

University of Strathclyde

Department of Design, Manufacture &

Engineering Management

Information Hiding in Boundary

Representation Geometric Models

by

Csaba Salamon

A thesis represented in fulfilment of the

requirements for the degree of Doctor of
Philosophy

2011

 ii

Declaration of Authenticity and Author’s Rights

‘This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has lead to

the award of a degree.’

‘The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulations 3.50.

Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.’

Signed: Date: 19/05/2011

 iii

Abstract

The increasing mobility of computer aided design (CAD) data between

subcontractors and distributed manufacturing facilities is creating a need to verify

providence and protect the copyright of three-dimensional CAD models. Although

watermarking technologies are well established for many types of digital media (e.g.

music, image and video) no viable techniques have yet emerged for the high value

solid boundary representation (B-rep) models used in 3D mechanical CAD systems.

This thesis reviews some of the established approaches to watermarking 3D CAD

objects, before describing the particular challenges inherent in the nature and use of

B-rep data. After discussing some of the possible methods for incorporating

watermarks into three dimensional data structures, an approach is described that

subtly alters a B-rep model’s geometric representation to incorporate a “transparent”

signature. Furthermore, this thesis introduces a watermark assessment scheme and

adequate test objects to enable objective benchmarking of the proposed method. In

addition, it demonstrates the embedding and retrieval of text information, and

investigates the robustness of the embedded watermark after a variety of

transformation and modifications have been carried out.

Test results show that the introduced parametric orientation (PO) watermark does not

change the model’s shape or file size, nor has any influence on the CAD model’s

capabilities. Considering the overall performance, PO-watermarking has shown to be

a viable method for marking 3D B-rep CAD models. It works particularly well

within a single CAD environment (i.e. company network) where no data is being

translated into different formats, and is robust for everyday use.

 iv

Thesis Related Publications

Salamon, C., Corney, J.R. and Ritchie, J.M. (2008). Information Hiding through

Variance of the Parametric Orientation Underlying a B-rep Face. In Solanki, K.,

Sullivan, K. an Madhow, U. (Eds.) Information Hiding. Lecture Notes in Computer

Science 5284. Berlin: Springer, pp. 268-282. (ISBN 978-3 540-88960-1)

Salamon, C., Corney, J.R., Rea, H.J., Ritchie, J.M. and Sung, R.C.W. (2007).

Watermarking 3D-CAD Data. Paper presented at Digital Enterprise Technology

2007 (DET ‘07), Bath, UK, 19-21 September. (Best Paper Award)

(ISBN 978-0-86197-141-1)

 v

Acknowledgement

This thesis is the result of five years of work during which I have been accompanied

and supported by many people. I would like to take this opportunity to thank them.

First and foremost, I would like to thank my supervisor Professor Jonathan Corney

for all the support and encouragement he gave me during these five years. Without

his guidance and feedback this PhD would not have been possible.

I gratefully acknowledge the studentship and funding received towards my PhD

research from the Engineering and Physical Sciences Research Council (EPSRC) and

the Knowledge and Information Management (KIM) Grand Challenge project.

Last but not least, this work would not have been achieved without the support and

understanding of my family. They have always supported me in every way I have

chosen in life. Special thanks go to my wife Sandra who has supported and motivated

me throughout my PhD.

 vi

Table of Contents

Declaration of Authenticity and Author’s Rights .. ii
Abstract ...iii
Thesis Related Publications .. iv
Acknowledgement.. v
Table of Contents .. vi
List of Figures ... ix
List of Tables... xi
List of Tables... xi
List of Abbreviations..xii
1 Introduction .. 2

1.1 Background .. 2
1.2 Research Aim and Objectives .. 4
1.3 Thesis Structure.. 4

2 Introduction to Data Protection and Digital Watermarking................................. 7
2.1 Digital Data Protection... 7

2.1.1 Message Coding Techniques.. 9
2.1.1.1 Cryptography ... 9
2.1.1.2 Message Digest .. 11

2.1.2 Information Hiding Techniques ... 12
2.1.2.1 Steganography.. 13
2.1.2.2 Digital Watermarking... 14

2.1.3 Other Techniques ... 16
2.1.3.1 Digital Fingerprinting .. 16
2.1.3.2 Digital Rights Management (DRM) .. 17
2.1.3.3 Digital Signature .. 18

2.1.4 Comparison of Data Protection Techniques 19
2.2 Digital Watermarking... 22

2.2.1 History of Watermarking ... 22
2.2.2 Industrial Application of Digital Watermarking 29
2.2.3 The Process of Digital Watermarking.. 30
2.2.4 Visibility of Digital Watermarks.. 33
2.2.5 Robustness of Digital Watermarks... 35
2.2.6 Attacks on Watermarked Data ... 36

2.2.6.1 General Classification of Watermark Attacks................................ 37
2.2.6.2 Attacks in the CAD Environment .. 39

2.2.7 Requirements for CAD Data Watermarking Schemes....................... 40
3 Representation of 3D-CAD Data ... 44

3.1 Line or Wire-frame Modelling for 3D Data Representation...................... 47
3.2 Surface Modelling for 3D Data Representation... 49

3.2.1 Polygonal Mesh Surface .. 52
3.2.2 Bézier Surface .. 56
3.2.3 Non-Uniform Rational Basis-Spline (NURBS) 59

3.3 Solid Modelling for 3D Data representation.. 61
3.3.1 Constructive Solid Geometry... 64
3.3.2 Boundary Representation (B-rep) .. 67

3.4 Other Techniques for 3D Data Representation .. 75

 vii

3.4.1 Voxels .. 75
3.4.2 Point Clouds... 79

3.5 Discussion .. 81
4 Work Related to Digital Watermarking ... 88

4.1 Watermarking Approaches for Non-Three Dimensional Data 88
4.1.1 Text-Document Watermarking .. 88
4.1.2 Still Image Watermarking .. 92

4.1.2.1 Watermark Signal Design .. 94
4.1.2.2 Watermark Embedding .. 95
4.1.2.3 Watermark Recovery ... 96
4.1.2.4 Discussion .. 96

4.1.3 Video Watermarking.. 98
4.1.3.1 Space .. 98
4.1.3.2 Frame Rates.. 99
4.1.3.3 Data Processing.. 99
4.1.3.4 Live Editing.. 101
4.1.3.5 Video Watermarking Techniques .. 101
4.1.3.6 Discussion .. 102

4.1.4 Audio Watermarking.. 104
4.1.4.1 Time Domain ... 106
4.1.4.2 Compressed Domain .. 106
4.1.4.3 Frequency Domain ... 107
4.1.4.4 Other Audio Watermarking Techniques 109
4.1.4.5 Discussion .. 109

4.2 Watermarking Approaches for Three-Dimensional Data 111
4.2.1 Watermarking Techniques for 3D Models Represented as Surface 112

4.2.1.1 Approaches for Polygonal Mesh-type Data 112
4.2.1.2 Approaches for Bézier-type Data... 124
4.2.1.3 Approaches for NURBS-type Data.. 125

4.2.2 Watermarking Techniques for 3D Models Represented as Solids... 126
4.2.3 Alternative 3D Watermarking Techniques 128
4.2.4 Discussion .. 132
4.2.5 Gap in the Literature .. 139

5 Methodology .. 142
5.1 Research Approach .. 142

5.1.1 Research Philosophy .. 142
5.1.2 Research Process.. 143

5.2 Knowledge & Information Management Project Survey......................... 145
5.3 Requirements and Mechanisms for 3D Watermarking Systems.............. 146
5.4 Method Overview of the PO-watermarking Scheme............................... 153

5.4.1 Watermark Embedding .. 154
5.4.1.1 Task One: Preparation of Carrier CAD Data 155
5.4.1.2 Task Two: Text Message Encoding... 161
5.4.1.3 Task Three: Tweaking or Embedding Process 164

5.4.2 Watermark Retrieval Process... 168
6 Testing Procedures for the PO-watermarking Scheme 172

6.1 Lack of Common Standards for Testing Watermarked 3D Data............. 172
6.2 Possible Benchmarking Scheme for Watermarked 3D CAD Data.......... 174

 viii

6.2.1 Classification of Attacks on CAD Data ... 174
6.2.2 Appropriate CAD Test Data .. 178

6.3 Modifications for Testing the PO-watermark’s Robustness 180
7 Evaluation and Discussion of Test Results .. 185

7.1 Mathematical Considerations of the Embedded Watermark Message 185
7.2 Produced Test Data .. 189
7.3 Discussion of Test-Result Data.. 193
7.4 Discussion on the Requirements for a Watermarking Scheme................ 197
7.5 Comparison of the PO-watermarking Scheme against Existing
Watermarking Methods and Techniques ... 202
7.6 Possible Applications of the PO-watermarking Approach 204

7.6.1 Fragile Watermarking .. 204
7.6.2 Robustness-enhanced Watermarking ... 206

8 Discussion and Conclusion .. 213
8.1 Summary .. 213
8.2 Contribution to Knowledge.. 216
8.3 Limitations and Directions for Future Work.. 217

References .. 221
Appendices... 235

 ix

List of Figures

Figure 2.1 Data protection techniques ... 8
Figure 2.2 The process of cryptography .. 10
Figure 2.3 The Message Digest process... 12
Figure 2.4 The steganography process... 14
Figure 2.5 Example of use of digital watermarking... 15
Figure 2.6 Fingerprinting as a unique identifying pattern ... 16
Figure 2.7 The process of digital signature.. 19
Figure 2.8 Egyptian symbols as information ... 22
Figure 2.9 Different marking patterns: thin wire patterns, stamping of paper,
coloured fibre adding (from left to right)... 24
Figure 2.10 Number of publications on digital watermarking................................... 27
Figure 2.11 The distribution of digital watermarking applications............................ 28
Figure 2.12 The process of digital watermarking .. 31
Figure 2.13 Example of visible watermark for images .. 34
Figure 3.1 Classification of geometric modelling.. 45
Figure 3.2 The wire-frame model of a mechanical component 48
Figure 3.3 An object defined by complex surfaces.. 50
Figure 3.4 A dolphin represented by polygonal mesh ... 53
Figure 3.5 Mesh modifications .. 56
Figure 3.6 A Bézier curve (C) with its control points (1-4) and its control polygon (P)
.. 56
Figure 3.7 Example of a Bézier surface ... 58
Figure 3.8 An object represented as a solid model .. 62
Figure 3.9 Boolean functions: union U, intersection ∩, difference  65
Figure 3.10 Boundary representation of a 3D model... 67
Figure 3.11 Definition of a B-rep model’s face ... 68
Figure 3.12 ACIS hierarchy representation of a B-rep data....................................... 69
Figure 3.13 Hierarchical representation of a B-rep model... 70
Figure 3.14 Concept of parametric surface definition based on basic geometrical
objects .. 72
Figure 3.15 Voxels can be regarded as a stack of two-dimensional images.............. 76
Figure 3.16 A macromolecule in biochemistry represented by Voxels 77
Figure 4.1 Word-shift coding by moving words horizontally.................................... 90
Figure 4.2 Feature coding by stretching the upper part of the letter ‘h’ 90
Figure 4.3 Image watermarking for data authentication .. 93
Figure 4.4 Information embedding with TSPS .. 114
Figure 4.5 Carrier objects for information hiding.. 131
Figure 5.1 Research process adopted for this study... 144
Figure 5.2 Flow chart of the watermark embedding process 155
Figure 5.3 Problems within CAD data: gap (left) and overlap (right) 158
Figure 5.4 Creation of reorientation/tweaking parameter for two faces 163
Figure 5.5 Tweaking parameter creation process within the PO-watermarking
scheme based on the word “Strathclyde“.. 164
Figure 5.6 Example of surface tweaking.. 165

 x

Figure 5.7 Iso-parameter lines showing surface orientations before (left) and after
(right) tweaking.. 166
Figure 5.8 Cube containing the message “Strath” embedded by the PO-watermarking
scheme.. 167
Figure 5.9 Flow chart of watermark retrieval process ... 170
Figure 6.1 Level 1 test objects with low geometrical complexity 179
Figure 6.2 Level 2 test objects with advanced geometrical complexity 179
Figure 6.3 Level 3 test objects with sophisticated geometrical complexity 180
Figure 6.4 Testing procedure of the PO-watermarking scheme 183
Figure 7.1 Parametric orientation of a planar face before (left) and after (after)
tweaking ... 186
Figure 7.2 Schematic triangle representing parametric reorientation 187
Figure 7.3 Output of the PO-watermark reader ... 188
Figure 7.4 Watermark recovery success rate after various attacks 197
Figure 7.5 Ways of cutting objects .. 200
Figure 7.6 Entry of information for fragile watermarking....................................... 205
Figure 7.7 Information conversion and encoding for fragile watermarking............ 206
Figure 7.8 Entry of information for robust watermarking 208
Figure 7.9 Information conversion and encoding for robust watermarking 208
Figure 7.10 Message recovery matrix.. 210

 xi

List of Tables

Table 3.1 Representational ACIS ENTITIES .. 70
Table 3.2 Lowercase geometry classes of B-rep data (source: Corney, 1997) 73
Table 4.1 Digital watermarking techniques and methods for three dimensional data
.. 136
Table 5.1 Comparison of potential B-rep watermark embedding mechanisms 151
Table 6.1 Classification of threats and attacks in the CAD field 175
Table 7.1 Output of the PO-watermark extractor based on Cube object 185
Table 7.2 Watermarking success rate for Level 1 test objects................................. 190
Table 7.3 Level 1 test objects after data handling (or unintentional) attacks 191
Table 7.4 Level 1 test objects after geometrical modification (or intentional) attacks
.. 191
Table 7.5 Level 1 watermark survival rate after data handling (or unintentional)
attacks... 192
Table 7.6 Level 1 watermark survival rate after geometrical modification (or
intentional) attacks ... 192
Table 7.7 Data structure before and after surface tweaking..................................... 198
Table C0.1 Watermarking success rate for Level 2 test objects 264
Table C0.2 Level 2 test objects after data handling (or unintentional) attacks........ 265
Table C0.3 Level 2 test objects after geometrical modification (or intentional) attacks
.. 265
Table C0.4 Level 2 watermark survival rate after data handling (or unintentional)
attacks... 266
Table C0.5 Level 2 watermark survival rate after geometrical modification (or
intentional) attacks ... 266
Table C0.6 Watermarking success rate for Level 3 test objects 267
Table C0.7 Results for Level 3 test objects after data handling (or unintentional)
attacks... 267
Table C0.8 Results of Level 3 test objects after geometrical modification (or
intentional) attacks ... 268
Table C0.9 Level 3 watermark survival rate after data handling (or unintentional)
attacks... 268
Table C0.10 Level 3 watermark survival rate after geometrical modification (or
intentional) attacks ... 269

 xii

List of Abbreviations

3D Three Dimensional
AD Analogue/Digital
AIE Affine Invariant Embedding
API Application Programming Interface
ASCII American Standard Code for Information Interchange
AVI Audio Video Interleave
BC Before Christ
B-rep Boundary representation
CAD Computer Aided Design
CAM Computer Aided manufacturing
CAT Computer Axial Tomography
CATIA Computer Aided Three-dimensional Interactive Application
CGI Computer Generated Imagery
CIT Cylindrical Integration Transform
CNC Computer Numerical Control
CSG Constructive Solid Geometry
DA Digital/Analogue
DAB Digital Audio Broadcasting
DCT Discrete Cosine Transform
DES Data Encryption Standard
DFT Discrete Fourier Transform
DNC Direct Numerical Control
DRM Digital Rights Management
DVD Digital Video Disc
DWG Drawing
DWF Design Web Format
DWS Drawing Standards
ECDR Enhanced Centroid Distance Ratio
FAP Facial Animation Parameter
FEM Finite Element Method
FFT Fast Fourier Transform
GPS Global Positioning System
HAS Human Audio Sense
HD High Definition
HVS Human Visual Sense
IGES Initial Graphics Exchange Specification
IP Intellectual Property
ISO International Organization for Standardisation
JPEG Joint Photographic Experts Group
KIM Knowledge and Information Management
LSB Last Significant Bit
MAP Maximum a-posterior
MATLAB Matrix Laboratory
MD Message Digest
MLS Moving Least Squares
MPEG4 Moving Picture Experts Group 4

 xiii

MRI Magnetic Resonance Imaging
NBE Normal Bin Encoding
NURBS Non-Uniform Rational Basis Spline
NTSC National Television System Committee
OCR Optical Character Recognition
OpenGL Open Graphics Library
PAL Phase Alternate Line
PC Personal Computer
PDF Portable Document Format
PDM Product Data Management
PLM Product Life-cycle Management
PN Pseudo Noise
PO Parametric Orientation
POA Principal Object Axis
SECAM Séquentiel couleur à mémoire (French for "Sequential Colour

with Memory)
SPOA Sectional Principal Object Axis
SSA Singular Spectrum Analysis
STEP Standard for the Exchange of Product Data
STL Stereo Lithographic
Tiff Tagged Image File Format
TSPS Triangle Strip Peeling Symbol
TSQ Triangle Similarity Quadrulpe
TV Television
TVR Tetrahedral Volume Ratio
US United States
VFA Vertex Flood Algorithm
Voxel Volumetric Pixel
VRML Virtual Reality Modelling Language
W.H.Smith William Henry Smith

 1

Chapter 1

 2

1 Introduction

1.1 Background

When the Internet became wide spread in the 1990s, it quickly emerged that people

wanted to advertise, buy, sell, and exchange many kinds of digital information such

as text, images, music, videos, and engineering design data (Podilchuk and Delp,

2001). It also became apparent that the Internet was an excellent distribution system

for digital media because it is inexpensive, eliminates the need for warehousing, and

delivery is almost instantaneous.

The 1990s also saw personal computer (PC) based three-dimensional (3D) computer

aided design (CAD), computer aided manufacturing (CAM) systems, data analysis

(e.g. Finite Element Method) and simulation programmes becoming widely used in

the engineering industry. Eventually, these separate systems were integrated to form

product life-cycle management (PLM) and product data management (PDM) systems

that enable efficient management of engineering data.

Many companies today have security policies and processes implemented in their

PLM systems to support global collaboration. However, a PLM system can only

protect information while it is inside the system. In other words, once the data is

outside the physical protection ring of the intellectual property (IP) owner or the

secure PLM system, there is usually nothing to prevent its intended or unintended

disclosure to third parties (e.g. the press, competitors, black-market manufacturers,

and other non-authorised parties).

For these reasons companies and copyright owners who exchange, or sell their

products in virtual environments, face copyright-related problems and a risk of

 3

piracy or theft. Consequently, the protection and enforcement of intellectual property

rights for digital media has become an important issue. As one commentator states,

“… there is typically more security around a $0.99 iTunes song than the detailed

engineering models of a discrete manufacturer’s next generation product when they

are outside a secure PLM system!” (PTC, 2008, p. 4). Terefore, the interest in

steganography, information hiding, fingerprinting, digital rights management

(DRM), and other digital watermarking technologies for three-dimensional CAD

data has increased continuously since 1997.

However, 3D CAD models pose distinctly different challenges from other types of

computer generated image (CGI) or music data, and to date only a small amount of

academic work has been reported that addresses their unique challenges. While the

spread of networks and digital multimedia materials, such as MPEG4 and VRML has

also led to work on the development of digital watermarking techniques, most of

them focus on the embedding of information into images, audio and video data. Only

few algorithms have been developed to hide security and/or copyright relevant data

within the data structures of 3D CAD models (Corsini et al., 2003a; Hartung and

Kutter, 1999a). Despite the rapid evolution of dedicated hardware, and software

systems to display, process, and protect three dimensional CAD models effectively,

no viable watermarking technique has yet emerged for the high value Boundary

representation (B-rep) models used in most mechanical CAD systems.

 4

1.2 Research Aim and Objectives

Attempting to fill this gap, the overall aim of this thesis is to develop a digital

watermarking scheme that allows the embedding of textual information into solid

three-dimensional Boundary representation CAD models.

The objectives of this thesis can be summarised as follows:

1. Investigate the feasibility of B-rep data watermarking for information embedding

while preserving both the topology and the exact geometrical shape of the model.

2. Develop testing procedures that are appropriate to assess watermarked data under

real-world conditions (i.e. in a CAD environment)

3. Investigate the robustness and limitations of the proposed parametric orientation

watermarking (PO-watermarking) approach using the newly developed testing

procedures.

1.3 Thesis Structure

This thesis is presented in eight chapters. The contents of the chapters following this

introductory part are as follows:

Chapter 2 provides an introduction to data protection and digital watermarking. It

first presents different intellectual property protection techniques and explains why

digital watermarking is the best suited approach for marking 3D CAD data. The

chapter continues with an introduction to digital watermarking which includes the

historical development, the watermarking process and relevant terminology. Finally,

the requirements for a digital watermarking scheme for CAD related data are

identified.

 5

Chapter 3 reviews the different ways/methods of representing CAD data, their ability

to store watermark information, and their use in mechanical CAD systems.

The first part of Chapter 4 describes different established technologies and methods

for digital watermarking for various types of data. In the second part of this chapter,

the various watermarking techniques for three dimensional data are identified,

classified and examined regarding their strength and weaknesses. Finally, the gap in

the literature is identified.

Chapter 5 discusses the research methodology and proposes an original

watermarking approach (known as “PO-watermarking”) for three dimensional B-rep

CAD data that enables the encoding and embedding of text information.

Chapter 6 analyses the need for an appropriate evaluation scheme for marked CAD

data, and introduces a watermark assessment scheme and adequate test objects to

enable objective benchmarking of the proposed method under real-world conditions.

In Chapter 7 the test results of the PO-watermarking method are analysed and

discussed, and compared to the requirements for CAD data watermarking. Before the

capabilities of the PO-watermarking approach are discussed in the context of various

forms of watermarking methods, the PO-watermarking scheme is compared to other

3D watermarking schemes reported in the literature review section.

Chapter 8 summarises the key findings of this research and illustrates the study’s

contribution to knowledge. It ends with a selection on the PO-watermarking

scheme’s limitations and directions for future research.

 6

Chapter 2

 7

2 Introduction to Data Protection and Digital

Watermarking

This chapter provides a general overview of data protection and digital

watermarking. The initial sections review the different data protection techniques.

Next, to get a better understanding of the term digital watermarking, a brief review of

its historical development and terminology is provided. After that, the industrial

application and the process of digital watermarking are explained and the

characteristics of digital watermarks described. The chapter continues with the

classification of different attack types on digital data and possible attacks on

watermarked data in the CAD environment. It ends by detailing the functional

requirements for a digital watermarking scheme in the context of CAD.

2.1 Digital Data Protection

The need to communicate secretly (or to transmit trustworthy information) is as old

as communication itself. The first stories which can be interpreted as early records of

covert, or secret, communication appeared in ancient Greek literature (The

Histories
1) where the word “steganography”, which is still in use for copyright

protection today, derives from the Greek language and means “covert

communication” or “covered writing” (Katzenbeisser and Petitcolas, 2000). Today,

covert communication is, of course, concerned with digital communication and the

protection of digital content. As in classical tales of covert communication (e.g.

invisible ink, or secret symbols) there are many different methods that allow the

1 The Histories of Herodotus of Halicarnassus is considered the first work of history in Western
literature. Written about 440 BC in the Ionic dialect of classical Greek, The Histories tells the story of
the Greco-Persian Wars between the Achaemenid Empire and the Greek city-states in the 5th century
BC. Herodotus tells how around 440 B.C. Histiæus shaved the head of his most trusted slave and
tattooed it with a message which disappeared after the hair had re-grown. The purpose was to
investigate a revolt against the Persians (Katzenbeisser and Petitcolas, 2000).

 8

transmission of digital information to be hidden, or embedded, into digital carrier

data.

While modern digital techniques often share similar principles and methods, there

are also important distinguishing features, mainly in terms of robustness against

intrusions, or attacks, that are unique to the media. However, the meaning of the

terminology is often confusing, and therefore it is necessary to clarify the differences

and similarities between the various information hiding and data protection

techniques.

The most frequently cited techniques are cryptography, message digest,

steganography, digital watermarking, digital fingerprinting, digital rights

management (DRM), and digital signature. Based on their functionality the various

techniques can be grouped into different categories as shown in Figure 2.1.

Figure 2.1 Data protection techniques

Steganography and digital watermarking are related to hiding information in the

carrier data; other techniques like cryptography and message digest are concerned

 9

with the protection of data or messages through various encoding schemes. In

contrast, technologies like digital fingerprinting, digital rights management, and

digital signature focus on identifying content ownership, access control and data

authentication, respectively (Cox et al., 2002b).

To a certain extent, some of these techniques overlap and share many similar

technical approaches. However, there are other fundamental philosophical

differences between them that affect the details of their functionality, their outcome,

and thus the design of technical solutions.

In genaral, it is apropriate to categorise these techniques since all of them have

different characteristics. Therefore, in the following sections each of these seven

approaches are described and their differences, or similarities, highlighted, while in

the last section their applications in the context of CAD discussed.

2.1.1 Message Coding Techniques

Message coding techniques are concerned with the encoding or cipher of the signal

or data that is going to be transmitted, instead of putting any form of copyright or

ownership related information into the carriers signal (Light et al., 1990). Therefore,

the application areas include for instance encryption of system signals (e.g. for Sky

TV or DAB radio) or secure (i.e. shielded) telecommunication (e.g. police or military

radio signals).

2.1.1.1 Cryptography

Cryptography (in Greek: crypto for “hidden” and graphia for “writing”) is probably

the oldest and one of the most common methods for secret communication by

obscuring the meaning of a message (Coyle, 2003; Kahn, 1996). Usually, the original

 10

message that is to be encoded is called “plaintext”, and the information after

encoding is called “cyphertext”. The process of transforming information is called

“encryption” which uses an algorithm (called a cipher) to make it unreadable to

anyone, except those possessing the right decoder key. Decryption is the process of

converting encrypted data back into its original, readable format. The process of

cryptography is shown in Figure 2.2 and is used as follows:

Figure 2.2 The process of cryptography

(adapted from: (Menezes et al., 2001))

The valuable digital content is encrypted prior to delivery, and a decoder decryption

key (e.g. a password or device) is provided only to those who have purchased

legitimate copies of the content, or are authorised to use or see the data. Then, the

encoded file can be transmitted or distributed, for instance through the Internet, but

would be useless to others without an appropriate decryption key.

Cryptography has long been used by armies and governments to facilitate secret

communication. Nowadays, it is also used for protecting information exchange

 11

within many kinds of civilian systems, such as computer networks, satellite

telephones, wireless intercom systems, or internet banking (Bauchle et al., 2008).

Unfortunately, cryptography cannot help the seller or data owner monitor how a

legitimate customer handles the content after decryption. For instance, a “pirate” can

legally purchase the information and a decryption key, use the key to obtain an

unprotected copy of the content, and then distribute illegal copies (Arnold et al.,

2003; Kessler, 1998). In summary, cryptography can protect content in transit, but

once decoded the content offers no further protection.

2.1.1.2 Message Digest

Another scheme associated with the transmission of information is the Message

Digest (or short MD). Similar to cryptography, a message digest algorithm (also

known as a hash function) is a software application that when given input data or file

(for example a text message), produces an output number (or a combination of

numbers and letters) that is much shorter than the original input message (Arnoud,

2005). These input messages can be very large – sometimes a complete disk file.

However, the corresponding output is a much shorter code number, typically with a

size of 125 or 512 bits (Menezes et al., 2001). Crucially the output number is

‘characteristic’ of the input, but does not ‘contain’ it. Because of this a message

digest can verify that data has not changed, but cannot say anything about the content

of the message or information. A message digest conversion algorithm has the

following properties:

1) Given the same input file it will always generate the same output number.

2) The algorithm is very difficult to predict or reverse, which means that given an

output number it is very difficult to derive the input that created it.

 12

3) Finally, and perhaps most importantly, a slight change in the input file, say

adding a comma, results in a dramatically different output number.

The process of message digest is illustrated in Figure 2.3.

Figure 2.3 The Message Digest process

(adapted from: (Menezes et al., 2001))

A text document being transmitted (e.g. emailed) to a sub-contractor could be the

input message to a message digest algorithm. The output number would be sent

separately to the sub-contractor who could compare it to a message digest number

generated from the received file to confirm nothing has changed during transmission.

2.1.2 Information Hiding Techniques

Information hiding (or data hiding) is an umbrella term for a number of methods and

technologies with various application areas to embed copyright or security related

information into digital media (e.g. audio, video, and images) or CAD data

(Petitcolas et al., 1999). However, in terms of data embedding into carrier objects,

information hiding is closely related to digital watermarking and steganography. As

Cox et al. (2002b, p. 3) state “The term hiding can refer to either making the

information imperceptible (as in watermarking) or keeping the existence of the

information secret”. Therefore, information hiding techniques typically apply either

steganography or watermarking methods, or applications from both techniques.

 13

2.1.2.1 Steganography

Steganography is another term derived from the Greek words steganos equivalent of

“covered”, and graphia, meaning “writing” (Drake, 2003). Steganography stands for

a technique that allows secret point-to-point communication between trusted parties,

usually by embedding, or hiding, secret information into unsuspected carrier objects

or data, in such a way that does not disturb the carrier data’s appearance or functions

(Arnold et al., 2003; Cox et al., 2002b; Katzenbeisser and Petitcolas, 2000). Apart

from the sender and the intended recipient (who expects to receive a message), no

one should realise that there is a hidden message embedded in the carrier data. The

detection of steganographically encoded information is called steganalysis. The

simplest method to detect the secret information is to compare the carrier data to the

unmarked originals. The differences (assuming the carrier is unchanged) will be the

secret message. Consequently, steganographic methods, in general, have only limited

ability to protect the embedded information against carrier data modifications, or

other technical transformations and modifications that may occur during handling,

transmission and storage (Arnold et al., 2003). In other words, the hidden

information cannot be recovered after the carrier data has been manipulated,

modified or attacked.

The advantage of steganography over cryptography is that the embedded message

does not attract attention to itself since it is invisible or is not detectable without

appropriate software. Often, steganography and cryptography are used together to

ensure, and increase the security of the covert message. The process of

steganography is illustrated in Figure 2.4.

 14

Figure 2.4 The steganography process

(adapter from: (Menezes et al., 2001))

2.1.2.2 Digital Watermarking

Digital watermarking, similar to steganography, describes a technique that is used to

imperceptibly convey information by embedding it into carrier data, whereas

steganography typically relates to covert point-to-point communication between two

trusted parties, with limited robustness against technical modifications. Digital

watermarking, on the other hand, has the additional notion of resilience against

attempts to remove the hidden information (Cox et al., 2002b). Thus, watermarking

is used whenever the carrier data is exposed to third parties who know about the

existence of the hidden data and may have an interest removing it. A popular

application of digital watermarking is to give prove of ownership of digital data by

embedding copyright statements (Katzenbeisser and Petitcolas, 2000).

Digital watermarking can be distinguished from other techniques in two important

ways. First, watermarks are “inseparable” from the carrier object in which they are

embedded. In other words, they should not get removed or destroyed when the

carrier objects are displayed, attacked or modified. Second, watermarks undergo the

same transformations as the carrier data. This means that it is sometimes possible to

 15

learn about the transformation procedures by simply looking at the resulting

watermarks.

Digital watermarking could, for example, be used to mark digital intellectual

property which is meant for storage, placed on a website for visualisation, or for sale

(see illustration in Figure 2.5). However, it could also be used to embed a singnal

that is used by a DRM system to identify an object and prove its authenticity, or to

embed a copyright notice. Further applications of digital watermarking are discussed

in section 2.2.2.

Figure 2.5 Example of use of digital watermarking

A negative aspect of digital watermarking is that typically watermarking methods

embed much less information in the host data than steganographic methods because

of the desire to keep robustness levels high (Arnold et al., 2003; Hartung and Kutter,

1999a). In other words, to make a watermark more robust (i.e. detectable after

modifications) the same information will be embedded multiple times and distributed

over the carrier object. However, this procedure takes up more storage space within

the carrier data. Therefore, steganography and digital watermarking are

complementary rather than competitive approaches.

 16

2.1.3 Other Techniques

2.1.3.1 Digital Fingerprinting

The figurative term fingerprinting has acquired two completely different

interpretations in the field of digital content protection. However, only one refers to

the process of information embedding or watermarking (Hartung and Kutter, 1999a).

In the watermarking interpretation a unique digital mark, consisting of information

about the content owner, or the end user for instance, that identifies and authorises

him to use the data, is embedded into the carrier object. These fingerprint marks are

usually embedded at the time of distribution to the customer.

The second interpretation of fingerprinting involves the derivation of unique

characteristics of the protected data for transaction tracking (Arnold et al., 2003). In

this context, digital fingerprinting uses unique characteristics of the content as an

identifying pattern to verify the data (see fingerprinting process in Figure 2.6).

Figure 2.6 Fingerprinting as a unique identifying pattern

Similar to a message digest, these ‘unique’ fingerprints are sent separately to the

recipient to verify that he/she received the correct data and the content has not been

altered during transmission. This technique can offer ways of data tracking or

authentication, but does not offer any protection against attacks or copying.

 17

2.1.3.2 Digital Rights Management (DRM)

Digital Rights Management - a term commonly reduced to the acronym DRM - is a

generic term that refers to access control technologies used to limit usage of digital

media or devices (Arnold et al., 2003). Technologies which are involved are

encryption, data embedding, watermarking, fingerprinting, steganography,

transmission control, and tracking devices. Its aim is to control use of digital media

by preventing access (e.g. viewing) and restricting copying, printing, sharing or

conversion to other formats by end users (Slowinski, 2003; Godwin, 2006; Ceusters

and Smith, 2006). Furthermore, digital rights management also covers the

description, identification, trading, protection, monitoring and tracking of all forms

of rights over both tangible and intangible assets, including management of

relationships between rights holders in a digital environment (Felten, 2003).

While DRM is commonly used in the entertainment industry (e.g. for film and music

recording and distribution), it has also found application in other situations such as

online purchasing, music downloading, or office file handling. An example of office

file handling is where DRM regulates the access to a PDF file and allows only

viewing, but not printing, copying or saving.

However, the watermark’s robustness is particularly important to data management

systems (e.g. PDM and DRM) since it helps to identify the ‘correct’ data. In other

words, should a CAD model lose the embedded watermark information after a

modification attack, even the most sophisticated IP system would not be able to

determine its authenticity. As a consequence of this, the purpose of intellectual

property protection would fail.

 18

2.1.3.3 Digital Signature

A Digital Signature is essentially a combination of two data protection techniques:

message digest and digital watermarking. The term digital signature is used for

marking, or signing, electronic documents with the help of an encryption-key such as

message digest. In other words, an encrypted code (e.g. a message digest code) is

attached to, or embedded into, carrier data that uniquely identifies the sender and/or

the content of the message, and insures that the document has not been altered during

transmission (Youd, 1996; Cox et al., 2002b).

The process of creating a digital signature has two main steps: first, creation and

embedding of the digital signature before sending out the data; and second,

verification of the digital content by the receiver (see process in Figure 2.7). In step

one, a private-key hash function (a mapping of a variable-length string into a fixed-

length string) creates a digital signature (e.g. messages digest) which is the encrypted

summary of the original document and details about the content owner or sender.

The resulting computed value, representing the digital signature, is then embedded

into the carrier data with the help of a watermarking scheme.

In step two, the verification stage, a function reconverts the digital signature and

checks its content against the original-carrier message. If the calculated message and

sender details do not match the original information, the document looses its

authenticity.

 19

Figure 2.7 The process of digital signature

(adapted from: (Merkle and Brassard, 1990))

2.1.4 Comparison of Data Protection Techniques

Most of the listed techniques for information hiding and data protection are suitable

for message encoding, information embedding, secure data transmission, data

tracking or access regulation. While cryptography and message digest are rather

useful for signal or text message encoding, other technologies like steganography

and digital watermarking are concerned with the embedding of information into

carrier data. Digital rights management is more suitable for access regulation and

 20

restriction, whereas digital fingerprinting and digital signature are more appropriate

for data authentication (Arnold et al., 2003; Katzenbeisser and Petitcolas, 2000).

It should be mentioned that these technologies are not restricted to one application

area only, since their capabilities and characteristics overlap. Take for example

digital fingerprinting: on one hand, it can add identifying features about the owner to

the carrier data and is thus similar to digital watermarking; on the other hand it is

also able to extract characteristics of an object as identifying features for data

verification, a process which is similar to digital signature. The digital signature itself

also demonstrates multiple characteristics: the encryption of text document content

for verification makes it similar to message digest, and the embedding of this

message digest into the carrier object relates it to digital watermarking.

It is also worth looking at the advantages and disadvantages of these techniques.

Most encryption techniques are dealing more or less with text messages for secret

communication or secure information exchange. However, the biggest disadvantage

of cryptography and message digest is that, once the message has been decoded, the

content has no further protection against misuse, and does not carry any information

about the copyright or content owner. Therefore, we could say that cryptography and

message digest can protect the confidentiality of messages, or data, during

transmission, but other techniques are still needed to protect the integrity and

authenticity of the decrypted message.

In the case of digital signatures and digital fingerprinting, the added message to

digital data can only prove the data’s originality but cannot do anything about

improper use (e.g. copying, modification, etc.).

 21

Digital rights management, on the other hand, can unify some of these protecting

characteristics (for example secure data transmission, access regulation, data

authentication), but is useless when the embedded security features within the carrier

data are lost after heavy data modifications or attacks (e.g. data processing or

editing).

Consequently, there is a need for alternative, or complementary, technologies which

enable robust embedding of information into valuable digital content (e.g. precise

CAD data). Crucially, the information that is hidden inside the carrier data has to be

able to undergo all the modifications, transformations and attacks, commonly applied

to the media, without getting destroyed. Steganography and digital watermarking

have the potential to fulfil this need by embedding information invisibly inside a

carrier CAD model, which is not removed or destroyed during normal data usage,

transmission or editing. Since the embedded information is invisible, the strength of

these techniques is their inconspicuous nature. In other words, third parties who can

neither see nor have any knowledge about the embedded ‘features’ have therefore no

incentive to remove them.

A positive feature of digital watermarking, compared to steganography, is that

watermarks do not get removed or destroyed during data modification and processing

since they are robustly connected to the carrier object. This is crucial, because CAD

models are constantly edited, modified or transformed in the engineering world.

Therefore, the most important aspect in the field of data protection and information

hiding is the ability to embed a watermark message into the carrier data robustly and

invisible so that it can travel with the carrier object even if it has been modified or

transformed.

 22

Since only digital watermarking meets all these requirements, this thesis focuses on

the development of a digital watermarking scheme suitable for hiding text

information into three dimensional CAD data.

2.2 Digital Watermarking

2.2.1 History of Watermarking

The principles of watermarking are not a modern invention. The roots of information

hiding technology can be traced some 2500 years back to Greece (Katzenbeisser and

Petitcolas, 2000). At that time, specific arrangements of symbols and drawings were

used to forward information, for instance, at war times (see example in Figure 2.8).

Figure 2.8 Egyptian symbols as information

(source: Wikipedia, 2008c)

At around 440 BC the ancient Greek used different ways of carrying or sending

combat related messages during the Greco-Persian wars. For instance, the

information was scratched into a drawing board and covered by a thin wax layer, or

even tattooed onto the messengers scalp (Katzenbeisser and Petitcolas, 2000). By

 23

removing the wax layer from the board, or shaving the messengers head, the

information was made visible again.

However, the basic principles of watermarking as we understand it today started with

the papermaking in Europe in the 13th and 14th century. Although the method of

papermaking was invented in China over a thousand years earlier, paper watermarks

did not appear until the end of the 13th century (Cox et al., 2002b). The oldest

watermarked paper found in archives dates back to 1282 and has its origin in the

town of Fabriano in Italy (Katzenbeisser and Petitcolas, 2000). This town has played

a major role in the evolution of the papermaking industry. At the end of the 13th

century, about 40 paper mills shared the paper market in Fabriano and were

producing paper with different format, quality, and price. Competition was not only

between the 40 paper mills but also between artisans and merchants. It was difficult

for any party to keep track of a paper’s provenance and thus identification of format

and quality was problematic. The introduction of identifying patterns or marks was

the perfect method to eliminate any possibility of confusion.

The marks were made by adding thin wire patterns to the paper moulds, or by

stamping the paper. When the water drained from the paper pulp, the layer of fibres

over the raised wire pattern in the mould was thinner than the rest of the sheet. When

the sheet was pressed and dried, the thinner areas resulted in a pattern that only

shows clearly when held up to light. In the case of the stamping method, the opacity

of the paper was altered by physically stamping with an identifying pattern. This

created an uneven surface whose distinctive mark or logo differentiated the paper

type. The same effect was also achieved by adding thin coloured textile fibres to the

paper pulp to create a unique identification pattern.

 24

The marks have been used as trademarks to identify the paper maker, or for practical

functions such as identifying the moulds on which sheets of papers were made.

Beyond their purely functional use watermarks may also have served as decoration

or paper design. See for example the three different paper marks in Figure 2.9.

Figure 2.9 Different marking patterns: thin wire patterns, stamping of paper, coloured fibre

adding (from left to right)

By the eighteen century, these so called watermarks on paper had become more

clearly functional and practical in Europe and America. They were used as

trademarks to record the date the paper was manufactured and to indicate the sizes of

original sheets. It was also about this time that watermarks began to be used as anti-

counterfeiting measures on bank notes and other important documents (Cox et al.,

2002b).

In 1818, an English inventor named Sir William Congreve devised a technique for

making coloured watermarks by inserting a thin tinted material sheet between two

white paper sheets during papermaking. The resulting marks were so difficult to

forge, that even the Bank of England itself declined to use his method for money

printing with the explanation that they were too difficult and costly to manufacture

(Hunter, 1978).

In 1848, a more practical technology was invented by a fellow Englishman named

William Henry Smith (W. H. Smith). His device for light-and-shade watermarking

 25

could produce any degree of intensity or light, and made it possible to vary the

thickness of a sheet of paper to show any form, regardless of how complicated the

shading might be (Drake, 2003). This is actually the basic technique used today to

incorporate historic faces, buildings and figures as watermarks in currency notes.

The term “watermark” seems to have appeared towards the end of the eighteenth

century and may have been derived from the German term ‘wassermarke’ (Simpson

and Weiner, 2000). However, the term is actually a misnomer, because water is not

important or necessary in the creation of the mark, so the name was probably adopted

because the mark looked like the effects of water on paper.

The analogy between paper watermarks and digital watermarking is obvious: paper

watermarks on bank notes, stamps or important government documents for anti-

counterfeiting measures inspired the first use of the term watermark in the context of

protecting digital data.

It is difficult to determine when “digital watermarking” was first discussed.

Electronic watermarking or digital watermarking can be traced back as far as 1954.

The first example of a technology similar to digital watermarking was protected by

patent in 1954 by an American researcher named Emil Frank Hembrooke of the

Muzac Corporation (Cox and Miller, 2002a). In his patent he described a method for

imperceptibly embedding an identification code (e.g. sound or noise) into music for

the purpose of proving ownership. In 1979, another researcher named W. Szepanski

described a machine-detectable pattern that could be placed on electronic documents

for anti-counterfeiting purposes. About nine years later in 1988, a group of

researchers around Lori L. Holt described a method for embedding an identification

code (signal) into audio data. However, Komatsu and Tominaga were the first to use

 26

the term “digital watermarking” in 1988, while Tirkel et al. (1993) were one of the

first to publish on the subject with their paper “Electronic Water Mark” in the field of

electrical content protection.

The emergence of the Internet around 1990, led to an increased interest in digital

watermarking. This was motivated by copyright concerns that became acute with

advances in computer technology and the development of eCommerces. These

technologies enabled the perfect copying and instant distribution of copyrighted

material to anywhere in the world at almost no cost. Since then, digital watermarking

has gained a lot of attention and has experienced rapid growth. The rising interest in

this topic can be seen in Figure 2.10, which shows the number of publications for

digital watermarking each year since 1990.

 27

Publications for digital watermarking

0

100

200

300

400

500

600

700

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

Year

N
u

m
b

e
r

p
e
r

y
e
a
r

Figure 2.10 Number of publications on digital watermarking

(source: Achilles and Ortyl, 2011; Roche and Dugelay, 1998)

Compared to the early 1990s, the figures exploded in the past decade. Further

evidence of the high demand of digital content protection systems was provided on

the MultiMedia Intelligence website in January 2008, which reported: “applications

leveraging content identification technologies such as digital watermarking and

fingerprinting are growing rapidly and could surpass US$500 million worldwide by

2012” (MultiMedia Intelligence, 2008). Key applications include Internet and

broadcast content monitoring, metadata association, copyright control, content

protection and forensics, and interactive advertising” (1888, 2008).

Since its origin, most of the research in digital watermarking has focused on digital

media such as text documents, audio, still images (bitmaps), or video data. As a

result, data embedding techniques for these ‘traditional’ digital content data types has

been widely studied. The most effort, however, has been made in the development of

 28

image watermarking followed by video, audio and finally text document

watermarking (see distribution for different media types in Figure 2.11).

Application of digital watermarking

0

200

400

600

800

1000

1200

text audio image video 3D

N
u

m
b

e
r

o
f

a
p

p
li

c
a

ti
o

n

Figure 2.11 The distribution of digital watermarking applications

(source: Achilles and Ortyl, 2011)

In the mid 1990s, when cheap 3D-CAD systems appeared on the market and interest

in protection of three dimensional design data started to grow, research began to

appear in both academia and industry. However, the field of 3D watermarking is still

relatively new, and only a few digital watermarking methods have been developed

and published to date. Nevertheless, the number of watermarking techniques for 3D

geometric data is steadily increasing, as people realise the importance of protecting

this kind of data.

Since this thesis focuses on watermarking three dimensional CAD data, chapter 4

first provides a brief overview of traditional watermarking techniques, and then

presents in more detail proposed and current 3D watermarking schemes.

 29

2.2.2 Industrial Application of Digital Watermarking

Digital Watermarking has been considered for many verification, prevention and

protection applications. For instance, in copy prevention the watermark may be used

to inform hardware, or software, devices that copying should be restricted or

forbidden. In copyright protection applications a digital watermark may be used to

identify the copyright holder, or might ask the user to apply for proper payment of

charges/fees before using the acquired product.

Although copy prevention and copyright protection have been major driving forces

behind research in the watermarking field, there are a number of other applications

for which digital watermarking has been suggested or could be used (Bender et al.,

1996; Berghel and O'Gorman, 1997; Ohbuchi et al., 1997a; Matheson et al., 1998).

These applications include (i) proof of ownership, (ii) content authentication, (iii)

data tracking, and (iv) authorisation for viewing and access.

i. Proof of Ownership: It is tempting to use watermarks not only for copyright

protection but also to prove content ownership. Nowadays, this is usually done in

form of a textual notice (e.g. notification of ownership). However, the document

can be forged or might get lost during transportation, delivery or transmission. If

the data is provided with a digital watermark, the recipient of marked data

supplied with watermark detector might be able to identify the owner of the

work, even after the data has been modified.

ii. Content Authentication: Advances in computer technologies (e.g. CAD

translation and modification tools) have made it easier to tamper with digital

works in ways that are difficult to detect. The use of digital watermarks makes

sure that the authentication-signature stays with the carrier data at all times. Of

 30

course, care must be taken to ensure that through distribution and transmission

the mark will not be removed or destroyed, or the watermarked data does not

change the carrier object’s shape so that it appears invalid or corrupt when

compared with the original data.

iii. Data tracking: Digital watermarking techniques could also be used for tracking

design data within a homogeneous environment (e.g. a CAD environment within

a company), or to search a corporate Intranet for “lost” design data. In this

context an embedded watermark containing specific information about an object,

or company/department related information (e.g. details about design engineer),

might be used to track down or to locate data, even if its original identifying

name, part number or optical appearance has been erased or changed,

retrospectively.

iv. Access regulation and/or additional information provider: Embedded digital

watermarks might also be used as access regulation tool. They could permit the

operator at the machine to open a file, but not to modify anything. For instance,

an operator at a CNC machine is allowed to view drawings or get dimensions of

it, but is not allowed to modify the model and save changes. Alternatively, a

watermark (carrying a text message) could give the machine operator additional

information about which fixtures and tools to use for machining the part.

2.2.3 The Process of Digital Watermarking

The term digital watermarking can be described as “the process by which identifying,

copyright or security related information, called a watermark, is embedded into

digital contents in such a way that they do not interfere with the content’s intended

 31

use (e.g. viewing or simulation)” (Ohbuchi et al., 1997a, p. 8). A digital watermark

that is “imperceptible to the human senses yet easily recognized by special software

detectors, gives content a unique identity that remains constant even after data

modification or manipulation without affecting the quality or the intended use of the

digital work” (Matheson et al., 1998, p. 229).

Nearly all digital watermarking methods share the same generic building elements: a

watermark embedding system and a watermark extraction or retrieval system (often

just called watermark recovery or watermark detection and decoding). The object or

carrier data in which the information is embedded is called the cover, and the object

carrying the watermark is called stego. This terminology follows the description

recommendations of Pfitzmann (Pfitzmann, 1996). Figure 2.12 schematically

illustrates the concept of the general digital watermarking process.

Figure 2.12 The process of digital watermarking

 32

The input into the watermarking scheme is the original, or cover-data, and the

watermark information. To embed, or hide, the watermark an embedding algorithm

is used. The watermark message/information can be of any nature such as numbers,

text, symbols, or simply random binary information. The output of the watermarking

scheme is the watermarked data, or the, so called, stego.

Watermarking techniques are usually defined in terms of the method by which the

embedded information is extracted from the carrier stego data. Therefore, the

different watermarking schemes can be described as follows:

• Blind watermarking scheme: The detection of watermarks happens without any

knowledge of the original, or unmarked data and/or the watermark message itself.

In other words, neither the embedded watermark information, nor the cover data

is necessary to locate and to retrieve the embedded message.

• Non-blind watermarking scheme: A non-blind watermarking system requires the

original unmarked data in the retrieval stage. This type of system extracts the

watermark information from the carrier stego data by using the original cover

data to find (i.e. to locate) where the watermark is embedded.

Since both watermarking schemes use different approaches in the detection stage,

they can be used for different applications. Non-blind watermarking methods are

usually applied within a secure, or controlled, environment (e.g. within a company)

where the original unmarked data is immediately available for verification purposes.

Digital data containing blind watermarks, however, can be used everywhere (even on

the Internet) since they carry all necessary information to locate and to retrieve the

embedded message.

 33

In the watermarking literature, systems that use informed or non-blind detection are

often called private watermarking systems, whereas those that use blind detection are

described as public watermarking systems. This terminology refers to the general

usefulness of the systems in applications in which only a selected group of people are

allowed to detect the watermark (private watermarking), or applications in which

everyone is allowed to detect the watermark (public watermarking) (Cox et al.,

2002b). In general, the original unmarked data is only available in private

application, and therefore informed detectors might not be used in public

applications.

2.2.4 Visibility of Digital Watermarks

Usually, the general principle of a digital watermark is to be invisible to human

senses but there is an exception found in the protection of digital images. Such

visible watermarks are used in quite the same way as their bond paper ancestors, with

the intention to be seen, so that the source, or the authenticity, of the object can be

recognised immediately on inspection. The mark is designed to be easily read or seen

by the viewer and may spoil the visibility/appearance of the protected data. An

example of a visible watermark is shown in Figure 2.13 below.

 34

Figure 2.13 Example of visible watermark for images

(source: Autobild, 2009)

For invisible watermarking, it is important that the hidden message cannot be

detected by human senses or by any kind of casual inspection, so that it cannot be

attacked and removed. At the same time however, it should still be possible to detect

and recover the watermark but only using appropriate software/tooling.

Visible and invisible watermarks are suitable for several purposes. Visible

watermarks, such as company logos or copyright notice, can be used for an

immediate claim of ownership, to uncover faked items, or to obtain information

about the copyright owner (Berghel and O'Gorman, 1997; Ohbuchi et al., 1997b).

Invisible watermarks can have the same purpose as visible watermarks (e.g. carrying

copyright related information, storing, or archiving product related data), but can also

be used for preventing illegal use, or catching a thief, rather than discouraging the

theft in the first place. For instance, security related information embedded into

multimedia data (e.g. a computer game) could be used to track down unauthorised

users, when they use the illegally acquired programme/game for Internet-gaming.

 35

2.2.5 Robustness of Digital Watermarks

Watermarks can also be classified as robust and fragile. Robustness is the quality of

being able to withstand modifications of any type or changes in procedure or

circumstance. In other words, it is a capability to cope with variations (sometimes

unpredictable) in its operating environment with minimal damage, alteration or loss

of functionality. In the context of digital watermarking, robustness refers to the

ability to detect and recover the embedded information after modification operations

(so called attacks) have been carried out on the carrier stego data (Cox et al., 2002b).

Fragile watermarks are watermarks that are mainly imperceptible and have only a

limited robustness to attacks. According to Chou and Tseng (2006) they are applied

to detect unauthorised modifications on the protected object, or to verify data

authenticity, rather than conveying un-erasable information. In other words, by

modifying or changing the stego data, a fragile watermark breaks (i.e. it is not

possible to recover/recreate the watermark message) and the carrier data loses its

authenticity. Ideally, a fragile watermark might even help to reveal how the original

data has been distorted or changed, or what processing it has undergone.

Independent of the application purpose, the robustness of watermarks is also based

on the following aspects (Katzenbeisser and Petitcolas, 2000):

• The amount of embedded information: This is an important parameter since it

directly influences the watermark robustness. The more information (i.e. bytes)

one wants to embed, the lower the watermark’s robustness. In other words, it is

more likely after an attack to recover and restore a number of small information

fragments that have been embedded several times and distributed all over the

 36

carrier object than one single large block of information, which has been

embedded only once.

• The size of the cover data: The size and complexity of the cover data usually

have a direct impact on the robustness of the embedded watermark. For example,

a simple three dimensional cube (with six faces) does not offer many possibilities

to hide a watermark, whereas a complex structure with hundreds of faces does. In

other words, the more complex a CAD model is (i.e. the more faces it has), the

more places are available to hide the information, and consequently the

likelihood of the watermark being detected is similarly smaller.

However, the requirements for watermarks to be both robust and invisible at the

same time often contradict each other. Making a watermark more robust to attacks

tends to make it more visible and detectable.

2.2.6 Attacks on Watermarked Data

“An attack can be described as any kind of processing that circumvents the intended

purpose of the watermarking technique for a given application” (Arnold et al., 2003,

p. 149). According to this definition, watermark attacks include normal data

processing operations like zip compression, data editing, or file format conversion,

which may happen in day-to-day operations, and could also unintentionally destroy

the watermark. On the other hand, there are also some other types of attacks that are

specifically aimed to disturb or even to destroy the mark’s robustness, which in turn

disables the watermark’s purpose.

 37

The following section describes different attack types and where they might occur.

The subsequent section identifies possible instances of these attack types in the

context of CAD.

2.2.6.1 General Classification of Watermark Attacks

In order to easily identify attacks, a classification of attack types into several groups

helps both a watermark developer and the potential user of the watermarking system

identify the security requirements, as well as judge the usability of the watermarking

technology. The different types of attacks can be summarised as follows (Hartung

and Kutter, 1999a; Cox et al., 2002b; Arnold et al., 2003; Katzenbeisser and

Petitcolas, 2000):

• Simple attacks: These types of attacks are conceptually simple in nature and

attempt to impair the embedded watermark by manipulations of the watermarked

carrier data. Examples include data compression and decompression for creating

small file sizes, cropping, addition of an offset, or translation into other file

formats (e.g. JPEG into Tiff).

• Detection-disabling attacks: Detection disabling attacks aim to break the

correlation between the carrier object and the watermark to make a recovery of

the watermark impossible for the watermark detector in the retrieval stage.

Actions could include modification or editing of the carrier data.

• Ambiguity attacks: These types of attacks are also called ‘over-marking’, or ‘fake

watermark attacks’. In this case, a second or a third watermark is embedded into

an already marked data to confuse the authority of the first watermark. In the

detection stage several marks are recovered but it cannot be determined which

watermark is the ‘original’.

 38

• Removal attacks: Removal attacks are attacks that attempt to erase the watermark

from the marked objects with ‘brute force’ instead of the correct retrieval

algorithm.

• Collusion attacks: Having access to several watermarked copies of the same data

but with different watermarks, or different data but with the same watermark,

offers the possibility to check, compare and to estimate the watermarks position

to deploy removal attacks to obtain an unrestricted version of the carrier data.

• Oracle attacks: An oracle attack is where an attacker abuses a facility (e.g.

Adobe Photoshop tool) provided to gain access to protected information. Since

the Adobe Photoshop tool acts as a watermark detector (i.e. to visualise the

incorporated watermark logo like in Figure 2.13) one can apply small changes to

the image (e.g. repeated blurring, optical whitening, or replacing progressively

pixels by gray) until the detector cannot find or clearly identify the watermark

anymore. In this way the attacker can get a slightly changed but unprotected

version of the image (Murdoch, 2006).

• Copy attack: The aim of the copy attack is to copy the watermark information

from an approved data set to an unauthenticated data set. This attack is basically

performed in two steps. First, an estimation of the watermark from the marked

data is calculated. Second, the estimated watermark information is copied from

the marked data set to the target carrier data set to obtain an ‘approved’ version.

It should be noted that the different types of attacks are not always distinct and they

sometimes overlap. In other words, some attacks do not clearly belong to only one

group. For instance, collusion attacks could be argued to be a group of their own,

since they require, unlike other attack types, more than one differently watermarked

 39

copy of the data. However, since they attempt to reconstruct a copy of an un-

watermarked original host data set, and thus remove the watermark, this type of

attack could be also classified as a ‘removal attack’.

Another example is when a design engineer revises a CAD model: this can be

considered as a detection disabling attack, but also as a simple attack, since

geometric modelling procedures (such as Boolean operations) are part of the daily

routine.

2.2.6.2 Attacks in the CAD Environment

Attacks in the CAD environment can be similarly classified into different groups.

The general attacks on 3D CAD data can be described as follows:

• File format conversion: CAD models can be easily imported, exported, stored or

converted into various formats such as DWF, DWS, IGES, STEP or STL by

using various CAD tools. Within these conversion processes not only do parts of

the CAD model get “lost”, but so does any attached watermark information.

Therefore, a digital watermark needs to be robust against various format

conversations.

• Geometric modifications: Within the various CAD systems 3D objects can be

geometrically edited (e.g. cropping, rotation, scaling, trimming, extending,

chamfering, joining) to modify, or update, a model’s shape. A digital watermark

must be robust enough to withstand geometric attacks in order to preserve the

quality of the original design.

• Surface modification: In particular for 3D surface objects, represented as a

polygonal mesh, there are a number of functions (e.g. mesh simplification,

remeshing, retriangulation, or mesh smoothing) that change the models

 40

appearance slightly to either simplify the objects internal structure or the overall

file size. These changes would massively complicate (or even prevent) the

recovery of the embedded watermark.

• Boolean operations: Shear or cutting a model in half, removing or inserting of

faces from/into a CAD object would not only destroy the model’s original shape

(and with it the embedded watermark) but would also make the detection of the

(remaining) embedded watermark very difficult (if it still exists). Therefore,

watermarks need to be evenly distributed throughout the model to make a

recovery possible.

• CAD data repair: Object or surface healing and data repair functions are meant to

eliminate overlaps and close “gaps” in the CAD model’s structure. These

‘healing’ functions would also eliminate distortions that were specifically created

to “host” the watermark information when embedding the watermark message.

All of these ‘attack’ types might have some effects on the robustness of the

embedded watermarks in CAD data. Therefore, it is important to identify these

possible threats and should be considered when creating new watermarking systems

or defining watermark requirements.

2.2.7 Requirements for CAD Data Watermarking Schemes

The previous sections have shown several points to be relevant when determining the

requirements for a watermarking scheme and the watermark itself. One of the most

important requirements of a digital watermark is transparency. As Ohbuchi and

Masuda (2000, p. 105) state, “Watermarks must be transparent to the intended

applications”. However, there are two kinds of transparency: functional and

 41

perceptual transparency. For most of the traditional data types, such as image, audio

and video, transparency of a watermark is only judged by human senses (human

visual sense (HVS) and human audio sense (HAS)). If the original and watermarked

data are indistinguishable to human observers, then the watermark is perceptually

transparent.

For other data types, such as 3D geometric CAD data, transparency of the watermark

is judged by considering if the functionality (and of course appearance) of the model

is altered or not. For example, a perceptually transparent watermark incorporated into

the CAD data of an engine cylinder may alter the shape of the cylinder enough to

interfere with the simulated functionality of the engine (e.g. overlapping clashing of

faces), or might distort the results in FEM simulation.

To be effective in the protection of the ownership of CAD data, digital watermarking

schemes have to fulfil further requirements as stated by numerous authors (Matheson

et al., 1998; Berghel and O'Gorman, 1997; Ohbuchi et al., 1997a):

• A watermark must be difficult or impossible to remove; at least it should cause a

degradation of the content when trying to erase the watermark.

• A watermark must survive modification processes that are common to content

processing (in the case of CAD: scaling, translation, editing, transformation,

compression, copying, etc.).

• The actual bits representing the watermark should be spread evenly throughout

the CAD file and be difficult to identify them as the watermark.

• Watermarks should be readily detectable by proper authorities, even if

imperceptible to the average observer/viewer.

 42

• Watermarks should have a robust connection to the CAD model and adaptability

to different systems (e.g. CAM, simulation, analysis, calculation) at the same

time.

• And finally, the embedded watermark should not influence, or interfere, with the

capabilities and functions of the CAD data (i.e. no change in shape).

Establishing how closely any given scheme meets these requirements is an “open”

question. No standards or benchmarking exist, and consequently, the development of

credible assessment method is just as important as the “invention” of new

watermarking methods.

 43

Chapter 3

 44

3 Representation of 3D-CAD Data

The following chapter describes the nature of CAD data by discussing the different

types of 3D geometric shape representation and their usability for CAD applications.

In the discussion the various object presentation formats are compared with each

other, and the most appropriate presentation type for solid CAD data watermarking is

determined.

In designing products such as structures, mechanical components or electrical

devices, shape is one of the most important pieces of information needed to represent

the product. Knowledge of an object’s shape allows systems to determine possible

interferences of related components, and calculate or simulate the models capabilities

(Rodriguez, 1992). So engineers use geometric modelling to describe and visualise

the physical shape of components created in CAD systems.

Since geometric models have the potential to completely define the exterior and

interior of a physical object, ambiguities in viewing and interpreting objects are

minimised (McMahon and Browne, 1998). Engineers use geometric models because

they are easy to alter and to adjust, and so they represent an economic and

convenient substitute for real-world objects in the development stage of a product.

These geometric models can also provide important information (such as dimensions

and tolerances) needed to manufacture the part or to assemble the final product

(Tizzard, 1995; Mottram and Shawn, 1996). Depending on the capabilities of the

CAD system used, geometric models also have the potential to demonstrate the

capabilities of the designed product in a simulation video, or to deliver relevant

attributes needed to analyse the product’s capabilities in FEM.

 45

Historically, three main types of geometric models were distinguished:

• Line or wireframe models

• Surface models

• Solid models

Today all three approaches are combined and used in most modern CAD systems. In

addition to these, there are other techniques and ways such as Voxels or Point clouds

to visualise three dimensional data (see Figure 3.1), but they are not widely used in

the CAD environment. Each technique has its own particular application in the

design of data, which is dependent on the ability of the method to model certain

geometric structures effectively or to generate data for analysis or manufacture.

Figure 3.1 Classification of geometric modelling

(adapted from: Rodriguez, 1992, p. 179)

According to Rodriguez (1992) geometric models can also be classified according to

the object’s unique characteristics and features. The three predominant classifications

are: analogue, iconic-descriptive, and symbolic-descriptive. These three

characteristics can be described as follows:

 46

• Analogue: Analogue models substitute one object for another and thus allow the

problem/task to be solved in a substitute manner. In other words, analogue

models do not have to look like the original objects as long as they follow the

same physical principles or simulate the original system’s capabilities. Graphs,

charts, and force diagrams, for example, can be classified as analogue models

because they can present magnitudes of physical quantities like distance or force

(Dieter, 1983).

• Iconic-descriptive: An iconic model is a scaled prototype of the real object that

looks similar to the object being represented, but much smaller. They can be

represented either as 2D (e.g. scaled drawings) or 3D (e.g. as a scaled model) on

a computer screen, or physically produced in rapid prototyping. Iconic models

have the advantage that their manufacturing costs are much lower than for the

original-sized objects since it is a scaled version. In terms of 3D representation,

iconic models are often used in the automotive and aerospace industry for object

visualisation, airflow, crash and stress simulation during the development

processes.

• Symbolic-descriptive: Symbolic models, also called mathematical models, are

abstract representations of the object or product being designed (e.g. wireframe

model). Since geometric models are defined by mathematical functions, they are

usually classified as symbolic. This type of data is often used in FEM analysis.

Since geometric modelling describes the object being designed both mathematically

(symbolic) and visually (iconic), it is the most useful and comprehensive modelling

technique available for designing, developing and analysing of new physical objects.

Both 2D and 3D geometric modelling are extensively used in computer graphics,

 47

computer-aided design and manufacturing, but also in many other areas such as

medical or geological imaging. While two dimensional modelling is mostly

important in computer typography and technical drawing, three dimensional

modelling is central to CAD and CAM including data analysis and simulation.

Since this thesis focuses on watermarking of three-dimensional CAD data, only the

characteristics and capabilities of three-dimensional representation types will be

evaluated and discussed. Although today’s commercial systems no longer make the

distinction between wire, surface and solid models these categories still serve as a

useful introduction to geometric representation.

3.1 Line or Wire-frame Modelling for 3D Data Representation

Line or wire-frame models are probably the earliest type of geometric modelling to

be implemented and date back to 1960s because they are the simplest form of

geometrical representation of three-dimensional objects (Rodriguez, 1992). In this

approach the geometry of a three dimensional model is defined as a series of lines

and curves representing the edges of, and perhaps sections through, the object

(McMahon and Browne, 1998). The name of the scheme arises from the wire-like

appearance of the modes when viewed on a computer screen or hard copy (Figure 3.2

shows the wire-frame representation of a simple 3D mechanical component). Line or

wire-frame representations may be regarded as an extension into a third dimension of

the techniques used for visualising 2D draughting.

 48

Figure 3.2 The wire-frame model of a mechanical component

Advantages:

Line or wire-frame representations have a number of advantages. For instance,

wireframe models can be displayed very quickly and easily (no formatting or surface

creation processing required) since their data size is much smaller than for surface or

solid models. Since wire-frame renderings are relatively simple and fast to calculate,

they are often used in cases where a high screen frame rate is needed (for instance,

when working with a particularly complex 3D model, or in real-time systems that

models exterior phenomena) (Rodriguez, 1992). Using wireframe models can even

simplify the visualisation of the underlying design structures of complex 3D models

(McMahon and Browne, 1998). Since wire-frame representation is a basic form of

graphic visualisation, nearly all modern 3D CAD systems are able to display them.

Another positive feature is that a component modelled using wire-frame modelling is

very simple to convert into 2D orthogonal drawings (or working/blueprint drawings

for shop floor use), although it will require some manual processing. Normally, this

 49

involves displaying the object from different angles to produce desired views for

manufacturing, then positioning them onto the drawing sheet and removing or

editing hidden or unnecessary lines in each view. The resulting views might therefore

be ‘inaccurate’ copies of the actual object to a certain extent because edges and

vertices will have been removed or hidden behind other lines. However, they are

geometrically accurate (at least in two dimensions) and are suited for hardcopy

presentation purposes (Tizzard, 1995). Even today the wire-frame format is still used

for programming tool paths for DNC (Direct Numerical Control) and CNC

(Computer Numerical Control) machine tools.

Disadvantages:

Probably the biggest negative aspect of 3D wire-frame representation is its visual

presentation on a computer screen. At first glance it is not easy to determine the

shape of the object because it is difficult to distinguish which lines are in the

foreground and which in the background (see example in Figure 3.2).

Furthermore, since wireframe models do not contain any information about the

surfaces between the edges, this scheme has limited ability to determine the

geometric intersections of two objects (such as a collision in an object assembly

simulation) or to calculate mechanical properties of the object (Rodriguez, 1992).

3.2 Surface Modelling for 3D Data Representation

As the name implies, surface modelling involves representing an object by

specifying some or all of its surfaces. Basic objects such as a cube or pipe are

described by simple mathematical surfaces like plane or cylinder, and can be easily

represented by wireframe models. However, other structures such as a car body

 50

panel, aircraft fuselage, wings, or a turbine fan blade have much more complex

surface forms which are more complicated to visualise. In these cases, wireframe

models would be inappropriate not only for proper data representation, but also for

object simulation and precise data analysis (Mottram and Shawn, 1996). Therefore,

surface modelling is used to represent free form shells and surfaces of complex 3D

objects. Figure 3.3 illustrates an example object for which surface modelling is

ideally suited.

Figure 3.3 An object defined by complex surfaces

Surface models do not necessarily have only “ruled or defined” surfaces (i.e.

mathematically or geometrically defined) such as planes, cylinders and spherical

surfaces, but also some free-form surfaces like spline2 or wiggle. Therefore, surface

models are not stored or defined in terms of simple analytical equations, but through

complex mathematical definitions requiring poles/knots, degrees, and number of

2 A spline is an approximation curve that is described by mathematical equations to match a complex
shape.

 51

patches of the surface being represented. The degree of surface complexity

determines its mathematical properties and can be seen as the representation of

shapes by a polynomial with different variables and degree values.

According to Tizzard (1995) surface modelling provides a far better visual and

mathematical description of an object’s surfaces than wireframe modelling, because

it places flat and curved patches together to form the actual surfaces that surround the

object. The term patches is used in CAD modelling to designate a limited region on a

larger surface and represents essentially the ‘faces’ of a modern B-rep modeller.

Patches are mathematically defined by a curve-bounded collection of points whose

coordinates are given by continuous two-parameter (u, v) or three-parameter (u, v, z)

functions (Rodriguez, 1992).

CAD software packages use two basic methods for the creation of surface models.

The first begins with the construction of curves (splines) from which the 3D surface

is then swept or lofted. The second method is direct creation of the object surface by

manipulating the surface knots or control points. From these initially created

surfaces, other surfaces are constructed by using either derived methods such as

offsetting or angled extensions from existing surfaces, or via bridging and blending

between groups of surfaces (Wikipedia, 2009b).

An advantage of surface models is that they are easy to construct by simply

manipulating surfaces with operations such as sweeping, revolving, extruding, or

tweaking entities. In addition, a designer can use patches to create a transition

between adjacent surface edges. Furthermore, surface modelling is very appropriate

for finding the intersection of complex surfaces in space and creating models for

shaded renderings (Mottram and Shawn, 1996). Surface models also provide an

 52

excellent basis for the generation of manufacturing information (e.g. for the

machining of press-tooling for sheet metal presswork) and for analysis data (e.g.

finite element models for object stiffness calculations).

However, surface representations also have several drawbacks. In general, they are

more computationally demanding than wireframe modelling, and they also require

more skills in their construction and use (specifically for free-form surface types).

The main disadvantage of surface modelling is, however, that it is ‘only’ an

approximation of complex surfaces, albeit if a close one. In other words, a surface

patch is only a relative approximation to the original surface (since interpolation is

used for surface calculation, and tolerances are inevitable).

For the representation of surface models most mechanical CAD systems use Bézier

surfaces or non-uniform rational B-spline (NURBS) surfaces, although there is a

belief that both will be ultimately replaced by polygonal meshes (Rodriguez, 1992).

The following sections will demonstrate each of these techniques and will discuss

their theoretical aspects and characteristics.

3.2.1 Polygonal Mesh Surface

The surface of three dimensional objects can be approximated and represented by a

mesh of planar polygonal facets, mostly triangles (Arnold et al., 2003). Therefore, a

three dimensional polygonal mesh is a collection of vertices, edges, faces, polygons

and surfaces in 3D space joined together to form and represent the shape of a 3D

polyhedral object commonly used in computer graphics imagery (CGI) (Uccheddu et

al., 2004). The faces usually consist of triangles, quadrilaterals or other simple

convex polygons with n edges, since this simplifies rendering, but may also be

 53

composed of more general concave polygons, or polygons with holes. Such

polygonal meshes are used for representing many kinds of three dimensional data.

An example of a 3D object represented as polygonal mesh is shown in Figure 3.4.

Figure 3.4 A dolphin represented by polygonal mesh

(source: Wikipedia, 2009c)

Polygon meshes may be represented in a variety of ways using different methods to

store the vertex, edge and face data(Wikipedia, 2008d). These include:

• Face-Vertex Meshes: A simple list of vertices and a set of polygons that point to

the vertices it uses.

• Winged-Edge Meshes: In which each edge points to two vertices, two faces, and

the two edges that it touches.

• Half-Edge Meshes: Similar to Winged-Edge meshes except that only half the

edge traversal information is used.

• Quad-Edge Meshes: A Quad-Edge mesh stores edges, half-edges, and vertices

without any reference to polygons. The polygons are implicit in the

representation, and may be found by traversing the structure.

• Corner-Table: A Corner-Table stores vertices in a pre-defined table, such that

traversing the table implicitly defines polygons. This is in essence the ‘triangle

 54

fan’ used in hardware graphics rendering. The representation is more compact,

and more efficient to retrieve polygons, but operations to change polygons are

slow. Furthermore, Corner-Tables do not represent meshes completely. Multiple

corner-tables (triangle fans) are needed to represent most meshes.

• Vertex-Vertex Meshes: A Vertex-Vertex mesh represents only vertices, which

point to other vertices. Both the edge and face information is implicit in the

representation’s ordering. However, the simplicity of the representation allows

for many efficient operations to be performed on meshes.

The choice of the data structure is governed by the application, the size of data, the

performance required, and the operations to be performed. For example, it is easier to

deal with triangles rather than general polygons when displaying three dimensional

objects, especially when computing surface geometry. For certain operations it is

necessary to have a fast access to topological information such as edges or

neighbouring faces. This requires a more complex structure such as the winged-edge

representation. For hardware rendering, compact and simple structures are needed;

thus the corner-table (triangle fan) is commonly incorporated into low-level

rendering APIs such as DirectX and OpenGL (Polygonal Mesh, 2008; Wikipedia,

2008d).

Advantages:

One of the main advantages of polygonal meshes is that they are the common

denominator of other representations. In other words, nearly all CAD systems are

capable of viewing or processing mesh data (e.g. STL or VRML formats), and nearly

all 3D formats can be converted (i.e. exported) into polygonal meshes.

 55

In addition, a positive aspect of polygonal mesh is that modern graphics hardware is

able to render millions of triangles every second, which makes data handling and

representation very quick. This means, that data animation or representation (e.g. in

pocket computer game consoles, car satellite navigation systems) can be made

possible without complicated and expensive three dimensional graphics accelerators.

Disadvantages:

Polygonal meshes have several limitations and disadvantages. First of all, since

triangles, quadrilaterals and other polygons used in mesh representation are

predefined shapes, complex curved surfaces (e.g. the surface of a turbine blade) can

only be approximated for representation. Therefore, accuracy is inherently relative;

more polygons would mean more accuracy. In fact, each triangle can be seen as an

estimated section of the actual shape, a discrete sample of the curved surface. In

other words, polygons cannot accurately represent curved objects, since they are

surface-modules to approximate the object’s surface. As a result, using this

‘approximation’ for data analysis or simulation might distort calculation and analysis

results.

Another disadvantage of polygonal mesh representation is that they are very sensitive

to transformation processes like rotation, translation, scaling, mesh simplification, re-

triangulation or re-meshing (Kurowski, 2004). So, although the data size of a 3D

object could be reduced by mesh simplification, the accuracy and precision of the

model’s surface would suffer (see example in Figure 3.5b). Moreover, where re-

triangulation and re-meshing is aimed to re-distribute or to smoothen the model’s

surfaces (see example in Figure 3.5a), it could destroy or change the object’s shape.

 56

In other words, both methods would modify vertices’ coordinates slightly, which

again would slightly disfigure or alter the model’s shape and appearance.

Figure 3.5 Mesh modifications

a) re-triangulation (left) and b) mesh simplification (right)

3.2.2 Bézier Surface

Bézier surfaces3 are an extension of the idea of Bézier curves, and share many of

their properties (Mottram and Shawn, 1996). The following figure (Figure 3.6)

shows a simple 4th order Bézier curve (C), its end and control points (1 - 4), and its

control polygon (P). With the help of these four control points and the control

polygon, all other points on the parametric curve can be interpolated. In general, a

Bézier curve depends on the degree of the represented curve and has therefore not a

fixed number of end and control points.

Figure 3.6 A Bézier curve (C) with its control points (1-4) and its control polygon (P)

3 Bézier surfaces are mathematically defined splines used in computer graphics, computer-aided
design, and finite element modeling. As with the Bézier curve, a Bézier surface is defined by a set of
control points and control polygons; however, a key difference is that the surface does not pass
through the central control points.

 57

 (source: Wikipedia, 2008a)

Each point on a Bézier curve is computed as a weighted sum of all control points.

This means that each control point influences the final curve according to an

assigned blending function (Davies et al., 1991). The x and y coordinates of each

point on the curve segment (C) can be determined as follows:

X(t) = (1-t)3X1 + 3t(1-t)2X2 + 3t2(1-t)X3 + t3X4 ...

Y(t) = (1-t)3Y1 + 3t(1-t)2Y2 + 3t2(1-t)Y3 + t3Y4 ...

where t varies between 0 and 1 (0 ≤ t ≤ 1). In each curve the first and last points (in

the example above points 1 and 4) define the position of the start and end points of

the curve segment. At these positions the parameter t has the values t = 0 and t = 1

respectively.

Similarly, three dimensional Bézier surfaces (or Bézier patches) can be defined by a

grid of sixteen control points. These can be thought of as four rows, with each row

being a 2D Bézier curve. In this way, points are interpolated bilinearly to generate

the surface patch. The Bézier curves which form the boundaries of the patch will also

be points in the 3D surface. An example of a Bézier surface with 36 control points is

shown in Figure 3.7.

 58

Figure 3.7 Example of a Bézier surface

(source: Wikipedia, 2008b)

Bézier surfaces give an improved description of a surface when compared to

wireframe and mesh representation, as information from within the boundaries is

used to define the surfaces of an object. This can also help to define a surface in

space and can help to manipulate or to design unique surface shapes.

Advantages:

This method has several advantages over the polygon mesh method. Clearly, one of

the advantages of Bézier surfaces is that they allow a much more concise and smooth

representation of a surface than vertex-polygons in mesh representation. Other

advantages are that they provide nearly exact analytical descriptions of surfaces, and

permit easy deformations of those surfaces. Finally, if texture mapping is being

performed, Bézier surfaces are convenient because the parameters (u, v) used to

generate the surface can easily be reused as texture parameters (u, v).

Disadvantages:

There are, however, some disadvantages when using Bézier patches for complex

surface representation. For instance, when rendering a parametrically defined patch

 59

with graphics hardware, it is usually necessary to generate a vertex-polygon

description of the object first. Also, given a set of 3D vertices, it may be difficult to

exactly extrapolate (precision might suffer) the control points for a Bézier surface.

Furthermore, if multiple patches are combined to form a description of a complex

shape, there may be problems with normal interpolation across patch boundaries, and

with cracks forming at patch boundaries (Bentley, 2003).

However, the major disadvantage of Bézier curves emerges when representing

complex curved surfaces. Here, the degree of the curve rises with the number of

control points, and this again makes it numerically unstable.

3.2.3 Non-Uniform Rational Basis-Spline (NURBS)

A Non-Uniform Rational B-Spline4 (NURBS) is commonly used in computer

graphics for generating and representing curves and surfaces of three-dimensional

objects. Like Bézier surfaces, NURBS can provide mathematically precise

representations of standard analytical shapes, such as cones, as well as complex free-

form shapes, such as car body panels.

A NURBS surface is a set of smoothly connected curves enclosed by an angular

control polygon defined by its order, a set of weighted control points (vertices), and a

knot vector. The order of a NURBS surface defines the number of adjacent control

points that influence any given point on the curve. In other words, each point of the

curve is computed by taking a weighted sum of a number of the control points. The

knot vector is a sequence of parameter values that determine where and how the

4 B-spline is a spline function that has minimal support with respect to a given degree, smoothness,
and domain partition.

 60

control points affect the NURBS curve. The number of knots is always equal to the

number of control points plus the curve’s degree plus one.

Essentially, a B-Spline can be considered to consist of multiple Bézier arcs and

provides a unified mechanism to define continuity in the joints. B-splines use

external conditions to put multiple pieces together while keeping the original concept

of control points. The neighbouring curves share some control points. External

conditions are either implicit (uniform curves) or explicitly given by a knot vector. A

knot vector defines how much information should be used by neighbouring curves in

defining the slope of adjacent segments at the point they meet.

NURBS curves and surfaces are generalizations of both B-splines and Bézier curves

and surfaces, while the primary difference between B-spline and Bézier is the

weighting of the control points which makes NURBS curves rational (non-rational

B-splines are a special case of rational B-splines) (Davies et al., 1991). Therefore, it

can be said that the shape of a NURBS surface is determined by degree, control

points, weights, and knot vectors. Since NURBS and Bézier surfaces are closely

related, they share some characteristics and features.

Advantages:

Probably the biggest advantage of NURBS is its ability to represent complex free-

form shapes (e.g. a wing design) and arbitrary topologies and degree. Compared to

polygonal mesh representation NURBS objects have fewer surfaces, are easier to edit

(because control points only have a local effect) and stay accurate during data

transfer. Therefore, NURBS are the preferred toolset used for presenting free form

surfaces amongst most industrial engineers in the aerospace, motorsport, and car

 61

industry, and can be considered standard in the CAD environment. Another positive

aspect of NURBS is that its curves and surfaces can be re-parameterised without

changing its geometric shape.

Disadvantages:

The biggest drawback with NURBS might come from differences in the algorithms

used to represent them in commercial CAD systems. For instance, an algorithm to

reproduce NURBS faces in, say, a CNC mill-machine may not match the algorithm

used by the CAD system that created the model and could cause tolerance and

accuracy problems (Hayden, 2004). Furthermore, since control points (corner points

are fixed and define the vertex of the control polygon) of NURBS surfaces are ‘only’

approximations of the characteristic polygon surface, simulation and calculation

results in a FEM analysis for instance might be distorted (McMahon and Browne,

1998).

Another disadvantage might come from the fact that NURBS is lacking one to one

correspondence between control points and the actual shape of the polygon surface.

For example, moving a control point by 10mm does not result in a change the

object’s shape of exactly 10mm, since the position of each control point on the

control polygon is an interpolation of all control points.

3.3 Solid Modelling for 3D Data representation

Surface does not represent or define 3D volume. Consequently, solid, or volume,

models were developed in the early 1970’s with the aim of providing a complete and

unambiguous representation of three-dimensional models in computer graphics

(McMahon and Browne, 1998). For many engineering purposes two-dimensional

 62

representations are satisfactory, but for enhanced visualisation and increasing

application of computer engineering analysis (e.g. FEM, MATLAB, ANSYS), or the

direct generation of manufacturing information (e.g. CNC cuter paths), means that an

ideal representation should be as complete as possible (Rodriguez, 1992; Tizzard,

1995; Kalay, 1989). Today, the once separated surface and wire frame models are

now incorporated within the solid model’s data structure, and can be created or

displayed, if required, by selecting a subset of the overall model.

Solid models consist of two major components: geometry and topology. Geometrical

data is the shape, size, and the location of the geometric elements, while topological

data describes the connectivity and associativity of these geometric elements as non-

graphical, relational information. In other words, a solid model defines the volume of

an object and not just its surfaces or edges. An example of a 3D model is shown in

Figure 3.8.

Figure 3.8 An object represented as a solid model

 63

Solid modelling has three major attributes which describe the geometric

representation of a physical object; complete, valid and unambiguous. They can be

summarised as follows:

• Complete: points in space that can be classified as inside/outside of an object.

• Valid: vertices, edges, faces are connected properly with each other (and do not

self intersect).

• Unambiguous: there can only be one interpretation of an object.

Solid models offer a number of advantages over pure wireframe and surface models.

Since they are able to describe and distinguish between exterior and interior volumes

and can have properties such as material density, solid models also offer the potential

to analyse and calculate the object’s abilities and properties (i.e. mass, strength,

centre of gravity, moment of inertia, deformation under stress, etc.) in simulations

without requiring the actual physical object. Therefore, the primary use of solid

models are for CAD, engineering analysis, computer graphics and animation, rapid

prototyping, medical testing, product visualisation and visualisation of scientific

research.

Because of this wide field of application, solid models are used in many industries

like entertainment, healthcare and engineering where unambiguous and precise

representations of objects, parts and assemblies are required. Since solid models

feature more accurate information about the closure and connectivity of shapes than

wireframe and surface models, they have become the most important type of models

used in modern mechanical CAD systems (McMahon and Browne, 1998).

 64

Many methods (e.g. parameterized primitive instancing, spatial occupancy

enumeration, cell decomposition sweeping, etc.) have been proposed for

implementing solid modelling, of which none are entirely complete/unambigous.

However two techniques have been partially successful and have successively come

to dominate the development of solid modelling. These two methods belong to the

constructive approach. The most widely applied variant is the constructive solid

geometry (CSG) method which achieved early prominence in CAD systems. The

second method, the boundary representation (B-rep), dominates in today’s

applications.

3.3.1 Constructive Solid Geometry

Constructive Solid Geometry is a specific way of representing three-dimensional

solid objects. In this method, 3D models are constructed by using combinations of

simple solid ‘primitives’ and Boolean operators (Arnold et al., 2003; McMahon and

Browne, 1998). Standard CSG primitives include cuboid, cylinder, sphere, cone,

wedge, torus, prism and the like. Typical Boolean operators are union, intersection

and difference (Constructive Solid Geometry, 2008; Zeijl J. van, 1994). The union of

two objects results in an object that encloses the space occupied by the two given

objects. Intersection results in an object that encloses the space where the two given

objects overlap. Difference is an order dependent operator; it results in the first given

object minus the space where the second intersected the first (Mitchell and

McCullough, 1995).

Examples of CSG primitives and operators are visualised in Figure 3.9. Some

primitives may require other kind of transformations such as scaling, rotation or

translation before they can be positioned at the desired place. The CSG method

 65

enables users to develop complex models relatively quickly, however, within the

limitations of the set of primitives available within the system.

Figure 3.9 Boolean functions: union U, intersection ∩, difference 

(source: Wikipedia, 2009a)

CSG models have a number of practical uses. Particularly, they are used in cases

where simple and/or symmetric geometric objects are desired (e.g. for construction

engineering), or where mathematical accuracy is important (e.g. for data simulation

or analysis). CSG modelling is also popular for designing computer games, because

the modeller can use a set of relatively simple geometric objects (primitives) to

create more complex design geometry or background environment (e.g. buildings

and houses for an urban battlefield in a war game).

Advantages:

A major advantage of CSG is that it can easily assure that objects and their surfaces

are closed solids since the primitive shapes are ‘complete’ (McMahon and Browne,

1998). This quality may be important for some manufacturing or engineering

 66

computation applications where overlapping of solids or gaps between surfaces are

not tolerated.

Another advantage is that, since CSG primitives have relative simple descriptive

functions for shapes, they have a much simpler and smaller file size. This

characteristic can be crucial for systems (e.g. in hand-held computer or mobile satnav

systems) where a quick calculation time is required and/or the storage space is

limited.

Disadvantages:

Problems with CSG occur when surfaces of objects being operated upon coincide.

For example, when subtracting a box from another box to make a square cup, the

result will frequently be wrong or create error messages if, in the design phase, the

tops of the two boxes coincide. To correct this, one box should be made slightly

larger than the other one. However, this ‘correction’ could slightly change the overall

shape of the object since it removes small parts of the box.

Another negative aspect of CSG is that it is not able to reproduce complex spline or

curved surfaces since it uses simple primitive shapes. In other words, it cannot

represent the surface of a fan blade or the hull of a ship, for instance, which makes

CSG unsuitable for more complex 3D CAD designs.

Furthermore, while providing an extremely compact representation, CSG-represented

solids are inefficient sources of geometric data for applications that require explicit

information about the composite shape or its boundary (Kalay, 1989). For example,

if an application requires the identification of an edge for blending difficulties can

arise because edges are not explicitly represented in the CSG data structure.

 67

3.3.2 Boundary Representation (B-rep)

In the field of computer-aided design applications, Boundary representation (B-rep)

is the dominating model for representing 3D shapes. As the name suggests, a three-

dimensional object is represented as a collection of connected surface elements that

define the boundary between solids and non-solids. In other words, Boundary

representation is essentially a local representation connecting faces, edges and

vertices of a 3D object using the limits. Figure 3.10 shows an example of a simple

cube-model represented as B-rep.

Figure 3.10 Boundary representation of a 3D model

A B-rep modeller, where a solid is represented by an evaluated data structure,

contains elements which describe an object by its boundaries (Rooney and Steadman,

1987). These elements can be divided into two categories: topology and geometry.

These two concepts are explained in the following sections using the terminology of

the ACIS modeller (Corney and Lim, 2001).

 68

Topology of B-rep Data

The main topological items of a 3D B-rep object are: FACEs, EDGEs and

VERTICEs. The shape (i.e. geometry) of a FACE is defined by a ‘surface’ whose

boundary is represented by a collection of EDGEs associated with it. An EDGE

shape (i.e. geometry) is defined by a ‘curve’ whose boundary is represented by a pair

of VERTICEs, and the location of a VERTEX (i.e. its geometry) is defined by a

‘point’ (with x, y and z coordinates). EDGEs can also be defined to lie between two

or more FACEs regardless of their shapes or sizes (Mitchell and McCullough, 1995).

FACE, EDGE and VERTEX items are also known as topological entities or

composite entities, because they define how things are interconnected or refer to

collections of other elements. FACEs have also an underlying parametric orientation

associated with their defining surface geometry expressed in term of (u, v). Figure

3.11 illustrates a spline face where its topological entities and elements, and its

underlying parametric orientation are highlighted.

Figure 3.11 Definition of a B-rep model’s face

 69

There are many ways of viewing the B-rep data structure: for instance, it can be

thought of as being a tree, or a hierarchy, with BODY at its root. Figure 3.12 below

showing the ACIS hierarchy of a B-rep data.

Figure 3.12 ACIS hierarchy representation of a B-rep data

(source: Corney, 1997)

A BODY can have a collection of LUMPs, each of which is comprised of one or

more SHELLs. These SHELLs are formed from connected FACEs. Likewise,

FACEs are composed of LOOPs, formed from circuits of bounding EDGEs and

COEDGEs (Corney and Lim, 2001). Most EDGEs on a 3D model also lie between

two FACEs. In this sense, it can be said that boundary representation is essentially a

local representation connecting FACEs, EDGEs and VERTICEs with each other.

An example of the hierarchical structure is also shown in Figure 3.13 where a three

dimensional B-rep model is subdivided into its entities. The BODY on the left is

defined by two LUMPs (one cylinder and one quadratic plane with a hole). LUMPs

are a collection of SHELLs, which again are a collection of FACEs. So, basically,

the cylinder is represented by three, and the plane with a hole by seven differently

shaped FACEs. As a result, the ‘one’ BODY is represented by ten individual FACEs.

 70

Figure 3.13 Hierarchical representation of a B-rep model

(source: Corney, 1997)

Although, theoretically, only three topological entities (i.e. FACE, EDGE and

VERTEX) are needed to describe three-dimensional shapes, in practice a number of

other entities are incorporated into the ACIS data structure. The reason for this is

either to increase the speed of modelling operations or to provide high-level handles

(i.e. means of reference) (Corney and Lim, 2001). Table 3.1 gives an informal

summary of the various ACIS entities used to represent shapes by describing what

they comprise and what they physically represent.

Table 3.1 Representational ACIS ENTITIES

(source: Corney, 1997)

Entity Comprises Represents physically

BODY Collection of LUMPs or WIREs. Highest level ENTITY in an

ACIS model can be a 1D, 2D

or 3D shape with a complete

or incomplete boundary.

LUMP Collection of SHELLs. A region of a BODY disjoint

from any other LUMP.

SHELL Collection of FACEs and/or WIREs. A contiuous portion of a

LUMP.

FACE One SURFACE and zero or more LOOPs. A portion of an individual

surface.

LOOP Circuit (or list) of COEDGEs. Connected portion of a

FACEs boundary which may

be open or closed.

 71

Entity Comprises Represents physically

COEDGE EDGE and (on spline surfaces) a PCURVE. Records the occurrence of an

EDGE in a FACE boundary.

VERTEX APOINT Boundary of an EDGE.

EDGE Collection of COEDGEs, two VERTICES

and a CURVE.

Holds the model together

with adjacency information.

WIRE Collection of EDGEs. A continuous collection of

EDGEs not attached to a

FACE or enclosing any

volume.

SURFACE Geometric definition. The shape of a FACE.

CURVE Geometric definition. The shape of an EDGE.

APOINT (x, y, z) position. The location of a VERTEX.

PCURVE Spline curve in (u, v) space. Parametric curve on a spline

defining a COEDGE’s shape.

SPHERE Analytic surface. Refinement of SURFACE.

PLANE Analytic surface. Refinement of SURFACE.

CONE Analytic surface. Refinement of SURFACE.

TORUS Analytic surface. Refinement of SURFACE.

SPLINE Spline surface. Refinement of SURFACE.

Geometry of B-rep Data

The geometry of B-rep objects is defined by underlying simple analytical equations

(e.g. plane, cone, sphere, torus, spline, etc.), which are similar to those used in CSG

representation. These geometric shapes again have an underlying parametric

orientation associated with their defining surface geometry. Figure 3.14 shows a few

basic geometric shapes with their parametric orientations illustrated.

 72

Figure 3.14 Concept of parametric surface definition based on basic geometrical objects

To allow geometry to be shared by different ENTITIEs and yet maintain a clear

separation between the representation of geometry and topology, ACIS defines two

classes for each type of supported geometry. The two classes are distinguished by

capitalisation of their names (Corney, 1997):

• Uppercase: Geometry classes (such as CONE, SPLINE and PCURVE) keep a

record of how many other ENTITIEs refer to the surface, or curve, and supply

member functions for memory management and save/restore utilities.

 73

• Lowercase: Geometry classes (such as cone, spline and pcurve) define the

constructors and methods required to display and manipulate the shape by

various modelling operations.

Therefore, the equations which represent a type of curve or surface, reside in the

lowercase class, while the uppercase class supplies all the administrative functions.

The following table (Table 3.2) lists the lowercase geometry classes supported by the

ACIS Kernel.

Table 3.2 Lowercase geometry classes of B-rep data (source: Corney, 1997)

Name Description

curve Defines functions common to all curves such as position and parameter based

inquiries (i.e. Base Class).

ellipse Defines a circle (or ellipse) in any plane.

straight Defines an infinite straight line.

int curve Defines a curve formed by the intersection of two surfaces or an exact spline.

pcurve Defines a curve on a spline, or blend surface in terms of (u, v) parameters.

surface Defines functions common to all surfaces such as position and parameter

based inquiries.

plane Defines an infinite planar surface.

cone Defines conical surfaces and cylinders.

torus Defines a toroidal surface.

sphere Defines a spherical surface.

spline Defines procedural surfaces such as exact splines and blends.

meshsurf Defines a composite mesh surface.

Considering these topological and geometrical features the B-rep is a much richer

and more complex data structure than CSG or the meshes to define three dimensional

shapes. Furthermore, the high degree of interconnections within the data structure

means that even small changes have to be made with care. The interdependence

 74

inherent in the B-rep data structure is well described by Stroud (1992, p. 89) who

says:

“... the shape of an edge cannot be changed without changing the

position of the surface, unless the new curve also lies in the surfaces

of the faces adjacent to the edge. Similarly the position of vertices

can not be changed unless they lie on the curves of all edges meeting

at the vertex and hence the vertex position lies on the surfaces of all

the faces meeting at the vertex.”

Advantages:

The B-rep scheme has a strong history in CAD because it is closely related to

traditional drafting. Its main advantage is that it is possible to construct solid models

of many shapes that are difficult to build by just using primitives.

Another major advantage of boundary representation is that it is relatively simple to

convert into a mesh or wireframe model because the model's boundary definition is

similar to the wireframe definition. Furthermore, the B-rep data structure makes it

easy to extract important features (e.g. holes, slots, etc.) for advanced manufacturing

reasons..

Last but not least, unlike the CSG representation, which represents objects as a

collection of primitives and uses Boolean operations to combine them, boundary

representation is far more flexible and easily modified. Also, while in CSG edges are

implicitly defined by intersection, in B-rep the rule applies - what you see is what

you get - with every visible entity having an explicit representation. This allows a

richer operation set and makes boundary representation a more appropriate choice for

modern mechanical CAD systems than CSG or any other form of representation.

 75

Disadvantages:

On one hand, boundary representation models facilitate a very high object resolution,

but on the other hand, the shapes represented by them are much more difficult to

manipulate than those represented by means of the CSG model (because of the more

complex data structure) and are, in particular, inefficient for spatial addressing

(Kalay, 1989).

Moreover, related to the complex data structure, boundary representation data

requires slightly more storage space than CSG because they store the explicit

definitions of the more complex face types and the models boundaries. In other

words, the defining functions and data for its faces, edges, and vertices tend to grow

fairly fast for complex models.

3.4 Other Techniques for 3D Data Representation

Besides wireframe, surface and solid modelling there are some other methods of

visualising three-dimensional data. For example, Voxels and point clouds are popular

techniques to visualise 3D-design objects. These methods, basically derived from 3D

scanning, will be discussed briefly in the following two sections.

3.4.1 Voxels

A Voxel (word combination of volumetric and pixel) is a volume element

representing a value on a regular image-grid in a three-dimensional space (Arnold et

al., 2003). It is analogous to picture images where individual pixels (picture

elements) represent a two dimensional image data (e.g. a photograph). The pixels for

volume elements, however, lie on many individual layers, so called Voxel-layer,

piled-up one behind the other.

 76

Since a pixel point in a two dimensional space is defined by its x and y coordinates, a

third z coordinate is necessary to define the position of a Voxel in a three-

dimensional space. In many implementations of Voxel modelling the elements do not

have an explicit third coordinate, but rather their relative position (i.e. distance) to

each other. In other words, these volume elements sit behind each other or between

other neighbouring Voxels, and their relative position to each other is used to create

the required third coordinate to define a three-dimensional objects. Therefore, a stack

of volume elements, as shown in Figure 3.15, can be considered a three-dimensional

object.

Figure 3.15 Voxels can be regarded as a stack of two-dimensional images

With the two pixel coordinates, the relative distance between Voxel-layers and an

appropriate 3D rendering software views of three-dimensional objects can be created

and viewed on a computer screen.

Voxels have a relatively wide scope of application. Most commonly, they are used in

the field of healthcare to create visual-medical content for education and

examination, and are applied to X-rays, CAT (Computer Axial Tomography) scans,

MRI (Magnetic Resonance Imaging), cathode tube scans, and ultrasound. With these

 77

technologies physicians and medical practitioners have the opportunity to obtain a

‘live’ and accurate three-dimensional model of the human body for diagnosis and

examination. Furthermore, they are even able to visualise moving parts/bodies (e.g. a

beating human heart) or represent smallest shapes and objects such as internally

hidden tumours or macromolecules in biochemistry (see example in Figure 3.16).

Figure 3.16 A macromolecule in biochemistry represented by Voxels

(source: Wikipedia, 2008e)

Another application of Voxels is the so called ‘Voxel terrain’ which is used to create

height maps for GPS (Global Positioning System) navigation systems due to its

ability to represent overhangs, caves, arches, and other 3D terrain features.

Geologists even create three dimensional views, maps and profiles of our planet or

accomplish ocean floor scanning (based on sound echoes).

Since Voxels are easily reproducible, they can be used to create 3D background for a

car navigation system, or for a computer game console where a 3D accelerator is not

available.

 78

Last but not least, Voxels are often used in rapid prototyping where the individual

volume elements (i.e. layers) are printed out one on top of the other to create a three-

dimensional prototype object layer by layer (Mitchell and McCullough, 1995).

Advantages:

Voxel based modelling techniques extend the reach of 3D modelling systems to very

complex arbitrary free-form shapes where interior information (e.g. hollow structure

like honey comb) is important, and which cannot be easily handled by some other

conventional surface based modelling tools.

Voxels can also model and represent different forms of inhomogenities in the same

3D-model, for example: use of different materials, or the use of different densities of

the same material across the cross section of a solid object.

Another advantage of Voxel models is that they have very good local editability and

permit the easy implementation of certain global operations that can alter the entire

model (Chandru et al., 1999).

Disadvantages:

Voxel based modelling techniques are known for their robustness, flexibility and

insensitivity to surface and object complexity. However, they have three major

shortcomings. They are: 1) memory intensive since a large number of Voxels are

needed to represent high-resolution models (e.g. a human body), 2) time intensive

since a large number of Voxels need to be created and examined, 3) computationally

intensive and expensive since surface extraction is needed to visualise the results

(e.g. in a medical diagnostic).

 79

Because volume elements have a limited resolution, they are not particularly suited

for many CAD applications such as mass property, interferences, collision detection

(e.g. for tool path planning) or FEM analysis and simulation. Furthermore, they have

also limitations in accurate surface representation since a single surface has to be

represented by a single Voxel-layer, and that again might not deliver enough

precision.

3.4.2 Point Clouds

Another way of representation three dimensional models is by using point clouds.

Point clouds consist of a set of vertices in a three dimensional coordinate system.

These vertices are usually defined by x, y and z coordinates in the three-dimensional

space (Arnold et al., 2003).

Point clouds are generally created by 3D scanners and laser scanners. These devices

measure a large number of points on the surface of an object and assign each point x,

y and z coordinates. These points are then computed to create a visible surface on the

computer screen and the data saved to a file. In other words, point clouds represent

only the visible surface of an object that has been scanned and digitised.

Point clouds themselves are not directly usable in most 3D CAD applications, and

usually need to be converted to polygonal (triangle) mesh surface models, NURBS

surface models, or other types of CAD data through a process commonly referred to

as reverse engineering. Therefore, point clouds are related to the converted data

types’ characteristics (e.g. polygonal mesh surface), which have already been

discussed earlier.

 80

Point clouds are used for many purposes, including creating 3D CAD models for

manufactured parts, industrial metrology or quality inspection, and a multitude of

visualisation, animation, rendering and mass customisation applications (Point

Cloud, 2009). For instance, this technique is often used in the designing process of

automotives where the outer shape of a prototype clay model is scanned with a 3D

scanner to create a digitised data set.

Similar to other representation techniques, scanned point clouds of manufactured

parts can be aligned to reference CAD models (or even another point clouds) to

check for any differences or manufacturing mistakes. These differences can be

displayed as coloured maps that give a visual indicator of the deviation between the

manufactured part and the reference CAD model.

Last but not least, point clouds can also be used to re-create archaeological figures

and shapes (e.g. a statue or vase) after scanning in the puzzle or jigsaw pieces, or to

represent volumetric data used in medical imaging similar to MRI or visual scans

(e.g. when creating tooth fillings).

Advantages:

Probably the biggest advantage of point clouds is that they can be used to visualise

and digitize the surface of any complex three-dimensional object or shape that can be

scanned. This is especially useful when no 3D design data about an object is

available, or data for archiving reasons needs to be created.

Also, since each point in the cloud is defined by an individual x, y and z coordinate

the values of each coordinate can be changed or adjusted if necessary.

 81

Finally, point cloud data can be converted into any other 3D surface data type and

therefore viewed in all CAD systems.

Disadvantages:

Despite the listed advantages there are also some negative aspects of point clouds.

For instance, the resolution and accuracy of an object’s surface is based on the

capabilities of the scanning system. If a scanner has a coarse resolution, the scanned

results (in this case the point cloud of the object) will only be a close approximation

of the original model with a poor surface accuracy.

However, the biggest disadvantage of point clouds is that when object simplification

is carried out or point cloud data is rendered into other formats such as polygonal

mesh or Voxels, large amounts of data get lost during transformation (because not all

data/coordinates can be converted or used), which again affects data precision.

3.5 Discussion

Various applications and techniques can be identified which represent three-

dimensional CAD data. Each of these methods has a different approach with varying

degrees of suitability for CAD application.

Wireframe Modelling is probably the simplest approach to visualise CAD data. The

models created can effortlessly be displayed by all CAD systems and can easily be

converted into 2D data for blue print purposes. However, the 3D wireframe structure

makes it not easy to determine the object’s actual shape (difficult to distinguish

between lines in foreground and background), and intersections between surfaces

cannot be calculated because faces are not displayed. Furthermore, since it is not able

to represent complex spline surfaces and cannot provide object features (e.g. wall

 82

thickness or material density) for numerical analysis, this modelling technique is not

appropriate for sophisticated mechanical CAD and other data analysis applications.

Surface Modelling is a more advanced representation concept and is more

appropriate for the visualisation of 3D objects in the CAD environment. Methods

like polygonal mesh surfaces, Bézier surfaces and NURBS provide a much more

accurate visual and mathematical description of physical objects than the wireframe

approach and are relatively simple to establish. Since these techniques reproduce an

object by its surfaces, they can be applied to various engineering analysis functions

like collision detection, surface calculation or product simulation.

Polygonal mesh surfaces can be considered as the common denominator of all other

surface representation techniques since it is easy to convert any other CAD format

type into mesh type data, which is supported (i.e. readable) by nearly all CAD

systems. On the other hand, planar face primitives like triangles or more general

polygons provide a poor approximation of the real shape (especially curvatures),

unless used in large quantities to define fine tessellations of highly curved

geometries. Although algorithms for dealing with large numbers of individual

triangles are simple and relatively robust, the structure of the data itself is sensitive to

rendering and transformation actions (e.g. cropping, file compression or data

simplification) which would alter the shape and appearance of the CAD object

(Rossignac and Requicha, 1999).

Bézier surfaces offer a much more concise and smoother representation of a model’s

surfaces but their degree is directly proportional to the number of control points.

NURBS on the other hand, produce a similar smooth and accurate description of an

object’s surfaces than the Bézier technique, and are less affected by data

 83

transformation and transfer actions. Therefore, NURBS is often considered as the

standard toolset for surface modelling in CAD applications. However, detecting and

computing intersections of NURBS free-form surfaces involves elaborate

mathematical calculation techniques and algorithms that are significantly slower and

less reliable than their counterparts for triangular geometries (Rossignac and

Requicha, 1999).

All surface modelling techniques have a few negative aspects in common. They are

‘only’ able to provide a rough digital approximation of complex surface structures

and have relatively complex mathematical definitions for them. Furthermore, they

often provide only an incomplete and ambiguous representation of a model because

they do not distinguish between interior and exterior points of an object, which again

might prevent a clear interpretation of the object. Also, some transformation and

transfer actions could influence or harm the robustness and precision of models

represented by surfaces.

In comparison to wireframe and surface modelling, Solid Modelling offers the most

complete, valid and unambiguous representation and description of three-

dimensional CAD data that is required for sophisticated CAD applications. Solid

models carry all the necessary information to distinguish between interior, exterior

and material density, have properly connected vertices, edges and faces, and possess

a very precise and mathematical stable description of 3D objects (Rossignac and

Requicha, 1999).

The main difference between CSG and B-rep modelling systems is the way in which

a model is represented and stored in the geometric database and how that data is

processed for further graphical output. A CSG model is defined as an ordered binary

 84

tree in which the primitives are defined by their position, size and orientation and

objects are represented as Boolean expressions between the primitives. The

representation of a B-rep model within the geometric database is based on the notion

that a solid is bounded by a number of faces, and these faces are effectively bounded

by intersecting surfaces. By establishing the side of the surface where there is

material, a solid can be defined. However, such a scheme is far more memory-

intensive to store than CSG or triangle meshes because the interactions between

edges, vertices, and surfaces are explicitly defined (i.e. more topological and

geometrical information). The procedures for a B-rep’s presentation onto a graphic

display are far simpler than CSG (McMahon and Browne, 1998; Tizzard, 1995).

Additionally, B-rep is capable to represent more complex free-form surfaces, such as

those found in automotive body panels, and it has a richer operation set (i.e.

blending, tweaking, etc.). At the same time, B-rep is also able to deliver important

object features (e.g. material strength and density) for advanced engineering analysis

(McMahon and Browne, 1998). In addition, B-rep data can easily be converted

without resolution-loss into other formats such as polygonal mesh, NURBS or

wireframe data. However, this wealth of data and complexity makes it more sensitive

and fragile to some model modifications and alterations.

Other approaches such as Voxels and point clouds are also capable of representing

complex shapes of 3D objects. While Voxels are able to deliver data about an objects

exterior, interior and material or substance density, point clouds can only reproduce

the object’s outer surface. However, since Voxels contain a lot of information, they

are more time and computationally intensive than point clouds and some other

modelling methods.

 85

Another negative aspect, which both techniques have in common, is that they can

only be used to a certain extent in CAD applications because they have poor surface

and object resolution and data accuracy (depending on the capabilities of the

scanning system). Furthermore, before the data can be visualised on a regular CAD

system, both data types need to be converted into common file formats such as

polygonal meshes, but then they possess the characteristics of mesh data. Lastly,

some data transformation and modification actions could alter the model’s shape,

appearance and accuracy, and are therefore an indication of low data robustness.

Many computer-aided-manufacturing processes use geometric models to generate

instructions, and finite element methods for structural, numerical analysis and

physical simulation of products. The results are often expensive engineering

products, where even the slightest modification of data can lead to unwanted side-

effects or could even destroy the intended object’s functionality. Therefore, accuracy

and high geometrical and topological precision are necessary to guarantee a

functioning product.

As the previous sections have shown, each technique has its own particular strength

in the representation and visualisation of CAD data, which is dependent on the

ability of the method to model certain geometric structures effectively. Considering

the needs for CAD applications and comparing the characteristics of the mentioned

three-dimensional representation methods, only B-reps appear to be able to deliver

and support the required attributes and features for a complete, valid and

unambiguous representation of 3D objects. The data within the B-rep definition

classifies the internal and external points of an object, properly connects vertices,

edges and faces with each other (no gaps in the structure), and thus delivers an

 86

unambiguous interpretation of a 3D object. Also, it is capable of representing free-

form spline surfaces of more complex objects while describing geometrical objects

with the highest precision. Besides, it has the potential to deliver object features like

material density and other properties that enable the calculation or simulation of a

component’s mechanical capabilities. Last but not least, since B-rep has become a

core representation technique for three dimensional data in the CAD environment, it

can be converted into any other data type (i.e. STL, IGES, STEP) with a controlled

reduction of its accuracy and robustness, and still offers possibilities to embed

watermark information robustly and invisibly.

 87

Chapter 4

 88

4 Work Related to Digital Watermarking

In order to provide a broad overview of 3D watermarking techniques, chapter four

presents different algorithms, schemes, and concepts applied to three dimensional

digital data. In later sections, the different 3D watermarking schemes and approaches

are grouped according to how three-dimensional objects are represented, and are

classified and analysed within the scope of CAD applications. Additionally, the

techniques are assessed regarding their robustness against various forms of data

modifications and attacks.

However, before this is accomplished, other digital watermarking approaches that

have been proposed for one and two-dimensional digital data, such as text document,

digital image, video and audio data are briefly explained and discussed.

4.1 Watermarking Approaches for Non-Three Dimensional Data

4.1.1 Text-Document Watermarking

Methods for embedding information into text-based documents have been frequently

reported (Brassil et al., 1995a; Low et al., 1995; Low and Maxemchuk, 1998; Brassil

et al., 1995b) and have been used for many years to enable document authentication

and secure information transmission.

Text watermarking methods fall into two main categories: first, techniques that hide

information in the semantics, (i.e. in the meaning and ordering of the words), and

second, techniques that hide information in the format (i.e. the layout and appearance

of the text, words or letters).

In the first case the message is not really ‘embedded’ in the text document, but rather

covered by misleading words, letters, symbols within the text, or a combination of

 89

these. Consequently, this first category is outside the scope of digital watermarking

and will therefore not be considered here.

The second category, which is more in the sense of digital watermarking, uses

information embedding techniques to hide secret messages into text documents. This

category can be separated into three different methods: line-shift coding, word-shift

coding, and feature coding.

For line-shift coding single lines of the text document are shifted (i.e. moved)

imperceptibly for the naked eyes upwards or downwards by very small amounts. The

information, that is meant to be hidden, is encoded in the distance the lines are

shifted. In other words, the amount of line movement defines the message or signal

to be transmitted. A 40-line text page, for instance, could hold up to 40 message bits

(Berghel and O'Gorman, 1997; Low et al., 1995; Low and Maxemchuk, 1998).

Similar to line-shift coding, word-shift coding moves the words horizontally in order

to modify the space between consecutive words. An example of word-shift coding

can be seen in Figure 4.1, where the word “for” has been slightly shifted to the left

(in second text line). In this sense, one secret message bit is encoded in one “word

movement”; if a word is moved left, a 1 is encoded, if to the right, a 0. When

decoding the message, centroid detection method (and of course the original text

document) can be used to determine the movement of the “modified” words. For this

technique the more words in a line and lines on a page, the larger the quantity of

information that can be embedded.

 90

Figure 4.1 Word-shift coding by moving words horizontally

(adapted from: Katzenbeisser and Petitcolas, 2000)

The third technique, called feature or character coding, imperceptibly extends the

length of the upper or lower end-lines in characters and letters, like b, d, h, t, p, etc.

(Berghel and O'Gorman, 1997; Thiemert et al., 2006). The variance in extensions

(similar to line/word shift coding) can represent a secret message code that can be re-

converted into readable or meaningful information. An example of feature coding is

shown in Figure 4.2.

Figure 4.2 Feature coding by stretching the upper part of the letter ‘h’

In the watermark retrieval stage the line-shift coding does not necessarily require the

original text document (blind detection), since it relies on the assumption that lines

are uniformly spaced and the standard line spacing (e.g. in Microsoft Word) could be

used for referencing. Whereas for word-shift coding the original text document is

required (non-blind detection), since spaces between words are usually variable (e.g.

tab format left, right, justified, etc.).

 91

Decoding the embedded message from feature or character coding is very time

intensive, since all characters need to be checked and measured to re-gain the secret

message. However, a reference text is not required since letters and characters have

standard/defined font sizes (e.g. Times New Roman or Arial font size 12).

Data hidden in text documents has a variety of applications, including copyright

verification, document authentication, and content annotation. Making copyright

information inseparable from the text is one way for publishers to protect their

intellectual contents before distribution. Annotation, however, can be used for tamper

protection. For example, if a cryptographic hash (a message digest) of the paper is

encoded into the paper, it is a simple matter to determine whether or not the text has

been altered during transmission by reconverting the message digest into text and

compare the content to the ‘carrier’text.

The verification, for instance, could be easily performed by an e-mail server, which

would reject or verify a message-text depending on whether or not any hidden data is

found.

The main goal of text-document watermarking is to make the watermark removal

more expensive (in cost and time) or complicated than obtaining the rights from the

copyright owner to copy the document (Hartung and Kutter, 1999a). If this goal is

achieved, text-document watermarking makes sense.

Advantages:

A major advantage of these text-based watermarking methods is that they can be

combined with each other, and can be applied to nearly any kind of text document.

Because they use the gaps and free spaces between words and lines, they will go

 92

unnoticed by the reader, since ‘additional white space’ is peripheral to the text. Also,

aligning two different watermarked documents to extract the watermark would be

useless, since the number of words in lines and the number of lines on a page differ

from each other (Berghel and O'Gorman, 1997). Consequently, there is no easy re-

calculation of the watermark message possible.

Disadvantages:

However, there are a number of threats and problems associated with these

watermarking techniques. A major disadvantage of text document watermarking is

that the hidden data cannot be retrieved once the data has been printed (exact

measuring of letters is not possible any more since printers have different printing

quality which might effect precise measuring). The biggest threat, however, is that

the ‘security feature’ can be easily destroyed by manually typewrite the text (or by

Optical Character Recognition – OCR), changing the text layout, or using a new

character font, line spacing or page setup.

4.1.2 Still Image Watermarking

The majority of reported watermarking research has focused on digital still images as

illustrated in Table 2.2. Motivated by the fact that there are so many images available

on the Internet which need to be protected, there are a large number of commercial

and free image watermarking products and tools available.

The watermarking of still images presents a variety of challenges that arise due to the

way the human visual system (HVS) works and the typical modifications and attacks

that images are exposed to. Additionally, still images provide a relative small host

(i.e. carrier data) in which watermark information can be hidden. For instance, a

 93

fairly typical picture of 200 x 200 pixels offers theoretically up to 40 kilobytes (kB)

of data space to hide the watermark (assuming that each pixel of the image could be

used to carry one bit of the watermark information) (Bender et al., 1996). Also, it is

reasonable to expect that still images will be subject to some modification operations

ranging from simple affine transformation (i.e. stretching) to non-linear

transformations such as cropping, blurring, filtering, cutting, and compression.

Therefore, practical watermarking techniques need to embed as much watermark

information as possible and be resistant to as many modifications or attacks as

possible.

To demonstrate image watermarking practices, Figure 4.3 below shows a fishing

boat where authentication watermarking has been applied. In the original picture

(left) the light house, the ships name and its owner have been erased (see modified

image in the middle). The right image highlights the areas with bright pixels that

have been modified. In this case the image would lose its authenticity because of

these modifications. On the other hand, the watermark helps to identify the modified

areas.

Figure 4.3 Image watermarking for data authentication

(source: Salzburg, 2009)

 94

The number of still image watermarking publications is far too large to give a

complete overview of all proposed techniques in this section. However, most image

watermarking techniques share common principles and differ only in parts or single

aspects of the three major areas: watermark signal design, watermark embedding,

and watermark recovery.

4.1.2.1 Watermark Signal Design

The watermark signal for still images is typically a pseudorandom signal with low

amplitude (compared to the image amplitude which is high) and usually with spatial

distribution of one information bit (i.e. 1 or 0) over many image pixels (Hartung and

Kutter, 1999a).

The watermark signal is often designed as a white (Tirkel et al., 1993; Schyndel et

al., 1994) or coloured pseudorandom signal with e.g. Gaussian (Cox et al., 1995),

uniform, or bipolar (Darmstaedter et al., 1998; Kundur and Hatzinakos, 1998; Kutter,

1998a; Nikolaidis and Pitas, 1996; Tirkel et al., 1993) probability density function. In

order to avoid the embedded watermark being visible, an implicit or explicit spatial

(Benham et al., 1997; Kankanhalli et al., 1998; Swanson et al., 1997; Wolfgang et

al., 1999) or spectral (Kankanhalli et al., 1998; Piva et al., 1997; Podilchuk and Zeng,

1997; Swanson et al., 1997; Wolfgang et al., 1999; Swanson et al., 1996) shaping is

often applied with the goal to attenuate the watermark in areas of the image where it

would otherwise become visible.

The resulting watermark signal leaves image pixels unchanged (Darmstaedter et al.,

1998; Kutter et al., 1998b), but mostly they are more dense after processing and the

pixels of the image to be watermarked are slightly altered (i.e. the picture is getting

blurred). The watermarking signal is often designed in the spatial domain, but

 95

sometimes also in transform domain like the full-image discrete cosine transform

(DCT) domain (Cox et al., 1995) or block-wise DCT domain (Koch and Zhao, 1995).

4.1.2.2 Watermark Embedding

Watermark embedding is done by adding or signal-adaptive (i.e. scaled) addition of

the watermark signal (Barni et al., 1998a; Langelaar et al., 1997a; Nikolaidis and

Pitas, 1996) mostly to the luminance channel alone, but sometimes to colour

channels (Kutter et al., 1997) of the image as well. The watermark addition takes

place in several domains like the spatial or transform domain using discrete Fourier

transform (DFT) (Ruanaidh et al., 1996), the full-image DCT, the full-frame DCT

(Barni et al., 1998b; Cox et al., 1995; Piva et al., 1997), the block-wise DCT

(Benham et al., 1997; Hartung and Girod, 1996; Koch and Zhao, 1995; Langelaar et

al., 1997a; Podilchuk and Zeng, 1997; Xia et al., 1997), the wavelet domain (Kundur

and Hatzinakos, 1997, 1998; Wang and Kuo, 1998), the fractal domain (Davern and

Scott, 1996; Chassery et al., 1998; Puate and Jordan, 1996), the Hadamard domain

(Johnson and Biggar, 1997; Ramkumar and Akansu, 1999), the Fourier-Mellin

domain (Ruanaidh and Pun, 1997, 1998), or the Radon domain (Hartung and Kutter,

1999a; Wu et al., 1999).

For some proposed methods (Barni et al., 1998b; Chen and Wornell, 1998, 1999;

Langelaar et al., 1997a; Wolfgang and Delp, 1997) the watermark generation and

embedding are executed at the same time and cannot be regarded separately,

especially if the watermark is signal adaptive.

It is often claimed that embedding a watermark in the transform domain (mostly

DCT or wavelet) is advantageous in terms of visibility and security (Barni et al.,

1998b). While some argue that the watermarks should be embedded into the low

 96

frequencies (Cox et al., 1995; Ruanaidh and Pun, 1997), others argue they should

rather be embedded into the medium or high frequencies of an image so that they are

not noticed by the viewer (Barni et al., 1998b; Deguillaume et al., 1999; Hsu and

Wu, 1997a). For maximum robustness, however, watermarks should be embedded

into the same spectral components where the carrier data already populates. For

images these spectral components are typically in the low frequencies (Hartung and

Kutter, 1999a).

4.1.2.3 Watermark Recovery

The watermark recovery is usually done by some sort of correlation method, like a

correlation receiver or a matched filter between the watermarked and original image.

Since watermark signals are often designed without knowledge of the carrier data,

cross-talks between the watermark and the carrier data is a common problem in

image watermarking (Hartung and Kutter, 1999a). In order to suppress cross-talk

issues, many proposed schemes require the original unmarked image data in order to

subtract necessary information (e.g. frame size) before watermark extraction.

Some proposed methods (Depovere et al., 1998; Kutter et al., 1997; Langelaar, 1996;

Schyndel et al., 1994) apply a pre-filter principle instead of subtracting the original

signal, while other (Piva et al., 1997) do not suppress cross-talks at all. Yet some

other schemes (Barni et al., 1998b) use a more sophisticated detector like a

‘maximum a-posteriori’ (MAP) instead of simple correlation detectors to retrieve the

mark.

4.1.2.4 Discussion

Most image watermarking methods are based more or less on the same basic

principles: small, pseudorandom changes are applied to selected image pixel

 97

coefficients in the spatial or transform domain. These changes are identified in the

extraction stage by some correlation or correlation-like similarity measures. Usually,

the number of modified coefficients is much larger than the number of information

bits to be encoded. This can be considered as redundant embedding and leads to

implicit robustness.

When embedding a mark, the different domains may have substantial influence on

the watermark’s robustness. Although the spatial watermarking domain is the most

common proposed method for still images, it is generally less robust towards noise or

lossy JPEG compression. However, a big advantage of it is that the watermark may

easily be recovered if the image has been cropped or translated.

Spatial watermarking can also be applied using colour separation. In this way, the

watermark appears in only one of the colour bands. This renders the watermark

visibly unobtrusive so that it is difficult to detect under regular viewing. However,

the watermark appears immediately when the colours are separated especially for

offset printing or xerography.

This is less obvious if the frequency domain has been used. Image cropping in the

frequency domain results in a substantially large distortion which usually destroys

the embedded watermark (Berghel and O'Gorman, 1997). The same is true for the

full-frame DCT domain. If a frame block is DCT watermarked, it is important to

know the block’s exact position for successful watermark extraction.

The wavelet domain has very similar drawbacks as the frequency domain, because

the wavelet transform is neither shift nor rotation invariant. This is probably due to

the simplicity and efficiency of such methods.

 98

4.1.3 Video Watermarking

A video sequence consists of a series of consecutive and equally time-spaced still

images. Thus, the general challenge for watermarking video data should be similar to

image watermarking. Therefore, the idea that image watermarking techniques might

be directly applied or extended to video data is obvious. However, this is only partly

true, although there are a lot of publications on image watermarking which conclude

with the remark that the proposed approaches could be also applied to video data

(Cox et al., 1996, 1995; Hsu and Wu, 1997a; Busch et al., 1999).

Even though some say that watermarking still images and video data is similar, they

are not identical. There are some important differences (including data characteristics

and handling) between image and video data which ask for specific methodology for

video watermarking (Doërr and Dugelay, 2003). These differences can be narrowed

down to four dissimilarities which are: space, frame rates, data processing and live

editing.

4.1.3.1 Space

The first difference between images and video data is the availability of space for

hiding a watermark. Within an image the space to hide a watermark is limited due to

the fact that it is ‘only one’ image with a certain resolution (i.e. number of pixels). In

other words, the higher the quality of an image is, the more pixels it has, and

therefore more space is available to hide/embed a watermark.

A video sequence, however, can contain several thousand or more images and thus is

capable of carrying more watermark information. Even if the resolution of each

individual image is poor, the watermark information can be distributed onto several

 99

consecutive images. Therefore, a video sequence offers a much larger ‘hiding space’

for watermark information than a single image.

4.1.3.2 Frame Rates

Another point to consider when watermarking is applied to video is the structure of

the video data as a sequence of still images. In contrast to images, video sequences

might be more susceptible to particular attacks such as frame averaging, frame

dropping, and frame swapping where the watermark could be destroyed (Hartung

and Girod, 1996; Swanson et al., 1997). A good watermarking scheme, however,

should be able to resist these kinds of attacks, for example, by distributing watermark

information onto several consecutive frames. However, it might be desirable to

retrieve the full watermark information from a short part of the video sequence.

4.1.3.3 Data Processing

In the context of video the possibilities of attacking or altering watermarked data are

multiplied compared to still images. Besides intentional attacks (similar to image

attacks), many different non-intentional or non-hostile video methods exist which

might harm the embedded watermark. Non-hostile refers here to the fact that even

content owners are likely to change or attack the watermarked data unintentionally in

order to manage or handle their own intellectual property efficiently. These non-

hostile modifications can be due to a wide range of video processing and data

transmission procedures that are summarised as follows (Hartung and Kutter, 1999a;

Busch et al., 1999):

• Data transmission is very likely to add some kind of noise or disturbance that

might change the photometric nature of the video which might have some

influence on the embedded watermark.

 100

• Similarly, digital to analogue and analogue to digital conversion (DA/AD

conversion) can also introduce some distortions to the video signal when

changing the format.

• Another common process to video is to perform a gamma correction in order to

increase the contrast.

• In order to reduce video file size (for storage or transmission reasons) content

owners often compress their video data.

• Also, spatial filtering inside each frame is often used to restore a low-quality

video, while inter-frames filtering (i.e. filtering between adjacent frames of a

video) has to be considered too.

• The most common examples of non-hostile attacks on video are changes across

display formats (such as 4/3, 16/9 or 2.11/1) and changes of spatial resolution

(such as NTSC, PAL, SECAM and other video standards).

• Similarly, customers are also likely to convert their videos from a standard video

format such as MPEG-1, MPEG-2 or MPEG-4 to other popular formats such as

DivX or AVI.

• Another kind of non-hostile attack might be cut-and-modify operations that a

video editor may perform. Cut-and-splice and cut-insert-splice are two very

common processing method used during video editing. Cut-insert-splice is

basically what happens when a commercial is inserted in the middle of a movie.

Such kind of editing can be seen as temporal editing in contrast to spatial editing.

• Spatial editing refers to the addition of a visual content in each frame of the video

stream. This includes, for example, graphic overlay (e.g. logos or subtitle

 101

insertion) and video stream superimposition like in the Picture-in-Picture (multi-

screen) technology.

4.1.3.4 Live Editing

Real-time marking of video data can be an additional requirement when creating a

video watermarking scheme, but is not necessary for image watermarking. Video

frames are sent at a typical rate of 25 frames per second (or 50-60 for High

Definition) to obtain a smooth video stream. Therefore, the watermark embedder

should be able to handle such high rates. However, in the context of real-time

broadcast monitoring, the detector should also be able to detect and decode the

hidden watermark in real time.

In order to meet real-time watermarking and detection requirements (i.e. speed,

frame rates per second, etc.) the complexity of video watermarking algorithms

should be as low as possible (to be able to keep up with the frame rates), but still

thorough enough to mark every frame in the video sequence, while being able to

withstand different types of attacks (Kalker et al., 1999).

4.1.3.5 Video Watermarking Techniques

It can be observed from the literature that about half of the video watermarking

techniques and methods are proposed for compressed video data, while the other half

is conducted on un-compressed video data. Watermarking on compressed video

makes sense, since video data is stored in a compressed stage most of the time in

order to save some storage space. As a result of this, some watermarking schemes

have been specifically designed to embed the watermark information directly into the

compressed video stream.

 102

Regardless of video format (i.e. uncompressed or compressed), published

watermarking techniques are based on one of the following concepts to embed

information by modifying one or more of the video’s characteristics:

• Spatial domain: Watermark embedding and detection are performed on spatial

pixels values (i.e. luminance, chrominance, colour space) on video images, or on

the overall video frame characteristics (Linnartz, 1998; Darmstaedter et al., 1998;

Bush et al., 1999; Kalker et al., 1999).

• Feature or salient point watermarking by modifying geometric properties of the

video frames (Dittmann et al., 1998b).

• Frequency domain: Spatial values of the video data are transformed with

techniques like Discrete Cosine Transform (DCT), Fast Fourier Transform (FFT),

and Wavelet Transform to embed the watermark information (Hartung and

Girod, 1996, 1997; Hartung et al., 1998; Hsu and Wu, 1997a; Langelaar et al.,

1997b; Deguillaume et al., 1999; Swanson et al., 1997, 1998a; Langelaar and

Lagendijk, 2001; Langelaar et al., 1998).

• Format specific approaches: The structure elements of MPEG-4 data or motion

vectors, like Facial Animation Parameter (FAP), are also used to anchor a

watermark signal (Jordan et al., 1997; Kim et al., 1999; Swanson et al., 1998a).

• For fragile video watermarking, the watermark signal can be anchored in the

video data by manipulating sensitive video elements like the Last Significant Bits

(LSB) to detect changed and manipulated regions of the video sequence.

4.1.3.6 Discussion

The proposed methods span a wide complexity range from simple to extremely

complex including, e.g. wavelet transforms and models based on the HVS. In

 103

general, the more complex the methods and techniques used to embed the watermark

message, the higher the watermark’s robustness.

Also, since image and video watermarking share similar techniques for watermark

signal design, embedding and recovery, the characteristics of the embedded

watermarks are also similar. Since the qualities and behaviour of image

watermarking are already mentioned in section 4.1.2, there is no need to discuss the

features that are common to still image and video watermarking again. Therefore,

only unique characteristics and threats to video watermarking are discussed here.

For instance, in video watermarking some schemes apply extended image

watermarking technology to hide information in the individual video frames.

Unfortunately, this means that each frame has a distinct watermark unrelated to the

preceding and following frames, which may be visually very similar. A sophisticated

attacker, however, can take advantage of this by averaging video frames to detect the

watermark signal and remove it or duplicate it (basic principles of collusion attack).

In the case of real-time marking, watermark data rates for video data are between a

few bits per second and a few hundred bits per second. To achieve robust video

watermarking, rates do not need to be higher than a few bits per second to a few

dozen bits per second, which is sufficient for most video applications including

DVDs (Hartung and Kutter, 1999a).

Last but not least, the biggest influence or threat to video watermarking might be the

numerous different data processing and modification applications that are performed

on video data (see sections 4.1.3.3 and 4.1.3.4). When comparing modification

processes of video data to other media, one can see that they are more diverse and

 104

sophisticated for video. Therefore, these modifications do not only represent a higher

threat to video data, but also need to be considered when developing a new video

watermarking scheme.

4.1.4 Audio Watermarking

It is often stated that audio watermarking is similar to image and video watermarking

(Hartung and Kutter, 1999a; Gomes et al., 2003; Wang et al., 2004). However, audio,

video and still image data differ significantly from each other. First of all, image and

video data are two dimensional data which not only provide more ‘space’ to hide

watermark information, but also more possibilities for distortions and attacks (see

sections 4.1.3.3 and 4.1.3.4) that might affect the watermark’s integrity. Audio data,

on the other hand, do not need to deal with these types of attack, since audio signals

are ‘only’ one-dimensional. Second, audio signals are represented by far fewer

samples per time interval than video sequences (Hartung and Kutter, 1999a).

Consequently, the amount of information that can be embedded robustly and

inaudibly into audio data is much lower than for visual media.

Probably the biggest challenge for audio watermarking is the human audible system

(HAS) which is much more sensitive to changes than the human visual system

(HVS) (Arnold et al., 2003; Cox et al., 2002b). Therefore, inaudible watermarks are

much more difficult to achieve than invisible watermarks.

The core requirements that an audio watermarking system must fulfil are application-

dependent and can sometimes conflict with each other (Gomes et al., 2003). These

can be summarised as follows:

• Inaudibility: watermarking should not degrade the quality of the music/ sound.

 105

• Robustness: the watermark should resist any transformation applied to the audio

data (e.g. to wind, cut-in-splice, duplicate, compression, filtering, etc.).

• Capacity: the watermark should be large enough to store all necessary

information. This can however conflict with Inaudibility – a trade-off must be

found.

• Reliability: watermark data should be embedded and extracted with low error

rates to avoid false positive detection.

• Low complexity: watermarking and extraction algorithms should not be

excessively time-consuming and complex to enable real-time applications.

The robustness of watermarks to signal-processing operations such as filtering, re-

sampling or coding, and A/D – D/A conversion is a basic necessity for audio

watermarking. In the case of copyright protection, robustness to malicious attacks is

also required, especially where a part of the audio signal might be deleted. In this

case the watermark should still be detectable within a fraction of the carrier signal

and still carry the whole watermark information. However, for integrity-verification

applications (e.g. testimonies recorded before a court), the watermark must no longer

be recognised when audio content is modified in any way. In that case, robustness is

no longer required; on the contrary, the watermark must be fragile.

Similar to video watermarking, digital audio watermarking techniques and

approaches can be classified according to the domain where the actual watermarking

takes place. The common techniques applied to audio watermarking techniques can

be described as Time Domain, Compressed Domain, and Frequency Domain

(Hartung and Kutter, 1999a). Also, some other audio watermarking schemes are

described and discussed in the following sections.

 106

4.1.4.1 Time Domain

Embedding a watermark within the time domain involves challenges related to

fidelity and robustness. Shaping the watermark before embedding enables the system

to maintain the original audio signal fidelity and renders the watermark inaudible.

Bassia and Pitas (1998; 2001) proposed a method in which the watermark signal is

modulated and embedded into the original audio signal by using a low-pass filter to

reduce distortions. The carrier audio data is divided into segments and each segment

is watermarked separately by embedding the same watermark. Although the original

data is not required for detection, this method shows robustness against audio

compression, filtering, time-shifting, and cropping.

The different audio watermarking systems by Boney et al. (1996) and Swanson et al.

(1998b) use the HAS masking effects to shape the watermark signal. Here, the

watermark shaping is performed in the frequency domain to create a noise-like

sequence, but the actual watermark insertion is executed in the time domain. Both

schemes are robust to time-shifting, cropping, filtering, re-sampling, or data

compression, although the original audio data is required in the watermark detection

process.

4.1.4.2 Compressed Domain

Another way of embedding the watermark is to use the compressed domain. This

approach is applied directly on compressed data (i.e. MPEG audio bit stream).

For instance, Qiao and Nahrstedt (1999) developed a technique which uses a data

encryption standard (DES) algorithm to generate non-invertible watermarks, and

then hides the watermark message with the help of ‘level changes of scale factors’

 107

into MPEG audio frames. To detect and extract the watermark message the original

audio signal is required.

Other approaches have been developed by Lacy et al. (1998), Neubauer and Herre

(1998; 2000a; 2000b), and Swanson et al. (1998b). They apply a lossy compression

algorithm that uses the special nature of the HAS to hide information into MPEG

audio data. In other words, this mechanism removes perceptually irrelevant parts of

the audio signal (that are inaudible to the human ear) and creates specific

replacement signals which carry the watermark message. Then, the newly created

replacement-watermark-signals are inserted directly in the MPEG bit stream

generated by an audio coder. The embedded watermark can be detected both in the

uncompressed and the compressed version of the carrier audio data. To locate and

extract the watermark, the original unmarked audio data is required where the

similarities between the two versions are measured and converted back.

4.1.4.3 Frequency Domain

Instead of adding the watermark signal into the original signal domain (i.e. to the

actual carrier audio signal), it may be also added in some transform domain (i.e.

amendment of the original audio signal). Almost any transform domain could be

used, but most work has concentrated on Fourier, Wavelet, and Spread-spectrum

domain which are thought to be either readily computable or offer beneficial

mappings to human perception systems, or both.

Arnold (2000, 2001) established an audio watermarking technique that uses a

statistical algorithm in the Fourier domain. The audio carrier signal is broken into

frames, and in each frame one bit of the watermark message is embedded. For the

embedding itself, each frame is transformed by using Discrete Fourier Transform

 108

(DFT). His method is based on the patchwork algorithm proposed by Bender et al.

(1996), however, it does not require the original audio data in the detection process.

Another method for audio signal watermarking in the wavelet domain, using a

“patchwork” algorithm, was proposed by Kim et al. (2002). In this scheme a binary

watermark is embedded bit by bit into splitted audio data blocks. Then, the

watermark bits are locally repeated for the purpose of robustness. Also a number of

supporting bits are added in front of watermark bits to locate the point where the

watermark is embedded into the audio signal. These supporting bits are called

synchronisation bits. Since this scheme carries necessary information about the

watermark location, it can be detected and extracted without the knowledge of the

original audio signal. The authors claim that this watermarking system has a high

performance in data synchronisation and is able to resist time shifting attacks.

Other proposed watermarking schemes use ideas borrowed from spread-spectrum

radio communications. For instance, Boney et al. (1996) embedded a watermark by

adding a pseudo-noise (PN) signal with a low amplitude to the host audio data. This

PN signal has been filtered in several stages in order to exploit long-term and short-

term masking effects of the HAS. The PN signal can later be detected by using a

correlation receiver or matched filter.

Cox et al. (1997) and Garcia (1999) reported a useful audio watermarking technique

by simply spreading the watermark signal over many frequency components of the

host audio data so that the trace of the mark is very small or barely detectable. They

claim that, in order for the watermark to be robust, it must be placed in perceptually

significant regions of the audio data despite the risk of potential fidelity distortion.

 109

Bender et al. (1996) also proposed a watermarking technique applicable to audio data

in the spread-spectrum domain. Their watermarking scheme uses bi-phase shift

keying and a pseudorandom noise. Their scheme introduces a perceptible noise to the

original audio signal by using adaptive and redundant coding where the perceptible

noise can be reduced.

4.1.4.4 Other Audio Watermarking Techniques

A number of audio watermarks have been proposed that do not fit into any of the

present categories. For example, rather than adding the watermark to the audio signal

in the time domain, Garcia (1999) performed the embedding operation in the

frequency domain by directly replacing spectral components of the audio signal.

The schemes created by Gomes et al. (2000) and Furon et al. (2000) use the same

domains as Garcia (1999) but with different coding keys for watermark insertion and

detection.

Tilki and Beex (1996) have developed a watermarking system for interactive

television where the watermark is hidden inside the audio signal. In this application

they embed the watermark information directly into the audio component of a

television signal, where the mark is partitioned in blocks of 35 bits. Each block of

bits is then modulated and added to the host signal by using a sinusoidal carrier of a

specific frequency and amplitude (frequency domain). Their research shows that this

scheme is robust against room noise and video tape recording.

4.1.4.5 Discussion

Audio watermarking systems have a number of differences. These differences can be

demonstrated when evaluating the performance of the various systems or their

suitability for a specific application.

 110

1) Some audio watermarking systems require the original audio data, or information

derived from it, to be able to detect and decode the watermark message. This,

however, has the effect that a large amount of original data needs to be stored and

searched, which will consequently slow down the detection process.

2) In order to keep watermark security high, the mark is embedded into selected

regions of the audio signal using a watermarking key. This watermarking key can

be used either to create the watermark itself (a random sequence of bits generated

by some sort of algorithm) or to embed and detect the watermark, or for both

(dependent on the transform domain). The watermarking key is either provided

by the copyright owner or is created both from information provided by him/her

and information derived from the original audio data. In this case the original

audio data will be required in the detection process for key generation purposes.

3) During the embedding processes the original audio signal is divided into several

frames, where each frame is watermarked separately. Some watermarking

systems embed the same watermark into a number of frames to enhance

watermark robustness, while others embed various marks into the frames (for

fragile marking). However, a major difficulty in audio watermark detection and

extraction is the need for precise synchronisation (Kim et al., 2002). To be

successful, the detector must know the exact starting and finishing point of each

hidden message in order to perform a precise and accurate extraction.

4) However, probably the biggest challenge of creating and embedding a watermark

into an audio signal is the sensitivity of the HAS (i.e. the watermark must be

inaudible to the human ear). It is usually convenient to use a domain in which the

properties of the human perceptual system can best be bypassed (Walker, 2004).

 111

However, this is not a necessary limitation when developing a watermarking

system, although the choice may have a significant impact on the implementation

complexity of the system. Masking characteristics of an audio signal can be used

for this purpose. Psychoacoustic MPEG model is commonly used to calculate a

masking threshold that is appropriate for “weighing” the watermark. This

technique, as well as other techniques, uses the original audio signal in

modulating the watermark where the amplitude of the watermark signal is

controlled by the amplitude of the audio signal. However, this watermark shaping

process might affect the existence of the watermark in the cover work. In other

words, the possibility of a false negative detection will be increased.

4.2 Watermarking Approaches for Three-Dimensional Data

The nature of shapes and graphical data representing three-dimensional objects is

completely different from that of any other media data type (e.g. image or audio

data). For instance, a mesh based representation of a 3D object consists of a graph

having vertices as its nodes, joined by edges that define the boundary of polygonal

surfaces in a three-dimensional space, while a still image is an accumulation of

pixels on a regular image-grid on a two-dimensional plain level (Chang et al., 2003;

Bors, 2004). Therefore, simply applying image watermarking technologies to three

dimensional graphical data is not going to work.

To be able to watermark three dimensional shapes new/different approaches and

methodologies have to be adopted to achieve effective 3D watermarking. In the

following sections a number of watermarking schemes and approaches for 3D

models are presented and discussed. The literature is organised by grouping the

 112

methods together according to the three dimensional object’s representation. These

groups are: surface and solid representations. Following this, watermarking

techniques for different types of three dimensional data are described and discussed.

Finally, all presented techniques are compared with each other in the discussion

section at the end of this chapter, and a gap in the literature is identified.

4.2.1 Watermarking Techniques for 3D Models Represented as Surface

In this section watermarking schemes and approaches for 3D objects represented as

polygonal meshes, Bézier, and NURBS surfaces are described and discussed in the

context of reported watermarking methods.

4.2.1.1 Approaches for Polygonal Mesh-type Data

Some of the earliest work in the field of three dimensional digital watermarking was

reported by Ohbuchi et al. (1997a, 1997b, 1998a, 1998b, 2001). They proposed a

large variety of techniques and methods for embedding data into three dimensional

polygonal mesh models. Some of their watermark embedding algorithms are based

on topological and some on geometrical modifications. For instance, their Triangle

Similarity Quadruple (TSQ) embedding algorithm modifies vertex coordinates of

four adjacent triangles to encode a watermark (in form of bits) by setting the value of

ratios between edge lengths of the triangle group. The TSQ algorithm can be

classified as a blind watermarking scheme because it does not require the original

unmarked 3D model in the extraction stage. The embedded watermark can only be

used to prove the presence of a mark since it does not carry any text message. The

authors report that watermarks produced by the TSQ algorithm withstand translation,

rotation, and uniform-scaling transformations of the host polygonal meshes.

 113

However, the embedded message can be destroyed by randomisation of coordinates,

or by topological modification of the surface structure such as re-meshing.

Their second method, called Tetrahedral Volume Ratio (TVR), randomly selects

specific tetrahedron formations from the mesh model’s surface and embeds the

watermark information (converted to bits) in the volume ratio of consecutive

tetrahedrons by modifying their vertices. In other words, the size of modification for

a vertex depends on the bit-message content. Compared to TSQ, the message

embedded with the TVR can be recovered and converted back into text during the

detection stage. The TVR algorithm is also a blind watermarking scheme, but with

the added benefit that the watermark withstands local deformation and cropping.

However, the watermark can be destroyed by attacks which cause topological

modifications such as re-meshing, polygon simplification, vertex coordinate

randomisation, and geometrical transformations.

The third blind watermarking scheme proposed by Ohbuchi et al., called Triangle

Strip Peeling Symbol (TSPS), is based on topological embedding principles. This

algorithm “peels” off a triangle-strip from a given mesh model into which the

watermark message is embedded as a bit-string. In other words, the watermark bit-

string determines the shape of the triangle-strip. The embedding principle uses the

adjacency relationship between a pair of triangles in the strip, and each pair encodes

a single information bit (i.e. 1 = left adjacent triangle, 0 = right adjacent triangle; see

example in Figure 4.4). During the detection process it is possible to recover the

embedded watermark message without the unmarked original (although the start of

the strip needs to be specified/known). The embedded information is resistant to

affine transformation or arbitrary geometrical transformation, but can be destroyed

 114

by topological manipulations such as polygon simplification, re-meshing or noise

addition.

Figure 4.4 Information embedding with TSPS
(adapted from: Ohbuchi et al., 1998c)

Wavelet transformation techniques, which belong to the transform domain, have also

been applied to the digital watermarking of three dimensional shapes. Kanai et al.

(1998) are the first to report the use of wavelet transform as a watermarking method

on 3D polygonal mesh models. Their robust but non-blind detection algorithm first

decomposes a 3D polygonal mesh by using lazy wavelets induced on 3D polygonal

meshes. Then a binary image watermark is embedded in the wavelet coefficient

vectors (or vertex coordinates) at various resolution levels of the multiresolution

representation. This makes the embedded watermark imperceptible and resistant

against affine transformation, partial resection, and random noise added to vertex

coordinates, but needs the original cover data in the watermark retrieval stage. The

embedded message can only be used to prove the presence of a watermark (i.e. the

watermark does not carry any meaningful text information).

Similar to Kanai’s technique, Praun et al. (1999) also proposed a non-blind detection,

robust mesh watermarking algorithm that works in the transform domain (i.e.

multiresolution analysis) and is applicable to polygonal meshes that have arbitrary

vertex connectivity. This method modifies the shape of the mesh by using a spatial

 115

kernel to embed information in the low-frequency components (i.e. visually the most

important components) of the shape by imperceptibly displacing the vertices. This is

achieved by recreating the connectivity of the object’s original mesh by means of

mesh alignment followed by re-sampling. The embedded watermark message is a

cryptographic random number created by a hash function (like a MD5) which is

extracted in the watermark recovery stage and can be converted back to readable

text. Tests by the authors show that the resulting watermarks are resistant against

similarity transformation, smoothing, additive random noise, cropping, mesh

simplification, vertex reordering, insertion of a second watermark, and other

operations that preserve shape but modify vertex connectivity.

Benedens et al. (1999a, 1999b, 1999c, 2000b) also developed a number of digital

watermarking methods for the embedding of information into 3D models, most of

which are based on geometrical transformations. Their system, often referred to as

the GEOMARK system, is based on three different algorithms for watermarking

three dimensional polygonal meshes: Vertex Flood Algorithm (VFA) – suitable for

fragile public watermarking, the Affine Invariant Embedding (AIE) – realising affine

invariant watermarks, and the Normal Bin Encoding (NBE) – realising robust

watermarks against polygon reduction.

To encode arbitrary watermark bits, the VFA algorithm modifies the vertices of a

mesh model so that their distances to the centre of the surface have a specific value.

This algorithm solely operates on mesh-vertices and does not take further topological

relationship into account. Neither does it require connectivity of the faces from the

carrier mesh model. A watermark created by the VFA method is suitable for blind

detection and can survive uniform scaling, rotation, cropping and translation into

 116

different formats. On the other hand, they are not robust against complex geometry

modifications, non-uniform scaling and topology alterations, and can only be used to

prove that a watermark is present (i.e. for verification purposes).

The AIE is also based on the alteration of surface normals similar to the VFA

method. However, the embedding algorithm is based on the local application of the

Nielson Foley norm and deals only with infrequently appearing non-triangular faces

to embed affine invariant watermarks. The arbitrary bit watermark (used for data

authentication) embedded with this technique is robust against cropping and general

affine transformations, but are lost in re-meshing operations and after mesh

simplification. Unfortunately, this technique is mainly of academic value because

watermarks do not survive quantisation of vertex coordinates to less than 6 decimal

digits (Benedens, 2002).

The NBE approach, which is based on similar alteration of surface normals like the

AIE technique, modifies the models vertex normals to store the information. This

scheme embeds a 1-bit random watermark into each vertex coordinate and does not

require the location of the mark, except the secret key in the recovery stage (i.e. blind

watermarking to recalculate the watermark bit). The watermarks created by this

approach show robustness against mesh simplification methods. One drawback of the

algorithm, however, is the amount of pre-processing needed before the watermarking

algorithm can be applied.

The novelty of the GEOMARK system is the combination of all three algorithms to

obtain a watermarking scheme that is robust against randomisation of vertices, mesh

altering, and polygon simplification operations.

 117

Yin et al. (2001) reported a non-blind robust mesh watermarking algorithm that

works in the transform domain. It is based on the multiresolution decomposition of

polygonal mesh shapes that separates a mesh into its elements (i.e. coarse feature

sequences) by repeatedly applying local smoothing operations. Arbitrary binary

watermark information is then embedded into the least significant bits (LSB) of

vertex coordinates using additional order bits in the pre-processing phase.

Experimental results show that their watermarking algorithm is robust to various

attacks, including vertex reordering, noise addition, mesh-simplification, filtering

and enhancement, and cropping. This type of watermark is mainly used to show that

a watermark is present, since the watermark message is meaningless.

Harte and Bors (2002a, 2002b) proposed a blind watermarking scheme for 3D mesh

models and objects through altering the location of certain vertices. Their

watermarking technique is essentially of a geometrical nature and therefore belongs

to the transform domain. The two main steps of the watermarking algorithm can be

described as follows: In step one a chain of vertices and their neighbouring vertices

are selected from the mesh object and are ordered according to a specific distance

criterion. In the second step, bounding volumes are modelled from the selected

neighbouring vertices and the corresponding vertices are moved inside the bounding

volume when embedding a ‘1’ bit, or outside for embedding a ‘0’ bit. In the detection

stage, the embedded bits are retrieved by checking their relative location with respect

to the bounding volumes. Due to the geometrical nature of the watermarking

algorithm, the watermark can be recovered after scaling, rotation or combinations of

geometrical transformations, and is used to confirm that the data has been

watermarked.

 118

Similar to Beneden’s approach Aspert et al. (2002) developed a method to embed

information into 3D polygonal mesh models. Their algorithm slightly changes the

position of vertices of the mesh composing the model and embeds the information in

the length of the normal vectors of the defining vertices. The watermark message to

be embedded is created by a MD5 hash function and can be fully recovered and re-

converted in the extraction stage. This method is robust to simple geometric

transformations such as scaling, translation, and rotation. However, this scheme will

not resist stronger attacks such as re-sampling, compression, and model

simplification. Furthermore, to extract the hidden information successfully, the

original unmarked mesh-model is needed in the detection stage, i.e. this is a non-

blind watermarking method.

In 2004 Daras et al. presented a robust blind watermarking technique for 3D models

using a cylindrical integration transform (CIT) method in which an arbitrary bit-

watermark is embedded into the nodes by modifying the location of a subset of the

3D model’s vertices. The embedded watermark mainly serves as prove of

authentication, but can also be used as a link to an identifier for 3D model search.

The extraction of the watermark can be done without the original unmarked model.

Since the process is so fast and accurate, it can be effectively used in real-time 3D

model content-based search and retrieval applications. Experiments by the authors

show that their watermarking technique is not only robust to geometric distortions

such as translation, rotation and uniform scaling, but also to other point and vertex

rendering and reordering attacks.

Uccheddu et al. (2004) also demonstrated a multiresolution watermarking algorithm

designed to work on semi-regular meshes with subdivision connectivity. Their

 119

proposed blind algorithm embeds the watermark information (random numerical

values) by modifying existing vertex coordinates of a 3D model and introducing new

vertices to the model in the wavelet domain. The watermark is recovered by means

of correlation detection (i.e. computing the correlation between the watermark signal

and the inspected mesh) and does not require the original mesh model in the

extraction stage. The embedded watermark, used to prove the presence of a

watermark, is robust to geometric transformations such as rotation, translation,

uniform scaling, and other attacks such as noise addition, smoothing, and cropping.

However, this method is only applicable to sub-divisions of surfaces.

Maret and Ebrahimi (2004) proposed a blind data hiding tool to embed information

into the geometry of 3D polygonal mesh objects that is suitable for content

annotation and secret communication applications. Their algorithm consists of three

stages: In the first stage, the model geometry is transformed into a similarity-

invariant5 space resulting in a non-uniformly sampled function of a sphere unit curve.

Stage two modifies the resulting samples in order to embed the message. The final

and third stage computes the necessary vertex modifications to the model geometry,

and the information is embedded as a bit stream into the projection curve of a sphere

unit. While the message can be extracted after basic geometric transformations such

as translation, scaling, and rotation, it does not resist more invasive modification

such as surface subdivision, simplification and compression. This scheme is capable

to recover and recreate the embedded message in the extraction stage.

5 In mathematics, similarity invariance is a property exhibited by a function whose value is unchanged
under similarities of its domain. For instance, f is invariant under similarities if f(A) = f(B − 1

AB) where
B −

 1
AB is a similarity of A.

 120

Wu and Cheung (2005a; 2005b) developed a fragile watermarking scheme to

authenticate 3D mesh models that is similar to Benedens & Busch’s (2000b)

approach. Within this method, the watermark information is adaptively embedded

into the mesh geometry by slightly adjusting vertex positions while the mesh

topology remains unchanged. By applying their so called Enhanced Centroid-

Distance-Ratio (ECDR) algorithm, the proposed method can be enhanced to detect

unauthorised modifications on the carrier mesh model. The watermarking process is

conducted in the spatial domain and applies to the whole mesh surface on the model

without any restrictions. The embedded blind watermark (arbitrary bit data) applied

by this approach is invariant to translation, affine transformations, rotation and

uniform scaling, but sensitive to geometrical or topological modifications on the

watermarked model. Also, its main purpose is to prove the presence of a watermark

and carries no text information.

Denis et al. (2005) proposed a robust watermarking algorithm for polygonal mesh

data applied on compressed 3D objects. Similar to Ohbuchi’s (2002) method, they

modulate the object's vertex coordinates in the transform domain to insert the bit

message. For each coordinate, one bit is embedded, so for each vertex, 3 bits can be

concealed (i.e. one bit for each x, y, and z coordinate). The extraction operates in a

non-blind manner (i.e. the original unmarked object is necessary to locate and extract

the message), and is based on the same principle as the insertion process: the spectral

decomposition is applied to the initial mesh and to the watermarked mesh

simultaneously. Robustness has been achieved against noise addition, subdivision

and re-meshing attacks. By the nature of this approach, however, it introduces small

changes to the model’s overall shape.

 121

Alface and Macq (2005) presented a robust blind watermarking scheme for 3D

meshe objects based on automatic selection of feature points through a multi-scale

estimation of the curvature tensor field. These feature points are used to build a

partition of the mesh shape that is resistant to common 3D watermarking attacks.

Their spectral domain watermarking scheme proceeds by first partitioning the mesh

shape using a geodesic Delaunay triangulation of the detected feature points, then the

concerned vertices are re-parameterised to contain the arbitrary bit message. This

method shows good preliminary result as it resists affine transformations, noise

addition, smoothing, crop and sampling changes, although its robustness is doubtful

against re-meshing attacks.

Murotani and Sugihara (2005) demonstrated a robust watermarking method that adds

watermarks to 3D polygonal meshes, based on the generalised singular spectrum

analysis (SSA). The structure of the 3D polygonal mesh is computed by the singular

decomposition of the trajectory matrix, and the arbitrary binary watermark message

is then embedded into the vertex coordinates as a multiplying factor (i.e. the x, y, and

z coordinates are multiplied by the binary watermark message values). The

watermarks embedded by this algorithm are robust against similarity transformations

such as rotation, translation and uniform scaling. They are also resistant against

random noises added to vertex coordinates. To identify and retract the embedded

message (used to confirm the watermark’s presence), no unmarked original data is

necessary. Therefore, this scheme can be considered a blind watermarking method

which modifies the overall shape of a 3D model.

Zafeiriou et al. (2005) published two methods suitable for blind 3D mesh object

watermarking applications. In both methods pseudo-random numbers are embedded

 122

as watermarking signals in the 3D mesh object by deforming its vertices

geometrically (altering vertex components/coordinates), but without altering the

vertex topology. Prior to watermark embedding and detection, the object is rotated

and translated so that its centre of mass and its principal component coincide with the

origin and the z-axis of the Cartesian coordinate system. Their first method, the so-

called Principal Object Axis watermarking (POA) scheme, is robust against rotation,

translation, and uniform scaling. The second one, the so-called Sectional Principal

Object Axis watermarking (SPOA) scheme, is additionally robust against mesh

simplification attacks. Both algorithms, however, are based on principal component

analysis, and thus both algorithms will fail against cropping attacks, which can cause

severe alteration to an object’s principal axis.

Bors (2006) reported another technique for watermarking three dimensional

graphical objects, represented as 3D meshes. The watermark information, provided

as binary code, is embedded by means of small local geometrical perturbations while

maintaining the local connectivity and without affecting the mesh topology. The

scheme proposed here is blind, in the sense that in the detection stage the original

stego model is not required for the recovering of the encoded message. Watermarks

embedded using this methodology do not affect the mesh topology or the vertex

interconnectivity, and are unaffected by rotation, translation and scaling of the

objects. However, certain changes in the mesh topology (e.g. re-meshing or mesh

simplification) can affect the watermark’s robustness.

Chou and Tseng (2006) proposed a blind fragile watermarking scheme based on the

sensitivity of vertex geometry of a 3D polygonal mesh model. To overcome casualty

 123

and convergence problems6 they use a multi-function vertex embedding and

adjusting-vertex method to create a watermark signal. In the first step, they select a

set of vertices from the original mesh model, where these selected vertices and their

neighbouring vertices cover the whole CAD model (vertex strip). Then the three

coordinates (x, y, and z) of each marked vertex are assigned and modified (relocated)

to hide the bit-watermark in the embedding stage. In the watermark recovery process

the carrying vertices are identified and matched, and then the watermark signal is

extracted by “following” the neighbouring vertices (i.e. the vertex strip). This

proposed scheme can detect, and locate, unauthorised modifications even if several

changes are made to a model at the same time. Watermarks embedded with this

algorithm are robust to cropping, vertex decimation, and Boolean modification.

Numerous other authors such as Corsini et al. (2003b), Yeo and Yeung (1999), Lin

and Liao (2005), Wu and Cheung (2005a), Quan and Xiaomei (2006), Rušinović and

Mihajlović (2005), Li et al. (2004), Garcia and Dugelay (2003), Koller et al. (2004),

Koller and Levoy (2005), Funk (2004), Ohbuchi et al. (2002), or Benedens (2002)

have also proposed 3D watermarking methods, techniques and schemes with only

minor differences or variations to the above described mesh based schemes.

However, since the fundamentals of mesh watermarking have been described they

will not be discussed further here.

6 Two problems frequently arise during the embedding process for mesh data: the causality problem
and the convergence problem. The causality problem arises while the neighbouring relationship of a
former processed vertex is influenced by the perturbing of its latter processed neighbouring vertices.
The convergence problem means that the original model has been heavily distorted before some
vertices reach the predefined relationship.

 124

4.2.1.2 Approaches for Bézier-type Data

Chadwick et al. (2003) were amongst the first who developed a method for

watermarking Bézier surfaces by making small changes to the control points of the

Bézier curve. The small changes slightly adjust the geometry of a surface without

visually degrading or altering the quality of the model. The scheme is capable to

insert 16 bits of random watermark message in a surface-grid of 4 x 4 for watermark

authentication purposes. To detect the watermark’s presence the original model is

required for the statistical correlation evaluation. Therefore, this scheme has non-

blind characteristics. Tests by the authors show that watermarked surfaces that

underwent standard transformations like rotation and translation still contained the

watermark bits.

Nagahashi et al. (2004) presented a non-blind method for embedding a text message

in the form of ASCII characters into Bézier polynomial patches. This watermarking

method is model-altering since the watermark is embedded by subdividing the

original Bézier patches, i.e. new data points are added to the boundary curves of the

original patch which carry the message. Moreover, this method is also shape-altering

because a boundary modulation was introduced to the sub-patches to increase

robustness. The reported test results show that this method can provide a shape-

preserving watermark with low robustness or shape-altering watermark with

increased robustness to translation, rotation and model transformation attacks.

Hu et al. (2008) proposed a digital map watermarking scheme for data authentication

purposes where parts of the map were reconstructed using Bézier curve segments as

the watermark carrier. To embed the arbitrary watermark bits robustly, they apply

spread spectrum technique that alters the coordinates of selected sample points on the

 125

Bézier B-spline curves. Test results by the authors show that their scheme is robust to

scaling, rotation, affine transformation and collusion attacks. However, to detect and

extract the mark from the curves the original unmarked Bézier curves are required.

4.2.1.3 Approaches for NURBS-type Data

In the field of 3D NURBS watermarking Ohbuchi et al. (1999, 2000) were again

amongst the first to develop an appropriate method for this type of data. Their

scheme focuses on providing data authentication, tamper-detection, IP protection and

other security related operations for geometric 3D CAD models. The approach

introduced is called the “rational-linear re-parameterisation” algorithm, where

random bit-watermark values are embedded by re-parameterisation of NURBS knots

and control points. The method preserves the exact geometric shape of NURBS

curves and surfaces, as well as the CAD data size. However, the watermark

embedded can easily be destroyed or removed by re-parameterisation and re-

approximation actions of the curves and surfaces. The original unmarked model is

required in the detections stage to extract the embedded watermark.

Oliver Benedens (2000a) also presented a scheme for embedding publicly readable

watermarks (blind detection) into 3D models consisting of NURBS surfaces. His

scheme hides affine invariant watermarks (in the form of a bit-stream) by displacing

vertices (i.e. control points of the curves) of NURBS surfaces. The algorithm uses

the volume of two tetrahedrons as an embedding feature, and is based on applying

mesh simplification processes. The scheme described by Benedens, which is mainly

designed for authentication purposes, enhances robustness with respect to affine

transformations and, in particular, vertex randomisation attacks.

 126

Lee et al. (2004) proposed a non-blind watermarking algorithm for 3D non-uniform

rational B-spline (NURBS) graphic data. Instead of directly embedding bit-data into

the parameters of NURBS, the scheme hides the watermark information into 2D

virtual images extracted from parameter sampling of 3D NURBS model (the pixels

of which represent the coordinates of surfaces for the given parameters) by using an

existing 2D watermarking algorithm for images. As a result, the proposed

watermarking approach can embed information into more places of the surface than

other conventional 3D watermarking algorithms, while preserving the data size of the

model. According to their experiments, this scheme is robust to attacks on knot

vectors such as control points modification, knot vector modification and surface

approximation.

4.2.2 Watermarking Techniques for 3D Models Represented as Solids

In the field of watermarking solid objects only few approaches have been reported.

These mainly focus on constructive solid geometry (CSG) models, which is

surprising given its rarity in commercial CAD systems.

For instance, Fornaro and Sanna (2000) proposed a method that is intended for

verification purposes and is based on digital signature techniques. Their scheme

computes the watermark message from selected attributes of the model (e.g.

topology, colours, textures, etc.) using a standard encryption operation (a hash

function) for encoding the information. Then the watermark-digest is added to the

CAD object’s CSG tree. Since this is a blind watermarking technique neither the

watermark information nor the original model are required at the verification stage.

However, a verification key is necessary to verify the signature and the author’s

certificate. The advantage of the method is that, because it does not alter the model’s

 127

structure or appearance, it is compatible with copyright protection techniques and

can be used several times to have a multiple watermark. Moreover, no pre-processing

of the model is required before this method can be applied, and all the attributes and

the structure of a model can be protected. However, type, shape and position of the

watermark have to be known in the detection stage, which makes this approach not

entirely a blind scheme. Furthermore, the watermark can be removed by a computer

programme, and without the watermark message the authentication is no longer

possible. Finally, neither the watermark nor the model can be modified or altered

without avoiding an inconsistency with the watermark itself since they are generated

from each other.

Another watermarking technique on 3D solid models was presented by Djaghloul

(2007). Similar to Fornaro and Sanna’s technique, this blind watermarking scheme

uses CSG modelled objects as carrier data. The whole watermarking and retrieval

process can be achieved in three major steps: in step one, empty bounded volumes

(four spheres) are created and united with the CSG tree (described as the ‘right leaf’)

which do not affect the original object’s appearance and will not be deformed by any

topological or set operators. Then the binary-watermark is placed into this newly

created bounded volume by replacing nominated spheres coordinate vectors by 1 and

0 using multiresolution techniques based on wavelets. In the watermark detection

process the CSG tree is searched for added branches and leaves and only the ‘right

leaf’ is checked for hidden watermarks. Since the location of the watermark is

obvious, no original model is needed for watermark extraction. However, everyone

with appropriate tooling, knowledge and skills would be able to find and remove the

“protective” feature by removing the concerned leaf. According to the author’s test

 128

results this approach is robust against rotation and transformation attacks and is not

affected by scaling operations. However, given these characteristics the method is

very fragile.

To the best of the author’s knowledge, no existing work dealing with digital

watermarking of solid 3D boundary representation (B-rep) models have been

reported in the literature.

4.2.3 Alternative 3D Watermarking Techniques

As already highlighted in section 3.4 there are different ways of representing the

three dimensional objects that could potentially act as watermark carriers. At the

same time, there are also some other ways for hiding watermark information. Beyond

the applied watermarking schemes described above, other alternative watermarking

methods and techniques for less common 3D model types have been reported. This

section presents some of the alternative schemes and techniques that have been

applied to embed watermark information into three dimensional data.

In 1998 Hartung et al. reported a non-blind watermarking method for embedding

information into MPEG-4 facial animation parameter (FAP) sequences by using a

spread-spectrum technique. This algorithm exploits the shape, texture, and motion

information from a 3D triangular B-spline human-head model whose facial

expressions are modelled according to the MPEG-4 standard. The arbitrary

watermark (in binary form) is embedded by displacing control points of the spline

surface of the model. The watermark can be extracted from a rendered movie

sequence of 2D images or from the watermarked parameters of the model by using

the watermarked animation parameters for head animation. To extract the watermark

 129

successfully, they apply a facial feature tracking system which generates FAP

sequences from video data. Their test results show that the embedded watermarks

survive compression/decompression attacks but cannot be extracted from the video

sequence without knowledge of the facial animation parameters.

Dugelay et al. (2002) described a non-blind watermarking framework for 3D objects

via texture information. Unlike other methods, which hide information in the

polygonal mesh structure with the help of some form of transform domain, they

embed and retrieve the arbitrary binary watermark data directly from the texture

image of a 3D model with the help of a common image watermarking algorithm. The

bit-watermarks are embedded by changing pixel point characteristics (e.g. change of

pixel colour). The watermark created by this algorithm is robust to transformation

attacks such as cropping, geometric attacks, rotation affine transformation, and low

level filtering, and can be used to confirm watermark presence.

Cotting et al. (2004) presented a non-blind technique for digital watermarking of

point-sampled geometry based on spectral analysis (but can also be applied to

triangle meshes or spline patches). This scheme is a more advanced extension of

Ohbuchi et al. (2001; 2002) work however, tuned for scanned objects in the form of

point clouds. In this scheme the watermark is directly embedded into the raw data

(point cloud) obtained from a 3D scanning. To achieve this, they apply a fast

hierarchical clustering algorithm that partitions the model into a set of patches. Then,

each patch is mapped onto the space of eigenfunctions of an approximate Laplacian

operator to obtain a decomposition of the patch surface into discrete frequency

bands. The bit-watermark is then embedded into the patch-point coordinates (i.e. one

bit for each x, y, and z) to minimise visual artefacts in the model geometry. The

 130

authors state that this procedure can also be applied to achieve hierarchical or

multiple marking. In order to extract the watermark successfully, the original and the

marked object have to be aligned and the patch-point differences computed. During

extraction, the watermarked model is re-sampled at optimal resolution using a

moving least-squares (MLS) projection. After extracting the watermark, the

corresponding bit stream is analysed using statistical methods based on correlation.

According to their test results a successful watermark extraction can be achieved as

long as one patch contains the necessary encoding. This watermarking scheme is

robust against numerous attacks including low-pass filtering, smoothing, re-

sampling, affine transformation, cropping, additive random noise, and combinations

of them. However, embedded watermark information in raw point clouds would be

lost in a rendering process that converts point cloud data into some sort of surface or

solid based data.

A different way to encode information into a 3D object is to fill the model with

carrier objects that carry the watermark data (so-called illustration watermark), as

presented by Sonnet and Lange (2005). Their technique comprises two main aspects:

first, carrier objects are generated according to the amount of data to be encoded; and

second, the carrier objects are placed inside cross-sections of a 3D polygonal mesh

model (see example in Figure 4.5). These carrier objects offer several possibilities to

carry the information in the form of binary codes. Amongst these possibilities are:

object transformation such as rotation and scaling (i.e. the watermark bit determines

the magnitude of rotation of scaling), the topology of the carrier object, and the

material’s colour (i.e. colour channel bits are replaced by watermark bits), which can

all be used for information encoding. The encoded data is visually imperceptible

 131

since the polygonal mesh of the original model remains unchanged, which encloses

the carrier objects. Since the carrier objects carry all the information necessary for

watermark detection and decoding this scheme can be described as a blind method.

Figure 4.5 Carrier objects for information hiding

(adapted from: Sonnet and Lange, 2005)

Depending on the complexity of the carrier objects and the available space inside the

model, several megabytes of data can be inserted. The watermarked 3D model is

robust against common geometric transformations such as translation, rotation and

scaling. File format conversions do not affect the embedded data as long as the

model’s overall structure is not altered or violated. However, model compression or

partial cutting of model components may destroy the embedded data. Also,

decreasing the accuracy of the model’s geometry (e.g. cutting decimal places of

vertex positions) has an effect on the embedded watermark. The method also

significantly increases the “size” of models making the presence of a watermark

obvious.

In 2006 Bennour and Dugelay proposed a unique non-blind method for

watermarking 3D objects. Unlike most ‘conventional’ 3D watermarking techniques

where both watermark insertion and extraction are performed on a 3D object (3D/3D

 132

approach), they developed an asymmetric 3D/2D watermarking procedure. In other

words, the bit-watermark embedding takes place on the 3D object contour, but the

watermark retrieval is regained from specific 2D views of the model. In the first step,

the contour of the 3D object is extracted and defined as the watermark carrier. Then,

the watermark is embedded into these contour vertex coordinates by applying an

extended 3D version of a Fourier transform descriptor. For a successful watermark

extraction a set of secret parameters (such as viewing angle or magnifying factor) are

used to create a specific 2D projection of the model, where the contour is created.

Then, a 2D Fourier descriptor is used to compare silhouette properties of the original

and watermarked contours. This method, which is basically used for authentication

purposes only, is robust against translation and rotation actions and scaling attacks.

However, it requires the modification of a 3D object’s shape.

4.2.4 Discussion

All watermarking systems are designed to achieve one goal, i.e. embedding a hidden,

robust watermark into 3D objects. These systems have to satisfy two conflicting

requirements; first, the watermark must be immune against intentional and

unintentional attacks; and second, the watermark should be perceptually

undetectable.

In the field of 3D digital watermarking, a variety of different watermarking methods

and schemes have been proposed. The majority, however, focuses on three

dimensional polygonal mesh models (~ 57%). Only a few techniques focus on other

model and surfaces representation types like Bézier, NURBS or CSG data (see Table

4.1). There are equally few researchers who watermark 3D objects (represented in

less common data structures) by using different techniques to hide watermark

 133

information. No one has attempted to watermark solid three dimensional B-rep CAD

data.

Most of the techniques described above can be considered shape-altering methods

(e.g. spatial, wavelet, frequency, Fourier, or geometrical transformations, etc.), since

they displace control point vertices or alter an object’s geometry and/or topology.

The reason why so many use the transform domain is that this domain offers various

advantages. For instance, by modifying the spatial frequency band, where human

beings are not very sensitive, a watermark embedded in an object can be made less

visible. Or, by targeting the coarse shape feature, the embedded watermarks are less

susceptible to low-pass filtering or additive random noise. In this case, watermarks

become harder to remove since coarse shape features are often essential to the target

content data (Ohbuchi et al., 2002).

About 90% of the watermarks embedded with the reviewed techniques and schemes

are robust in nature. In other words, they are intended to remain ‘anchored’ in the

host data even if someone tries to destroy them, or if the carrier data has been

modified. However, most watermarks can withstand only certain types of attacks.

Usually, topology-based watermarks are not robust to affine transformations, while

vertex displacement marks are not robust to mesh simplification. Robust watermarks

are those based on geometry, since topological modifications are destroyed by

elementary simplification or re-meshing operations. Despite the varying methods and

techniques, re-meshing is still the “worst” type of attack for polygonal mesh data

since it changes the whole mesh constellation of an object and with it the embedded

data. The remaining methods (around 10%) have fragile characteristics, which serve

to prove data authenticity, even when someone changes or violates the protected

 134

data. In this sense, its main purpose is to break at the slightest data modification or

attack.

In 87% of the reviewed approaches, as listed in Table 4.1, the watermark has a

binary format when it is embedded into the carrier object. In the remaining cases the

watermark is represented by random numbers (10%) or by ASCII code (3%). For the

embedding of the watermark information, 96 per cent of all approaches use some sort

of vertex/control-point/pixel modification/displacement techniques to anchor the

values. However, some approaches hide the watermark message into a newly created

CSG tree, which is added to the CSG model; other methods use binary watermark

message to create a triangle strip on the 3D CAD model (i.e. the message content

determines the course/shape of the strip). In most cases (80%) the watermark

indormation is used to confirm the presence of a watermark, while only 17% of the

presented techniques are aimed to “transport” a text message. In one case only, the

watermark message is used for content verification (i.e. the mark carries information

about the characteristics of the model).

To recover the embedded information 53% of the presented techniques do not need a

hint about how and where to find the watermarks and/or how to encrypt the

information. For the remaining 47% the hidden watermarks cannot be recovered or

decoded without the support of the original cover file.

Existing watermarking techniques, mostly focusing on 3D polygonal mesh shapes,

are not suitable for the precise CAD data used in most mechanical design systems.

There are two reasons for this: First, current mechanical CAD systems use

parametric curves and surfaces such as Bézier, non-uniform rational B-spline

(NURBS) curves and surfaces, or boundary representation (B-rep) as standard for

 135

precise shape definition. Thus, watermarking algorithms that target polygonal

meshes cannot be applied or extended to common solid mechanical CAD data.

Second, most polygonal mesh watermarking algorithms for 3D objects alter shape

geometry and/or topology for watermark insertion by modifying either model vertex

coordinates, model vertex topology (i.e. connectivity), or both. However, precise

CAD models rarely tolerate any changes in geometry or topology. Vertices have to

lie on edges which, in turn, must be located on surfaces. Consequently, changing the

location of any element impacts the integrity of the entire data structure. Therefore,

watermarking algorithms that exactly preserve shape and geometry are required for

most mechanical CAD data application systems (Ohbuchi and Masuda, 2000). A

summary of the watermarking systems discussed in section 4.2 is presented in Table

4.1.

 136

Table 4.1 Digital watermarking techniques and methods for three dimensional data

Author
CAD data

Format
Operating

domain
Type of

modification
Characteristic
of watermark

Format of
watermark

Type of
detection

Purpose of
watermarking

Alface and
Macq (2005)

polygonal
mesh

spectral
displacement of

vertices
robust arbitrary bit value blind

confirm presence of
watermark

Aspert et al.
(2002)

polygonal
mesh

transform
displacement of

vertices
robust

bytes (created by
hash function)

non-blind carry text message

Bendens et al.
(1999a, 1999b,
1999c, 2006)

polygonal
mesh

transform
displacement of

vertices
robust arbitrary bit value blind

confirm presence of
watermark

Benedens
(2000a)

NURBS transform
displacement of

vertices
robust bit-string blind

confirm presence of
watermark

Bennour and
Dugelay (2006)

2D/3D
contour

transform
modification of

vertex coordinates
robust arbitrary bit value non-blind

confirm presence of
watermark

Bors (2006)
polygonal

mesh
transform

geometrical
perturbation of vertex

location
robust arbitrary bit value blind

confirm presence of
watermark

Chadwick et al.
(2003)

Bézier surface transform
control point
modifications

robust arbitrary bit value non-blind
confirm presence of

watermark
Chou and
Tseng (2006)

polygonal
mesh

transform
relocate/modify

vertex coordinates
fragile arbitrary bit value blind

confirm presence of
watermark

Cotting et al.
(2004)

point cloud frequency
patch-point
coordinate

modification
robust arbitrary bit value non-blind

confirm presence of
watermark

Daras et al.
(2004)

polygonal
mesh

transform
geometrical

perturbation of vertex
location

robust arbitrary bit value blind
confirm presence of

watermark

Denis et al.
(2005)

polygonal
mesh

transform
modulation of object

coordinates
robust arbitrary bit value non-blind

confirm presence of
watermark

 137

Author
CAD data

Format
Operating

domain
Type of

modification
Characteristic
of watermark

Format of
watermark

Type of
detection

Purpose of
watermarking

Djaghloul
(2007)

constructive
solid

geometry

data
extension

coordinate vector
replacement

robust arbitrary bit value blind
confirm presence of

watermark

Dugelay et al.
(2002)

image texture transform
pixel coordinate

modification
fragile arbitrary bit value non-blind

confirm presence of
watermark

Farnaro and
Sanna (2000)

constrictive
solid

geometry

data
extension

added to CSG tree fragile
bytes (created by

hash function)
blind content verification

Harte and Bors
(2002a, 2002b)

polygonal
mesh

transform
displacement of

vetices
robust arbitrary bit value blind

confirm presence of
watermark

Hartung et al.
(1998)

facial
animation
parameter

spread-
spectrum

displacement of
control points

robust arbitrary binary data non-blind
confirm presence of

watermark

Hu et al. (2008) Bézier curves
Spread-

spectrum
control point
modifications

robust arbitrary bit value non-blind
confirm presence of

watermark

Kanai et al.
(1998)

polygonal
mesh

wavelet
transform

wavelet vector
coefficient

modification
robust arbitrary bit value non-blind

confirm presence of
watermark

Lee (2004) NURBS transform
control point
modification

robust arbitrary bit value non-blind
confirm presence of

watermark
Maret and
Ebrahimi
(2004)

polygonal
mesh

transform
vertex position
modification

robust
text converted to bit

values
blind carry text message

Murotani and
Sugihara (2005)

polygonal
mesh

transform
vertex position
modification

robust arbitrary bit value blind
confirm presence of

watermark

Nagahashi et al.
(2004)

Bézier
polynomial

patches
transform patch replacement robust ASCII code non-blind carry text message

 138

Author
CAD data

Format
Operating

domain
Type of

modification
Characteristic
of watermark

Format of
watermark

Type of
detection

Purpose of
watermarking

Ohbuchi et al.
(1997a, 1997b,
1998a, 1998b,
2001)

polygonal
mesh

transform
vertex displacement,
triangle-strip creation

robust arbitrary bit values blind
confirm presence of

watermark, carry
text message

Ohbuchi et al.
(1999, 2000)

NURBS transform
reparameterisation of

knot vectors
robust arbitrary bit values non-blind

confirm presence of
watermark

Praun et al.
(1999)

polygonal
mesh

transform
displacement of

vertices
robust

cryptographic
random number
created by hash

function

non-blind carry text message

Uccheddu et al.
(2004)

polygonal
mesh

transform
displacement of

vertices
robust numerical values blind

confirm presence of
watermark

Sonnet and
Lange (2005)

carrier objects transform
vertex displacement

of carrier objects
robust arbitrary bit values blind carry text message

Yin et al.
(2001)

polygonal
mesh

transform
least significant bit
(LSB) replacement

robust arbitrary bit values non-blind
confirm presence of

watermark
Wu and Cheung
(2005a, 2005b)

polygonal
mesh

spatial
vertex coordinate

modification
fragile arbitrary bit values blind

confirm presence of
watermark

Zafeiriou et al.
(2005)

polygonal
mesh

transform
vertex coordinate

modification
robust

pseudorandom
number

blind
confirm presence of

watermark

 139

4.2.5 Gap in the Literature

As highlighted above, there has been only limited prior research on watermarking

three-dimensional solid CAD data, and was mainly restricted to modification of

Bézier, NURBS and mesh surfaces. Also, since most watermarking schemes alter

geometry and/or topology of the intended CAD file, a technique is required that does

not change the object’s shape (a crucial requirement for many CAD applications, e.g.

assembly simulation, FEM analysis, etc.), and is capable to carry text message

information for various purposes, and not only for data authentication.

In addition to designing a digital watermarking method suitable for solid B-rep CAD

data, another important issue needs to be addressed: the CAD specific evaluation and

benchmarking of watermarked data. This requirement includes evaluation for

robustness and subjective and/or quantitative evaluation of the distortion introduced

to the watermarked data. Currently, it is difficult to compare the reported 3D

watermarking techniques with each other for the following reasons:

• No standard shape representation (polygonal meshes, NURBS patches, Voxels,

B-rep, etc.) for benchmarking 3D watermarks.

• No standard 3D CAD models for benchmarking.

• No standard evaluation and testing procedures.

• Varying amount and nature of information to be embedded.

• No standard sets of attacks (both intentional and unintentional) on CAD data.

• No effective shape distortion measure, both geometric and human-perception

based.

 140

It is clear that for fair benchmarking and performance evaluation, watermarking

methods need to be tested on a common basis.

To fill these gaps this thesis will introduce a potential watermarking scheme for solid

three-dimensional B-rep CAD data that enables text message embedding end

retrieval. Unlike existing techniques it does not change the CAD model’s shape or

increase the file size. In addition, a CAD relevant testing procedures including

appropriate solid 3D CAD objects will be developed.

 141

Chapter 5

 142

5 Methodology

This chapter presents the methodology adopted in this research study. The chapter

begins with outlining and discussing the general philosophical and methodological

approach of the study. Then an overview of the results of the Knowledge &

Information Management (KIM) project survey is presented. This is followed by the

requirements for a 3D watermarking system and the process of the PO-watermarking

scheme is discussed.

5.1 Research Approach

A research strategy may be thought of as providing the overall direction of the

research including the process by which the research is conducted. At a strategic

level the research process is defined in broad terms that take into account the general

philosophical approach adopted by the researcher. The philosophical approach

describes how the researcher views the world and it thus influences the chosen

research methodology.

5.1.1 Research Philosophy

Two main research philosophies can be distinguished that view the world in different

ways: positivism and phenomenology. The phenomenologic paradigm views the

world as socially constructed and subjective. Therefore, phenomenology stresses the

subjective aspects of phenomena by focusing on the meaning, rather than the

measurement, of them (Gill and Johnson, 2002). The phenomenological research

paradigm is sometimes described as the descriptive/interpretative approach and

implies that every event studied is a unique incident in its own right. In this school of

 143

thought there is nothing other than phenomena and the essence of a phenomenon is

understood intuitively (Easterby-Smith and Thorpe, 1991).

The positivistic approach, on the other hand, seeks the facts or causes of phenomena,

with little regard to the subjective state. Thus, logical reasoning is applied to the

research so that precision, objectivity and rigour replace hunches, experience and

intuitions as the means of investigating research problems. According to positivists,

laws provide the basis of explanation, permit the anticipation of phenomena, predict

their occurrence and therefore allow them to be controlled. Explanation consists of

establishing causal relationships between the variables by establishing causal laws

and linking them to a deductive or integrated theory (Collis and Hussey, 2003).

The present study clearly falls under the positivistic paradigm. As discussed in

Chapter 1, the aim of this study is to develop a digital watermarking algorithm for

three dimensional CAD data and appropriate testing procedures. These aims require

a highly scientific and objective process based on facts and logical reasoning.

5.1.2 Research Process

This study follows the process suggested by Duffy and O’Donnell (1998). Figure 5.1

provides a schematic overview of the adopted process.

 144

Figure 5.1 Research process adopted for this study

The research started with the definition of the research problem based on a literature

analysis and the industry requirements identified in a survey conducted for the KIM

project. A need for a watermarking scheme for high value 3D B-rep CAD data was

identified that enables the encoding and embedding of text information without

affecting the overall shape and the geometrical and topological structure of the 3D

model.

Then the proposed solution was implemented, i.e. the PO-watermarking scheme

including the text message encoding algorithm and the tweaking algorithm were

developed.

Afterwards the proposed solution was evaluated against the set objectives of the

research study. The most appropriate way to evaluate the PO-watermarking scheme’s

capalibities was to apply an experimental method, since it can be used in a controlled

manner (e.g. assignment and manipulation of specific variables) (Wood, 1974). As

the PO watermark has to interact with commercial systems whose internal algorithms

 145

are not public, the only way to conclusively determine how the watermark behaves is

to conduct experiments. Thus, this method gave the opportunity to investigate the

PO-watermarking behaviour under real-world conditions.

In the final phase of the research methodology the results of the research were

documented, primarily in this thesis but also in some published papers.

5.2 Knowledge & Information Management Project Survey

In April 2007 a survey was carried out as part of the KIM project to investigate

industrial needs, requirements and expectations towards watermarking of three

dimensional CAD data. All industrial partners (large UK based engineering

companies) of the Grand Challenge project were surveyed (N = 10). Three completed

questionnaires were received resulting in a response rate of 33 percent. The

questionnaire and a summary of the responses can be found in Appendix D.

According to responses watermarking is required for identifying data source and

owner, copyright notice, restrict and regulate access, monitor data distribution, and

carry project or product related information. In order to meet their needs the

embedded watermark needs to withstand various translation procedures (e.g. into

neutral file formats), carry text information, should visually inform users about

product status (e.g. for internal use only), withstand geometrical data modifications,

and should not interfere with the CAD model capabilities. The survey results were

used to inform the requirements of a CAD watermarking system described in the

next section and the choice of attack types are discussed in section 6.2.1.

 146

5.3 Requirements and Mechanisms for 3D Watermarking Systems

The requirements for a digital watermark and a digital watermarking system are

different in nature. The basic requirements that watermarks need to fulfil are

transparency, robustness to attacks, and no influence on, or interference with, the

CAD model’s functionality. The demands and requirements on a digital

watermarking system however, are different:

• A Watermarking system should be able to encode and embed a set of information

into the carrier model, and the detector should be able to retrieve and decode the

embedded data (i.e. not just report whether or not a watermark is present).

• The encoding and embedding process must not change the shape (i.e. topology,

or geometry) of the CAD model. Any changes to a model’s shape would affect

the results of any CAD data simulation and analysis (e.g. FEM or stress analysis).

• The carrier CAD data file should not be increased significantly in size when

adding the watermark information because this could reveal the presence of a

watermark.

• The watermark embedding/anchoring mechanism should create a robust

connection between the watermark signal and the carrier object, so that the

watermark does not get lost when the carrier data is modified, attacked or

transformed.

• The watermarking system should be able to embed as much information as

possible (companies may, for example, wish to add manufacturing instructions or

archiving information instead of ‘only’ the company’s name or logo for

verification purposes).

 147

• Last but not least, the watermark should be evenly distributed throughout the

CAD model. This ensures that the watermark message will not be removed or

destroyed by modifying a single or a specific part of the CAD object.

Considering the constraints and necessities for boundary representation data

(presented in Section 3.3.2) and the requirements for watermarking systems (as listed

above), which ‘watermarking’ method or technique might work for B-rep CAD data?

The following concepts were identified as possible mechanisms:

1. Explicit attribute addition: it would be an easy task to associate additional data

(i.e. attributes) with the entities of a model’s data structure. With closed-

proprietary formats this information would be hard to see or remove within a

vendor’s system. However, these attributes would be lost during system or data

translation (e.g. neutral formats), and consequently, such a system would be

limited in its scope.

2. Local operations to modify geometry: there is a class of model editing operations

known as ‘local ops’ that facilitate small, or local, changes in geometry (e.g.

offsetting, surface substitution, etc.) that could be used to introduce a geometric

watermark by modifying the object’s geometry. However, such an approach

would not meet the ‘no change in shape’ requirement.

3. Micro imprinting: a Boolean operation could be used to ‘stamp’ a pattern onto

the model’s faces (i.e. create inner edge loops). Such a pattern could be so small

as to be invisible to the naked eye and would not cause any change to the overall

shape of the model. However, it could be easily removed by repairing or healing

 148

operations that detect the redundant nature of the faces and edges on the model’s

surface.

4. Non-manifold
7
 entity addition (flap faces, internal shells, and wire edges): visible

features of an object (e.g. an edge) could be shared and used to create another

object inside the actual CAD model to carry the watermark information.

Although this approach is potentially resistant to data healing functions (healing

takes place on the outer surface of an object) and would not change the external

shape, it could still create problems for computer numerical control (CNC) and

rapid prototyping (RP) systems that derive their tool paths directly from the solid

data structure. Furthermore, non-manifold geometry can be easily removed by

standard modelling utilities (e.g. removing the concerned egde which both

models are sharing).

5. Vertex coordinate modifications: using geometrical or topological modification

tools to displace or modify vertex coordinates (analogous to many polygonal

mesh watermarking schemes) would change a surface, because the modified

points would be “outside” of the specified surface. Even if the face is

recalculated to lie on the modified vertex, this alteration would breach the

requirement not to change the object’s shape.

6. Adding new object branches/features: additional ‘empty’ volume elements could

be added as a watermark carrier (similar to CSG watermarking) and would

potentially offer a large watermark storage space. However, they can be easily

7 Manifold is a geometric topology term that means: to allow disjoint lumps to exist in a single logical
body, while non-manifold means: all disjoint lumps must be their own logical body. In other words,
two blocks use one and the same edge or vertex where each block is a ‘disjoint lump’ yet there is one
single body. The shared edge or vertex between the blocks is the actual non-manifold condition.

 149

identified and erased, or copied onto other CAD data to obtain a ‘marked’

version since the watermark information is not directly ‘embedded’ into CAD

model data structure. Also, they would increase a CAD model’s file size

considerably, which again might hint that the carrier CAD data is watermarked.

7. Watermark carrier objects: similar to non-manifold entity addition approach,

filling the 3D object with carrier objects (effectively creating topological separate

“voids” within the body) has the advantage that a huge amount of information

can be hidden while the overall shape of the CAD model does not change. Also,

some modification functions like healing or translation would not have any effect

since the watermark information is ‘inside’ the CAD model. However, editing the

model via Boolean operations would erase the embedded watermark.

Furthermore, the CAD file size would also increase considerably.

8. Parametric orientation: The characteristics of B-rep data (as described in Section

3.3.2) suggest that a simple but effective way of watermark embedding can be

achieved by reorientation (or tweaking) of the parametric representation

underlying a B-rep face. In other words, all faces of a B-rep model such as plane,

cylinder, sphere and others have a parametric representation that allows them to

be traversed in terms of (u, v) coordinates regardless of the face’s overall shape

(e.g. plane, cylinder, cone, sphere, torus, etc.). The orientation of the u-v

parameterisation is largely determined by the operations used to create the model

(i.e. the orientation of bodies united and subtracted to define the shape).

When comparing the various listed possibilities for embedding text messages into

CAD models, one can see that the Parametric Orientation (or PO) mechanism offers

the best prospect of meeting the various requirements (see also Table 5.1). For

 150

instance, the parametric orientation method would make only small invisible changes

to the model’s B-rep faces by re-orientating the underlying geometry, but without

changing the overall shape of the CAD data. Also, since the created modifications

are ‘part’ of the model, the watermark message is robustly anchored within the

model so that it would withstand various transformation and geometrical

modification attacks. Finally, because the PO-approach would only re-orientate

existing faces’ underlying geometry, no additional data is actually added, which

again preserves the CAD object’s file size.

 151

Table 5.1 Comparison of potential B-rep watermark embedding mechanisms

requirements

mechanisms
Invisible Robust

Withstand

data trans-
formation

Withstand

geometrical
modification

No change

in shape

Data

healing

No change

of file size

Size of the

watermark

Explicit attribute addition � � � ? ? ? � ?
Local operation to modify

geometry ? ? ? ? � ? � �
Micro imprinting � ? ? ? � � � �
Non-manifold entity

addition � ? ? � � � � �
Vertex coordinate

modifications � ? ? ? � ? ? ?
Adding new

branches/features � � ? ? ? ? � �
Watermark carrier

objects � � � � � � � �
Parametric reorientation � � � � � � � �
� = Yes; � = No; ? = Uncertain

 152

However, to verify and quantify this assessment the following questions need to be

answered:

1. Which face types on a B-rep model and what parts of a face could be used to host

the watermark information?

2. How does the size of the B-rep model affect the amount of information that can

be embedded?

3. How can a watermark be inserted without breaking (or changing) the CAD

model’s shape?

4. How much can a parametric surface be rotated without affecting the model’s size

or functionality?

5. Should (or could) the watermark be inserted into only one part or certain face

types, or distributed onto several parts of the object within different faces types?

6. What is the best strategy to embed text/watermark information: a short message

(e.g. company name or logo) which is embedded multiple times to achieve robust

characteristics, or one single but long message (e.g. authentication information)

that is embedded only once to achieve fragile characteristics?

7. Which method might be the best to analyse and test the robustness of a CAD

related B-rep watermark?

8. Can the embedded watermark survive common CAD related actions,

modifications and attacks?

9. How can the proposed parametric reorientation method be compared to other

relevant 3D-CAD watermarking approaches?

 153

The following sections will describe the proposed PO-watermarking scheme for

three dimensional B-rep CAD data and also the assessment methodologies used to

answer the above questions.

5.4 Method Overview of the PO-watermarking Scheme

To find answers to the questions above a prototype Parametric Orientation

watermarking (or ‘PO-watermarking’) system was designed and implemented. For

the purposes of the investigation the ‘easily’ tweakable planar, closed conical,

toroidal and spherical surfaces were modified and tested. Those with complex

boundaries (i.e. geometry that could create chiralities in the solution) were excluded

at this stage, but could be considered in future embedding and testing procedures (see

Section 8.3).

The whole PO-watermarking scheme can be divided into two components: the

embedding and retrieval. Each of these two components were designed and

implemented to modify and interrogate the underlying parametric surface of B-rep

faces on CAD models for both purposes: first, to enable information embedding into

valuable CAD data without changing its shape; and second, to detect and retrieve the

watermark message within the marked data with the input of the original unmarked

model (i.e. non-blind detection). The applied functions and sub-programmes for the

PO-watermarking scheme were designed and developed in Microsoft Visual C++ 6.0

using the 16th version of the ACIS 3DT kernel modeller (the basis for numerous

mechanical CAD systems). The test parts were created and modified in Autodesk

Inventor Professional Version 11.

 154

The corresponding C++ codes for the embedding process are listed in Appendix A,

the codes for the watermark retrieval process in Appendix B.

5.4.1 Watermark Embedding

The watermark embedding section of the PO-watermarking scheme consists of three

sub-tasks. The first task deals with the preparation of the used/loaded carrier B-rep

CAD model, while task two creates the information to be embedded. The third task

combines the results of the first two sub-tasks and applies a tweaking function to

embed the encoded information into the host CAD object. An overview of the PO-

watermark embedding process is shown in the flowchart below (Figure 5.1), while

each of the sub-tasks is described in detail in the following sections.

 155

Figure 5.2 Flow chart of the watermark embedding process

5.4.1.1 Task One: Preparation of Carrier CAD Data

The aim of the first task is to prepare the carrier B-rep CAD model for watermark

embedding. These preparations include the loading of the intended host data as .sat

file format, elimination of any defects or faults inside the carrier CAD model,

 156

creating a face list of all available faces of the model, and finally arranging all faces

ready for the embedding process. The objectives of each sub-task are described as

follows:

Load CAD model

There are many commercial B-rep formats available; however, they are all very

similar (e.g. similar data structures). The choice to use ACIS .sat format was made

because of significant previous experience of its use in the department, and secondly

because it is used as the basis of many of today's commercial CAD systems. Also,

comparisons with other kernel modeller suggests that ACIS is amongst the most

precise8 for B-rep (Ranger, 2009). Since the .sat format is also a widely used CAD

format, other mechanical design systems should be capable of reading and creating

them. Furthermore, the system comes with numerous tools to support the

development and debugging of programmes.

Heal CAD data

Before the text-watermark can be embedded into the B-rep host data, the CAD model

needs to be ‘healed’ to ensure that any experiments performed are (as much as

possible) unaffected by the ‘noise’ of errors in the CAD data.

Problems with CAD data, such as gaps between entities and the absence of

connectivity information (topology), often appear after the data has been transformed

or exchanged (Jackson and Mabbott, 1999). According to Gerbino (2003; p. 1) “The

most critical problems in data exchange are the different internal mathematical

representation schemes and the internal accuracy of the geometric definitions in the

8 Tolerance requirements of different CAD modellers: ACIS: 1.0 E-6 mm; Parasolid: 1.0 E-5 mm,
CATIA: 0.1 mm.

 157

modelling kernel of various CAD systems”. In particular, these problems arise from

the accuracy and the convergence criteria used when performing intersection

calculations with curves and surfaces (Corney and Lim, 2001). All this can occur

either within the original design system or during the pre- and post-processing

actions of the CAD data. According to Smith (2004) other inaccuracies might also

appear due to several factors such as:

• Inadequate geometric modelling in the original CAD environment.

• Geometrical and topological model inconsistencies.

• When geometries are to be converted into other representation forms (e.g. into

neutral file formats like IGES, STEP or STL).

• Different implementations of algorithms used during the translation.

• CAD systems using different standards of internal accuracy.

Mechanical CAD systems often use different tolerances on an entity-by-entity basis

to provide robustness for model operations or data translation. For data transmission

or translation, one or more of the CAD model’s components such as surface texture,

colour, but mostly tolerances have been altered. These changed tolerances might

produce gaps and/or overlaps in the geometry and topology of CAD models (as

shown in Figure 5.2), which can cause representation problems when viewing the

data in different CAD systems. Also, it can produce distorted results in CAD data

simulation or analysis systems.

 158

Figure 5.3 Problems within CAD data: gap (left) and overlap (right)

To overcome inaccuracy and tolerance issues, a ‘healing’ function attempts to

recalculate and recover close faulty surfaces and surface-to-surface intersections.

Geometric modelling kernels such as ACIS, Granite and Parasolid offer common

methods for evaluating the validity of B-rep models, and can be used to recalculate

and rebuild the boundaries of a CAD model (CADuser, 2000). This process of

recalculation is also called healing or CAD data repair.

The applied ACIS healing function for the PO-watermarking scheme, called HEAL,

contains API functions that can be used to ‘fix’ models imported from other

modelling systems into ACIS in order to make them usable (i.e. accurate) and ‘error

free’ in ACIS. However, HEAL is not a translator from another modelling system

into ACIS. The model must already exist in ACIS format (for example, in a .sat file)

before healing is carried out. The features of the HEAL function can be summarised

as:

• Provide user-controllable tolerances for efficient healing (e.g. define the distance

considered to be a gap).

• Simplify geometry by converting spline data into analytic data wherever possible

(e.g. a flat B-spline to a planar face).

 159

• Stitch faces together in the absence of connectivity (topology) information.

• Provide functionality to ‘tighten’ gaps (inaccuracies) in the model to the desired

tolerance requirements.

• Support tightening of ‘smooth’ analytic or spline edges.

• Support edges that could not be tightened after being converted into tolerant

edges.

The healing process in ACIS can be considered as a series of stages and tasks that

progressively improves and adjusts the consistency of a model’s geometry and

topology. The different stages/tasks can be described as follows:

1. Initialisation: The input model is analysed and attributes containing tolerance

values of the various healing processes added to the model.

2. Pre-processing: Initial clean-up by removal of duplicate VERTICEs, zero length

EDGEs and zero area FACEs.

3. Geometry Simplification: Conversion of unnecessary spline surfaces into simple

analytic ones (i.e. plane, cone, sphere, etc.) where possible.

4. Stitching: Pairing of adjacent EDGEs and VERTICEs to create topology (i.e.

FACEs which share bounding EDGEs).

5. Geometry Repair: Adjusts ENTITIES so that geometry and topology (possibly

also changed) are consistent. At the end of this phase every:

• VERTEX lies on the underlying curve of the EDGE it bounds.

• EDGE lies on two adjoining FACEs.

• Parametric curves lies on its corresponding FACE.

• Pair of EDGEs, if they meet at all, do so at VERTICEs.

• Pair of FACEs, if they meet at all, do so in EDGEs and/or VERTICEs.

 160

6. Postprocessing: Check geometry for consistent orientation and remove redundant

FACEs and VERTICEs.

7. Termination: Removal of Healing component attributes.

The healed and repaired geometry (recalculated from existing intersections) can be

used to update the actual B-rep data structure and produce an object that is

topologically and geometrically identical to the original CAD model, but with a

much higher accuracy.

The HEAL function in ACIS can handle most of the analytic cases of edge/vertex

intersections, sharp spline intersections, tangent spline intersections (for instance

when the edge curve is an isoparametric boundary line for both the spline surfaces),

and cases in which the edge curve is along a non-isoparametric line for any of the

adjoining spline surface. However, it is not able to cure perturbations between

surfaces that would change the topology of the model, complex constraints involving

noncylindrical cones, and tangent spline intersections that intersect along non-

isoparametric lines (ACIS, 2009).

Sorting of faces for embedding

After loading and healing of the intended CAD model, a list of faces (i.e. entities) is

created and a sorting function selects the nominated face types (i.e. planar, closed

cylinder, sphere and torus) for PO-watermarking.

As the primary objective of this thesis is to investigate the capabilities and robustness

of the PO-watermarking approach, an ACIS internal ordering function selects and

orders the nominated faces being used for watermarking. The ordering process is

carried out by an API function called api_get_faces(block, faceList) which is

 161

implemented in the C++ programmes (see appendix A and appendix B). This

function sorts faces according to a predefined order and repeats the same ordering

process for watermark embedding and extraction. This ensures that the letters of the

embedded watermark message are recovered in the same order as they were

embedded to recreate and rebuild the full message.

This sorting function is based on the geometric modelling kernel of ACIS, therefore

it only leads to accurate results within this modeller. However, to make it

independent from the modeller type, a new sorting function could be introduced. To

achieve this, the face list should be ordered against a number of different geometric

and topological parameters. These include type, area, number of edges, orientation,

and number of inner loops. Should two or more faces rank equally in the order list (in

the case of a symmetrical object), the same watermark is applied to all of them.

The current prototype PO-watermarking scheme only supports the tweaking of the

four face types mentioned above, but might be extended to consider other faces like

spline or open conical. To enable this extension, further research is required to

establish whether their underlying parametric surfaces can be modified to

accommodate the watermark message (i.e. the tweaking parameter) without changing

their shapes.

5.4.1.2 Task Two: Text Message Encoding

Having completed the loading, healing and ordering of faces to host the watermark

information, the next step is to determine the datum (i.e. value) for surface

modifications. In other words, the content of the watermark information will

determine the degrees the underlying parametric representations of a B-rep faces are

reoriented/modified. In the following section a process is described that transforms

 162

the characters of a text message into decimal values, which are mapped to

reorientation values.

There are several coding standards (e.g. ASCII, decimal, octal, hexadecimal, binary,

etc.) that can be used to interchange text information into other character forms or

formats for computing purposes. However, since the data must be represented as

numbers and within the PO-watermarking scheme text information is going to be

processed, an ASCII to decimal converter is a convenient way of creating the needed

reorientation parameters. Using an ASCII to decimal converter also has the

advantage that characters from both text and ASCII have a one to one

correspondence (i.e. they do not need to be converted), and can be used directly for

B-rep surfaces reorientation.

The decimal standard defines printable characters, numerical values, letters,

punctuation marks, space between words and miscellaneous symbols using numbers

between 0 and 255 (e.g. the number 101 is defined to be the lowercase letter ‘e’ in

the English alphabet, and 035 equals #). In other words, a triple-digit is capable to

encode a single letter or character of the English alphabet. Because the PO-

watermarking approach operates/works with rotation values between 0 and 360

degree (or to be more precise 0 and 2π), only number values between 0 and 360 are

appropriate. This works very well with ASCII because the text character values fall

between 32 and 126 and are therefore well within the 0 to 360 degree range.

The text-rotation value transformation process for the PO-watermarking scheme can

be achieved in the following way:

1. Take a given word and fragment it into letters/characters.

 163

2. Convert the characters one by one into three digit decimal values (e.g. 089 for Y

or 117 for u).

3. Finally, convert decimal values into radians with six decimal places accuracy for

parametric surface reorientation. Investigations by the author have suggested that

reorientation values with up to six decimal places can be robustly applied (no

rounding influence). Radians are required, because ACIS, various api functions

and some C++ related programmes operate only with radian values.

The principles of the text conversion process are also shown in Figure 5.3 which

visualises the conversion process based on the word ‘of’. In this case the values of

111 or 1.937315° (rad) for the letter ‘o’ and 102 or 1.780235° (rad) for the letter ‘f’

are used to re-orientate two parametric surfaces on a B-rep model. In other words,

two faces of a model hold the embedded message value of the word ‘of’.

Figure 5.4 Creation of reorientation/tweaking parameter for two faces

The described process is also executed within the PO-watermarking scheme, where

the watermark message is converted into tweaking parameters. Figure 5.4 shows an

example where the word “Strathclyde” is converted letter by letter first into ASCII

code and then into radian to create the required rotation values.

 164

Figure 5.5 Tweaking parameter creation process within the PO-watermarking scheme
based on the word “Strathclyde“

5.4.1.3 Task Three: Tweaking or Embedding Process

Despite the complexity of the B-rep data structure many operators like Booleans,

blending, warping, tweaking or healing exist which can modify a model’s faces

while maintaining the integrity of the data structure at the same time. The proposed

PO-watermarking scheme is based on one of these operators termed tweak which

modifies a face’s underlying parametric orientation (i.e. its geometry) and then

automatically updates its topology (i.e. adjacency relationships) to accommodate the

new surface. Figure 5.5 illustrates the basic principles of the tweaking process where

an object’s face (a) has been modified (i.e. rotated) (b, c), and re-inserted (d).

 165

Figure 5.6 Example of surface tweaking

(source: Corney and Lim, 2001, p. 282)

The key observation underlying the tweaking process is that if a face (a) has been

slightly changed (i.e. transformed) in some way (b), the edges which bound it can be

recalculated by (Corney and Lim, 2001):

1. Intersecting the new (i.e. modified) surface with the surface of each adjacent face

(c).

2. And each new curve next to its neighbours will determine the bounding vertices

of the updated edges (d).

So it is essential when a new face is inserted, or an existing face is modified, that the

tweaking process automatically intersects with all the adjacent faces and so

recalculates the geometry of the bounding edge’s curves to eliminate gaps or

overlaps. This again will guarantee that, despite modifications on a face, the object’s

overall shape remains unchanged.

In this sense the tweaking operator not only offers the opportunity to modify the

orientation of the underlying parametric surface of a face, but can also be used to

hide a watermark message. To be more precise, faces with geometrical definitions

such as plane, closed cylinder, sphere and torus can be modified, for instance, to

 166

change the orientation of their defining surfaces but without changing their overall

‘shapes’.

Figure 5.6 illustrates the tweaking process of a solid object. It shows a rectangular

component before (left) and after (right) its planar faces were tweaked (i.e. rotated

anticlockwise) around their face normal vectors.

Figure 5.7 Iso-parameter lines showing surface orientations before (left) and after (right)
tweaking

In this way all planar faces receive a new orientation (all together carrying the word

“Strathclyde” as watermark message) for their parametric surfaces but without

changing the face’s rectangular shapes. To make the orientation before and after

tweaking visible the u and v axis on one planar face are highlighted with black

arrows. The reorientation value of the first face equals 1.448623° rad (when

converted back into decimal value equals 83° degree) and represents the letter ‘S’ of

the embedded message ‘Strathclyde’ (see text message conversion into rotation

values in section 5.2.1.2). However, it is important to note that the amount of each

orientation is relative, since each tweaking parameter relates to each individual

surface’s original orientation and coordinate system.

 167

Figure 5.7 illustrates a screen-shot printout of the cube model (as shown in Figure

5.6) in which the first six characters of the watermark message “Strathclyde” were

successfully embedded.

Figure 5.8 Cube containing the message “Strath” embedded by the PO-watermarking scheme

Following the above tweaking process, any arbitrary text message can be embedded

across ordered sequences of faces with the PO-watermarking scheme. Given a CAD

model with N distinctly different (i.e. type, area, shape or relative location) faces, it

can hold one character in each of its suitable faces by applying surface tweaking.

This procedure is carried out until all the information is embedded into the model or

the model is ‘full’. In other words, the number of available and suitable faces within

a CAD model determines the length of a watermark message. For instance, a regular

cube (as in Figure 5.6) has six faces that can accommodate a text message of a

maximum length of six characters (one character in each face), while a more

complex object with 150 faces can hide up to a 150 text characters. In other words,

 168

the more faces a model has, the more information can be embedded with the PO-

watermarking scheme.

The prototype PO-watermarking implementation has a variable in the code which

determines the maximum string length that can be embedded (by default set to 20

characters). However, this default value can be adjusted to different text message

length requirements. Also, to create robust characteristics for the embedded

watermark the message is embedded multiple times (and is not restricted to a certain

numbers of repetitions) until all available and suitable faces have been modified.

5.4.2 Watermark Retrieval Process

The PO-watermarking scheme described here is a ‘non-blind’ method, meaning that

the original unmarked CAD model is required to retrieve the embedded watermark

information. In other words, the unmodified parametric surfaces of the original CAD

model are used to identify the watermarked faces and to calculate the relative

orientation of the tweaked surfaces to regain the embedded text information. The PO-

watermark retrieval process, as shown in Figure 5.8, can be described in five major

steps:

Step 1: Load both original and watermarked CAD models (both as .sat file formats)

and create a list of faces on both models. In contrast to the watermark embedding

process, no healing function is executed.

Step 2: Identify and sequence the embeddable faces in both CAD models. Only the

four face types planar, closed cylindrical, sphere and torus are currently implemented

in the PO-watermarking scheme. The order of faces determines the sequence of the

 169

letters within the watermark text. Within the retrieval process the same face

sorting/ordering sequence is applied as for watermark embedding.

Step 3: Faces from both models with equal sequence are matched and aligned one by

one and the orientation difference of their parametric surfaces are computed.

Step 4: The orientation differences of matching original and watermarked faces are

measured in radians and converted back into decimal numbers. After that the decimal

values are converted back into readable text characters with the ASCII – decimal

converter. This is basically the watermark encoding and embedding process, but in

reverse order.

Step 5: In the final step the text characters are assembled (i.e. the watermark

message recreated) and the embedded information is displayed onto the computer

screen and written into a .wmk archiving file. An example of a .wmk file, based on

the cube in Figure 5.6 with the embedded message “Strath”, is shown in a later

section in Figure 7.3 on page 184.

 170

Figure 5.9 Flow chart of watermark retrieval process

 171

Chapter 6

 172

6 Testing Procedures for the PO-watermarking Scheme

This chapter discusses the design and implementation of a potential watermark

assessment scheme. It also gives rise to a benchmarking scheme for evaluating

watermarked mechanical 3D CAD data. As part of this contribution, a set of

appropriate test objects and models are suggested that is used to test the PO-

watermark’s robustness, but could also be used by other researchers to assess

competing schemes. Finally, the process is described for testing the data (created by

the PO-watermarking scheme) using the proposed benchmarking method.

6.1 Lack of Common Standards for Testing Watermarked 3D Data

Besides designing and developing a new digital watermarking method, another

important issue needs to be addressed: the appropriate evaluation of watermarked

data. This not only requires testing of the embedded watermark’s robustness, but also

includes subjective and quantitative evaluation (e.g. change or alteration in shape or

appearance) of the distortion introduced to the watermarked data. Currently, it is

difficult to compare existing watermarking techniques and schemes for three-

dimensional data for the following reasons:

• No common shape representation format (i.e. polygonal meshes, NURBS

patches, Voxels, B-rep, etc.) is used for watermark evaluation. Having a

watermark message embedded into a polygonal mesh model might not be present

or detectable when the data is converted into say a STL or B-rep.

• No standard 3D models, or shapes, are defined for benchmarking. It seems that

for each proposed 3D watermarking scheme a different set of 3D data is used for

its assessment (e.g. a cat, Mozart sculpture, a horse, dragon, etc.). Consequently,

 173

it is not easy to compare test results of the different schemes since they are

achieved on different models.

• No standard evaluation and testing procedures are defined, i.e. there is no agreed

procedure which defines what is going to be tested, how is it tested and in which

order, and how the data is evaluated. For instance, test procedures might include

a set of standard evaluation steps to define how the robustness or fragility of the

embedded watermark will be evaluated. Furthermore, ideally the simplicity/

complexity of the watermark embedding and retrieval process would also be

benchmarked.

• No standard amount, or type, of information to be embedded exists. For instance,

one approach uses white noise as the watermark signal in a 3D picture, while

another hides text information into 3D objects. Because of this, the different

approaches cannot be directly compared with each other.

• No standard set of attacks (both intentional and unintentional) on CAD data have

been defined. Since attacks are potentially diverse (see section 2.2.6) they need to

be specified and classified by type, e.g. unintentional CAD file handling and

modification attacks or intentional, geometrical object modification attacks.

• Last but not least, no effective shape distortion measure exists, neither geometric

based nor human-perception based. A slight geometrical distortion might be

invisible for the naked eye but might generate fatal results or errors when

analyzing the data in FEM or Ansys, for instance.

In conclusion, it can be said that for fair benchmarking and performance evaluation,

both watermarking methods and CAD data need to be tested on a common basis.

 174

Therefore, the following section proposes an appropriate evaluation scheme

convenient for most mechanical 3D CAD data.

6.2 Possible Benchmarking Scheme for Watermarked 3D CAD

Data

To be able to properly evaluate the robustness of the embedded watermark in 3D

CAD models the different attack types need to be identified that are common to the

CAD environment. This identification and classification of performance criteria

might not only help the developer of a watermarking system to focus on the most

important security and system development requirements, but also provides a metric

for the potential user of a watermarking system for judging the operational area of

the applied watermarking technology. Also, for proper testing appropriate test data

need to be defined and categorised. The following sections will provide both the

classification of attacks on CAD data and a set of appropriate 3D CAD models for

testing.

6.2.1 Classification of Attacks on CAD Data

Because of the complex data structure of three dimensional objects and their range of

applications there are two major fields of attacks for 3D CAD data. These threats can

be categorised into unintentional and intentional attacks. The difference between the

two groups of threats is that some practices, such as loading a model into a different

CAD system, are not aimed to destroy the hidden mark, while others, such as editing

the object’s geometry, are. Table 6.1 lists some applications that are common in the

CAD environment and groups them into intentional and unintentional attacks. The

different threats can also be classified according four different attack levels:

 175

L1: Low level attacks that might be caused by simply handling the carrier data in

its natural way but without the intention to destroy or alter the CAD file (and

with it the embedded watermark).

L2: Medium level attacks that are not intended to alter the shape of the 3D data

but aim instead to change some of its visual features like its colour or

shininess, its position in a coordinate system (e.g. after rotation), or the file

size (e.g. for archiving purposes).

L3: High level attacks that are aimed to slightly change the object’s ‘local’

geometrical appearance or structure (e.g. when smoothing a surface) but not

its overall form/shape.

L4: Maximum level attacks that are specifically aimed to change the object’s

appearance, shape and even its function geometrically by adding or removing

object features (e.g. through adding new faces, blending or chamfer edges)

and with it the hidden watermark.

Table 6.1 Classification of threats and attacks in the CAD field

Level of attack Intentional attacks Unintentional attacks

L1
(Loading)

 Loading of (watermarked)
CAD data in a different
system (e.g. in a CAD,
simulation or data analysis
system).

L1
(Export/Import)

 Export/import and transfer
of CAD models into
different systems (e.g.
MatLab, Ansys) for data
representation or calculation.

L1
(Conversion)

 Convert CAD data into other
file formats for further
processing, or for translation
into neutral file formats (e.g.
IGES, STEP) for data
distribution.

 176

Level of attack Intentional attacks Unintentional attacks

L2
(Compression/

Decompression)

Compression/decompression
modifications (e.g. zip,
PDF) to disturb or to destroy
the hidden mark by
changing the internal CAD
file structure.

Compression/decompression
modifications (e.g. zip,
PDF) for changing the file
size for distribution or
storage purposes.

L2
(Rotation)

Rotation of entities by a
specific parameter to change
position of host vertices in
the coordinate system to
destroy the watermark
signal.

Rotation of entities or the
whole object to have a
specific view for printing
purposes, or positioning in
an assembly.

L2
(Healing)

Object or surface healing
(also called data repair) can
remove anchored watermark
data when recalculating or
‘neutralising’ an objects
internal structure.

Object or surface healing or
data repair are used on daily
basis to repair gaps in the
geometrical data structure
to update CAD data before
being loaded into data
simulation or analysis
systems.

L2
(Uniform Scaling)

 Uniform scaling: the
changing of the physical size
of each entity or the whole
object by a known factor
relative to a known datum.

L3
(Mesh

Simplification)

Mesh simplification, re-
meshing, re-triangulation or
mesh smoothing could be
used to erase watermarked
vertices.

Mesh simplification, re-
meshing, re-triangulation or
mesh smoothing are often
applied to achieve a
simplified object
representation or to reduce
CAD file size.

L3
(Polygon

Simplification)

 Polygonal simplification:
this operation is often used
to transmit a low-level
version of the model or to
optimise a model by
eliminating most of the non-
salient faces.

 177

Level of attack Intentional attacks Unintentional attacks

L3
(Uniform Scaling)

Uniform scaling: by
changing the physical size or
shape of an entity or the
whole object (called affine
transformation) can result in
breaking the connectivity
between the mark and the
host data.

L4
(Boolean)

Boolean modification, object
editing and modification,
blending, chamfer, cropping,
shear, removal or insertion
of new faces will
geometrically change the
model’s shape and
appearance and with it the
embedded watermark. It will
also cause problems during
the identification of marked
faces and the recovery of the
watermark message.

Geometric modifications
like Boolean operations,
object editing, blending,
chamfer, cropping, shear,
cropping, removal or
insertions of new faces are
day-to-day procedures of an
engineer to edit or update
existing CAD models.

L4
(Removal Attack)

Programmes specifically
created to detect and destroy
possible watermarks to
create an ‘unprotected’
version (removal attack), or
to copy the watermark
information from an
approved CAD model to
another unauthenticated
model (copy attack).

The choice of these kinds of attacks is based on the KIM survey carried out by the

author to identify modification types most common to the CAD environment. All of

the listed attack types in Table 6.1 might have some effects on the robustness of

embedded watermarks or on the CAD data structure. However, it should be noted

that the transition between the two threat groups (unintentional and intentional)

overlaps sometimes, which makes it difficult to differentiate between them. In other

words, some attacks do not clearly belong to one group only. For instance, data

 178

compression is often used to produce smaller data files for quick data transfer across

the Internet or for archiving reasons. However, data compression also changes the

internal data structure (especially polygonal mesh surfaces) which can either destroy

the vertices carrying the watermark or the bonds between the CAD model and the

watermark, or render the watermark information unreadable. Another example is

when a design engineer edits a CAD model. On one hand, it can be considered as an

attack to destroy the watermark or to remove a surface that contains the watermark

information. On the other hand, geometrical modifications are part of his daily job to

update or to modify CAD models to the meet new requirements or specifications.

6.2.2 Appropriate CAD Test Data

To assess the robustness of embedded watermarks in CAD data a series of different

but representative test objects are necessary. Since this thesis focuses on

watermarking mechanical 3D CAD data, appropriate test objects should obviously be

a range of CAD objects varying from standard mechanical parts like nuts and bolts to

highly complex engineering components. Testing this variety of different geometries

might help to answers questions like the following:

1) Is the size or complexity of a CAD model crucial for the amount of information

that can be embedded?

2) Is the watermark evenly distributed throughout the 3D model?

3) Can the embedded watermark survive common CAD related modifications?

4) What are the effects of data handling processes?

The suggested test objects are grouped into three different categories varying in their

complexity from basic Level 1 to sophisticated Level 3 (Figure 6.1 to 6.3). Their file

 179

sizes and number of faces also increase roughly proportionally to the grade of

geometrical object complexity.

Figure 6.1 Level 1 test objects with low geometrical complexity

Figure 6.2 Level 2 test objects with advanced geometrical complexity

 180

Figure 6.3 Level 3 test objects with sophisticated geometrical complexity

6.3 Modifications for Testing the PO-watermark’s Robustness

After embedding the watermark information into the different test objects a series of

data handling and geometrical transformations and modifications are carried out to

assess the robustness of the embedded mark. The testing procedure includes the

following actions:

• 1) [W faces] Watermarked faces: Get reference readings for each watermarked

model before any modifications are carried out to be able to verify any changes

to the host model during the attack executions.

• 2) [Load] Loading: Load the watermarked data into the CAD system (Autodesk

Inventor Professional 11) and test whether it is fully functional.

 181

• 3) [CAD] Conversion: Convert watermarked CAD object into CAD related .ipt

file format (Autodesk Inventor Part Document).

• 4) [IGES] Conversion: Convert watermarked CAD model into IGES format and

back into .sat format.

• 5) [STEP] Conversion: Convert watermarked CAD model into STEP format

and back into .sat format.

• 6) [Zip] Compression/Decompression: Zip compression and decompression of

watermarked CAD data.

• 7) [Rotation] Rotation: Rotate and move a watermarked object inside the CAD

system’s 3D space.

• 8) [Healing] Healing: Object and surface healing for CAD data repair.

• 9) [Blecha] Boolean: Blend and chamfer edges with a constant radius blend and

a 45 degree chamfer.

• 10) [Cutting] Boolean: External Boolean modification: remove half of the

model using a subtraction operation.

• 11) [Adding] Boolean: Add new component parts/faces to the model.

The flowchart in Figure 6.4 illustrates the entire testing procedure starting with the

embedding of the watermark message, followed by the execution of the various

model transformations and watermark attacks, and finally the retrieval and decoding

the hidden watermark. After each of the listed modifications the CAD models are

converted back into ACIS .sat file format, and the orientation of the tweaked faces

are recorded by the PO-watermark reader and the watermark message is transformed

back into readable text.

 182

The aim of this exercise is to find out how much of the embedded text message is

still present after the execution of the different attacks. In other words, the more of

the embedded watermark text message can be recovered the higher the success

(survival or robustness) rate of the PO-watermark.

The listed modification procedures can roughly be classified into two groups, namely

CAD file modification attacks (e.g. data export/import, zip compression) and CAD

object geometrical modification attacks (e.g. cutting, blending and chamfer, adding

or removing of faces). In the first case the CAD file is modified for different data

handling and transfer purposes, while in the second case the CAD model itself is

geometrically altered.

 183

Figure 6.4 Testing procedure of the PO-watermarking scheme

 184

Chapter 7

 185

7 Evaluation and Discussion of Test Results

The first part of this chapter discusses the details of how the watermark message is

hidden inside a B-rep model. In the following two sections the results of testing the

experimental PO-watermarking scheme are presented. After that, the capabilities of

the PO-watermarking scheme are discussed in the context of experimental

implementation, and compared to 3D watermarking schemes reported in the

literature. Finally possibilities of enhancing the PO-watermarking scheme are

considered.

7.1 Mathematical Considerations of the Embedded Watermark
Message

Working with native .sat files both watermark embedder and reader create an output

summary after task completion that is displayed on the computer screen and saved to

a .wmk text file. For further analysis the orientation data of the Cube object is

summarised in Table 7.1.

Table 7.1 Output of the PO-watermark extractor based on Cube object

The data saved in the .wmk file shows the parametric orientation of the individual

faces of a model before (left) and after (right) watermark embedding to six decimal

places accuracy as shown in Table 7.1. Faces with zero values for x, y and z

coordinates (as shown in the left column) carry no information. In other words, the

 186

faces are still in their original, or initial positions (i.e. no tweaking or rotation has

been conducted). Faces in the right column have a different orientation compared to

the original model on the left, and therefore they might be carrying some text

message. This is visible on the changed coordinate values for each face. The values

for two out of three coordinates for each face have been altered. This shows that

tweaking has been carried out. In some cases however, faces of watermarked models

still show zero values for face coordinates after the watermarking process has been

carried out. In this case, the embedding process was not successful (due to limitation

of the ACIS tweaking API) or the individual faces were not considered for tweaking.

The following lines will explain how a watermark text character is incorporated into

a model’s face. This is illustrated by the planar face in Figure 7.1. On the left side of

the figure a face’s underlying parametric orientation is presented in its original

position. Here, parameter lines (parallel to the face’s outlines) show the

parameterisation of the face before watermark embedding. In the right hand picture,

however, the parameter lines have been rotated clockwise around the face’s rotation

axis x by angle ϑ.

Figure 7.1 Parametric orientation of a planar face before (left) and after (after) tweaking

 187

This angle of rotation contains the first letter of the watermark message that can be

converted back into readable text. In Table 7.1 the X, Y and Z coordinates of the

faces have been changed through tweaking. From these coordinates triangles can be

created that represent the change in surface orientation (see example Figure 7.2).

Figure 7.2 Schematic triangle representing parametric reorientation

By taking the Z and Y values of the first planar face from Figure 7.1 (circled in red)

one can calculate/regenerate the embedded text character of the watermark in the

following way:

83)
869343.121

546152.992
(tan)(tantan 11

===⇒=
−−

Y

Z

Y

Z
ϑϑ

The value 83 means that the first planar face has been rotated by 83 degrees. Now the

decimal value 83 is converted back with the ASCII-decimal converter which is

equivalent to the capital letter ‘S’ in the English alphabet, which again is the first

character of the embedded watermark message “Strath”. By carrying on with the

conversion of the triangle values into text characters of the remaining planar faces

from the example object in Table 7.1 one can assemble the word ‘Strath’ that has

been encoded with the PO-watermark embedder as the secret message.

 188

The following Figure 7.3 shows how the reconversion procedure is executed within

the PO-watermark recovery scheme. As described in chapter 5, the two matching

faces (original face and watermarked face) are aligned and the angle difference

computed (in radian). The gained value is then converted back first into decimal

value and then into text characters. In the final stage the text characters are

assembled to reproduce the watermark message (Output = embedded word). At the

end of the recovery process a summary is printed to the computer screen and saved to

a .wmk file.

Figure 7.3 Output of the PO-watermark reader

 189

7.2 Produced Test Data

After demonstrating how the watermark message is incorporated into a CAD model,

this section presents the results of the PO-watermark robustness testing. As

mentioned in Section 6.2.2 the test CAD objects are grouped into three different

classes:

• Level 1 CAD models with low geometrical complexity with up to 25 faces per

object. Within this class, CAD objects have an average of 11 faces.

• Level 2 CAD models with medium geometrical complexity that have between 25

and 75 faces. The average number of faces in this class is 41.

• Level 3 CAD models with high geometrical complexity and more than 75 faces.

The average number of faces in this class is 173.

In the first column called [Object] of Table 7.2 Level 1 test objects (as displayed in

Figure 6.1 in Section 6.2.2) are listed. The message ‘Strathclyde’ was embedded in

all CAD models using the PO-watermarking scheme. The CAD models were then

subjected to the various types of intentional and unintentional attacks, as introduced

in Section 6.3.

The second column [No all faces] shows the total number of all available faces in

each model, while the third column [W faces] presents the number of faces that have

been successfully watermarked. In the fourth column [Percentage] the PO-

watermarking success rate for each individual CAD object is calculated. For

example, looking at the objects Bolt1 and Clip: Bolt1 has a total number of 14 faces

and all 14 faces were watermarked [W faces]. Clip, on the other hand, has 16 faces

 190

and only 8 were watermarked [W faces]. This would give the Bolt1 a watermarking

success rate of 100 percent and only 50 percent for Clip.

In the right bottom corner of the table the average watermarking success rate for

Level 1 objects is shown.

Table 7.2 Watermarking success rate for Level 1 test objects

In Tables 7.3 and 7.4 the first three columns are organized in the same way as in

Table 7.2 where the object names [Object], the total number of available faces [No

all faces], and the number of watermarked faces [W faces] for each test object are

presented. The columns four to eight show the number of faces that have ‘survived’

unintentional CAD data handling attacks (Table 7.3) and intentional geometrical

modification attacks (Table 7.4). Unintentional attacks include loading of the marked

CAD file into a CAD system [Load], conversion of the marked .sat file into CAD

specific (i.e. .ipt) file format [CAD], neutral IGES [IGES] and STEP [STEP]

formats, and compression/decompression [Zip] of the watermarked object.

 191

Table 7.3 Level 1 test objects after data handling (or unintentional) attacks

Similarly, Table 7.4 shows the number of faces that have ‘survived’ intentional

geometrical modifications attacks including object and surface healing [Healing],

rotation and movement of the watermarked model inside a CAD system’s 3D space

[Rotation], blending and chamfer of edges [Blecha], external Boolean modification

[Cutting], and adding new components and faces to the marked model [Adding].

Table 7.4 Level 1 test objects after geometrical modification (or intentional) attacks

 192

In Tables 7.5 and 7.6 the survival rate for each watermarked Level 1 object is

presented (in %). Again, the first three columns are arranged in the same way as the

previous tables above, where the object names [Object], the total number of available

entities [No all faces], and the number of watermarked faces [W faces] for each test

object are shown. The columns four to eight, however, show the survival rate of the

PO-watermark after the different unintentional data handling attacks [Load], [CAD],

[IGES], [STEP], and [Zip] (in Table 7.5), and intentional geometrical modification

attacks [Healing], [Rotation], [Blecha], [Cutting], and [Adding] (in Table 7.6) for

each Level 1 CAD object were executed. In the bottom row of each table the average

survival rate after each modification type is displayed.

Table 7.5 Level 1 watermark survival rate after data handling (or unintentional) attacks

Table 7.6 Level 1 watermark survival rate after geometrical modification (or intentional)

attacks

 193

The results for Level 2 and Level 3 test objects are presented in the same way as for

Level 1 test objects. Here, the number of faces vary between 25 and 75 for Level 2

models and more than 75 faces per model for Level 3 objects. The individual result

tables can be found in Tables C0.1 to C0.10 in appendix C.

7.3 Discussion of Test-Result Data

When comparing the PO-watermarking success rate (i.e. the percentage of faces onto

which the watermark had been successfully applied) between the three object level

groups one can see that the rate is dropping as the CAD models are getting larger and

more complex. For instance, the average watermarking success rate for Level 1

objects is 75 percent (Table 7.2). For Level 2 and Level 3 models the numbers are

decreasing to around 65 percent (Table C.1) and 48 percent (Table C.6), respectively.

One explanation for this is that when CAD models are getting larger and more

complex some other face types like splines, open conical faces or curves are likely to

be involved but are currently not considered for watermark embedding by the PO-

 194

watermarking scheme. In other words, since the PO-watermarking method is based

on marking simple geometrical faces (i.e. planar, closed conical, spherical, and torus)

other more complex and differently shaped face types are not taken into account. As

a result of this, they are not considered for watermarking and therefore they lower the

overall watermarking success rate.

Focusing on simple geometrical faces does not severly restrict the practial use of the

system since 97% of all mechanical CAD data contain at least one or more of the

following five basic shapes: plane, sphere, cylinder, cone and torus (Mills et al.,

2001). As the PO-watermarking scheme is based on four of the five listed face types

this method is well suited for watermarking mechanical CAD data. However, since

the PO-watermarking method is in the development stage further testing is required

to establish its full potential and capabilities in terms of watermarking efficiency.

The test results in Tables 7.5 and 7.6 show that data handling (or unintentional)

attacks like [Load] (loading data into a CAD system), [CAD] (conversion of .sat file

format into CAD data format), [Zip] (Zip compression and decompression),

[Healing] (repairing of gaps and overlaps in CAD models) and [Rotation] (moving

and rotating a model inside the CAD system’s working space) have no influence on

the embedded watermark, i.e. despite these modifications the watermark reader was

still able to fully (100 percent) read and recover the initially embedded watermark

message. Seeing such high success rate is an indication that the PO-watermark is

robust enough to withstand day-to-day data handling, or unintentional, attacks that

are common in the CAD design world.

The tests have also shown some unexpected results regarding translation into neutral

formats: for example, watermarks applied to planar faces survive the IGES

 195

translation process, but not STEP, whereas cylinders survive STEP but not IGES

translations. At first thought one might expect the behaviour of the IGES and STEP

translators to be predictable. The IGES and STEP standards define the types of

surface entities each can represent, and so it should be clear if parametric orientation

will be preserved. However, the implementer has a choice in both cases as to which

entities a cylinder is mapped to and how the geometry is represented internally

within the translation systems. Some neutral systems translate all geometric surface

entities to NURBS, while others hold analytical representations. In many cases the

preservation of parametric orientation will be down to a programmer’s whim rather

than the specific requirements of Part AP204 of ISO 103039. Also, CAD data

translation procedures and processes into neutral file formats have always been

considered unresolved and in need of further research (IronCAD, 2002).

Consequently, the behaviour of translation PO-watermarks into STEP and IGES can

only be determined experimentally at this stage and is an area of further study (see

Section 8.3). However, the results also suggest that if a model has sufficient faces, a

watermark that was duplicated (i.e. the same watermark is embedded multiple times

to cover all relevant faces) between planar and cylindrical faces would survive at

least one of the translation attacks which might be enough to re-assemble the

embedded text message. Thus, the PO-watermarking scheme could be applied until a

definite solution for CAD data translation into neutral file formats is found.

The results of [Cutting], blending and chamfer [Blecha] and [Adding] are self-

explanatory: any efficient algorithm will leave geometry not involved in the

9 ISO 10303 is an ISO standard for the computer-interpretable representation and exchange of product
manufacturing information. The International standard's objective is to provide a mechanism that is
capable of describing product data throughout the life cycle of a product, independent from any
particular system. The nature of this description makes it suitable not only for neutral file exchange,
but also as a basis for implementing and sharing product databases and archiving.

 196

operation untouched and so it is reasonable to conclude that unless the watermarked

surface is removed from the model, its orientation will not be changed. Even adding

new components and faces to the host object will have no influence on the

watermark recognition and recovery. However, when reading out the watermark after

blending and chamfer modifications [Blecha], the reader shows sometimes more and

sometimes fewer tweaked faces than actually exist. This behaviour is also called

false positive identification or detection. This performance reflects the process used

to create chamfers where parametric orientation is inherited from the adjacent faces

during the edge offset stage. In other words, these newly created faces have the same

orientation as the faces they were created from, but have no matching faces to the

original (i.e. unmarked) model for extraction/verification purposes. Here again the

behaviour pattern of the Blecha modification on watermarked faces is an area of

further study.

Another observation was made when comparing the average watermarking success

rate of the three levels of objects after the different intentional and unintentional

attacks had been carried out. As Figure 7.4 shows, the average watermark retrieval

success rate for all three levels is the same for [Load], [CAD], [Zip], [Healing], and

[Rotation] attacks types (the Healing rate for Level 3 objects is slightly lower

because one object failed the read out phase; it is assumed that this is object-

specific). For [IGES] and [STEP] modifications, it appears that the more complex a

model gets the less likely it is that the watermark survives these modifications (the

influence of IGES and STEP on CAD models has already been mentioned above).

 197

0

20

40

60

80

100

Load CAD IGES STEP Zip Healing Rotation Blecha Cutting Adding

Intentional & unintentional attacks

A
v

e
ra

g
e

 s
u

c
c
e

s
s

 r
a

te
 (
%

)
Level 1

Level 2

Level 3

Figure 7.4 Watermark recovery success rate after various attacks

However, for [Blecha], [Cutting] and [Adding] modifications the opposite seems to

be true: with increasing object size and complexity, success rates increase. This

situation can be explained by the fact that a larger and complex model has more

watermarked faces so that the same extent of modification affects fewer faces (e.g.

blending of 5 faces on a 10-face model might result in a 50% successrate, while 5

faces of a 100-face model would result in a 95% success rate). Therefore the

probability of intact watermarks is higher. Test results for geometric modifications

indicate that as long as a CAD model has sufficient watermarked faces after a

modification, the PO-watermark reader is able to recover, translate and assemble the

hidden text message which makes this approach real-world applicable.

7.4 Discussion on the Requirements for a Watermarking Scheme

General requirements (as listed in section 5.1)

One of the requirements for a CAD data watermarking scheme is to embed a set of

text information into a CAD model, and the detector should be able to retrieve and

decode the embedded watermark message. As shown in Figure 5.2.1.2 the PO-

 198

watermarking system is capable of converting text information into tweaking

parameters and to hide the intended message into a B-rep CAD model by modifying

the underlying parametric surface of the B-rep face. The watermark detector is also

capable to identify and match modified faces, and to re-convert the embedded

watermark message into readable text (as shown in Figure 7.3).

Another important requirement for a sophisticated CAD model watermarking system

is to not to change the topology of an object’s geometry to have no influence on the

model’s appearance. Since the PO-watermarking scheme is based on tweaking or

rotating the underlying parametric orientation of a face, it will not change its

topology (the two main topological items of a face are EDGEs and VERTICEs; see

B-rep data structure in Section 3.3.2). Therefore, as long as these two components

are not altered in any way the topology of the face (and so the CAD model as a

whole) remains unchanged.

Also a major requirement is to not to increase the file size massively when

embedding or hiding a watermark message into a CAD model. The tweaking

Application Procedural Interface (API) inside the PO-watermarking scheme makes it

possible to modify the geometry of a significant number of entities on moderately

complex parts without significantly increasing the data size or changing the model’s

shape. As the example in Table 7.7 shows the PO-watermark mostly did not increase

the size of the model data10 and still survived some of the file conversion and model

modification processes.

Table 7.7 Data structure before and after surface tweaking

10 The difference in file size in Table 7.7 is due to a side effect of the tweaking api which created a
bulletin board attribute (the “24 attribute records” in the right column) for each of the changed faces.
These can be easily removed and are not an inherent part of the model.

 199

Another crucial requirement for a watermarking system is to create a robust

connection between the watermark message and the carrier object. As already

discussed in sections 7.1 and 7.2 the PO-watermarking scheme fulfils this

requirement because the watermark message itself is the rotation parameter, which is

now part of the object, and was able to survive (i.e. stayed robustly attached to the

model) most file conversion and geometrical modifications it was exposed to.

In the case of the PO-watermarking scheme the amount of information that can be

robustly embedded into a CAD object depends on the actual carrier model’s size (to

be more precise on the number of faces inside the object). In other words, the larger a

model, the more faces it has and so the more information can be embedded.

Last but not least, it is also an important requirement for a watermarking scheme to

distribute the watermark message evenly throughout a CAD model to overcome

directed attacks on specific parts or sections of the model (e.g. cutting parts of the

model out to ‘cut out’ the watermark). The best example to show that the PO-

watermarking scheme fulfils this requirement is when a watermarked B-rep model is

cut in half. After this attack the watermark reader was still capable of recording

enough bits and parts of the hidden message to recreate the embedded message

 200

‘Strathclyde’. However, there is a limitation to this requirement specifically when

very small objects with only a few faces are involved. In other words, the outcome of

the Boolean operation (i.e. cutting the model in half) is determined by how the cut

was made. Take a cylinder as an example which contains three faces: two ‘lids’ (top

and bottom) and one cylindrical ‘jacket’. Now, there are two possibilities to cut the

cylinder in half, namely horizontally and vertically, which are shown in Figure 7.5.

Figure 7.5 Ways of cutting objects

When the cut is executed horizontally and the bottom half is removed (like in the left

picture) it is still possible to get the orientation of the top lid, since it can be matched

against the top lid of the original model. However, if the cut is executed vertically (as

shown in the right picture) all three faces are ‘destroyed’ and so matching it against

the original model is no longer possible.

Industry’s requirements

Looking specifically at the requirements expressed by the surveyed companies, the

PO-watermarking system fulfils most of them:

 201

• Carry text information

Most surveyed industrial partners stated that they wanted to incorporate some sort of

text information into the CAD data. This requirement is met fully since the PO-

watermarking scheme was specifically designed to embed text messages into CAD

models. An example of a text message being extracted from a CAD model is

demonstrated in Figure 7.3.

• Watermark must survive modifications

Since modifications of any type are the highest possible ‘threats’ to the embedded

watermark (see Table 6.1), it is very important that the watermark is anchored

robustly within the CAD data. As demonstrated in sections 7.2 and 7.3 the PO-

watermark withstands most modifications with very threatening its robustness.

However, even after those modifications which had some impact on the watermark,

the PO-watermark reader was able to recover enough information to reconstruct the

embedded message.

• No interference with the CAD model’s capabilities

The PO-watermarking scheme embeds the watermark information into a CAD model

by readjusting the faces’ underlying parametric orientations. As a result of this, the

overall shape (i.e. geometry and topology) of the CAD model is unchanged and so

are the model’s capabilities.

• Watermark message presented in front of CAD model (e.g. “confidential”)

Currently the PO-watermarking method is not designed to display the embedded

watermark message when the CAD file is loaded. However, the scheme could easily

be extended to offer a ‘display of the encoded message’ function, although further

research is required.

 202

When considering the test results in sections 7.2 and 7.3, one can see that the PO-

watermarking method appears to offer a simple and effective way of encoding,

embedding and retrieval of text messages that could be used to identify and track B-

rep models within a homogenous industrial CAD environment (i.e. one supplier, no

translation). Within an appropriate PDM or DRM system the embedded PO-

watermark could be used to carry copyright information, transport product or project

relevant information to restrict and regulate access, or to monitor CAD data

distribution. However, this study’s primary objective was to investigate the

feasibility to encode and embed text information robustly within 3D mechanical B-

rep CAD data and the design of a fully functional commercial watermarking system

is beyond the scope of this thesis.

7.5 Comparison of the PO-watermarking Scheme against Existing
Watermarking Methods and Techniques

As already mentioned in Section 4.2.5, most proposed watermarking methods and

schemes focus on model representation types like polygonal mesh, Bézier, NURBS

or CSG data rather than on boundary representation (B-rep). Also, since these

methods are based on some form of transformation techniques (e.g. wavelet,

frequency, Fourier or geometrical) which modify surface/vertex coordinate values to

insert a watermark, it is difficult to compare the PO-watermarking scheme for the

following reasons:

1. Most listed watermarking approaches embed random bit information into surface

carrier models, while the PO-watermarking technique inserts text

characters/information into solid models. This scheme also recovers and reassembles

the watermark information, instead of only showing the presence of a watermark.

 203

2. The PO-watermarking scheme does not change topology or geometry of a CAD

model when inserting the watermark message, while most existing methods do

typically by displacing vertices which results in a change of the model’s overall

shape. These geometrical and topological changes might not be visible to the naked

eye, but are not tolerated in mechanical CAD systems, especially in finite element

analysis where the preservation of connectivity of elements is essential. In this sense,

the PO-watermarking scheme delivers a more appropriate and precise method for

mechanical CAD data (i.e. less geometrically destructive).

3. As already shown in Section 4.2.5 most embedded watermarks of the existing

methods have robust characteristics. However, those watermarks can withstand only

certain types of attacks (e.g. affine transformations or mesh simplification which are

merely of academic value) and are not tested against ‘real-world’ type attacks that

are common to a CAD environment, e.g. file conversion, object healing, file zipping,

etc. Therefore, it is difficult to compare the robustness of reported 3D watermarks

and the PO-watermarking scheme because they were assessed by using different

criteria (i.e. theoretical/mathematical modifications compared to the real-world

modifications for the PO-watermarking method) based on a different set of test

objects.

4. Similarly, it is also difficult to compare the test results from the PO-

watermarking scheme with reported techniques, because they were created using a

different set of test-data. Those approaches typically used ‘random’ polygonal mesh

surface based models (e.g. rabbit, dragon, Beethoven statue, etc.) to test their

capabilities, while for PO-watermarking a set of real-world solid mechanical CAD

 204

objects were chosen and tested under real-world conditions. Therefore, the outcomes

of the schemes are mostly very different and cannot be compared.

As a consequence, the academic watermarking and CAD community need to work

together to create a system (i.e. testing procedures and test objects) that allows fair

benchmarking and performance evaluation of the different watermarking approaches.

However, if we consider the main focus of this thesis, it is clear that the PO-

watermarking scheme is better suited for marking solid CAD data than any of the

other previously presented approaches.

7.6 Possible Applications of the PO-watermarking Approach

The PO-watermarking approach described within this thesis could be used for both

fragile and more robustness-enhanced watermarking purposes. The major difference

between the two applications is the length and frequency with which the watermark

message is embedded and retrieved. The next two sections will highlight the

particular features of both fragile and robust watermarking.

7.6.1 Fragile Watermarking

The watermark embedding for a fragile system is accomplished as described in

section 5.2.1, but with the difference that the watermark information can have an

‘unlimited’ length (as long as it does not exceed the maximum storage capacity of

the model – i.e. one character per face multiplied by the number of available/suitable

faces) and is embedded only once. The reason for using one long text message is to

create enough reorientation parameters to include all, or as many faces of the model

as possible in the embedding process. The reason for embedding the watermark

message only once is to reduce the opportunity for the attacker to recreate the mark.

 205

In other words, when someone modifies or changes the carrier CAD model (e.g.

editing, erasing or adding new faces) the fragile watermark ‘brakes’ (in the sense that

parts or characters of the message are lost and cannot be recovered) and consequently

the decoding and reassembling of the embedded watermark message is not possible.

In this case the carrier data loses its authenticity.

A fragile watermark message could be created as shown in Figures 7.6 and 7.7. First,

the user enters the text information (e.g. product or security related information) into

the system’s interface (Figure 7.6). Then the programme arranges the text

information into one long single line (Text string) as shown in Figure 7.7 and

converts the characters one by one into decimal values (Decimal string). Now the

decimal string is divided up into three-digit numbers (Decimal parameters) which, in

turn, are converted into radian values that represent the tweaking parameters. Finally,

the message is embedded into all suitable faces of the CAD model with the help of

the embedding algorithm (as described in Section 5.2.1.2).

Figure 7.6 Entry of information for fragile watermarking

 206

Figure 7.7 Information conversion and encoding for fragile watermarking

Because the embedding is carried out only once, the message retrieval for fragile

watermarking is similarly carried out only once. The reason for that is if someone has

attacked (i.e. modified) the CAD data, the internal structure and features of the

model (such as face type, face area, position within the face list) might have changed.

Therefore, the CAD model is no longer the same as the one before the attack and it is

no longer possible to match the corresponding faces of the original and watermarked

models to recreate the full hidden message. In this case, a CAD model would lose its

authenticity and consequently the fragile watermarking delivers a 100% success rate.

7.6.2 Robustness-enhanced Watermarking

For enhanced robustness in watermarking schemes it is desirable that the embedded

information is widely and evenly spread across the model. Although the exact nature

of the embedded information is not crucial for the robust characteristic, it should be

noted that even small amounts of data can verify the ‘correctness’ of large and

complex files.

As shown in sections 5.2.1.2 and 5.2.1.3 the current PO-watermarking approach is

able to embed one text character into one CAD model-face, and is able to withstand

 207

various transformation and geometrical attacks (see Section 7.2). However, the

kernel modeller within this scheme could be extended to have sufficient precision

(i.e. by increasing decimal places for more accuracy) to embed two text characters

into one single face to enhance robustness. To increase robustness and information-

content per face the following steps are needed:

1. Take a given word and fragment it into characters.

2. Add a sequence or position number in front of each character (e.g. a number or

letter).

3. Convert unified characters (position number and letter) one by one into three

digit decimal values.

4. Join the two triple digit decimal numbers to create one six digit number with

three decimal places (e.g. 049 and 077 to 49.077º).

5. Convert the newly created six digit degree value into radians for surface

reorientation (e.g. 0.856555 rads)

6. Embed the watermark text message as often as possible into the carrier object (as

long as suitable faces are available, or until model is “full”)

The following paragraphs provide a brief example of how the embedding procedure

for enhanced robust watermarking could work. A short message code “Mouse” is

typed into the system (Figure 7.8). Then, a sequence number is added to each

character (e.g. position 1 for M, position 2 for o, position 3 for u, etc.) and the Text

string is created (see Figure 7.9). In this way the characters of the watermark

message on each face contain information analogous to a ‘packet’ number in digital

communication protocols. Then the ‘packages’ are converted into decimal values,

Decimal string, and assembled into a six digit number with three decimal places,

 208

Decimal parameter. These decimal parameters are then converted one by one into

Tweaking parameters (i.e. radiant values) and fed into the embedding algorithm.

Figure 7.8 Entry of information for robust watermarking

Figure 7.9 Information conversion and encoding for robust watermarking

The message recovery for robust watermarking could be executed in the same way as

described in section 5.2.2. Adequate faces of the original and the watermarked

models are ordered and aligned and the orientation of their parametric geometry is

computed. While the fragile watermark is read out only once, the robustness-

enhanced watermark is retrieved several times. In this way several duplicates of the

embedded message code can be recovered. Should there be any changes to the

watermarked model through translation or any type of modification attack where

parts of the object (and the embedded message) are removed or modified, the scheme

would still be possible to recreate the whole watermark message (because each

character of the message has been recorded several times) despite the risk that the

 209

mark might have been damaged or destroyed. The recovery steps can be summarised

as follows:

1. Read out orientation angles from 15 matching faces of the CAD model (Figure

7.9 illustrates only 15 readings but obviously this can be extended according to

the user’s specification).

2. Convert orientation/radian parameters back into decimal values (i.e. 0.856555

rads back to 049.077º).

3. Separate six digit numbers into two three digit numbers (i.e. 049.077º back to 049

and 077).

4. Reconvert three digit decimal values one by one into readable text by using

ASCII-decimal converter (i.e. 049 = 1, and 077 = M).

5. Sort message characters according to their position/sequence number (the first

character/number that will be recovered determines the following/text character’s

position within the watermark message) and assign them to rows in the message

recovery matrix (see Figure 7.10).

6. By identifying common elements in each column (i.e. the character position) the

message recovery matrix reconstructs the originally embedded watermark

message.

 210

Figure 7.10 Message recovery matrix

The scheme described is theoretical and further work needs to be carried out to

determine if the current six decimal places for radians are sufficient to recreate the

exact same six digit number with three decimal places (i.e. degree value). In other

words, if the watermark reader recovers, say, 1.939078 rads instead of 1.939095 rads

the degree value would change from 111.102 to 111.101 deg and the embedded

message would change it’s meaning from ‘of’ to ‘oe’.

Both of these PO-procedures, fragile and robustness-enhanced watermarking can be

used to embed text information of any kind (e.g. archiving, copyright, product or

 211

manufacturing, or even confidential information). The first procedure would be

useful in establishing authenticity, while the second one is able to withstand CAD

related attacks on the model. Especially the robustness-enhanced encoding method

could be combined with a message digest algorithm (see section 1.2.2 for message

digest) to embed larger amounts of text information. The advantage of using message

digest codes is that, even if an attacker decodes the PO-watermarking algorithm, the

hidden message is useless without the right message digest algorithm.

 212

Chapter 8

 213

8 Discussion and Conclusion

This chapter is organised in three parts: it starts with a summary of the research and

the key findings; it continues with the study’s contribution to knowledge, and ends

with a discussion of its limitations and directions for future research.

8.1 Summary

This research presented a new digital watermarking method that allows the

embedding of text information into Boundary representation surfaces of solid three

dimensional CAD models. The study also developed a testing and evaluation process

for assessing the effectiveness of the PO-watermarking scheme under real-world

conditions found in industrial CAD environment.

The thesis started with an overview of various techniques for hiding information into

various forms of digital data, and also presented some background information on

industrial applications of digital watermarking. This was then followed by an

overview of the historical development of digital watermarking on 3D data, a short

general overview of the watermarking process, the various attack types on

watermarked data, and the requirements for a watermarking approach for 3D CAD

models.

Chapter 3 then presented various representation formats for three dimensional CAD

data, while Chapter 4 listed watermarking techniques for one, two, and three

dimensional digital data. The literature review showed that existing studies were

largely focused on watermarking polygonal mesh, Bézier, and NURBS

representation formats and a few methods developed for specific carrier data types.

However, considering the need for CAD applications and comparing the

 214

characteristics of the listed three-dimensional representation methods, only B-rep

seemed to be able to deliver and support the required attributes and features for a

complete, valid and unambiguous representation of 3D objects.

It was observed that most of the 3D watermarking approaches surveyed had robust

characteristics, and about half of the schemes required access to the original data

during the watermark detection and retrieval stage. However, current techniques and

methods for 3D watermarking alter shape, geometry and/or topology for watermark

embedding, which is rarely tolerated by most CAD design and analysis systems. This

motivated the development of the PO-watermarking scheme, because it does not

change or modify the overall shape of an object.

Chapter 4 also highlighted that no research has been conducted on watermarking 3D

B-rep CAD data. Therefore, in Chapter 5, a new non-blind watermarking framework

was proposed that is suitable to implement parametric changes to B-rep faces to

encode text information as the watermark, but without geometrical or topological

changes to the CAD model. Within this approach the underlying parametric

orientation of planar, closed conical, spherical, and toroidal B-rep faces were

modified to accommodate the information, while the text message itself determined

the degree of modification.

No common testing standards or test objects for the evaluation of CAD data

watermarks could be identified from the literature. Therefore, in Chapter 6, a new

watermark testing procedure based on real-world modifications was developed and

applied to assess the PO-watermarking approach. The new evaluation process could

be used to evaluate and compare future CAD data watermarking schemes. Prior

studies all used different evaluation methods and models which made comparisons

 215

between different approaches very difficult (or even impossible). The new evaluation

approach defines a consistent testing process using a set number of CAD models of

different complexity, which could be used in further studies to enable comparisons

between different approaches.

In Chapter 7, the newly created test data, watermarked by the PO-watermarking

scheme, was presented and the test results of the various modification attacks

discussed. Test results show that the introduced PO-watermark does not change the

model’s shape or file size, nor has any influence on the CAD model’s capabilities.

Also, the more faces a CAD model has the more text information can be embedded.

However, with increasing complexity the overall watermark embedding/recovery

rate declines. After the exposure to intentional and unintentional attacks the PO-

watermark survived five (Load, CAD, Zip, Healing, and Rotation) out of ten

modifications without any compromise. In terms of geometrical modifications

(Blecha, Cutting, and Adding), it seems that the more complex a CAD model gets the

less influence they have on the watermark’s survival rate. However, certain file

conversion modifications, like IGES and STEP, can erase the PO-watermark.

Considering the overall performance, PO-watermarking has shown to be a viable

method for marking 3D B-rep CAD models. It works well within a single CAD

environment (i.e. company network) where no data is being translated, and is robust

for everyday use. However, it has a limited functionality when watermarked data is

moved between different CAD systems using neutral CAD formats.

 216

8.2 Contribution to Knowledge

This study contributes to an area of research that received little attention in the past..

Despite many attempts to hide watermark information into three dimensional shapes,

no viable scheme has been specifically designed for valuable mechanical 3D CAD

models. To fill this lacuna, this study has introduced a PO-watermarking scheme for

mechanical 3D B-rep CAD data that enables the embedding and retrieval of text

messages while preserving both topology and the exact geometrical shape of a CAD

model.

In comparison to existing 3D watermarking schemes where the embedding processes

are based on some sort of perturbation or alteration to surface mesh vertices and/or

control points to embed a random bit of data, the proposed PO-watermarking

approach enables the embedding and retrieval of meaningful text messages by

modifying the underlying parametric surface of a CAD model’s faces. The PO-

watermarking scheme is based on four (i.e. planar, closed conical, sphere and torus)

out of the five most frequently used basic shapes in mechanical CAD models.

Particular advancements on previous studies are that any desired text message can be

embedded and extracted (as requested by the CAD industry in the survey); the

watermark has no influence on the CAD model’s capabilities (e.g. in a simulation or

assembly);, and the marked CAD file is fully functional in any CAD system.

Furthermore, the watermark is not visible to the naked eye, has a robust connectivity

to the carrier CAD model, and is difficult to remove. In other words, the encoded and

embedded watermark can survive most data handling (unintentional) and

modification (intentional) attacks that are present within the CAD environment.

 217

This study also introduced appropriate test procedures and practices, and test objects

that are more adequate for commercial mechanical CAD applications. Test

procedures were specifically selected because of their frequent occurrence in day-to-

day CAD engineering applications, as specified in the KIM survey. Within this study

the new evaluation approach was also used to investigate the PO-watermark’s

robustness and capabilities. These new test procedures and objects can serve as a

benchmark to compare other CAD watermarking systems.

Since PO-watermarking does not change or transform the overall shape of the CAD

model during watermark encoding and embedding and resists (most) CAD related

real-world modifications, this approach is much more suitable for a homogenous

industrial CAD environment (i.e. one supplier, no translation) than any approach

presented so far. In this respect, the PO-watermarking approach fills a particular need

of the CAD industry as demonstrated in section 7.4.

8.3 Limitations and Directions for Future Work

The strength of any study arguably lies in the recognition of its limitations.

Specifically, the investigation has several limitations which are indicative of future

research. The first three limitations are programme-related, while the remaining

limitations are related to CAD data modifications after watermarking.

• Ordering of faces for watermark embedding and retrieval

The current face ordering process for both watermark embedding and retrieval is

based on the geometric modelling kernel of ACIS. However, if the CAD data is

loaded into a different CAD system on a different computer the watermark retrieval

programme might struggle to create the same face order, specifically when the new

 218

CAD system uses a different kernel or the model has been modified. To make the

ordering of faces independent from the modeller type a new sorting function could be

introduced that is based on face characteristics like face type, area, number of edges,

orientation, and number of inner loops.

• Including of new face types as data carrier

The PO-watermarking scheme currently supports only four face types: planar, closed

conical, spherical, and toroidal. However, to increase the PO-watermarking

effectiveness/success rate other face types need to be included to the embedding and

retrieval processes. New face types could include open conical, ellipse, helix, or

spline. To enable this extension, further research is required to establish whether

their underlying parametric surfaces can be modified sufficiently to accommodate

the watermark message (i.e. the tweaking parameter) without changing their overall

shapes.

• Rounding errors

For the PO-watermarking scheme it is important that the tweaking coordinates/values

in the retrieval process are meassured and reconverted as accurately as possible to

avoid incorrect conversions of ASCII-decimal values during text message reconvery.

Especially for the suggested robustness-enhanced approach (section 7.6.2) precision

is crucial since it aims to embed two text characters into a single tweaking parameter

and face. Therefore, further investigations and testing are required to determine (i) if

the six decimal places currently used are sufficient to carry the data load for two

characters; and (ii) how rounding errors/issues could be minimised to increase

precision to avoid data loss?

 219

• Potentially easily recognised watermark

Some viewing tools like ACIS viewer possess the functionality to render parameter

lines of the objects faces visible. This also discloses the rotation of the watermarked

faces which might indicate a hidden mark.

• Translation into neutral IGES and STEP file formats

Another issue that requires further research is the translation of watermarked B-rep

data into neutral file formats like IGES and STEP. As often stated translation of

CAD data into other formats is the major weakness of the CAD business (Gould,

2010; Goldsberry, 2010; Theorem, 2010; IronCAD, 2002; Heinzen, 2009). The test

results showed that when the PO-watermarked data is transformed into neutral

formats, the watermark in certain face types (i.e. closed conical and planar) are

partially erased.

• Blending and chamfer modifications on watermarked faces

Blending and chamfer modifications to watermarked faces seem to confuse the PO-

watermark reader. Occasionally, it recorded more watermarked faces than actually

exist, which can lead to confusion when re-assembling the text message. Therefore

the behaviour pattern of Blecha modification requires further research and testing. It

needs to be established which face types are affected by this event and how it could

be prevented.

• Effects of PO-watermark on downstream use

At this stage it is unproven which effects the PO-watermark might have on

downstream uses like Finite Element Analysis, Rapid Prototyping, and CNC tool

path creation. Theoretically, the watermarked data should behave exactly like

unmarked data since only the underlying parametric surface structure has been

 220

tweaked but the overall shape and geometry of the model remain unchanged.

Therefore, the watermarked data should be directly useable in downstream

applications without any further modifications. A reorientation back to the original

position should not be required. However, this can ultimately only be proven through

extended field experiment since the commercial systems’ internal algorithms are not

publicly available.

 221

References

1888 (2008). "Digital Watermarking And Fingerprinting Could Surpass $500 Million
Worldwide By 2012", http://www.1888pressrelease.com/digital-
watermarking-and-fingerprinting-could-surpass-500-m-pr-ye4h7r614.html,
Accessed on: 5 April 2008.

Achilles, A. & Ortyl, P. (2011). "The Collection of Computer Science
Bibliographies", http://liinwww.ira.uka.de/bibliography/, Accessed on: 12.
March 2011.

Acis (2009). "Online Help for ACIS",
C:\Users\Csaba\Documents\PhD\ACIS\help\ACIS.htm, Accessed on: 1 June
2009.

Alface, P. & Macq, B. (2005). "Blind watermarking of 3D meshes using robust
feature points detection". In Proc. of IEEE International Conference on

Image Processing (ICIP '05). 1, pp. 693-696. Genoa, Italy, 11-14 Sept. 2005.
Arnold, M. (2000). "Audio watermarking: Features, applications and algorithms". In

Proc. of IEEE International Conference on Multimedia and Expo (ICME

2000). 2, pp. 1013-1016. New York, NY, USA, 30 July- 2 August 2000.
Arnold, M. (2001). "Audio watermarking". Dr. Dobb's Journal, 26 (11), pp. 21-26.
Arnold, M., Schmucker, M. & Wolthusen, S. (2003). Techniques and applications of

digital watermarking and content protection, Boston, Artech House.
Arnoud, E. (2005). "Message digest / cryptographic hash functions",

http://www.iusmentis.com/technology/hashfunctions/, Accessed on: 21
October 2008.

Aspert, N., Drelie, E., Maret, Y. & Ebrahimi, T. (2002). "Steganography for three-
dimensional polygonal meshes". In Proc. of The International Society for

Optical Engineering. pp. 705-708. Seatle, USA, 7 July 2002.
Autobild (2009). "Autobild Motor Magazine", http://www.autobild.de/, Accessed on:

09. July 2009.
Barni, M., Bartolini, F., Cappellini, V. & Piva, A. (1998a). "A DCT-domain system

for robust image watermarking". Signal Processing (Special Issue on

Watermarking), 66 (3), pp. 357-372.
Barni, M., Bartolini, F., Cappellini, V., Piva, A. & Rigacci, F. (1998b). "A M.A.P.

identification criterion for DCT-based watermarking". In Proc. of European

Signal Processing Conference (EUSIPCO '98). Rhodes, Greece, 8-11
September 1998.

Bassia, P. & Pitas, I. (1998). "Robust audio watermarking in the time domain". In
Proc. of European Signal Processing Conference (EUSIPCO '98). pp. 25-28.
Rhodes, Greece, 8-11 September 1998.

Bassia, P. & Pitas, I. (2001). "Robust audio watermarking in time domain". IEEE

Transactions on Multimedia, 3 (2), pp. 232-241.
Bauchle, R., Hazen, F., Lund, J., Oakley, G. & Rundatz, F. (2008). "Information

security magazin",
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212062,00.html,
Accessed on: 17 March 2009.

Bender, W., Gruhl, D., Morimoto, N. & Lu, A. (1996). "Techniques for data hiding".
IBM System Journal, 35 (3), pp. 313-336.

 222

Benedens, O. (1999a). "Two high capacity methods for embedding public
watermarks into 3D polygonal models". In Proc. of International Conference

on Multimedia and Security. pp. 95 - 99. Orlando, Florida, U.S.A.
Benedens, O. (1999b). "Watermarking of 3D-polygon-based models with robustness

against mesh simplification". In Proc. of Security and Watermarking of

Multimedia Contents. 3657, pp. 329-340. San Jose, CA, USA, 28 Jan. 1999.
Benedens, O. (1999c). "Geometry-based watermarking of 3D models". IEEE

Computer Graphics and Applications, (January/February 1999), pp. 46-55.
Benedens, O. (2000a). "Affine invariant watermarks for 3D polygonal and NURBS

based models". In Proc. of International Workshop Information Security (ISW

'2000). 1975, pp. 15-29. Wollongong, Australia, December 2000.
Benedens, O. (2002). "3D Watermarking-Algorithms in Context of OpenSG Plus".

Fraunhofer-Institut für Graphische Datenverarbeitung, Darmstadt, Germany,

29 January 2002,
Benedens, O. & Bush, C. (2000b). "Towards blind detection of robust watermarks in

polygonal models". EUROGRAPHICS 2000, 19 (3), pp. 199-208.
Benham, D., Memon, N., Yeo, B. & Yeung, M. (1997). "Fast watermarking of DTC-

based compressed images". In Proc. of International Conference on Image

Science, Systems and Technology (CISST '97). pp. 243-253. Las Vegas, NV,
USA, June 1997.

Bennour, J. & Dugelay, J. (2006). "Protection of 3D object through silhouette
watermarking". In Proc. of IEEE International Conference in Acoustics,

Speech and Signal Processing (ICASSP '06). 2, pp. 1113-1116. Toulouse,
France, 14-19 May 2006.

Bentley, C. (2003). "Rendering cubic Bézier patches."
http://www.cs.wpi.edu/~matt/courses/cs563/talks/surface/bez_surf.html,
Accessed on: 12 January 2010.

Berghel, H. & O'gorman, L. (1997). "Digital watermarking",
http://berghel.net/publications/dig_wtr/dig_watr.php, Accessed on: 13 March
2009.

Boney, L., Tewfik, A. & Hamdy, K. (1996). "Digital watermarks for audio signal".
In Proc. of IEEE International Conference on Multimedia Computing and

Systems '96. pp. 473-480. Hiroshima, Japan, 17-23 June 1996.
Bors, A. (2004). "Watermarking 3D shapes using local moments". In Proc. of

International Conference on Image Processing. (ICIP '04). 2, pp. 729-732.
Singapore, 24-27 Oct. 2004.

Bors, A. (2006). "Watermarking mesh-based representations of 3-D objects using
local moments". IEEE Transactions on Image Processing, 15 (3), pp. 687-
701.

Brassil, J., Low, S., Maxemchuk, N. & O'gorman, L. (1995a). "Electronic marking
and identification techniques to discourage document copying". IEEE

Journal on Selected Areas in Communications, 13, pp. 1495-1504.
Brassil, J., Low, S., Maxemchuk, N. & O'gorman, L. (1995b). "Hiding information in

document images". In Proc. of Paper presented at: 29th Annual Conference

on Information Science and Systems (CISS 95). pp. 482-489. Johns Hopkins
University, Baltimore, MD, USA.

 223

Busch, C., Funk, W. & Wolthusen, S. (1999). "Digital watermarking: From concepts
to real-time video applications". IEEE Computer Graphics Applications, 19
(1), pp. 25-35.

Bush, C., Funk, W. & Wolthusen, S. (1999). "Digital watermarking: From concepts
to real-time video applications". IEEE Computer Graphics Applications, pp.
25-35.

Caduser (2000). "Healing the wounds of data conversion",
http://www.caduser.com/reviews/reviews.asp?a_id=66, Accessed on: 12
August 2009.

Ceusters, W. & Smith, B. (2006). "Referent tracking for digital rights management".
International Journal of Metadata, Semantics and Ontologies, June 20.

Chadwick, J., Bangay, S. & Wentworth, P. (2003). "A digital watermarking scheme
for Bezier surfaces". In Proc. of 6th South African Telecommunications,

Networks and Applications Conference (SATNAC '03). pp. 44-47. Southern
Cape, South Africa, 7-10 September 2003.

Chandru, V., Manivannan, M. & Manohar, S. (1999). "Minkowski operators and
features of voxel models". In Proc. of ASME Design Engineering Technical

Conference. Las Vegas, Nevada, USA, September 12-15.
Chang, H., Chen, T. & Kan, K. (2003). "Watermarking 2D/3D graphics for copyright

protection". In Proc. of IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP '03). 4, pp. 720-723. Hong Kong, 6-10 April
2003.

Chassery, J., Bas, P. & Davoine, F. (1998). "Self-similarity based image
watermarking". In Proc. of European Signal Processing Conference

(EUSIPCO '98). pp. 99-102. Rhodes, Greece, 8-11 September 1998.
Chen, B. & Wornell, G. (1998). "Digital watermarking and information embedding

using dither modulation". In Proc. of IEEE Workshop on Multimedia Signal

Processing. pp. 273-278. Los Angeles, California, USA, 7-9 December 1998.
Chen, B. & Wornell, G. (1999). "Dither modulation: A new approach to digital

watermarking and information embedding". In Proc. of IS&T/SPIE's 11th

Annual Symposium on Electronic Imaging '99: Security and Watermarking of

Multimedia Contents. 3657, pp. 342-353. San Jose, California, USA, 25-27
January 1999.

Chou, C. & Tseng, D. (2006). "A public fragile watermarking scheme for 3D model
authentication". Computer -Aided Design, 38, pp. 1154-1165.

Collis, J. & Hussey, R. (2003). Business Research - A practical guide for

undergraduate and postgraduate students, Houndmills, Palgrave Macmillan.
Constructive Solid Geometry (2008). "Constructive Solid Geometry",

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/csg.html,
Accessed on: 10 July 2008.

Corney, J. (1997). 3D Modeling with the ACIS kernel and toolkit, Chichester, John
Wiley & Sons.

Corney, J. & Lim, T. (2001). 3D Modeling with ACIS, Stirling, Saxe-Coburg
Publications.

Corsini, M., Barni, M., Bartolini, F., Caldelli, R., Cappellini, V. & Piva, A. (2003a).
"Towards 3D watermarking technology". In Proc. of IEEE EUROCON 2003.
2, pp. 393-396. Ljubljana, Slovenia, 22-24 September 2003.

 224

Corsini, M., Uccheddu, F., Bartolini, F., Barni, M., Caldelli, R. & Cappellini, V.
(2003b). "3D watermarking technology: Visual quality aspects". In Proc. of
9th Conference on Virtual System and Multimedia (VSMM '03). Montreal,
Quebec, Canada, 15-17 October 2003.

Cotting, D., Weyrich, T., Pauly, M. & Gross, M. (2004). "Robust Watermarking of
Point-Sampled Geometry". In Proc. of International Conference on Shape

Modeling and Applications (SMI '04). pp. 233-242. Palazzo Ducale, Genova,
Italy, 7-9 June 2004.

Cox, I., Kilian, J., Leighton, F. & Shamoon, T. (1997). "Secure spread spectrum
watermarking for multimedia". IEEE Transactions on Image Processing, 6
(12), pp. 1673-1687.

Cox, I., Kilian, J., Leighton, T. & Shamoon, T. (1995). "Secure spread spectrum
watermarking for images, audio, and video". Report No. 95-10, NEC

Research Institute,
Cox, I., Kilian, J., Leighton, T. & Shamoon, T. (1996). "Secure spread spectrum

watermarking for images, audio and video". In Proc. of IEEE International

Conference on Image Processing (ICIP '96). 3, pp. 243-246. Lausanne,
Switzerland, 16-19 September 1996.

Cox, I. & Miller, M. (2002a). "The first 50 years of electronic watermarking".
Applied Signal Processing, 2, pp. 126-132.

Cox, I., Miller, M. & Bloom, J. (2002b). Digital watermarking, San Francisco,
Morgan Kaufmann Publishers.

Coyle, K. (2003). "The technology of rights: Digital rights management",
http://www.kcoyle.net/drm_basics.pdf, Accessed on: 27 October 2009.

Daras, P., Zarpalas, D., Tzovaras, D. & Strintzis, M. (2004). "Watermarking of 3D
models for data hiding". In Proc. of International Conference on Image

Processing ICIP '04. 1, pp. 47-50. Singapore, 24-27 October 2004.
Darmstaedter, V., Delaigle, J., Nicholson, D. & Macq, B. (1998). "A block based

watermarking technique for MPEG-2 signals: Oprimization and validation on
real digital TV distribution links". In Proc. of European Conference on

Multimedia Applications, Services, and Techniques (ECMAST '98). pp. 190-
206. Berlin, Germany, 26-28 May 1998.

Davern, P. & Scott, M. (1996). "Fractal based image steganography". Lecture Notes

in Computer Science: Information Hiding, Springer, 1174, pp. 279-294.
Davies, B.L., Robotham, A.J. & Yarwood, A. (1991). Computer-aided drawing and

design, London, Chapman & Hall.
Deguillaume, F., Csurka, G., Ruanaidh, J. & Pun, T. (1999). "Robust 3D DFT video

watermarking". In Proc. of IS&T/SPIE's 11th Annual Symposium on

Electronic Imaging '99: Security and Watermarking of Multimedia Contents,.
3657, San Jose, California, USA, 25-27 January 1999.

Denis, F., Lavoué, G., Dupont, F. & Baskurt, A. (2005). "Digital watermarking of
compressed 3D meshes". In Proc. of International Conference on Machine

Intelligence. pp. 648-654. Tozeur, Tunisia, 5-7 November 2005.
Depovere, G., Kalker, T. & Linnartz, J. (1998). "Improved watermark detection

reliability using filtering before correlation". In Proc. of IEEE International

Conference on Image Processing (ICIP '98). pp. 430-434. Chicago, IL, USA,
4-7 October 1998.

 225

Dieter, G. (1983). Engineering design: A materials and processing approach, New
York, McGraw-Hill.

Dittmann, J., Stabenau, M. & Steinmetz, R. (1998b). "Robust MPEG video
watermarking technologies". In Proc. of ACM Multimedia '98. pp. 71-80.
Bristol, UK, 12-16 September 1998.

Djaghloul, H. (2007). "Wavelet-based medical augmented reality CSG object
watermarking". International Journal of Soft Computing, 2 (1), pp. 212-215.

Doërr, G. & Dugelay, J.-L. (2003). "A guide tour of video watermarking". Signal

Processing: Image Communication, Special Issue on Technologies for Image

Security, 18 (4), pp. 263-282.
Drake, M.A. (2003). Encyclopedia of library and information science, Second

Edition New York, Marcel Dekker Inc.
Duffy, A.H.B. & O'donnell, F.J. (1998). "A Design Research Approach". In Proc. of

Workshop on Research Methods in Artificial Intelligence in Design (AID).
Lisbon, Portugal.

Dugelay, J., Garcia, E. & Mallauran, C. (2002). "Protection of 3-D Object Usage
Through Texture Watermarking". In Proc. of 11th European Signal

Processing Conference (EUSIPCO 2002). Toulouse, France, 3 - 6 September
2002.

Easterby-Smith, M. & Thorpe, R. (1991). Management Research: An Introduction,

London, Sage Publications.
Felten, E. (2003). "A skeptical view of DRM and fair use". Communications of the

ACM, 46 (4), pp. 57-59.
Fornaro, C. & Sanna, A. (2000). "Public key watermarking for authentication of

CSG models". Computer-Aided Design, 32 (12), pp. 727-735.
Funk, W. (2004). "Impact of MPEG-4 3D mesh coding on watermarking algoritms

for polygonal 3D meshes". Security, Steganography, and Watermarking of

Multimedia Contents, 5306, pp. 336-344.
Furon, T., Moreau, N. & Duhamel, P. (2000). "Audio public key watermarking

technique". In Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP '00). 6, pp. 1959-1962. Istanbul, Turkey, 5-9
June 2000.

Garcia, E. & Dugelay, J. (2003). "Texture-based watermarking of 3D video objects".
IEEE Transactions on Circuits and Systems for Video Technology, 13 (8), pp.
853-866.

Garcia, R. (1999). "Digital watermarking of audio signals using a psychoacoustic
model and spread spectrum theory". In Proc. of 107th Audio Engineering

Society Convention. New York, NY, USA, September 1999.
Gerbino, S. (2003). "Tools for the interoperability among CAD systems". In Proc. of

International Conference on Tools and Methods Evolution in Engineering

Design. Napoli and Salerno, Italy, 3-6 June 2003.
Gill, J. & Johnson, P. (2002). Research Methods for Managers, London, SAGE

Publications.
Godwin, M. (2006). "Digital rights management: A guide for librarians",

http://nnlm.gov/scr/blog/?p=241, Accessed on: 07 July 2008.
Goldsberry, C. (2010). "Data file translation woes: A failure to communicate",

http://www.plasticstoday.com/imm/articles/moldmaking-data-file-transfer,
Accessed on: 20 September 2010.

 226

Gomes, L., Cano, P., Gómez, E., Bonnet, M. & Batlle, E. (2003). "Audio
watermarking and fingerprinting: For which applications?" Journal of New

Music Research, 32 (1), pp. 65-81.
Gomes, L., Mboup, M., Bonnet, M. & Moreau, N. (2000). "Cyclostationarity-based

audio watermarking with private and public hidden data". In Proc. of 109th

AES Convention of Audio Engineering Society. Los Angeles, California,
USA, 22-25 September 2000.

Gould, L. (2010). "Multi-CAD Environments",
http://www.autofieldguide.com/articles/090810.html, Accessed on: 20
September 2010.

Harte, T. & Bors, A. (2002a). "Watermarking 3D Models". In Proc. of International

Conference on Image Processing, 24-28 June 2002. 3, pp. 661-664.
Rochester, New York, USA.

Harte, T. & Bors, A. (2002b). "Watermarking Graphical Objects". In Proc. of 14th

International Conference on Digital Signal Processing. 2, pp. 709-712.
Aegean Island of Santorini (Thera) in Hellas, Greece,1-3 July 2002.

Hartung, F., Eisert, P. & Girod, B. (1998). "Digital watermarking of MPEG-4 facial
animation parameters". Computers & Graphics, 22 (3), pp. 1-17.

Hartung, F. & Girod, B. (1996). "Digital watermarking of raw and compressed
video". SPIE Digital Compression Technologies and Systems for Video

Communication, 2952, pp. 205-213.
Hartung, F. & Girod, B. (1997). "Fast public-key watermarking of compressed

video". In Proc. of IEEE International Conference on Image Processing

(ICIP '97). 1, pp. 528-531. Santa barbara, California, USA, 26-29 October
1997.

Hartung, F. & Kutter, M. (1999a). "Multimedia Watermarking Techniques".
Proceedings of the IEEE, 87 (7), pp. 1079-1107.

Hayden, D.S. (2004). 7 Easy Steps to CNC Programming Book II: Beyond the

beginning, Haydenpub Publishing.
Heinzen, M. (2009). "3-D CAD Translation",

http://www.qcinspect.com/article/cadtranslation.htm, Accessed on: 20
September 2010.

Hsu, C. & Wu, J. (1997a). "Digital watermarking for images and videos". In Proc. of
Digital Signal Processing (DSP '97). Santorini, Greece, July 1997.

Hu, Y., Lee, H.K. & Zeng, H. (2008). "Curve Watermarking Technique for
Fingerprinting Digital Maps". In Proc. of International Conference on

Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP

'08). pp. 223-226. Harbin, China, 15-17 August 2008.
Hunter, D. (1978). Papermaking, The History and Technique of an Ancient Craft,

Second, revised and enlarged edition, Dover Publications.
Ironcad (2002). "IronCAD Data Translation Overview",

http://www.ironcad.com/download/ironcad/tutorials/IronCADDataTranslatio
n.pdf, Accessed on: 20 September 2010.

Jackson, D. & Mabbott, M. (1999). "Data exchange between incompatible
modellers".

Johnson, A. & Biggar, M. (1997). "Digital watermarking of video/image content for
copyright protection and monitoring". ISO Doc. ISO/IEC JTC1/SC29/WG11
MPEG97/M2229,

 227

Jordan, F., Kutter, M. & Ebrahimi, T. (1997). "Proposal of a watermarking technique
for hiding/retrieving data in compressed and decompressed video". ISO/IEC
Doc. JTC1/SC29/WG11 MPEG97/M2281,

Kahn, D. (1996). The Codebrakers: The Comprehensive History of Secret

Communication from Ancient Times to the Internet, Revised and Updated

Edition, New York, Scribner.
Kalay, Y.E. (1989). Modelling Objects and Environments, New York, John Wiley &

Sons.
Kalker, T., Depovere, G., Haitsma, J. & Maes, M. (1999). "A video watermarking

system for broadcast monitoring". In Proc. of SPIE IS&T/SPIE's 11th Annual

Symposium on Electronic Imaging '99: Security and Watermarking of

Multimedia Contents. 3657, pp. 103-112. San Jose, California, USA, Jan.
1999.

Kanai, S., Date, H. & Kishinami, T. (1998). "Digital Watermarking for 3D Polygons
using Multiresolution Wavelet Decomposition". In Proc. of International

Workshop on Geometric Modeling: Fundamentals and Applications (GEO-

6), 7-9 December. pp. 296 - 307. Tokyo, Japan.
Kankanhalli, S., Rajmohan, M. & Ramakrishnan, K. (1998). "Content-based

watermarking of images". In Proc. of ACM Multimedia '98. Bristol, UK, 12-
16 September 1998.

Katzenbeisser, S. & Petitcolas, F.A.P. (2000). Information Hiding Techniques for

Steganography and Digital Watermarking, Boston, Artech House.
Kessler, G.C. (1998). Handbook on Local Area Networks, Auerbach.
Kim, H., Lee, B. & Lee, N. (2002). "Wavelet-based audio watermarking techniques:

Robustness and fast synchronisation",
http://amath.kaist.ac.kr/research/paper/01-11.pdf, Accessed on: 9 February
2009.

Kim, S., Suthaharan, S., Lee, H. & Rao, K. (1999). "Perceptually tuned robust
watermarking scheme for video using motion entropy masking". In Proc. of
International Conference on Consumer Electronics (ICCE '99) pp. 104-105.
Los Angeles, California, USA, 22-24 June 1999.

Koch, E. & Zhao, J. (1995). "Towards robust and hidden image copyright labeling".
In Proc. of Workshop on Nonlinear Signal and Image Processing. Marmaros,
Greece, June 1995.

Koller, D. & Levoy, M. (2005). "Protecting 3D Graphics Content". Communications

of the ACM, 48 (6), pp. 74-80.
Koller, D., Turitzin, M., Levoy, M., Tarini, M., Croccia, G., Cignoni, P. & Scopigno,

R. (2004). "Protected Interactive 3D Graphics Via Remote Rendering". In
Proc. of ACM Transactions on Graphics (TOG). 23, pp. 695-703.

Kundur, D. & Hatzinakos, D. (1997). "A robust digital image watermarking method
using wavelet-based fusion". In Proc. of IEEE International Conference on

Image Processing (ICIP '97). 1, pp. 544-547. Santa Barbara, California,
USA, 26-29 October 1997.

Kundur, D. & Hatzinakos, D. (1998). "Digital watermarking using multiresolution
wavelet decomposition". In Proc. of IEEE International Conference on

Acoustics, Speach, and Signal Processing (ICASSAP '98). 5, pp. 2969-2972.
Seattle, Washington, USA, May 1998.

 228

Kurowski, P.K. (2004). Finite Element Analysis for Design Engineers, Warrendale,
PA, USA, SAE Permissions.

Kutter, M. (1998a). "Watermarking resisting to translation, rotation, and scaling".
SPIE International Symposium on Voice, Video, and Data Communication.

Kutter, M., Jordan, F. & Bossen, F. (1997). "Digital signature of color images using
amplitude modulation". In Proc. of Electronic Imaging (EI '97). San Jose,
California, USA, 9-14 February 1997.

Kutter, M., Jordan, F. & Bossen, F. (1998b). "Digital signature of color images using
amplitude modulation". Electronic Imaging (EI '98), 7 (2), pp. 326-332.

Lacy, J., Quackenbush, S., Reibman, A., Shur, D. & Snyder, J. (1998). "On
combining watermarking with perceptual coding". In Proc. of IEEE

International Conference on Acoustic Speach and Signal Processing. Seattle,
Washington, USA, 12-15 May 1998.

Langelaar, G. (1996). "Copy protection for multimedia data based on labeling
techniques". In Proc. of 7th Symposium on Information Theory in the

Benelux. Enschede, The Netherlands, May 1996.
Langelaar, G. & Lagendijk, R. (2001). "Optimal differential energy watermarking of

DCT encoded images and video". IEEE Transactions on Image Processing,
10 (1), pp. 148-158.

Langelaar, G., Lagendijk, R. & Biemond, J. (1997b). "Real-time labeling methods
for MPEG compressed video". In Proc. of 18th Symposium on Information

Theory in the Benelux. Veldhoven, The Netherlands, May 1997.
Langelaar, G., Lagendijk, R. & Biemond, J. (1998). "Real-time labelling of MPEG-2

compressed video". Journal of Visual Communication and Image

Representation, 9 (4), pp. 256-270.
Langelaar, G., Lubbe, J. & Lagendijk, R. (1997a). "Robust labeling methods for copy

protection of images". In Proc. of Electronic Imaging. 3022, pp. 298-309. San
Jose, CA, USA, Feb. 1997.

Lee, J., Cho, N. & Lee, S. (2004). "Watermarking Algorithms for 3D NURBS
Graphic Data". EURASIP Journal on Applied Signal Processing 14, pp.
2142-2152.

Li, L., Pan, Z., Zhang, M. & Ye, K. (2004). "Watermarking Subdivision Surfaces
Based on Addition Property of Fourier Transform". In Proc. of 2nd

International Conference on Computer Graphics and Interactive Techniques

in Australasia and South East Asia pp. 46-49. Singapore, 15-18 June 2004.
Light, J., Lindsay, P., L., S. & Parnes, P. (1990). "The effects of message encoding

techniques on recall by literate adults using AAC systems". Augmentative

and Alternative Communication, 6 (3), pp. 184-201.
Lin, H. & Liao, H. (2005). "Fragile watermarking for authenticating 3D polygonal

meshes". IEEE Transactions on Multimedia, 7 (6), pp. 997-1006.
Linnartz, J. (1998). "MPEG PTY marking". [Online] Available:

http://diva.eecs.berkeley.edu/linnartz/pty.html.
Low, S. & Maxemchuk, N. (1998). "Performance Comparison of Two Text Marking

Methods". IEEE Journal on Selected Areas in Communications, 16 (4), pp.
561-572.

Low, S., Maxemchuk, N., Brassil, J. & O'gorman, L. (1995). "Document Marking
and Identification Using Both Line and Word Shifting". In Proc. of Infocom

'95. pp. 853-860. Boston, MA.

 229

Maret, Y. & Ebrahimi, T. (2004). "Data Hiding on 3D Polygonal Meshes". In Proc.
of ACM Multimedia & Security Workshop. pp. 68-74. Magdeburg, Germany,
20-21 September 2004.

Matheson, L.R., Mitchell, S.G., Shamoon, T.G., Tarjan, R.E. & Zane, F. (1998).
"Robustness and Security of Digital Watermarks". In Proc. of Second

International Conference on Financial Cryptography. pp. 227 - 240. Berlin,
Germany.

Mcmahon, C. & Browne, J. (1998). CADCAM Principles, Practice and

Manufacturing Management, 2nd Edition, Harlow, England, Addison-
Wesley.

Menezes, A., Van Oorschot, P. & Vanstone, S. (2001). Handbook of Applied

Cryptography, CRC Press, Fifth Printing (August 2001), ISBN: 0-8493-
8523-7.

Merkle, R. & Brassard, I.G. (1990). "A certified digital signature". Advances in

Cryptology -- CRYPTO '89, vol. 435, pp. 218–238.
Mills, B., Langbein, F., Marshall, A. & Martin, R. (2001). "Estimate of frequencies

of geometric regularities for use in reverse engineering of simple mechanical
components ". Geometry and Vision Group, Cardiff University,

Mitchell, W.J. & Mccullough, M. (1995). Digital design Media, New York, Van
Nostrand Reinhold.

Mottram, J.T. & Shawn, C.T. (1996). Using Finite Elements in Mechanical Design,

London, McGraw-Hill Book Company.
Multimedia Intelligence (2008) MultiMedia Intelligence Identifies Digital

Watermarking & Fingerprinting As Key New Opportunity.
Murdoch, S.J. (2006). "Oracle attack on Wordpress",

http://www.lightbluetouchpaper.org/2006/06/22/oracle-attack-on-wordpress/,
Accessed on: 21 July 2009.

Murotani, K. & Sugihara, K. (2005). "New spectral decomposition for 3D polygonal
meshes and its application to watermarking". In Proc. of Computer Graphics,

Visualization and Computer Vision. University of West Bohemia, Plzen -
Bory, Czech Republic 31 January - 4 February 2005.

Nagahashi, H., Mitsuhashi, R. & Morooka, K. (2004). "A Method for Watermarking
to Bézier Polynomial Surface Models". IEICE Trans. Inf. & Syst., E87-D (1),
pp. 224-232.

Neubauer, C. & Herre, J. (1998). "Digital watermarking and its influence on audio
quality". In Proc. of 105th AES Convention, Audio Engineering Society.
Preprint 4823, San Francisco, CA, USA, Sept. 1998.

Neubauer, C. & Herre, J. (2000a). "Audio watermarking of MPEG-2 AAC bit
streams". In Proc. of 108th AES Convention, Audio Engineering Society.
Preprint 5101, Paris, France, 19-22 Feb. 2000.

Neubauer, C. & Herre, J. (2000b). "Advanced audio watermarking and applications".
In Proc. of 109th AES Convention, Audio Engineering Society. Preprint 5176,
Los Angeles, CA, USA, Sept. 2000.

Nikolaidis, N. & Pitas, I. (1996). "Copyright protection of images using robust
digital signatures". In Proc. of ICASSP '96. Atlanta, GA, USA, May 1996.

Ohbuchi, R. & Masuda, H. (2000). "Managing CAD data as a Multimedia Data Type
Using Digital Watermarking". In Proc. of IFIP TC5 WG5.2 Workshop on

 230

Knowledge Intensive CAD to Knowledge Intensive Engineering. 207, pp.
103-116. Deventer, The Netherlands, 22 - 24 May 2000.

Ohbuchi, R., Masuda, H. & Aono, M. (1997a). "Embedding Data in 3D Models". In
Proc. of 4th International Workshop on Interactive Distributed Multimedia

Systems and Telecommunication Services '97. 1309, pp. 1-11. Darmstadt,
Germany, September 1997.

Ohbuchi, R., Masuda, H. & Aono, M. (1997b). "Watermarking Three-Dimensional
Polygonal Models". In Proc. of ACM International Multimedia Conference

’97. pp. 261-272. Seattle, Washington, USA, 9-13 November 1997.
Ohbuchi, R., Masuda, H. & Aono, M. (1998a). "Data Embedding Algorithms for

Geometrical and Non-Geometrical Targets in Three-Dimensional Polygonal
Models". Computer Communications, Elsevier Science B. V.

Ohbuchi, R., Masuda, H. & Aono, M. (1998b). "Watermarking Three-Dimensional
Polygonal Models Through Geometric and Topological Modifications". IEEE

Journal on Selected Areas in Communications, 16 (4), pp. 551-560.
Ohbuchi, R., Masuda, H. & Aono, M. (1998c). "Watermarking Multiple Object

Types in Three-Dimensional Models". In Proc. of Multimedia and Security

Workshop at ACM Multimedia '98,. Bristol, UK, 12-13 September 1998.
Ohbuchi, R., Masuda, H. & Aono, M. (1999). "A Shape-Preserving Data Embedding

Algorithm for NURBS Curves and Surfaces". In Proc. of Computer Graphics

International 1999 (CGI '99). pp. 1 - 8. Canmore, Canada, 7-11 June 1999.
Ohbuchi, R., Mukaiyama, A. & Takahashi, S. (2002). "A Frequency-Domain

Approach to Watermarking 3D Shapes". EUROGRAPHICS 2002, 21 (3), pp.
373-382.

Ohbuchi, R., Takahashi, S., Miyazawa, T. & Mukaiyama, A. (2001). "Watermarking
3D Polygonal Meshes in the Mesh Spectral Domain". In Proc. of Graphics

Interface. pp. 9-17. Ottawa, Ontario, Canada 7-9 June 2001.
Petitcolas, F.A.P., Anderson, F.R. & Kuhn, M.G. (1999). "Information Hiding - A

Survey". IEEE, 87 (7), pp. 1062-1078.
Pfitzmann (1996). "Information Hiding Technology". in Anderson R. (Ed) Lecturer

Notes in Computer Science, 1174, pp. 347-350.
Piva, A., Barni, M., Bartoloni, E. & Cappellini, V. (1997). "DCT-based

watermarking recovering without resorting to the uncorrupted original
image". In Proc. of IEEE International Conference on Image Processing

(ICIP '97). 1, Santa Barbara, CA, USA.
Podilchuk, C. & Delp, E. (2001). "Digital Watermarking: Algoritms and

Applications". Signal Processing Magazine, 18 (4), pp. 33-46.
Podilchuk, C. & Zeng, W. (1997). "Watermarking of the JPEG bitstream". In Proc.

of International Conference on Imaging Science, Systems, and Applications

(CISST '97). pp. 253-260. Las Vegas, NV, USA, June 1997.
Point Cloud (2009). http://en.wikipedia.org/wiki/Point_cloud, Accessed on:
Polygonal Mesh (2008). http://en.wikipedia.org/wiki/Polygon_mesh, Accessed on:

10 July 2008.
Praun, E., Hoppe, H. & Finkelstein, A. (1999). "Robust Mesh Watermarking". In

Proc. of International Conference on Computer Graphics and Interactive

Techniques, August. pp. 49-56.
Ptc (2008). "MCAD Digital Rights Management, Protect Your Critical Design

Intellectual Property (IP) Persistently and Dynamically",

 231

http://www.4point.com/pdf/3055_DRM_WP_FINAL.pdf, Accessed on: 10
February 2010.

Puate, J. & Jordan, F. (1996). "Using fractal compression scheme to embed a sigital
signature into an image". In Proc. of SPIE Photonics East '96 Symposium.
Boston, MA, USA, Nov. 1996.

Qiao, L. & Nahrstedt, K. (1999). "Non-invertible watermarking methods for MPEG
encoded audio". In Proc. of Security and Watermarking of Multimedia

Contents. 3657, pp. 194-202. San Jose, CA, USA, 25-27 January 1999.
Quan, L. & Xiaomei, Z. (2006). "SVD based digital watermarking algorithm for 3D

models". In Proc. of IEEE International Conference on Acoustic, Speech and

Signal Processing (ICASSP '06). Toulouse, France, 15-19 May 2006.
Ramkumar, M. & Akansu, A. (1999). "On the choice of transforms for data hiding in

compressed video". In Proc. of IEEE International Conference on Acoustics,

Speach, and Signal Processing (ICASSP '99). Phoenix, AZ, USA, March
1999.

Ranger, D.T. (2009) CAD/CAM Data Exchange: The transfer of data between
dissimilar engineering computer systems. Theorem Solutions, Personal
correspondence.

Roche, S. & Dugelay, J.L. (1998). "Image Watermarking Based on the Fractual
Transform". In Proc. of IEEE Multimedia Signal Processing. pp. 358-363.
Los Angeles. California, USA, 7-9 December 1998.

Rodriguez, W. (1992). The Modelling of Design Ideas, Graphics and Visualization

Techniques for Engineers, New York, McGraw-Hill Book Company.
Rooney, J. & Steadman, P. (1987). Principles of Computer-aided Design, London,

Pitman Publishing.
Rossignac, J.R. & Requicha, A.A.G. (1999) Solid Modeling. in J. G. Webster, Ed.,

Encyclopedia of Electrical and Electronics Engineering. New York, NY,
Wiley.

Ruanaidh, J., Dowling, W. & Boland, F. (1996). "Phase watermarking of digital
images". In Proc. of International Conference on Image Processing (ICIP

'96). 3, pp. 239-242. Sept. 1996.
Ruanaidh, J. & Pun, T. (1997). "Rotation, scale and translation invariant digital

image watermarking". In Proc. of IEEE International Conference on Image

Processing (ICIP '97). 1, pp. 536-539. Santa Barbara, CA, USA, Oct. 1997.
Ruanaidh, J. & Pun, T. (1998). "Rotation, scale, and translation invariant spread

spectrum digital image watermarking". Signal Processing (Special Issue on

Watermarking), 66 (3), pp. 303-318.
Rušinović, Z. & Mihajlović, Ž. (2005). "Robust Watermarking for 3D Objects". In

Proc. of MIPRO 2005: Hypermedia and GRID systems. pp. 271-276. Opatija,
Croatia, 30 may - 3 June 2005.

Salzburg, U.O. (2009). "Still Image Watermarking", http://www.cosy.sbg.ac.at/,
Accessed on: 27. September 2009.

Schyndel, R.V., Tirkel, A. & Osborne, C. (1994). "A digital watermark". In Proc. of
International Conference on Image Processing (ICIP '94). 2, pp. 86-89.

Simpson, J. & Weiner, E. (2000). Oxford English Dictionary, New York, Oxford
University Press.

Slowinski, F. (2003). "What Consumers Want in Digital Rights Management
(DRM): Making Content as Widely Available as Possible In Ways that

 232

Satisfy Consumer Preferences". AAP and ALA Release White Paper, 21

March.
Smith, S. (2004). "An evaluation of internet-based CAD collaboration tools",

http://scholar.lib.vt.edu/ejournals/JOTS/v30/v30n2/pdf/smith.pdf, Accessed
on: 2 August 2008.

Sonnet, H. & Lange, S. (2005). "Data Storage: Carrier Objects as Illustration
Watermarks for 3D Polygonal Models". In Proc. of Simulation und

Visualisierung. pp. 305-316.
Stroud, I. (1992). "Definition of solid modelling operations using uniform set of

elementary procedures". GML 1992/3 Computer and Automation Institute,

Hungarian Academy of Sciences, pp. 89.
Swanson, M., Zhu, B. & Tewfik, A. (1996). "Transparent robust image

watermarking". In Proc. of International Conference on Image Processing

(ICIP '96). Lausanne, Switzerland, Sept. 1996.
Swanson, M., Zhu, B. & Tewfik, A. (1997). "Multiresolution video watermarking

using perceptual models and scene segmentation". In Proc. of IEEE

International Conference on Image Processing (ICIP '97). 2, pp. 558-561.
Santa Barbara, CA, USA, Oct. 1997.

Swanson, M., Zhu, B. & Tewfik, A. (1998a). "Multiresolution scene-based video
watermarking using perceptual models". IEEE Journal on Selected Areas in

Communications (Special issue on Copyright and Privacy Protection), 16 (4),
pp. 540-550.

Swanson, M., Zhu, B., Tewfik, A. & Boney, L. (1998b). "Robust audio
watermarking using perceptual masking". Elsevier Signal Processing, 66 (3),
pp. 337-355.

Theorem (2010). "The Wide Angle on CAD Data Exchange",
http://www.theorem.co.uk/pr/PA4.pdf, Accessed on: 20 September 2010.

Thiemert, S., Steinebach, M. & Wolf, P. (2006). "A Digital Watermark for Vector-
Based Fonts". In Proc. of Multimedia and Security Workshop. pp. 120-123.
Geneva, Switzerland, 26-27 September 2006.

Tilki, J. & Beex, A. (1996). "Encoding a hidden digital signature onto an audio
signal using psychoacoustic masking". In Proc. of 7th International

Conference on Digital Signal Processing Applications & Technology. pp.
476-480. Boston, MA, USA, Oct. 1996.

Tirkel, A., Rankin, G., Schyndel, R.V., Ho, W., Mee, N. & Osborne, C. (1993).
"Electronic water mark". In Proc. of Digita Image Computing, Techniques

and Applications '93. pp. 666-672. Macquarie University, Sydney, Australia,
8-10 December 1993.

Tizzard, A. (1995). An Introduction to Computer-Aided Engineering, London,
McGraw-Hill Book Company.

Uccheddu, F., Corsini, M. & Barni, M. (2004). "Wavelet-Based Blind Watermarkinf
of 3D Models". In Proc. of International Multimedia Conference. pp. 143-
154. Magdeburg, Germany, 20-21 September 2004.

Walker, K. (2004). "Audio watermarking". R&D White Paper, WHP 057, Research

& Development British Broadcasting Corporation,
http://www.bbc.co.uk/rd/pubs/whp/whp057.shtml.

Wang, H. & Kuo, C. (1998). "An integrated progressive image coding and
watermark system". In Proc. of IEEE International Conference on Acoustics,

 233

Speech, and Signal Processing (ICASSP '98). 6, pp. 3721-3723. Seattle, WA,
USA, May 1998.

Wang, X., Cui, Y., Yang, H. & Zhao, H. (2004). "A New Content-Based Digital
Audio Watermarking Algorithm for Copyright Protection". In Proc. of ACM

International Conference Proceeding Series. 85, pp. 62-68. Shanghai, China.
Wikipedia (2008a). "Bézier curve",

http://en.wikipedia.org/wiki/B%C3%A9zier_curve, Accessed on: 23. May
2008.

Wikipedia (2008b). "Bézier Surface", http://en.wikipedia.org/wiki/NURBS,
Accessed on: 24. November 2008.

Wikipedia (2008c). "Egyptian War Symbols",
http://www.google.co.uk/images?hl=en&biw=1362&bih=624&gbv=2&tbs=i
sch%3A1&sa=1&q=egyptian+war+symbol&aq=f&aqi=&aql=&oq=&gs_rfai
=, Accessed on: 18. February 2008.

Wikipedia (2008d). "Polygonal Mesh", http://en.wikipedia.org/wiki/Polygon_mesh,
Accessed on: 10 July 2008.

Wikipedia (2008e). "Voxel", http://en.wikipedia.org/wiki/Voxel, Accessed on: 09.
November 2008.

Wikipedia (2009a). "Constructive Solid Geometry",
http://en.wikipedia.org/wiki/Constructive_solid_geometry, Accessed on: 23.
January 2009.

Wikipedia (2009b). "Freeform surface modelling",
http://en.wikipedia.org/wiki/Freeform_surface_modelling, Accessed on:
April 2009.

Wikipedia (2009c). "Polygon Mesh", http://en.wikipedia.org/wiki/Polygon_mesh,
Accessed on: 17. January 2009.

Wolfgang, R. & Delp, E. (1997). "A watermarking technique for digital imagery:
Further studies". In Proc. of Image Science, Systems, and Technology. pp.
279-287. Las Vegas, NV, USA, Jun.-Jul. 1997.

Wolfgang, R., Podilchuk, C. & Delp, E. (1999). "Perceptual watermarks for digital
images and video". In Proc. of IEEE. 87, pp. 1108-1126.

Wood, W.G.M. (1974). Experimental method : a guide to the art of experiment for

students of science and engineering London, Athlone press
Wu, H. & Cheung, Y. (2005a). "A fragile watermarking scheme for 3D meshes". In

Proc. of 7th International Multimedia Conference on Multimedia and

Security. pp. 117-124. New York, NY, USA, 1-2 Aug. 2005.
Wu, H. & Cheung, Y. (2005b). "A New Fragile Mesh Watermarking Algorithm for

Authentication". In Proc. of Information Security Conference. pp. 509-523.
Chiba, Japan, May 2005.

Wu, M., Miller, M., Bloom, J. & Cox, I. (1999). "A rotation, scale, and translation
resilient public watermark". In Proc. of IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP '99). Phoenix, AZ, USA.
Xia, X., Boncelet, C. & Arce, G. (1997). "A multiresolution watermark for digital

images". In Proc. of IEEE International Conference on Image Processing

(ICIP '97). 1, pp. 548-551. Santa Barbara, CA, USA, Oct. 1997.
Yeo, B. & Yeung, M. (1999). "Watermarking 3D Objects for Verification". IEEE

Computer Society Press Los Alamitos, CA, USA 19 (1), pp. 36-45.

 234

Yin, K., Pan, Z., Shi, J. & Zhang, D. (2001). "Robust mesh watermarking based on
multiresolution processing". Computers and Graphics, 25 (3), pp. 409-420.

Youd, D. (1996). "What is a digital signature?"
http://www.youdzone.com/signature.html, Accessed on:

Zafeiriou, S., Tefas, A. & Pitas, I. (2005). "Blind robust watermarking schemes for
copyright protection of 3D mesh objects". IEEE Transitions on Visualization

and Computer Graphics, 11 (5), pp. 596-607.
Zeijl J. Van (1994). "Constructive solid geometry",

http://graphics.stanford.edu/~cek/rayshade/doc/guide/section2_7_4.html,
Accessed on: 10 July 2008.

 235

Appendices

Appendix A PO-watermark Encoding and Embedding Codes

Appendix B PO-watermark Recovery Codes

Appendix C Test-Result Data for L2 and L3 Test Objects

Appendix D Summary of Survey Results

 236

Appendix A PO-watermark Encoding and Embedding Codes

//***
//
// PO-watermark Embedding.cpp
//
//***

#include <iostream>
#include "api.hxx" // Declares outcome class
#include <stdio.h> // Declares I/O functions, print functions
#include "cstrapi.hxx" // Declare construction APIs,
#include "kernapi.hxx" // Start modeller API,
#include "body.hxx" // Declares BODY class, Topological Class BODY,
#include "debug.hxx" // Debug routines
#include "lists.hxx" // Entity List Class, Declares ENTITY_LIST class
#include "curve.hxx"
#include "curdef.hxx"
#include "allsurf.hxx" // Declares SURFACE class
#include "bnd_crv.hxx"
#include "transf.hxx" // Declares TRANSFORM class
#include "alltop.hxx"
#include "tensor.hxx"
#include "boolapi.hxx" // Declares Boolean APIs
#include "stchapi.hxx"
#include "lop_api.hxx"
#include "fileinfo.hxx" // Declares FileInfo class
#include "errorsys.hxx" // Declare error functions
#include "getbox.hxx"
#include "rnd_api.hxx"
#include "ctapi.hxx"
#include "heal_api.hxx" // Declares healing
#include <math.h> // Declares math functions
#include <stdlib.h> // Includes standard library
#define pi 3.141592654 // Define PI

using namespace std;

//***

ENTITY* restore_ent(char*); // Restore CAD model attribute data
void save_ent(char*, ENTITY*); // Write and save header file Info
int face_loops(FACE*); // Number of EDGEs and LOOPs

 237

void check_result(outcome result, char *mess); // Check outcome of API functions
int main()
{
 char Filename[20]; // Filename retriction to 20 characters
 char FilenameCopy[20];

//********** Initialisation ***

 api_start_modeller(0); // Initialisation of modeller
 api_initialize_local_ops(); // Initialisation of local operations
 api_initialize_booleans(); // Initialisation of Boolean library
 api_initialize_healing(); // Initialisation of healing
 BODY* block = NULL; // Declare a pointer to a BODY object

//********** Load file from **

 cout << "Please enter file name (without .sat extension): ";
 cin >> Filename;
 char DirName[] = "C:/Users/Csaba/Documents/C++ Codes/TestData/L3/";

 // defines location of file
 char *FilenameWhole = strcat(DirName, Filename); // combines

location and Filename
 cout << "\n";
 char *FilenameWholeIn = strcat(FilenameWhole, ".sat"); // combines

FilenameWhole with .sat ending
 cout << FilenameWholeIn << endl; // show combined file name on screen
 cout << "\n";
 block = (BODY*)restore_ent(FilenameWholeIn); // load file and declare it

as block

//********** Healing **

 api_hh_init_body_for_healing(block); // Initialise body for healing
 api_hh_simplify_auto(block); //

Autohealing/Simplification process
 api_hh_end_body_for_healing(block); // Stop body for healing
 cout << "Healing completed." <<endl; // confirm healing
 cout << "\n";

//********** Message Converter **************************************

 char message[12]; // defines message and restricts its length to 11

characters
 int i;
 cout <<"Please enter message (max. 11 characters, no free space): ";
 cin >> message;
 char *t = message; // t equals message
 cout << "\n";

 238

 int sz = strlen(t); // strlen = stringlength, captures automatically the
length of a string

 int c[12]; //ASCII value of a letter
 for (int ii=0; ii < 12; ii++)
 {
 c[ii] = 0; // initialize the array
 }

 for (i = 0; i < sz; i++) // while the string is not at the end do the following
 {
 if (t[i] != '\0') // fills the c array with values
 {
 c[i] = __toascii(t[i]); // converts message letter by letter into

ASCII decimal
 cout << "The ASCII decimal value is: "<< c[i] << endl;
 cout << "In radians: " << (c[i]*pi/180) << endl;
 cout << "\n";
 }
 }

//********** Face separation ***

 FACE *ff = block->lump()->shell()->face_list(); // go to face level
 ENTITY_LIST faceList; // place ENTITYs in an

ENTITY_LIST
 api_get_faces(block, faceList); // create a faceList from the block and

get first face

 int index = 0; // set start index to zero
 int letter = 0;
 int limit = faceList.count(); // set max limit = number of faces in faceList

 if (limit > 1000) // stipulation to 1000 faces
 {
 printf("Too many faces!\n"); // print out message
 exit(1); // stop processing
 }

 while(index < limit) // while index value lover than limit
 {
 ff = (FACE*)faceList[index]; // decleration of ff
 SURFACE *fs = ff->geometry(); // returns pointer to SURFACE

object, definition of face's shape

//********** Plane ***

 if (fs->identity() == PLANE_TYPE) // if the face's surface is a PLANE

 239

 {
 printf("\nFace number %d is a plane!\n", index);

 PLANE* cs = (PLANE*)fs; //cast pointer from

SURFACE to PLANE

 plane const planesurf = (plane&) (fs->equation());

 SPAunit_vector pdir = cs->normal();

 SPAvector u_dir = planesurf.u_axis();

 plane *copysurf = (plane*)planesurf.deep_copy(); // copy

original face

 if (c[letter] == 0)
 {
 letter = 0; //reset letter counter to start of message
 }

 (*copysurf)*=rotate_transf((c[letter]*pi/180),pdir); //

rotate/tweak plane surface by 0.5 rads

 PLANE *rotplane = new PLANE(*copysurf); // declare

rotated face = new plane face

 SURFACE* psurface_array[1]; //

put rotated/"new" face back

 psurface_array[0] = (SURFACE*)rotplane; // put

rotated/"new" face back

 FACE* pface_array[1];

 int prevflag[1];

 prevflag[0] = 0;

 pface_array[0] = ff;

 SPAbox pfb = get_face_box(ff);

 outcome result = api_tweak_faces(1,pface_array,

psurface_array, prevflag, pfb.low(), pfb.high());

 check_result(result, "Plane rotation operation");

 if(!result.ok()) // check outcome of tweak operation

 240

 {
 printf("Planar tweaking failed!\n");

 letter--; // put letter back for a new

tweaking

 api_rh_set_entity_rgb(ff,rgb_color(1)); // change

colour to red
 }

 else
 {
 printf("Planar tweaking successful.\n");

 api_rh_set_entity_rgb(ff,rgb_color(3)); // change

colour to blue
 }

 fs = pface_array[0]->geometry();

 plane const nplanesurf = (plane&) (fs->equation());

 SPAvector nu_dir = nplanesurf.u_axis();
 }

//********** Cone **

 else if (fs->identity() == CONE_TYPE) // if the face's surface is a

cone
 {
 printf("\nFace number %d is a cone\n", index);

 CONE* cs = (CONE*)fs; // cast

pointer from SURFACE to CONE

 cone const conesurf = (cone&) (fs->equation());

 if ((conesurf.closed_v() || conesurf.closed_u())

&& face_loops(ff) > 1) // if this face is a closed cylinder
 {
 // Get cone data to calculate transform to

origin
 SPAunit_vector dir = cs->direction();
 SPAposition pos = cs->root_point();

 SPAvector major = cs->major_axis();

 241

 SPAunit_vector minor =
major.orthogonal();

 SPAunit_vector majorv =
normalise(major);

 // Calculate transform to move from

origin to cone
 SPAtransf move =

coordinate_transf(pos, minor, majorv);

 api_apply_transf(block, move.inverse());
 // move hole axis to origin (0,0,0)

 api_change_body_trans(block,NULL);
 // force transform to be fully evaluated

 // Define arguments for watermaking

"tweak" operation
 FACE* face_array[1];

 face_array[0] = ff;

 SPAbox fb = get_face_box(ff);

 SPAunit_vector tdir = cs->direction();

 if (c[letter] == 0)
 {
 letter = 0; //reset letter

counter to start of message
 }

 // Carry out tweak operation, this

replaces the original face with the rotated one
 outcome result =

api_move_faces(1,face_array, rotate_transf((c[letter]*pi/180),tdir), fb.low(),
fb.high()); // rotate CONE surface by 0.5 rads

 check_result(result, "Tweak operation");

 if(!result.ok()) // check outcome of

tweak operation
 {
 printf("Cone tweaking

failed!\n");

 letter--; // put letter back

for tweaking

 242

 api_rh_set_entity_rgb(ff,rgb_color(1)); // change colout to red

 }
 else

 {
 printf("Cone tweaking

successful.\n");

 api_rh_set_entity_rgb(ff,rgb_color(3)); // change colour to blue
 }

 api_apply_transf(block, move); //

move body back to origin

 api_change_body_trans(block,NULL);

 // fully evaluate the transform

 SURFACE *fs = ff->geometry();

 CONE* cs = (CONE*)fs; //cast

pointer from SURFACE to CONE

 SPAvector tmajor = cs->major_axis();
 } // end if closed surface
 else
 {
 printf("Open conical face. Tweaking not

possible!\n");
 letter--;
 api_rh_set_entity_rgb(ff, rgb_color(4));

 // change colour to lightblue
 }

 }

//********** Sphere **

 else if (fs->identity() == SPHERE_TYPE) // if the face's

surface is a SPHERE
 {
 printf("\nFace number %d is a sphere!\n",

index);

 243

 SPHERE* cs = (SPHERE*)fs; //cast
pointer from SURFACE to SPHERE

 sphere const spheresurf = (sphere&) (fs-

>equation()); // get lower case surface object

 SPAposition pos = cs->centre(); //

get sphere centre point to calculate transform

 SPAunit_vector orn = spheresurf.uv_oridir; //

direction from the centre of the sphere to the origin of parameter space

 SPAunit_vector axis = spheresurf.pole_dir; //

direction normal to uv_oridir that points from the centre to the "north pole" of
the sphere

 // Calculate transform to move from origin to

sphere
 SPAtransf move = coordinate_transf(pos,

SPAunit_vector(1,0,0),SPAunit_vector(0,1,0));

 api_apply_transf(block, move.inverse()); //

move hole axis to origin (0,0,0)

 api_change_body_trans(block,NULL); //

force transform to be fully evaluated

 FACE* face_array[1]; // Define

arguments for watermaking "tweak" operation

 face_array[0] = ff;

 SPAbox fb = get_face_box(ff);

 if (c[letter] == 0)
 {
 letter = 0; //reset letter counter to

start of message
 }

 // rotate SPHERE surface by 0.5 rads
 outcome result = api_move_faces(1,face_array,

rotate_transf((c[letter]*pi/180),axis), fb.low(), fb.high());

 // Carry out tweak operation, this replaces the

original face with the rotated one
 check_result(result, "Move operation");

 244

 if(!result.ok()) // check outcome of tweak
operation

 {
 printf("Sphere tweaking failed!\n");

 letter--; // put letter back for

tweaking

 api_rh_set_entity_rgb(ff,rgb_color(1));

 // change colour to red
 }

 else
 {
 printf("Sphere tweaking successful.\n");

 api_rh_set_entity_rgb(ff,rgb_color(3));

 // change colour to blue
 }

 api_apply_transf(block, move); // move

body back to origin

 api_change_body_trans(block,NULL); //

fully evaluate the transform

 SURFACE *ffs = ff->geometry(); // change

orientation of face

 SPHERE* ffcs = (SPHERE*)ffs; //cast

pointer from SURFACE to SPHERE

 sphere const spheresurff = (sphere&) (ffs-

>equation());

 SPAunit_vector afterort = spheresurff.uv_oridir;

 SPAunit_vector tafterort =

spheresurff.uv_oridir;

 SPAunit_vector torn = spheresurf.uv_oridir;

 // direction from the centre of the sphere to the origin of parameter
space

 }

//********** Torus ***

 245

 else if (fs->identity() == TORUS_TYPE) // if the face's
surface is a torus

 {
 printf("\nFace number %d is a torus\n", index);

 TORUS* cs = (TORUS*)fs; // Cast

pointer from SURFACE to TORUS

 torus const torussurf = (torus&) (fs-

>equation()); // needed to identify the closed toroidal faces

 // Get torus data to calculate transform to origin

 const SPAposition cen= torussurf.centre;

 // get centre of torus face

 const SPAunit_vector norm = torussurf.normal;

 // rotate about this vector

 const SPAunit_vector torplane =

torussurf.uv_oridir; // location of uv start point

 double bigr = torussurf.major_radius; //

get major radius of torus

 double smallr= torussurf.minor_radius; //

get minor radius of torus

 SPAunit_vector axis = normalise(norm *

torplane); // dot product to get vector for coordinate_transf

 SPAtransf move = coordinate_transf(cen,

torplane, axis); // Calculate transform to move from origin to torus

 api_apply_transf(block, move.inverse()); //

move hole axis to origin (0,0,0)

 api_change_body_trans(block,NULL);

 // force transform to be fully evaluated

 // Define arguments for watermaking "tweak"

operation
 FACE* face_array[1];

 face_array[0] = ff;

 SPAbox fb = get_face_box(ff);

 246

 torus const torussurfM = (torus&) (fs-
>equation()); // needed to identify the closed toroidal faces

 const SPAunit_vector normR =

torussurfM.normal; // rotate about this vector

 if (c[letter] == 0)
 {
 letter = 0; //reset letter counter to

start of message
 }

 // rotate torus surface around the vector

"normR" by 0.5 rads
 outcome result = api_move_faces(1,face_array,

rotate_transf((c[letter]*pi/180),normR), fb.low(), fb.high());

 // Carry out tweak operation, this replaces the

original face with the rotated one
 check_result(result, "Tweak operation");

 if(!result.ok()) // check outcome of tweak

operation
 {
 printf("Torus tweaking failed!\n");

 letter--; // put letter back for

tweaking

 api_rh_set_entity_rgb(ff,rgb_color(1));

 // ste colour to red
 }

 else
 {
 printf("Torus tweaking successful.\n");

 api_rh_set_entity_rgb(ff,rgb_color(3));

 // set colour to blue
 }

 api_apply_transf(block, move); // move

body block to origin

 api_change_body_trans(block,NULL); //

fully evaluate the transform

 SURFACE *ffs = ff->geometry();

 247

 torus const mtorussurf = (torus&) (ffs-

>equation()); // needed to identify the closed toroidal faces

 const SPAunit_vector mtorplane =

mtorussurf.uv_oridir; //location of uv start point

 const SPAunit_vector ntorplane =

torussurf.uv_oridir; // location of uv start point

 const SPAunit_vector tmtorplane =

mtorussurf.uv_oridir; //location of uv start point
 } // end if torus surface
 else
 {
 printf("Face type not defined. Tweaking not possible!\n");
 letter--;
 api_rh_set_entity_rgb(ff, rgb_color(4)); // change colour to

lightblue
 }
 //letter--;

//***
 letter++;
 index++;
 }

//********** Save file to ***

 api_change_body_trans(block,NULL);
 char DirName2[] = "C:/Users/Csaba/Documents/C++

Codes/ResultData/L3/Reference/"; // defines location for saving
 char *FilenameWhole2 = strcat(DirName2, Filename); // combines

location and Filename
 char *FilenameWholeOut = strcat(FilenameWhole2, ".sat"); // combines

FilenameWhole2 and .sat ending, removed w before .sat to eliminate
problems at later stages

 cout << "\n";
 cout << FilenameWholeOut << endl; // print out combined file name
 cout << "\n";
 save_ent(FilenameWholeOut, block); // function to save watermarked

part

//********** End Initialisation **

 api_terminate_healing(); // Termination of healing
 api_terminate_booleans(); // Termination of Boolean library
 api_terminate_local_ops(); // Termination of local operations

 248

 api_stop_modeller(); // Termination of modeller

//***

 return 0;
}

//***************** Restoring ***************************************

ENTITY *restore_ent(char *filename)
{ // Loads in a sat

file
 ENTITY *ent = NULL;
 FILE *fp = fopen(filename, "r");
 if (fp != NULL)
 {
 ENTITY_LIST restorelist;
 outcome check = api_restore_entity_list(fp,TRUE,restorelist);
 fclose(fp);
 if (!check.ok() || restorelist.count() < 1)
 {
 printf("Error reading file\n");
 exit(0);
 } // Assuming only one entity is restored
 else
 ent = restorelist[0];
 }
 else
 {
 printf("Unable to open file!\n");
 exit(0);
 }
 return ent;
}

//***************** FileInfo Saving **********************************

void save_ent(char *filename, ENTITY *ent)
{
 FileInfo info; // Create FileInfo Object
 info.set_product_id("Strathclyde"); // set info's data
 info.set_units(1.0); // Millimeters
 api_set_file_info(FileId | FileUnits, info); // Sets header info to be written to

sat file

 FILE *fp = fopen(filename, "w");
 if (fp != NULL)
 {

 249

 ENTITY_LIST *savelist = new ENTITY_LIST;
 savelist->add(ent);
 api_save_entity_list(fp,TRUE,*savelist);
 delete savelist;
 }
 else
 printf("Unable to open file!\n");
 fclose(fp);
}

//***************** EDGEs and LOOPs *******************************

int face_loops(FACE* f)
{
 ENTITY_LIST ll;
 api_get_loops(f,ll);
 return ll.count();
}

//***************** Check API functions ******************************

void check_result(outcome result, char *mess)
{
 if(!result.ok())
 {
 err_mess_type err_number=result.error_number();
 printf("Error in %s : %s\n",mess,find_err_mess(err_number));
 }
}

//***

// colour codes are: 0=black, 1=red, 2=green, 3=blue, 4=lightblue, 5=yellow, 6=pink,

7=white, 8=grey, 9=red

//******** Bug fix for torus ***********
// After the whole body has been moved (transformed) to the origin
// the original value of the "norm" vector (ie the plane of the torus
// has changed. So rotation about it only works if its alignment has not
// altered (as in the case of the x-axis, all other axes fail).
// So SOLUTION is to assign new variables to hold the new value of norm.
// the next two line simply repeat ealier operations to get an updated value of
// norm, called normR, after the transform.

 250

Appendix B PO-watermark Recovery Codes

//***
//
// PO-watermark Recovery.cpp
//
//***

#include <iostream>
#include "api.hxx" // Declares outcome class
#include <stdio.h> // Declares I/O fucntions, print functions
#include "cstrapi.hxx" // Declare construction APIs,
#include "kernapi.hxx" // Declares kernel APIs, start modeller API,
#include "body.hxx" // Declares topological class (BODY)
#include "debug.hxx" // Debug routines
#include "lists.hxx" // Declares ENTITI_LIST class,
#include "curve.hxx"
#include "curdef.hxx"
#include "allsurf.hxx" // Declares SURFACE classes
#include "bnd_crv.hxx"
#include "transf.hxx" // Declares the TRANSFORM class
#include "alltop.hxx"
#include "boolapi.hxx" // Declares Boolean APIs
#include "stchapi.hxx"
#include "lop_api.hxx"
#include "fileinfo.hxx" // Declares fileinfo class
#include "errorsys.hxx" // Declare error functions
#include "getbox.hxx"
#include "sphere.hxx"
#include "mprop.hxx"
#include "intrapi.hxx"
#include "geom_utl.hxx"
#include "acistol.hxx" // is_equal
#include <math.h>
#include <stdlib.h>
#include <string>

#define pi 3.1415926535897932384626433832795
using namespace std;

//***

ENTITY* restore_ent(char*); // Gets test BODY from file
void save_ent(char*, ENTITY*); // Function for writing BODY to file
int face_loops(FACE*); // Prints number of LOOPs
int face_edges(FACE*); // Prints number of EDGEs
void check_result(outcome result, char *mess); // Check API functions

 251

FACE *get_matching_face(FACE*f, ENTITY_LIST& listm, int& matches); //
Get the matching face

int align_matching_faces(FACE*, FACE*); // align matching faces

//********** Definition for rounding ***********************************

double round0(double value)
{
 if ((value - abs(value)) >= 0.5)
 return ceil(value);
 else
 return floor(value);
}

//***
//int main();
int main(int argc, char* argv[])
{
 char Filename[20];
 char FilenameCopy[20];
 string outstr("Embedded word = ");

//********** Initialisation **
 api_start_modeller(0); // Initializes the modeller
 api_initialize_local_ops(); // Initializes local operations
 api_initialize_booleans(); // Initializes the boolean library

 BODY* blockO = NULL; // Declare a pointer to a BODY object
 BODY* blockW = NULL; // Declare a pointer to a BODY object

//********** Load file ***

 // enter name
 cout << "Please enter file name (without .sat extension): ";
 cin >> Filename;

 // load original part
 char DirNameO[] = "C:/Users/Csaba/Documents/C++ Codes/TestData/L1/";
 char *FilenameWhole1 = strcat(DirNameO, Filename);
 cout << "\n";
 char *FilenameWholeO = strcat(FilenameWhole1, ".sat");
 cout << FilenameWholeO << endl;
 cout << "\n";
 blockO = (BODY*)restore_ent(FilenameWholeO);

 // load watermarked part
 char DirNameW[] = "C:/Users/Csaba/Documents/C++

Codes/ResultData/L1/Adding/";

 252

 char *FilenameWhole2 = strcat(DirNameW, Filename);
 cout << "\n";
 char *FilenameWholeW = strcat(FilenameWhole2, ".sat"); // removed

w before .sat to eliminate problems a later stages
 cout << FilenameWholeW << endl;
 cout << "\n";
 blockW = (BODY*)restore_ent(FilenameWholeW);

 // save check report
 char DirNameR[] = "C:/Users/Csaba/Documents/C++

Codes/ResultData/L1/Adding/";
 char *FilenameWhole3 = strcat(DirNameR, Filename);
 cout << "\n";
 char *FilenameWholeR = strcat(FilenameWhole3, "res.wmk");
 cout << FilenameWholeR << endl;
 cout << "\n";
 FILE* output = fopen(FilenameWholeR, "w");

//********** Face alignment **
 // HAD TO CHANGE THIS BECAUSE EVEN IDENTICAL OBJECT HAD

SLIGHTLY DIFFERENT VOLUMES AFTER
 // PARAMETERS HAVE BEEN REORIENTATED (EG 14.567345 !=

14.567999)!
 mass_props_options ops;
 ops.set_req_rel_accy(SPAresabs); //max accuracy
 mass_props massprops1; // mprop.hxx
 mass_props massprops2;

 api_body_mass_props(blockO, massprops1, &ops);
 api_body_mass_props(blockW, massprops2, &ops);

 double vol1int;
 double vol2int;
 double vol1 = modf(massprops1.get_volume(), &vol1int);
 double vol2 = modf(massprops2.get_volume(), &vol2int);

 double angp = (0); // extra
 const char* c_str(); // extra

 // should really round to 3 or 4 significant decimal places
 // but for now just compare the integer part of the volume values

// if (!is_equal(vol1int, vol2int))
// {
// printf("Original and watermarked bodies have different volumes, so

exiting \n");
// printf("Original vol = %10.6f, water vol = %10.6f \n",

massprops1.get_volume(), massprops2.get_volume());

 253

// exit(0);
// }
// else // ok these could be the same model because they have roughly the

same volume
 {
 printf("Volumes the same\n");

 fprintf(output, "\nAfter watermark reading: \n\n");

//********** Face separation ***

 // place ENTITYs in an entity list
 ENTITY_LIST faceListO; // original
 ENTITY_LIST faceListW; // watermarked M

 // create a faceList from the block and get first face
 api_get_faces(blockO, faceListO); // original
 api_get_faces(blockW, faceListW); // watermarked M

 int index = 0; // set start index to zero
 int limit = faceListO.count(); // set max limit = number of faces in

faceList
 while (index <limit)
 {
 FACE *ff = (FACE*)faceListO[index];
 int matchresult = 0;
 FACE *fm = get_matching_face(ff, faceListW, matchresult);

 // get the matching faces M
 printf("Number of matches = %d\n",matchresult);
 // matchresult = 1 if only one face matches, 0 if no faces

match, 2 if two faces match

 if (matchresult > 0 && fm != NULL)
 { // then at least one face could match,

 // so check alignment
 int alignresult = align_matching_faces(ff, fm);
 if (alignresult == 0)
 {
 index++; continue;
 } //not aligned, jump to end of loop and next face
 if (alignresult == 1)
 {
 printf("matching and aligned face found, now to

check para alignment\n");
 }
 SURFACE *fs = ff->geometry();
 SURFACE *fsm = fm->geometry();

 254

//***************** PLANE **

 if (fs->identity() == PLANE_TYPE && fsm-

>identity() == PLANE_TYPE)
 {
 printf("\nFace number %d is a plane.\n", index);
 //********** Get same vector for matching

face ************
 PLANE* cs = (PLANE*)fs; //cast pointer from

SURFACE to PLANE
 plane const planesurf = (plane&) (fs-

>equation());
 SPAvector norm = planesurf.normal;

 //new
 SPAvector u_dir = planesurf.u_deriv;

 //new
 PLANE* csm = (PLANE*)fsm; //cast pointer

from SURFACE to PLANE
 plane const planesurfm = (plane&) (fsm-

>equation());
 SPAvector normm = planesurfm.normal;

 //new
 SPAvector u_dirm = planesurfm.u_deriv;

 //new

 //********** Output of coordinates

 fprintf(output, "Plane: \n");
 fprintf(output, "Original face:

%10.6f,%10.6f,%10.6f \n", u_dir.x(),u_dir.y(),u_dir.z());
 fprintf(output, "Watermarked face:

%10.6f,%10.6f,%10.6f \n", u_dirm.x(),u_dirm.y(),u_dirm.z());

 //********** Calculate angle between u_dir

and u_dirm *****
 double angp = angle_between(u_dir, u_dirm);

 // in radians

 //********** Output of angle

 fprintf(output, "Angle difference: %10.6f \n",

angp);

 //********** Conversion to decimal/text

 //int x = 0;

 255

 fprintf(output, "Decimal value is: %10.0f \n",
round0(angp/pi*180));

 fprintf(output, "Text value is: %c \n",
(char)round0(angp/pi*180));

 if (round0(angp/pi*180) != 0)
 {
 char l =(char)round0(angp/pi*180);
 outstr = outstr + l;
 }
 cout<< "wOutput" << outstr << endl;

 fprintf(output, "Watermark = %s \n\n",

outstr.c_str());
 } // end if planar

//***************** CONE ***

 else if (fs->identity() == CONE_TYPE && fsm-

>identity() == CONE_TYPE)
 {
 printf("\nFace number %d is a cone.\n", index);
 //********** Get same vector for matching

faces ***********
 CONE* cs = (CONE*)fs; //cast pointer from

SURFACE to CONE
 SPAvector major = cs->major_axis();
 SPAunit_vector minor = major.orthogonal();
 SPAunit_vector majorv = normalise(major); //

for angle calculation
 cone const conesurf = (cone&) (fs->equation());

 CONE* csm = (CONE*)fsm; // cast

pointer from SURFACE to CONE
 SPAvector majorm = csm->major_axis();
 SPAunit_vector minorm =

majorm.orthogonal();
 SPAunit_vector majorvm = normalise(majorm);

// for angle calculation
 cone const conesurfm = (cone&)(fsm-

>equation());

 //********** Output of coordinates

 fprintf(output, "Cone: \n");
 // need to identify the closed conical faces
 if ((conesurf.closed_v() || conesurf.closed_u())

&& face_loops(ff) >1) // if face is a closed cylinder

 256

 {
 fprintf(output, "Original face:

%10.6f,%10.6f,%10.6f \n", major.x(),major.y(),major.z());
 } // end if closed

 if ((conesurfm.closed_v() ||

conesurfm.closed_u()) && face_loops(fm) >1)
 {
 fprintf(output, "Watermarked face:

%10.6f,%10.6f,%10.6f \n", majorm.x(),majorm.y(),majorm.z());
 } // end if closed
 else
 fprintf(output, "Face not closed conical!

\n");

 //********** Calculate angle between majorv

and majorvm ***
 double angc = angle_between(majorv,

majorvm); // in radians

 //********** Output of angle

 fprintf(output, "Angle difference: %10.6f \n",

angc); // fprintf is output in wmk file

 //********** Conversion to text

 fprintf(output, "Decimal value is: %10.0f \n",

round0(angc/pi*180));
 fprintf(output, "Text value is: %c \n",

(char)round0(angc/pi*180));

 if (round0(angc/pi*180) != 0)
 {
 char l =(char)round0(angc/pi*180);
 outstr = outstr + l;
 }
 cout<< "wOutput" << outstr << endl;

 fprintf(output, "Watermark = %s \n\n",

outstr.c_str());

 } // end if closed cone

//***************** SPHERE ***************************************

 else if (fs->identity() == SPHERE_TYPE && fsm-

>identity() == SPHERE_TYPE)

 257

 {
 printf("\nFace number %d is a sphere.\n",

index);
 //********** Get same vector for matching

faces ***********
 SPHERE* cs = (SPHERE*)fs; //

casts a pointer from SURFACE to SPHERE
 sphere const spheresurf = (sphere&) (fs-

>equation()); // get the lover case surface object
 SPAunit_vector tafterort = spheresurf.uv_oridir;
 SPAunit_vector torn = spheresurf.uv_oridir;

 // direction from the centre of the sphere to the origin of parameter
space

 SPHERE* csm = (SPHERE*)fsm; //

casts a pointer from SURFACE to SPHERE
 sphere const spheresurfm = (sphere&) (fsm-

>equation()); // get the lover case surface object
 SPAunit_vector tafterortm =

spheresurfm.uv_oridir;
 SPAunit_vector tornm = spheresurfm.uv_oridir;

 // direction from the centre of the sphere to the origin of parameter
space

 //********** Output of coordinates

 fprintf(output, "Sphere: \n");
 fprintf(output, "Original face:

%10.6f,%10.6f,%10.6f \n", tafterort.x(),tafterort.y(),tafterort.z());
 fprintf(output, "Watermarked face:

%10.6f,%10.6f,%10.6f \n", tafterortm.x(),tafterortm.y(),tafterortm.z());

 //********** Calculate angle between tafterort

and tafterortm
 double angs = angle_between(tafterort,

tafterortm); // in radians

 //********** Output of angle

 fprintf(output, "Angle difference: %10.6f \n",

angs);

 //********** Conversion to text

 fprintf(output, "Decimal value is: %10.0f \n",

round0(angs/pi*180));
 fprintf(output, "Text value is: %c \n",

(char)round0(angs/pi*180));

 258

 if (round0(angs/pi*180) != 0)
 {
 char l =(char)round0(angs/pi*180);
 outstr = outstr + l;
 }
 cout<< "wOutput = " << outstr << endl;

 fprintf(output, "Watermark = %s \n\n",

outstr.c_str());
 } // end if sphere

//***************** TORUS **

 else if (fs->identity() == TORUS_TYPE && fsm-

>identity() == TORUS_TYPE)
 {
 printf("\nFace number %d is a torus.\n", index);
 //********** Get same vector for matching

faces ***********
 TORUS* cs = (TORUS*)fs; // Cast pointer

from SURFACE to TORUS
 torus const torussurf = (torus&) (fs-

>equation()); // needed to identify the closed toroidal faces
 const SPAunit_vector ntorplane =

torussurf.uv_oridir; // location of uv start point

 TORUS* csm = (TORUS*)fsm; // Cast

pointer from SURFACE to TORUS
 torus const torussurfm = (torus&) (fsm-

>equation()); // needed to identify the closed toroidal faces
 const SPAunit_vector ntorplanem =

torussurfm.uv_oridir; // location of uv start point

 //********** Output of coordinates

 fprintf(output, "Torus: \n");
 fprintf(output, "Original face:

%10.6f,%10.6f,%10.6f \n", ntorplane.x(),ntorplane.y(),ntorplane.z());
 fprintf(output, "Watermarked face:

%10.6f,%10.6f,%10.6f \n", ntorplanem.x(),ntorplanem.y(),ntorplanem.z());

 //********** Calculate angle between

ntorplane and ntorplanem
 double angt = angle_between(ntorplane,

ntorplanem); // in radians

 259

 //********** Output of angle

 fprintf(output, "Angle difference: %10.6f \n",
angt);

 //********** Conversion to text

 fprintf(output, "Decimal value is: %10.0f \n",

round0(angt/pi*180));
 fprintf(output, "Text value is: %c \n",

(char)round0(angt/pi*180));

 if (round0(angt/pi*180) != 0)
 {
 char l =(char)round0(angt/pi*180);
 outstr = outstr + l;
 }
 cout<< "wOutput = " << outstr << endl;

 fprintf(output, "Watermark = %s \n\n",

outstr.c_str());

 } // end if torus

//***

 }
 else
 {
 fprintf(output, "No matching faces. Reading not

possible!\n\n");
 }
 index++;
 }
 if(round0(angp/pi*180) >= 0)
 {
 char l =(char)round0(angp/pi*180);
 outstr = outstr + l;
 }
 cout<< "wOutput = " << outstr << endl;
 fprintf(output, "Output = %s \n", outstr.c_str());

 }

//********** Debug file ***

 fprintf(output, "\n");
 fprintf(output, "Debug file of original model: \n");

 260

 debug_size(blockO, output); // original
 fprintf(output, "\n");
 fprintf(output, "Debug file of watermarked model: \n");
 debug_size(blockW, output); // watermarked
 fclose(output);

//********** End Initialisation **

 api_terminate_booleans();
 api_terminate_local_ops();
 api_stop_modeller();

//***

 return 0;
}

//***************** Restoring ***************************************

ENTITY *restore_ent(char *filename) // Load the file from the sat file
{ // Loads in a sat file
 ENTITY *ent = NULL;
 FILE *fp = fopen(filename, "r");

 if (fp != NULL)
 {
 ENTITY_LIST restorelist;
 outcome check = api_restore_entity_list(fp,TRUE,restorelist);
 fclose(fp);

 if (!check.ok() || restorelist.count() < 1)
 {
 printf("Error reading file\n");
 exit(0);
 } // Assuming only one entity is restored

 else
 ent = restorelist[0];
 }

 else
 {
 printf("Unable to open file!\n");
 exit(0);
 }

 return ent;
}

 261

//***************** FileInfo Saving **********************************

void save_ent(char *filename, ENTITY *ent)
{
 FileInfo info; // Create FileInfo Object
 info.set_product_id("Salamon"); // set info's data

 info.set_units(1.0); // Millimeters

 // Sets header info to be written to sat file
 api_set_file_info(FileId | FileUnits, info);

 FILE *fp = fopen(filename, "w");

 if (fp != NULL)
 {
 ENTITY_LIST *savelist = new ENTITY_LIST;
 savelist->add(ent);
 api_save_entity_list(fp,TRUE,*savelist);
 delete savelist;
 }
 else
 printf("Unable to open file!\n");
 fclose(fp);
}

//***************** Counts number of LOOPs **************************

int face_loops(FACE* f)
{
 ENTITY_LIST ll;
 api_get_loops(f,ll);
 return ll.count();
}

//***************** Check API functions ******************************

void check_result(outcome result, char *mess)
{
 if(!result.ok())
 {
 err_mess_type err_number=result.error_number();
 printf("Error in %s : %s\n",mess,find_err_mess(err_number));
 }
}

//***************** Counts number of EDGES **************************

 262

int face_edges(FACE* f)
{
 ENTITY_LIST ll;
 api_get_edges(f,ll);
 return ll.count();
}

//**

FACE *get_matching_face(FACE *ff, ENTITY_LIST &faceListW, int& matches)

 //M
{
 // THIS FIRST VERSION ONLY RETURNS ONE MATCHING FACE,

LATER VERSIONS NEED TO RETURN A LIST
 // OF MATCHING FACES AND THEN USE ALIGNMENT FUNCTION

TO IDENTIFY THE CORRECT ONE!
 // BUT FOR NOW ALTHOUGH ONLY ONE FACE IS IDENTIFIED IT IS

A START !

 int length = faceListW.count(); // number of matches M

 // declare face parameter variable of target face
 double area = 0;
 int edgeCount = 0;
 int loopCount = 0;
 FACE *fm = NULL;

 // get values for face parameter of target face
 double acacho = 0;
 api_ent_area ((ENTITY*)ff, 0.01, area, acacho); // cstrapi.hxx
 edgeCount = face_edges(ff);
 loopCount = face_loops(ff);

 for (int c = 0; c < length; c++)
 {
 FACE *ft = (FACE*)faceListW[c]; // get face out of list M

 // declare face parameter variable of candidate face
 double areaT = 0;
 int edgeCountT = 0;
 int loopCountT = 0;

 // get values for face parameter of candidate face
 double acach = 0; // api_ent_area accuracy

 api_ent_area((ENTITY*)ft, 0.01, areaT, acach); //cstrapi.hxx

 263

 edgeCountT = face_edges(ft);
 loopCountT = face_loops(ft);

 // test for match

 if (is_equal(area, areaT) && ff->identity() == ft->identity() &&

edgeCount == edgeCountT && loopCount == loopCountT)
 {

 int distflag=0;
 distflag = align_matching_faces(ft,ff);
 printf("Distance matching flag is %d\n", distflag);
 if (distflag == 1)
 {
 fm = ft;
 matches++;
 };
 }
 } // end for

 return fm;
}

//***

int align_matching_faces(FACE *ff, FACE *fm)
{
 SPAposition pff;
 SPAposition pfm;
 double dist = 100000; // distance between faces

 SPAbox b1 = get_face_box(ff);
 SPAbox b2 = get_face_box(fm);

 SPAposition b1c = b1.mid();
 SPAposition b2c = b2.mid();

 if (is_equal(b1c,b2c))
 return 1; //it is a match
 else
 return 0; //it is too far away to be a match without re-orientation

}

 264

Appendix C Test-Result Data for L2 and L3 Test Objects

Level 2 Test Data

Table C0.1 Watermarking success rate for Level 2 test objects

 265

Table C0.2 Level 2 test objects after data handling (or unintentional) attacks

Table C0.3 Level 2 test objects after geometrical modification (or intentional) attacks

 266

Table C0.4 Level 2 watermark survival rate after data handling (or unintentional) attacks

Table C0.5 Level 2 watermark survival rate after geometrical modification (or intentional) attacks

 267

Level 3 Test Data

Table C0.6 Watermarking success rate for Level 3 test objects

Table C0.7 Results for Level 3 test objects after data handling (or unintentional) attacks

 268

Table C0.8 Results of Level 3 test objects after geometrical modification (or intentional) attacks

Table C0.9 Level 3 watermark survival rate after data handling (or unintentional) attacks

 269

Table C0.10 Level 3 watermark survival rate after geometrical modification (or intentional) attacks

 270

Appendix D Summary of Survey Results

The KIM survey investigated how companies use CAD systems and what their

requirements are regarding watermarking systems.

Use of CAD systems

Companies tended to use several CAD systems simultaneously. The most common

systems were AutoCAD, followed by Catia and ProEngineer. CAD models and

design data were most frequently stored as .dwg/.dxf and .asm/.prt files. Other file

extensions like .model/.dlv./.exp, .iges/.igs or .step were also used. One company

stored data centrally, one in distributed systems and the third used both methods.

Two companies possessed more than 250,000 3D-CAD models, and the third had

more than 100,000 but less than 250,000 of these models. The average size of a 3D-

CAD model was between 1-50 MB in two cases and between 100-250 MB for the

third.

CAD data is sent frequently (daily or at least every 2-3 days) to subcontractors or

customers. To facilitate the sending of data, one company uses ZIP compression and

one PDF conversions.

In all surveyed companies, engineers are allowed to copy and rename existing CAD

models, and make changes to the existing model. Common modifications include

revision of fixings, design modifications, and feature changes.

Watermarking requirements

None of the surveyed companies had any prior experience with watermarking

systems. The companies saw the main use of watermarking for identifying

 271

ownership, copyright and the original data source but also for monitoring access.

Tracking lost data and storing product information were considered the least

important applications of watermarking. Companies were particularly interested in

storing text and numbers with the help of watermarking. All companies wanted to

see the watermarked information displayed in front of the model. Respondents

perceived watermarking to be most useful when sending models to subcontractors or

storing models in a database. Other applications like selling or data reuse were

considered less important.

The single most important requirement for a watermarking scheme was the ability to

survive modifications of the original model. Other requirements like robustness, non-

interference with the model’s capabilities and detectability by authorised sources

were also considered important.

 272

Summary of Questionnaire Results

Number of completed questionnaires: 3
Response rate: 33%

1. What kind of CAD system/s are you using at your company? Please tick all

that apply.

AutoCAD 311 IronCAD • Solid Edge •
Catia V4/V5 2 Mechanical Desktop 1 Solid Works •
CADKEY • Microstation • Think Design •
I-Deas 1 Pro/ENGINEER 2 Unigraphics 1
Rhino-3D • Autodesk Inventor •
Other: CADDS5, CADCAM, STHEN02D

2. In what form are the data/models stored at you company?

CAD Format File Extensions
ACIS SAT .sat •
Autodesk Inventor .ipt, .iam •
CATIA .model, .dlv, .exp 1
DWG/DXF .dwg, .dxf 2
IGES .iges, .igs 1
Parasolid .x_t •
Pro/Engineer .asm, .prt 2
PRO/DESKTOP .des •
Rhino-3D/Open NURBS .3dm •
SolidEdge .asm, .prt •
SolidWorks .sldprt, .sldasm •
STEP .step 1
VDA-FS .vda •
Alias .wire •
IronCAD .ics •
Raindrop Geomagic .wrp •
Other: CADDS5 (no extension – UNIX-based), UG .prt, CATIA 5 .catpart etc,
IDEAS, CADAM native format ‘nurestor’, .tif

3. What kind of data needs to be watermarked? Please tick all that apply.

Word documents •
Text any kind •
Documentations •
2D CAD drawings 1
3D CAD models 2

11 Figure indicates how often item was ticked.

 273

Other: _____________________________________

4. What kind of information is meant to be hidden with the help of

watermarking?

Text, Numbers 2
Image, Logo •
Other: _____________________________________

5. How and where should the watermark information be presented?

In front of the model (see image) 2
In a separate dialog window •
On call/separate function •
CAD system Plug-in •
Other: _____________________________________

6. Please rank the importance of watermarking for your purpose.
(1 = very important, 5 = not important)

Identify the source, owner, creator and distributor 1___
Identify the original data 3___2
Copyright notification 1___
Prevent or avoid theft or illegal use 3___
Restrict or regulate access to the (original) data 4___1
Monitor the distribution of data 4___2
Track lost data 5___
Use it as evidence in the court 3___
Add product/project/component information 4___
Other: _____________________________________

7. Which characteristic should the watermark have?

General 2 (the same identifier pattern for each data be watermarked)
Fingerprint • (unique identifier of each individual item, but a database is
needed for storage of these fingerprints)

8. Please rank the requirements which need to be met by the watermark.
(1 = very important, 5 = not important)

Difficult or impossible to remove 2
Watermark must survive modifications 1
Should not interfere or influence the models capabilities 2
Readily detectable by the proper authorities 2
Other: _______________________________________

 274

9. Please rank the application of the watermarked data.
(1 = very important, 5 = not important)

Stored in a database 2___
Used by subcontractors 1___
For sale 4___
Reuse data 5___
Other: To mark the approval status of drawings

10. Is the CAD data at you company stored in a central database or distributed

to several databases in different departments?

Central database 2
Distributed systems 2
Other: _______________________________________

11. How many 3D-CAD models do you have at your company?

less than 10,000 10,00 to 50,000 50,000 to 100,000 100,000 to 250,000 more than 250,000
 • • • 1 2

12. What is the average size of a 3D-CAD model at your company?

up to 500 KB 500-1000 KB 1-50 MB 50-100 MB 100-250 MB 250-500 MB more than 500 MB

 • • 2 • 1 • •

13. What is the percentage of planar and cylindrical surfaces at your CAD

models?

planar: up to 10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% more than 80%
cylindrical: up to 10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% more than 80%

14. How often do you send out CAD data to subcontractors or for sale, and to

what percentage?
up to 10% 10-20% 20-30% 30-40% 40-50% more than 50%

every day 2 • • • • •
every 2–3 days • 1 • • • •
every 4-6 days • 1 • • • •
once a week • 1 • • • •
less frequent 1 • • • • •

15. For data and information exchange do you use data compression to limit file

sizes?

No use of data/information compression 1
Use of ZIP compression/decompression 1
Use of PDF file format 1
Other: _____________________________________

 275

16. For data and information exchange do you use any kind of coding?

No 1
Yes 2
If yes, please state the kind of coding you use: IGES, STEP, STL

17. Are engineers allowed to copy and rename existing CAD models and

components?

Yes 3 No •

18. If your engineers are allowed to reuse existing CAD models, what are the

common modifications?

Blending of holes and edges •
Remove parts of the model •
Adding new holes and parts 1
Other: Changed aerofoils, revised fixings, coatings, manufacturing alleviations etc.,
to create new parts or designs or modify existing parts or design, change of several
features

19. Do you have any experience with one or more of the following Digital Rights

management (DRM) technologies? Please tick all that apply.

Encrypting • Marking •
Watermarking • Fingerprinting •
Steganography • Labelling •
Digital Signature • Digital Object Identifier (DOI) •
Message Digest • Illustration Watermarking •
Other: _____________________________________

No experience at all 2

20. What do you expect from digital watermarking of 3D CAD data?

Visible mark of data to identify release status or lack of: e.g. “NOT FOR
MANUFACTURE” on a model that has not been fully approved

21. Could you provide us with real world CAD data for watermark testing?

Yes • No 2

If yes, please insert here your or the relevant person’s e-mail address:

