approximation, the angular momentum can be futher sub-divided

into two types: spin angular momentum (SAM) and orbital angular momentum

(OAM) [133]. The SAM is associated with circular polarisation, and was first

observed as long ago as 1936 via measurements of the torque exerted on a bire-

fringent plate [134]. Conversely, although the existence of OAM has been known

since 1932 [135], it was another sixty years before Allen et al. recognised that light

carrying OAM could be readily generated in the lab. Specifically, they showed
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1

0 0

Figure 4.3: Helical wavefronts of the p = 0 LG modes in the limit of w0 >> λ

and with the wavelength size exaggerated for clarity.

that any beam with an ei`θ phase dependence carries `~ of OAM per photon.

Clearly the LG modes meet this criteria, with the ` index directly determining

the OAM carried by the beam.

The link between an ei`θ transverse phase and OAM can be explained by

considering the phase fronts of the beam, shown for the first few p = 0 LG modes

in Fig. 4.3. Whilst the phase fronts of the fundamental mode ` = 0 are spherical

shells, for the l = 1 mode they form a spiral along the z-axis. As ` increases more

spirals are intertwined; for l = 2 the phase fronts form a double helix, similar to

DNA, whilst a negative ` results in spirals of opposite handedness. At any point

along the beam the electric and magnetic fields are tangential to the phase fronts,

and the local momentum density, ε0E×B, is therefore normal to the phase front.

Hence, for |`| > 0, the momentum density follows a helical path, rotating around

the z-axis, resulting in an associated OAM [133,136].

Applications for OAM are wide ranging, encompassing optical manipulation,

communication and quantum optics. Both SAM and OAM can be used to exert a

torque on trapped particles [137–140], which can be used to drive micromachines

in optical tweezer experiments [141, 142], or alternatively to impart angular mo-

mentum to Bose-Einstein condensates, leading to interesting research studying
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vortices [143] and superfluidity [144].

The most relevant application for this thesis is optical communication. Light

modes carrying different values of OAM are orthogonal, presenting a theoretically

infinite basis which can be used to encode information. The actual number of

OAM basis states is of course limited by technical considerations, but there is

still the potential for high bandwidth communication. Classical communication

using OAM multiplexing has been demonstrated both in free space [6,145] and in

optical fibres [32,102], and OAM states have also been used for higher-dimensional

quantum key distribution [146,147].

4.1.2 LG mode generation

For a cavity to support an LG mode the entire spatial xy profile must undergo

identical phase shifts and losses in a round trip to avoid breaking the cylindrical

symmetry. As a result, although LG modes can be generated directly within

a laser cavity [148], it is more challenging than generating the more commonly

found Hermite-Gauss (HG) modes, since common cavity elements, such as Brew-

ster plates, break the xy symmetry. However, since both LG and HG modes

are complete orthonormal bases, each LG mode can be rewritten as a complex

superposition of HG modes. Early methods of generating LG modes, known as

astigmatic mode converters, made use of this by taking two HG modes and in-

troducing the correct phase shift between them to generate a LG mode [149].

LG modes can also be generated from an initially Gaussian beam, perhaps most

commonly using a forked diffraction grating [150], where a fixed LG mode is gen-

erated in one of the diffracted orders. Alternatively a spiral phase plate [151] -

a refractive optic which introduces an i`θ-phase dependence across the beam -

or q-plate [152] - which uses geometric phase shifts to couple spin and orbital

angular momentum - can be used.

Whilst these methods work well, the LG mode generated is fixed by the char-

acteristics of the optical element. In contrast, digital holography, using devices

such as a digital micro-mirrored device (DMD) [153] or spatial light modulator
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(SLM), allows the generated mode to be chosen and updated in real time. In

this thesis an SLM is used to generate a range of modes, as well as more gen-

eral transverse patterns. The methods used to do this are described in the next

section.

4.2 Holographic beam shaping

Holographic beam shaping was first introduced by Gabor in 1948 [154]. In this

early demonstration, the interference pattern between a coherent reference beam

and the light scattered from an object was recorded on a photographic plate. Sub-

sequent illumination of the plate, or hologram, with the reference beam recreated

an image of the original object. Digital holography follows the same principle,

but rather than requiring a physical hologram formed by interference, the holo-

gram is calculated numerically and “displayed” on a beam shaping device - in

our case an SLM. The flexibility this allows has revolutionised beam shaping, but

introduces a new problem: how to calculate the hologram required to produce a

given optical field.

A wide variety of hologram generation methods exist. In order to select the

most appropriate method for the FWM experiment, various approaches were

compared both numerically and experimentally. The results from this work are

presented in Ref. [P1].

4.2.1 Phase-only beam shaping

Light is inherently complex; it has both an amplitude and a phase. SLMs shape

light by inducing a spatially varying phase shift across the beam. This immedi-

ately provides direct control over the phase of the beam, and, via various different

methods, can also be used to shape the amplitude. An obvious approach is to

use two SLMs in combination with polarisation optics to convert between phase

and amplitude shaping [155, 156]. However, SLMs are expensive so we limit the

problem to a single SLM. In this case, high fidelity beam shaping can be achieved
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Figure 4.4: (a) Setup for beam shaping using a single SLM. (b) Wave vector dia-

gram of input and diffracted light. For the comparison experiment, f1 = 300 mm

and f2 = 125 mm.

using iterative methods to calculate the required phase hologram [157–159]. These

methods are usually most appropriate when a complex phase and intensity profile

is required in a single transverse plane. For the FWM experiment the main aim

is to generate propagating modes, in which case much simpler methods can be

used. The usual approach is to include a phase grating in the hologram [160–165],

and modulate the phase depth of the grating to achieve amplitude shaping.

In particular we focus on hologram generation methods where the desired

mode is generated in the first diffracted order [166–169]. This has the advantage

of spatially separating the shaped and unshaped light, allowing for higher mode

purity. The setup required for this approach is shown in Fig. 4.4 (a). Light from a

single-mode optical fibre is expanded using a telescope to cover the active area of

the SLM. The diffracted light from the SLM is then imaged using a 4f -telescope,

with an aperture in the Fourier plane of the SLM in order to select only the first

diffracted order.

4.2.2 Hologram generation methods

The aim is to use a phase only hologram H = H(x, y) to generate a desired field

Edes(x, y) = Ades(x, y)eiΦdes given an input field Ein(x, y) = Ain(x, y)eiΦin , such

that

Edes(x, y)eikdes.r = eiH(x,y) × Ein(x, y)eik
′
in.r̂. (4.2.4)
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The orientation of the desired field wave vector kdes and the (reflected) input

wave vector k′in are shown in Fig. 4.4 (b).

To find the required form of the hologram, Eq. 4.2.4 can be rewritten as

eiH(x,y) =
Edes(x, y)

Ein(x, y)
ei(kdes−k′

in).r̂. (4.2.5)

By requiring a small angle between kdes and k′in, the phase grating is introduced

automatically due to the interference between the beams

(kdes − k′in).r̂ =
2πx

Λ
= Mod

(
2πx

Λ
, 2π

)
= Φg(x). (4.2.6)

Eq. 4.2.5 can now be rewritten as

eiH(x,y) = Arel(x, y)eiΦrelg ,

Arel(x, y) = Ades(x, y)/Ain(x, y)

Φrelg(x, y) = Φdes(x, y)− Φin(x, y) + Φg(x).

(4.2.7)

The fields are appropriately normalised so that Arel(x, y) is between 0 and 1, and

Φrelg(x, y) ranges from −π to π.

As a first approximation, the hologram H(x, y) can be simply set equal to the

relative phase

H(x, y) = Φrelg(x, y). (4.2.8)

For LG modes, this is equivalent to a forked diffraction grating. However, without

amplitude shaping the intensity profile of the incident Gaussian is projected onto

the set of LG modes with the desired `. The result is a beam with the correct `

index, but composed of many p-modes. To improve on this, we consider holograms

of the form

H(x, y) = f(Arel(x, y)) Φrelg(x, y), (4.2.9)

where the function f(Arel(x, y)) modulates the depth of the phase grating accord-

ing to the relative amplitude of the fields.

In Ref. [P1] six hologram generation methods were compared. In this chapter

we present the four methods most suited to the FWM experiment:



4.2. Holographic beam shaping 51

Method A

The simplest method tested was to scale the phase grating directly by the relative

amplitude of the fields

H(x, y) = Arel(x, y)Φrelg(x, y). (4.2.10)

This method was initially solely included as a baseline for comparison, but per-

formed remarkably well.

Method B

This method has a different form to Eq. 4.2.9, and instead takes inspiration

from the original Gabor experiment. The hologram is based on the interference

pattern formed between the input and desired fields, but here the resulting phase

distribution is used, rather than the intensity

H(x, y) = arg(NEdg(x, y) + Ein(x, y)) ,

Edg(x, y) = Ades(x, y)ei(Φdes(x,y)+Φg(x)).
(4.2.11)

The normalisation factor N is included to ensure that the amplitude of the desired

field never exceeds that of the input field.

Method C

Method A makes the assumption that the amplitude of light diffracted into the

first order varies linearly with the grating depth, which is of course not the case.

Fourier analysis shows that the diffracted amplitude is in reality given by [166]

A(x, y) = ei(1−f(A(x,y)))πsinc [π(1− f(A(x, y)))] , sinc(w) ≡ sin(w)

w
. (4.2.12)

Neglecting the phase term, and taking the inverse gives

f(A(x, y)) = 1− 1

π
sinc−1(A(x, y)), (4.2.13)

thus the full hologram is given by

H(x, y) =

(
1− 1

π
sinc−1(Arel(x, y))

)
Φrelg(x, y). (4.2.14)
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This method was put forward by Davis et al. [166] and is the method eventually

chosen for the FWM experiments.

Method D

Bolduc et al. pointed out that neglecting the phase term in equation 4.2.12 may

cause an undesired amplitude dependent phase error in the hologram [169]. As a

solution they suggested the following hologram as an improvement

H(x, y) = M (Φrelg(x, y)− πM) ,

M = 1 +
1

π
sinc−1(Arel(x, y)) .

(4.2.15)

This method performed very similarly to method C in the comparison experiment,

with method C eventually chosen due to its slightly simpler form.

Other methods

The other two methods considered in Ref. [P1] were proposed by Arrizòn et

al. [167], and used amplitude scaling functions based on the zero and first order

Bessel functions. These methods performed well, but the four methods detailed

above performed consistently as well if not better in our comparison. However,

numerical simulations in later work [P2] showed that the Arrizòn methods may

outperform the others on SLM devices with reduced phase throw (see section

4.3).

4.2.3 The experiment

The experimental setup for the comparison was the same as shown earlier in

Fig. 4.4 (a). Light from the 776 nm laser was coupled through a single-mode

polarisation-maintaining fibre, and a 4f -telescope used to expand the beam to a

1/e2 intensity radius of 4.65 mm. The angle of incidence of the beam onto the

SLM (Hammamatsu LCOS X10468-02) was approximately 3◦. Holograms were

calculated to generate a range of modes, following each of the methods detailed
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above and using a grating period of Λ = 4 SLM pixels. The waist of the modes

at the SLM was set to 0.9 mm.

After the SLM, a 4f -telescope (f1 = 300 mm and f2 = 125 mm see Fig. 4.4

(a)) was used to select the first diffracted order and to demagnify the beam so

that it would fit on a Point Gray Chameleon CMLN-13S2M-CS camera. The

aperture in the Fourier plane of the telescope was ∼1 mm in diameter. Images of

the shaped light were taken first in the image plane of the SLM, and then after

the light had propagated 0.5zR and 1.0zR (29.5 mm and 56.9 mm, respectively).

Input beam

So far no consideration has been given to the form of Ein(x, y). Numerical sim-

ulations of the methods showed a substantial decrease in the beam generation

accuracy if the input field is assumed to be a plane wave [P1]. Instead, single

pixel imaging techniques [170,171] were used to measure the profile of the input

beam in situ (Fig. 4.5). The basic idea is to divide the SLM into “superpixels”

and record the diffracted power when a phase grating is displayed at each pixel

in turn. From this information, an image of the beam can then be reconstructed.

Rather than using single superpixels, the signal to noise ratio can be improved by

using an orthogonal set of patterns that cover the whole SLM. In the comparison

experiment a sequence of Hadamard patterns were used to reconstruct a 32× 32

pixel image of the input beam. This image was then scaled up to the 600× 600

resolution of the SLM hologram to produce an image, Im(x, y). The input field

Figure 4.5: (a) Setup for single pixel imaging of input beam and (b) reconstructed

intensity profile.
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used in the calculations of the holograms was then

Ein(x, y) =
√
Im(x, y). (4.2.16)

For the purposes of the comparison paper the phase fronts of the input beam

were assumed to be flat. However, similar single pixel methods exist to measure

the combined phase flatness of the input beam and SLM [172], which could be

employed if necessary.

A drawback of the single pixel imaging technique is that it is relatively slow

if a high resolution image of the input beam is required. An alternative method,

which was used in the final FWM beam shaping experiment, is to instead assume

the input beam is a perfect Gaussian, but use single pixel imaging to measure

its waist. Only a low resolution image is required for this, and as a result the

measurement is quick, and provides an accurate measurement of the beam waist

directly at the SLM.

Phase flatness

Although we assumed the input beam had perfect flat phase fronts, it was ap-

parent from astigmatism of the shaped beam that the surface of the SLM was

slightly curved. To correct for this, the phase of a cylindrical lens of focal length

11m at an angle of 96◦ to the vertical was added to the hologram. The effect of

this correction is most apparent in the far field. Fig. 4.6 shows the profile of a fo-

cused Gaussian beam before and after it had been reflected off the SLM, and then

with the cylindrical lens correction. Although the correction greatly improves the

astigmatism, the faint ring and remaining asymmetry indicates a more rigorous

Figure 4.6: Intensity profile at the focus of a f = 750 mm lens (a) before the

SLM (b) at the Fourier plane of the SLM with no correction and (c) with the

cylindrical lens correction. Data from [P1].
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phase correction could improve the phase flatness further. See Subsection 4.3.5

for further discussion on this topic.

4.2.4 Results

The comparison tested the ability of the hologram generation methods to produce

three different shaped beams: a Gaussian, an LG10
0 mode, and a Ferris wheel

superposition of modes (Edes = LG3
0 + |11

3
|1/4LG11

0 ) [38], all with a beam waist of

0.9 mm at the SLM. The full dataset is shown in Ref. [P1], but since the relative

performance of the methods was roughly the same for each beam, only the results

for the Ferris wheel superposition are included here.

Fig. 4.7 (a) shows the intensity profile of the shaped beam for each hologram

Figure 4.7: (a) Desired and measured Ferris wheel intensity profile for each holo-

gram generation method at propagation distances 0zR, 0.5zR and 1.0zR. (b)

PSNR and (c) shaping efficiency for each image. Data from [P1].
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generation method for three propagation lengths: 0zR (the SLM image plane),

0.5zR and 1.0zR. While the phase of the shaped beams was not measured directly,

the images of the beam after propagation provide an indication of the quality of

the phase shaping. In the image plane each mode shows fine substructure not

present in the desired beam. The form of this structure depends on the grating

pixel period chosen, and becomes less apparent for larger grating periods. These

grating pixelation errors were also reproduced in the numerical simulations carried

out in Ref. [P1].

To quantify the beam generation accuracy, an ideal beam profile was calcu-

lated by performing 2D fits of the expected intensity profile (|LG3
0 + |11

3
|1/4LG11

0 |2)

to each image. The only free parameters were the centre position, offset, ampli-

tude and relative phase of the modes. The Peak Signal-to-Noise Ratio (PSNR)

[173] was then calculated using

PSNR = 10 log10

(
MAX2

I

MSE

)
,

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 ,

(4.2.17)

where I is the fitted ideal m by n image, the maximum value of which is MAXI ,

and K is the experimental image.

Fig. 4.7 (b) shows the measured PSNR for the image plane (grey), 0.5zR

(red) and 1.0zR (blue) images. For all methods but B the intensity distribution

is created with highest accuracy in the image plane, with the quality dropping

slightly as the beam propagates. This suggests there is a small discrepancy in

the phase profile of the generated beams. The drop in quality is least for method

B indicating the phase is replicated best with this method.

Overall, the Ferris wheel results in Fig. 4.7, and the Gaussian and LG10
0 re-

sults in Ref. [P1], show that methods A-D produce beams of similar quality,

with methods A, C and D possibly performing slightly better than B. This is

despite the different approach to amplitude shaping of each method. However,

the current analysis only considers the intensity distribution of the beam in three

propagation planes. This gives very little information on the phase profile of
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the shaped beams, and a full characterisation of the beams may provide a larger

differentiation between the methods. This could include measuring the phase of

the beam directly, via interference with a reference Gaussian, or performing a full

mode decomposition of the beam with a second SLM.

The shaping efficiency of each method, defined as Pdes/Pin, where Pdes is the

power in the shaped beam and Pin is the power in the input beam, is shown in

Fig. 4.7 (c). Methods B-D have similar efficiencies of around 13%, whilst method

A is more efficient at 18%. The efficiency is intrinsically limited to 53% due to

the spatial overlap of the input and desired beams, and is further reduced by the

combined reflection coefficient and grating diffraction efficiency, which was 67%.

Therefore the maximum efficiency that can be expected is 35%.

As a final test, the accuracy with which each method can recreate a non-

propagating arbitrary image was investigated. By choosing a more complicated

intensity distribution, this further compares the amplitude shaping achieved by

each method. The chosen image was of a “Laser” dinghy (my preferred weekend

laser), and the comparison was carried out in the same way as for the propagating

modes discussed above, with the intensity profile recorded only in the image

plane of the SLM. The results are shown in Fig. 4.8. As with the propagating

modes, methods A, C and D perform similarly, with method B achieving slightly

worse accuracy, which appears to be due to the cylindrical lens correction causing

unwanted amplitude modulation.

Method

Figure 4.8: “Laser” beam generation for each method. Data from [P1].
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4.2.5 Conclusion

In this section the most relevant results from Ref. [P1] have been discussed.

Different methods of generating phase-only holograms were compared using two

metrics: the PSNR - a measure of the beam shaping fidelity - and the shaping

efficiency. All of the methods performed well, with very little to choose between

methods A, C and D. Taking into account all results presented in Ref. [P1],

method C possibly produces the highest quality shaped beams overall. Method

A performed remarkably well given its simplicity, and also demonstrated a slight

advantage in shaping efficiency. From this comparison, methods A and C were

chosen as the most suitable for the FWM experiment, due to their high shaping

efficiency and accuracy, respectively, and overall simplicity.

Although not discussed here, these results agreed qualitatively with the nu-

merical simulations carried out in Ref. [P1]. The simulated intensity profiles

showed remarkable similarity to the measured profiles, even down to the grating

pixelation errors.

Later measurements performed after the comparison experiment, described

and discussed in Sec. 4.3.4, compared the ability of methods A and C to generate

a flat disk of intensity. This further test provided better differentiation between

the methods, with method C eventually chosen for use in the FWM experiment

due to its superior amplitude shaping.

4.3 FWM beam shaping details

In this section, we describe the beam shaping setup used for the FWM experiment.

This setup was developed based on the results of the paper discussed in the

previous section, and also a second, purely numerical paper [P2]. In the second

paper the hologram generation methods were numerically compared over a wide

range of simulated experimental conditions. The experimental choices made for

the FWM setup will be explained in the context of the results from both papers.
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4.3.1 The SLM

Up to this point the SLM has been treated as a “black box” that creates a

programmable spatially varying phase shift. In reality the SLM works much like a

liquid crystal display. A layer of birefringent liquid crystals is sandwiched between

a glass plate and a dielectric mirror, as shown in Fig. 4.9. The orientation of the

liquid crystal is controlled by the voltage applied at each pixel electrode, such

that the horizontal component of the polarisation undergoes a voltage dependent

phase shift with respect to the vertical component.

The SLM used for the FWM experiment was a Hamamatsu LCOS-X13138-02,

which has 1272× 1024 12.5 µm square pixels covering a 15.9× 12.8 mm effective

area. The near-IR dielectric mirror in this model results in a measured reflectivity

of 97.4(2)%, but limits the wavelength range of the device to 800± 50nm.

The pixel resolution is a key parameter that determines the performance of

the SLM. However, simulations in Ref. [P2] showed that for our application the

accuracy and efficiency of the beam shaping is mainly limited by the number of

pixels per grating period, rather than the resolution itself. All methods performed

with optimum accuracy and efficiency at a reduced resolution of 200× 200 pixels

over a 12 × 12 mm area, so long as there were still sufficient pixels per grating.

In this case the grating period was 600 µm, corresponding to a pixel period of 10.

This is discussed further in subsection 4.3.3. For other applications the resolution

is more important, for example for the generation of non-trivial light potentials

for atom traps [174].

Figure 4.9: Diagram showing the LCOS (liquid crystal on silicon) SLM chip.
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4.3.2 Phase throw and nonlinearity

Before each hologram is “displayed” on the SLM it must be converted to a 8-bit

grey level image. The grey level at each pixel determines the applied voltage,

and therefore the phase shift experienced by the horizontally polarised light. Key

characteristics of the SLM are: the maximum phase shift the SLM can produce

(the phase throw), the number of available phase levels (the bit depth), and the

linearity of the voltage-phase shift relationship (the phase response).

Out of all of the experimental parameters considered in Ref. [P2], the phase

response of the SLM had the largest effect on the accuracy of the generated

beams. This confirms the importance of performing a calibration measurement

to measure the phase response and correct for any nonlinearities.

There are many approaches to measuring the phase response of an SLM [175–

178]. Our method is based on converting the phase shift at the SLM to a change

in the ellipticity of the incident light, as shown in Fig. 4.10 (a). Initially, 45◦

linearly polarised light is incident on the SLM. The wave plate after the SLM is

set so that a zero phase shift results in all of the light being transmitted through

the polarising beam splitter (PBS). If the phase shift is instead non zero, then

the polarisation becomes elliptical and the transmitted intensity drops. This can

similarly be carried out using initially circularly polarised light, with the first

half wave plate replaced by a quarter wave plate. The results, taken by J. W.

C. Conway, are shown in Fig. 4.10, along with the extracted phase shift. The

calibration shows the phase response is fairly linear, apart from at large gray

levels. To account for this, the final result (shown in red) was used as a look up

table when converting the phase holograms to grey levels.

The above measurement also showed that the SLM can achieve a maximum

phase shift of 2.5π. The simulations in [P2] confirmed that methods A-D per-

formed best when a full 2π phase throw is available, although a phase throw of

1.5π is sufficient. The two methods suggested in Ref. [167] showed more interest-

ing behaviour, with one allowing high accuracy, and the other high efficiency, for

phase throws of only π.
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Figure 4.10: SLM phase response calibration. (a) Experimental setup. (b) PBS

transmission as a function of grey level for 45◦ linear (black) and circular (grey)

incident light, with fitted sinusoidal functions used to extract phase. (c) Extracted

phase shift (black) and final look up table (red, solid), with constant phase added

to shift the discontinuity.

Our SLM has 256 available grey levels, corresponding to a bit depth of 8. In

the simulations the accuracy of all methods leveled of at a bit depth of 7, with the

efficiency maximised for a bit depth of 4. For low bit depth devices, Method D

and an additional method suggested in Ref. [161] achieved the highest accuracy,

whilst methods A and B gave the highest efficiency.

4.3.3 Grating period and aperture size

All of the methods tested generate the desired beam in the first diffracted order

of a phase grating. Fourier filtering is then used to separate the shaped and

unshaped light. The details of the filtering process can have a large effect on

both the accuracy and efficiency of the beam shaping.
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Firstly, there is a trade-off when choosing the grating period. A larger grating

period equates to a higher resolution phase grating, and therefore higher diffrac-

tion efficiency. However, it also means that the diffracted orders are more closely

spaced, making them more difficult to separate and thus reducing the accuracy.

The size of the aperture used for filtering is also important. A smaller aperture

effectively removes all of the unshaped light, but at the expense of losing some

of the higher spatial frequency components. There is therefore an optimal, mode

dependent, aperture size which produces the highest accuracy. This expected

dependence of the hologram performance on both grating period and aperture

size was confirmed by simulations in Ref. [P2].

Fig. 4.11 shows the measured diffraction efficiency of the FWM SLM for dif-

ferent grating periods. For the experiment a grating period of 8 pixels was chosen,

which produced sufficiently high diffraction efficiency, as well as orders that could

be easily separated at the focus of a 250 mm lens. The aperture size was opti-

mised by observing on a camera the point at which the high spatial frequencies

began to be cut of, and then making the aperture slightly larger. This size varied

with the desired mode(s).

Figure 4.11: Diffraction efficiency as a function of grating period for the FWM

SLM. P1st: Power diffracted into the first order, Pon: total incident power. This

measurement includes the SLM reflectivity, which was 97.4(2)%.
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4.3.4 Chosen method

Given the results of the experimental [P1] and numerical [P2] comparison, meth-

ods A and C were selected as the most appropriate for the FWM experiment.

There was often not much to choose between the methods, but for the parameters

of our SLM these methods performed well overall and are both relatively sim-

ple. Although method A was shown to have slightly lower accuracy, the higher

efficiency, both in the experiment and simulation, was attractive.

To choose between methods A and C, a final test of the amplitude shaping of

the methods was carried out. In particular, their ability to generate a flat 2.8 mm

disk was compared. The results are shown in Fig. 4.12, with images of the shaped

beam, taken in the image plane of the SLM, in the insets in (a). Although the

overall accuracy of the images is low, they show a clear differentiation between

the methods. The centre of the beam is noticeably brighter for method A, which

is also shown by the negative slope in the radial profile. This indicates that

method A produces a hologram which does not accurately compensate for the

Gaussian-profile of the input beam.

Each method assumes a given relationship between the diffraction efficiency

Figure 4.12: A test of the amplitude shaping of methods A and C. (a) Images

of the generated disks (insets) and the mean radial profile from the centre of the

disk. (b) Diffracted intensity as a function of grating phase depth (data points)

and the relationship assumed by each method.
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and the grating depth through the choice of f(Arel) in Eq. 4.2.9. The blue and

grey lines in Fig. 4.12 (b) show the assumed function for methods A and C, found

by taking the inverse square of f , i.e.

Method A : I/Imax = (d/(2π))2,

Method C : I/Imax = sinc2 [(2π − d)/2] ,
(4.3.18)

where d is the grating depth. For comparison the measured diffraction efficiency

as a function of grating depth is also shown (black data points). Method A

substantially underestimates the diffracted intensity, and though method C does

not exactly match the data, it gives a much better approximation. This is the

reason for the superior amplitude shaping demonstrated by method C in Fig. 4.12

(a). As a result of this test, method C was chosen as the final method to used

for the FWM experiments.

A further test of the amplitude shaping of each method would be to compare

their ability to generate a beam with more radial structure, for example an LG

mode with p > 0. For this comparison another method could be included, which,

rather than assuming a relationship between the grating depth and the diffracted

intensity, used a look up table based on the data points in Fig. 4.12 (b).

For accurate amplitude shaping, the intensity distribution of the input beam

must also be known. For the FWM experiment we found that assuming the input

beam to be a Gaussian worked well, so long as the waist of the Gaussian was

measured accurately. The single pixel imaging technique described in subsection

4.2.3 proved to be the simplest and most accurate method to measure the waist

directly at the SLM surface, and was also quick to do since a relatively low

resolution image was required.

4.3.5 Phase flatness

Like the SLM used for the comparison experiment, the FWM SLM also intro-

duced astigmatism into the shaped beam. To quantify this, the phase flatness of

the SLM was measured against a flat reference mirror using the interferometer
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shown in Fig. 4.13 (a), following the method in [179]. An example image of the

interferometer output is shown in (b), where the noticeably curved fringes show

the phase error introduced by the SLM. The measured phase profile of the SLM

is shown in (c). This can be accounted for by including a correction in the desired

field, so that

Edes(x, y) = Ades(x, y)ei(Φdes(x,y)−ΦE(x,y)), (4.3.19)

where ΦE(x, y) is the measured phase error of the SLM. With this correction the

curvature of the of the fringes reduces, as illustrated in (d). There is however some

remaining phase error, which may in part be due to noise in the measurement of

the phase correction.

Rather than using the correction in (c), we found that the beam shaping

accuracy was highest when a simple correction of a combined spherical and cylin-

drical lens was used. As a starting point, the phase of the two lenses was fit to

the measured profile in (c), which resulted in the best fit shown in (e). The exact

focal length of each lens could then be adjusted to account for other phase errors

after the SLM. Although not ultimately used, the phase flatness measurement

Figure 4.13: (a) Interferometer setup used to measure the phase flatness of the

SLM with a 3.5 mm Gaussian beam (imaged using a 250 mm- 60 mm telescope,

not shown). (b) Typical interferometer output. (c) Measured phase error of

the SLM in grey levels. (d) Interferometer fringes with correction applied. (e)

Phase of spherical (fs) and cylindrical (fc, θc) lenses fitted to the profile in (c),

fs = 11.6m, fc = 53.4m, θc = 111◦ from vertical.
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underlines the necessity of including at least a simple phase correction in the

hologram.

In order to achieve higher beam shaping accuracy the phase correction could

be improved by performing a full Zernike polynomial decomposition on the profile

in Fig. 4.13 (c) and filtering out the higher order terms that contibute only noise.

Alternatively, the phase flatness could be measured via a range of other methods

[172, 180, 181] to achieve a more accurate measurement. However, the simple

correction of a spherical and circular lens produced sufficiently high beam shaping

accuracy for our application.

4.3.6 Shaping two beams independently

The final beam shaping setup used in the FWM experiment is shown in Fig. 4.14.

The input beams are expanded using 4f -telescopes so that their waist at the SLM

is around 3.5 mm. This waist was chosen to allow LG`
p=0 modes with ` = 0 → 8

and a waist of 1 mm to be generated with similar powers. To allow the spatial

profile of the two pump beams to be controlled independently, the SLM was

split into two halves, with the 780 nm and 776 nm light incident on the right

and left hand sides, respectively. The left and right holograms are additionally

offset vertically to increase the space available for each. To reduce interference

Figure 4.14: The final beam shaping setup used in the FWM experiment. Focal

length of lenses: f1 = 100 mm, f2 = 125 mm and f3 = 250 mm. The example

hologram has a larger than usual grating period for clarity.
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between the two holograms further, the diffraction gratings are perpendicular to

one another. This means that any light that diffracts off the “wrong” grating

does not appear in the shaped beam.

The holograms are generated using method C, with the phase corrections

included by adding them to the phase of the desired beam before calculating

the hologram. Separate phase corrections were used for each hologram, with

the correction “lenses” centred on the offset position of the hologram. Using a

grating period of 8 pixels, the shaped beams were easily filtered from the other

diffracted orders with an aperture in the Fourier plane of a 1-1 4f -telescope, with

f3 = 250 mm lenses.

4.3.7 Conclusion

This section has detailed the factors taken into consideration in designing the

FWM beam shaping setup. Numerical simulations in [P2] showed that the res-

olution and phase bit depth of the SLM was more than sufficient to produce

high fidelity shaped beams, but also confirmed the need to calibrate the phase

response of the device. The calibration allowed a look-up table to be generated

to correct for small phase response nonlinearities, and also demonstrated that the

SLM has a maximum phase throw of 2.5π. For these parameters, methods A and

C were chosen as the most suitable hologram generation methods, with method

C ultimately selected due to its superior amplitude shaping.

The simulations also showed the importance of choosing an appropriate grat-

ing period and aperture size. For this experiment a grating period of 8 pixels

was found to provide a compromise between efficiency and accuracy, with the

aperture size dependent on the generated mode. Although not investigated in

the simulations, measurements of the phase flatness of the SLM indicated that a

phase correction must also be included in the holograms to prevent the shaped

beams being astigmatic. Finally, a method was developed to display two holo-

grams on the SLM at once, allowing the two FWM pump beams to be shaped

independently.



4.4. Mode decomposition 68

4.4 Mode decomposition

So far, the quality of the shaped beams has been judged simply by comparing

the intensity distribution of the beam to that of the desired field. However, more

information can be gained by obtaining a complete modal decomposition. This

type of analysis is particularly important when the mode of the light is initially

unknown, as is the case for the FWM 420 nm emission. This section details the

mode decomposition method developed for use in the FWM experiment.

In the Laguerre-Gauss basis, finding the mode decomposition of a beam can

be split into two problems: measuring the OAM spectrum, and therefore the `

indices, and finding the radial p-mode spectrum. Quantitative measurement of

the OAM spectrum of a beam, or indeed single photons, can be performed in a

variety of ways. In the same spirit as the beam shaping methods discussed earlier,

forked diffraction gratings of varying charge can be used to convert each OAM

state in turn into a Gaussian beam. Subsequent measurement of the on-axis

intensity produced by each diffraction grating gives the full OAM distribution

of the beam [47, 182]. Alternatively, a combination of optics can be used to

convert angular momentum to transverse momentum [183], or cascaded Dove

prism interferometers can be used to sort OAM states into separate output ports

[184,185].

In contrast, there are fewer established methods for determining the p-mode

decomposition of a beam. The latter two methods mentioned above give either

indirect [186,187] or no information on the radial modes, and whilst the “reverse

generation” method can be used in principle by cycling through holograms encod-

ing both p and ` modes [165, 188], this is time consuming and requires a second

SLM.

For the FWM experiment, an experimentally simple and quick method of

finding the full ` and p-decomposition of a beam was developed, based on Fourier

analysis of the interferogram produced using a Dove prism interferometer. This

section will give a detailed explanation of the method, which is also discussed in
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Ref. [P3].

It is important to note that the method described below is less general than,

for example, performing a mode decomposition with a second SLM. In its current

form, our method assumes that the beam is in a purely incoherent superposition

of modes. Although this is an appropriate assumption for the 420 nm light gener-

ated in the FWM process (discussed further in Sec. 5.1), it is less clear that this

is a good assumption for the pump beams. Furthermore, the method is only ap-

plicable to classical beams, rather than single photons. Despite these limitations,

our method is sufficient for the present experiment.

4.4.1 Dove prism interferometer

The Dove prism interferometer used to measure the mode decompositions is

shown in Fig. 4.15 (a). The beam is separated and recombined at non-polarising

beam splitters, with the beam going undergoing an odd number of reflections in

arm A and, due to the inclusion of a Dove prism, an even number of reflections in

arm B. At the output the beam interferes with its mirror image to create an inter-

ference pattern, or interferogram. Fig. 4.15 (b) shows the experimental intensity

profile, Ibeam, and interferogram, IT , of a beam shaped into an LG4
0 mode using

the two-beam SLM setup in Fig. 4.14 (see Sec. 5.2 for full setup). After careful

alignment the interferogram, IT , shows eight radial lobes, which are caused by

interference between the e±i`θ terms in the interfering beams.

The interferogram can be described theoretically by considering the electric

Figure 4.15: (a) Dove prism interferometer setup used for mode decomposition

and (b) example output beams for a LG4
0 mode.
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field at the interferometer output, which for a single input mode is

E`
p(r, θ, z) =

1√
2
ρ`p(r, z)ei(`θ+kz+ΦS+ΦG) +

1√
2
eiφ

`
pρ`p(r, z)ei(−`θ+kz+ΦS+ΦG),

(4.4.20)

where ρ`p(r, z) contains all of the radial dependence of the LG mode, and is given

by

ρ`p(r, z) =
C`
p

w

(
r
√

2

w

)|`|
L|`|p

[
2r2

w2

]
e−

r2

w2 . (4.4.21)

The φ`p phase term accounts for the difference in path length, ∆z, of the two arms

of the interferometer, such that φ`p = −k∆z+ΦG,∆z. This term is in general mode

dependent due to the differing Gouy phase shift of different modes. Any difference

in the phase front curvature of the two beams is neglected. The interferogram

intensity profile is then

I`p(r, θ) = E`
p(E

`
p)
∗ = R`

p(r)
[
1 + cos(2lθ + φ`p)

]
, (4.4.22)

where R`
p(r) = |ρ`p(r)|2, and the explicit z-dependence has been dropped for

brevity. For a LG4
0 mode the expected profile matches that shown in Fig. 4.15:

eight lobes, whose orientation is set by the interferometer phase φ`p, with the same

radial intensity dependence as the input beam.

The above equation gives the interferogram produced for a single mode. If

instead the input beam was coherent superposition of modes, then the expected

interferogram would be found by taking the absolute square of the total field of

the superposition at the interferometer output. However, the 420 nm light gen-

erated during the FWM experiment is expected to be observed as an incoherent

superposition of modes [47] (see 5.1), in which case the intensity of each mode is

expected to add. In this situation the total interferogram is given by

IT =
∑
`,p

P `
pR

`
p(r, θ)

[
1 + cos(2lθ + φ`p)

]
, (4.4.23)

where P `
p is the relative power in each mode.

For the analysis presented here, all shaped beams are assumed to be in a

purely incoherent superposition of modes. This is a limitation of the method as
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the beams may generally be in both a coherent and incoherent superpostition.

It may be possible to extend the method to include coherent superpositions by

considering a more complicated form of Eq. 4.4.23. However, the mode decompo-

sitions obtained using the existing method describe the measured mode profiles

well, indicating that a incoherent superposition is sufficient for the current exper-

iment.

4.4.2 Fourier analysis

The form of Eq. 4.4.23 means that the interferograms are readily analysed via

Fourier analysis. An immediate complication however is the φ`p dependence. Al-

though for |`| > 0 this amounts only to a rotation of the lobed pattern, for ` = 0

the total interferogram intensity is directly determined by φ`p. Thus without

knowing the interferometer phase, the relative power in ` = 0 modes cannot be

found directly from the interferogram.

Furthermore, Eq. 4.4.23 assumes a perfect interferometer with 50:50 reflection

and transmission at each beam splitter. To account for this, and also to allow

` = 0 modes to be included, a corrected interferogram is calculated from three

images taken at the interferometer output: the intensity profile in interferometer

arm A, IA(r, θ), the intensity profile in arm B, IB(r, θ), and the interferogram,

IT (r, θ), as shown for the LG4
0 mode in Fig. 4.16 (a).

For a singe LG mode, the electric field at the interferometer output is given

in term of IA and IB by

IT (r, θ) = IA(r, θ) + IB(r, θ) + 2
√
IA(r, θ)IB(r, θ) cos(2lθ + φ`p). (4.4.24)

With reference to this, the corrected interferogram is chosen to be

IC(r, θ) =IAB(r)

[
1 +

IT (r, θ)− (IA(r, θ) + IB(r, θ))

2
√
IA(r, θ)IB(r, θ)

]
,

IAB(r) =
1

2

[
IA(r) + IB(r, θ)

]
.

(4.4.25)

where IA(r) and IB(r) are the average radial profile of IA and IB, respectively.

The term in the square brackets in Eq. 4.4.25 contains all of the phase information
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0

1

Figure 4.16: (a) Raw data and (b) corrected interferogram for the LG4
0 beam.

present in the interferogram, whilst the radial profile of IC is provided by the mean

radial profile of the beam IAB(r). This removes the critical dependence of the

` = 0 intensity on the interferometer phase. When IA and IB are both small,

intensity noise can cause IC to become very large. To avoid this the correction is

only performed for pixels where both IA and IB are above a threshold value. The

resulting corrected interferogram for the LG4
0 mode is shown in Fig. 4.16 (b).

Analysis of the corrected interferogram then proceeds based on the assumption

that IC is well described by the incoherent mode superposition in Eq. 4.4.23, with

φ0
p = 0. The steps are as follows:

• Firstly, the |`|-decomposition of the beam is obtained. Integrating the cor-

rected interferogram over r gives, according to Eq. 4.4.23, an azimuthal

profile of the form

I(θ) =
∑
`

P ` [1 + cos(2`θ + φ)] , P ` =
∑
p

P `
p . (4.4.26)

A one-dimensional Fourier transform is then performed to give

Ĩ(ωθ) =
∑
`

2πP `

[
δ(ωθ)

2
+
eiφ

4
δ(2`− ωθ) +

eiφ

4
δ(2`+ ωθ)

]
, (4.4.27)

From which the |`|-decomposition for |`| > 0 is given by

P |`| =
2|Ĩ(2`)|
|Ĩ(0)|

. (4.4.28)

Since the Fourier transform contains both negative and positive compo-

nents, the sign of ` cannot be determined using this method. The azimuthal

profile and |`|-decomposition of the LG4
0 beam from Fig. 4.16 are shown be-

low in Fig. 4.17.
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Figure 4.17: (a) Azimuthal profile and (b) |`|-decomposition of the LG4
0

beam in Fig. 4.16.

• The second step is to choose a beam waist. Unlike the `-decomposition,

which is directly determined by the rotational symmetry of the beam, the

p-decomposition is not uniquely defined, but depends on the chosen waist.

For the analysis, the waist is set by an initial one-mode fit to the radial

profile of the corrected interferogram (found by integrating IC over θ). The

` index of the mode chosen for the fit is the value which contributes most

to the |`|-decomposition, whilst the p index is chosen based on the expected

mode.

• The p-decomposition can now be found, again for only for |`| > 0. Two-

dimensional Fourier filtering is used to separate the `-components of the

corrected interferogram. The mean radial profile of each `-component is

then found, two examples of which are shown for the LG4
0 beam in Fig. 4.18

(solid lines). Each profile is then fitted with an incoherent superposition of

p-modes of the relevant `-index (dashed lines). The only free parameters in

the fit are the relative weightings of each mode. The full |`|-p decomposition

for |`| > 0 can then be found by combining the |`|-decomposition with the

fitting results.

This step also provides some discrimination between noise and signal in the

inital |`|-decomposition. If the radial fit is very poor, as for the ` = 2 profile

below, then this indicates that the main contribution to the profile is not

light at the required ` value. By discarding these modes the effect of various

sources of error can be reduced, including interferometer misalignment or

an incorrect choice of the beam centre when unwrapping to circular coordi-
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nates. The quality of the radial fit is judged based on the adjusted R2 [189],

and if this value is less than 0.8 then the corresponding P |`| value is set to

zero.

Figure 4.18: Analysis for p-decomposition of the LG4
0 beam in Fig. 4.16.

Example radial profiles of the (a) |`| = 2 and (b) |`| = 4 component of the

corrected interferogram (solid lines). Dashed lines: Incoherent p-mode fit

for p-decomposition. Note the different y-axis scales.

• The final step is to find the relative power in the ` = 0 modes. Using the |`|-

p decomposition for |`| > 0, an expression for the total radial profile due to

these modes can be found. The ` = 0 modes are then found by performing

a final fit to the full radial profile of the corrected interferogram, using the

total |`| > 0 profile, multiplied by a single scale factor, plus an incoherent

sum of the ` = 0 modes as the model.

The final mode decomposition obtained for the LG4
0 beam is shown in Fig. 4.19

(a). The relative power in the target mode (` = 4, p = 0) is 0.97, with the majority

of the rest of the power in the adjacent p = 0 modes. To verify the analysis, the

mode decomposition is used to calculate a reconstructed radial and azimuthal

interferogram profile, shown by the dashed lines in Fig. 4.19 (c) and (d). Good

agreement is found between the reconstructed and experimental profiles (solid

lines).

A further test of the analysis is to demonstrate the correct decomposition of a

superposition of modes. Since it is difficult to generate an incoherent superposi-

tion directly, this was tested using simulated data. The electric field, beam profile

and interferogram of the simulated beam are shown in Fig. 4.20 (a), along with
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0

1

Figure 4.19: (a) Mode decomposition of the LG4
0 beam in Fig. 4.16 for |`| ≤ 10 and

p ≤ 3, (b) corrected interferogram, IC , (c) azimuthal and (d) radial profile of IC

(solid), as well as reconstructed profiles from the mode decomposition (dashed).

the interferometer parameters used. The superposition was chosen so that the

modes cover the full range of ` and p indices. Note the intensity on axis is near

zero due to the choice of interferometer phase, which was set to 0.9π in order to

fully test the measurement of ` = 0 modes. The low intensity along the vertical

0

1

Figure 4.20: (a) Electric field, Ein, and beam profile, Ibeam, of a simulated in-

coherent superposition, as well as the interferogram, IT , for the interferometer

parameters shown. (b) Simulated mode decomposition via Fourier analysis.
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axis coincides with the axis of the extra reflection in the interferometer.

The result of the mode decomposition is shown in Fig. 4.20 (b). The only

change made to the analysis was to set the beam waist to a predetermined value,

rather than the usual method of an initial one mode fit. This was required since

no single mode dominates and a single mode fit therefore does not choose an

accurate beam waist. With this modification, the analysis correctly determines

the relative power of each mode in the incoherent superposition.

4.4.3 Conclusion

Having discussed the generation of shaped beams in previous sections, this section

focused on the important step of fully characterising the structured light. The

measurement is based on Fourier analysis of the interferogram formed at the

output of a Dove prism interferomter, and allows the full LG mode decomposition

of a beam to be found. Example mode decompositions of both experimental

and simulated data have been presented, showing that the analysis produces the

expected results.

Experimentally, this method has the advantage of a simple setup and being

quick to carry out. In practice, however the method does have limitations. For

example, the interferometer must be aligned very precisely to produce evenly

spaced lobes, and it is also difficult to avoid a very slight astigmatism of the

beam caused by the interferometer itself. Both of these factors can distort the

fringe pattern, producing errors in the mode decomoposition, particularly for

larger values of ` as the spacing of the fringes decreases. It may be possible

to correct for these effects using a more complicated analysis routine. Other

improvements could also be made, for example by altering the measurement to

allow the sign of ` to be determined, possibly by deliberately misaligning the

interferometer. Perhaps the biggest limitation of the current method is that it

considers only incoherent superpositions of modes. It may be possible to include

coherent superpositions by considering in more detail the assumed form of the

interferogram, however, in these situations a more rigorous method may be a
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better choice, for example a second SLM and on-axis filtering.

This chapter as a whole has introduced all of the tools necessary to carry out

FWM experiments with shaped pump light. The initial work focused on choosing

an appropriate method of generating phase-only holograms for use with an SLM.

Building on this, the beam shaping setup was developed, with the final setup

allowing both FWM pump beams to be shaped independently. The process of

developing this setup contributed to two publications, the main results from which

have been presented and discussed. Finally, the method devised for analysing the

shaped pump beams, as well as the generated 420 nm light has been described in

this section.



Chapter 5

Spiral bandwidth of four-wave

mixing

Wave mixing processes are phase coherent, that is, efficient wave mixing only

takes place in the direction for which the longitudinal phase of the input fields

in conserved (see Sec. 2.1.1). This is captured by the phase matching condition,

which places a restriction on the k-vectors of the fields, and at the single photon

level is equivalent to conservation of linear momentum [2].

In this chapter, we study four-wave mixing (FWM) with Laguerre-Gauss (LG)

pump beams, as illustrated in Fig. 5.1. In this case, not only is conservation of

longitudinal phase important, but conservation of transverse phase also plays a

key role. Due to the helical phase fronts of the pump beams, the ` indices of the

generated light must satisfy

`780 + `776 = `IR + `B, (5.0.1)

Figure 5.1: FWM with Laguerre Gauss pump beams.
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or equivalently, the orbital angular momentum (OAM) of the pump beams must

be conserved.

Conservation of OAM in wave mixing processes was first demonstrated for

second harmonic generation [44,190]. Passing various orders of LG modes through

a nonlinear crystal generated light with not only double the frequency of the input

light, but also double the OAM. Subsequent demonstrations have been carried out

for sum frequency generation [45] and four-wave mixing [75,86], where the OAM of

the generated beam is equal to the total OAM of the two (or three) pump beams.

In these processes, where a single beam is generated, OAM conservation uniquely

defines the OAM state of the new field. Such processes are ideal for carrying

out frequency conversion of both classical [85] and quantum [191] OAM states.

Furthermore, the transverse phase coherence applies not just to OAM, but also

to more general transverse phase distributions. This has allowed demonstrations

of coherent frequency conversion of both transverse modes [192] and images [89].

Other wave mixing processes, such as spontaneous parametric down conver-

sion or spontaneous FWM, generate two new optical fields. In this case, although

the total OAM of the generated fields is fixed by conservation of OAM, the OAM

of each field individually is not constrained. At the single photon level, this can

result in OAM-entanglement [48,193,194], with the light generated in a coherent

superposition of OAM-conserving two-photon states. One method of characters-

ing such a state is by the width of the OAM distribution of the individual fields,

otherwise known as the spiral bandwidth [49]. This gives a measure of the number

of product states which contribute to the coherent superposition.

Spontaneous parametric down conversion has become the routine method for

generating OAM-entangled photon pairs [47, 195], both for fundamental studies

of quantum optics [27, 196,197] and demonstrations of higher dimensional quan-

tum technologies [146, 198, 199]. OAM-entangled photon pairs have also been

generated via FWM in atomic vapours. With Guassian pump beams, the stokes

and anti-stokes photons generated in a double-lambda FWM scheme in thermal

rubidium vapour [66] have been shown to be entangled in a two-dimensional state
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involving ` = 0 and ` = ±1 modes. Very recent work using a laser-cooled ru-

bidium vapour [200] has investigated using high ` pump beams (` = ±30) to

increase the spiral bandwidth of the generated state, allowing the measurement

of an entangled state with ` = ±28 and ` = ±32.

The OAM state of the light generated in the “blue light” FWM system was

first investigated in the context of OAM frequency conversion. Work carried

out at Strathclyde [46] showed qualitatively that a pump OAM of up to 5~ is

transferred completely to the 420 nm field, as is illustrated in Fig. 5.1. For OAM

to be conserved the 5.2 µm light is therefore expected to be generated in the

LG0
0 mode. With both fields generated in a single OAM state, the photon pairs

can be described by a product state and no entanglement is created. To date, no

measurement has been made of the 5.2 µm transverse mode to confirm this. More

recent work in Refs. [87, 88] have also demonstrated qualitative measurements

consistent with complete transfer of the pump OAM to the 420 nm field.

The work presented in this chapter builds on these experiments and further

explores, both theoretically and experimentally, the transfer of OAM in the “blue

light” FWM system. Unlike previous experiments [46, 87, 88], where the 420 nm

transverse mode was determined qualitatively by visual inspection of an inter-

ference pattern, we use the Fourier analysis described in Sec. 4.4 to make a

quantitative measurement of the full 420 nm mode decomposition. This is fur-

ther made possible due to the improved experimental control compared to the

experiment in [46], where neither of the pump lasers were locked. The improved

beam shaping setup also allows larger values of OAM to be studied, and we use

Laguerre-Gauss, LG`
p=0, pump modes with 0 ≤ ` ≤ 8.

For low pump ` we find that the 420 nm light is generated predominantly in

a single mode, with an `-index determined by the total pump OAM, such that

`B = `T = `780 + `776. This is in agreement with previous results [46,87,88]. How-

ever, as the pump ` increases we observe a continuous broadening of the 420 nm

OAM spectrum. For OAM to be conserved, this indicates that the pump OAM

is shared between the 5.2 µm and 420 nm light, and that the generated photon
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pairs are in fact OAM-entangled. Although further experiments are required to

confirm entanglement, we use the measured `-distribution of the 420 nm light to

infer the available spiral bandwidth and entanglement entropy of this state for a

range of pump modes. We compare FWM under two conditions: firstly, with the

pump OAM shared evenly between the pump beams, and secondly with all OAM

carried only by the 776 nm field (with the 780 nm field in the LG0
0 mode). These

conditions are referred to as “OAM addition” and “OAM frequency conversion”,

respectively.

This work is currently under consideration for publication, with the latest ver-

sion of the paper available on the arXiv [P3]. Some of the preliminary theoretical

calculations for the work presented in this chapter were carried out by Dalius

Stulga, who completed a short summer project working on the blue light system.

The experimental work, analysis, and final theoretical calculations were carried

out by myself.

This chapter is structured as follows. Firstly, in Sec. 5.1 we present the the-

oretical model used to describe the FWM system, including the expected OAM-

entangled state of the 5.2 µm and 420 nm light and the definition used for the

spiral bandwidth. In Sec. 5.2 we describe the experimental setup used. The main

results are then presented, with the OAM addition results in Sec. 5.3 and the

OAM frequency conversion results in Sec. 5.4. Finally, Sec. 5.5 provides a sum-

mary of the main findings as well as discussion of the further experiments which

would be required to verify OAM-entanglement of the 5.2 µm and 420 nm light.

5.1 Theory

In the experiment, we measure the mode decomposition of the generated 420 nm

light for a range of Laguerre-Gauss (LG) pump modes. This mode decomposition

can be predicted by considering the overlap of the FWM fields within the rubid-

ium cell [46, 201]. We make the assumption that the 5.2 µm and 420 nm light is
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generated as a coherent superposition of two-photon states described by

|Ψ〉 =
∑

`B,pB,`IR,pIR

c`B,`IRpB,pIR
|LG`B

pB
〉
B
|LG`IR

pIR
〉
IR
, (5.1.2)

and that the probability of generating the state |LG`B
pB
〉
B
|LG`IR

pIR
〉
IR

, for a given

pair of pump modes, |LG`780
p780
〉 and |LG`776

p776
〉, is given by [46,201]

c`B,`IRpB,pIR
=

L/2∫
−L/2

R∫
0

2π∫
0

rLG`780∗
p780

LG`776∗
p776

LG`B
pB

LG`IR
pIR
dθdrdz, (5.1.3)

where L is the cell length and R is large enough so that all modes are fully encom-

pased by the integration region. Note that we have written LG`
p = LG`

p(r, θ, z)

as short hand for the relative electric field of a Laguerre-Gauss mode, as defined

in Sec. 4.1.

Although the two-photon state in Eq. 5.1.2 is coherent, the 420 nm and 5.2 µm

fields individually are an incoherent mixture of modes [47]. The relative intensity

of such a state is given by

IB(r, θ, z) =
∑
`B,pB

P `B
pB
I`BpB(r, θ, z), I`BpB(r, θ, z) = |LG`B

pB
|2, (5.1.4)

with the probability of observing the 420 nm light in a particular mode found by

summing over all `IR and pIR modes

P `B
pB

=
∑
`IR,pIR

∣∣c`B,`IRpB,pIR

∣∣2 . (5.1.5)

Similarly, the intensity of the 5.2 µm light is given by

I IR(r, θ, z) =
∑
`IR,pIR

P `IR
pIR
I`IRpIR(r, θ, z), P `IR

pIR
=
∑
`B,pB

∣∣c`B,`IRpB,pIR

∣∣2 . (5.1.6)

Using Eqs. 5.1.5 and 5.1.6 the predicted mode decompositions of the 420 nm

and 5.2 µm light were calculated for a range of pump modes. The results are pre-

sented and compared to the experimental measurements in Sec. 5.3 and Sec. 5.4.

Beam waists

In order to calculate the integral in Eq. 5.1.3 the beam waist of each field must

be known. Since the 5.2 µm field is not measured in our experiment, we make
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the assumption that both generated fields follow the Boyd criterion [202]. This

criterion states that, for Gaussian beams, the efficiency of a wave mixing process

is maximised if the fields involved have matched Rayleigh ranges. We extend this

to higher order modes and use beam waists for the simulated 420 nm and 5.2 µm

fields given by

wIR =

√
5230

780
w780, wB =

√
420

780
w780, (w776 ' w780). (5.1.7)

The validity of this assumption is discussed in Sec. 5.4.

Spherical phase fronts and z-offset

For the OAM frequency conversion experiment, where only the 776 nm pump

beam carries OAM, the focus of the 780 nm beam is offset to zoff = 9.6 mm before

that of the 776 nm field. This is necessary in order to improve the spatial overlap

of the Gaussian 780 nm light with the higher order 776 nm transverse modes, and

is included in the model by performing the transformation z → z + zoff on the

780 nm field before calculating the integral in Eq. 5.1.3.

Separating the pump beam foci causes a mis-match in their phase front cur-

vature. In the experiment it was observed that this caused a change in the

collimation of the 420 nm field, but no significant change in the mode decompo-

sition. We therefore assume that the overall phase front curvature of the two

pump fields is phase matched with the generated two-photon field and neglect

the spherical phase front term, ΦS, when evaluating the overlap integral in this

instance.

Interpretation

By considering the electric field of an LG mode, which can be written in a sim-

plified form as

LG`
p(r, θ, z) = ρ`p(r, z)ei(`θ+kz+ΦS(r,z)+ΦG(z)), (5.1.8)

some immediate predictions can be made about the generated modes. Here

ρ`p(r, z) is the radial field as defined in Eq. 4.4.21.
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Firstly, the azimuthal integral in Eq. 5.1.3 will only be non zero if the ` indices

satisfy

`780 + `776 = `IR + `B. (5.1.9)

Thus only 420 nm and 5.2 µm modes that conserve OAM will be generated. The

radial integral on the other hand takes into account the spatial overlap of the

fields; modes with a higher physical overlap are more likely to be generated.

The z integral describes the propagation of the fields through the cell, and

produces the familiar phase matching condition

k780 + k776 = kB + kIR, (5.1.10)

which is satisfied for copropagating pump and generated fields. There is also

another phase term dependent on z, the Gouy phase

ΦG(z) = −(2p+ |`|+ 1)arctan[z/zR]. (5.1.11)

This term is not usually important because the propagation length in the non-

linear medium is normally much less than the Rayleigh range of the fields [190].

However, in the FWM experiment the cell length is much larger than the Rayleigh

range, L ≈ 10zR. In this case, in order for phase matching to be maintained be-

tween the pump and generated fields as they propagate through the cell they

must have identical Gouy phases - which we refer to as Gouy phase matching.

Since the Gouy phase depends on the mode order, only modes that satisfy

|`780|+ 2p780 + |`776|+ 2p776 = |`IR|+ 2pIR + |`B|+ 2pB (5.1.12)

are well Gouy phase matched. This phase matching condition becomes particu-

larly important for pump beams with p 6= 0 or where `780 + `776 6= |`780|+ |`776|.

These special cases are investigated in Chapter 6.

OAM-entanglement

Based on the above analysis, three factors determine which pairs of 5.2 µm and

420 nm modes are generated: OAM conservation, Gouy phase matching and the
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spatial overlap of the modes. OAM conservation is of particular importance, as

it is this that leads to the two-photon state being OAM-entangled.

Using the OAM-conservation condition (Eq. 5.1.9), and defining the total

pump OAM as `T~, `T = `780 + `776, we can rewrite the generated two-photon

state (Eq. 5.1.2) as

|Ψ〉 =
∑

`B,pB,pIR

c`B,`IRpB,pIR
|LG`B

pB
〉
B
|LG`IR

pIR
〉
IR
, (5.1.13)

with the restriction that `IR = `T − `B. Carrying out the sum over p-modes, this

can be rewritten in terms of OAM states, |`〉, as

|Ψ〉 =
∑
`B

C`B,`T |`B〉B |`T − `B〉IR , C`B,`T =
∑
pB,pIR

c`B,`T−`BpB,pIR
. (5.1.14)

The two-photon state is reduced to a coherent superposition of OAM-conserving

product states, which is an OAM-entangled state [18].

To characterise this state we use two measures. Firstly, we define the spiral

bandwidth [49] as

∆`B =

√√√√∑
`B

P`B,`T`B
2 −

(∑
`B

P`B,`T`B

)2

, P`B,`T = |C`B,`T|2, (5.1.15)

which is a measure of the number of orthogonal modes participating in the entan-

gled state. Physically the above definition corresponds to the standard deviation

of the 420 nm `-distribution. Secondly, we use the Shannon entanglement en-

tropy [203] as a measure of the degree of entanglement, which is given by

S = −
∞∑

`B=−∞

P`B,`T log2P`B,`T . (5.1.16)

5.2 Experimental setup

The experimental setup is split into two halves: before and after the optical fibres.

The “pre-fibre” setup is shown in Fig. 5.2, along with the typical laser power at

various points. The spectroscopy and laser locking techniques detailed in Sec. 3.2

and 3.5 are used to monitor and stabilise the frequency of the lasers. The 780 nm
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Figure 5.2: Experimental setup before the optical fibres.

laser is locked using the DAVLL lock to a detuning of +1.6 GHz from the 85Rb

5S1/2 F = 3 → 5P3/2 F
′ = 4 transition. This detuning was chosen to minimise

Kerr lensing of the 780 nm light [92, 204]. The 776 nm is then locked using the

two-photon lock so that the pump lasers are two-photon resonant with the 85Rb

5S1/2 F = 3 → 5D5/2 F
′ = 5 transition. The spectroscopy required for the two-

photon lock was carried out in a 10 mm cell heated to 130◦C (see Appendix B).

To minimise the laser power required, the beams were focused through the cell

with 60 mm lenses. With this setup, a 780 nm frequency modulation of 2 MHz

rms amplitude was required to achieve a stable lock. The 780 nm and 776 nm

beams are then coupled through separate single-mode polarisation-maintaining



5.2. Experimental setup 87

Figure 5.3: Experimental setup for FWM with shaped pump beams. The same

symbols are used as detailed in the key in Fig. 5.2. f1 = 100 mm, f2 = 125 mm,

f3 = 250 mm, f4 = 100 mm, f5 = 200 mm.

optical fibres to the FWM side of the setup.

The second half of the experiment is shown in Fig. 5.3. The pump beams are

shaped independently into a range of LG modes with 1 mm waists at the SLM,

as described in Sec. 4.3. After the 1-1 4f -telescopes used for Fourier filtering, an

additional 100 mm-200 mm telescope is used to expand each beam. The beams

are combined on a non-polarising beam splitter (NPBS) and carefully aligned so

that they are exactly copropagating. The polarisation is then cleaned using a

polarising beam splitter, before a quarter waveplate co-circularly polarises the

beams.

The pump beams are focused through the cell using a 200 mm-100 mm tele-

scope, with the 25 mm length cell positioned so that the beams focus to a waist

of 25 µm at the centre of the cell. FWM within the cell, which was heated to

120◦C, generates the 5.2 µm (which is absorbed by the cell) and 420 nm fields. A

final 250 mm-100 mm telescope shrinks the beams so that they fit on the Point

Gray Chameleon CMLN-13S2M-CS CCD used to record images of the beam.

The diagram in Fig. 5.3 is not to scale. In reality each telescope images the

image plane of the previous one, so that the focus at the centre of the cell is in
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a Fourier plane of the SLM, and the image plane of the final telescope is also an

SLM image plane.

The transverse mode of the pump beams and 420 nm light are analysed sep-

arately, using a spectral filter to select the 420 nm light or by blocking the other

pump beam. The intensity profile of the beams can be recorded either in the

image plane of the SLM, the position of which is indicated in Fig. 5.3, or at the

output of the Dove prism interferometer. Although not shown, in reality there are

two interferometers, one for the pump light and one for the blue beam. They are

identical apart from the wavelength range of the NPBSs. The fields are linearly

polarised before the interferometers to avoid unwanted effects due to polarisation

changes at the mirrors. The mode decomposition measurements are carried out

as discussed in Sec. 4.4 by taking three images at the output of the interferome-

ter: the intensity profile in arm A, IA, the intensity profile in arm B, IB, and the

interferogram, IT .

5.2.1 Pump beam decomposition

Using this setup, the 420 nm mode decomposition is measured for LG`
0 pump

beams with 0 ≤ ` ≤ 8. For comparison with the 420 nm results presented later,

Figs. 5.4 and 5.5 show the beams profiles, IA, and uncorrected interferograms,

IT , of the 776 nm and 780 nm pump modes, respectively, as well as the incoherent

mode decomposition of each beam obtained following the procedure detailed in

Sec. 4.4. Each decomposition considered modes with 0 ≤ ` ≤ 10 and p ≤ 3,

although only modes up to p = 2 are shown. The full result can be found in the

dataset [205].

The relative power in the target modes, Pt = P
`776/780
0 , averaged over five

measurements is also given. The measured mode purity is high for low ` values

(Pt > 0.96 for ` < 3) but drops slightly as ` increases (Pt ' 0.88 for ` > 6). These

results provide a benchmark with which to compare the generated 420 nm light.

The apparent decrease in mode purity for higher ` occurs despite the visibility

of the interference fringes remaining high, which is a good indicator of high purity
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Figure 5.4: Relative intensity profile, IA, uncorrected interferogram, IT , and mode

decomposition of the 776 nm pump modes. Pt = P `776
0 : mean relative power in

the LG`776
0 target mode. Total power in p > 0 modes is < 4% in each case.

0

1

0

1

Figure 5.5: Relative intensity profile, IA, uncorrected interferogram, IT , and mode

decomposition of the 780 nm pump modes. Pt = P `780
0 : mean relative power in

the LG`780
0 target mode. Total power in p > 0 modes is < 4% in each case.
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beams. The mode decomposition method used here assumes that the beams are

in an incoherent superposition of modes. Whilst this is a good assumption for the

generated 420 nm light [47], this is not necessarily true for the pump beams. If

the pump modes are instead in a coherent superposition of modes this may lead

to the measurement method under-estimating the mode purity. Other sources of

error in the measurement include misalignment of the Dove prism interferometer

and small amounts of astigmatism of the beam, both of which have a larger effect

at higher ` due to the smaller fringe spacing. A more reliable measurement of

the pump mode purity could be obtained by using a second SLM and on-axis

filtering [188].

5.3 OAM addition

We now consider the main FWM experimental results. In the first experiment

both pump beams were shaped into LG`
0 modes with 0 ≤ ` = `780 = `776 ≤ 8. The

relative intensity profile, IA, and interferogram, IT , of the 420 nm light generated

by each pair of pump modes is shown in Fig. 5.6 (a).

For low ` pump modes (` ≤ 3), the interferograms show high visibility fringes

across the whole pattern, similar to the pump beam interferograms in Figs. 5.4

and 5.5. Each interferogram has 4` lobes, indicating that the blue light carries

OAM equal to the total OAM of the two pump beams, so that `B = `780 + `776.

This is in agreement with the previous observations in Refs. [46, 87].

As ` increases however, the visibility of the fringes at the top and bottom of the

interferogram drops. The position of this modulation in visibility is determined

by the geometry of the interferometer, in particular the orientation of the Dove

prism that causes the extra reflection. In the interferograms shown this reflection

takes place along the horizontal axis. When nearby parts of the beam interfere

(along the horizontal axis) the visibility is high, but when opposite sides of the

beam interfere (along the vertical axis) the visibility is low. This drop in the

transverse coherence of the beam is the first indication that the 420 nm light is
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Figure 5.6: OAM addition: (a) 420 nm relative intensity profile, IA, and un-

corrected interferogram, IT , for `780 = `776 = 0 → 8. (b) Experimental and (c)

theoretical mode decomposition of the 420 nm light. Boxes indicate the target

420 nm mode, LG`780+`776
0 . Total power in p > 0 modes is < 8% in each case. (d)

Theoretical 5.2 µm mode decomposition. The box around the ` = 4 mode is used

for a later comparison with OAM frequency conversion.

generated in more than one transverse mode.

The experimental mode decomposition of the 420 nm beam is shown in Fig. 5.6

(b). The Fourier analysis was carried out for 0 ≤ ` ≤ 18 and p ≤ 3, but again

only modes up to p = 2 are shown, with p ≤ 3 in Ref. [205]. Although our

analysis only allows |`| to be determined, previous work has shown that the sign
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of ` is conserved [87], so we assume that this is also the case here. The theoretical

predictions for the mode decomposition of both the 420 nm and 5.2 µm light are

included in Fig. 5.6 (c) and (d), respectively.

As expected from the interferograms, for low ` the 420 nm light is measured

to be predominantly in a single mode, with `B = `780 +`776. This mode is referred

to as the target mode, with relative power Pt = P `780+`776
0 , and is highlighted by

a box in each mode decomposition in Fig. 5.6 (b) and (c). When the 420 nm

light is generated in this mode, OAM conservation implies that the 5.2 µm field is

generated mostly in the LG0
0 mode. This is supported by the theoretical 5.2 µm

decomposition.

Fig. 5.7 shows the 420 nm target mode power, Pt, for both the experimental

and theoretical results in Fig. 5.6. For ` ≤ 2, Pt is high, and efficient OAM

addition is demonstrated. The experimental mode purity remains substantially

higher than the theoretical prediction until ` = 4. This may be due to the high

nonlinear gain preferentially amplifying the optimal mode.

In both the experiment and theory, as ` increases the 420 nm `-distribution

continuously broadens, which is accompanied by a drop in the target mode power.

Rather than being generated predominantly in the target mode, the 420 nm light

is observed as an incoherent superposition of an increasing number of modes. In

Figure 5.7: OAM addition: Relative power in the target mode, Pt = P `780+`776
0 .

Solid line: experiment, dashed line: theory.
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order to conserve OAM, when the 420 nm light is observed in a range of modes, the

5.2 µm light can no longer be generated mostly in the LG0
0 mode. The two-photon

5.2 µm and 420 nm field is then generated as a coherent superposition of different

combinations of modes that conserve OAM, of the form given in Eq. 5.1.13. Thus

the observed broadening of the 420 nm `-distribution strongly indicates that the

5.2 µm and 420 nm fields are generated in an OAM-entangled state.

Fig. 5.8 (a) and (b) show the inferred spiral bandwidth and entanglement en-

tropy of the 5.2 µm and 420 nm state as a function of pump `, respectively. These

results are calculated from the experimental and theoretical 420 nm decomposi-

tion in Fig. 5.6 using Eqs. 5.1.15 and 5.1.16. For ` = 0 pump modes the 5.2 µm and

420 nm light is generated predominantly in a single state (|LG`780+`776
0 〉B |LG0

0〉IR),

and experimentally we measure a mode decomposition which indicates close to

zero spiral bandwidth and entanglement. However, as the pump ` increases the

number of OAM-conserving states that contribute to the 5.2 µm and 420 nm field

also increases, and both the spiral bandwidth and entanglement entropy contin-

uously increase.

The error bars in Figs. 5.7 and 5.8 are calculated by taking the standard error

of the results from five separate mode decomposition measurements. However,

when performing the pump mode decomposition in Sec. 5.2.1, the results showed

Figure 5.8: OAM addition: (a) Spiral bandwidth, ∆`B (Eq. 5.1.16), (b) entan-

glement entropy, S (Eq. 5.1.15). Solid line: experiment, dashed line: theory.
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an apparent `-dependent systematic error in the measurement method. This

may also affect the 420 nm results and the error bars shown in Figs. 5.7 and 5.8

do not account for this. The experiment could be improved by using a more

rigorous mode decomposition method, for example a second SLM combined with

on-axis detection [188]. We note however that the main result, the broadening

of the 420 nm `-decomposition with increasing pump `, is clear from a visual

inspection of the raw interferograms. Whilst the visibility of the fringes in the

pump mode interferograms (Figs. 5.4 and 5.5) remain high with increasing `, the

fringe visibility significantly reduces for the 420 nm light (Fig. 5.6), indicating an

increase in the number of contributing OAM modes.

The dependence of the spiral bandwidth and entanglement entropy on pump

` is observed both experimentally and theoretically, and can be explained by

considering the spatial overlap of the modes. Fig. 5.9 shows the field amplitude

of the FWM beams for (a) ` = 1, and (b) ` = 8 pump beams. The field profiles

for the 420 nm and 5.2 µm fields are plotted for two cases. The solid lines show

the case where the 5.2 µm field is generated in the LG0
0 mode and all OAM is

Figure 5.9: Electric field amplitude of the pump (red), 420 nm (blue) and 5.2 µm

(black) light. Solid lines indicate all OAM transferred to blue, dashed lines indi-

cate OAM is shared. (a) `780 = `776 = 1: `B = 2, `IR = 0 (solid), and `B = 1,

`IR = 1 (dashed). (b) `780 = `776 = 8: `B = 16, `IR = 0 (solid), and `B = 15,

`IR = 1 (dashed)
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transferred to the 420 nm light, whilst the dashed lines show the profiles if the

5.2 µm field is in the LG1
0 mode. The waist of the 420 nm and 5.2 µm fields has

been set by the Boyd criterion which requires that the 5.2 µm waist is 2.6 times

that of the pump.

For the ` = 1 pump modes in (a) there is only significant overlap of the

fields if the 5.2 µm light is generated in the LG0
0 mode (solid line), thus for low

` OAM is predominantly transferred to the 420 nm light. However, the radius

of an LG mode increases in proportion with
√
`, so as the pump ` increases

so does the diameter of the pump beams. For the ` = 8 pump modes in (b)

the largest overlap is with the LG1
0 5.2 µm mode, but the overlap with other

higher order 5.2 µm modes also improves. The 420 nm and 5.2 µm fields are

thus generated in an increasing number of OAM modes as the pump ` increases,

resulting in the observed broadening of the 420 nm |`|-distribution, and increases

spiral bandwidth of the two-photon state.

Gouy phase matching

The combination of OAM conservation and spatial overlap does not solely deter-

mine the generated modes. For example, consider the case of

`B = `780 + `776 + 1, `IR = −1. (5.3.17)

This pair of 5.2 µm and 420 nm modes conserve OAM, and for large ` will have

similar overlap to the `IR = 1 case shown in Fig. 5.9, but the theory predicts that

these modes are not produced at all. This is due to Gouy phase matching. For

p = 0 pump modes the Gouy phase matching condition becomes

|`780|+ |`776| = |`IR|+ 2pIR + |`B|+ 2pB (5.3.18)

which for `IR < 0 requires that

2pIR + 2pB < 0. (5.3.19)

Since p ≥ 0, modes with `IR < 0 therefore cannot be Gouy phase matched.

This causes an asymmetry between positive and negative `IR, and as a result the



5.4. OAM frequency conversion 96

blue light is preferentially generated with `B < `780 + `776. This asymmetry is

replicated in the experimental results, although not to the same extent as in the

theoretical prediction. A similar argument can be made for 420 nm and 5.2 µm

modes with p > 0, which have significant spatial overlap with the pump beams,

but are not generated in either the theory or experiment.

5.4 OAM frequency conversion

In the second FWM experiment, the 420 nm mode decomposition was measured

for the case where only one of the pump beams carry OAM. The 776 nm field

was shaped into LG`
0 modes with 0 ≤ ` = `776 ≤ 8, with the 780 nm pump beam

in the Gaussian LG0
0 mode. To improve the spatial overlap of the pump beams,

the 780 nm focus was axially offset to 9.2 mm (3.8zR) before that of the 776 nm

beam. This was included in the theoretical model as discussed in Sec. 5.1, and

was achieved experimentally by adding the phase of a spherical lens to the 780 nm

hologram.

The results for this experiment are shown in Fig. 5.10, with the relative in-

tensity profile, IA, and uncorrected interferogram, IT , for each `776 pump beam

in (a), and the experimental mode decomposition in (b). As before the mode

decomposition was carried out for p ≤ 3 [205], but only modes up to p = 2 are

shown. The theoretical mode decompositions of the 420 nm and 5.2 µm light are

shown in (c) and (d), respectively.

As in Sec. 5.3, for low ` pump beams the 420 nm light is generated mostly in

a single mode, in an OAM state consistent with the OAM being predominantly

transferred to the 420 nm light. This results in the 776 nm OAM state being

efficiently frequency converted to 420 nm, with `B = `776. The relative power in

the target mode, Pt = P `776
0 , is plotted in Fig. 5.11 and is again substantially

higher than predicted by the theory until `776 = 4. As `776 increases, the 420 nm

light is spread over an increasing number of modes, indicating an increase in the

available spiral bandwidth and entanglement entropy of the 5.2 µm anf 420 nm
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Figure 5.10: OAM frequency conversion: (a) 420 nm relative intensity profile, IA,

and uncorrected interferogram, IT , for `776 = 0 → 8. (b) Experimental and (c)

theoretical mode decomposition of the 420 nm light. Boxes indicate the target

420 nm mode, LG`776
0 . Total power in p > 0 modes is < 10% in each case. (d)

Theoretical 5.2 µm mode decomposition. The box around the `776 = 8 mode is

used for a later comparison with OAM addition.

two-photon state, as shown in Fig. 5.12.

Näıvely, one might think it doesn’t matter whether the OAM is provided by

only one or both of the pump beams. However, the results imply an increase

in the spiral bandwidth for a given target mode if only one pump beam carries

OAM. As an example of this, the LG8
0 target mode results in Figs. 5.6 and 5.10

are highlighted by boxes. Despite the target mode being the same, there is a

large difference in the interferogram for the two cases. For OAM addition, where

the pump OAM is shared (Fig. 5.6), the visibility of the fringes is relatively high,

whilst for OAM frequency conversion, where the OAM is provided by only the
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Figure 5.11: OAM frequency conversion: Relative power in the target mode,

Pt = P `776
0 . Solid line: experiment, dashed line: theory.

776 nm beam (5.10), the fringes are essentially non-existent along the vertical

axis. Some of this is explained by theory, as the mode overlap with the 5.2 µm

LG0
0 mode obviously increases for `780 = `776, but experimentally we observe a

larger difference in spiral bandwidth than expected.

This discrepancy may be explained by our model giving a poor prediction

of the 5.2 µm and 420 nm waists, especially for the OAM frequency conversion

experiment. In the theoretical model we assume that the 420 nm and 5.2 µm

Figure 5.12: OAM frequency conversion: (a) Spiral bandwidth, ∆`B (Eq. 5.1.16),

(b) entanglement entropy, S (Eq. 5.1.15). Solid line: experiment, dashed line:

theory.
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fields are generated with waists determined via the Boyd criterion. However, it

is not obvious that this should apply to higher order modes, especially when the

foci of the two pump beams are separated. Indeed measurements of the 420 nm

waist show that it is in general not the same as the assumed value. Fig. 5.13

(a) and (b) show the waists of the FWM fields for OAM addition and OAM

frequency conversion, respectively. The measured 420 nm waist (solid, filled blue)

is consistently smaller than the predicted waist (dashed, empty blue) for both

experiments, particularly for the OAM frequency conversion experiment. The

beam waists of all three fields were measured in the SLM image plane after the

FWM cell, so the 420 nm waist in the Fourier plane within the FWM cell is in

reality larger than predicted. A more accurate prediction of the waists might be

found by maximising the FWM signal in the theoretical model by varying each

of the generated waists. This in turn may give better agreement between the

theoretical and experimental mode decompositions.

Comparing Figs. 5.6 and 5.10 also shows the relative importance of Gouy

phase matching in the two situations. In the OAM frequency conversion experi-

ment the axially offset 780 nm focus reduces the effect of Gouy phase matching.

This is apparent in both the experiment and theory via a reduction in the asym-

Figure 5.13: Waist of FWM beams for (a) OAM addition and (b) OAM fre-

quency conversion. Red:w780, black:w776, filled blue: measured wB, and empty

blue: predicted wB, wB =
√

420/780w780.
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metry between `B > `776 and `B < `776, as well as an increase in the relative

power predicted to be generated in 5.2 µm modes with p > 0.

5.4.1 Conversion efficiency

Finally, we consider the conversion efficiency of the FWM process with shaped

pump beams. Fig. 5.14 shows the 780 nm, 776 nm and 420 nm power for each pair

of pump beams in the OAM addition and OAM frequency conversion experiments,

as well as the conversion efficiency, η = PB/(P780P776). Note the units of this

conversion efficiency are %/W, rather than %. As the pump ` increases the

conversion efficiency drops in both experiments. The overall lower efficiency in

the OAM frequency conversion experiment is due to the offset focus of the 780 nm

beam and reduced spatial overlap of the pump beams.

This definition of the conversion efficiency allows for comparison with [92],

Figure 5.14: (a), (b) OAM addition beam powers and conversion efficiency.

(c), (d) OAM frequency conversion beam powers and conversion efficiency.

Red: 780 nm, Black: 776 nm and Blue: 420 nm. η = PB/(P780P776).
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where a conversion efficiency of 260 %/W was measured in an optimised exper-

iment with Gaussian pump beams. The conversion efficiency in the current ex-

periment is less than this. Part of this is due to the use of a shorter rubidium cell

(25 mm rather than 75 mm), and also a larger input pump waist. The conversion

efficiency could also be improved by increasing the cell temperature, which is

slightly reduced from the optimal value of 130◦C to reduce the effects of Kerr

lensing.

5.5 Summary and Discussion

The work presented in this chapter is the first quantitative investigation of OAM

transfer in the “blue light” FWM system. For low ` pump beams (` < 4) the

results are consistent with previous experiments [46,87,88], and we observe that

the 420 nm light is mostly generated in the mode with `B = `780 + `776, indicating

that the OAM is predominantly transferred to the 420 nm field. However, as

` increases we observe a broadening of the 420 nm `-distribution. This is the

principal result of this chapter. It indicates that not only is OAM transferred to

the 5.2 µm field, but that the 420 nm and 5.2 µm fields are likely to be generated

in an OAM-entangled state. The available spiral bandwidth and entanglement

entropy of this state was inferred from the 420 nm mode decomposition, and was

found to depend on both the total pump OAM and the division of the OAM

between the pump fields.

The experimental results are supported by a simple theoretical model that

considers the overlap integral of the FWM fields. This model showed the impor-

tance of three factors in determining the generated modes: OAM conservation,

Gouy phase matching and spatial overlap. The increasing spiral bandwidth with

pump ` was observed both experimentally and theoretically, and can be explained

by considering the pump mode-dependent spatial overlap of the modes. One limi-

tation of the model is the need to know the waist of both generated fields, though

as mentioned earlier this could possibly be calculated using the model itself. The
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model could be further improved by including propagation effects, including ab-

sorption and Kerr lensing of the fields.

This work suggests that the “blue light” FWM system may be an efficient

source of OAM-entangled photon pairs with widely disparate wavelengths. How-

ever, clearly further work is required to confirm this. Firstly, it must be confirmed

that the “missing” OAM is indeed transferred to the 5.2 µm light. This would

require the use of a sapphire cell and a measurement of the transverse mode of

the 5.2 µm field, which could possibly be carried out using single-pixel imaging

techniques due to the cost/availability of cameras at this wavelength. The next

step would be to confirm the correlation between the 420 nm and 5.2 µm OAM

state. To do this the FWM process would need to be carried out at the single

photon level, and a measurement made of the coincidences, conditioned on the

OAM state, of the 420 nm and 5.2 µm photons. This could be carried out us-

ing two additional SLMs and single photon detectors, though the wavelength of

the generated infrared field may make this difficult. Although this would show

correlation between the 420 nm and 5.2 µm OAM state, it would not alone be

sufficient to confirm entanglement. To do this the photon coincidences must also

be measured for superpositions of OAM states [47], which could be carried out

as part of a full tomographic reconstruction of the two-photon state [206].

There are also unanswered questions that could be investigated using the cur-

rent setup. For example, the mode decomposition of the 420 nm light was found

to depend on the 780 nm detuning. This is expected to be due to Kerr lensing of

the 780 nm beam [92, 204] changing the spatial overlap of the FWM fields. The

780 nm detuning used in this work was chosen to minimise this effect, but it would

be interesting to make quantitative measurements of the mode decomposition for

a range of detunings to understand the effect of the changing mode overlap. This

may allow the spiral bandwidth of the two-photon state generated for a given

pump ` to be tuned simply by changing the 780 nm detuning.



Chapter 6

Coherent beam shaping

In this chapter we extend our study of FWM with structured light to more general

pump modes. We present a series of three experiments:

• OAM addition for pump beams with different ` indices, including addition

of OAM with opposite handedness.

• Addition of radial (p > 0) LG modes.

• Addition of coherent superpositions of LG modes.

Each experiment was carried out using the same experimental setup and pa-

rameters as detailed in Chapter 5, however the data was taken before the mode

decomposition procedure described in Chapter 4 was fully developed. As such we

do not have the data required to obtain the full mode decomposition of the light,

but present instead preliminary analysis where possible. Nevertheless, the raw

experimental data in each case clearly demonstrates the coherent nature of the

“blue light” FWM process, as well as the importance of Gouy phase matching in

our system.

6.1 OAM addition revisited

In the first of the three experiments we revisit OAM addition. In particular we

consider the case where the pump beams carry OAM of opposite handedness.

103
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As before, the pump beams are focused to a waist of 24 µm at the centre of

the rubidium cell. This corresponds to a Rayleigh range of 2.3 mm, which is short

compared to the cell length of 25 mm. As a result, for the pump beams to remain

phase matched with the generated fields as they propagate through the cell they

must have identical Gouy phase. Assuming the Boyd criterion [202] holds, so

that the fields have matched Rayleigh ranges, this places the following restriction

on the mode indices of the generated light

|`780|+ 2p780 + |`776|+ 2p776 = |`IR|+ 2pIR + |`B|+ 2pB. (6.1.1)

In order to conserve OAM, the ` indices must additionally satisfy

`780 + `776 = `IR + `B. (6.1.2)

Where the pump modes both have ` ≥ 0, as in Chapter 5, the above conditions

restrict the generated light to ` ≥ 0 and p = 0. However, for pump beams with

opposite handedness of OAM, these conditions can instead force the generation

of modes with p > 0. To illustrate this consider `780 = 1 and `776 = −1. Since

the pump ` is low, and again assuming that the Boyd critereon holds, the largest

spatial overlap of the FWM fields will occur if the 5.2 µm field is generated in

the LG0
0 mode (due to the large 5.2 µm waist). Conservation of OAM (Eq. 6.1.2)

then dictates that `B = 0. In this case, in order to additionally satisfy Eq. 6.1.1,

we must have pB = 1.

To test this, FWM was carried out with `780 = 1 and `776 = 2 → −2. The

results are shown in Fig. 6.1 (a), with the relative intensity profile of the 420 nm

light in the image plane after the rubidium cell, Ib, and the interferogram at the

output of the Dove prism interferometer, IT (see Fig. 5.3).

When `780 and `776 are both positive we see the same behaviour as in the

previous chapter; the high visibility interferogram fringes indicate that the pump

OAM is transferred with high fidelity to the 420 nm light. However, for `776 < 0

there is a clear additional ring in the intensity profile of the beam. In all cases

the interferograms indicate that `B ≈ `780 + `776.
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Fig. 6.1 (b) shows preliminary analysis of the 420 nm radial profile. An inco-

herent sum of p-modes was fit to the mean radial profile of each Ib image, with

the ` index of the fitted modes set to `B = `780 + `776. The results show that for

`776 ≥ 0 the blue light is generated predominantly in the pB = 0 mode, whilst

when `776 < 0 it is instead generated mostly with pB = 1.

Assuming the 5.2 µm light is generated only in the LG0
0 mode, these results are

consistent with the expected 420 nm mode based on OAM conservation and Gouy

phase matching. Fig. 6.1 (c) shows the predicted 420 nm mode decomposition for

the case of LG`IR=0
pIR=0 (i.e. not summing over all modes in Eq. 5.1.5). In each case

0

1

0

1

2 1 0 -1 -2
1 1 1 1 1

Figure 6.1: (a) Relative 420 nm intensity profile in the image plane after the ru-

bidium cell, Ib, and interferogram at the output of the Dove prism interferometer,

IT (see Fig. 5.3), for pump modes LG`780
0 and LG`776

0 . (b) Experimental radial

decomposition assuming `B = `780 + `776. (c) Predicted 420 nm mode decomposi-

tion including only 420 nm modes generated with LG`IR=0
pIR=0 and (d) summing over

all LG`IR
pIR

modes.
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`B = `780 + `776, and pB adjusts to ensure Gouy phase matching of the beams.

Fig. 6.1 (d) on the other hand shows the predicted 420 nm mode decomposition

when all 5.2 µm modes are taken into account. The 420 nm and 5.2 µm light is

still generated in pairs of modes which conserve both OAM and Gouy phase, but

the theory predicts that this should not be restricted to two-photon states with

LG`IR=0
pIR=0, and the 420 nm light should therefore be observed in a range of modes.

For example, for `780 = 1 and `776 = −1 the allowed pairs of modes are shown in

table 6.1, along with their relative weighting.

Pair `IR pIR `B pB P `B
pIR

a 1 0 -1 0 0.14

b 0 0 0 1 0.35

c 0 1 0 0 0.36

d -1 0 1 0 0.14

Table 6.1: Possible 420 nm and 5.2 µm mode indices for `780 = 1 and `776 = −1.

The experimental result show better agreement with the theoretical prediction

in Fig. 6.1 (c) than (d), which suggests the 5.2 µm light is generated mostly in

the LG0
0 mode. It is an open question why this is the case. It is possible that

the nonlinear gain in the FWM process means that the modes with the highest

probability of being generated are amplified preferentially. However, based on

this there should still be significant power in the pB = 0 modes for `776 < 0. It

may be that the 5.2 µm p > 0 modes undergo preferential absorption or increased

Kerr lensing, thus preventing these modes from being generated efficiently.

We note that addition of OAM with opposite handedness has previously been

demonstrated in the blue light system, for `780 = 1 and `776 = −1 [87]. In

this experiment the 420 nm light was observed as a ring shaped intensity profile

which carried no OAM, although there is some on-axis intensity also evident. The

Rayleigh range of the fields in this experiment (∼ 4 cm) was roughly the same as

the cell length (5 cm), and therefore Gouy phase matching is expected to be less
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important.

Furthermore, an equivalent experiment has also been carried out for second

harmonic generation (SHG) in a nonlinear crystal [207]. The authors observed

that the second harmonic light is generated with a single ring in the near-field,

but that the intensity profile changes as the beam propagates, with additional

rings observed in the far-field. The number of additional rings is the same as

predicted by our theory. In this experiment the Rayleigh range of the fields (10s

of cm) was much longer than the crystal length (10 mm) and the Gouy phase of

the modes was completely neglected from the theoretical model. However, the

theory still predicted additional rings in the far-field intensity profile, in this case

due to diffraction from the circular “aperture” provided by the pump beams in

the wave mixing process.

So far we have only imaged the 420 nm light generated in our experiment in

the far-field. An interesting further experiment would be to image in the near-

field, and therefore allow further comparison with the SHG experiment described

above. We note that if Gouy phase matching is neglected from our theoretical

model then our theory cannot explain the observed experimental results, even

under the assumption that LG`IR=0
pIR=0.

6.2 Radial LG modes

In the second of the three experiments in this chapter, we carried out FWM for

pump beams with `780 = `776 = 1 and p780, p776 = 0→ 4.

The relative intensity profile, Ib, and interferogram, IT , of the 780 nm pump

modes are shown in Fig. 6.2 (a), with the p-decomposition of each mode in (b).

Each decomposition was obtained by fitting an incoherent sum of p-modes, with

` = 1, to the mean radial profile of each Ib image in (a). The intensity profile

of each mode is generated with high fidelity (P 1
p > 0.97), and inspection of the

interferograms show that each beam is correctly generated with ` = 1. However,

there is a noticeable difference in the radial profile of Ib - which is taken in the
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Figure 6.2: (a) Relative 780 nm intensity profile in the image plane after the ru-

bidium cell, Ib, and interferogram at the output of the Dove prism interferometer,

IT . (b) Radial decomposition for `780 = 1.

image plane - and IT - which is taken after propagation through the interferom-

eter. This indicates that the radial phase discontinuities required for p > 0 may

be slightly washed out, resulting in the intensity profile of the beam changing

as it propagates. The 776 nm modes were generated with similar mode purity

(P 1
p > 0.92) and showed the same change in radial profile on propagation.

The 420 nm relative intensity profiles, Ib, and interferograms, IT , obtained

for radial pump modes are shown in Fig. 6.3. In this case, if the 5.2 µm light is

generated in the LG0
0 mode, OAM conservation and Gouy phase matching require

that `B = `780 + `776 and pB = p780 + p776, i.e. both the OAM and the p-indices

of the pump modes add. Inspection of the interferograms and intensity profiles

indicates that this is indeed the case, with four lobes in each interferogram, and

the number of radial nodes in the intensity profile consistent with pB = p780+p776.

A full theoretical analysis has not yet been carried out for this experiment,

however initial calculations, for pump modes up to p = 2, indicate that we would

expect the average p-index of the 420 nm light to be less than p780 + p776, so

that the total pump p-index is “shared” between the 420 nm and 5.2 µm light.

The experimental results indicate that this is not the case, with the 5.2 µm light

instead restricted to p = 0, as in Sec. 6.1.

These results highlight again the importance of Gouy phase matching in our

system. This is in contrast to Ref. [190] where SHG of p-modes was investigated,
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Figure 6.3: Relative 420 nm intensity profile in the image plane after the rubidium

cell, Ib, and interferogram at the output of the Dove prism interferometer, IT , for

different combinations of LG1
p780

and LG1
p776

pump modes.

with the Rayleigh length of the beams comparable to the length of the nonlinear

crystal. In this experiment the second harmonic had twice the ` of the pump

beams but the same number of radial nodes.

6.3 Coherent superpositions

In the final experiment presented in this chapter, we investigated FWM for pump

beams in a coherent superposition of LG modes. Under these conditions the

5.2 µm and 420 nm light is no longer generated in pairs of single modes which

obey OAM and Gouy phase conservation, but instead in pairs of superpositions

of LG modes. As a result it is possible to observe coherent interference between

modes in the 420 nm beam.
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To illustrated this, consider the following pump modes:

E780 =
1√
2

(
LG1

0 + LG−1
0

)
,

E776 =
1√
2

(
LG1

0 + LG−1
0

)
.

(6.3.3)

so that the combined pump field is given by [46]

E780E776 =
1

2

(
LG1

0 + LG−1
0

)
780

(
LG1

0 + LG−1
0

)
776
. (6.3.4)

When this field interacts with the atoms there are four separate excitation path-

ways in the initial two-photon absorption. Since the pump ` is low, we expect the

5.2 µm light to be generated mostly in the LG0
0 mode. In this case, OAM conser-

vation and Gouy phase matching dictate that each excitation pathway produces

the follow 420 nm modes:

(LG1
0)780(LG1

0)776 → c2,0(LG2
0)B,

(LG1
0)780(LG−1

0 )776 → c1,−1(LG0
1)B,

(LG−1
0 )780(LG1

0)776 → c−1,1(LG0
1)B,

(LG−1
0 )780(LG−1

0 )776 → c−2,0(LG−2
0 )B.

(6.3.5)

The ci,j can be found by calculating the overlap integral of the FWM fields in

each case, and give the relative weighting of each mode. Since the pump fields

have the same waist, and the radial profile of the LG modes depend only on |`|,

c2,0 = c−2,0 = c2 and c1,−1 = c−1,1 = c1. The 5.2 µm and 420 nm two-photon field

is then

EBEIR =
(
c2LG2

0 + c2LG−2
0 + 2c1LG0

1

)
B

(
LG0

0

)
IR
, (6.3.6)

and the 420 nm light is expected to be observed as a coherent superposition of

three modes.

This situation was studied previously at Strathclyde in Ref. [46], where the

420 nm mode superposition was studied for a range of pump beam superpositions.

The measured 420 nm beams showed good agreement with theoretical predictions

based on the above description. Of course, assuming that the 5.2 µm light is

restricted to the LG0
0 mode is an approximation, and further theoretical work has

included other OAM states in the analysis [201].
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Here we take the original Strathclyde experiment a step further by making

use of the independently shaped pump beams. With inspiration from theory

presented in Ref. [201], we consider the following pump modes

E780 =
1√
2

(
eiφLG1

0 + LG−1
0

)
,

E776 =
1√
2

(
LG1

0 + LG−1
0

)
,

(6.3.7)

which are the same as those discussed above but with an additional phase shift

for one of the 780 nm modes. In this case, consideration of the four excitation

pathways leads to a 420 nm field given by

EB = c2e
iφLG2

0 + c2LG−2
0 + c1(1 + eiφ)LG0

1. (6.3.8)

The phase shift in the 780 nm superposition is expected to cause the two contri-

butions to the LG0
1 mode (see Eqs. 6.3.5) to interfere, such that for φ = π there

is complete destructive interference and the mode is suppressed entirely.

Fig. 6.4 (a) shows the intensity profile of the pump beams and 420 nm light

as φ is increased from 0 to 2π. For φ = 0 the 420 nm intensity profile is the same

as observed in Ref. [46]. The relative power in each 420 nm mode was found by

fitting a coherent superposition of LG modes to the full intensity profile, and is

shown in Fig. 6.4 (b). For φ = 0 the 420 nm light is composed mainly of the three

modes predicted by Eq. 6.3.8.

As φ increases, the phase shift causes the 780 nm profile to rotate, as does the

420 nm mode due to the phase shift of the LG2
0 component in Eq. 6.3.8. We also

see the shape of the 420 nm profile change, with the relative power in the LG0
1

mode decreasing until it is completely suppressed for φ = π. At this point the

beam is a superposition of ` = ±2 and as such displays the characteristic four

lobed intensity pattern.

Although we have used the Laguerre-Gauss basis to describe the experiment,

these LG superpositions are actually Hermite-Gauss (HG) modes [149]. We see

that the interference of HG modes in the wave mixing process depends on their

relative orientation. We choose the LG basis here in order to use the same

theoretical description as presented in Ref. [46, 201].
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Figure 6.4: (a) Relative intensity profile of 780 nm, 776 nm and 420 nm beam as

a function of φ. (b) Coherent mode decomposition of the 420 nm beam.

6.4 Conclusion

The OAM transfer experiment in the previous chapter showed that the trans-

verse mode of the 420 nm light is determined by a combination of OAM conserva-

tion and Gouy phase matching. This chapter has presented experiments to test

these criteria for more generalised pump modes. Although the results are so far

preliminary, with only initial analysis carried out, each experiment indicates an

interesting area for future study.

Working with low pump `, we found results consistent with the 5.2 µm light

being generated mostly in the LG0
0 mode. In this case, for pump modes with

opposite handedness of OAM, Gouy phase matching requires that the 420 nm

light is generated with p > 0. In some sense the OAM present in the pump

beams is converted to the radial index of the 420 nm light. For pump modes

with p > 0 we have demonstrated that Gouy phase matching allows p-mode

“addition”. We observe that the blue light is generated in a mode with the radial

profile determined by the total p-index of the pump beams.
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In a final experiment, we investigated FWM with pump modes in a coherent

superposition of LG modes. In this case the intensity profile of the 420 nm light

is determined by the coherent interference of different FWM pathways. This

interference, and the resulting mode composition of the 420 nm light, can be

controlled via the relative phase of the pump mode superposition.



Chapter 7

Cavity-enhanced four-wave

mixing

The final set of experiments presented in this thesis demonstrate the effect of

adding feedback - in the form of a ring cavity - to the four-wave mixing (FWM)

system. Resonant cavities are routinely used to enhance optical generation,

whether stimulated emission, as in lasers [34], or wave mixing, as in optical para-

metric oscillators [14, 208]. The cavity allows the resonant light to pass through

the gain medium multiple times, increasing the generated power, but also impos-

ing strict spectral coherence on the process; only light that is in phase with itself

after one round trip will constructively interfere.

Cavity-enhanced FWM has been investigated in both hot [209–211] and cold

[212] atomic vapours, and previous authors have suggested that a cavity could be

used to enhance the conversion efficiency of the blue light FWM process [4,90,92].

As a first demonstration of this, we focused on the low feedback regime and

constructed a low-finesse ring cavity which was designed to be singly-resonant

with the 420 nm light. The effect of this cavity on the 420 nm output power,

linewidth and transverse mode was then investigated. This process also led to

further understanding of the single-pass FWM system, for example the frequency

tuning characteristics of the generated blue light.

The design of the cavity is discussed in Sec. 7.1, with the rest of the exper-

114
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imental setup described in Sec. 7.2. The principal results of this chapter are

presented in Sections 7.3 and 7.4, where we investigate the effect of the cavity

for Gaussian pump beams, and show that the cavity both enhances the output

power and narrows the linewidth of the generated 420 nm light. These results are

published in Ref. [P5]. For this section of work I was joined in the lab by J. W.

C. Conway, who helped to gather the experimental results.

The final experimental section, Sec. 7.5, considers the effect of the cavity

for Laguerre-Gauss (LG) pump beams. These preliminary results show that the

cavity output mode is determined by a combination of the cavity and the phase

coherent FWM pumping mechanism. Finally, Sec. 7.6 summarises the results and

indicates interesting areas of future research.

7.1 A low-finesse ring cavity

A variety of cavity geometries were considered to provide feedback to the FWM

process. Each cavity was designed to be singly-resonant with the blue light, and

not with the pump beams. This greatly simplifies both the experiment and the

physics, as it means the cavity resonance condition depends only on the frequency

of the blue light.

Making use of the available optics, four different cavities were tested before

settling on the final design. The simplest was a plane-plane standing wave cavity,

with a dichroic mirror that transmits the pump light as the input coupler, and

a partially transmitting mirror as the output coupler (Fig. 7.1 (a)). Unfortu-

nately this is not a good choice for our system as the retro-reflected pump beams

interfere with the forward going FWM process, resulting in a decrease in conver-

sion efficiency. This problem can be solved by replacing the end mirror with a

diffraction grating, such that only the first diffracted order of the 420 nm light

is retro-reflected (Fig. 7.1 (b)). In this case the cavity increased the conversion

efficiency, but the retro-reflected blue light undergoes significant absorption on

the backwards pass through the rubidium cell (since the FWM process is only
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Figure 7.1: Different cavity geometries. (a) Plane-plane, (b) Littrow configuration

diffraction grating, (c) ring cavity with diffraction grating, and (d) final ring

cavity.

phase matched in the direction of propagation of the pump beams), thus limiting

the overall gain.

Since a standing wave cavity proved to be unsuitable, the design was changed

to a ring cavity (Fig. 7.1 (c)). In this case the blue light always propagates through

the cell in the same direction as the pump beams, experiencing parametric gain

on each pass. Although this design worked well for Gaussian beams, the odd

number of reflections in a round trip makes it unsuitable for light with a varying

transverse phase; on each round trip the beam would interfere with its mirror

image.

The final cavity design (Fig. 7.1 (d)) used an equilateral prism, rather than

a diffraction grating, to separate the 420 nm light from the pump beams. This

reduces the total number of reflections per round trip to two. Both the pump

and 420 nm light is horizontally polarised, and light is coupled out of the cavity

using a polarising beam splitter (PBS) combined with a half wave plate. This

allows the amount of feedback and output coupling to be tuned.

Using linearly polarised light is a comporomise as the FWM process is more

efficient for circular polarisation [92]; however, this would be difficult to maintain

around a cavity and is not compatible with our output coupling method. A more

sophisticated cavity design could use polarisation optics (Fresnel rhombs due to
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the wavelength range) on either side of the cell to convert from linear to circular

and back again.

7.1.1 Passive cavity response

The cavity length, L, and the round trip power loss, β, are key parameters that

determine the effect the cavity has on an incident - or circulating - field. For an

input field, Ein, the steady state circulating electric field in the cavity, E, can be

written as

E = Ein +
√

1− βeiψE, ψ =
ωL

c
, (7.1.1)

where ψ is the round trip phase shift of the light. Manipulating Eq. 7.1.1, it

follows that the circulating intensity, I, varies with [34,213]

I ∝ (1−
√

1− β)−2

1 + 4F 2

π2 sin2(ωL
2c

)
, F =

π 4
√

1− β
(1−

√
1− β)

. (7.1.2)

The intensity is maximum whenever ω = n2πc/L, where n is an integer, in which

case the round trip phase shift is a multiple of 2π and the light is resonant with

Figure 7.2: Parasitic 420 nm loss at each optical element, and output coupling,

βo, feedback, βf and parasitic loss, βp, at the PBS as the half waveplate is rotated.



7.1. A low-finesse ring cavity 118

the cavity. This results in a series of intensity peaks separated in frequency by

the free spectral range, FSR = c/L. The width of the peaks is determined by

the finesse, F , which is a function of the round trip loss.

The total round trip loss, β, has two contributions: the output coupling, βo,

and the parasitic loss, βp, such that β = βo + βp. The output coupling is defined

as βo = Po/Pi, where Pi is the incident power at the PBS output coupler and Po

is the power which exits the cavity through the reflection port. The parasitic loss

accounts for all other power losses within the cavity.

The loss at each of the optical elements in the cavity was measured using a

power meter and is shown in the table in Fig. 7.2. There is a total parasitic loss of

8% due to the optics (not including the PBS), and the transmission loss through

the rubidium cell - ignoring absorption - was estimated to be 15.1% due the the

four 4% reflections at the uncoated glass surfaces. The other main contributor to

the parasitic loss is the PBS. The output coupling, βo, and transmission at the

PBS were measured as a function of waveplate angle (with the cavity incomplete),

and are also shown in Fig. 7.2. The PBS parasitic loss was calculated by taking

the difference in power between the input beam and the sum of the power in the

output ports.

From these measurements the cavity finesse was calculated for different values

of the PBS output coupling, βo, and is shown in Fig. 7.3. Due to the high parasitic

losses the cavity is finesse very low, with a maximum finesse of 16 when the output

coupling is minimised. As an illustration, the inset in Fig. 7.3 shows the cavity

response given by Eq. 7.1.2 for Finesses of 12.8 and 3.5. These are typical of

values used later in the experiment and correspond to transmission FWHMs of

14 MHz and 54 MHz, respectively. The separation of the peaks is set by the free

spectral range, which was calculated to be 181.8(3) MHz, based on a measured

round trip length of 164.95(25) cm.
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Figure 7.3: The calculated cavity finesse as a function of output coupling, with

a fit using the expression for F given in Eq. 7.1.2, allowing for a small linear

variation in the parasitic loss. Inset: Normalised passive cavity response for a

finesse of 3.5 (black) and 12.8 (grey) and cavity length L ≈ 165 cm, see text.

7.2 Experimental setup

This section describes the rest of the setup required for the cavity-enhanced FWM

experiments. The effect of the cavity on three parameters was demonstrated: the

420 nm output power, the linewidth and the transverse mode. The output power

was measured simply by using a photodiode at the cavity output, whilst the

420 nm linewidth was measured via a beat note with a reference 420 nm ECDL.

The transverse mode was measured using the same Dove prism interferometer as

discussed in earlier chapters, but only qualitative rather than quantitative results

were obtained.

These experiments were carried out at the start of my PhD using an earlier

version of the experiment, which is shown in Fig. 7.4. In contrast to the new setup,

the 780 nm and 776 nm beams were overlapped before the optical fibre. This

ensures that the two beams copropagate in the same mode through the rest of

the setup, but does not allow independent shaping of the two pump wavelengths.
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To minimise power loss, the pump beams were overlapped using a diffraction

grating close to the Littrow configuration, and the combined beam was then

coupled into a single-mode polarisation-maintaining optical fibre to the FWM

side of the setup.

The frequency of the 780 nm laser was monitored using saturated absorption

Figure 7.4: Full experimental setup for cavity-enhanced FWM. Dashed lines in-

dicate pick-offs for spectroscopy. Abbreviations: PD: photodiode, FPD: fast

photodiode, SLM: Spatial light modulator. Lenses (mm): f1 = 50, f2 = 200,

f3 = 250.



7.2. Experimental setup 121

spectroscopy before the fibre, as discussed in Sec. 3.2, whilst the 776 nm frequency

was monitored using two-photon spectroscopy in the FWM cell itself. Since the

pick off for the two-photon spectroscopy was after the fibre, both beams were

retroreflected in the cell, leading two-photon spectra with additional single photon

absorption features, as shown in Sec. 3.4. Typical powers for the two-photon

spectroscopy were 1 mW (780 nm) and 0.8 mW (776 nm), with a 1/e2 radius of

0.89 mm. As in previous chapters, the 780 nm detuning is given relative to the

85Rb 5S1/2 F = 3→ 5P3/2 F
′ = 4 transition, and the 776 nm detuning is relative

to the 85Rb 5P3/2 F = 4 → 5D5/2 F
′ = 5 transition.

After the fibre, lenses were used to adjust the pump beam to a 1/e2 inten-

sity radius of 0.89 mm. A PBS then ensured that the pump light was linearly

polarised, with the transmitted light at the PBS going to the two-photon spec-

troscopy. At this point, for the LG mode results in Sec. 7.5 the combined pump

beam was sent to the spatial light modulator (SLM) for transverse mode shaping

by removing the two greyed out mirrors. In the initial experiments, however, only

Gaussian pump beams were required and the SLM was bypassed. The final optic

before the cavity was a half waveplate to rotate the polarisation to horizontal.

The pump beams then entered the cavity which was formed by a dichroic

mirror, prism and a mirror, as discussed in Sec. 7.1. The pump light was focused

at the centre of the 25 mm long rubidium cell with a 2f -imaging system (f =

200 mm), to a 1/e2 intensity radius of 52 µm. The cell was heated to either 130◦C

or 90◦C, which correspond to 85Rb partial pressures of 0.12 Pa and 0.009 Pa,

respectively, or in terms of number density, 2.1× 1013 cm=3 and 1.8× 1012 cm=3.

After the cell, the pump light was blocked whilst the generated 420 nm light

propagated around the ring cavity. Measurements of the blue light confirmed

that it was horizontally polarised for horizontally polarised pump beams. For the

results in Sec. 7.3, the 420 nm output power was measured directly at the cavity

output using PD4.
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420 nm linewidth measurement

The linewidth of the FWM 420 nm light was measured via a beat note with a

reference 420 nm laser. The reference laser was a Newport Vantage tunable diode

laser which provided 20 mW of 420 nm light with an RMS linewidth of 1.73 MHz

over 0.1 s. This linewidth was measured by setting the laser detuning to the

side of a Doppler broadened absorption feature and monitoring the noise on the

transmission signal.

For the beat note measurement, the FWM 420 nm light was overlapped with

light from the reference laser on a non-polarising beam splitter. A half waveplate

in the reference laser’s optical path was used to match the polarisation of the

two fields before the combined beam was focused on a fast photodiode (Thorlabs

DET025A/M). The resulting radio-frequency signal was amplified by 10 dB and

then recorded using a spectrum analyser. The reference laser was deliberately

detuned by about 200 MHz from the FWM light so that the resulting beat note

was not lost in the DC signal from the fast photodiode.

To obtain the absolute frequency of the generated 420 nm light, the detuning

of the reference laser was monitored via saturated absorption spectroscopy on

the 85Rb 5S1/2 → 6P3/2 transition. For a combination of reasons, the absorption

coefficient of this transition is significantly less than that of the 780 nm transi-

tion. Firstly, the resonant absorption coefficient varies with λ2, this immediately

reduces the absorption by a factor of roughly 1/4. Additionally, the linewidth of

the 420 nm transition is ten times narrower than the 780 nm transition (0.6 MHz

compared to 6 MHz). This, combined with the fact the Doppler width is broader

due to its 1/λ dependence, means that the relative fraction of the atoms that the

light interacts with for a given detuning is reduced by a factor of 20. This overall

80 times reduction in the absorption is compensated for by using a heated cell

for the spectroscopy. By raising the temperature of the cell to 90◦C the rubidium

density is increased by a factor of roughly 400, more than compensating for the

reduced absorption.

Fig. 7.5 (a) shows the Doppler absorption spectrum of the 420 nm transition
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Figure 7.5: (a) 420 nm Doppler spectroscopy of the 5S1/2 → 6P3/2 transitions.

(b)-(e) Saturated absorption spectroscopy at each Doppler broadened transition,

with a fitted Gaussian background subtracted and zero tuning set to the energy

centre-of-mass of each transition. Dashed lines indicate expected detuning of

features calculated using values from [120], see appendix A.

in a 90◦C 75 mm long cell. Saturated absorption traces are included in (b)-(e)

showing the hyperfine and crossover features at each group of Doppler broadened

transitions. Although the separation of the feature matches the previously mea-

sured prediction well in (c) and (d) there is significant discrepancy in (b) and

(e).

The FWM 420 nm light is generated close to the 85Rb 5S1/2 F = 3 → 6P3/2

transition. To measure the detuning, immediately before the beat note measure-

ment the reference laser’s frequency was scanned as in Fig. 7.5 (c). From this

the detuning as a function of piezo voltage was determined. The scan was then
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stopped to perform the beat note measurement, and the piezo voltage recorded.

This allowed the reference laser detuning, and therefore the FWM 420 nm detun-

ing, to be calculated after the experiment.

7.3 Cavity-enhanced output power

We now move on to the first of the principal results of this chapter: the effect

of the low-finesse ring cavity on the FWM 420 nm output power. For the initial

measurement, the experimental conditions were set to give peak single-pass FWM

conversion efficiency: a cell temperature of 130◦C and maximum available pump

powers of 13 mW (780 nm) and 23 mW (776 nm). These powers were measured

directly before the cell, as indicated in Fig. 7.4. Whilst scanning the 776 nm

laser, the detuning of the 780 nm laser was tuned until the 420 nm output power

was maximised, resulting in a peak output of 340 µW directly after the cell.

The 780 nm laser was then left at this detuning (+1.8 GHz) for the rest of the

experiment.

To maximise the effect of the cavity, the intracavity waveplate angle was

set to give only a small amount of output coupling. The feedback and output

coupling at the PBS were measured to be 79% and 5%, respectively. These results

combined with the other cavity losses (Fig. 7.2) give a round trip loss of 39%,

which corresponds to a cavity finesse of 12.8.

Fig. 7.6 shows the variation in cavity output power as the 776 nm laser was

scanned across the 5S1/2 → 5D5/2 two-photon resonance. This was carried out

first for single-pass FWM, with the cavity blocked after the PBS (red curve) and

then with the cavity unblocked (blue curve).

For single-pass FWM there are two Doppler broadened peaks where blue light

is generated, near ∆776 = −1.8 GHz and ∆776 = 1.2 GHz. These correspond to

two photon resonance with the 5S1/2 F = 3 → 5D5/2 and 5S1/2 F = 2 → 5D5/2

transitions respectively. With the cavity unblocked, a large increase in output

power is observed when the blue light, whose frequency scans with the 776 nm
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Figure 7.6: Cavity output power as a function of 776 nm detuning, for single-pass

(red) and cavity-enhanced (blue) FWM. βo = 5%, ∆780 = 1.8 GHz. Dashed lines

indicate detunings for which the cavity gain, G = PC/PSP , was calculated.

detuning, is resonant with the cavity.

The cavity gain, defined as

G = PC/PSP, (7.3.3)

where PSP is the single-pass output power and PC is the cavity-enhanced output

power, is marked for the largest cavity resonance in each group. At the F = 3

two-photon resonance, the output power increases by 25 times compared to a

single-pass, whilst at the F = 2 resonance there is more than 150 times the

output power, despite the high round trip loss of the cavity.

The effect of the cavity can be modeled qualitatively by considering the re-

sponse of the combined cavity and rubidium atom system to an input 420 nm

field. For an input field, Ein, and a rubidium cell of length, l, the steady state

circulating electric field in the cavity, E, can be written as

E = Ein +
√

1− βeiψeikχl/2E, (7.3.4)

where χ is the electric susceptibility of the atoms at the frequency of the 420 nm

field and in the presence of the pump beams. The susceptibility can be separated
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into its real and imaginary parts, χ = χ′ + iχ′′, so that

E = Ein +
√

1− βgeiψtE, g = e−χ
′′kl/2, ψt = ωL/c+ χ′l/2. (7.3.5)

When the imaginary part of the susceptibility is negative the 420 nm light ex-

periences parametric gain each time it passes through the cell. The atoms can

also add a phase shift to the light, which is described by the real part of the

susceptibility, χ′, and can lead to frequency pulling effects [210].

In analogy to the analysis in Sec. 7.1, the cavity response is given by

I ∝ (1− g
√

1− β )−2

1 + 4F 2

π2 sin2(ψt

2
)
, F =

π 4
√
g2(1− β)

(1− g
√

1− β)
. (7.3.6)

The FWM gain reduces the round trip loss and effectively increases the finesse

of the cavity. This has two effects. Firstly, it increases the circulating power

on resonance, leading to an increase in the maximum output power. Secondly,

it narrows the cavity resonances. This imposes strict spectral coherence on the

circulating light, resulting in a narrow linewidth.

In reality, the situation is more complicated than this simple model. The

susceptibility χ depends on the detuning and coupled amplitudes of all four fields

involved in the FWM process, which are in turn affected by the presence of the

cavity. A full theoretical model of the system was beyond the scope of this

initial demonstration. Instead, experiments were carried out in an attempt to

understand three features of the cavity-enhanced trace in Fig. 7.6:

• The free spectral range of the cavity resonances.

• The on-resonance gain and the effect of varying the output coupling.

• The resonance width and broadening mechanisms that contribute to it.

7.3.1 Free spectral range

The mean free spectral range of the cavity, based on the resonance spacing in all

of the data in this chapter, was measured to be 198(2) MHz. However, the optical
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path length of the cavity is 164.95(25) cm, which equates to a free spectral range,

FSR = c/L, of 181.8(3) MHz. Since we scan the 776 nm pump laser, rather than

the 420 nm frequency directly, we can only expect the two values for the FSR to

agree if the 420 nm frequency directly follows that of the pump lasers.

Due to energy conservation in FWM, the two generated fields must have

angular frequencies that satisfy

ω778 + ω776 = ωIR + ωB. (7.3.7)

As a result, if the frequency of one of the pump lasers is changed, the frequency

of one (or both) of the generated fields must change to compensate. In general,

one may expect the frequency of both of the generated fields to change, with the

relative shift of each determined by the magnitude of the Doppler shift.

The apparent shift in frequency of an atomic transition for an atom traveling

with velocity v is given by [1]

δ = kv =
2π

λ
v. (7.3.8)

The magnitude of the shift increases for shorter wavelengths as the atom crosses

more phase fronts per second for a given velocity. In the FWM process, the total

Doppler shift of the two-photon pump resonance is

δP = δ780 + δ776 =
2πv

λ780

+
2πv

λ776

. (7.3.9)

At a particular total pump detuning, ∆P, only atoms in the velocity class that

is two-photon resonant with the pumps (∆P = δP) will interact with the light.

Rearranging Eq. 7.3.9, this velocity class is given by

v =
∆P

2π(1/λ780 + 1/λ776)
. (7.3.10)

The Doppler shift of the 420 nm transition for this velocity class can be found by

substituting Eq. 7.3.10 into equation 7.3.8, and so we can expect the blue light

to be generated with a detuning ∆B

∆B =
1/λ420

(1/λ780 + 1/λ776)
∆P ≈ 0.926∆P (7.3.11)
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Similarly, for the 5.2 µm field,

∆IR =
1/λ5230

(1/λ780 + 1/λ776)
∆P ≈ 0.074∆P. (7.3.12)

However, previous work with this FWM system has shown that, in practice,

the frequency tuning of the 420 nm light depends on the single photon detuning

of the pump lasers. For far detuned pump fields (∆ = 1THz), the frequency

of the blue field tunes according to equation 7.3.11 [214], but for near resonant

pump beams it directly follows that of the pump fields [115]. This indicates that

in the latter case the 5.2 µm frequency does not change.

In order to determine the frequency tuning of the 420 nm light in our experi-

ment, we coupled the three available fields (780 nm, 776 nm and 420 nm) into an

etalon and measured the shift in the 420 nm frequency as each of the pump lasers’

frequency was changed. The results are shown in Fig. 7.7. A global fit was per-

formed to all of the data to account for slight frequency drifts of the unscanned

laser, with a fit function of the form

∆B = m780∆780 +m776∆776 + c. (7.3.13)

The absolute frequency was chosen arbitrarily so that c = 0, and the resulting

Figure 7.7: Frequency shift of the generated blue light as a function of

780 nm and 776 nm detuning, with zero detuning chosen arbitrarily. The fit-

ted lines have gradients determined by a global fit to the data of the form

∆B = m780∆780 +m776∆776 + c.
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fitted values for m780 and m776 are shown in the figure. Slightly different val-

ues were found for the two gradients but, given the standard error in each, the

measurement indicates that the 420 nm light tunes identically with 780 nm and

776 nm frequency. Taking the average of the two, we get

∆B = 0.916(6)∆P, (7.3.14)

Based on this, the the separation of the cavity resonances in 776 nm frequency

(198(2) MHz) equates to a 420 nm frequency change of 181(2) MHz, which is in ex-

cellent agreement with the predicted FSR from the cavity length (181.8(3) MHz).

Equation 7.3.14 is also in good agreement with the tuning behavior expected

based on the relative Doppler shift of the fields (Eq. 7.3.11).

7.3.2 Output coupling optimisation

The cavity-enhanced output power in Fig. 7.6 was measured with a relatively low

output coupling. Although strong cavity resonances are observed, the maximum

cavity output power on resonance (200 µW) is still less than the maximum single

pass power that can be generated without the cavity (340 µW). There is an

optimal output coupling for a laser [34], or indeed an optical parametric oscillator

[215, 216], which produces the maximum output power. If there is too much

output coupling then there is insufficient feedback to make full use of the available

pump power. If there is too little then although the intra-cavity power can become

very large, only a small fraction of the power is coupled out of the cavity.

To find this optimal output coupling for our system the cavity output power

was measured for a range of waveplate angles. Fig. 7.8 shows the resulting vari-

ation in output power, as well as the peak gain (as defined in Eq. 7.3.3), as a

function of output coupling. As expected, although the cavity gain decreases with

increasing output coupling, the output power initially increases before reaching a

peak and decreasing again. The maximum output power was achieved for large

output couplings of around 60%. This is due to the high parasitic losses in the

cavity.
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Figure 7.8: Measurement of the cavity gain (G = PC/PSP) and output power

(PC) as a function of output coupling.

Fig. 7.9 shows the cavity output power as a function of 776 nm detuning

after the output coupling was optimised. A peak output power of 940 µW was

Figure 7.9: Cavity output power as a function of 776 nm detuning with optimised

output coupling, βo = 65%. Single-pass: red, cavity-enhanced: blue. ∆780 =

1.8 GHz. Dashed line indicates the detuning for which the cavity gain, G =

PC/PSP , was calculated.
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achieved, which is nearly three times the maximum single-pass power in the

absence of a cavity. With an improved cavity design to reduce parasitic losses

there is substantial scope for increasing this output power further.

7.3.3 Broadening mechanisms

Finally, we consider the width of the cavity resonances. As a first approximation,

the resonance width is expected to be dependent on three factors: the passive cav-

ity resonance width, the FWM gain, and the linewidth of the single-pass 420 nm

light. To explain this, consider again the response of the cavity to an incident

420 nm field. Without the rubidium atoms the width of the cavity resonances is

set by the response of the passive cavity, which depends on the output coupling.

When the atoms are included, the FWM gain reduces the round trip loss and is

expected to substantially narrow the cavity resonances. Finally, as we do not scan

the 420 nm frequency directly, but rather the 776 nm frequency, we expect the

overall resonance width to be the convolution of the narrowed cavity resonances

and the linewidth of the single-pass blue light.

To understand the interplay between the various broadening mechanisms,

traces were recorded of the cavity output power under different experimental

conditions, varying:

• The output coupling, βo

• The cell temperature, T

• The pump power, P780 and P776

The results are shown in Fig. 7.10, and it is clear that all three parameters affect

the resonance width. The plots in the left and right hand columns are for 65% and

5% output coupling, respectively. The middle row, (c) and (d), are the same data

as figures 7.9 and 7.6, and are included here for comparison. These results were

taken under optimal experimental conditions for single-pass FWM. In contrast,

the top row ((a) and (b)) were taken with reduced pump power, and the bottom
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Figure 7.10: Cavity output power (left hand axis), and intracavity power (right

hand axis), under different experimental conditions. Left column: βo = 65%,

Right column: βo = 5%. (a), (b): Reduced pump power, P780 = 1.6 mW, P780 =

2.7 mW, T = 130◦C. (c), (d): P780 = 13 mW, P780 = 23 mW, T = 130◦C, note

the 420 nm power is in mW for these plots. (e), (f): Reduced cell temperature,

P780 = 13 mW, P780 = 23 mW, T = 90◦C. The 780 nm detuning, chosen to

maximise single-pass conversion efficiency, was (a,b) 1.7 GHz; (c,d) 1.8 GHz; (e,f)

1.6 GHz. Dashed lines indicate detunings for which the cavity gain, G = PC/PSP ,

was calculated.

row ((e) and (f)) with reduced cell temperature. The right hand y-axes show the

420 nm power within the rubidium cell for each set of experimental conditions

- i.e. the intracavity power. These values were calculated based on the output
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coupling and cavity losses between the cell and the PBS.

Passive cavity resonances

The two output couplings used in Fig. 7.10, 65% and 5%, correspond to a passive

cavity finesse of 3.5 and 12.8, respectively. Accounting for the frequency tuning

of the 420 nm light, these correspond to a passive cavity resonance FWHM in

776 nm frequency of 58.8 MHz and 15.5 MHz, respectively.

Single-pass 420 nm linewidth

The combined linewidth of the generated 5.2 µm and 420 nm two-photon field is

determined, due to energy conservation, by the combined linewidth of the pump

fields. However, the linewidth of the 420 nm light alone is less well constrained.

Any pair of 5.2 µm and 420 nm photons that satisfy energy conservation and phase

matching can be generated in the FWM process, but only those that experience

a large third order nonlinearity will be generated efficiently. A full optical Bloch

model would be required to predict the frequency width over which this occurs,

with it possibly dependent on the linewidth of each transition and the power and

detuning of the four fields.

As a very rough first approximation we assume that the single-pass 420 nm

linewidth is related to the power broadened width of the 5S1/2 → 6P3/2 transi-

tion, which is given by

ΓP = Γ

√
1 +

I

Isat

, (7.3.15)

where Γ is the natural linewidth, which is 0.58 MHz, Isat is the saturation in-

tensity of the transition (see Appendix A) and I is the intensity of the light.

The 1/e2 intensity radius of the blue light was measured to be 0.58 mm at the

cell exit, corresponding to a waist of 46 µm in the cell. Using this waist and the

peak intracavity power, the power broadening was estimated for each dataset in

Fig. 7.10 (see Fig. 7.11 later).

We also considered the possibility of collision broadening of the linewidth.

The only transition which is significantly collision broadened for our rubidium
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density is the 5.2 µm transition, which is broadened to 19 MHz for the 130◦C cell

(calculated following Refs. [217, 218]). This may have an indirect effect on the

420 nm linewidth.

Overall resonance width

The mean FWHM of the resonances in each data set in Fig. 7.10 is shown in

Fig. 7.11. In each case only the group of peaks which produces the peak output

power was included (i.e. either at the F = 2 or F = 3 two-photon resonance).

For comparison, the predicted widths due to the passive cavity bandwidth, Γcav

(red), the single-pass linewidth, Γsp (grey), and the combined linewidth, Γcav +

Γsp (blue), for each set of experimental conditions are also shown. The single-

pass linewidth was estimated based on the power broadened width of the 420 nm

transition.

Where the round trip loss is high, and the FWM conversion efficiency is

low, we expect the resonance width to be roughly equal to the passive cavity

Figure 7.11: Mean resonance FWHM of each dataset in Fig. 7.10, with predicted

width based on the passive cavity resonance width, Γcav, the estimated single-pass

linewidth, Γsp, and the combined linewidth, Γcav + Γsp.
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resonance width plus the single-pass linewidth. This is the case in datasets (a)

and (e), where a high output coupling is combined with reduced FWM efficiency,

due to reduced pump power and reduced cell temperature, respectively. In all

other datasets the mean FWHM is closer to the estimated single-pass linewidth,

Γsp. In these cases the gain of the FWM process significantly narrows the cavity

resonances, and the largest contribution to the resonance width is the single-pass

linewidth.

This qualitative model broadly describes the cavity-enhanced FWM spectra,

but there are clearly also other factors involved. For example the positive detun-

ing resonances in Fig. 7.10 (d) appear to saturate to a particular value, whilst

other resonances, as in Fig. 7.10 (c), appear to consist of more than one peak.

The peak substructure is assumed to be due to the hyperfine structure of the

atomic levels. There is also significant asymmetry to some of the resonances, e.g.

Fig. 7.10 (b), which indicates some kind of bistability.

For other experimental parameters we have also observed splitting of the cav-

ity resonances. The result in Fig. 7.12 shows a spectra taken under similar condi-

Figure 7.12: Cavity output power for an output coupling of 3%, corresponding to

a finesse of 16.4. P780 = 3.2 mW, P776 = 4.0 mW, ∆780 = +1.8 GHz, T = 130◦C.
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tions as Fig. 7.10 (a) but for slightly higher pump power and slightly lower output

coupling. Results presented later in the chapter (Sec. 7.5) indicate that these are

not due to cavity transverse modes. They may be related to polarisation, or

possibly the dispersion of the atoms.

7.4 Linewidth

The second section of experimental work in this chapter discusses the effect of

the cavity on the linewidth of the 420 nm light. As discussed in Sec. 7.2, the

linewidth was measured via a beat note measurement with a reference 420 nm

ECDL.

We note that none of the lasers used in these measurements were locked. As

a result, the frequency of both the FWM blue light (which is determined by the

pump detunings) and the reference 420 nm light were subject to drifts. Care was

taken to minimise the effect of this in the experiment, but absolute frequency

scales carry an error of ±25 MHz unless otherwise stated.

7.4.1 Single-pass beat note

Before considering the cavity-enhanced case, initial measurements focused on

the spectral characteristics of the 420 nm light generated via single-pass FWM.

Previous work has reported relatively narrow linewidths, Refs. [4] and [219] give

values of ≤3 MHz and <1.3 MHz, respectively. However, these results were for

relatively low 420 nm power (≤15 µW), and for relatively low cell temperatures

(≤100◦C). As discussed in the previous section, a larger single-pass linewidth is

expected in our system due to power broadening.

The beat note measured for single-pass FWM is shown in Fig. 7.13. The

780 nm and 776 nm detunings of +1.8 GHz and −1.8 GHz, respectively, were cho-

sen to optimise the 420 nm power, and the maximum available pump powers of

13 mW (780 nm) and 23 mW (776 nm) were used. As with the output power

results, the results were taken for two cell temperatures: 90◦C and 130◦C.
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Figure 7.13: Normalised beat note signal (nBNS) for single-pass FWM with a cell

temperature of (a) 130◦C, and (b) 90◦C. ∆780 = +1.8 GHz, ∆776 = −1.8 GHz.

Detuning given relative to the 85Rb 5S1/2 F = 3→ 6P3/2 F
′ = 4 transition.

If the 420 nm emission was generated from a single atomic transition we would

expect a single Lorentzian peak in the beat note signal. This is clearly not the

case for either of the results in Fig. 7.13, as both have many sub-features. The

broadening of the individual peaks makes their separation difficult to determine,

but the substructure in the 90◦C result is probably due to the hyperfine structure

of the 6P3/2 state (similar substructure was observed in [90]).

Despite this, we can establish the linewidth of the 420 nm light due to a single

transition by fitting a Lorentzian curve to one of the subpeaks in each result, as

shown by the dashed lines in Fig. 7.13. From this we obtain FWHM linewidths of

33 MHz at 130◦C and 11 MHz at 90◦C. These are broadly consistent with power

broadening of the 420 nm transition, which we estimate to be 41 MHz (130◦C)

and 4 MHz (90◦C) based on a 420 nm waist of 46 µm and peak single-pass powers

given in Fig. 7.10.

The beat note measurement also allowed the detuning of the FWM 420 nm

light relative to the 5S1/2 F = 3→ 6P3/2 F
′ = 4 transition to be measured. Pre-

vious work, again at lower 420 nm power, had shown that the 420 nm emission

was generated centered on this resonance (±5 MHz) [115], but we find the max-

imum 420 nm power is generated slightly red-detuned from the transition in our
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experiment. This is possibly due to ac Stark shifts of the atomic levels.

420 nm tuning range

In Sec. 7.3.1, it was shown that the frequency of the 420 nm light can be tuned

by changing either of the pump laser frequencies. The beat note measurement

gives confirmation of the range of this tuning relative to the 420 nm transition,

with the recorded beat note as a function of 776 nm detuning shown in Fig. 7.14.

Importantly, the 420 nm light can be tuned continuously across the 420 nm tran-

sition, which makes it suitable for applications such as second stage laser cooling

of rubidium [220,221]. As the 776 nm laser is tuned, the structure of the beat note

feature changes, which further supports the hypothesis that the substructure is

due to hyperfine structure of the atomic states.

The frequency range over which the 420 nm light was generated with more

Figure 7.14: Beat note as a function of 776 nm detuning. The x-axis is again the

detuning of the 420 nm light from the 5S1/2 F = 3→ 6P3/2 F
′ = 4 transition. The

776 nm detuning is given as the frequency shift from the optimal FWM detuning,

which was 1.8 GHz.
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Cell

temperature (◦C)

Optimum

detuning ( MHz)

Tuning FWHM ( MHz)

780nm 776nm

90◦C -119(12) 544(9) 472(5)

130◦C -197(8) 243(2) 652(9)

Table 7.1: Measured 420 nm FWHM tuning range for single-pass FWM.

the half of the peak power, tuning either the 780 nm or 776 nm laser, is shown

in table 7.1, along with the absolute detuning at which peak 420 nm power was

generated. In each case the laser not tuned was left at the detuning for maximum

FWM conversion efficiency. For a cell temperature of 90◦C we observe similar

tuning ranges when tuning either the 780 nm or 776 nm laser. The tuning range

is comparable to the Doppler broadened FWHM of the near-infrared transitions,

which is around 570 MHz at 90◦C, and increases slightly to 600 MHz at 130◦C [1].

When the cell is heated to 130◦C, there is a substantial decrease in the 780 nm

tuning range. This can be attributed to Kerr lensing of the 780 nm beam, which

depends strongly on the 780 nm detuning and interferes with the FWM process.

7.4.2 Cavity linewidth narrowing

This section presents the second main result of this chapter: the first demonstra-

tion of the use of a cavity to narrow the linewidth of 420 nm light generated via

FWM in rubidium vapour. For the measurement, the experimental parameters

were chosen to be the same as for dataset (c) in Fig. 7.10 as these conditions

produced the maximum cavity output power. The cavity output coupling was

65%, which corresponds to a passive cavity resonance width of 51 MHz. The laser

powers and detunings were: P780 = 13 mW, P776 = 23 mW, ∆780 = 1.8 GHz and

∆776 = −1.8 GHz, and the beat note was measured for cell temperatures of 130◦C

and 90◦C. The results are shown in Fig. 7.15, with the single-pass results from

Fig. 7.13 in red and the cavity-enhanced traces in blue.
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Figure 7.15: Normalised beat note signal (nBNS) for single-pass (red) and cavity-

enhanced (blue) FWM with a cell temperature of (a,b) 130◦C and (c,d) 90◦C.

(b) and (d) show a second cavity-enhanced measurement taken over a narrower

frequency range (so that the measured linewidth is not limited by the resolution

of the spectrum analyser).

Two cavity-enhanced traces are shown for each cell temperature. The first,

shown offset vertically from the single-pass traces in Fig. 7.15 (a) and (c), were

taken on the same measurement scale as the single-pass traces. These results

show that the cavity significantly narrows the 420 nm linewidth, but the minimum

linewidth is limited by the resolution of the spectrum analyser.

For the 130◦C cell, the cavity-enhanced 420 nm light consists of a single cavity

mode, as is expected since the single-pass linewidth (33 MHz) is less than the

cavity free spectral range (183 MHz). With the 90◦C cell, we observe two peaks

in the 420 nm spectrum, which since the peak separation is less than the free

spectral range, is likely due to a second transverse cavity mode being excited.
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Measurements of the profile of the 420 nm light at the cavity output also showed

evidence of more than one transverse mode.

The traces in Fig. 7.15 (b) and (d) show a zoomed in measurement of the

cavity-enhanced beat note, with the linewidth no longer limited by the spectrun

analyser resolution. Fitting Loretzian lineshapes to these plots gives a cavity-

enhanced beat note linewidth of 0.7 MHz for both cell temperatures, which is

significantly less than the cavity bandwidth of 51 MHz. There is sufficient gain in

the FWM process that even with a very small amount of feedback the linewidth

of the light is substantially narrowed.

Over the same time scale as the spectrum analyser scan (0.1 ms), the 420 nm

laser was measured to have an autocorrelation linewidth of 0.5 MHz. Assum-

ing the frequency spectrum of both the FWM and reference 420 nm light is

Lorentzian, so that the FWHM of the beat note is the sum of the linewidth

of each individual field [222], the cavity enhanced linewidth is estimated to be

0.2 MHz. This is less than the combined linewidth of the 780 nm and 776 nm

pump lasers, which have autocorrelations of 0.2 MHz and 0.6 MHz, respectively

over the same 0.1 ms timescale. Though the total linewidth of the 5.2 µm and

420 nm light is fixed by the pump linewidth due to energy conservation, the fre-

quency of the individual fields is not fixed. The linewidth of the resonant blue

light can be narrower than the pump light so long as the 5.2 µm linewidth is

broader to compensate. A similar situation has been observed in singly resonant

OPOs [223].

7.5 A Structured Light Laser

The previous two sections have demonstrated that for Gaussian pump beams, the

low-finesse ring cavity both increases the output power and narrows the linewidth

of the 420 nm light. In this final section, we consider the case of shaped pump

beams. In particular, we investigate whether the phase coherence of the FWM

pumping mechanism allows the cavity transverse mode to be shaped.
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The transverse mode of a laser is usually determined by the intracavity optical

elements [34]. Different modes can be selected by introducing a mode-dependent

loss, or by enforcing a particular transverse phase [148]. Whilst this control is

usually provided by specially made optics, recent work has demonstrated a “Digi-

tal laser” [224], where the round-trip transverse phase and loss is controlled using

an intracavity spatial light modulator (SLM). Using this method the transverse

mode of the generated laser beam can be chosen and updated in real time.

Here the aim is to shape the output mode not using intracavity elements,

but by simply using the phase coherence of the FWM process. This is similar

to studies of orbital angular momentum (OAM) transfer in optical parametric

oscillators (OPOs) [225–227], where OAM carried by the pump light is transferred

to the oscillating signal and idler fields.

7.5.1 Output power

The first test was whether the cavity resonances are still observed with shaped

pump beams. These experiments were carried out by removing the greyed out

mirrors in the diagram of the experimental setup (Fig. 7.4) so that the 780 nm

and 776 nm pump light was sent to the SLM for shaping before being used for

FWM. Since the two pump beams are already overlapped at this point, both

pump fields were shaped into the same mode. For the first experiment, this was

chosen to be the LG1
0 mode. Similar shaping techniques were used as described

earlier in this thesis, with the resulting intensity profile shown in the inset of

Fig. 7.16. Directly before the cavity the beam waist was 1.1 mm, corresponding

to a focused waist in the cell of 45 µm. The 780 nm and 776 nm input powers were

11.2 mW and 14.9 mW, respectively. The cell was heated to 120◦C, and the cavity

output coupling was 42%, corresponding to a finesse of 5.6. These measurements

were made after the development of the 780 nm DAVLL lock described in Sec. 3.5.

The 780 nm was locked with a detuning of +1.67 MHz.

Fig. 7.16 shows the resulting 420 nm output power with LG1
0 pump beams.

The power was measured on a photodiode directly at the cavity output and the
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Figure 7.16: Cavity-enhanced 420 nm output power with LG1
0 pump beams for

single-pass (red) and cavity-enhanced (blue) FWM. Inset: intensity profile of the

pump light. ∆780 = +1.67 MHz.

measurement was performed first for single-pass FWM (with the cavity blocked

after the PBS, red curve) and then with the cavity unblocked (blue). As with

Gaussian pump beams, a large increase in the output power is observed when

the 420 nm light is resonant with the cavity, with a peak cavity gain of 9.1. For

negative 776 nm detuning, each cavity resonance is split, resulting in peaks similar

to those seen for Gaussian beams in Fig. 7.12. The peak cavity-enhanced power

was 108 µW, whilst the maximum single-pass power directly after the cell was

32 µW. The cavity therefore increases the overall conversion efficiency by a factor

of 3.

7.5.2 Transverse mode

Whilst the output power measurement demonstrates a cavity-enhanced conver-

sion efficiency, it obviously gives no information on the transverse mode. Trans-

verse modes propagating in a cavity must reproduce themselves in one round trip

in order to experience gain. This places restrictions on the modes a given cavity
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can support. In particular, for a cavity to support LG modes the entire xy com-

ponents of the field must undergo identical phase shifts and losses in one round

trip [34]. In our cavity the prism breaks this symmetry, so it is not obvious that

the 420 nm transverse mode will be the LG mode expected based on single-pass

FWM.

To monitor the transverse mode, the cavity output beam was passed through

a Dove prism interferometer, as described in Chapter 4, and the interferogram

recorded as the 776 nm frequency was slowly scanned over the negative detuning

group of cavity resonances in Fig. 7.16. For this measurement it was necessary

to enclose the cavity in a box to prevent air currents from shifting the cavity

resonances on quicker timescales than that of the ∼ 30 s long scan. The exper-

imental parameters were the same as for the cavity output power measurement

in Fig. 7.16.

For comparison with the cavity output modes, the 420 nm intensity profile and

interferogram obtained with the cavity blocked are shown in Fig. 7.17 (b). For this

preliminary experiment the transverse mode of the 420 nm light was measured

only qualitatively by inspection of the interferogram. However, some comparison

to the theory presented in chapter 5 can be made by calculating the predicted

modal superposition of the 420 nm light, and from this the expected profile of

the interferogram. The results from this calculation are shown in Fig. 7.17 (b)

and (c). Lower 420 nm mode purities are expected here (than in Fig. 5.6) due to

the larger focused waist of the pump beams within the cell (45 µm here compared

to 24 µm in the previously). This increases the Rayleigh range of the fields and

reduces the effect of Gouy phase matching, with significant power now predicted

in the ` = 3 mode (corresponding to `IR = −1). The effect of the reduced purity is

seen in both the experimental and theoretical interferograms as a reduced fringe

visibility along the horizontal axis.

A total of 300 images of the interferogram were recorded as the 776 nm laser

was scanned across the cavity resonances. The variation in the summed pixel

total of these images (which is proportional to the 420 nm power) is shown in
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Figure 7.17: (a) Intensity profile of LG1
0 pump beams. (b) Single-pass 420 nm rel-

ative intensity profile, interferogram, and predicted interferogram. (c) Predicted

420 nm single-pass modal superposition. (d) Cavity-enhanced interferogram im-

ages at different positions on the cavity resonance, as indicated in (e) which shows

the normalised pixel total of all images both for single-pass (red) and cavity-

enhanced (blue) FWM. Increasing image no. corresponds to increasing 776 nm

frequency.

Fig. 7.17 (e), for both single-pass (red) and cavity enhanced (blue) FWM. The

cavity resonances show a similar dependence on 776 nm detuning as in the output

power measurement in Fig. 7.16.

Seven of the interferogram images were selected to illustrate the behaviour

of the transverse mode over a single cavity resonance. The position of each

image relative to the resonance is shown in Fig. 7.17 (e), with the images in (d).

Perhaps surprisingly, the transverse mode does not change significantly across

the resonance, apart from image 4 which shows a slight decrease in mode purity.
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The other images, however, show the same if not higher fringe visibility than the

single-pass interferogram. This indicates that the cavity output mode is almost

entirely determined by the phase coherence of the FWM in this case. This may

be due to the large FWM gain and relatively low cavity finesse.

To test this further the same experiment was performed with LG3
0 pump

beams. In this case the beam waist was 0.8 mm before the cell, with 780 nm and

776 nm powers of 8.1 mW and 10.9 mW, respectively. The results of this are shown
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Figure 7.18: (a) Intensity profile of LG3
0 pump beams. (b) Single-pass 420 nm rel-

ative intensity profile, interferogram, and predicted interferogram. (c) Predicted

420 nm single-pass modal superposition. (d) Cavity-enhanced interferogram im-

ages at different positions on the cavity resonance, as indicated in (e) which shows

the normalised pixel total of all images both for single-pass (red) and cavity-

enhanced (blue) FWM. Increasing image no. corresponds to increasing 776 nm

frequency. ∆780 = +1.57 GHz.
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in Fig. 7.18. Both the predicted and experimental single-pass interferograms,

and the predicted 420 nm mode decomposition, show a marked decrease in mode

purity. This is due to the even larger waist of the pump beams in the rubidium

cell, which is now 62 µm. This corresponds to a Rayleigh range approximately

equal to half the cell length.

In these results the cavity has a much larger effect on the 420 nm transverse

mode. The cavity-enhanced interferograms shown in Fig. 7.18 (d) were chosen

to highlight the full range of modes generated at the cavity output, with the

estimated ` index of the beam shown below each image. At different points

across the resonance the cavity appears to select a single mode from the single-

pass 420 nm mode decomposition. Each mode predicted by the theoretical 420 nm

mode superposition is observed at the cavity output. Interestingly the ` = 6

mode, which is predicted to be generated with the highest relative power, is only

observed in images 1 and 7, which correspond to the cavity being off resonance.

The total Gouy phase shift of an LG mode as it propagates through a focus

is given by (2p + |`| + 1)π. The even ` modes are therefore phase shifted by

an odd multiple of π, whilst the odd ` modes are shifted by an even multiple

of π. Based on the cavity design, the resonance frequencies of odd and even `

modes should therefore be separated by half a free spectral range. This would be

the expected mechanism for the cavity to select a single output mode, but the

order of the modes shown in Fig. 7.18 (d) does not agree with this prediction. It

is possible that the true mechanism is related to the cavity affecting the FWM

process itself, with the feedback and increased intracavity power on resonance

changing the overlap of the fields in the cell.

7.6 Conclusion

In this chapter, the effect of a low-finesse ring cavity on the 420 nm output power,

linewidth and transverse mode was investigated. The principal results, obtained

with Gaussian pump beams, were that the cavity both increases the FWM 420 nm
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output power, from a maximum of 340 µW single pass to 940 µW with the cavity,

and narrows the linewidth of the generated 420 nm light, from 33 MHz single pass

to < 1 MHz with the cavity [P5].

The cavity-enhanced output power was studied by measuring the variation

in the 420 nm power as the 776 nm pump frequency was scanned. The result-

ing spectra showed a large increase in output power when the 420 nm light was

resonant with the cavity. Measurements of the frequency tuning of the 420 nm

light showed that its frequency tuned with that of the pump lasers, with a fre-

quency shift consistent with relative Doppler shifts. Taking this into account the

observed free spectral range of the cavity resonances matched the expected value

based on the round trip length. The cavity-enhanced spectra were studied un-

der a wide range of conditions; changing the pump power, cell temperature and

output coupling.

There are several unexplained features of the spectra that would be interesting

for further study, for example: the asymmetry of the resonances, the apparent

saturation effects and, under certain conditions, the splitting of the cavity peaks.

To understand these features a theoretical model would be required, taking into

account the hyperfine structure of the atoms, and the coupled amplitudes of the

FWM fields. Further experiments could also help aid understanding, for example

it would be interesting to monitor the pump power at the exit of the rubidium cell

as a function of pump frequency, to observe to what extent the pump is depleted

on resonance.

The cavity was also shown to narrow the linewidth of the 420 nm light. The

single-pass linewidth was found to be broadly consistent with power broadening of

the 420 nm transition. With the cavity output coupling optimised for peak output

power, the cavity generated nearly 1 mW of light with a linewidth narrowed

to < 1 MHz. The absolute frequency of the 420 nm light was also measured,

with maximum 420 nm power generated around 200 MHz red detuned from the

5S1/2 F = 3 → 6P3/2 F
′ = 4 transition. The light could be tuned to either side

of the transition, with a FWHM range of up to 650 MHz.
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The main limiting factor in the linewidth measurements was that there was

no locking mechanism for the lasers at the time of the experiment. If the mea-

surements were repeated with locked lasers, it would be interesting to determine

how much feedback is necessary to observe linewidth narrowing, for example by

measuring the cavity-enhanced linewidth as a function of output coupling.

There is scope for increasing the 420 nm power by increasing the pump power

and reducing the (large) round trip loss of the cavity. The largest losses are

due to the 4% reflections each glass surface of the rubidium cell. This could

be reduced by using an anti-reflection coated or Brewster cut cell. With these

improvements, the narrow linewidth, tunable light could be of use for rubidium

cold atom experiments, for example for second stage laser cooling of 85Rb [220,

221]. A recent experiment has shown that the blue light FWM process can also

be enhanced by using a build-up cavity for the pump beams, although in this

case the FWM process was two-photon excited by 778 nm light [228]. It may be

possible to further increase the output power in our experiment by using a cavity

that is resonant with both the 420 nm light and the 776 nm pump.

In a final, preliminary experiment, cavity-enhanced FWM with shaped pump

beams was investigated. For ` = 1 pump beams the cavity improved the con-

version efficiency with which the pump OAM was transferred to the 420 nm light

threefold. For higher ` pump beams (` = 3), where the single-pass 420 nm light

was generated in a range of ` modes, the cavity output mode varied across the

cavity resonance, with the cavity selecting different modes from the single-pass

superposition for different detunings. Whilst further experiments are required

to fully characterise the modes generated, it was clear that the OAM carried by

the beam varied substantially. For OAM to be conserved this implies that the

cavity also affects the 5.2 µm transverse mode, even though it is not resonant in

the cavity. With a sapphire cell it would be interesting to measure this effect

directly. Alternatively, if a cavity could be used to constrain the transverse mode

of the 5.2 µm light to a Gaussian, then this effect could be used to ensure the blue

light is generated in a single, well defined OAM state. This would allow large
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values of OAM to be frequency converted with high fidelity.



Chapter 8

Conclusion

8.1 Summary

The work in this thesis has investigated a resonantly enhanced four-wave mixing

(FWM) process in rubidium vapour, which allows for efficient frequency conver-

sion of 780 nm and 776 nm light to new fields at 5.2 µm and 420 nm [4, 90–92].

Using this system, research was carried out in two main areas: the coherent fre-

quency conversion of structured light, and the effect of adding feedback, in the

form of a low-finesse ring cavity, to the FWM process.

Chapters 1 and 2 set the scene for the work carried out in this thesis, pro-

viding context for the experiments undertaken and giving a brief outline of the

physics behind wave mixing processes and resonant light-atom interactions. The

“blue light” FWM system was then introduced in Chapter 3, with a detailed de-

scription of the experimental components necessary to carry out the basic FWM

experiment. This included the techniques used to monitor and lock the laser

frequencies, as well as the heated rubidium cell.

Chapters 4, 5 and 6 detail our investigation of FWM with structured light.

We chose to work with Laguerre-Gauss (LG) modes, which have helical phase

fronts and carry an associated orbital angular momentum (OAM). The motiva-

tion for this section of work was to better understand the coherent interaction

of these modes, which have potential applications in increasing the bandwidth

151
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and security of quantum communication systems, with atomic vapours. This is

of particular relevance for atomic-vapour-based transverse-mode quantum mem-

ories.

The first step was to develop the experimental setup required to shape an

initially Gaussian beam into the required LG modes. This work is presented in

Chapter 4. Initially, we compared different methods of generating phase-only

holograms for use with a spatial light modulator (SLM), in order to select the

most appropriate method for the FWM experiment. This resulted in a paper

published in Optics Express [P1], which compares the beam shaping accuracy

of six different hologram generation methods. In particular, we chose methods

designed to shape an incident beam into propagating modes, and the ability of

each method to generate a Gaussian, LG and and LG superposition was tested.

This work is a useful reference for any application which requires a straightforward

method of generating these simple modes.

The second section in Chapter 4 describes the development of the FWM beam

shaping setup. This section of work was further informed by a simulated eval-

uation of the influence of various experimental parameters on the SLM beam

shaping quality, as reported in Ref. [P2]. This paper is another useful resource

for beam shaping applications, and shows the effect of the grating period, aper-

ture size, hologram resolution, number of grey levels, phase throw and phase

linearity on beam shaping accuracy and efficiency. Based on the conclusions of

Refs. [P1] and [P2], a setup was designed and built which allows the two FWM

pump beams to be shaped independently using a single SLM.

Chapter 5 details the first of the main experiments presented in this thesis:

a quantitative study of OAM transfer in the “blue light” FWM system. Pre-

vious work had demonstrated that OAM carried by the pump beams could be

transferred to the generated fields, with measurements of the 420 nm transverse

mode consistent with all OAM being transferred to the 420 nm light [46, 87, 88].

These experiments indicate that the FWM process could be an efficient method

of frequency converting OAM states from the near-infrared to the blue.
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In the current work, which is at present under consideration for publication

and can be found on the arXiv [P3], we used Fourier analysis of the interfero-

gram formed at the output of a Dove prism interferometer to perform the first

quantitative measurements of the 420 nm transverse mode. We found that for

low ` pump beams (` < 4) our results are consistent with the previous work,

and the 420 nm light is predominantly generated in a single OAM mode, with

`B = `780 + `776. However as the pump ` increased we observed a continuous

broadening of the 420 nm ` distribution. This indicates that the pump OAM is

shared between the 5.2 µm and 420 nm light, and that the generated two-photon

state is OAM-entangled. To characterise this state we inferred the spiral band-

width and entanglement entropy from the measured 420 nm mode decomposition,

finding that both parameters increase with increasing pump OAM. This interpre-

tation of the experimental results was supported by a simple theoretical model

that was used to predict the OAM distribution between the two generated FWM

fields.

Our result indicates that, at least under the conditions in our experiment, our

system is not a robust method of frequency converting OAM states, particularly

for higher pump ` (for ` < 3 the total pump OAM is transferred to the blue light

with a fidelity > 0.9). Instead, it may be an efficient source of OAM-entangled

photon pairs with widely differing wavelengths. Very recently a purely near-

infrared FWM process carried out in a cold rubidium vapour has been shown to

generate OAM-entangled photon pairs [200]. As is inferred in our system, the

spiral bandwidth of the entangled state is found to increase for increasing pump

OAM.

The experiments in Chapter 5 showed the importance of three factors in de-

termining the transverse mode of the generated 420 nm light: OAM conservation,

the spatial overlap of the fields, and Gouy phase matching. In Chapter 6, a series

of three preliminary experiments were presented that investigated these effects

further. The work in this chapter is currently being prepared for publication [P4].

The first experiment considered FWM for pump beams carrying opposite hand-
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edness of OAM. For pump OAM of the same handedness, we observe 420 nm

light in an LG mode with the radial index, p, equal to zero, however, for opposite

handedness the 420 nm light is instead generated with p > 0. This appears to be

a direct result of Gouy phase matching, which requires that the mode order of the

pump and generated light is conserved. The effects of Gouy phase matching were

further seen when FWM was performed for pump modes with p > 0, in which

case we observed the 420 nm light in a mode consistent with addition of both the

OAM and p-indices of the pump beams. The final experiment in this chapter

demonstrated FWM for pump beams in a coherent superposition of LG modes.

By varying the relative phase of the pump mode superposition, the mode content

of the generated 420 nm light could be controlled via interference of the different

FWM pathways. Although the work in Chapter 6 is so far preliminary, each

experiment demonstrates an interesting area for future study, both to further

understanding of the coherent interaction between structured light and atoms,

and for developing novel methods of controlling this interaction to produce the

desired mode.

In the final experimental chapter, Chapter 7, we studied the effect of adding

an external cavity to the FWM system. These results were the first demonstra-

tion that a cavity could be used to both enhance the output power and narrow

the linewidth of the generated 420 nm light. Using a low-finesse ring cavity,

singly-resonant with the 420 nm field, the peak cavity output power was 940 µW,

compared to a maximum of 340 µW for a single pass, and the 420 nm linewidth

narrowed from 33 MHz for a single pass to < 1 MHz with the cavity. This work

led to a publication in Optics Letters [P5]. This chapter also developed further

understanding of the single-pass FWM process, including the absolute frequency

and frequency tuning characteristics of the 420 nm light, which was found to be

consistent with relative Doppler shifts.

The final experimental results in this thesis combined the two main research

themes and investigated FWM in an external cavity with LG pump modes. The

aim of this experiment was to demonstrate that the cavity output mode could be
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controlled via our FWM pumping mechanism. This would allow the transverse

mode, which would usually be fixed by the intracavity losses, to be updated in

real time, simply by updating the SLM hologram used to shape the pump beams.

Preliminary measurements for ` = 1 and ` = 3 pump modes indicated that the

cavity output mode could indeed be controlled in this way, with the transverse

mode determined by a combination of the phase coherence of the FWM process

and the feedback provided by the cavity. For ` = 3 pump modes, the single pass

420 nm light was generated in a range of ` modes and the cavity was observed

to select a single mode from the superposition, resulting in a high purity output

mode. This effect could be used to constrain the 420 nm light to a single transverse

mode, enabling the frequency conversion of large OAM states.

8.2 Future Work

The research in this thesis could be developed in a number of directions. To

continue with the work in Chapters 5 and 6, the most important next step is

to measure the transverse mode of the 5.2 µm light. This would require the use

of a rubidium cell with sapphire windows and a photodiode or camera capable

of detecting 5.2 µm light. A measurement of the 5.2 µm transverse mode as a

function of pump ` should confirm that the OAM “missing” from the 420 nm beam

for larger pump ` is transferred to the 5.2 µm field. Measurement of the 5.2 µm

transverse mode would also aid further understanding of the preliminary results

presented in Chapter 6. An open question from this chapter is to understand

why the 5.2 µm light appears to not be generated with p > 0. Understanding this

may provide further insight into the FWM process.

In Chapter 5 our results indicated that the 420 nm and 5.2 µm light is likely

to be generated in an OAM-entangled state. Having confirmed that the OAM

is shared between the two generated fields for classical light, further work would

still be required to demonstrate entanglement. To do this the FWM process

would need to be carried out at low light levels, such that single photon detectors
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could be used to perform coincidence measurements on the 420 nm and 5.2 µm

fields. An initial experiment could be to measure the OAM-conditioned coinci-

dences. We expect that coincidences would only be observed for photon pairs

that conserve the total pump OAM. To verify that the 5.2 µm and 420 nm light

is OAM-entangled a further measurement would be required, as it is necessary

to demonstrate that the two-photon state is a coherent superposition of product

states, rather than just a mixture. The signature of this is that the correlations

between the 5.2 µm and 420 nm light are still observed when the coincidences

are measured in another basis, for example, one consisting of superpositions of

OAM states [47]. To fully characterise the experiment, a tomographic recon-

struction of the quantum state of the 5.2 µm and 420 nm photon pairs could be

performed [206].

In our experiment, the pump beams are coherently converted to new optical

fields via the interaction between the incident light and the rubidium atoms.

These results are relevant for transverse mode quantum memories, where the

same interaction is instead used to stop and store the input light, and then read

it out at a later time. Although we work with an atomic vapour, the techniques

presented in Chapter 5 and 6 are well-suited for use with cold atoms, and should

inform future experiments developing long-timescale high-dimensional quantum

memories [99].

Finally, we consider the future prospects of the cavity-enhanced FWM ex-

periment. Improvements in the cavity-enhanced output power could be made

through developing a cavity with reduced round trip loss. In particular, the main

losses in the cavity came from the rubidium cell itself and the polarising beam

splitter used as the output coupler. These losses could be reduced by using an

anti-reflection coated cell and a different design of output coupler, for example,

a partially reflecting mirror.

The results presented at the end of Chapter 7, for cavity-enhanced FWM with

shaped pump beams, also merit further investigation. When the cavity selects a

single 420 nm transverse mode, OAM conservation suggests that this also deter-



8.2. Future Work 157

mines the OAM carried by the non-resonant 5.2 µm light. A direct measurement

of this would be of interest. Furthermore, this effect may have applications in

efficient frequency conversion and addition of large OAM states, which cannot

be achieved in our single-pass FWM system. A cavity, singly resonant with the

5.2 µm light, could be used to constrain the infrared field to a Gaussian mode,

thus forcing all of the pump OAM onto the 420 nm field.



Bibliography

[P1] T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Com-
parison of beam generation techniques using a phase only spatial light modulator,”
Opt. Express 24, 6249 (2016).

[P2] N. Radwell, R. F. Offer, A. Selyem, and S. Franke-Arnold, “Optimisation of ar-
bitrary light beam generation with spatial light modulators,” J. Opt. 19, 095605
(2017).

[P3] R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral
bandwidth of four-wave mixing in Rb vapour,” arXiv[physics.atom-ph]1805.08190
(2018).

[P4] R. F. Offer, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Coherent beam shaping
via four wave mixing in rubidium vapour,” (2018).

[P5] R. F. Offer, J. W. C. Conway, E. Riis, S. Franke-Arnold, and A. S. Arnold,
“Cavity-enhanced frequency up-conversion in rubidium vapor,” Opt. Lett. 41,
2177–2180 (2016).

[1] C. J. Foot, Atomic Physics (Oxford University Press, 2014).

[2] R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd ed.

[3] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions
between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).

[4] A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency
up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).

[5] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital
angular momentum of light and the transformation of Laguerre-Gaussian laser
modes,” Phys. Rev. A 45, 8185 (1992).

[6] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue,
S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission em-
ploying orbital angular momentum multiplexing,” Nature Phot. 6, 488 (2012).

[7] S. P. Walborn, D. S. Lemelle, M. P. Almeida, and P. H. Souto Ribeiro, “Quantum
key distribution with higher-order alphabets using spatially encoded qudits,” Phys.
Rev. Lett. 96, 090501 (2006).

[8] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 494 (1960).

158



BIBLIOGRAPHY 159

[9] R. W. Minck, R. W. Terhune, and C. C. Wang, “Nonlinear Optics,” Appl. Opt. 5,
1595 (1966).

[10] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical
harmonics,” Phys. Rev. Lett. 7, 118 (1961).

[11] M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Optical
mixing,” Phys. Rev. Lett. 8, 18 (1962).

[12] D. W. Faries, K. A. Gehring, P. L. Richards, and Y. R. Shen, “Tunable far-infrared
radiation generated from the difference frequency between two ruby lasers,” Phys.
Rev. A 180, 363 (1969).

[13] J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in
LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, 973 (1965).

[14] S. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096 (1969).

[15] P. D. Maker and R. W. Tehrune, “Study of optical effects due to an induced
polarization third order in the electric field strength,” Phys. Rev. 137, A801 (1965).

[16] J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a
focused laser beam,” Phys. Rev. 185, 57 (1969).

[17] P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion
and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21 (1962).

[18] G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cam-
bridge University Press, 2010).

[19] D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric
production of optical photon pairs,” Phys. Rev. Lett. 25, 84 (1970).

[20] S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the para-
metric production of photon pairs,” Phys. Rev. Lett. 54, 2011 (1985).

[21] C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of
light,” Phys. Rev. A 31, 2409 (1985).

[22] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging
by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).

[23] Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-
photon entanglement in type-II parametric down-conversion,” Phys. Rev. A 50, 23
(1994).

[24] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih,
“New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Let..
75, 4337 (1995).

[25] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,
“Experimental quantum teleportation,” Nature 390, 575 (1997).



BIBLIOGRAPHY 160

[26] M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “En-
tangling independent photons by time measurement,” Nat. Phys. 3, 692 (2007).

[27] Y. Zhang, M. Agnew, T. Roger, F. S. Roux, T. Konrad, D. Faccio, J. Leach,
and A. Forbes, “Simultaneous entanglement swapping of multiple orbital angular
momentum states of light,” Nat. Commun. 8, 632 (2017).

[28] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.
67, 661 (1991).

[29] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.
Mod. Phys. 74, 145 (2002).

[30] I. Khan, B. Heim, A. Neuzner, and C. Marquardt, “Satellite-Based QKD,” Opt.
Photonics News Feb, 26 (2018).

[31] N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).

[32] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner,
and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division
multiplexing in fibres,” Science 340, 1545 (2013).

[33] H. Rubinsztein-dunlop et al., “Roadmap on structured light,” J. Opt. 19, 013001
(2017).

[34] A. E. Siegman, Lasers (Oxford University Press, 1986).

[35] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,”
Adv. Opt. Photonics 1, 1 (2009).

[36] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T.
Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale:
Fundamentals, advances and prospects,” Light Sci. Appl. 6, 1 (2017).
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Appendix A

Rubidium atomic structure

The relevant atomic states of 85Rb and 87Rb are shown in Figs. A.1 and A.2,

respectively. The hyperfine structure of each state was calculated following Ref.

[120] using magnetic dipole constants, A, and electric quadrupole constants, B,

shown below in table A.1. The relative energy of the 85Rb and 87Rb atomic states

is given by the isotope shift, values for which are shown in table A.2. Transition

parameters, including the linewidth, Γ, and saturation intensity, Isat, are shown

in table A.3, with the branching ratio of the allowed transitions from each state

given in table A.4.

Atomic state A (MHz) B (MHz) Source

85Rb 5S1/2 1011.910813(2) - [120]

85Rb 5P3/2 25.038(5) 26.011(22) [229]

85Rb 5D5/2 -2.1911(12) 2.6804(200) [126]

85Rb 6P3/2 8.179(12) 8.190(49) [120]

87Rb 5S1/2 3417.341305452145(45) - [230]

87Rb 5P3/2 84.7185(20) 12.4965(37) [231]

87Rb 5D5/2 -7.4923(3) 1.2713(20) [126]

87Rb 6P3/2 27.700(17) 3.953(24) [120,232]

Table A.1: Rb hyperfine structure constants.
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Figure A.1: Relevant 85Rb atomic states.
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Figure A.2: Relevant 87Rb atomic states.
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Atomic state δ85−87 = (E85 − E87)/h (MHz)

5S1/2 164.35(95)

5P3/2 86.31(95)

5D5/2 1.32(95)

6P3/2 40.2(12)

Table A.2: Isotope shift, δ85−87, of each atomic state. Values taken from Ref. [233].

Transition λ (nm) Γ (MHz) Isat (mW/cm2) f

5S1/2 → 5P3/2 780.241 6.0 1.64 0.69

5P3/2 → 5D5/2 775.978 0.43 0.12 0.073

6P3/2 → 5D5/2 5233.3 0.23 0.00021 1.78

5S1/2 → 6P3/2 420.297 0.58 1.03 0.019

Table A.3: Rb transition parameters. Wavelength, λ, and linewidth, Γ, ex-

tracted from Ref. [234]. Saturation intensity, Isat, calculated using Isat =

~ω3Γ
12πc2

. Absorption oscillator strength, f , calculated using f = (2J ′ + 1)/(2J +

1)(4π2ε0mec
3Γ)/(e2ω2

0).

Transition Wavelength (nm) Branching ratio

5P3/2 → 5S1/2 780 1

5D5/2 → 5P3/2 776 0.65

→ 6P3/2 5233 0.35

6P3/2 → 5S1/2 420 0.31

→ 6S1/2 2732 0.49

→ 4D5/2 2253 0.18

→ 4D3/2 2253 0.020

Table A.4: Branching ratios of rubidium transitions extracted from Ref. [235],

wavelengths from [234].
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Heated rubidium cells

This appendix includes details on the dependence of the rubidium vapour pressure

on temperature, as well as current-temperature calibration curves for the 75 mm

and 10 mm heated cells.

B.1 Rubidium vapour pressure

The equilibrium vapour pressure of solid rubidium, PS (in Torr), at temperature,

T , is given by [108]

log10 PS = −94.04826− 1961.258

T
−0.03771687×T +42.57526× log10 T. (B.1.1)

The melting point of rubidium is 39.31◦C [109]. Above this temperature the

vapour pressure for liquid rubidium, PL, must be used

log10 PL = 15.88253− 4529.635

T
− 0.00058663× T − 2.99138× log10 T. (B.1.2)

From these equations, the vapour pressure in Pascals is found by multiplying by

a factor of 133.323, and the partial pressure of 85Rb and 87Rb can be found by

multiplying by their relative abundances, 72.17% and 27.83%, respectively [109].

The number density, N , can be calculated from the vapour pressure, P (in

Pa), using

N =
P

kBT
. (B.1.3)
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Fig. B.1 shows the partial vapour pressure and number density of 85Rb and

87Rb as a function of temperature. The most often used temperatures in this

thesis are marked by light grey lines as a guide. A temperature change of 40◦C

covers a range of more than one order of magnitude in both pressure and number

density.

Figure B.1: Partial vapour pressure (solid lines) and number density (dashed

lines) of 85Rb (black) and 87Rb (grey) as a function of temperature. The light

grey lines provide guides for the most commonly used temperatures in this thesis:

90, 120 and 130◦C.
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B.2 75 mm cell

Early FWM experiments at the start of this thesis were carried out in a 75 mm

long heated rubidium cell. This cell was also used for the 420 nm saturated

absorption spectroscopy setup used in Chapter 7. The temperature vs heater

current calibration curve is included here for reference (Fig. B.2). The temper-

ature measurements were carried out using the same procedure as described in

Sec. 3.3.

Figure B.2: Temperature versus heater current calibration of the 75 mm long cell.

The error bars show the standard error in each measurement.

B.3 10 mm cell

A 10 mm long heated rubidium cell was used for the two-photon spectroscopy

776 nm lock in chapters 5 and 6. The temperature vs heater current calibra-

tion curve for this cell is included here for future reference. These temperature

measurements were carried out using a combination of the method described in

Sec. 3.3 and also by directly fitting the Doppler broadened transmission spectrum

with the theoretical, temperature dependent Voigt profile.
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Figure B.3: Temperature versus heater current calibration of the 10 mm long cell.

The error bars show the standard error in each measurement.

This cell is also anti-reflection coated and was originally purchased after car-

rying out the cavity-enhanced FWM experiment with a view to decreasing the

round trip losses. Initial measurements of the transmission of an off resonance

420 nm beam showed that 92(1)% of the light was transmitted through the cell.



Appendix C

DAVLL lock electronics

The difference photodiode circuit developed for the DAVLL lock is shown in Fig.

C.1, along with the subsequent amplification and inverting stages. The inverting

stage allows the sign of the error signal gradient to be flipped, which may be

necessary if the raw DAVLL signal is anti-locking rather than locking.

Figure C.1: Electronic circuit used to generate the error signal for the DAVLL

lock.
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