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Abstract

Traditionally, to stabilize an unstable continuous-time stochastic differential equation

(SDE) by feedback control, continuous-time observations of the system state are re-

quired. This is obviously expensive and unrealistic, so recently Mao discretized the

observations. This thesis is to investigate the stabilization problem of continuous-time

differential equation systems by deterministic and stochastic feedback controls based on

discrete-time observations. This problem includes determining the conditions for origi-

nal system and controller, and calculating the upper bound of the observation interval,

namely the minimum of the observation frequency.

The SDEs discussed in this thesis are all in the Itô sense. The main mathematical

fundamentals used are Itôs formula, Lyapunov’s second method and inequalities. The

problem was investigated under Lipschitz continuity and linear growth condition.

Firstly, I investigated the hybrid SDEs, which is also known as stochastic differential

equations with Markovian switching. Using discrete-time observations of system state

and mode, we can achieve pth moment stabilization in the sense of asymptotic and

exponential stability for p > 1. Our new theory expands from the second moment to

pth moment and reduces the observation frequency.

Secondly, I used stochastic feedback control, which is based on Brownian motion,

to stabilize non-autonomous linear scalar ODEs as well as nonlinear multidimensional

hybrid SDEs. Almost sure exponential stabilization is discussed. The new established

theory expands the scope of applicable original unstable systems from autonomous

ODEs to non-autonomous ODEs and hybrid SDEs.

Thirdly, by making full use of the time-varying system property, I used the time-

varying observation intervals instead of a constant as before. Non-autonomous periodic
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SDEs and hybrid SDEs are investigated. Many stabilities are discussed, including

asymptotic and exponential stabilities in pth moment for p > 1 and almost surely. My

new established theory not only reduces the observation frequencies, but also offers

flexibility on the setting of observations.
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Notation

a.s. : almost surely, or with probability 1.

A := B : A is defined by B or B is denoted by A.

∅ : the empty set.

IA : the indicator function of a set A, i.e. IA(x ) = 1 if x A or

otherwise 0.

Ac : the complement of A in Ω, i.e. Ac = Ω−A.

A ⊂ B : A ∩Bc = ∅.

σ(C) : The σ-algebra generated by C.

a ∨ b : the maximum of a and b.

a ∧ b : the minimum of a and b.

f : A→ B : the mapping f from A to B.

R = R1 : the real line.

R+ : the set of all nonnegative real numbers, i.e. R+ = [0,∞).

Rn : the n-dimensional Euclidean space.

Rd+ : = {x ∈ Rd, xi > 0, 1 ≤ i ≤ d}, i.e. the positive cone.

Bn : the Borel-σ-algebra on Rn.

B : = B1.

|x| : the Euclidean norm of a vector x.

AT : the transpose of a vector of matrix A.

trace(A) : the trace of a square matrix A = (aij)n×n,

i.e., trace(A) = Σ1≤i≤naii.

λmin(A) : The smallest eigenvalue of a matrix A.

λmax(A) : The largest eigenvalue of a matrix A.

A = diag(a1, · · · , an) : A is an n× n diagonal matrix with Aii = ai for 1 ≤ i ≤ n.

|A| : the trace norm of a matrix A, i.e., |A| =
√

trace(ATA).

‖A‖ : the operator norm of a matrix A, i.e.,

‖A‖ = sup{|Ax| : |x| = 1} =
√
λmax(ATA).
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∇ : =
(
∂
∂x1

, · · · , ∂
∂xn

)
.

Vx : the first order partial derivative of V with respect to x, i.e.,

Vx = ∇V =
(
∂V
∂x1

, · · · , ∂V∂xn
)
.

Vxx : the second order partial derivative of V with respect to x, i.e.,

Vxx =
(

∂2V
∂xi∂xj

)
n×n.

‖ξ‖Lp : = (E|ξ|p)1/p.

C(D;Rn) : the family of continuous Rn-valued functions defined on D.

C2,1(R× R+;R) : the family of all real-valued functions V (x, t) defined on R× R+

which are continuously twice differentiable in x ∈ R and once

differentiable in t ∈ R+.

Lp(Ω;Rn) : the family of Rn-valued random variables ξ with E|ξ|p <∞.

LpFt(Ω;Rn) : the family of Rn-valued Ft-measurable random variables ξ

with E|ξ|p <∞.

Lp([a, b];Rn) : the family of Borel measuable functions h : [a, b]→ Rn such

that
∫ b
a |h(t)|pdt <∞.

Lp([a, b];Rn) : the family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b
such that

∫ b
a |f(t)|pdt <∞ a.s..

Mp([a, b];Rn) : the family of processes {f(t)}a≤t≤b in Lp([a, b];Rn) such that

E
∫ b
a |f(t)|pdt <∞.

Lp(R+;Rn) : the family of processes {f(t)}t≥0 such that for every T > 0,

{f(t)}0≤t≤T ∈ Lp([0, T ];Rn).

Mp(R+;Rn) : the family of processes {f(t)}t≥0 such that for every T > 0,

{f(t)}0≤t≤T ∈Mp([0, T ];Rn).
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Chapter 1

Introduction

1.1 Background of SDEs

Let’s start with the birth of stochastic differential equations (SDEs). After more than

70 years of Robert Brown’s discovery of particles’ random motion in a fluid, Louis

Bachelier, Albert Einstein and Marian Smoluchowski used mathematical models to

describe the well known phenomenon Brownian motion at the start of 1900s ([1, 2,

3]). Bacheliers Brownian motion arose as a model of fluctuations in stock prices with

the ‘lack of memory’ property, which now known as the Markov property, and both

Bachelier and Einstein derived connection between Brownian motion and the heat

equation ([4]).

In 1923, Norbert Wiener introduced a rigorous mathematical definition of Brownian

motion, so standard Brownian motion is also called the Wiener process ([4, 5]). How-

ever, due to the non-differentiability of the Brownian motion paths proved by Wiener,

the stochastic integral with respect to a Brownian motion cannot be defined in the

ordinary way.

This problem was solved by Kiyosi Itô. Itô gave a mathematical definition of

stochastic integral in 1944, which is known as the Itô integral ([6]). Roughly speaking,

an ‘ordinary integral’ of the derivative of a function equals to the function value at the

upper limit subtracts its value at the lower limit. However, a stochastic integral of the

derivative with respect to a Brownian motion equals to another term subtracted from

1



Chapter 1. Introduction

it. That term is half of the ‘ordinary integral’ of the second order derivative. This

is the difference between ordinary and Itô’s integrals ([6]). In 1951, he proposed one

of the most powerful tools for stochastic calculus: ‘Itô’s formula’ ([7]). Later Ruslan

Stratonovich invented the Stratonovich stochastic integral as an alternative to Itô’s

integral especially in physics. Since Itô’s integral is a more often choice in applied

mathematics, this thesis focuses on Itô-type stochastic differential equations. It has

the general form:

dx(t) = f(x(t))dt+ g(x(t))dB(t), (1.1)

where B(t) is a Brownian motion and the formal definitions are given in Chapter 2. In

(1.1), f and g are system coefficients. f is called the drift and g is sometimes called

the diffusion part of the system.

Moreover, many other scientists contributed to the early development of stochastic

process. Andrey Kolmogorov defined conditional probabilities as random variables,

laid the modern axiomatic foundations of probability theory with his famous book

“Foundations of the Theory of Probability” in 1933. According to Davis [4], Paul Lévy

formalised the concept of a martingale in 1934; Markov property of Brownian motion

was formulated by Joseph Doob in the 1940s and established by Hunt in 1956; influenced

by Bachelier, who considered the price process as a martingale and investigated the

trajectories of stochastic process, Joseph Doob developed the Martingale theory in

his 1953 book “Stochastic Processes” and made martingales a powerful tool in both

probability and analysis.

As a type of important mathematical model, stochastic differential equation has

been widely used in many areas such as physics, engineering, finance, economics, pop-

ulation, epidemiology, etc., and studied by scientists, engineers and economists all over

the world.

Compared to deterministic models, stochastic models incorporate influence of exter-

nal environmental disturbances and hence are more realistic. As a result, many classic

models and theories in various areas have been generalized to stochastic versions. For

example, the LotkaVolterra model of predator-prey systems, Gompertz models, oscilla-

tors and many other ODE systems have been generalized to SDEs ([8, 9, 10]). Stochastic

2



Chapter 1. Introduction

versions of center manifold theory, Thiele’s differential equation and LaSalle’s theorem

were all studied for SDEs ([11, 12, 13]). The Euler method for ODEs was also gen-

eralized to a classic approximation method for SDEs: the Euler-Maruyama method,

named after Leonhard Euler and Gisiro Maruyama.

Phase locked loop (PLL) is a control system widely employed in radio, telecom-

munications, computers and other electronic applications and it can be modelled as

SDEs ([14, 15, 16]). According to [16], such system can be used to generate, stabilize,

modulate, demodulate, filter or recover a signal from a ‘noisy’ communications channel

where data have been interrupted.

A good example of SDE’s applications in finance is the well-known Nobel prize

winning work for options pricing - the Black-Scholes model, by Fischer Black, Myron

Scholes and Robert Merton. The price of the underlying asset in the Black-Scholes

model follows a geometric Brownian motion, which guarantees the price is non-negative.

Apart from this, many other SDEs are used in finance. For example, mean reverting

process such as the Ornstein-Uhlenbeck process is often used to model interest rates

and exchange rates; the Cox-Ingersoll-Ross (CIR) model is used to describe interest

rate movement.

Moreover, an important application of SDEs in mathematics is the Feynman-Kac

formula, named after Richard Feynman and Mark Kac. That allows us to write the

solution of a partial differential equation (PDE) as a stochastic process with SDE of

Itô sense involved. The formula builds a link between SDEs and PDEs. So on one

hand, PDEs can be studied through probabilistic approach; and on the other hand,

expectations of stochastic processes can be computed with deterministic methods ([9]).

Apart from the Brownian motion, other random elements are also incorporated

into SDEs. For example, Poisson-driven SDEs have applications in physics, population

dynamics and engineering ([17]-[23]). Another classic type of stochastic processes is

the Markov chains, proposed by A. A. Markov (Andrei Andreyevich Markov) in his

famous 1906 paper ([24]). Markov chain has been widely used in many fields such as

population dynamics, chemical reactions, DNA analysis, speech recognition, gambling

and economics; it also forms one of the bases of quantum mechanics, according to

3



Chapter 1. Introduction

Gagniuc [25]. This thesis will discuss SDEs with Markovian switching, we also call it

hybrid SDEs.

Several decades ago, people found that some events can cause an abrupt change in

the dynamic behaviour of some time-driven systems. For example, component failures,

changes in the interconnections of subsystems or external environmental disturbances

could lead to sudden change in system structure or parameter ([26]). Consequently the

hybrid system arose as the combination of a time-driven system and an event-driven

system, where the time-driven system can be modelled by continuous-time differential

equations and the event-driven system is described by system mode ([27]).

Since multiple-mode systems fit many situations in practice, hybrid system has

drawn considerable attentions in the past decades. It has been used to model national

economy and electric power systems; it’s also used in financial engineering, wireless com-

munications, substations, powertrain systems, autonomous vehicles and hybrid electric

vehicle energy management; hybrid system is also considered as a convenient mathe-

matical framework for multiple target tracking, fault tolerant control, aircraft control,

(see e.g. [27]-[30]) etc.

Markov models are good at modelling fault. Fault detection and diagnosis by models

based on Markov chains or hidden Markov chains are studied by many researchers (see

e.g. [31]-[34]). Roughly speaking, a hybrid SDE is a combination of an SDE and a

Markov Chain with the general form

dx(t) = f(x(t), r(t))dt+ g(x(t), r(t))dB(t), (1.2)

where B(t) is a Brownian motion, r(t) is a Markov chain representing the system

mode. The formal definitions are given in Chapter 2. An advantage of the hybrid

SDE over the regular SDE is that it’s good at modelling systems that may experience

abrupt changes in structure and parameter because of its Markovian structure. For

example, the Markov chain jumps from one state to another when a fault is estimated

to happen, then the coefficients f and g change as if the system switches from one mode

to another. Song et al. [35] mentioned that recently the Black-Scholes SDE model had

been generalised to a linear hybrid SDE of the form

dx(t) = µ(r(t))x(t)dt+ σ(r(t))x(t)dB(t).

4



Chapter 1. Introduction

1.2 Stabilization and feedback control

Some dynamic systems are important or special and we cannot let them evolve freely

without any restriction. Most engineering systems require some attributes (e.g., tem-

perature or voltage) to maintain at some certain levels for normal operations. Gov-

ernments intervene in markets to overcome market failure, employ monetary and fiscal

policy to promote economic growth and control inflation. To preserve the ecosystem,

endangered species have been protected by law (e.g., the Endangered Species Act) to

prevent extinction. Vehicles, aircraft and artificial satellites all need a good control of

velocity, i.e., speed and direction, to work normally and avoid collision. So control is

obviously necessary and control theory, which is to ensure the desired outcome through

a control action, has extensive applications.

Fundamentally, there are two types of control loops: open loop control, also called

feed forward control, and closed loop control, also called feedback control. “Feedback

and feed forward are two types of control schemes for systems that react automatically

to changing environmental dynamics,” stated in [36].

Feedback control is a reactive control. It measures the system state, then the con-

troller generates a control signal by comparing the actual and desired system state.

Specifically, the block diagram of a feedback control system is shown in Figure 1.1

as a basic example. A desired state value is given as the reference input. A sensor

measures the system output. The error signal is the difference between the desired

and observed values. Then the controller generates a control signal by a control law

with the error signal. Even if the plant is affected by some unknown disturbances,

the output is measured and controller generates corrective action to compensate for it.

In other words, feedback control enables the system to adjust automatically without

understanding or estimating the influence of disturbances. Therefore, the system can

self-correct regardless of the source and type of disturbances ([37]). This lead to advan-

tages of feedback control: it’s robust for condition changes and it reduces the system’s

sensitivity to external disturbances. In contrast, feedforward control is a proactive

control and it’s based on prediction rather than output observations. It predicts the

5



Chapter 1. Introduction

influence of detected environment change and takes corrective actions before the error

occurs. Since Brownian motion is unpredictable, we use feedback control instead of

feedforward control for stabilization of SDEs in this thesis.

Controller Plant

disturbances

control signal

Sensor

reference error signal output

measured output

Figure 1.1: Block diagram of feedback control.

The desired behaviour of a system investigated in this thesis is stability. Stability

of a process is the ability to resist a priori unknown, small disturbances, according

to Kolmanovskii and Myshkis [38]. Stability has many different specific definitions.

Roughly speaking, for my research work in this thesis, I refer to it as convergence of

the system state to the origin, which is the unique equilibrium point of our SDEs. The

formal definitions are stated in Chapter 2.

An important theory of stability analysis is the Lyapunov stability theory, named

after the Russian mathematician Aleksandr Mikhailovich Lyapunov. In his 1892 doc-

toral dissertation ([39]), Lyapunov’s second method (also known as Lyapunov’s direct

method) was proposed, but the magnitude of this great stability theory was not realized

until several decades later. Lyapunov’s second method provides a sufficient condition

to determine the stability of a system governed by differential equation without explic-

itly calculating the solution. The basic idea of Lyapunov’s second method comes from

physical systems: if a system is spending energy and the system energy is nonincreas-

ing, then the system must end up at an equilibrium point eventually. From this idea of

“measure of energy” ([40]), Lyapunov function was born to be nonnegative, continuous

and nonincreasing. An limitation of Lyapunov’s second method is that it only provides

sufficient condition. If a Lyapunov function satisfying corresponding conditions has not

6



Chapter 1. Introduction

been found, then that theory cannot determine the stability.

Lyapunov stability theory was initially proposed for ODEs and was later developed

for SDEs. Khas’minskii said in [41]: “in practical applications one may often assume

that the ‘noise’ has a ‘short memory interval’. The natural limiting case of such noise

is of course white noise. Thus it is very important to study the stability of solutions of

Itô equations since this is equivalent to the study of stability of systems perturbed by

white noise.”

In 1965, Bucy [42] introduced the concept of “stability of a random solution” in

probability and almost sure. In 1967, Khas’minskii investigated necessary and sufficient

conditions for the asymptotic stability of linear SDEs [43]. Let’s roughly compare the

Lyapunov stability theory for ODEs and SDEs in a non-rigorous way. Lyapunov’s

second method said that for an ODE with the form

ẋ(t) = f(x(t), t),

if there is a positive-definite function V (x, t) such that

V̇ (x, t) := Vt(x, t) + Vx(x, t)f(x, t)

is negative semidefinite, then the system is stable. Here V (x, t) is called the Lyapunov

function. For an SDE with the form

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t),

if there is a positive-definite function V (x, t) such that

LV (x, t) := Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gT (x, t)Vxx(x, t)g(x, t)]

is negative semidefinite, then the system is stable. The difference is that V̇ (x, t) is

replaced with LV (x, t). More specifically, stochastic system has an additional term

1
2trace[gT (x, t)Vxx(x, t)g(x, t)] compared to the deterministic system. This means the

size of noise can affect the stability of the stochastic system.

Apart from Lyapunov theory, LaSalle’s theorem (also called LaSalle’s invariance

principle) is another important criterion for asymptotic stability. To establish asymp-

totic stability, Lyapunov theory requires V̇ (x, t) to be negative definite, while LaSalle’s

7



Chapter 1. Introduction

theorem only requires V̇ (x, t) to be negative semidefinite.

In 1967, Khas’minskii opened a new chapter in stochastic stability theory by giv-

ing a necessary and sufficient criterion for asymptotic stability of linear SDEs [44]. In

1969, Khas’minskii presented a theory of stability for SDEs, some of which are gen-

eralizations of Lyapunovs second method to stochastic systems, including stability in

probability and almost sure, moment stability, asymptotic and exponential stabilities

[41]. Roughly speaking, asymptotic stability means convergence to the equilibrium

point 0; exponential stability means exponentially fast convergence; p-th moment sta-

bility means it’s E|x(t)|p that converges; probability and almost sure stabilities mean

it’s x(t) that converges in probability and almost sure respectively. In 1981, Curtain

gave sufficient conditions for pathwise asymptotic stability and exponential stability of

stochastic partial differential equations [45]. In 1986, Arnold, Oeljeklaus and Pardoux

studied more systematically the almost sure and moment stability for linear SDEs [46],

said by Mao [47], which discusses the mean square eventually uniformly asymptotic

stability for nonlinear SDEs in 1990. In 1987, Brusin and Ugrinovskii provided suf-

ficient conditions for mean square asymptotic and exponential stabilities of SDEs by

Lyapunov functional. Mean square asymptotic stability means E|x(t)|2 converges to

0 as t goes to infinity. Mean square exponential stability means E|x(t)|2 converges

exponentially fast. Stability of stochastic functional differential equations was studied

(see e.g. [48, 38, 49]). In 1996, Razumikhin-type theorems for the ordinary differential

delay equations was generalized to stochastic functional differential equations (SFDEs)

[50]. In 1999, Mao [13] presented stochastic versions of the LaSalle theorem, providing

another method and leading more study on asymptotic stability analysis of SDDEs and

SFDEs (see e.g. [51]-[54]). In 2007, Mao [55] discussed exponential and asymptotic sta-

bilities for linear and nonlinear SDDEs. Stability of stochastic neural networks was also

discussed by Huang et al. [56, 57]), etc. Stability analysis for SDEs with uncertainties

was also studied, for example, Gao et al. [58] provided criteria for robust mean square

asymptotic stability. Moreover, stabilities of SDEs have also been studied by many

other researchers such as [23], [59]-[63].

Single-mode SDE system is not enough, many practical systems have several modes
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or subsystems. Therefore, hybrid system has attracted increasing attention in past

decades. Now let us briefly review the development of stability analysis for hybrid

SDEs.

In 1996, Basak et al. ([64]) studied the hybrid ODE (also called linear jump system)

with r(t) representing the Markov chain

dx(t) = A(r(t))x(t)dt (1.3)

disturbed by Gaussian type noise with the following semi-linear SDE form

dx(t) = A(r(t))x(t)dt+ σ(x(t), r(t))dB(t). (1.4)

They investigated conditions under which the stability of the linear jump system (1.3)

is remained in the perturbed one (1.4). They also showed that under certain conditions,

the unstable linear jump system (1.3) can be stabilized by noisy perturbation. For the

hybrid system (1.4), they also introduced the notion of stability in distribution for

the time-homogeneous Markov process (x(t), r(t)). One interesting point discovered by

Basak et al. [64] is that: even though all the subsystems in different modes are stable,

the hybrid system may not be stable; and on the other hand, the hybrid system may be

stable even if all the subsystems are not stable. The influence of Markovian switching

on the system stability attracted many researchers to study the stability for hybrid

SDEs.

In 1999, Mao [65] discussed the exponential stability in moment and almost sure

for general nonlinear hybrid SDEs. In 2000, Mao, Matasov and Piunovskiy [66] investi-

gated stability of hybrid SDDEs (SDDEs with Markovian switching), including moment

and almost sure exponentially stability, with linear or nonlinear delay. Later, asymp-

totic stability in distribution of hybrid SDEs, exponential and asymptotic stabilities in

moment and almost sure for hybrid SDDEs were studied (see e.g.[67, 55]). In 2007, Yin

etal [68] provided sufficient conditions for almost sure exponential stability and almost

sure exponential instability for linear and nonlinear hybrid SDEs. Their study reveals

more about the mixed influence of system coefficients and Markov chain. For nonlinear
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systems, their proposed conditions are combinations of the stationary distribution or

transition rate of the Markov chain and the growth rates of system coefficients under

each system mode. Stability of hybrid SDDEs were also studied by other researchers

in recent years (see e.g. [69, 70, 71]).

Compared to LV (x(t), t) for a single-mode SDE, LV (x(t), r(t), t) for a hybrid SDE

has an additional term involving transition rate of the Markov chain. Let r(t) = i and

denote the transition rate from state i to k by γik, then (see e.g. [65, 67])

LV (x, i, t) :=Vt(x, i, t) + Vx(x, i, t)f(x, i, t) +
1

2
trace[gT (x, i, t)Vxx(x, i, t)g(x, i, t)]

+

N∑
k=1

γikV (x, k, t).

With knowledge of the system stability, why do we want to stabilize the system

by a control? Suppose we want a variable of interest in a dynamic system to stay

at a certain level. Let a new variable equal to the target value subtracted from the

interested variable. Then by stabilizing the system in terms of the new variable, our

interested variable converges to the target value. Stabilization problem has been studied

for decades.

In 1990, control problem of linear jump systems was studied by Ji, Chizeck and

Mariton ([72, 73]). Ji and Chizeck proposed definitions of stochastic stabilizability

and stochastic controllability for continuous-time Markovian jump linear systems [72].

In 1995, Chen and Francis discussed stabilization problem of discrete-time feedback

systems by observer-based controllers [74]. In 2002, exponential stabilization of non-

holonomic dynamic systems by time-varying control was studied in [75]. Later, adaptive

stabilization of uncertain systems was studied in [76]. In 2005, Allwright, Astolfi and

Wong discussed asymptotic stabilization of continuous-time linear systems by periodic

piecewise constant output feedback and gave a necessary and sufficient condition [77].

In 2007, Xu et al. [78] investigated robust exponential stabilization for Markovian jump

systems with delay. Moreover, stabilization of uncertain SDEs by robust control also

attracted attention. Different types of control are discussed for this problem (see e.g.

[79, 80]). In addition, adaptive control has also been studied for uncertain stochastic

10



Chapter 1. Introduction

systems by many authors (see e.g. [81]-[85]).

Apart from [64], most of above stabilization research uses deterministic controller.

Many other researchers study how to control the stability of a system through stochastic

disturbances. In 1985, Scheutzow showed that some type of diffusion can be stabilized

by noise [86]. Stabilization and destabilization of ODEs by noise have been studied by

many authors. In 1993, Scheutzow provided two ODE dynamical systems in the plane,

one was stabilised and the other one was destabilised by white noise [87]. Specifically,

[87] mentioned that: one ODE which explodes in finite time for every initial condition

becomes stable by adding white noise in the sense that the system becomes nonexplosive

and even positive recurrent; on the other hand, the globally asymptotically stable ODE

system becomes explosive when it is perturbed by additive white noise. Later, Mao

showed that any multidimensional nonlinear ODEs can be stabilised or destabilised

by Brownian motion under some conditions [88]. In 2007, Yin et al. [68] investigated

stabilization and destabilization of hybrid ODEs through stability and instability of

hybrid SDEs. They discussed almost sure exponential stability and instability. In

2015, Li and Liu established almost sure stabilization criteria for nonlinear SDEs by

adding feedback controls on both drift and diffusion part [89]. In 2016, Li and Liu

investigated stabilization and destabilization of ODE systems by adding time-varying

noise as diffusion part of the controlled SDE systems [90]. An important advantage

of stochastic feedback controls over the deterministic ones is that it can make the

controlled system almost surely exponentially stable without changing the orginal state

mean. This is in accordance with the concept called volatility-stabilized market in

mathematical finance (see e.g. [91, 92, 93]). In ecosystem, the stability of SDE models

also reveal that the environmental noise might cause a population extinct (see e.g.

Chapter 11 in [9]), said in [91].

1.3 Motivation and research background

Usually, stabilization of continuous-time SDEs requires continuous-time observations of

the system (see e.g. [79, 80, 68]). However, this would lead to high cost and sometimes
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it’s unrealistic as the observations are often of discrete time in practice. Therefore, in

2013, Mao [94] initiated the study of stabilization of continuous-time SDEs by feedback

controls based on discrete-time observations.

Stabilization problem by feedback control based on the discrete-time state observa-

tions for the deterministic differential equations has been studied since decades ago. For

example, in 1988, Hagiwara and Araki studied stabilizability of continuous-time ODE

systems by periodically time-varying controller that detects the plant output only once

during a time interval called “a frame period” [95]. Many other papers discussed con-

troller that detects several times during a frame period.

Consider an unstable continuous-time hybrid SDE in the Itô sense

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t), (1.5)

on t ≥ 0, where x(t) ∈ Rn is the system state, B(t) = (B1(t), · · · , Bm(t))T is an m-

dimensional Brownian motion and r(t) is a Markov chain which represents the system

mode. When stabilizing the system with a feedback control, a traditional (or regular)

choice form is u(x(t), r(t), t) based on continuous-time observations of state x(t), and

the controlled system has the form

dx(t) =
(
f(x(t), r(t), t) + u(x(t), r(t), t)

)
dt+ g(x(t), r(t), t)dB(t). (1.6)

“ it is more realistic and costs less in practice if the state is only observed at discrete

times, say 0, τ, 2τ, · · · ”, said in [94], “the feedback control should be designed based on

these discrete-time observations, namely the feedback control should be of the form

u(x([t/τ ]τ), r(t), t) where [t/τ ] is the integer part of t/τ .”

That is, Mao [94] discretized the state observations by setting a constant observation

interval. Observation interval is the time length between two consecutive observations.

If we denote the observation interval by τ , then x is observed at time points δt = kτ for

t ∈ [kτ, (k+ 1)τ), where k = 0, 1, 2, · · · . δt can also be seen as a step function of time t.

For convenience of notation, let δt = [t/τ ]τ where [t/τ ] denotes the integer part of t/τ .

So by choosing a positive number τ representing the observation interval, the controller
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has the form u(x([t/τ ]τ), r(t), t) and the consequent controlled system becomes

dx(t) =
(
f(x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)

)
dt+ g(x(t), r(t), t)dB(t). (1.7)

The new form of controller needs state observations at time points 0, τ, 2τ, 3τ, · · · ,

which is more realistic and costs less than the traditional control based on continuous

observations. In [94], the original system starts from initial time t0. In that case, x

is observed at t0, t0 + τ, t0 + 2τ, · · · . Letting δt = t0 + [t/τ ]τ enables us to write the

controlled system in a simpler way,

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(t), t)

)
dt+ g(x(t), r(t), t)dB(t). (1.8)

In [94], the system coefficients f , g and controller function u are all assumed to be

globally Lipschitz continuous on x and vanish when x = 0. This implies that f , g and

u all satisfy linear growth condition on x. Under this framework, [94] shows that, if the

traditionally controlled SDE (1.6) is mean square exponentially stable, then so is the

new controlled system (1.8), as long as the observation interval τ is sufficiently small.

The existence and uniqueness of the solution is guaranteed by the fact that (1.8) is

an SDDE with a bounded variable delay, under the framework of Lipschitz continuity

and linear growth. Specifically, we can write δt = t−ζ where ζ = t−(t0+[t/τ ]τ) ∈ [0, τ).

In system (1.8), the pair (x(t), r(t)) has Markov property at discrete times δt. That is,

the evolution of (x(t), r(t)) after a time point does not depend on its history before that

time point. The new theorem in [94] is mainly derived through the Markov property

of the pair and by comparing the new controlled system (1.8) with an auxiliary system

of the form (1.6). The auxiliary continuous-time observed system is assumed to be

mean square exponentially stable in [94]. The difference between the two systems

(the continuous-time observed system and discrete-time observed system) is bounded

over each observation interval, with upper bound positively related to the length of

observation interval. Hence as long as the observation interval is short enough, the

new controlled system can achieve mean square exponentially stable, although with a

different rate. An upper bound for observation interval was also derived in [94]. Since
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comparing two systems is a very general proof method, and existence of Lyapunov

function is not assumed, some properties of the system are not fully used. As a result,

the upper bound is very small, but luckily it’s still large enough for computer simulation.

In 2014, Mao et al. [96] investigated mean square exponential stabilization for both

linear and nonlinear hybrid SDEs. They used linear controller and the linear controlled

system has the form

dx(t) = [Ar(t)x(t) +Dr(t)x(δt)]dt+

m∑
k=1

Br(t)x(t)dBk(t) (1.9)

and the semilinear controlled system has the form

dx(t) = [f(x(t), r(t), t) + Fr(t)Gr(t)x(δt)]dt+ g(x(t), r(t), t)dB(t), (1.10)

where Ar(t), Br(t), Dr(t), Fr(t) and Gr(t) are all matrices and Dr(t)x(δt) as well as

Fr(t)Gr(t)x(δt) are controllers. For the nonlinear system (1.10), they relaxed the Lips-

chitz continuity condition of system coefficients from globally in [94] to locally.

Without the auxiliary traditionally controlled system, they analyzed the new con-

trolled system directly by Lyapunov method. They added assumptions of Lyapunov

functions by assuming existence of symmetric positive-definite matrices, which was used

as the core part of the quadratic-form Lyapunov function. Namely, Lyapunov function

V (x(t), r(t), t) = xT (t)Qr(t)x(t) for symmetric positive-definite matrices {Qr(t)}r(t)∈S.

Mao et al. [96] wrote the stability condition that LV (x(t), r(t), t) needs to be negative-

definite as matrix inequalities.

The paper [96] didn’t connect the discrete-time observed system with the continuous-

time observed system, but since the state observations were discretized, there must be

a connection between the state values in discrete and continuous time, and we have

to make use of it to analyse the new system. Therefore Mao et al. [96] calculated

E|x(t) − x(δt)|2. We also need to connect the difference E|x(t) − x(δt)|2 with some

quantity we know or easy to handle. This is usually either x(t) or x(δt) with x(t) more

often. They showed that the difference E|x(t)−x(δt)|2 cannot be greater than the prod-

uct of E|x(t)|2 and a positive number, which is positively related to the observation
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interval.

Two frequently used tricks for mean square exponential stabilization are: 1) setting

the Lyapunov function as quadratic form of x, e.g., V = xTQx where Q is a sym-

metric positive-definite matrix; and 2) applying the Itô formula to the product of the

exponential of time and quadratic form of x, e.g., eθtxTQx. By using these tricks and

connecting x(δt) with x(t) as explained above, [96] dramatically improved the upper

bound on observation interval. For the same example, the observation interval was im-

proved from 0.0000308 in [94] to 0.0046 in [96]. The analysis technique used in [96] is

usually called LMI (Linear Matrix Inequality) and is one of the most popular methods

for control problem.

In 2015, You et al. [97] studied stabilization problem for nonlinear hybrid SDEs with

the controlled system of the same form as (1.8). Regarding to the Lipschitz continuity

condition, coefficients f and g were assumed to be locally Lipschitz continuous on x

and controller u was assumed to have globally Lipschitz continuity. Compared to [94]

and [96], [97] established stabilization criteria using a more sophisticated method -

constructing Lyapunov functional. The Lyapunov functional is the sum of a Lyapunov

function and a double integral:

U(x̂t, r̂t, t) = V (x(t), r(t), t)

+ θ

∫ t

t−τ

∫ t

s

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2 + |g(x(v), r(v), v)|2

]
dvds, (1.11)

where x̂t denotes a segment of x over [t− 2τ, t] and so does r̂t.

This more complicated method has two advantages for analysis. Firstly, assumption

was made on the Lyapunov function’s partial derivatives and their combinations with

system coefficients as well as transition rates of the Markov chain. This assumption

is more specific about the property of the Lyapunov function than [96], so it has no

requirement on the form of Lyapunov function. Apart from quadratic, more general

forms can be used to establish stabilization, compared to [96]. Secondly, the double

integral in (1.11) can cancel out the term E|x(t) − x(δt)|2 through parameter setting.

In other words, instead of finding an upper bound of E|x(t)− x(δt)|2 and restricting it
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as in [96], this term was ingeniously cancelled out and had little influence on remaining

analysis in [97]. This is one of the reasons why [97] can get larger upper bound of

observation interval.

The analysis idea in [97] is more complicated but ingenious than that in [96]. In

[96], exponential stability was derived from assumptions of Lyapunov functions only,

which is more straightforward. However in [97], exponential stability was built on

Lyapunov functional and other weaker stabilities. You et al. started with a relatively

weak stability - mean square H∞ stabilization, by the above two advantages. It was

proved that the controlled system satisfied

∫ ∞
0

E|x(s)|pds <∞. (1.12)

Based on the H∞ stability and other system properties, [97] proved that the controlled

system was mean square asymptotic stable. Then based on these two stabilities, almost

sure asymptotic stability was achieved. With an additional assumption about the range

of Lyapunov function, and making use of the Lypunov functional, [97] built mean square

exponential stability for the controlled system on mean square H∞ stability and mean

square asymptotic stability. From that, almost sure exponential stability was implied.

Constructing the Lyapunov functional gives two advantages for the results. One is

that it brings more results as more stabilities were built. The other one is reduction

of observation frequency. The upper bound on observation interval was improved from

0.0046 to 0.0074 compared to [96] for the same numerical example. As quadratic-

form Lyapunov functions are used frequently, said in [97], corollaries and alternative

assumptions were given in this case.

Moreover, the stabilization problem by feedback control based on discrete-time

observations was studied by many researchers. In 2015, You et al. [98] investigated

robust stabilization problem for hybrid uncertain stochastic systems. They established

the robust mean square exponential stability for the controlled linear hybrid SDEs

with norm bounded uncertainties. The drift and diffusion part of the system have

different uncertainties. Controller appears in both drift and diffusion part. Only the
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uncertainties depend on time explicitly. In 2016, Qiu et al. [99] investigated mean

square exponential stabilization of linear and nonlinear hybrid SDEs. Apart from the

observation interval, they also considered a constant time delay for observations, which

may be caused by data transmission. Similar to [96], both [98] and [99] used the Linear

Matrix Inequality technique for analysis.

I noticed an obvious limitation of the research on this problem - stabilization of SDEs

by feedback controls based on discrete-time observations. All the research focused only

on the mean square exponential stabilization except [99], which still only discussed the

mean square stabilities in terms of the moment order.

Mean square stability is only a special case of moment stability when moment order

p = 2. Stabilities in terms of a more general moment order needed to be discussed. In

terms of the moment order, mean square stability is the simplest case. When p = 2,

in the calculation of LV (·) or Lyapunov functional, terms appearing have the simplest

coefficients and some have coefficients 0. In terms of asymptotic and exponential sta-

bilities, higher moment stability is stronger than lower moment stability, so the former

can imply the latter.

On one hand, higher moment is important and frequently used. For example,

skewness (p = 3) and kurtosis (p = 4) are basic and important measures in statistics

and frequently used in finance; study in digital image process can use moment order

p = 50 (see e.g. [100]-[103]). On the other hand, some problems only need lower moment

for p < 2 and mean square stability is unnecessarily too strong. For example, to make

the controlled system almost surely exponentially stable, You et al. [99] had to achieve

mean square exponential stabilization. By choosing a smaller p, I can make it through

lower moment exponential stabilization. In other words, I can make the system almost

surely exponentially stable by weaker conditions than what [97] required. Therefore,

it’s very necessary to investigate pth moment stabilization for a wide range of p, but no

results about this problem had been reported. This motivated me to investigate what

was stated in Chapter 3 - the pth moment stabilization for p ∈ (1,∞). My new theory

enables researchers to choose p flexibly according to their needs from the wide range

(1,∞). I submitted the results to the peer-reviewed journal “Stochastic Analysis and
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Applications” in November 2016, which has been published as [104].

Later, the observations of system mode, i.e. the Markov chain have also been

discretized. That is, both system state x and system mode r are observed at time

points 0, τ, 2τ, 3τ, · · · . The controller has the form u(x(δt), r(δt), t) and the controlled

system is

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(δt), t)

)
dt+ g(x(t), r(t), t)dB(t). (1.13)

Discrete-time observations of the Markov chain are analyzed through its property that,

the time until the process jumps follows the exponential distribution with rate equiv-

alent to the transition rate of current state. In 2016, Song et al. [35] mentioned that

“it could often be the case where the mode is not obvious and it costs to identify the

current mode of the system.” To reduce the cost control, they used discrete-time ob-

servations of both system state and system mode to control the unstable hybrid SDEs

of a very general nonlinear form. The general idea is similar to that of Mao’s paper in

2013 [94]. They assumed that the auxiliary traditionally controlled system, which is

based on continuous-time observations with the form (1.6), was mean square exponen-

tial stable. Then they compared the auxiliary controlled system and the new controlled

system with form (1.13), by properties of Markov chain and the Markov property of

the pair (x(t), r(t)) at discrete times δt. Finally mean square exponential stability for

the new controlled system was established.

Apart from stabilization by deterministic feedback controls, which appear on the

drift, stabilization by stochastic feedback controls based on discrete-time observations

was studied by Mao [91] in 2016. Mao showed that under some conditions, the scalar

linear autonomous 1 ODE dx(t) = αx(t)dt and the multidimensional nonlinear ODE

dx(t) = f(x(t))dt starting from t0 = 0 can be stabilized in the sense of that the

controlled systems

dx(t) = αx(t)dt+ σx(δt)dB(t) (1.14)

1The system is said to be autonomous if the coefficients do not depend on time explicitly. Here the
coefficients depend on t through x.
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and

dx(t) = f(x(t))dt+Ax(δt)dB(t) (1.15)

become almost surely exponentially stable. Almost sure exponential stability was de-

rived from the pth moment exponential stability through the Borel-Cantelli lemma

under some conditions. The main analysis technique for the scalar linear case is very

special. It’s to make E|x((k + 1)τ)| equal to or less than E|x(kτ)| times a positive

number less than 1. This method makes use of the variation-of-constants formula at

each observation interval [kτ, (k + 1)τ ] and the moment properties of the standard

normal distribution. It’s not easy to apply this special analysis technique to multidi-

mensional case. The more general nonlinear multidimensional case was investigated

through comparing two controlled systems - (1.15) and the continuous-time observa-

tions based auxiliary system, similar to [94]. The observation interval upper bounds

derived in [91] are too small to give any numerical example, so it can only be said that

the upper bounds exist.

Inspired by Mao [91], I investigated the stabilization problem by stochastic feedback

controls based on discrete-time observations for more complex models.

The most popular methods used in stabilization problem for deterministic feedback

controls are usually based on constructing Lyapunov function or functional. How-

ever, these methods cannot be applied to stochastic feedback control. Particularly this

means the Linear Matrix Inequality method cannot be used here. This is probably

an important reason why there was no more published improvement or development

after [91]. Recall that stabilization by noise has an advantage that it would not change

the original state mean Ex(t). So I’m still interested in this problem regardless of its

difficulty and complexity. Mao [91] only discussed stabilization of autonomous ODEs,

which is not enough. Systems of more complex forms should also be studied, for ex-

ample, non-autonomous ODEs and multidimensional hybrid SDEs. Non-autonomous

ODEs have been extensively applied in science and engineering over the past decades.

For example, time-varying complex dynamical network model (see e.g. [105, 106]),

linear time-varying (LTV) plants (see e.g. [81, 107] ) and LTV multiple-inputmultiple-

output (MIMO) state-space systems (see e.g. [108]). Motivated by above, I investigated
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stabilization of scalar non-autonomous ODEs and multidimensional hybrid SDEs, by

stochastic feedback control based on discrete-time observations. For hybrid systems,

observations for both system state and mode are in discrete time. The results were

stated in Chapter 4. It was also submitted to the journal “Stochastic Analysis and

Applications” in May 2017 and published as [109].

Similarly to the development from comparison of two controlled systems in [94] to

the Linear Matrix Inequality analysis technique in [96], in 2017, Li et al. used Lin-

ear Matrix Inequality to established stabilization criteria using discrete-time state and

mode observations. In [110], Li et al. discussed mean square exponential stabilization

for both linear and nonlinear hybrid SDEs. The controlled linear system has form (1.9)

and the nonlinear system uses linear controller. In [111], Li et al. investigated robust

stabilization of hybrid uncertain stochastic systems. The drift and diffusion part of the

system have different uncertainties. Only the uncertainties depend on time explicitly.

They showed that the controlled system with norm bounded uncertainties is robustly

exponentially stable in mean square. The main difference between [111] and [98] is that

the controller only works on the drift and observations of mode are in discrete-time in

[111].

Moreover in 2017, Zhu and Zhang [112] also discussed the pth moment stabilization

problem, but for pth moment exponential stability where p > 2 only. The key difference

between my paper [104] and theirs [112] is that, they considered the constant time delay

for observations, similarly to [99]. They extended the exponential stability from mean

square to higher moment. As for system observations, they used feedback controls

based on discrete-time state observations to stabilize hybrid SDEs.

I noticed that all the research on this topic (stabilization by feedback controls based

on discrete-time observations), as far as I know, used a constant observation interval

with no flexibility on observation frequency. None of the papers mentioned above made

use of the time-varying property for non-autonomous systems. Although the systems

have the form

dx = [f(x, r, t) + u(x, r, t)]dt+ g(x, r, t)dB,

since most calculation and analysis were did to the Lipschitz constants of f , g and u

20



Chapter 1. Introduction

instead of to f , g and u directly, the effect of time t was neglected. Their results would

not be much different if the system is autonomous:

dx = [f(x, r) + u(x, r)]dt+ g(x, r)dB.

If we consider the time-varying property of the coefficients and controller into our

analysis of the non-autonomous system, if we use a time-varying function with upper

bound equivalent to the Lipschitz constant, then the parameters which were previously

constants would become time-varying functions, and the observation interval would no

longer be a constant but depend on time as well. Consequently, instead of a constant

observation interval, we will have an observation interval sequence {τj}j≥1. That is,

the system is observed at time points 0, τ1, τ1 + τ2, τ1 + τ2 + τ3, · · · .

Although the discrete-time observation-based feedback control is already more real-

istic and costs less than the traditional one, it still fails to make use of the time-varying

property of the non-autonomous system. If the controlled system is non-autonomous

(i.e., f or g or u depends on time explicitly), then the time-varying observation frequen-

cies make more sense than the constant one. Intuitively, when the system state or mode

change rapidly, we should observe them very frequently, and vice versa, low-frequency

observation is allowed when system changes slowly. However, previous research has to

require the highest observation frequency for all time. Making use of the time-varying

property and using time-varying observation frequencies can reduce the cost of control.

Especially if the observation is not free, for example, some systems are observed by

human, monitor or sensor. Wide observation interval may indicate holiday for observer

or we can turn off the monitor or sensor to save power.

A particular interest for a time-varying coefficient is its periodicity because peri-

odic phenomena are all around us. Satellite orbit, working days per week, seasons or

months in a year, wave vibration, etc., are all periodic. Furthermore, stochastic models

involving periodicity have been studied by many authors (see e.g. [113]-[121]) due to

their wide applications in many areas. If the system coefficients and controller are all

periodic, then it makes sense to use periodic observations.

Motivated by above discussion, I investigated how to stabilize a given non-autonomous
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unstable SDE or hybrid SDE with periodic coefficients by a periodic feedback control

based on periodic discrete-time observations. The results stated in Chapter 5 has been

submitted to the journal “IEEE Transactions on Automatic Control” as [122], which

is still under review.

1.4 Scope and structure of this thesis

In Chapter 1, I briefly introduces development of SDEs and stability theory, why we

want to make the system stable and why we use feedback control, the development of

study on a new type of feedback control (based on discrete-time observations) in recent

years and my research motivation.

To make this thesis self-contained, Chapter 2 is preliminaries for readers. Chapter

2 includes some useful definitions, theorems about SDEs and stability theory, and some

useful inequalities.

In Chapter 3, I investigate the pth moment stabilization of hybrid SDEs. Stabilities

discussed include pth moment H∞ stability for p > 1, pth moment asymptotic stability

for p ≥ 2, pth moment exponential stability for p > 1 and almost sure exponential

stability.

The key technique used is constructing Lyapunov functional. Observation of the

system state was discretized firstly and then observation of the system mode was dis-

cretized as well. Rigorous proofs are followed by numerical examples for illustration of

the new established theory. The main contributions of Chapter 3 are: 1) developing

the criterion on asymptotic stabilization from mean square (p = 2) to pth moment for

all p ≥ 2, developing the criterion on H∞ stabilization and exponential stabilization

from mean square to pth moment for all p > 1; and 2) improving the upper bound

of observation interval, namely reducing the observation frequency and hence reducing

the cost of control.

In Chapter 4, I use stochastic feedback control, which is based on Brownian motions

and discrete-time observations, to stabilize non-autonomous linear scalar ODEs and

nonlinear multidimensional hybrid SDEs. The analysis technique is as follows. By

comparing the traditionally and new controlled systems, I prove that the new controlled
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system is pth moment (0 < p < 1) exponentially stable, then use it as a steppingstone,

I prove the almost sure exponential stability. The main contribution of this chapter is

expanding the scope of applicable original unstable systems from autonomous ODEs

to non-autonomous ODEs and hybrid SDEs.

Chapter 5 states my proudest work. In Chapter 5, I studied stabilization problem

for non-autonomous periodic SDEs as well as hybrid SDEs. The feedback control is

based on the innovative periodic discrete-time observations. By making use of Lya-

punov functions and inequalities, I prove that the controlled system can achieve many

stabilities, including pth moment H∞ stability and exponential stability for p > 1, pth

moment asymptotic stability for p ≥ 2, almost sure asymptotic and exponential sta-

bilities. Compared to existing results, my new established theory not only reduces the

cost of control by reducing observation frequency dramatically, but also offers flexibility

on the setting of observations - we can choose when to observe more frequently or less

frequently. Numerical examples are given to compare the observation frequencies under

others’ existing theory and my new theory. My highest frequency is still lower than the

constant frequency required by existing theory, and if the time unit is a year, then an

example shows observers can have long holiday under my new theory.

Finally Chapter 6 concludes this thesis, summarizes contributions of this thesis and

proposes some potential improvement research work for the future.

In this thesis, for technical reason, the nonlinear original system generally needs to

satisfy locally Lipschitz condition and linear growth condition; and the controller gen-

erally needs to satisfy globally Lipschitz condition and vanish when the system reaches

the equilibrium point (i.e., the origin). As a result, the existence and uniqueness of the

solution to the controlled system is guaranteed. As far as the author knows, the stabi-

lization problem of SDEs by either deterministic or stochastic feedback control based

on discrete-time observations is still investigated under the linear growth condition.

Technical difficulties make it a challenge to relax the linear growth condition.

From convergence’s speed point of view, this thesis mainly discusses asymptotic

stability and exponential stability; from probability’s point of view, the stochastic sta-

bilities discussed in this thesis include moment stability and almost sure stability (also
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known as almost everywhere or pathwise stability). Other stabilities such as polyno-

mial stability, stability in probability and distribution are not involved. From equation

type’s point of view, this thesis focuses on the regular stochastic differential equations.

Stochastic functional differential equations, stochastic equations of neutral type and

backward stochastic differential equations are not involved.
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Preliminary

2.1 Basic notations of probability theory and stochastic

processes

In this section, let us briefly review some basic notations of probability theory and

stochastic processes. Readers are referred to [9, 26] for more details.

Probability theory deals with mathematical models of trials whose outcomes depend

on chance. All the possible outcomes form a set Ω, with typical element ω ∈ Ω. The

observable or interesting events contained in Ω form a family F . A family F is called

a σ-algebra if it has the following properties:

(i) ∅ ∈ F , where ∅ denotes the empty set;

(ii) E ∈ F ⇒ Ec ∈ F , where Ec is the complement of E in Ω;

(iii) {Ei}i≥1 ⊂ F ⇒ ∪∞i=1Ei ∈ F .

The pair (Ω,F) is a measurable space and the elements of F are F-measurable sets.

A function X: Ω→ R is F-measurable if

{ω : X(ω) ≤ y} ∈ F , for all y ∈ R.

The function X is called a real-valued F-measurable random variable. An Rn-valued

function is F-measurable if all its elements are F-measurable. When the measurable

space is (Rn,Bn), a Bn-measurable function is call a Borel measurable function. The

system coefficients in this thesis are all Borel measurable functions.

A probability measure P on a measurable space (Ω,F) is a function P: F → [0, 1]
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such that

(i) P(Ω) = 1;

(ii) for any disjoint sequence {Ei}i≥1 ⊂ F , P(∪∞i=1Ei) =
∑∞

i=1 P(Ei). Then the

triple (Ω,F ,P) is a probability space. Let

F̄ = {A ⊂ Ω : ∃B,C ∈ F such that B ⊂ A ⊂ C,P(B) = P(C)}.

If F = F̄ , then the probability space (Ω,F ,P) is complete.

For a real-valued random variable integrable with respect to the probability measure

P, the expectation and variance of X are EX =
∫

ΩX(ω)dP(w) and V ar(X) = E(X −

EX)2 respectively. The pth moment of X is E|X|p(p > 0). A family of k random

variables {Xi}1≤i≤k are independent if the σ-algebras generated by them - {σ(Xi)}1≤i≤k
are independent.

Now we give two concepts of convergence for Rn-valued random variables X and

{Xi}i≥1 ([9, Section 1.2]):

(i) The sequence {Xi}i≥1 is said to converge to X almost surely, or almost every-

where, or with probability 1, if

P
(
ω ∈ Ω : lim

i→∞
Xi(ω) = X(ω)

)
= 1.

(ii) If for every ε > 0, P
(
ω : |Xi(ω) −X(ω)| > ε

)
→ 0 as i → ∞, then {Xi}i≥1 is said

to converge to X stochastically or in probability.

(iii) The sequence {Xi}i≥1 is said to converge toX in pth moment or in Lp, ifXi, X ∈ Lp

and E|Xk −X|p → 0.

Here are some important convergence theorems.

Theorem 2.1.1 (Monotonic convergence theorem) If {Xi} is an increasing se-

quence of nonnegative random variables, then

lim
i→∞

EXi = E( lim
i→∞

Xi).

Theorem 2.1.2 (Dominated convergence theorem) Let p ≥ 1, {Xi} ⊂ Lp(Ω;Rn)

and Y ∈ Lp(Ω;R). Assume |Xi| ≤ Y a.s. and {Xi} converges to X in probability.
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Then X ∈ Lp(Ω;R), {Xi} converges to X in Lp, and

lim
i→∞

EXi = E(X).

Then we state the well-known Borel-Cantelli lemma.

Lemma 2.1.3 (Borel-Cantelli’s lemma)

Let {Ek}k≥1 ⊂ F and lim supk→∞Ek = ∩∞i=1 ∪∞k=i Ek.

(1) If
∑∞

k=1 P(Ek) <∞, then

P(lim sup
k→∞

Ek) = 0.

(2) If the sequence {Ek}k≥1 is independent and
∑∞

k=1 P(Ek) =∞, then

P(lim sup
k→∞

Ek) = 1.

Here are some useful properties of conditional expectation. For X ∈ L1(Ω;R) and

G ⊂ F :

(a) E(E(X|G)) = E(X);

(b) X is G-measurable ⇒ E(X|G) = X;

(c) X is G-measurable ⇒ E(XY |G) = XE(Y |G).

Now let’s review some important concepts about stochastic processes.

Let (Ω,F ,P) be a probability space. A filtration is a family {Ft}t≥0 of increasing

sub-σ-algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s < ∞). The filtration is right

continuous if Ft = ∩s>tFs for all t ≥ 0. Unless otherwise stated, (Ω,F , {Ft}t≥0,P) used

in this thesis is a complete probability space with the increasing and right-continuous

filtration {Ft}t≥0 where F0 contains all P-null sets.

A family {Xt}t∈I of Rn-valued random variables is called a stochastic process with

state space Rn. A random variable %: Ω → [0,∞] is a stopping time if {ω : %(ω) ≤

t} ∈ Ft for any t ≥ 0. An Rn-valued {Ft}-adapted integrable process {Mt}t≥0 is a

martingale if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t <∞.
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A real-valued square-integrable continuous martingale M = {Mt}t≥0 has a quadratic

variation {〈M,M〉}t≥0. A right-continuous adapted process M = {Mt}t≥0 is a local

martingale if there is a nondecreasing sequence {%k}k≥1 of stopping times with %k →

∞ a.s. such that every {M%k∧t −M0}t≥0 is a martingale. Every martingale is a local

martingale, but the converse is not true (see e.g. [9, 26]).

Here are some important and useful theorems on martingale and local martingale.

We refer the readers to [9, Section 1.3].

Theorem 2.1.4 (Strong law of large numbers) Let M = {Mt}t≥0 be a real-valued

continuous local martingale vanishing at t = 0. Then

lim
t→∞
〈M,M〉t =∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

More generally, if Y = {Yt}t≥0 is a continuous adapted increasing process such that

lim
t→∞

Yt =∞ and

∫ ∞
0

d〈M,M〉t
(1 + Yt)

2 <∞ a.s.

then

lim
t→∞

Mt

Yt
= 0 a.s.

Theorem 2.1.5 (Doob’s martingale inequalities) Let {Mt}t≥0 be an Rn-valued

martingale and let [a, b] be a bounded interval in R+. Assume Mt ∈ Lp(Ω;Rn).

(i) If p ≥ 1, then for all z > 0,

P
(
ω : sup

a≤t≤b
|Mt(ω)| ≥ z

)
≤ E|Mb|p

zp
.

(ii) If p > 1, then

E( sup
a≤t≤b

|Mt|p) ≤ (
p

p− 1
)
p
E|Mb|p.

Theorem 2.1.6 Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing pro-

cesses with A0 = U0 = 0 a.s. Let {Mt}t≥0 be a real-valued continuous local martingale
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with M0 = 0 a.s. Let ξ be a nonnegative F0-measurable random variable and

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative, then

{ lim
t→∞

At <∞} ⊂ { lim
t→∞

Xt exists and is finite} ∩ { lim
t→∞

Ut <∞} a.s.

where B ⊂ D a.s.. If limt→∞At <∞ a.s., then for almost all ω ∈ Ω

lim
t→∞

Xt(ω) exists and is finite, and lim
t→∞

Ut(ω) <∞.

2.2 Brownian motions and stochastic integrals

After reviewing some basic notations and theorems of probability theory and stochastic

processes, let us look at the foundation of SDEs - Brownian motions and stochastic

integrals. Readers are referred to [9, Section 1.4, 1.5] for more details.

Definition 2.2.1 Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A stan-

dard one-dimensional Brownian motion is a real-valued continuous Ft-adapted process

{Bt}t≥0 with the following properties:

(i) B(0) = 0 a.s.;

(ii) for 0 ≤ s < t < ∞, the increment B(t) − B(s) ∼ N(0, t − s), i.e. normally dis-

tributed with mean zero and variance t− s;

(iii) for 0 ≤ s < t <∞, the increment B(t)−B(s) is independent of Fs.

The standard one-dimensional Brownian motion {Bt}t≥0 has the following proper-

ties:

(a) {Bt}t≥0 is a continuous square-integrable martingale, its quadratic variation

〈B,B〉t = t for all t ≥ 0 and the strong law of large numbers indicates

lim
t→∞

B(t)

t
= 0 a.s.
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(b) The sample path B(t, ω) is nowhere differentiable for almost all ω ∈ Ω.

Definition 2.2.2 A m-dimensional process {B(t) = (B1(t), · · · , Bm(t))T }t≥0 is an m-

dimensional Brownian motion if all elements {Bi(t)}′s are independent one-dimensional

Brownian motion.

In this thesis, the one-dimensional Brownian motion is standard as stated above

and is defined on (Ω,F , {Ft}t≥0,P), which was defined in Section 2.1. In this thesis,

we denote the m-dimensional Brownian motion by B(t) = (B1(t), · · · , Bm(t))T .

Following is the definition of Itô’s stochastic integral.

Let g = {g(t)}a≤t≤b be a simple (or step) process, that is, there is a partition

a = t0 < t1 < · · · < tk = b of [a, b], and bounded random variables ξi, 0 ≤ i ≤ k − 1

such that ξi is Fti-measurable and

g(t) = ξ0I[t0 ,t1 ](t) +
k−1∑
i=1

ξi I(ti ,ti+1 ](t).

Definition 2.2.3 (Part 1 of the definition of Itô’s integral) For a simple process

g defined as above, the stochastic integral of g with respect to the Brownian motion B(t)

is ∫ b

a
g(t)dB(t) =

k−1∑
i=0

ξi[B(ti+1)−B(ti)].

Lemma 2.2.4 A process g defined as above has the following properties

E
∫ b

a
g(t)dB(t) = 0 and E|

∫ b

a
g(t)dB(t)|

2

= E
∫ b

a
|g(t)|2dB(t).

Definition 2.2.5 (Part 2 of the definition of Itô’s integral) Let f ∈M2([a, b];R).

The Itô integral of f with respect to B(t) is

∫ b

a
f(t)dB(t) = lim

k→∞

∫ b

a
gk(t)dB(t) in L2(Ω;R),

where {gk} is a sequence of simple process such that

lim
k→∞

E
∫ b

a
|f(t)− gk(t)|2dt = 0.
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Following are some properties of Itô’s stochastic integral.

Let f, g ∈M2([a, b];R), and let %1, %2 be two stopping times such that a ≤ %1 ≤ %2 ≤ b,

then

(a)
∫ b
a f(t)dB(t) is Fb-measurable;

(b) E
∫ b
a f(t)dB(t) = E

∫ %2
%1
f(t)dB(t) = E(

∫ b
a f(t)dB(t)|Fa) = 0;

(c) E|
∫ b
a f(t)dB(t)|2 = E

∫ b
a |f(t)|2dt;

(d) E|
∫ %2
%1
f(t)dB(t)|2 = E

∫ %2
%1
|f(t)|2dt;

(e) E(|
∫ b
a f(t)dB(t)|2|Fa) =

∫ b
a E(|f(t)|2|Fa)dt.

Itô’s integral under some conditions can be a martingale.

Theorem 2.2.6 Let f ∈ M2([0, T ];R). Then Itô’s integral M =
∫ t

0 f(s)dB(s) is a

square-integrable continuous martingale and its quadratic variation 〈M,M〉t =
∫ t

0 |f(s)|2ds

for any 0 ≤ t ≤ T.

Furthermore, if f ∈M2(R+;Rn×m), (i.e. the value of f is n×m real matrix) and B(t)

is an m-dimensional Brownian motion, then the Itô integral
∫ t

0 f(s)dB(s) for t ≥ 0 is

an Rn-valued continuous square-integrable martingale.

2.3 SDEs, SDDEs, Markov processes and hybrid SDEs

This section is to review some important concepts of SDEs, SDDEs, Markov processes

and hybrid SDEs. Firstly we introduce the formal definitions and some important

properties of SDEs and SDDEs. Then we introduce stochastic differential equations

with Markovian switching (hybrid SDEs), before which we review some concepts of

Markov processes including Markov chains and Markov property. Finally we review

the connections between SDEs and Markov processes. Readers are referred to [9, 26]

for more details.

Let (Ω,F , {Ft}t≥0,P) be a probability space defined in Section 2.1 and let B(t) =

(B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion defined on it. Let 0 ≤ t0 <

T <∞. Let x0 ∈ L2(Ω;Rn) be Ft0-measurable, i.e. E|x0|2 <∞. Let f : Rn× [t0, T ]→
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Rn and g : Rn × [t0, T ] → Rn×m be both Borel measurable functions. Then the n-

dimensional stochastic differential equations of Itô type has the general form

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T (2.1)

with initial value x(t0) = x0. This is equivalent to

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (2.2)

Definition 2.3.1 An Rn-valued stochastic process {x(t)}t0≤t≤T is called a solution of

equation (2.1) if it has the following properties:

(i) {x(t)} is continuous and Ft-adapted;

(ii) {f(x(t), t)}t0≤t≤T ∈ L1([t0, T ];Rn) and {g(x(t), t)}t0≤t≤T ∈ L2([t0, T ];Rn×m);

(iii) equation (2.1) holds for ∀t ∈ [t0, T ] with probability 1.

A solution {x(t)} is unique if P
(
x(t) = x̄(t) for ∀t ∈ [t0, T ]

)
= 1.

In the following we give the definitions of Lipschitz condition and linear growth

condition, which guaranteed the existence and uniqueness of the system solution.

(i) Global Lipschitz condition: There is a positive constant K such that for all

x, y ∈ Rn and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K|x− y|2. (2.3)

(ii) Local Lipschitz condition: For every integer n ≥ 1, there exists a positive

constant Kn such that, for all t ∈ [t0, T ] and x, y ∈ Rn with |x| ∧ |y| ≤ n,

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ Kn|x− y|2. (2.4)

(iii) Linear growth condition: There is a positive constant K̄ such that for all

x, y ∈ Rn and t ∈ [t0, T ]

|f(x, t)|2
∨
|g(x, t)|2 ≤ K̄(1 + |x|2). (2.5)
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Theorem 2.3.2 If equation (2.1) satisfies the global Lipschitz condition and Linear

growth condition, or if equation (2.1) satisfies the local Lipschitz condition and Linear

growth condition, then (2.1) has a unique solution x(t) and x(t) ∈M2([t0, T ];Rn).

In this thesis the controlled single-mode SDE system has the form

dx(t) =
(
f(x(t), t) + u(x(δt), t)

)
dt+ g(x(t), t)dB(t) (2.6)

where δt = t0 + [t/τ ]τ and [t/τ ] is the integer part of t/τ . So δt ∈ (t − τ, t] and (2.6)

can be written as a stochastic differential delay equation

dx(t) =
(
f(x(t), t) + u(x(t− ζ(t)), t)

)
dt+ g(x(t), t)dw(t),

where ζ(t) = t − t0 − [t/τ ]τ. If (2.6) satisfies the Local Lipschitz condition and linear

growth condition for SDDEs, which is similar as stated above, then (2.6) has a unique

solution x(t) such that E|x(t)|p < ∞ for all t ≥ t0 and p > 0. We refer to Section 5.3

and 5.4 of [9] for details.

Then let us review the Markov processes and its connections with SDEs.

An Rn-valued {Ft}-adapted process X = {Xt}t≥0 is a Markov process if the follow-

ing Markov property holds:

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s)) for all 0 ≤ s ≤ t <∞ and A ∈ Bn.

Theorem 2.3.3 If equation (2.1) satisfies the local Lipschitz condition and Linear

growth condition, then its solution x(t) is a Markov process.

Before introducing hybrid SDEs, we review the definition of Markov chains first.

A stochastic process X = {Xt}t≥0 defined on (Ω,F ,P) with values in state space

S, which is a countable set, is a continuous-time Markov chain if for any finite set

of time points t′is and corresponding states in S such that P
(
X(tn) = i,X(tn−1) =

in−1, . . . , X(t1) = i1
)
> 0, the following holds:

P
(
X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, . . . , X(t1) = i1

)
= P

(
X(tn+1) = j|X(tn) = i

)
.
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In this thesis, unless otherwise stated, let r(t) for t ≥ 0 be a right-continuous Markov

chain on (Ω,F , {Ft}t≥0,P), which was defined in Section 2.1, taking values in a finite

state space S = {1, 2, · · · , N} with generator matrix Γ = (γij)N×N , whose elements γij

are the transition rates from state i to j for i 6= j and γii = −
∑

j 6=i γij . The generator

Γ = (γij)N×N is given by

P{r(t+ ∆) = j|r(t) = i} =


γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0.

In this thesis, define γ := maxi∈S(−γii). We present a useful lemma here (see

Lemma 1 in [35]).

Lemma 2.3.4 For any t ≥ t0, v > 0 and i ∈ S,

P
(
r(s) 6= i for some s ∈ [t, t+ v]

∣∣∣r(t) = i
)
≤ 1− e−γv. (2.7)

Generally, a stochastic differential equation with Markovian switching (hybrid SDEs)

has the form

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t), on t0 ≤ t ≤ T (2.8)

with initial data x(t0) = x0 ∈ L2
Ft0

(Ω;Rn) and r(t0) = r0 ∈ S is Ft0-measurable.

System coefficients are all Borel measurable functions

f : Rn × S× R+ → Rn and g : Rn × S× R+ → Rn×m.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·).

Definition of the solution to the hybrid SDE (2.8) is similar to Definition 2.3.1, with

f(x(t), t) and g(x(t), t) replaced by f(x(t), r(t), t) and g(x(t), r(t), t) respectively.

The Lipschitz condition and linear growth condition for hybrid SDEs are similar

to those for single-mode SDEs stated above. With f(x, t) replaced by f(x, r, t), g(x, t)
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replaced by g(x, r, t), and x, y, t ∈ Rn × [t0, T ] replaced by x, y, i, t ∈ Rn × S × [t0, T ],

either global or local Lipschitz condition in addition to the linear growth condition

guarantee that (2.8) has a unique solution x(t) and x(t) ∈M2([t0, T ];Rn).

Theorem 2.3.5 If equation (2.8) satisfies the local Lipschitz condition and Linear

growth condition, then the pair (x(t), r(t)) is a Markov process.

2.4 Itô’s formula

In this section, we present Ito’s formula for single-mode SDEs and the generalized Ito

formula for hybrid SDEs.

Let C2,1(Rn × R+;R) denote the family of all real-valued functions V (x, t) defined

on Rn×R+ such that they are continuously twice differentiable in x and once in t. For

V ∈ C2,1(Rn × R+;R), its partial derivatives

Vt =
∂V

∂t
, Vx = (

∂V

∂x1
, . . . ,

∂V

∂xn
), Vxx =

( ∂2V

∂xi∂xj

)
n×n =


∂2V

∂x1∂x1
· · · ∂2V

∂x1∂xn
...

...

∂2V
∂xn∂x1

· · · ∂2V
∂xn∂xn

 .

Following is the well-known Itô’s formula.

Theorem 2.4.1 (The multi-dimensional Itô formula) Let x(t) be an n-dimensional

Itô process on t ≥ 0 governed by

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). Let V ∈ C2,1(Rn × R+;R). Then

V (x(t), t) is also an Itô process governed by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt

+ Vx(x(t), t)g(t)dB(t) a.s. (2.9)

For the one-dimensional Itô formula where x ∈ R, (2.9) has trace
(
gT (t)Vxx(x(t), t)g(t)

)
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replaced by Vxx(x(t), t)g2(t).

Let us introduce a multiplication table:

dtdt = 0, dBidt = 0,

dBidBi = dt, dBidBj = 0 for i 6= j.

According to [123], a continuous-time Markov chain can be represented as a stochas-

tic integral with respect to a Poisson random measure. Then for hybrid SDE, we have

the following generalized Ito formula.

For (2.8), let V (x, i, t) ∈ C2,1(Rn×S×R+;R), the family of all real-valued functions

defined on Rn × S×R+ which are continuously twice differentiable in x and once in t.

Define an operator LV from Rn × S× R+ to R by

LV (x, i, t) = Vt(x, i, t) + Vx(x, i, t)f(x, i, t)

+
1

2
[trace(gT (x, i, t)Vxx(x, i, t)g(x, i, t)],+

N∑
j=1

γijV (x, j, t). (2.10)

Theorem 2.4.2 (The generalized Itô Formula) If V ∈ C2,1(Rn×S×R+;R), then

for any t ≥ 0

V (x(t), r(t), t)

=V (x(0), r(0), 0) +

∫ t

0
LV (x(s), r(s), s)ds

+

∫ t

0
Vx(x(s), r(s), s)g(x(s), r(s), s)dB(s)

+

∫ t

0

∫
R

(V (x(s), r0 + h(r(s), l), s)− V (x(s), r(s), s))µ(ds, dl), (2.11)

where µ(ds, dl) = v(ds, dl)− µ(dl)ds is a martingale random measure.

We refer the definition of function h to page 47 of [26].

Taking expectation on both sides of (2.11) gives the following useful lemma.

Lemma 2.4.3 Let V ∈ C2,1(Rn×S×R+;R) and %1, %2 be bounded stopping times such
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that 0 ≤ %1 ≤ %2 a.s. If V (x(t), r(t), t) and LV (x(t), r(t), t) are bounded on t ∈ [ρ1, ρ2]

with probability 1, then

EV (x(%2), r(%2), %2) = EV (x(%1), r(%1), %1) + E
∫ %2

%1

LV (x(s), r(s), s)ds. (2.12)

2.5 Stability

In this section, we present definitions of several frequently used stabilities and then

introduce some theorems on stability.

For an n-dimensional SDE (e.g. of the form (2.1)) or hybrid SDE (e.g. of the form

(2.8)), following is several stabilities discussed in this thesis. In this thesis, p > 0 is the

moment order.

Readers are referred to [9, 26] for more details.

H∞ stability

The system is H∞-stable in Lp(Ω× R+;Rn) (also known as Lp(Ω× R+;Rn)-stable) if

∫ ∞
0

E|x(s)|pds <∞

for all initial data x0 ∈ Rn and r0 ∈ S if it’s a hybrid SDE.

Asymptotic stability

The system is asymptotically stable in pth moment if

lim
t→∞

E|x(t)|p = 0

for any initial data x0 ∈ Rn and r0 ∈ S if it’s a hybrid SDE.

When p = 2, it’s called mean square asymptotic stability.

The system is almost surely asymptotically stable if

lim
t→∞

x(t) = 0 a.s.

for all initial data x0 ∈ Rn and r0 ∈ S if it’s a hybrid SDE.

Exponential stability

37



Chapter 2. Preliminary

The system is exponentially stable in pth moment if

(1) lim sup
t→∞

1

t
log(E|x(t)|p) < 0;

or equivalently

(2) there is a pair of positive constants λ and C such that

E|x(t)|p ≤ C|x0|pe−η(t−t0);

for all initial data x0 ∈ Rn and r0 ∈ S if it’s a hybrid SDE.

When p = 2, it’s called mean square exponential stability.

Noting that E|x(t)|p ≤
(
E|x(t)|p̂

)p/p̂
for 0 < p < p̂, we can see that the p̂th moment

exponential stability implies the pth moment exponential stability.

The system is almost surely exponentially stable if

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s.

for all initial data x0 ∈ Rn and r0 ∈ S if it’s a hybrid SDE.

The following lemma is [9, Lemma 3.2 on page 120]. It indicates that the SDE

solution x cannot reach the origin almost surely if it does not start from origin.

Lemma 2.5.1 For all x0 6= 0 in Rn

P
(
x(t) 6= 0 on t ≥ t0

)
= 1.

Hybrid SDEs have similar lemma ([26, Lemma 5.1 on page 164]).

Assumption 2.5.2 Assume that for each n = 1, 2, · · · , there is a Kn > 0 such that

|f(x, i, t)| ∨ |g(x, i, t)| ≤ Kn|x|

for all 0 ≤ t ≤ n, system mode i ∈ S and system state x ∈ Rn with |x| ≤ n.
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Lemma 2.5.3 Let Assumption 2.5.2 hold. Then

P
(
x(t) 6= 0 on t ≥ t0

)
= 1

for all x0 6= 0 in Rn, t0 ∈ R+ and i ∈ S.

The following theorems give conditions under which the moment exponential sta-

bility can imply the almost sure exponential stability.

Theorem 2.5.4 For an n-dimensional SDE (e.g. of the form (2.1)), if there is a

positive constant K such that

xT f(x, t) ∨ |g(x, t)|2 ≤ K|x|2 for all (x, t) ∈ Rn × [t0,∞).

Then the pth moment exponential stability (for p > 0) implies the almost sure exponen-

tial stability ([9, Lemma 4.2 on page 128]).

For the n-dimensional stochastic functional differential equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T

where xt = {x(t+ s) : −τ ≤ s ≤ 0}, we have the following theorem.

Theorem 2.5.5 Let p ≥ 1. Assume there is a positive constant K such that for every

solution x(t) of the SFDE stated above and for all t ≥ t0,

E
(
|f(xt, t)|p + |g(xt, t)|p

)
≤ K E

∣∣ sup
−τ≤s≤0

x(t+ s)
∣∣p. (2.13)

Then

E|x(t)|p ≤ Ce−η(t−t0) for all t ≥ t0 (2.14)

implies

lim sup
t→∞

1

t
log(|x(t)|) ≤ −η

p
a.s. (2.15)

We refer the details to [9, Theorem 6.2 on page 175]. Hybrid SFDEs of the form

dx(t) = f(xt, r(t), t)dt+ g(xt, r(t), t)dB(t) have similar theorem.
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Theorem 2.5.6 Let p ≥ 1. Assume there is a positive constant K such that for every

solution x(t) of the hybrid SFDE, for all t ≥ t0 and i ∈ S,

E
(
|f(xt, i, t)|p + |g(xt, i, t)|p

)
≤ K E

∣∣ sup
−τ≤s≤0

x(t+ s)
∣∣p. (2.16)

Then (2.14) can imply (2.15) for hybrid SFDEs.

We refer the details to [26, Theorem 8.8 on page 309].

Now we introduce the definition of a nonsingular M-matrix and some relevant the-

orems for stability of hybrid SDEs used in Chapter 4.

Definition 2.5.7 A square matrix A = (aij)n×n is called a nonsingular M-matrix if A

can be expressed as A = sI − G, where the matrix G has all elements non-negative, s

is a real number larger than the spectral radius of G and I is the n×n identity matrix.

Theorem 2.5.8 If A = (aij)n×n with aij ≤ 0 for i 6= j, then the following statements

are equivalent:

(1) A is a nonsingular M-matrix.

(2) Every real eigenvalue of A is positive.

(3) There is an n-dimensional real vector x whose elements are all positive such that

Ax has all elements positive.

We present the Theorem 5.12 on page 172 of [26] below.

Theorem 2.5.9 Assume that there are constants K > 0, αi ∈ R, σi ≥ 0 and ρi ≥ 0

(i ∈ S) such that

|f(x, i, t)| ≤ K|x|, xT f(x, i, t) ≤ αi|x|2,

|g(x, i, t)| ≤ ρi|x|, |xT g(x, i, t)| ≥ σi|x|2,

for all (x, i, t) ∈ Rn × S× R+. For 0 < p < 2, define an N ×N matrix

A(p) := diag(θ1(p), · · · , θN (p))− Γ,

40



Chapter 2. Preliminary

where

θi(p) =
p

2

[
(2− p)σ2

i − ρ2
i

]
− pαi for 1 ≤ i ≤ N

and Γ = (γij)N×N is the generator matrix of Markov chain r(t). If A(p) is a nonsin-

gular M-matrix, then the hybrid SDE (e.g. of the form (2.8)) is exponentially stable in

pth moment and also almost surely.

We present the Theorem 5.8 on page 166 of [26] below.

Theorem 2.5.10 Let Assumption 2.5.2 hold. Let p, λ, c1, c2 be positive numbers. If

there is a function V (x, i, t) ∈ C2,1(Rn × S× R+;R+) such that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p

and

LV (x, i, t) ≤ −λ|x|p

where LV (x, i, t) was defined in (2.10), for all (x, i, t) ∈ Rn × S× R+. Then

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ − λ

c2

for all (x0, r0, t0) ∈ Rn × S× R+.

Barbalat’s lemma (see e.g. [124, page 123]) was used in the proof, so we present it

here.

Lemma 2.5.11 If the differentiable function f(t) has a finite limit as t → ∞, and if

its derivative ḟ is uniformly continuous, then ḟ → 0 as t→∞.

2.6 Frequently used inequalities

In this section, I present some inequalities (see e.g. [9, 26]) used in this thesis.

The Young inequality

|a|β|b|1−β ≤ β|a|+ (1− β)|b|, ∀a, b ∈ R and ∀β ∈ [0, 1].
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Then we can easily derive that

|a|β|b|1−β ≤ εβ|a|+ ε−β/(1−β)(1− β)|b|, ∀ε > 0.

For xi ∈ R, we have

|
k∑
i=1

xi|p ≤ kp−1
k∑
i=1

|xi|p for p ≥ 1 and |
k∑
i=1

xi|p ≤ kp
k∑
i=1

|xi|p for p ∈ (0, 1).

(2.17)

Another useful inequality is

|ap − bp| ≤ p|a− b|(ap−1 + bp−1) for ∀a, b ≥ 0 and p ≥ 1.

Following inequalities for random variables are useful:

(i) Hölder’s inequality

|E(XTY )| ≤ (E|X|p)1/p(E|Y |q)1/q

if p > 1, 1/p+ 1/q = 1, X ∈ Lp, Y ∈ Lq. This implies
(
E|X|a

)1/a ≤ (E|X|b)1/b for

0 < a < b <∞ and X ∈ Lp. Especially when 0 < p < 2,

E|X|p ≤
(
E|X|2

)p/2
,

which can also be derived from Jensen’s inequality.

(ii) Chebyshev’s inequality

P
(
ω : |X(ω)| ≥ c

)
≤ c−pE|X|p

for c > 0, p > 0, X ∈ Lp.

We refer the readers to [9, Section 1.7, 1.8] for the following frequently used in-

equalities.

Theorem 2.6.1 (Gronwall’s inequality) Let T > 0 and c ≥ 0. Let u(·) be a Borel

measurable bounded nonnegative function on [0, T ], and let v(·) be a nonnegative inte-
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grable function on [0, T ]. If

u(t) ≤ c+

∫ t

0
v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp(

∫ t

0
v(s)ds) for all 0 ≤ t ≤ T.

In this thesis, we write the exponential function as e(·) or sometimes exp(·).

Following are moment inequalities for Itô’s integral.

Theorem 2.6.2 For p ≥ 2, let g ∈M2([0, T ];Rnκm), then

E
∣∣ ∫ T

0
g(s)dB(s)

∣∣p ≤ [
p(p− 1)

2
]p/2 T p/2−1 E

∫ T

0
|g(s)|pds.

When p = 2, it’s an equality.

Theorem 2.6.3 (The Burkholder-Davis-Gundy inequality)

Let g ∈ L2(R+;Rnκm). For t ≥ 0, define

x(t) =

∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2ds.

Then for every p > 0, there are positive constants cp, Cp depending on p such that

cpE|A(t)|p/2 ≤ E
(

sup
0≤s≤t

|x(t)|p
)
≤ CpE|A(t)|p/2

for all t ≥ 0. In particular, one may take

cp =
(p

2

)p
and Cp =

(32

p

)p/2
for 0 < p < 2;

cp = 1 and Cp = 4 for p = 2;

cp =
(
2p
)−p/2

and Cp =
[ pp+1

2(p− 1)p−1

]p/2
for p > 2.
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On P th Moment Stabilization of

Hybrid SDEs

As discussed in Section 1.3, mean square stability is not enough and it’s necessary to

investigate the pth moment stabilization for a wide range of p. This chapter is devoted

to pth moment stabilization of hybrid SDEs by feedback control based on discrete-

time observations, in the sense that the controlled system becomes H∞ in pth moment

stable for p > 1, asymptotic stable in pth moment for p ≥ 2, exponentially stable in

pth moment and almost surely exponentially stable.

The results in this chapter have been published in “Stochastic Analysis and Appli-

cations” in 2017 as [104] 1.

This chapter is organised as follows. Section 3.1 states our stabilization problem,

proposes assumptions and defines the Lyapunov functional that will be used for analy-

sis. Section 3.2 and 3.3 analyze pth moment asymptotic and exponential stabilization

respectively. Then Section 3.4 gives both linear and nonlinear examples for illustra-

tion. In Sections 3.2-3.4, the controller is based on discrete-time state observations

and continuous-time mode observations. In Section 3.5, mode observations are also

discretized. The conclusion is stated in Section 3.6.

1Dong, R and Mao, X. 2017. On P th Moment Stabilization of Hybrid Systems by Discrete-time
Feedback Control. Stochastic Analysis and Applications, 35, pp. 803–822.
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3.1 Stabilization problem

Consider an n-dimensional hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (3.1)

on t ≥ 0, with initial values x(0) = x0 ∈ Rn and r(0) = r0 ∈ S. Here

f, u : Rn × S× R+ → Rn and g : Rn × S× R+ → Rn×m

are all Borel measurable functions. The given system may not be stable and our aim

is to design a feedback control u(x(δt), r(t), t) so that the controlled hybrid SDE

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(t), t)

)
dt+ g(x(t), r(t), t)dB(t) (3.2)

becomes stable, where

δt = [t/τ ]τ (3.3)

for τ > 0.

So our controller u(x(δt), r(t), t) is designed based on the discrete-time state obser-

vations x(0), x(τ), x(2τ), · · · . Now we impose the following standing hypotheses.

Assumption 3.1.1 Assume that the coefficients f and g are all locally Lipschitz con-

tinuous We also assume that they satisfy the following linear growth conditions

|f(x, i, t)| ≤ K1|x| and |g(x, i, t)| ≤ K2|x| (3.4)

for all (x, i, t) ∈ Rn × S× R+, where K1 and K2 are both positive numbers.

Obviously, (3.4) implies that

f(0, i, t) = 0, g(0, i, t) = 0 (3.5)

for all (i, t) ∈ S× R+.
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Assumption 3.1.2 Assume the controller function u are globally Lipschitz continuous,

i.e., there exists a positive constant K3 such that

|u(x, i, t)− u(y, i, t)| ≤ K3|x− y| (3.6)

for all (x, y, i, t) ∈ Rn × Rn × S× R+. We also assume that

u(0, i, t) = 0 (3.7)

for all (i, t) ∈ S× R+.

We can easily see that Assumption 3.1.2 implies the following linear growth condi-

tion on the controller function

|u(x, i, t)| ≤ K3|x| (3.8)

for all (x, i, t) ∈ Rn × S× R+.

Discrete-time observations bring a delay term into the system. Specifically,

x(δt) = x(t−ζ(t)) where ζ(t) = t−[t/τ ]τ = t−kτ for t ∈ [kτ, (k+1)τ), k = 0, 1, 2, · · · .

As discussed in section 2.3, the controlled system (3.2) can be written as a hybrid

SDDE. Then under Assumptions 3.1.1 and 3.1.2, system (3.2) has a unique solution

x(t) such that E|x(t)|p <∞ for all t ≥ 0 and p > 1 (see e.g. Corollary 7.15 in [26]).

Readers may wonder why we do not apply the existing stability criteria for SDDEs

or hybrid SDDEs directly to our controlled system. There are two reasons. One is that

the existing stability criteria for delay systems usually rely on assumptions involving

the delay term, for example V (x(t), x(δt)) or V (x(δt), δt). However, before we know the

upper bound of the observation interval τ , δt is unknown and so conditions involving

δt cannot be verified. The other reason is that usually the bounded variable delay is

required to be differentiable with derivative less than one (see e.g. [69, 97] and [26,

p.285]). However, our delay ζ(t) has derivative 1 when t ∈ ((k − 1)τ, kτ) and is not
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differentiable when t = kτ , k = 1, 2, 3 · · · . Therefore, we need to establish new stability

criteria for the controlled system.

For stabilization purpose related to the controlled system (3.2), we introduce the

following Lyapunov function operator and Lyapunov functional.

Let V (x, i, t) be a Lyapunov function and we require V ∈ C2,1(Rn × S × R+;R+),

i.e., the family of non-negative functions V (x, i, t) is defined on (x, i, t) ∈ Rn × S× R+

which are continuously twice differentiable in x and once in t. Then define an operator

LV : Rn × S× R+ → R by

LV (x, i, t) = Vt(x, i, t) + Vx(x, i, t)[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Vxx(x, i, t)g(x, i, t)]

+
N∑
k=1

γikV (x, k, t), (3.9)

where Vt, Vx and Vxx is the first order partial derivative with respect to t, x and the

second order partial derivative with respect to x respectively.

Now we define a Lyapunov functional for a fixed moment order p > 1 by

V̂ (xt, rt, t)=θτ
p−2
2

∫ t

t−τ

∫ t

s

[
τ
p
2 |f(x(z),r(z),z)+u(x(δz),r(z),z)|p+ρ|g(x(z),r(z), z)|p

]
dzds

(3.10)

for t ≥ 0, where xt := {x(t + s) : −2τ ≤ s ≤ 0}, rt := {r(t + s) : −τ ≤ s ≤ 0}, θ is a

positive number to be determined and

ρ =


(32
p )

p
2 for p ∈ (1, 2),

[p(p−1)
2 ]

p
2 for p ≥ 2.

(3.11)

For the definition of xt, we require s ∈ [−2τ, 0], because z − τ < δz ≤ z in (3.10). At

the starting point z = s = t− τ , we have t− 2τ < δz ≤ t− τ .

For the functional to be well defined over 0 ≤ t < 2τ , we define

x(s) = x0, r(s) = r0, f(x, i, s) = f(x, i, 0), u(x, i, s) = u(x, i, 0), g(x, i, s) = g(x, i, 0)
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for all (x, i, s) ∈ Rn × S× [−2τ, 0).

In addition, we need to construct another functional by

U(xt, rt, t) = V (x(t), r(t), t) + V̂ (xt, rt, t). (3.12)

Let’s impose an assumption on the Lyapunov function.

Assumption 3.1.3 Assume that there is a function V ∈ C2,1(Rn × S × R+;R+) and

two positive numbers l, λ such that

LV (x, i, t) + l|Vx(x, i, t)|
p
p−1 ≤ −λ|x|p (3.13)

for all (x, i, t) ∈ Rn × S× R+.

3.2 Asymptotic stabilization

3.2.1 H∞ stability

Theorem 3.2.1 Fix the moment order p > 1. Let Assumptions 3.1.1, 3.1.2 and 3.1.3

hold. If τ > 0 is sufficiently small for

λ >
[2(p− 1)]p−1Kp

3

pplp−1(1− 8p−1τpKp
3 )
τ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
and τ ≤ 8

− p−1
p /K3 (3.14)

then the controlled system (3.2) is H∞-stable in Lp(Ω×R+;Rn) (also known as Lp(Ω×

R+;Rn)-stable) in the sense ∫ ∞
0

E|x(s)|pds <∞ (3.15)

for all initial data x0 ∈ Rn and r0 ∈ S.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. Let

Φ(xt, rt, t) = θτ
p−2
2

∫ t

t−τ

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(3.16)
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Notice that the integrand in (3.10) is right-continuous in t, then we can use the Leibniz

integral rule to calculate the partial derivative of V̂ (xt, rt, t) with respect to t.

V̂t(xt, rt, t) =θτ
p
2

[
τ
p
2 |f(x(t), r(t), t) + u(x(δt), r(t), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t).

We apply the generalized Itô formula to U(xt, rt, t) and obtain that

dU(xt, rt, t) = LU(xt, rt, t)dt+ dM(t)

for t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0 and

LU(xt, rt, t)

=Vt(x(t), r(t), t) + Vx(x(t), r(t), t)[f(x(t), r(t), t) + u(x(δt), r(t), t)]

+ 1
2trace[gT (x(t), r(t), t)Vxx(x(t), r(t), t)g(x(t), r(t), t)]

+
N∑
j=1

γr(t),jV (x(t), j, t) + V̂t(xt, rt, t). (3.17)

Replacing some terms with the operator defined in (3.9), we have

LU(xt, rt, t)

=LV (x(t), r(t), t)− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t)]

+ θτ
p
2

[
τ
p
2 |f(x(t), r(t), t) + u(x(δt), r(t), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t).

(3.18)

By the Young inequality (presented in section 2.6 or see e.g. [26, page 52]) and
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Assumption 3.1.2, we can derive that

− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t)]

≤|Vx(x(t), r(t), t)||u(x(t), r(t), t)− u(x(δt), r(t), t)|

≤
[
ε|Vx(x(t), r(t), t)|

p
p−1

] p−1
p
[
ε1−p|u(x(t), r(t), t)− u(x(δt), r(t), t)|p

] 1
p

≤p− 1

p
ε|Vx(x(t), r(t), t)|

p
p−1 +

1

p
ε1−p|u(x(t), r(t), t)− u(x(δt), r(t), t)|p

≤l|Vx(x(t), r(t), t)|
p
p−1 +

1

p
(
p− 1

pl
)p−1Kp

3 |x(t)− x(δt)|p, (3.19)

where l = p−1
p ε for ∀ε > 0. Moreover, by Assumptions 3.1.1, 3.1.2 and the elementary

inequality |a+ b|p ≤ 2p−1(|a|p + |b|p) for ∀a, b ∈ R, we have

|f(x(t), r(t), t) + u(x(δt), r(t), t)|p

≤2p−1
[
Kp

1 |x(t)|p +Kp
3 |x(δt)|p

]
≤2p−1(Kp

1 + 2p−1Kp
3 )|x(t)|p + 4p−1Kp

3 |x(t)− x(δt)|p.

(3.20)

Substituting (3.19) and (3.20) into (3.18) yields that

LU(xt, rt, t) ≤LV (x(t), r(t), t) + l|Vx(x(t), r(t), t)|
p
p−1

+ θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
|x(t)|p

+
(

4p−1θτp +
1

p
(
p− 1

pl
)p−1

)
Kp

3 |x(t)− x(δt)|p − Φ(xt, rt, t). (3.21)

Then Assumption 3.1.3 implies that

LU(xt,rt, t) ≤ −β|x(t)|p +
(

4p−1θτp +
1

p
(
p− 1

pl
)p−1

)
Kp

3 |x(t)− x(δt)|p − Φ(xt, rt, t).

(3.22)

where

β = β(θ, τ) := λ− θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
. (3.23)
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Furthermore, it’s easy to see from the definition of hybrid SDEs solutions and the

elementary inequality in (2.17) that

|x(t)− x(δt)|p

≤2p−1
(∣∣∣ ∫ t

δt

[f(x(s), r(s), s) + u(x(δs), r(s), s)]ds
∣∣∣p +

∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p).
(3.24)

Since t− δt ≤ τ for all t ≥ 0, Hölder’s inequality implies that

∣∣∣ ∫ t

δt

[f(x(s), r(s), s)+u(x(δs), r(s), s)]ds
∣∣∣p≤ τp−1

∫ t

δt

|f(x(s), r(s), s)+u(x(δs), r(s), s)|pds.

(3.25)

For p ∈ (1, 2), we use the Burkholder-Davis-Gundy inequality (presented in section 2.6

or see e.g. [9, page 40]) and Hölder’s inequality to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p ≤ E

(
sup

δt≤z≤t

∣∣∣ ∫ z

δt

g(x(v), r(v), v)dw(v)
∣∣∣p)

≤(
32

p
)
p
2E
[ ∫ t

δt

|g(x(s), r(s), s)|2ds
] p

2 ≤ (
32

p
)
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (3.26)

For p ≥ 2, we use Theorem 2.6.2 (or see [9, Theorem 7.1 on page 39]) to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p ≤ [

p(p− 1)

2
]
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (3.27)

Substituting (3.25), (3.26), (3.27) and (3.11) into (3.24) yields

E|x(t)− x(δt)|p

≤2p−1τ
p−2
2 E

∫ t

δt

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(3.28)

Substitute (3.16) and (3.28) into (3.22). Then taking expectations on both sides
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gives

E(LU(xt, rt, t))

≤− βE|x(t)|p + 2p−1τ
p−2
2

(
4p−1θτp +

1

p
(
p− 1

pl
)p−1

)
Kp

3

× E
∫ t

δt

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds

− θτ
p−2
2 E

∫ t

t−τ

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(3.29)

Let us now choose

8p−1τpKp
3 < 1 and θ =

[2(p− 1)]p−1

pp(1− 8p−1τpKp
3 )
l1−pKp

3 . (3.30)

Then

2p−1τ
p−2
2 [4p−1θτp +

1

p
(
p− 1

pl
)p−1]Kp

3 = θτ
p−2
2 (3.31)

Noting that t− τ ≤ δt and combining (3.31) with (3.29), we get

E(LU(xt, rt, t)) ≤ −βE|x(t)|p. (3.32)

By condition (3.14), we have β > 0.

Moreover, we know from the generalized Itô formula that

EU(xt, rt, t) = U(x0, r0, 0) + E
∫ t

0
LU(xs, rs, s)ds, for t ≥ 0. (3.33)

Denote U(x0, r0, 0) by C0 for simplicity, then

C0 = V (x0, r0, 0) + 0.5θτ
p+2
2

[
τ
p
2 |f(x0, r0, 0) + u(x0, r0, 0)|p + ρ|g(x0, r0, 0)|p

]
. (3.34)

Clearly, C0 is a positive number. Consequently, substituting (3.32) into (3.33) and by
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the Fubini theorem, we obtain that

0 ≤ EU(xt, rt, t) ≤ C0 − β
∫ t

0
E|x(s)|pds, (3.35)

for t ≥ 0. Hence ∫ ∞
0

E|x(s)|pds ≤ C0/β,

which implies the desired assertion (3.15). The proof is complete. 2

Denote the right-hand-side of the first inequality in (3.14) by Lτ , i.e.

Lτ =
[2(p− 1)]p−1Kp

3

pplp−1(1− 8p−1τpKp
3 )
τ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
.

Condition (3.14) requires λ > Lτ . When τ = 0, Lτ = 0 and then (3.14) holds. Lτ is

obviously continuous on τ and increases with τ . Hence, for any fixed values (within

the ranges stated above) of the parameters p, λ, l,K1,K2 and K3, there is a unique

positive number τ∗ such that λ = Lτ . Setting τ ∈ (0, τ∗) guarantees λ > Lτ . Setting

0 < τ < min(τ∗, 8
− p−1

p /K3) guarantees that condition (3.14) is satisfied. Besides, the

derivative of Lτ with respect to τ,K1,K2,K3 are all nonnegative.

Compared to [97] which studied mean square stabilization, my theory requires

weaker conditions on the observation interval τ . You et al. [97] required τ to sat-

isfy

lλ > τK2
3 [2τ(K2

1 + 2K2
3 ) +K2

2 ] and τ ≤ 1

4K3
. (3.36)

When p = 2, condition (3.14) becomes

2l(1− 8K2
3τ

2)λ > τK2
3 [2τ(K2

1 + 2K2
3 ) +K2

2 ] and τ ≤ 1

2
√

2K3

.

On one hand, τ ≤ 1
2
√

2K3
is weaker than τ ≤ 1

4K3
. On the other hand, when τ ≤ 1

4K3
,

2(1−8K2
3τ

2) > 1, i.e. we allow the right-hand-side τK2
3 [2τ(K2

1 +2K2
3 )+K2

2 ] larger than

[97]. Therefore, we allow for larger observation interval for mean square stabilization

than [97]. This will be shown later in Example 3.4.2.
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3.2.2 Asymptotic stability

Theorem 3.2.2 Let the moment order p ≥ 2. Under the same assumptions of Theo-

rem 3.2.1, the solution of the controlled system (3.2) satisfies

lim
t→∞

E|x(t)|p = 0

for any initial data x0 ∈ Rn and r0 ∈ S. In other words, the controlled system (3.2) is

asymptotically stable in pth moment.

Proof. Again, fix any x0 ∈ Rn, r0 ∈ S. We know from the Itô formula that for t ≥ 0,

E(|x(t)|p) = |x0|p + E
∫ t

0

(
p|x(s)|p−2xT (s)[f(x(s), r(s), s) + u(x(δs), r(s), s)]

)
ds

+ E
∫ t

0

(p
2
|x(s)|p−2|g(x(s), r(s), s)|2 +

p(p− 2)

2
|x(s)|p−4|xT (s)g(x(s), r(s), s)|2

)
ds.

(3.37)

Since xT y ≤ |x||y| and |xT g| ≤ |x||g| for ∀x, y ∈ Rn, g ∈ Rn×m, we have

E(|x(t)|p) ≤ |x0|p +

∫ t

0
pE
[
|x(s)|p−1(|f(x(s), r(s), s)|+ |u(x(δs), r(δs), s)|)

]
ds

+

∫ t

0

(p
2
E
[
|x(s)|p−2|g(x(s), r(s), s)|2

]
+
p(p− 2)

2
E[|x(s)|p−2|g(x(s), r(s), s)|2]

)
ds

(3.38)

for p ≥ 2. Then Assumptions 3.1.1 and 3.1.2 imply

E(|x(t)|p) ≤ |x0|p +

∫ t

0

(
pK1E|x(s)|p + pK3E

[
|x(s)|p−1|x(δs)|

]
+
p(p− 1)

2
K2

2E|x(s)|p
)
ds.

(3.39)

Moreover, the Young inequality and the elementary inequality in (2.17) (|a+ b|p ≤
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2p−1(|a|p + |b|p) for ∀a, b ∈ R) imply that

|x(s)|p−1|x(δs)| ≤
[p− 1

p
||x(s)|+ 1

p
|x(δs)|

]p
≤ 2p−1

pp

[
(p− 1)p|x(s)|p + |x(δs)|p

]
≤ 2p−1

pp

[
((p− 1)p + 2p−1)|x(s)|p + 2p−1|x(s)− x(δs)|p

]
.

(3.40)

Substituting this into (3.39) gives

E(|x(t)|p) ≤ |x0|p + C

∫ t

0
E|x(s)|pds+ C

∫ t

0
E|x(s)− x(δs)|pds, (3.41)

where, here and in the remaining part of the thesis, C’s denote positive constants that

may change from line to line.

Note that for any s ≥ 0, there is a unique integer v ≥ 0 for s ∈ [vτ, (v + 1)τ), and

δz = vτ for any z ∈ [vτ, s].

Recall (3.28) as well as the Assumptions 3.1.1 and 3.1.2, we derive that

E|x(s)− x(δs)|p = E|x(s)− x(vτ)|p

≤2p−1τ
p−2
2 E

∫ s

vτ
τ
p
2 |f(x(z), r(z), z) + u(x(δz), r(z), z)|p + ρ|g(x(z), r(z), z)|pdz

≤2p−1τ
p−2
2 E

∫ s

vτ
2p−1τ

p
2

[
Kp

1 |x(z)|p +Kp
3 |x(vτ)|p

]
+ ρKp

2 |x(z)|pdz

≤2p−1τ
p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

] ∫ s

vτ
E|x(z)|pdz + 4p−1τpKp

3E|x(vτ)|p

≤2p−1τ
p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

] ∫ s

vτ
E|x(z)|pdz + 8p−1τpKp

3

(
E|x(s)|p + E|x(s)− x(vτ)|p

)
.

(3.42)

Note that the condition (3.14) implies 8p−1τpKp
3 < 1, then we can rearrange it and

55



Chapter 3. On P th Moment Stabilization of Hybrid SDEs

obtain that

E|x(s)− x(δs)|p ≤
2p−1τ

p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

]
1− 8p−1τpKp

3

∫ s

δs

E|x(z)|pdz +
8p−1τpKp

3

1− 8p−1τpKp
3

E|x(s)|p.

(3.43)

Substituting this into (3.41) yields

E|x(t)|p ≤ |x0|p + C

∫ t

0
E|x(s)|pds+ C

∫ t

0

∫ s

δs

E|x(z)|pdzds. (3.44)

Besides, it’s easy to show that for a non-negative function F (t),

∫ t

0

∫ s

δs

F (z)dzds ≤
∫ t

0

∫ s

s−τ
F (z)dzds

≤
∫ t

−τ
F (z)

∫ z+τ

z
dsdz ≤ τ

∫ t

−τ
F (z)dz.

Applying this to E|x(z)|p gives

∫ t

0

∫ s

δs

E|x(z)|pdzds ≤ τ
∫ t

−τ
E|x(z)|pdz ≤ τ2|x0|p + τ

∫ t

0
E|x(z)|pdz,

then we can rewrite (3.44) as

E|x(t)|p ≤ C|x0|p + C

∫ t

0
E|x(s)|pds. (3.45)

So by Theorem 3.2.1, we have

E|x(t)|p ≤ C ∀t ≥ 0. (3.46)
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Furthermore, it’s easy to see from the Itô formula that

E|x(t2)|p − E|x(t1)|p

=E
∫ t2

t1

(
p|x(t)|p−2xT (t)[f(x(t), r(t), t) + u(x(δt), r(t), t)]

)
dt

+ E
∫ t2

t1

(p
2
|x(t)|p−2|g(x(t), r(t), t)|2 +

p(p− 2)

2
|x(t)|p−4|xT (t)g(x(t), r(t), t)|2

)
dt.

After similar calculations to (3.37) and(3.39), we derive that

E|x(t2)|p−E|x(t1)|p ≤
∫ t2

t1

(
pK1E|x(t)|p+pK3E

[
|x(t)|p−1|x(δt)|

]
+
p(p− 1)

2
K2

2E|x(t)|p
)
dt.

Then by (3.46), we get that for any 0 ≤ t1 < t2 <∞,

∣∣∣E|x(t2)|p − E|x(t1)|p
∣∣∣ ≤ C(t2 − t1).

According to Barbalat’s lemma 2 (presented in Lemma 2.5.11 or see [124, page 123]),

combining this uniform continuity with Theorem 3.2.1 yields that limt→∞ E|x(t)|p = 0.

The proof is complete. 2

3.3 Exponential stabilization

In last section, we discussed the asymptotic stabilization and proved that eventually

(as t → ∞), E|x(t)|p goes to 0, but we don’t know its speed. To explore the rate at

which the solution tends to zero, let us discuss the exponential stabilization in this

section. We need to impose the following condition.

Assumption 3.3.1 Assume that there is a pair of positive numbers c1 and c2 such

that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p (3.47)

for all (x, i, t) ∈ Rn × S× R+.

2Consider
∫ t
0
E|x(s)|pds to be the ‘differentiable function f(t)’ in Lemma 2.5.11, consider E|x(t)|p as

‘its derivative ḟ ’ in Lemma 2.5.11.
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Theorem 3.3.2 Fix the moment order p > 1. Let Assumptions 3.1.1, 3.1.2, 3.1.3 and

3.3.1 hold. Choose τ > 0 sufficiently small for (3.14) to hold. Then the solution of the

controlled system (3.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ −η (3.48)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −η

p
a.s. (3.49)

for any initial data x0 ∈ Rn and r0 ∈ S, where η > 0 is the unique root to the following

equation

2τηe2τη(H1 + τH2) + ηc2 = β, (3.50)

in which

H1 = θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 +
32p−1τ

3p
2 K2p

3

1− 8p−1τpKp
3

]
and H2 =

8p−1θτ
3p−2

2 Kp
3

[
2p−1τ

p
2Kp

1 + ρKp
2

]
1− 8p−1τpKp

3

. (3.51)

Remark 3.3.3 When τ = 0, obviously H1 = H2 = 0. For any τ > 0, we have H1 > 0

and H2 > 0. The left hand side of (3.50) is continuous on η. For a fixed τ > 0, when

η = 0, the left hand side of (3.50) is 0 when η = 0 and its derivative on η is positive.

Therefore for any given positive number β, equation (3.50) has a unique root. 3

Proof. It’s easy to see from the generalized Itô formula that

E
[
eηtU(xt, rt, t)

]
= U(x0, r0, 0) + E

∫ t

0
eηs[ηU(xs, rs, s) + LU(xs, rs, s)]ds (3.52)

3We can calculate η in this way: The system coefficients and controller determine K1, K2 and
K3; moment order determines p and ρ; set parameters c2 and λ according to corresponding conditions,
choose τ > 0 sufficiently small for (3.14) to hold; then calculate β, H1 and H2; finally η can be found by
solving equation (3.50) and actually finding η > 0 such that 2τηe2τη(H1 + τH2) + ηc2 ≤ β is sufficient
for (3.48) and (3.49) to hold.

58



Chapter 3. On P th Moment Stabilization of Hybrid SDEs

for t ≥ 0. By (3.47) and (3.12), we have

c1e
ηtE|x(t)|p ≤ eηtEV (x(t), r(t), t) ≤ eηtEU(xt, rt, t)

Then combining (3.52), (3.32) and (3.34) gives

c1e
ηtE|x(t)|p ≤ C0 +

∫ t

0
eηs[ηEU(xs, rs, s)− βE|x(s)|p]ds. (3.53)

Moreover, substutiting (3.10) and (3.47) into (3.12) gives

EU(xs, rs, s) ≤ c2E|x(s)|p + EV̂ (xs, rs, s). (3.54)

Since for a function F (v), we have

∫ s

s−τ

∫ s

z
F (v)dvdz =

∫ s

s−τ

∫ v

s−τ
F (v)dzdv =

∫ s

s−τ
F (v)

∫ v

s−τ
dzdv

=

∫ s

s−τ
F (v)(v − s+ τ)dv < τ

∫ s

s−τ
F (v)dv.

Applying this to EV̂ (xs, rs, s) yields that

EV̂ (xs, rs, s)

≤θτ
p
2E
∫ s

s−τ

[
τ
p
2 |f(x(v), r(v), v) + u(x(δv), r(δv), v)|p + ρ|g(x(v), r(v), v)|p

]
dv

≤θτ
p
2

∫ s

s−τ

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
E|x(v)|p + 4p−1τ

p
2Kp

3E|x(v)− x(δv)|pdv.

To make δv > 0, we need v ≥ τ and so s ≥ 2τ . Note that (3.42) and (3.43) both hold

for any p > 1. Then we have

EV̂ (xs, rs, s) ≤ H1

∫ s

s−τ
E|x(v)|pdv +H2

∫ s

s−τ

∫ v

δv

E|x(y)|pdydv. (3.55)

where both H1 and H2 have been defined by (3.51).
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Since for a non-negative function F (y),

∫ s

s−τ

∫ v

δv

F (y)dydv ≤
∫ s

s−τ

∫ v

v−τ
F (y)dydv

<

∫ s

s−2τ

∫ s

s−τ
F (y)dvdy = τ

∫ s

s−2τ
F (y)dy.

Thus,
∫ s
s−τ

∫ v
δv
E|x(y)|pdydv ≤ τ

∫ s
s−2τ E|x(y)|pdy. Hence we have

E(V̂ (xs, rs, s)) ≤ (H1 + τH2)

∫ s

s−2τ
E|x(y)|pdy. (3.56)

Combining (3.53), (3.54) and (3.56), we obtain that

c1e
ηtE|x(t)|p

≤C0 − (β − ηc2)

∫ t

0
eηsE|x(s)|pds+ η(H1 + τH2)

∫ t

0
eηs
(∫ s

s−2τ
E|x(y)|pdy

)
ds (3.57)

for ∀t ≥ 2τ . Obviously,

∫ 2τ

0
eηs
∫ s

s−2τ
E|x(y)|pdyds ≤

∫ 2τ

−2τ

∫ 2τ

0
eηsE|x(y)|pdsdy =

e2τη−1

η

∫ 2τ

−2τ
E|x(y)|pdy.

(3.58)

Besides, it can be easily seen that

∫ t

2τ
eηs
(∫ s

s−2τ
E|x(y)|pdy

)
ds ≤

∫ t

0
E|x(y)|p

(∫ y+2τ

y
eηsds

)
dy

≤ 2τe2τη

∫ t

0
eηyE|x(y)|pdy. (3.59)

Substituting (3.58) and (3.59) into (3.57) gives

c1e
ηtE|x(t)|p ≤ C +

(
2τηe2τη(H1 + τH2) + ηc2 − β

)∫ t

0
eηsE|x(s)|pds. (3.60)

The condition (3.50) implies that for ∀t ≥ 2τ ,

c1e
ηtE|x(t)|p ≤ C. (3.61)
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Hence we obtain the assertion (3.48). According to Theorem 2.5.6 (or see [26, Theo-

rem 8.8 on page 309]), which shows that pth moment exponential stability implies the

almost sure exponential stability under the linear growth condition through definition

of the SDE solutions, the Hölder’s inequality, the Burkholder-Davis-Gundy inequality

and Borel-Cantelli lemma, we finally obtain the assertion (3.49). The proof is complete.

2

3.3.1 Corollary

In practice, a common choice of Lyapunov functions is quadratic functions, for example,

V (x(t), r(t), t) = (xT (t)Qr(t)x(t))
p
2 where Qr(t) are positive-definite symmetric n × n

matrices for p ≥ 2. So we propose the following corollary to state how to use this kind

of Lyapunov functions to help exponentially stabilize an unstable hybrid system.

Since Vx(x, i, t) = p(xTQix)
p
2
−1xTQi, then we have

|Vx(x, i, t)| ≤ pλ
p
2
−1

max (Qi)‖Qi‖|x|p−1 = pλ
p
2
max(Qi)|x|p−1.

So we only need to require LV (x, i, t) ≤ −b|x|p for b > 0 to satisfy Assumption 3.1.3.

This leads to the following alternative assumption. Moreover, Assumption 3.3.1 holds

with c1 = mini∈S λ
p
2
min(Qi) and c2 = maxi∈S λ

p
2
max(Qi). By calculating the derivatives

Vt(x, i, t) = 0 and Vxx(x, i, t) = p(p− 2)[xTQix]
p
2
−2Qixx

TQi + p[xTQix]
p
2
−1Qi, we can

easily obtain LV (x, i, t), which is the left-hand-side of (3.62) below.

Assumption 3.3.4 Assume that there exist positive-definite symmetric matrices Qi ∈

Rn×n (i ∈ S) and a constant b > 0 such that

p(xTQix)
p
2
−1
(
xTQi[f(x, i, t) + u(x, i, t)] +

1

2
trace[gT (x, i, t)Qig(x, i, t)]

)
+ p(

p

2
− 1)[xTQix]

p
2
−2|gTQix|2 +

N∑
j=1

γij [x
TQjx]

p
2 ≤ −b|x|p, (3.62)

for all (x, i, t) ∈ Rn × S× R+.
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Corollary 3.3.5 Fix moment order p ≥ 2. Let Assumptions 3.1.1, 3.1.2 and 3.3.4

hold. Set

c2 = max
i∈S

λ
p
2
max(Qi) and d = (pc2)

p
p−1 .

Choose l ∈ (0, b/d) to maximize blp−1 − dlp. Then set λ = b − ld. Let τ > 0 be

sufficiently small for (3.14) to hold. Then (3.48) holds, i.e., the controlled system (3.2)

is pth moment exponentially stable.

The reason to require l < b/d is because, condition (3.13) in Assumption 3.1.3 is

equivalent to −b + ld ≤ −λ < 0. The reason to maximize blp−1 − dlp is because,

substituting λ = b− ld into (3.14) yields that large blp−1−dlp allows for relatively large

τ .

It can be seen that the condition (5.4) in [97] is a special case of (3.62) when p = 2.

Besides, You et al. [97] didn’t discuss how to choose l. My parameter settings can give

a better (larger) observation interval, which is shown in Example 3.4.2 below.

Unlike the mean square case (p = 2), a more general range of moment order brings

more complexity and difficulty to the stabilization problem. Firstly, I need to use

more general inequalities. Secondly, some terms would have more complex coeffi-

cients. If p = 2, in Assumption 3.3.4 condition (3.62), the term (xTQix)
p
2
−1 and

p(
p

2
− 1)[xTQix]

p
2
−2|gTQix|2 would be simply 1 and 0 respectively.

3.4 Examples

Now we illustrate our theory with two examples.

Example 3.4.1 Now we consider a nonlinear hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (3.63)

on t ≥ 0. Here

x(t) =

 x1(t)

x2(t)

 ;
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B(t) is a scalar Brownian motion; r(t) is a Markov chain on the state space S = {1, 2}

with the generator matrix

Γ =

 −4 4

1 −1

 ;

and the coefficients are

f(x(t), 1, t) =

 x2(t) cos(x1(t))

x1(t) sin(x2(t))

 , f(x(t), 2, t) =

 x2(t) sin(x1(t))

x1(t) cos(x2(t))

 ,

g(x(t), 1, t) =

 0.2
√

3x2
1(t) + x2

2(t)

0.2
√
x2

1(t) + 3x2
2(t)

 , g(x(t), 2, t) =

 0.1 −0.1

−0.2 0.4

x(t).

Figure 3.1 below shows simulated paths and obviously this system is not stable in

the sense of 3rd moment exponential stability.

Note that this system satisfies the Assumption 3.1.1 with K1 = 1 and K2 = 0.4671.

We will design a feedback control of the form u(x, i, t) = Ai(x)x and find the observation

interval τ to make the controlled system

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(t), t)

)
dt+ g(x(t), r(t), t)dB(t), (3.64)

become 3rd moment exponentially stable. In the controller, Ai(x) : R2 → R2×2 and

Assumption 3.1.2 will hold with K3 = maxi∈S,x∈R2 ‖Ai(x)‖.

Now we can start designing Ai(x) by choosing our auxiliary Lyapunov functions.

We choose Lyapunov functions of the form V (x, i, t) = (xTQix)1.5 where Qi = qiI ( I

is the 2× 2 identity matrix), so Corollary 3.3.5 can be applied.

Let V (x, i, t) = q1.5
i |x|3 where q1 = 2, q2 = 1. Then the left-hand-side of (3.62)
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Figure 3.1: Simulation of system (3.63) with random initial values using the Euler-
Maruyama method with step size 1e − 6. The upper three plots show one path of
system mode and state. The bottom plot is the sample mean of |x(t)|3 from 2000
paths.

becomes

3q0.5
i |x|[qixT (f(x, i, t) + u(x, i, t)) + 0.5qi|g(x, i, t)|2] + 1.5qi|x|−1|gTx|2 +

N∑
j=1

γijq
1.5
j |x|3

≤1.5q1.5
i |x|[(2K1 +K2

2 )|x|2 + 2xTAi(x)x] + 1.5qiK
2
2 |x|1.5 +

N∑
j=1

γijq
1.5
j |x|3

≤|x|xT Q̃ix ≤ λmax(Q̃i)|x|3 (3.65)

for all i ∈ S , where

Q̃i = 1.5q1.5
i (2K1 +K2

2 )I + 1.5q1.5
i (Ai(x) +ATi (x)) + 1.5qiK

2
2I +

N∑
j=1

γijq
1.5
j I.
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Substituting the constant coefficients gives

Q̃1 = 2.7517I + 4.2426(A1(x) +AT1 (x))

and Q̃2 = 5.4829I + 1.5(A2(x) +AT2 (x)).

Thus, we need to design Ai(x) such that Q̃i is negative-definite for i ∈ S. Of course

there are many choices of Ai(x), here we use

A1(x(t)) =

 0.5 sin(x1(t))− 1 −1

1 0.5 cos(x2(t))− 1



and A2(x(t)) =

 −2.3 0.2 cos(x1(t)x2(t))

−0.2 cos(x1(t)x2(t)) −2.3

 .
Substituting the coefficient matrices gives λmax(Q̃1) = −1.491 and λmax(Q̃2) = −1.417.

That is, Assumption 3.3.4 holds with b = 1.417. Assumption 3.1.2 holds with K3 =

2.309. Then we calculate parameters in Corollary 3.3.5 and get c1 = 1, c2 = 2.828 and

d = 24.7116. To obtain a relatively large observation interval τ , we choose l = 0.0382.

This gives λ = 0.473. Then τ ≤ 0.003 satisfies condition (3.68) and β = 0.0109 > 0.

Corollary 3.3.5 indicates that the controlled system (3.64) with feedback control de-

fined as above and τ ≤ 0.003 is 3rd moment exponentially stable, which is indeed in

accordance with the Figure 3.2.

Example 3.4.2 We can use a larger observe interval than the Example 6.1 in [97]

to achieve the mean square exponential stabilization for the same original system and

controller.

As stated in Example 6.1 in [97], the original system is not mean square exponential

stable. Figure 3.3 shows my simulated paths and the results agree with it.

We use the same controller, same parameters except l and λ, same Lyapunov func-

tions as stated in [97]. That is, K1 = 5.236, K2 =
√

2, K3 = 10; c1 = c2 = 1, b = 8,

d = 4; Q1 = Q2 = I (the 2× 2 identity matrix).

By Corollary 3.3.5, we choose l ∈ (0, b/d) to maximize bl − dl2. So let l = 1. Then
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Figure 3.2: Simulation of the controlled system (3.64) with observation interval τ =
0.003 and random initial values using the Euler-Maruyama method with step size 1e−6.
The upper three plots show one path of system mode and state. The bottom plot is
the sample mean of |x(t)|3 from 2000 paths.

this gives λ = 4. Finally τ ≤ 0.0088 can satisfy condition (3.68). You et al. [97]

required τ ≤ 0.0074. By Corollary 3.3.5, the controlled system with τ ≤ 0.0088 is

mean square exponentially stable, which was in accordance with the simulation results

in Figure 3.4.
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Figure 3.3: Simulation of the original system with random initial values using the
Euler-Maruyama method with step size 1e − 6. The upper three plots show one path
of system mode and state. The bottom plot is the sample mean of |x(t)|2 from 2000
paths.

Larger observation interval means less frequent observations and less cost of control.

This is one of the advantages of my results over the existing best result. The improve-

ment of the upper bound of observation interval is because of the weaker condition

(3.68) and the better parameter settings.

3.5 Discretization of mode observation

In previous sections, we discussed the pth moment stabilization with controller

u(x(δt), r(t), t). However, it’s more practical and cost-effective to observe the system

mode in discrete time as well. So in this section, we discuss the stabilization problem

with controller u(x(δt), r(δt), t) is based on observations of both system state and mode
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Figure 3.4: Simulation of the controlled system with observation interval τ = 0.0088
and random initial values using the Euler-Maruyama method with step size 1e−6. The
upper three plots show one path of system mode and state. The bottom plot is the
sample mean of |x(t)|2 from 2000 paths.

at time points 0, τ, 2τ, 3τ, · · · . Consequently, the controlled system has the form

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(δt), t)

)
dt+ g(x(t), r(t), t)dB(t). (3.66)

Generally speaking, the conclusions in previous theorems and corollary still hold here

with a smaller observation interval.

We define a similar Lyapunov functional for a fixed moment order p > 1 by

V̂ (xt, rt, t)=θτ
p−2
2

∫ t

t−τ

∫ t

s

[
τ
p
2 |f(x(z),r(z),z)+u(x(δz),r(δz),z)|p+ρ|g(x(z),r(z), z)|p

]
dzds

(3.67)

for t ≥ 0, where xt := {x(t + s) : −2τ ≤ s ≤ 0} and rt := {r(t + s) : −2τ ≤ s ≤ 0}.
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Define γ := maxi∈S(−γii).

Theorem 3.5.1 Fix the moment order p > 1. Let Assumptions 3.1.1, 3.1.2 and 3.1.3

hold. Choose τ > 0 sufficiently small for

λ >
[4(p− 1)]p−1[22p−1(1− e−γτ ) + 1]Kp

3

pplp−1(1− 8p−1τpKp
3 )

τ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
+

23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ ) and τ ≤ 8
− p−1

p /K3, (3.68)

then the controlled system (3.66) satisfies

∫ ∞
0

E|x(s)|pds <∞ (3.69)

for all initial data x0 ∈ Rn and r0 ∈ S.

Denote the right-hand-side of the first inequality in (3.68) by L̂τ . Similarly to the

discussion in section 2.2.1, for any fixed values (within the ranges stated above) of the

parameters p, λ, l,K1,K2,K3 and γ, there is a unique positive number τ∗ such that

λ = L̂τ . So it’s guaranteed that condition (3.68) can be satisfied.

Let’s compare the difference between condition (3.14) and (3.68). Recall Lτ =
[2(p− 1)]p−1Kp

3

pplp−1(1− 8p−1τpKp
3 )
τ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
. Therefore

L̂τ = [23p−2(1− e−γτ ) + 1]Lτ +
23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ ) > Lτ for τ > 0.

That is, condition λ > L̂τ requires a smaller τ than condition λ > Lτ . In other

words, discretization of the mode observation increases the observation frequency, which

makes sense. Moreover, we notice that the larger γ is, the smaller τ has to be. This

means, large maximum jump rate, or frequent mode switching requires frequent system

observations.

Theorem 3.5.1 can be proved in similar way as Theorem 3.2.1. The key difference

is that after replacing u(x(δt), r(t), t) with u(x(δt), r(δt), t) in (3.19), we need to cal-

culate E|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p. To avoid redundancy, I only show the key

difference below and put the complete proof in Appendix A.1.
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Key difference:

By the Young inequality and Assumption 3.1.2, we can derive that

− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(δt), t)]

≤
[
ε|Vx(x(t), r(t), t)|

p
p−1

] p−1
p
[
ε1−p|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

] 1
p

≤l|Vx(x(t), r(t), t)|
p
p−1 +

1

p
(
p− 1

pl
)p−1|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p, (3.70)

where l = p−1
p ε for ∀ε > 0.

Since

u(x(δt), r(δt), t)− u(x(t), r(t), t)

=u(x(δt), r(δt), t)− u(x(δt), r(t), t)

+ u(x(δt), r(t), t)− u(x(t), r(t), t),

and the elementary inequality |a + b|p ≤ 2p−1(|a|p + |b|p) for a, b ∈ R, p > 1, we can

obtain that

E|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

≤2p−1E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p + 2p−1E|u(x(δt), r(t), t)− u(x(t), r(t), t)|p

≤2p−1E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p + 2p−1Kp
3E|x(δt)− x(t)|p. (3.71)

According to Lemma 2.3.4 (or see Lemma 1 in [35]), for any t ≥ t0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣∣r(t) = i) ≤ 1− e−γv. (3.72)
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Then by Assumption 3.1.2, we have

E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p

=E
[
E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p

∣∣∣Fδt)]
≤E
[
2pKp

3 |x(δt)|pE
(
I{r(s)6=rk}|Fδt

)]
≤E
[
2pKp

3 |x(δt)|p(1− e−γτ )
]

≤22p−1Kp
3 (1− e−γτ )[E|x(t)|p + E|x(δt)− x(t)|p] (3.73)

Substituting (A.7) into (A.5) gives

E|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

≤23p−2Kp
3 (1− e−γτ )E|x(t)|p + [23p−2Kp

3 (1− e−γτ ) + 2p−1Kp
3 ]E|x(δt)− x(t)|p. (3.74)

Moreover, by Assumptions 3.1.1, 3.1.2 and the elementary inequality |a + b|p ≤

2p−1(|a|p + |b|p) for ∀a, b ∈ R, we have

|f(x(t), r(t), t) + u(x(δt), r(δt), t)|p

≤2p−1
[
Kp

1 |x(t)|p +Kp
3 |x(δt)|p

]
≤2p−1(Kp

1 + 2p−1Kp
3 )|x(t)|p + 4p−1Kp

3 |x(t)− x(δt)|p.

(3.75)

Substitute (A.4) and (A.9) into the calculation of LU(xt, rt, t) which is similar to (3.18).

Taking the mean and by (A.8), we have

ELU(xt, rt, t)

≤E
[
LV (x(t), r(t), t) + l|Vx(x(t), r(t), t)|

p
p−1

]
+
[
θτ

p
2 (2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 ) +
23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ )
]
E|x(t)|p

+
[
4p−1θτp +

1

p
(
p− 1

pl
)p−1[23p−2(1− e−γτ ) + 2p−1]

]
Kp

3E|x(t)− x(δt)|p − EΦ(xt, rt, t).

(3.76)
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Then Assumption 3.1.3 implies that

ELU(xt,rt, t) ≤ −βE|x(t)|p − EΦ(xt, rt, t)

+
[
4p−1θτp +

1

p
(
p− 1

pl
)p−1[23p−2(1− e−γτ ) + 2p−1]

]
Kp

3E|x(t)− x(δt)|p,

(3.77)

where

β = β(θ, τ) := λ− θτ
p
2 [2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 ]− 23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ ).

(3.78)

If we choose

8p−1τpKp
3 < 1 and θ =

[4(p− 1)]p−1

pp(1− 8p−1τpKp
3 )
l1−p[22p−1(1− e−γτ ) + 1]Kp

3 . (3.79)

then we can obtain

E(LU(xt, rt, t)) ≤ −βE|x(t)|p. (3.80)

2

Theorem 3.5.2 Fix the moment order p ≥ 2. Under the same assumptions of Theo-

rem 3.5.1, the solution of the controlled system (3.66) satisfies

lim
t→∞

E|x(t)|p = 0

for any initial data x0 ∈ Rn and r0 ∈ S.

Theorem 3.5.3 Fix the moment order p > 1. Let Assumptions 3.1.1, 3.1.2, 3.1.3 and

3.3.1 hold. Choose τ > 0 sufficiently small for (3.68) to hold. Then the solution of

the controlled system (3.66) satisfies (3.48) and (3.49) for all initial data x0 ∈ Rn and

r0 ∈ S.

Theorems 3.5.2 and 3.5.3 can be proved in the same way as Theorems 3.2.2 and

3.3.2 respectively, the only difference is replacing u(x(δt), r(t), t) with u(x(δt), r(δt), t).

72



Chapter 3. On P th Moment Stabilization of Hybrid SDEs

Corollary 3.5.4 Fix the moment order p ≥ 2. Let Assumptions 3.1.1, 3.1.2 and 3.3.4

hold for p ≥ 2. Set parameters the same way as stated in Corollary 3.3.5. Let τ > 0 be

sufficiently small for (3.68) to hold. Then the controlled system (3.66) is pth moment

exponentially stable.

Now we discretize the observation of system mode r(t) for the two examples in

Section 3.4. For Example 3.4.1, choose the Lyapunov functions and parameters the

same as above, substitute γ = 4 into (3.68). Then the controlled system

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(δt), t)

)
dt+ g(x(t), r(t), t)dB(t), (3.81)

can achieve the 3rd moment exponential stability provided that the observation interval

τ ≤ 7.39e−7. It’s dramatically decreased from 0.003. Similarly, for Example 3.4.2, dis-

cretizing the mode observation reduces the observation interval from 0.0088 to 0.00365

for mean square exponential stabilization. Obviously, the decrease of observation in-

terval for Example 3.4.1 is more dramatic than that for Example 3.4.2. An important

reason is because Example 3.4.1 has larger maximum jump rate of the Markov chain

than Example 3.4.2, in which γ = 1.

3.6 Conclusion

In this chapter we have discussed the pth moment stabilization of hybrid stochas-

tic differential equations by feedback controls based on discrete-time observations for

p > 1. We firstly use u(x(δt), r(t), t) which needs discrete-time state observations and

continuous-time mode observations. Later we use a more practical controller of the form

u(x(δt), r(δt), t) which requires higher observation frequency than the first controller.

Many stabilities were investigated, including pth moment H∞ stability for p > 1, pth

moment asymptotic stability for p ≥ 2, pth moment exponential stability for p > 1 and

almost sure exponential stability. This chapter has two main contributions:

• developing the criterion on asymptotic stabilization from mean square (p = 2)

to pth moment for all p ≥ 2, developing the criterion on H∞ stabilization and
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exponential stabilization from mean square to pth moment for all p > 1;

• reducing the observation frequency and hence reducing the cost of control.
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Chapter 4

Almost Sure Exponential

Stabilization by Stochastic

Feedback Control

As discussed in Section 1.3, stabilization by noise based on discrete-time observations

was only discussed by [91] for autonomous ODEs, which is not enough, and it’s neces-

sary to discuss this problem for more complex systems. This chapter investigates how to

stabilize a given unstable linear non-autonomous ODE by controller σ(t)x(δt)dB(t), and

how to stabilize an unstable nonlinear hybrid SDE by controller G(r(δt))x(δt)dB(t), in

the sense the controlled stochastic system is pth moment (0 < p < 1) and almost surely

exponentially stable. The results in this chapter have been published in “Stochastic

Analysis and Applications” in 2018 as [109] 1.

This chapter is organised as follows. Section 4.1 discusses stabilization of linear

scalar ODEs and ends with expansion of the established theory to some nonlinear

multidimensional ODEs. Section 4.2 discusses stabilization of nonlinear hybrid SDEs

and ends with a corollary for linear hybrid ODEs. The conclusion is given in Section

4.3.

Following explains some special notations in this chapter.

1Dong, R. 2018. Almost sure exponential stabilization by stochastic feedback control based on
discrete-time observations. Stochastic Analysis and Applications pp.1-23.
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For clarity, sometimes I will write exponential function as e(·) as exp(·).

To emphasize the role of the initial data, sometimes I denote the solution x by x(t;x0, t0)

in Section 4.1, and in Section 4.2, sometimes I denote the solution x by x(t;x0, r0, t0)

and the Markov chain r by r(t; r0, t0).

Let the initial value of the system state x0 ∈ LpFt0 (Ω,R). This means x0 is a R-valued

Ft0 measurable random variable such that E|x0|p <∞.

Let the initial value of the Markov chain r0 ∈MFt0 (S). This means r0 is Ft0 measurable

from state space S.

4.1 Scalar linear ODE

4.1.1 Stabilization problem and main result

Given an unstable linear ODE

ẋ(t) = α(t)x(t) (4.1)

on t ≥ t0(≥ 0) with x0 = x(t0) ∈ L2
Ft0

(Ω,R), 2 where α : R+ → R is bounded.

We can stabilize it by noise based on the m-dimensional Brownian motion B(t) =

(B1(t), · · · , Bm(t))T . The controlled SDE has the form

dx(t) = α(t)x(t)dt+
m∑
i=1

σi(t)x(δt)dBi(t), (4.2)

where σi : R+ → R for 1 ≤ i ≤ m are bounded and

δt = t0 +
[ t− t0

τ

]
τ for τ > 0, (4.3)

in which
[
t−t0
τ

]
is the integer part of t−t0

τ .

Since α(t) and σi(t) for 1 ≤ i ≤ m are all bounded, the controlled system (4.2)

satisfies the global Lipschitz condition and linear growth condition (see Section 2.3).

So it has a unique solution x(t) such that E|x(t)|p < ∞ for all t ≥ t0 and p > 0 (see

2I require E|x0|2 < ∞ because the term E|x0|2 will be used in the proof. Note that L2
Ft0

(Ω,R) ⊂
LpFt0

(Ω,R) for 0 < p < 1 as condition E|x0|2 <∞ is stronger than E|x0|p <∞.
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e.g. [26]).

Let α̂ be the upper bound of α and σi be the bound of |σi| (the lower bound of α

is not used so we do not state it). That is,

α(t) ≤ α̂ and |σi(t)| ≤ σi for ∀t ≥ t0. (4.4)

Obviously α̂ > 0, because otherwise, the original system (4.1) would converge to 0 and

hence is already stable.

Assumption 4.1.1 There is a positive constant p ∈ (0, 1) such that

lim sup
t→∞

1

t− t0

∫ t

t0

(
α(s)− 1− p

2

m∑
i=1

σ2
i (s)

)
ds < 0. (4.5)

Remark 4.1.2 The condition (4.5) means that the upper limit of the time average of

α(t)− 1−p
2

∑m
i=1 σ

2
i (t) is negative, which is weaker than

α(t)− 1− p
2

m∑
i=1

σ2
i (t) < 0 for ∀t ≥ t0,

because α(t)− 1−p
2

∑m
i=1 σ

2
i (t) is allowed to be positive at some time points.

Remark 4.1.3 Assumption 4.1.1 implies that there is a constant z > 0 such that

lim sup
t→∞

1

t− t0

∫ t

t0

(
α(s)− 1− p

2

m∑
i=1

σ2
i (s)

)
ds = −z. (4.6)

That is, we can find a pair of T > t0 and ε ∈ (0, z/2) such that for ∀t > T ,

1

t− t0

∫ t

t0

(
α(s)− 1− p

2

m∑
i=1

σ2
i (s)

)
ds ≤ −z + ε. (4.7)

Theorem 4.1.4 Let Assumption 4.1.1 hold. Choose a constant ρ ∈ (0, 1). Then for

any t0 ≥ 0 and x0 ∈ L2
Ft0

(Ω,R), the solution of equation (4.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) < 0 (4.8)
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and

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (4.9)

provided τ ∈ (0, τ̄), where τ̄ > 0 is the unique root to

Ĥ(τ) = 1− ρ (4.10)

where

Ĥ(τ) =2pK(τ)
[

exp
(

[τ + log(2pM/ρ)/χ](4α̂+ 3m
m∑
i=1

σi
2)
)
− 1
]p

2
,

in which

K(τ) =
[2m

∑m
i=1 σi

2[2τ(τα̂2 +m
∑m

i=1 σi
2)]

2α̂+m
∑m

i=1 σi
2

] p
2
, (4.11)

M = max
{

exp
(
− p

∫ T̂

t0

[α(s)− 1− p
2

m∑
i=1

σ2
i (s)]ds− χ(T̂ − t0)

)
, 1
}
, (4.12)

χ = −p
2

lim sup
t→∞

1

t− t0

∫ t

t0

(
α(s)− 1− p

2

m∑
i=1

σ2
i (s)

)
ds > 0, (4.13)

T̂ = t0 +
[T − t0

τ

]
τ + τ, (4.14)

in which [·] means its integer part, and T is as discussed in Remark 4.1.3.

4.1.2 Proof

To prove the new theory, we introduce an auxiliary traditionally controlled system y(t),

which is the solution to the SDE

dy(t) = α(t)y(t)dt+
m∑
i=1

σi(t)y(t)dBi(t) (4.15)

with the same inital data t0 and y0 = x0 as in the discrete-time controlled system (4.2).
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Lemma 4.1.5 Let Assumption 4.1.1 hold. Then for any t0 ≥ 0, x0 ∈ LpFt0 (Ω,R),

E|y(t)|p ≤ME|y(T̂ )|pe−χ(t−T̂ ) for ∀t > T̂ , (4.16)

where M, T̂ and χ have been defined above.

Proof. The system will remain at 0 if x0 = 0. So we only need to consider when x0 6= 0.

Lemma 2.5.1 (or see [9] p120) indicates that for any y0 6= 0, y(t) 6= 0 for all t ≥ 0

almost surely.

Apply the Itô formula to (4.15),

log y(t) = log y0 +

∫ t

t0

[α(s)− 1

2

m∑
i=1

σ2
i (s)]ds+

m∑
i=1

∫ t

t0

σi(s)dBi(s).

That is,

y(t) = y0 exp
(∫ t

t0

[α(s)− 1

2

m∑
i=1

σ2
i (s)]ds+

m∑
i=1

∫ t

t0

σi(s)dBi(s)
)
. (4.17)

Then

E|y(t)|p = E
[
|y0|p exp

(
p

∫ t

t0

[α(s)− 1

2

m∑
i=1

σ2
i (s)]ds+ p

m∑
i=1

∫ t

t0

σi(s)dBi(s)
)]

= E(|y0|p) exp
(
p

∫ t

t0

[α(s)− 1

2

m∑
i=1

σ2
i (s)]ds

)
E(eξ), (4.18)

where ξ = p
∑m

i=1

∫ t
t0
σi(s)dBi(s) is independent of y0 and it’s a normal random variable

with mean 0 and variance

V ar(ξ) = p2
m∑
i=1

∫ t

t0

σ2
i (s)ds.

By the moment-generating function of ξ, we have that

E(eξ) = exp
(p2

2

m∑
i=1

∫ t

t0

σ2
i (s)ds

)
. (4.19)
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Substituting into (4.18) gives

E|y(t)|p = E|y0|p exp
(
p

∫ t

t0

[α(s)− 1− p
2

m∑
i=1

σ2
i (s)]ds

)
. (4.20)

Note that y(t) is a Markov process (see Theorem 2.3.3 or [9] Section 2.9). This

means for any t∗ > t0 and t > t∗, y(t) can be seen as the solution of (4.15) starting

from y(t∗) at t = t∗, i.e., y(t; y0, t0) = y(t; y(t∗), t∗). So we can write

E|y(t)|p = E|y(T̂ )|p exp
(
p

∫ t

T̂
[α(s)− 1− p

2

m∑
i=1

σ2
i (s)]ds

)
, (4.21)

where T̂ has been defined in (4.14).

As discussed in Remark 4.1.3, there is a pair of T > t0 and ε ∈ (0, z/2) such that

for ∀t > T , ∫ t

t0

(
α(s)− 1− p

2

m∑
i=1

σ2
i (s)

)
ds ≤ −1

2
z(t− t0). (4.22)

Then we can easily derive that

∫ t

T̂

(
α(s)−1− p

2

m∑
i=1

σ2
i (s)

)
ds ≤ −

∫ T̂

t0

(
α(s)−1− p

2

m∑
i=1

σ2
i (s)

)
ds−z

2
(t−T̂ )−z

2
(T̂−t0).

(4.23)

Substituting this into (4.21) gives

E|y(t)|p ≤ exp
(
− p

∫ T̂

t0

[α(s)− 1− p
2

m∑
i=1

σ2
i (s)]ds−

p

2
z(T̂ − t0)

)
E|y(T̂ )|pe−

p
2
z(t−T̂ )

for ∀t > T̂ . Noticing that χ = p
2z, we obtain assertation (4.16). 2

Lemma 4.1.6 For any p ∈ (0, 1), t0 ≥ 0 and x0 ∈ L2
Ft0

(Ω,R),

E|x(t)|p ≤ E|x0|p exp[(p(α̂+ 0.5
m∑
i=1

σ2
i )(t− t0)]. (4.24)
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Proof. Apply the Itô formula to (4.2),

E[x2(t)] = Ex2
0 + E

∫ t

t0

(
2x(s)α(s)x(s) + [

m∑
i=1

σ2
i (s)x(δs)]

2
)
ds

≤Ex2
0 + E

∫ t

t0

(
2α̂x2(s) +

m∑
i=1

σ2
ix

2(δs)
)
ds

≤Ex2
0 + (2α̂+

m∑
i=1

σ2
i )

∫ t

t0

sup
t0≤z≤s

E[x2(z)]ds

Since the last term is nondecreasing function of t, and by the Fubini theory,

sup
t0≤z≤t

E[x2(z)] ≤ Ex2
0 + (2α̂+

m∑
i=1

σ2
i )

∫ t

t0

sup
t0≤z≤s

E[x2(z)]ds.

Then the Gronwall inequality implies

sup
t0≤z≤t

E[x2(z)] ≤ Ex2
0 exp[(2α̂+

m∑
i=1

σ2
i )(t− t0)].

Hence

E[x2(t)] ≤ Ex2
0 exp[(2α̂+

m∑
i=1

σ2
i )(t− t0)].

Finally Hölder’s inequality implies assertation (4.24). 2

Lemma 4.1.7 For any t0 ≥ 0, x0 ∈ L2
Ft0

(Ω,R) and p ∈ (0, 1), we have

E|y(t)− x(t)|p ≤ E|x0|pK(τ)
[

exp
(

(4α̂+ 3m
m∑
i=1

σi
2)(t− t0)

)
− 1
] p

2
, (4.25)

where K(τ) has been defined in (4.11).

Proof. We have

d(x(t)− y(t)) = α(t)[x(t)− y(t)]dt+

m∑
i=1

σ2
i (t)[x(δt)− y(t)]dB(t).

81



Chapter 4. Almost Sure Exponential Stabilization by Stochastic Feedback Control

By the Itô formula, we can derive that

E[x(t)− y(t)]2 = E
∫ t

t0

(
2[x(s)− y(s)]α(s)[x(s)− y(s)] +

∣∣∣ m∑
i=1

σ2
i (s)[x(δs)− y(s)]

∣∣∣2)ds.
Then by (4.4), we obtain that

E[x(t)− y(t)]2

≤2α̂

∫ t

t0

E[x(s)− y(s)]2ds+m
m∑
i=1

σi
2

∫ t

t0

E[x(δs)− y(s)]2ds

≤2(α̂+m
m∑
i=1

σi
2)

∫ t

t0

E[x(s)− y(s)]2ds+ 2m
m∑
i=1

σi
2

∫ t

t0

E[x(δs)− x(s)]2ds.

Then applying the Gronwall inequality gives

E[x(t)−y(t)]2 ≤ 2m
m∑
i=1

σi
2 exp

(
2(α̂+m

m∑
i=1

σi
2)(t−t0)

)∫ t

t0

E[x(δs)−x(s)]2ds. (4.26)

By the Itô formula,

E[x2(t)] =Ex2
0 + E

∫ t

t0

2xT (s)α(s)x(s) +
∣∣∣ m∑
i=1

σ2
i (s)x(δs)

∣∣∣2ds
≤Ex2

0 + 2α̂

∫ t

t0

E[x2(s)]ds+m

m∑
i=1

σi
2

∫ t

t0

E[x2(δs)]ds.

Then by applying the Gronwall inequality on the supremum, we can derive that

sup
t0≤z≤t

E[x2(z)]

≤Ex2
0 + (2α̂+m

m∑
i=1

σi
2)

∫ t

t0

sup
t0≤z≤s

E[x2(z)]ds

≤Ex2
0 exp

(
(2α̂+m

m∑
i=1

σi
2)(t− t0)

)
.

Therefore

E[x2(t)] ≤ sup
t0≤z≤t

E[x2(z)] ≤ Ex2
0 exp

(
(2α̂+m

m∑
i=1

σi
2)(t− t0)

)
. (4.27)
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Now we calculate the term E[x(s) − x(δs)]
2 in (4.26) by the Itô formula and the

elementary inequality |
∑m

i=1 ai|2 ≤ m
∑m

i=1 |ai|2 for ∀ai ∈ R.

E[x(t)− x(δt)]
2

≤2E
∫ t

δt

τα2(s)x2(s) +
∣∣∣ m∑
i=1

σ2
i (s)x(δs)

∣∣∣2ds
≤2τα̂2

∫ t

δt

E[x2(s)]ds+ 2m
m∑
i=1

σi
2

∫ t

δt

E[x2(δs)]ds

≤2τ(τα̂2 +m
m∑
i=1

σi
2)Ex2

0 exp
(

(2α̂+m
m∑
i=1

σi
2)(t− t0)

)
.

Substituing this into (4.26) gives

E[x(t)− y(t)]2

≤2m

m∑
i=1

σi
2 exp

(
2(α̂+m

m∑
i=1

σi
2)(t− t0)

)
[2τ(τα̂2 +m

m∑
i=1

σi
2)]

× Ex2
0

∫ t

t0

exp
(

(2α̂+m

m∑
i=1

σi
2)(s− t0)

)
ds

≤
2m
∑m

i=1 σi
2[2τ(τα2 +m

∑m
i=1 σi

2)]

2α̂+m
∑m

i=1 σi
2 Ex2

0

×
[

exp
(

(4α+ 3m

m∑
i=1

σi
2)(t− t0)

)
− exp

(
2(α̂+m

m∑
i=1

σi
2)(t− t0)

)]
≤

2m
∑m

i=1 σi
2[2τ(τα̂2 +m

∑m
i=1 σi

2)]

2α̂+m
∑m

i=1 σi
2 Ex2

0

[
exp

(
(4α̂+ 3m

m∑
i=1

σi
2)(t− t0)

)
− 1
]
.

(4.28)

Finally Hölder’s inequality implies assertation (4.25). 2

Remark 4.1.8 We observe that Ĥ(τ) is a continuously increasing function of τ for

τ ≥ 0. Ĥ = 0 when τ = 0 (as K(0) = 0 ) and Ĥ → ∞ as τ → ∞. So the equation

(4.10) must have a unique root τ̄ > 0 for any ρ ∈ (0, 1). Moreover, for the fixed ρ,

Ĥ(τ) < 1− ρ for any τ ∈ (0, τ̄).

To simplify the notation, we write tk = t0 + kτ, y(tk) = yk and x(tk) = xk for
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∀k = 0, 1, 2, · · · .

Remark 4.1.9 At time points tk, there is no time delay, so x(t) has the Markov prop-

erty at these discrete time points:

x(t;x0, t0) = x(t;xk, tk) for ∀t > tk.

That is, for any t > tk, x(t) can be seen as the solution of (4.2) starting from xk at

initial time tk.

Proof of Theorem 4.1.4: We divide the proof into three steps.

Step 1. Let’s fix τ ∈ (0, τ̄) and x0 ∈ L2
Ft0

(Ω,R) arbitrarily.

Since 2pM/ρ > 1, we can choose a positive integer ν such that

log(2pM/ρ)

χτ
≤ ν ≤ 1 +

log(2pM/ρ)

χτ
. (4.29)

The left part of it imples that

2pMe−χντ ≤ ρ. (4.30)

Let y(T̂ + ντ) = y(T̂ + ντ ;x(T̂ ), T̂ ) and recall Lemma 4.1.5, then we have

E|y(T̂ + ντ)|p ≤ME|x(T̂ )|pe−χντ . (4.31)

By the elementary inequality |a+b|p ≤ 2p(|a|p+ |b|p) for any a, b ∈ R and p ∈ (0, 1),

we have

E|x(T̂ + ντ)|p ≤ 2pE|y(T̂ + ντ)|p + 2pE|y(T̂ + ντ)− x(T̂ + ντ)|p. (4.32)

It follows from (4.31) and (4.30) that

2pE|y(T̂ + ντ)|p ≤ ρE|x(T̂ )|p. (4.33)

84



Chapter 4. Almost Sure Exponential Stabilization by Stochastic Feedback Control

Let x(T̂ + ντ) = x(T̂ + ντ ;x(T̂ ), T̂ ) and recall Lemma 4.1.7, then we have

E|y(T̂ + ντ)− x(T̂ + ντ)|p ≤ E|x(T̂ )|pK(τ)
[

exp
(
ντ(4α̂+ 3m

m∑
i=1

σi
2)
)
− 1
]p

2
. (4.34)

Substituting (4.33) and (4.34) into (4.32) gives

E|x(T̂ + ντ)|p ≤ E|x(T̂ )|p
(
ρ+ 2pK(τ)

[
exp

(
ντ(4α̂+ 3m

m∑
i=1

σi
2)
)
− 1
]p

2
)
. (4.35)

The second inequality of (4.29) implies ντ ≤ τ + log(2pM/ρ)/χ. It follows from

Ĥ(τ) < 1− ρ that

ρ+ 2pK(τ)
[

exp
(
ντ(4α̂+ 3m

m∑
i=1

σi
2)
)
− 1
]p

2

≤ρ+ Ĥ(τ)

<1.

We may therefore write

ρ+ Ĥ(τ) = e−λντ

for some λ > 0. It then follows from (4.35) that

E|x(T̂ + ντ)|p ≤ E|x(T̂ )|pe−λντ . (4.36)

Step 2. Since x(t) has Markov property at times kτ for k = 0, 1, 2 · · · , we can repeat

(4.31)-(4.36) by letting y(T̂ + (i + 1)ντ) = y(T̂ + (i + 1)ντ ;x(T̂ + iντ), T̂ + iντ) and

x(T̂ + (i+ 1)ντ) = x(T̂ + (i+ 1)ντ ;x(T̂ + iντ), T̂ + iντ). Finally we could obtain that

E|x(T̂ + iντ)|p ≤ E|x(T̂ )|pe−iλντ for i = 0, 1, 2 · · · .

Then by Lemma 4.1.6 and the Markov property,

E|x(T̂ + iντ)|p ≤ E|x0|pC1e
−iλντ
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where C1 = exp
(

(p(α̂ + 0.5
∑m

i=1 σ
2
i )([T/τ ] + 1)τ

)
, for i = 0, 1, 2 · · · . Since for any

t ≥ T̂ , there is a unique i ≥ 0 such that T̂ + iντ ≤ t < T̂ + (i+ 1)ντ , we can derive that

E|x(t)|p ≤ E|x0|pC1 exp
[
p(α̂+ 0.5

m∑
i=1

σ2
i )(t− T̂ − iντ)

]
e−iλντ

≤ E|x0|pC1 exp
[
pντ(α̂+ 0.5

m∑
i=1

σ2
i )
]
e−iλντ

≤ C2E|x0|pe−λt, (4.37)

where

C2 =C1exp[pντ(α̂+ 0.5
m∑
i=1

σ2
i )]e

λT̂=exp
(
p([T/τ ] + 1 + ν)τ(α̂+ 0.5

m∑
i=1

σ2
i ) + λT̂

)
.

So far we have proved (4.8). Next we will prove the almost sure exponential stability

of (4.2).

Step 3.

By the definition of solutions of SDEs 3, the inequality in (2.17), Hölder’s inequality

and the Burkholder-Davis-Gundy inequality, we have that

E
(

sup
t0≤s≤t

|x(s)|2
)
≤ (m+ 2)

[
Ex2

0 + [α̂2(t− t0) + 4

m∑
i=1

σ2
i ]

∫ t

t0

E
(

sup
t0≤z≤s

|x(z)|2
)
ds
]
.

Using Gronwall’s inequality and Hölder’s inequality, we obtain

E
(

sup
t0≤s≤t

|x(s)|p
)
≤ (m+ 2)

p
2E|x0|p exp

(p
2

(m+ 2)(t− t0)[α̂2(t− t0) + 4
m∑
i=1

σ2
i ]
)
.

Let t̂k = T̂ + kντ for k = 0, 1, 2, · · · . Then by Remark 4.1.9 and (4.37), we have

E
(

sup
t̂k≤t≤t̂k+1

|x(t)|p
)
≤ (m+ 2)

p
2 exp

(p
2

(m+ 2)ντ [α̂2ντ + 4
m∑
i=1

σ2
i ]
)
E|x(t̂k)|p

≤ C3E|x0|pe−kλντ ,

3It was stated in Definition 2.3.1, particularly we use (iii) here.
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where C3 = (m+ 2)
p
2C2 exp

(
− λT̂ + p

2(m+ 2)ντ [α̂2ντ + 4
∑m

i=1 σ
2
i ]
)

.

Then the Chebyshev inequality implies that for all k = 0, 1, 2, · · · ,

P
(

sup
t̂k≤t≤t̂k+1

|x(t)|p ≥ e−0.5kλντ
)
≤ C3E|x0|pe−0.5kλντ .

Define a sequence of events

{Ak}k≥0 := { sup
t̂k≤t≤t̂k+1

|x(t)|p ≥ e−0.5kλντ}.

Then

∞∑
k=0

P(Ak) =

∞∑
k=0

P
(

sup
t̂k≤t≤t̂k+1

|x(t)|p ≥ e−0.5kλντ
)

≤ C3E|x0|p
∞∑
k=0

e−0.5kλντ <∞.

By the Borel-Cantelli lemma, P
(

lim sup
k→∞

Ak

)
= 0.

Since
(

lim sup
k→∞

Ak

)c
=
(

lim inf
k→∞

Ack

)
, we get

P
(

lim inf
k→∞

Ack

)
= P

(
lim inf
k→∞

(
sup

t̂k≤t≤t̂k+1

|x(t)|p < e−0.5kλντ
))

= 1.

By the definition of limit inferior,

sup
t̂k≤t≤t̂k+1

|x(t)|p < e−0.5kλντ

holds for all except finitely many k.

That is, for almost all ω ∈ Ω, there is an integer k0 = k0(ω) such that

sup
t̂k≤t≤t̂k+1

|x(t, ω)|p < e−0.5kλντ , ∀k ≥ k0(ω).
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Therefore, for t̂k ≤ t ≤ t̂k+1 and k ≥ k0,

1

t
log(|x(t, ω)|) ≤ 1

t
log
(

sup
t̂k≤t≤t̂k+1

|x(t, ω)|
)
< − kλντ

2p(k + 1)ντ
.

As t→∞, k →∞ and

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ − λ

2p

for almost all ω ∈ Ω.

Hence we complete the proof of assertation (4.9). 2

Now let us discuss how to calculate the observation interval τ . Since our aim is

to find τ ∈ (0, τ̄), namely, to find τ such that Ĥ(τ) < 1 − ρ, we can require that a

number larger than Ĥ(τ) is still less than 1−ρ. This can be done by replacing M with

a larger number M̃ defined below. So we can find a positive observation interval by

the following four steps.

Firstly, determine the values of parameters α̂, σi, m by the original ODE system and

controller. Notice that system coefficient σi(t)
′s and moment order p are determined

through Assumption 4.1.1. Then K(τ) defined in (4.11) is determined.

Secondly, calculate z defined in (4.6), then calculate T and χ through Remark 4.1.3

and (4.13) respectively.

Thirdly, set an upper bound for τ . Here we only need the upper bound τ∗ to be an

arbitrary rough guess, say, τ∗ = 0.1. Noticing that T < T̂ ≤ T + τ∗, we can define

M̃ := max
{

exp
(
θ − χ(T − t0)

)
, 1
}
,

where

θ = max
T≤t≤T+τ∗

(
− p

∫ t

t0

[α(s)− 1− p
2

m∑
i=1

σ2
i (s)]ds

)
.

Fourthly, choose ρ ∈ (0, 1) and then find solution τ > 0 for the equation

2pK(τ)
[

exp
(

[τ + log(2pM̃/ρ)/χ](4α̂+ 3m
m∑
i=1

σi
2)
)
− 1
]p

2
= 1− ρ.
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The reason why there is a positive solution is similar to the discussion in Remark 4.1.8.

If the finally calculated τ is larger than its upper bound τ∗, then either let τ = τ∗ or

try a larger τ∗ and calculate again.

4.1.3 Corollary

Theorem 4.1.4 can also be applied to nonlinear system. Given an unstable n-dimensional

nonlinear ODE

ẋ(t) = f(x(t), t) (4.38)

on t ≥ t0(≥ 0) with x0 ∈ L2
Ft0

(Ω,Rn), we can stabilize it by stochastic feedback control

Ĝ(t)x(t)dB(t) based on a scalar Brownian motion. The controlled SDE has the form

dx(t) = f(x(t), t)dt+ Ĝ(t)x(δt)dB(t), (4.39)

where Ĝ : R+ → Rn×n is a bounded and

δt = t0 +
[ t− t0

τ

]
τ for τ > 0. (4.40)

Assumption 4.1.10 Assume that there is a positive constant α such that

|f(x, t)− f(y, t)| ≤ α|x− y| and |f(0, t)| = 0

for all (x, y, t) ∈ Rn × Rn × R+.

In other words, f satisfies the global Lipschitz condition and the linear growth condition

|f(x, t)| ≤ α|x|. Let σ ≥ ‖Ĝ(t)‖ for ∀t ≥ t0.

The auxiliary traditionally controlled system with the same initial data as (4.39)

has the form

dy(t) = f(y(t), t)dt+ Ĝ(t)y(t)dB(t). (4.41)

Assumption 4.1.11 Assume there are positive constants χ and p ∈ (0, 1) such that
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the solution of (4.41) satisfies

E|y(t)|p ≤ E|x0|pe−χ(t−t0) (4.42)

for any t > t0 ≥ 0 and x0 ∈ L2
Ft0

(Ω,Rn).

Corollary 4.1.12 Let Assumptions 4.1.10 and 4.1.11 hold. Choose a constant ρ ∈

(0, 1). Then for any t0 ≥ 0 and x0 ∈ L2
Ft0

(Ω,Rn), the solution of equation (4.39) is

pth moment exponentially stable and almost sure exponentially stable in the sense that

(4.8) and (4.9) hold, as long as τ ∈ (0, τ̄), where τ̄ > 0 is the unique root to

Ĥ(τ) = 1− ρ (4.43)

where

Ĥ(τ) =2p
[2σ2[2τ(τα2 + σ2)]

2α+ σ2

] p
2
[

exp
(

[τ + log(2p/ρ)/χ](4α+ 3σ2)
)
− 1
]p

2
.

This corollary can be proved in a similar and simpler way as Theorem 4.1.4.

Specifically, Lemma 4.1.5 is now guaranteed by Assumption 4.1.11;

respectively replace the parameters

α̂, m,

m∑
i=1

σ2
i , T̂ and M,

which are defined in Sections 4.1.1 and 4.1.2, by

α, 1, σ2, t0 and 1,

where α and σ2 are defined above in this section;

assertions (4.24) and (4.25) in Lemmas 4.1.6 and 4.1.7 now change to be

E|x(t)|p ≤ E|x0|p exp[p(α+ 0.5σ2)(t− t0)] (4.44)
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and

E|y(t)− x(t)|p ≤ E|x0|pK(τ)
[

exp
(

(4α+ 3σ2)(t− t0)
)
− 1
] p

2
(4.45)

respectively for any p ∈ (0, 1), t0 ≥ 0 and x0 ∈ L2
Ft0

(Ω,Rn).

4.2 Multidimensional SDE with Markovian switching

4.2.1 Stabilization problem and main result

Consider a nonlinear n-dimensional unstable hybrid SDE in the Itô sense

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (4.46)

on t ≥ t0(≥ 0) with x0 = x(t0) ∈ L2
Ft0

(Ω,Rn) and r0 = r(t0) ∈ MFt0 (S). Its corre-

sponding stochastically controlled SDE is

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) + u(x(δt), r(δt), t)dB̃(t). (4.47)

Here

f : Rn × R+ → Rn, g : Rn × R+ → Rn×m and u : Rn × R+ → Rn×m̃;

δt = t0 +
[ t− t0

τ

]
τ for τ > 0 (4.48)

where
[
t−t0
τ

]
is the integer part of t−t0

τ ;

B(t), B̃(t) are independent m, m̃-dimensional Brownian motions.

Define G ∈ Rm+m̃ by combining g ∈ Rm and u ∈ Rm̃.

Let G = (g, u) : Rn0 × S× R+ → Rn×(m+m̃).

That is, G(x(t), x(δt), r(t), r(δt), t) = (g(x(t), r(t), t), u(x(δt), r(δt), t)).

Define Brownian motion W (t) by combining B(t) and B̃(t). That is,

W (t) = (B1(t), · · · , Bm(t), B̃1(t), · · · , B̃m̃(t))T .
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Then |G|2 = |g|2 + |u|2, |xTG|2 = |xT g|2 + |xTu|2 and W (t) is an (m+ m̃)-dimensional

Brownian motion. So the equation (4.47) can be written as

dx(t) = f(x(t), r(t), t)dt+G(x(t), x(δt), r(t), r(δt), t)dW (t). (4.49)

Assumption 4.2.1 Assume that the coefficients f , g and controller u are all globally

Lipschitz continuous. That is, there exist positive constants αi, βi, κi for i ∈ S such that

|f(x, i, t)− f(y, i, t)| ≤ αi|x− y| (4.50)

|g(x, i, t)− g(y, i, t)| ≤ βi|x− y| (4.51)

|u(x, i, t)− u(y, i, t)| ≤ κi|x− y| (4.52)

for all (x, y, i, t) ∈ Rn × Rn × S× R+. We also assume that

|f(0, i, t)| = 0, |g(0, i, t)| = 0 and |u(0, i, t)| = 0. (4.53)

for all (i, t) ∈ S× R+.

Note that Assumption 4.2.1 implies the following linear growth condition

|f(x, i, t)| ≤ αi|x| (4.54)

|g(x, i, t)| ≤ βi|x| (4.55)

|u(x, i, t)| ≤ κi|x|. (4.56)

for all (x, i, t) ∈ Rn × S× R+.

Define three positive constants:

α = max
i∈S

αi, β = max
i∈S

βi, κ = max
i∈S

κi.

Note that the controlled system (4.47) is in fact a stochastic differential delay equa-

tion (SDDE) with a bounded variable delay. If we define the bounded variable delay
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ζ : [0,∞)→ [0, τ ] by

ζ(t) = t− kτ for kτ ≤ t < (k + 1)τ, k = 0, 1, 2, · · · ,

then (4.47) can be written as

dx(t) = f(x(t), r(t), t)dt+g(x(t), r(t), t)dB(t)+u(x(t−ζ(t)), r(t−ζ(t)), t)dB̃(t). (4.57)

Again, since the Lipschitz condition and linear growth condition are satisfied, (4.47)

has a unique solution x(t) such that E|x(t)|p < ∞ for all t ≥ t0 and p > 0 (see e.g.

[26]).

Assumption 4.2.2 There are positive constants ρi (i ∈ S) such that

|xT g(x, i, t)|2 + |xTu(x, i, t)|2 ≥ ρi|x|4 (4.58)

for all (x, i, t) ∈ Rn × S× R+.

For each p ∈ (0, 1), define an N ×N matrix

A(p) := diag(θ1(p), · · · , θN (p))− Γ, (4.59)

where

θi(p) =
p

2

[
(2− p)ρi − β2

i − κ2
i

]
− pαi

for 1 ≤ i ≤ N and Γ = (γij)N×N is the generator matrix of the Markov chain r(t).

Assumption 4.2.3 There is a constant p ∈ (0, 1) such that A(p) is a nonsingular

M-matrix.

Remark 4.2.4 According to Theorem 2.5.8 (or see Theorem 2.10(9) on page 68 of

[26]), Assumption 4.2.3 implies that, there exists a vector ϕ = (ϕ1, · · · , ϕN )T ∈ RN+
such that

A(p)ϕ ∈ RN+ .
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That is, if we denote A(p)ϕ by ϕ̄, i.e.,

A(p)ϕ = ϕ̄ = (ϕ̄1, · · · , ϕ̄N )T ,

then

ϕ̄i = θi(p)ϕi −
N∑
j=1

γijϕj > 0 for 1 ≤ i ≤ N.

Theorem 4.2.5 Let Assumptions 4.2.1, 4.2.2 and 4.2.3 hold. Choose ε ∈ (0, 1). Then

for any initial values x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈MFt0 (S), the solution of (4.47) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) < 0 (4.60)

and

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (4.61)

provided τ ∈ (0, τ̄), where τ̄ > 0 is the unique root to

Ĥ(τ) = 1− ε (4.62)

where

Ĥ(τ) =2pH
p
2 (τ)

[
exp

(
(2α+ β

2
+ κ2)[τ + log(2pK/ε)/χ]

)
− 1
] p

2

× exp
[
p(α+ 0.5β

2
+ 1.5κ2)[τ + log(2pK/ε)/χ]

]
, (4.63)

in which

H(τ) =
24κ2τ(τα2 + β

2
+ κ2) exp[4α2τ2 + 16τ(β

2
+ κ2)] + 12κ2(1− e−γτ )

2α+ β
2

+ κ2
. (4.64)

and

K =
maxi∈S ϕi
mini∈S ϕi

≥ 1, χ =
min1≤i≤N ϕ̄i
max1≤i≤N ϕi

> 0, γ = max
i∈S

(−γii). (4.65)

For simplicity of the notations, let us write tk = t0 + kτ, y(tk) = yk, x(tk) = xk,
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r(tk) = rk for ∀k = 0, 1, 2, · · · .

Remark 4.2.6 Under Assumption 4.2.1, the pair (x(t), r(t)) is a Markov process and

has Markov property at discrete time points tk (see [26] Theorem 3.27 on page 104):

(
x(t;x0, r0, t0), r(t; r0, t0)

)
=
(
x(t;xk, rk, tk), r(t; rk, tk)

)
for ∀t > tk.

That is, for any t > tk, x(t) can be seen as the solution of (4.47) starting from tk with

initial data xk and rk.

4.2.2 Proof

To prove the new theory, we introduce an auxiliary traditionally controlled system y(t),

which is the solution to the SDE

dy(t) = f(y(t), r(t), t)dt+ g(y(t), r(t), t)dB(t) + u(y(t), r(t), t)dB̃(t) (4.66)

with the same inital data t0, y0 = x0 and r0 as in the discrete-time controlled system

(4.47). Recall G = (g, u), then G(y(t), r(t), t) = (g(y(t), r(t), t), u(y(t), r(t), t)). So

(4.66) can be written as

dy(t) = f(y(t), r(t), t)dt+G(y(t), r(t), t)dW (t). (4.67)

Lemma 4.2.7 Let Assumptions 4.2.1, 4.2.2 and 4.2.3 hold. Then for any t0 ≥ 0,

x0 ∈ LpFt0 (Ω,Rn) and r0 ∈MFt0 (S), the trivial solution of (4.66) satisfies

E|y(t)|p ≤ KE|y0|pe−χ(t−t0), ∀t ≥ t0 (4.68)

where K and χ have been defined in (4.65).

Proof. By Assumption 4.2.1, the system (4.66) will remain at 0 if x0 = 0. So (4.68)

holds. Otherwise, we can combine Theorems 2.5.9 and 2.5.10.

Let V (y, i, t) = ϕi|y|p from Rn0 × S× R+ → R+ and define an operator LV : Rn × S×
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R+ → R by

LV (y, i, t) =Vt(y, i, t) + Vy(y, i, t)f(y, i, t) +
1

2
trace[GT (y, i, t)Vyy(y, i, t)G(y, i, t)]

+
N∑
k=1

γikV (y, k, t).

Then by Assumptions 4.2.1, 4.2.2, 4.2.3 and Remark 4.2.4, we have that for any t ≥ t0,

LV (y, i, t) = pϕi|y|p−2yT f(y, i, t) +
1

2
pϕi|y|p−2|G(y, i, t)|2

− p(2− p)
2

ϕi|y|p−4|yTG(y, i, t)|2 +
N∑
k=1

γikϕk|y|p

≤− ϕ̄i|y|p ≤ − min
1≤i≤N

ϕ̄i|y|p. (4.69)

For each integer k ≥ 1, define a stopping time %k = inf{t ≥ t0 : |y(t)| ≥ k}.

Since

min
1≤i≤N

ϕi|y|p ≤ V (y, i, t) ≤ max
1≤i≤N

ϕi|y|p

for all (y, i, t) ∈ Rn0 × S × R+ and t0 ≤ t ≤ %k indicates 0 < |y(t)| ≤ k. We can apply

the generalized Itô formula to derive that

E
[
eχ(t∧%k)V (y(t ∧ %k), r(t ∧ %k), t ∧ %k)

]
=eχt0EV (y0, r0, t0) + E

∫ t∧%k

t0

eχs
[
χV (y(s), r(s), s) + LV (y(s), r(s), s)

]
ds

≤eχt0 max
1≤i≤N

ϕiE|y0|p + E
∫ t∧%k

t0

eχs
[
χ max

1≤i≤N
ϕi|y(s)|p − min

1≤i≤N
ϕ̄i|y(s)|p

]
ds

≤eχt0 max
1≤i≤N

ϕiE|y0|p

by (4.69). Futhermore,

min
1≤i≤N

ϕiE
[
eχ(t∧%k)|y(t ∧ %k)|p

]
≤E
[
eχ(t∧%k)V (y(t ∧ %k), r(t ∧ %k), t ∧ %k)

]
≤eχt0 max

1≤i≤N
ϕiE|y0|p. (4.70)
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Define

Yk := eχ(t∧%k)|y(t ∧ %k)|p for k ≥ 1.

By the definition of %k, Yk is increasing.

Then the Monotonic convergence theorem indicates that

lim
k→∞

EYk = E lim
k→∞

Yk.

As k →∞, %k →∞ almost surely, then

lim
k→∞

Yk = eχ(t)|y(t)|p.

Letting k →∞ in (4.70) gives

E|y(t)|p ≤ KE|y0|pe−χ(t−t0) for t ≥ t0.

The proof is complete. 2

Lemma 4.2.8 Let Assumption 4.2.1 hold. Then

E|x(t)|p ≤ E|x0|p exp
(
p(α+ 0.5β

2
+ 0.5κ2)(t− t0)

)
and E|x(t)|2 ≤ E|x0|2 exp

(
(2α+ β

2
+ κ2)(t− t0)

)
(4.71)

for any p ∈ (0, 1), t0 ≥ 0, x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈MFt0 (S).

Proof. By the generalized Itô formula and Assumption 4.2.1,

E|x(t)|2

=E|x0|2 + E
∫ t

t0

(
2xT (s)f(x(s), r(s), s) + |g(x(s), r(s), s)|2 + |u(x(δs), r(δs), s)|2

)
ds

≤E|x0|2 + E
∫ t

t0

(
2xT (s)f(x(s), r(s), s) + |g(x(s), r(s), s)|2 + |u(x(δs), r(δs), s)|2

)
ds

≤E|x0|2 + (2α+ β
2

+ κ2)

∫ t

t0

sup
t0≤z≤s

|x(z)|2ds
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Since the last term is nondecreasing function of t and by the Fubini theory,

sup
t0≤z≤t

E|x(z)|2 ≤ E|x0|2 + (2α+ β
2

+ κ2)

∫ t

t0

sup
t0≤z≤s

E|x(z)|2ds.

Then the Gronwall inequality implies

sup
t0≤z≤t

E|x(z)|2 ≤ E|x0|2 exp[(2α+ β
2

+ κ2)(t− t0)].

Finally Hölder’s inequality gives the first inequality of (4.71). The proof is complete.

2

Lemma 4.2.9 Let Assumption 4.2.1 hold. Then

E
(

sup
t0≤s≤t

|x(s)|p
)
≤ 2pE|x0|p exp

(
2p(t− t0)[α2(t− t0) + 4(β

2
+ κ2)]

)
and E

(
sup
t0≤s≤t

|x(s)|2
)
≤ 4E|x0|2 exp

(
4(t− t0)[α2(t− t0) + 4(β

2
+ κ2)]

)
. (4.72)

for any p ∈ (0, 1), t0 ≥ 0, x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈MFt0 (S).

Proof. By the definition of solutions of hybrid SDEs, the inequality in (2.17), Assump-

tion 4.2.1, Hölder’s inequality and the Burkholder-Davis-Gundy inequality, we have

that

E
(

sup
t0≤s≤t

|x(s)|2
)

≤4E|x0|2 + 4E
(

sup
t0≤s≤t

∣∣∣ ∫ s

t0

f(x(z), r(z), z)dz
∣∣∣2)

+ 4E
(

sup
t0≤s≤t

∣∣∣ ∫ s

t0

g(x(z), r(z), z)dB(z)
∣∣∣2)+ 4E

(
sup
t0≤s≤t

∣∣∣ ∫ s

t0

u(x(δz), r(δz), z)dB̃(z)
∣∣∣2)

≤4E|x0|2 + 4(t− t0)

∫ t

t0

α2E
(

sup
t0≤z≤s

|x(z)|2
)
ds+ 16(β

2
+ κ2)

∫ t

t0

E
(

sup
t0≤z≤s

|x(z)|2
)
ds.

Then the Gronwall inequality implies

E
(

sup
t0≤s≤t

|x(s)|2
)
≤ 4E|x0|2 exp

(
4(t− t0)[α2(t− t0) + 4(β

2
+ κ2)]

)
.
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Finally Hölder’s inequality gives the first inequality of (4.72). The proof is complete.

2

Lemma 4.2.10 Let Assumptions 4.2.1 and 4.2.2 hold. Then

E|x(t)− y(t)|p

≤H
p
2 (τ)E|x0|p

[
exp[(2α+ β

2
+ κ2)(t− t0)]− 1

] p
2

exp[p(α+ 0.5β
2

+ 1.5κ2)(t− t0)]

for any p ∈ (0, 1), t0 ≥ 0, x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈ MFt0 (S), where H(τ) has been

defined in (4.64).

Proof. For any fixed x0 ∈ LpFt0 (Ω,Rn), we have

d(x(t)− y(t)) = [f(x(t), r(t), t)− f(y(t), r(t), t)]dt

+ [g(x(t), r(t), t)− g(y(t), r(t), t)]dB(t) + [u(x(δt), r(δt), t)− u(y(t), r(t), t)]dB̃(t).

By the generalized Itô formula and Assumption 4.2.1,

E|x(t)− y(t)|2

≤E
∫ t

t0

(
2[x(s)− y(s)]T [f(x(s), r(s), s)− f(y(s), r(s), s)]

+ |g(x(s), r(s), s)− g(y(s), r(s), s)|2 + |u(x(δs), r(δs), s)− u(y(s), r(s), s)|2
)
ds

≤(2α+ β
2
)

∫ t

t0

E|x(s)− y(s)|2ds+ J(t), (4.73)

where

J(t) = E
∫ t

t0

|u(x(δs), r(δs), s)− u(y(s), r(s), s)|2]ds.
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Since

u(x(δs), r(δs), s)− u(y(s), r(s), s) =u(x(δs), r(δs), s)− u(x(δs), r(s), s)

+ u(x(δs), r(s), s)− u(x(s), r(s), s)

+ u(x(s), r(s), s)− u(y(s), r(s), s).

Using the elementary inequality |a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2 for a, b, c ∈ R, we can

rewrite J(t) as

J(t) ≤ 3E
∫ t

t0

(
|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2

+ |u(x(δs), r(s), s)− u(x(s), r(s), s)|2

+ |u(x(s), r(s), s)− u(y(s), r(s), s)|2
)
ds.

Then by Assumption 4.2.1 and the Fubini theory,

J(t) ≤3E
∫ t

t0

(
|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2

+ κ2
r(s)|x(s)− x(δs)|2 + κ2

r(s)|x(s)− y(s)|2
)
ds

≤3

∫ t

t0

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2ds

+ 3κ2

∫ t

t0

E|x(s)− x(δs)|2 + E|x(s)− y(s)|2ds.

Substituting into (4.73) gives

E|x(t)− y(t)|2

≤(2α+ β
2

+ 3κ2)

∫ t

t0

E|x(s)− y(s)|2ds+ 3κ2

∫ t

t0

E|x(s)− x(δs)|2ds

+ 3

∫ t

t0

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2ds, (4.74)

Notice that δt ≤ t < δt + τ . By Assumption 4.2.1, Lemma 4.2.9, Remark 4.2.6 and
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Lemma 4.2.8, we can derive that

E|x(t)− x(δt)|2

≤2E
∫ t

δt

(
τ |f(x(s), r(s), s)|2 + |g(x(s), r(s), s)|2 + |u(x(δs), r(δs), s)|2

)
ds

≤2E
∫ t

δt

(
τα2

r(s)|x(s)|2 + β2
r(s)|x(s)|2 + κ2

r(δs)
|x(δs)|2

)
ds

≤2(τα2 + β
2

+ κ2)

∫ t

δt

E
(

sup
δt≤z≤s

|x(z)|2
)
ds

≤8τ(τα2 + β
2

+ κ2)E|x(δt)|2 exp[4α2τ2 + 16τ(β
2

+ κ2)]

≤8τ(τα2 + β
2

+ κ2)E|x0|2 exp[(2α+ β
2

+ κ2)(δt − t0)] exp[4α2τ2 + 16τ(β
2

+ κ2)]

≤8τ(τα2 + β
2

+ κ2) exp[4α2τ2 + 16τ(β
2

+ κ2)]E|x0|2 exp[(2α+ β
2

+ κ2)(t− t0)].

Then

∫ t

t0

E|x(s)− x(δs)|2ds ≤
8τ(τα2 + β

2
+ κ2)

2α+ β
2

+ κ2
exp[4α2τ2 + 16τ(β

2
+ κ2)]

× E|x0|2
[

exp[(2α+ β
2

+ κ2)(t− t0)]− 1
]
. (4.75)

Let Nt be the integer part of (t − t0)/τ , i,e, number of observations until time t.

Recall tk = t0 + kτ , x(tk) = xk, r(tk) = rk for k = 0, 1, 2, · · · . Then we can write

∫ t

t0

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2ds

=

Nt∑
k=0

∫ t∧tk+1

tk

E|u(xk, rk, s)− u(xk, r(s), s)|2ds. (4.76)

According to Lemma 2.3.4, for any t ≥ t0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣∣r(t) = i) ≤ 1− e−γv, (4.77)
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where γ has been defined in (4.65) . Then by Assumption 4.2.1, for tk ≤ s ≤ t ∧ tk+1,

E|u(xk, rk, s)− u(xk, r(s), s)|2

=E
[
E|u(xk, rk, s)− u(xk, r(s), s)|2|Ftk)

]
≤E
[
4κ2|xk|2E

(
I{r(s)6=rk}|Ftk

)]
≤E
[
4κ2|xk|2(1− e−γτ )

]
= 4κ2(1− e−γτ )E|xk|2. (4.78)

Substituting (4.78) into (4.76) and using Lemma 4.2.8, we obtain that

∫ t

t0

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|2ds

≤4κ2(1− e−γτ )

Nt∑
k=0

∫ t∧tk+1

tk

E|xk|2ds

≤4κ2(1− e−γτ )

Nt∑
k=0

∫ t∧tk+1

tk

E|x0|2 exp[(2α+ β
2

+ κ2)(tk − t0)]ds

≤4κ2(1− e−γτ )

Nt∑
k=0

∫ t∧tk+1

tk

E|x0|2 exp[(2α+ β
2

+ κ2)(s− t0)]ds

≤4κ2(1− e−γτ )E|x0|2
∫ t

t0

exp[(2α+ β
2

+ κ2)(s− t0)]ds

≤4κ2(1− e−γτ )

2α+ β
2

+ κ2
E|x0|2

[
exp[(2α+ β

2
+ κ2)(t− t0)]− 1

]
. (4.79)

Substituting (4.79) and (4.75) into (4.74) gives

E|x(t)− y(t)|2

≤(2α+ β
2

+ 3κ2)

∫ t

t0

E|x(s)− y(s)|2ds+H(τ)E|x0|2
[

exp[(2α+ β
2

+ κ2)(t− t0)]− 1
]
.

Then the Gronwall inequality implies

E|x(t)−y(t)|2 ≤ H(τ)E|x0|2
[

exp[(2α+β
2
+κ2)(t−t0)]−1

]
exp[(2α+β

2
+3κ2)(t−t0)].

Finally the Hölder inequality indicates the desired assertion. 2

102



Chapter 4. Almost Sure Exponential Stabilization by Stochastic Feedback Control

Similarly to Remarks 4.1.8 and 4.1.9 in Section 4.1, we have two remarks to ex-

plain the existence of a positive observation interval and the Markov property of the

controlled system.

Remark 4.2.11 Ĥ(τ) in (4.62) is a continuously increasing function of τ for τ ≥ 0.

Ĥ = 0 when τ = 0 (as H(0) = 0) and Ĥ → ∞ as τ → ∞. So equation (4.62) must

have a unique root τ̄ > 0, and for any τ ∈ (0, τ̄), we have Ĥ(τ) < 1− ε.

Proof of Theorem 4.2.5: Fix τ ∈ (0, τ̄) and x0 ∈ L2
Ft0

(Ω,Rn) arbitrarily.

The definition in (4.65) indicates K ≥ 1, then 2pK/ε > 1. So we can choose a positive

integer ν such that
log(2pK/ε)

χτ
≤ ν ≤ 1 +

log(2pK/ε)

χτ
. (4.80)

The left part of it imples

2pKe−χντ ≤ ε. (4.81)

By Remark 4.2.6, we consider x(t) as the solution of (4.47) starting from t0 + iντ

for i = 0, 1, 2, · · · . Recall the notations tk = t0 + kτ, y(tk) = yk, x(tk) = xk, r(tk) = rk

for ∀k = 0, 1, 2, · · · . Let y(i+1)ν = y(t(i+1)ν ;xiν , riν , tiν) and use Lemma 4.2.7, then we

have

E|y(i+1)ν |p ≤ KE|xiν |pe−χντ . (4.82)

Since the elementary inequality (a+ b)p ≤ 2p(ap + bp) holds for any a, b ∈ R,

E|x(i+1)ν |p ≤ 2pE|y(i+1)ν |p + 2pE|x(i+1)ν − y(i+1)ν |p. (4.83)

Combining (4.82) and (4.81) gives

2pE|y(i+1)ν |p ≤ εE|xiν |p.

Let x(i+1)ν = x(t(i+1)ν ;xiν , riν , tiν) and recall Lemma 4.2.10. Since the second

inequality in (4.80) indicates that

ντ ≤ τ + log(2pK/ε)/χ,
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we can obtain

2pE|x(i+1)ν − y(i+1)ν |p

≤2pH
p
2 (τ)E|xiν |p

[
exp[(2α+ β

2
+ κ2)ντ ]− 1

] p
2

exp[p(α+ 0.5β
2

+ 1.5κ2)ντ ]

≤Ĥ(τ)E|xiν |p,

where Ĥ(τ) has been defined in (4.63).

Substituting this into (4.83) yields

E|x(i+1)ν |p ≤ E|xiν |p[ε+ Ĥ(τ)]. (4.84)

Since Ĥ(τ) < 1− ε, there is λ > 0 such that

ε+ Ĥ(τ) = e−λντ .

Therefore we can write

E|x(i+1)ν |p ≤ E|xiν |pe−λντ . (4.85)

Repeating this procedure,

E|xiν |p ≤ E|x0|pe−iλντ , ∀i = 0, 1, 2, · · · . (4.86)

For any t ≥ 0, there is a unique i ≥ 0 such that t0 + iντ ≤ t < t0 +(i+1)ντ . Again,

use the Markov property of the pair (x(t), r(t)) and consider x(t) as the solution of

(4.47) starting from t0 + iντ for i = 0, 1, 2, · · · . By Lemma 4.2.8 and (4.86),

E|x(t)|p ≤ E|xiν |p exp[p(t− t0 − iντ)(α+ 0.5β
2

+ 0.5κ2)]

≤ E|xiν |p exp[pντ(α+ 0.5β
2

+ 0.5κ2)]

≤ E|x0|pe−iλντ exp[pντ(α+ 0.5β
2

+ 0.5κ2)]

≤ E|x0|pe−λt exp[λντ + pντ(α+ 0.5β
2

+ 0.5κ2)]

≤ E|x0|pMe−λ(t−t0), (4.87)
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where M = exp[λντ+pντ(α+0.5β
2
+0.5κ2)]. So far we have proved assertation (4.60).

By Lemma 4.2.9, Remark 4.2.6 and (4.87), we have

E
(

sup
t̂k≤t≤t̂k+1

|x(t)|p
)
≤ 2pE|x(t̂k)|p exp

(
2pντ [α2ντ + 4(β

2
+ κ2)]

)
≤ CE|x0|pe−kλντ ,

(4.88)

where C = 2pM exp
(

2pντ [α2ντ + 4(β
2

+ κ2)]
)

and t̂k = t0 + kντ for k = 0, 1, 2, · · · .

Then we can prove the almost sure exponential stability in a similar way as in Section

3, namely by Chebyshev’s inequality and the Borel-Cantelli lemma. 2

4.2.3 Corollary

Theorem 4.2.5 can also be applied to linear hybrid system. Consider an unstable linear

n-dimensional ODE with Markovian Switching

ẋ(t) = Ar(t)x(t) (4.89)

on t ≥ t0(≥ 0) with x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈MFt0 (S), where Ai ∈ Rn×n for i ∈ S.

We can stabilize it by stochastic feedback control G(r(t))x(t)dB(t) based on a scalar

Brownian motion independent of B(t). The controlled SDE has the form

dx(t) = Ar(t)x(t)dt+Gr(δt)x(δt)dB(t), (4.90)

where Gi ∈ Rn×n for i ∈ S and

δt = t0 +
[ t− t0

τ

]
τ for τ > 0. (4.91)

Let Ā = maxi∈S ‖Ai‖ and Ḡ = maxi∈S ‖Gi‖. By replacing α, β and κ with Ā, 0

and Ḡ respectively, we have the following corollary.

Corollary 4.2.12 Assume that there is a constant p ∈ (0, 1) such that A(p) defined in
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(4.59) with

θi(p) =
p

2

[
(2− p)λ2

max(Gi)− ‖Gi‖2
]
− p‖Ai‖ for 1 ≤ i ≤ N

is a nonsingular M-matrix. Then we can find a vector ϕ ∈ RN+ such that A(p)ϕ ∈ RN+ .

Choose ε ∈ (0, 1). Then the controlled system (4.90) is exponentially stable in pth

moment and almost surely in the sense that (4.60) and (4.61) hold for any initial

values x0 ∈ L2
Ft0

(Ω,Rn) and r0 ∈ MFt0 (S), provided τ ∈ (0, τ̄), where τ̄ > 0 is the

unique root to

Ĥ(τ) = 1− ε (4.92)

where

Ĥ(τ) =2p
[6Ḡ2τ(Ā2τ + Ḡ2) + 12Ḡ2(1− e−γτ )

2Ā+ Ḡ2

] p
2

×
[

exp
(

(2Ā+ Ḡ2)[τ + log(2pK/ε)/χ]
)
− 1
] p

2

× exp
[
p(Ā+ 1.5Ḡ2)[τ + log(2pK/ε)/χ]

]
,

in which K,χ and ϕ̄i(1 ≤ i ≤ N) all have the same forms as defined in Section 4.2.1.4

4.3 Discussion and Conclusion

Similar to deterministic feedback controls which are added to the drift, a stochastic

feedback control uses observations of the system state x and mode r at discrete times

0, τ, 2τ, · · · . The difference for implementation is that: at each time step, a deter-

ministic feedback control added u(x(δt), r(δt), t)dt to the system, a stochastic feedback

control added u(x(δt), r(δt), t)dB̃(t) to the system, where B̃(t) is independent from the

Brownian motion of the original stochastic system.

In this chapter we have discussed the stabilization of continuous-time non-autonomous

4

K =
maxi∈S ϕi
mini∈S ϕi

, χ =
min1≤i≤N ϕ̄i
max1≤i≤N ϕi

, ϕ̄i = θi(p)ϕi −
N∑
j=1

γijϕj for 1 ≤ i ≤ N. (4.93)
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ODEs as well as hybrid SDEs by stochastic feedback control based on Brownian motions

and discrete-time state and mode observations, in the sense of pth moment exponential

stability for p ∈ (0, 1) and almost sure exponential stability.

The main contribution of this chapter is expanding the scope of applicable original

unstable systems, from autonomous ODEs to non-autonomous ODEs and hybrid SDEs.

Due to the complexity of stabilization problem by a stochastic feedback control, we

have to use very general methods - by comparing the our new controlled system based

on discrete-time observations and the traditional auxiliary controlled controlled system

based continuous-time observations. Consequently, the observation interval is too small

to give any numerical example by computer simulation.
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Chapter 5

Stabilization of Continuous-time

Periodic Stochastic Systems

Since 2013, study on stabilization of SDEs using observations at times 0, τ, 2τ, 3τ, · · ·

has been developed by many researchers. However, if the coefficients of original system

and controller change with time explicitly periodically, then the periodic time-varying

observation frequencies make more sense than the observations with constant interval.

This chapter is devoted to stabilization problem using this new way of observation. This

chapter investigates how to stabilize a given non-autonomous periodic unstable SDE or

hybrid SDE by a periodic feedback control based on periodic discrete-time observations

to make the controlled system become pth moment H∞-stable and exponentially stable

for p > 1, pth moment asymptotically stable for p ≥ 2, almost surely asymptotically

stable and exponentially stable. Compared to existing results, the new established

theory not only reduces the cost of control by reducing observation frequency, but also

offers flexibility on the setting of observations to some extent. The results stated in

this chapter was submitted as [122] 1, which is under review of the journal “IEEE

Transactions on Automatic Control”.

This chapter is organised as follows. We discuss hybrid SDEs before the single-mode

SDE systems. Section 5.1 introduces the stabilization problem, proposes definitions of

1Dong, R. and Mao, X. 2018. Stabilization of Continuous-time Periodic Stochastic Systems by
Feedback Control Based on Discrete-time Periodic Observations. Manuscript submitted for publication.
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the observation interval sequence and assumptions. Section 5.2 and Section 5.3 discuss

asymptotic and exponential stabilization respectively for hybrid SDEs. Results for

single-mode SDEs is shown in Section 5.4. Before the conclusion in Section 5.6, two

numerical examples are given in Section 5.5.

5.1 Notation

Given an n-dimensional periodic unstable hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (5.1)

on t ≥ 0, we want to add a controller u in the drift part for stabilization.

If system (5.1) is autonomous, namely the coefficients f(x(t), r(t)) and g(x(t), r(t))

does not depend on time explicitly, then it makes sense to design such a controller (i.e.

u(x(δt), r(δt)) does not depend on time explicitly). If system (5.1) is non-autonomous

and coefficients f(x(t), r(t), t) and g(x(t), r(t), t) are both periodic with respect to time

t, then it makes sense design such a controller (i.e. u(x(δt), r(δt), t) is periodic with

respect to time). For these types of systems and controllers, it’s feasible to set the

observation intervals to be periodic, including time-varying and constant. This chapter

will put emphasis on time-varying periodic observations for non-autonomous systems,

as the observations with constant interval for autonomous systems has been covered by

Chapter 3.

As we know, the observation interval is the length of time between two observations.

Define our periodic observation interval sequence to be {τj}j≥1 such that

τkM+i = τi

for a positive integer M , ∀k = 0, 1, 2, · · · and i = 1, 2, · · · ,M .

This means the system is observed at time points 0, τ1, τ1 +τ2, τ1 +τ2 +τ3, · · · . Then
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for any t ≥ 0, there is a positive integer k such that

k∑
j=1

τj ≤ t <
k+1∑
j=1

τj .

Then similarly as before, the step function of time δt, which represents the observation

time point, is now defined as

δt :=
k∑
j=1

τj . (5.2)

We will discuss how to calculate the observation intervals later. However, to avoid

readers’ confusion, I sketch the general idea now. Roughly speaking: the length of

one period of {τj}j≥1 will be determined by the original system and controller; we will

firstly divide the length of one period into several subintervals, then calculate τj on

each subinterval, and finally set the infimum on each subinterval or a smaller value as

the constant observation interval over the corresponding subinterval.

In this chapter, I will use several symbols to denote the observation intervals for

analysis.

For ∀t ≥ 0, we can find a positive integer k such that
∑k

j=1 τj ≤ t <
∑k+1

j=1 τj . Let

κt := τk+1 for any t ∈ [
∑k

j=1 τj ,
∑k+1

j=1 τj). That is, δt ≤ t < δt + κt.

For example, when t ∈ [0, τ1), δt = 0 and κt = τ1;

when t ∈ [τ1, τ1 + τ2), δt = τ1 and κt = τ2;

when t ∈ [τ1 + τ2, τ1 + τ2 + τ3), δt = τ1 + τ2 and κt = τ3; · · · .

Obviously κt is actually a periodic step function of time.

Similarly to the notation ‘δt’ and ‘κt’, for a step function of time K̂, I will use K̂t

instead of K̂(t) for simplicity and consistency.

5.2 Stabilization problem

Consider an n-dimensional periodic hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (5.3)
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on t ≥ 0, with initial values x(0) = x0 ∈ Rn and r(0) = r0 ∈ S. Here

f : Rn × S× R+ → Rn and g : Rn × S× R+ → Rn×m.

The given system may not be stable and our aim is to design a feedback control u :

Rn × S× R+ → Rn for stabilization.

The controlled system corresponding to (5.3) has the form

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(δt), t)]dt+ g(x(t), r(t), t)dB(t). (5.4)

Assumption 5.2.1 Assume that f(x, i, t), g(x, i, t) and u(x, i, t) are all periodic with

respect to time t. Assume f , g, u and κt have a common period T .

The assumption that T is a period of κt means κt = κt+kT for k = 0, 1, 2, · · · and∑M
j=1 τj = T .

Assumption 5.2.2 Assume that the coefficients f(x, i, t) and g(x, i, t) are both locally

Lipschitz continuous on x (see e.g. [26]), and they both satisfy the following linear

growth condition

|f(x, i, t)| ≤ K1(t)|x| and |g(x, i, t)| ≤ K2(t)|x| (5.5)

for all (x, i, t) ∈ Rn×S×R+, where K1(t) and K2(t) are periodic bounded non-negative

functions with period T .

Note (5.5) implies that

f(0, i, t) = 0 and g(0, i, t) = 0 (5.6)

for all (i, t) ∈ S× R+.

Assumption 5.2.3 Assume the controller function u(x, i, t) is globally Lipschitz con-

tinuous on x and satisfies the following linear growth condition

|u(x, i, t)− u(y, i, t)| ≤ K3(t)|x− y| (5.7)
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for all (x, y, i, t) ∈ Rn × Rn × S× R+, where K3(t) is a periodic bounded non-negative

function with period T . Moreover, we also assume

u(0, i, t) = 0 (5.8)

for all (i, t) ∈ S× R+.

Assumption 5.2.3 implies that the controller satisfies the following linear growth

condition

|u(x, i, t)| ≤ K3(t)|x| (5.9)

for all (x, i, t) ∈ Rn × S× R+.

Denote by K1,K2 and K3 the upper bound of K1(t),K2(t) and K3(t) respectively,

i.e.,

K1(t) ≤ K1, K2(t) ≤ K2 and K3(t) ≤ K3.

Denote the largest observation interval maxj≥1 τj by τmax. For stabilization purpose,

we define the following initial values

x(s) = x0, r(s) = r0, f(x, i, s) = f(x, i, 0),

u(x, i, s) = u(x, i, 0) and g(x, i, s) = g(x, i, 0)

for all (x, i, s) ∈ Rn × S× [−τmax, 0).

Let V (x, i, t) be a Lyapunov function periodic with respect to t, and we require

V ∈ C2,1(Rn × S× R+;R+). Then define an operator LV : Rn × S× R+ → R by

LV (x, i, t) =Vt(x, i, t) + Vx(x, i, t)[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Vxx(x, i, t)g(x, i, t)] +

N∑
k=1

γikV (x, k, t). (5.10)

For simplicity, we denote V (x(0), r(0), 0) by V0. We impose an assumption on the

Lyapunov function.
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Assumption 5.2.4 Assume that there is a Lyapunov function V (x, i, t) periodic with

respect to t with period T , constants l > 0, p > 1 and a periodic function λ(t) with

inft≥0 λ(t) > 0 such that

LV (x, i, t) + l|Vx(x, i, t)|
p
p−1 ≤ −λ(t)|x|p (5.11)

for all (x, i, t) ∈ Rn × S× R+.

It can be seen that T is a period of λ. Let λ = inf0≤t<T λ(t).

Let us divide [0, T ] into Z − 1 subintervals, where Z ≥ 2 is an arbitrary integer, by

choosing a partition {Tj}1≤j≤Z with T1 = 0 and TZ = T . Then we define the following

three step functions on t ≥ 0 with periodic T :

K̂1t = sup
Tj≤s≤Tj+1

K1(t) for Tj ≤ t < Tj+1,

K̂2t = sup
Tj≤t≤Tj+1

K2(t) for Tj ≤ t < Tj+1,

K̂3t = sup
Tj≤t≤Tj+1

K3(t) for Tj ≤ t < Tj+1, (5.12)

where j = 1, · · · , Z − 1.

Define a periodic function

β(t) : = β(κt, t) = λ(t)− 1

p
(
p− 1

pl
)p−1

×
(
Kp

3 (t)23p−2(1− e−γκt) +
2p−1κ

p
2
t K̂

p
3t

1− 8p−1κpt K̂
p
3t

[23p−2(1− e−γκt) + 2p−1]

× [2p−1κ
p
2
t K

p
1 (t) + ρKp

2 (t) + 4p−1κ
p
2
t K

p
3 (t)]

)
. (5.13)

It can be seen that T is a period of β(t).

Define two positive numbers depending on the moment order p:

ρ =


(32
p )

p
2 for p ∈ (1, 2),

[p(p−1)
2 ]

p
2 for p ≥ 2.
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and

ν =


(32
p )

p
2 for p ∈ (1, 2),

4 for p = 2,(
pp+1

2(p−1)p−1

) p
2

for p > 2.

5.3 Asymptotic Stabilization

5.3.1 Moment H∞ stability

Theorem 5.3.1 Fix the moment order p > 1. Let Assumptions 5.2.1, 5.2.2, 5.2.3 and

5.2.4 hold. Divide [0, T ] into Z−1 subintervals with T1 = 0 and TZ = T . Choose κt > 0

sufficiently small such that κt ≤ Tj+1−Tj for t ∈ [Tj , Tj+1) 2 where j = 1, 2, · · · , Z − 1

and

inf
0≤t<T

β(t) > 0 and sup
0≤t<T

(κtK̂3t) < 8
− p−1

p , (5.14)

where β(t) has been defined in (5.13). Then the controlled system (5.4) is H∞-stable

in Lp(Ω× R+;Rn) in the sense

∫ ∞
0

E|x(s)|pds <∞ (5.15)

for all initial data x0 ∈ Rn and r0 ∈ S.

We will explain why such an observation interval sequence exists and how to calcu-

late it step by step after the proof.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. Applying the generalized Itô formula to

V (x(t), r(t), t) gives

dV (x(t), r(t), t) =LV (x(t), r(t), t)dt+ dM(t)

2In other words, the length of the subinterval cannot be shorter than the observation interval.
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for t ≥ 0, where M(s) is a continuous local martingale with M(0) = 0 and

LV (x(t), r(t), t)

=Vt(x(t), r(t), t) + Vx(x(t), r(t), t)[f(x(t), r(t), t) + u(x(δt), r(δt), t)]

+
1

2
trace[gT (x(t), r(t), t)Vxx(x(t), r(t), t)g(x(t), r(t), t)] +

N∑
k=1

γikV (x, k, t). (5.16)

Since V ∈ C2,1(Rn × S× R+;R+), we can use the generalized Itô formula and get

EV (x(t), r(t), t) = V0 +

∫ t

0
ELV (x(s), r(s), s)ds. (5.17)

We can rewrite LV (x(s), r(s), s) by the operator as

LV (x(s), r(s), s)

=LV (x(s), r(s), s)− Vx(x(s), r(s), s)[u(x(s), r(s), s)− u(x(δs), r(δs), s)]. (5.18)

By the Young inequality, we can derive that

− Vx(x(s), r(s), s)[u(x(s), r(s), s)− u(x(δs), r(δs), s)]

≤
[
ε|Vx(x(s), r(s), s)|

p
p−1

] p−1
p

×
[
ε1−p|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

] 1
p

≤l|Vx(x(s), r(s), s)|
p
p−1

+
1

p
(
p− 1

pl
)p−1|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p, (5.19)

where l = p−1
p ε for ∀ε > 0.

Using the elementary inequality |a + b|p ≤ 2p−1(|a|p + |b|p) for a, b ∈ R and p > 1,
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we have

E|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

≤2p−1E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

+ 2p−1E|u(x(δs), r(s), s)− u(x(s), r(s), s)|p. (5.20)

According to Lemma 2.3.4 (or see Lemma 1 in [35]) and Assumption 5.2.3, we have

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

=E
[
E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

∣∣∣Fδs)]
≤E
[
2pKp

3 (s)|x(δs)|pE
(
I{r(s)6=rk}|Fδs

)]
≤22p−1Kp

3 (s)(1− e−γκs)[E|x(s)|p + E|x(δs)− x(s)|p]. (5.21)

Substituting (5.21) into (5.20) gives

E|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

≤23p−2Kp
3 (s)(1− e−γκs)E|x(s)|p

+ [23p−2Kp
3 (s)(1− e−γκs) + 2p−1Kp

3 (s)]E|x(δs)− x(s)|p. (5.22)

Substitute (5.22) into (5.19). Then substitute the result into (5.18). By Assumption

5.2.4, we obtain that

ELV (x(s), r(s), s)

≤− [λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γκs)]E|x(s)|p

+
1

p
(
p− 1

pl
)p−1Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(δs)− x(s)|p. (5.23)

Note that t − δt ≤ κt for all t ≥ 0. By the definition of hybrid SDEs solutions,

the elementary inequality in (2.17), Hölder’s inequality, the Burkholder-Davis-Gundy
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inequality and Theorem 2.6.2, we obtain that

E|x(t)− x(δt)|p

≤2p−1κ
p−2
2

t E
∫ t

δt

[
κ
p
2
t |f(x(s), r(s), s) + u(x(δs), r(δs), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(5.24)

By Assumptions 5.2.2 and 5.2.3, we have that for any s ∈ [δs, δs + κs),

E|x(s)− x(δs)|p

≤2p−1κ
p−2
2

s

∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]E|x(z)|pdz

+ 8p−1κp−1
s

∫ s

δs

Kp
3 (z)dz[E|x(s)− x(δs)|p + E|x(s)|p].

Since condition (5.14) guarantees 8p−1κpsK̂
p
3s < 1, we can rearrange it and get

E|x(s)− x(δs)|p

≤ 8p−1κpsK̂
p
3s

1− 8p−1κpsK̂
p
3s

E|x(s)|p +
2p−1κ

p−2
2

s

1− 8p−1κpsK̂
p
3s

∫ s

δs

[
2p−1κ

p
2
s K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdz.

(5.25)

Recall τmax = maxj≥1 τj . Let x(s) = x0, r(s) = r0, K1(s) = K1(0), K2(s) = K2(0)

and K3(s) = K3(0) for all (x, i, s) ∈ Rn × S × [−τmax, 0). In addition, note that for

∀z ∈ [δs, s], we have κz = κs and K3(s) ≤ K̂3s = K̂3z. Since s − κs < δs, it’s easy to

show that for a non-negative bounded function F (t),

∫ t

0

∫ s

δs

F (z)dzds ≤
∫ t

0

∫ s

s−κs
F (z)dzds

≤
∫ t

−κz
F (z)

∫ z+κz

z
dsdz ≤

∫ t

−κs
κzF (z)dz ≤ C +

∫ t

0
κzF (z)dz. (5.26)
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Then

∫ t

0
Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]
2p−1κ

p−2
2

s

1− 8p−1κpsK̂
p
3z

×
∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]E|x(z)|pdzds

≤
∫ t

0

∫ s

δs

K̂p
3z[2

3p−2(1− e−γκz) + 2p−1]
2p−1κ

p−2
2

z

1− 8p−1κpzK̂
p
3z

×
[
2p−1κ

p
2
z K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdzds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
23p−2(1− e−γκs) + 2p−1

]
×
[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s)
]
E|x(s)|pds.

Recall that C’s denote positive constants that may change from line to line.

So

∫ t

0
Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(s)− x(δs)|pds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
23p−2(1− e−γκs) + 2p−1

]
×
[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s) + 4p−1κ
p
2
s K

p
3 (s)

]
E|x(s)|pds. (5.27)

Substitute (5.27) into (5.23), then substitute the result into (5.18). By (5.13), we

have

EV (x(t), r(t), t)

=V0 +

∫ t

0
ELV (x(s), r(s), s)ds

≤C −
∫ t

0

[
λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γκs)
]
E|x(s)|pds

+

∫ t

0

1

p
(
p− 1

pl
)p−1Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(s)− x(δs)|pds

≤C −
∫ t

0
β(s)E|x(s)|pds.
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By definition of V , we have that for ∀t ≥ 0,

0 ≤ EV (x(t), r(t), t) ≤ C −
∫ t

0
β(s)E|x(s)|pds.

Then
∫ t

0 β(t)E|x(t)|pdt ≤ C. Let β = inf0≤t<T β(t)(> 0). Then we have

β

∫ ∞
0

E|x(s)|pds ≤
∫ ∞

0
β(t)E|x(t)|pdt ≤ C.

Hence we obtain assertion (5.15). 2

We use the same observation interval in one subinterval. Observation interval se-

quence can be calculated by computer in three steps: 3

1) The first step is to divide [0, T ] into Z − 1 subintervals and we propose two ways to

do it.

One is simple even division. That is, all Z − 1 subintervals have the same length and

Tj = j−1
Z−1T for 1 ≤ j ≤ Z.

The other way is by an auxiliary function τ̃a(t), which satisfies

0 ≤λ(t)− 1

p
(
p− 1

pl
)p−1

(
Kp

3 (t)23p−2(1− e−γτ̃a(t))

+
2p−1τ̃a

p
2 (t)Kp

3 (t)

1− 8p−1τ̃a
p(t)Kp

3 (t)
[23p−2(1− e−γτ̃a(t)) + 2p−1]

× [2p−1τ̃a
p
2 (t)Kp

1 (t) + ρKp
2 (t) + 4p−1τ̃a

p
2 (t)Kp

3 (t)]
)
. (5.28)

We want to set the τ̃a to make the right-hand-side of (5.28) as closer to 0 as possible.

Then divide [0, T ] into Z − 1 subintervals according to the shape of τ̃a(t). We want

the supremum and the infimum of τ̃a(t) in each subinterval are relatively close, i.e.,

the difference is not very big. This means, if τ̃a(t) changes slowly over a time interval,

then we can set a wide subinterval in this time interval; otherwise if τ̃a(t) changes

rapidly over a time interval, then we need to set several narrow subintervals in this

3This is only a sketch of one method to calculate the observation interval sequence, obviously there
are other ways to guarantee the observation interval sequence satisfies the conditions in Theorem 5.3.1.
Since the main research problem is on stabilization and the time is limited, we don’t discuss the details
about numerical methods here.
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time interval.

Note that neither too narrow nor too wide subinterval is a good choice.

2) For the jth subinterval, (i.e., for t ∈ [Tj , Tj+1)), find a function τ̃j(t) ∈ (0, 1

8
p−1
p K̂3t

)

with inft∈[Tj ,Tj+1) τ̃j(t) > 0 such that

inf
t∈[Tj ,Tj+1)

β(τ̃j(t), t) > 0, (5.29)

where β has been defined in (5.13).

Find τ̃j(t) for all 1 ≤ j ≤ Z − 1.

3) For the jth subinterval where 1 ≤ j ≤ Z − 1, choose a positive integer Nj such that

Tj+1 − Tj
Nj

< inf
t∈[Tj ,Tj+1)

τ̃j(t).

Then let

κj =
Tj+1 − Tj

Nj
.

So the observation interval is κj and we observe Nj times on the jth subinterval. In

other words, the system is observed at t = Tj , Tj + κj , Tj + 2κj , · · · , Tj +Njκj , where

Tj +Njκj = Tj+1.

Find Nj and κj for all 1 ≤ j ≤ Z − 1.

Consequently, our observation interval sequence for one period [0, T ) is:

τ1 = κ1, · · · , τN1 = κ1,

τN1+1 = κ2, · · · , τN1+N2 = κ2,
...

τN1+···+NZ−2+1 = κZ−1, · · · , τN1+···+NZ−1
= κZ−1.

Besides, we always observe once at t = kT where k = 0, 1, 2, · · · .

Now let me explain why we can find a positive sequence satisfying condition (5.14)

and analyse the correlation between the observation interval sequence and system co-

efficients and mode switching rate.

When observation interval κt = 0, β(t) = λ(t). When κt <
1

8
p−1
p K̂3t

, κt, K1(t),

K2(t), K3(t) and γ are all negative related to β(t). Increase of κt leads to decrease of
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β(t). To guarantee inf0≤t<T β(t) > 0, large K1(t), large K2(t) and large K3(t) would

lead to small κt.

Through calculation and comparison between Theorems 3.5.1 and 5.3.1, we can find

that, if we require β and the observation interval to be both constants like in Chap-

ter 3, replacing λ(t), K1(t), K2(t), K3(t) and K̂3t in (5.13) with λ, K1,K2, K3 and

K3 respectively would give the same condition as (3.68) in Theorem 3.5.1. Therefore,

(5.14) in Theorem 5.3.1 is actually a weaker condition than (3.68) in Theorem 3.5.1,

as a result of consideration of the time-varying property. In addition, the observation

interval in Theorem 5.3.1 can be larger than that in Theorem 3.5.1, expect that:

(1) λ(t) reaches the minimum and K1(t), K2(t), K3(t) all reach their maximums at the

same time point, say t∗, if the four functions are all continuous;

(2) otherwise, there is a t∗ such that, as t goes to t∗ from left or right or both sides,

λ(t) goes to inf0≤t<T λ(t) and K1(t), K2(t), K3(t) go to K1,K2, K3 respectively.

When either (1) or (2) happens, the observation interval κt for the subinterval which

includes t∗ need to meet the same condition as (3.68), and hence is the same as the

observation interval calculated in Theorem 3.5.1.

Therefore, not only a positive sequence satisfying (5.14) exists, but also the smallest

observation interval required in Theorem 5.3.1 is not smaller than the constant obser-

vation interval required in Theorem 3.5.1, as long as the subinterval of [0, T ] is not too

short to restrict the observation interval.

Define

fa(y) :=
2p−1a

p
2 yp

1− 8p−1apyp
for a > 0 on 0 ≤ y < 1

8
p−1
p
a
.

Notice that fa would be smaller if y is smaller 4. So replacing K̂3t in (5.13) with K3(t)

in (5.28) allows τ̃a(t) larger than the observation interval. Specifically,

0 < min
1≤j≤Z−1

κj ≤ min
1≤j≤Z−1

inf
t∈[Tj ,Tj+1)

τ̃j(t) ≤ inf
0≤t<T

τ̃a(t).

Under the condition (5.14), large K1(t),K2(t) and K3(t) would lead to small κt.

4 dfa
dy

(y) =
2p−1pτ̃a

p
2 yp−1

(1− 8p−1τ̃a
pyp)2

≥ 0.
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Notice that large values of K1(t),K2(t) and K3(t) indicate large values of coefficients,

which imply rapid change of the solution. So this means when x changes fast, ob-

servations need to be more frequently. Similarly, large γ leads to small κt by (5.14).

This means if the system mode switches rapidly, then observations need to be very

frequently. These make sense in practice and agree with our intuition.

5.3.2 Moment and almost sure asymptotic stability

Theorem 5.3.2 Fix the moment order p ≥ 2. Under the same assumptions and con-

ditions of Theorem 5.3.1, the solution of the controlled system (5.4) satisfies

lim
t→∞

E|x(t)|p = 0 (5.30)

and

lim
t→∞

x(t) = 0 a.s. (5.31)

for any initial data x0 ∈ Rn and r0 ∈ S. In other words, the controlled system (5.4) is

asymptotically stable in pth moment and almost surely.

Assertion (5.30) can be proved in the same way as Theorem 3.2.2 and assertion

(5.31) can be proved in the same way as Theorem 3.4 of [97]. For clarity, I put the

complete proof is in Appendix A.2.

5.4 Exponential Stabilization

In Section 5.2, we discussed asymptotic stabilization and proved the convergence of

E|x(t)|p to 0. Now let’s investigate its exponential stabilization.

Assumption 5.4.1 Fix the moment order p > 1. Assume that there is a pair of

positive numbers c1 and c2 such that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p (5.32)

for all (x, i, t) ∈ Rn × S× R+.
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Theorem 5.4.2 Let Assumptions 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.4.1 hold. Divide

[0, T ] into Z−1 subintervals with T1 = 0 and TZ = T . Choose κt > 0 sufficiently small

such that κt ≤ Tj+1 − Tj for t ∈ [Tj , Tj+1) where j = 1, 2, · · · , Z − 1 and the following

two conditions hold:

1) for ∀t ∈ [0, T ),

either

ϕt : = ϕ(κt, t) = 8p−1κpt K̂
p
3t + 16p−1κ

p
2
t (1 + κpt K̂

p
3t)(2

p−1κ
p
2
t K̂

p
1t + ρK̂p

2t)

× exp(4p−1κpt K̂
p
1t + 4p−1κ

p
2
t νK̂

p
2t)

< 1, (5.33)

or

ϕt : = ϕ(κt, t) = 8p−1κpt K̂
p
3t +

16p−1κ
p
2
t (1 + κpt K̂

p
3t)(2

p−1κ
p
2
t K̂

p
1 + ρK̂p

2 )

1− 4p−1κ
p
2
t (κ

p
2
t K̂

p
1t + νK̂p

2t)

< 1 and 4p−1κ
p
2
t (κ

p
2
t K̂

p
1t + νK̂p

2t) < 1; (5.34)

2) ∫ T

0
β̃(t)dt > 0, (5.35)

where

β̃(t) : = β̃(κt, t) =
λ(t)

c2
− 1

c2p(1− ϕt)
(
p− 1

pl
)p−1Kp

3 (t)
[
23p−2(1− e−γκt) + 2p−1ϕt

]
.

(5.36)

Then the solution of the controlled system (5.4) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ − v

T
(5.37)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ − v

pT
a.s. (5.38)

123



Chapter 5. Stabilization of Continuous-time Periodic Stochastic Systems

for all initial data x0 ∈ Rn and r0 ∈ S, where

v =

∫ T

0
β̃(s)ds.

Remark 5.4.3 Notice that T is a period of ϕt, then T is also a period of β̃(t). For

ϕt defined in either (5.33) or (5.34) and for a fixed time point t, we have the following

discussion. When κt = 0, ϕt = 0, then β̃(t) = λ(t)/c2 > 0. If κt increases, both ϕt and

ϕt
1−ϕt increases, then β̃(t) will decrease. So it’s possible to find κt > 0 for 0 ≤ t < T

such that
∫ T

0 β̃(t)dt > 0.

We will explain how to find such an observation interval sequence after the proof.

We divide the proof into three steps.

Proof.

Step 1. Fix any x0 ∈ Rn and r0 ∈ S.

Let

V̂ (x(t), r(t), t) = e
∫ t
0 β̃(s)dsV (x(t), r(t), t).

We can obtain from the generalized Itô formula that

EV̂ (x(t), r(t), t)

=EV0 + E
∫ t

0
LV̂ (x(s), r(s), s)ds

≤EV0 +

∫ t

0
e
∫ s
0 β̃(z)dz[ELV (x(s), r(s), s) + β̃(s)EV (x(s), r(s), s)]ds, (5.39)

where LV (x(s), r(s), s) has been defined in (5.16).
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By (5.24), Assumptions 5.2.2 and 5.2.3, we have that for any s ∈ [δs, δs + κs),

E|x(s)− x(δs)|p

≤4p−1κp−1
s

∫ s

δs

Kp
3 (z)dzE|x(δs)|p

+ 2p−1κ
p−2
2

s E
∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]|x(z)|pdz

≤4p−1κpsK̂
p
3sE|x(δs)|p

+ 2p−1κ
p
2
s [2p−1κ

p
2
s K̂

p
1s + ρK̂p

2s]E
(

sup
δs≤t≤s

|x(t)|p
)
. (5.40)

Step 2. We will prove that under either condition (5.33) or (5.34), we have

E|x(s)− x(δs)|p ≤
ϕs

1− ϕs
E|x(s)|p, (5.41)

for the corresponding ϕs.

Firstly, we prove it using condition (5.33).

By the definition of solutions of hybrid SDEs, the inequality in (2.17), Hölder’s
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inequality and the Burkholder-Davis-Gundy inequality, we have that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

f(x(z), r(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

u(x(δz), r(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

g(x(z), r(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4κs)
p−1E

(
sup

δs≤t≤s

∫ t

δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1κ
p−2
2

s νE
(

sup
δs≤t≤s

∫ t

δs

Kp
2 (z)|x(z)|pdz

)
≤
[
4p−1+(4κs)

p−1

∫ s

δs

Kp
3 (z)dz

]
E|x(δs)|p

+
[
(4κs)

p−1K̂p
1s + 4p−1κ

p−2
2

s νK̂p
2s

] ∫ s

δs

E
(

sup
δs≤z≤t

|x(z)|p
)
dt

Then the Gronwall inequality implies

E
(

sup
δs≤t≤s

|x(t)|p
)
≤
[
4p−1+(4κs)

p−1

∫ s

δs

Kp
3 (z)dz

]
E|x(δs)|p exp(4p−1κpsK̂

p
1s+4p−1κ

p
2
s νK̂

p
2s).

(5.42)

Substituting this into (5.40) gives

E|x(s)− x(δs)|p

≤4p−1κ
p
2
s

[
κ
p
2
s K̂

p
3s + 2p−1(1 + κpsK̂

p
3s)(2

p−1κ
p
2
s K̂

p
1s + ρK̂p

2s)

× exp(4p−1κpsK̂
p
1s + 4p−1κ

p
2
s νK̂

p
2s)
]
E|x(δs)|p.

Noticing that

E|x(δs)|p ≤ 2p−1E|x(s)|p + 2p−1E|x(s)− x(δs)|p
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for all p > 1, we have

E|x(s)− x(δs)|p ≤ ϕs[E|x(s)|p + E|x(s)− x(δs)|p],

where ϕs was been defined in (5.33). Rearranging it gives (5.41).

Alternatively, we prove it under condition (5.34).

By the definition of solutions of hybrid SDEs, the inequality in (2.17) and the

Burkholder-Davis-Gundy inequality, we have that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

f(x(z), r(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

u(x(δz), r(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

g(x(z), r(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4κs)
p−1E

(
sup

δs≤t≤s

∫ t

δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1κ
p−2
2

s νE
(

sup
δs≤t≤s

∫ t

δs

Kp
2 (z)|x(z)|pdz

)
≤4p−1(1 + κpsK̂

p
3s)E|x(δs)|p + 4p−1κ

p
2
s (κ

p
2
s K̂

p
1s + νK̂p

2s)E
(

sup
δs≤t≤s

|x(t)|p
)
. (5.43)

The condition in (5.34) requires that 4p−1κ
p
2
t (κ

p
2
t K̂

p
1t + νK̂p

2t) < 1. So we can rear-

range (5.43) and get

E
(

sup
δs≤z≤s

|x(z)|p
)
≤ 4p−1(1 + κpsK̂

p
3s)

1− 4p−1κ
p
2
s (κ

p
2
s K̂

p
1s + νK̂p

2s)
E|x(δs)|p. (5.44)
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Substituting this into (5.40) gives

E|x(s)− x(δs)|p

≤
(

4p−1κpsK̂
p
3s +

8p−1κ
p
2
s (2p−1κ

p
2
s K̂

p
1 + ρK̂p

2 )(1 + κpsK̂
p
3s)

1− 4p−1κ
p
2
s (κ

p
2
s K̂

p
1s + νK̂p

2s)

)
E|x(δs)|p

≤ϕs(E|x(s)|p + E|x(s)− x(δs)|p), (5.45)

where ϕs has been defined in (5.34).

Since condition (5.34) requires ϕt < 1 for all t > 0, we can rearrange (5.45) and obtain

(5.41).

Step 3. Substitute (5.41) into (5.23). Then by (5.36), we have

ELV (x(s), r(s), s)

≤− [λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γκs)]E|x(s)|p

+
1

p
(
p− 1

pl
)p−1 ϕs

1− ϕs
Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(s)|p

≤− c2β̃(s)E|x(s)|p. (5.46)

Substitute (5.46) into (5.39). Then by Assumption 5.4.1, we have

EV̂ (x(t), r(t), t)

≤EV0 +

∫ t

0
e
∫ s
0 β̃(z)dz[ELV (x(s), r(s), s) + c2β̃(s)E|x(s)|p]ds

≤EV0. (5.47)

Assumption 5.4.1 indicates that

c1e
∫ t
0 β̃(s)dsE|x(t)|p ≤ EV̂ (x(t), r(t), t) ≤ EV0.

Then

E|x(t)|p ≤ Ce−
∫ t
0 β̃(s)ds.

128



Chapter 5. Stabilization of Continuous-time Periodic Stochastic Systems

So we have

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ lim sup

t→∞

−1

t

∫ t

0
β̃(s)ds = − v

T
.

Hence we have obtained assertion (5.37).

Let ε ∈ (0, v
2T ) be arbitrary. Then (5.37) implies that there exists a constant C > 0

such that

E|x(t)|p ≤ Ce−(v/T−ε)t for ∀t ≥ 0. (5.48)

Notice that 4p−1(1 + κpt K̂
p
3t)[1− 4p−1κ

p
2
t (κ

p
2
t K̂

p
1t + νK̂p

2t)]
−1 in (5.44) is bounded. It

follows from (5.42) and (5.44) that

E
(

sup
δt≤s≤δt+κt

|x(s)|p
)
≤ CE|x(δt)|p ≤ Ce−(v/T−ε)δt for ∀t ≥ 0. (5.49)

Then use the Chebyshev inequality stated in Section 2.6 with c = exp(2εT−v
pT ), we

have

P
(

sup
δt≤s≤δt+κt

|x(s)| ≥ exp[
δt
p

(2ε− v

T
)]
)
≤ Ceεδt .

The Borel-Cantelli lemma indicates that, there is a t∗ = t∗(ω) > 0 for almost all ω ∈ Ω

such that

sup
δt≤s≤δt+κt

|x(s)| < exp[
δt
p

(2ε− v

T
)] for ∀t ≥ t∗.

So

log
1

t
(|x(t)|) < −(

v

T
− 2ε)

δt
pt
.

As t→∞,

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ −1

p
(
v

T
− 2ε) a.s.

Letting ε→ 0 gives assertion (5.38). The proof is complete. 2

Now we discuss how to divide [0, T ] and how to calculate the observation interval

sequence. Similarly to asymptotic stabilization, we can either use even division or

divide according to the shape of an auxiliary function; neither too narrow nor too
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wide subinterval is a good choice for partition; and again we use the same observation

interval in one subinterval of [0, T ].

The difference is that here β̃ can be negative at some time points, we only need to

guarantee that its integral over [0, T ] is positive. This gives flexibility on the setting of

κt. We can choose to increase the shortest observation interval to avoid high frequency

observations, or choose to make the large observation intervals even larger. This is

illustrated in Example 5.6.2.

Observation interval sequence can be calculated by computer by the following four

steps: 5

1) Choose to satisfy condition (5.33) or (5.34).

Suppose we choose condition (5.33). Firstly, find a positive number κ such that

8p−1κpK3
p

+ 16p−1κ
p
2 (1 + κpK3

p
)(2p−1κ

p
2K1

p
+ ρK2

p
) exp(4p−1κpK1

p
+ 4p−1κ

p
2 νK2

p
)

≤ 1. (5.50)

Secondly, let κ be a positive number to be determined. Define

ϕ̃(t) =8p−1κpKp
3 (t) + 16p−1κ

p
2 [1 + κpKp

3 (t)][2p−1κ
p
2Kp

1 (t) + ρKp
2 (t)]

× exp[4p−1κpKp
1 (t) + 4p−1κ

p
2 νKp

2 (t)]

and then

β̃a(t) =
λ(t)

c2
− [c2p(1− ϕ̃(t))]−1(

p− 1

pl
)p−1Kp

3 (t)[23p−2(1− e−γκ) + 2p−1ϕ̃(t)].

Alternatively, suppose we choose (5.34). Firstly, find a positive number κ such that

4p−1κ
p
2 (κ

p
2K1

p
+ νK2

p
) < 1

5Again, this is only a sketch of one method to calculate the observation interval sequence. Due to
research subject and time limit, we don’t discuss the details about numerical methods.
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and

8p−1κpK3
p

+
16p−1κ

p
2 (1 + κpK3

p
)(2p−1κ

p
2K1

p
+ ρK2

p
)

1− 4p−1κ
p
2 (κ

p
2K1

p
+ νK2

p
)

< 1.

Secondly, let κ be a positive number to be determined. Define

ϕ̃(t) = 8p−1κpKp
3 (t) +

16p−1κ
p
2 [1 + κpKp

3 (t)][2p−1κ
p
2Kp

1 (t) + ρKp
2 (t)]

1− 4p−1κ
p
2 [κ

p
2Kp

1 (t) + νKp
2 (t)]

and

β̃a(t) =
λ(t)

c2
− [c2p(1− ϕ̃(t))]−1(

p− 1

pl
)p−1Kp

3 (t)[23p−2(1− e−γκ) + 2p−1ϕ̃(t)].

For choice of either (5.33) or (5.34), using corresponding definitions above, choose a

positive number κ < κ such that
∫ T

0 β̃a(t)dt > 0.

2) The second step is to divide [0, T ] into Z − 1 subintervals. Similarly as discussed

in Section 5.2.1 for asymptotic stabilization, we can simply use even division or divide

according to the shape of β̃a(t), in which case we want the supremum and the infimum

of β̃a(t) in each subinterval are relatively close.

Then set a sequence of Z − 1 numbers {β̃
j
}1≤j≤Z−1 such that

β̃
j
≤ inf

t∈[Tj ,Tj+1)
β̃a(t) and

Z−1∑
j=1

β̃
j
(Tj+1 − Tj) ≥ 0.

3) Find a function τ̃(t) with inft∈[0,T ) τ̃(t) > 0 such that

β̃(τ̃(t), t) ≥ β̃
j

for j = 1, 2, · · · , Z − 1. (5.51)

We want to set τ̃(t) to make the two sides of (5.51) as closer as possible.

Then let τ̃j = inft∈[Tj ,Tj+1) τ̃(t), i.e. the infimum of τ̃ over the jth subinterval, for

j = 1, · · · , Z − 1.

4) This step is similar to the step 3 in Section 5.2.1 for asymptotic stabilization. For

the jth subinterval, choose a positive integer Nj such that
Tj+1−Tj

Nj
< τ̃j , then let
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κj =
Tj+1−Tj

Nj
.

Note that on the jth subinterval, κj also needs to satisfy either condition (5.33) or

(5.34), which has been determined in Step 1 and can be guaranteed if maxZ−1
j=1 κj < κ.

Find Nj and κj for all 1 ≤ j ≤ Z − 1. Finally the observation interval is κj and we

observe the system Nj times over the jth subinterval.

Notice κj < τ̃j ≤ τ̃(t) for t ∈ [Tj , Tj+1), j = 1, · · · , Z − 1 and β̃(κt, t) defined in

(5.36) is negatively related to κt. Then we have

∫ T

0
β̃(κt, t)dt =

Z−1∑
j=1

∫ Tj+1

Tj

β̃(κj , t)dt

>
Z−1∑
j=1

∫ Tj+1

Tj

β̃(τ̃j , t)dt ≥
Z−1∑
j=1

∫ Tj+1

Tj

β̃(τ̃(t), t)dt =
Z−1∑
j=1

β̃
j
(Tj+1 − Tj) ≥ 0.

So condition (5.35) can be guaranteed if we follow the above four steps.

The 4-step procedure is only one way to guarantee that all the requirements in

Theorem 5.4.2 on observation intervals are met.

(5.35) is a condition on the integral over one period instead of on every time point.

This gives flexibility for calculation of observation intervals. The flexibility comes from

settings of the partition of [0, T ] and {β̃
j
}1≤j≤Z−1. By adjusting the partition of [0, T ]

and β̃
j
’s for some j ∈ [1, Z − 1], we can change the minj≥1 τj or the maxj≥1 τj , or we

can choose the observation interval for a specific subinterval of [0, T ].

β̃(t) is negative related to ϕt,K3, γ and κt. ϕt defined in either (5.33) or (5.34) is

positive related to K1,K2,K3 and κt. So when K1,K2,K3 or κt increases, β̃(t) will

decrease. Therefore, large K1(t),K2(t), K3(t) and γ tend to yield small κt. However,

it’s not always necessary here, as long as the negative values of β̃(t) at some time points

can be compensated by its positive values at other time points and its integral over

[0, T ] is positive.

For exponential stabilization, the observation intervals required in Theorem 5.4.2

can be larger than the constant observation interval required in Theorem 3.3.2. As

an extreme example, let the periodic system coefficients f(x, i, t) = g(x, i, t) = 0 for a
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time interval, say [t1, t2]. Then this interval can be set as one subinterval of one period

[0, T ]. As K̂1t = K̂2t = 0 for t ∈ [t1, t2] and there is no lower bound requirement on

β̃(t) for t ∈ [t1, t2] (the requirement is only on its integral), then the only requirement

for the observation interval for this subinterval ( i.e. κt for t ∈ [t1, t2]) is simply

8p−1κpt K̂
p
3t < 1. Moreover, we can stop controlling as well as observing when t ∈ [t1, t2].

That is, u(x, i, t) = 0 for t ∈ [t1, t2] and the observation interval is t2−t1. The controlled

system stops changing and behaves like ‘frozen’ in this interval.

5.4.1 Corollary

Similarly to Section 3.3.1, we propose a corollary to state how to use quadratic form of

Lyapunov functions to stabilize an unstable hybrid system.

Assumption 5.4.4 Assume that there exist positive-definite symmetric matrices Qi ∈

Rn×n (i ∈ S) and a positive periodic function b(t) with inf0≤t<T b(t) > 0 such that

p(xTQix)
p
2
−1
(
xTQi[f(x, i, t) + u(x, i, t)] +

1

2
trace[gT (x, i, t)Qig(x, i, t)]

)
+ p(

p

2
− 1)[xTQix]

p
2
−2|gTQix|2 +

N∑
j=1

γij [x
TQjx]

p
2

≤− b(t)|x|p, (5.52)

for all (x, i, t) ∈ Rn × S× [0, T ).

We can see that T is a period of b(t). Let b = inf0≤t<T b(t).

Corollary 5.4.5 If Assumption 5.2.4 are replaced by Assumption 5.4.4, then Theorems

5.3.1 and 5.3.2 still hold for p ≥ 2 with λ(t) = b(t)−ld where d = [pmaxi∈S λ
p
2
max(Qi)]

p
p−1

and l < b/d.

Corollary 5.4.6 If Assumptions 5.2.4 and 5.4.1 are replaced by Assumption 5.4.4,

then Theorem 5.4.2 still holds for p ≥ 2 with c2 = maxi∈S λ
p
2
max(Qi), λ(t) = b(t) − ld

where d = (pc2)
p
p−1 and l < b/d.

Similarly as in Chapter 3, to obtain relatively large observation intervals, we can

choose l to maximize blp−1 − dlp.
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5.5 Single-mode SDEs

The new established stabilization theory for periodic single-mode SDEs by feedback

control based on discrete-time periodic observations is similar to that for hybrid SDEs

stated in previous sections.

Consider an n-dimensional periodic SDE

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (5.53)

on t ≥ 0, with initial value x(0) = x0 ∈ Rn. Here

f : Rn × R+ → Rn and g : Rn × R+ → Rn×m.

If the given system is not stable, then we can design a feedback control u : Rn×R+ → Rn

to make the controlled system

dx(t) =
(
f(x(t), t) + u(x(δt), t)

)
dt+ g(x(t), t)dB(t) (5.54)

stable.

Assumption 5.5.1 Assume that f(x, t), g(x, t) and u(x, t) are all periodic with respect

to time t. Assume f , g, u and κt have a common period T .

Assumption 5.5.2 Assume that the coefficients f(x, t) and g(x, t) are both locally

Lipschitz continuous on x. We also assume that f(x, t) and g(x, t) both satisfy the

following linear growth conditions on x

|f(x, t)| ≤ K1(t)|x| and |g(x, t)| ≤ K2(t)|x| (5.55)

for all (x, t) ∈ Rn × R+, where K1(t) and K2(t) are periodic bounded non-negative

functions with period T .

Assumption 5.5.3 Assume that the controller function u(x, t) is globally Lipschitz
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continuous on x and also satisfies the following linear growth conditions on x

|u(x, t)− u(y, t)| ≤ K3(t)|x− y| (5.56)

for all (x, y, t) ∈ Rn×Rn×R+, where K3(t) is a periodic bounded non-negative function

with period T . We also assume that

u(0, t) = 0 (5.57)

for all t ∈ R+.

Let V (x(t), t) ∈ C2,1(Rn × R+;R+) be a Lyapunov function periodic with respect

to t. Then define an operator LV : Rn × R+ → R by

LV (x, t) =Vt(x, t) + Vx(x, t)[f(x, t) + u(x, t)] +
1

2
trace[gT (x, t)Vxx(x, t)g(x, t)]. (5.58)

Assumption 5.5.4 Assume that there is a Lyapunov function V (x, t), which is peri-

odic with respect to time t with period T , constants l > 0, p > 1 and a periodic function

λ(t) with inft≥0 λ(t) > 0 such that

LV (x, t) + l|Vx(x, t)|
p
p−1 ≤ −λ(t)|x|p (5.59)

for all (x, t) ∈ Rn × R+.

Divide [0, T ] into Z−1 subintervals, where Z ≥ 2 is an arbitrary integer, by choosing

a partition {Tj}1≤j≤Z with T1 = 0 and TZ = T . Then let K̂1t, K̂2t and K̂3t be the

same as defined in (5.12).

Theorem 5.5.5 Fix the moment order p > 1. Let Assumptions 5.5.1, 5.5.2, 5.5.3 and

5.5.4 hold. Divide [0, T ] into Z−1 subintervals with T1 = 0 and TZ = T . Choose κt > 0

sufficiently small such that κt ≤ Tj+1 − Tj for t ∈ [Tj , Tj+1) where j = 1, 2, · · · , Z − 1
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and

inf
0≤t<T

β(t) > 0 and sup
t≥0

(κtK̂3t) < 8
− p−1

p , (5.60)

where

β(t) := β(κt, t) = λ(t)− [2(p− 1)]p−1K̂p
3s

pp(1− 8p−1κpt K̂
p
3t)
l1−pκ

p
2
t

×
[
2p−1κ

p
2
t K

p
1 (t) + ρKp

2 (t) + 4p−1κ
p
2
t K

p
3 (t)

]
. (5.61)

Then the controlled system (5.54) satisfies (5.15) for all initial data x0 ∈ Rn.

Theorem 5.5.5 can be proved in the same way as Theorem 5.3.1 and the complete

proof is in Appendix A.3.

Theorem 5.5.6 Fix the moment order p ≥ 2. Under the same assumptions of The-

orem 5.5.5, the solution of the controlled system (5.54) satisfies (5.30) and (5.31) for

any initial data x0 ∈ Rn. In other words, the controlled system (5.54) is asymptotically

stable in pth moment and almost surely.

Theorem 5.5.6 can be proved in the same way as Theorem 5.3.2.

Assumption 5.5.7 Assume that there is a pair of positive numbers c1 and c2 such

that

c1|x|p ≤ V (x, t) ≤ c2|x|p (5.62)

for all (x, t) ∈ Rn × R+.

Theorem 5.5.8 Fix the moment order p > 1. Let Assumptions 5.5.1, 5.5.2, 5.5.3,

5.5.4 and 5.5.7 hold. Divide [0, T ] into Z − 1 subintervals with T1 = 0 and TZ = T .

Choose κt > 0 sufficiently small such that κt ≤ Tj+1 − Tj for t ∈ [Tj , Tj+1) where

j = 1, 2, · · · , Z − 1 and two conditions hold. The 1st condition is the same as stated in

Theorem 5.4.2, i.e., (5.33) or (5.34). The 2nd condition is

∫ T

0
β̃(t)dt > 0, (5.63)
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where

β̃(t) := β̃(κt, t) =
λ(t)

c2
− 1

c2p
(
p− 1

pl
)p−1 ϕt

1− ϕt
Kp

3 (t). (5.64)

Then the solution of controlled system (5.54) satisfies (5.37) and (5.38) for all initial

data x0 ∈ Rn. In other words, the controlled system (5.54) is exponentially stable in

pth moment and almost surely.

Theorem 5.5.8 can be proved in the same way as Theorem 5.4.2 and the complete

proof is in Appendix A.3.

Calculation of the observation interval sequence for stabilization of single-mode

SDE system is similar to that of hybrid SDEs. The difference is definition of β(t) for

asymptotic stabilization and definition of β̃(t) for exponential stabilization.

For Lyapunov functions of the frequently used form V (x(t), t) = (xT (t)Qx(t))
p
2

where Q is a positive-definite n×n matrices, we have the following alternative assump-

tion and corollaries.

Assumption 5.5.9 Assume that there exist positive-definite symmetric matrix Q ∈

Rn×n and a positive periodic function b(t) with inf0≤t<T b(t) > 0 such that

p(xTQx)
p
2
−1
(
xTQ[f(x, t) + u(x, t)] +

1

2
trace[gT (x, t)Qg(x, t)]

)
+ p(

p

2
− 1)[xTQx]

p
2
−2|gTQx|2 ≤ −b(t)|x|p, (5.65)

for all (x, t) ∈ Rn × [0, T ).

Corollary 5.5.10 If Assumption 5.5.4 are replaced by Assumption 5.5.9, then Theo-

rems 5.5.5 and 5.5.6 still hold for p ≥ 2, with λ(t) = b(t)− ld where d = [pλ
p
2
max(Q)]

p
p−1 ,

l < b/d and b = inf0≤t<T b(t).

Corollary 5.5.11 If Assumptions 5.5.4 and 5.5.7 are replaced by Assumption 5.5.9,

then Theorem 5.5.8 still holds for p ≥ 2 with c2 = λ
p
2
max(Q), λ(t) = b(t) − ld where

d = (pc2)
p
p−1 and l < b/d.

Similarly as before, to obtain relatively large observation intervals, we can choose l

to maximize blp−1 − dlp.
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5.6 Examples

Now we illustrate our theory with two examples.

Example 5.6.1 Now we consider a 2-dimensional SDE

dx(t) = F (x(t), t)x(t)dt+G(t)x(t)dB(t) (5.66)

on t ≥ 0, where x(t) = (x1(t), x2(t))T and B(t) is a scalar Brownian motion. Here the

coefficients are

F (x, t) = [1.5 + cos(
π

6
t)]

 0 sin(x1)

cos(x2) 0


and

G(t) = [1 + sin(
π

6
t− 2.8)]

 0.5 −0.5

−0.5 0.5

 .
The upper plot in Figure 5.1 shows that the original system (5.66) is neither mean

square asymptotically stable nor mean square exponentially stable.

Coefficients f(x, t) = F (x(t), t)x(t) and g(x, t) = G(t)x(t) are time-periodic with

common period 12. Assumption 5.5.2 holds with K1(t) = 1.5 + cos(π6 t) and K2(t) =

1+sin(π6 t−2.8). Then we can design a feedback control u(x, t) and calculate observation

intervals to make the controlled system

dx(t) = [F (x(t), t)x(t) + u(x(δt), t)]dt+G(t)x(t)dB(t) (5.67)

mean square asymptotically stable and furthermore, mean square exponentially stable.

Let u(x, t) = A(x, t)x where A : R2 × R+ → R2×2 with bounded norm. Then

assumption 5.5.3 holds with K3(t) = maxx∈R2 ‖A(x, t)‖. Let V (x, t) = xTQx where

Q = I, the 2 × 2 identity matrix, then Corollaries 5.5.10 and 5.5.11 can be applied.
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Figure 5.1: Sample averages of |x|2 from 500 simulated paths for original and controlled
systems by the Euler-Maruyama method with step size 1e−5 and random initial values.
Upper plot is for original system (5.66); middle and bottom plots are controlled system
(5.67) for mean square asymptotically and exponentially stabilization respectively with
corresponding observation intervals.

The left-hand-side of (5.65) is

2[xT (f(x, t) + u(x, t)) +
1

2
gT (x, t)g(x, t)]

=2xT (F (x, t) +A(x, t))x+ xTGT (t)G(t)x

≤xT Q̃x ≤ λmax(Q̃)|x|2, (5.68)

where

Q̃ = F (x, t) + F T (x, t) +A(x, t) +AT (x, t) +GT (t)G(t).

To satisfy Assumption 5.5.9, we design A(x, t) to make Q̃ negative definite.

Let

A(x, t) =

 B1(x, t) B2(x, t)

B2(x, t) B1(x, t) + 0.1 sin(π6 t)

 ,
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where B1(x, t) = −0.25K2
2 (t)− 0.5 and B2(x, t) = −0.25K1(t)K2

2 (t)[sin(x1) + cos(x2)].

Then

Q̃ =

 −1 0

0 −1 + 0.2 sin(π6 t)

 .
So b(t) = −λmax(Q̃) = min{1− 0.2 sin(π6 t), 1}, b = 0.8 and d = 4.

Choose l = 0.1, then λ(t) = b(t) − 0.4. Obviously, T = 12 is a common period of

f, g, u, b and λ. K1(t), K2(t), K3(t) and λ(t) are shown in Figure 5.2.

Figure 5.2: Plot of parameters.

Now we calculate {τj}j≥1 for mean square asymptotic stabilization. The positive

function τ̃a(t) is calculated by computer as the unique positive root to equation

λ(t) =
[2(p− 1)]p−1

pp(1− 8p−1τ̃a
p(t)Kp

3 (t))
l1−pKp

3 (t)τ̃a
p
2 (t)

×
[
2p−1τ̃a

p
2 (t)Kp

1 (t) + ρKp
2 (t) + 4p−1τ̃a

p
2 (t)Kp

3 (t)
]

and it’s shown in the left plot of Figure 5.3. According to the shape of τ̃a(t), we divide

[0, 12] into 10 subintervals. The calculated observation interval for each subinterval

can be seen in the left plot of Figure 5.3. Table 5.1 clearly shows the partition, the

observation interval and observation times for each subinterval.
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Figure 5.3: Auxiliary functions for stabilization. The left plot shows auxiliary function
in blue and observation intervals in orange for asymptotic stabilization; the right plot
shows the auxiliary function in blue and its infimum on each subinterval in black for
exponential stabilization.

Table 5.1: Partition of the common period, observation interval and observation times
in each subinterval.

Subinterval Observation interval Observation times

[0, 0.5) 0.05556 9

[0.5, 1) 0.1 5

[1, 2.42) 0.142 10

[2.42, 3) 0.19333 3

[3, 4.27) 0.21167 6

[4.27, 5) 0.10429 7

[5, 5.48) 0.06 8

[5.48, 6.37) 0.01745 51

[6.37, 11.28) 0.00164 2988

[11.28, 12) 0.01714 42

Table 5.1 shows that on the first subinterval [0, 0.5), the system needs to be observed

once every 0.05556 time units for 9 times; the 6th row means that when t ∈ [3 +

12k, 4.27 + 12k) for k = 0, 1, 2, · · · , the system needs to be observed once every 0.21167

time units for 6 times.

This result yields inf0≤t<T β(t) = 1.98e − 06 > 0. Therefore, all the conditions on

observation intervals have been satisfied. By Corollary 5.5.10, the controlled system

(5.67) with {τj}j≥1 presented in Table 5.1 is mean square and almost surely asymptot-

ically stable. The sample moment of |x|2 in the middle plot of Figure 5.1 agrees with

141



Chapter 5. Stabilization of Continuous-time Periodic Stochastic Systems

it.

Now let’s calculate observation intervals for mean square exponential stabilization

using condition (5.33). We start by calculating β̃a(t) with κ = 0.0012. Specifically,

β̃a(t) =
λ(t)

c2
− 1

c2p
(
p− 1

pl
)p−1 ϕ̃(t)

1− ϕ̃(t)
Kp

3 (t)

= λ(t)− ϕ̃(t)

4l[1− ϕ̃(t)]
K2

3 (t)

where 6

ϕ̃(t) =8p−1κpKp
3 (t) + 16p−1κ

p
2 [1 + κpKp

3 (t)][2p−1κ
p
2Kp

1 (t) + ρKp
2 (t)]

× exp[4p−1κpKp
1 (t) + 4p−1κ

p
2 νKp

2 (t)]

=8κ2K2
3 (t) + 16κ[1 + κ2K2

3 (t)][2κK2
1 (t) +K2

2 (t)] exp[4κ2K2
1 (t) + 16κK2

2 (t)].

We get
∫ 12

0 β̃a(t)dt > 0.

Then according to the shape of β̃a(t), which is plotted in the right plot of Figure

5.3, we divide [0, 12] into 38 subintervals. Since
∑38

j=1 infTj≤t≤Tj+1 β̃a(t)(Tj+1−Tj) > 0,

we simply set β̃
j

= infTj≤t≤Tj+1 β̃a(t) for 1 ≤ j ≤ 38. This is shown in the right plot of

Figure 5.3.

Our partition and setting of {β̃
j
}j≥1 may be not the best choice. Wide subintervals

and large β̃
j
’s can make observation intervals small. After adjusting, we divide [0, 12]

into 44 subintervals. We found the observation intervals for t ∈ [6, 12) are either 0.0011

or 0.0012. So we merge them and set the observation interval for t ∈ [6, 12) to be

0.001. Consequently, we have 12 subintervals for observations in total and the results

are presented in Table 5.2.

The results yield max0≤t<12 ϕt = 0.1872 < 1 and
∫ 12

0 β̃(t)dt = 0.5373 > 0. So all

conditions on observation intervals are satisfied. By Corollary 5.5.11, the controlled

system (5.67) with observation intervals presented in Table 5.2 is mean square and

almost surely exponentially stable, which is in accordance with the bottom plot in

Figure 5.1.

6c2 = 1 when Q = I, ρ = 1 and ν = 4 when p = 2.
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Table 5.2: Partition of the common period, observation interval and observation times
in each subinterval.

Subinterval Observation interval Observation times

[0, 1) 0.0016 625

[1, 1.3) 0.01765 17

[1.3, 1.5) 0.025 8

[1.5,2) 0.03333 15

[2,2.7) 0.06364 11

[2.7, 3.1) 0.05714 7

[3.1, 3.5) 0.05 8

[3.5, 4) 0.03571 14

[4, 5) 0.0024 417

[5, 6) 0.0014 715

[6, 7.9) 0.0012 1584

[7.9, 12) 0.001 4100

Table 5.3: Comparison between our time-varying observation intervals and the constant
observation interval.

asymp.min asymp.max exp.min exp.max constant τ

0.00164 0.21167 0.001 0.0636 8.86e-04

The first four columns of Table 5.3 summarize our shortest and widest observation

intervals for mean square asymptotic and exponential stabilization. The largest obser-

vation intervals are around 129 and 63 times of the shortest ones for asymptotic and

exponential stabilization respectively. The last column of Table 5.3 is the constant ob-

servation interval given by existing theory, i.e., using constant parameters as in Chapter

1. Obviously, the new theory gives much better results than existing one. Our smallest

observation intervals for both asymptotic and exponential stabilization are still larger

than 8.86e−04. This is because K1(t), K2(t) and K3(t) reach the maximum values and

λ(t) reach the minimum value at different time points, which can be seen from Figure

5.2. Condition (5.60) and definition of β(t) in (5.61) indicate that, the observation

interval κt is negatively related to K1(t), K2(t), K3(t) and positively related to λ(t).

If the time unit is two hours, that is, period T is one day, then no matter for asymp-

totic or exponential stabilization in mean square, existing theory requires observations

once every 6 seconds for all time. While the new results (using time-varying parameters

in this chapter) enable the lowest observation frequency to be once every 25min 24s
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lasting 2h 32min 24s, for asymptotic stabilization. If observation is carried out by a

monitor, then it can be switched off during that interval. For exponential stabilization,

the new results require observation frequencies between once every 7min 38s and once

every 7s.

If the time unit is 30 days, that is, period T is around one year, then existing theory

requires observations to be once every 38min 16s for all time, to achieve the mean

square asymptotic and exponential stabilization. However, the new results require the

lowest observation frequencies to be: once every 6 day 8h 24min lasting around 38 days

for asymptotic stabilization, and once every 1 day 21h 47min 31s lasting 21 days for

exponential stabilization. If observation is carried out by employees, then this means

holidays for them and lower observation frequencies also indicate fewer employees are

needed.

Example 5.6.2 Now we consider a 2-dimensional hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (5.69)

on t ≥ 0, where B(t) is a scalar Brownian motion; r(t) is a Markov chain on the state

space S = {1, 2} with the generator matrix

Γ =

 −1 1

1 −1

 .
The subsystem for mode 1 here is the same as system (5.66) and the subsystem for

mode 2 has coefficients

f(x, 2, t) = [1.5 + sin(
π

6
t)]

 sin(x2)

cos(x1)

x
and

g(x, 2, t)=
1

2
√

2
[1+cos(

π

6
t+ 2.8)]

√3x2
1 + x2

2√
x2

1 + 3x2
2

.
Since the original system (5.69) is not mean square exponentially stable, which can
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be seen from the upper plot in Figure 5.4, we design a feedback control u(x, i, t) and

calculate an observation interval sequence to make the controlled system

dx(t) =
[
f(x(t), r(t), t) + u(x(δt), r(δt), t)

]
dt+ g(x(t), r(t), t)dB(t) (5.70)

mean square exponentially stable.

Figure 5.4: Sample averages of |x(t)|2 from 500 simulated paths for original and con-
trolled systems by the Euler-Maruyama method with step size 1e−5 and random initial
values. Upper plot is for original system (5.69); lower plot is for controlled system (5.70)
with calculated observation intervals.

Set the controller for mode 1 the same as the controller u(x, t) in Example 5.6.1.

Let u(x, 2, t) = A(x, 2, t)x where

A(x, 2, t) =

 B3(t) sin(x2)− 1.4 0

0 B3(t) cos(x1)− 1.4

 ,
in which B3(t) = −[1.5 + sin(π6 t)].

After verifying the assumptions and setting parameters, we calculate the observation

intervals under condition (5.33) and the results are presented as “original setting” in

Figure 5.5.
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We divide [0, 12] into 20 subintervals. The largest observation interval is 4.12e− 04

and the smallest one is 2.79e− 04. Corollary 5.4.6 indicates that the controlled system

(5.70) with the calculated observation intervals is mean square exponentially stable.

This is in accordance with the lower plot in Figure 5.4.

Alternatively, if we use condition (5.34) instead, then the largest and smallest obser-

vation intervals are 0.0012 and 0.00037 respectively. Moreover, existing theory (Section

3.5) yields the constant observation interval τ ≤ 2.62e − 4. Clearly, both conditions

(5.33) and (5.34) give better results than this.

Furthermore, condition (5.35) as an integral gives us flexibility to set observation

intervals {τj}j≥1 for different subintervals. On one hand, we can make the largest

observation interval even larger. If observation is carried out by people, then large

observation interval may be considered as holiday. There are two ways to make it.

One is by dividing subintervals with large τj ’s into several shorter intervals all with

the same β̃
j

as before. This will not affect τj ’s in other subintervals. The result is

shown as a blue line in Figure 5.5. [0, 12] is divided into 26 subintervals. Over time

[0, 0.1), the system can be observed once every 7.46e − 4 time units. The other way

is to reduce the β̃
j
’s on those subintervals with large τj ’s. However, this would reduce

some other observation intervals. This is because, to satisfy
∑20

j=1 β̃j(Tj+1 − Tj) ≥ 0

(required in step 2 of calculating observation interval sequence in Section 5.3), β̃
j
’s on

other subintervals have to be increased. On the jth subinterval (for 1 ≤ j ≤ 20), a

larger β̃
j

could lead to smaller τ̃(t) and then smaller τ̃j (required in step 3); this would

lead to larger Nj and finally smaller κj (required by step 4). On the other hand, the

flexibility brought by the integral condition enables us to increase the short observation

intervals. This will reduce the large τj ’s and the result is shown in Figure 5.5 as a red

line. One period [0, 12] is divided into 24 subintervals and minj≥1 τj = 3.19e− 4.
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Figure 5.5: Three settings of observation intervals. The black line shows original setting.
The blue and red lines show settings to increase the large and small observation intervals
respectively.

5.7 Discussion and Conclusion

Now let me explain the connections between the existing theory using constant pa-

rameters and my new results using time-varying parameters. Without taking time

change into account, existing results simply used the theoretically worst situation to

calculation the constant observation interval. The theoretically worst situation means

that, λ(t) reaches the minimum and K1(t), K2(t), K3(t) reach the maxima all at

the same time point, because these make the condition inf0≤t<T β(t) > 0 in (5.14)

become strongest and hence yield a minimum observation interval. Existing results

[35, 96, 97, 104, 110, 111] used the Lyapunov constants of coefficients and controller.

They denoted these constants as K1, K2 and K3, which are K1, K2 and K3 in this

chapter. Existing results cited above and my Chapter 3 all have to use the shortest

observation interval for all times. Even the shortest observation interval derived by the

new results in this chapter is still larger than what was used before, let alone over some

time intervals, the new results allow for larger observation intervals, which have been

clearly shown in Examples 5.6.1 and 5.6.2. So this chapter has dramatically improved

the observation intervals.
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Example 5.6.2 has illustrated that the integral condition (5.35) enables us to in-

crease those large or short observation intervals. Apart from increasing some specific

observation intervals, we can also set a specific value of observation interval for a spe-

cific subinterval of [0, T ]. By adjusting the observation intervals on other subintervals

according to the 4-step procedure discussed in Section 5.3, we can find a sequence

{τj}j≥1 to meet the corresponding requirements for stabilization purpose. Therefore,

the new results in this chapter offers the flexibility and convenience for industry to set

observation frequencies according to their needs.

In this chapter we have discussed the stabilization of periodic continuous-time SDEs

as well as hybrid SDEs by feedback control based on discrete-time periodic observations.

The stabilities analysed include pth moment H∞ stability and exponential stability

for p > 1, pth moment asymptotic stability for p ≥ 2, almost sure asymptotic and

exponential stabilities.

This chapter has three main contributions:

• considering the time-varying property of the system into the stability analysis

and using time-varying observation frequencies for this stabilization topic;

• reducing the cost of control by reducing the observation frequencies;

• allowing to set observation frequencies flexibly to some extent.
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Conclusion

Summary

This thesis has discussed stabilization problem for stochastic differential equations with

or without Markovian switching, by feedback controls based on discrete-time observa-

tions.

Firstly, in Chapter 3, we discussed the pth moment stabilization of hybrid SDEs

for p > 1. We have obtained criteria on pth moment H∞ stabilization and exponential

stabilization for p > 1, pth moment asymptotic stabilization for p ≥ 2 and almost sure

exponential stabilization.

Then in Chapter 4, we discussed the stabilization of continuous-time non-autonomous

ODEs as well as hybrid SDEs by stochastic feedback control based on Brownian mo-

tions. We have obtained criteria on pth moment exponential stabilization for p ∈ (0, 1)

and almost sure exponential stabilization.

Finally in Chapter 5, we discussed the stabilization of periodic SDEs including

hybrid SDEs using periodic observation frequencies. We have obtained criteria on

pth moment H∞ stabilization and exponential stabilization for p > 1, pth moment

asymptotic stabilization for p ≥ 2, almost sure asymptotic stabilization and almost

sure exponential stabilization.

Contribution

The main contributions of this thesis are:
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• For stabilization by deterministic feedback controls, when most researches fo-

cused on mean square stabilization, this thesis established theory on pth moment

stabilization for p > 1.

• For stabilization by stochastic feedback controls, when only autonomous ODEs

as the unstable original systems were studied, this thesis established theory on

stabilization of non-autonomous ODEs and hybrid SDEs.

• Regarding to the research topic “stabilization of SDEs by feedback controls based

on discrete-time observations”, no other existing research, which considers the in-

fluence of time into the control problems, has been reported (as far as the author

knows). Other existing researches only use a relatively short constant observation

interval for the whole control period.

For stabilization of periodic systems with time-varying coefficients by determin-

istic feedback controls, this thesis:

(1) made use of the time-varying periodic property;

(2) proposed time-varying periodic observation frequencies (as far as the author

knows);

(3) allowed the industry to set observation frequencies flexibly according to their

needs.

• For stabilization by deterministic feedback controls, this thesis reduced the ob-

servation frequency compared to existing results and hence reduced the cost of

control.

This thesis contributes two publications ([104, 109]) in the peer-reviewed journal

“Stochastic Analysis and Applications” and one submitted paper [122] which is under

review of the top journal “IEEE Transactions on Automatic Control”.

Future Research

There are many directions for future research.

Firstly, I can investigate the stabilization of SDDEs or SFDEs by feedback controls

based on discrete-time observations.
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Secondly, I can use quantized control. That is, if the control signals derived from the

(discrete-time) observations are in a narrow range, then the control signals added to

the system are a pre-setted value from the range instead of the derived values. So

the control signals will remain the same until the derived values change much and fall

in another range. This may be useful when frequently changing control signals are

expensive.

Thirdly, the linear growth condition may be too strong as lots of systems in practice

do not satisfy it. It’s a challenge to relax this condition for stabilization based on

discrete-time observations.

In addition, I can try to figure out a way to apply the Lyapunov functions directly to

the controlled system using discrete-time observations. Due to this technical difficulty,

we now have to use a very general method - by comparing two controlled systems, and

as a result, the observation interval is very small.
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Appendix for Complete Proof

A.1 Proof for section 3.5

Following is the proof of Theorem 3.5.1.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. Let

Φ(xt, rt, t) = θτ
p−2
2

∫ t

t−τ

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(δs), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(A.1)

Notice that the integrand in (3.67) is right-continuous in t, then we can use the Leibniz

integral ruleto calculate the derivative of V̂ (xt, rt, t) with respect to t.

V̂t(xt, rt, t) =θτ
p
2

[
τ
p
2 |f(x(t), r(t), t) + u(x(δt), r(δt), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t).

We apply the generalized Itô formula to U(xt, rt, t) and obtain that

dU(xt, rt, t) = LU(xt, rt, t)dt+ dM(t)
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for t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0 and

LU(xt, rt, t)

=Vt(x(t), r(t), t) + Vx(x(t), r(t), t)[f(x(t), r(t), t) + u(x(δt), r(δt), t)]

+ 1
2trace[gT (x(t), r(t), t)Vxx(x(t), r(t), t)g(x(t), r(t), t)]

+

N∑
j=1

γr(t),jV (x(t), j, t) + V̂t(xt, rt, t). (A.2)

Replacing some terms with the operator defined in (3.9), we have

LU(xt, rt, t)

=LV (x(t), r(t), t)− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(δt), t)]

+ θτ
p
2

[
τ
p
2 |f(x(t), r(t), t) + u(x(δt), r(δt), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t).

(A.3)

By the Young inequality and Assumption 3.1.2, we can derive that

− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(δt), t)]

≤|Vx(x(t), r(t), t)||u(x(t), r(t), t)− u(x(δt), r(δt), t)|

≤
[
ε|Vx(x(t), r(t), t)|

p
p−1

] p−1
p
[
ε1−p|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

] 1
p

≤p− 1

p
ε|Vx(x(t), r(t), t)|

p
p−1 +

1

p
ε1−p|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

≤l|Vx(x(t), r(t), t)|
p
p−1 +

1

p
(
p− 1

pl
)p−1|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p, (A.4)

where l = p−1
p ε for ∀ε > 0.

Since

u(x(δt), r(δt), t)− u(x(t), r(t), t) =u(x(δt), r(δt), t)− u(x(δt), r(t), t)

+ u(x(δt), r(t), t)− u(x(t), r(t), t).

Using the elementary inequality |a + b|p ≤ 2p−1(|a|p + |b|p) for a, b ∈ R and p > 1, we
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have

E|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

≤2p−1E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p + 2p−1E|u(x(δt), r(t), t)− u(x(t), r(t), t)|p

≤2p−1E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p + 2p−1Kp
3E|x(δt)− x(t)|p. (A.5)

According to Lemma 1 in [35], for any t ≥ t0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣∣r(t) = i) ≤ 1− e−γv. (A.6)

Then by Assumption 3.1.2, we have

E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p

=E
[
E|u(x(δt), r(δt), t)− u(x(δt), r(t), t)|p

∣∣∣Fδt)]
≤E
[
2pKp

3 |x(δt)|pE
(
I{r(s)6=rk}|Fδt

)]
≤E
[
2pKp

3 |x(δt)|p(1− e−γτ )
]

≤22p−1Kp
3 (1− e−γτ )[E|x(t)|p + E|x(δt)− x(t)|p] (A.7)

Substituting (A.7) into (A.5) gives

E|u(x(t), r(t), t)− u(x(δt), r(δt), t)|p

≤23p−2Kp
3 (1− e−γτ )E|x(t)|p + [23p−2Kp

3 (1− e−γτ ) + 2p−1Kp
3 ]E|x(δt)− x(t)|p. (A.8)

Moreover, by Assumptions 3.1.1, 3.1.2 and the elementary inequality |a + b|p ≤

2p−1(|a|p + |b|p) for ∀a, b ∈ R, we have

|f(x(t), r(t), t) + u(x(δt), r(δt), t)|p

≤2p−1
[
Kp

1 |x(t)|p +Kp
3 |x(δt)|p

]
≤2p−1(Kp

1 + 2p−1Kp
3 )|x(t)|p + 4p−1Kp

3 |x(t)− x(δt)|p.

(A.9)
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Substitute (A.4) and (A.9) into (A.3). Taking the mean and by (A.8), we have

ELU(xt, rt, t)

≤E
[
LV (x(t), r(t), t) + l|Vx(x(t), r(t), t)|

p
p−1

]
+
[
θτ

p
2 (2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 ) +
23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ )
]
E|x(t)|p

+
[
4p−1θτp +

1

p
(
p− 1

pl
)p−1[23p−2(1− e−γτ ) + 2p−1]

]
Kp

3E|x(t)− x(δt)|p − EΦ(xt, rt, t).

(A.10)

Then Assumption 3.1.3 implies that

ELU(xt,rt, t) ≤ −βE|x(t)|p − EΦ(xt, rt, t)

+
[
4p−1θτp +

1

p
(
p− 1

pl
)p−1[23p−2(1− e−γτ ) + 2p−1]

]
Kp

3E|x(t)− x(δt)|p,

(A.11)

where

β = β(θ, τ) := λ− θτ
p
2 [2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 ]− 23p−2

p
(
p− 1

pl
)p−1Kp

3 (1− e−γτ ).

(A.12)

Furthermore, it’s easy to see from the elementary inequality in (2.17) that

|x(t)− x(δt)|p

≤2p−1
(∣∣∣ ∫ t

δt

[f(x(s), r(s), s) + u(x(δs), r(δs), s)]ds
∣∣∣p +

∣∣∣ ∫ t

δt

g(x(s), r(s), s)dB(s)
∣∣∣p).
(A.13)

Since t− δt ≤ τ for all t ≥ 0, Hölder’s inequality indicates that

∣∣∣∫ t

δt

[f(x(s), r(s), s)+u(x(δs), r(δs), s)]ds
∣∣∣p≤ τp−1

∫ t

δt

|f(x(s), r(s), s)+u(x(δs), r(δs), s)|pds.

(A.14)

For p ∈ (1, 2), we use the Burkholder-Davis-Gundy inequality and Hölder’s inequality
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to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dB(s)
∣∣∣p ≤ E

(
sup

δt≤z≤t

∣∣∣ ∫ z

δt

g(x(v), r(v), v)dB(v)
∣∣∣p)

≤(
32

p
)
p
2E
[ ∫ t

δt

|g(x(s), r(s), s)|2ds
] p

2 ≤ (
32

p
)
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (A.15)

For p ≥ 2, we use Theorem 2.6.2 (or see [9, Theorem 7.1 on page 39]) to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dB(s)
∣∣∣p ≤ [

p(p− 1)

2
]
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (A.16)

Substituting (A.14), (A.15), (A.16) and (3.11) into (A.13) yields

E|x(t)− x(δt)|p

≤2p−1τ
p−2
2 E

∫ t

δt

[
τ
p
2 |f(x(s), r(s), s) + u(x(δs), r(δs), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(A.17)

Let us now choose

τ ≤ 8
− p−1

p /K3 and θ =
[4(p− 1)]p−1

pp(1− 8p−1τpKp
3 )
l1−p[22p−1(1− e−γτ ) + 1]Kp

3 . (A.18)

Then

2p−1τ
p−2
2

(
4p−1θτp +

1

p
(
p− 1

pl
)p−1[23p−2(1− e−γτ ) + 2p−1]

)
Kp

3 ≤ θτ
p−2
2 (A.19)

Combining (A.1), (A.11), (A.17) and (A.19) yields

E(LU(xt, rt, t)) ≤ −βE|x(t)|p, (A.20)

and by condition (3.68) we have β > 0.

Moreover, we know from the generalized Itô formula that

EU(xt, rt, t) = U(x0, r0, 0) + E
∫ t

0
LU(xs, rs, s)ds, for t ≥ 0. (A.21)
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Denote U(x0, r0, 0) by C0 for simplicity, then

C0 = V (x0, r0, 0) + 0.5θτ
p+2
2

[
τ
p
2 |f(x0, r0, 0) + u(x0, r0, 0)|p + ρ|g(x0, r0, 0)|p

]
. (A.22)

Clearly, C0 is a positive number. Consequently, substituting (A.20) into (A.21) and by

the Fubini theorem, we obtain that

0 ≤ EU(xt, rt, t) ≤ C0 − β
∫ t

0
E|x(s)|pds, (A.23)

for t ≥ 0. Hence ∫ ∞
0

E|x(s)|pds ≤ C0/β,

which implies the desired assertion (3.69). The proof is complete. 2

A.2 Proof for section 5.3

Following is the proof of Theorem 5.3.2.

Proof. Let us prove assertion (5.30) first. Fix any x0 ∈ Rn and r0 ∈ S. By the Itô

formula, Assumptions 5.2.2 and 5.2.3, we have that for any t ≥ 0,

E(|x(t)|p)

=|x0|p + E
∫ t

0

(
p|x(s)|p−2xT (s)[f(x(s), r(s), s) + u(x(δs), r(δs), s)]

+
p

2
|x(s)|p−2|g(x(s), r(s), s)|2 +

p(p− 2)

2
|x(s)|p−4|xT (s)g(x(s), r(s), s)|2

)
ds

≤|x0|p +

∫ t

0

(
pK1(s)E|x(s)|p + pK3(s)E

[
|x(s)|p−1|x(δs)|

]
+ πK2

2 (s)E|x(s)|p
)
ds

≤|x0|p+

∫ t

0

(
pK1E|x(s)|p+ pK3E

[
|x(s)|p−1|x(δs)|

]
+ πK2

2E|x(s)|p
)
ds, (A.24)

where π = p(p−1)
2 .
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By the Young inequality and the elementary inequality in (2.17) we get

|x(s)|p−1|x(δs)|

≤
[p− 1

p
||x(s)|+ 1

p
|x(δs)|

]p
≤2p−1

pp

[
[(p− 1)p + 2p−1]|x(s)|p + 2p−1|x(s)− x(δs)|p

]
. (A.25)

Substituting this into (A.24) gives

E(|x(t)|p) ≤ |x0|p + C

∫ t

0
E|x(s)|pds+ C

∫ t

0
E|x(s)− x(δs)|pds. (A.26)

Recall that C’s denote positive constants that may change from line to line.

Denote sup0≤t<T (κtK̂3t) by H, then (5.14) guarantees 8
p−1
p H < 1. By (5.25) and

(5.26), we have

∫ t

0
E|x(s)− x(δs)|pds

≤8p−1τpmaxK3
p

1− 8p−1Hp

∫ t

0
E|x(s)|pds+

2p−1τ
p−2
2

max (2p−1τ
p
2

maxK1
p

+ ρK2
p
)

1− 8p−1Hp

∫ t

0

∫ s

δs

E|x(z)|pdzds

≤C +
2p−1τ

p
2

max

1− 8p−1Hp
[2p−1τ

p
2

maxK1
p

+ ρK2
p

+ 4p−1τ
p
2

maxK3
p
]

∫ t

0
E|x(s)|pds. (A.27)

Substituting this into (A.26) yields

E|x(t)|p ≤ C+|x0|p + C

∫ t

0
E|x(s)|pds. (A.28)

So by Theorem 5.3.1, we have

E|x(t)|p ≤ C ∀t ≥ 0. (A.29)
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In addition, it follows from the Itô formula that

E|x(t2)|p − E|x(t1)|p

=E
∫ t2

t1

(
p|x(t)|p−2xT (t)[f(x(t), r(t), t)+u(x(δt), r(δt), t)]

+
p

2
|x(t)|p−2|g(x(t), r(t), t)|2 +

p(p− 2)

2
|x(t)|p−4|xT (t)g(x(t), r(t), t)|2

)
dt.

Then we can easily derive that

E|x(t2)|p − E|x(t1)|p ≤
∫ t2

t1

(
pK1E|x(t)|p + pK3E

[
|x(t)|p−1|x(δt)|

]
+ πK2

2E|x(t)|p
)
dt.

Then by (A.25), (A.27) and (A.29), we get that for any 0 ≤ t1 < t2 <∞,

∣∣∣E|x(t2)|p − E|x(t1)|p
∣∣∣ ≤ C ∫ t2

t1

E|x(t)|pdt ≤ C(t2 − t1).

Finally, according to Barbalat’s lemma (see e.g. [124, page 123]), combining this

uniform continuity with Theorem 5.3.1 yields that limt→∞ E|x(t)|p = 0.

Now let us prove assertion (5.31) and divide the proof into three steps.

Step 1. Fix x0 ∈ Rn and r0 ∈ S.

The conclusion (5.15) in Theorem 5.3.1 indicates

∫ ∞
0
|x(t)|pdt <∞ a.s.

Therefore we must have

lim inf
t→∞

|x(t)| = 0 a.s. (A.30)

We claim that

lim
t→∞
|x(t)| = 0 a.s. (A.31)

Otherwise, we must have

P
(

lim sup
t→∞

|x(t)| > 0
)
> 0.

Consequently, for event Ω1 :=
{

lim supt→∞ |x(t)| > 2ε
}

, we can find a number ε > 0
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such that

P(Ω1) ≥ 3ε. (A.32)

Step 2. Let h > |x0| and define a stopping time

τh = inf{t ≥ 0 : |x(t)| ≥ h},

where throughout this thesis we set inf ∅ =∞.

Notice that

E|x(t ∧ τh)|p = hpP(τh ≤ t) + E
(
|x(t)|p

∣∣∣t < τh

)
. (A.33)

By (A.24), we have that for any t ≥ 0,

E(|x(t ∧ τh)|p)

≤|x0|p+

∫ t∧τh

0

(
pK1E|x(s)|p+ pK3E

[
|x(s)|p−1|x(δs)|

]
+ πK2

2E|x(s)|p
)
ds

≤|x0|p+

∫ t

0

(
pK1E|x(s)|p+ pK3E

[
|x(s)|p−1|x(δs)|

]
+ πK2

2E|x(s)|p
)
ds.

Then by (A.25), (A.26), (A.27) and (A.28), It follows from Theorem 5.3.1 that as

t→∞ and h→∞, we still have

E|x(t ∧ τh)|p ≤ C.

Then by (A.33), we have

hpP(τh <∞) ≤ C.

Choose h sufficiently large so that P(τh <∞) ≤ C
hp ≤ ε.

Let Ω2 = {|x(t)| < h for all 0 ≤ t <∞}. Then

P(Ω2) ≥ 1− ε. (A.34)
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It follows from (A.32) and (A.34) that

P(Ω1 ∩ Ω2) ≥ 2ε. (A.35)

Step 3. Define a sequence of stopping times:

α1 = inf{t ≥ 0 : |x(t)|p ≥ 2ε},

α2k = inf{t ≥ α2k−1 : |x(t)|p ≤ ε}, k = 1, 2, · · · ,

α2k+1 = inf{t ≥ α2k : |x(t)|p ≥ 2ε}, k = 1, 2, · · · .

Equation (A.30) implies that α2k < ∞ whenever α2k−1 < ∞ for k = 1, 2, · · · . By

definition of Ω1 and Ω2, we have

τh(ω) =∞ and αk(ω) <∞ for all k ≥ 1 and ω ∈ Ω1 ∩ Ω2. (A.36)

By definitions of α2k−1 and α2k, we have

|x(t)|p ≥ ε for α2k−1 ≤ t ≤ α2k.

Hence by Theorem 5.3.1, we can derive that

∞>E
∫ ∞

0
|x(t)|pdt≥

∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}

∫ α2k

α2k−1

|x(t)|pdt
)

≥ ε
∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}[α2k − α2k−1]

)
. (A.37)

Let F (t) = f(x(t), r(t), t) +u(x(δt), r(δt), t) and G(t) = g(x(t), r(t), t) for t ≥ 0. By

Assumptions 5.2.2 and 5.2.3, there is a Kh > 0 for any h > 0 such that

|F (t)|p ∨ |G(t)|p ≤ Kh

for all t ≥ 0 and |x(t)| ∨ |x(δt)| ≤ h.

Similarly to (5.24), we can obtain from the elementary inequality in (2.17), the
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Hölder inequality and the Burkholder-Davis-Gundy inequality that for any T > 0,

E
(
IA sup

0≤t≤T

∣∣∣x(τh∧(α2k−1+t))−x(τh∧α2k−1)
∣∣∣p)

≤2p−1E
(
IA sup

0≤t≤T

∣∣∣ ∫ τh∧(α2k−1+t)

τh∧α2k−1

F (s)ds
∣∣∣p)

+2p−1E
(
IA sup

0≤t≤T

∣∣∣ ∫ τh∧(α2k−1+t)

τh∧α2k−1

G(s)dB(s)
∣∣∣p)

≤2p−1T p−1E
(
IA

∫ τh∧(α2k−1+T )

τh∧α2k−1

|F (s)|pds
)

+2p−1T
p−2
2 νE

(
IA

∫ τh∧(α2k−1+T )

τh∧α2k−1

|G(s)|pds
)

≤2p−1KhT
p
2 (T

p
2 + ν), (A.38)

where A = {τh ∧ α2k−1 <∞}.

Use the elementary inequality |ap − bp| ≤ p|a − b|(ap−1 + bp−1) for ∀a, b ≥ 0 and

p ≥ 1 (presented in section 2.6 or see [26, page 53]). Note that
∣∣∣|x| − |y|∣∣∣ ≤ |x− y| for

any x, y ∈ Rn. Let

θ =
ε

2php−1
,

then we have

∣∣∣|x|p − |y|p∣∣∣ < ε whenever |x− y| < θ, |x| ∨ |y| ≤ h. (A.39)

Choose T sufficiently small for

2p−1KhT
p
2 (T

p
2 + ν)

θp
< ε.

By Chebyshev’s inequality and (A.38), we have

P
(
{τh ∧ α2k−1 <∞} ∩

{
sup

0≤t≤T
|x(τh ∧ (α2k−1 + t))− x(τh ∧ α2k−1)| ≥ θ

})
≤2p−1KhT

p
2

θp
(T

p
2 + ν) < ε.
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Moreover, we have

P
(
{α2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|x(α2k−1 + t)− x(α2k−1)| ≥ θ

})
=P
(
{τh ∧ α2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|x(τh ∧ (α2k−1 + t))− x(τh ∧ α2k−1)| ≥ θ

})
≤P
(
{τh ∧ α2k−1 <∞} ∩

{
sup

0≤t≤T
|x(τh ∧ (α2k−1 + t))− x(τh ∧ α2k−1)| ≥ θ

})
≤ε. (A.40)

It can be seen from (A.36) and (A.35) that

P({α2k−1 <∞, τh =∞}) ≥ P(Ω1 ∩ Ω2) ≥ 2ε.

Combine this with (A.40), we then obtain

P
(
{α2k−1<∞,τh=∞}∩

{
sup

0≤t≤T
|x(α2k−1+t)−x(α2k−1)|<θ

})
=P({α2k−1 <∞, τh =∞})

− P
(
{α2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|x(α2k−1 + t)− x(α2k−1)| ≥ θ

})
≥2ε− ε = ε.

Let

Ω̃k =
{

sup
0≤t≤T

||x(α2k−1 + t)|p − |x(α2k−1)|p| < ε
}
.

Then (A.39) implies that

P
(
{α2k−1 <∞, τh =∞} ∩ Ω̃k

)
≥P
(
{α2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|x(α2k−1 + t)− x(α2k−1)| < θ

})
≥ε. (A.41)
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It follows from the definition of αk that

α2k(ω)− α2k−1(ω) ≥ T if ω ∈ {α2k−1 <∞, τh =∞} ∩ Ω̃k.

Combine this with (A.37) and (A.41), we derive that

∞ > ε

∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}[α2k − α2k−1]

)
≥ ε

∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}∩Ω̃k

[α2k − α2k−1]
)

≥ εT
∞∑
i=1

P
(
{α2k−1 <∞, τh =∞} ∩ Ω̃k

)
≥ εT

∞∑
i=1

ε =∞, (A.42)

which is a contradiction. Hence, (A.31) must hold.

The proof is complete. 2

A.3 Proof for section 5.5

Following is the proof of Theorem 5.5.5.

Proof. Fix any x0 ∈ Rn. By the generalized Itô formula,

V (x(t), t) =V (x(0), 0) +

∫ t

0
LV (x(s), s)ds

+

∫ t

0
Vx(x(s), s)g(x(s), s)dw(s),

where

LV (x(s), s) =Vs(x(s), s) + Vx(x(s), s)[f(x(s), s) + u(x(δs), s)]

+
1

2
trace[gT (x(s), s)Vxx(x(s), s)g(x(s), s)]

=LV (x(s), s)− Vx(x(s), s)[u(x(s), s)− u(x(δs), s)]. (A.43)
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By the Young inequality and Assumption 5.5.3, we can derive that

− Vx(x(s), s)[u(x(s), s)− u(x(δs), s)]

≤|Vx(x(s), s)||u(x(s), s)− u(x(δs), s)|

≤
[
ε|Vx(x(s), s)|

p
p−1

] p−1
p
[
ε1−p|u(x(s), s)− u(x(δs), s)|p

] 1
p

≤p− 1

p
ε|Vx(x(s), s)|

p
p−1 +

1

p
ε1−p|u(x(s), s)− u(x(δs), s)|p

≤l|Vx(x(s), s)|
p
p−1 +

1

p
(
p− 1

pl
)p−1Kp

3 (s)|x(s)− x(δs)|p, (A.44)

where l = p−1
p ε for ∀ε > 0.

Then by Assumption 5.5.4, we have that

LV (x(s), s) ≤LV (x(s), s) + l|Vx(x(s), s)|
p
p−1 +

1

p
(
p− 1

pl
)p−1Kp

3 (s)|x(s)− x(δs)|p

≤− λ(s)|x(s)|p +
1

p
(
p− 1

pl
)p−1Kp

3 (s)|x(s)− x(δs)|p. (A.45)

It’s easy to see from the elementary inequality in (2.17) that

|x(t)− x(δt)|p (A.46)

≤2p−1
(∣∣∣ ∫ t

δt

[f(x(s), s) + u(x(δs), s)]ds
∣∣∣p +

∣∣∣ ∫ t

δt

g(x(s), s)dw(s)
∣∣∣p). (A.47)

Since t− δt ≤ κt for all t ≥ 0, Hölder’s inequality indicates that

∣∣∣ ∫ t

δt

[f(x(s), s) + u(x(δs), s)]ds
∣∣∣p ≤ κp−1

t

∫ t

δt

|f(x(s), s) + u(x(δs), s)|pds. (A.48)

For p ∈ (1, 2), we use the Burkholder-Davis-Gundy inequality and Hölder’s inequality

to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), s)dw(s)
∣∣∣p ≤ E

(
sup

δt≤z≤t

∣∣∣ ∫ z

δt

g(x(z), z)dw(z)
∣∣∣p)

≤(
32

p
)
p
2E
[ ∫ t

δt

|g(x(s), s)|2ds
] p

2 ≤ (
32

p
)
p
2κ

p−2
2

t E
∫ t

δt

|g(x(s), s)|pds. (A.49)
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For p ≥ 2, we use Theorem 2.6.2 to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), s)dw(s)
∣∣∣p ≤ [

p(p− 1)

2
]
p
2κ

p−2
2

t E
∫ t

δt

|g(x(s), s)|pds. (A.50)

Substituting (A.48), (A.49), (A.50) into (A.46) yields

E|x(t)− x(δt)|p

≤2p−1κ
p−2
2

t E
∫ t

δt

[
κ
p
2
t |f(x(s), s) + u(x(δs), s)|p + ρ|g(x(s), s)|p

]
ds. (A.51)

By the Assumptions 5.5.2 and 5.5.3, we have that for any s ∈ [δs, δs + κs),

E|x(s)− x(δs)|p

≤2p−1κ
p−2
2

s E
∫ s

δs

κ
p
2
s |f(x(z), z) + u(x(δs), z)|p + ρ|g(x(z), z)|pdz

≤2p−1κ
p−2
2

s E
∫ s

δs

2p−1κ
p
2
s

[
Kp

1 (z)|x(z)|p +Kp
3 (z)|x(δs)|p

]
+ ρKp

2 (z)|x(z)|pdz

≤2p−1κ
p−2
2

s E
∫ s

δs

2p−1κ
p
2
s

[
Kp

1 (z)|x(z)|p + 2p−1Kp
3 (z)[|x(s)− x(δs)|p + |x(s)|p]

]
+ ρKp

2 (z)|x(z)|pdz

≤2p−1κ
p−2
2

s

[ ∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]E|x(z)|pdz

+ 4p−1κ
p
2
s

∫ s

δs

Kp
3 (z)dz[E|x(s)− x(δs)|p + E|x(s)|p]

]
Note that the condition (5.60) implies 8p−1κpsK̂

p
3s < 1, then we rearrange it and

obtain

E|x(s)− x(δs)|p

≤ 2p−1κ
p−2
2

s

1− 8p−1κpsK̂
p
3s

∫ s

δs

[
2p−1κ

p
2
s K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdz

+
8p−1κpsK̂

p
3s

1− 8p−1κpsK̂
p
3s

E|x(s)|p. (A.52)

Note that for ∀z ∈ [δs, s], we have κz = κs and K3(s) ≤ K̂3s = K̂3z. Since
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s− κs < δs, it’s easy to show that for a non-negative bounded function F (t),

∫ t

0

∫ s

δs

F (z)dzds ≤
∫ t

0

∫ s

s−κs
F (z)dzds

≤
∫ t

−κz
F (z)

∫ z+κz

z
dsdz ≤

∫ t

−κs
κzF (z)dz ≤ C +

∫ t

0
κzF (z)dz. (A.53)

Let x(s) = x0, K1(s) = K1(0), K2(s) = K2(0) and K3(s) = K3(0) for all (x, i, s) ∈

Rn × S × [−τmax, 0). Then

∫ t

0
Kp

3 (s)

∫ s

δs

2p−1κ
p−2
2

s

1− 8p−1κpsK̂
p
3z

[
2p−1κ

p
2
s K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdzds

≤
∫ t

0

∫ s

δs

K̂p
3z

2p−1κ
p−2
2

z

1− 8p−1κpzK̂
p
3z

[
2p−1κ

p
2
z K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdzds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s)
]
E|x(s)|pds.

Recall that C’s denote positive constants that may change from line to line.

So

∫ t

0
Kp

3 (s)E|x(s)− x(δs)|pds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s) + 4p−1κ
p
2
s K

p
3 (s)

]
E|x(s)|pds. (A.54)

It’s easy to obtain that

EV (x(t), t) = V (x(0), 0) +

∫ t

0
ELV (x(s), s)ds

≤C −
∫ t

0

[
λ(s)− 1

p
(
p− 1

pl
)p−1 2p−1κ

p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

× [2p−1κ
p
2
s K

p
1 (s) + ρKp

2 (s) + 4p−1κ
p
2
s K

p
3 (s)]

]
E|x(s)|pds.

By (5.60) we have that for ∀t ≥ 0,

0 < EV (x(t), t) ≤ C −
∫ t

0
β(z)E|x(z)|pdz.
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Recall inf0≤t<T β(t) > 0. Let β = inf0≤t<T β(t) and we have

0 < β

∫ ∞
0

E|x(s)|pds ≤
∫ ∞

0
β(t)E|x(t)|pdt ≤ C.

Hence we obtain assertion (5.15). 2

Following is the proof of Theorem 5.5.8.

Proof Fix x0 ∈ Rn. By the Assumptions 5.5.2 and 5.5.3, we have that for any

s ∈ [δs, δs + κs),

E|x(s)− x(δs)|p

≤2p−1κ
p−2
2

s E
∫ s

δs

κ
p
2
s |f(x(z), z) + u(x(δs), z)|p + ρ|g(x(z), z)|pdz

≤2p−1κ
p−2
2

s E
∫ s

δs

2p−1κ
p
2
s

[
Kp

1 (z)|x(z)|p +Kp
3 (z)|x(δs)|p

]
+ ρKp

2 (z)|x(z)|pdz

≤4p−1κp−1
s

∫ s

δs

Kp
3 (z)dzE|x(δs)|p + 2p−1κ

p−2
2

s E
∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]|x(z)|pdz

≤4p−1κpsK̂
p
3sE|x(δs)|p + 2p−1κ

p
2
s [2p−1κ

p
2
s K̂

p
1s + ρK̂p

2s]E
(

sup
δs≤t≤s

|x(t)|p
)
. (A.55)

Now we prove that if condition (5.33) is satisfied, then

E|x(s)− x(δs)|p ≤
ϕs

1− ϕs
E|x(s)|p. (A.56)

By the definition of solutions of hybrid SDEs, the inequality in (2.17), Hölder’s
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inequality and the Burkholder-Davis-Gundy inequality, we have that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

f(x(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

u(x(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

g(x(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4κs)
p−1E

(
sup

δs≤t≤s

∫ t

δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1κ
p−2
2

s νE
(

sup
δs≤t≤s

∫ t

δs

Kp
2 (z)|x(z)|pdz

)
≤
[
4p−1+(4κs)

p−1

∫ s

δs

Kp
3 (z)dz

]
E|x(δs)|p

+
[
(4κs)

p−1K̂p
1s + 4p−1κ

p−2
2

s νK̂p
2s

] ∫ s

δs

E
(

sup
δs≤z≤t

|x(z)|p
)
dt

Then the Gronwall inequality implies

E
(

sup
δs≤t≤s

|x(t)|p
)
≤
[
4p−1+(4κs)

p−1

∫ s

δs

Kp
3 (z)dz

]
E|x(δs)|p exp(4p−1κpsK̂

p
1s+4p−1κ

p
2
s νK̂

p
2s).

Substituting this into (A.55) and noticing that

E|x(δs)|p ≤ 2p−1E|x(s)|p + 2p−1E|x(s)− x(δs)|p

for all p > 1, we have

E|x(s)− x(δs)|p

≤4p−1κ
p
2
s

[
κ
p
2
s K̂

p
3s + 2p−1(1 + κpsK̂

p
3s)(2

p−1κ
p
2
s K̂

p
1s + ρK̂p

2s)

× exp(4p−1κpsK̂
p
1s + 4p−1κ

p
2
s νK̂

p
2s)
]
E|x(δs)|p.

By (5.33), we can rearrange it and get (A.56).

Alternatively, we show that if condition (5.34) is satisfied, then (A.56) holds.
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By the definition of solutions of hybrid SDEs, the inequality in (2.17) and the

Burkholder-Davis-Gundy inequality, we have that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

f(x(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

u(x(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t

δs

g(x(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4κs)
p−1E

(
sup

δs≤t≤s

∫ t

δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1κ
p−2
2

s νE
(

sup
δs≤t≤s

∫ t

δs

Kp
2 (z)|x(z)|pdz

)
≤4p−1(1 + κpsK̂

p
3s)E|x(δs)|p + 4p−1κ

p
2
s (κ

p
2
s K̂

p
1s + νK̂p

2s)E
(

sup
δs≤t≤s

|x(t)|p
)
.

By (5.34), we can rearrange it and get

E
(

sup
δs≤z≤s

|x(z)|p
)
≤ 4p−1(1 + κpsK̂

p
3s)

1− 4p−1κ
p
2
s (κ

p
2
s K̂

p
1s + νK̂p

2s)
E|x(δs)|p.

Substituting into (A.55) and rearranging yield (A.56).

Recall (A.45):

LV (x(s), s) ≤− λ(s)|x(s)|p +
1

p
(
p− 1

pl
)p−1Kp

3 (s)|x(s)− x(δs)|p.

Combining (A.45), (A.56) and (5.64), we obtain that

ELV (x(s), s) ≤− c2β̃(s)E|x(s)|p. (A.57)

Let V̂ (x(t), t) = e
∫ t
0 β̃(s)dsV (x(t), t). We can obtain from the Itô formula, Assump-
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tion 5.5.7 and (A.57) that

EV̂ (x(t), t) = EV (x(0), 0) + E
∫ t

0
LV̂ (x(s), s)ds

≤ EV (x(0), 0) +

∫ t

0
e
∫ s
0 β̃(z)dz[ELV (x(s), s) + β̃(s)EV (x(s), s)]ds

≤ EV (x(0), 0). (A.58)

By Assumption 5.5.7 and (A.58), we have

c1e
∫ t
0 β̃(s)dsE|x(t)|p ≤ EV̂ (x(t), t) ≤ EV (x(0), 0). (A.59)

Then

E|x(t)|p ≤ Ce−
∫ t
0 β̃(s)ds. (A.60)

So we have

lim sup
t→∞

1

t
log(E|x(t)|p)

≤ lim sup
t→∞

−1

t

∫ t

0
β̃(s)ds = − lim inf

k→∞,∆t∈[0,T )

∫ kT+∆t
0 β̃(s)ds

kT + ∆t
, (A.61)

where ∫ kT+∆t
0 β̃(s)ds

kT + ∆t
=
kv +

∫ ∆t
0 β̃(s)ds

kT + ∆t
≥ v

T
−

maxz∈[0,T )

∫ T
z β̃(s)ds

kT + ∆t
.

Substituting into (A.61) gives

lim sup
t→∞

1

t
log(E|x(t)|p)

≤− v

T
− lim inf
k→∞,∆t∈[0,T )

−
maxz∈[0,T )

∫ T
z β̃(s)ds

kT + ∆t
= − v

T
− lim sup
k→∞,∆t∈[0,T )

maxz∈[0,T )

∫ T
z β̃(s)ds

kT + ∆t

≤− v

T
. (A.62)

Hence we obtain the assertion (5.37).

Similarly to the proof of (3.49) in Chapter 3, according to Theorem 2.5.5 (or see

[9, Theorem 6.2 on page 175]), we obtain the assertion (5.38). The proof is complete. 2
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[6] Itô, K. 1944. Stochastic integral. Proc. Imp. Acad., 20(8), pp.519-

524. doi:10.3792/pia/1195572786. https://projecteuclid.org/euclid.pja/

1195572786
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