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Abstract 

The pharmaceutical drying process is critical to the quality of the active 

pharmaceutical ingredient or the drug product as it is often the final unit 

operation. The non-uniformity of drying is particularly challenging as it renders 

inaccurate the determined solvent content and drying endpoint, which is a 

critical quality attribute. As process analytical technology further develops, 

novel techniques are implemented to address process and product challenges. 

Spatially resolved spectroscopy is a technique in which spectra are collected 

from spatially resolved distances from the incident light. This technique is used 

for the characterisation of non-uniform media. In this thesis, the use of spatially 

resolved spectroscopy for the monitoring of the drying of an active 

pharmaceutical ingredient is reported.  

Pharmaceutical drying of model systems was monitored using spatially 

resolved spectroscopy. In this work, three bespoke probes were used for the 

collection of spatially resolved spectra. One probe allows the collection of 

spatially and angularly resolved diffuse reflectance near-infrared 

measurements (SAR-DRM), while the other was developed for the collection 

of spatially offset Raman spectroscopy (SORS) measurements. The third 

probe combines both techniques and was developed for the collection of both 

spatially resolved near-infrared spectra and spatially offset Raman spectra and 

is termed the combined probe. This thesis details the in-line and at-line 

application for industrial process monitoring using these techniques, which to 

our knowledge were not applied in this setting. 

The drying of two grades of paracetamol, granular and powder, in the solvents 

n-heptane and methyl tert-butyl ether was monitored using SAR-DRM. The 

drying of granular and powder paracetamol in the solvents anisole and methyl 

tert-butyl ether was monitored using SORS. Partial least squares regression 

(PLSR) analysis was used for the estimation of the solvent content using 

spectra from the individual signal collection configurations, in addition to a 

combination of the configurations. Results from both techniques suggest that 

PLSR models of spectra collected from larger distances lead to more accurate 
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estimations of the solvent content. This was attributed to the larger volume of 

the drying powder cake probed by those techniques. Since the drying of 

paracetamol in methyl tert-butyl ether could be monitored using both 

techniques, the combined probe was used for monitoring this system, and 

multi-block PLSR analysis was conducted using both near-infrared and Raman 

spectra of combinations of the configurations. The multi-block PLSR model 

performance was similar to that of the individual SORS spectra, which was 

attributed to the stronger signals and spectral features of the Raman signal 

compared to the near-infrared measurements. Since the application of SORS 

for the monitoring of pharmaceutical drying was demonstrated and showed 

improvement in PLSR model performance and solvent content estimation, 

SORS was further used for the monitoring of the washing with methyl tert-butyl 

ether a paracetamol filter cake wet with anisole. The results similarly showed 

improved estimations of the content of both solvents in the filter cake from 

spectra from larger offset distances. The outcomes of the studies in this thesis 

demonstrate the advantage of the application of spatially resolved 

spectroscopy for monitoring the solvent content in pharmaceutical drying. The 

use of such novel process analytical technology offers potential for improved 

process monitoring and accurate prediction of the process end point. 
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1. Overview 

 

1.1  Introduction 

In conventional pharmaceutical drug development and the following drug 

product manufacturing, the quality of a product is determined through testing 

the product at the end of the process; thus, achieving quality by testing. 

Suppose it is established that the quality of the product falls out of the desired 

specifications. In that case, the process for producing the following batch is 

adjusted while the previous batch is wasted. A current and more effective 

method is quality by design (QbD), which aims to enable real-time feedback 

control over the process to ensure that the desired quality of a product is 

obtained.  

Process analytical technology (PAT) is the tool that transforms and allows for 

real-time process monitoring. In 2004, the United States Food and Drug 

Administration (FDA) published a guideline to encourage innovation by 

introducing process analytical technology (PAT) to the pharmaceutical 

manufacturing industry. The FDA defines PAT as systems utilised for the 

timely design, analysis, and monitoring of the critical process parameters 

(CPPs), which in turn affect critical quality attributes (CQAs) of a drug to 

guarantee the quality of raw materials and the final product.1,2 An example of 

a process where PAT displays a clear advantage is pharmaceutical drying, 

which involves intrinsically varying rates of heat and mass transfer within a 

dryer, leading to the nonuniform nature of the drying process. This means that 

it is vital to obtain representative measurements of the CQAs during drying, 

the most important of which is the solvent content at the end of the process, 

termed residual solvent content. The solvent content is conventionally 

measured by methods that rely on loss on drying (LOD) measurements that 

capture the difference in the mass of a sample extracted from the process 

before and after the sample is dried. This implies that the conventional LOD 

method is invasive and may not represent the bulk of the drying product. This 
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calls for innovative approaches to replace the conventional methods with real-

time and reliable technique.3  

Near-infrared (NIR) and Raman spectroscopy are complementary 

spectroscopic methods that measure the transition between vibrational energy 

levels of a molecule upon absorbing light. Conventionally, light or laser is 

shone on a sample, and the reflected or transmitted signal is collected from 

one point. Those techniques can be implemented to capture real-time 

measurements within process reactors. This quick and non-destructive 

application makes them desirable for application in process monitoring.4-12  

More advanced variants of those techniques include spatially and angularly 

resolved diffuse reflectance NIR measurements (SAR-DRM), also termed 

multi-point and multi-angle NIR, and spatially offset Raman spectroscopy 

(SORS). In SAR-DRM, one or multiple illumination points at multiple angles 

can be applied, and the NIR signals are collected from multiple distances from 

the incident light. Similarly, in SORS, the laser illuminates a sample, and the 

signal is collected from multiple spatially offset distances from the illumination 

point. For a particulate system, the propagation of light is further affected by 

the light scattering effect where the interaction between light and particulate 

substance of the system results in the scattering and redistribution of light. 

Scattered photons migrate laterally within a sample and are then 

backscattered through the sample surface and are less likely to migrate to the 

same illumination point. Measuring spectra obtained from various distances 

from the illumination point offers the potential to characterise the 

heterogeneous subsurface of a sample due to the larger sampling volumes.13-

16 This presents an opportunity for monitoring pharmaceutical drying as it could 

show a more accurate representation of the bulk of the powder. Coupled with 

chemometric techniques such as partial least squares regression (PLSR) for 

quantitative analysis SAR-DRM and SORS offer real-time monitoring of CQAs, 

enabling feedback control of CPPs.  

In this thesis, studies using SAR-DRM and SORS individually and combined 

for monitoring pharmaceutical drying are reported. The studies are conducted 
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to assess the applicability of SRS in industrial settings through evaluating the 

SRS signal response of an API and solvent mixtures during pharmaceutical 

drying and the estimation of the solvent content during drying. Moreover, the 

potential for using SORS for the monitoring of pharmaceutical washing as part 

of the pharmaceutical isolation unit processes is also explored. 

 The studies serve to address the following aims: 

• Evaluate the SRS signal response of an active pharmaceutical 

ingredient and solvent mixture during pharmaceutical drying  

• Investigate the suitable signal pre-processing and processing methods 

• Examine the performance of SRS in PLSR analysis for solvent content 

estimation individually and as fused multi-block data 

• Explore the potential of using SORS for the monitoring of 

pharmaceutical washing as part of the pharmaceutical isolation unit 

processes 

The objectives of these studies are as follows: 

• Evaluate the SAR-DRM and SORS signals in the pharmaceutical drying 

of two paracetamol grades, granular and powder, wetted by three 

solvents, anisole, n-heptane, and methyl tert-butyl ether (MTBE) 

• Examine the performance of PLSR models with individual SAR-DRM 

and SORS configurations for estimating the solvent content during 

drying  

• Investigate the PLSR model performance with combined configurations 

for estimating the solvent content 

• Assess the improvement of the PLSR model performance of combined 

SR-DRM and SORS spectra for estimating the solvent content 

Furthermore, a case study was performed to explore the applicability of SORS 

on washing, the process leading to drying in the isolation unit processes. The 

objective of the case study is to:  

• Apply SORS for the monitoring of pharmaceutical washing  
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First, an existing SAR-DRM system is implemented for in-line monitoring of 

laboratory-scale drying of granular and powder paracetamol grades in two 

solvents, n-heptane and methyl tert-butyl ether (MTBE). The datasets are 

used to build PLSR calibration sets using each of the configurations 

individually and in combinations for the estimation of the solvent content. 

The performance of the spatial and angular configurations in the SAR-DRM 

system is evaluated to assess the advantage of using SAR-DRM as 

opposed to conventional diffuse reflectance NIR. Using a recently 

developed SORS probe, SORS spectra are collected on-line to monitor the 

drying of granular and powder paracetamol in the solvents anisole and 

MTBE. For the estimation of the solvent content, PLSR calibration sets are 

constructed using spectra from each of the spatially offset distances to 

quantify the solvent content and evaluate the improvement in solvent 

content estimation compared to the conventional application. Then, a newly 

developed combined spatially resolved spectroscopy probe, which 

combines spatially resolved diffuse reflectance NIR and spatially offset 

Raman spectroscopy, is used for monitoring the content of MTBE in 

granular and powder paracetamol filter cakes. Multi-block PLSR analysis 

is explored for constructing calibration sets of the NIR-Raman datasets and 

the performance of the multi-block calibration sets is compared to that of 

the individual techniques. Finally, SORS is used for the monitoring of two 

solvents in a granular paracetamol filter cake wetted with anisole and 

washed with variable cake volumes of MTBE in order to evaluate the 

performance of SORS for the estimation of the two solvents in the filter 

cake, in addition to assessing the efficiency of washing.  
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1.2  Thesis structure 

There are nine chapters in this thesis. Chapter 1, the current chapter, provides 

an overview of the background and purpose of the work reported in this thesis. 

Chapter 2 is an introduction to pharmaceutical drying. Chapter 3 presents a 

literature review and fundamentals of near-infrared and Raman spectroscopy, 

with a particular focus on spatially and angularly resolved diffuse reflectance 

near-infrared measurements (SAR-DRM) and spatially offset Raman 

spectroscopy (SORS). This is followed by a review of the processing and 

analysis of the data collected using those techniques. Chapter 4 is the 

experimental section detailing the drying setup, SAR-DRM and SORS 

instrumental setups, and the collection and analysis procedures and 

parameters.  

Chapter 5, the first results chapter, includes the qualitative and quantitative 

analysis of the SAR-DRM data collected from the drying experiments. 

Similarly, Chapter 6 consists of the qualitative and quantitative analysis results 

of the SORS data collected from the drying experiments. Chapter 7 explores 

the analysis of combined SAR-DRM and SORS data using multi-block data 

analysis. Chapter 8 is a freestanding chapter for the case study on SORS 

application for monitoring the washing process. It includes an introduction to 

pharmaceutical filtration and washing processes and an experimental section 

detailing the collection of a SORS dataset following the washing of 

paracetamol with two solvents and the results of the analysis for the estimation 

of the content of each of the solvents. Chapter 9 concludes the findings of this 

thesis, followed by suggestions for future work.  
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2. Introduction to Pharmaceutical Drying 

 

This chapter introduces the pharmaceutical drying process, including the 

mechanism, stages, purpose of drying within pharmaceutical manufacturing, 

and a brief review of the types of dryers used in the pharmaceutical industry. 

This is followed by a definition of the critical process parameters and the 

dependant critical quality attributes, as well as an outline of the complexity 

inherent to the drying process. 
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2.1  Drying in the manufacturing of pharmaceuticals 

Solid pharmaceutical dosage forms are some of the most popular physical 

forms of drugs. Therefore, it is necessary to develop manufacturing processes 

to produce those solid pharmaceuticals with desired attributes and 

reproducible quality.17 To manufacture a solid dosage form, for example, the 

first step in the manufacturing process is the synthesis of the chemical entity 

of the desired pharmaceutical effect, which is the active pharmaceutical 

ingredient (API). Then, a stable form of this chemical entity is produced and 

purified through crystallisation,18 where the product of the crystallisation 

process is a slurry composed of the API crystals in the crystallisation mother 

liquor. The solid crystalline API is isolated through the filtration of the slurry to 

produce a wet cake, followed by the removal of the remaining mother liquor 

from the crystallised compound in the wet cake by washing with a wash 

solvent.19 Then, the wash solvent is removed from the API wet cake through 

drying. Those previous steps normally constitute the steps for the primary 

manufacturing of a solid API.17  

Depending on the desired form of the final pharmaceutical product, a 

secondary manufacturing stage may also be conducted. The second stage 

includes a formulation step, which revolves around the formulation of a final 

pharmaceutical product through the addition of excipients to the API. Those 

excipients may be mixed with the API and aggregated by applying high stress 

to a dry-powder mix (dry granulation) or aggregated with the use of a binding 

solvent (wet granulation). When a wet granulation step is included in the 

secondary manufacturing stage, a drying step follows to dry the granules prior 

to further processing.17,20 Therefore, the drying process can influence the 

quality of both API and the solid pharmaceutical product as well as impact the 

processes that follow.  

Pharmaceutical drying is a process by which a dry pharmaceutical solid is 

obtained from an initial solution, suspension, slurry, or wet solid by removing 

the liquid from the product.17 It is a thermal process conducted by exposing the 

moist or wet material to the relatively dry air of a suitable temperature until the 
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liquid around the solid evaporates. The vapours around the solid are extracted, 

allowing for further evaporation till the solid is dry. Therefore, drying is a 

process of transfer of the solvent from within the wet solid to the surface and, 

subsequently, to the surrounding air and out of the dryer as well as being a 

process of transfer and distribution of heat within a dryer and the solid particles 

to evaporate the solvent.21 Nevertheless, the pharmaceutical solid is not 

completely dry as some residual solvent will remain within the solid. The 

remaining solvent content in the dried product is termed the residual solvent 

or residual moisture. Drying pharmaceutical powders is essential for obtaining 

products with percentages of residual solvents that would ensure the safety 

and stability of the product. The amount of residual solvent allowable in the dry 

consumable product may be determined based on regulatory requirements 

related to safety or stability considerations.17,22,23  

 

2.1.1 Solvent content and the mechanism of drying 

The total moisture or solvent content is the overall mass of liquid 

accompanying the solid and may be expressed as kilograms of liquid per 

kilogram of completely dry solid or as a percentage of solvent within the wet 

mass. The total solvent content is divided into free solvent content, also termed 

the unbound solvent, and equilibrium solvent content, which is termed the 

bound solvent.17,21 

The unbound solvent can be relatively easily removed from the wetted powder 

bed (wet cake). However, following the removal of the unbound solvent, the 

powder bed is not completely free from the solvent as it is in equilibrium with 

the solvent present in the surrounding air. Bound solvent is the solvent 

absorbed within the product or adsorbed on the surface of the product. The 

bound solvent that is absorbed is enclosed in the solid within capillaries as a 

result of surface tension, while the adsorbed portion is connected to the 

surface of the solid and may be joined to form layers on the surface. Both forms 

of bound solvent are difficult to eliminate by evaporation.17,21  
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The drying process is subject to external and internal conditions. The external 

conditions include those variables that affect heat transfer to the product 

including temperature, humidity, direction and rate of flow of air within the 

dryer, as well as agitation, and the physical form of the solid throughout the 

process. Those external conditions affect the removal of unbound solvents to 

a larger extent than the bound solvent. Internal conditions include the 

temperature and moisture gradients that arise due to the transfer of external 

heat to the wet particles.21 

The solvent content of the air within a dryer is affected by the extent of solvent 

taken up by the air and the temperature changes. During the drying process, 

the solvent from the drying particles in a wet cake evaporates to the air 

surrounding it within the dryer. This leads to a decrease in the drying capacity 

as heat from the drying air is transferred to the wet cake resulting in a decrease 

in the temperature of the drying air, which is termed evaporative cooling. The 

decrease in the temperature of the air can also lead to the condensation of 

solvents.17  

Once the unbound solvent has completely evaporated, a moisture gradient is 

created between the interior of the wet cake and its surface. If the process is 

continued, this gradient could lead to shrinkage upon over-drying and, 

therefore, cracking due to tension. To counteract the negative effect of the 

moisture gradient, a balance must be created between the internal moisture 

relocation due to heat and mass transfer and the relative air humidity within 

the dryer to achieve the highest rate of moisture relocation while avoiding over-

drying.21,24 Mechanisms of solvent migration within moist particles include 

capillary flow, diffusion, and internal pressure due to the shrinking of the outer 

drier parts of the particle.21,25 

The equilibrium moisture or solvent content of a solid, where water or a solvent 

is present in the air within a dryer, is dependent on the properties of the solid 

itself and the relative humidity. Increasing the drying time when the equilibrium 

solvent content is attained does not lead to any change in the solvent content 

of the dry product. However, decreasing the relative humidity of the air in the 
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dryer will lead to a decrease in the solvent content. Nonetheless, if the drying 

product is stored in conditions where the air is of higher humidity, the solvent 

will be adsorbed on the product to re-establish equilibrium between the solvent 

content and surrounding air.21 Hence, the conditions in which the final drying 

product will be stored must be taken into consideration when determining the 

solvent content of the dry product. If high moisture content leads to instability, 

it is vital for the drying product to be preserved in a sealed container to avoid 

degradation.17 

 

2.1.2 Stages of the drying process 

The pharmaceutical drying process may be divided into three stages according 

to the change in the drying rate and solvent content as shown in Figure 2.1(a). 

The first stage is the warm-up stage, where the drying is slow before a steady 

state is reached in the second stage, the constant rate stage. In this stage, the 

drying is quicker as it is mainly limited by the heat transfer. Finally, in the final 

stage, the falling rate stage, the rate of solvent removal decreases at the end 

of the drying process and the drying rate is slowed by the mass transfer. While 

the drying may be linear during the warm-up and constant rate stages, it 

deviates from linearity in the falling rate stage due to the nonuniform diffusion 

during the migration of the solvent within the particles to the surface.22,24 

(a)  (b)  

Figure 2.1. (a) Typical drying curves showing the stages of drying under constant 
conditions. The dashed lines separate the warm-up, constant rate stages, and the two 
parts of the falling rate stages. Adapted from Murugesan, 2010.22 (b) Drying stages of 
a quick drying solvent. Adapted from Hsieh, 2017.26  
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The warm-up stage is the time required for the system to reach the target 

drying temperature. During this stage, the solvent adsorbed on the surface of 

the drying product is evaporated and the vapour is eliminated through the vents 

in the dryer when reduced pressure is employed or using a gas sweep. The 

temperature of the drying product is decreased in this stage due to evaporative 

cooling but increases again after the solvent has evaporated and eliminated.22 

During the constant rate stage, the pressure and rate of heat transfer within 

the system control the drying rate. The unbound solvent adsorbed on the 

surface of the drying product continues to vaporise and evaporate, where there 

is a difference between the set temperature of the dryer and the removed 

solvent. Enhancing the drying rate can be achieved by increasing the 

temperature of the dryer or decreasing the pressure. Other factors affecting 

the speed of drying include the surface area of the drying product, agitation, 

and the rate of removal of the solvent vapour within the dryer.27,28 Diffusion of 

the solvent vapour at the particle-air medium also contributes to the rate of 

drying during this period.21 At the end of the constant rate stage, the solvent 

content reaches the critical moisture or solvent content, where no solvent is 

present on the surface of the drying product, and the solvent within particles 

begins to move by capillary forces to the surface.21,29  

In the falling rate stage, mass transfer expressed by solvent migration from the 

inside of particles to the surface is the determining factor of the solvent 

evaporation rate after the solvent on the surface has completely evaporated. 

This process may cause the drying times to be long.22 Although the overall 

drying rate per time is reduced, the drying rate per unit of moist solid surface 

area is constant during the first part of the falling rate period. In the second 

part of the falling rate period, the rate-determining step is the solvent migration 

inside the solid particles across the concentration gradient, which leads to a 

slower decrease in the drying rate and a steeper curve of the drying rate until 

the process ends.21 The rate of drying during this stage is largely dependent 

on the porosity and internal structure of particles.27 Conduction of heat also 
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affects the rate of drying during this period due to the presence of moisture 

deeper within the particle. Porosity and density of particles govern the extent 

to which solvent migration and heat transfer affect the rate of drying during this 

stage.21 Depending on the suitable residual solvent content, the drying process 

may not go through all of the aforementioned stages. Where high residual 

solvent is required, the drying is carried out only through the constant rate 

period.21  

Figure 2.1(b) shows the drying curve of a low boiling point (55.2˚C) and fast 

evaporating solvent, methyl tert-butyl ether (MTBE) as an example, expressed 

as solvent content versus time. The constant rate stage shows the quick 

evaporation of the solvent from the surface. The first part of the falling rate 

stage shows the transition from the solvent evaporating from the surface of 

particles to the solvent diffusing from within particles in the second part of the 

falling rate period. In the drying of this solvent, the time needed for the constant 

rate and the first part of the falling rate stages would exhibit a slight decrease 

with the increase of temperature, while the time needed for diffusion would 

show a greater decrease with the increase of temperature.26 To achieve a 

shorter constant rate stage, the rate of evaporation may be increased by 

increasing the temperature or agitation, which in turn enhances the mass 

transfer within the dryer. On the other hand, the diffusion-controlled rate of 

drying during the falling rate period may only be improved by raising the 

temperature.30 
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2.2  Types of dryers used in the pharmaceutical industry 

Heat transfer methods of dryers currently used in the pharmaceutical industry 

are conduction, convection, and radiation dryers.31 In conductive dryers, heat 

transfer occurs by conduction, where the solid is in direct contact with a hot 

surface. Those dryers are also referred to as contact dryers. Examples of those 

dryers include vacuum ovens, conical dryers, tumble dryers, and filter dryers. 

In convective dryers, evaporation is induced by supplying a flow of hot air 

within the dryer. Examples of those dryers include the fluidised bed dryer, 

spray dryers, and freeze dryers. Radiation dryers generate heat within a drying 

product using radiation, where microwave dryers are an example.  

 

2.2.1 Conductive dryers 

A vacuum oven is an air-tight jacketed chamber that can endure steam 

pressure and vacuum. A vacuum pump is connected through a liquid receiver 

and a condenser, which is also called a cold trap. The advantages of the 

vacuum oven are significantly reducing the likelihood of oxidation, and drying 

at relatively low temperatures. Therefore, it is suitable for oxygen and heat-

sensitive products. Although vacuum ovens are not currently used on a 

commercial scale, they are used in laboratory development applications.31  

The conical dryer is conical in shape. This shape imparts a higher surface area 

to volume ratio, aiding heat transfer to the drying product. Conical dryers 

contain an impeller, which may also be a heat source, to increase the surface 

area of the drying product that is in contact with the drying air. The advantages 

of the conical dryer include good product uniformity and active agitation 

through the impeller, in addition to the limitation of exposure to the solvent and 

API. Disadvantages of the conical dryer include high particle attrition, complex 

scale-up, and difficult sampling.22  

Tumble dryers are rotating dryers. The drying product tumbles inside the dryer, 

where the heat from the walls of the dryer accelerates drying while the tumbling 

motion offers a higher surface area for heat transfer without the shear force 
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associated with an impeller, such as those in conical dryers.22 The advantages 

of the tumble dryer include its suitability for shear-sensitive materials, lower 

running cost due to the increased heat and mass transfer by the tumbling 

motion, simple operation, and ease of cleaning. Disadvantages of the tumble 

dryer include possible prolonged drying time, unsuitability for non-free-flowing 

materials, and lower efficiency.22 

Agitated filter dryers are used to filter a slurry, wash the mother liquor from the 

produced filter cake, and then dry the product. Following the washing of the 

filter cake, the walls of the dryer provide heat while an impeller is used to 

increase the contact area of the filter cake, while vacuum pressure is applied 

to remove the solvent.22 Advantages of filter dryers include the flexibility in 

agitation modes due to the adjustable impellers, decreased risk of exposure to 

the solvent and API, and elimination of product contamination or loss after 

filtration and washing as there is no transfer between equipment for these 

steps. Disadvantages of filter dryers include complex scale-up, the possibility 

of agglomeration, particle attrition due to the impeller, the creation of a heel 

between the impeller and the filter, and sampling difficulty.22  

 

2.2.2 Convective dryers 

The fluidised bed dryer includes a perforated base to allow for the drying air to 

move through the bed composed of the product to be dried. Fast drying is 

achieved through fluidised bed dryers as the turbulence results in particle 

mixing and higher mass and heat transfer rates due to the high contact 

between the air and the solid particles.31 Advantages of fluidise bed dryers 

include shorter drying times due to efficient mass and heat transfer rates, 

which means that they can be used for heat-sensitive products, uniform 

temperature profile and drying due to turbulence, minimised aggregation, and 

obtaining high product output from smaller scales due to the shorter drying 

times. However, this method could result in excessive attrition of the product 

due to turbulence, and static electric charges may be generated as a result of 

the friction between the particles and the dry air. The attrition also leads to the 
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production of fine dust, which also contains static charges, and the mixture 

with the solvent containing air in the drying could present an increased risk for 

explosions.31  

Spray dryers may be used to dry suspensions or products dissolved in a 

solvent. The liquid is sprayed as the mist of fine particles through a nozzle by 

dispersing it into a stream of hot gas within a cylindrical dryer, a process 

termed atomisation. The solvent quickly evaporates, therefore, the heating 

duration is reduced. Advantages of spray dryers include product uniformity, 

the possibility of combining the processes of crystallisation and drying, and 

suitability for heat-sensitive products. Disadvantages of spray dryers include 

high consumption of sweeping gas and challenging control of the bulk product 

density.22 

Freeze drying, sublimation, or lyophilisation is the conversion from the solid 

phase to the vapour phase directly without converting through the liquid phase. 

It is suitable for heat-sensitive products.31 During the process, the solution of 

the heat-sensitive product is frozen and the pressure is decreased. Following 

that, the temperature is increased so that the vapour phase is reached while 

avoiding the transition through the liquid phase.20 Advantages of freeze drying 

include producing a porous solid that is light and therefore achieves faster 

dissolution, it is suitable for heat sensitive products and no hydrolysis or 

chemical decomposition occurs, oxidation is avoided as the high vacuum 

conditions during the process prevents contact with air. Porous solids may not 

always be desirable, and the completely dry product may be hygroscopic. 

Freeze dryers are expensive, and the procedure is slow.31 

 

2.2.3 Radiation dryers  

Microwave radiation in the range of 10 mm to 1 m is an efficient heating and 

drying method and is used in the pharmaceutical industry. Heat generation is 

uniform throughout the solid, and the vaporised solvent is removed from the 

dryer as air flows. This technique relies on the fact that water absorbs radiation 
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more easily than dry solids, and the endpoint is indicated as the residual 

microwave energy increases when most of the solvent has evaporated.31 

Advantages of microwave drying include quick drying at low temperatures, no 

attrition or dust formation, and thermally efficient due to microwave energy 

being almost completely absorbed by the solvent. Disadvantages include the 

additional safety measures required as microwave radiation can cause organ 

damage, and the limited batch size of commercial microwave dryers compared 

to those of other dryers.31 
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2.3  Pharmaceutical drying process considerations 

In manufacturing operations, the pharmaceutical drying process is commonly 

referred to as a black box 3,32 and a bottle-neck.25,27,33 This is due to the 

process being dependent on the physicochemical properties of the materials 

to be dried, properties of the solvent to be removed,31 type of dryer used, the 

operational conditions within the dryer,22 and the scale of the operation.25,27,34 

Furthermore, the physical phenomena of heat and mass transfer concurrently 

occurring within the drying vessel add complications to the process due to their 

inhomogeneous and non-linear nature while being the rate-limiting 

phenomena within the process, which causes problems when scale-up is 

attempted.25,35  

Properties of the drying product, such as particle morphology, particle size 

distribution and solvent content, affect the drying process. Particle morphology 

and size distribution determine the surface area accessible for heat transfer. 

The solvent within the drying product affects the drying duration and the 

properties of the dry product. It may also lead to changes in the particle size 

distribution of the product through agglomeration or attrition.22 Drying newly 

developed APIs is challenging due to the limited information regarding their 

physicochemical characteristics that are essential for obtaining a product of 

the required quality.25 

For the selection of the size and design of dryers, perquisites include 

knowledge of the drying characteristics, moisture equilibrium, handling 

limitations, and temperature sensitivity of the solid as well as properties of the 

dryer, such as the possible temperature range within the dryer.21 Agitation, 

intermittent or continuous, may be applied to the process to optimise heat 

transfer while reducing drying cycle time, but it could affect the particle 

properties of the product.28,34 Process scale-up is an issue in terms of 

maintaining robust production characteristics.25,36,37 This is due to the heat 

transfer rate being correlated with the rate of solvent removal, which directly 

impacts the evaporation process.26 Larger surface area of the drying product 

provides a larger area for heat transfer. As a result, applying pressure 
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(vacuum) during drying, as is done within vacuum filter dryers, makes the 

process limited by the heat transfer rate rather than the mass transfer rate.22 

With regard to energy consumption, drying unit operation requires intensive 

amounts of energy due to the elevated level of heat generally needed.21 While 

conductive dryers, where heat is indirectly conducted through a heated 

surface, are economical as they provide higher thermal efficiency, convective 

dryers, where heat is provided directly by hot air flowing over the wet product, 

still form 85% of the dryers used in industrial applications.21,27 Additional stress 

is placed on the control of the process parameters when taking productivity 

and cost reduction into consideration.33 

The main purpose of considering the previously mentioned factors is to tune 

the critical process parameters for the achievement of a product that conforms 

to the critical quality attributes (CQA) for the production of a product with a 

suitable quality target product profile (QTPP).23,38 
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2.3.1 Critical Quality Attributes and Critical Process Parameters 

The International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH), in the pharmaceutical 

development guideline Q8(R2) published by the European Medicines Agency 

(EMA), defines a critical quality attribute (CQA) as ‘A physical, chemical, 

biological, or microbiological property or characteristic that should be within an 

appropriate limit, range, or distribution to ensure the desired product quality. 

CQAs are generally associated with the drug substance, excipients, 

intermediates (in-process materials) and drug product…CQAs can additionally 

include those properties (e.g., particle size distribution, bulk density) that affect 

drug product CQAs’. It also defines a critical process parameter (CPP) as ‘A 

process parameter whose variability has an impact on a critical quality attribute 

and therefore should be monitored or controlled to ensure the process 

produces the desired quality’. Both CQAs and CPPs are determined and 

monitored to achieve a certain quality target product profile (QTPP), which is 

‘A prospective summary of the quality characteristics of a drug product that 

ideally will be achieved to ensure the desired quality, taking into account safety 

and efficacy of the drug product.’38 

Based on these definitions, residual moisture or solvent content within the 

drying product is considered a CQA. The residual solvent levels must be low 

to maintain the quality of a freely flowing product and prevent degradation or 

change in the crystal morphology during storage of the primary pharmaceutical 

product. For the secondary manufacturing of the final dosage form, the 

residual solvent affects the compressibility, flow properties, and stability.22,31 In 

cases other than when residual solvents are to be avoided or limited due to 

toxicity, minimal amounts of residual solvent (1-2%) are maintained within 

pharmaceutical products rather than completely dry products as it yields 

granules that have better compressibility. Also, having completely dry powder 

will lead to the formation of static charges that prevent the free flow of the dry 

powder as well as the generation of fines due to attrition when the product is 

over-dried.23,31,39 In addition to that, inadequate determination of drying 
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endpoints indicated by the critical solvent content alters the mass balance 

required for dosage accuracy, as well as altering the dissolution 

characteristics.40 In tablet manufacturing, the moisture content is of crucial 

importance due to the effect of moisture on powder adhesion to the tablet press 

during the tabletting step.32 Stability concerns due to possible phase transition 

of polymorphs owed to solvent content or thermodynamic and mechanical 

stresses.41-44  

Another example of CQA is morphology and particle size distribution (PSD), 

which are subject to attrition and agglomeration due to a collective effect of 

CPP, such as agitation, temperature, and pressure, as well as being influenced 

by other CQA such as the solvent content.28,34,45,46 

Agitation at a certain level of solvent content leads to the improvement of the 

drying rate due to the increased surface area in contact with warm air within 

the dryer. However, at a higher level of the solvent content, termed the sticky 

point, agitation leads to agglomeration.25 At lower temperatures, the drying rate 

is lower, and the process requires a longer cycle time. This leads to obtaining 

lower PSD in agitated drying due to exposing the particles to attrition for a 

longer duration. In addition, areas close to the impellers are under high shear 

and experience attrition and feature particles with smaller PSD due to attrition 

while those away from the impeller agglomerate. The number and position of 

impellers are also a source of variability.28 Due to the change in particle size 

and shape, the solvent content within the particles also varies. This variation 

in process parameters leads to inconsistent powder flow behaviour, altered 

dissolution profile and, therefore, change in bioavailability of the final dosage 

form.34 

Considering pressure within the dryer as a CPP, reducing pressure leads to a 

reduction in heat transfer although it also reduces the boiling point of the 

solvent. As a result, the drying rate and duration to reach the required solvent 

content are improved, although the condition may also lead to agglomeration.34 

Solvent vapour residence time and pressure are also crucial in affecting the 

drying rate and may be controlled by employing a vacuum pump and a nitrogen 
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sweep to control the pressure within the dryer and the removal of the solvent 

vapour.36  

Modifying a process parameter whilst the process is running or between 

batches within different types of dryers provokes variable effects on the 

product as well as other concurrent processes. The parameters with the most 

prominent effect on the outcome of the process include modifying the 

temperature, humidity and flow of air within the dryer, with the temperature of 

air having the most significant impact on the drying kinetics and quality 

attributes.47  

As mentioned previously, the characterisation of CQA and control of the CPP 

are vital for optimising both the process and the product. In particular, the 

solvent content contributes to many of the complications and decision-making 

points within the drying process. Therefore, by monitoring this CQA, a 

feedback loop may be created to adjust critical process parameters and avoid 

possible complications within the process that would affect other CQAs. 

Monitoring those CQAs and CPPs, as well as creating a feedback loop, may 

be enabled through applying process analytical technologies. Coupled with 

multivariate analysis, Quality by Design (QbD) can be achieved. QbD is a 

concept promoted by the European Medicines Agency and aims to produce 

medicines with reproducible quality through the use of PAT and analyses for 

the design of pharmaceutical processes.48 Process analytical technology and 

multivariate analysis are introduced in the following chapter. 
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3. Near-infrared and Raman Spectroscopy, Spectral 

Pre-processing, and Data Analysis 

 

This chapter includes a review of some of the literature on process analytical 

technology, including near-infrared and Raman technologies. It is followed by 

a review of spectral processing and analysis methods for qualitative and 

quantitative information extraction from the spectral data.  
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3.1  Process analytical technology 

Process analytical chemistry (PAC) refers to the chemical analysis performed 

on samples from the production stream or the end product to ensure that 

process parameters are suitable for manufacturing a product of desired quality. 

Some of those control parameters include moisture, pressure, temperature, 

and pH. In 2004, the United States Food and Drug Administration (FDA) 

published a guideline to encourage innovation by introducing process 

analytical technology (PAT) to the pharmaceutical manufacturing industry. The 

FDA defines PAT as systems utilised for the timely design, analysis, and 

monitoring of the manufacturing CPPs and CQAs to guarantee the quality of 

raw materials and the final product. PAT includes risk and mathematical 

analysis in addition to the chemical, physical, and microbiological properties 

monitored as part of PAC. This progress to PAT was driven by the drug quality 

system of having the quality of products built in by the design of the process, 

rather than the previous practice of testing the quality into products (QbD).1,2 

PAT may be applied within manufacturing procedures in various modes 

including: 

1. Off-line measurements: analysing a manually removed sample from the 

process stream in an external laboratory. 

2. At-line measurements: analysing a manually removed sample near the 

process stream. 

3. On-line measurements: analysing a sample automatically extracted 

from the process stream. The sample may be returned to the same 

stream after the analysis. 

4. In-line measurements: measurement conducted using a probe inserted 

into a process unit or stream. 

5. Non-invasive measurements: in-line measurements collected without 

contact with a sample.  

The purpose of PAT is to obtain real-time data during the processes and 

enable adjustments to the procedure or process to ensure the quality of the 

product. This improves process understanding, leading to the manufacturing 
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of products within the required regulatory specifications and preventing the 

loss of batches outside the limits of specifications.49,50 PAT techniques include 

ultraviolet (UV), near-infrared (NIR), and Raman spectroscopy in addition to 

other techniques.2 
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3.2  Conventional methods for monitoring the solvent content during 

pharmaceutical drying  

One of the aims of monitoring pharmaceutical drying is to establish the 

endpoint of drying as the residual solvent content is a critical quality attribute 

of the product. Conventionally, the process is halted to acquire samples for the 

determination of the residual solvent content, which is not ideal with regard to 

the desired consistency in the operation parameters. Loss on drying (LOD) 

methods, like thermogravimetric analysis (TGA) and Karl Fischer (KF) titration, 

are the conventional methods employed for solvent content measurement but 

are obstructive, time-consuming, and may require sample preparation.27,50  

Loss on drying is the most conventional method for measuring the solvent 

content within a sample. In this method, a wet sample is weighed after 

extraction from the process and then put into an oven for drying. After it has 

dried, the sample is weighed again. The LOD can be expressed as the mass 

of the solvent within a sample (the difference between the mass of the wet and 

dry sample) divided by the mass of the wet sample to obtain a percentage of 

the solvent within the extracted sample. Alternatively, the mass of the lost 

solvent may be divided by the mass of the dry solid to obtain the mass of the 

solvent per mass of the solid. In thermogravimetric analysis, the change in the 

mass of a wet sample is monitored as the temperature is increased. Additional 

information provided by this technique includes thermal decomposition, phase 

transition, absorption and desorption.  

Some newer techniques for analysing the solvent content include gas 

chromatography, mass spectroscopy, and nuclear magnetic resonance 

(NMR). Despite being more enhanced than the conventional methods, those 

still involve compromising the vacuum condition within the dryer to obtain 

samples and are not readily applied for in-line measurements. In contrast to 

the mentioned techniques, in-line PAT methods enable the uninterrupted real-

time monitoring of the process, leading to higher production by decreasing 

drying cycle time, mitigating off-specification batches, and enabling the 

accurate mechanistic modelling of the process.27,50  
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Near-infrared and Raman spectroscopies are vibrational spectroscopic 

techniques used to determine the structure of compounds.51 Both techniques 

are widely applied as in-line PAT techniques for process monitoring due to the 

advantages offered. These advantages include fast in-line or on-line 

measurements for frequent analysis. This ensures operational safety by 

reducing the risk of exposure to operators and reduces the fluctuation in 

process conditions.27  

Although NIR spectroscopy has been proposed to monitor water content off-

line since 1968 with results comparable to KF titration,52 moisture content 

measurements during granulation and drying processes are still obtained 

using KF titration and LOD, despite the analysis frequency being limited by the 

methods.40 This slow adaptation to PAT may be explained by the complexity 

of data generated from these techniques and the lack of appropriate 

knowledge transfer between the API development stages, which may use 

more sophisticated equipment, and the commercial production stage, which 

would require equipment that are more automated and simpler to use. 

Moreover, PAT instruments installation and operation must follow industrial 

approaches that ensure safety, validity, fitness for purpose, and the evaluation 

of the long term performance.50      

In addition to the selection of suitable PAT tools, the location of the tools within 

the process according to the required measurement, ideal measurement 

conditions, and performance validation must be taken into consideration in 

order to effectively monitor the CPP or CQA.49  

The use of spectroscopic-based PAT often involves using multivariate analysis 

to derive qualitative and quantitative information from the spectra.49 With 

regard to the development of those analyses, validation of the PAT method, 

and process scale-up, there are barriers surrounding the implementation of 

those methods, but the benefits brought about by implementing them are 

driving research to overcome them.39,53 
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3.3  Interactions of light 

Light interacts with matter through a phenomenon called electromagnetic 

radiation. This interaction occurs due to the wave-like and particle-like 

properties of light. The interaction between light and matter is fundamental to 

spectroscopy. 

When light illuminates a material, the photons may be transmitted, reflected, 

refracted, absorbed, and scattered. Transmission happens when light passes 

through a transparent material without being absorbed or scattered, but may 

be refracted if the direction of light changes as it moves between materials of 

a different refractive index.54 Reflection occurs when light bounces off the 

surface of a material without being absorbed, where the angle of incidence is 

equal to the angle of reflection. Absorption may occur when light falls on 

translucent or opaque materials. When light is absorbed, the energy of its 

photons may be absorbed by the electrons within atoms or molecules of the 

material causing the electrons to move to higher energy states. Light scattering 

is a phenomenon in which light may be redirected in multiple directions as it 

interacts with particles or irregularities in a material. Elastic scattering occurs 

when the energy of the scattered photon is the same as the incident photon, 

while inelastic or Raman scattering occurs when the photon scatters at a 

higher or lower energy compared to the incident photon.55 In turbid media, 

constituted of particles suspended in a solution, light scatters through the solid 

particles multiple times leading to diffuse reflectance and diffuse transmittance. 

An example of such media is a suspension of crystals an active pharmaceutical 

ingredient and a solvent, where absorption and scattering would constitute the 

majority of phenomena taking place.  

There are different types of light scattering, depending on the size of the 

scattering particles. Those include Rayleigh, Mie, and non-selective scattering. 

Rayleigh scattering occurs when the size of the scattering particles is much 

smaller than the wavelength of the incident light. Mie scattering occurs when 

the size of the scattering particles is comparable to the wavelength of light. 

Non-selective scattering occurs when the size of the scattering particles is 
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much larger than the wavelength of light. In Non-selective scattering, all 

wavelengths of light are scattered equally as it is non-wavelength dependant. 

Non-selective scattering is often observed in pharmaceutical samples, leading 

to a diffusely scattered signal resulting from multiple scattering incidents.  

Absorbance is expressed by the laws of Beer and Lambert. According to 

Beer’s law, absorbance is proportional to the concentration of the absorbing 

material. According to Lambert’s law, when light passes through media, an 

equal proportion of the light is absorbed by each layer of a medium that the 

light passes through leading to an exponential decay in the intensity of light. 

Absorbance may be expressed as the standard logarithm fraction of the 

incident light detected after penetrating a sample according to Lambert’s law.56 

Building on both laws, the concentration of a material that absorbs light may 

be calculated using Beer-Lambert’s law: 

𝐴 = 𝑙𝑜𝑔 (
𝐼0

𝐼
) = −𝑙𝑜𝑔 (

1

𝑇
) = ∑ 𝜀𝑎,𝑖𝑏𝑐𝑖 

𝑛

𝑖=1

 

Equation 3.1 

where 𝐴 is the absorbance, 𝐼0 is the intensity of the incident light, 𝐼 is the 

intensity of transmitted light, 𝑇 is the transmittance,  is the absorption 

coefficient, 𝑏 is the pathlength of the light or sample thickness, and 𝑐 is the 

concentration of the absorbing chemical. In Equation 3.1, the absorbance is 

equal to the concentration of the material multiplied by its absorption coefficient 

at a certain wavelength, which is constant for a material, and the pathlength 

travelled by the light. This equation relies on the assumption that the light that 

does not exit a sample is absorbed by the sample, which may be true in non-

scattering solutions as particles do not interfere with the travelling light. 

However, in turbid media, the light goes through multiple scattering incidents 

causing photons to travel through variable pathlengths.57  

In the case of turbid media, the scattering coefficient is summed up with the 

absorption coefficient to compensate for the change in pathlength. Diffuse 
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transmittance or diffuse reflectance are the measurements that may be 

obtained from turbid samples, Beer-Lambert’s law is adjusted to become: 

𝐴 = 𝑙𝑜𝑔 (
𝐼0

𝐼
) = −𝑙𝑜𝑔 (

1

𝑇
) = ∑ 𝜀𝑒𝑥𝑡,𝑖𝑏𝑐𝑖 

𝑛

𝑖=1

 

Equation 3.2 

where 𝜀𝑒𝑥𝑡 is the extinction coefficient and is the sum of the absorption 

coefficient, 𝜀𝑎, and the scattering coefficient, 𝜀𝑠. Due to multiple scattering, the 

pathlength of photons travelling through a turbid sample, which may contain 

particles of different size and shape, is not constant and compromises the 

accuracy of results obtained through Equation 3.2.58  
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3.4  Near-infrared spectroscopy 

Near-infrared (NIR) spectroscopy refers to the measurement of the extent of 

absorption of near-infrared light by molecules within a sample. When 

asymmetric molecules that contain polar functional groups absorb 

electromagnetic radiation, transitions between molecular vibrational energy 

levels occur. The resulting NIR spectral features are a result of combination 

and overtone fundamental vibrations over the wavelength range of 800-2500 

nm (4000-12 500 cm-1). Examples of polar functional groups that absorb near-

infrared light include O–H, N–H, or C–H bonds. A NIR spectrum appears as 

broad and overlapped peaks due to their low absorption coefficients.51 Within 

the NIR wavelength range, 1200-2500 nm is the wavelength within which 

characteristic absorption peaks are obtained for pharmaceutical applications. 

The low absorption coefficient of NIR bands allows for greater optical 

pathlength although the pathlength and penetration depth within turbid 

samples could be further affected by the scattering effect. Nevertheless, 

variation in the physical properties of the samples may lead to higher scattering 

and therefore complicate the analysis of NIR spectra.56 NIR spectra are 

conventionally expressed as absorbance intensity (arbitrary or absorbance 

units) per wavelength (nm). Conventional NIR measurements are single-point 

measurements, where the output is an average of the reflectance or 

transmittance signal collected from the sampling area. The representativeness 

of the collected NIR signal is dependent on the properties of the sample. In 

particular, signals collected from heterogeneous samples may be 

misrepresentative of the bulk of the sample as the signal contains a 

disproportional contribution from the surface of the probed area and the bulk.13  

The application of NIR spectroscopy enables quick and non-destructive 

analysis of the chemical composition samples of a mixture of components, 

where the spectral measurements require seconds or a few minutes and do 

not require any sample preparation. NIR spectroscopy may also be used for 

quick quantitation of materials in gas, solid, or liquid states over a range of 

temperatures.51 In addition to the characteristic broad and overlapping peaks 
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of NIR, spectral data collected using this technique are affected by scatter 

effects and pathlength variation arising from the sample properties, in addition 

to the equipment and process noise during signal collection. Due to the level 

of noise encountered with NIR spectra, smoothing algorithms may be applied 

prior to further processing of the spectra. In addition to noise, baseline shifts 

among sample spectra are an often encountered issue. Broad and overlapping 

NIR peaks and baseline shifts may be resolved through pre-processing. 

Signal pre-processing has a significant effect on spectroscopic data, where it 

is applied to remove the scattering effects arising in the sample spectra and 

resulting from physical phenomena. The pre-processing techniques that 

address those scattering effects include derivation, multiplicative scatter 

correction or standard normal variate, in addition to simple normalisation, 

which removes baseline shifts and differences in intensity arising from 

pathlength variation.56 In addition to pre-processing, the use of chemometrics 

is common for the extraction of qualitative and quantitative information from 

NIR spectra.  

Some of the fields applying NIR spectroscopy include food and agricultural,59,60 

biomedical,61,62 and pharmaceutical analysis.4-7,63-68 Those pharmaceutical 

applications include end product characterisation63-65,67,68 and process 

monitoring.4-8  

In food and agricultural applications, for example, NIR spectroscopy is used to 

detect and quantify quality parameters in oils, including moisture, amino acid, 

protein, and oilseed contents, in addition to the determination of oil types and 

adulteration in oil products.59 The maturity, texture, and contamination of fruits 

are also explored using NIR spectroscopy.60  

In biomedical analysis, the wavelength range 800-1200 nm is the useful 

wavelength range for biological samples due to the high optical transparency 

in this range.56 The oxygen concentration in tissue may be indicated through 

NIR spectroscopy, where spectra of oxygenated and deoxygenated proteins, 

such as haemoglobin and myoglobin, differ. This enables the non-invasive 

measurement of oxygen saturation levels in tissue using pulse oximeters, in 
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addition to the study of brain function as the rise in oxygen levels indicates 

increased blood flow and as a result brain activity.61  

For end-product characterisation in pharmaceutical applications, the use of 

NIR spectroscopy is reported for the identification of active pharmaceutical 

ingredients and excipients,63,64 and assessing the quality of those solid 

pharmaceutical products,67,68 including the homogeneity of tablets.65 For 

process monitoring, NIR spectroscopy has been used for monitoring the 

transformation between polymorphs,4 density of powder blends,5,8 API load in 

low API load powder blends,6 as well as API content, and average particle 

size.7  

 

3.4.1 Spatially and angularly resolved NIR spectroscopy 

Spatially and angularly resolved NIR spectroscopy, also termed multi-point 

and multi-angle spectroscopy, is applied through shining one or multiple 

illumination points at multiple angles and the collection of NIR signals from 

multiple distances from the incident light as shown in Figure 3.1, which shows 

an illustration of a multi-layered diffusely-scattering sample. In diffusely 

scattering media, measurements are affected by absorption and scattering of 

light. Through shining the light from multiple angles, different patterns of light 

scattering and absorption can be captured as a result of the variable optical 

paths, which give information related to the physical and chemical 

characteristics of the samples. Therefore, spectra that contain more 

representative information about larger volumes of the sample are 

collected.13,14 The advantage of collecting a more accurate representation of 

samples and the opportunity to differentiate the contribution from different 

optical paths by resolving measurements from different spatial and angular 

configurations in spatially and angularly resolved spectroscopy makes this 

technique attractive for application in industrial processes. Nevertheless, 

variable signal intensities can be obtained from different collection 

configurations as light diffusion throughout a diffusely scattering sample results 

in an exponential decrease in signal intensity. A system for the collection of 
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spatially resolved diffuse reflectance NIR measurements has been 

commercially developed by Indatech, and a system for the collection of 

spatially and angularly resolved diffuse reflectance UV-Visible-NIR 

measurements (SAR-DRM) has been developed by Chen et al.14 

 

 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Figure 3.1. Illustration of the concept of spatially and angularly resolved diffuse 
reflectance spectroscopy. Light is shone at multiple angles to the multi-layered 
sample and the signal is collected from multiple collection distances, Δx ≠ 0, as 
opposed to conventional diffuse reflectance NIR measurements, where the light is 
shone at a normal angle and the signal is collected, Δx = 0.  

 

Spatially resolved diffuse reflectance NIR spectroscopy has been used in the 

pharmaceutical field for the determination of the quality of tablets through 

assessing the homogeneity of tablets,13,68-70 in addition to the use of spatially 

resolved NIR spectra and known physical properties for the simulation of the 

behaviour of light in particulate media.71 Angularly resolved diffuse reflectance 

NIR spectroscopy has been used for the monitoring of the precipitation of silica 

and in the identification of phases in microemulsions.72 Spatially and angularly 

resolved diffuse reflectance UV-visible measurements have been used for the 

estimation of concentration and particle size in colloidal suspensions.14 

Despite the similarity in the application of multi-point spatially and angularly 

resolved spectroscopy, the processing and analysis of the spectroscopic data 
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collected in those studies varies as a result of the difference in desired output. 

Therefore, an optimised signal processing approach must be in order to extract 

useful information from such techniques that generate large amounts of data. 
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3.5  Raman Spectroscopy 

When light interacts with a molecule, the molecule absorbs the energy of the 

incident photons and is excited to a virtual state and then either returns at the 

same vibrational level or is shifted up or down one or more vibrational energy 

levels. Incidents of photons returning to the same vibrational level are regarded 

as elastic scattering, which is known as Rayleigh scattering as shown in Figure 

3.2. The frequency of the scattered photon does not change in Rayleigh 

scattering as indicated by the upward arrow (laser excitation frequency) 

matching the length of the downward arrows (frequency of scattered photon). 

Raman spectroscopy is based on inelastic light scattering, where the energy 

of the re-emitted photons by the molecule is different to those of the 

illuminating photons. The phenomenon of inelastic scattering where energy is 

lower by the energy of one or more vibrational levels is termed Stokes 

scattering, where the phenomenon is indicated by shorter downward arrows.  

Anti-Stokes scattering occurs when the re-emitted photon gains the energy of 

one or more vibrational levels as indicated by the longer downwards arrows. 

The most likely phenomenon is Rayleigh scattering as the intensity is 

approximately 10-3 compared to the intensity of the incident light, while Raman 

scattering is approximately 10-6 compared to the intensity of the incident light. 

Stokes scattering is more intense compared to anti-Stokes as indicated by the 

relative difference in peak heights in Figure 3.2 because the majority of 

molecules are in the ground state at room temperature. The incidence of 

Raman scattering is dependent on the potential of a molecule to react to an 

electric field altering the electron cloud around the molecule, a property termed 

polarisability. Monochromatic lasers in the UV-Visible regions in addition to 

NIR region. Laser wavelengths closer to the NIR region, such as 785 nm, are 

preferred compared to the visible region due to the effect of fluorescence when 

using wavelength in visible light region. Shorter laser wavelength, such as 532 

nm, result in higher Raman signal intensity and are therefore used with 

inorganic material. Laser wavelength 600-830 nm are used for Raman 

spectroscopy application in organic chemicals, including pharmaceuticals, as 

it enables balancing the signal intensity and the effect of fluorescence.  51 
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Conventional Raman spectroscopy applications revolve around the 

illumination of a sample and the collection of the signal typically from 90˚ (right-

angle) or 180˚ (backscattering) between the source and the detector 

configurations.  

 

Figure 3.2. Illustration of energy shifts and comparison of the intensity of elastic 
Rayleigh scattering and the inelastic Stokes and anti-Stokes scattering. Peak heights 
are relative as the Rayleigh peak intensity is due to the difference in the probability of 
occurrence of each phenomena. Adapted.51 

 

Similar to NIR spectroscopy, Raman spectroscopy allows non-destructive and 

quick sample analysis and has been used in many fields including forensic, 

biological, biomedical and pharmaceutical. In forensic analysis, Raman 

spectroscopy was reported for rapid detection of the presence of solid 

explosives on clothing.73 In the biological and biomedical fields, Raman 

spectroscopy is used for the detection of unique markers such as DNA, 

proteins, DNA, and cholesterol,74 in addition to improving the accuracy of 

cancer tumour identification.75 In the pharmaceutical field, Raman 

spectroscopy has been used in the characterisations of pharmaceuticals in 

addition to quality control and process monitoring. Those include the 

identifications of polymorphs,10 monitoring of processes and process 
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endpoints such as synthesis, crystallisation, powder blending, granulation, and 

drying.12,49,50,76  

3.5.1 Spatially offset Raman spectroscopy 

Spatially Offset Raman Spectroscopy (SORS) is a subset of Raman 

spectroscopy; it is applied by collecting measurements from positions laterally 

offset from the illumination point, as shown in Figure 3.3. It relies on the higher 

likelihood of photons in the subsurface to migrate horizontally as opposed to 

migrating back to the illumination point. Therefore, spectra obtained from 

various distances from the incidence beam offer the advantage of 

characterising the heterogeneous subsurface of diffusely scattering media.77 

This opposes backscattering Raman, where the scattered light is collected 

from the same illumination point and mostly contains features of the surface 

composition of a sample. SORS spectra are typically of lower intensity 

compared to conventional backscattered Raman spectra due to the diffusion 

of light through a sample. Nevertheless, this diffusion is the driver for the 

increased contribution in SORS signals from the sublayers, enabling the 

probing of larger sample volumes.78 
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Figure 3.3. Illustration of the concept of spatially offset Raman spectroscopy, where 
the signal is collected from an offset, Δx ≠ 0, as opposed to conventional Raman 
spectroscopy measurement, where the backscattering signal is collected, Δx = 0.  
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SORS has been applied in many fields, such as forensic,79 biomedical,80 and 

pharmaceutical applications.16 SORS application has been demonstrated for 

the detection of liquid and solid explosives and precursors within opaque 

containers.79,81,82 In the biomedical field, SORS was used for the early 

diagnosis of breast cancer,15,83 and for the monitoring of changes in collagen 

concentration during bone healing,84 among other applications.80 In 

pharmaceutical applications, the technique was investigated for the 

identification of pharmaceutical tablet and capsule components,85-87 as well as 

the quantitative analysis of pharmaceutical formulations.88 The potential for 

SORS to achieve spatial and depth-resolved diagnosis from complex tissue 

structure has led to early efforts to develop SORS probes.89-91 
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3.6  Spectral pre-processing 

Pre-processing refers to the treatment of data prior to the extraction of 

qualitative and quantitative information. It is applied to remove undesired 

effects in the collected spectral data arising from instrumental noise and 

signals originating from the collection media. Pre-processing also decreases 

the variability within spectra due to physical differences in the samples. 

Therefore, it enhances calibration and classification models and the following 

data analysis as it may either reduce or sustain the complexity of models. 

Smoothing, spectral derivatives and scatter correction, which include standard 

normal variate and multiplicative signal correction, are the most widely used 

techniques for pre-processing.92 

Spectral data is associated with variation within sample spectra due to the light 

scattering and variability in the pathlength of light that affects the sample 

spectra. This variation is often simplified and regarded as additive and 

multiplicative effects on the baseline, despite being a result of the collective 

effect from light-matter interaction. Nonlinearity in instrument response is also 

a source of variation. Factors that can lead to changing the pathlength include 

physical properties of the samples, such as particle size distribution, and 

measurement geometry.93  

 

3.6.1 Smoothing and derivation 

Spectral data is smoothed to remove peaks that arise as a result of high 

frequency noise. A simple method to apply smoothing is through the use of a 

moving average to replace the raw data points, leading to the improvement of 

the signal-to-noise ratio by removing the random noise that may be captured 

in the spectra. An odd number or window of points is selected and a 

measurement over a wavelength is calculated as the average of the 

measurement point at that wavelength and an equal number of points on either 

side. Alternatively, a moving window fitted to a curve of a polynomial order may 

be applied, followed by the derivation of the spectral curve. This method was 

developed by Savitzky and Golay and is termed the Savitzky-Golay (SG) 
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method.94 Another typically used method for spectral derivation is the Norris-

William derivation, in which the polynomial order of the curve is set to 0. The 

advantages of these methods include maintaining the symmetry of peaks and 

preventing the shift in peak position. 1st-order derivation serves to remove the 

baseline shifts from spectra, while 2nd-order derivation results in the removal 

of linear trends (slopes) in the spectra in addition to removing the baseline 

shifts. Determining the optimal level of smoothing required is critical as 

exceeding that level will reduce the resolution and intensity of the signal, while 

sub-optimal smoothing will fail to remove the noise. The number of points to 

average, polynomial order, and order of derivative must be empirically 

optimised. Averaging a larger number of points results in a smoother curve but 

can remove some of the spectral features. Choosing a polynomial of high order 

leads to a better fit of the spectral curve but would include random noise in the 

spectrum. Derivation of noisy spectra could emphasise small features arising 

due to noise.95  

 

3.6.2 Baseline correction 

Baseline correction is the removal of baseline variation from a spectrum. Some 

of the methods include de-trending and offset correction. De-trending can be 

applied through the subtraction of a linear or polynomial fit from the spectrum. 

De-trending may be applied for the removal of parallel offset and curvilinearity. 

Offset correction is where the offset value is subtracted from each 

measurement point on the spectrum individually to remove a parallel baseline 

shift before further pre-processing.96  

 

3.6.3 Normalisation 

Normalisation may be done by dividing individual variables by the sum of the 

absolute value of all variables, the square root of the sum of the squared roots 

of all variables, or the maximum value among variables for a sample, among 
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other normalisation methods. Spectral normalisation is applied to individual 

spectra, where all signal variables or intensities are given the same weight.97  

 

3.6.4 Standard normal variate 

The standard normal variate (SNV) is a weighted normalisation, where sample 

spectra are normalised by the standard deviation of all values following 

subtraction of the mean.98  

Equation 3.3, can be used to represent the SNV method for calculating the 

value of corrected spectra: 

𝑥𝑖j(SNV) =  
𝑥𝑖j − 𝑥̅𝑖

√∑
𝑥𝑖j − 𝑥̅𝑖

2

𝐽 − 1
𝑝
𝑗=1

 
 

Equation 3.3 

Where 𝑥𝑖j(SNV) is the transformed spectra 𝑥𝑖𝑗, 𝑥̅𝑖 is the mean of the spectrum, 

and 𝐽 is the number of variables (wavelengths) in the spectrum 𝑖. 

An advantage of SNV is that each spectrum is treated individually from a 

dataset. The disadvantage of SNV would be that the multiplicative effects are 

considered to be identical over the whole range of spectra.97  

 

3.6.5 Multiplicative signal correction 

Multiplicative signal correction (MSC) is also termed multiplicative scatter 

correction when applied to process spectral variation due to the light scattering 

effect. MSC is applied by fitting each spectrum in a dataset to a reference 

spectrum, resulting in coefficients that are then used to correct the raw 

spectra.99 
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MSC transformation is expressed by the following equation:  

𝑥𝑖j(MSC) =  
[𝑥𝑖𝑗 −  𝑎𝑖]

𝑏𝑖
  

Equation 3.4 

 

Where 𝑥𝑖𝑗 and 𝑥𝑖j(MSC) is the original and the MSC transformed spectra, 

respectively, 𝑥̅𝑖 is the reference spectra of 𝑖 (often taken by the mean spectra 

of the dataset), and j is the spectral wavelengths. 𝑎𝑖 is the specular reflectance 

effect estimated for the sample (additive offset correction) and 𝑏𝑖 is the scatter 

interference estimated for the sample (multiplicative effect). Least squares 

regression is used to calculate 𝑎𝑖 and 𝑏𝑖 for each sample through the following 

equations: 

𝑥𝑖𝑗  =  𝑎𝑖 + 𝑏𝑖 𝑥̅ +  𝑒𝑖𝑗  
Equation 3.5 

𝑥̅ =  
∑ 𝑥𝑖𝑗

𝑁
𝑖=1

𝑁
  

Equation 3.6 

Equation 3.5 represents the least square regression of the individual spectrum 

xij against the average spectrum of the calibration samples 𝑥̅ over j, where N 

is the number of data points. Errors/residuals that cannot be modelled are 

represented by eij. Following their estimation, 𝑎𝑖 and 𝑏𝑖 are used for the MSC 

transformation in Equation 3.4. The value of 𝑎𝑖 and 𝑏𝑖 is affected by the dataset 

of spectra and the individual spectra.100  
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3.7  Extracting qualitative information from spectral data 

NIR and Raman spectra contain information regarding the chemical and 

physical qualities of samples. Those qualities are analysed by recognising 

patterns that relate to certain characteristics within samples and discriminating 

or classifying them according to those patterns afterwards. Classification 

techniques are divided into supervised pattern recognition, which is used when 

there is prior knowledge about the analysed samples, and unsupervised 

classification, where there is no prior knowledge regarding the samples. In this 

section, principal component analysis is introduced as an example of 

unsupervised pattern recognition.101  

 

 

3.7.1 Principal component analysis 

While studying different spectra, finding and analysing a number of similar 

features within the spectra of different samples makes it possible to determine 

similarities between samples. Thus, samples with similar features are 

clustered together. Principal component analysis is a method of unsupervised 

pattern recognition methods used for spectral data analysis.102 

Principal component analysis (PCA) is the most applied multivariate 

chemometric technique. PCA addresses the issue of the large volume of data 

with obscure relations within the data. In order to reduce the volume of data, 

PCA finds correlations within variables of samples and creates new variables 

termed principal components (PC). The first principal component contains the 

largest amount of variation within the data while the remaining principal 

components contain the largest amount of residual variation. Principal 

components may be given a physical interpretation in relation to the 

differences between them. However, PCA is ineffective when there is no 

correlation between variables.103 

To employ PCA, the data are arranged in a matrix, where the rows represent 

samples and columns represent variables as follows: 
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𝑋 = 𝐶𝑆 + 𝐸  

Equation 3.7 

Where 𝑋 is the spectral responses data matrix, 𝐶 is the different samples, 𝑆 is 

the spectra, and E is the error in the spectral responses (𝑋).  

PCA transforms the matrix (𝑋) to the following: 

𝑋 = 𝑇𝑃 + 𝐸  
  Equation 3.8 

Where T are the scores with the same number of rows as the original matrix, 

P are the loadings with the same number of columns as the original matrix and 

the number of columns in the T matrix is equal to the number of rows in P 

matrix as shown in Figure 3.4. The scores represent the relation between 

samples while the loadings for each PC represent the relations between 

individual measurements. The scores and loadings represent the amount of 

variance characterised by each PC. Errors, E, in PCA are assumed to originate 

from the measured spectra.102  

 

Figure 3.4. PCA transformation of data.   
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3.8  Extracting quantitative information from spectral data 

Quantitative information may be extracted from spectral datasets through the 

use of chemometric methods. Types of multivariate modelling applied to 

spectral data for quantitation include multiple linear regression (MLR), principal 

component regression (PCR), and partial least squares regressions 

(PLSR).102,103  

 

3.8.1 Multiple linear regression 

The radiation intensity, expressed as either absorbance or transmittance for 

example, is related to the concentration of an analyte in a sample through 

Beer-Lambert’s law, where the NIR spectrum is plotted as the intensity versus 

the wavelength. Beer-Lambert’s law is the basis of quantitative analysis of 

absorption spectroscopy as expressed in Equation 3.1. Univariate regression 

is based on Beer-Lambert’s law. It may be used when all spectral responses 

are determined by one variable at a certain wavelength.51 

Beer-Lambert’s law is based on the assumption that the incident light is 

monochromatic from a stable source in a system free of stray light and that no 

substance in the sample other than the analyte of interest is absorbing the 

light.104 However, since non-linearity is encountered due to too high or low 

concentration of an analyte in samples or the presence of an interfering 

substance among others, the relationship between absorbance and 

wavelength will not conform to Beer-lambert’s law. Therefore, this non-linearity 

must be taken into consideration for the calibration process to provide accurate 

quantitation.51 

Due to the overlapping of the spectral responses of constituents, and rather 

than considering the intensities to be dependent variables while concentrations 

are independent variables, linear regression is used to link the absorbance at 

every wavelength to the concentrations of analytes within samples. However, 

this does not account for the interaction between analytes within the samples 
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or the presence of unknown substances other than the analytes which will 

affect the absorbance.103 

When other substances are present in the sample, they are added to the 

calibration model and a multiple linear regression model is built. The following 

two-factor, polynomial expression represents the relationship: 

𝑦 = 𝑏0 + 𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒  

Equation 3.9 

Where 𝑦 is the prediction variables matrix as shown in Figure 3.5, 𝑏0 is the 

offset value, 𝑏1..𝑛 are the regression coefficients, 𝑥 is the spectral responses 

matrix, and 𝑒 is the error matrix. 104  

 

Figure 3.5. Spectral responses and predictor variables matrices dimensions.  

 

Those express the relationship between a number of wavelengths and a 

characteristic of a sample. To carry out calibration using MLR, the number of 

samples in the calibration set must be larger than the number of predictors. 

Every wavelength is correlated to the characteristic of interest where each 

response spectrum is the sum of analyte spectra multiplied by their 

concentration. To employ MLR, prior knowledge of the significant constituents 

within a sample must be available.102 
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3.8.2 Principal component regression 

Due to the presence of a high correlation between variables in optical spectra, 

the prediction obtained through MLR becomes unreliable. Therefore, PCR is 

employed for spectral analysis where the variation of a large number of 

wavelengths/wavenumbers can be described with principal components.103 

Also, as an unsupervised modelling method, PCA does not require prior 

knowledge of the analytes within the sample. Therefore, it must be noted that 

the principal components obtained may not be correlated to the characteristic 

of interest. While PCA does not require response variables, the principal 

components are used as predictors in PCR. 102  

In PCR, PCA is followed by MLR on the predictive variables, which are the 

scores.102 PCA is expressed by Equation 3.8. The prediction equation is 

expressed by: 

𝑌 = 𝑇𝐵 + 𝐹  

Equation 3.10 

Where 𝑌 is the concentration of the analyte matrix (predictors), 𝑇 is the scores 

matrix, 𝐵 is the regression coefficient vector, and 𝐹 is the error assumed to be 

in the concentrations matrix, 𝑌.  

 

3.8.3 Partial least square regression 

In partial least squares regression (PLSR) analysis, a series of sample 

response spectra along with concentrations (predictors) can be used to 

construct a model. The characteristic features extracted are employed using 

PLSR for the verification of the relationship with the variables within the 

samples. PLSR models are robust, provided that the unknown samples have 

features that are related to the data used for modelling. PLSR analysis 

considers errors in both spectra and concentration values of analytes.102 

In PLSR, PCA is applied to X as in Equation 3.8 and to Y as follows: 
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𝑌 = 𝑈𝑄 + 𝐹 

Equation 3.11 

Where 𝑌 is the concentrations of the analytes matrix, 𝑈 and 𝑄 are the scores 

and loadings scalar, respectively, for the concentration, and 𝐹 is the error 

assumed to originate from the prepared concentrations. In order to reduce the 

volume of data, PLSR finds correlations within variables of samples and 

creates new variables termed latent variables (LVs). The first latent variable 

contains the largest amount of variation within the data while the remaining 

latent variables contain the largest amount of residual variation.102 The higher 

number of latent variables may be associated with noise and are excluded 

from models. The selection of the optimal number of latent variables  may be 

selected based on cross-validation, where the prediction residual error sum of 

squares (PRESS) is calculated and the number of latent variables that gives 

the lowest total PRESS is selected. Alternatively, the highest number of latent 

variables may be selected if the ratio of consecutives PRESS is higher than 

one, which is referred to as Wold’s R criterion. Alternatively, information 

criteria, which are formula calculated to measure a model fit where a lower 

information criteria is favourable to a higher information criteria. Examples of 

information criteria include the Akaike information criterion (AIC) and the 

Bayesian information criterion (BIC). 105 

 

3.8.4 Model validation 

Validation is a requirement in the development of analytical procedures 

including multivariate analysis as mentioned in the ICH Q14 guideline. This 

guideline includes a general outline to developing robust analytical 

procedures, including reference samples and analytical procedure, the 

selection of samples that include variability encountered in the measured 

property, and the number of samples used for creating models, among 

others.106 Regression models must be validated to determine the error in their 

predictive ability. Validating a model through calculating the error in the 

estimations is essential for the selection of the model with a suitable number 
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of principal components or latent variables. The root mean square error 

(RMSE) is a measure of the error between the reference value and an 

estimated value and has the same unit as those values.102  

A model can be validated with the calibration set used to construct the model 

through the root mean square error of calibration (RMSEC). However, RMSEC 

does not reflect the ability of the model to predict new data. Alternatively, cross-

validation is used to assess the ability of a model to predict data by leaving out 

one or a number of samples for building the calibration model, applying the 

model to predict the samples left out, and repeating the same process until all 

samples are left out once. Equation 3.12 is used to calculate the root mean 

square error of cross-validation (RMSECV). 

𝑅𝑀𝑆𝐸𝐶𝑉 =  √∑ (𝑦𝑖 − 𝑦′
𝑖
)

2𝐼
𝑖=1

𝐼 − 1
  

Equation 3.12 

Where 𝑦𝑖 is the reference value, 𝑦′
𝑖
 is the predicted value, and 𝐼 is the number 

of samples in the dataset. When one sample is left out of the calibration set, it 

is called leave-one-out cross-validation (LOOCV). This method is suitable for 

small datasets as leaving one sample out from a large dataset would lead to a 

non-representative and over-optimistic RMSECV. When a larger dataset is 

collected, it is possible to apply segmented or n-fold cross-validation, where 

the cross-validation is repeated n-fold by excluding a group of samples from 

the dataset, which allows for the robust estimation of the RMSECV. 

Nevertheless, a model must also be tested for its ability to predict new data 

points.107 

To overcome the disadvantage of cross-validation, an independent dataset is 

usually preferred to validate quantitation models. Determining the ideal size of 

the testing set is crucial. Nonetheless, the testing set must always be 

representative of the actual data. The test set is then estimated based on the 

model built on the calibration set, and the root square mean error of prediction 

(RMSEP) of the test set value is used to summarise the ability of the model 

built with the calibration set to predict the independent test set.102 



 

50 
 

In addition to the RMSEC, RMSECV, and RMSEP, the coefficient of 

determination (R2) may be used to describe the goodness-of-fit of the linear 

model. It has a value between 0-1, where 0 indicates no correlation, and 1 

could either indicate perfect correlation or overfitting. It is calculated by the 

following equation:  

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
  

Equation 3.13 

Where 𝑆𝑆𝑅 is the sum of squares of residuals and 𝑆𝑆𝑇 is the total sum of 

squares. A lower value of 𝑆𝑆𝑅 leads to R2 values closer to 1 and better 

correlation between measured reference values and predictions.  
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4. Experimental Procedure for the Depth of Solvent 

Detection and Monitoring of Drying 

 

This chapter is arranged into six sections. The first section describes the 

materials used in the drying and depth experiments, while the second section 

describes the SAR-DRM, SORS, and combined setups with a brief description 

of the signal processing applied prior to the analysis. The third section 

describes the procedure for conducting the depth and drying experiments 

including the signal collection, followed by a description of the collected 

datasets in fourth third section. The fifth section details the multivariate 

regression analysis conducted using the collected datasets. 
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4.1 Materials 

Two commonly used grades of paracetamol, granular and powder 

(Mallinckrodt Inc., Raleigh, N.C.), were employed in the presented studies. 

Granular paracetamol had a mean particle size (D50) of 265 µm, while powder 

paracetamol had a D50 of 43 µm, measured with laser diffraction (Mastersizer 

3000 with a dry dispersion unit, Malvern Instruments Ltd, UK). Three wash 

solvents, in which paracetamol displays minimal solubility, were used with 

each of the paracetamol grades; those were Anisole (99%, Alfa Aesar, 

Lancashire, UK), n-heptane (99%, Alfa Aesar, Lancashire, UK), and methyl 

tertiary-butyl ether (MTBE) (99%, Alfa Aesar, Lancashire, UK). Table 4.1 

shows the solubility of paracetamol in those solvents in addition to their boiling 

points, which are some of the characteristics that were taken into consideration 

for the selection of the solvents and the following drying process parameters. 

Anisole typically requires a longer duration of drying at higher temperatures to 

be removed, while n-heptane and MTBE are volatile solvents that require a 

shorter duration for drying.19 

 

Table 4.1. Solvents used in this study, the solubility of paracetamol in those solvents 
and their boiling points.19 

Solvent Paracetamol solubility at 25°C (g/g) Boiling point/°C  

Anisole 0.0005 154 

n-heptane 0.0001 98.4 

MTBE 0.0028 55.2 

 

NIR and Raman spectroscopy are complementary branches of vibrational 

spectroscopy, where NIR provides wide and overlapping overtones and 

combination bands of polar bonds that display symmetric stretches, Figure 4.1 

(a), while Raman spectroscopy provides sharp peaks of polarisable bonds that 

display asymmetric stretches, Figure 4.1 (b).  

The NIR spectra of paracetamol and the solvents in Figure 4.1 (a) show bands 

at 1100-1200 nm corresponding to the overtones of CH, CH2 and CH3, while 

the bands around 1300-1500 are of overtones of the CO, CONHR, and 

aromatic OH bonds, in addition to the aromatic CH starting at 1600 nm. Raman 
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spectra in Figure 4.1 (b) show moderate CH2 and CH3 bends and stretches for 

n-heptane over the wavenumber range in the figure. For paracetamol, MTBE, 

and anisole, the wavenumber range 800-1300 cm-1 includes peaks 

corresponding to ArOH and COC bonds, 1400-1500 cm-1 contains peaks 

corresponding to the ArOC bond, while peaks over 1500-1700 cm-1 result from 

the aromatic rings.51  

The selection of the technique for monitoring each of the systems was based 

on the presence of NIR or Raman peaks of strong intensity taking into 

consideration the extent of solvent peak overlap with paracetamol as shown in 

Figure 4.1. From the three paracetamol grade/solvent systems, the drying of 

n-heptane was monitored using SAR-DRM, anisole was monitored using 

SORS, while MTBE was monitored using both SAR-DRM and SORS.  

 

(a)   (b) 

Figure 4.1. (a) NIR and (b) Raman reference spectra of paracetamol, n-heptane, 
MTBE, and anisole. Spectra are offset on the y-axis.  
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4.2  SAR-DRM, SORS, and combined setups 

This section is further divided into three parts to describe the setup for signal 

collection for the SAR-DRM, SORS, and combined probes. 

 

4.2.1 SAR-DRM  

The setup of the SAR-DRM system shown in Figure 4.2 (a) is composed of a 

custom-designed SAR-DRM fibre optic probe (FiberTech Optica, Canada),14 

shown in Figure 4.2 (b), tungsten halogen light source of 50W encased in a 

lighthouse, and a fibre optic multiplexer (FOM-UVIR200- 2x8, Avantes, NL) 

linked to a UV-Vis spectrometer (USB4000, Ocean Insight, Germany) and a 

NIR spectrometer (NIRQuest 1.7-512, Ocean Insight, Germany). The 

spectrometers and multiplexer are controlled by the laptop.  

 

4.2.1.1 Optical setup 

At the connection end of the SAR-DRM probe in Figure 4.2 (a), the fibre optic 

cable is terminated with three ferrules that enclose the illumination fibres. To 

illuminate a sample at each of the three angles, the respective ferrule can be 

inserted into a port in the lighthouse, which is also equipped with a shutter to 

enable blocking the light from exiting from the lighthouse to the ferrule. The 

incident light from the lighthouse travels to the SAR-DRM probe, which is in 

contact with the sample. The collection SAR-DRM probe end in contact with 

samples includes five illumination fibres, shown in Figure 4.2 (c), delivering the 

incident light from the lighthouse. Among the five fibres, one fibre delivers the 

incident light at 0° angle, two fibres at 30°, and two fibres at 45° with reference 

to the axis of the probe. In addition to the five illumination fibres, the probe 

contains 16 collection fibres at fixed distances from the illumination fibres. The 

distances of the collection fibres are at 0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm 

from each of the aligned five illumination fibres as shown in Figure 4.2 (d). This 

enables the collection of duplicate measurements for the 30° and 45° 

illumination angles and four replicates for the 0° angle. 
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(a) (b) 

(c)  

 

 

 

 

(d)  

Figure 4.2. (a) SAR-DRM setup including a light source, fibre optic multiplexer, NIR 
and UV-VIS spectrometers, in addition to the control laptop and the SAR-DRM probe 
with (b) an illustration of the probe collection end and (c) the collection fibres. 

 

The light reflected from the sample travels through the collecting fibres to the 

multiplexer, which delivers the NIR and UV signal to each of the spectrometers. 

Using the NIR spectrometer, spectra over the wavelength range 900-1700 nm 

are collected on 512 pixels, and through the UV-Vis spectrometer, spectra in 

the range 350-1000 nm are collected on 3648 pixels. In the studies presented 

here, the analysis is focused on the NIR spectra obtained. Then, the signals 

are transferred to be recorded on the control laptop, where a previously 

developed interface in MATLAB is used to control the settings.  

This system enables the collection of 48 spectra that correspond to the 

combination of 16 collection fibres for each of the 3 illumination angles. For 

one sample measurement, two spectra can be collected for the same 

configuration using the 30° and 45° illumination angles, while 4 spectra can be 

collected using the 00° illumination angle. Since over half of those spectra are 

repetitions, spectra using two perpendicular branches were collected in the 

Collection end 
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presented studies adding up to 12 spectra, which correspond to four distances 

for each of the three angular configurations. 

 

4.2.1.2 SAR-DRM signal collection 

For collecting the SAR-DRM signal in both the depth and drying experiments, 

the 0° incidence angle ferrule was inserted into the light source, and the signal 

was then collected for each of the four spatially resolved distances 

consecutively. Next, the 0° illumination light ferrule was replaced by that of the 

30° then the 45° incidence angle ferrules to collect the spatially and angularly 

resolved spectra. The acquisition parameters were an integration time of 1 

second with the averaging of 3 spectra. Collection and recording of SAR-DRM 

spectra is carried out using in-house scripts developed in MATLAB software 

(Mathworks, USA) with earlier studies.14,58 

 

4.2.1.3 SAR-DRM signal processing 

To produce a calibrated and processed SAR-DRM signal collected through the 

SAR-DRM probe or the combined probe, background SAR-DRM spectra were 

collected using an integrating sphere in addition to dark SAR-DRM signals. 

The integrating sphere is hollow with diffusely reflecting interior coating of 

Spectralon®. A beam of light is directed in one direction in the integrating 

sphere and then reflected around the diffusely reflective spherical surface in a 

uniform manner representing the absolute reflectance.108 This measurement 

is used to normalise the SAR-DRM spectra obtained from samples. To acquire 

the integrating sphere spectra, the probe tip was fixed at a port of a 3-inch 

integrating sphere (7N6322A, Newport, US) to an extent where the interior 

surface is continuous with the probe tip to maintain the spherical dimension 

within the sphere. SAR-DRM spectra were collected from the integrating 

sphere with the light source turned on. Spectra corresponding to the dark 

signal were also collected by collecting a signal from the integrating sphere 

with the light source turned off. Following the acquisition of the two signals 
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from the integrating sphere, the sample signal is also collected with the light 

source turned on for all samples and off for the first sample in an experiment.  

The processing of SAR-DRM spectra included three major steps, dark signal 

subtraction, smoothing, and normalisation. Those three steps aim to remove 

the noise contribution of the instrument and background from the signal. 

Details on those steps and how to optimise them were previously 

investigated.109  

The steps for SAR-DRM signal processing are performed as follows: 

a. Dark signal subtraction: in addition to a signal collected with the light 

on, a signal with the light off is collected by closing the shutter. The light 

off signal is then subtracted from the light-on signal. This is done to 

remove background noise for both the signal collected from the 

integrating sphere, where the spectra with light on and off are shown in 

Figure 4.3 (a), and the sample signal in Figure 4.3 (b). 

b. Smoothing is performed for both integrating sphere and sample spectra. 

In the examples shown in Figure 4.3 (c) of the integrating sphere 

spectra, a built-in function in MATLAB, rloess is used to smooth the 

spectra; this function employs locally weighted least squares regression 

and assigns lower weights to outliers. This method was employed due 

to the higher level of noise in the integrating sphere spectra, which are 

of lower magnitude than the sample spectra. A fast Fourier transform 

filter is applied to smooth the paracetamol sample spectra as shown in 

Figure 4.3 (d). 

c. Normalisation is done by dividing the sample spectra by the integrating 

sphere spectra to obtain the signal shown in Figure 4.3 (e). This step 

removes the curve in the baseline.  

d. To express the sample signal as absorbance, a log transformation of 

the inverted reflectance110 is calculated to obtain the signal shown in 

Figure 4.3 (f).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4.3. SAR-DRM signal processing steps. Dark signal subtraction from (a) 
integrating sphere and (b) paracetamol sample spectra. Smoothing of (c) integrating 
sphere and (d) sample spectra. Normalisation of sample spectra in (e) and log 
transformation to absorbance in (f). Example spectra are collected using 0°/1.2 mm 
configuration for 1 second with an average of three spectra. 
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4.2.2 SORS setup 

The setup of the SORS collection system shown in Figure 4.4 (a) is composed 

of a custom-designed SORS fibre optic probe (FiberTech Optica, Canada), a 

785 nm laser (I0785MM0350MF, Innovative Photonic Solutions, USA) set to a 

power of 100 mW measured using a handheld power meter 

(PM100D/SC130C, Thorlabs GmbH, Germany), and a Raman spectrometer 

(RXN1, Kaiser Optical Systems Inc., USA) connected to a control laptop. 

 

4.2.2.1 Optical setup 

The probe contains one illumination fibre delivering the laser at a 45° 

illumination angle with reference to the axis of the probe. As illustrated in 

Figure 4.4 (b) of the collection end, a total of 19 collection fibres to collect the 

spectra from 0, 1, 2, 3, 4, and 5 mm offset distances from the incident light. 

The signals are collected using one fibre for the 0 mm offset, one fibre for the 

1 mm offset, two fibres for the 2 mm offset, three fibres for the 3 mm offset, 

five fibres for the 4 mm offset, and seven fibres for the 5 mm offset distance. 

The design includes more fibres for the collection of signals from the larger 

offsets functions to increase the signal throughput for each offset configuration. 

On the opposite end, the collection fibre bundle is connected to the 

spectrometer via the ferrule illustrated in Figure 4.4 (c), where spacer fibres 

are included in the array of the collection fibres to separate the collection fibres 

for each of the offset distance groups to attenuate any signal crosstalk. 

The Raman spectrometer consists of a two-dimensional 1024-pixel x 256-pixel 

detector, where the full spectral range is between 780-1080 nm. The RXN1 

spectrometer design includes a grating that splits the signal into two smaller 

spectral ranges of 780-920 and 920-1080 nm, corresponding to 0-1870 cm-1 

and 1870-3480 cm-1 wavenumbers respectively. The signal is collected 

through a control software (Andor Solis, Oxford Instruments, UK) from the 

detector is a two-dimensional (2D) spectral-spatial image with the Raman 

signals from all 19 collection fibres acquired in a single scan. In the presented 
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studies, the focus is on the lower wavenumber region as it covers most of the 

Raman peaks of the materials used as shown in Figure 4.1 (b).  

 

(a) 

(b)  (c)  

Figure 4.4. (a) SORS setup includes the SORS probe, a laser, a Raman spectrometer, 
and the control laptop, in addition to illustrations of the (b) collection end of the SORS 
probe and (c) connection ferrule end. 

 

4.2.2.2 SORS signal collection 

For the depth of solvent signal detection, the probe was put in contact with the 

paracetamol layer and a single scan was collected using an exposure time of 

20 seconds with 100 mW laser power.  

For the drying experiments, samples extracted from the dryer were introduced 

to the SORS probe in a glass beaker and the measurement was collected at-

line. This was done rather than collecting in-line measurements, by inserting 

the probe into the dryer, due to the slightly larger diameter of the probe, 31 

mm, compared to the diameter of the dryer port, 30 mm. 

4.2.2.3 SORS signal processing 

SORS signals of all offset distances are obtained as a two-dimensional 

spectral-spatial image as opposed to sequential acquisition for each of the 
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offsets.111 For the optical alignment of the SORS and combined probes and 

wavelength calibration of the Raman spectrometer, an argon spectral 

calibration lamp (3060AR, 10 mA, Newport, USA) was used. The SORS probe 

was inserted through the top port in the integrating sphere so as to form a level 

surface with the interior of the sphere. The argon lamp was inserted into the 

integrating sphere from a side port. This was done in order to allow the argon 

light to equally reach the SORS probe’s collection fibres as it is diffusely 

reflected inside the integrating sphere.  

In addition to the sample spectra, a dark SORS signal is collected and is 

subtracted from the sample spectra to remove background influence. For the 

sample spectra collected using the SORS probe, spectra corresponding to the 

19 collection fibres are acquired in the spectral image and are summed up to 

produce one spectrum per each of the six offsets.  

Following the dark signal subtraction from the sample signal, a spectral image 

showing the SORS signal as dashed lines, as shown in Figure 4.5, where the 

dashed lines correspond to Raman peaks. Then, a set of seven linear 

equations is defined to outline the areas on the spectral image from which the 

signal per each offset is extracted. In these linear equations, the slope is 

identical and is multiplied by the number of pixels of the x-axis to draw each of 

the magenta lines shown in Figure 4.5, where the constant is increased to 

indicate the area that includes the set of fibres collecting the signal from each 

of the offsets. For example, the line corresponding to Equation 1 indicates the 

beginning of the area where the signal from the backscattering fibre is 

collected. The line corresponding to Equation 2 indicates the beginning of the 

area where the signal from the 1 mm offset fibre is collected. The area outlined 

by Equation 1 and Equation 2 is summed to give the signal from the 

backscattering fibre. This is similarly done for the remaining five offsets.  

Spectra collected using the SORS probe were extracted and processed using 

a script developed in MATLAB. This script follows the same signal processing 

step for signals obtained from the Raman RXN1 spectrometer including the 

linear interpolation of the original 1024 signal points to 6518 points. Following 
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the signal extraction, a 2nd-order polynomial Savitsky-Golay smoothing filter 

is applied to smooth any remaining noise in the signal.  

 

Figure 4.5. SORS spectral image is divided into areas by the magenta lines where 
the signal intensity is summed up to give the spectra per offset. Grey dashed lines 
correspond to the SORS signals. 

 

4.2.3 Combined probe setup 

The combined setup shown in Figure 4.6 (a) enables the collection of spatially 

offset diffuse reflectance measurements and spatially offset Raman 

spectroscopy measurements from a single sampling point. This setup includes 

the same components used in the SAR-DRM and SORS setups. However, the 

probe used in this setup is a custom-designed combined probe (FiberTech 

Optica, Canada) shown in Figure 4.6 (b).  

 

4.2.3.1 Optical setup 

To collect SR-DRM spectra, the combined probe signal collection end shown 

in Figure 4.6 (b) includes a fibre illuminating the sample at 0°, in addition to 

four fibres for collecting spatially resolved signals at 0.3, 0.6, 0.9, and 1.2 mm, 

similar to the SAR-DRM probe. To also collect SORS spectra, the probe 

includes a fibre delivering the illumination to the sample at a 45° angle, in 

addition to 16 spatially offset signal collection fibres. The fibres collect the 

Equation 1 → 
Equation 2 → 
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signal at 0, 1.5, 2.5, and 3.5 mm from the illumination point as illustrated in 

Figure 4.6 (c), where two fibres collect the signal from 0 mm offset, three fibres 

collect the signal from the 1.5 mm offset, five fibres collect the signal from the 

2.5 mm offset, and six fibres collect the signal from the 3.5 mm offset distance. 

SR-DRM and SORS measurements are collected using the same laptops and 

software used with the individual probes.  

 

(a) 

 

(b)  (c) 

Figure 4.6. Illustration of (a) combined SR-DRM and SORS setup with the combined 
probe. (b) Combined probe collection end showing the SORS and SR-DRM collection 
windows. (c) illustration of the combined probe collection end. 

 

4.2.3.2 Signal collection using the combined probe 

The combined probe diameter is the same as that of the SORS probe, 

preventing the collection of in-line measurements. Therefore, at-line 

measurements were collected using the combined probe in a similar manner 

to those collected using the SORS probe. The acquisition parameters used 

SORS  

SR-DRM  



 

64 
 

with the combined probe were the same as those used with the individual SAR-

DRM and SORS probes. Those were 1-second integration time with the 

averaging of three spectra for SR-DRM and 20-second exposure time for one 

scan using SORS.  

 

4.2.3.3 Combined probe signal processing 

SR-DRM signals collected using the combined probe are processed in a 

similar manner to the signal collected using the SAR-DRM probe. For SORS 

signals collected using the combined probe, the dark signal is subtracted then 

spectra corresponding to the 16 collection fibres are summed up to produce 

one spectrum per each of the four offsets. SORS signals collected using the 

combined probe were not interpolated so as to maintain the original signal 

dimensions for the following PLSR analysis. 

  

4.3  Experimental procedure 

4.3.1 Depth of solvent signal detection 

To assess the depth through which the signal of a solvent can be detected, the 

probes were tested using a setup comprising a layer of dry paracetamol of 

variable thickness placed over a solvent-filled cuvette, as illustrated in Figure 

4.7. The solvent-filled 2 or 10-mm pathlength cuvette (Quartz SUPRASIL® 

300, Hellma, Germany) was placed on a diffuse reflectance target (99% 

reflective Zenith Polymer®, SphereOptics, Germany). A barrier layer of 

granular paracetamol with variable thicknesses was placed on the cuvette 

using a stack of 10 custom-made spacer sheets. The spacer sheets used with 

the SORS probes were of 1.2 mm thickness with anisole as the solvent in a 10 

mm cuvette, while those used with the SAR-DRM probe were of 1.6 mm 

thickness with n-heptane in a 2 mm cuvette. The smaller cuvette thickness was 

used with the SAR-DRM probe due to the weaker light source intensity. The 

spacer sheets have a hollow centre of a similar diameter to the probe’s 

diameter. This hollow centre was filled with granular paracetamol. An initial 
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thickness of 12 mm and 16 mm, corresponding to 10 stacked spacer sheets, 

of paracetamol for each of the probes was prepared to achieve uniform 

packing within different barrier thicknesses. Light falls on the surface of the 

paracetamol in contact with the probe and scatters throughout the sublayers, 

passing through the quartz cuvette walls to the solvent contained within the 

cuvette, where the diffuse reflectance target aid in reflecting the signal back to 

the probe. Then, the thickness was reduced by removing the top spacer sheet 

with the excess paracetamol to collect the next measurement. This process 

was repeated till the bottom-most spacer sheet was reached. SAR-DRM or 

SORS spectra, in the respective experiments, were collected at each 

thickness. This provides 10 special measurements corresponding to each of 

the barrier thicknesses. 

 

(a) (b) 

Figure 4.7. (a) Illustration and (b) actual depth of solvent signal detection using diffuse 
reflectance target underneath a cuvette filled with a solvent and separated by multiple 
layers of equal thickness of granular paracetamol. 

 

4.3.2 Drying setup and experiments 

4.3.2.1 Setup of the dryer  

The drying of the paracetamol wet cake was carried out using a 2-litre agitated 

Nutsche Glass Filter-Dryer (GFD® Lab 050 Series, Powder Systems Limited, 

UK). The jacket temperature of the dryer was controlled through a 

heater/chiller (Proline 845, Lauda, Germany). The powder surface temperature 

was monitored with an infrared sensor (Pyrocouple, PCCFMT-4, Calex 

Electronics Limited, UK). Additionally, the cake temperature was monitored 
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using a thermocouple sensor (YC-727, Yu Ching Technology Co. Ltd, Taiwan) 

placed in the powder bed. Vacuum filtration was performed by means of a 

diaphragm vacuum pump (MD 12 VARIO, VACUUBRAND GMBH, Germany), 

and the vacuum pressure within the vessel was monitored using a pressure 

sensor (PN2694, IFM, Germany). This full setup is shown in Figure 4.8 (a), 

while the setup with the SAR-DRM probe inserted for in-line measurements is 

shown in Figure 4.8 (b).  

 

(a) (b) 

Figure 4.8. (a) Drying setup showing the dryer with accessories, heater/chiller, and 
moisture analyser. (b) Dryer with SAR-DRM probe inserted. The SAR-DRM probe is 
typically fixed in place using a retort stand and clamps, those were removed for this 
photo as they covered the probe. 

 

4.3.2.2 Experimental protocol and conditions of drying  

To commence the drying experiments, the heater/chiller was set to the 

temperatures provided in Table 4.2. This parameter was set with reference to 

the boiling point of each of the solvents, previously stated in Table 4.1. Another 

point taken into consideration for the drying temperature selection was 

controlling the length of the process in order to enable the collection of a 

suitable number of spectral measurements representing the decrease in 

solvent content as the drying progresses; this is reflected, for example, in the 

lower temperature set for MTBE (room temperature) as opposed to that of 
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anisole. For the n-heptane experiments, a higher temperature was used for the 

powder paracetamol compared to the granular paracetamol. This was done in 

order to improve the drying as the vacuum pump was not performing efficiently 

in these experiments. 

Table 4.2. The set temperature for each of the drying systems. 

Solvent Anisole n-heptane MTBE 

Paracetamol grade Set temperature/°C 

Granular 65 25 25 

Powder 65 40 25 

 

After the set jacket temperature was reached, paracetamol was loaded into 

the dryer followed by the solvent, and the mixtures were agitated at a speed of 

5 revolutions per minute (rpm) for the granular grade and 15 rpm for the 

powder grade, for 10 minutes to ensure that the paracetamol is wetted by the 

solvent. The agitation parameters were selected to minimise the possible 

effect on particle size due to breakage or agglomeration. Then, the agitation 

was paused for de-liquoring with the aid of the vacuum pump. The de-liquoring 

process was stopped as the solvent reached the surface level of the solid as 

a fully saturated filter cake, which was the starting point of drying. Clockwise 

agitation and vacuum were maintained during the drying process and only 

paused for collecting in-line measurements using the SAR-DRM probe 

inserted into one of the ports, and for extracting samples from the mixture for 

SORS measurement collection and reference solvent content measurement. 

The SAR-DRM probe was inserted into the dryer through one of the lid ports, 

fitted through with a shaft guide and fixed in place with a retort stand and a 

clamp. The extracted samples were placed in a beaker for at-line SORS or 

combined measurements collection. Using the bespoke SORS and combined 

probes, at-line measurements were collected as opposed to in-line 

measurements due to constraints of the port size of this laboratory-scale dryer. 
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4.3.2.2.1 Solvent content reference and particle size measurements  

The samples extracted during drying were used for reference solvent content 

determination using a moisture analysing balance (MA160, Sartorius AG, 

Germany), a mass Loss on drying method, which provides a reading of the 

solvent content as a percentage of the mass of the solvent removed from the 

total mass of the wet sample (%w/w). Then, the particle size distribution of the 

samples was measured using laser diffraction (Mastersizer 3000 with a dry 

dispersion unit, Malvern Instruments Ltd, UK) to check if any change occurred 

to the particle size distribution during the process.  

 

4.3.2.2.2 Collection of pure spectra 

Pure NIR spectra of the solvents and paracetamol were collected as a 

reference through transmittance measurements (Cary 5000 UV-Vis-NIR, 

Agilent, UK), while the Raman pure spectra were collected using the SORS 

setup.  

 

4.4  Description of SAR-DRM and SORS datasets from drying 

SAR-DRM and SORS spectral datasets corresponding to the systems formed 

from the combination of the paracetamol grades and solvents are detailed 

below. 

 

4.4.1 Individual SAR-DRM and SORS probes datasets 

The number of samples collected during the drying runs monitored using the 

SAR-DRM probe from the four systems are summarised in Table 4.3. The 

number of SAR-DRM spectra collected for each of the samples is 12, 

corresponding to the four offset distances, 0.3-1.2 mm, from each of the three 

angular light sources, 0°, 30°, and 45°. For example, the number of reference 

samples collected from the granular/n-heptane systems is 38, where the SAR-
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DRM spectra collected are a total of 456, corresponding to 12 spectra times 

38 samples. A SAR-DRM spectrum from one configuration for a sample would 

be collected as 512 intensity readings over the wavelength range covered by 

the spectrometer, 900-1700 nm, prior to any spectral truncation of a specific 

wavelength range.  

The datasets collected using the SORS probe to monitor drying are also shown 

in Table 4.3. For each of the samples, spectra corresponding to the six offsets, 

0-5 mm, are collected. As an example, for each of the 78 samples collected 

from the powder/anisole system, 6 spectra are collected resulting in a total of 

612 spectra. A SORS spectrum from one configuration for a sample would be 

collected as 1024 readings over the wavelength range covered by the 

spectrometer.  

 

Table 4.3. SAR-DRM and SORS datasets. 

 SAR-DRM 

Paracetamol grade Granular Powder 

Solvent n-heptane MTBE n-heptane MTBE 

Number of runs 4 5 4 9 

Number of samples 38 51 42 86 

Total spectra (12 

configurations) 
456 612 504 1032 

 SORS 

Paracetamol grade Granular Powder 

Solvent Anisole MTBE Anisole MTBE 

Number of runs 7 10 7 9 

Number of samples 69 102 78 86 

Total spectra (6 

configurations) 
414 468 612 516 

 

4.4.2 Combined probe dataset 

The combined probe collects four SR-DRM configurations corresponding to 

the offset distances 0.3-1.2 mm, and four SORS configurations, corresponding 

to 0-3.5 mm. The number of samples collected from the paracetamol/MTBE 

systems monitored using the combined probe is shown in Table 4.4. Here, the 

SR-RDM spectra are collected and extracted the same as the original resulting 



 

70 
 

in 512 intensity readings per spectrum. SORS spectra were collected as 1024 

intensity readings per spectrum and extracted as such rather than interpolating 

them as was done with spectra collected using the SORS probe. This was 

done considering the use of the combined spectra for the PLSR analysis.. 

 

Table 4.4. Combined SR-DRM/SORS datasets collected with the combined probe. 
Paracetamol grade Granular Powder 

Number of runs 7 6 

Number of samples 83 80 

 

4.4.3 Multi-block datasets 

A data block is a block of spectra expressed as a matrix and multi-blocks are 

those data combined to form a larger final block.112 In addition to PLSR 

analysis conducted using the spectra obtained from each of the configurations 

for both of the techniques, spectra from different configurations can be 

combined to form one final block for PLSR analysis. Those spectra may be 

from the same technique or multiple complementary techniques, such as NIR 

and Raman spectroscopy. This aims to provide the PLSR model with 

information from spectra from multiple configurations and spectroscopic 

techniques. The two methods tested for the multi-block data analysis were co-

addition and augmentation.14 In co-addition the spectra collected from multiple 

configurations are summed up to form a block of a size equal to the original 

spectra. In augmentation, spectra from different configurations for the same 

sample are concatenated to form a larger block of data in which the number of 

measurement intensity variables in the final block is the sum of the variables 

of the individual blocks. A demonstration of spectra combined using both 

techniques is shown in Figure 4.9.  
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Figure 4.9. Example of the co-adding and augmentation of SAR-DRM spectra of 
paracetamol collected using 0°/0.9 mm and 0°/1.2 mm configurations. 

 

For combining NIR and Raman spectra collected using the combined probe, 

augmentation was the method employed in order to preserve and utilise both 

spectra. However, prior to combining the spectra, two points must be 

addressed. Those were the contrast in the magnitude of each of the NIR and 

Raman signals and the difference in the number of variables obtained. The 

magnitude of the SAR-DRM signals was lower than those of the SORS signals, 

this is due to the low intensity of the light source. The contrast in magnitude 

was addressed through SNV pre-processing the spectra from each of the 

techniques before combining them. The difference in the number of variables 

obtained from SAR-DRM and SORS measurements is due to the difference in 

the resolution of each of the NIR and Raman spectrometers, where the signals 

are collected using 512 pixels with the NIR spectrometer and 1024 pixels for 

the Raman spectrometer. To address, this mismatch in the number of 

variables, following the spectral range selection or truncation, the NIR spectra 

were linearly interpolated to match the size of the Raman signals using the 

MATLAB built-in function interp1.  

In order to match the number of variables provided by the SOR signals before 

combining SAR-DRM and SORS signals, a number of steps are followed for 

each type of signal. Figure 4.10 illustrates the overall steps involved in the 

workflow prior to combining the signal from both techniques. This figure shows 

the additional interpolation step included for SAR-DRM signals, which follows 
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the spectral range selection and precedes the pre-processing step. In this step, 

the number of the variables in the SAR-DRM signal following spectral range 

selection is increased to match the number of variables obtained following the 

spectral range selection for SORS spectra. Finally, the spectra from both 

techniques are independently pre-processed to mitigate the contrast in signal 

magnitude, and the final block is formed.  

 

 
Figure 4.10. SAR-DRM and SORS signal processing steps prior to augmentation. 

  

SAR-DRM signal

Raw signal processing
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Interpolation
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4.5  Multivariate regression analysis 

To evaluate the performance of both techniques in expressing the solvent 

content, the collected datasets were used in partial least squares regression 

(PLSR) analysis in MATLAB using a script developed and employed in earlier 

studies.14,58 This script enables specifying the spectral range and pre-

processing methods of the spectra in the calibration and test datasets 

independently. Then, cross-validation is performed on the calibration set to test 

the predictive performance of the PLSR model based on the calibration set 

spectra. The suitable PLSR model is applied to predict the solvent content in 

the test set. It is worth mentioning that mean-centring is commonly applied to 

subtract the average of spectra prior to PLSR analysis, which would result in 

a PLSR model requiring a lower number of latent variables to describe the 

models based on the mean-centred spectra. Nevertheless, the approach 

followed for the presented studies was to minimise data processing and pre-

processing to preserve any information derived from the datasets. 

The parameters used for PLSR for each of the SAR-DRM and SORS spectra 

as well as the combined spectra from each of the systems are summarised in 

Table 4.5. The samples in each dataset were divided into a calibration and test 

set. Those were divided so as to use a maximum of 75% of the number of 

sample spectra in the calibration set. Samples in the test set were selected 

randomly from across the runs to represent the solvent content range of 0-

20%. This aims to ensure that the variability from all runs is represented in the 

test set.  

For datasets where less than 50 sample spectra were collected, leave-one-out 

cross-validation was employed to assess the PLSR model. For datasets of a 

larger number of samples, k-fold cross-validation was employed. The number 

of folds was determined based on the number of samples and runs. The k-fold 

cross-validation method was employed to avoid obtaining misleading results 

due to the overfitting that could occur when applying leave-one-out cross-

validation to a calibration set with a large number of samples. 
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Table 4.5. SAR-DRM dataset and analysis parameters. 

 SAR-DRM 

Solvent n-heptane MTBE 

Paracetamol grade Granular Powder Granular Powder 

Calibration set  26 32 39 63 

Test set  12 10 12 23 

Cross-validation  Leave-one-out Leave-one-out 6-fold 

Spectral ranges/nm 1100-1600 1100-1600 

Pre-processing None (raw), SNV 

 SORS 

Solvent Anisole MTBE 

Paracetamol grade Granular Powder Granular Powder 

Calibration set  52 57 62 63 

Test set  17 21 40 23 

Cross-validation  5-fold 6-fold 

Spectral ranges/cm-1 
250-1750, 960-1040, 985-

1015, 750-850, 400-500 
250-1750, 670-770 

Pre-processing None (raw), SNV 

 Combined SR-DRM and SORS 

Paracetamol grade Granular Powder 

Calibration set  63 60 

Test set  20 20 

Cross-validation  6-fold 

Spectral ranges 1100-1600 nm, 50-1750 cm-1 

Pre-processing SNV 

 

 

   



 

75 
 

 

5. Spatially and Angularly Resolved Diffuse Reflectance 

Near-Infrared Measurements for Monitoring 

Pharmaceutical Drying  

 

5.1  Introduction  

In spatially and angularly resolved diffuse reflectance near-infrared 

measurements (SAR-DRM), light is illuminated at a sample at variable angles 

and the signal is collected from multiple collection points that are spatially 

resolved from the incident light. The illumination angles of the probe used in 

this study are 0°, 30°, and 45°, while the collection distances are 0.3, 0.6, 0.9, 

and 1.2 mm from the illumination point. This aims to collect the signal from 

photons that have travelled through different pathlengths through the sample, 

enabling the collection of complementary information from each of the spatially 

and angularly resolved configurations.  

The first section of this chapter includes the results for the depth of solvent 

signal detection using SAR-DRM. This experiment was conducted to assess 

the extent to which the signal of a solvent beyond sublayers of API contributes 

to the SAR-DRM signal collected at the surface. The second part of this 

chapter details the results of using SAR-DRM for the in-line monitoring of 

pharmaceutical drying. This second section is further divided into two parts 

reporting the qualitative and quantitative analysis of the SAR-DRM response 

for two paracetamol grades, granular and powder, in two solvents, n-heptane 

and MTBE. This chapter provides a characterisation of the SAR-DRM signal 

response in addition to the use of those signals for solvent quantification during 

drying.  
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5.2  Depth of solvent signal detection using SAR-DRM 

An experiment was conducted to assess the depth through which the signal of 

n-heptane through layers of dry paracetamol can be detected using SAR-

DRM. This was done through collecting SAR-DRM signals from layers of 

paracetamol of varying thicknesses, where the thickness of a single layer was 

equal to that of the 1.6 mm spacers used, over a 2 mm cuvette filled with n-

heptane, as detailed in section 4.3.1.  

Figure 5.1 (a-d) shows the raw SAR-DRM spectra obtained from 0° angular 

configuration from the four spatial configurations. For the signal from each of 

the collection distances, differences in the baseline between the samples can 

be seen and may be explained by the variable scattering patterns of photons 

travelling through a large number of paracetamol particles in each of the 

measurements.14 A small increase in absorbance intensity from the 

paracetamol layers as the collection distance increases from 0.3 mm in Figure 

5.1 (a) to 1.2 mm in Figure 5.1 (d) can be seen. This corresponds to the 

decrease in reflectance intensity as the collection distance increases, where 

the incident light diffusely scatters through the sample resulting in the lower 

intensity of the reflected photons collected by the detector at larger collection 

distances. This was similarly observed in spectra from the 30° and 45° incident 

light sources. Nevertheless, the visualisation of raw spectra shown in Figure 

5.1 does not show any change in the paracetamol signal intensity that may be 

related to a change in the signal from n-heptane from the different layer 

thicknesses. Therefore, those spectra were pre-processed using the SNV pre-

processing method for further analysis.  
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(a) 0.3 mm 

 

(b) 0.6 mm 

 

(c) 0.9 mm 

 

(d) 1.2 mm 

 

Figure 5.1. Raw spectra of variable layer thicknesses of paracetamol over n-heptane 
from 00° angle and (a) 0.3 mm, (b) 0.6 mm, (c) 0.9 mm, and(d) 1.2 mm distance 
from the illumination point. 

 

The raw spectra shown in Figure 5.1 were SNV pre-processed and are shown 

in Figure 5.2, where the differences in baseline were removed. Nevertheless, 

no change in intensity was detected at the wavelengths of the n-heptane peaks 

from those measurements. This may be explained by the low intensity of light 

that is transmitted through the cuvette to reach the diffuse reflectance target 

and then travel back to the surface of the powder to be captured by the 

detector. The illuminating light reaches the surface of the sample, where it is 

absorbed, diffusely reflected, and transmitted to variable extents. The fraction 

that is diffusely scattered through the paracetamol reaches the cuvette and is 

transmitted through the solvent till it reaches the diffuse reflectance standard. 

Then, the light is diffusely reflected back to be transmitted through the solvent 
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and scattered through the paracetamol in the same phenomena mentioned 

earlier before it reaches the collection fibres. Moreover, the SAR-DRM probe 

collects the signal using one fibre per each of the collection distances although 

lower light intensity reaches the larger collection distances. Therefore, it is 

thought that a stronger light source would aid in obtaining the depth of the 

solvent signal detection using this system.  

Although the result of this experiment did not provide more insight regarding 

the depth of the solvent signal detection obtained through the SAR-DRM 

setup, possible advantages of using this technique for the in-line monitoring of 

pharmaceutical drying cannot be ruled out. 

 

(a) 0.3 mm 

 

(b) 0.6 mm 

 

(c) 0.9 mm 

 

(d) 1.2 mm 

 

Figure 5.2. SNV pre-processed spectra of variable layer thicknesses of paracetamol 
over n-heptane from 0° angle and (a) 0.3 mm, (b) 0.6 mm, (c) 0.9 mm, and(d) 1.2 mm 
distance from the illumination point.   
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5.3  SAR-DRM for monitoring solvent content during drying. 

Washing solvents that have NIR active bands and in which paracetamol 

displays low solubility were used to conduct a number of washing and drying 

runs, where mass loss on drying samples and SAR-DRM spectra were 

collected at different intervals. This was done in order to collect SAR-DRM 

signals corresponding to a range of solvent content values representative of 

the drying filter cake. This section reports the results and analysis of those 

datasets, which are divided per paracetamol grade to report the results found 

in each of the wash solvents, n-heptane and MTBE. 

Figure 5.3 shows the drying profile of both paracetamol grades in each of the 

solvents. Comparing the drying curves of the granular and powder grades 

shows that the drying of the powder grades requires longer times and/or higher 

temperatures of drying compared to those of the granular grades; this can be 

seen by comparing Figure 5.3 (a-b) and Figure 5.3 (c-d). Moreover, the 

variability seen among runs of the same system may be attributed to local 

variation in solvent content within the drying cake as a result of the non-

uniformity of drying.40  
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(a) Granular/n-heptane (b) Granular/MTBE 

(c) Powder/n-heptane  (d) Powder/MTBE 

Figure 5.3. Drying profile of multiple batches using granular paracetamol in (a) n-
heptane and (b) MTBE and powder paracetamol in (c) n-heptane and (d) MTBE. 

 

5.3.1 Qualitative analysis of SAR-DRM spectra 

This section is further divided into two sections reporting the results of the use 

of SAR-DRM to monitor the drying of granular and powder paracetamol in n-

heptane and MTBE. As described in the experimental section 4.1, n-heptane 

shows a band spanning ~1150-1240 nm, in which a peak at ~1210 nm is least 

overlapped with the paracetamol peaks; while MTBE shows a sharp peak at 

1185 nm that largely overlaps with the paracetamol peak. The variation in the 

intensity of solvent peaks as a result of the change in solvent content will be 

evaluated in this section. First, the raw signal quality is assessed from the 12 

spatial and angular configurations. Then, the spectra are evaluated following 

pre-processing. 
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5.3.1.1 Granular paracetamol systems 

To evaluate the quality of SAR-DRM spectra collected during the drying of the 

granular/solvent systems, the raw spectra representing variable solvent 

contents from the angular/spatial configurations of closest and farthest 

distances from the light source were plotted; those are shown in Figure 5.4 for 

the granular/n-heptane system and in Figure 5.5 for the granular/MTBE 

system. This figure shows the spectra collected from 0.3 mm from the 0°, 30°, 

and 45°, in Figure 5.4 and Figure 5.5 (a), (c), and (e), respectively. Spectra 

from the 1.2 mm distance are shown in Figure 5.4 and Figure 5.5 (b), (d), and 

(f), respectively. The wavelength ranges around which the peak intensity 

changes corresponding to the change in solvent content are indicated by the 

arrows around 1200 nm in the figures for both solvents.  

The spectra of a system of two components are expected to show features 

that are the sum of the spectral features of both components, where the 

variation in the case of paracetamol with a solvent during drying would be in 

the solvent peak intensity as the solvent is depleted from the system. However, 

the spectra collected during drying show additional variation apart from the 

solvent signal intensity. Among spectra of samples of variable solvent contents 

from the same configuration, Figure 5.4 (a) for example, a shift in baseline can 

be seen. This baseline shift may arise as a result of the proportion of light 

reflected back to the detector and is influenced by light scattering within the 

sample, which leads to different travelling pathlengths of photons for each of 

the samples.107 Those travelling pathlengths are non-reproducible and also 

differ based on the density or packing of a sample. As the drying process 

progresses, the solvent content decreases as the wet filter cake is transformed 

into the dry powder bed, where the solvent suspending the powder is removed 

and solid particles settle. In addition to the decrease in solvent content, the 

voids in the cake also decrease. This suggests that this baseline shift may 

reflect this increase in the packing density of the filter cake. The decrease in 

the baseline shift as the packing increases is only seen in Figure 5.4 (c), which 

suggests that this shift may be a result of a combination of factors. Another 

possible cause of this baseline shift in NIR spectra is a combination of 
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instrumental noise and a change in temperature.14,57 Nevertheless, those are 

overall mitigated through calibration and setting experimental parameters that 

minimise particle breakage and attrition throughout the drying process. Thus, 

it is most likely that the baseline shifts seen in this system are a result of the 

variation in pathlength travelled by photons within the paracetamol cake, 

where those pathlengths are further impacted by the change in the packing 

density of the cake.  

Comparing the response from spectra from the same angular configuration 

with different collection distances, Figure 5.4 (a) and (b) from 0°/0.3 mm and 

0°/1.2 mm as an example, variation in signal intensity can be seen, where the 

reflectance intensity from the closer distance is stronger than that of the larger 

distance. This is a result of the diffusion of light throughout the sample, where 

photons are absorbed or scattered. Before reaching the detector at the largest 

spatial distance, more photons would have been absorbed and more 

scattering incidents would have taken place resulting in reduced intensity of 

light reflected to be collected from the largest spatial distance.57 Comparing 

the response from the three angular configurations for the same spatial 

configuration, in Figure 5.4 (a), (c), and (e) for the 0.3 mm spatial configuration 

and Figure 5.4 (b), (d), and (f) for the 1.2 mm spatial configuration, shows the 

difference in signal magnitude, where the same intensity of light is distributed 

over a larger area of the sample. Those observations may also be seen in 

Figure 5.5 of the granular/MTBE system. 

The change in signal magnitude and baseline shift prevents the clear 

visualisation of the change in peak intensity corresponding to the change in 

solvent content. Therefore, SNV pre-processing was applied to remove those 

differences as shown in Figure 5.6 and Figure 5.7 of the granular paracetamol 

in n-heptane and MTBE, respectively, where (a), (c), and (e) show the spectra 

from 0°, 30°, and 45°, respectively, for the 0.3 mm spatial configuration, and 

(b), (d), and (f) show spectra from 0°, 30°, and 45°, respectively, for the 1.2 

mm spatial configuration. SNV pre-processing was applied as opposed to 

other common pre-processing methods such as MSC or derivatives. The MSC 

transformation involves the estimation of a correction coefficient, usually based 
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on the average of sample spectra in a dataset, which could affect the quality 

of all sample spectra as a result of one noisy spectrum. The derivative 

transformation removes the baseline shift and slope in spectra but could result 

in the enhancement of small peaks arising due to noise. In SNV, a sample 

spectrum is processed by subtracting the mean of the intensity of this spectrum 

and then dividing it by the standard deviation of the spectrum. Therefore, SNV 

was selected for pre-processing those spectra as it involves the pre-

processing of each spectrum individually. The baseline shifts seen in Figure 

5.4 and Figure 5.5 are removed from the SNV pre-processed spectra where 

the remaining variation can be attributed to the change in solvent peak intensity 

as a result of the change in solvent content during drying, in addition to the 

effects of noise. The changes in peak intensity corresponding to the change in 

solvent content can mostly be seen around 1210 nm in Figure 5.4 for n-

heptane and 1185 nm in Figure 5.5 for MTBE.  

Figure 5.6 (a) of 0°/0.3 mm shows variation between sample spectra around 

the n-heptane peak position. The decrease in solvent peak intensity as the 

solvent content decreases is not consistently seen in those spectra due to the 

noise affecting the spectra, particularly at the shorter wavelength range of 

1100-1450 nm. NIR peaks at the shorter wavelength range are weaker with 

reference to those at longer wavelengths as those peaks arise from higher-

order overtones and combinations.57 Nevertheless, Figure 5.6 (b) of 0°/1.2 mm 

shows the decrease in n-heptane peak intensity around 1200 nm as can be 

seen from the zoomed-in inset of this peak. This can also be seen from Figure 

5.6 (d) and (f) of 30°/1.2 mm and 45°/1.2 mm, respectively, although to a lower 

extent due to the decreased signal intensity compared to the 0°/1.2 mm 

configuration. Similar observation can be seen in the granular/MTBE spectra 

in Figure 5.7; however, pure spectra of paracetamol and MTBE indicate that 

the MTBE peak overlaps considerably with the paracetamol peak around 

1150-1200 nm, resulting in the less clear visualisation of the MTBE peak 

decrease as drying progresses. Spectra collected from the angular 

configurations 30°-45° are most affected by this peak overlap in addition to the 

lower signal intensity from those configurations.  
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.4. SAR-DRM spectra collected using the SAR-DRM probe in the granular/n-
heptane drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, (d) 30°/1.2 mm, 
(e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows the solvent 
content percentage (SC%) in each sample spectrum. Arrows point to the n-heptane 
peak position.  
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm  (f) 45°/1.2 mm 

Figure 5.5. SAR-DRM spectra collected using the SAR-DRM probe in the 
granular/MTBE drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, (d) 30°/1.2 
mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows the solvent 
content percentage (SC%) in each sample spectrum. Arrows point to the MTBE peak 
position. 
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.6. SNV pre-processed SAR-DRM spectra collected using the SAR-DRM 

probe in the granular/n-heptane drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 

mm, (d) 30°/1.2 mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend 

shows the solvent content percentage (SC%) in each sample spectrum.  
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.7. SNV pre-processed SAR-DRM spectra collected using the SAR-DRM 

probe in the granular/MTBE drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, 

(d) 30°/1.2 mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows 

the solvent content percentage (SC%) in each sample spectrum. 
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5.3.1.2 Powder paracetamol systems 

Raw spectra of the powder/solvent systems from the different angular and 

spatial configurations were also compared and are shown in Figure 5.8 and 

Figure 5.9 for the n-heptane and MTBE systems, respectively. Those figures 

show variation in the magnitude and quality of the signal between the closest 

and farthest distance for each of the angular light sources, similar to what was 

seen previously in the granular/solvent systems in section 5.3.1.1. Similar to 

what was seen in the granular systems, the magnitude of the signal is lower 

from the angular configurations 30°-45° as the light is distributed onto a wider 

area over the surface of the sample and reaches shallower depths. Using the 

angular light sources, those fewer photons may be travelling through shorter 

pathlengths before being reflected through the surface of the powder. 

Similarly, the signal intensity is lower for larger collection distances compared 

to the closest distances as a result of the higher incidences of light scattering 

before reaching the detector.  

Comparing the raw signal intensity from both paracetamol grades, SAR-DRM 

spectra from the powder paracetamol grade show lower signal magnitude as 

seen in Figure 5.8 and Figure 5.9 compared to Figure 5.4 and Figure 5.5 of 

the granular grade. Since the particle size of the powder paracetamol grade is 

smaller (D50= 43 µm) than the granular grade (D50= 265 µm), the surface area 

of the powder particles is larger and leads to more light scattering and higher 

absorbance.113 On the other hand, lower absorbance is seen for the powder 

paracetamol spectra. Similarly to the granular systems, baseline variation can 

be seen among the sample spectra of variable solvent content. This may also 

be linked to the increase in packing density as the solvent is removed from the 

drying cake in addition to the variation in pathlengths of the light through the 

powder cake. SNV pre-processing was applied to remove those baseline 

shifts. 

Following SNV pre-processing of spectra from both powder/solvent systems, 

SAR-DRM spectra collected from the distance farthest from the incident light 

show better quality as fewer peaks arising due to noise in addition to a more 
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accurate representation of the solvent content, as seen in Figure 5.10 of the 

powder /n-heptane system, where the solvent peak intensity decreases as the 

solvent content decreases. This is less clear in Figure 5.11 of the 

powder/MTBE system as a result of the overlap of the paracetamol and MTBE 

peaks around 1150-1200 nm.  

Comparison between the spectra collected from the two paracetamol grades 

shows that the spectra of the granular paracetamol systems are less affected 

by noise compared to the powder paracetamol systems. With regards to the 

two solvent systems used with paracetamol in this study, n-heptane has a peak 

around 1210 nm that has slight overlap with the paracetamol peak as opposed 

to the MTBE peak around 1185 nm that is more overlapping with the 

paracetamol peak. This suggests that further qualitative analysis based on the 

spectra of those systems will be affected by the overlap in those characteristic 

peaks.  

Overall, spectra from 0°/1.2 mm and 30°/1.2 mm configurations mostly show 

a decrease in solvent peak intensity as the solvent content decreases. The 

observations from the qualitative analysis of both paracetamol grades suggest 

that those may be used for further qualitative analysis.  
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.8. SAR-DRM spectra collected using the SAR-DRM probe in the powder/n-
heptane drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, (d) 30°/1.2 mm, 
(e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows the solvent 
content percentage (SC%) in each sample spectrum. Arrows point to the n-heptane 
peak position. 
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.9. SAR-DRM spectra collected using the SAR-DRM probe in the 

powder/MTBE drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, (d) 30°/1.2 

mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows the solvent 

content percentage (SC%) in each sample spectrum. Arrows point to the MTBE peak 

position. 
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.10. SNV pre-processed SAR-DRM spectra collected using the SAR-DRM 

probe in the powder/n-heptane drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 

mm, (d) 30°/1.2 mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend 

shows the solvent content percentage (SC%) in each sample spectrum. Arrows point 

to the n-heptane peak position. 
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(a) 0°/0.3 mm (b) 0°/1.2 mm 

(c) 30°/0.3 mm (d) 30°/1.2 mm 

(e) 45°/0.3 mm (f) 45°/1.2 mm 

Figure 5.11. SNV pre-processed SAR-DRM spectra collected using the SAR-DRM 

probe in the powder/MTBE drying from (a) 0°/0.3 mm, (b) 0°/1.2 mm, (c) 30°/0.3 mm, 

(d) 30°/1.2 mm, (e) 45°/0.3 mm, and (e) 45°/1.2 mm configurations. The legend shows 

the solvent content percentage (SC%) in each sample spectrum. Arrows point to the 

MTBE peak position. 
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5.3.2 Quantitative analysis using SAR-DRM spectra 

PLSR analysis was utilised for quantifying the correlation of the solvent content 

to the SAR-DRM spectra collected during drying. PLSR models were 

constructed using raw and pre-processed SAR-DRM spectra collected 

throughout the drying. The number of latent variables sufficient to describe 

each of the PLSR models constructed using the SAR-DRM configuration was 

selected after assessing the root mean square error of cross-validation 

(RMSECV) curves. Then, the calibration model with a suitable number of latent 

variables was used to estimate the solvent content of the spectra in the test 

set as described in section 4.5.  

First, PLSR models are constructed using spectra from the SAR-DRM 

configurations individually for each of the granular and powder paracetamol 

grades in n-heptane and MTBE solvent systems. Then, for each of the 

systems, SAR-DRM spectra from multiple configurations are combined to 

assess any improvement in the PLSR model performance of combined 

configurations.  

 

5.3.2.1 Granular paracetamol systems 

SAR-DRM spectra collected during the drying of granular paracetamol in n-

heptane and MTBE were used to construct PLSR models, where 

approximately two-thirds of the sample spectra are used as a calibration set 

while the remaining are used as a test set as previously explained in section 

4.5.  

 

5.3.2.1.1 PLSR of individual SAR-DRM spectra 

The RMSECV curves shown in Figure 5.12 were inspected to select the 

number of latent variables from each of the configurations for each of the 

systems, where the curves are shown in Figure 5.12 (a-c) of the granular/n-

heptane system and in Figure 5.12 (d-f) of the granular/MTBE system for the 



 

95 
 

three light angles. Those curves show that the RMSECV slightly decrease as 

the collection distance increases, which can be seen for spectra collected from 

all three light angles. This reproducibility in the observation suggests that the 

changes in spectral features related to the change in solvent content are better 

captured from larger collection distances for both granular/solvent systems. 

Following SNV pre-processing, RMSECV curves are similar or slightly lower 

than those of the raw spectra and show a similar decrease in RMSECV as the 

collection distance increases. Pre-processing aims to enhance spectral 

features and remove variations in the spectra that are not related to the change 

in chemical composition.92  

Despite the improvement in spectral features seen in Figure 5.6 and Figure 

5.7 of the granular systems, the minimal differences in the RMSECV curves 

and number of latent variables following pre-processing suggests that the 

baseline variation is not a major driver of the variation leading to the level of 

error in those spectra. Nevertheless, the slight decrease in RMSECV curves 

in addition to the similarity in the number of latent variables suggests that either 

that minimal variation irrelevant to the solvent content is contained in these 

spectra or that SNV pre-processing was not the most ideal pre-processing 

method.114 SNV pre-processing might have removed the random variation in 

those spectra, leaving in some systematic variation. However, since the 

number of sample spectra collected from multiple drying runs in the calibration 

set provides a sufficient representation of this systematic variation for PLSR 

analysis, the capturing of this variation in PLSR models results in the reduction 

of RMSECV.95,114 Despite the lower quality of the spectra collected from the 

30°-45° light angles seen through the qualitative analysis, RMSECV curves of 

the PLSR models of those spectra similarly show the decrease in RMSECV as 

the spatial distance increases.  
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(a)   (b)   (c)  

 (d)   (e)   (f)  

Figure 5.12. RMSECV of PLSR models constructed from raw (solid) and SNV pre-
processed spectra (dashed) from (a) 0°, (b) 30°, and (c) 45° for 0.3-1.2 mm collected 
from granular/n-heptane and (d) 0°, (e) 30°, and (f) 45° for 0.3-1.2 mm collected from 
granular/MTBE.  

 

Table 5.1 contains a summary of the PLSR models selected based on the 

RMSECV curves in Figure 5.12. For raw spectra, the minimum expected 

number of latent variables is two as the system includes two components, the 

change which would be captured by PLSR models. However, the number of 

latent variables for PLSR models of both systems ranges between 4-8 LVs, 

suggesting physical factors driving the variation in model performance in 

addition to the two chemical system components. Such factors could include 

the interaction of light with this particulate system, which results in diffuse 

reflectance to different paths. This increase in the pathlength of photons that 

are reflected back to the larger distance detectors results in spectra that 

provide more information about the system. However, those spectra are of 

variable intensities, are influenced by bulk and particle characteristics, such as 

packing density and particle size, and are more complex to interpret as a result.  

The effect of the factors mentioned previously can be seen in the RMSECV 

values of PLSR of raw spectra from different configurations. For both of the 

granular/solvent systems, RMSECV decreases as the collection distance 

increases for the three incidence light angles. This decrease in RMSECV is 
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associated with an increase in the coefficient of determination, R2, suggesting 

the improvement in the linear correlation of the spectra from larger collection 

distances. This improvement in RMSECV and R2 may be attributed to the 

interaction of light with the sample, where the longer pathlength travelled by 

the light before reaching the detectors at the larger distances suggests that 

those photons have scattered through the wet sample carrying stronger signal 

from the solvent leading to spectra of stronger correlation to the solvent 

content. Regarding the granular/n-heptane system, there is a 34% decrease 

in RMSECV of the 0°/1.2 mm spectra compared to the 0°/0.3 mm spectra, 23% 

decrease in RMSECV of 30°/1.2 mm spectra compared to 30°/0.3 mm spectra, 

and 4% decrease in RMSECV of the 45°/1.2 mm spectra compared to the 

45°/0.3 mm spectra. For the granular/MTBE system, a 30% decrease in 

RMSECV is seen for the 0°/1.2 mm spectra compared to the 0°/0.3 mm 

spectra, a 2% decrease in RMSECV of 30°/1.2 mm spectra compared to 

30°/0.3 mm spectra, and 27% decrease in RMSECV of the 45°/1.2 mm spectra 

compared to the 45°/0.3 mm spectra. The decrease in improvement as the 

incident light angle increases can be related to the quality of the spectra 

collected, as shown in section 5.3.1.1. The consistency in the decrease in 

RMSECV of the 0°/1.2 mm spectra compared to 0°/0.3 mm spectra in both 

systems suggests that this configuration is more suitable for robustly capturing 

spectra that represent the variation in the solvent content. The slightly lower 

improvement in the granular/MTBE system compared to the granular n-

heptane may be explained by the overlap of the MTBE peak with the 

paracetamol peak compared to the n-heptane peak as was shown in section 

5.3.1.1. 

For those raw spectra, RMSEP values generally decrease as the collection 

distance increases but are slightly higher than those of the RMSECV. Although 

the calibration set was selected to sufficiently represent the sample spectra, 

where the RMSEP would be expected to be a value closer to the RMSECV as 

similar variation is included in both datasets, RMSEP values are larger than 

those of the RMSEP, suggesting some non-systematic variation in the test set.  
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Following SNV pre-processing, the RMSECV of PLSR models of the spectra 

decreases slightly compared to the raw spectra. The RMSECV also decreases 

as the collection distance increases. This increase is also accompanied by a 

slight increase in R2. For the pre-processed granular/n-heptane spectra, there 

is a 57% decrease in RMSECV of the PLSR model of the 0°/1.2 mm spectra 

compared to the 0°/0.3 mm spectra, 23% decrease in RMSECV of the PLSR 

model of 30°/1.2 mm spectra compared to 30°/0.3 mm spectra, and no 

improvement in RMSECV of the PLSR model of the 45°/1.2 mm spectra 

compared to the 45°/0.3 mm spectra. For the granular/MTBE system, 27% 

decrease is seen in RMSECV of the PLSR model of the 0°/1.2 mm spectra 

compared to the 0°/0.3 mm spectra, 18% decrease in RMSECV of the PLSR 

model of 30°/1.2 mm spectra compared to 30°/0.3 mm spectra, and 19% 

decrease in RMSECV of the PLSR model of the 45°/1.2 mm spectra compared 

to the 45°/0.3 mm spectra. The improvement in for the PLSR model of the 

0°/1.2 mm spectra of the granular/n-heptane system compared to the PLSR 

model of the 0°/1.2 mm spectra of the granular/MTBE system suggests that 

those differences in the response seen in the qualitative analysis can largely 

influence the PLSR model performance of the datasets of the different 

solvents. Moreover, the inconsistency in improvement between the raw and 

pre-processed 30°/1.2 mm and 45°/1.2 mm spectra suggests that some of the 

variation due to physical phenomena that were removed by pre-processing is 

captured to variable extent in each of the configurations and contribute 

differently to the estimation of the solvent content. The RMSEP of the pre-

processed test set spectra increases compared to the raw spectra, this 

suggests that some of the systematic variation carried in the raw spectra was 

removed by the pre-processing leading to this increase in error.  

Among PLSR models constructed using the spectra from the four distances 

illuminated from the three light angles, spectra collected from the 0° incidence 

angle show the lowest RMSECV and RMSEP for raw and pre-processed 

spectra from both systems. In addition, spectra from the closest collection 

distance, 0.3 mm, consistently show an error higher than the three other 

collection distances from the three angles.   
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Table 5.1. Summary of PLSR model performance of raw and SNV pre-processed 
spectra of granular paracetamol in n-heptane and MTBE from each of the 
angular/spatial configurations. 
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 0° 

0.3 7 1.98 3.18 0.58 4 2.73 3.84 0.20 

0.6 6 1.59 2.40 0.72 6 1.29 2.22 0.82 

0.9 5 1.64 2.31 0.72 4 1.43 2.63 0.77 

1.2 5 1.30 1.76 0.81 4 1.17 2.37 0.85 

30° 

0.3 6 2.23 2.35 0.47 7 1.98 2.48 0.57 

0.6 6 2.05 2.08 0.57 6 1.87 2.26 0.63 

0.9 5 1.88 2.98 0.61 5 1.94 3.14 0.58 

1.2 5 1.71 2.27 0.69 6 1.53 2.41 0.74 

45° 

0.3 7 1.63 3.43 0.71 7 1.47 3.10 0.76 

0.6 7 1.61 2.28 0.72 7 1.63 2.56 0.72 

0.9 7 1.69 3.36 0.69 7 1.68 3.12 0.69 

1.2 6 1.57 3.07 0.74 6 1.64 2.75 0.71 

G
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u
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0° 

0.3 7 2.62 1.55 0.59 5 2.48 1.95 0.62 
0.6 4 2.54 1.68 0.61 4 2.36 1.31 0.66 
0.9 4 2.06 1.22 0.74 4 1.95 0.97 0.77 
1.2 4 1.84 1.17 0.80 3 1.80 1.13 0.80 

30° 

0.3 5 2.58 1.49 0.60 6 2.58 1.17 0.61 
0.6 7 2.16 1.77 0.72 7 2.14 1.68 0.73 
0.9 8 1.93 3.23 0.77 8 1.71 3.13 0.82 
1.2 4 2.52 1.49 0.63 4 2.12 1.25 0.73 

45° 

0.3 4 3.01 4.04 0.47 9 2.60 4.70 0.64 
0.6 5 2.85 1.76 0.52 5 2.58 1.50 0.60 
0.9 4 2.52 2.28 0.62 4 2.33 2.08 0.67 
1.2 5 2.19 1.67 0.71 5 2.19 1.33 0.71 
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The regression and residual plots of PLSR models of SNV pre-processed 

spectra from 0°/0.3 mm in Figure 5.13 (a-b) and from 0°/1.2 mm in Figure 5.13 

(c-d). Comparing Figure 5.13 (a) and (c) shows the reliability of 0°/1.2 mm, 

indicated by the symmetry around the diagonal line, as opposed to 0°/0.3 mm, 

where the prediction is farther from the actual values. This is also indicated by 

the residuals plots. It is noted that some of the test set prediction at solvent 

contents higher than 10% are far from the actual values compared to the lower 

solvent content spectra. This may be attributed to the fewer sample spectra 

included in the calibration set for the higher solvent content range resulting in 

less accurate predictions.  

 

(a)  (b)  

(c)  (d)  

Figure 5.13. (a) Regression and (b) residuals plots of the PLSR model of SNV pre-

processed spectra of 0°/0.3 mm from the granular/n-heptane system. (c) Regression 

and (d) residuals plots of the PLSR model of SNV pre-processed spectra of 0°/1.2 

mm from the granular/n-heptane system. 

 

Further investigation into the differences between the PLSR models built with 

the SNV pre-processed spectra from 0°/0.3 mm and 0°/1.2 mm was needed in 

order to explain the improvement in the 0°/1.2 mm spectra model performance 

in estimating the solvent content. Figure 5.14 shows the scores and loadings 
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of the four latent variables of the PLSR model built with the SNV pre-processed 

spectra from 0°/0.3 mm. Loadings of the variables can indicate the changes in 

peak intensities that influence the performance of the PLSR model, while 

looking at the scores with reference to the solvent content and the loading 

curve may show grouping between the samples or indicate the relation with 

loadings.  

Figure 5.14 (a) shows the loadings of LV1 in addition to the pure n-heptane 

and paracetamol spectra as reference. The loadings curve of LV1 is similar to 

that of paracetamol while peaks around 1200 nm and 1400 nm look sharper 

as those are the positions of the n-heptane peaks. The scores of LV1 in Figure 

5.14 (b) do not show a clear trend related to the change in the solvent content 

as they are scattered in the figure. Figure 5.14 (c) of LV2 loadings also shows 

slightly higher loadings around 1200 nm, where the n-heptane peaks are, 

compared to the rest of the wavelength range while the scores in Figure 5.14 

(d) show a horizontal trend, with a slight increase in slope for samples of higher 

solvent content. Figure 5.14 (e) of LV3 loadings shows higher loadings around 

1200 nm and 1400 nm, where the n-heptane peaks are, while the scores in 

Figure 5.14 (f) show an increase in slope for samples of higher solvent content. 

Figure 5.14 (g) of LV4 loadings shows high loadings around the n-heptane 

peak at 1400 nm with a slight trend in Figure 5.14 (h) scores plot similar to that 

of Figure 5.14 (g).  

Figure 5.15 shows the loadings and scores of the PLSR models built with the 

SNV pre-processed spectra from 0°/1.2 mm. Similarly to Figure 5.14 (a), 

Figure 5.15 (a) shows that the loadings of LV1 show the pure paracetamol 

spectral features with some peaks slightly sharper due to the presence of the 

n-heptane, while Figure 5.15 (b) of LV1 scores not showing clear change 

related to the change in solvent content. LV2 loadings in Figure 5.15 (c) are 

higher where the solvent peak is around 1200 nm and 1400 nm, and the scores 

in Figure 5.15 (d) show a trend of increase as the solvent content increases. 

Similarly, Figure 5.15 (e) shows higher loadings where the solvent peaks are, 

with a slight trend in the scores related to the increase in solvent content in 

Figure 5.15 (f). While the curves in Figure 5.15 show a clear relation to the 
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solvent, Figure 5.14 shows a weaker relation as fewer loadings can be related 

to the solvent peaks. This suggests that more information related to the change 

in solvent content is captured in the PLSR models of the 0°/1.2 mm spectra, 

which in turn leads to the more accurate estimation of the solvent content 

obtained from the 0°/1.2 mm spectra compared to the 0°/0.3 mm spectra. 

Although PLSR models of 0°/1.2 mm spectra show a more accurate estimation 

of the solvent content, it could be that spectra collected from each of the 

distances carry complementary information regarding the probed depth of the 

wet powder. Moreover, spectra collected from the same distance, but 

illuminated using a different angle could also reveal different information 

regarding a sample. To investigate this, SAR-DRM spectra from different 

configurations are combined in PLSR analysis in the next section.  
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 (a) (b)  

 (c)  (d)  

 (e) (f)  

 (g) (h)  

Figure 5.14. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 

LV2, (e) loadings and (f) scores of LV3, (g) loadings and (h) scores of LV4 of the 

PLSR model of SNV pre-processed spectra of 0°/0.3 mm from the granular/n-heptane 

system. N-heptane pure spectra are also plotted as a reference with the loadings. 
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 (a)  (b)  

 (c)  (d)  

 (e)  (f)  

 (g)  (h)  

Figure 5.15. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 

LV2, (e) loadings and (f) scores of LV3, (g) loadings and (h) scores of LV4 of the 

PLSR model of SNV pre-processed spectra of 0°/1.2 mm from the granular/n-heptane 

system. N-heptane pure spectra are also plotted as a reference with the loadings. 
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5.3.2.1.2 PLSR of combined SAR-DRM spectra 

Using individual configuration spectra to build PLSR for the estimation of the 

solvent content has shown that the performance of those configurations varies, 

where some configurations of spectra collected from larger distances tend to 

result in better estimations. To further investigate this, multiple configurations 

can be combined as this may provide complementary information from the 

multiple configurations to the PLSR model and improve the estimation. To 

assess the improvement in model performance from the three angular light 

sources, SAR-DRM spectra from the three collection distances of 0.6-1.2 mm 

were combined in order to enrich the PLSR model with features captured from 

the three angular configurations. Two methods are used for combining the 

spectra. The first method is augmentation, where blocks of spectra from 

different configurations are concatenated. The second method is co-addition, 

where spectra from different configurations are summed up to form one 

spectrum.  

Figure 5.16 shows the RMSECV and RMSEP of the PLSR models resulting 

from using SAR-DRM spectra individually from each collection distance and 

for the augmented and co-added spatial spectra from the three light sources. 

From this figure, PLSR models of spectra from the 0° show lower RMSECV 

compared to the 30-45° angular configurations, which could be attributed to 

the stronger signal collected using the 0° light angle compared to the 30-45° 

angles. Among the three collection distances, 1.2 mm spectra result in lower 

RMSECV and RMSEP compared to 0.6 mm and 0.9 mm spectra for some of 

the configurations, but not all of them. However, the qualitative analysis in the 

previous section 5.3.1 showed that those spectra were most consistent in 

showing the decrease in solvent peak intensity following the decrease in 

solvent content. This could be explained by the decrease in signal intensity 

due to the larger collection distance. Therefore, spectra collected from 0.9 mm 

and 1.2 mm were thought to be more reliable than spectra from 0.3-0.6 mm. 

Moreover, the PLSR model of the combined spectra from the three angular 

configurations shows reduced error for the spectra from the 1.2 mm collection 

distance, indicating superior PLSR performance to the other distances.  
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Figure 5.16 shows that when combining the spectra of each of the distances 

from the three angles, a PLSR model of comparable or lower RMSECV is 

obtained. Comparing RMSECV of PLSR models of augmented and co-added 

spectra shows that co-addition led to lower RMSECV, which may be attributed 

to the improvement in signal-to-noise ratio as the spectra are combined.14 

However, the PLSR model of the augmented spectra from the three angles 

shows a clear decrease in RMSECV as the collection distance increases, 

where the RMSECV error value of the PLSR model of the augmented spectra 

is a value in between that of the individual configurations, but is closer to the 

lowest value. This observation also suggests that combining those spectra is 

benefiting the PLSR model since the RMSECV of 1.2 mm augmented and co-

added spectra are close values, but the improvement is hindered by the signal 

quality of the spectra collected from the 30-45° light angles. The RMSEP of 

the PLSR models of the combined spectra also follows a similar trend to the 

RMSECV, confirming the trends seen in model performance. The results of 

the combinations shown in Figure 5.16 suggest that improvement of PLSR 

models for the estimation of the solvent content can be achieved through 

combining multiple configurations. Therefore, more combinations of those 

configurations in PLSR analysis were assessed.  
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 (a)   (b)  

 (c)  (d)  

Figure 5.16. (a) RMSECV and (b) RMSEP of PLSR models of SNV pre-processed 

granular/n-heptane spectra from 0.6-1.2 mm individually and combined from the three 

light angles and three collection distances. (c) RMSECV and (d) RMSEP of PLSR of 

the SNV pre-processed granular/MTBE spectra. 

 

The angular/spatial configurations combined and further investigated in PLSR 

models were spectra with 0°, 30°, and 45° illumination angles and 0.6 mm, 0.9 

mm, and 1.2 mm collection, which add up to nine angular/spatial 

configurations. All possible combinations of those nine configurations result in 

502 combinations in PLSR models for each of the two, augmentation and co-

addition, combination methods. To compare the PLSR analysis results from 

those combinations, Figure 5.17 provides a summary of the RMSECV and 

RMSEP of those PLSR models for the granular/n-heptane system in Figure 

5.17 (a) and the granular/MTBE system in Figure 5.17 (b). In this figure, the 

RMSECV and RMSEP from the PLSR model of the augmented and co-added 

spectra are provided as box plots, where four boxes are used to summarise 
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each of the RMSECV and RMSEP of PLSR models of the augmented and co-

added spectra. Those box plots show the median, minimum and maximum, 

the interquartile range, and outliers. To further show the impact of including 

certain configurations with PLSR models of combined spectra, RMSECV and 

RMSEP of the models containing those configurations are blotted on top of the 

boxes.  

Comparing the boxes in Figure 5.17 (a) and (b) shows that PLSR models of 

co-added spectra result in lower RMSECV and RMSEP than those of PLSR 

models of the augmented spectra. For the granular/n-heptane systems, 

RMSEP is higher than RMSECV while the opposite is seen for the 

granular/MTBE system, which may be attributed to the larger number of 

samples in the granular/MTBE system (39 samples) compared to the 

granular/n-heptane system (26 samples). This means that the higher number 

of sample spectra leads to the inclusion of more variation within the calibration 

set of the granular/MTBE system compared to the granular/n-heptane system 

leading to the lower RMSEP of the solvent content in the granular/MTBE 

system. Nevertheless, the calibration sets do sufficiently represent the 

respective systems and indicate the reliability of those calibration models.  

To assess the contribution from specific configurations to the overall level of 

error, RMSECV and RMSEP of 63 PLSR models that include 0°/1.2 mm 

spectra are plotted in black, 30°/1.2 mm in red, and 45°/1.2 mm in blue. Among 

those, RMSECV and RMSEP of PLSR models including 0°/1.2 mm span the 

lower end of the box plot, which suggests that spectra collected using the 0° 

result in superior performance and contribute to lowering the RMSECV and 

RMSEP. Comparing the PLSR of augmented and co-added spectra from those 

configurations shows that narrower distribution of error among the PLSR 

models of the co-added spectra compared to the PLSR models of the 

augmented datasets. This suggests that, by concatenating spectra for 

augmentation, the resulting PLSR models are more influenced by lower-quality 

spectra acting as noise compared to co-added spectra, where the overall 

quality is affected by the contribution of the spectra combined. Since NIR 

spectra capture the chemical composition and physical features of the samples 
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that influence the signal as a result of changes in shape, size distribution, and 

density of the samples,66 the resulting differences in spectra are less 

pronounced in co-added spectra due to the averaging of spectral features, 

whereas those are all included in the augmented spectra. This leads to the 

higher variability in augmented spectra in addition to the higher complexity of 

the PLSR models.  

 

(a)  
 

 

 (b)  

Figure 5.17. RMSECV (CV) and RMSEP (P) of SNV pre-processed spectra combined 

through augmentation (Aug) and co-addition (Co) from 0-45°/0.6-1.2 mm 

configurations (conf) from (a) granular/n-heptane and (b) granular/MTBE systems 

 

The main focus in Figure 5.17 was the evaluation of the three incidence angles 

to the performance of the combined spectra and the next step is assessing the 

changes in the performance of the PLSR models including the combined 

spectra from each of the collection distances in addition to the variability 

between RMSECV and RMSEP. The relation between the RMSECV and 

RMSEP resulting from the 502 combinations of SAR-DRM spectra is shown in 

Figure 5.18, in which the RMSECV versus RMSEP are plotted for all 

combinations of co-added spectra from Figure 5.17. The RMSECV and 

RMSEP of the PLSR models including spectra from 0° from each of the three 

collection distances in addition to SAR-DRM spectra from other configurations 

are highlighted to show the decrease in RMSECV and RMSEP values as the 

collection distance increases. The difference in the diagonal patterns seen in 

Figure 5.18 (a) and (b) is attributed to the higher RMSEP compared to 
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RMSECV for the granular/n-heptane system and lower RMSEP compared to 

RMSECV for the granular/MTBE system as highlighted earlier. As a close 

reference to the conventional diffuse reflectance NIR measurements, the 

RMSECV and RMSEP of 0°/0.3 mm are also shown in this figure and are in 

contrast to the PLSR models of the other SAR-DRM configurations as they 

show the highest RMSE. Those observations can similarly be seen for both 

granular/solvent systems.  

 

(a)    
 

 

 (b)  

Figure 5.18. RMSECV versus RMSEP of PLSR models of co-added SNV pre-

processed SAR-DRM spectra from (a) granular/n-heptane and (b) granular/MTBE 

systems. 

 

To further compare the results from the PLSR model of the individual SNV pre-

processed spectra 0°/0.3 mm to the co-added spectra of 1.2 mm from the three 

angular configurations, estimations of the solvent content during the runs were 

plotted. The actual solvent content in one of the runs shown previously in 

Figure 5.3 obtained from the reference loss on drying method is shown along 

with those of the estimated content from the PLSR model of SNV pre-

processed spectra from 1.2 mm from the three angular configurations and 

0°/0.3 mm in Figure 5.19. This figure shows the drying profile obtained from 

the estimation based on spectra from the 1.2 mm collection distance is close 

to that obtained from the reference measurement, while estimations base on 

spectra from 0°/0.3 mm led to higher error. The differences found between the 

LOD and the estimations based on 1.2 mm from the three angular 
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configurations could arise from the representativeness of the calibration set 

spectra, the errors in sampling and measuring the LOD. However, the higher 

error seen for the estimation from 0°/0.3 mm can be attributed to the 

representativeness of the samples from those spectra considering the volume 

of the sample and the depths travelled by the light before being collected at 

0.3 mm distance from the incidence point compared to that collected from 1.2 

mm distance.  

 

 (a)   (b)  

Figure 5.19. Solvent content from LOD and estimates from PLSR models of co-added 

SNV pre-processed SAR-DRM spectra of 1.2 mm from the three incidence angles 

and of 0°/0.3 mm from (a) granular/n-heptane and (b) granular/MTBE systems. 
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5.3.2.2 Powder paracetamol systems 

Spectra collected from the two powder/solvent systems from each of the SAR-

DRM individual configurations are used to construct PLSR models. Then, 

SAR-DRM spectra from multiple configurations are combined to assess any 

improvement in PLSR model performance. The performance of the PLSR 

models of the powder systems reported here is compared to that of the 

granular systems reported in the previous section 5.3.2.1.  

 

5.3.2.2.1 PLSR of individual SAR-DRM spectra 

PLSR models using spectra from the 12 SAR-DRM configurations were built, 

where some sample spectra were included in the calibration set and the 

remaining spectra were used as a test set as previously described in section 

4.5.  

The RMSECV curves of the PLSR models of the calibration set are shown in 

Figure 5.20, where the curves of the powder/n-heptane system are shown in 

Figure 5.20 (a-c) of the powder/n-heptane system and in (d-f) of the 

powder/MTBE system for the three light angles 0°, 30°, and 45°, respectively. 

Those RMSECV curves were inspected to select the number of latent 

variables from each of the configurations for each of the systems, where the 

curves of raw and pre-processed spectra from the four spatial distances show 

that the RMSECV is highest for 0.3 mm spectra and decreases as the 

collection distance increases. This can be seen in spectra collected from all 

three light angles. Comparing Figure 5.20 (a), (b), and (c) shows that the 

RMSECV of the 0° illumination angle shows the lowest RMSECV compared to 

30-45°, both of which are comparable. This is also seen in Figure 5.20 (d), (e), 

and (f), where the 0° spectra are of lower RMSECV and RMSEP than those of 

30-45°. However, large differences between the RMSECV for each collection 

distance are seen for spectra with the 30° light source angle. This may be 

explained by the larger variation in the quality of spectra from each of the 

collection distances, as seen previously in Figure 5.8 and Figure 5.9 in section 

5.3.1.2.  
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Following SNV pre-processing, RMSECV curves are similar or slightly lower 

than those of the raw spectra. This suggests that the baseline shifts observed 

in Figure 5.8 and Figure 5.9 may not have a major contribution to the error in 

PLSR models of the powder/solvent systems and do provide some variation 

related to the sample condition as was also seen in the granular/solvent 

systems.8,114 Compared to the RMSECV curves of the granular systems in 

Figure 5.12, the curves of the powder systems in Figure 5.20 show overall 

higher RMSECV.  

RMSECV curves of spectra from the 30°-45° light angles similarly show the 

decrease in RMSECV as the spatial distance increases. Nevertheless, the 

decrease is smaller compared to that seen in Figure 5.12 of the granular 

systems. This may be explained by the lower quality of spectra and larger 

effect of noise seen from the powder paracetamol grade as seen in Figure 5.8 

and Figure 5.9 of the raw spectra and Figure 5.10 and Figure 5.11 of the SNV 

pre-processed spectra.  

 

 (a)  (b)  (c)  

(d)  (e)  (f)  

Figure 5.20. RMSECV of PLSR models constructed from raw (solid) and SNV pre-

processed spectra (dashed) from (a) 0°, (b) 30°, and (c) 45° for 0.3-1.2 mm collected 

from powder/n-heptane and (d) 0°, (e) 30°, and (f) 45° for 0.3-1.2 mm collected from 

powder/MTBE. 
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The number of latent variables selected based on the RMSECV curves in 

Figure 5.20 for PLSR models of both systems range between 2-8 LVs. Table 

5.2 contains a summary of the PLSR models. The lower number of latent 

variables, 2 LVs, is seen for the 30°-45°/ 0.3 mm spectra of the powder/MTBE 

system, which were the spectra of lower quality in Figure 5.9 and Figure 5.11. 

This suggests that the lower RMSECV of the PLSR models of those spectra 

may be a result of the exclusion of random variation resulting from noise. The 

similar number of latent variables in modelling the raw and pre-processed 

spectra suggests that the factors largely contributing to the PLSR performance 

remain similar.  

Looking at the error values obtained from raw SAR-DRM spectra, the 

RMSECV decreases as the collection distance increases from the two 

powder/solvent systems. This decrease in error is associated with an increase 

in the coefficient of determination, R2, suggesting an improvement in the model 

performance since the variation captured in the PLSR model of the signal is 

more linearly related. For the powder/n-heptane system, there is 20% 

decrease in the RMSECV of the PLSR model of 0°/1.2 mm spectra compared 

to the 0°/0.3 mm spectra, 12% decrease in RMSECV of the PLSR model of 

30°/1.2 mm spectra compared to 30°/0.3 mm spectra, and 1% decrease in 

RMSECV of the PLSR model 45°/1.2 mm spectra compared to the 45°/0.3 mm 

spectra. This larger percentage of decrease in RMSECV for the PLSR model 

of 0°/1.2 mm spectra compared to the 30°/1.2 mm spectra and 45°/1.2 mm 

spectra was also observed in the granular/n-heptane system. For the 

granular/MTBE system, an 11% decrease is seen for the RMSECV of the 

PLSR model of the 0°/1.2 mm spectra compared to the 0°/0.3 mm spectra, 

43% decrease in RMSECV of the PLSR model of 30°/1.2 mm spectra 

compared to 30°/0.3 mm spectra, and 16% decrease in RMSECV of the PLSR 

model of the 45°/1.2 mm spectra compared to the 45°/0.3 mm spectra. 

Although the larger percentage of decrease in the RMSECV of the PLSR 

model of 30°/1.2 mm spectra compared to 30°/0.3 mm spectra might suggest 

an improved performance for the PLSR of the 30°/1.2 mm configuration, the 

apparent higher percentage of decrease is due to the poor performance of the 
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PLSE model of the 30°/0.3 mm configuration. A similar percentage of 

improvement for the 0°/1.2 mm spectra compared to the 0°/0.3 mm spectra 

and the 45°/1.2 mm spectra compared to the 45°/0.3 mm spectra was also 

seen in the granular/MTBE system. This suggests that the overlap in the peak 

of paracetamol and MTBE similarly affects the PLSR performance of the 

powder/MTBE system. The RMSEP of the PLSR models of the raw spectra 

follows the same trend as the RMSECV, indicating the reliability of the 

calibration models. Comparing RMSECV and RMSEP of SAR-DRM spectra 

collected from the same distance from each of the illumination angles, those 

errors are lower for the 0° angle spectra as opposed to 30-45° spectra.  

For the SNV pre-processed spectra, as the collection distance increases 

RMSECV of the PLSR models decreases while R2 values increase. For the 

pre-processed granular/n-heptane spectra, there is a 16% decrease in 

RMSECV of the PLSR model of the 0°/1.2 mm spectra compared to the 0°/0.3 

mm spectra, 9% decrease in RMSECV of the PLSR model of 30°/1.2 mm 

spectra compared to 30°/0.3 mm spectra, and 13% in RMSECV of the PLSR 

model of the 45°/1.2 mm spectra compared to the 45°/0.3 mm spectra. For the 

granular/MTBE system, 10% decrease is seen in RMSECV of the PLSR model 

of the 0°/1.2 mm spectra compared to the 0°/0.3 mm spectra, 41% decrease 

in RMSECV of the PLSR model of 30°/1.2 mm spectra compared to 30°/0.3 

mm spectra, and 20% decrease in RMSECV of the PLSR model of the 45°/1.2 

mm spectra compared to the 45°/0.3 mm spectra. Compared to the 

granular/solvent, those values are smaller, suggesting that the higher level of 

noise seen in the powder systems affects the improvement in the PLSR 

performance.  

Comparison between the PLSR results of the raw and SNV pre-processed 

SAR-DRM spectra shows that the error values of pre-processed spectra are 

either similar or decrease slightly. The increase in error following SNV pre-

processing is seen for the closest collection distance, 0.3 mm, suggesting that 

due to the lower signal quality obtained from this detector, the physical effects 

removed by pre-processing contribute to the PLSR model performance. The 

RMSEP of the PLSR of the SNV pre-processed spectra follows a similar trend 
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to the RMSECV indicating a robust performance of the PLSR of those 

calibration sets.  

Overall, the PLSR results shown in Table 5.2 look to be most influenced by the 

signal, as seen in the 1.2 mm spectra performing more reliably, along with 

signal intensity, as is seen when comparing the signal collected through the 0° 

light illumination angle compared to the 30-45° angles, in addition to some 

effect of physical phenomena as seen from the slight performance variation 

following pre-processing. Since qualitative analysis seen from section 5.3.1.2 

showed that spectra from 1.2 mm follow the decrease in intensity as the 

solvent content decreases, the similarity in performance from 0.3 and 1.2 mm 

PLSR models seen in the powder/n-heptane system is attributed to the random 

noise, despite the similarity in the number of LVs.  
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Table 5.2. Summary of PLSR model performance of raw and SNV pre-processed 

spectra of powder paracetamol in n-heptane and MTBE from each of the 

angular/spatial configurations. 
G

ra
d

e
/S

o
lv

e
n

t 

A
n

g
le

 

D
is

ta
n

c
e

/m
m

 Raw SNV pre-processed 
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 0° 

0.3 4 3.60 2.82 0.71 3 3.68 3.40 0.69 

0.6 4 3.34 3.33 0.75 4 3.35 3.20 0.75 

0.9 3 2.98 3.05 0.80 3 2.85 2.54 0.82 

1.2 4 2.89 2.35 0.81 4 3.10 2.20 0.78 

30° 

0.3 5 4.99 2.53 0.47 5 4.81 2.13 0.50 

0.6 3 4.79 4.46 0.48 3 4.70 4.01 0.50 

0.9 3 4.77 3.84 0.50 3 4.44 3.71 0.56 

1.2 3 4.40 3.97 0.57 3 4.39 3.94 0.57 

45° 

0.3 5 4.51 4.25 0.55 5 5.17 4.40 0.47 

0.6 4 4.31 2.93 0.58 4 4.01 2.99 0.64 

0.9 7 4.68 7.45 0.54 7 4.53 7.31 0.57 

1.2 4 4.47 3.60 0.56 4 4.19 4.19 0.60 

P
o

w
d

e
r/

M
T

B
E

 

0° 

0.3 8 3.65 2.92 0.47 8 3.35 2.86 0.52 
0.6 7 2.75 2.31 0.68 7 2.54 2.41 0.72 
0.9 4 2.75 2.70 0.68 6 2.63 2.22 0.72 
1.2 6 3.24 3.11 0.58 6 3.01 2.64 0.63 

30° 

0.3 2 4.92 5.16 0.00 2 4.87 5.28 0.02 
0.6 3 4.59 4.50 0.15 3 4.52 4.31 0.16 
0.9 7 3.94 3.80 0.42 6 3.88 3.39 0.45 
1.2 6 2.79 3.92 0.67 5 2.85 3.35 0.66 

45° 

0.3 2 4.69 5.90 0.04 2 4.61 5.98 0.08 
0.6 3 4.57 5.30 0.13 3 4.54 5.25 0.14 
0.9 7 3.45 3.93 0.53 6 3.68 3.73 0.47 
1.2 5 3.95 3.01 0.38 6 3.69 3.03 0.45 
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To further assess the difference in PLSR performance of spectra from 0°/0.3 

mm and 0°/1.2 mm, the regression and residuals plots of PLSR models of SNV 

pre-processed powder/MTBE spectra, as an example, from 0°/0.3 mm in 

Figure 5.18 (a-b) and from 0°/1.2 mm in Figure 5.18 (c-d). The regression and 

residuals plots in Figure 5.18 (a-b), respectively show that, although the 

predicted solvent is closer to the actual values in the lower solvent content 

range of 0-5%, higher error in the predicted solvent content is seen for the 

higher solvent content 15-20% spectra. Figure 5.18 (c-d) shows that the error 

in prediction is relatively consistent across the solvent content range. The 

differences in Figure 5.18 (a-b) and (c-d) show that, despite the close values 

between PLSR of pre-processed 0°/0.3 mm (RMSECV of 3.68% and R2 of 

0.69) and 0°/1.2 mm spectra (RMSECV of 3.10% and R2 of 0.78), the 

predictions of the PLSR model of the 0°/1.2 mm spectra are more consistent, 

suggesting a more robust PLSR model.  

 (a)   (b)  

 (c)   (d)  

Figure 5.21. (a) Regression and (b) residuals plots of the PLSR model of SNV pre-

processed spectra of 0°/0.3 mm from the powder/MTBE system. (c) Regression and 

(d) residuals plots of the PLSR model of SNV pre-processed spectra of 0°/1.2 mm 

from the powder/MTBE system. 
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5.3.2.2.2 PLSR of combined SAR-DRM spectra 

Results from the analysis of the PLSR performance in the previous section 

generally indicate the improvement of the performance of the SAR-DRM 

spectra as the collection distance increases. However, some of the spectra do 

not show the same decrease in error as the collection distance increases. 

Therefore, spectra from the three incident lights of the same collection distance 

were combined through augmentation and co-addition and analysed. This 

would allow for a more thorough investigation of including specific or multiple 

configurations on the PLSR performance. 

Figure 5.22 shows a comparison of the RMSECV and RMSEP of the PLSR 

models of SNV pre-processed spectra from the individual configuration as well 

as the combined configurations from the three light sources. This figure allows 

for the visualisation of the variation of the PLSR model error among those 

configurations. For the PLSR model results of the powder/n-heptane in Figure 

5.22 (a-b), RMSECV slightly improves or is at a similar level as the collection 

distance increases for spectra of 0.6-1.2 mm. The RMSEP slightly decreases 

as the offset distance increases from 0.9 to 1.2 mm for 0° and 45° spectra 

suggesting a more robust performance of PLSR models of those 

configurations. As for the combined spectra, RMSECV and RMSEP look to be 

a value close to the average of the RMSECV and RMSEP of the spatial 

configuration from the three incidence angles, where co-added spectra show 

lower error than the augmented spectra. For the powder/MTBE spectra in 

Figure 5.22 (c-d), RMSECV decreases as the collection distance increases for 

the 30° incidence angle spectra, while for RMSEP this is seen with 30-45° 

spectra. The combined spatial configurations from the three angles also show 

RMSECV lower than the individual 30-45°, but higher than that of 0° for the 

augmented and co-added configurations, where those co-added spectra show 

lower error compared to augmented spectra. RMSEP of combined spectra 

decreases as the collection distance increases and is also a value lower than 

that of 30-45° and higher than 0°, with co-added spectra being only slightly 

lower than augmented spectra. The lower error values for the co-added 
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spectra in both systems are explained by the improvement in signal-to-noise 

ratio as a result of the summation of the spectra.  

The RMSECV and RMSEP of the PLSR of individual SAR-DRM spectra as 

well as the combined spectra, shown in Figure 5.22, do not clearly reflect the 

improvement in peak resolution seen from the spectra collected from larger 

distances as was seen in the qualitative analysis of the spectra in Figure 5.10 

and Figure 5.11. Therefore, further multi-block analysis could show a clearer 

indication of the improvement in the performance from the spectra from larger 

collection distance configurations. 

 

(a)  (b)  

 (c)    (d)  

Figure 5.22. (a) RMSECV and (b) RMSEP of PLSR models of the SNV pre-processed 

powder/n-heptane spectra from 0.6-1.2 mm individually and combined from the three 

light angles and three collection distances. (c) RMSECV and (d) RMSEP of PLSR of 

SNV pre-processed powder/MTBE spectra. 
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In order to assess the performance of the different SAR-DRM spectra, the nine 

configurations from Figure 5.22 spectra were combined in multi-block PLSR 

models considering all possible combinations of those configurations. The 

RMSECV and RMSEP of the PLSR models of those combined configurations 

add up to 502 combinations and are shown as box plots in Figure 5.23 (a) for 

the powder/n-heptane system and Figure 5.23 (b) for the powder/MTBE 

system. The first observation from Figure 5.23 is the higher level of error seen 

for the augmented spectra compared to the co-added spectra, similar to what 

was seen in the granular/solvent systems in Figure 5.17.  

In order to assess the contribution of spectra from each of the angular light 

sources to the PLSR model error, PLSR models of combinations including 1.2 

mm collection distance from one of the incidence angles in addition to any 

other configuration from the other two incidence angles are highlighted in 

Figure 5.23. Those correspond to 63 combinations for each incidence angle 

and are highlighted in black for 0°, blue for 30°, and red for 45°. Among PLSR 

models of augmented combinations of spectra from those three angles only, 

the RMSECV and RMSEP of PLR models containing 0°/1.2 mm configuration 

are less spread and are at the lower end of the box, while the RMSECV and 

RMSEP of combinations of 30°/1.2 mm and 45°/1.2 mm with other 

configurations show wider distribution around the mean of the error compared 

to combinations of configurations with 0°/1.2 mm. Considering the co-added 

combination on the right side of the graphs in Figure 5.23, RMSECV and 

RMSEP of the three sets of combinations show less spread and a lower mean 

of error compared to the augmented configurations. This variation in the 

spread of error may be attributed to the mechanism of each of the combination 

techniques, where each of the combined spectra equally contributes to the 

performance of the final block in PLSR analysis in augmentation while the final 

spectrum in co-addition is an average of the combined configurations.  

To further compare spectra containing other spatial/angular configurations with 

the three sets mentioned earlier, 65 combinations including 1.2 mm from the 

three incidence angles are also shown in Figure 5.23 as magenta markers. For 

both augmented and co-added combinations, the spread of the RMSECV and 
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RMSEP of those combinations is narrower compared to the three sets 

highlighted earlier but is not lower than any of the three sets. However, the lack 

of improvement in this set of combinations from the three incidence angles is 

attributed to the contribution of the spectra from 30-45°, as was seen in Figure 

5.11 and Figure 5.22.  

To contrast the result seen from the four previous sets of combinations focused 

on the 1.2 mm collection distance, 27 combinations that include 0.6-0.9 mm 

spectra from the three incidence angles are also highlighted in yellow in Figure 

5.23, where those show wider spread and higher error for augmented spectra 

compared to the co-added spectra for the same reasons as those of the other 

three sets of combinations. Nevertheless, this set of combinations of spectra 

from 0.6-0.9 mm from the three incidence angles shows a lower level of 

RMSECV and RMSEP compared to the other sets of co-added combinations 

in Figure 5.23 (a), but not in Figure 5.23 (b). This may be a result of the 

improvement in the quality of spectra in both systems. Figure 5.23 (b) shows 

that the overall level of error from the powder/MTBE system is lower than that 

of the powder/n-heptane, which is a result of the larger number of sample 

spectra representing the system included in the calibration set of the 

powder/MTBE system as mentioned in section 4.4.1. The observations from 

the powder/n-heptane system are similarly seen for the powder/MTBE system. 

However, the improvement in the powder/n-heptane in Figure 5.23 (a) 

compared to Figure 5.23 (b) may be attributed to the presence of a non-

overlapping peak in n-heptane, whereas the MTBE peak is largely overlapped 

with that of paracetamol around 1150-1200 nm.  

Figure 5.23 (a) of the powder/n-heptane system shows that the level of 

RMSEP is lower than that of the RMSECV, while Figure 5.23 (b) of the 

powder/MTBE system shows that the RMSEP is lower than the RMSECV. This 

is opposite to what was seen for the granular systems in Figure 5.17 and is 

explained by the spread of the sample spectra collected over the solvent 

content range as was shown in the drying profile in Figure 5.3. Although a 

larger number of sample spectra were included in the calibration set of the 

powder/MTBE system compared to the powder n-heptane system, the MTBE 
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calibration set contains more sample spectra over the solvent content range of 

0-15% as opposed to the powder/n-heptane samples which are more equally 

distributed. This was also shown in regression and residuals plots example in 

Figure 5.21.  

 

(a)  
 

 

 (b)  

Figure 5.23. RMSECV (CV) and RMSEP (P) of SNV pre-processed spectra combined 

through augmentation (Aug) and co-addition (Co) from 0-45°/0.6-1.2 mm 

configurations (conf) from (a).powder/n-heptane and (b) powder/MTBE systems 

 

The previous figure focusses on the analysis of the contribution of each of the 

incidence angles to the performance of each of the combined sets. In order to 

further assess the contribution from each of the collection angles, 

combinations of spectra including spectra from each of the collection distances 

from 0° incidence angles, in addition to combinations of any other 

configurations. The consistency in the RMSECV and RMSEP resulting from 

the 502 combination of SAR-DRM spectra may also be seen in Figure 5.24, in 

which the RMSECV and RMSEP are plotted for all combinations of co-added 

spectra from Figure 5.23. In contrast to the RMSECV and RMSEP of the PLSR 

models including spectra from 0° from each of the three collection distances in 

addition to SAR-DRM spectra from other configurations seen in the 

granular/solvent systems in Figure 5.18, RMSECV and RMSEP of the 

powder/solvent systems in Figure 5.24 do not decrease as the collection 

distance increases. This suggests that, with reference to the particle size of 

the material, PLSR models including different spatial/angular configurations 
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may result in more accurate estimations of the solvent content. This may also 

be related to the variation in the quality of spectra and performance of the 

individual models seen previously in Figure 5.10, Figure 5.11, and Table 5.2.  

The overlap seen in the RMSECV and RMSEP from each of the combinations 

in Figure 5.24 may be a result of the balancing out of the contribution of the 

spectra of good quality from 0° incidence angle with spectra from variable 

quality from the other configurations. As a reference to the conventional diffuse 

reflectance NIR measurements, the RMSECV and RMSEP of 0°/0.3 mm are 

also shown and marked by a yellow asterisk in this figure and shows that 

RMSECV and RMSEP similar to the other combined configurations, but is not 

superior to the individual nor the combined spectra.  

 

 (a)  
 

 

(b)  

Figure 5.24. RMSECV versus RMSEP of the PLSR model of the co-added SNV pre-

processed SAR-DRM spectra from (a) powder/n-heptane and (b) powder/MTBE 

systems. 
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5.4  Conclusions 

An experiment was conducted to determine the depth through which the signal 

from a solvent, n-heptane, may be detected beneath layers of dry granular 

paracetamol, using SAR-DRM spectra collected with the bespoke SAR-DRM 

probe. The resulting SAR-DRM spectra from the twelve configurations did not 

show the characteristic peak of the solvent. This may be overcome by using a 

stronger light source to improve the signal intensity.  

SAR-DRM spectra were collected during the drying of two paracetamol 

grades, granular and powder, in two solvents, n-heptane and MTBE. The 

spectra from the four systems were analysed qualitatively and quantitatively. 

Qualitative analysis of raw spectra showed that the visual detection of the 

variation in the solvent characteristic peak was hindered due to the baseline 

shifts among spectra collected at different time points. This baseline shift was 

attributed to the change in packing density and was removed by applying SNV 

pre-processing. Qualitative analysis of SNV pre-processed spectra showed 

that the detection of the decrease in the solvent peak as the solvent content 

decreases may be seen most clearly from the farthest collection distance 1.2 

mm from the three illumination angles, which was attributed to the larger 

distance travelled by light through the wet paracetamol cake before being 

collected at the farther collection distance; thus including more contribution of 

the signal from the solvent. Spectra of configurations illuminated through the 

0° incidence angle have shown superior quality compared to those illuminated 

through the 30° and 45°, which was explained by the stronger signal from 

those spectra. 

Quantitative analysis of the individual raw SAR-DRM spectra collected during 

the drying of the two paracetamol grades showed improved PLSR 

performance as the collection distance increases to 1.2 mm. This was seen 

through the slight decrease in the RMSECV and increase in the coefficient of 

determination, R2, along with the decrease in the RMSEP. Among the three 

illumination angles, spectra illuminated through the 0° incidence angle showed 

improved performance compared to the 30° and 45° incidence angles, 
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agreeing with the qualitative analysis. Following pre-processing, slight 

improvement was seen in the PLSR performance, suggesting that the physical 

effects removed through pre-processing contribute to the PLSR performance.  

Since PLSR analysis of SAR-DRM spectra showed a slight improvement in 

performance, all combinations of 0.6-1.2 mm spectra from the three angular 

configurations were augmented and co-added to obtain a collective trend of 

the PLSR performance of these configurations. This was beneficial for 

determining better-performing spatial and angular configurations. Results of 

the combined configurations of paracetamol/solvent systems showed that 

combinations including 1.2 mm spectra result in lower RMSECV and RMSEP 

followed by 0.9 mm then 0.6 mm spectra, affirming the qualitative results where 

the quality of spectra improved as the collection distance increased. SAR-DRM 

spectra illuminated through the 0° angle light source had more contribution to 

lowering the RMSECV compared to 30° and 45° illumination angles, which 

was further confirmed through the RMSEP.  

Overall, observation from the results obtained from the analysis of SAR-DRM 

spectra collected during the drying of the granular and powder paracetamol in 

n-heptane and MTBE show potential for the application of this technique for 

in-line monitoring or pharmaceutical drying. Considering the signal collected 

from the 0°/0.3 mm as a representation of the signal collected from a 

conventional NIR system, the results presented in this chapter show superior 

performance by the spatially resolved configurations. However, the issue of 

low signal intensity may be addressed through the use of an illumination 

source of stronger intensity. Although further development is required before 

acceptable ranges of error for the estimations are obtained for the reliable 

determination of the end point, this technique offers an in-line alternative for 

monitoring the drying process.  
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6. Spatially Offset Raman Spectroscopy for 

Monitoring Pharmaceutical Drying  

 

6.1 Introduction 

In spatially offset Raman spectroscopy (SORS), Raman signals are collected 

from distances laterally offset from the illumination point as opposed to 

conventional Raman spectroscopy, where the backscattering signal is 

collected. SORS measurements depict spectral features of the sublayers in 

addition to the surface of the measured area. This offers an advantage when 

the measured system is non-homogeneous as it enables probing a larger 

volume of the sample beneath the surface. Pharmaceutical drying is an 

example of a non-homogenous system that has previously been monitored 

using conventional Raman spectroscopy. This study details the application of 

SORS for the monitoring of pharmaceutical drying of paracetamol.  

The first part of this chapter includes an experiment conducted in order to 

assess the depth through which the sublayer signal from a solvent can be 

detected beyond a barrier of dry paracetamol. In the second part, SORS was 

employed for the monitoring of pharmaceutical drying of two grades, granular 

and powder, of paracetamol in two solvents, anisole and MTBE. The SORS 

spectral response in each of the drying systems is analysed to assess the 

advantage of applying SORS for the monitoring of drying. Partial least squares 

regression analysis is applied for the estimation of the solvent content based 

on SORS spectra. The effect of pre-processing, spectral range selection, and 

combining configurations in PLSR are also explored. 
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6.2 Depth of solvent signal detection using SORS 

SORS was applied to assess the depth through which the signal from a solvent 

can be detected underneath dry API as described in section 4.3.1. In this 

experiment, signals from ten thicknesses of paracetamol over an anisole-filled 

cuvette were collected. SORS and backscattering spectra were assessed to 

detect the anisole peak through each of the paracetamol thicknesses. Figure 

6.1 shows raw SORS spectra of the various depths of paracetamol over the 

anisole cuvette obtained from the 2 mm collection offset as an example, where 

paracetamol peaks can be seen. The inset in Figure 6.1 shows a zoom-in over 

the wavenumber range in which the change in peak intensity due to the signal 

from anisole around 1000 cm-1 might be seen. Nevertheless, baseline shifts 

prevent the clear visualisation of the change in solvent peak intensity. Those 

baseline shifts arise from the different travelling paths of photons in the raw 

spectra. Therefore, baseline subtraction was applied to the spectra.  

 

 

 

Figure 6.1. SORS spectra from 2 mm collection offset of 10 layer thicknesses of 
paracetamol over an anisole-filled cuvette. The inset shows a zoom-in on the 
wavenumber range including the anisole peak.  

 

Figure 6.2 shows a zoom-in on the spectra over the spectral range 960-1060 

cm-1 collected from the six offset distances for the 10 thicknesses following 

baseline correction. The anisole peak around 1002 cm-1 can visually be seen 

from a thickness of 1.2 mm for the 0 mm offset spectra, 1.2-2.4 mm for the 1-

A
n

is
o

le
 



 

129 
 

3 mm offset spectra and 1.2-3.6 mm for the 4-5 mm offset spectra. This figure 

shows an increase in anisole peak intensity as the thickness of the 

paracetamol layer decreases. The decrease in anisole peak intensity is not 

equal from all offsets.  

 

(a) (b) 

(c) (d) 

(e) 

 

(f)  

Figure 6.2. (a-f) correspond to 0-5 mm offset distances of SORS spectra of an 
anisole-filled cuvette underneath ten layers of paracetamol. 
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In order to assess the response from each of the offsets at the variable 

thicknesses, the anisole peak intensity at 1002 cm-1 seen in Figure 6.3 was 

divided by the neighbouring paracetamol peak intensity at 1020 cm-1 in spectra 

from the six detector offsets to assess the change in anisole peak intensity with 

reference to the paracetamol peak. Then the ratio for each offset was plotted 

at each of the thicknesses and is shown in Figure 6.3. In this figure, the ratios 

are larger at smaller depths and decrease gradually to reach a plateau, 

suggesting that the solvent signal is no longer detected at larger thicknesses. 

This allows the estimation of the limit of depth of the solvent signal detection. 

Observations from Figure 6.2 and Figure 6.3 indicate that a stronger solvent 

signal can be detected from larger offsets. This in turn indicated that there is a 

stronger contribution from the solvent in the signals collected from larger 

offsets. The curve in Figure 6.3 is flat beyond a depth of 1.2 mm for the 

backscattering spectra. This is increased to 3.6 mm for the 1 and 2 mm offsets, 

a depth of 4.8 mm for the 3 mm offset, and exceeds 6 mm for the 4 and 5 mm 

offsets. The difference in depths reached from each offset is attributed to the 

propensity of photons for lateral migration within the sample and then return 

back to the surface where the signal is collected.77 The larger depth reached 

by the larger offset distances observed in Figure 6.3 illustrates the advantage 

of using SORS for characterising the subsurface of non-homogeneous 

systems. 

 

Figure 6.3. The ratio of anisole peak at 1002 cm-1 to paracetamol peak at 1020 cm-1. 
Crosses are added to highlight the actual depth where the measurements were taken.  
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6.3  SORS for monitoring the solvent content during drying 

This section reports the results obtained using SORS for at-line monitoring of 

pharmaceutical drying. The SORS response is investigated for two particle 

size grades and two solvents as described in section 4.3.2. The two main 

sections of qualitative and quantitative analysis are further divided into two 

sections per the two grades used in these experiments, granular and powder. 

Two particle size grades and two solvents were tested in order to assess the 

SORS response in a range of possible API grade/solvent systems.  

The drying curves for the conducted runs are shown in Figure 6.4 for the four 

systems. Several drying runs of each of the systems were conducted in order 

to collect a dataset of spectra sufficiently representing the range of solvent 

content following de-liquoring. The drying curves of granular and powder 

paracetamol in anisole in Figure 6.4 (a) and (c) and in MTBE in Figure 6.4 (b) 

and (d) show that the drying of anisole starts with a higher solvent content in 

the drying cake and requires longer duration than that of MTBE. This is 

explained by the difference in boiling points of each of the solvent. Whereas 

anisole is a viscous solvent, MTBE is volatile and readily removable. Variations 

between the runs can also be seen in Figure 6.4. A smaller level of variation 

may be attributed to the inherent non-uniformity in the drying paracetamol. 

Some inconsistencies in the performance of the vacuum pumps have also led 

to the larger variation in the curves of the drying of paracetamol in anisole.  

A comparison between the drying curves shows that the drying of the powder 

grade requires a longer duration. The powder grade is characterised by a 

smaller particle size, where those particles can retain more of the solvent 

compared to the larger size and smaller surface area of the granular grade. 

This is also indicated by the solvent content at the beginning of drying, which 

is between 35-45% for the powder grade and 25-35% for the granular grade. 

Moreover, those particles could coalesce to form lumps of larger size that trap 

the solvent inside, thus requiring extended durations for drying.19 The 

qualitative analysis in the next section aims to assess the SORS response in 

those API grade/solvent combinations.  
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(a) Granular/anisole (b) Granular/MTBE 

(c) Powder/anisole   (d) Powder/MTBE 

Figure 6.4. Drying profile of multiple batches using granular paracetamol in (a) anisole 
and (b) MTBE, and powder paracetamol in (c) anisole and (d) MTBE. the point at 
which a sample is extracted and spectra are measured is indicated with a cross 
symbol.  

 

6.3.1 Qualitative analysis of SORS spectra 

This section is further divided into two sections reporting the results of the use 

of SORS to monitor the drying of granular and powder paracetamol in anisole 

and MTBE. 

 

6.3.1.1 Granular paracetamol systems 

Figure 6.5 and Figure 6.6 shows the raw spectra collected using the SORS 

probe over the wavenumber range 250-1750 cm-1 from each of the offsets 

during one of the drying of granular paracetamol in anisole and MTBE, 

respectively. While the overall decrease in signal intensity in the raw spectra 

was mitigated in the design of the SORS probe through employing multiple 
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collection fibres for the offset spectra, spectra collected from the largest offset 

of 5 mm (Figure 6.5 (e) and Figure 6.6 (e)), are of lower intensity compared to 

the smaller offset distances. This decrease in intensity is observed in SORS 

spectra as the collection offset distance increases as the light diffuses through 

the sample, where a lower intensity is measured at larger offset distances.77,78 

Variation in the baseline can be seen in the raw spectra, in addition to the 

variation in the intensity of solvent peaks; mainly at the anisole peak of 

strongest intensity at 1002 cm-1 in Figure 6.5 and MTBE peak around 730 cm-

1 in Figure 6.6; insets are provided to show a zoom-in on this change in 

intensity. Those baseline shifts are a result of the different paths of the photons 

that exit the excitation and travel through the sample before reaching the 

detector. Those paths are influenced by factors such as sample positioning 

and compactness.115,116 To eliminate the effect of those baseline shifts due to 

variations in the physical state of the sample and allow for clearer visualisation 

of the decrease in solvent peak intensity following the decrease in solvent 

content as the drying progresses, standard normal variate (SNV) pre-

processing was applied. This pre-processing method was selected considering 

its advantages of processing each sample spectrum independently without the 

need for a reference spectrum, such as what would be required in multiplicative 

signal correction formulae, and not requiring user-defined parameters as 

would be used for baseline correction. 92 

Raw SORS spectra shown in Figure 6.5 and Figure 6.6 following SNV pre-

processing are shown in Figure 6.7 and Figure 6.8, where the baseline shifts 

seen in the raw spectra were removed. As a result, the decrease in solvent 

peak intensity can be seen from all offsets as the zoomed-in insets on the 

solvent peaks show. For the pre-processed granular/MTBE spectra, the 

decrease in MTBE peak intensity also followed the decrease in solvent content 

as the drying progressed.  

The solvent peak intensity decrease seen in Figure 6.7 and Figure 6.8 may be 

similarly perceptible from all offset spectra, but results from the depth of solvent 

signal detection in the previous section 6.2 suggest otherwise. To enable the 
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comparison of the spectral response from the six offsets over the solvent 

content range, the Raman peak intensity of anisole at 1002 cm-1 was divided 

by that of the neighbouring paracetamol peak intensity at 1020 cm-1 shown in 

Figure 6.9 (a) while the Raman peak intensity of the MTBE peak at 730 cm-1 

was divided by the paracetamol peak intensity at 715 cm-1 and is shown in 

Figure 6.9 (b). A larger peak intensity ratio would indicate a stronger signal 

from the solvent. In Figure 6.9 (a), the peak intensity ratio for the solvent 

content range 5-20% is highest for the backscattering spectra, 0 mm offset, 

and lowest for the 5 mm offset distance. Over this solvent content range, the 

ratio decreases as the offset increases. On the contrary, over the solvent 

content range of 0-5%, the highest peak intensity ratio is obtained from the 5 

mm offset spectra while the lowest ratio is from the backscattering spectra. For 

the granular/MTBE system in Figure 6.9 (b), the ratio obtained from spectra 

collected is larger for larger offsets and is the largest for the 5 mm offset and 

lowest for the backscattering spectra. 

Despite the lower intensity obtained from the largest offset, seen in Figure 6.5 

and Figure 6.6, spectra from this offset seem to contain more contribution from 

the solvent in the signal. This suggests more sensitivity to the change in 

solvent content as the offset distance increases and agrees with the 

observations seen in the previous section 6.2 reporting the results for the depth 

of solvent signal detection. Spectra from each of the offset distances represent 

sample layers of variable depths as a result of the travelling of photons from 

deeper layers back to the surface of the sample.  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.5. SORS spectra collected using the SORS probe during the drying of 
granular paracetamol in anisole from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 
mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the main anisole 
peak. The legend shows the solvent content percentage (SC%) in each sample 
spectrum. The arrow in (a) points at the anisole peak of highest intensity. 
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(a)   (b)  

(c)  (d)   

(e)  (f)  

Figure 6.6. SORS spectra collected using the SORS probe during the drying of 
granular paracetamol in MTBE from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 
mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the main MTBE 
peak. The arrow in (a) points at the MTBE peak of highest intensity. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.7. SNV pre-processed SORS spectra (raw in Figure 6.5) collected during the 
drying of granular paracetamol in anisole from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 
mm, (e) 4 mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the 
main anisole peak. The arrow in (a) points at the anisole peak of highest intensity. 
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(a)  (b)  

(c)  (d)  

(e)   (f)  

Figure 6.8. SNV pre-processed SORS spectra (raw in Figure 6.6) collected during the 
drying of granular paracetamol in MTBE from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm, 
(e) 4 mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the main 
MTBE peak. The arrow in (a) points at the MTBE peak of highest intensity.  
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(a)  (b)  

Figure 6.9. (a) The ratio of the Raman peak intensity of anisole at 1002 cm-1 to the 
Raman peak intensity of paracetamol at 1020 cm-1 in spectra obtained during the 
drying of granular paracetamol in anisole. (b) The ratio of the Raman peak intensity 
of MTBE at 730 cm-1 to the Raman peak intensity of paracetamol at 715 cm-1 in 
spectra obtained during the drying of granular paracetamol in MTBE. 

 

 

6.3.1.2 Powder paracetamol systems 

Figure 6.10 and Figure 6.11 show an example of SORS spectra collected from 

one of the drying runs of powder paracetamol in anisole and MTBE, 

respectively. Similar to the observations from the granular/solvent systems, 

baseline shifts and solvent peak intensity variations can be seen in this figure. 

Here, the baseline shifts are larger than those seen in the granular systems. It 

was noted that lower signal intensity was obtained from the powder 

paracetamol systems compared to the larger granular paracetamol systems. 

Due to differing observations and conclusions regarding the effect of particle 

size on Raman intensity across reported literature, there is no consensus on 

the explanation of the relation between particle size and Raman intensity 

response, i.e. whether Raman intensity increases as the particle size 

increases.10,116-119 Those studies reported in literature link the particle size to 

Raman intensity, where powder particles are separated into size ranges 

through sieving in most cases. The particle diameter is then related to the 

change in Raman intensity. The use of particle size based on the diameter 

assumed from sieving does not take into account the morphology of a particle. 

A particle diameter may be representative of a spherical particle but would not 
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be representative of a long needle-shaped particle. Similarly, particles 

separated to size ranges through sieving might also be needle-shaped and 

could therefore fall through or get retained on a mesh based on the orientation 

of the particle. Nevertheless, it could be explained that the Raman intensity 

increases as the particle size increases as a result of the reduced diffuse 

reflectance in larger particles compared to smaller particles, which means that 

a smaller volume of a sample (of small particle size) would be captured in the 

Raman signal.118  

The powder paracetamol systems were more affected by the decrease in 

signal intensity in SORS spectra from the larger offset distances, most notably 

those collected from the 5 mm offset compared to the 0 mm offset. Spectra 

collected from the 1 mm offset also have lower intensity compared to that seen 

from the granular paracetamol system in Figure 6.5 and Figure 6.6. This can 

similarly be attributed to the diffusion of light between the particles upon 

contact with this particulate sample.118 The variation in peak intensity can be 

visually seen in the insets in Figure 6.10 and Figure 6.11 of the anisole and 

MTBE, respectively. To remove the baseline shifts resulting from the physical 

differences between the samples, SNV pre-processing was applied to spectra 

from both systems. This pre-processing also helps to better illustrate the 

decrease in solvent peak intensity as the drying progresses as shown in Figure 

6.12 and Figure 6.13, where a clear decrease in solvent peak intensity can be 

seen through the zoomed-in inset of both solvent peaks.  

To enable the comparison of the spectral response from the six offsets over 

the solvent content range, the same steps followed for the granular systems 

were carried out for the powder systems. The Raman peak intensity of anisole 

at 1002 cm-1 was divided by that of the neighbouring paracetamol peak 

intensity at 1020 cm-1 indicated with an arrow in Figure 6.14 (a) while the 

Raman peak intensity of the MTBE peak at 730 cm-1 was divided by the 

paracetamol peak intensity at 715 cm-1 and is indicated with an arrow in Figure 

6.14 (b). Despite the difference in Raman intensity seen from the two 

paracetamol grades, larger peak ratios were seen from the larger offsets over 

the solvent content range of 0-5% in the powder/anisole system and over 0-
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15% in the powder/MTBE system, indicating stronger solvent contribution in 

the signal.  

The sensitivity in SORS signal response to the change in solvent content in 

both paracetamol grades and solvents suggests that those spectra may also 

prove to be advantageous when used to estimate the solvent content during 

drying. The results of the quantitative analysis are reported in the following 

section. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.10. SORS spectra collected using the SORS probe during the drying of 
powder paracetamol in anisole from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 
mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the main anisole 
peak. The arrow in (a) points at the anisole peak of highest intensity. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.11. SORS spectra collected using the SORS probe during the drying of 
powder paracetamol in MTBE from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 
mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the main MTBE 
peak. Arrow in (a) and (e) points at the MTBE peak of highest intensity. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.12. SNV pre-processed SORS spectra (raw in Figure 6.5) collected during 
the drying of powder paracetamol in anisole from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 
mm, (e) 4 mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the 
main anisole peak. The arrow in (a) points at the anisole peak of highest intensity. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.13. SNV pre-processed SORS spectra (raw in Figure 6.6) collected during 
the drying of granular paracetamol in MTBE from (a) 0 mm, (b) 1 mm, (c) 2 mm, (d) 3 
mm, (e) 4 mm, and (e) 5 mm offset distances. Insets show a zoomed-in view of the 
main MTBE peak. The arrow in (a) points at the MTBE peak of highest intensity. 
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(a)  (b)  

Figure 6.14. (a) The ratio of the Raman peak intensity of anisole at 1002 cm-1 to the 
Raman peak intensity of paracetamol at 1020 cm-1 in spectra obtained during the 
drying of powder paracetamol in anisole. (b) The ratio of the Raman peak intensity of 
MTBE at 730 cm-1 to the Raman peak intensity of paracetamol at 715 cm-1 in spectra 
obtained during the drying of powder paracetamol in MTBE. 

 

 

6.3.2 Quantitative analysis of SORS spectra 

Partial least squares regression (PLSR) analysis was utilised for the 

quantitative analysis for the estimation of the solvent content throughout drying 

using SORS spectra collected during the process. PLSR analysis was applied 

using spectra collected from all runs for each of the offset distances, where 

those are compared to the 0 mm offset/backscattering spectra over the full 

wavenumber range 250-1750 cm-1 as a benchmark. This analysis was 

conducted to investigate the model performance of the different offset distance 

spectra, spectral range, and the effect of pre-processing SORS spectra. SORS 

spectra from multiple configurations are also combined in PLSR analysis to 

investigate the possibility of enriching the models to obtain more accurate 

solvent content estimations.  
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6.3.2.1 Granular paracetamol systems 

PLSR models were constructed using the raw and pre-processed SORS 

spectra collected from the drying of granular paracetamol. The number of 

latent variables (LVs) sufficient to describe each of the PLSR models 

constructed using the SORS spectra was selected after assessing the root 

mean square error of cross-validation (RMSECV) shown in Figure 5.12 (a) for 

the granular/anisole system and Figure 5.12 (b) for the granular/MTBE system 

for raw and pre-processed spectra. The latent variable at which the curve 

displays a plateau or the lowest RMSECV is selected to represent the variance 

within the model. For spectra collected from this two-component system, a 

minimum of two latent variables is expected to represent the two components.  

Figure 6.15 (a) shows a sharp decrease in the RMSECV after the first two LVs 

for PLSR models of the raw spectra of 0-2 mm offset distances suggesting that 

the majority of variation is captured by those two LVs, while the decrease is 

less sharp for RMSECV curves of PLSR models of 3-5 mm offset distance 

spectra. Moreover, the RMSECV curves gradually decrease overall as the 

offset increases from 0 to 5 mm. Following SNV pre-processing, the level of 

RMSECV is lower than that of the raw spectra, in addition to less fluctuation in 

the curves after the plateau. There are less differences between the RMSECV 

curves of the pre-processed SORS spectra compared to the raw spectra. This 

suggests that the differences eliminated through SNV pre-processing were 

due to physical differences in the filter cake and that spectra from each of the 

SORS offsets could contain different amounts of variation in relation to the 

solvent content. For RMSECV of the granular/MTBE system in Figure 6.15 (b), 

the decrease is gradual from the first to the fourth LV in PLSR of raw spectra. 

For pre-processed granular-MTBE spectra, the curves are the decrease is 

sharp from the first to the second LV and where the RMSECV curves show 

subtle differences indicating that the majority of the variation is captured in the 

first two LVs. Since PLSR relies on maximising the covariance between the 

spectra and the reference values, the solvent content, comparison of Figure 

6.15 (a) and (b) suggests a higher level of variation in the raw SORS spectra 

in the granular/anisole system compared to the granular/MTBE.  
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(a)  (b)  

Figure 6.15. RMSECV of PLSR models constructed from raw (solid) and SNV pre-
processed spectra (dashed) from 0-5 mm collected from granular paracetamol in (a) 
anisole and (b) MTBE.  

 

Table 6.1 shows a summary of PLSR models selected based on the RMSECV 

curves in Figure 6.15. For PLSR models of the raw granular/anisole spectra, 

the RMSECV decreases as the offset distance increases to 4 mm, where it is 

reduced by half compared to the PLSR model of the 0 mm spectra and 

increases slightly for the PLSR model of the 5 mm spectra compared to the 

PLSR model of the 4 mm spectra. The values of the coefficient of 

determination, R2, increase as the offset distance increases to 4 mm and 

suggest that PLSR models of the raw spectra of 4 mm offset distance show 

the most correlation to the solvent content. A similar trend to the RMSECV is 

seen for the RMSEP values, which are slightly higher than the RMSECV apart 

from the 0 mm spectra, indicating the representativeness of the calibration set 

spectra of the system and the robust performance of the PLSR calibration 

models. The larger RMSEP values may be attributed to some physical 

variation in the test set samples that were not captured in the calibration set. 

Following the SNV pre-processing, the RMSECV decreases as the offset 

distance increases and is 50% lower in the PLSR model of the 4 mm spectra. 

Similarly, the RMSEP also decreases as the offset distance increases. Here, 

the PLSR model of the 5 mm spectra shows similar performance to that of the 

4 mm spectra. This also suggests that the pre-processing step was more 

critical to the spectra of lower signal intensity, as was seen in Figure 6.5 (f). 
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Here, the RMSEP is at a level similar to or lower than that of the RMSECV, 

confirming that the variation not included in the raw test set was not related to 

the solvent content but to physical differences between the samples. This is 

further supported by the lower number of LVs describing this model and the 

rise in R2 values following pre-processing as the non-linear changes in spectra 

are removed before applying.  

For the granular/MTBE PLSR results in Table 6.1, the RMSECV also 

decreases as the offset distance increases up to 4 mm, while the R2 values 

increase. The RMSEP also decreases as the offset distance increases and is 

at a similar level to the RMSECV. This shows that the PLSR calibration models 

were reliable in predicting the solvent content in the test set. For the PLSR 

models of the granular/MTBE SNV pre-processed spectra, the RMSECV and 

RMSEP are lower compared to the raw spectra. However, the performance of 

PLSR for all offset spectra from each of the offsets is similar. The decrease 

from variable levels of the RMSECV and RMSEP in the raw granular/MTBE 

spectra to similar levels in the pre-processed spectra suggests that spectra 

from larger offsets carried less non-solvent related variation compared to the 

smaller offset spectra as the PLSR models of those spectra had lower error 

compared to the larger offset spectra.  
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Table 6.1. Summary of PLSR model performance of raw and SNV pre-processed 
spectra of granular paracetamol in anisole and MTBE from each of the offsets. 
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Raw SNV Pre-processed 
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mm 
LV 
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RMSE
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R2 LV 
RMSE
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RMSE
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R2 
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n
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0 3 2.22 1.47 0.78 3 1.07 0.76 0.95 

1 3 1.93 2.32 0.83 2 0.98 0.93 0.96 

2 4 1.95 2.54 0.83 3 0.85 0.76 0.97 

3 5 1.57 2.02 0.89 4 0.71 0.63 0.98 

4 5 1.14 1.28 0.94 4 0.65 0.58 0.98 

5 4 1.38 2.23 0.91 5 0.64 0.55 0.98 

G
ra

n
u

la
r/

M
T

B
E

 0 4 1.54 1.67 0.85 3 0.97 1.18 0.94 

1 4 1.55 1.44 0.85 3 0.84 0.90 0.96 

2 4 1.37 1.22 0.89 2 0.92 0.88 0.95 

3 4 1.35 1.25 0.89 2 0.98 0.93 0.94 

4 4 1.25 1.08 0.90 3 0.94 0.88 0.95 

5 4 1.31 1.34 0.89 3 0.94 0.96 0.95 

 

Looking further into the performance of the PLSR models of those offset 

spectra from the granular/anisole system, the regression and residuals plots 

are shown in Figure 6.16 (a-b) of the PLSR models corresponding to the 0 mm 

offset spectra and Figure 6.16 (c-d) of the 4 mm offset spectra. Comparison 

between Figure 6.16 (a) and (c) shows that the predicted solvent content 

values over the entire solvent content range are closer to the reference line; 

this is also seen when comparing Figure 6.16 (b) and (d). This shows that, in 

addition to more accurate predictions obtained from the 4 mm spectra, the 

error is consistently lower over the entire solvent content range.  
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(a)  (b) 

(c)  (d)  

Figure 6.16. Regression and residuals plots of PLSR models constructed from (a-b) 
0 mm, (c-d) 4 mm SNV pre-processed granular/anisole spectra over 250-1750 cm-1. 

 

The scores and loadings of the PLSR models for each of the SORS offset 

distances were also assessed to investigate the PLSR model performance of 

the larger offset distance spectra, where figures 0 mm and 4 mm offset 

distance spectra will be shown for comparison. The loadings curves were 

compared to the two pure component spectra as shown in Figure 6.17 of the 

loadings of the three LVs from the SNV pre-processed 0 mm spectra of the 

granular/anisole system. In Figure 6.17, the loadings curve of LV1 shows 

peaks corresponding to the paracetamol spectrum and a small peak 

corresponding to the strong anisole peak at 1002 cm-1. The loading curve of 

LV2 shows all peaks corresponding to those of anisole. LV3 shows some 

peaks corresponding to anisole around 790 and 1002 cm-1, and to paracetamol 

at the spectral range over 1100 cm-1. Those loadings curves suggest that LVs 

2-3 contain most of the variance related to the solvent content. Also, the scores 

were plotted against the reference solvent content values to investigate the 

relation to them as shown in Figure 6.17. The trend in the scores of LV2 shows 
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a relation to the solvent content. Similarly, for PLSR models of the SNV pre-

processed 4 mm spectra in Figure 6.18, the loadings curve of LV1 includes 

peaks corresponding to those seen in the paracetamol spectra and a small 

peak corresponding to the strong anisole peak. The loadings curve of LV2 all 

peaks corresponding to those in the anisole spectra. Scores of LV2 of the 4 

mm spectra also show a relation to the solvent content. LV3 loadings contain 

peaks of both paracetamol and anisole, while the scores suggest some relation 

to the solvent content. The loadings curve and scores of LV4 show no clear 

correlation to either component but could capture some systematic variation. 

The systematic improvement in PLSR model performance seen in Table 6.1 

and Figure 6.16 as the offset distance increases can be attributed to the 

increase in the volume of the sample probed by the larger offsets as was 

demonstrated in section 6.2.  
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 (a)  (b)  

 (c)  (d)  

 (e)  (f)  

Figure 6.17. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2, (e) loadings and (f) scores of LV3 of the PLSR model of the 0 mm offset SNV 
pre-processed spectra from the granular/anisole system. Curves of the paracetamol 
and anisole are also plotted with the loadings for reference. 
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 (a)  (b)  

 (c)  (d)  

 (e)  (f)  

 (g)  (h)  

Figure 6.18. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2, (e) loadings and (f) scores of LV3, (g) loadings and (h) scores of LV4 of the 
PLSR model of the 4 mm offset SNV pre-processed spectra from the granular/anisole 
system. Curves of the paracetamol and anisole are also plotted with the loadings for 
reference. 

 

 



 

155 
 

To further investigate the improvement in the PLSR performance of SORS 

spectra of the granular/anisole system as the offset increases, the percentage 

of variance captured by the PLSR model of 0 mm and 4 mm spectra is shown 

in Table 6.2. The variance captured by PLSR of the granular/anisole spectra 

of 0 mm adds up to 98.07%, of which 47.63% show relation to the solvent 

content as seen from the scores and loadings of LV2-3 in Figure 6.17. For the 

granular/anisole 4 mm spectra, the sum of variance captured is 99.36%, of 

which 48.87% is related to the solvent content as seen from the loading curves 

in Figure 6.18. 

 

Table 6.2. Percentages of variance captured in PLSR models SORS spectra from 0 
and 4 mm of granular paracetamol in anisole system. 

Offset distance/mm 0 4 

LV Variance in LV/% 

1 50.44 50.40 
2 47.17 47.33 
3 0.46 1.54 
4 - 0.08 

Sum of variance related to the 
solvent 

47.63 48.87 

Sum of variance 98.07 99.36 
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In the granular/MTBE system, the performance of PLSR models of the SNV 

pre-processed spectra was found to be similar as the RMSECV was between 

0.84% and 0.97%, the R2 between 0.94 and 0.96, and the RMSEP between 

0.88% and 1.18%. To investigate the performance of the PLSR models, 

models of the 0 mm, 1 mm, and 4 mm offset SNV pre-processed spectra will 

be compared, where the PLSR model of the 0 mm SNV pre-processed offset 

spectra is a benchmark, and the PLSR model of the 1 mm offset SNV pre-

processed spectra shows the lowest RMSECV of 0.84%. The PLSR model of 

the 4 mm offset raw spectra had the lowest RMSECV and RMSEP, but the 

PLSR model of the SNV pre-processed spectra of the same offset shows 

improved performance that is similar to the other offsets. Therefore, the PLSR 

model of the 4 mm SNV pre-processed spectra will also be investigated.  

The regression and residuals plots for the 0 mm spectra from the 

granular/MTBE system are shown in Figure 6.19 (a-b), while those of the 1 

mm and 4 mm spectra are in Figure 6.19 (c-d) and Figure 6.19 (e-f), 

respectively. The distribution of the points around the fitted line is largely 

similar since the RMSECV of the 1 mm and 4 mm spectra are 0.84% and 0.94 

respectively while the RMSEP are 0.88% and 0.90% compared to those of the 

0 mm offset, which shows similar RMSECV of 0.97% and RMSEP of 1.18%. 

Despite the similarity seen in those regression and residuals plots, systematic 

improvement can be seen as the markers are seen closer to the reference line. 

Comparing the regression plots of PLSR models of 1 mm and 4 mm offset 

spectra, the estimated solvent content is closer to the actual solvent content in 

the solvent content range of 0-5% for the PLSR model of the 1 mm offset 

spectra, and the estimated solvent content is closer to the actual solvent 

content in the range of 5-20% for the PLSR model of the 4 mm offset spectra. 

This shows that the minor difference between the PLSR performance of 

spectra from the offsets may be due to the differences in performance of 

predicting the solvent content over different solvent content ranges. This in 

turn could be related to the depth of the sample reached from each of the 

offsets.  
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(a)  (b)  

 

(c) (d) 

(e)  (f)  

Figure 6.19. Regression and residuals plot of PLSR models constructed from (a-b) 0 
mm, (c-d) 1 mm, and (e-f) 4 mm SNV pre-processed granular/MTBE spectra over 
250-1750 cm-1. 

 

For the granular/MTBE system, the scores and loadings in Figure 6.20, Figure 

6.21, and Figure 6.22 of the three LVs of the PLSR model of 0, 1, and 4 mm 

offset SNV pre-processed spectra, respectively, show the correlation of LV1 

with paracetamol and LV2 with MTBE, while LV3 can be correlated to both 

system components as indicated by the loadings curve. The similarity between 

the figures reflects the close values of RMSECV and RMSEP seen in Table 

6.1. Only small differences are seen in the scores of the LVs between the 

figures corresponding to each of the SORS offsets. 
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(a)   (b)  

(c)   (d)  

(e)  (f)  

Figure 6.20. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2, (e) loadings and (f) scores of LV3 of the PLSR model of the 0 mm offset SNV 
pre-processed spectra from the granular/MTBE system. Curves of the paracetamol 
and MTBE are also plotted with the loadings for reference. 
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(a)   (b)  

(c)   (d)  

 (e)  (f)  

Figure 6.21. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2, (e) loadings and (f) scores of LV3 of the PLSR model of the 1 mm offset SNV 
pre-processed spectra from the granular/MTBE system. Curves of the paracetamol 
and MTBE are also plotted with the loadings for reference. 
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(a)   (b)  

(c) (d)  

 (e)  (f)  

Figure 6.22. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2, (e) loadings and (f) scores of LV3 of the PLSR model of the 4 mm offset SNV 
pre-processed spectra from the granular/MTBE system. Curves of the paracetamol 
and MTBE are also plotted with the loadings for reference. 
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Table 6.3 shows the percentage of variance captured by PLSR models of 0, 1 

and 4 mm for further assessment of the improvement in PLSR performance of 

SORS spectra of the granular/MTBE system as the offset increases. PLSR 

model of SORS spectra of 1 mm from the granular/MTBE system shows the 

largest total sum of variance (98.51%), and variance related to the solvent 

content from LV2-3 (38.90%) compared to both 0 and 4 mm spectra. The 

higher percentage of variance related to the solvent content captured in the 

PLSR model of spectra from the 4 mm offset compared to the 0 mm spectra 

can explain the lower error seen with the 1 mm and 4 mm spectra.  

 

Table 6.3. Percentages of variance captured in PLSR models SORS spectra from 0 
and 4 mm of granular/anisole and 0, 1, and 4 mm of the granular/MTBE system. 

Offset distance/mm 0 1 4 

LV Variance in LV/% 

1 59.69 59.61 59.61 
2 38.19 38.56 38.25 
3 0.42 0.34 0.35 

Sum of variance related to 
the solvent 

38.19 38.90 38.60 

Sum of variance 98.23 98.51 98.20 

 

Observations from the PLSR model performance of raw spectra of granular 

paracetamol in both anisole and MTBE in Table 6.1 show that lower RMSECV 

is seen as the offset distance increases. This decrease in RMSECV as the 

offset distance increases is maintained for the PLSR models of SNV pre-

processed spectra of granular paracetamol in anisole, while the SNV pre-

processed spectra of granular paracetamol in MTBE from all offsets perform 

similarly. Nevertheless, the PLSR models of SNV pre-processed 1 mm and 4 

mm spectra from the granular/MTBE system were found to capture a larger 

percentage of variance related to the solvent content. The differences between 

SORS response in the two systems may be related to the signal obtained from 

each of the solvents, where the anisole spectrum includes a strong intensity 

peak with minimal overlap with paracetamol peaks, while the MTBE spectrum 

includes a peak that overlaps with paracetamol peaks.  
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Further evaluation of the estimation is done through the comparison of the 

drying profiles obtained from the reference LOD measurement of one of the 

runs, previously shown in Figure 6.4, and from the estimations of the PLSR 

models of SORS spectra of granular paracetamol in anisole and MTBE as 

shown in Figure 6.23. The drying profiles obtained through estimations from 

both solvent systems are similar to those obtained through the reference LOD 

method. It can be noted in Figure 6.23 (a) that the estimations from the PLSR 

model of the 0 mm offset spectra are consistently higher or lower than the 

reference LOD measurements, whereas the estimations from the 4 mm offset 

distance are closer to the reference value. Although the estimations in Figure 

6.23 (b) follow a similar trend to that of the reference measurement, it can be 

noted that the each of the curves from each of PLSR models estimations is 

closer to other estimates compared to LOD curve. This may be contributed to 

errors arising from the reference LOD method or the SORS measurements as 

discussed in section 5.3.2.1.2. 

 

(a) 

 

(b)  

Figure 6.23. Solvent content from LOD and estimates from PLSR models of SNV pre-

processed SORS spectra of 0, 1, and 4 mm collection offsets from the (a) 

granular/anisole and (b) granular/MTBE systems. 
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6.3.2.2 Powder paracetamol systems 

PLSR models were constructed based on raw and SNV pre-processed spectra 

collected during the drying of powder paracetamol. The number of latent 

variables was selected after assessing the RMSECV curves shown in Figure 

6.24 (a) for the powder/anisole system and Figure 6.24 (b) for the power/MTBE 

system. The RMSECV curves of raw powder/anisole spectra in Figure 6.24 (a) 

show a sharp decrease in RMSECV for 0-3 mm offsets compared to 4-5 mm, 

which decreases gradually suggesting that the variance in the 0-3 mm models 

is captured in fewer LVs. Following pre-processing, the overall level of 

RMSECV is lower, where the RMSECV curve of spectra from 5 mm offsets is 

the lowest among the other SORS spectra. The larger differences between the 

RMSECV curves of PLSR models of the raw spectra in Figure 6.24 (a) 

compared to the curves of the SNV pre-processed spectra can be related to 

the physical differences captured in the sample spectra and eliminated through 

pre-processing. The RMSECV curves of raw spectra from the powder/MTBE 

system in Figure 6.24 (b) show a narrow variation between the RMSECV 

curves of the PLSR model so of the offset spectra, which is further narrowed 

following SNV pre-processing.  

 

(a)  (b)  

Figure 6.24. RMSECV of PLSR models constructed from raw (solid) and SNV pre-
processed spectra (dashed) from 0-5 mm collected from powder paracetamol in (a) 
anisole and (b) MTBE.  
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Following the determination of the optimal number of LVs, characterised by 

the lowest RMSECV, after which the curves plateau, those calibration models 

were then used to predict the solvent content values of the test set for spectra 

of each of the offsets. A summary of the performance of the PLSR models is 

presented in Table 6.4. For the raw powder/anisole spectra, the RMSECV 

values are the lowest for PLSR models of 0 and 4 mm offset distances, with 

close R2 values. This suggests a similar performance from PLSR models of 

those offset spectra. The PLSR models of the raw spectra from the offset 

distances 1-2 mm and 5 mm perform similarly and show higher RMSECV and 

lower R2 compared to PLSR models of the 0 mm and 4 mm offset spectra, 

while the PLSR model of the 3 mm offset spectra shows the highest RMSECV. 

For all PLSR models of raw powder/anisole spectra, the RMSEP is higher 

compared to the RMSECV indicating additional variation in the test set that 

was not captured in the calibration sets. The PLSR models of the SNV pre-

processed spectra show a decrease in the RMSECV compared to the raw 

spectra, which is attributed to the removal of physical effects from those 

spectra. A similar performance is seen between the PLSR models of the SNV 

pre-processed offset spectra, with a small decrease in the RMSECV as the 

offset distance increases to 4 mm then slightly increases for the 5 mm offset 

spectra. The R2 values suggest a similarly linear response from all SNV pre-

processed offset spectra. The RMSEP of the models of the pre-processed 

spectra is comparably higher than the RMSECV. This indicates that the 

scattering effect removed by SNV pre-processing was the cause of the higher 

RMSEP values seen in the models of the raw spectra.  

For the PLSR models of the raw powder/MTBE spectra, the RMSECV 

decreases as the offset distance increases to 4 mm and increases for the 5 

mm offset distance. The R2 values increase as the offset distance increases 

indicating a slight increase in the variation explained by the PLSR models of 

the larger offset spectra. The RMSEP values of the PLSR models of the raw 

powder/MTBE spectra are comparable to the RMSECV, indicating that the 

calibration set sufficiently represents the dataset. The PLSR models of the 

SNV pre-processed powder/MTBE spectra show similar values of RMSECV, 
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with the lowest RMSECV being that of the PLSR model of the 4 mm offset 

spectra, which has the highest R2 along with the PLSR model of the 1 mm 

offset spectra. The RMSEP values of the PLSR models of the SNV pre-

processed spectra are also comparable and are the lowest for the PLSR 

models of the 4 mm offset spectra. The slight increase in RMSECV and 

RMSEP of the PLSR model of the 5 mm offset spectra can be attributed to the 

lower signal intensity seen for this offset.  

 

Table 6.4. Summary of PLSR model performance of raw and SNV pre-processed 
spectra of powder paracetamol in anisole and MTBE from each of the offsets. 

G
ra

d
e
/S

o
lv

e
n

t Pre-
processi

ng 
Raw SNV Pre-processed 

Offset 
distance/

mm 
LV 

RMSE
CV/% 

RMSE
P/% 

R2 LV 
RMSE
CV/% 

RMSE
P/% 

R2 

P
o

w
d

e
r/

A
n

is
o

le
 

0 3 1.59 3.23 0.93 2 1.14 1.34 0.97 

1 3 2.23 3.67 0.87 4 1.18 1.53 0.96 

2 3 2.40 3.99 0.85 4 1.13 1.60 0.97 

3 2 2.96 6.02 0.77 5 1.00 1.79 0.97 

4 6 1.71 4.50 0.92 5 0.78 1.93 0.98 

5 6 2.31 3.32 0.87 4 1.09 1.79 0.97 

P
o

w
d

e
r/

M
T

B
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 0 4 1.93 1.46 0.84 3 0.92 0.55 0.96 

1 3 2.05 1.53 0.83 3 0.86 0.61 0.97 

2 3 1.65 1.10 0.88 3 0.90 0.77 0.96 

3 3 1.45 1.07 0.91 3 1.01 0.73 0.95 

4 3 1.24 1.32 0.93 4 0.77 0.48 0.97 

5 3 1.59 1.18 0.89 4 0.91 0.60 0.96 

 

To investigate the differences between the PLSR model of the offset showing 

improved performance compared to the 0 mm offsets as a benchmark, the 

regression and residuals plots of the PLSR models of spectra from 0 and 4 

mm offsets of the powder/anisole system are shown in Figure 6.25 (a-b) and 

(c-d), respectively. Comparing Figure 6.25 (a) and (c) show a similar 

distribution of the calibration set points around the reference line in PLSR 

models of both 0 and 4 mm offset spectra over the entire solvent content range. 
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However, the test set points are more uniformly distributed in Figure 6.25 (a). 

This is similarly seen in Figure 6.25 (b) and (d). 

 

(a)  (b)  

(c)   (d)  

Figure 6.25. Regression and residuals plot of PLSR models constructed from (a-b) 0 
mm, (c-d) 4 mm SNV pre-processed powder/anisole spectra over 250-1750 cm-1. 

 

To further investigate the PLSR model performance, the loadings and scores 

of the PLSR model corresponding to SNV pre-processed SORS spectra from 

0 mm and 4 mm offsets of the powder/anisole and powder/MTBE systems 

were also assessed. The loadings and scores of the two latent variables 

capturing the variance of the 0 mm offset spectra from the powder/anisole 

system are shown in Figure 6.26. The loadings curves suggest that LV1 is 

correlated with paracetamol while the scores do not show a clear trend related 

to the increase in solvent content. The loading of LV2 is similar to the anisole 

spectrum suggesting that this LV captured variance related to the solvent 

content, while the scores show a clear trend of increase as the solvent content 

increases. For the powder/anisole PLSR model of SORS spectra from 4 mm, 
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5 LVs capture the variance from the system. The first two LVs can be 

correlated to paracetamol and anisole, respectively, as was seen from the 0 

mm offset PLSR. However, for this offset, 3 more latent variables were needed 

to capture the variance. Loadings of LVs 2-4 show a correlation to anisole and 

the scores of LV3 increase as the solvent content increases in those figures. 

Loadings and scores of LV5 do not show a clear correlation to either 

component. Compared to the PLSR model of 0 mm offset spectra, the PLSR 

model of the 4 mm offset spectra includes three additional latent variables, two 

of which include variance related to the solvent content as suggested by the 

loadings and scores.  

 

(a)   (b)  

(c)  (d)  

Figure 6.26. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2 of the PLSR model of the 0 mm offset SNV pre-processed spectra from the 
powder/anisole system. Curves of the paracetamol and anisole are also plotted with 
the loadings for reference. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g) (h)  

(i)  (j)  

Figure 6.27. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2 of the PLSR model of the 4 mm offset SNV pre-processed spectra from the 
powder/anisole system.   
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A comparison of the variance captured by the 0 mm and 4 mm offsets of the 

SNV pre-processed SORS spectra is shown in Table 6.5. The percentage 

related to the solvent content is higher for the 4 mm spectra compared to the 

0 mm spectra from the powder/anisole system; Nevertheless, the total sum of 

the percentage of variance captured in the models of spectra from the larger 

offsets is higher compared to that of the 0 mm offset spectra in both systems. 

Therefore, the improvement in the PLSR performance of SORS spectra from 

the 4 mm offset may be attributed to the larger percentage of variance captured 

in those models compared to the conventional 0 mm spectra.  

 

Table 6.5. Percentages of variance captured in PLSR models SORS spectra from 0 
and 4 mm of powder/anisole system. 

Offset distance/mm 0 4 

LV Variance in LV/% 

1 45.32 46.03 
2 53.05 48.24 
3 - 3.30 
4 - 1.68 
5 - 0.21 

Sum of variance related to 
the solvent 

53.05 53.21 

Sum of variance 98.36 99.45 
 

 

The regression and residuals plots of PLSR models of spectra from 0 and 4 

mm offsets of the powder/MTBE system are shown in Figure 6.28 (a-b) and 

(c-d), respectively. The improvement seen in Figure 6.28 (c-d) of the 4 mm 

spectra is the lower error over the solvent content range as compared to Figure 

6.28 (a-b) of the 0 mm spectra PLSR model which displays a higher error over 

the solvent content range 10-20%. This may be attributed to the lower number 

of sample spectra representing the solvent content range. The observation 

from the PLSR model of the 4 mm spectra suggests that those could estimate 

the solvent content more accurately over the solvent content range.  
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 (a)   (b)  

(c)   (d)  

Figure 6.28. Regression and residuals plot of PLSR models constructed from (a-b) 0 
mm, (c-d) 4 mm SNV pre-processed powder/MTBE spectra over 250-1750 cm-1. 

 

The loadings and scores of the three LVs capturing the variance of the 0 mm 

offset spectra of the powder/MTBE system are shown in Figure 6.29. The 

loadings curve of LV1 shows a correlation to paracetamol while the scores look 

to decrease as the solvent content decreases. The loadings of LV2 show 

peaks corresponding to MTBE and the scores increase as the solvent content 

increases. Loadings of LV3 show peaks corresponding to both MTBE, at 730 

cm-1, and paracetamol over the full wavenumber range. The loadings and 

scores of the four LVs of PLSR of the 4 mm spectra from the powder/MTBE 

system are shown in Figure 6.30. LV1-2 show a similar trend to the 0 mm 

spectra. Loadings of LV3 show peaks from both paracetamol, at the 

wavelength range 250-1000 cm-1, and MTBE at 730 cm-1 suggesting a 

contribution from both components. Compared to the PLSR model of 0 mm 

offset spectra, the PLSR model of the 4 mm offset spectra includes an 

additional latent variable capturing solvent-related information.  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.29. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2 of the PLSR model of the 0 mm offset SNV pre-processed spectra from the 
powder/MTBE system. Curves of the paracetamol and MTBE are also plotted with the 
loadings as a reference. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Figure 6.30. (a) loadings and (b) scores plots of LV1, (c) loadings and (d) scores of 
LV2 of the PLSR model of the 4 mm offset SNV pre-processed spectra from the 
powder/MTBE system. Curves of the paracetamol and MTBE are also plotted with the 
loadings as a reference. 
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A comparison of the variance captured by the 0 mm and 4 mm offsets of the 

SNV pre-processed SORS spectra is shown in Table 6.6. The percentage 

related to the solvent content is higher for the PLSR model of the 0 mm spectra 

compared to the 4 mm spectra from the powder/MTBE system. The smaller 

difference in percentage seen between the variance captured by the PLSR 

model of the powder/MTBE systems explains the similarity in the level of error 

obtained from those offset spectra. 

 

Table 6.6. Percentages of variance captured in PLSR models SORS spectra from 0 
and 4 mm of powder/anisole and the powder/MTBE system. 

Offset distance/mm 0 4 

LV Variance in LV/% 

1 68.68 69.14 
2 29.16 29.49 
3 1.28 0.50 
4 - 0.31 

Sum of variance related to 
the solvent 

30.44 30.30 

Sum of variance 99.12 99.44 

 

In the granular/solvent systems, an improvement in PLSR model performance 

was seen as a reduced RMSECV and increased R2 as the collection offset 

distance increased. In the power/solvent systems, slight improvement could 

be seen for some of the offset spectra. The differences in the performance of 

the PLSR models of spectra from the four systems can be attributed to the 

variation in signal between the paracetamol grades, where higher signal 

intensity is seen from the granular paracetamol, and the signal obtained from 

the solvents, where anisole spectra feature a strong intensity peak while the 

main MTBE peak overlaps with a paracetamol peak. Further analysis is 

reported in the following section to investigate the observations and enable a 

general conclusion regarding both of the paracetamol/solvent systems.  
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6.3.2.3 The effect of wavenumber ranges on PLSR performance 

PLSR models were constructed using smaller wavenumber ranges using the 

granular/anisole and granular/MTBE SORS datasets to evaluate the effect of 

wavenumber selection on PLSR model performance from the SORS offsets. 

This would further enable supporting conclusions based on observations from 

the analysis in sections 6.3.2.1 and 6.3.2.2.  

 

6.3.2.3.1 PLSR using select wavenumber ranges in the granular/anisole 

spectra 

In addition to the full wavenumber range of 250-1750 cm-1, with which the 

analysis in the previous section was done, four wavenumber ranges were 

selected. The four wavenumber ranges are 985-1015, 960-1040, 750-850, and 

400-500 cm-1. The wavenumber range 985-1015 cm-1 includes the strong 

anisole peak around 1002 cm-1 and was selected so as to eliminate sources 

of variation that might be introduced when using the full spectral range in the 

PLSR analysis. The wavenumber range 960-1040 cm-1 was chosen in order 

to include a peak of paracetamol in addition to that of the anisole peak, 

representing an intermediate between the full wavenumber range and 985-

1015 cm-1. Wavenumber range 750-850 cm-1 includes an anisole peak with 

strong intensity but overlapping with a paracetamol peak, while the range 400-

500 cm-1 includes a non-overlapping anisole peak of small intensity. These two 

wavenumber ranges were selected to gain more insight into whether the 

solvent-API peak overlap or signal intensity would have more impact on the 

PLSR performance. 

Figure 6.31 shows the RMSECV and RMSEP values for the PLSR models of 

spectra over the wavenumber ranges described earlier, plotted against each 

of the offsets. The RMSECV and RMSEP of the PLSR models of the 

wavenumber range overall follow the same trend as they decrease with offset 

increases up to 4 mm. The wavenumber ranges 250-1750, 960-1040, 985-

1015, and 750-850 cm-1 show similar error values. Compared to the other 

wavenumber ranges, the RMSECV and RMSEP are higher for the 
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wavenumber range that includes a solvent peak of small intensity, 400-500 

cm-1, which highlights the impact of signal intensity on the performance of the 

PLSR analysis. Among the PLSR of spectra from the offset distances, the error 

over the wavenumber ranges is more consistent for spectra from a 4 mm offset 

distance. This suggests a more robust performance of spectra from this offset 

distance. 

 

(a)   (b)  

Figure 6.31. (a) RMSECV and (b) RMSEP of PLSR models of SNV pre-processed 
granular/anisole spectra over five wavenumber ranges. 

 

6.3.2.3.2 PLSR using select wavenumber ranges in the granular/MTBE 

spectra 

In addition to the full wavenumber range of 250-1750 cm-1, PLSR analysis was 

conducted using the wavenumber range 670-770 cm-1, which contains the 

main MTBE peak. Figure 6.32 shows a comparison of the RMSECV and 

RMSEP obtained from SORS spectra at each of the wavenumber ranges. The 

RMSECV values follow a similar trend for both wavenumber ranges for the 

PLSR of all offsets, where the RMSECV obtained for the PLSR model of 

spectra from 1 mm offset is slightly lower. The RMSEP values notably 

decrease as the offset distance increases for PLSR over the range 670-770 

cm-1 compared to the full wavenumber range. The decrease in RMSEP of 

models of the wavenumber range including the main MTBE peak suggests that 

excluding the other, mainly paracetamol, peaks lead to better prediction. 
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Despite applying SNV pre-processing to remove scattering effects and 

emphasise the change in the solvent peak intensity, some residual variation 

still affects the PLSR model performance as indicated by the lower RMSEP of 

the model of the smaller wavenumber range.  

 

 (a)   (b)  

Figure 6.32 (a) RMSECV and (b) RMSEP of PLSR models of SNV pre-processed 
granular/MTBE spectra over two wavenumber ranges. 

 

6.3.2.4 PLSR analysis combining spectra from multiple configurations 

Two methods, augmentation and co-addition, were employed for combining 

spectra from multiple configurations (collection offset distances). In 

augmentation, multiple blocks of spectra from multiple configurations are 

concatenated, and a PLSR model is constructed using the multi-block. In co-

addition, spectra from multiple configurations are summed up. SNV pre-

processed spectra from two configurations were augmented or co-added in 

order to enrich PLSR models with data that could lead to more accurate solvent 

content prediction as it represents multiple layers of the measured sample as 

opposed to probing a larger volume or depth as the results indicated in 

sections 6.2 and 6.3.2.1. This was done using SNV pre-processed spectra 

from the granular paracetamol in anisole system as the RMSECV and RMSEP 

were seen to decrease as the offset increases for those PLSR models. 

Granular/anisole spectra from the 4 mm offset distance are combined with 

spectra from other offset distances to investigate any improvement.  
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Figure 6.33 shows the RMSECV obtained for the combination of spectra from 

all offsets with the 4 mm offset spectra compared to the individual spectra and 

the combination of spectra from all configurations, which is a close 

representation of the signal obtained from commercial probes. In this figure, 

the RMSECV and RMSEP obtained from the combinations are values in 

between those obtained from the individual configurations. In other words, the 

error is higher than that of the PLSR model of the 4 mm spectra and lower than 

the other configurations. Combining the spectra through augmentation leads 

to lower error compared to the PLSR model of the individual offset spectra 

combined with 4 mm spectra. In contrast, co-addition leads to a similar error 

to the PLSR model of the individual spectra combined with 4 mm spectra for 

most offsets except for the 0 mm spectra, which are of stronger intensity. Co-

adding spectra from all offsets led to RMSECV and RMSEP values similar to 

that of the PLSR model of SORS spectra from the configuration with the 

highest error while combining those spectra through augmentation resulted in 

slightly lower error compared to co-addition. This suggests that the 

improvement seen in PLSR performance is the result of including the 4 mm 

offset spectra. 

 

 (a)   (b) 

Figure 6.33. (a) RMSECV and (b) RMSEP of SNV pre-processed spectra of granular 
paracetamol in anisole from 4 mm offset combined with other detectors compared to 
those of individual detectors. Dotted lines are added as a guide. 

  



 

178 
 

6.4  Conclusions 

An experiment was conducted to determine the depth through which the signal 

from a solvent, anisole, may be detected underneath layers of dry API, 

granular paracetamol. The results showed that the depth through which the 

solvent signal is detected increases as the offset distance increases, where 

offset distances of 4-5 mm enable the detection of the solvent signal from 

depths beyond 6 mm. This provided practical validation for using SORS to 

monitor pharmaceutical drying.  

Then, SORS spectra were collected during the drying of two paracetamol 

grades, granular and powder, in two solvents, anisole and MTBE. The spectra 

from the four systems were analysed qualitatively and quantitatively through 

PLSR analysis. Qualitative analysis from the four systems showed the change 

in solvent signal intensity can be seen in all offset distance spectra. 

Furthermore, the characteristic signal intensity decrease seen in SORS as the 

offset distance increases were countered up to the 4 mm offset distance 

through the design of the SORS probe, which includes additional collection 

fibres for the larger offset distances. However, SORS spectra from the 5 mm 

offset distance suffered from a lower level of intensity compared to the other 

offset spectra. SNV pre-processing was employed to remove physical 

scattering effects seen in sample spectra.  

PLSR analysis of raw SORS spectra from the granular/solvent systems 

showed that the RMSECV and RMSEP mostly decrease as the offset distance 

increases up to 4 mm. Employing SNV pre-processed SORS spectra in PLSR 

analysis resulted in improved model performance characterised by reduced 

RMSECV and increase in R2 compared to the raw spectra. Moreover, 

RMSECV decreases as the offset distance increases up to 5 mm, showing the 

particular significance of pre-processing to the signal of lower intensity. Further 

comparison of the loadings, scores, and percentage of variance captured for 

the 0 and 4 mm or better performing distance offset spectra showed that PLSR 

models of the spectra from the larger offset distance capture a higher 

percentage of solvent-related variance and higher overall total sum of variance 
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in the PLSR model. The PLSR analysis of SORS spectra from the 

powder/solvent systems showed some improvement from spectra from the 

larger offsets. However, the decrease in RMSECV was slight and did not 

always follow the same trend that was seen in the PLSR of the granular/solvent 

SORS spectra.  

Using wavenumber ranges that contain solvent peaks in PLSR analysis of the 

granular/anisole system showed that the PLSR model performance of SNV 

pre-processed spectra over the wavenumber range containing the main 

solvent peak performed similarly to that of the full spectral range, and that the 

wavenumber range containing the lower intensity peak had inferior 

performance compared to that of a strong solvent peak overlapping with a 

paracetamol peak. For the granular/MTBE system, using a wavenumber range 

containing the main solvent peak led to reduced RMSECV compared to the full 

spectral range, in addition to a clearer trend of decrease in RMSECV as the 

offset distance increases.  

SORS spectra of the granular/anisole system from the individual 

configurations were combined with that of the 4 mm spectra, which previously 

showed the most improved performance, in PLSR analysis using 

augmentation and co-addition. Augmentation led to error values lower than the 

individual offset configuration smaller than 4 mm, but higher than that of the 4 

mm offset spectra. This suggested that the improvement seen is a result of 

including the 4 mm offset spectra. Error values close to the individual spectrum 

combined with 4 mm spectra were obtained through co-addition for all offsets 

except for the 0 mm spectra. Augmentation of spectra from all offsets led to an 

error that is between those of the individual configurations, while co-addition 

spectra from all offsets led to error values similar to that of the SORS spectra 

from the configuration with the highest error. Considering the signal collected 

from the 0 mm offset as a representation of the signal collected from a 

conventional Raman system, the results presented in this chapter show 

superior performance by the spatially offset configurations.  
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The decrease in error of the estimated solvent content seen from PLSR models 

of the spatially offset spectra suggests that this technique can be used for the 

monitoring of the decrease in solvent content along with the determination of 

the end point of the process for suitable API and solvent systems. Overall, the 

results in these studies show the potential for SORS for application for the 

monitoring of pharmaceutical drying as indicated by the solvent signal detected 

from larger depths using larger offset distances, and the improved estimation 

of solvent content through SORS spectra collected during drying. 
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7. Combining SR-DRM and SORS for Monitoring 

Pharmaceutical Drying  

 

7.1  Introduction  

Near-infrared and Raman spectroscopy are complementary techniques. While 

Raman active molecules are those that include symmetric non-polar bonds, 

near-infrared active molecules possess asymmetric polar bonds. This means 

that sample spectra of both techniques collected at the same point during 

drying would reflect the same sample solvent content level.  

The results in Chapter 5 and Chapter 6 have demonstrated the capability and 

suitability of the spatially resolved diffuse reflectance near-infrared and 

spatially offset Raman spectroscopy for the monitoring of the solvent content 

during pharmaceutical drying. This Chapter explores the multi-block analysis 

of spectra of the drying of paracetamol in methyl tert-butyl ether (MTBE) 

collected using both techniques simultaneously in PLSR analysis for predicting 

the solvent content.  
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7.2  SR-DRM and SORS for the monitoring of drying 

From the previously monitored paracetamol/solvent systems in Chapters 5 and 

6, MTBE spectra displayed NIR and Raman peaks enabling the use of both 

techniques to monitor the decrease in MTBE content during the drying 

process. Since it has been demonstrated in the previous two chapters that both 

SR-DRM and SORS were applicable techniques for monitoring the solvent 

content, this chapter also includes results of monitoring the drying of granular 

and powder paracetamol in MTBE collected simultaneously using the 

combined probe.  

Seven drying runs of granular paracetamol and six of powder paracetamol in 

MTBE were conducted using the same procedure as those monitored with the 

individual probes described in section 4.3.2. The drying profiles for both grades 

are shown in Figure 2.1 and are typical of solvents of low boiling points,26 as 

previously described in Chapter 2. Similar observations to what was seen in 

the paracetamol/MTBE runs in Figure 5.3 and Figure 6.4 were seen in this 

figure, where there is an initial sharp decrease in the solvent content, 

suggesting that this corresponds to the evaporation of the unbound solvent, 

followed by a gradual decrease, which may be attributed to the bound solvent. 

The powder grade requires a longer duration of drying compared to the 

granular grade. The larger surface area of the smaller powder paracetamol 

particles allows for larger amounts of the solvent to be retained in addition to 

the higher likelihood of the coalescence of those particles to form larger 

agglomerates in which more solvent could be trapped.19 
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(a) Granular/MTBE (b) Powder/MTBE 

Figure 7.1. The drying profile of (a) granular and (b) powder paracetamol in MTBE 
monitored using the combined probe. The crosses indicate the measurement points.  

 

Prior to the multi-block analysis of SR-DRM and SORS spectra collected using 

the combined probe in granular and powder paracetamol in MTBE systems, 

spectra from each of the techniques were analysed separately in order to 

assess the dataset's performance compared to the previous datasets collected 

using the individual probes in chapter 5 and chapter 6. 
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7.2.1 PLSR analysis results of SR-DRM spectra 

Table 7.1 provides a summary of PLSR analysis results of raw and SNV pre-

processed SR-DRM spectra of both paracetamol grades in MTBE from the four 

collection distances, 0.3-1.2 mm. Results of the PLSR analysis of raw granular 

and powder paracetamol in MTBE spectra show that a similar number of latent 

variables is required to capture the variance from those spectra suggesting a 

similar level of complexity in those PLSR models. Larger collection distances 

of 0.6-0.9 mm of the granular/MTBE system use a slightly larger number of 

LVs, 6 or 7, but the variance captured through those additional LVs may not 

be related to the change in solvent content. From Table 7.1, a decrease in 

RMSECV as the collection distance increases to 0.9 mm is seen, with a slight 

increase for RMSECV of the PLSR model of the 1.2 mm spectra. The 

corresponding R2 values follow the opposite trend of RMSECV, suggesting an 

improvement in linearity as the collection distance increases. The RMSEP 

values are comparable to the RMSECV and follow the same trend, suggesting 

that the calibration set sufficiently represents the system.  

For the SNV pre-processed spectra, PLSR analysis results show lower 

RMSECV values compared to PLSR results of the raw spectra, suggesting 

that SNV pre-processing resulted in the removal of some of the random 

variability within the datasets. The decrease in RMSECV is associated with 

higher R2 values compared to the raw spectra, indicating the improvement in 

linearity in those PLSR models following pre-processing. The RMSEP values 

are also lower in the PLSR models of SNV pre-processed spectra compared 

to those of the raw spectra. Nevertheless, the PLSR analysis results of both 

raw and SNV pre-processed spectra show that the decrease in RMSECV 

between spectra of the collection distances is seen up to 0.9 mm with a slight 

increase in spectra from the 1.2 mm collection distance. This suggests that 

those spectra may be a result of more scattering incidents of photons with wet 

particles, but also express a higher level of noise as a result of the low signal 

intensity resulting from the diffusion of the light. As previously described in 

Chapter 5 detailing the results of the analysis of SAR-DRM spectra collected 

using the SAR-DRM probe, spectra collected from the largest distance are of 
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lower intensity due to the diffusion of photons within the particles resulting in a 

lower number of photons returning to the surface. Results in Table 7.1, in 

addition to those in Chapter 6, suggest that the analysis conducted using the 

signal collected from the larger distances may be improved by improving the 

intensity of those signals. This may be done through the use of a stronger 

incident light. 

 

Table 7.1. Summary of PLSR model performance of SR-DRM spectra of granular and 
powder paracetamol in MTBE from four collection distances. 
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LV 
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R2 LV 
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r 0.3 6 3.33 3.78 0.25 6 3.03 3.51 0.35 

0.6 7 2.47 2.32 0.56 7 2.21 2.44 0.64 

0.9 4 2.02 2.01 0.70 4 1.91 1.81 0.73 

1.2 4 2.17 2.44 0.66 5 2.07 2.29 0.70 

P
o

w
d

e
r 0.3 5 2.02 1.85 0.87 5 1.91 1.74 0.89 

0.6 3 2.05 2.05 0.87 4 1.93 2.01 0.89 

0.9 3 1.78 1.86 0.90 4 1.69 1.82 0.91 

1.2 4 2.02 2.13 0.87 4 1.84 1.99 0.90 
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7.2.2 PLSR analysis results of SORS spectra 

Table 7.2 provides a summary of PLSR analysis results of raw and SNV pre-

processed SORS spectra of both paracetamol grades in MTBE from the four 

offset distances collected with the combined probe. PLSR results of the raw 

granular paracetamol in MTBE spectra show that the same number of latent 

variables capture the variance from all offset spectra, suggesting that similar 

factors contribute to the variance captured in those models. Nevertheless, the 

RMSECV decreases as the collection offset distance increases from the 

backscattering spectra to the larger offset distances of 2.5 and 3.5 mm. This 

is associated with an increase in R2 as the offset distance increases. The 

RMSEP of PLSR models of those raw and SNV pre-processed spectra also 

decrease as the offset distance increases, and are comparable or lower with 

reference to the RMSECV, suggesting that the calibration model is robust.  

As for the SNV pre-processed SORS spectra of the granular/MTBE system, 

the number of latent variables is similar between spectra of the offsets, 

between 2-4 LVs, and is also similar to those of the raw spectra. The RMSECV 

of PLSR models of the SNV pre-processed spectra also decreases as the 

offset distance increases, along with the increase in R2. Further decrease is 

also seen in the RMSEP of the SNV pre-processed spectra compared to the 

RMSEP of PLSR models of the raw spectra, showing that SNV pre-processing 

of those spectra led to PLSR models with improved performance.  

In the PLSR analysis results of the raw and SNV pre-processed spectra of the 

powder/MTBE system shown in Table 7.2, the RMSECV also decreases as 

the offset distance increases and is the lowest for the largest offset distance of 

3.5 mm, where R2 follows an opposite trend and is the highest for the largest 

offset distances. For both raw and pre-processed spectra, the RMSEP is 

comparable to the RMSECV, confirming the representativeness of the 

calibration set spectra and the robustness of the PLSR calibration models.  
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The similarity in the SORS response in both paracetamol grades suggests that 

SORS could provide improved predictions for a range of particle sizes. The 

decrease in model error as the offset distance increase, seen in Table 7.2, 

conforms to the observations in the datasets collected using the individual 

SORS probe, reported in Chapter 6, where the observations from the different 

systems showed the decrease in PLSR model errors as the offset distances 

increased to 4 mm. Those reproducible observations serve as a confirmation 

of the performance of SORS to achieve more accurate solvent content 

predictions.  

 

Table 7.2. Summary of PLSR model performance of SORS spectra of granular and 
powder paracetamol in MTBE from four offset distances. 
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r 0 4 2.04 1.62 0.70 4 1.44 1.59 0.85 

1.5 4 1.91 1.40 0.74 2 1.42 1.02 0.85 

2.5 4 1.55 0.91 0.83 5 1.22 0.83 0.89 

3.5 4 1.60 1.39 0.81 4 1.25 0.86 0.89 

P
o
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e
r 0 3 1.86 2.56 0.89 3 1.17 1.97 0.96 

1.5 2 1.91 2.24 0.89 3 1.21 1.52 0.95 

2.5 4 1.31 1.76 0.95 4 0.91 1.50 0.97 

3.5 4 1.29 1.62 0.95 4 0.79 1.52 0.98 
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7.3  Preparation of SR-DRM and SORS spectra for multi-block analysis 

Multi-block data analysis in this chapter refers to partial least squares 

regression (PLSR) analysis conducted using multiple data blocks. Each block 

of data corresponds to the SR-DRM or SORS measurement from one 

configuration. Since both of those techniques produce numerical 

measurements, SR-DRM and SORS spectral datasets are considered 

homogeneous numerical datasets.112 Multi-block analysis may be conducted 

by concatenating the individual dataset blocks before further regression 

analysis. This could help in the understanding of how the measurements from 

different techniques are related.112 Alternatively, other multi-block analysis 

methods rely on combining the blocks resulting from analyses conducted using 

the individual blocks. This could result in more precise predictions as the 

combined blocks are then more correlated.120 PLSR analysis results in models 

that are complicated to interpret. Therefore, multi-block data analysis following 

regression analysis would result in combined models that are more 

complicated to interpret.  

Although SR-DRM and SORS both result in numerical measurements, these 

two techniques rely on different phenomena and are measured using 

instruments characterised by different resolutions. Therefore, possible sources 

of variability that could affect the contribution of each of the blocks and the 

overall performance of the PLSR analysis of the final block must be identified 

and addressed prior to the use in the multi-block PLSR analysis. In the 

previous chapters in sections 5.3.2 and 6.3.2, augmentation and co-addition 

were both tested for the use of multiple blocks to construct PLSR models. In 

this chapter, only augmentation, which is the concatenation of data blocks to 

form a larger final block,14 is used for combining the blocks of SR-DRM and 

SORS spectra. This would allow for the investigation of how those two types 

of measurements relate in addition to exploring any improvement in PLSR 

performance following the concatenation.  
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7.3.1 Identifying and addressing sources of variability between SR-DRM 

and SORS spectra 

First, it was necessary to consider two factors, the resolution and the 

magnitude of each of the SR-DRM and SORS signals. Resolution is 

instrument-dependent and can be described as the number of columns 

(variables) containing the signal intensity per wavelength or wavenumber for a 

sample. A SR-DRM signal from one configuration corresponding to the signal 

over 900-1700 nm is collected as 512 variables. The number of variables is 

further reduced to 311 when the 1100-1600 nm wavelength range is selected, 

and the magnitude of the absorbance signal is low as shown in Figure 7.2 (a) 

of the granular/MTBE system. As previously described in section 4.2.2, SORS 

signals are collected as 1024 pixels, corresponding to the signal over 0-1900 

cm-1. Following the selection of the relevant wavenumber range, 50-1750 cm-

1, the remaining number of variables is 876, while the magnitude of the signal 

is up to 60 000 arbitrary units as shown in Figure 7.2 (b).  

 

 (a)   (b)  

Figure 7.2. Example spectra from the granular/MTBE system. (a) Raw SR-DRM 
spectra from 1.2 mm distance. (b) raw SORS spectra from 3.5 mm offset.  
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The concatenation of those two blocks from Figure 7.2 would result in the final 

block shown in Figure 7.3 (a), which illustrates the contrast in the magnitude 

of the SR-DRM and SORS measurements combined. Figure 7.3 (a) also 

shows that including a larger number of variables for one of the blocks, the 

SORS spectra, could mean that the PLSR analysis of the combined multi-block 

would be more affected by the SORS data block. Therefore, the adjustment 

made to obtain a model with even contribution from each type of data was to 

interpolate the data with lower resolution, the 311 variables of the SR-DRM 

spectra, to match that of the data with higher resolution, the 876 variables of 

the SORS spectra. 

The contrast in the magnitude of the signals must also be addressed. 

Therefore, to mitigate the variation in the raw signal intensity shown in Figure 

7.3 (a), the raw SR-DRM and SORS spectra were SNV pre-processed. As 

shown in Figure 7.3 (b), applying this pre-processing within each of the blocks 

results in a comparable magnitude between the level of the SR-DRM and 

SORS signals and, most importantly the intensity of the highlighted MTBE 

peak. SNV pre-processing was selected as this technique allows for the 

processing of each spectrum individually, avoiding any influence from 

reference spectra or further processing steps that may be involved in other 

pre-processing techniques. This allows for the evaluation of the performance 

of each of the offset spectra separately. The same steps were applied to the 

powder/MTBE spectral datasets. 
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 (a)  

(b)  

 

Figure 7.3. Example spectra from the granular/MTBE system. (a) Spectra from Figure 
7.2 combined to form one block. (b) Final block composed of interpolated then SNV 
pre-processed SR-DRM spectra and SNV pre-processed SORS spectra. 

 

 

7.3.2 Comparison between PLSR results of original and interpolated SR-

DRM spectra 

In the previous section, section 7.3.1, SR-DRM spectra were interpolated to 

match the matrix size of the SR-DRM spectra with that of the SORS spectra. 

The original and interpolated SR-DRM spectra of the granular/MTBE system 

were compared visually before and after SNV pre-processing. In this section, 

the PLSR results of the original and interpolated SR-DRM spectra are 

compared to detect any change, as an improvement or deterioration, in PLSR 

performance between the original and interpolated spectra. 

SORS 

3.5 mm 
SR-DRM 
1.2 mm 

SORS 

3.5 mm 
SR-DRM 
1.2 mm 

Decrease in MTBE 

peak intensity 
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Table 7.3 includes the PLSR results of original and interpolated SR-DRM 

spectra of both granular and powder paracetamol in MTBE. Since SNV pre-

processing was seen to improve the PLSR performance of both SR-DRM and 

SORS spectra in section 7.3, the results shown in Table 7.3 are of the pre-

processed spectra following interpolation. The variation in PLSR results of the 

interpolated spectra is seen as a decrease in the error for 0.9-1.2 mm spectra 

and an increase for 0.3-0.6 mm collection distances. This suggests that the 

increase in error seen following interpolation and SNV pre-processing may be 

due to the underlying low signal intensity leading to low quality of the spectra 

from 0.3-0.6 mm collection distances. The variation in quality, as was seen in 

SAR-DRM chapter 5, affects the PLSR results. This is because the decrease 

in MTBE peak intensity as the solvent content decreases is affected by noise 

in the wavelength range 1100-1300 nm, where the characteristic MTBE peak 

is observed. Seeing as those closer collection distances had lower quality and 

overall PLSR performance, it is thought that interpolation adds to the noise in 

those spectra, leading to a large shift in performance, as seen in the RMSEP 

of 0.3 mm interpolated spectra; whereas those of farther distances perform 

robustly. 

For the powder/MTBE system, a decrease in the RMSECV associated with a 

slight increase in R2 is seen. This is further seen as a decrease in the RMSEP. 

The observation for 1.2 mm spectra, for example, where there is an increase 

in RMSECV for 1.2 mm spectra from 1.84% to 1.98% and a decrease in 

RMSEP from 1.99% to 1.80%, further suggests that the performance is 

dependent on the quality of the original spectra. The overall decrease in error 

for the SNV pre-processed interpolated spectra may be attributed to the 

increase in the resolution following interpolation, where the change in peak 

intensity is expressed over a larger number of variables compared to the 

original spectra. The PLSR results in Table 7.3 suggest that the interpolated 

SR-DRM datasets can be used in the multi-block PLSR analysis.  
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Table 7.3. Summary of PLSR model performance of SNV pre-processed SR-DRM 
original and interpolated spectra of granular and powder paracetamol in MTBE. 
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LV 
RMSEC
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RMSEC
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G
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r 0.3 6 3.03 3.51 0.35 5 3.22 3.88 0.29 

0.6 7 2.21 2.44 0.64 6 2.52 2.35 0.54 

0.9 4 1.91 1.81 0.73 3 1.87 1.74 0.75 

1.2 5 2.07 2.29 0.70 3 1.99 1.61 0.71 

P
o

w
d

e
r 0.3 5 1.91 1.74 0.89 5 1.79 1.41 0.90 

0.6 4 1.93 2.01 0.89 2 1.53 1.43 0.93 

0.9 4 1.69 1.82 0.91 3 1.58 1.42 0.92 

1.2 4 1.84 1.99 0.90 3 1.98 1.80 0.88 
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7.4  Multi-block PLSR analysis of SR-DRM and SORS spectra  

In this section, the results of the multi-block PLSR analysis of the final SR-

DRM/SORS block are reported. First, the selection of the configurations to 

combine from both techniques must be considered. PLSR analysis of both SR-

DRM and SORS spectra individually has shown previously an improvement in 

performance as the offset distance increases. However, this improvement in 

SORS spectra as the offset distance increases was clear compared to that of 

the SR-DRM spectra, where spectra collected from the closest distance for 

SR-DRM suffer from low quality as the decrease in solvent peak intensity was 

better seen from spectra of the farther distances.  

As a starting point, the four configurations from each technique were combined 

in incremental order, as shown in Table 7.4, to assess any improvement 

achieved by including the spectra of the larger offset distances from both 

techniques compared to those of the shorter collection offsets. Following from 

those combinations, it is possible to assess other combinations provided that 

the results suggest improved performance from the combined SR-DRM/SORS 

spectra.  

 

Table 7.4. Combined spectra from SR-DRM and SORS. 

Combination SR-DRM distance /mm SORS offset /mm 
1 0.3 0 

2 0.6 1.5 
3 0.9 2.5 

4 1.2 3.5 

 

The following section reports the multi-block PLSR analysis results and 

investigates the impact of pre-processing, which was applied to mitigate the 

disparity in the magnitude of the SR-DRM and SORS signals. Then, the multi-

block PLSR analysis results are compared to the SR-DRM and SORS spectra 

to explain the multi-block PLSR performance.  
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7.4.1 Impact of pre-processing on the performance of the multi-block 

PLSR 

The results from the SR-DRM/SORS combinations in PLSR analysis 

summarised in Table 7.5 show once again the improvement in PLSR 

performance as the collection distances increase. This is seen as a decrease 

in the RMSECV and a slight increase in R2 for the calibration set, where the 

RMSEP also decreases. Both the PLSR models of the raw and pre-processed 

spectra show this improvement with the increase in offset distance, where the 

level of error is also lower in the PLSR model of the pre-processed spectra 

compared to the PLSR model of the raw spectra. The decrease in RMSECV 

and a slight increase in R2 in the combined SNV pre-processed spectra is 

thought to be the outcome of the scatter correction rather than a result of the 

collective improvement resulting from the comparability between the 

magnitude of the SR-DRM and SORS spectra.  

 

Table 7.5. Summary of PLSR model performance of spectra of granular and powder 
paracetamol in MTBE from combined SR-DRM and SORS configurations. 
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LV 
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RMSE
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R2 
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r 0.3 0 4 2.04 1.62 0.70 4 1.44 1.65 0.85 

0.6 1.5 4 1.91 1.40 0.74 2 1.40 1.01 0.86 

0.9 2.5 4 1.55 0.91 0.83 5 1.22 0.85 0.89 

1.2 3.5 4 1.60 1.39 0.81 4 1.24 0.85 0.89 

P
o

w
d

e
r 0.3 0 3 1.86 2.56 0.89 3 1.17 1.97 0.96 

0.6 1.5 2 1.91 2.24 0.89 3 1.20 1.52 0.96 

0.9 2.5 4 1.31 1.76 0.95 4 0.90 1.49 0.97 

1.2 3.5 4 1.29 1.62 0.95 4 0.78 1.52 0.98 
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To further assess the benefit of pre-processing the combined spectra as a 

means to mitigate the contrast in signal magnitude, the regression and 

residuals plots of the PLSR model of the combined spectra from 1.2+3.5 mm 

configurations from the powder/MTBE system as an example are shown in 

Figure 7.4. The small improvement seen between the estimations from raw 

spectra in Figure 7.4 (a-b) and pre-processed spectra in Figure 7.4 (c-d) suggest 

that the disparity in the magnitude of those signals did not greatly impact the 

level of error, but nonetheless has led to an improvement in the prediction of 

the solvent content. Although Figure 7.4 suggests that SNV pre-processing 

slightly contributes to the improvement in the performance of the combined 

spectra PLS, this does not indicate whether the improvement is equally 

contributed from both SR-DRM and SORS blocks. 

Table 6.6 shows a summary of the variance captured by the farthest 

combinations of raw and SNV pre-processed spectra in order to allow for more 

understanding of the differences in the PLSR model performance. This table 

shows that the combined spectra from the farthest distances capture a larger 

variance, which further improves following SNV pre-processing.  

Following the general evaluation of the PLSR models of the combined multi-

block spectra, the points to further assess would be the impact of the use of 

pre-processed spectra and the improvement in PLSR estimation of the solvent 

content resulting from combining SR-DRM and SORS spectra compared to 

the individual spectra. 
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(a) 1.2+3.5 mm raw (b) 1.2+3.5 mm raw 

(c) 1.2+3.5 mm SNV (d) 1.2+3.5 mm SNV 

Figure 7.4. (a) Regression and (b) residuals plots of the PLSR model of raw combined 
1.2+3.5 mm SR-DRM and SORS spectra. (c) Regression and (d) residuals plots of 
the PLSR model of SNV pre-processed combined 1.2+3.5 mm SR-DRM and SORS 
spectra. 

 

Table 7.6. Variance captured in PLSR models from raw and SNV pre-processed 
combined SR-DRM and SORS spectra from the powder/MTBE system. 

Combination 1.2+3.5 mm 1.2+3.5 mm 

LV Raw SNV  

1 63.68 65.27 
2 31.20 31.43 
3 3.48 2.20 
4 0.31 0.55 

Sum of variance/% 98.68 99.45 
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7.4.2 Comparing the performance of the multi-block PLSR to the 

individual spectra 

The results from PLSR analysis of the SR-DRM/SORS SNV pre-processed 

combined spectra, in addition to individual techniques, are shown in Table 7.7. 

Those show once again the improvement in PLSR performance as the 

combined collection distances increase. This is seen as a decrease in the 

RMSECV associated with an increase in R2 for the calibration dataset. The 

RMSEP also decreases as the collection distance increases in a similar 

manner to the RMSECV. The number of latent variables for each of the 

combined spectra is the same as the number of latent variables of the SORS 

spectra, suggesting a similar level of variance captured in the PLSR model of 

the combined spectra compared to the SORS spectra. Moreover, the 

RMSECV values are similar and are only lower by up to 0.02% compared to 

the RMSECV of SORS spectra. Those observations were seen in the PLSR 

results of both granular and powder grades. 

To illustrate the difference in the performance of the individual blocks and the 

combined block of SR-DRM and SORS spectra, the RMSECV and RMSEP 

obtained from the three PLSR analyses were compared in Figure 7.5 (a) and 

(b) for granular/MTBE system and in Figure 7.5 (c) and (d) for the 

powder/MTBE system. The illustration shows the similarity between the error 

values of the combined block and that of the individual SORS spectra. The 

best cases in Figure 7.5 show the error of the combined spectra to be almost 

the same as that of the individual SORS spectra whereas the error of the 

individual SR-DRM spectra is always higher.  

In some cases in the granular/MTBE system, the error of the combined spectra 

is a value higher than that of the individual SORS spectra. The reason for this 

is thought to be that the SR-DRM spectra of low quality lead to a deterioration 

of the performance due to a combination of the lower signal intensity in addition 

to the overlap between the paracetamol and MTBE peaks as opposed to those 

peaks in the SORS spectra. 
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Table 7.7. PLSR results of SNV pre-processed spectra of granular and powder 
paracetamol in MTBE from individual and combined SR-DRM and SORS. 
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r 1 6 3.03 3.51 0.35 4 1.44 1.65 0.85 4 1.44 1.59 0.85 

2 7 2.21 2.44 0.64 2 1.40 1.01 0.86 2 1.42 1.02 0.85 

3 4 1.91 1.81 0.73 5 1.22 0.85 0.89 5 1.22 0.83 0.89 

4 5 2.07 2.29 0.70 4 1.24 0.85 0.89 4 1.25 0.86 0.89 

P
o

w
d

e
r 1 5 1.91 1.74 0.89 3 1.17 1.97 0.96 3 1.17 1.97 0.96 

2 4 1.93 2.01 0.89 3 1.20 1.52 0.96 3 1.21 1.52 0.95 

3 4 1.69 1.82 0.91 4 0.90 1.49 0.97 4 0.91 1.50 0.97 

4 4 1.84 1.99 0.90 4 0.78 1.52 0.98 4 0.79 1.52 0.98 

 

 (a)   (b)  

 (c)   (d)  

Figure 7.5. PLSR result of raw and pre-processed combined (comb) spectra with 
individual SR-DRM and SORS spectra. (a) RMSECV and (b) RMSEP of PLSR model 
of granular/MTBE. (c) RMSECV and (d) RMSEP of PLSR model of powder/MTBE.  
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Further investigation into the scores and loadings of the combined spectra 

might show whether the SR-DRM spectra do contribute to the overall 

performance of the combined block in the cases where the error values are 

similar to those of the individual SORS spectra, or if those SR-DRM spectra 

were considered as noise within the PLSR models. Figure 7.6 shows the 

loadings and scores for each of the four latent variables of the PLSR models 

of the raw and SNV pre-processed spectra from the powder/MTBE system of 

the SR-DRM+SORS multi-block from 1.2+3.5 mm, where the loadings for the 

SR-DRM and SORS blocks are plotted on different scales due to the difference 

in their loadings despite the pre-processing that has transformed them into 

comparable measurements.  

For example, the loadings curve of LV1 in Figure 7.6 (a) resembles the 

paracetamol spectra captured through SR-DRM (left side of the figure) and 

SORS (right side of the figure), both of which correspond to the range -6-1 and 

0-100 000, respectively. Nevertheless, the loadings curve of LV1 in Figure 7.6 

(a) could also be a sum of the features of paracetamol and MTBE since those 

peaks overlap. In addition to LV1, loadings of LV2-3 show peaks 

corresponding to MTBE peaks in both the SR-DRM and SORS blocks. 

Loadings of LV4 also show a peak corresponding to that of MTBE as 

highlighted in Figure 7.6 (g). This is seen for both raw and pre-processed 

spectra in the four latent variables. For the scores shown in Figure 7.6 (b,d,f,h), 

a trend related to the solvent content may be seen for the scores of LV2-3 of 

the raw spectra and of LV1-3 of the SNV pre-processed spectra. Observations 

from the loadings suggest that SORS contributed more to the improvement in 

PLSR model performance as the MTBE peak may be seen in LV1-4 of raw 

and pre-processed spectra, whereas those are seen in LV2-3 for SR-DRM and 

could not be confirmed for LV1 as a result of the peak overlap. The SR-DRM 

loadings of LV3 of pre-processed spectra suggest that some improvement 

might have been caused by the pre-processed SR-DRM block as the MTBE 

peak can be seen, although the scores for this LV show a slight correlation to 

the solvent content.  
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Observations from the scores suggest that pre-processing leads to the 

improvement in PLSR performance as the trend of increase as the solvent 

content increases may be seen in LV1-3 in the pre-processed spectra as 

opposed to LV2-3 in the raw spectra. Since the improvement following pre-

processing is seen in the SR-DRM spectra, this suggests that this block 

benefits more from pre-processing compared to the SORS block.  

The results of the multi-block PLSR analysis discussed previously show similar 

performance from the combined SR-DRM+SORS and individual SORS block. 

Moreover, the decrease in the estimation error seen as the collection distance 

increases was also observed in those combinations. Therefore, those results 

do not indicate that the analysis would benefit from multi-block combinations 

of other configurations. It is thought that the differences between the near-

infrared and Raman signals are the cause of the differences in their PLSR 

performance and the unequal contribution to the combined block. In addition 

to the disparity in signal intensity (and the signal quality as a result), the Raman 

spectra of paracetamol and MTBE display less overlap compared to those of 

the near-infrared spectra. The change in intensity in both SR-DRM and SORS 

spectra is proportional to the change in solvent content but not to the same 

extent, which may have also prevented the anticipated improved robustness 

in PLSR performance from the augmented blocks. Overall, this analysis 

showed that PLSR analysis of SORS spectra resulted in a more accurate 

estimation of the solvent content in this system. 
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 (a) LV1  (b)  

 (c) LV2  (d)  

 (e) LV3  (f)  

 (g) LV4  (h)  

Figure 7.6. Loadings (a,c,e,g) and scores (b,d,f,h) of four LVs of the PLSR model of 
raw and SNV pre-processed combined 1.2+3.5 mm SR-DRM and SORS spectra.  
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peak 
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7.5 Conclusions 

Multi-block PLSR analysis was conducted through the augmentation of SR-

DRM and SORS spectra. Prior to the concatenation, the number of signal 

variables and the magnitude of the signal from each of the blocks were 

assessed. SR-DRM spectra consisted of a lower number of variables because 

of the lower resolution of the spectrometer and lower signal intensity. 

Therefore, the SR-DRM spectra were interpolated to match the resolution of 

the SORS spectra. Comparison of the PLSR analysis results of original and 

interpolated SR-DRM spectra showed almost identical performance 

suggesting that the use of either of the spectra in the multi-block PLSR analysis 

will yield comparable results. Then, SNV pre-processing was applied to SR-

DRM and SORS spectra to mitigate the difference in signal magnitude.  

Multi-block PLSR analysis of the blocks of SNV pre-processed SORS spectra 

with the interpolated and SNV pre-processed SR-DRM spectra showed 

improvement in PLSR performance in predicting the solvent content with the 

increase in offset distances from the illumination points as seen with the 

individual SR-DRM and SORS spectra. Moreover, PLSR analysis of combined 

spectra resulted in PLSR models that perform similar or identical to PLSR 

models of the individual SORS spectra. This suggested that SR-DRM models 

had small or no contribution to the performance of the combined blocks. 

Looking further into PLSR models of the raw and pre-processed combined 

spectra showed that the percentage of variance captured by the models is 

larger for the PLSR model of SNV pre-processed spectra compared to those 

of the raw spectra. To investigate the contribution of SORS and SR-DRM 

spectra in the PLSR models, the loadings and scores of raw and pre-

processed combinations of 1.2+3.5 mm were assessed. Higher loadings 

related to the solvent peak were seen for the SORS spectra in the latent 

variables describing the models compared to the lower loadings related to the 

solvent peak seen for the SR-DRM spectra in the latent variables. This is 

explained by the stronger signal intensity and sharper peaks of the Raman 

spectra, in addition to the lower overlap between the paracetamol and MTBE 

peak compared to the weaker and wider peaks of the near-infrared spectra.  
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8. Spatially Offset Raman Spectroscopy for 

Monitoring the Solvent Content During 

Pharmaceutical Isolation 

 

8.1  Overview  

The primary pharmaceutical manufacturing stage for producing solid active 

pharmaceutical ingredients usually ends with the isolation processes, which 

can be divided into three steps, filtration, washing, and drying. The isolation 

processes can affect the quality of the solid active pharmaceutical ingredient 

obtained at the end of the process.  

The results in the previous chapter demonstrate the potential that spatially 

offset Raman spectroscopy (SORS) offers for monitoring the solvent content 

during pharmaceutical drying. Building on the previous results, in this chapter 

SORS is used for estimating the content of two solvents in a filter cake 

following washing.  

This chapter includes an introduction to the pharmaceutical isolation 

processes and model transfer of multivariate calibration. The introduction is 

followed by the experimental section detailing the filtration and washing setups 

and procedures, in addition to SORS data collection and the processing of 

SORS data collected from the drying experiments. The results section includes 

an evaluation of the processed SORS dataset collected from drying in addition 

to reporting the performance of SORS for estimating the solvent content 

following filtration and washing.  
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8.2  Introduction 

In the primary (upstream) manufacturing stage of pharmaceuticals, isolation 

unit processes are conducted to obtain a dry active pharmaceutical ingredient 

(API), where isolation follows the crystallisation of the API. The isolation 

processes may be divided into filtration, washing, and drying, the purpose of 

which is the recovery of a pure and dry API.  

 

8.2.1 Pharmaceutical isolation processes 

8.2.1.1 Filtration  

Once an API is crystallised from a solution, the solution is removed through 

filtration, which is also termed clarification. The filtration step aims to separate 

the solid from the solution through a porous filter that allows the fluid to pass 

and can retain the solid particles larger than the size of the filter pores.17 In 

pharmaceutical primary manufacturing, this step separates the API from the 

crystallisation mother liquor solution and is termed dead-end filtration. The bulk 

of the solid retained on a filter is termed a filter cake, where the thickness of 

this cake increases as the solid particles settle from the slurry. This in turn 

means that the structure and permeability of this filter cake change with time 

usually leading to the slowing of the rate of filtration due to the blocking of the 

filter by the settled filter cake. The decrease in the rate of solvent removal is 

termed cake resistance. To increase the filtration rate, pressure difference may 

be employed in the form of vacuum pressure that acts as a driver for the 

filtration as opposed to conventional gravitational filtration. This could lead 

boiling of the removed liquid as a result of the decreased pressure within the 

filtrate vessel. Alternatively, the filtration rate may be increased by using a filter 

of a larger area to increase the filtration area and decrease the thickness of 

the filter cake. Nevertheless, industrial applications make use of pressure 

filtration.19 At the end of the filtration step, the API is still wet with the mother 

liquor as it is retained on the surface of particles and between the voids in the 

filter cake.19,121 
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8.2.1.2 Washing 

The washing step is conducted to remove the mother liquor along with any 

impurities remaining within the filter cake. This step is important for the removal 

of those impurities in addition to preventing the formation of a lumpy product 

as a result of the drying of the mother liquor within the voids in between the 

particles. The pharmaceutical washing methods that are currently applied in 

the industry are displacement and slurry or resuspension washing.22 

Displacement washing refers to the practice of pouring the wash solvent over 

the settled filter cake without agitating the cake in order to displace the mother 

liquor. Setbacks to this method include the redistribution of the mother liquor 

throughout the filter cake instead of removing it and the formation of channels 

within the filter cake through which the wash solvent is drained without 

effectively washing the cake from the mother liquor. Slurry or resuspension 

washing refers to the resuspension of the filter cake in the wash solvent to 

create a slurry, where the mother liquor is eventually mixed with the wash 

solvent, which can then effectively displace the mother liquor.121,122 Although 

the properties of the filtered particles affect the removal of the mother liquor, 

washing a filter cake with three cake volumes is an effective common 

practice.22,121  

 

8.2.1.3 Determination of the residual solvent content following 

pharmaceutical isolation 

The residual solvent content following filtration and washing may be 

determined through the analysis of the filtrate or the vapours within the 

headspace over the filter cake. Some of the methods used for filtrate 

composition analysis include high-pressure liquid chromatography (HPLC), 

gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic 

resonance (NMR) spectroscopy. Techniques for the analysis of the overhead 

vapour composition include selected ion flow tube mass spectrometry (SIFT-

MS) and near-infrared (NIR) spectroscopy.76 Those techniques may be applied 

on-line, where a stream is directed to the measurement instrument, or off-line, 
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where a sample is manually extracted for analysis. More traditional methods 

include recording the mass of the filter cake at each step of the process. 

Nevertheless, those methods do not directly measure the composition of the 

filter cake.  

 

8.2.2 Model transfer of multivariate calibration  

Multivariate regression analysis, partial least squares regression analysis 

(PLSR) in this chapter, can be used for the quantitative analysis of 

spectroscopic data where a dependant characteristic of the samples, e.g. the 

solvent content, can be related to an independent feature, e.g. Raman spectra. 

A training or calibration dataset that is representative of the variability within 

the samples is collected, PLSR models are constructed based on this dataset 

and are then applied for the prediction of the same characteristic within a test 

dataset.107 Those calibration models may be applicable for test datasets of the 

same components under the same data collection conditions, depending on 

the modelled characteristic, and the same instrument. Measurements include 

sample signals in addition to influences from the measurement instrument and 

condition. When a dataset is collected using a different instrument, differences 

in the collected data arise. This requires updating the previous calibration 

model in order to minimise the error in estimating the modelled feature within 

new test sets. The process of updating the previous calibration model for 

application to new datasets is termed calibration or model transfer.123 

Nevertheless, model transfer is concerned with the processing of calibration 

models after those models have been developed. In this chapter, a similar 

concept is applied. However, the differences in the spectra collected using an 

equipment setup are addressed prior to constructing the calibration models so 

as to reduce the error in estimating a test set collected using another 

equipment setup.  
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8.3  Experimental 

This section is further divided into sections reporting the materials, 

experimental setup, and data processing. 

8.3.1 Materials 

Granular paracetamol (Mallinckrodt Inc., Raleigh, N.C.), was the active 

pharmaceutical ingredient used in this study. Granular paracetamol had a 

mean particle size (D50) of 265 µm, measured with laser diffraction 

(Mastersizer 3000 with a dry dispersion unit, Malvern Instruments Ltd, UK). 

Two wash solvents, in which paracetamol is considered insoluble were used; 

those were Anisole (99%, Alfa Aesar, Lancashire, UK) and methyl tertiary-butyl 

ether (MTBE) (99%, Alfa Aesar, Lancashire, UK). This was done to emulate 

the washing step following the filtration of the mother liquor. Nevertheless, the 

two wash solvents were used in this experiment in order to avoid the change 

in particle size through using solvents in which paracetamol shows minimal 

solubility. Those two solvents were selected as their Raman spectra contain at 

least one peak with minimal overlap with the other two components as shown 

in Figure 8.1. The Raman spectra of MTBE include a peak of strong intensity 

around 730 cm-1 that does not overlap with anisole peaks and overlaps with a 

paracetamol peak of lower intensity. Raman spectra of anisole include a peak 

of strong intensity around 1002 cm-1, which does not overlap with peaks in the 

paracetamol and MTBE Raman spectra.  

 

Figure 8.1. Raman spectra of Paracetamol, anisole, and MTBE. 
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8.3.2 Experimental setup and procedure 

Small-scale experiments for the filtration and washing of paracetamol were 

conducted. The details of the setup and experimental procedure followed are 

reported in this section.  

 

8.3.2.1 Filtration and washing setup 

The filtration and washing setup shown in Figure 8.2 is composed of a 70 mL 

filter tube (10 µm frit, Isolute® polyethylene single fritted filtration columns, 

Biotage, Sweden), a filtrate bottle with a two-nozzle screw cap, and a vacuum 

pump. The filter tube is fixed on one nozzle of the filtrate bottle cap while a 

tube connected to the vacuum pump is fixed on the other nozzle.  

(a) (b) 

Figure 8.2. (a) Illustration and (b) actual filtration and washing setup. 

 

8.3.2.2 Preparation of the validation set samples 

Four spectral datasets are used in the analysis of this experimental work. Two 

of those datasets are the calibration datasets collected using the SORS and 

combined probes during the drying of pure anisole and pure MTBE from 

paracetamol, respectively, as was described in Chapter 4. Two new spectral 

datasets were collected in this experiment. The first new dataset is a validation 

Filtrate 

bottle 

Filtrate  

Vacuum 

pump  

Filter tube 

Filter cake 

Tube Valve 
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dataset containing a mixture of known percentages of each of the two solvents, 

anisole and MTBE to enable the suitability of the experimental procedure and 

API/solvent system for obtaining reference solvent content values and 

representative spectral measurements. The second new dataset is a test 

dataset where paracetamol is washed with one cake volume of anisole and 

then 0.5-3 cake volumes of MTBE consecutively, and the amount of each 

solvent remaining in the filter cake is determined based on the mass of the 

filtrate as well as using GC-MS. 

 

Preparation of the solvent mixtures 

Mixtures of anisole and MTBE adding up to 40 g of the percentages shown in 

Table 8.1 were prepared by weighing each of the solvents in a beaker on a 

balance. A total of 19 mixtures were prepared in addition to the two pure 

solvents. 

 

Table 8.1 Percentage of each of the solvents used to make up the solvent mixtures 

# Anisole/% MTBE/% 

1 0 100 

2 5 95 

3 10 90 

4 15 85 

5 20 80 

6 25 75 

7 30 70 

8 35 65 

9 40 60 

10 45 55 

11 50 50 

12 55 45 

13 60 40 

14 65 35 

15 70 30 

16 75 25 

17 80 20 

18 85 15 

19 90 10 

20 95 5 

21 100 0 
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Wetting of paracetamol 

For each of the 21 samples, 15 grams of paracetamol were weighed and 

loaded into a 70 mL filter. Then, the solvent mixture was poured into the filter 

tube and the slurry was homogenised by mixing with a spatula to ensure the 

wetting of the paracetamol granules. Next, to filter the slurry, the filter valve 

was released and the vacuum pump was started. When the excess liquid was 

no longer visible around the circumference inside the tube, the vacuum pump 

was stopped and the filter valve was turned to close after the dripping of the 

solvent into the filtrate bottle stopped. This was done to ensure that less than 

20% of the solvent mixture is retained in the filter cake, which is the solvent 

percentage expected in a filter cake following de-liquoring and would be within 

the solvent content range of the SORS calibration sets previously collected.  

 

SORS signal collection and Loss on drying reference measurements for the 

validation set 

Following filtration, a sample of the wet paracetamol from the filter tube was 

then placed in a beaker and introduced to the combined probe for SORS 

spectra collection. An average of 5.4 g of wet sample was obtained from each 

of the samples. The content of the beaker was then emptied in a sample bottle, 

weighed, and dried in a vacuum oven before being weighed again when dry to 

obtain the solvent content through loss on drying (LOD) measurements. LOD 

measurements provide the total solvent content in the wet cake and the mass 

of each of the solvents is calculated from the theoretical percentages shown 

in Table 8.1 since the solvents were added as a mixture. 

 

8.3.2.3 Preparation of the test set samples 

Following the preparation of the validation set of solvent mixtures, another set 

of samples was prepared where one wash solvent, anisole, was washed by a 

second wash solvent, MTBE. However, in the test set, one cake volume of 

anisole is washed with increasing amounts, 0.5-3 in 0.25 increments cake 
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volumes, of MTBE, considering 3 cake volumes as the recommended volume 

for washing a filter cake.22 

In order to use increasing cake volumes of the wash solvent MTBE and collect 

measurements that could reflect the filter cake, 8 g of granular paracetamol 

was weighed and poured into the filter tube. Then, the height of the dry 

granules was measured using a ruler and was equal to 2 cm. The diameter of 

the filter tube was also measured and is equal to 2.6 cm. The volume of the 

cake was calculated from the diameter of the filter tube in addition to the cake 

height. Those dimensions resulted in a cake volume of 10.6 cm3. According to 

the density of each of the solvents, 0.995 g/cm3 for anisole and 0.740 g/cm3 

for MTBE, one cake volume would be equal to 10.6 g of anisole and 7.9 g with 

an average of 9.2 g. To facilitate the measurement and addition of fixed 

amounts of the solvents, 10 g was considered as one cake volume for both 

solvents. The mass of paracetamol, the mass of solvents, the number of cake 

volumes of MTBE added to wash anisole and the theoretical percentage of 

each solvent expected in the solvent mixture in the wet cake is shown in Table 

8.2.  

 

Table 8.2. Mass of solvents and number of cake volumes of MTBE used for the 
washing along with the theoretical percentage of each solvent in the wet cake. 

Test 
sample 
number 

Anisole/g MTBE/g 
Number of 

cake 
volumes 

Anisole/% MTBE/% 

1 10 5 0.5 66.7 33.3 

2 10 10 1 50.0 50.0 

3 10 12.5 1.25 44.4 55.6 

4 10 15 1.5 40.0 60.0 

5 10 17.5 1.75 36.4 63.6 

6 10 20 2 33.3 66.7 

7 10 22.5 2.25 30.8 69.2 

8 10 25 2.5 28.6 71.4 

9 10 27.5 2.75 26.7 73.3 

10 10 30 3 25.0 75.0 
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Washing and filtration of paracetamol 

For each of the ten test samples described in Table 8.2, the filter tube was 

weighed prior to adding the dry paracetamol and then weighed again after 8 g 

of paracetamol was added. Then, 10 g of anisole was added into the filter tube 

and the components were homogenised through mixing with a spatula. Next, 

anisole was filtered through the filter tube by opening the filtration valve and 

turning the vacuum pump on. The filtration was stopped after solvent dripping 

was no longer observed in the filtrate bottle. For washing with the second 

solvent, MTBE was added and filtered following the same steps used with 

anisole. The filtrate bottle was weighed empty and following the filtration of 

each of the solvents to enable the calculation of the percentage of each of the 

solvents remaining in the wet cake.  

 

SORS signal collection and reference measurements for the test set 

Following the filtration of MTBE, the wet paracetamol in the filter tube was 

emptied into a glass beaker, where the combined probe was used for the 

collection of SORS measurements with 20 seconds as the acquisition time. 

The beaker contents for each of the filter tubes were then placed in a sample 

bottle, weighed, and moved to a vacuum oven to dry the wet paracetamol 

before being weighed again when dry to obtain total solvent content 

measurements from the LOD measurements. The total solvent content 

obtained through the LOD measurements can then be used to determine the 

mass of each solvent remaining in the wet cake as the reference solvent 

content is vital for the use in the quantitative analysis of Raman spectroscopy, 

where the error in estimating the solvent content may arise from the 

spectroscopic measurement, but is also due dependant on the reference 

measurement considered to be the actual value of the solvent content.  

The mass of each of the two solvents, needed as reference measurements for 

the quantitative analysis, may be determined through multiplying the total 

solvent content by the percentage of each solvent. The complication arises 

from the fact that the desired output is the quantification of the mass of each 
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of the solvents in the wet cake, with the LOD giving the total solvent content in 

the wet cake. Applicable methods for quantifying the percentage of each of the 

solvents in the wet cake rely on either the composition of the filtrate that has 

been filtered out of the cake or the composition of the vapour in the headspace 

of the filter tube. This highlights the importance of the development of real-time 

in-line methods like quantitative Raman spectroscopy. Moreover, the solvents 

used in this experiment are in contrast to physical properties, where MTBE is 

a volatile solvent with a boiling point of 55.2°C and anisole has a boiling point 

of 154°C. Therefore, when filtering MTBE, it may be expected that some of the 

filtered solvents may evaporate, and the recorded mass of the filtrate would 

not reflect the accurate mass of the solvent filtered. Therefore, multiple 

methods were considered for the quantification of each of the solvents 

remaining in the wet cake, where each of the methods could still suffer from 

inaccuracy inherent in the preparation of the samples, the methods 

themselves, and the properties of the solvents.  

In this experimental setup, three methods were possible for determining the 

percentage of each of the solvents remaining in the wet cake: 

1.  the theoretical percentages of each of the solvents added as shown in 

Table 8.2. 

2. the mass of the solvents obtained through weighing the filtrate. 

3. GC-MS analysis of the filtrate collected in the filtrate bottle after filtering 

MTBE. 

The GC-MS (7890B GC, 5977A MSD, Agilent Technologies, UK) analysis was 

conducted using a sample of the filtrate, where 10 µL aliquots were extracted 

from the filtrate bottle using a Gilson pipette and placed in a 1 mL glass vial 

containing 990 µL of methanol and placed in the GC-MS. The percentage of 

each of the solvents was then calculated based on the peak area of each of 

the solvents in the MS chromatogram.  

To assess the suitability of the method before using the GC-MS analysis, with 

reference to the boiling points of the two solvents, a test was done to assess 

whether the more volatile solvent would either evaporate following the 



 

215 
 

preparation of the samples or would be overestimated in the resulting 

chromatogram due to its high volatility. Three conditions of the following 

anisole:MTBE solvent compositions 10:90, 50:50, and 90:10 were prepared 

for GC-MS analysis and the resulting percentages are shown in Table 8.3. The 

percentages of the MS chromatogram peak areas are in close agreement with 

the percentages of the solvent prepared. The largest error of 5% is seen for 

the measurement of the 50:50 composition, whereas the other measurement 

shows a 1-2% error. Those errors may be attributed to the preparation of the 

sample as small aliquots are extracted from the mixture, making it more likely 

to contribute to the error. To demonstrate the possibility of the evaporation of 

MTBE within the prepared samples, GC-MS analysis of the same samples was 

conducted two days later and the chromatogram showed only peaks of anisole 

with no peaks of MTBE in any of the three samples.  

 

Table 8.3. The percentage of anisole and MTBE solvent in three conditions used to 
assess the feasibility of using GC-MS analysis. 

Measurement # 1 2 3 

Solvent 
Anisole/

% 
MTBE/

% 
Anisole/

% 
MTBE/

% 
Anisole/

% 
MTBE/

% 

Theoretical 
percentage/% 

10 90 50 50 90 10 

MS 
chromatogram 
area/% 

10.8 89.2 55 45.0 88.2 11.8 

 

 

8.3.3 SORS dataset processing  

In this experiment, four datasets are used. Those are the two calibration 

datasets collected during the drying of each of the solvents, anisole and MTBE, 

in paracetamol, in addition to the two datasets collected as validation and test 

sets of scenarios where the solvents are mixed. However, in Chapter 6, SORS 

spectra were collected using the SORS probe during the drying of paracetamol 

from anisole, while in chapter 7, SORS spectra were collected using the 

combined probe during the drying of paracetamol from MTBE. In this chapter, 

the SORS spectra were also collected using the combined probe. The SORS 
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probe enables collecting SORS spectra 0-5 mm in 1 mm increments, while the 

combined probe enables the collection of SORS spectra at 0, 1.5, 2.5, and 3.5 

mm offset distances. Therefore, to use the anisole calibration dataset, the 

anisole dataset spectra must be re-processed to produce spectra 

corresponding to the offsets of the combined probe. This section describes the 

processing of the anisole dataset as well as the new datasets to enable their 

use in PLSR analysis.  

 

8.3.3.1 Preparation of calibration sets for PLSR analysis 

SORS spectra were previously collected from the drying of granular 

paracetamol in anisole and MTBE using the SORS and combined probes 

respectively. In order to use both existing datasets, it is essential to address 

differences in the SORS signal collected from each of the probes, those 

differences and the methods used to address them are shown in Table 8.4.  

 

Table 8.4. Sources of variability in the signal collected from the combined and SORS 
probes. 

Source of variability Method to address variability 
Dataset to apply to 
(anisole, MTBE, 
filtration, all) 

Spatial offset distances  

Interpolate the signal from the 
SORS probe for the calibration 
set samples for each of the 
wavenumber values 

Anisole 

Number of collection 
fibres per offset  

Extract the signal from one fibre 
per offset (1FPO) for the signal  

All  

Probe performance (i.e. 
signal throughput) 

Pre-process spectra (SNV) All 

 

The approach followed in processing the SORS signals for use in the 

estimation of the two solvent contents is shown in Figure 8.3. 
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Figure 8.3. Step-wise approach for preparing the calibration and test sets. 

 

Step 1 is applied to both calibration and test set SORS spectra, in order to 

obtain a comparable signal as opposed to the variation that might be 

encountered in case of using spectra of the signals summed from multiple 

fibres for the different offset. Figure 8.4 shows an example of the spectral 

image collected from the Argon spectral calibration lamp (3060AR, 10 mA, 

Newport, USA) for an acquisition time of 20 milliseconds, where the image is 

divided to extract the SORS signal from one fibre per offset from the SORS 

measurement.  

 

 

Figure 8.4. Spectral image of an argon lamp, cyan lines highlight the beginning of the 
pixel range summed to obtain spectra, the magenta lines mark the end of the 
horizontal pixel range where spectra from only one fibre were summed for the offset 
with multiple collection fibres (2, 3, 4, and 5 mm offset distances). 

1. Signal extraction per offset (matrix size is number of 
offset x 1024)

2. SNV pre-processing

3. Signal interpolation

4. Adjust for any difference in 
calibration/validation/test set spectra

5. Use as new calibration set
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To assess the decrease in signal intensity as the offset distance increases, 

SORS spectra of granular paracetamol collected using 100 mW laser power 

for 20 seconds were extracted as one fibre per offset and the maximum peak 

intensity for each of the offset was plotted in Figure 8.5, this figure shows the 

decrease in signal intensity as the offset distance increases as well as 

highlighting the polynomial trend of decrease in the curve.  

 

Figure 8.5. The maximum intensity of paracetamol peaks extracted as one fibre per 
offset. 

 

In step 2, SORS spectra from all datasets are pre-processed using SNV, which 

would remove baseline variation between samples and aims to decrease the 

variation between the SORS spectra collected using the SORS probe and the 

combined probe.  

For step 3, the SORS signals from the anisole dataset were interpolated in 

order to obtain the spectra from the offsets corresponding to the combined 

probe. The interpolation was done using the built-in MATLAB function interp1, 

specifying the method as cubic. The results from this step are spectra 

corresponding to offsets between the original SORS probe offsets; those are 

0.5-4.5 mm with 1 mm increments. Spectra of 0, 1.5, 2.5, and 3.5 mm offset 

distances are then used to form the final anisole calibration dataset used in 

this study. 

Step 4 follows from the visual examination of the spectra produced in the 

previous step and includes adjusting the spectra for any other variation that 
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was not addressed in the previous steps. Following the assessment of the SNV 

pre-processed spectra collected using the SORS probe and the combined 

probe, a visible horizontal offset was seen between those two, where the 

baseline of the pre-processed spectra from the SORS probe was larger by 

around 0.2 arbitrary units compared to those collected using the combined 

probe. Therefore, the offset was subtracted from all spectra collected using the 

SORS probe. 

 

8.3.4 Description of dataset  

The datasets used as the calibration sets for the estimation of both anisole and 

MTBE content in the test set are shown in Table 8.5. For each sample, four 

SORS spectra corresponding to 0, 1.5, 2.5, and 3.5 mm offset distances are 

used. 

Table 8.5. Description of the anisole and MTBE datasets collected during the drying 
of each of the solvents in granular paracetamol. 

Dataset MTBE calibration Anisole calibration 

Number of samples 83 69 

Solvent content range in 
samples/% 

0-20 0-20 

 

The datasets collected from the washing experiments and used as the 

validation and test sets for the estimation of both anisole and MTBE content in 

the wet filter cake are described in Table 8.6.  

Table 8.6. Description of the samples collected from granular paracetamol wet filter 
cakes using the combined probe following washing anisole with MTBE. 

Dataset 
MTBE/Anisole 
validation set 

MTBE/Anisole test 
set 

Number of samples 21 10 

Total solvent content range 
in samples/% 

4.35 - 14.45 2.3 – 16.4 

Anisole content range in 
samples/% 

0 - 14.5 0.1 – 11.6 

MTBE content range in 
samples/% 

0 - 5.7 
 

0.5 – 7.2 
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8.3.5 Multivariate regression analysis 

To construct partial least squares regression (PLSR) analysis models, a script 

developed in MATLAB (Mathworks, USA) and employed in earlier studies,14,58 

was used. The spectral range and pre-processing methods of the spectra in 

the calibration and test datasets are specified. Cross-validation is then 

performed on the calibration set to test the predictive performance of the PLSR 

model based on the calibration set spectra. The suitable PLSR model is 

applied to predict the solvent content in the test set. 

The parameters used for PLSR for each of the SORS spectra as well as the 

combined spectra from each of the datasets are summarised in Table 8.7. The 

PLSR analysis of those datasets is done to compare the results of the originally 

processed spectra, where the signal from multiple fibres was summed up for 

the larger distances, to the signal from 1FPO.  

Table 8.7. Description of the datasets used in the PLSR analysis for assessing the 
performance of re-processed 1FPO MTBE dataset and re-processed and interpolated 
1FPO anisole dataset. 

Dataset MTBE calibration Anisole calibration 

Calibration set 63 52 

Test set  20 17 

Cross-validation 6-fold 6-fold 

Original/Interpolated offset 
spectra 

Original Interpolated 

 

Then, the calibration sets from Table 8.7 are used along with the validation 

and test sets described in Table 8.8.  

Table 8.8. Description of the datasets used in the PLSR analysis for estimating the 
content of two solvents, anisole and MTBE, following washing. 

Dataset 
MTBE/Anisole 
validation set 

MTBE/Anisole test 
set 

Calibration set 21 10 

Spectral ranges/cm-1 
Anisole: 960-1040 
MTBE: 670-770 
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8.4 Results 

The results are divided into two sections. The first section reports the analysis 

of the reprocessed and interpolated calibration datasets, while the second 

section reports the PLSR analysis performance in the estimation of the solvent 

content of anisole and MTBE in the paracetamol filter cakes following washing.  

 

8.4.1 Assessing the performance of the re-processed SORS spectra 

This section details the analysis results of the interpolation of the anisole 

calibration dataset as well as the comparison between the 1FPO and original 

datasets.  

 

8.4.1.1 Interpolation of anisole SORS spectra to obtain the anisole 

calibration set 

SORS spectra collected from the drying of granular paracetamol in anisole 

were collected using the SORS probe, which includes offsets collected from 0-

5 mm from the incidence laser. The interpolated spectra were those from 0.5-

4.5 mm in 1 mm increments. An example of the spectra of samples of variable 

solvent content from the interpolated offset distance of 1.5 mm is shown in 

Figure 8.6 (a). This figure illustrates that the decrease in anisole peak intensity 

as the solvent content decreases can be seen in the interpolated spectra. To 

assess the response from the original and interpolated offsets following SNV 

pre-processing, Figure 8.6 (b) shows a zoom on the anisole peak in the spectra 

of a sample containing 18.6% anisole from all offset distances. The 

comparable intensity following pre-processing as well as a slight peak shift can 

be seen, which was also present in the original SORS spectra from the offsets 

due to the alignment to the detector.  
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 (a)  (b)  

Figure 8.6. (a) Example of interpolated spectra at 1.5 mm offset distance. (b) Example 

of a sample containing 18.6% from original and interpolated spectra. Original offset 

spectra are in solid lines and interpolated spectra are in dashed lines.  

 

Following the assessment of the spectra from the interpolated offsets with 

reference to the original offset distances, SORS spectra of variable solvent 

content of anisole in granular paracetamol collected with the SORS probe were 

compared to the SORS spectra collected using the combined probe; this is 

shown in Figure 8.7 (a) of the anisole peak, where a difference in peak width 

and an offset in the baseline of pre-processed spectra from both probes can 

be seen. While the difference in peak width is a result of the different alignment 

of each of the probes and cannot be adjusted in the calibration set, the baseline 

difference was adjusted by subtracting the offset from the granular 

paracetamol in anisole spectra as shown in Figure 8.7 (b) as was described in 

section 8.3.3.  

 (a)  (b) 

Figure 8.7. SNV pre-processed backscattering spectra from granular paracetamol in 
anisole calibration (solid lines) and the filtration (dashed line) datasets (a) before and 
(b) after addressing the baseline offset seen in (a).  
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8.4.1.2 Comparison of 1FPO and interpolated spectra PLSR analysis 

result with the original anisole calibration set 

The PLSR results of the original granular paracetamol in anisole were 

compared with the dataset where spectra were extracted as one fibre per offset 

(1FPO), as well as with the interpolated offset spectra. The comparison is done 

in order to assess the differences in results using 1FPO spectra to construct 

the PLSR model in comparison to the signal obtained from all fibres for the 

same offset and evaluate the improvement in PLSR prediction as the collection 

offset distance increases.  

Figure 8.8 shows the comparison between RMSECV and RMSEP from the 

PLSR analysis of the original and interpolated SNV pre-processed spectra of 

granular paracetamol in anisole over two spectral ranges, where the full 

spectral range of 250-1750 cm-1 is shown in black markers, and the anisole 

peak spectral range of 960-1040 cm-1 is shown in red markers. The RMSECV 

and RMSEP of the PLSR models of the original dataset over the two spectral 

ranges, shown as hollow circular markers, are seen to decrease as the offset 

distance increases. Comparing the RMSCV and RMSEP of the PLSR models 

of the original dataset to the PLSR models of the 1FPO dataset over the two 

spectral ranges, indicated by the square marker, shows a similar level of error 

up to the 3 mm offset distance and increase for the 4 mm and 5 mm offset 

distances. This increase in PLSR error indicates that the quality of the SORS 

spectra from the larger offset distances is reduced as a result of the lower 

signal intensity obtained as the offset distance increases as light diffuses in 

the sample before the signal is collected, as is shown in Figure 8.5. This is 

particularly seen in Figure 8.8 starting from the PLSR model of the 4 mm offset 

to the 5 mm offset spectra.  

To further investigate the reproducibility of these observations, RMSECV and 

RMSEP of the PLSR models of spectra over the wavenumber range 960-1040 

cm-1, which includes the anisole peak of strongest intensity is overall similar to 

or lower than the full spectral range and follows the decrease in RMSECV as 

the collection offset distance increases. The smaller wavenumber range is 
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thought to show lower RMSECV as a result of including less variation that is 

not related to the solvent content since the wavenumber range includes the 

anisole peak with the strongest intensity. This would explain the almost 

identical RMSECV of the backscattering spectra compared to the offsets. 

However, as the offset distance increases to over 3 mm, the RMSECV and 

RMSEP of the PLSR models of spectra from those larger offset distances 

increase suggesting that the reduced variation that benefitted the PLSR 

models of the smaller offsets is hindered by a decrease in signal-to-noise ratio 

for the PLSR models of the 1FPO of larger offset distances.  

Following from comparing the RMSECV and RMSEP of the PLSR models of 

the original and 1FPO, the RMSECV and RMSEP of the PLSR models of the 

1FPO interpolated spectra at 1.5, 2.5, and 3.5 mm corresponding to the 

collection offset distances of the combined probe are compared. Those are 

indicated by the diamond-shaped markers in Figure 8.8. The RMSECV of the 

PLSR models of the interpolated spectra over the two spectral ranges show 

RMSECV values similar to or in between the spectra obtained from the original 

offsets. Although the RMSECV increases at the larger offset distances, the 

maximum offset distance used for analysis in the following section is 3.5 mm, 

and the RMSECV of the PLSR model of spectra interpolated from this offset 

distance is similar to that of the PLSR model of 1FPO spectra collected at 3 

mm. The RMSEP shows a similar trend and is at a level slightly lower than that 

of the RMSECV, suggesting that the calibration sets represent the granular 

paracetamol in the anisole system sufficiently to obtain good estimations 

based on spectra obtained from the test set.  

  



 

225 
 

 (a)  (b) 

Figure 8.8. Comparison of (a) RMSECV and (b) RMSEP of PLSR models of the 
original, 1FPO spectra, and 1FPO interpolated granular paracetamol in anisole 
datasets over two spectral ranges.  

 

8.4.1.3 Comparison of 1FPO spectra PLSR analysis result with the 

original MTBE calibration set 

PLSR analysis results of the dataset collected from the drying of granular 

paracetamol in MTBE using the combined probe, where the signal was 

extracted from all of the multiple fibres per offset, were compared to the dataset 

in which spectra were extracted as 1FPO. Figure 8.9 shows the comparison of 

RMSECV and RMSEP of the PLSR models over the full wavenumber range, 

50-1750 cm-1, compared to the wavenumber range containing the solvent peak 

of strongest intensity, 670-770 cm-1. Comparable RMSECV levels can be seen 

for the original and 1FPO spectra; this was evident in both of the spectral 

ranges. A similar observation can be seen from the RMSEP.  

Looking at the 1FPO PLSR results represented by the RMSECV and RMSEP 

of the PLSR models of spectra granular paracetamol in anisole and MTBE in 

Figure 8.8 and Figure 8.9, respectively, the offset distances 0-3.5 mm show 

more consistency for spectra collected using the two probes, while the 

RMSECV and RMSEP are slightly higher for the larger offset distances of 4-5 

mm for the anisole dataset. This indicates that the number of fibres used for 

collecting the signal from larger offset distances has more impact on collected 

spectra and consequently PLSR performance in estimating the solvent 

content.  
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 (a)  (b)  

Figure 8.9. Comparison of (a) RMSECV and (b) RMSEP from the original and the 
1FPO spectral dataset of granular paracetamol in MTBE datasets over two spectral 
ranges.  

 

The comparisons between the original and 1FPO spectral datasets between 

0-4 mm offset distances show a similar performance. Therefore, those 

datasets may be used as calibration sets for the estimation of the anisole and 

MTBE content in a granular paracetamol filter cake.  
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8.4.2 SORS for the estimation of the solvent content during cake 

washing 

To assess the feasibility of using spatially offset Raman spectroscopy for 

monitoring two solvents during pharmaceutical cake washing, two experiments 

were conducted. In the first experiment, granular paracetamol was washed 

with a mixture of known percentages of two wash solvents, anisole and MTBE, 

and SORS spectra were collected. Through this dataset, SORS spectra would 

be assessed to detect the peaks of the two solvents in the samples containing 

different percentages of the solvents. In the second experiment, granular 

paracetamol is washed with anisole then MTBE consecutively and SORS 

spectra of the filter cake are collected. The calibration sets in the previous 

section are used here to estimate the solvent content in the samples of the 

second experiment as a test set, while spectra collected from the first set are 

used as a validation set to assess the suitability of the experimental setup and 

collected data.  

 

8.4.2.1 Validation set 

SORS spectra were collected following the wetting and filtration of granular 

paracetamol with a mixture of MTBE and anisole, reference solvent content 

values were obtained using LOD measurements. The percentage of each of 

the solvents in the total solvent content obtained from the LOD measurements 

was assumed to be equal to the percentages within the prepared solvent 

mixtures that were used to wash the paracetamol filter cake.  

 

Loss on drying reference measurements 

The total solvent content obtained from the LOD reference measurements is 

shown in Figure 8.10 in addition to the percentage of each of the solvents in 

the wet sample. A wider distribution of anisole compared to MTBE may be 

seen, which highlights the difference in the percentage of solvent removed with 



 

228 
 

reference to the percentage of each of the solvents in the mixture. In other 

words, samples washed with a mixture containing a larger percentage of 

anisole retained more of the solvent mixture following filtration. Moreover, 

lower amounts, as indicated by the narrower percentage, of MTBE remained 

in the sample overall. These observations regarding the two solvents imply 

that the determination of the actual percentage of each of the solvents may not 

be the most accurate if determined based on the theoretical percentage of 

each of the solvents.  

 

 

Figure 8.10. Total solvent content in the wet samples collected following the wetting 
and filtration of paracetamol and the individual percentage of each of the solvents. 

 

SORS spectra of the validation set samples  

SORS spectra of 21 samples of granular paracetamol wet with a solvent 

mixture of varying percentages of anisole and MTBE were collected using the 

combined probe. An example of those spectra from the 2.5 mm offset distance 

over the full spectral range following SNV pre-processing is shown in Figure 

8.11 (a), where paracetamol peaks are seen along with characteristic MTBE 

and anisole peaks that vary as the percentage of each of the solvents in the 

total solvent content within those samples changes. To illustrate the change in 

the spectra with reference to the change in the percentage of the solvents, the 

spectra are divided into four groups based on the percentage of each solvent 
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in the total solvent content. A zoom-in view of the spectra in Figure 8.11 (a) is 

shown in Figure 8.11 (b) and (c) over the wavenumber range 670-770 cm-1 

and 960-1060 cm-1 including the strongest intensity MTBE and anisole peak, 

respectively. Figure 8.11 (b) shows stronger MTBE peak intensity in the 

samples containing the largest percentage of MTBE in the mixture, where the 

change in MTBE peak intensity follows the change in the percentage of MTBE. 

Similarly, Figure 8.11 (c) shows that the change in anisole peak intensity 

follows the change in the percentage of anisole in the solvent mixture. 

Comparing spectra within the same group in Figure 8.11 (b) and Figure 8.11 

(c) shows a complementary trend of a decrease in MTBE peak intensity as the 

MTBE percentage decreases along with the increase in anisole peak intensity. 

This indicates that the anticipated change in spectra as the percentage of each 

solvent changes can be seen and suggests that those spectra may be further 

used in PLSR analysis. 
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 (a)  

(b)  (c) 

Figure 8.11. (a) SORS spectra from the 2.5 mm offset collected of the paracetamol 
samples washed with a mixture of variable percentages of anisole and MTBE with a 
zoom-in on the spectral range, (b) 960-1060 cm-1 shows the change in anisole peak 
intensity. The legend divides the samples into four groups according to the theoretical 
fraction of solvent content, and (c) 670-770 cm-1 shows the change in MTBE peak 
intensity.  

 

 

Comparison of peak intensity in calibration and validation sets 

Spectra of samples of similar solvent content for both solvents were compared 

to assess the suitability of those datasets for use in solvent content estimation. 

Figure 8.12 (a) shows the MTBE peak of samples from the calibration set along 

with that of the validation set. A slight systematic shift of the peaks in the 

spectra of the calibration set to the higher wavenumber range is seen. To 

investigate whether this is due to the alignment of the probe to the 

spectrometer, spectra from the argon calibration lamp acquired using both 

MTBE 

peak 

Anisole 

peak 

75-100% MTBE 

50-75% MTBE 

25-50% MTBE 

0-25 % MTBE 

0-25% Anisole 

25-50% Anisole 

50-75% Anisole 

75-100% Anisole 

0-25% Anisole 

25-50% Anisole 

50-75% Anisole 

75-100% Anisole 

75-100% MTBE 

50-75% MTBE 

25-50% MTBE 

0-25 % MTBE 
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probes were assessed, and the comparison showed no change in alignment. 

Therefore, this is attributed to the use of a different laser for the collection of 

the spectra for the test set from solvent mixture experiments. Figure 8.12 (b) 

shows the strongest anisole peak in addition to the neighbouring paracetamol 

peaks. A similar shift to the right is seen in those peaks, in addition to the 

difference in peak width within the spectra from the two datasets due to the 

alignment of each of the probes as was noted in Section 8.4.1.1. Most 

importantly, the peak intensity of spectra of similar solvent content (solid and 

dashed lines) is comparable. Therefore, it can be concluded that the validation 

set spectra, and the reference LOD measurements, do represent the solvent 

content of anisole and MTBE and can be used for further analysis.  

 

(a) 

 

(b) 

 
Figure 8.12. Comparison of calibration set spectra (solid line) with validation set 
(dashed line) of (a) anisole peak and (b) MTBE peak from 3.5 mm offset.  

 

8.4.2.2 Test set 

First, the granular paracetamol in the MTBE dataset collected using the 

combined probe was extracted as spectra of one fibre per offset and the 

granular paracetamol in the anisole dataset collected using the SORS probe 

was extracted as one fibre per offset. Then, the spectral intensities over the 

full spectral range were interpolated to obtain spectra corresponding to the 

offsets in the combined probe. Those MTBE and anisole datasets were used 

as the calibration sets for the estimation of the solvent content of each of the 

solvents in the spectra of samples washed with two solvents. Spectra of 



 

232 
 

paracetamol washed with a mixture of the two solvents were collected and 

used as a validation set. In this section, the spectra collected following the 

washing of a paracetamol filter cake with anisole and MTBE consecutively and 

the dataset is used as a test, where the content of each of the solvents is 

estimated based on the individual calibration sets. 

  

Comparing the reference measurements collected for the test set 

Three methods were used for determining the percentage of each of the 

solvents in the wet cake using the theoretical percentage of the two solvents, 

the mass of the filtrate following the filtration of each of the solvents, and the 

percentage of the peak area of each of the solvents in the MS chromatogram.  

The percentages of each of the solvents obtained from the filtrate mass are 

expected to be in good agreement with the mass of the filtrate from each of 

the solvents, provided that the two solvents adsorb onto paracetamol to a 

similar extent and that no significant evaporation from the filtrate bottle 

occurred. Similarly, the GC-MS analysis percentages are expected to be in 

good agreement with the filtrate mass per the previous presumption in addition 

to the assumption that no major error was introduced during the GC-MS 

sample preparation.  

The theoretical percentages of each of the solvents in addition to the resulting 

percentages from the filtrate mass and GC-MS are shown in Table 8.9. Since 

none of the methods describes directly the percentage of the solvents in the 

wet cake, a comparison between the two experimental methods, filtrate mass 

and GC-MS, to the theoretical percentage is done to select a reliable reference 

percentage. Overall, the three methods show that the percentage of MTBE in 

the solvents wetting paracetamol is increasing as the wash volume is 

increased and this increase is associated with the decrease in anisole 

percentage. The percentages from samples 1-2 are similar for the three 

methods. A discrepancy is seen between the three methods for sample 3, 

where the increase in MTBE seen in the percentage from the filtrate mass 
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suggests that more anisole was retained in the filter cake compared to MTBE, 

whilst the lower GC-MS percentage could be attributed to the evaporation of 

MTBE. Sample 4 shows a lower percentage of MTBE and a higher percentage 

of anisole in the filtrate mass compared to the theoretical percentage 

suggesting that anisole was washed off the filter cake when MTBE was filtered, 

but MTBE then evaporated from the filtrate; however, the GC-MS percentage 

is almost identical to the theoretical percentage suggesting an error in the 

filtrate mass measurement. Samples 5-10 show higher percentages of MTBE 

and lower anisole in the filtrate mass and GC-MS, to different extents in 5-7 

and 8-10, compared to the theoretical percentage, suggesting that anisole was 

retained on the filter cake while MTBE was filtered out. It was noted that the 

results of one particular GC-MS sample, sample 9, were affected by the GC-

MS instrument sampling method, where 2-propanol is used to wash the 

sampling needle between samples. In the sample, the 2-propanol peak was 

co-eluted with that of MTBE resulting in a slightly larger peak area and, 

therefore, a larger calculated percentage of MTBE. Since the percentages 

according to the filtrate mass are a value in between the theoretical and GC-

MS percentages for half of the samples and considering that no sample 

preparation was included compared to the GC-MS analysis, those 

percentages were used for multiplication by the total solvent content obtained 

from LOD and were then used as the reference in the PLSR analysis. 

Table 8.9. The percentage of anisole and MTBE solvent in the filter cake determined 
through theoretical percentage, filtrate mass, and GC-MS analysis. The shading 
colours relate to the colours of objects in Figure 8.2 (a). 

Method 
Theoretical 
percentage 

Filtrate mass GC-MS 

# Anisole/% MTBE/% Anisole/% MTBE/% Anisole/% MTBE/% 

1 66.7 33.3 70.7 29.3 69.1 30.9 
2 50.0 50.0 49.4 50.6 47.0 53.0 
3 44.4 55.6 25.8 74.2 32.2 67.8 
4 40.0 60.0 47.6 52.4 39.9 60.1 
5 36.4 63.6 26.2 73.8 28.0 72.0 
6 33.3 66.7 26.7 73.3 25.5 74.5 
7 30.8 69.2 22.2 77.8 23.6 76.4 
8 28.6 71.4 26.9 73.1 22.8 77.2 
9 26.7 73.3 23.7 76.3 18.0 82.0 
10 25.0 75.0 24.3 75.7 20.5 79.5 
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The total solvent content obtained from the LOD reference measurements is 

shown in Table 8.10. The percentages of each of the solvents in the total 

solvent content obtained from the LOD measurements are also shown in the 

same table. Those indicate that the anisole content decreases as the volume 

of MTBE used for washing is increased between samples 1-10. 

 

Table 8.10. Total solvent content in wet paracetamol filter cakes and the content of 
each anisole and MTBE according to the percentage obtained from the filtrate mass. 

# Total solvent content/% Anisole/% MTBE/% 

1 16.40 11.60 4.80 
2 11.00 5.43 5.57 
3 9.64 2.49 7.15 
4 11.17 5.32 5.85 
5 3.65 0.96 2.70 

6 1.83 0.49 1.34 

7 1.97 0.44 1.53 
8 2.06 0.55 1.51 
9 0.60 0.14 0.46 

10 2.27 0.55 1.72 

 

 

8.4.2.3 SORS for the estimation of the solvent content following cake 

washing 

SORS spectra of the ten samples were collected using the combined probe. 

Figure 8.13 shows the change in anisole and MTBE peaks according to the 

change in the content of each of the solvents, where the spectra were sorted 

according to the solvent content value to assess this change more clearly. 

Figure 8.13 (a) shows the decrease in anisole peak intensity as the anisole 

content decreases. Two samples of similar anisole content of 0.6%, for 

example, have similar peak intensity and follow the anisole content as 

measured through the percentage of anisole in the filtrate. Similarly, Figure 

8.13 (b) shows that the peak intensities correspond to the MTBE content, 

which may be seen in the consistency of the peak intensity in samples 

containing 1.5% of MTBE for example. Observations from Figure 8.13 (a-b) 
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confirm that the total solvent content and percentages estimated through the 

filtrate mass do represent the solvent content within the samples. However, 

some level of error would still be expected due to the differences mentioned 

earlier between datasets and reference methods. In order to show the change 

in anisole content as the MTBE wash volume increases, the anisole peak 

intensity in Figure 8.13 (a) was plotted against the MTBE wash volume and is 

shown in Figure 8.13 (c). This figure shows the decrease in anisole peak 

intensity, except sample 3 of the 1.25 volume wash, as the MTBE wash volume 

increases to 2.5 and plateaus over 2.75-3 cake volumes. This is true apart 

from the spectra of the 1.25 wash volume which could be attributed to 

evaporation during sample handling during the experiment. Figure 8.13 (c) in 

turn confirms the effectiveness of the increase in cake volume in displacing 

anisole from the filter cake.  

 

 (a)   (b)  (c)  

Figure 8.13. SORS spectra of the 10 test samples collected from 3.5 mm offset 
distance showing an example of (a) the anisole and (b) MTBE peak intensity decrease 
as the percentage of the solvent decreases. The legend shows the solvent content 
(SC%) of each solvent from the fractions obtained through the filtrate mass. (c) 
Anisole peak intensity of unsorted spectra from (a) versus MTBE cake volume.  

 

PLSR analysis was conducted using the anisole and MTBE calibration sets 

and the spectra dataset shown in Figure 8.13 as the test set. To exclude the 

unintended interference in the PLSR model due to the difference between the 

calibration and test sets, spectral ranges containing the main solvent peaks 

were used in the PLSR analysis. Those were 670-770 cm-1 for MTBE and 960-

1040 cm-1 for anisole as previously detailed in section 8.3.5.  
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A summary of the PLSR analysis results for the MTBE content is shown in 

Table 8.12. The number of LVs is selected based on the RMSECV curve for 

the calibration set. The number of latent variables capturing the variation in the 

dataset is 4 LVs for the backscattering spectra and 2 LVs for 1.5-3.5 mm 

spectra. The RMSECV for spectra from the three offset distances is lower by 

0.1% for 1.5-3.5 mm compared to the backscattering spectra. The coefficient 

of determination, R2, is also consistent and suggests a similar and strong 

correlation to the solvent content within the MTBE calibration set. The slight 

increase in the percentage of variance in the PLSR models as the offset 

distance increases is consistent with observations in Chapter 6 and Chapter 

7, and suggests that spectra from the larger offsets better represent the 

system. The RMSEP for the PLSR models of the washing dataset shows a 

similar level of error for the offset spectra and is three times higher than the 

RMSECV. The R2 of the test set prediction is around 0.73, suggesting a good 

fit between those datasets. The higher level of the RMSEP may be attributed 

to the differences between the calibration and test datasets, the collection 

setup of those datasets, as well as the reference methods. The test set spectra 

represent a three-component system, where the variation within each of the 

three components affects the results, even though the wavenumber range 

used in the PLSR analysis does not include anisole peaks. Moreover, the 

differences in spectra arising due to the difference in the SORS systems used 

for collecting the spectra, which led to the slight shift seen in Figure 8.12 (b). 

The reference method used for measuring the solving content within the 

calibration set was directly through the wet sample using LOD since only one 

solvent was to be quantified. However, the quantification of the MTBE content 

within the test was indirectly using the filtrate mass. Those three sources of 

variation are thought to contribute, to different extents, to the high RMSEP 

level. The variance, also reported in Table 8.11, increases as the offset 

distance increases. 
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Table 8.11. Summary of PLSR analysis results for the estimation of the MTBE content 
using SORS spectra over the wavenumber range 670-770 cm-1. 

Offset/mm LVs RMSECV/% CV - R2 RMSEP/% P - R2 Variance/% 

0 4 1.36 0.86 3.55 0.76 94.7 

1.5 2 1.34 0.87 4.02 0.73 94.6 

2.5 2 1.30 0.88 4.01 0.73 95.0 

3.5 2 1.26 0.88 3.96 0.73 95.4 

 

To further look into the performance of the offset spectra, the regression and 

residuals plots of the PLSR models built using the 3.5 mm spectra are shown 

in Figure 8.14 (a) and (b), respectively. While the MTBE content within the 

calibration set is predicted accurately over the solvent content range of 0-10%, 

the MTBE content within the test set is predicted with low error over the low 

MTBE content range of 0-5% compared to 5-10%, where the MTBE content is 

over-estimated. 

 

 (a)  (b)

  
Figure 8.14. (a) Regression and (b) residuals plots from PLSR of the 3.5 mm SORS 
spectra predicting the MTBE solvent content. 

 

A summary of the PLSR analysis results for the anisole content is shown in 

Table 8.12. The number of latent variables is 2 LVs for 0-1.5 mm offset spectra 

and 3 for 2.5-3.5 mm offset spectra. This may be attributed to the components 

of the system within the calibration set, paracetamol and anisole, in addition to 

another source of variation within the larger offset spectra, which may arise 

due to the larger distance through which light travels through the sample before 
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being collected at the detector. The RMSECV in Table 8.12 is the highest for 

the backscattering spectra and decreases as the offset distance increases, 

where the lower RMSECV indicates more accurate estimations based on the 

spectra from a larger offset. The R2 shows an opposing trend as the values 

are high overall, but are larger for the offsets, indicating a stronger correlation 

to the actual anisole content. This is also indicated by the larger percentage of 

variance captured within the models of the larger offset distance spectra 

compared to the backscattering spectra. RMSEP of the anisole content within 

the washing dataset is approximately 4 times higher than the RMSECV, where 

the RMSEP similarly decreases as the offset distance increases. The 

prediction R2 shows an opposite trend to that of the RMSEP indicating a 

stronger correlation found from the larger offset spectra. However, the 

prediction R2 is lower than that of the cross-validation R2 indicating variation 

affecting the linearity between the calibration and test set leading to lower 

accuracy in predicting the solvent content within the test set. The three factors 

leading to the high RMSEP mentioned for the MTBE dataset, which was the 

variation between the datasets, the collection setup of those datasets, and the 

reference methods, also apply here. However, another factor affecting the 

performance of for predicting the anisole content in the washing dataset is that 

the calibration anisole dataset is an interpolated dataset. Therefore, the test 

set spectra would also include variation, attributed to the experimental setup, 

not represented within the calibration set leading to the lower prediction R2 

seen. The variance, also reported in Table 8.12, increases as the offset 

distance increases, which conforms to what was seen in the PLSR of the 

spectra range including the MTBE peak.  

Table 8.12. Summary of PLSR analysis results for the estimation of the anisole 
content using SORS spectra over the wavenumber range 960-1040 cm-1. 

Offset/mm LVs RMSECV/% CV - R2 RMSEP/% P - R2 Variance/% 

0 2 1.10 0.94 4.28 0.38 97.6 

1.5 2 0.89 0.96 4.07 0.61 98.5 

2.5 3 0.73 0.98 3.13 0.69 99.0 

3.5 3 0.70 0.98 3.44 0.53 99.1 
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Figure 8.15 (a) and (b), show the regression and residuals plots, respectively, 

of the PLSR models constructed with the 3.5 mm offset spectra. Those figures 

show that, similar to the prediction of MTBE, the anisole content estimated 

from spectra corresponding to the lower anisole content spectra, 0-5%, are 

predicted more accurately compared to those of higher solvent content. The 

higher anisole content, where the RMSEP is higher, is under-estimated. This 

is the opposite of the observation of the prediction of the MTBE content where 

the error was due to the over-estimation of the MTBE content.  

 

 (a)   (b)  

Figure 8.15. (a) Regression and (b) residuals plots from PLSR of the 3.5 mm SORS 
spectra predicting the anisole solvent content. 
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8.5  Conclusions 

The application of spatially offset Raman spectroscopy coupled with partial 

least squares regression for the estimation of the solvent content of two wash 

solvents, anisole and MTBE, within a paracetamol filter cake, was explored. 

Two individual datasets of SORS spectra of paracetamol in anisole and 

paracetamol in MTBE were used in PLSR for the estimation of the content of 

each solvent in a SORS test set collected from a filter cake wet with variable 

percentages of both solvents. Prior to the use of the two calibration sets, the 

differences between the SORS spectra in each of the solvent datasets were 

addressed as the paracetamol in anisole spectral dataset was collected using 

a SORS probe with 0-5 mm equidistant offsets while the paracetamol in MTBE 

dataset was collected using a probe with 0, 1.5, 2.5, ad 3.5 mm offset 

distances, which was also used to collect the dataset of paracetamol washed 

with both solvent. The differences between the datasets were addressed 

through the use of signals obtained through one collection fibre as opposed to 

multiple fibres in previous experiments, applying SNV pre-processing, and 

interpolating the signal from the 0-5 offset distances from the SORS probe to 

obtain spectra corresponding to 1.5, 2.5, and 3.5 mm collection offsets. The 

new datasets were then used to construct PLSR models and their performance 

was assessed in comparison the original datasets. Once deemed reliable, the 

new calibration PLSR models of anisole and MTBE were used to estimate the 

content of each of the solvents in the washing dataset spectra. The PLSR 

results show that the maximum root mean square error prediction is five-fold 

of the root mean square error of calibration. The sources of inaccuracy 

contributing to the higher RMSEP include the differences in the calibration sets 

collected from each of the solvents in addition to the reference method for 

quantifying the actual solvent content within the cake, where three methods 

were used before selecting one. The PLSR results indicate that SORS spectra 

show potential for use in estimating the solvent content in drying and washing, 

in addition to the relevant process with similar system components.  
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9. Conclusions and Future Work 

 

This thesis reported the investigation of the application of spatially and 

angularly resolved diffuse reflectance NIR measurements and spatially offset 

Raman spectroscopy collected using bespoke probes for monitoring the 

solvent content in laboratory-scale pharmaceutical drying. The analysis 

conducted in the previous chapters has led to some observations and 

conclusions regarding the application of spatially resolved spectroscopy for the 

monitoring of pharmaceutical drying and washing. Moreover, areas where 

additional work would have been beneficial, but may have been outwith the 

capacity of this project were also identified. Those conclusions and 

suggestions for future work are detailed in this chapter.  
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9.1 Conclusions 

In this thesis, spatially offset Raman spectroscopy and spatially and angularly 

resolved diffuse reflectance near infrared spectroscopy, individually  and 

combined were applied in an industrial process for the first time up to our 

knowledge. During pharmaceutical drying processes SORS and SAR-DRM 

signals were collected from model systems for each of the techniques. The 

spectra were then evaluated qualitatively and quantitatively.  

Quantitative PLSR analysis of SAR-DRM spectra individually showed slight 

improvement represented by decrease in RMSECV and increase in R2 as the 

collection distance increased from 0.3 mm to 0.9 mm; this was most evident 

where 0° illumination angle was used. When analysed in combinations, a trend 

was seen where PLSR model performance is superior for those models 

including configurations from the larger collection distances and for those from 

the 0° illumination angle. Quantitative PLSR analysis of SORS spectra also 

showed improvement in PLSR model performance as the collection offset 

distance increased. This provides practical validation for using spatially 

resolved spectroscopy to monitor pharmaceutical drying. 

Combined together, PLSR models including SORS and SR-DRM 

configurations were found to perform similarly to the PLSR models of the 

SORS configurations; this was attributed to the superior Raman signal 

resolution and intensity compared to the NIR signals. The monitored systems, 

paracetamol in either heptane, anisole or MTBE, indicated that for both SORS 

and SAR-DRM techniques, the PLSR model performance is improved for the 

systems with higher signal intensity and lower overlap between the component 

peaks, which may be a limitation for both conventional and spatially resolved 

spectroscopy.  

Following from using SORS the monitoring of the content of a wash solvent 

during drying, the calibration sets used for each of the solvents anisole and 

MTBE, collected with two different probes, were used to estimate the content 
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of the two solvents in a filter cake wet with both solvents. This demonstrates 

the transferability of those calibration sets collected using different equipment 

and under different conditions and corroborates the applicability of spatially 

resolved spectroscopy to an additional part in the isolation unit processes, thus 

showing further potential for application in other pharmaceutical unit 

processes. Hence, further potential of those spatially resolved spectroscopic 

techniques for applications monitored through conventional spectroscopy, 

such as API content, blending uniformity, polymorphic forms, and hydrate or 

solvate formation, is demonstrated.  
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9.2  Future work 

Following the investigation of spatially resolved spectroscopy for monitoring 

the solvent content in pharmaceutical isolation unit processes, future work is 

recommended as an optimisation or an extension for each of the studies.    

 

9.2.1 SAR-DRM for monitoring pharmaceutical drying 

Among the two paracetamol/solvent systems monitored using SAR-DRM, it 

was noted that superior performance was seen in PLSR models of 

paracetamol/n-heptane as opposed to the paracetamol/MTBE systems. This 

was explained by the differences in the spectra of the solvents, where the n-

heptane spectrum includes a characteristic peak with minimal overlap with the 

paracetamol peak while the peaks in the MTBE spectrum overlap with those 

of paracetamol. Further investigation of the quantitative analysis of such 

systems, where the signals from the system components display significant 

overlap, could offer insight into possible solutions. Moreover, the analysis in 

this thesis focusses on the wavelength range of 1100-1600 nm as this is the 

range enabled by the spectrometer. Paracetamol and the wash solvents also 

display peaks at longer wavelengths within the NIR range 1600-2200 nm, 

which could benefit the analysis if included. This is in addition to enabling a 

better understanding of the difference in solvent content estimation in each of 

the paracetamol particle size grades at the longer wavelength ranges.  

The issue of signal intensity poses a limitation to the investigation and 

application of SAR-DRM, as the collected spectra suffer from low signal-to-

noise ratio, particularly for the signals obtained from wider illumination angles 

and larger collection distances. This limits the application and utilisation of data 

but may be addressed through the use of an illumination source of stronger 

intensity or the use of longer acquisition duration for spectra collected from 

configurations that require so. Since the quick collection of spectra is vital for 

process monitoring, the use of a stronger light source is the preferred option.  
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The use of a stronger light source could also lead to achieving a better 

evaluation of the depth through which the solvent signal may be predicted.  

 

9.2.2 SORS for monitoring pharmaceutical drying 

Investigation of the solvent content estimation of anisole in a wet paracetamol 

filter cake showed a decrease in error as the collection offset distance 

increased. However, the investigation of the solvent content estimation of 

paracetamol wet with MTBE did not initially show a clear trend similar to the 

one seen in the paracetamol/anisole system. The differences between the 

spectra from those two systems are in the fact that the anisole spectrum 

includes a strong intensity peak that can be seen decreasing in intensity as the 

anisole is dried, as opposed to the MTBE peak, which overlaps with a 

paracetamol peak and is less clear as a result. This difference in intensity was 

also seen in the loadings within PLSR models constructed from both systems. 

Further investigation of the signals from the system that display components 

with spectra that significantly overlap could offer insight into better utilisation 

of such datasets for estimating the solvent content. 

 

9.2.3 Combined SR-DRM and SORS for monitoring pharmaceutical 

drying 

In this thesis, SR-DRM and SORS signals were combined, where each of the 

SR-DRM and SORS data blocks consisted of different numbers of variables 

and were characterised by variable intensities. Although signal interpolation 

and pre-processing were applied, the resulting PLSR model performance was 

almost identical to that of the SORS signal, which was higher in resolution and 

intensity compared to the SR-DRM signal. Evaluating the impact of the matrix 

size and the magnitude of the signal from each of the combined signals could 

offer insight into the possible ways for optimising the multi-block analysis for 

improved results.  
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Here, the data blocks were augmented (concatenated) to form multi-blocks.  

This method is termed a low-level multi-block fusion. Alternatively, mid and 

high-level fusion methods could be explored. Mid-level fusion is applied 

through the use of a regression model for feature extraction from the individual 

blocks, followed by multi-block analysis. In high-level fusion, a prediction is 

made based on the individual block, and the results are then combined. Mid-

level fusion is recommended for the multi-block PLSR analysis since although 

the RMSECV and R2 of the calibration models were closer to those of the 

PLSR model of the individual SORS spectra, examining the loadings curved 

of the larger LVs showed curves similar to the NIR signal of the solvent. This 

suggested that, although weak, the contribution from the SR-DRM signal in the 

multi-block analysis could lead to improved results.  

Provided that the use of stronger incidence light as recommended in section 

9.2.1 leads to an estimation of the depth through which a solvent signal may 

be detected using SR-DRM, it may be possible to establish the connection 

between the depth of signal detection from Raman and NIR signals from 

variable collection distances. This in turn could help in the optimisation of the 

selection of configurations combined in multi-block data analysis.  

9.2.4 SORS for monitoring pharmaceutical isolation processes 

SORS signals were interpolated to obtain spectra corresponding to certain 

offset distances. The interpolation of the signal obtained from the offset spectra 

has led to obtaining spectra that do represent the spatially offset spectra from 

further offsets. This suggests that, if variation in datasets and spectral offset 

signals are accounted for, spatially offset spectra can be simulated using 

algorithms and used for further data analysis and property prediction.  

In this thesis, the SORS calibration datasets were used in the estimation of the 

two solvent contents following filtration and washing. Provided that two 

miscible solvents with NIR signals that do not significantly overlap with 

paracetamol are found, e.g. n-heptane and MTBE or acetone, SR-DRM may 

be used to monitor the solvent content following filtration and washing.   
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