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Abstract 

 

Cortical bone is a natural composite, heterogeneous material with a complex 

hierarchical microstructure. The description of this microstructure in terms of the 

mechanical properties of cortical bone may be important in the understanding of 

periprosthetic stress concentrations. Micropolar elasticity is a higher order continuum 

theory which may more effectively describe the influence of the microstructure in 

cortical bone on its mechanical behaviour. Micropolar elasticity predicts a size effect 

in three-point bending, which has been investigated computationally and 

experimentally on bovine mid-diaphyseal cortical bone. Computational models of an 

idealised heterogeneous material, with vascular canal-like structures running along 

the length of the beam, demonstrated a size effect in the longitudinal and transverse 

directions which was dependent on the surface condition of the beam. Idealised 

models with smooth surface layers increased in stiffness as specimens decreased in 

size, whilst idealised model beams intersected by the internal microstructure 

demonstrated an equally strong, yet opposite, effect. These FE size effects were 

further corroborated by analytical studies which demonstrated similar size effects. 

Experimental three-point bending studies of bovine cortical bone specimens 

orientated both longitudinally and transversely were consistent with the equivalent 

numerical models where the internal microstructure intersected the surface. These 

results suggest the micropolar characteristic length in bending is of the order of the 

size of the Haversian canal system in secondary osteons and the vascular channels in 

plexiform cortical bone. The ramifications of this are that the microstructure of 

cortical bone is of fundamental importance in understanding size effects and stress 

concentrations in the material. This finding is important in understanding and 

developing the design and longevity of prosthetic devices and in being able to 

improve the interaction between an implant and the surrounding cortical bone.   
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1 Introduction 

1.1 Background and rationale 

Cortical bone is a material with a complex hierarchical microstructure characterised 

by fibrous, porous and particulate features. It is thought that the microstructure has 

an important influence on the macroscale behaviour of cortical bone and should be 

considered mechanically and physiologically important (Sevostianov & Kachanov 

2000; Ghanbari & Naghdabadi 2009; Hoc et al. 2006; Hogan 1992). Vascular 

channels such as associated with primary and secondary osteons are a microstructural 

feature which innervate and enable the flow of blood through cortical bone. The 

importance of these channels, if any, in the mechanical behaviour of cortical bone is 

not well understood. Moreover, there is significant evidence that the microstructure 

associated with porous features such as vascular channels may have contributing 

influences to the stress concentrations and stress shielding around implants (Bauer & 

Schils 1999; Abdel-Wahab et al. 2011; Sevostianov & Kachanov 2000). The design 

and integration of an implant with bone and understanding the bone prosthesis 

interface are important areas in prosthetic design. A better understanding of this 

interaction will enable more effective implants to be designed in the future  

Currently classical elasticity is the most common material model used to describe 

and predict the behaviour of cortical bone. However, unless a geometrical model 

which includes all aspects of the microstructural morphology is created classical 

elasticity will not account for all of the microstructural detail of a heterogeneous 

material. Therefore, perhaps a more general continuum theory which more accurately 

accounts for the microstructural detail of cortical bone would be a more appropriate 

continuum model for describing the material. Micropolar elasticity is a higher order 

continuum theory which, in addition to the direct stresses of classical elasticity, 

includes a couple stress in the formulation. The effect of this is to add four additional 

material constants. This thesis investigates whether this additional description in the 

continuum formulation may better describe the microstructural complexity of 

heterogeneous materials such as cortical bone.  
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By modelling the behaviour of micropolar materials numerically and analytically 

through the creation of idealised analogues a better understanding of the relationship 

between the microstructure and macroscale material properties will hopefully be 

determined. Furthermore, by validating the numerical results with experiments on 

cortical bone it is hoped that a general impression of the potential micropolar 

behaviour of cortical bone can be created. This, in turn, will allow the future design 

of implants and prosthetic devices to be carried out with a more accurate and precise 

consideration for the influence of the microstructure on the general material 

behaviour.  

1.2 Aims and objectives 

The aims and objectives of this research project are: 

 To model the behaviour of micropolar materials numerically using the finite 

element method (FEM) by creating an idealised heterogeneous material of a 

regular array of voids through a homogeneous matrix material. This will be 

achieved by creating a FE model and defining the material behaviour in axial 

and three-point bending simulations of various void sizes and arrangements. 

 To complement the FEM computational study with an analytical study of 

similar geometrical models for materials with regular void patterns and 

laminated materials with heterogeneous material properties. 

 To validate the numerical models with three-point bending experiments on 

cortical bone. This will be achieved by defining a robust experimental 

protocol and by carrying out experiments on bovine cortical bone specimens. 

The results of these experiments may then be compared to the numerical 

findings. 

 Relate the size effects produced by the numerical models with those 

experimentally observed to provide the micropolar material properties of 

micropolar characteristic length and micropolar Young’s modulus for cortical 

bone. 

 Advance the knowledge in both the numerical and experimental techniques in 

characterising micropolar material behaviour. 
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2 Literature Review 

2.1 Bone Morphology 

Bone is a complex composite material with varying degrees of hierarchical 

microstructure. The microstructure may be distinctly described at various length 

scales (Figure 1). In the most general sense a long bone may be categorised into two 

materials: cortical and cancellous bone. Within each of these types of bone there are 

unique forms of microstructure. In developed adult human cortical bone there is a 

network of vascular channels called Haversian canals which innervated and supply 

blood flow and nutrients to the osteocytes in the bone. Surrounding the Haversian 

canals are osteons: cylindrical structures consisting of lamellar layers of bone 

mineral and collagen fibres. At a lower length scale there are smaller channels within 

bone called canaliculi which link and intertwine between the lamellar layers of the 

osteons and allow adequate metabolite transfer to all locations in the bone. At the 

molecular level cortical bone is considered a composite material of two main phases: 

collagen and hydroxyapatite. This arrangement allows both strength and toughness in 

the material. 

This study primarily focuses as an investigation into the material properties of 

cortical bone, however to give a background into the construction of long bones a 

brief section over-viewing the structural make-up of cancellous bone has been 

included. Cancellous or spongy bone is found at the ends of long bones. It is 

characterised by strut-like structures called trabeculae which are constructed from a 

collagen and hydroxyapatite composite and align themselves in an optimal 

arrangement for the loading conditions of the bone. Cancellous bone is a markedly 

heterogeneous material and is readily remodelled. The structural differences between 

cancellous and cortical bone mean that a material description of cancellous bone is 

significantly different than that of cortical bone.  
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Figure 1 – Microstructure of the Haversian system in cortical bone. 

2.1.1 Cortical bone microstructure 

Cortical bone is the dense bone region found around the circumference of a long 

bone. The microstructure of cortical bone is organised in such a manner as to 

maximise the load bearing properties of the material, and moreover, is unique and 

adaptive to the loading environment of each bone. Secondary osteons are the primary 

microstructural feature of mature adult cortical bone (Figure 1). They are cylindrical 

structures made up of concentric lamellar layers. At the centre of the osteon is a 

vascular channel known as a Haversian canal. The Haversian canal is the main 

contributor to the porosity of cortical bone and typically contributes a porosity of 

between 7-14% in the material (Bayraktar et al. 2004). Haversian canals perform the 

function of vascularisation of the material which allows the transportation of 

nutrients to the osteocytes in cortical bone which need to be within 250μm of a 

vascular channel in order to access diffused nutrients. Osteons and Haversian canals 

vary in size depending on the region of the bone. Typically osteons are in the region 

of 300μm in diameter and a few millimetres in length (Pazzaglia et al. 2009; Black et 

al. 1974). Haversian canals are typically in the region of 50μm in diameter (Black et 

al. 1974; Pazzaglia et al. 2009). Osteons are aligned along the lines of greatest stress 
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through a long bone. For example, in the mid-diaphysis region of a long bone 

osteons will be aligned longitudinally along the bone because this is the direction in 

which the majority of stresses act in this location. Moreover, there are limited 

transverse stresses acting across a long bone in the mid-diaphysis, therefore osteons 

tend not to be orientated transversely in this region. On the other hand, at the 

epiphysis of a long bone osteons are typically aligned to be perpendicular with the 

surface of the bone, this is particularly noticeable around the ball of a femur (Rho et 

al. 1997; Cowin 1989). A consequence of this is that the regions of greatest 

anisotropy in cortical bone are in the mid-diaphysis where the longitudinal Young’s 

modulus is significantly higher than the transverse Young’s modulus. Longitudinally 

aligned Haversian canals are connected through horizontal channels called 

Volkmann’s canals. There are significantly fewer Volkmann canals than Haversian 

canals and their primary function is to aid the communication between neighbouring 

osteons. 

Because of the dynamic nature of cortical bone and its continuous regeneration it is 

common for osteonal bone to be categorised according to its formation. Typically 

there are three types of osteonal bone divided into plexiform bone, secondary osteons 

and interstitial bone. Plexiform bone, which is constructed from primary osteons, is 

the material created by the rapid growth of new cortical bone and is found in younger 

bones and higher quantities in the long bones of quadrupeds (Mayya et al. 2013). 

Primary osteons follow a similar structure to that of a typical secondary osteon with a 

central vascular channel and lamellar rings concentrically aligned around the centre. 

However, the distinction between plexiform bone and secondary osteons is not 

purely semantic because primary osteons are generally not found in remodelled bone 

and are typically found to be a more compliant material with a higher degree of 

orthotropy (Cowin 1989). As bone ages and develops osteons are continually being 

created and destroyed in an ongoing remodelling process which adapts to the subtle 

changes in loading over time. When a new osteon is created by the boring out of a 

Haversian canal by an osteoclast, creating a secondary osteon, there will typically be 

a region of bone where an older osteon has been remodelled. This results in the 

region between cylindrical osteons being densely packed with the remainders of 

previous osteons. This region is known as interstitial bone. Nano-indentation studies 
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have shown that interstitial bone is a harder, more mineralised material than primary 

osteons (Zhang et al. 2008; Rho et al. 2002) with a slightly higher Young’s modulus. 

Around the outside of an osteon there is a thin layer known as a cement line. This 

region is commonly considered to be a demineralised region and is thought to be 

important in the control of microcracking and crack propagation through cortical 

bone. However, a study has suggested that cement lines are in fact a hyper-

mineralized region and that this has an equally important role in controlling the 

propagation of microcracks through the material (Norman & Wang 1997; Najafi et 

al. 2007). 

Secondary osteons are created by osteocytes as they remodel primary osteons into a 

microstructure which is better adapted to the unique loading conditions of that 

particular bone. They are constructed from concentric lamellae around the Haversian 

canal. The formation of the lamellar layers by osteoblasts reveals another layer of 

heterogeneity in cortical bone. The orientation of lamellae alternates between layers, 

in a similar structure to that of a plywood layered composite material. Within the 

lamellae layers there is a collagen-hydroxyapatite composite. The orientation of the 

collagen fibres in each lamellae is reversed between each layer (Bala et al. 2011; Rho 

et al. 1997; Akiva et al. 1998). This ultimately creates a strong and versatile 

composite structure within each osteon. Sandwiched between each lamellar layer are 

small pockets called lacunae. These small holes are the location of cortical bone 

where osteocytes are found. Lacunae contribute to the overall porosity of cortical 

bone and are an order of magnitude smaller than Haversian canals, so they can be 

thought of as another layer of heterogeneity below the microscale, within an osteon 

itself. Connecting each lacunae and between each lamellae there are small channels 

called canaliculi which are again an order of magnitude smaller than the Haversian 

system and their primary function is to aid intra-Osteon communication.  

The fundamental building block of cortical bone is a composite of the organic phase: 

type I collagen; and the mineral phase: hydroxyapatite. The combination of these 

molecular structures enables bone to have longitudinal strength and toughness. These 

two phases are arranged with the apatite binding around a collagen fibril. The 

collagen-apatite fibres are arranged in parallel with one another which, once built up 
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and compounded, create a lamellar layer in the osteon. The fundamental composite 

nature of cortical bone has led to structural analogies with composite materials 

(Najafi et al. 2009; Pidaparti & Chandran 1996; Belanche et al. 2011).  

Cortical bone is a complex material. The combination of each of the levels of 

microstructure, from the molecular collagen-hydroxyapatite composite structure, to 

the intra-osteon detail of the canaliculi and lacunae microstructure and the lamellar 

layers surrounding each osteon, to the inter-osteon detail of the Haversian canal 

system and the distinctions between osteonal and interstitial bone suggests that to 

generalise such a material will exclude much of the detail which may be fundamental 

to its behaviour. Considering this, is it viable to describe such a material using 

classical elasticity when a main assumption of this theory is to assume the material 

behaves as a homogeneous continuum? The research hypothesis of this thesis is that 

a continuum theory which accounts for some of the microstructural detail would 

produce a more accurate description of cortical bone (Fatemi et al. 2002).  

2.1.2 Cortical bone mechanical properties 

The mineral and organic phases of cortical bone have a fundamental importance on 

the mechanical properties of the material. Unsurprisingly when the mineral content is 

reduced the stiffness of the material is noted to decrease (Burstein et al. 1975; 

Hasegawa et al. 1994). As the mineral content is increased in cortical bone the 

Young’s modulus increases rapidly (Currey 1969). Yield stress and ultimate tensile 

stress have also been found to be markedly influenced by the mineralisation and the 

strain rate, where higher strain rates increase the stiffness of cortical bone (Currey 

1975). 

Cortical bone is often assumed to be either transversely isotropic, or orthotropic 

(mechanical properties are different in three orthogonal directions), but the 

assumption of transverse isotropy is not always sufficiently general (Cowin 1989). 

Using ultrasonic wave propagation measurements, the elastic stiffness coefficients 

were calculated for the human femur (Katz & Yoon 1984); Haversian bone was 

found to be transversely isotropic, whilst plexiform was more orthotropic in 

mechanical characteristics. The distinction between Haversian and plexiform bone is 

important in the interpretation of experiments on cortical bone as a specimen with a 
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higher degree of plexiform bone may exhibit different material properties compared 

with a specimen with a fully developed secondary osteon system. In quadrupeds it 

has been observed that there is a higher degree of plexiform bone in load bearing 

regions where rapid bone growths occurs (Mayya et al. 2013). The porosity of 

cortical bone has a strong influence of the measured material Young’s modulus 

(Currey 1988). It has been observed that where the porosity of the Haversian system 

is factored out of the material properties by performing a regression analysis on axial 

loading results there was no influence on the material properties from the overall 

material porosity (Bayraktar et al. 2004). This suggests that the main contributing 

microstructural feature producing the anisotropy in cortical bone is the vascular 

channels in the material. Ultrasound techniques have been used to define the material 

stiffness and mineral content of cortical bone (Yamato et al. 2006) and suggest that a 

fully developed Haversian system exhibits orthotropic properties where the 

transverse radial and circumferential Young’s moduli are of similar magnitudes (10-

14GPa) and the longitudinal modulus is significantly higher (18-20GPa) (Buskirk & 

Rice 1982). The orientation of collagen fibres has been related to the observed 

material properties of equine cortical bone (Martin et al. 1996) and three-point 

bending experiments have suggested that the organisation of the collagen fibres may 

be related to the localised stresses within the material and are linked to the porosity 

and mineral content which allow cortical bone to function more effectively 

depending upon the unique loading conditions (Martin & Boardman 1993). Nano-

indentation further highlighted the importance of localised material properties where 

a dependence upon the individual lamellae which may exhibit different material 

properties within the same osteon (Zysset et al. 1999). 

The viscoelastic nature of cortical bone has been investigated by experimentally 

analysing stress relaxation in the material and relating this to the water content 

(Sasaki & Enyo 1995). It was found that water content has a fundamental importance 

on the viscoelastic nature of the material. Because of the viscoelastic properties of 

cortical bone ultrasonic tests will tend to induce higher strain rates which will be 

below the relaxation times associated with viscoelastic effects (Lees et al. 1979). The 

result of this is that the material properties observed from ultrasound tests will reveal 

the upper bound of the elastic modulus. Where the strain rate is reduced a lower 
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Young’s modulus may be observed (Currey 1975). Furthermore, where the mineral 

content has been reduced due to specimen storage in saline solution it has been 

observed that the relaxation rate is significantly reduced compared to specimens 

stored in a Ca
2+

 solution (Sasaki et al. 2008). This again, highlights the importance in 

maintaining mineral content in cortical bone in order to produce reliable observed 

material properties. There is an important inter-relationship between the nature of 

microcracking in cortical bone and the viscoelastic properties of the material. Size 

effects in viscoelastic effects have been observed and have been attributed to the 

viscoelastic interfaces between lamellar layers in osteons (Buechner & Lakes 2003). 

This suggests that it is important to maintain consistency in the experimental 

protocol where elastic size effects are being investigated so as to avoid overlapping 

effects being observed. Viscoelastic models have been created which indicate that 

the viscoelastic effects may be broken down into nano-scale effects related to the 

collagen mineral interaction and microscale effects related to microstructural features 

(Iyo et al. 2004; Johnson et al. 2010). 

The mechanical functions of bone may be related to the microstructural features 

where the mechanical behaviour is understood in terms of the observed mechanical 

properties. It has been shown that at lower strain rates the prominence and initiation 

of microcracks is increased as a mechanism for absorbing energy and as the strain 

rate is increased microcracks are less frequently initiated (Zioupos et al. 2008; 

Zioupos and Currey 1994). The microstructure of cortical bone creates a unique 

nature of microcracking within the material. Microcracks form in the lamellar rings 

of osteonal cortical bone and may perforate without communicating with other 

localised microcracks (Zioupos and Currey 1994). This feature of bone suggests it 

may not behave in the nature of a classically elastic material where the formation of 

the first microcrack leads to catastrophic failure of the material. The detailed nature 

of cortical bone’s microstructure allows microcracks to form and propagate in a 

controlled manner without threatening the integrity of the material on the macro 

scale. Voids and naturally occurring vascular networks within cortical bone are not 

the origin of microcracks in the material.  Rather the microcracking is associated 

strongly with the areas of high mineralisation where the material is much more brittle 

compared to the less well mineralised regions (Zioupos and Currey 1994).  How 
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cortical bone behaves around artificially created voids and inclusions in the material, 

such as the creation of screw holes for implants, may be a more complicated 

proposition as the microstructural features which dissipate the microcracks in 

lamellar bone are disrupted and new stress concentrations are formed around voids. 

This would have an important influence on the understanding of the interface 

between prosthetic devices and cortical bone. 

The nature of the lamellar rings surrounding the Haversian canals in osteonal bone 

have the influence of deflecting microcracks thereby creating a much more robust 

material where microcracking follows the pre-defined networks of microstructural  

channels within the material. Canaliculi (Ebacher et al. 2012) have been postulated 

as being the initiation region of many microcracks in compact bone where the 

microcracks originate at the mineralised collagen fibrils at the ultrastructural level 

(Vashishth et al. 2000). The many lamellar and sub-lamellar microcracks seen in 

cortical bone may be considered to be a feature of the microstructure as the 

microcracks follow the morphological nature of the microstructure itself. The 

variation through cortical bone from area of dense mineralisation to areas with lower 

mineralisation interspersed with varying morphological features has the impact of 

influencing the propagation speed and energy of microcracks, thereby controlling the 

impact on the overall macrostructure (Zioupos 1998). The degree of bone toughness 

is related to the ability of cortical bone to absorb microcracks, in turn this is related 

to the strain rate of the applied load, and in delaying the transition from a ductile to 

brittle material (Zioupos et al. 2008). 

It can be seen that there is a great degree of complexity in describing both the 

physical microstructure and the material properties of cortical bone. Both are 

undoubtedly inter-related, and in order to gain a full understanding of the material 

properties of cortical bone a robust understanding of the impact of the microstructure 

on the macroscale material behaviour is required. Multiscale modelling is a 

traditional approach to model the microstructure of complex inhomogeneous 

materials. It attempts to represent the global material behaviour of a material by the 

formation of a representative volume element (RVE) (Ghoniem et al. 2003; 

Kouznetsova et al. 2002; Ghanbari & Naghdabadi 2009; Ladevèze 2004). The 
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microstructure of cortical bone and the fundamental composite nature of the material 

lend themselves to a multiscale modelling approach (Hogan 1992; Braidotti et al. 

1995; Ghanbari & Naghdabadi 2009; Bala et al. 2011). The observed behaviour from 

multiscale modelling generally attempts to generate a RVE which exhibits similar 

material behaviours to that of the global material and then describes the 

microstructure in terms of the observed behaviour. The RVE can them be altered in 

order to better match the observed material behaviour. In this study however, it will 

be attempted to show that from the first principles of the generalised continuum 

theory of micropolar elasticity the material behaviours created by the microstructure 

of cortical bone can be adequately described. The rationale for this is that the 

microstructure of cortical bone produces mechanical behaviours which can be 

generalised into material behaviours which are described by micropolar elasticity.  

2.2 Micropolar elasticity and higher order continuum theories 

2.2.1 Background 

All materials contain length scale specific microstructure. This may vary from the 

macro scale in metal foams and many biomaterials to the micro scale and below in 

apparently homogeneous continua such as metals and plastics. Ultimately the 

molecular structure can be considered as the basic structure of all apparently 

homogeneous materials. In such homogeneous materials the microstructure is 

sufficiently small that it has a minimal influence on the macro scale deformations. 

However, for materials where the microstructure is comparable to the overall scale 

homogeneity can no longer be assumed. In such cases an approach that incorporates 

the microstructure may better describe the material behaviour and be a more 

effective method for describing the interaction between the microstructure and the 

macroscale material behaviour. This is because the microstructural detail will have 

already been accounted for in the continuum model and a more simplified numerical 

model could be created without modelling the intricacies of the microstructure. 

Generalised continuum theories attempt to quantify the character of a heterogeneous 

material rather than model the intricacies of the material microstructure. Although 

the fundamental structural complexities of the material may not be fully modelled the 

character of the material can be sufficiently described so as to provide a functional 
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representation of the material behaviour. When considering the complexity of many 

composite materials a generalised continuum theory that averages the discrete 

idiosyncrasies of the material into a global continuum may prove to be a more 

practical method of modelling material behaviour than modelling with classical 

elasticity. 

In classical elasticity theory the forces acting upon a point depend only upon the 

location. When the influence of neighbouring points is considered on the forces 

acting upon a point a non-local theory may be developed. The forces acting on a 

point in the material are dependent upon the location and the neighbourhood in a 

non-local theory. An intrinsic length scale is associated with the material joining the 

location and neighbourhood. The non-local effect will become more pronounced as 

the length scale becomes more significant in the geometry being analysed. For larger 

geometries with relatively small length scales the non-local effects will lose their 

significance, and a local theory may describe the material effectively.  

Micropolar elasticity is a higher order generalised continuum theory. It includes a 

micro rotation into the formulation in addition to the direct stresses of classical 

elasticity. This has the effect of enabling the requirement of complimentary shear 

stress pair to be relaxed. To maintain equilibrium couple stresses are included which 

have an associated intrinsic length scale. The addition of the extra degree of freedom 

causes micropolar elasticity to predict different material behaviours compared with 

classical continuum elasticity. This is especially apparent in the dispersion of stress 

waves, stress concentration factors and the prediction of a size effect in bending and 

torsion.  

2.2.2 Constitutive equations 

The incorporation of a couple stress into the formulation of micropolar elasticity in 

addition to the familiar direct stresses of classical elasticity, results in four additional 

elastic constants (six in total) compared with those produced by classical elasticity 

(Figure 2). 
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Figure 2 – Micropolar differential stress element 

For an isotropic linear elastic micropolar material the constitutive equations are 

(Eringen 1966): 

Equation 1 

   kkijkijijkkij e   2  

Equation 2 

ijjiijkkijm ,,,  
 

where ij  is the Kronecker delta, eijk is the permutation tensor and   and   are the 

material dependent Lamé constants of classical elasticity. Conventional stress and 

strain tensors are represented by τij and εij respectively while θk represents the usual 

macrorotation. The couple stress and microrotation are given by mij and φi,j 
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respectively. The remaining moduli  ,  ,   and   represent the additional 

micropolar constitutive properties which will tend to zero on approaching classical 

behaviour. In the planar case these elastic constants can be reinterpreted in terms of 

just four independent technical or engineering properties, EM, υM, lb and N (Gauthier 

& Jahsman 1975; R. Lakes 1995). The first two of these correspond to the Young’s 

modulus and Poisson’s ratio that govern uniform dilatational and distortional 

straining with the subscript M being used here to distinguish them from their 

classical counterparts. The characteristic length in bending, lb, reflects the size scale 

of the intrinsic heterogeneity by specifying the range of the couple stresses while the 

coupling number, N, characterizes any asymmetry in the shear stresses that must be 

balanced by the couple stresses. 

2.2.3 A micropolar beam in 3-point bending 

The derivation of the stiffness of a micropolar beam in 3-point bending is given in 

(Beveridge 2011) and is included here. The radius of curvature of a slender beam 

bent through a small angle is: 

Equation 3 
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Considering only the in plane couple stress, mxz and direct stress, τxx 

Equation 4 
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Figure 3 – Stress acting upon a planar micropolar beam

 

By taking the internal resisting moment equal to the external applied moment, M 

(Figure 3): 

Equation 6 

dAmyM xzxxA )(  
 

Or by substituting for mxz and τxz, 

Equation 7 

dAEy
R
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1 2 

 

Completing the integration and substituting terms for the area, A, and second 

moment of area, I, the moment curvature relationship is: 

Equation 8 
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From the moment curvature relationship the maximum deflection of a micropolar 

beam under 3-point bending is: 

Equation 9 

)(48

3
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AIE

Wl
v

m 


 

where l is the length of the beam. By dividing the applied load W by the maximum 

deflection vmax the stiffness of the beam can be calculated. For a square cross 

sectioned beam of breadth b and depth d the equation for the stiffness of a micropolar 

beam in 3-point bending can be represented as:  
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Equation 10 
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where mE  is the micropolar Young’s modulus, and cl is the micropolar characteristic 

length. It can be seen that the stiffness is dependent on the characteristic length as 

well as the length to depth aspect ratio. In short a size effect is observable where 

smaller beams will be relatively stiffer compared to larger beams of the same length 

to depth aspect ratio.  

Equation 11 

3

3

4
l

d
EbK   

Equation 11 shows the equivalent stiffness relationship for a classically elastic beam 

in 3-point bending. Therefore, the term included within the brackets in Equation 10 is 

the additional term which is responsible for the micropolar size effect. 

Equation 10 describes the plane stress closed form three-point bending stiffness of a 

micropolar material. This equation assumes there is no transverse stresses in the 

beam. From the size effect described by Equation 10 it is possible to extract the 

micropolar material properties of micropolar Young’s modulus, Em, and micropolar 

characteristic length, lc. The micropolar characteristic length in bending, lb, is related 

to the characteristic length in Equation 10 by  . The distinction between the 

characteristic length and the characteristic length in bending is that in Equation 10 

the characteristic length allows the micropolar size effect to be represented more 

succinctly, the characteristic length in bending of square cross sectioned beam is 

related to the micropolar material constant γ by 
m

c
E

l
12

  (Beveridge 2011). The 

micropolar Young’s modulus may be thought of as the flexural equivalent of the 

modulus obtained from a micropolar beam loaded axially. The micropolar 

characteristic length may be considered to be a description of the linear size effect 

observed between stiffness and reciprocal of depth squared and may be considered to 
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characterise the predominant microstructural features in the material and is related to 

the moment arm of the couple stress that the microstructural features produce in the 

material (R. Lakes 1983; Eringen 1967; Beveridge et al. 2013; Park & R. Lakes 

1986; R. Lakes 1995).  

There are similarities in structure between an idealised heterogeneous material of 

regularly arranged voids and that of the observable microstructure in bone. For 

example in remodelled bone the Haversian canal network approximately creates a 

regular array of voids through the osteonal matrix or the lacunae and canaliculi 

microstructural features are arranged within the osteon to create a regular 

heterogeneous material. Using micropolar elasticity, it may be possible to describe 

the heterogeneity of cortical bone, at a chosen length scale, thereby enabling a more 

accurate representation of the material behaviour.   

2.2.4 Experiments on micropolar materials 

Attempting to identify microscopic level size effects at the macroscopic scale is 

understandably a challenging task. For this reason many early attempts to extract 

micropolar material properties were unsuccessful. Gauthier and Jahsman pioneered 

an experimental technique which was able to separate and quantify all six micropolar 

material constants (Gauthier & Jahsman 1975). To do this, analytical expressions 

were required for the mechanical response in bending and torsion for an idealised 

material with rigid inclusions. These predict a relative stiffening of smaller specimen 

sizes. When analysing a material in both torsion and bending loading conditions it is 

possible to extract all six of the micropolar material properties from the size effects. 

The results were inconclusive and Gauthier and Jahsman were unable to derive all 

six micropolar properties due to the negative size effects of some results (Gauthier & 

Jahsman 1975). It has since been suggested that the main cause of the negative size 

effect was because the inclusions in the idealised material were stiffer than the matrix 

material and a positive micropolar size effect is only observed where the inclusions 

are less stiff than the matrix material (Bigoni & Drugan 2007). 

Lakes has been the most prolific author with regards to experimental work in 

micropolar materials. His review of experimental methods in micropolar materials 

provides a general overview of the experimental techniques used to determine 
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micropolar material properties (Lakes 1995). However, although his work has 

focused on many materials including polyurethane foams, porous solids and cortical 

and cancellous bone (Anderson & Lakes 1994; Lakes 1983; Lakes 1995; Lakes 

1985; Yang & Lakes 1982) the experimental methods have not been corroborated 

with numerical analyses to confirm the causes of the observed size effects.  

In some cases the size effects appear to show a size softening anti-micropolar size 

effect which is not predicted by analytical solutions and it has been suggested that 

the cause of the observed size effect is a masking of the true micropolar behaviour by 

surface effects (Anderson & Lakes 1994; Brezny & Green 1990). Lakes and 

Anderson have suggested that the surface region of a micropolar material may be 

considered as a region of damage caused by the preparation process of the specimens 

and thus masks the true material behaviour (Anderson & Lakes 1994). Brezny and 

Green have suggested that there is a critical cell size to weight ratio which will 

reduce the influence of any surface region to the observed micropolar material 

properties (Brezny & Green 1990). Both of these studies highlight that one of the 

major problems with experimentally deriving the properties of a micropolar material 

is the issues regarding surface effects. If the condition of the surface is affecting the 

results then the true micropolar material properties will not be observed. A 

computational investigation and validation of the influence of the surface on the 

observed micropolar size effect trend would enable future experimental analyses to 

be more accurate. Furthermore, it would enable a greater insight into the relationship 

between sample preparation and observed mechanical behaviour. 

Beveridge has shown a micropolar size effect may be observed computationally by 

creating an array of voids through a homogeneous matrix material thus creating a 

planar idealised heterogeneous material (Waseem et al. 2013; Beveridge et al. 2013; 

Beveridge & Wheel 2010; Beveridge 2011). The micropolar size effects produced 

through three-point bending analyses computationally were concurrent with those 

observed in experiments on an equivalent idealised heterogeneous material. This also 

revealed that the characteristic length in bending of a micropolar material is of the 

order of the void size and is related to the density of the voids in the material. 

Attempts have been made to characterise the micropolar material properties in terms 
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of the microstructural detail. This has been done by modelling a deliberately 

simplified heterogeneous material with discrete sections of different material 

properties (Forest et al. 2000). This would suggest that where a micropolar material 

behaviour is observed experimentally it may be possible to relate the observed size 

effect directly to the microstructure.  

It has also been suggested that cortical bone exhibits micropolar size effect trends 

(Yang & Lakes 1982; Buechner & Lakes 2003; Park & Lakes 1986; Lakes 1995). 

The most prominent of these studies into the micropolar behaviour of cortical bone 

was the work of Yang and Lakes (Yang & Lakes 1982)  and Park and Lakes (Park & 

Lakes 1986). In these papers it is postulated that one of the causes of a micropolar 

size effect in cortical bone may be the effects of the cement lines between osteons. It 

is hypothesised that the hypo-mineralised cement lines are a region of relatively 

lower material stiffness where shear stresses are not transmitted in the material and 

result in sliding between osteons, rather than the material acting in unison. This 

theory ties in well with the shear stress imbalance used in the formulation of 

micropolar elasticity and would suggest that the characteristic length of cortical bone 

should be of the order of the diameter of an osteon (around 350μm). The observed 

size effects from these studies indicated that the micropolar characteristic length of 

cortical bone was 200μm broadly consistent with the hypothetical predictions. One of 

the issues with this work is the length scales over which the specimens were tested. 

The smallest specimen is greater than 1mm in diameter and therefore is not 

approaching the scale of the microstructure being tested as it is significantly larger 

than the diameter of an osteon. This suggests the size effect may be more attributable 

to natural variation in the material properties of each specimen rather than a 

fundamental material property. Furthermore, because there is no validation of the 

experimental results with computational models it is unclear whether the material 

properties are being derived free from the influence of a surface effect.   

Choi observed size effects in cortical bone during three-point bending tests of 

specimens ranging from 1000μm to 200μm (Choi et al. 1990). This is of the length 

scale of the microstructure of cortical bone. Although Choi did not directly relate his 

finding with micropolar theory the results are of significance as they clearly show a 
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negative size effect is present in cortical bone under three-point bending. This work 

is in direct contrast with the findings of Yang and Lakes (Yang & Lakes 1982), 

which found a positive size effect in bending tests on cortical bone. The main 

differences between both studies were the length scale of the tests - where Choi has 

tested significantly smaller specimens - and the cross sectional shape of the 

specimens: Lakes tested circular cross sections; Choi tested square cross sections. 

This may suggest that Choi’s results show a more significant relationship between 

specimen stiffness and size. The length scale of the specimens tested is approaching 

the microstructural level of cortical bone, and therefore may be revealing the 

influence of the Haversian system more prominently in the recorded stiffness values. 

Moreover both the results of Lakes and Choi broadly agree in the stiffness of the 

larger specimens. This may suggest that at a larger length scale the influence of the 

microstructure of the Haversian system is less prominent and natural variation 

between bone specimens is the more important factor influencing the material 

stiffness. However, it may also indicate that there are various microstructural 

influences which could produce a size effect in cortical bone; one study may have 

detected the influence of osteons and the cement line interface, and another may have 

detected the influence of the Haversian canal system. 

The Choi data show a clear negative size effect which is opposite to that predicted by 

micropolar elasticity. Because the surface condition of each specimen was not 

recorded it is unclear whether the negative size effect could be attributable to some 

kind of surface damage. However, if this was the case it would add further weight to 

the theory that surface effects have a strong influence on the behaviour of micropolar 

materials and may be a contributing factor in experimental detection of the 

micropolar material properties (Choi et al. 1990). Nevertheless, it is noteworthy that 

Lakes found a positive size effect in cortical bone and it remains unclear why there is 

an inconsistency between similar studies on the same material (Park & Lakes 1986).  

Recently there have been some studies which have attempted to describe cancellous 

bone as a micropolar material (Goda et al. 2012; Ramézani et al. 2012). Cancellous 

bone has a less dense microstructure and is more relatable to polyurethane foam type 

materials, which have been analysed for micropolar behaviour in the past (Anderson 
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& Lakes 1994; Forest et al. 2000). These types of material show that where the 

microstructure is on the scale of the global geometry the magnitude of the size effect 

observed will be much more pronounced. On the other hand in cortical bone it is 

thought that the micropolar size effects may be observed from the microstructure 

itself, rather than at the macroscale. For this reason experimental observation of 

micropolar size effects in cortical bone requires specimens of the order of size of the 

Haversian system, whereas in cancellous bone it is the interaction between trabeculae 

at the macroscale which are thought to cause micropolar behaviour and therefore 

cancellous specimens of a larger scale can be used.. This research project will focus 

on characterising cortical bone however the advances currently occurring in the 

mechanical description of both cortical and cancellous bone seem to indicate that 

micropolar elasticity is an appropriate continuum model for describing 

microstructure. 

2.3 Cortical Bone as a Micropolar Material 

The complex hierarchical microstructure of cortical bone raises the question of 

whether classical elasticity is adequate in describing this detail. Classical elasticity 

assumes a homogeneous material. In the case of cortical bone it is a broad 

generalisation to ignore the microstructure and describe the material as a purely 

homogeneous continuum. However, in the most general cases the approximation of 

cortical bone as a homogeneous material may not an unreasonable assumption. This 

is because at larger sample sizes the scale of the microstructure is well below that of 

the macroscale where larger deformations would be observed. This was mentioned 

previously in the diverging results between Lakes and Choi; where the scale of 

specimens is larger than the microstructural detail Lakes observed a positive size 

effect (Park & Lakes 1986); on the other hand Choi observed a negative size effect 

where the scale of specimens were in the region of the Haversian system (Choi et al. 

1990).  

The reasons for the difference in size effect trends is ambiguous and may be related 

to surface preparations, however, micropolar theory relies upon the microstructure 

becoming significant in relation to specimen size when using the method of size 

effects. For this reason it may be important to note that in circumstances where the 
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microstructure is of the scale of the surrounding geometry micropolar elasticity could 

be a more appropriate continuum theory for describing cortical bone. Whereas, in 

situations where the microstructure is of a relatively smaller scale than the 

surrounding geometry, classical elasticity may suffice in its description of cortical 

bone (Fatemi et al. 2002). 

A fundamental problem in the design of artificial joint replacements is in full 

interfacing of a non-biological component with living tissue. In particular the design 

of many implants is based upon a correct load transfer from the foreign prosthesis 

onto living bone. This can only be achieved if the stress behaviour of the biological 

bone is properly understood and modelled. This is of particular significance at the 

length scale of the microstructure where stress concentrations may become distorted 

by the morphological features. Implants, prosthetic and periprosthetic devices 

interact with cortical bone during their normal functions. The interaction between 

prosthetic devices and cortical bone fundamentally involves the contact between the 

microstructure and the surface of the prosthetic device either directly or through a 

cement interface (Hogan 1992). How this interaction occurs and develops over time 

is of importance to understanding the lifecycle of prosthetic devices (Huiskes 1990). 

Micropolar elasticity predicts a reduction in stress around a stress concentration such 

as a circular hole or rigid inclusion in a micropolar material when compared to a 

classically elastic material (Eringen 1966; Gitman et al. 2010). If cortical bone can be 

described as a micropolar material, then the description of material behaviour using 

classical elasticity may no longer be a completely accurate representation. 

Subsequently, where an implant may be considered to be a rigid inclusion through 

that continuum, micropolar behaviour would produce a significantly different 

material behaviour than that predicted by classical elasticity. This would represent a 

scenario where micropolar elasticity was a more appropriate continuum model for 

describing the stress and stress concentrations in cortical bone.  

Where stress concentrations are relatively higher or lower than expected in cortical 

bone then the resulting bone will remodel itself over time to the new loading 

conditions. This may result in stress shielding around implants, where there is a 

relatively lower stress than there otherwise would be, and osteolysis may begin to 
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occur. Recent studies have shown that the level of stress shielding that occurs post 

implant is dependent on the type of implant device and the interaction between the 

implant and the bone (Cristofolini et al. 2009; Sathappan et al. 2009; Ellison et al. 

2009). It has been suggested that the size of an implant can be related to the potential 

failure mechanisms (Baggi et al. 2008). For aseptic implant failures loosening of 

implants is among the most common failure mechanisms. This may be related to 

particle wearing from the implant and casing changes in loading patterns or due to 

the micromotion of the implant itself (Bauer & Schils 1999). If micromotion of 

implants can be better described by a more representative continuum model then a 

more accurate description of the behaviour of the implant may be modelled.  Where 

there is an increase or decrease in stress in a particular location then this will 

undoubtedly influence the fatigue behaviour of that region in the bone and may lead 

to osteolysis and an unpredictable alteration in the mechanical loading on the bone 

(Bauer & Schils 1999; Baggi et al. 2008; J.-H. Lee et al. 2005). Understanding the 

fatigue behaviour and the probability of microcracking to occur and propagate 

through cortical bone is important in determining how the bone will remodel itself 

under new loading conditions (Taylor & Lee 1998). Microcracking is an important 

aspect of the interaction between implants and cortical bone. The microstructure at 

various scale levels is thought to have an important influence on the propagation of 

cracks through cortical bone. In fact it is thought that the location and organisation of 

the heterogeneity in cortical bone is a key factor in controlling the occurrence of 

microcracks (Rho et al. 2002; Tai et al. 2007). Moreover where there is a change in 

the stress concentration the likelihood of microcracking to occur will also be 

changed. There is evidence that microcracking is of vital importance to the 

development of bone and bone remodelling (Reilly & Currey 2000; Ebacher et al. 

2012; Reilly & Currey 1999; Vashishth et al. 1997); this would ultimately alter the 

interaction between prosthetic implant and the surrounding material where the stress 

concentration is different from what has been predicted. If cortical bone can be 

shown to behave in accordance with micropolar elasticity it will enable more 

accurate numerical modelling of prosthetic devices. Furthermore, a better 

understanding of the interaction between an implant and cortical bone will be 

achievable. This would further the design potential of prosthetic devices to interact 
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with cortical bone in the most effective way possible. Thereby, increasing the 

lifecycle of implants and improving their functionality. 
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3 Numerical analysis of idealised heterogeneous materials 

3.1 Background 

Previous studies have found that idealised planar heterogeneous model materials can 

be created which exhibit micropolar behaviour (Waseem & Beveridge 2013). These 

studies modelled beams in three point bending and demonstrated the relationship 

between micropolar characteristic length and the microstructural features. It was also 

shown that for beams with lower length to depth aspect ratios a non-linear size effect 

trend occurred from which the micropolar coupling number could be calculated.  

An idealised 2-dimensional planar heterogeneous material can be created by 

introducing an array of voids or inclusions of a different material property into a 

homogeneous matrix material (Beveridge 2011) as shown in Figure 4. This material 

is designed to mimic the variation in material properties, inherent heterogeneous 

character and possible anisotropy of many composite materials.  The geometrical 

characteristics of this material are defined by the void radius, VR, the void separation 

in the x-axis, SX, and the void separation in the y-axis, SY. By varying these 

parameters the geometry of the material can be altered resulting in varying degrees of 

both heterogeneity and anisotropy. The material properties of the isotropic, intra-void 

matrix are defined by the Young’s modulus and Poisson’s ratio. When SY is 1/√2SX 

this material is macroscopically transversely isotropic, the material exhibits isotropy 

within the 2D x-y plane, and otherwise the material is anisotropic with the degree of 

anisotropy depending on the ratio of SX to SY. 



41 

 

   

Figure 4 - Idealised planar heterogeneous material 

 

Figure 5 – A cross section of bovine cortical bone showing the detail of the Haversian canal system 

(bottom) and primary osteons (top). 

Cortical bone shows various levels of hierarchical microstructural detail. At the scale 

of the vascular system in cortical bone there is a direct comparison that may be 

y 
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drawn between the idealised heterogeneous material in Figure 4 and the imaged cross 

section shown in Figure 5. It can be seen that cortical bone has a comparable array of 

voids through the material and, although they are randomly dispersed, the voids may 

be represented by an idealised version of the material where the voids are arranged in 

a hexagonal array. In turn this idealisation may be used to understand the underlying 

material properties attributable to the microstructure (Hogan 1992; Braidotti et al. 

1995). It is important to note that cortical bone displays numerous levels of 

microstructural detail and by reducing the length scale the most significant 

microstructural feature will change. At the macroscopic scale primary and secondary 

osteons are the most significant porous microstructural feature and although 

plexiform bone has a higher degree of orthotropy associated with voids running 

transversely, the longitudinal modulus is significantly higher than the radial and 

circumferential moduli (Yamato et al. 2006; Macione et al. 2010) suggesting that the 

majority of vascular channels run longitudinally along the long axis in plexiform 

bone at the mid-diaphysis region of a long bone. Therefore it may be assumed that 

the void arrangement in the idealised heterogeneous material shown in Figure 4 is a 

general representation of the anisotropy created by osteons in cortical bone. 

3.2 Axial loading of the idealised planar heterogeneous material 

In order to determine the degree of anisotropy in the idealised planar heterogeneous 

material in Figure 4 a series of Finite Element (FE) simulations were undertaken 

loading the material axially in both the x and y directions. This was done over a 

range of void arrangements to analyse the relationship between the void arrangement 

and the degree of anisotropy evident. 

3.2.1 Method 

The finite element program ANSYS 12.1 was used to analyse the material in Figure 

4. The mesh as shown in Figure 6 was created using the linear-elastic 8-noded 

element 183 with the material properties of 20GPa for Young’s modulus and 0.3 for 

Poisson’s ratio for the matrix material – commonly quoted material properties of 

cortical bone (Jae Young Rho et al. 1993; Evans et al. 1990; J Y Rho et al. 1997a). A 

refine function was added to the mesh generation to enable versatile mesh 

convergence analysis. A mesh convergence study was done for each void 
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arrangement and void radius. This basic unit cell as shown in Figure 6 was then 

layered vertically and horizontally to create a global heterogeneous material (Figure 

7)(X. Wang & Ni 2003). 

 

Figure 6 - Mesh used for generating heterogeneous material for axial analyses and corrugated surface 

beam bending analyses 

The material was loaded in both the x and y directions respectively in two separate 

analyses. The beam was fixed horizontally at one end, with a single node constrained 

vertically in the centre of the fixed end to provide a y constraint and at the free end a 

unit pressure was applied on the surface as shown in Figure 7. The effective pressure 

applied to the beam could then be calculated by determining the surface area over 

which the applied pressure was distributed. This was scaled to the entire cross 

sectional area of the beam. In axial loading this is equivalent to the stress through the 

cross section of the beam along the length. The FE strain results were then used to 

calculate the Young’s Modulus of the global material from the uniaxial 

relationship  using the effective pressure as the stress through the material 

cross section. 
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Figure 7 - Axial loading in the x-direction: horizontally fixed at the left end with the central node pinned in 

the y-direction on the left end and a uniform pressure applied at the free end. 

The variables SX, SY and VR were altered to determine the influence of each on the 

overall anisotropy of the material. The variable SX was maintained at unity through 

the analyses, and the variable SY was altered between 1, 0.866 and 0.707, to create 

differing arrays of voids. At each geometrical arrangement the void radius was set at 

0.1, 0.2 and 0.3, which can be translated into respective void fractions, VF, of 0.036, 

0.145 and 0.326 for SX = 1 and SY = 0.866. 

3.2.2 Results and discussion 

The results in Table 1 show the axial Young’s modulus decreases as the void fraction 

is increased. This is an expected result as the material density is significantly reduced 

with an increase in void radius. It is also apparent that the transverse anisotropy in 

Young’s Modulus of this material is relatively low in the x-y plane for smaller void 

sizes and increases as the void radius is increased. For example a void fraction of 

0.036 produced an axial Young’s modulus of 18.22 GPa in the x direction, whereas 

when the void fraction was increased to 0.326 the Young’s modulus decreased to 

9.74 GPa in the x direction. 

The void pattern was also shown to have an important influence on the axial 

anisotropy. Where the angle between voids is at 45° (SX=1, SY=0.707) it is apparent 

that the material behaves in a manner congruent with plane isotropy. However, as 

this orientation is altered towards an equilateral 60° (SX=1, SY=0.866) orientation 

between voids there is an increasing degree of plane anisotropy (Table 1).  

This effect may be a result of the changing material distribution in the x and y 

dimensions respectively depending on the arrangement of the voids. At 45° there is 

an approximately equal distribution of mass along the x and y axes, however as the 

angle between voids is altered so too is the distribution of mass in either the x or y 

y 
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axes, therefore contributing proportionately to the observable stiffness in each axis, 

and the increase in anisotropy in the material.  

Table 1 – Young’s Modulus for varied void arrangements and void radii 

 Void Fraction, VF  

0.036 0.145 0.326 

SX (m) SY (m) EX (GPa) EY (GPa) EX (GPa) EY (GPa) EX (GPa) EY (GPa) 

1 1 18.22 18.22 14.20 14.00 9.74 9.05 

1 0.866 17.94 17.94 13.20 13.11 7.94 7.63 

1 0.707 17.46 17.49 11.46 11.51 5.06 5.03 

 

Interestingly for the matrix Young’s modulus of 20GPa used in this study and a void 

fraction of  approximately 0.25 the apparent Young’s modulus of the material is 

similar to published values for the radial and circumferential directions in cortical 

bone (Pope 1974; Akiva et al. 1998; C H Turner et al. 1995). This may suggest that 

the void arrangement in cortical bone is important in producing the underlying 

anisotropy in observed material properties. 

This study reveals the idealised planar heterogeneous material created in Figure 4 

behaves as an approximately isotropic material in the x-y plane. It should be noted 

that the defining parameter of the Young’s modulus of the matrix material is 

representative of an isotropic matrix material and may be scaled to better compare 

with a real material such as cortical bone. Cortical bone typically has a void fraction 

of between 0.1 and 0.15 (X. Wang & Ni 2003) indicating that the void fraction for 

the closest matching results, of approximately 0.25, is higher than of those observed 

naturally.  

3.3 Three-point-bending of the idealised planar heterogeneous 

material 

A size effect can be produced through three-point bending simulations of an 

idealised planar heterogeneous material (Waseem & Beveridge 2013; Beveridge 

2011). These studies demonstrated how the micropolar material properties of 

Young’s modulus and characteristic length can be determined from a size effect 

produced in an idealised heterogeneous material by applying Equation 10 to a plot of 
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the bending stiffness against the reciprocal of depth squared. This assumes a slender 

beam and the same length to depth aspect ratio are maintained throughout all beam 

sample sizes.  

Although the ability to determine micropolar properties from bending experiments 

has been established, a complete description of an idealised planar heterogeneous 

material and the understanding of how to experimentally describe the nuances of a 

real heterogeneous material have not thus far been assessed. In short, any similarity 

between the idealised material models and the real material behaviour has yet to be 

established. In particular the surface condition between theoretical idealised 

materials may differ significantly from that actually encountered in the preparation of 

a real material sample. Specifically, in the latter case the main question is: Is it likely 

to produce a perfectly smooth surface from a pseudo-random heterogeneous 

material? It can be identified that even in the idealised case there are extremes of 

surface condition that can exist. Two extremes may be considered: a perfectly 

smooth surface and; half a cell out of phase in the y-axis, a surface pitted by surface 

voids, where the internal microstructure intersects the surface creating a corrugated 

effect (Figure 8). 

Understanding the difference between these two extremes of material behaviour may 

improve the evaluation of the validity of the three-point bending size effect technique 

in identifying micropolar material properties in real materials. 

3.3.1 Methodology 

To evaluate the heterogeneous material shown in Figure 4 in bending two separate 

cases were considered, that of a continuous smooth surface, not intersected by the 

internal microstructure, and that of a corrugated surface intersected by the internal 

microstructure. The two cases of continuous beams and corrugated beams represent 

the two extremes of geometrical preparation from the idealised planar heterogeneous 

material. This is demonstrated in Figure 8 where two sets of beams with and without 

surface perforations are shown. An equilateral array of voids was used for the 

bending analyses by defining SX equal to unity and SY equal to 0.866, to maintain a 

60 degree angle between voids. For each set of equivalent beams the void volume 
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fraction or porosity was maintained constant so that the underlying material 

microstructure remained comparable between beams. 

 

Figure 8 - Beams with and without surface perforations with constant length to depth aspect ratio and 

varying depths 

The finite element program ANSYS 12.1 was used to create and analyse both sets of 

beams in 2-dimensional bending. Figure 6 and Figure 9 show the different meshes 

used around each void for beams with and without surface perforations respectively. 

The mesh used for the beams with a corrugated surface, Figure 6, is the same as that 

used for the axial loading analyses. It is of note that the mesh used to analyse the 

beam with the corrugated surface can produce a material where the void diameter is 

greater than the vertical separation between voids, whereas the mesh for the smooth 

surface cannot be created with voids of a greater diameter than the vertical 

separation. For this reason the axial loading analyses were more effectively analysed 

using the mesh in Figure 6 as a greater void fraction range could confidently be 

meshed. 

y 
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Figure 9 - Mesh used for smooth smooth 2-D beams in bending 

For both meshes representative material properties of cortical bone (E = 20GPA, υ = 

0.3) and the linear-elastic 8-noded element 183 were used. The breadth of the beam 

perpendicular to the meshed plane was set to unity and plane stress behaviour 

assumed. A refine function was added to the mesh generation to enable versatile 

mesh convergence analysis.  

To model a size effect in 3-point bending, beam models were created by repeatedly 

generating the meshes in Figure 6 and Figure 9 as appropriate to produce an array of 

voids representing the beam geometry; four with a smooth surface and four with a 

corrugated surface in accordance with the geometries shown in Figure 8. This 

enabled the same material to be represented at varying length to depth aspect ratios 

for both cases with and without surface voids. Each beam was constrained with two 

single vertical constraints defining the length of the beam and a point load of 100N, 

constrained horizontally, applied in the centre of the upper surface of the beam. The 

boundary and loading conditions for the three-point bending simulations can be seen 

in Figure 10. Care was taken to ensure the point load was placed midway between 

adjacent voids and not directly over a single void. 

In order to maintain the same aspect ratio between each discrete beam depth 

alternative boundary conditions were used in particular cases. Figure 11 shows the 

boundary conditions used for beams with an odd number of voids through the depth 

(1 or 3). For these cases using the boundary conditions shown in Figure 10 would 
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result in the applied load or the supports being located next to a void rather than 

between adjacent voids producing inconsistent simulations across all four depths. For 

this reason the alternative boundary conditions incorporating symmetry were adopted 

for beams where a full model was not applicable. Symmetry was applied through the 

depth of the beam in the axial plane (Figure 11) and a point load was applied at the 

far end of the beam, equivalent to half a beam length away. A vertical constraint was 

added to the centre point along the symmetry plane. 

                

Figure 10 - Three-point-bending loading conditions for equivalent beams with and without surface 

perforations. 

                            

Figure 11 – Three-point bending loading conditions using symmetry to simplify the model. 

Analyses were conducted over three different length to depth aspect ratios (5.8:1, 

10.4:1 and 20.8:1) which were determined by the separation of the voids in the x and 

y axes. For example, where the depth was one void deep (0.866) then the length was 

set to be 9 voids long, therefore producing a 9:1 cell length to cell depth aspect ratio 

and a 10.4:1 absolute length to absolute depth aspect ratio. For each aspect ratio the 

void radius was varied in 0.05 intervals from 0.1 to 0.3. This enabled the influence of 

void size on the stiffness of the constitutive material in bending to be analysed. Void 

radius was normalised by dividing by the void separation in the y-axis, SY. The 
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flexural stiffness was calculated by dividing the applied load by the calculated 

deflection on the lower surface of the beam below the centrally applied load. A size 

effect could then be determined for both the corrugated and smooth surface beams by 

plotting the flexural stiffness against the reciprocal of the depth squared in 

accordance with Equation 10. Where there is a linear relationship between the 

flexural stiffness and reciprocal of depth squared the y-intercept and gradient of the 

linear relationship can be used to determine the micropolar Young’s modulus and 

micropolar characteristic length using Equation 12 and Equation 13 respectively. 

Equation 12 
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3.3.2 Results and discussion 

The computational analyses revealed that the idealised planar heterogeneous material 

behaves as a typical micropolar material for beams with smooth surfaces. Figure 12, 

Figure 13 and Figure 14 show the stiffness plotted against 1/depth
2
 for varying void 

dimensions at 20.8:1, 10.4:1 and 5.8:1 aspect ratios respectively revealing the 

inherent size effects in the idealised 2-dimensional heterogeneous material. The 

nature of the size effect present is different between each aspect ratio. It can be seen 

that for the 20.8:1 aspect ratio (Figure 12) the size effect trend is in accordance with 

the closed form analytical solution (Equation 10) as the aspect ratio is reduced to 

10.4:1 (Figure 13) the size effect remains almost linear. However, as the aspect ratio 

is reduced further to 5.8:1 (Figure 14) the size effect does not follow a true linear 

relationship between flexural stiffness and reciprocal of depth squared. This can be 

attributed to the shorter aspect ratio causing the beam to behave as a shear beam and 

therefore the analytical micropolar equation for a slender beam in three-point 

bending no longer holds. As the aspect ratio is increased above 10:1 the relationship 

between stiffness and reciprocal of depth squared tends to a linear relationship. This 

is because the beam now behaves as a slender beam in three-point bending and shear 
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effects can be neglected. Classical elasticity does not predict a size effect with 

alterations in specimen size for homogeneous materials. Therefore, the existence of a 

size effect in slender beams of the same material of different size in three-point 

bending suggests that classical elasticity is an inappropriate continuum model for 

describing that material in the absence of microstructural detail. However, 

micropolar elasticity is able to describe a linear relationship between the beam 

stiffness and size for three-point bending of slender beams. Consequently micropolar 

elasticity may be a more appropriate continuum model for describing a material 

which displays size effects in three-point bending.  

 

Figure 12 - Stiffness against the reciprocal of depth squared for smooth beams at a 20.8:1 length to depth 

aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue 

Inc. 
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diamonds, VR/SY=0.12; red squares, VR/SY=0.17; green triangles, VR/SY=0.23; purple circles, VR/SY=0.29; 

blue stars, VR/SY=0.35. 

 

Figure 13 - Stiffness against the reciprocal of depth squared for smooth beams at a 10.4:1 length to depth 

aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue 

diamonds, VR/SY=0.12; red squares, VR/SY=0.17; green triangles, VR/SY=0.23; purple circles, VR/SY=0.29; 

blue stars, VR/SY=0.35. 
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Figure 14 - Stiffness against the reciprocal of depth squared for smooth beams at a 5.8:1 length to depth 

aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue 

diamonds, VR/SY=0.12; red squares, VR/SY=0.17; green triangles, VR/SY=0.23; purple circles, VR/SY=0.29; 

blue stars, VR/SY=0.35. 

From the plot of the trend lines the characteristic length and micropolar Young’s 

modulus were determined from the gradient and intercept in Figure 12 and Figure 13 

for the 20.8:1 and 10.4:1 aspect ratios (Equation 10) (Beveridge 2011). The 

characteristic length was found to be slightly greater than the diameter of the internal 

voids and is thought to represent the microstructure of the heterogeneous material by 

describing the void dimensions or the distance between fibres (Tekoglu & P Onck 

2008; R. Lakes 1995; R. Lakes 1985). Additionally, there is a suggestion of a 

relationship between the geometrical organisation of voids and their distribution 
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through the material in defining the characteristic length (Tekoglu & P Onck 2008; 

R. Lakes 1995).  

Beams with surface microstructure display the opposite size effect. A noticeable size 

softening was observed: a size softening “anti-micropolar” effect. Figure 15, Figure 

16 and Figure 17 display the results for the varying void dimension for 20.8:1, 10.4:1 

and 5.8:1 aspect ratios respectively for such beams plotting the stiffness against 

1/depth
2
. 

 

Figure 15 - Stiffness against the reciprocal of depth squared for corrugated beams at a 20.8:1 length to 

depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY=0.12; red squares, VR/SY=0.17; green triangles, VR/SY=0.23; purple crosses, 

VR/SY=0.29; blue stars, VR/SY=0.35. 
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Figure 16 - Stiffness against the reciprocal of depth squared for corrugated beams at a 10.4:1 length to 

depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY=0.12; red squares, VR/SY=0.17; green triangles, VR/SY=0.23; purple crosses, 

VR/SY=0.29; blue stars, VR/SY=0.35. 
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Figure 17 - Stiffness against the reciprocal of depth squared for corrugated beams at a 5.8:1 length to 

depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY = 0.12; red squares, VR/SY = 0.17; green triangles, VR/SY = 0.23; purple crosses, 

VR/SY = 0.29; blue stars, VR/SY = 0.35. 

It is notable that the y-intercept for both continuous and corrugated beams (the y-

intercept describes the stiffness of an infinitely deep beam) occur at the same point 

when comparing continuous and corrugated beams of the same void fraction and 

aspect ratio. Moreover, both continuous and corrugated beams produce a micropolar 

Young’s modulus (calculated from the y-intercept) equivalent to the Young’s 

Modulus determined through axial loading of the equivalent arrangement of voids. 

This suggests confidence and continuity in the results and that the micropolar 
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Young’s modulus can be successfully calculated through both bending and axial 

loading analyses.  

It is not possible to calculate a real characteristic length from the negative gradient 

by applying Equation 10 however it is possible to compare the magnitude of the 

gradient between micropolar and “anti-micropolar” size effects. Figure 18 shows a 

plot of the magnitude of the size effect against void size, for both the corrugated and 

smooth beams at a 20.8:1 aspect ratio. The gradient produced by the corrugated 

beams follow a similar trend to that of the continuous beams but is of an opposite 

value. The results show that there is not an exact correlation between the gradient of 

smooth and corrugated beams, this is demonstrated in Figure 19 which shows the 

percentage difference between the smooth and corrugated size effects at each void 

radius. It is apparent that as the void radius is altered the relationship between the 

opposing size effects from each model changes. A normalised void radius of 0.23 

shows the optimum correlation between continuous and corrugated beams. The 

magnitudes of the size effects showing near perfect agreement at this void size. The 

largest differences between positive and negative size effects occur where the 

normalised void radius is at the extremities of the void sizes tested. A contributing 

factor towards the inconsistencies between the positive and negative gradients may 

be attributable to the differences between the meshes used for each finite element 

model because the mesh used for the smooth surfaced beams was different to that 

used for the corrugated beams. However, this may also be a real effect and there may 

be a more fundamental reason for the difference in size effects between continuous 

and corrugated beams not being exactly equal in magnitude. What can be observed 

are the similar trends which indicate opposing material behaviours for beams with 

and without surface voids. The maximum percentage difference between 

complimentary size effects are approximately 30% and occur at the lowest and 

highest void fractions. These void fractions are significantly different than that of 

cortical bone. The closest agreement between positive and negative size effects 

occurs where the void fraction is approximately 0.23, this is a realistic void fraction 

for cortical bone and suggests that it may be possible to directly compare observed 

negative size effects in cortical bone with those of a the equivalent positive size 

effect in a micropolar material. 



58 

 

Considering the similarities between opposite size effects of continuous and 

corrugated beams it may be considered possible to describe the micropolar material 

behaviour of the beams with corrugated surfaces in terms of the smooth continuous 

beams. This would hold true if both cases were describing the extremes of the 

possible surface conditions in the idealised material: where a smooth beam has no 

voids intersecting the surface and a corrugated beam has the maximum void depth 

and distribution on the surface. However, it is important to remember that such a 

description is only an approximate observation of empirical evidence based on 

numerical experiments which suggests that beams with a smooth surface follow a 

micropolar trend and beams with surface voids follow a close to symmetrically 

opposite anti-micropolar trend. At present there is no theoretical basis to corroborate 

this observation. Nevertheless, in situations where a negative size effect is 

experimentally observed this chapter would provide strong numerical evidence that 

the micropolar material properties may still be calculated from the equivalent 

positive size effect which would occur in a continuous beam. 
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Figure 18 – The magnitude of the size effects plotted against normalised void radius, VR/SY, for 20.8:1 

length to depth aspect ratio. The smooth surfaced beams are shown by the red squares and the corrugated 

surfaced beams are shown by the blue diamonds. 
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Figure 19 – The fractional difference in magnitude of negative and positive size effects for corrugated and 

smooth surfaced beams at 20.8:1 aspect ratio plotted against normalised void radius VR/SY 

The results revealed the characteristic length has a dependence on the length to depth 

aspect ratio. Table 2 shows a comparison of characteristic length against length to 

depth aspect ratio for each varying normalised void size (VR/SY). This indicates that 

the difference between the 10.4:1 and 20.8:1 aspect ratios are relatively insignificant, 

but suggests that the 20.8:1 ratio will provide more accurate material properties. For 

the lower aspect ratio beams the assumptions taken in the formulation of the bending 

stiffness in Equation 10 are no longer valid. Therefore the 5.8:1 aspect ratio beams 

have been excluded from the results analysis. This is because the beam is not in 
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idealised bending, there is a significant contribution of shear deformation in the beam 

(Beveridge, A., Wheel 2010; Beveridge 2011), unaccounted for in Equation 10. This 

is evidenced in Figure 14 where the size effect for lower 5.8:1 aspect ratio beams can 

be seen. There is a similar size effect in these beams, but it is not a true linear 

relationship between stiffness and reciprocal of depth squared. This effect is more 

pronounced in the beams with proportionately larger voids, and to determine the true 

characteristic length for such materials relies upon significantly larger aspect ratios in 

bending.  

Table 2 – Comparison of the characteristic lengths for different void radii at 10.4:1 and 20.8:1 length to 

depth aspect ratios. 

Void 

Diameter, 

Vd  (mm) 

Void Fraction 

VF 

Normalised void 

radius VR/SY 

Characteristic length (mm) 

10.4:1 aspect 

ratio 

20.8:1 aspect 

ratio 

0.2 0.036 0.12 0.28 0.28 

0.3 0.082 0.17 0.42 0.43 

0.4 0.145 0.23 0.55 0.57 

0.5 0.227 0.29 0.66 0.70 

0.6 0.326 0.35 0.75 0.82 

 

A significant finding may be noted in the relationship between the micropolar 

characteristic length calculated from the observed positive size effect and that of the 

void diameter (Figure 20). When the micropolar characteristic length is linearly 

regressed with void diameter it was found that lc = 1.39VD with and R
2
 of 0.99, this 

relationship may be observed in Table 2. This suggests that there is a strong 

association between the observed micropolar characteristic length and the physical 

size of the voids in the idealised heterogeneous material. Therefore this result 

suggests that it is possible to predict the micropolar material properties from the 

physical geometry of the microstructure.  
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Figure 20 - Linear regression of the micropolar characteristic length  against the void diameter for 2-D  

20.8:1 aspect ratio beams 

Brezny and Green (Brezny & Green 1990) described the influence of surface damage 

on materials in bending and proposed a composite model accounting for the surface 

layer. This was taken further by Anderson and Lakes (Anderson & R. Lakes 1994; R. 

Lakes 1995) who applied these considerations to micropolar elasticity. As the 

extremities of a beam in bending take the highest stresses it is intuitive to imagine the 

beams with surface perforations or surface damage having a reduced bending 

stiffness. Such a composite model of different phases of material at the surface and 

core in bending raises the question of whether micropolar size stiffening is 

attributable to the opposite effect: a relatively stiff surface layer with internal 
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material damage. Furthermore, in both cases as the region close to the surface is 

proportionately greater in the smaller beams the influence of the surface layer will 

become more significant. Conversely larger beams will have a proportionally smaller 

surface region.  

Therefore this modelling suggests the fundamental cause of micropolar behaviour 

observed in this idealised planar heterogeneous material may be attributed to a 

surface effect. As this leads to opposing observed size effects, for beams with and 

without surface voids, it may be appropriate to describe the two types of beams as 

extremes of a global material behaviour. This would imply that the negative size 

effect is not caused by surface damage but by the existence of surface microstructure. 

The surface microstructure in effect reduces the stiffness of the surface layer in 

beams with internal voids corrugating the surface layer and in continuous beams the 

surface region is maintained. Because bending stresses are not constant through a 

cross section, but rather larger at the surface this will lead to more significance on the 

surface regions. Moreover, smaller beams will show a greater dependence upon the 

nature of this surface region in terms of their overall observed material stiffness. 

3.4 3D heterogeneous material 

To extend the process of numerically evaluating the micropolar material properties of 

idealised heterogeneous materials a 3 dimensional computational analogue of the 

microstructure of cortical bone was created. This model was designed to mimic the 

character and geometric nature of primary and secondary osteons cortical bone 

orientated along the long axis of the mid-diaphysis region of a long bone. Extruding 

the idealised planar heterogeneous material discussed previously (Figure 4) in the z-

axis it is possible to create a 3-dimensional material with cylindrical voids running 

along the length (Figure 21). This is similar to the microstructural nature of cortical 

bone in the mid-diaphysis region of long bones and although plexiform bone shows 

some transverse vascular channels, the majority are aligned longitudinally along the 

long axis. Figure 22 shows an image of a section taken from a long bone orientated 

with the vascular channels running diagonally along the image, in the direction of the 

arrow. 

 



64 

 

 

Figure 21 – Extrusion of the 2D idealised planar heterogeneous material into a 3D channel material 

mimicking the structure of primary and secondary osteons in cortical bone. 

 

Figure 22 – Longitudinal view along the length of the long axis of bovine cortical bone. Haversian canals 

and vascular channels associated with primary and secondary osteons can be seen to be aligned along the 

long axis of the bone (white arrow). 

3.5 Axial loading of a 3D heterogeneous material 

The two dimensional planar heterogeneous material displayed limited anisotropy 

when loaded axially (along the x and y directions), however, as the void radius was 

increased the anisotropy increased. This indicated a degree of anisotropy in this 

material that is dependent on the void radius and void spacing; for a fixed void 
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spacing the anisotropy increases as the void radius is increased. To further develop 

the understanding of the material behaviour of such an idealised heterogeneous 

material the longitudinal axial Young’s modulus, with the voids running along the 

length of the beam, was analysed. This allows an insight into the relationship 

between the material properties in the transverse plane and the longitudinal axis and 

may help in identifying the degree of transverse anisotropy in the idealised 3-

dimensional material.  

3.5.1 Methodology 

To analyse the longitudinal elastic modulus a three dimensional finite element model 

was created using ANSYS 12.1. The two dimensional heterogeneous material in 

Figure 4 was extruded into the z-axis so as to maintain the underlying microstructural 

character of the original material.  

The same fundamental mesh as those used for the two dimensional planar analyses 

shown in Figure 6 and Figure 9 were used. However, they were applied to a three 

dimensional model with the 20-noded three dimensional linear elastic element 186. 

The material properties of cortical bone were again used (E = 20GPa, υ = 0.3), this 

enabled direct comparisons to be made with the two dimensional results.  

Axial loading along the z axis was applied to the three dimensional material by 

fixing one end of the beam and applying a unit pressure to the free end (as in Figure 

7 but with the pressure applied normal to the x-y plane, and displacements measured 

along the z-axis). The applied pressure was scaled to the beam cross sectional area by 

calculating the surface area over which the load was applied and adjusting for the 

entire cross sectional area. The displacements of the beam in axial loading were 

calculated and subsequently the stress and strain values were used to calculate the 

axial Young’s modulus.  

3.5.2 Results and discussion 

Longitudinal axial loading revealed the Young’s modulus varied depending on the 

void size in the material. This is an expected result as the density of material is 

reduced significantly with increasing void size. Table 3 displays the result obtained 

for the longitudinal axial Young’s modulus for the three dimensional FE model, 
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where the void fraction has been varied. The table also includes the 2-dimensional 

results for a comparison between all three axes in the idealised material where SX = 1 

and SY = 0.866. This reveals that there is a degree of transverse isotropy in the 

material with a significantly stiffer longitudinal axis. This indicates that the idealised 

3-dimensional heterogeneous material effectively replicates the transversely isotropic 

behaviour of cortical bone. 

Table 3 - Longitudinal Young's modulus, EZ, calculated using ANSYS 12.1 for axial loading on a 3D mesh. 

Results from the 2D analysis, EX & EY are included for comparison. 

 
Void fraction, VF 

0.036 0.145 0.326 

Longitudinal 

Young’s Modulus, 

EZ (GPa) 

 

19.3 

 

17.1 

 

13.5 

Transverse Young’s 

Modulus, EX (GPa) 
17.94 13.20 7.94 

Transverse Young’s 

Modulus, EY (GPa) 
17.94 13.11 7.63 

 

3.6 Three point-bending of a 3D heterogeneous material 

3.6.1 Methodology 

 

Figure 23 – Examples of beam cross sections for beams with and without surface perforations for 3D 

simulations 

Bending analyses were also carried out on the three dimensional material. This 

analysis was designed to identify if size effects were present when the voids run 

axially along the beam in bending. Figure 23 shows the cross sections both of the 

y 

x 
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smooth surfaced and corrugated beams where the beam breadth is one unit cell, or 

the separation of voids in the x axis, SX. Figure 24 shows how the modelling of these 

geometries could be reduced to a quarter the size by applying symmetry boundary 

conditions along the y-z and x-y planes. A line of nodes were pinned in the y-axis 

along the centre of the beam to give a vertical constraint to the model. Similarly a 

line load was applied along the edge of the beam in the x-axis. A load of 100N was 

distributed between the nodes along this line. Applying these boundary conditions 

allowed a cantilever model to represent a three-point bending model. The reduction 

in the size of the model greatly increased the speed of the computational process. 

 

 

Figure 24 – The boundary conditions applied to the three-dimensional FEM model. Symmetry was used to 

reduce the model to a quarter the size and a line load was applied to the nodes to simulate three-point-

bending as a cantilever beam. a. The boundary conditions for a continuous beam b. the mesh used to model 

the continuous beam in ANSYS c. The boundary conditions applied to the corrugated beams d. The mesh 

used to model the corrugated beam in ANSYS. 

Beams at every depth were created with the same length to depth aspect ratio to 

observe the changes in stiffness with alterations in size (Equation 10). These aspect 

ratios were chosen to match as best as possible the aspect ratios used in the 2-

dimensional analyses. 

Similar to the two-dimensional models, beams were created with and without surface 

corrugations running along the length of the beam (Figure 24b and d), to determine if 
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the same effects were observable as in the planar case. Two 3-dimensional mesh 

variants were created equivalent to the meshes used in the 2-dimensional 

simulations. These used the 20-noded 128 brick element; exemplar meshes are 

shown in Figure 24. Three length to depth aspect ratio were chosen (6:1, 10:1 and 

20:1) with the same depth dimensions as those for the two dimensional model 

material (SX = 1, SY = 0.866). Six void radius values were chosen to determine the 

influence of the void fraction on the material properties: these ranged from 0.05 to 

0.3mm in increments of 0.05mm. The material properties of the matrix material were 

set to be the same as the previous studies and consistent with the material properties 

of cortical bone (E = 20GPa and ν = 0.3). The deflection of the beam was taken as 

the maximum displacement on the lower face of the beam below where the line load 

was applied. The micropolar Young’s modulus and characteristic length were 

calculated using Equation 12 and Equation 13 
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obtained from the size effect relationship 

in Equation 10.  

3.6.2 Results and discussion 

Table 4 - Characteristic length and micropolar Young's modulus for varying void radii calculated from 3-

point-bending analyses on continuous beams with breadth equal to 1 at an 20:1 aspect ratio 

Normalised 

void radius, 

VR/SY 

Micropolar  

Characteristic 

Length, lc, (mm) 

Micropolar 

Young’s 

Modulus, Emz, 

(GPa) 

Void 

diameter 

(mm) 

Void  

fraction 

0.06 

0.12 

0.17 

0.23 

0.29 

0.35 

0.079 

0.161 

0.242 

0.323 

0.401 

0.477 

19.7 

19.1 

18.2 

17.0 

15.3 

13.3 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.009 

0.036 

0.082 

0.145 

0.227 

0.326 

Three-point bending analyses revealed that for beams with smooth continuous 

surfaces the same effects were observed as seen in the two dimensional case: a size 

stiffening size effect trend. Figure 25, Figure 26 and Figure 27 show the plot of the 

stiffness against 1/depth
2
 for varying normalised void radius (VR/SY) in beams with a 
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smooth continuous surface and breadth equal to one unit cell at a 20:1, 10:1 and 6:1 

length to depth aspect ratios respectively. The micropolar material properties of 

micropolar Young’s modulus and characteristic length were calculated using 

Equation 10. Although this equation assumes isotropy, and the idealised 3-

dimensional heterogeneous material is anisotropic, Equation 10 is nevertheless a 

valid approximation because the deformation in the bending analyses is 

predominately flexural. This enables the axial properties to be reasonably accurately 

characterised despite the anisotropy in the material. The micropolar characteristic 

length, lc, was found to be less than the void diameter (Table 4). A linear regression 

of the micropolar characteristic length with the void diameter revealed lc = 0.8VD 

with R
2
 = 0.99 (Figure 28). This suggests that the micropolar material property of 

characteristic length is predictable from the geometrical features of the 

microstructure as it scales almost linearly with the void diameter. This is a significant 

finding which indicates that micropolar material properties have a direct relationship 

with the microstructure. For an equivalent void fraction in the two dimensional 

material the characteristic length is noticeably larger, therefore demonstrating the 

dependence of the characteristic length on the orientation of the voids through the 

material in bending. 
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Figure 25 - Stiffness against the reciprocal of depth squared for smooth continuous beams at a 20:1 length 

to depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY=0.06; red squares, VR/SY=0.12; green triangles, VR/SY=0.27; purple circles, 

VR/SY=0.23; blue stars, VR/SY=0.29; orange crosses, VR/SY=0.35. 

Inc. 

VF  
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Figure 26 – Stiffness against the reciprocal of depth squared for smooth continuous beams at a 10:1 length 

to depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY=0.06; red squares, VR/SY=0.12; green triangles, VR/SY=0.27; purple circles, 

VR/SY=0.23; blue stars, VR/SY=0.29; orange crosses, VR/SY=0.35. 
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Figure 27 - Stiffness against the reciprocal of depth squared for smooth continuous beams at a 6:1 length to 

depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: 

blue diamonds, VR/SY = 0.06; red squares, VR/SY = 0.12; green triangles, VR/SY = 0.27; purple circles, VR/SY 

= 0.23; blue stars, VR/SY = 0.29; orange crosses, VR/SY = 0.35. 
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Figure 28 - Linear regression of the micropolar characteristic length against the void diameter for 3-D  

20.8:1 aspect ratio beams 

Figure 29, Figure 30 and Figure Figure 31 show the stiffness plotted against the 

reciprocal of depth squared for beams with surface perforations running 

longitudinally along the surface for length to depth aspect ratios of 20:1, 10:1 and 6:1 

respectively. It can be seen that the same trends are present as in the two-dimensional 

scenarios: a size softening “anti-micropolar” effect. As before, a real characteristic 

length could not be calculated from the negative gradients, however the micropolar 

Young’s modulus was calculated from the y-intercept, and was revealed to be 

equivalent for both the smooth and corrugated beams. This again repeated the trend 

observed in the two dimensional planar case. 
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Figure 29 - Stiffness against the reciprocal of depth squared for corrugated at a 20:1 length to depth aspect 

ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue diamonds, 

VR/SY=0.06; red squares, VR/SY=0.12; green triangles, VR/SY=0.27; purple circles, VR/SY=0.23; blue stars, 

VR/SY=0.29; orange crosses, VR/SY=0.35. 
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Figure 30 - Stiffness against the reciprocal of depth squared for corrugated at a 10:1 length to depth aspect 

ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue diamonds, 

VR/SY=0.06; red squares, VR/SY=0.12; green triangles, VR/SY=0.27; purple circles, VR/SY=0.23; blue stars, 

VR/SY=0.29; orange crosses, VR/SY=0.35. 
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Figure 31 - Stiffness against the reciprocal of depth squared for corrugated beams at a 6:1 length to depth 

aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void radius: blue 

diamonds, VR/SY=0.06; red squares, VR/SY=0.12; green triangles, VR/SY=0.27; purple circles, VR/SY=0.23; 

blue stars, VR/SY=0.29; orange crosses, VR/SY=0.35. 

Table 5 shows the values for characteristic length in the 3D simulations. It is not 

possible to take a reliable characteristic length value for below 10:1 aspect ratio as 

the beams do not follow the closed form analytical linear trend necessary to apply 

Equation 10. 
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Table 5 - A comparison of the characteristic lengths for different void radii at 10:1 and 20:1 length to 

depth aspect ratios for 3D models. 

Normalised void 

radius VR/SY 

Characteristic length (mm) Void diameter 

(mm) 10:1 aspect ratio 20:1 aspect ratio 

0.06 0.07 0.08 0.1 

0.12 0.16 0.16 0.2 

0.17 0.23 0.24 0.3 

0.23 0.31 0.32 0.4 

0.29 0.39 0.40 0.5 

0.35 0.46 0.48 0.6 

 

As in the planar idealised heterogeneous material case a better impression of the 

relationship between the positive and negative size effects observed between smooth 

and corrugated beams can be created by plotting the respective magnitude of the 

gradients against normalised void radius (Figure 32). It can be seen in Figure 32 that 

both size effects follow similar trends as the void size is increased, and could be 

considered to mirror one another. Again, as in the 2-D case the difference between 

both size effects was plotted against void size (Figure 33). For perfectly 

complementary size effect trends to be present in both the corrugated and smooth 

surfaced beams there would have to be no difference in the magnitude of the 

observed size effects. However, it is apparent in Figure 33 that for smaller void sizes 

there is a significant divergence between positive and negative size effects. As the 

void size is increased the difference between size effects reduces. This implies that a 

normalised void radius in the region of 0.25 produces the most comparable results 

between positive and negative size effects. However, it is important to note that at 

lower size effects a small change in the gradient will not majorly affect the calculated 

values for micropolar characteristic length and Young’s modulus. Therefore, even at 

smaller void radii it nevertheless remains a fairly accurate generalisation to describe 

the positive and negative size effects as mirroring one another. Moreover, where the 

experimental testing of a real material is considered, the difference between positive 

and negative size effects are within the regions of experimental errors. The opposing 

size effects, although not exactly opposite in magnitude follow strikingly similar 

opposing trends. This may allow the micropolar material properties to be inferred 
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from the opposing complimentary size effect allowing predictions from data which 

would otherwise not enable the material properties to be calculated 

 

Figure 32 – Magnitude of size effect plotted against normalised void radius, VR/SY, for 20:1 length to depth 

aspect ratio for beams with voids running longitudinally along the axis of bending. The blue diamonds are 

for beams with continuous surfaces and the red squares represent beams with surfaces corrugated by the 

internal microstructure. 
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Figure 33 – The difference in the magnitude of size effects between the positive (smooth surfaced) and 

negative (corrugated) plotted against the normalised void radius, VR/SY  

Three dimensional FE models demonstrate the transverse isotropy in the 3D idealised 

heterogeneous material. The 2-dimensional models revealed that there was limited 

anisotropy in the x-y plane, but the 3-dimensional model clearly demonstrates that 

along the long axis (where the voids run along the length of cortical bone) the 

material is significantly stiffer. This suggests close to plane isotropy in the idealised 

3-dimensional model; a finding which is consistent with current models of transverse 

isotropy in mid-diaphyseal cortical bone (Dong & Guo 2004; Remond & Naili 2005; 

Turner et al. 1995). 
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The bending analyses further reveal the size effect trends apparent in the idealised 

material. Not only is there a significant size effect recorded in the 2-dimensional 

cases – where continuous and corrugated surfaces follow opposing size effect trends 

– but the same size effect trends are apparent in the longitudinal axis also. This 

indicates that a full three dimensional micropolar model of the idealised 

heterogeneous material is required to effectively describe the micropolar behaviour. 

If the idealised FE models are representative of the Haversian canals system in 

cortical bone then there will be two unique size effects observed for the longitudinal 

and transversely orientated specimens, each describing the characteristic length of 

the microstructure at each orientation.  

Another significant finding from both the 2-dimensional and 3-dimensional FE 

models has been that the length to depth aspect ratio has an important influence on 

the observed size effect. The analytical solution for a micropolar beam in three point 

bending highlights a linear size effect relationship between the flexural stiffness and 

the reciprocal of depth squared. For beams with a 20:1 length to depth aspect ratio a 

near linear relationship is observed. As this aspect ratio is reduced the assumptions of 

the analytical solution become less valid. At a 10:1 aspect ratio the linear relationship 

is still maintained, but as the aspect ratio is reduced below 10:1 there is no longer a 

linear relationship between stiffness and reciprocal of depth squared. This means that 

for experimental analyses of cortical bone at least a 10:1 aspect ratio will have to be 

used. For the practicalities of the experiments a larger length to depth aspect ratio 

could prove problematic and for this reason a 10:1 length to depth aspect ratio was 

determined to be the most practical for experiments and effective for establishing 

micropolar material properties. 

A significant finding from both the two and three-dimensional models was that the 

micropolar characteristic length can be predicted from the diameter of the internal 

microstructural voids. It was found empirically that micropolar characteristic length 

varies directly with void diameter. This implies that a general geometric observation 

may be made of the microstructure in a heterogeneous material and allow the 

characteristic length to be inferred from that geometry. It has also be observed that 

the orientation and character of the microstructure has an important influence of the 
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observed characteristic lengths with the 2-D and 3-D geometries showing different 

relationships with void diameter. Nonetheless this finding has demonstrated the 

predictability of knowledge of the microstructure in identifying micropolar material 

properties. Moreover it has shown a direct link between the underlying 

microstructure (which causes the material heterogeneity) and the material properties 

which are associated with the global material behaviour. 

3.7 Three dimensional hexagonal models 

3.7.1 Background 

The previous results have shown that surface effects have an overwhelming influence 

on the observed size effect. In rectangular cross sections the influence of the surface 

region is influential to the overall beam behaviour in bending because this is where 

the highest stresses occur in three-point bending. However, in beams with circular 

cross sections the surface regions are noticeably less significant in determining the 

overall material behaviour in three-point bending. In a circular cross sectioned beam 

the influence of the upper and lower surface regions are not as prominent. It may be 

possible to observe similar micropolar size effect in beams with continuous surfaces 

and beams corrugated by the internal microstructure because the surface regions have 

a less significant influence on the overall material behaviour. Considering the 

contrasting findings between similar the experimental analyses of Lakes and Choi in 

bending tests on cortical bone specimens (Park & R. Lakes 1986; Choi et al. 1990) it 

is plausible that the cause of these differences is due to the cross sectional area of the 

test specimens rather than systematic difference between the tests. This section tests 

this hypothesis. 

3.7.2 Methodology 

To determine if a more circular geometry would produce more consistent results 

between corrugated and smooth beams a series of hexagonal three-point bending 

models were created in ANSYS 12.1 to approximate the geometry of a circular cross 

section. The behaviour of a micropolar beam of hexagonal cross section in three-

point bending is derived from the three-point bending equation: 
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Equation 14 
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where E is the Young’s modulus, I is the second moment of area and l is the length 

of the beam. The second moment of area of a hexagonal cross section is given by: 

Equation 15 
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where r is the radius of the hexagon. By substituting Equation 15 into Equation 14 an 

expression for a hexagonal beam in three –point bending may be formed: 

Equation 16 
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The equivalent micropolar expression for a hexagonal cross sectioned beam is 

therefore given by: 

Equation 17 
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where lc,HEX is the micropolar characteristic length of a hexagonal beam in bending 

and is given by 
m

HEXc
E

l
5

72
,


 . For a rectangular beam 

m

RECTc
E

l
12

,   and for a 

circular beam 
m

CIRc
E

l
16

,  . The difference between characteristic lengths arises 

from the change in second moment of area between beam cross sections and 

therefore to compare the hexagonal models accurately with the rectangular 

geometries a comparison between the characteristic lengths in bending is required. 

By dividing Equation 17 through by the depth the length to depth aspect ratio can be 

maintained as the parameter by which the size effect is determined.  
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Equation 18 
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where the symbols have their usual meaning. This allows the micropolar Young’s 

modulus and characteristic length to be calculated from the linear relationship 

between stiffness per unit depth and the reciprocal of depth squared 
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The same three-dimensional FE mesh was used for the hexagonal beams as was used 

in the previous section for the three-dimensional models with surface perforations 

and rectangular cross sections (Figure 6 and Figure 34). Four models were created 

with one void radius of 0.3 used to analyse the hexagonal beam models. The main 

purpose was to determine if a negative size effect occurred in hexagonal (circular) 

cross sectioned beams and therefore only one void radius was initially analysed.  

Symmetry and anti-symmetry boundary conditions were applied to simplify the 

model and reduce the computational time. A 10:1 length to depth aspect ratio was 

maintained for the four depths of model created. A line load of 100N was applied 

along the top surface to simulate three point bending in each model. The deflection 

was taken as the displacement on the bottom surface of the beam directly below the 

line where the load was applied. The flexural stiffness of the beam was determined 

by dividing the applied load by the calculated deflection.  
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Figure 34 – The mesh used for the smallest hexagonal cross sectioned beams. Anti-symmetry boundary 

condition was applied to the upper x-z plane and symmetry was applied to the x-y plane in order to reduce 

the size of the model. 

3.7.3 Results and discussion 

The flexural stiffness value obtained from the FEA was divided by the depth for each 

model to enable the stiffness per unit depth to be plotted against the reciprocal of 

depth squared and determine the magnitude and direction of any observable size 

effects (Equation 18). This also allowed the size effect to be compared with the 

equivalent rectangular beam of the same void fraction. A negative size effect in 

agreement with anti-micropolar size softening was observed in the FE results (Figure 

35). This suggests that hexagonal cross sectioned beams follow the same trend as 

rectangular cross sectioned beams in that where the surface is corrugated by the 

internal microstructure a size softening size effect is observed. The primary purpose 

of this analysis was to determine if a negative size effect trend occurred in hexagonal 

models and therefore beams without surface voids were not created. Despite this the 

micropolar material properties may be inferred by assuming similar behaviour to the 

rectangular beams where a complementary positive size effect would occur in 

smooth surfaced hexagonal beams. The micropolar characteristic length and Young’s 

modulus were calculated using Equation 18 and were found to be 0.59mm and 12.8 

GPa respectively. The characteristic length in bending for the hexagonal model is 

therefore 0.15mm. These are comparable to the values obtained from the rectangular 

cross sections of equivalent void size and void fraction at a 20:1 length to depth 

aspect ratio (lb = 0.14mm and Em = 13.3GPa). 
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Figure 35 – Stiffness per unit depth plotted against the reciprocal of depth squared for the four hexagonal 

beams modelled at a void radius of 0.3.  

Lakes investigated the micropolar behaviour of cortical bone in the 1980s (R. Yang 

& Lakes 1982; R. Lakes 1985; J. Yang & R. Lakes 1982). In these studies specimens 

of circular cross section were analysed. Because Lakes’ conclusions suggest that 

cortical bone exhibits a positive size effect consistent with micropolar elasticity the 

hypothesis was that the circular cross section had an influence upon whether such a 

size effect is predicted by numerical modelling.  

A negative anti-micropolar size effect was found numerically in hexagonal cross 

sectioned beams contrary to that experimentally observed by Lakes (Yang & Lakes 

1982) for circular cross sectioned beams. This suggests that the experiments by 
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Lakes are observing a different size effect to that predicted by the computational 

models. One possible explanation of the discrepancy is the lack of an analysis of 

specimens of a length scale approaching the scale of the microstructure in Lakes’ 

investigation. The smallest specimen size tested by Lakes was of the scale of 1mm in 

diameter; this is considerably larger than the microstructure of the Haversian canal 

system which is being modelled in the numerical models in this study. Therefore it 

may be argued that the positive size effect observed by Lakes is not directly 

comparable to the hexagonal models investigated here. Moreover, it would be 

expected that a circular cross sectioned beam experimentally tested at below the 

1mm diameter size would begin to reveal a significant decrease in stiffness 

concurrent with the numerical predictions. This may also suggest that results from 

Lakes’ work should perhaps not be taken as a definitive quantification of the 

micropolar behaviour of cortical bone but rather may be an indication of the natural 

variation of the material at that length scale and not representative of the constitutive 

behaviour of the material. 

3.8 Two dimensional models with a varied surface thickness 

3.8.1 Background 

In the models created thus far there has been continuity in the distribution of voids 

through the material in both the continuous and corrugated beams. If these cases 

represent extremes of the geometrical preparation of the idealised heterogeneous 

material then it follows that a beam may be created which is representative of a 

preparation between those two extremes. To create such a beam a series of models 

were created with discretely smaller surface voids thereby reducing the thickness of 

the compliant surface layer on the beam. The surface voids were maintained at the 

same porosity as the internal microstructure but the radius of each void was reduced. 

These models were designed to represent a scenario where the surface of the beam 

has had an artefact introduced onto it; the artefact may have arisen from the 

preparation process (i.e. cutting, polishing and lapping) and is smaller than the 

internal microstructure but cannot be ignored as a negligible influence on the beam 

stiffness. In fact the real situation may be a combination of surface microstructure 

and preparation artefact. 
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By understanding the situations between the extremes of size effect behaviour in 

beams in three-point bending a more complete picture of the predicted experimental 

behaviours may be developed. 

3.8.2 Methodology 

A series of beams were created with surface voids of half the radius of the internal 

microstructure. The same size effect methodology as was used in previous numerical 

experiments was applied where the aspect ratio of length to depth was maintained 

throughout for larger and smaller beams. The same aspect ratio of 10.4:1 was used 

for all models.  

1
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Figure 36 – Example mesh for a 2D beam with double the surface voids to internal voids. The porosity is 

consistent throughout the model. 

A new mesh was created to model the surface region for the halved radius voids; the 

mesh was created using the same equilateral array of voids as in the previous 2-

dimensional analyses (Figure 36). Because the void radius was halved and the 

porosity of the beam was to remain constant this meant that the number of voids on 

the surface doubled.  
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The same boundary conditions were used as those applied in the previous section for 

2-dimensional models in three-point bending (Figure 10). Two supports were 

simulated by pinning two vertical points on the lower edge of the beam thus defining 

the length of the beam. A vertical point load of 100N was applied to the midpoint of 

the beam on the upper surface and was pinned in the x direction. Care was taken to 

apply the constraints between voids to reduce localised effects. The material 

properties of 20GPa for the matrix material Young’s modulus and 0.3 for Poisson’s 

ratio were used as representative of cortical bone. 

Five void fractions were analysed: 0.036, 0.082, 0.145, 0.227 and 0.326 these are the 

same void fractions used in the previous 2-dimensional analyses and therefore were 

deemed to be directly comparable. 

3.8.3 Results and discussion 

Figure 37 shows the results for beams with voids of half the size on the surface. It 

can be seen that there is a non-linear relationship between the stiffness of the beams 

and the reciprocal of depth squared. This non-linear effect, which becomes more 

pronounced as the void fraction of the material is increased, is not consistent with 

micropolar elasticity and for this reason Equation 10 may not be used to describe a 

linear trend between size and stiffness. Therefore it is not possible to extrapolate 

micropolar material properties from these results.  

It is apparent that there is both a size softening trend and a size stiffening trend 

exhibited by the non-linear relationship.  
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Figure 37 - Stiffness against the reciprocal of depth squared for beams with double the number of surface 

voids at a constant porosity for a 10.4:1 length to depth aspect ratio for varying normalised void radii, 

VR/SY. Each line represents a different void radius: blue diamonds, VR/SY = 0.06; red squares, VR/SY = 

0.12; green triangles, VR/SY = 0.27; purple circles, VR/SY = 0.23; blue stars, VR/SY = 0.29; orange crosses, 

VR/SY = 0.35. 

Although there is not a linear size effect trend exhibited by the results of beams with 

variable surface voids it is possible to draw some interesting conclusions. Firstly, 

there is a noticeable size softening trend indicative of an anti-micropolar size effect. 

This compares to the FE models of beams with surface voids of the same radius as 

the internal microstructure. Despite the lack of linearity in the results it is possible to 

identify the micropolar trend as being generally of a negative size effect and 

therefore related to the presence of surface voids. 

Inc. 

VF  
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Where the surface voids have the most influence on the stiffness of the beam – i.e. 

where the surface layer is most significant: in the smaller beams – it is apparent that 

the beams are more compliant. For larger beams, where the surface layer is less 

significant in the overall beam stiffness, the beam appears stiffer. The differing 

influence of the surface regions of larger and smaller beams may account for the 

non-linear size effect trends observed for these type of surfaces. This expresses itself 

in the stiffness against depth plot as a positive micropolar size effect in larger 

specimens and a negative micropolar size effect in the smaller specimens.  

It may be possible to infer the micropolar material properties from the positive size 

effect trend of the larger specimens, where the influence of the surface region 

becomes less important. To do this the intercept and gradient of the line at the 

intercept would be used in the closed form micropolar formulation of a beam in 

three-point bending.  

The variable surface void models are an important tool for understanding the 

preparation of specimens for the experimental testing of real materials. If a 

standardised surface artefact is produced on the surface of each specimen thereby 

creating a consistent surface for each specimen then a size effect trend concurrent 

with micropolar elasticity may be established. It would be important to establish a 

finer grain size of the artefact on the surface than the internal microstructural features 

of the constitutive material. This would enable the influence of the induced surface 

voids to be reduced therefore allowing any discernable size effect trend to be related 

to the internal microstructure rather than the imparted artefact. 

3.9 Numerical modelling conclusions 

The 3-dimensional idealised heterogeneous material created to mimic the 

microstructure of cortical bone has been shown to behave closely in accordance with 

plane isotropy while the longitudinal z-axis shows significantly stiffer material 

properties than the x-y plane. Micropolar size effects were observed in both the 2-

dimensional and 3-dimensional models. However, there is an overwhelming 

importance in the nature of the surface regions in both models. Where the surface is 

corrugated by voids a negative, anti-micropolar, size effect is observed and where the 

surface is continuous a positive micropolar size effect is observed. This suggests that 



91 

 

the surface needs to be characterised in order to fully interpret any size effect 

behaviour in experiments on a real material. 

It has been shown that the micropolar material properties of characteristic length in 

bending and micropolar Young’s modulus can be found from a positive size effect. It 

has also been demonstrated that the micropolar characteristic length varies linearly 

with the void diameter. It was calculated that for the 2-D case lc = 1.35VD and for the 

3-D case lc = 0.79VD. This highlights the predictive nature of the microstructure on 

the macroscale material properties and may allow micropolar constitutive properties 

to be inferred from geometrical measures of the microstructure itself. This is a 

significant finding as it directly links the heterogeneity of the microstructure to size 

effects in the material.  

The opposing size effects for continuous and corrugated models are approximate 

mirrors of one another. This suggests that the micropolar material properties may be 

inferred from the negative size effect, as it is a mirror of the relevant positive size 

effect in the models without surface voids. It was also noticed that the length to depth 

aspect ratio plays an important role in the observed size effect. Where the length to 

depth aspect ratio is maintained above 10:1 the results are fairly consistent with the 

closed form analytical solution, however, where the aspect ratio falls below 10:1 the 

analytical solution is no longer valid as the influence of shear deformation become 

significant in the bending of the beam.  

Further analyses were done on hexagonal beam geometries to investigate whether 

opposing size effects occurred where the surface region had less of a significant 

impact on the beam geometry. However, this further corroborated the earlier findings 

on rectangular cross sectioned beams and further revealed the opposing size effects 

in beams with and without surface corrugations. 

In order to further understand the importance of the surface region on the bending 

size effects, models were created with a varied size of surface voids. This revealed an 

intriguing finding where a linear relationship between beam stiffness and reciprocal 

of depth squared was not evident, but rather a non-linear relationship which shows 

both size stiffening and softening trends. It may be that the non-linear relationship is 
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descriptive of the differing influence that the surface region imparts upon larger and 

smaller beams. This finding is important in the future experimental work as it further 

highlights the importance of consistent surface preparation. 

Finally, it is important to note that many of the effects modelled are small (i.e. a 

small % difference in stiffness). Inherent biological variation and non-idealised 

heterogeneity in bone may mask these numerically predicted size effects. 

Furthermore, positive, neutral and anti-micropolar behaviour is all possible from an 

idealised heterogeneous material depending on the surface finish. If a lack of size 

effect is present this does not necessarily mean that the material follows classical 

elasticity. Clearly, surface finish on small samples plays an important role. 
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4 Analytical models of idealised materials 

4.1 Analytical models for 3D beams in bending 

The numerical analysis revealed opposing size effects in the 3-dimensional idealised 

heterogeneous material created in ANSYS. It is possible to create complementary 

analytical models of the FE simulations by calculating the second moment of area of 

the cross section of each simulated beam. From this it is possible to calculate the 

stiffness of each beam in three-point bending. Such an examination of the micropolar 

size effects observed in the FE analysis may enlighten the underlying causes of the 

micropolar size effects and reveal a method for extracting the micropolar behaviour 

from a beam showing a negative size effect.  

4.1.1 Methodology 

Equation 11 may be represented by an equivalent expression which includes an 

unspecified second moment of area. 

Equation 19 
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where E is the matrix material Young’s modulus, I is the second moment of area of 

the cross section and l is the length of the beam. The second moment of area, I, of a 

rectangular cross sectioned beam is given by: , where b and d are the breadth 

and depth of the section respectively. 

Because the beam cross-section is uniform in each of the three dimensional beams 

along the axis of bending (Figure 23) it is possible to calculate the second moment of 

area for each beam by subtracting the voids using the parallel axis theorem. 

Therefore, it is possible to validate the finite element results for the three 

dimensional beams using Equation 19. A Young’s modulus representative of cortical 

bone (20GPa) was used for the matrix material to maintain consistency in the 

methodology. Because the analytical solution assumes that the beam is loaded in 

three-point bending there would be no discrepancy in varying the aspect ratio. For 



94 

 

this reason only one length to depth aspect ratio (20:1) was calculated. The 20:1 

aspect ratio was chosen for the analytical models because this ratio was the largest 

used in the FE analyses and simulated the closest approximation to pure bending.  

Analytical solutions were calculated for beams both with and without surface voids 

in order to compare the size effects produced. 

4.1.2 Results and discussion 

The same size effect trends were observed as in the computational models. Beams 

with continuous surfaces showed a micropolar size stiffening size effect (Figure 38) 

and beams with surface perforations showed an anti-micropolar size softening size 

effect (Figure 39). Both set of results quantitatively match those produced for a 20:1 

length to depth aspect ratio in the FE analyses (Table 6 and Table 7).  
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Figure 38 – Analytical stiffness against the reciprocal of depth squared for smooth continuous beams at a 

20:1 length to depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different 

void radius: blue diamonds, VR/SY = 0.06; red squares, VR/SY = 0.12; green triangles, VR/SY = 0.17; purple 

circles, VR/SY = 0.23; blue stars, VR/SY = 0.29; orange crosses, VR/SY = 0.35. 
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Figure 39 - Analytical stiffness against the reciprocal of depth squared for corrugated beams at a 20:1 

length to depth aspect ratio for varying normalised void radii, VR/SY. Each line represents a different void 

radius: blue diamonds, VR/SY = 0.06; red squares, VR/SY = 0.12; green triangles, VR/SY = 0.17; purple 

circles, VR/SY = 0.23; blue stars, VR/SY = 0.29; orange crosses, VR/SY = 0.35. 

The same value for Young’s modulus was produced from the analytical results as 

that obtained from the axial FE model for three dimensional beams (Table 6). 

However, the values obtained from three-point bending show a slightly lower 

micropolar Young’s modulus. This may be because even a 20:1 aspect ratio does not 

exactly simulate the conditions used in the analytical model to describe pure bending. 

As the FE simulations will generate a numeric result which includes element 

approximations for the particular geometry being analysed it is unlikely to produce a 

result exactly the same as an equivalent analytical solution. Moreover, the analytical 
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solution does not account for the anisotropy in the 3-dimensional material which the 

finite element calculations will include. Despite this the values for micropolar 

Young’s Moduli are strikingly similar and suggest the analysis technique is showing 

a true material behaviour, and, that size effects are apparent in 3-dimensional 

extruded heterogeneous materials.  

Table 6 - Longitudinal Young’s modulus for varying void fractions comparing computational and 

analytical results over a 20:1 length to depth aspect ratio. 

Longitudinal 

Young’s Modulus, 

Ez (GPa) 

Void fraction, VF  

 

0.036 0.145 0.325 

FE three-point-

bending (20:1) 

 

19.1 

 

17.0 

 

13.3 

 

FE axial loading 

 

19.3 

 

17.1 

 

13.5 

 

Analytical three-

point-bending 

 

19.3 

 

17.1 

 

13.5 

 

The micropolar characteristic length predicted by the analytical methods closely 

matches the values calculated using FE analysis. Table 7 shows a comparison 

between the analytical and FE values for both Micropolar Young’s Modulus and 

characteristic length for models simulated at a 20:1 length to depth aspect ratio. This 

shows the FE predictions to be closely matched by the analytical validation. Again 

this suggests that the geometrical difference between models can be quantified 

through the difference in the second moment of area. 
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Table 7 – A comparison between the analytical and FE Micropolar characteristic length and Young’s 

Modulus for beams with a 20:1 length to depth aspect ratio. 

Normalised 

void radius, 

VR/SY 

Analytical 

Micropolar 

Characteristic 

Length, lc, 

(mm) 

Analytical 

Micropolar 

Young’s 

Modulus, Emz, 

(GPa) 

FE Micropolar 

Characteristic 

Length, lc, 

(mm) 

FE 

Micropolar 

Young’s 

Modulus, 

Emz, (GPa) 

lc % 

difference 

Emz % 

difference 

0.06 

0.12 

0.17 

0.23 

0.29 

0.35 

0.082 

0.165 

0.246 

0.327 

0.406 

0.482 

19.8 

19.3 

18.4 

17.1 

15.5 

13.5 

0.079 

0.161 

0.242 

0.322 

0.401 

0.477 

19.7 

19.1 

18.2 

17.0 

15.3 

13.3 

3.66 

2.42 

1.63 

1.53 

1.23 

1.04 

0.51 

1.04 

1.09 

0.58 

1.29 

1.48 

 

4.2 Analytical models for 2D beams: Size effects in layered 

heterogeneous materials 

4.2.1 Background 

Idealised heterogeneous materials can be represented by creating an array of voids in 

a homogeneous material. Such idealised materials are intended to represent a form of 

physical microstructure; alternatively such an arrangement may induce a 

characteristic material feature such as anisotropy in material properties through the 

material.  

Previously the method of representing inhomogeneity by an arrangement of voids in 

a homogeneous material has shown a size effect consistent with micropolar elasticity 

when simulating three-point-bending using FE analysis (Section 3.3). However, a 

micropolar size effect - where stiffening is observed for smaller beams in three-point 

bending with consistent aspect ratio – is only observed where the surface of the 

material is not intersected by the internal material voids. An opposite “anti-

micropolar” size effect is observed when the surface is corrugated by the material 

voids. In this case the beams become more compliant as size is reduced at the same 

three-point-bending aspect ratio. This raises the question: What is the mechanism by 

which the same material is able to portray inherently opposite material behaviours 
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depending on how the sample boundaries are positioned relative to the prescribed 

microstructure? 

It has also been demonstrated that the alterations in stiffness of the 3-dimensional FE 

simulations may be attributed to a change in the second moment of area between 

beams of varying size. This quantity describes the change in geometrical distribution 

of material through the beam cross section and is relatively straight forward to 

determine for a continuous cross section. However, for the case where the cross 

section alters along the length of a beam it is more challenging to calculate a value 

for the second moment of area applicable over the beam length. For example in the 

2-dimensional FE simulations a value for the cross sectional second moment of area 

will change depending on the location of the cross section along the major axis of the 

beam, because of the alternating location of voids through the depth. 

An alternative possibility is to redefine the microstructure of the heterogeneous 

material in terms of material property variations rather than geometrical features 

(Figure 40). By representing the heterogeneity in the idealised planar material as a 

series of stiff and compliant layers, as opposed to modelling detailed microstructure, 

it is hoped that a more detailed relationship between the influence of the 

microstructure and the observed micropolar material properties may be formed. The 

rationale for this approach is that first principles define a material as being 

micropolar when the material is unable to transfer shear forces equally through the 

material. Such behaviour appears to be effectively simulated by creating regular 

voids in a material; the areas with voids represent compliant layers and areas without 

voids represent stiff layers.  
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Figure 40 - Laminated model of stiff and compliant layers representing the internal microstructural voids. 

The hypothesis that a similar micropolar trend to that which has already been shown 

in the idealised heterogeneous material of regularly arranged voids distributed 

through a homogeneous material will be observed in a laminated style material of 

stiff and compliant layers as in Figure 40.  

For beams where the surface is intersected by the internal microstructural voids a 

compliant layer may be defined on the surface. Where the surface is continuous a 

stiff layer may be defined on the surface. 

4.2.2 Methodology 

Equation 20 is used to calculate the stiffness of a homogeneous beam in three-point-

bending.  

Equation 20 

3

48

l

EI
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where K is the geometric stiffness of the beam, E is the Young’s Modulus, I is the 

second moment of area and l is the length of the beam. 

For beams constructed from alternating stiff and compliant layers as shown in Figure 

40 the Young’s Modulus and cross sectional second moment of area varies between 

each layer. Therefore the second moment of area of the entire beam about the centre 

of the beam cross section can be calculated in order to evaluate the overall beam 
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stiffness. In effect the stiffness of each layer about the central plane of bending can 

be summated to give the total stiffness of the beam as shown in Equation 21. 

Equation 21 
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where K is the stiffness of the beam, Ei is the Young’s Modulus, Ii is the second 

moment of area of the ith layer, l is the length of the beam and n is the number of 

layers in the material. 

This method was repeated for 5 beams. For the smallest beam there were three 

layers, one in the centre and two surface layers. For the largest beam there were 

eleven layers altogether. The analysis was set up with five discrete input parameters 

which could be adjusted for each beam globally. The defined inputs used to calculate 

the beam stiffness were: compliant layer thickness, tc; stiff layer thickness, ts; 

coefficient of surface layer thickness, tSUR; Young’s Modulus of the stiff layer, Es; 

Young’s Modulus of the compliant layer, Ec (Figure 40). A length to depth aspect 

ratio of 10:1 and a breadth of unity were chosen for these analyses.  

The coefficient of surface layer thickness represents the ratio of the thickness of the 

surface layer to the thickness of the internal stiff layers, thereby allowing the 

importance of the thickness of the surface layer to be analysed. The stiff and 

compliant layers could be reversed in the beam and therefore allow the surface layer 

to be compliant. In this case the coefficient of surface layer thickness was set to be 

half the thickness of the compliant layer.   

In order to standardise the analysis procedure and enable a comparison with the 2-D 

FE analyses the input parameters were defined in terms of the equivalent void radius 

in the FE models. By using the same equilateral array of voids used in the FE 

analyses (Figure 4) where SX and SY define the arrangement of voids in the x-y plane 

the void radius, VR was used to define the input parameters (Figure 40).  The input 

parameters are detailed in Table 8 where it can be seen that the void radius defines 

the void fraction, stiff layer thickness and compliant layer thickness. The void 

fraction and Young’s modulus of the stiff layers in turn were used to define the 
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Young’s modulus of the compliant layers. This was done by proportionately scaling 

the Young’s modulus of the compliant layers by the reduction in material caused by 

the size of the voids in the layer. 

Table 8 – Input parameters for the 2-D analytical models of beams of stiff and compliant layers 

Void 

radius, VR 

(mm) 

Void 

fraction, 

VF 

Compliant 

layer 

thickness, 

tC (mm) 

Stiff layer 

thickness, 

tS (mm) 

Coefficient 

of surface 

layer 

thickness, 

tSUR 

Young’s 

modulus 

of stiff 

layer, ES 

(GPa) 

Young’s 

modulus of 

compliant 

layer, EC 

(GPa) 

0.1 0.036 0.2 0.667 0.5 20 18.5 

0.15 0.082 0.3 0.567 0.5 20 16.7 

0.2 0.145 0.4 0.467 0.5 20 14.2 

0.25 0.227 0.5 0.367 0.5 20 10.9 

0.3 0.326 0.6 0.267 0.5 20 6.9 

 

In total five discrete compliant layer thicknesses were analysed ranging from a void 

radius of 0.1 to 0.3 in 0.05 increments. The Young’s modulus of the stiff layers was 

set to 20GPa. To reverse the order of layers in the material between stiff and 

complaint the values of Es and Ec were reversed. This allowed analyses to be carried 

out for beams with stiff surfaces and the equivalent beams with complaint surfaces. 

Additionally, to investigate the influence of the surface layer thickness on the nature 

of the size effect, the depth of the surface layers were altered. This was done by 

varying the coefficient of surface thickness, tSUR, between three values 0.25, 0.5 and 

1 for beams with stiff surfaces and for beams with compliant surfaces. All other 

parameters were maintained at constant values of tS = 0.5, tC = 0.5, ES = 20GPa and 

EC = 1Pa for these analyses. It was hoped that the influence of the surface region on 

the observed size effects could be better understood through this analysis. 
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4.2.3 Results and discussion 

Figure 41 shows the micropolar size effect for beams with stiff surface layers. By 

reversing the values of ES and EC the case where the surface layers are compliant was 

also simulated. Figure 42 shows the resulting anti-micropolar size softening effect 

produced in the latter case. 

Both trends agree qualitatively with those observed in the FE analysis of 2-

dimensional beams with and without surface corrugations. This suggests the size 

effects predicted by FE analysis are attributable to the distribution of the stiff and 

complaint layers in the material, and on the nature of the surface material itself. 

Furthermore, both opposing complementary size effect trends are opposite in 

direction and show gradients of perfectly equal and opposite magnitudes (Figure 43). 

As this shows the gradients to be equal in magnitude and opposite in direction it 

follows that the micropolar material properties may be inferred from the negative 

gradient. 
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Figure 41 - Analytical stiffness for 2-D laminated model beams plotted against the reciprocal of depth 

squared for beams with stiff surfaces at a 10:1 length to depth aspect ratio for varying normalised void 

radii, VR/SY. Each line represents a different void radius: Red squares, VR/SY = 0.12; green triangles, VR/SY 

= 0.17; purple crosses, VR/SY = 0.23; blue stars, VR/SY = 0.29; orange circles, VR/SY = 0.35. 
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Figure 42 - Analytical stiffness for 2-D laminated model beams plotted against the reciprocal of depth 

squared for beams with compliant surfaces at a 10:1 length to depth aspect ratio for varying normalised 

void radii, VR/SY. Each line represents a different void radius: Red squares, VR/SY = 0.12; green triangles, 

VR/SY = 0.17; purple crosses, VR/SY = 0.23; blue stars, VR/SY = 0.29; orange circles, VR/SY = 0.35. 
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Figure 43 - Magnitude of size effect plotted against normalised void radius, VR/SY for analytical 2D models 

where the microstructure is represented by stiff and compliant layers. The blue diamonds are for beams 

with continuous surfaces and the red squares represent beams with surfaces corrugated by the internal 

microstructure. 

The surface layer thickness was varied by altering the coefficient of surface layer 

thickness. The results for these analyses revealed that a non-linear relationship was 

observed in which both micropolar and “anti-micropolar” size effect co-exist. 

Figure 44 show the trends where the coefficient of surface layer thickness has been 

varied to either tSUR = 0.25 or tSUR = 1. It is apparent that the identification of any size 

effect present under such conditions is partially masked by the surface condition. It 

can be seen that for the models where the surface layer is compliant and the thickness 

is less than the internal layer thicknesses (Figure 44d) the same non-linear trend is 
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observed as was exhibited in the FE models for beams with smaller surface voids 

(Figure 37). This adds further evidence to the influence of the surface regions as 

being of fundamental importance in understanding the micropolar size effect trends 

observed in real materials 

 

 

Figure 44 – a. Size effect trend produced where tSUR = 1 for beams with a stiff surface b. Size effect trend 

produced where tSUR = 0.25 for beams with a stiff surface c. Size effect trend produced where tSUR = 1 for 

beams with a compliant surface d. Size effect trend produced where tSUR = 0.25for beams with a stiff 

surface 

 

a b 

c d 
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4.3 Analytical models for 2D beams: Relationships between 

micropolar material properties and microstructural features 

It has already been demonstrated in the FE analysis section that there is a strong 

relationship between the microstructure of heterogeneous materials in the form of the 

void diameter and the micropolar characteristic length. It follows that where the 

microstructure is represented as a series of compliant and stiff layers that a 

relationship between stiff and compliant layer thicknesses, stiff and complaint 

Young’s moduli and micropolar material properties may exist. In order to investigate 

this, a parameter study was undertaken where the input parameters of the layer 

thicknesses and Young’s moduli were varied and compared with the output 

parameters of micropolar characteristic length and micropolar Young’s modulus.  

4.3.1 Methodology 

The same input parameters were defined as in the previous section investigating the 

size effect trends in idealised layered 2-D models. For this study the coefficient of 

surface layer thickness was maintained at 0.5 in order to ensure a linear size effect 

trend was created for each analysis. The four other input parameters were defined as 

the thickness of the stiff layer, tS, the thickness of the compliant layer, tC, the 

thicknesses of the stiff and compliant layers.  

4.3.2 Results and discussion 

The micropolar Young’s modulus is related to the axial modulus of the summated 

heterogeneous beam as the equivalent modulus representative of the entire material. 

The combined Young’s Modulus for the composite beams corresponds with the 

proportional summation of each constituent material in the beam and is given by 

Equation 22. 

Equation 22 
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where TS is the total thickness of the stiff layers, TC is the total thickness of the 

compliant layers. It was found empirically that for scenarios where the Young’s 

modulus of the stiff and compliant layers were of significantly different orders of 
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magnitude, where the compliant layer had a stiffness of effectively zero in 

comparison to the stiff layer, that the characteristic length was defined by Equation 

23. 

Equation 23 

sccc tttl  22 2  

Equation 23 demonstrates that where the ratio of ES to EC approaches infinity (as 

defined in the assumptions where ES>>EC) the characteristic length is described by 

the thicknesses of the stiff and complaint layers alone. However, for situations where 

the Young’s Moduli of the stiff and compliant layers were of similar orders of 

magnitude Equation 23 was found to not hold true. For materials where the stiffness 

of each individual layer is of a similar order of magnitude a more general form of 

Equation 23 is needed. This case is more relevant to cortical bone where the 

heterogeneity in the material may be more attributable to voids reducing the local 

stiffness and some regions of demineralisation.  

A second empirical analysis was conducted where the Young’s modulus of each 

layer was set to similar orders of magnitude to one another and the layer thicknesses 

were maintained at the same values of 0.5 each. In this scenario it was observed that 

the micropolar characteristic length followed an asymptotic relationship when plotted 

against the ratio of stiff to compliant Young’s Moduli as is shown in Figure 45. 
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Figure 45 - Relationship between characteristic length and ratio of stiff to complaint Young's Moduli for 

the 2D layered beam models 

The relationship between the four input parameters of stiff and compliant layer 

thickness and stiff and complaint Young’s Moduli was obtained empirically and is 

given in Equation 24. 

Equation 24 
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It is worth noting that the characteristic length is defined by the same expression as 

in Equation 23 with an additional term relating the Young’s modulus values of the 
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stiff and compliant layers. The additional term relating Young’s modulus values will 

tend to unity as the ratio of stiff to compliant modulus approaches infinity therefore 

producing Equation 23. From Equation 24 it is apparent that the degree of size effect 

present in a heterogeneous material can be predicted by the geometrical nature and 

character of the microstructure and its constituent phases.  

Table 9 – A comparison between the empirical equations and the closed form analytical equation for the 

micropolar characteristic length. 

Compliant 

layer 

thickness, tC 

(mm) 

Stiff layer 

thickness, tS 

(mm) 

Complaint 

layer 

Young’s 

modulus, EC 

(GPa) 

Stiff layer 

Young’s 

modulus, 

ES (GPa) 

lc
2
 from 

Equation 

24 (mm
2
) 

lc
2
 from 

Equation 

23 (mm
2
) 

lc
2
 from 

Equation 

10 (mm
2
) 

0.5 0.5 1E-9 20 0.750 0.750 0.750 

0.4 0.8 1E-9 20 0.640 0.640 0.640 

0.5 0.5 18 20 0.039 0.750 0.039 

0.4 0.8 18 20 0.034 0.640 0.044 

 

However, a general expression for all four input variables has not been empirically 

observed. Table 9 highlights the accuracy of the empirically found expressions for 

characteristic length with that of the closed form analytical solution of Equation 10. 

It can be seen that for conditions where the Young’s moduli of the stiff and 

compliant layers are of significantly different orders of magnitude Equation 23 

provides an accurate value for the micropolar characteristic length. As the Young’s 

moduli for stiff and compliant layers approach one another it can be seen that 

Equation 23 no longer accurately predicts the micropolar characteristic length and 

that Equation 24 gives a more accurate value. However, for input values where the 

thicknesses and the Young’s moduli of the stiff and compliant layers significantly 

differ Equation 24 no longer accurately predicts the micropolar characteristic length. 

A general equation which accurately predicts the micropolar characteristic length for 

all input conditions has not been found. 
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4.3.3 Validation of empirical expressions 

To validate the appropriateness of Equation 23 and Equation 24 an analytical study 

was undertaken to determine if the same expressions were derivable from analysis of 

the layered material in bending.   

The stiffness of a two layered beam (a beam with one compliant layer in the centre 

and stiff layers on each surface) may be represented in terms of the input parameters 

tS, tC, ES and EC.  

Equation 25 
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If the assumptions are made that the thickness of the stiff and compliant layers are 

equal (tC = tS = tL) and the Young’s modulus of the stiff layer is several orders of 

magnitude stiffer than the compliant layer (ES>>EC) so that the stiffness of the 

compliant layers may be considered to be effectively zero Equation 23 and Equation 

24 are simplified to: 

Equation 26 

22 3 Lc tl 
 

and Equation 22 becomes: 

Equation 27 
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Then Equation 25 may be simplified to 

Equation 28 
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Equation 28 may also be arrived at by directly inputting the expressions for 

micropolar characteristic length and micropolar Young’s modulus into Equation 10. 

If the depth of a layered beam is defined as 

Equation 29 

Lntd 

 

where n is the number of layers in the beam (in this case for a double layered beam n 

=  2). 

Equation 30 
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This demonstrates that for this simplified scenario, where the stiff and compliant 

layers are of the same thickness and the Young’s moduli of the stiff and compliant 

layers are of several orders of magnitude difference, it is possible to extract 

micropolar material properties analytically from an analytical three-point bending 

analysis. For more complex conditions where the stiffness of the different layers 

approach one another in terms of magnitude and the dimensions of the layers are 

divergent an analytical derivation of the micropolar material properties in terms of 

the geometrical features is no longer resolvable by straight forward analytical means. 

4.4 Analytical modelling discussion 

The analytical models show that the size effect trends predicted by the FE models are 

attributable to the geometrical microstructural features of the models. The second 

moment of area is the primary descriptive measure of the distribution of mass in each 

beam, and as such allows a quantitative description of the void arrangement and how 

this influences the beam stiffness. In terms of the micropolar material properties it 

may be possible to understand the relationship between stiffness and second moment 

of area in terms of the fundamental micropolar stress formulation. Where the 

micropolar second moment of area is reduced from the classically elastic value it is 

in effect describing the inability of shear forces to be transferred through the material 

because of material discontinuities (Figure 46). This is manifested in a reduced 
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second moment of area. Moreover it may also be expressed through a reduced 

Young’s modulus for discrete regions of the material.  

 

Figure 46 – The difference between a continuous beam and a beam with compliant layers in bending.  

In relation to cortical bone a reduction in localised material stiffness may be a 

consequence of the presence of vascular channels or could also be caused by the 

variation in material properties throughout the constitutive components of the 

material. For example cement lines are regarded as hypo-mineralised regions of 

cortical bone and may indicate a location where loading is not transferred through the 

material. A similar method has been used previously to investigate the behaviour of a 

single osteon by modelling the structure of the lamellar layers as elastic compound 

models (Braidotti et al. 1995). The model created here tLakes the single osteon 

model further by averaging the entire microstructure of cortical bone into discrete 

layers of differing elastic properties (Forest et al. 2000). Lakes hypothesised this to 
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be one of the fundamental reasons for the micropolar behaviour which was observed 

in torsion and bending tests on cortical bone (Park & R. Lakes 1986; R. Yang & 

Lakes 1982). Because of the complexity of cortical bone and the multiple 

heterogeneous features of its microstructure it may be true that Lakes’ observed 

micropolar material properties are describing various microstructural features in the 

material. For example, the micropolar characteristic length in bending could be 

describing a material characteristic associated with the distance between cement lines 

and the separation of vascular channels. Therefore the simplified descriptions used 

here would not fully predict the full extent of Lakes’ experimentally observed 

material behaviour. 

For the experimental testing of a real material such as cortical bone the results from 

the analytical analyses reveal that the determination of the character of the surface 

region is of the utmost importance in being able to quantify the micropolar material 

properties. Where the surface region is not only broken by the internal 

microstructure, but is also influenced by varying degrees of surface thickness and 

quality then a non-linear size effect trend is predicted. This effect validates the 

numerical analysis of beams with smaller surface voids which indicates that where 

the surface exhibits smaller surface voids than the internal microstructure a non-

linear anti-micropolar size effect trend is predicted. However, in practice, the 

preparation of the surface layer will induce an artefact onto the surface but will not 

remove the underlying internal microstructure. This implies that although there is an 

artefact on the surface the microstructure of the material itself will also be present. It 

is therefore important in the experimental analysis of cortical bone to be aware that 

where the surface is prepared to be smooth there will be microstructure revealed and 

therefore a negative anti-micropolar size effect would be more expected than a 

positive trend. Moreover, the nature of the size effect might be more likely to follow 

a linear trend with perhaps a slight non-linearity induced through the introduction of 

an artefact attributable to the preparation methods.  

4.5 Conclusion 

The analytical models confirm the size effect observed in the FE models associated 

with microstructural detail. The analytics agree with the FE models which include 
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this microstructural detail. This has helped in identifying the underlying causes of the 

material behaviour and the planning for experimentation on cortical bone. Size 

effects in three-point bending tests on heterogeneous materials are highly dependent 

of the nature of the surface. Understanding the size effect experimentally observed is 

dependent on the nature of the surface of the test specimen and the character of the 

surface layer in relation to the underlying material microstructure.  

It has also been shown that the micropolar material properties can be related to the 

geometrical and localised material features in the global material. This is a relevant 

finding for understanding the causes of size effects and in relating the observed size 

effect to the geometry of the microstructure. It also indicates the predictive ability of 

detailed knowledge of the microstructure in being able to understand the micropolar 

material properties of heterogeneous materials. This is consistent with the findings of 

the FE study which indicated that the void diameter was a predictive feature for the 

micropolar Young’s modulus. The closed form analyses which have been looked at 

in this chapter indicate that for materials with microstructures it is possible to 

simplify the model in broad regions of microstructure which will then be relatable to 

the global micropolar constitutive material properties. In short, it has been 

demonstrated that micropolar material properties have a physical significance which 

is related to the microstructure of the heterogeneous material which micropolar 

elasticity is describing. 
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5 Anticlastic effects 

5.1 Background 

Experimentally testing small specimens is a potentially challenging task. It becomes 

increasingly difficult when it is important for the surface condition of each specimen 

to be controlled. For this reason a study into the possibility of creating suitably wide 

specimens for experimentation was undertaken. Wide beams would enable a 

consistent surface condition to be maintained even as the specimen sizes were 

reduced. 

The flexural stiffness of a beam in three-point-bending may be expressed as 

Equation 31 

3*48 LIEK   

Where K is the flexural stiffness, E* is the apparent material Young’s modulus, I is 

the second moment of area, and L is the Length of the beam. For a beam with a 

narrow cross section where the depth is larger than the breadth the beam may be 

considered as behaving in plane stress. For the plane stress condition the apparent 

Young’s modulus, E*, of the material in bending is equal to the true material 

Young’s modulus, E, as would be observed in an extension or compression test. This 

is demonstrated in Equation 32 and holds true where the Young’s modulus of the 

beam is independent of the strain. 

Equation 32 

348 LEIK   

One of the assumptions in Equation 32, in relation to a beam of rectangular cross 

section, is that the beam behaves in plane stress through the breadth of the beam. 

This approximation is true for narrow beams, however for beams with a significantly 

large breadth to depth ratios this assumption no longer holds (Figure 47). Where the 

breadth becomes significantly large in relation to the depth of the beam plate bending 

theory more accurately describes the behaviour. In plate bending theory for a “wide 

beam” the beam may be thought of as acting according to plane strain rather than 
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plane stress in the “narrow beam” case. Therefore, for a “wide beam” the stiffness 

expression may be written as (Swanson 2001). 

Equation 33 
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where the symbols have their usual meanings and ν represents Poisson’s ratio. It can 

be seen from the equation above that a wider beam will appear relatively stiffer than 

the narrow beam. This is due to the influence of Poisson’s ratio on the material and 

the constraint on the transverse contractions during bending.  

 

Figure 47 – Plane strain bending in a “wide beam” showing the anticlastic effect and plane stress bending 

in a “narrow beam” 

Ambiguity emerges where the beam is neither obviously narrow nor obviously wide, 

or is neither behaving in accordance with plane stress nor plane strain, but 

somewhere between. This is specifically important for ratios of breadth to depth 

between 2:1 and 5:1. In such cases the transverse stresses in the beam become 

significant enough to produce an anticlastic bending (Figure 47), however the effect 

is not pronounced enough to produce the plane strain condition required for the pure 

plane strain conditions of plate bending.   
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Saint-Venant (1856) derived a series solution for three-point flexure under the 

assumption that no transverse stresses occur in the specimen (Equation 34). It can be 

adapted to estimate the variation of apparent elastic modulus with breadth to 

thickness ratio and Poisson’s ratio (Equation 35). 

Equation 34 
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Equation 35 

))))/((1((* 2dbfEE   

Where the symbols have their usual meaning; d represents the beam depth and b is 

the beam breadth, f(b/d) is a function of the breadth to depth ratio which describes 

the transition between plane stress and plane strain. The apparent modulus E
*
 is 

related to the Young’s modulus by f(b/d) which represents the transition between 

plane stress and plane strain. When f(b/d) is equal to unity the apparent modulus, E*, 

is equivalent to the plane strain modulus, E/(1-ν
2
). On the other hand when f(b/d) 

approaches zero the beam behaves in accordance with plane stress where the 

apparent modulus, E*, is equivalent to the material Young’s modulus, E. 
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Figure 48 – The function of b/d relating the apparent and true Young’s Modulus of the material when 40 

term were taken in the Saint-Venant series solution to represent infinity Equation 34. 

The transition between plane stress and plane strain was calculated for the Saint-

Venant series solution where 40 was chosen to represent infinity as a good 

approximation thus allowing the function f(b/d) in Equation 35 to be defined, this 

function is plotted against the ratio of breadth to depth in Figure 48.  

An investigation into the significance of the anticlastic effects and their importance 

towards future experiments on cortical bone was undertaken. In particular to obtain a 

fuller understanding of the transition region between plane stress and plane strain in 

both the computational models and the experimental results FE models were created 
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where the breadth to depth aspect ratio was altered and the apparent Young’s 

modulus was calculated. 

5.2 Finite Element Analysis of the anticlastic effect in three-point 

bending 

A series of finite element models were created in order to analyse the influence of the 

anticlastic effect on flexural three-point bending experiments. 

5.2.1 Methodology 

A quarter size FE model was created using ANSYS 12.1 using the same boundary 

and loading conditions as in the 3-dimensional FE bending analyses (Figure 24 

section 3.6.1 p66). The models created for this study were isotropic and did not 

contain any microstructural voids, this was to reduce the complexity of the models 

and allow a clear interpretation of the anticlastic effect in the results. Symmetries and 

anti-symmetries were utilised to reduce the complexity of the model. A line load was 

applied to represent the supports in three point-bending and the beam was pinned in 

the y-axis along the x-centre line at half the length of the beam.  

The beam length and depth were maintained at 50 and 5mm respectively while the 

beam breadth was varied at intervals between 5 and 50mm in order to simulate a full 

range of breadth to depth ratios. Isotropic material properties were used with a 

Young’s modulus of 20GPa and Poisson’s ratio of 0.3. The linear elastic 20-noded 

brick element 183 was used for the analysis.  
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Figure 49 - Three-point bending loading conditions and load deflection measurement locations. These 

loading conditions were used for the global simulations and measurements. 

In addition to a three point-bending model (Figure 49) a pure bending moment model 

was created (Figure 50). For this model the same quarter size geometry was used as 

in the three-point bending model but a linearly varying pressure load was applied to 

the end of the beam to replicate a pure moment action. This model used the same 

material properties and mesh as the 3-point-bending model. The same range of 

lengths, breadths and depths were analysed for both models. 

 

Figure 50 - Pure moment loading conditions showing the location of the measured bending stress and 

strain values. These loading conditions were used for the local simulations and measurements. 
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For both methods the apparent Young’s modulus, E*, of the beam was calculated. In 

addition, by using the change in apparent modulus and the change in the ratio of b/d, 

the value of f(b/d) was calculated. The apparent Young’s modulus was calculated 

from both stress-strain (local) values and load-deflection (global) values for both 

models. 

For the three-point bending model the flexural deflection was read as the value on 

the centre of the bottom surface of the beam directly below where the load was 

applied. The flexural stiffness was then calculated from the applied load divided by 

the deflection. From this value the apparent Young’s modulus of the beam in 

bending was calculated. After varying the breadth the change in Young’s modulus 

was compared to determine the influence of breadth to the stiffness of the beam.  

In conjunction with this nodal stress and strain values along the main axis of bending 

were taken at the top surface centre point in the beam, where the highest localised 

stress was likely to occur. From this the apparent Young’s modulus was calculated 

directly from the ratio of localised nodal stress to strain.  

For the pure moment bending analysis the same process was undertaken; both load-

deflection and stress-strain (global and local) results were calculated. The applied 

load was calculated from the applied moment value and the Young’s modulus 

calculated from the applied moment-deflection values as shown in Equation 36. 

Equation 36 
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where E* is the apparent Young’s modulus, M is the applied moment, L is the length 

of the beam, δ is the beam deflection, and I is the second moment of area.  

5.2.2 Results and discussion 

Figure 51 and Figure 52 show the results for the applied moment and three-point 

bending simulations. Local calculations for the apparent Young’s modulus in both 

the moment and three-point bending simulations follow the trends predicted by the 

analytical solutions in Equation 33 and shown in Figure 48. However, the global 
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load-deflection results follow a less dramatic trend and the anticlastic effect appears 

to have a much lower impact upon the change in flexural stiffness compared to local 

Young’s modulus values in the material. Although this trend follows for both the 

pure moment and three-point bending models, there is more of a noticeable influence 

of the anticlastic effect in beams under three-point bending loading than under pure 

bending. In pure bending the maximum influence of the anticlastic effect on the 

flexural stiffness occurs at a 10:1 breadth to depth aspect ratio where f(b/d) is 0.2. 

The equivalent value for the three-point bending results show f(b/d) to be higher at 

around 0.5. Both of these values are significantly lower than those predicted by 

Saint-Venant analytical solution and those calculated from the localised stress-strain 

results from the same models. 
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Figure 51 – Comparison of the pure bending moment results of f(b/d) against b/d for load-deflection and 

stress-strain with the analytical solution. The local results are shown by the blue diamonds. The global 

results are shown by the red squares. And the analytical solution is shown by the green triangles. 
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Figure 52 - Comparison of the three-point bending results of f(b/d) against b/d for load-deflection and 

stress-strain with the analytical solution. The local results are shown by the blue diamonds. The global 

results are shown by the red squares. And the analytical solution is shown by the green triangles. 

The finite element analysis results suggest that anticlastic effects in beams in three-

point-bending follow analytical trends. However, there is a discrepancy between 

global and local trends for beam stiffness. Stress-strain (local) values for Young’s 

modulus follow the analytical trend of anticlastic behaviour, however the load-

deflection (global) values show a much less significant variation in stiffness as the 

beam breadth is increased.  

The results suggest that anticlastic effects are important in local stresses in the 

material in bending, especially along geometrically significant regions, such as the 
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centre line of the beam. However when the global geometry is considered the 

influence of anticlastic transverse stresses become much less significant (the results 

suggest the effect is at least halved for the largest b/d aspect ratio), and are averaged 

for the entire geometry. As a result the general plane stress analytical expression for 

a beam in three-point bending where the apparent Young’s modulus is represented 

by the material Young’s modulus appears to hold for “wide beams” in three-point 

bending, and may be considered a close approximation to the true bending behaviour 

independent of beam breadth. 

By taking the global results from the three-point bending analyses an upper extreme 

may be calculated for the influence of the anticlastic effect in three-point bending 

experiments. From Figure 52 a b/d aspect ratio of 10:1 produces a value for f(b/d) of 

approximately 0.5. Applying this value to Equation 35 shows that for a Poisson’s 

ratio of 0.3 the apparent Young’s modulus is less than 5% different than that 

predicted by the plane stress solution in Equation 32. This change is well below that 

predicted by the analytic solution for anticlastic behaviour and suggests it falls within 

the region of potential experimental error. For this reason the plane stress solution for 

the flexural stiffness of a beam in three-point bending has been deemed to be a close 

approximation of the global beam stiffness in wider beams despite the influence of 

the varying breadth to depth aspect ratio.  

5.3 Summary of findings and relevance to subsequent experimental 

procedure 

In order to detect a size effect experimentally a series of specimens need to be tested 

at varying sizes in three-point bending. The geometric dimensions of the specimens 

produced should be of the order of the microstructure which is thought to influence 

the material behaviour. In the case of cortical bone the microstructure is of the scale 

of the Haversian canal system. Therefore, to detect an observable size effect, 

specimens below 1mm in depth are required. The practicalities of generating 

specimens of a 1mm square cross section are quite restrictive. Furthermore it has 

been demonstrated that surface preparation is of fundamental importance to 

understanding the experimental results. To control the surface condition sufficiently 

wide beams are much more pragmatic in terms of consistent experimental protocol. 
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A more practical approach to specimen preparation is to create specimens of a 

standard breadth and a variable length and depth. The implied complication with this 

approach is that as the beams are reduced in depth the ratio of breadth to depth 

increases therefore increasing the stiffness of the beam through the anticlastic effect. 

What the FE results suggest is that, when the flexural stiffness is measured, the 

anticlastic effect has a much reduced influence on the beam’s stiffness than has been 

suggested in the analytical solution of Saint-Venant. The results suggest the plane 

stress conditions are an accurate representation of the global stiffness of a wide beam 

in three-point bending and show that even at a 10:1 breadth to depth aspect ratio the 

anticlastic effect is roughly half what is predicted by the analytical solutions..  

For this reason it was deemed viable in experiments to maintain the beam breadth 

and vary the depth and length of the beams between tests as although anticlastic 

effects are not insignificant they are within the experimental error which would be 

expected in such experiments. Moreover the practicalities of consistently preparing 

specimens with a fixed breadth are far more practical than preparing specimens with 

square cross sections.  
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6 Experimental Methodology Development 

6.1 Background 

Before three-point bending experiments could be carried out on bovine cortical bone 

specimens several factors had to be considered in order to enable the most effective 

experimental protocol to be devised. The following discusses the most important pre-

experimentation factors which were considered. 

The mineral content of cortical bone is reported as being between 70 to 75 g/cm
3
 

which accounts for approximately 75% of bone content (Burstein et al. 1975; Martin 

& Boardman 1993; J Y Rho et al. 1998).  Both the mineral and organic phases 

contribute towards the material stiffness of cortical bone however the mineral content 

is the main contributor towards the Young’s Modulus before yield. After yield the 

organic phase contributes to the toughness of the material (Burstein et al. 1975). 

Together they make a strong and tough material, but when either phase is reduced or 

the balance between mineral and organic phases is altered the material properties are 

dramatically changed. Where the mineral content is slightly reduced there is a 

dramatic reduction in the pre-yield Young’s Modulus value. The demineralization of 

cortical bone is observed to significantly reduce the strength of bones in osteoporotic 

patients and is a main cause of bone fractures in elderly patients (Hasegawa et al. 

1995). For this reason it was decided that the mineral content of the test specimens 

should be monitored.  

The FE analysis revealed that in idealised heterogeneous materials the nature of the 

surface is of primary importance in understanding the mechanical response of the 

material in bending. If the surface is intersected by the internal microstructure a size 

softening size effect is observed whereas if the surface is continuous and smooth a 

size stiffening size effect is observed. For this reason the quantification of surface 

roughness was taken as an important measure of the degree to which the surface was 

either intersected by the underlying microstructure or damaged by the preparation 

methodology. Moreover, it was decided that the surface of each specimen should be 

prepared to be as smooth as possible with the available equipment in order to remove 

the influence of surface artefacts introduced by the preparation equipment, such as 
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the bone saw. Polishing itself would introduce surface relief where bone tissue would 

be removed preferentially in areas of specific HAP orientation. Although this would 

interfere with the surface character and introduce an artefact itself which would not 

normally be exhibited it would enable the surface to be prepared to a standard 

condition which could be replicated in every specimen. If this induced surface 

condition could then be quantified then it would be possible to determine a better 

impression of the true material properties. Furthermore, if the surface was prepared 

to be as smooth as possible then the artefact produce on the surface would be 

considerably smaller than the scale of the microstructural features thought to be 

responsible for cortical bone’s micropolar behaviour such as the Haversian canals.  

It was decided that silicon carbide paper should be used to prepare the surface of 

specimens before testing. Increasingly smooth grades of silicon carbide paper were 

used from 200 to 2500 grade. The particle size of the smoothest grade of paper 

(2500) is 6 μm significantly less than the diameter of the microstructural features 

associated with primary or secondary osteons. Therefore this suggested that surface 

preparation would produce a surface where the artefact is significantly smaller than 

the underlying microstructure. It was hoped that this would allow the material 

properties of the internal microstructure on the surface of the cortical bone samples 

to be of the foremost influence in the mechanical testing. 

Surface roughness is a measure of the texture of a surface. The standard method for 

quantifying the nature of a surface is by running a needle tip along the length of the 

surface. The resulting perturbations of the needle give a two-dimensional profile of 

the character of the surface. From the movement of the needle various measures of 

the surface can be obtained. The most commonly used surface roughness measure is 

the Ra value: this is a value which represents the arithmetical average of all the 

normal displacements in the profile. Other useful measures include Rt (the maximum 

peak to valley in the profile) and Rz (the average peak to valley in the profile). These 

values can be related to the microstructural features of cortical bone, and may give an 

indication towards identifying whether the surface contains artefacts which would 

reduce the stiffness of the specimen.  
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Cortical bone is a viscoelastic material (Wirtz et al. 2000; J Y Rho et al. 1998; R. 

Lakes 1979; N Sasaki & Enyo 1995; Yamato et al. 2006). The importance of this for 

mechanical testing is that there will be a degree of stress relaxation apparent in a 

static three point bending experiment. Viscoelastic materials also exhibit strain rate 

dependence rather than the strain dependence seen in elastic materials (P Zioupos 

1994; Gupta & P Zioupos 2008). To calculate the strain on the outermost fibres in 

the centre of a beam in three-point bending the following equation may be used: 

Equation 37 

2/6 Ld 
 

where ε is the strain δ is the defection of the beam at the mid-span d is the depth 

where the strain is being calculated and L is the length of the beam. Viscoelastic 

effects also contribute to the time dependence of the measured elastic modulus of 

cortical bone, where the strain rate is higher a higher elastic modulus will be 

observed. Ideally a consistent strain rate should be used between specimens in order 

to maintain the comparability of the observed stiffness values (Zioupos & Currey 

1994; Peter Zioupos et al. 2008).  

The results from the finite element analyses into idealised heterogeneous materials 

showed that the micropolar material properties observed were dependent on the 

length to depth aspect ratio of the specimens. The true micropolar Young’s modulus 

and characteristic length were observed where the length to depth aspect ratio 

approached infinity. On the other hand where the aspect ratio was shortened to 

significantly below 10:1 anticipated mechanical behaviour deviated significantly 

from those of longer aspect ratios. This occurs because, at shorter aspect ratios, in 

beams in three-point bending the influence of shear deformation becomes important 

and the beam no longer follows the analytical predictions. 

Therefore, it is important to produce samples with aspect ratios which are as large as 

possible in order to obtain the most accurate material properties. However, the 

experimental practicalities of producing a 20:1 or greater length to depth aspect ratio 

specimen are prohibitive. Therefore, a shorter aspect ratio of 10:1 was chosen as a 

practical compromise. At this aspect ratio the beam still behaves according to the 
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analytical predictions of a beam in three-point-bending but without the 

impracticalities of testing over impractically long lengths. 

6.2 Pilot experiments on bovine cortical bone 

The main objective of the preliminary experiments was to gain a deeper 

understanding of experimental tests on cortical bone and the challenges that occur 

especially when dealing with particularly small specimens. In order to simplify the 

experiments various assumptions were made regarding the preparation and testing. 

Specimens were taken from the mid-diaphysis region of a long bone, but there was 

no significance placed on the location circumferentially or radially around the shaft.  

Viscoelastic effects were initially not analysed to reduce the complexity in the 

software of the testing experiment. Displacement and displacement rate were 

therefore maintained for each specimen irrespective of the specimen depth. 

Specimens were prepared at random depths ranging from 5 to 0.9 mm. 

6.2.1 Pilot experimental methodology 

Five bovine femurs were obtained from a local abattoir and frozen at -20 °C until 

required. The mid-diaphysis section was used for extracting samples as this is the 

region of long bones with the highest degree of heterogeneity (Katz & Yoon 1984; 

Macione et al. 2010; Pope 1974). To prepare the samples a diamond bladed 

sectioning saw (Smart Cut 6001, UKAM, USA) was used to cut the diaphysis into 

approximately 5 mm thick longitudinal slices. Each slice was then hand polished 

under fluid to within 0.05 mm of 5 mm thickness using increasingly smooth grades 

of silicon carbide paper and measured using a micrometer. From these slices, 51 

samples were obtained ranging in depth from 5.5 mm to 1mm. The breadth of each 

specimen was maintained at 5 mm. The samples were then polished with increasing 

grades (up to 2500 grade) of silicon carbide paper and stored in PBS in a tissue 

fridge at 3°C for up to 48hours. It was deemed important to prepare the surface to be 

as smooth as possible in order to remove surface artefact resulting from the 

preparation procedure which could interfere with the measurements of underlying 

mechanical properties. 
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A BOSE Electroforce 3200 mechanical testing machine with a 3-point bending jig 

and temperature controlled saline bath was used to perform the bend tests (Figure 53 

and Figure 54), using a 450N load cell. Each specimen was tested in a 0.9M saline 

water bath at a controlled temperature of 37°C in order to replicate the conditions of 

normal bone function. The span of the 3-point-bending supports was altered to give a 

10:1 aspect ratio (length:depth) for each specimen. Specimens with a depth above 3 

mm were displaced at the mid-section by 1 mm whilst specimens with a depth below 

3 mm were displaced at the mid-section by 0.5 mm. Displacement rate was constant 

for all specimens at 0.1 mms
-1

. Force displacement graphs were created for each 

specimen and the linear portion of the curve was used to determine the stiffness of 

each beam. 

 

Figure 53 – Bose Electroforce 3200 with water bath and three point bending test jig. 

Specimens were taken for surface roughness measurements where Ra values were 

obtained using a Talysurf surface roughness measuring machine.  All specimens had 

their wet weight and density determined by measuring their volume and weight with 

a micrometers and a balance. All specimens were then dried at 100 °C for 24 hours 

and then reweighed to give the dry weight and density. Each specimen was finally 
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linear motor 
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Supports and 
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ashed at 800°C for 24 hours and reweighed to determine the ash weight, the mineral 

and collagen contents. 

 

 

Figure 54 – The temperature controlled water bath and three-point bending experimental jig. 

6.2.2 Pilot experimental results 

The initial experimental results showed a wide variance in stiffness when plotted 

against the sample size as represented by reciprocal of depth squared (Figure 55). 

Although there is a suggestion of a negative size effect the lack of a definite linear 

trend from these results meant it was difficult to extract micropolar material 

properties. The results do indicate there may be a size softening trend however they 

also suggest that there is a weak negative relationship between the mineral content 

and specimen size (Figure 56) (correlation coefficient = -0.477) . This is indicated by 

the smaller specimens tending to have a lower mineral content. Figure 57 shows a 

plot of the specimen stiffness against the mineral content which demonstrates how 

the mineral content is of fundamental importance to the observed stiffness of each 

specimen. It also shows that where there is a link between the specimen size and 
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mineral content then the smaller specimens are more likely to show a lower stiffness, 

due to their lower mineral content. Moreover, there are a significant number of 

specimens with a recorded mineral content lower than 0.7g/mm
3
, which would 

suggest that there has been a leaching of mineral in these specimens and a 

subsequent reduction in measured stiffness (J. D. Currey 1969; Burstein et al. 1975). 

Because of this the stiffness was recalculated to account for the variation in stiffness 

with mineral content. This was done by performing a linear regression of stiffness 

against mineral content and scaling the stiffness values depending upon the recorded 

mineral content of each specimen. This produced the plot of stiffness against 

reciprocal of depth squared shown in Figure 58.  

Figure 55 - Experimental results of stiffness plotted against reciprocal of depth squared. 
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Figure 56 - Experimental results showing mineral content plotted against specimen size for all specimens. 

 

Figure 57 - Plot showing the relationship between mineral content and stiffness for all specimens. 
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Figure 58 - Experimental results of stiffness plotted against reciprocal of depth squared with the stiffness 

corrected for the variation in mineral content with trend line showing the negative size effect. 

The size effect trend shown in Figure 58 represents the stiffness values after they 

have been corrected for the variation in mineral content. From the trend line 

produced in this plot it was possible to extract the micropolar material properties of 

micropolar Young’s modulus and micropolar characteristic length in bending. 
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Table 10 – Micropolar material properties from the stiffness against size plot for corrected values for 

mineral content. 

Specimen  Size effect 

Micropolar 

Young’s modulus 

(GPa) 

Micropolar 

characteristic 

length (μm) 

Micropolar 

characteristic 

length in 

bending (μm) 

All 

specimens  
negative 17.2 181 52 

 

Surface roughness results show the majority of the values obtained were between 0.1 

and 0.2 mm Ra values. There were a significant number of outlying values which 

suggest that the surface roughness readings produced inconsistent results as the 

surfaces of all specimens were produced using the same method. Figure 59 shows the 

surface roughness Ra values plotted against the specimen size. It can be seen that 

there is an indication of a size dependent trend between surface roughness and 

specimen size suggesting that a reduction in stiffness may be attributable to a rougher 

surfaces in the smaller specimens.  

The reliability of the surface roughness measurements taken in this experiment were 

questionable primarily because the Talysurf machine used to measure the surface 

roughness had no internal check to determine if the readings met ISO standards for 

surface roughness measurements. For many of the readings taken the length of 

sample measured was below the ISO standard required length meaning that the 

surface roughness results do not have a statistical significance. It was decided that 

future experiments would require the surface roughness measurements to meet the 

ISO standard.  



139 

 

 

Figure 59 - Surface roughness plotted against the reciprocal of depth squared for all specimens. 

6.2.3 Discussion 

The initial experiments of bovine cortical bone proved to be a useful developmental 

experience for the further improvement of the experimental protocol. Although a size 

effect trend was identified the reliability of the result was dependent upon correcting 

the stiffness results for the lower mineral content observed in some specimens. 

Moreover, a solid understanding of the procedure required to determine the existence 

of a size effect was gained. This was a good starting point for further experiments. 

There was a large degree of demineralisation which was observed, especially with 

the smaller specimens. Although the stiffness values were corrected for the variation 

in mineral, the contributing influence of lower mineral content on the recorded 

stiffness may have a more profound impact on the actual size effect in cortical bone. 

The potential causes of the demineralisation were considered to be related to the 

preparation method. Specimens were kept in 0.9M saline overnight before testing 

which would have allowed the leaching of mineral (Ca
2+

) out of the specimens 

(Naoki Sasaki et al. 2008b; N Sasaki & Enyo 1995). Moreover, the smaller 

specimens have a larger surface area to volume ratio and therefore it would be 
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conceivable to observe a greater mineral loss in the smaller specimens. This is 

consistent with what was observed in the relationship between mineral content and 

specimen size (Figure 56). To prevent mineral loss in future experiments it was 

decided that Phosphate Buffered Saline (PBS) solution was more appropriate instead 

of saline to hinder the movement of mineral from the bone to the solution. A further 

step to reduce mineral loss was to reduce the time between the preparation of 

specimens and testing as this would significantly reduce the opportunity for mineral 

to leach from the bone.  

Each specimen was tested at one unique depth. Although this allows for comparisons 

between specimens and to generate an overall impression of the mechanical 

properties of cortical bone, it includes potentially significant inter-specimen stiffness 

variation. To improve the experimental procedure further it was decided to prepare 

all specimens from each bone to the same initial dimensions. Once the specimens 

were tested they would be re-prepared and re-tested in order to produce several 

unique depths for each specimen. This approach would enable a comparison to be 

made between intra-specimen variability and size effects and an overall inter-

specimen variability and size effect. A comparison between the intra-specimen 

stiffness values may also prove a more reliable measure of the influence of the 

microstructure on the overall material stiffness, especially when analysing size 

effects, as the internal microstructure between discrete depths may be more 

consistent in the same specimen.  

The inadequacy of the surface roughness values removed any meaningful analysis 

regarding surface roughness trends with size and/or stiffness. It was decided that 

future readings would be made on a non-invasive Alicona surface roughness machine 

to standardise the process and allow conformation with ISO standards. This would 

also allow cross validation with images of the surface and the surface roughness 

values measured in that region. 

Comparable specimens should be taken from the same location around the diaphysis 

to prevent inconsistencies and variance arising from different mineral contents and 

microstructure architectures at different locations in the bone. 
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Future experiments should apply a consistent strain and strain rate depending on the 

depth at which each specimen was being tested. This was because of the 

viscoelasticity of cortical bone and the dependence on strain rate rather than 

displacement rate.  

6.2.4 Conclusions 

The preliminary experiments suggested a size softening negative size effect 

relationship between specimen size and stiffness. However there was a high degree 

of variance in the values obtained. Moreover, there were a significant number of 

specimens with a reduced mineral content and as a result the stiffness values were 

adjusted to account for this. The surface roughness values obtained were deemed to 

be inadequate for analysis.  

Proposed revisions to the experimental protocol included: the use of PBS instead of 

saline to reduce mineral loss, reduce the time between specimen preparation and 

testing, use the Alicona surface roughness machine to standardise surface roughness 

measurements, test each specimen at a range of depths to determine intra-specimen 

variability as well as inter-specimen variability and load specimens to a consistent 

strain at a consistent strain rate. 
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6.3 Revised experimental methodology 

6.3.1 Methodology 

 

Figure 60 – Orientation of specimens along the long axis of the bovine femurs 

Five new bovine femurs were obtained from a local abattoir and frozen at -20 °C 

until required. One specimen was extracted from the anterior region of the mid-

diaphysis for each femur using a hacksaw and a diamond bladed sectioning saw 

(Smart Cut 6001, UKAM, USA) to produce five specimens in total. All five 

specimens were prepared to have the dimensions of 50 mm length, 5 mm breadth and 

5 mm depth. The specimens were prepared to have the long axis of the femur 

running along the length of the specimen (Figure 60). 

Each of the five specimens was polished under irrigated conditions with phosphate 

buffered saline (PBS) solution using incrementally smooth silicon carbide paper 

(grades 200, 500, 1200 and 2500) to within 0.05 mm of the desired dimensions as 

measured by a micrometer. The specimens were then stored in PBS solution at 3 °C 

for less than a day prior to testing. Such storage would have a negligible effect on the 

mechanical properties of the specimens (N Sasaki & Enyo 1995).  
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Figure 61 – A typical load-displacement graph for specimen 1 at a depth of 1.5 mm. The linear region of 

the load-displacement curve was used to determine the geometric stiffness of the specimen. Slight 

hysteresis can be seen and a stress relaxation of approximately 5%. 

The same test equipment and load cell were used as in the previous experiments. 

Each specimen was tested in a PBS bath at 37°C. Each specimen was ramp loaded to 

a surface strain of 0.005 at a strain rate of 0.0025s
-1

 and held for 10 seconds before 

being unloaded to zero displacement. Each specimen was then re-orientated to swap 

the compression and tension surfaces in bending and the loading repeated. In total 

each specimen was loaded three times. A cutting was subsequently taken from the 

end of each specimen for surface roughness and tissue property data to be acquired. 

This testing procedure was applied each time after the specimen depth was reduced 

by removing material from the upper and lower surfaces with increasingly refined 
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grades of silicon carbide paper to maintain as smooth a surface as possible. Each 

specimen was tested at seven unique depths: 5 mm, 4 mm, 3 mm, 2.1 mm, 1.5 mm, 

1.2 mm and 0.9 mm. As the depth of each specimen was systematically reduced the 

supports of the bending jig were moved progressively closer to maintain a constant 

10:1 length to depth aspect ratio. 

The flexural stiffness at each depth for each specimen was taken as the gradient of 

the linear relationship between load and displacement (Figure 61). Surface images 

were taken from the cuttings removed during the experimental procedure and surface 

roughness characteristics were analysed using an Alicona InfiniteFocus surface 

imager. After surface imaging the cuttings taken during experimentation were used 

to calculate the mineral content using the same method as in the pilot experiments. 

Two-way repeated measures ANOVA was used to determine whether the stiffness 

varied with specimen depth and repeated measure. Linear regression and correlation 

was subsequently used to assess the nature of the relationship between stiffness, 

mineral content and surface roughness with 1/d
2
. All statistical analysis was 

performed using IBM SPSS Statistics v21 (IBM, New York, USA) and statistical 

significance was assumed if p <= 0 .05. 

6.3.2 Results 

The pilot experiments indicated that there were a significant number of specimens 

with reduced mineral content. This was thought to be attributable to the leaching of 

mineral during the specimen preparation process. Figure 62 shows the relationship 

between specimen mineral content and specimen size. There was no significant size 

effect trend attributable to mineral content observed (p = 0.358). This suggests that 

the revised methodology was successful in maintaining the mineral content of each 

specimen between the preparations and testing stages. This was further supported by 

Figure 63 showing a plot of the mineral content against the specimen stiffness which 

indicates that there is a much less dramatic influence of mineral content on stiffness 

than in the previous experiments (Figure 55 and Figure 56) and that the mineral 

content of all specimens are consistently higher than in the preliminary experiments 

suggesting that the revised protocol is better at maintaining a consistent level of 

mineral for all specimen depths. 
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Figure 62 – Reciprocal of depth squared plotted against mineral content for all specimens. 

 

Figure 63 - Mineral content plotted against stiffness for all specimens. 
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Figure 64 - Surface roughness, Ra, plotted against the reciprocal of depth squared. 

Figure 64 plots the surface roughness (Ra) against the specimen size. It shows that 

while there are a few outlying surface roughness values the general trend shows there 

to be no significant effect of size on surface roughness (p = 0.156). This suggests that 

the surface roughness was maintained between specimens. Other measures of surface 

roughness were also taken from the Alicona results. In addition to the Ra value 

which represents an arithmetical average of surface perturbations (and is a good 

measure of the general degree of surface roughness) the Rmax and Rz values were 

also taken. These values represent the maximum and mean surface peak to trough 

distances and in the case of these cortical bone experiments are an interesting 

representative measure of the size of voids on the surface of each specimen. The 

values of Rmax, Rz and Ra are shown in Table 11. This shows that the typical 

maximum peak to trough dimension is in the region of 5μm and the mean peak to 

trough values are slightly lower in the region of 3μm. The values for Ra are an order 

of magnitude lower, typically in the region of 280nm, this is because the Ra values 

take an average of all surface perturbations across the selected profile and do not 

only consider the peak to trough values.  
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Table 11 – Mean Rmax, Rz and Ra values with standard deviations for all specimens. 

Depth 

(mm) 

1/depth
2
 

(mm
-2

) 

Mean Rmax ± st. 

Dev (μm) 

Mean Rz ± st. 

Dev (μm) 

Mean Ra ± st. 

Dev (nm) 

0.9 1.23 5.12 ± 3.13 2.85 ± 1.07 273 ± 42 

1.2 0.69 4.64 ± 2.18 2.50 ± 0.56 277 ± 18 

1.5 0.44 4.38 ± 1.54 2.62 ± 0.46 265 ± 37 

2.1 0.23 3.25 ± 1.18 2.10 ± 0.29 253 ± 23 

3 0.11 4.69 ± 2.35 3.29 ± 1.48 280 ± 29 

4 0.06 3.13 ± 0.81 2.18 ± 0.34 276 ± 16 

5 0.04 7.02 ± 1.83 4.69 ± 1.59 331 ± 40 

 

The stiffness against reciprocal of depth squared plots are shown in Figure 65 which 

shows each result for all five specimens and Figure 66 which shows the combined 

results with a mean and standard deviation for each depth. A p value of 0.127 was 

calculated from the two-way repeated measures ANOVA suggesting that any size 

effect, although observable in Figure 66, is not statistically significant. 
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Figure 65 – Stiffness plotted against reciprocal of depth squared all discrete values from all specimens. 
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Figure 66 - Combined results for all specimens (1 to 5) plotting stiffness against reciprocal of depth 

squared with the standard deviation. 

Table 12 shows the micropolar Young’s modulus and characteristic length in 

bending where the negative size effect trend shown in Figure 66 is used to calculate 

micropolar material properties. The micropolar Young’s modulus was calculated as 

being 18.5 GPa. This value is calculated from the intercept of the best fit line on the 

stiffness against reciprocal of depth squared plots above and Equation 10. It is a 

comparable value to those recorded for the Young’s modulus of cortical bone in the 

literature (Evans et al. 1990; Hernandez et al. 2001; J Y Rho et al. 2000). The 

micropolar characteristic length in bending was also identified from these plots by 

taking the magnitude of the gradient of the best fit line. The characteristic length may 
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only be obtained from a positive gradient, however, if the gradient is negative the 

magnitude of the gradient may be used to infer the equivalent characterise length that 

would produce the size effect if the surface had not been intersected by the internal 

microstructure. The combined results give a micropolar characteristic length in 

bending of 0.095 mm. 

Table 12 – Micropolar Young’s modulus and characteristic length values all specimens individually and 

combined with standard deviations. 

Specimen Size effect 

Micropolar 

Young’s modulus 

(GPa) 

Micropolar 

characteristic 

length (mm) 

Micropolar 

characteristic 

length in 

bending (mm) 

All 

specimens 
negative 18.5 ± 1.1 0.33 ± 0.23 0.095 ± 0.066 

6.3.3 Discussion 

There was no discernable size effect for either the mineral content nor surface 

roughness which suggests that the methodology for preparing and analysing 

specimens has improved sufficiently to remove these as confounding factors in 

influencing any observed size effect in stiffness. The surface roughness values 

suggest that the surface has been prepared to a level where the surface artefact is 

significantly lower than that of the internal microstructure. This suggests that the 

surface is being intersected by the internal microstructure; in other words the surface 

scratches created by the preparation technique are much smaller than the size of the 

voids on the surface created by the microstructure.  

By confirming that the mineral content and surface roughness are consistent 

throughout all specimens at each depth, and are not influencing the specimen 

stiffness, it is possible to confidently identify a relationship between stiffness and 

size.  

The combined size effect of stiffness plotted against size for all five specimens 

showed a negative size effect trend consistent with the surface being intersected by 

the internal microstructure of cortical bone however this size effect trend was not 
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statistically significant. Despite this it was possible to infer from the negative size 

effect trend the micropolar material properties of characteristic length in bending and 

Young’s modulus by comparing this to the equivalent beam without surface 

corrugations. This analysis assumes that a continuous surface and a corrugated 

surface represent the extremes of the material behaviour, from which the likelihood 

of a negative size effect caused by the surface being corrugated by the internal 

microstructure is higher. 

Figure 65 demonstrates the high variance in the results and highlights the difficulty 

in ascertaining any definite size effect trend in cortical bone because of the natural 

biological variation in the material. However, considering the finite element analysis 

has shown that there is potentially a wide discrepancy in material behaviour between 

specimens with continuous surfaces and specimens with corrugated surfaces it is 

understandable that there would be an equally high degree of variation in the 

experimental results. Moreover, because five unique specimens were tested from five 

different bones there is a greater likelihood to observe a higher variation in material 

properties across all specimens. 

Although there are no obvious systematic errors in the experiments which can only 

be attributed to the 1.2 mm depth it cannot be ruled out as a plausible explanation for 

the discrepancy in stiffness observed at this depth.  

Microdamage begins to permanently influence the structural stiffness in cortical bone 

at strains of around 0.005 (Zioupos & Currey 1994). As this is the maximum strain 

on the outer surface of the cortical bone specimens loaded in these bending 

experiments microdamage will only have begun to influence the outermost surface. 

Microdamage is related to strain rate in that lower strain rates will be more likely to 

induce microcracking in cortical bone. This is thought to be a mechanism through 

which bone absorbs energy at lower strain rates (Zioupos et al. 2008). In this study 

the strain rate was maintained at a low level of 0.0025s
-1

 thereby suggesting that the 

possibility for microdamage to occur. This strain rate is in the regions of normal 

everyday cycles for cortical bone and may more effectively replicate the loadings 

cycles which typically occur on bones. After testing, the surface region of each 

specimen was removed and re-prepared to a new depth. In doing this the region 
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where the most strain had been imparted in the previous test was removed, 

subsequently removing the region most likely to contain microdamage.  

Previous work by Choi et al has indicated that there is a size dependency in human 

cortical bone (Choi et al. 1990). Although Choi et al’s work focused on human 

cortical bone it is nevertheless a worthwhile comparison with the size effect observed 

in this work. Figure 67 shows the comparison between this study and the work of 

Choi et al. It can be seen that there are similarities between the results indicating a 

similar size effect. The largest specimen tested in Choi et al’s work is 1mm deep 

which is only slightly larger than the smallest specimen tested in this study. To fully 

compare the size effects smaller specimens are required where the depth is as small 

as 0.5 mm. This depth is approaching the microstructural size of the Osteon system 

in cortical bone, suggesting that the influence of the microstructure will be more 

prevalent.  

 

Figure 67 – Comparison between the results in this study(blue diamonds) with those of Choi et al (Choi et 

al. 1990) (green triangles). 

To further understand the degree of the size effect evident in bovine cortical bone a 

further set of specimens are required at a series of smaller depths where the influence 
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of the microstructure is higher. For this reason a new series of experiments testing 

specimens at four unique depths from 1.3 mm to 0.5 mm deep would allow a more 

detailed impression of the size effect to be formed. This would fully integrate this 

study’s results with the findings of Choi et al.  

A demonstrable size effect was observed in bovine cortical bone this showed that the 

micropolar Young’s modulus was 18.5 GPa and the micropolar characteristic length 

in bending was 0.095 mm. These values are comparable to the microstructural 

features found in cortical bone where Haversian canals are typically 0.03 - 0.07 mm 

in diameter. 

Further experiments at smaller depths are required to fully confirm the size effect and 

compare it with previous studies in observed size effects in cortical bone.  

6.4 Experimental Development Conclusions 

The development of the experimental protocol was an iterative process. The initial 

attempts at detecting a size effect were ultimately unsuccessful because of the 

inconsistent mineral content results and limiting assumptions. However, the process 

enabled detailed development in both understanding and procedural competence. The 

finite element analysis has shown that the surface condition is of primary importance 

in determining and understanding the observed material properties of a 

heterogeneous material. For this reason surface roughness properties were measured 

as a way to introduce a standardised preparation technique.  

In the initial set of experiments the mineral content showed a high degree of 

variation and indicated demineralisation may have caused some of the specimens to 

reduce in stiffness. This reduced the reliability of the results from the first round of 

experiments and for future experiments mineral content was controlled by reducing 

the time between preparations and testing in conjunction with using PBS solution 

instead of saline solution for storage. This proved successful as the latter experiments 

showed no significant variation in mineral content with specimen size.  

Once a consistent experimental protocol was defined a size effect was observed 

which showed the micropolar material properties of Young’s modulus and 

characteristic length in bending to be 18.5GPa and 0.095 mm respectively which 
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compared to the values in literature for Young’s modulus and the diameter of a 

typical Haversian canal. However to gain a more detailed impression of the size 

effect observed in bovine cortical bone more specimens at smaller depths are 

required. This should enable a more detailed analysis of the size effect where the 

length scale approaches that of the microstructure. This will further allow a better 

comparison with previous studies into size effects in human cortical bone. 
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7 Longitudinal and transverse size effects 

The previous chapter detailed the process of the development of a robust repeatable 

experimental protocol. Once this protocol had been established a new series of 

experiments was carried out. This time two series of experiments were carried out 

using the previously establish protocol: one where the specimens were orientated 

longitudinally along the long axis of the femur; and another set orientated in the 

transverse plane with the vascular channels predominantly running through the 

breadth of each specimen. Both set of experiments used smaller specimens than in 

the previous chapter in order to gain a more detail impression of potential size effects 

at smaller specimen sizes. 

7.1 Methodology 

The same experimental methodology was used as had been devised in the previous 

chapter. Five bovine femurs were used to produce 10 specimens in total. From each 

femur two specimens were produced: one orientated longitudinally along the long 

axis of the femur as before (Figure 60); and the other orientated transversely across 

the radial-circumferential plane so that the vascular channels would predominantly 

run through the breadth of the specimens, this produced five specimens for each 

orientation. Each specimen was prepared to an initial length of 20mm, breadth of 

5mm and depth of 1.3mm. Four unique depths were tested for each specimen: 

1.3mm, 1mm, 0.7mm and 0.5mm. Specimen stiffness, surface roughness and mineral 

content were measured and quantified as with the established protocol.  

Two-way repeated measures ANOVA was used to determine whether the stiffness 

varied with specimen depth and repeated measure. Linear regression and correlation 

was subsequently used to assess the nature of the relationship between stiffness, 

mineral content and surface roughness with 1/d
2
. All statistical analysis was 

performed using IBM SPSS Statistics v21 (IBM, New York, USA) and statistical 

significance was assumed if p <= 0 .05. 
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7.2 Experimental Results 

7.2.1 Specimens orientated longitudinally along the long axis. 

The longitudinal experimental results show a statistically significant size softening 

size effect (p = <0.001) but not with repeated measure which is in accordance with 

an anti-micropolar size effect trend. Figure 68 shows the combined results for all five 

femurs for specimens orientated longitudinally along the long axis of the femurs. 

These results confirm a size softening size effect in three point bending. Table 13 

summarises the micropolar material properties calculated from inferring positive size 

effect trends from the negative size effect. This shows the micropolar Young’s 

modulus of bovine cortical bone to be 17.97 GPa and the micropolar characteristic 

length in bending to be 0.080mm. Both of these values are comparable to the quoted 

values for axial Young’s modulus in cortical bone and the size of Haversian canals 

and vascular channels in secondary and primary osteons (Black et al. 1974; Smit et 

al. 2002; Jae Young Rho et al. 1993; Zhang et al. 2008). 
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Figure 68 – Combined experimental results across all five specimens orientated longitudinally along the 

long axis of five bovine femurs. 

Figure 69 shows the mineral content plotted against the reciprocal of depth squared 

for all specimens. For these results the mineral content does not fall below 0.7 g/mm
3
 

suggesting consistency in the procedure. The higher consistency with mineral content 

suggests the results are more reliable than previous experiments for determining 

material properties. Moreover the consistency in mineral content indicates that this 

has no significant influence on the observed size effect (p = 0.108) and points 

towards the size effect in stiffness being attributable to the influence of the material’s 

microstructure rather than changes in mineral content. This is further corroborated by 

Figure 70 which shows the surface roughness plotted against the reciprocal of depth 
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squared for all specimens. There is no discernable size effect in surface roughness 

with depth (p = 0.725). 

Table 13 - Micropolar Young’s modulus and characteristic length values for all specimens combined with 

standard deviations 

Size effect 

Micropolar 

Young’s 

modulus (GPa) 

Micropolar 

characteristic 

length (mm) 

Micropolar 

characteristic 

length in 

bending (mm) 

negative 17.9 ± 1.0 0.28 ± 0.05 0.080 ± 0.016 

 

 

Figure 69 - Mean mineral content plotted against reciprocal of depth squared for all specimens.  
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Figure 70 – Reciprocal of depth squared plotted against the mean surface roughness, Ra, for all specimens. 

 

The longitudinal results show that there is a significant of the negative size softening 

size effect observed in bovine cortical bone. This is further emphasised by the 

repeatability of the results which suggests that cortical bone as a unitary material 

exhibits behaviours which are concurrent with micropolar elasticity theory. The 

values obtained for micropolar Young’s modulus and characteristic length in bending 

are comparable to those quoted in literature for the material properties of bovine 

cortical bone.  

7.2.2 Transverse specimens orientated with voids running through the 

breadth. 

The size effect trend for the five transverse specimens is shown in Figure 71. This 

shows a negative size softening size effect trend which may be described by 

micropolar elasticity. However, the size effect trend shows a p-value of 0.166 which 

suggests the results are not statistically definitive. Moreover the large standard 

deviations suggest a high variation of the measured stiffness at each depth. 
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Nevertheless there is a noticeable drop in stiffness with specimen size which is 

indicative of a size effect in the material.  

 

Figure 71 - Radial circumferential combined results plotting mean specimen stiffness 

against the reciprocal of depth squared with standard deviation. 

Table 14 summarises the micropolar size effects and micropolar material properties 

calculated form the size effect. The micropolar Young’s modulus of 8.6GPa shows 

the reduced transverse stiffness of cortical bone. The micropolar characteristic length 

in bending is 63μm which is in agreement with published values for the Haversian 

canal diameters in bovine cortical bone (Black et al. 1974; Rho et al. 1998).  
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Table 14 - Micropolar Young’s modulus and characteristic length values for all specimens combined with 

standard deviations 

Size effect 

Micropolar 

Young’s 

modulus (GPa) 

Micropolar 

characteristic 

length (mm) 

Micropolar 

characteristic 

length in 

bending (mm) 

negative 8.6 ± 0.7 0.22 ± 0.11 0.063 ± 0.033 

 

Figure 72 - Mean mineral content plotted against reciprocal of depth squared for all specimens. 

Figure 72 shows the mineral content plotted against the reciprocal of depth squared 

for all specimens. The consistency in mineral content indicates that this has no 

significant influence on the observed size effect (p = 0.828) and indicate that the size 

effect in stiffness may be attributable to the influence of the material’s 

microstructure. This is further corroborated by Figure 73 which shows the surface 

roughness plotted against the reciprocal of depth squared for all specimens. There is 

no discernable size effect in surface roughness with depth (p = 0.361). 
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Figure 73 - Reciprocal of depth squared plotted against the mean surface roughness, Ra, for all specimens. 



163 

 

7.2.3 Discussion 

 

Figure 74 – Mean stiffness values plotted against the reciprocal of depth squared for specimens orientated 

longitudinally (red squares) and radial-circumferentially (blue diamonds) with standard deviations. 

Experimental data exhibits a size softening trend for both the specimens orientated in 

transversely and longitudinally (Figure 74) with the longitudinal results showing 

statistical significance. 

The micropolar Young’s modulus and characteristic length were calculated using 

Equation 12 and Equation 13 obtained from the size effect relationship in Equation 
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where the specimens were orientated with vascular channels predominantly running 

along the length of the specimen the characteristic length in bending was 80μm and 

the micropolar Young’s modulus was 17.9 GPa. Where the specimens were 

orientated in the radial circumferential plane with vascular channels predominantly 

running through the breadth of the specimen the micropolar characteristic length in 

bending was 63μm and micropolar Young’s modulus was 8.61GPa.  

Figure 75 shows a comparison between three sets of stiffness value plotted against 

the reciprocal of depth squared. The stiffness values have been modified to represent 

a Young’s modulus value in order to compare the results in this study with those of 

Choi et al. This was done by calculating the equivalent Young’s modulus for the 

flexural stiffness of each specimen. The length, breadth, depth and flexural stiffness 

were used to recalculate and represent the stiffness in terms of Young’s modulus. 

The three groups are the initial group of five specimens prepared from the five 

bovine femurs, prepared at larger depths and tested over seven unique depths from 

5mm to 0.9mm. These are shown by the blue triangles. The second group is the five 

specimens from the same five bovine femurs tests conducted over four unique depths 

from 1.3mm to 0.5mm. These are shown in the red squares on the graph. The final 

group is the results from three-point bending experiments performed by Choi et al 

(Choi et al. 1990). These experiments were done on smaller specimen sizes than 

were used in the current experiments and the specimens were orientated along the 

long axis of human femurs. They clearly show an extension of the size effect trend 

and strongly corroborate the findings of this study. Micropolar behaviour however 

was not inferred from the negative size effects observed by Choi et al. As the trend in 

Choi’s study follows a similar trend to that observed in this study it is possible to 

relate both to micropolar size effects. 

It can also be observed that all ten specimens tested longitudinally follow similar size 

effect trends. Although the ten specimens were tested individually there is 

conformity in the size effect trend produced between each specimen. This 

demonstrates a correlation between inter and intra specimen variability suggesting 

that, on average, bovine cortical bone will show a size softening anti micropolar size 

effect when tested in three point bending. This confirms the size effect for each 
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femur. As both specimens for each femur were tested independently, mineral content 

remained consistent and surface roughness showed no discernable variation with size 

it may be concluded that the consistent size effects are attributable to the influence of 

the microstructure becoming more significant as specimen size approaches the depth 

of the specimen. 

 

 

Figure 75 Mean stiffness (Young’s modulus values) plotted against the reciprocal of depth squared with 

standard deviations comparing the initial five specimens with the second group of specimens and the 

results of Choi. Blue diamonds are the intial five specimens, red squares are the second group of smaller 

specimens and the green triangles are results of Choi (Choi et al. 1990). 
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It is possible that successive testing on the same specimen would lead to surface 

damage and a loss of stiffness with size. However, to negate the effects of 

microdamage specimens were loaded at a low strain rate of 0.0025s
-1

 and to a 

maximum outer surface strain of 0.005. This is below the strain where microdamage 

begins to propagate in cortical bone (Zioupos et al. 2008). Furthermore, as the 

outermost surface of each specimen was removed between tests then the area most 

likely to have been affected by microdamage would have been removed.  

The continuity in results between the initial five specimens tested over larger depths 

and the second group tested over smaller depths adds further weight to the argument 

that microdamage has a limited effect on the observed size effect. As the first 

specimen tested in the second group shows a stiffness value in accordance with the 

values observed in the smallest depths of the first group it can be deduced that 

microdamage has a limited influence during the experimental process itself. 

However, this does not remove the possibility of microdamage occurring during the 

preparation process which may have induced damage into the specimens before 

testing therefore reducing the overall recorded stiffness. Microdamage may also 

account for the higher standard deviation values seen in the smaller depths from each 

group of specimens and could be a possible explanation for the heteroscedasticity of 

the experimental results shown in Figure 65 and Figure 68. This would attribute the 

higher standard deviation as a consequence of the gradual introduction of 

microdamage during each loading cycle. However, as the size effect trend is 

noticeably similar between specimens from the same femurs it may be reasonable to 

assume that microdamage has had a limited influence on the global inter specimen 

size effect trends.  

7.3 Summary 

It has been shown that bovine cortical bone exhibits size effect trends in three-point 

bending which act in accordance with those predicted by micropolar elasticity. The 

anti-micropolar size softening size effect follows the trend predicted in the finite 

element analysis for beams where the surface has been intersected by the internal 

microstructure. The specimens in this study were prepared to remove the surface 

artefact and allow the internal microstructure to perforate the surface. By comparing 



167 

 

this negative size effect to the corresponding positive size effect observed in beams 

without microstructure perforating the surface the micropolar material properties of 

micropolar Young’s modulus and characteristic length in bending may be inferred.  

Two groups of specimens were tested: the first group of specimens were orientated 

along the long axis of the femur with vascular channel predominately running alon g 

their length and the second group was orientated transversely with vascular channels 

predominantly running through the breadth of each specimen. The results showed the 

micropolar Young’s modulus was 17.9 GPa longitudinally and 8.6 GPa transversely. 

The micropolar characteristic length in bending was 80μm longitudinally and 63μm 

transversely. Both of these value are in accordance with those quoted in literature for 

the physical properties of cortical bone (Rho et al. 1993; Choi et al. 1990; Hogan 

1992; Hoc et al. 2006; Black et al. 1974). 

Possible alternative causes of a size effect in cortical bone not attributable to the 

microstructure include demineralisation, inconsistent surface properties and the 

influence of microdamage were considered. Demineralisation was discounted as 

there was no significant correlation found between mineral content and specimen 

size. Surface roughness equally showed no discernable correlation with specimen 

size. Care was taken to test specimens to a strain no higher than 0.005 where 

microdamage begins to propagate. Moreover, because of the consistency between 

specimens and the repeatability of the size effect between specimens from the same 

bone the size effect observed in these experiments is consistent with those predicted 

by micropolar elasticity and may be attributed to the microstructure of cortical bone. 
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8 Comparison between numeric and experimental results 

8.1 Background 

Computational models of an idealised heterogeneous material, created to mimic the 

geometry of cortical bone, revealed micropolar size effects in three-point bending. 

The nature of the observed size effect depends upon the nature of the surface of the 

beam in bending. If the beam has a surface which is intersected by the internal 

microstructure, creating a corrugated surface, the beam then shows an anti-

micropolar size softening size effect. On the other hand if the surface is continuous 

and not broken by the internal microstructure a micropolar size stiffening size effect 

is observed. Similar size effect trends were shown to exist in both the longitudinal 

and the transverse orientations of the idealised material, albeit of different 

magnitudes, indicating a three dimensional anisotropic micropolar material. 

The experiments on bovine cortical bone revealed an anti-micropolar size effect in 

three-point bending. Similar size effects were observed in beams orientated both 

longitudinally and transversely, however the magnitude of the size effect differed 

between both cases.  

The qualitative and quantitative similarities between the computational and 

experimental results suggested a structural equivalence between both the idealised 

and the real materials. By direct comparison between both sets of results an enhanced 

picture of the micropolar material properties of cortical bone may be determined. 

Similarly, a more detailed gauge of the accuracy of the computational models may 

also be obtained. This may enable a fuller understanding of the role which the 

microstructure of cortical bone plays in the global material properties. 

8.2 Likelihood of voids on surface  

The computational analysis created two models for both the longitudinal and 

transverse orientations: those with surface perforations and those with a continuous 

surface. Both models represent an extreme condition and opposite size effects were 

observed for each case. In comparing the experimentally observed size effect from 

bovine cortical bone with that of an idealised material it is necessary to identify the 
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likelihood and the average depth by which the surface of a real specimen of cortical 

bone is intersected by the Haversian canal system (Figure 76).  

 

Figure 76 – Vascular channels intersect the surface of a cortical bone cross section 

The experimental results showed a negative anti-micropolar size effect congruent 

with the computational models in which the surface is corrugated by the internal 

microstructure. Therefore it is surmised that the surface of the experimental 

specimens has been intersected by the internal microstructure causing a size 

softening size effect. Thi9s is backed up by imaging of the surface (Figure 22) which 

indicates the majority of vascular channels are orientated along the length of a long 

bone consistent with the numerical models. By determining the degree to which the 

surface has been corrugated by the internal microstructure will allow a direct 

comparison with the extreme cases of the numerical results. Whilst it may be fairly 

obvious that the mean depth of the surface voids will be approximately equal to the 

void radius (Figure 76) the distribution of the void radius is not immediately obvious 

and should be investigated also.  

8.2.1 Methodology 

A two dimensional array of voids was created, using Matlab (Mathworks Inc, USA), 

to represent the cross sectional arrangement of voids in cortical bone. The voids were 

arranged in a random perturbation of the uniform equilateral triangular array used in 

the FE analysis models where SY = 0.866SX (Figure 77). The horizontal separation of 

the voids was prescribed as 300μm while the void fraction was set to 0.1, these 

values were chosen to represent typical values representative of cortical bone where 
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the void fraction is typically between 8-10% and the diameter of an osteon is 

typically 250-400μm (Wang & Ni 2003; Bensamoun et al. 2004). The void position 

was then randomly perturbed to a maximum of ±50μm using a normal distribution 

around the void radius value determined from the specified void fraction value. Five 

millimetre lines were then repeatedly imposed at random orientations on the void 

array to represent the possible cut surface of an experimental specimen (Figure 77) 

and in total ten thousand 5mm lines were imposed on the void array. Both the mean 

number of surface voids along the breadth and the mean depth of surface void on the 

surface were calculated in order to determine the likelihood of voids intersecting the 

surface and to what depth the surface had been broken. 



171 

 

 

Figure 77 – A two dimensional array of voids representative of the Haversian canal system in a cross 

section of cortical bone. The blue lines represent randomly distributed cuts through the material. 

8.2.2 Results and discussion 

The results showed that on average the surface of each 5mm line was intersected by 

6.41 Haversian canals. This is representative of 6.41 Haversian canals across the 

breadth perforating the surface along the length of a 5mm wide specimen. The mean 

depth of each surface void was found to be 0.0497mm with a standard deviation of 

0.007mm which as expected compares to the void radius of 0.0498mm (Figure 78). 

This indicates that the mean depth of the surface perforations in a five millimetre 

wide specimen is equivalent to the radius of a Haversian canal.  
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Figure 78 – The mean depth of surface voids plotted against the number of lines plotted. 

The significance of these findings is that the mean depth of voids along the surface of 

a randomly orientated beam is equivalent to the radius of the internal voids in the 

material. In the case of cortical bone the surface voids are of the same radius as the 

Haversian canals. This suggests that the experimental specimens of bovine cortical 

bone were produced with voids intersecting the surface, in accordance with Figure 

22, thereby producing a negative anti-micropolar size softening size effect. The 

computational models of beams with voids perforating the surface were created with 

half voids along the surface equivalent to voids of half diameter along the surface 

region. This suggests the size effect produced experimentally is directly comparable 

to the computational models where the surface is intersected by microstructural voids 

because both the experimental and computational beams represent materials where 

the surface is perforated by the internal microstructure to a depth of the void radius. 
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8.3 Comparison of experimental and FEA results 

The results from the Numerical analysis of idealised heterogeneous materials chapter 

(p40) show the size effects observed in idealised computational models where SY = 

0.866SX. In cortical bone the separation of vascular channels in the x and y axes are 

equivalent to the diameter of an osteon typically 250 - 400μm. For this reason the 

computational results need to be scaled to account for the difference between void 

size and distribution in the idealised case and the real material. The most appropriate 

fit of the computational results to the experimental results when considering the 

distribution of voids in the material is to set the smallest computational specimen size 

equivalent to the smallest experimental specimen size. To do this SY was set to 

0.433mm, which compares favourably with the upper threshold of osteon diameter 

and allows the smallest computational model to approximately coincide with the 

smallest experimental specimen size. Figure 79 and Figure 80 show the comparison 

between computational and experimental results for the longitudinal and transverse 

orientated specimens respectively. It may be noticed that the smallest numerical 

model is of the same order of magnitude as the smallest experimental model, thereby 

allowing a more accurate comparison between computational and experimental 

results. 

The root mean square error between the finite element results and experimental 

results for each void fraction in both the longitudinal and transverse orientations is 

shown in Table 15. This clearly shows that for both the longitudinally and radially-

circumferential orientations a void fraction of 0.145 has the strongest correlation 

with the experimental results. The void fraction of bovine cortical bone is in the 

region of 10% which is comparable to the 14.5% void fraction of the most 

representative numerical model. Figure 81 shows the plot of the experimental results 

for longitudinal and transverse orientations plotted with the void fraction of 0.145. It 

can be seen that the longitudinal specimens exhibited a greater size effect than that 

predicted by the numerical modelling for a void fraction of 0.145, whilst the 

transverse specimens exhibit a weaker size effect trend at the 0.145 void fraction. 

This suggests that specimens orientated longitudinally have a more complicated 

micropolar behaviour and may also indicate that there are multiple influences which 

might be responsible for the size effect, beyond solely the influence of longitudinally 
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orientated voids. This could be explained by a greater influence of structural features 

such as cement lines being more influential longitudinally rather than transversely 

and as a result creating a more pronounced size effect in a longitudinal orientation. 

Table 15 – The root mean square error for longitudinally and transversely orientated specimens with the 

equivalent computational size effect trends for each void radius and void fraction. Where SX = 0.5mm SY = 

0.433mm. 

Void Fraction 
Normalised Void 

Radius, VR/SY 

Longitudinal RMSE 

with experimental 

results (N/mm
2
) 

Transverse RMSE 

with experimental 

results (N/mm
2
) 

0.009 0.06 16.8 19.6 

0.036 0.12 13.6 17.0 

0.082 0.17 9.2 9.1 

0.145 0.23 5.4 1.2 

0.227 0.28 8.2 6.9 

0.326 0.35 15.6 13.6 
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Figure 79 - Comparative plot of the experimental longitudinally results with standard deviation (blue 

diamonds) and the FE results for different void fractions. SX = 0.5mm SY =0.433mm. Red squares, 

VR/SY=0.06; green triangles, VR/SY=0.12; purple crosses, VR/SY=0.27; blue stars, VR/SY=0.23; orange 

circles, VR/SY=0.29; blue crosses, VR/SY=0.35.  
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Figure 80 - Comparative plot of the experimental radial-circumferential results (blue diamonds) with the 

FE results for different void fractions. SX = 0.5mm SY =0.433mm. Red squares, VR/SY=0.06; green 

triangles, VR/SY=0.12; purple crosses, VR/SY=0.27; blue stars, VR/SY=0.23; orange circles, VR/SY=0.29; blue 

crosses, VR/SY=0.35. 

The micropolar material properties calculated from the computational results give a 

micropolar characteristic length in bending of 50μm and micropolar Young’s 

modulus of 16.4GPa for the longitudinal models. For the transversely orientated 

models the micropolar characteristic length in bending from 0.145 void fraction 

models was found to be 82μm and the micropolar Young’s modulus was found to be 

8.4GPa. A comparison between these values and the values obtained directly from 

the trend line of the experimental results can be seen in Table 16. 
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Table 16 – A comparison between the values for micropolar Young’s modulus and characteristic length in 

bending for the longitudinal and transverse specimens for both the experimental trend fit and FE results 

for a void fraction of 0.145, SX of 0.5mm and matrix Young’s modulus of 20GPa.. 

 Em longitudinal lb longitudinal Em transverse lb transverse 

Experimental 

best fit 
17.9GPa 80 μm 8.6GPa 63 μm 

FE best fit 16.4GPa 50 μm 8.4GPa 82 μm 
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Figure 81 – Experimental results plotted with the numerical results for a void fraction of 0.145 with 

SX=0.5mm and SY=0.433mm. Green lines are for longitudinal specimens orange are for transverse 

specimens.  Triangles represent the numerical results and circles are for the experimental results. 

8.4 Variation in SX, VF and matrix Young’s modulus (Emat) 

Although a good agreement between the experimental results and the computational 

models has been established it is worth discussing the significance of other variables 

in the computational models and how they may influence the correlation between an 

idealised model and real materials. 

The idealised heterogeneous material may be defined by three parameters: Void 

spacing (SX), void fraction (VF) and matrix Young’s modulus (Emat); by altering each 

of these variables it is possible to create a different size effect. In understanding the 
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significance of a numerically created size effect it is worthwhile determining the 

material characteristics of the model in order to compare geometrical features as well 

as material properties. The interdependence of the geometry of the computational 

model with the observed size effect is an important aspect in understanding similar 

size effects observed in real materials.  

8.4.1 Separation of voids, SX 

As mentioned previously the numerical results needed to be scaled to the size of the 

microstructure in cortical bone. In cortical bone the diameter of an osteon is typically 

250-400 μm (Black et al. 1974; J Y Rho et al. 2002; J Y Rho et al. 1997b). For this 

reason a more representative void spacing was used to compare the numerical and 

experimental results. To gain a fuller representation of the size effect predicted by 

the numerical models SX may be varied through a range of values. 

8.4.2 Void fraction 

The void fraction of cortical bone is typically reported being between 8-10%. The 

closest correlation between the computational and experimental results was observed 

where the void fraction was 0.145. Although this is not an exact match, it is a close 

correlation and suggests that the void fraction responsible for the size effect in the 

material does not solely consist of the physical voids within the material, but may 

also be accounting for the differences in the material properties of the different 

phases of the material (J Y Rho et al. 2002; Hoffler et al. 2000). For example the 

collagen phase of cortical bone may not contribute significantly to the stiffness and 

could be considered to contribute towards the void fraction of the material which 

would undoubtedly increase the void fraction of the overall material as would the 

contribution of other microstructures such as cement lines. 

8.4.3 Matrix Young’s modulus 

The Young’s modulus of the matrix material is perhaps the most difficult variable to 

define because of the anisotropy in material properties within cortical bone. Cortical 

bone is an inherently heterogeneous material at multiple length scales and as a 

consequence regions of the material may display stiffer material behaviours than 

other regions because the material is more densely packed and has fewer voids. The 

Young’s modulus value for the matrix material in cortical bone should take into 
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account the porosity of the material and therefore should be regarded as a stiffer 

material than the global properties of cortical bone itself. Nano-indentation 

experiments on regions of the microstructure of cortical bone have suggested that 

there is a significant difference between osteonal bone and interstitial bone, where 

the interstitial bone is noticeably stiffer. It is suggested that interstitial bone has a 

Young’s modulus of 22GPa whereas osteonal bone has a modulus of 18-20GPa 

(Zhang et al. 2008; Ghanbari & Naghdabadi 2009; Rho et al. 2002). Because the 

idealised model used in this study does not differentiate between osteonal and 

interstitial cortical bone a generic Young’s modulus representative of the matrix 

material properties was used. For these reason a Young’s modulus in the region of 

20-22GPa for the matrix material was thought to be representative of cortical bone. 

8.4.4 Methodology 

To determine the closest agreement between the experimental results and the 

numerical analysis the variables of void fraction VF and matrix Young’s modulus 

(Emat) were varied for a fixed void spacing, SX. For each variation the RMSE was 

calculated to both the longitudinal and transverse experimental results. Voids were 

maintained in an equilateral array and the separation in the x-axis was fixed to equal 

0.5mm (SY = 0.433mm), the void fraction was varied between six unique values 

representative of six void radii (0.01, 0.04, 0.08, 0.15, 0.23, and 0.33) and the matrix 

Young’s modulus was varied between six values (18, 20, 22, 24, 26 and 28GPa). 

8.4.5 Results and discussion 

There was a variation in the RMSE which was dependent upon the three defining 

variables of the FE model. Table 17 shows the RMSE values for the longitudinally 

orientated specimens where SX is equal to 0.5mm. It can be seen that the lowest 

RMSE which indicates the strongest correlation between experimental and numerical 

results is for a matrix Young’s modulus of 26GPa and a void fraction of 0.33. The 

equivalent set of RMSE values for transversely orientated specimens is shown in 

Table 18 where SX was again set to equal 0.5mm. This indicates that the strongest 

correlation between experimental and numerical results for the transverse specimens 

occurs where the matrix Young’s modulus is set to 20 GPa and the void fraction is 

0.15, which again highlights the difference between the longitudinal and transverse 
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results and their corresponding fit to numerical predictions of micropolar behaviour. 

Figure 82 shows the values in Table 17 plotted in a three dimensional graph. It can 

be seen that there is not one clear global minimum in the graph but rather, a valley of 

minima. 

Table 17 – Variation in RMSE where void fraction and matrix Young’s modulus have been varied for an 

SX value of 0.5mm for longitudinal specimens. 

Matrix 

Young’s 

Modulus 

(GPa) 

Void Fraction 

0.01 0.04 0.08 0.15 0.23 0.33 

RMSE of experimental results to FEA results (N/mm) 

18 10.5 8.2 6.2 7.8 13.2 20.2 

20 16.7 13.6 9.2 5.4 8.2 15.6 

22 23.8 20.3 15.0 8.6 4.7 11.2 

24 31.1 27.2 21.3 14.0 6.0 6.9 

26 38.6 34.4 28.0 19.9 10.5 3.8 

28 46.1 41.5 34.7 25.9 15.6 4.9 

 

Table 18 - Variation in RMSE where void fraction and matrix Young’s modulus have been varied for an 

SX value of 0.5mm for transverse specimens. 

Matrix 

Young’s 

Modulus 

(GPa) 

Void Fraction 

0.01 0.04 0.08 0.15 0.23 0.33 

RMSE of experimental results to FEA results (N/mm) 

18 
14.8 12.4 5.3 2.5 9.2 15.3 

20 
19.6 17.0 9.1 1.2 6.9 13.6 

22 
24.5 21.7 12.9 4.0 4.6 11.9 

24 
29.4 26.3 16.8 7.1 2.5 10.3 

26 
34.3 31.0 20.7 10.2 1.6 8.7 

28 
39.3 35.7 24.6 13.3 3.2 7.1 
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Figure 82 – A three-dimensional plot of the RMSE of the experimental results with computational results 

plotted against the matrix Young’s modulus and void fraction for SX=0.5mm for longitudinal specimens. 

What these findings indicate is that the parameterisation of the FE model may be 

considered to be a process of curve fitting to the experimental results. By softening 

the matrix material and reducing the void fraction for a given void separation a more 

representative fit, which fits with literature values, of the experimental trend can be 

obtained. Moreover, these findings suggest that the FE model in itself is not a 

definitive representation of cortical bone, but may be more accurately described as a 

representation of the material properties exhibited by cortical bone. Nevertheless, 

what may be inferred from the FE results is that a micropolar behavioural trend is 

apparent in idealised heterogeneous materials. 
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Although a broad range of values were used as the parameter inputs for VF and EMAT 

the representation of cortical bone as an idealised heterogeneous material is 

effectively done by selecting input values which closely match those of cortical bone. 

Selecting input values which are unrealistic in terms of observed material properties 

may produce a better statistical match but it does not describe the material in real 

terms. Furthermore, only by obtaining material characteristics from experimental 

techniques such as image analysis or nano-indentation is it possible for an impression 

of the input parameters of cortical bone be obtained. This allows a more realistic 

comparison between the computational and the experimental models because it is 

comparing similar materials in terms of geometry and mechanical character. In short 

it is not the output (the desired size effect) which is the important measure of cortical 

bone’s behaviour, but rather, the correlation between the input parameters, the real 

material properties and the experimental and computational size effects. Although it 

is possible to obtain a more accurate fit between experimental and computational 

results by varying the matrix Young’s modulus and void fraction, essentially this 

becomes an exercise in curve fitting. The fact that a matrix Young’s modulus of 

28GPa and void fraction of 0.33 (and potentially other values) may produce a more 

accurate fit to the experimental results may only be highlighting the representative 

nature of the computational models, rather than bear any significance to physical 

material properties or characteristics. The computational models are a representation 

of an idealised microstructure, which in itself is representative of the vascular 

channels in cortical bone. 

Bone exhibits more intense micropolar behaviour than the numerical results from 

idealised heterogeneous materials would suggest. When fitting these idealised 

heterogeneous models to experimental data the added tissue complexity manifests 

itself as an increase in void fraction, i.e. the structure causing the micropolar 

behaviour. The numerical model generated in this study is a simplification of the 

complex hierarchy present in cortical bone and should not be considered as a realistic 

microstructural depiction of cortical bone. Rather, the numerical model should be 

considered a generalisation of the microstructural complexities present in cortical 
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bone. For example the influence of cement lines are not directly included in the 

numerical representation of vascular channels, however they are a microstructural 

ferature which is commonly thought to be an important influence on the plastic and 

viscoelastic material behaviour of cortical bone.  This may indicate that the increased 

micropolar size effect observed in the longitudinally orientated specimens is 

suggestive of a higher degree of micropolar behaviour which could be attributed to 

cement lines around osteons acting in conjunction with the natural porosity of the 

vascular channels. Thus, collagen fibre orientation, cement lines and other structural 

organisations may all play their parts in the micropolar description of bone. The 

complexity may be represented by the unphysiological nature of the idealised 

heterogeneous model. 

8.5 Conclusions 

The comparison between the experimental results obtained through three-point 

bending experiments on bovine cortical bone and the numerical analyses of idealised 

three-dimensional heterogeneous materials show striking similarities. The two 

orientations of cortical bone specimens experimentally tested revealed identifiable 

micropolar material properties in the transverse and longitudinal directions. This is 

consistent with the computational results obtained from the 2-dimensional and 3-

dimensional analogue models. Both experimental and numerical models exhibit 

negative anti-micropolar size effects. A study was undertaken to determine the 

likelihood of voids intersecting a surface when randomly prepared from a section of 

cortical bone. It was found that on average the surface will be intersected by voids to 

a depth of half a void diameter, validating the choice of idealised heterogeneous 

models. By comparing both the experimental and numerical negative size effects 

with those obtained numerically for the complimentary positive size effect in beams 

without surface perforations it has been possible to calculate the micropolar material 

properties from the experimentally observed size effects.  

When the experimental size effects were overlayed onto the FE results it was 

observed that for a void fraction of 0.145 there was the greatest agreement between 

both sets of results. This indicated that an idealised 3-dimensional model with a void 

fraction in the region of 15%, a matrix Young’s modulus of 20GPa and a void 
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separation of 0.5mm produced a realistic description of the microstructure of cortical 

bone. This was further evidenced by the agreement between micropolar material 

properties obtained experimentally and numerically. 

The input variables for the idealised FE models may be varied in order to adjust the 

size effects produced. Although these input values may be changed to generate a 

more accurate correlation between the experimental and numerical results it was 

decided that the chosen values offered a more realistic description of the nature of 

cortical bone. 

 

 



186 

 

9 Discussion, Conclusions and Further Work 

Cortical bone exhibits size effect trends in three-point bending which are consistent 

with those predicted by micropolar elasticity. The micropolar material properties of 

micropolar Young’s modulus and micropolar characteristic length in bending were 

calculated from the negative size effects observed from the three-point bending 

experiments on two orientations of cortical bone. The longitudinal micropolar 

Young’s modulus of cortical bone was calculated to be 17.9GPa and longitudinal 

micropolar characteristic length was calculated to be 80μm. The transverse 

micropolar Young’s modulus of cortical bone was calculated to be 8.6GPa and 

transverse micropolar characteristic length in bending was calculated to be 63μm. 

These compare favourably with published values for the diameter of Haversian 

canals in secondary osteons, the vascular channels in plexiform bone and the 

longitudinal and transverse Young’s modulus values of cortical bone (Black et al. 

1974; Wang & Ni 2003; Rho et al. 1993).  

It has been shown that computational models of idealised heterogeneous materials 

display size effect trends which are in agreement with the predictions of micropolar 

elasticity. This is the case for both two-dimensional planar idealised heterogeneous 

materials and three-dimensional idealised heterogeneous materials. However, there is 

a fundamental difference in size effect predicted by the numerical models for beams 

in bending where the surface is broken by the underlying microstructure. In this case 

a negative size effect approximately opposite to the scenario where the surface is 

smooth occurs. By showing that the opposing size effects represent extremes of the 

material behaviour the micropolar material properties may be inferred from the 

negative size effect. This was further corroborated by a study into the likelihood of 

voids intersecting a surface in a randomly sectioned beam, which revealed that on 

average the surface will contain surface voids of half the depth of the internal 

microstructural void. This allowed the experiments on bovine cortical bone to be 

compared directly with the computational findings and the micropolar material 

properties to be calculated. 
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For the first time ever complementary numerical and experimental size effects in 

cortical bone have been observed. Both the longitudinal and transverse specimens 

exhibited distinct micropolar size effect behaviours. When the micropolar material 

properties were compared they revealed strong agreement between both the numeric 

and experimental results and further suggest that the diameter of the vascular 

channels found in cortical bone are a key dimension in understanding the mechanical 

importance of the microstructure. Experiments on longitudinal specimens exhibited a 

stronger size effect, as indicated by the gradient of stiffness against 1/d
2
, than that 

predicated by numerical calculations. However, the strength of the size effect of 

transversely oriented specimens was well predicted by the numerical models. This 

suggests a longitudinally aligned microstructural feature of bone which adds to its 

micropolar behaviour, over and above that due to vascular channels. One possible 

hypothesis is that the interface between osteons and interstitial bone, i.e. the cement 

lines, act to increase micropolar behaviour. Thus further work could examine 

whether a “double micropolar” description may be appropriate for longitudinal 

specimens where there are two characteristic lengths: one approximately the 

diameter of the canals, and one approximately the diameter of the primary and/or 

secondary osteons. 

At present cortical bone is generally modelled using classical elasticity. This research 

has shown that in reality this is a generalisation which is not fully descriptive of the 

complexities of the material. The presence of a size effect in three-point bending 

suggests that classical elasticity is an inadequate material model to properly describe 

the mechanical behaviour of cortical bone in all circumstances. This research may 

herald the introduction of micropolar elasticity into the mainstream modelling of 

cortical bone. Although classical elasticity may be an adequate continuum model to 

describe the mechanical behaviour of cortical bone in general terms, it is not wholly 

robust for situations where the influence of the microstructure becomes significant. 

The results presented here strongly suggest that micropolar elasticity is a more 

appropriate continuum model for describing the material behaviour of cortical bone 

and that micropolar elasticity may be a more appropriate continuum model for fully 

incorporating the microstructure into bone’s mechanical description. This is 

especially true where the scale of the microstructure becomes significant in relation 
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to the macroscale deformations and stresses. In situations where there is an 

interaction between cortical bone and a prosthetic device for example, the slight 

deformations and stress concentrations surrounding the microstructure may aid the 

loosening of an implant over time. There are many common instances where implant 

loosen over time, and the reasons for this are not well understood at present (Bauer & 

Schils 1999; J.-H. Lee et al. 2005; Baggi et al. 2008). A possible cause of implant 

failure may be because the modelling of the implant in cortical bone is performed 

using classical elasticity and subsequently does not properly describe the translation 

of stresses between the bone and the implant. This is particularly important when 

considering stress concentrations around a rigid inclusion. Micropolar elasticity 

predicts that in such situations the stress concentration will be lower than that 

predicted by classical elasticity (Beveridge & Wheel 2010; Beveridge et al. 2013; 

Eringen 1966; Fatemi et al. 2002). It is apparent that a screw, for example, which is 

holding a hip implant in place, could be considered to be a rigid inclusion in cortical 

bone and because cortical bone has been shown to behave in accordance with 

micropolar elasticity, it therefore follows that the stress concentrations which are 

predicted by modelling a hip implant using classical elasticity may not properly 

describe the true material behaviour. The result of this may be that stress 

concentrations are relocated and areas of stress shielding occur, resulting in 

demineralisation and weakening of regions of the bone which would otherwise be 

more densely mineralised, or more directly the weakening of regions of bone which 

should be strong to enable the proper function of the implant. It may be more 

effective to design an implant and the interaction between an implant and the 

surrounding region of cortical bone using a micropolar finite element calculation 

rather than a classical elastic element then. This would enable the effects of the 

microstructure surrounding an implant screw for example to be generalised by 

micropolar elasticity rather than using more computationally intensive methods such 

as micro CT scanning the microstructure and applying a classically elastic material 

model. The input parameters to the micropolar FE model would be determined from 

the nature of the microstructure, where the characteristic length is related to the size 

of the Haversian system and the matrix Young’s modulus is related to the Young’s 

modulus of the surrounding osteons and interstitial bone. An example of how a FE 
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material model has been created for a micropolar element is given by Beveridge 

(Beveridge et al 2013; Waseem & Beveridge 2013; Beveridge et al 2011). The 

creation of a micropolar FE code which is able to accurately represent cortical bone 

may ultimately be seen as the continuation of this research and could build upon the 

findings presented here. 

The finite element analyses in this research project have demonstrated the strong link 

between the magnitude of observed size effects and the void fraction of the 

microstructure. In relation to cortical bone this finding has a strong significance to 

the void fractions associated with the Haversian canal system and it has been 

demonstrated that the characteristic length in bending is scalable to the relative size 

of the microstructural features. Osteoporosis is a condition where there is a reduction 

in the mineral content of cortical bone and consequently increases in the void 

fraction. This suggests that the micropolar characteristic length in bending would be 

altered depending upon the degree of demineralisation. In understanding the 

importance of increased void size it follows that the micropolar characteristic length 

will change depending upon the degree of increased void fraction. This resultantly 

will produce altered stress concentration patterns in bone with increased 

osteoporosis. This would enable a more accurate representation and description of 

the behaviour of osteoporotic bone if micropolar elasticity were used to generalise 

the increase in void fraction. A micropolar finite element model would be able to 

account for an increase in void fraction by increasing the input parameter of 

micropolar characteristic length. Moreover a reduction in mineral content would also 

imply that the matrix Young’s modulus may have decreased and subsequently this 

input parameter would be adjusted accordingly. If it is possible to define the 

character of the material being modelled in terms of the microstructural features and 

properties then it will be possible to accurately predict the material behaviour of 

cortical bone. 

Micropolar material properties were calculated for the longitudinal and transverse 

orientations of specimens. In particular size effects were shown to exist in cortical 

bone where the vascular channels run along the length and through the breadth of 

specimens in bending. A third case exists where the Haversian canals run through the 
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depth of the specimens. A new set of three-point bending experiments could allow 

these material properties to be calculated and matched with a complementary FE 

analysis, thereby providing a more complete material description. This could also be 

augmented by the creation of more sophisticated FE models which would include 

more of the microstructural detail and perhaps allow distinctions between 

microstructural levels of complexity within the material. For example a future FE 

model may attempt to include more microstructural detail at the intra-osteon level 

and be complemented by experimental tests on single osteons. However, it should 

also be noted that the general purpose of defining cortical bone as a micropolar 

material and the calculation of micropolar material properties is to simplify the 

simulation processes involved in modelling cortical bone. Once the material has been 

established as being micropolar, a general micropolar FE model can then be applied 

to future simulations which will greatly reduce the complexity of the computational 

model and simulations 

Further experiments on cortical bone would enable the micropolar coupling number, 

which defines the boundary between couples stress elasticity and micropolar 

elasticity to be identified. This can be done by experimentally comparing the size 

effect trends produced at varying length to depth aspect ratios (Beveridge et al. 

2013). It was not possible to obtain the coupling number from the experiments in this 

study because only one aspect ratio was tested in three-point bending. Therefore 

future work may be able to reproduce similar experiments to this study at varying 

aspect ratios and subsequently calculate the coupling number. The complications 

involved with this will be in maintaining a consistent experimental protocol between 

aspect ratios. Ideally a range of length to depth aspect ratios similar to the numerical 

range simulated in this study would need to be tested, however this requires 

specimens of both greater and less than a 10:1 aspect ratio being tested, which then 

introduces practical complications into the experiments.  

The experiments on cortical bone in this study used only one discrete value for strain 

and strain rate for each specimen. It would be interesting to investigate if there was a 

significant variation in the observed size effect if the strain rate was increased or 

decreased. Cortical bone is a viscoelastic material and a higher strain rate would 
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undoubtedly increase the observed elastic modulus of each specimen (Zioupos et al. 

2008). Moreover, it is known that there is a relationship between observed elastic 

modulus and micropolar Young’s modulus, but would the micropolar characteristic 

length in bending (related to the gradient of the size effect) be altered by an increase 

or decrease in strain rate? A study of this kind may also begin to highlight if there are 

significantly more dominant microstructural features which act at different length 

scales within cortical bone. For example, it may be possible for lower or higher strain 

rates to reveal more engagement of cement lines and interaction between cement 

lines and the surrounding osteons. This may reveal multifaceted degrees of 

micropolar behaviour which are not characterised by experiments at one strain rate 

alone. There is also a strong link between the strain rate and the propagation of 

microcracks in cortical bone (Gupta & Zioupos 2008; Zioupos & Currey 1994; 

Zioupos et al. 2008) and this could have an important influence on the observed 

micropolar size effects and in how the micropolar material properties relate to the 

underlying microstructure. In this study the strain rate was maintained at a relatively 

low value. At a higher value of strain rate the propagation of microcracks would be 

reduced and the material may behave in a more rigid classically elastic manner. By 

conducting further experiments at increased strain rates it may be possible to remove 

many of the viscoelastic elements of cortical bone’s behaviour. Moreover, it may 

also be possible to remove other layers of heterogeneity in the material. For example 

at lower strain rates the propagation of microcracks is increased as a method by 

which cortical bone dissipates energy through the material. At higher strain rates the 

material is forced to behave in a more rigid manner and stiffens, this may allow a 

better comparison between the idealised models of the numerical analyses in this 

study to be compared with cortical bone. This would be because the influence of 

other possible contributing heterogeneous factors, such as the interaction between 

organic and mineral phases and the various scales of microstructural detail, which 

may have contributed to a size effect at lower strain rates would be minimised. 

Therefore a purer comparison between the idealised void lattice networks in the 

idealised computational material could be compared with the Haversian and vascular 

systems in cortical bone. A possible method to enhance the understanding of stress 

concentrations in micropolar material would be to use Digital Image Correlation 
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(DIC) to observe the strain behaviour of cortical bone around a rigid inclusion. Such 

an analysis could investigate the actual bone deformation response around screws 

which are currently used in implanted devices.  

The computational models used in this study are relatively simple. They are linear 

elastic models which include detailed geometry designed to mimic the character of 

cortical bone. Once the idealised material has been shown to behave in accordance 

with micropolar size effect trends it is no longer necessary to include all the 

geometrical detail of the microstructure. Rather, it is more appropriate to create a 

micropolar finite element model with input parameters which will produce the same 

effect as modelling the entire microstructural geometry. The significance of this 

should not be underestimated, as the reduction in geometrical computational 

complexity may allow more specialised bone models to be created and subsequently 

provide advancements in prosthesis design. Many bone models at present use fairly 

complex geometries which include many of the details of the underlying 

microstructure. However, the suitability of such a complex geometry may be 

undermined by the assumptions made in using classical elasticity as the continuum 

model. If a micropolar element is created all the detail of the microstructure may be 

discarded and in its place input parameters which characterise the microstructural 

features may be used instead. For example the micropolar material properties 

obtained in this study could be used as input parameters to re-create the same size 

effects in a computational model which was independent of the physical 

microstructure. Moreover, for a material where the micropolar material properties 

were unknown, it may be possible to investigate the geometrical structure of the 

material microstructure and input the physically observed dimensions directly into a 

micropolar material model. Perhaps by having knowledge of the void size, spacing 

and matrix material properties, as discussed in the numerical and experimental 

comparison chapter, it will be possible to fully describe material behaviour using 

micropolar elasticity. It is hoped that this will create an avenue of advancement not 

just in prosthesis modelling but in material constitutive modelling in general. 



193 

 

References 

Abdel-Wahab, A., Maligno, A.R. & Silberschmidt, V. V., 2011. Micro-scale 

modelling of bovine cortical bone fracture: Analysis of crack propagation and 

microstructure using X-FEM. Computational Materials Science, pp.1–8.  

Akiva, U., Wagner, H. & Weiner, S., 1998. Modelling the three-dimensional elastic 

constants of parallel-fibred and lamellar bone. Journal of materials science, 

33(6), pp.1497–1509. 

Anderson, W. & Lakes, R., 1994. Size effects due to Cosserat elasticity and surface 

damage in closed-cell polymethacrylimide foam. Journal of Materials Science, 

29(24), pp.6413–6419.  

Baggi, L. et al., 2008. The influence of implant diameter and length on stress 

distribution of osseointegrated implants related to crestal bone geometry: a 

three-dimensional finite element analysis. The Journal of prosthetic dentistry, 

100(6), pp.422–31.  

Bala, Y. et al., 2011. Respective roles of organic and mineral components of human 

cortical bone matrix in micromechanical behavior: an instrumented indentation 

study. Journal of the mechanical behavior of biomedical materials, 4(7), 

pp.1473–82.  

Bauer, T.W. & Schils, J., 1999. The pathology of total joint arthroplasty.II. 

Mechanisms of implant failure. Skeletal radiology, 28(9), pp.483–97.  

Bayraktar, H.H. et al., 2004. Comparison of the elastic and yield properties of human 

femoral trabecular and cortical bone tissue. Journal of biomechanics, 37, pp.27–

35. 

Belanche, A. et al., 2011. The tensile behaviour of demineralized bovine cortical 

bone. Journal of animal science, 29(11), pp.1497–1501.  

Bensamoun, S. et al., 2004. Spatial distribution of acoustic and elastic properties of 

human femoral cortical bone. Journal of biomechanics, 37(4), pp.503–10.  

Beveridge, A., 2011. Novel computational methods to predict the deformation of 

macroscopic heterogeneous materials. PhD Thesis, University of Strathclyde. 

Beveridge, A. & Wheel, M., 2010. Computational Modelling and Experimental 

Characterisation of Heterogeneous Materials. Materials with Complex 

Behaviour, 3(2), pp.257–268. 



194 

 

Beveridge, A., Wheel, M. & Nash, D., 2013. The micropolar elastic behaviour of 

model macroscopically heterogeneous materials. International Journal of Solids 

and Structures, 50(1), pp.246–255.  

Beveridge, A., Wheel, M., 2010. Computational Modelling and Experimental 

Characterisation of Heterogeneous Materials. Materials with Complex 

Behaviour, 3(2), pp.257–268. 

Bigoni, D. & Drugan, W.J., 2007. Analytical Derivation of Cosserat Moduli via 

Homogenization of Heterogeneous Elastic Materials. Journal of Applied 

Mechanics, 74(4), p.741.  

Black, J., Mattson, R. & Korostoff, E., 1974. Haversian osteons: size, distribution, 

internal structure, and orientation. Journal of biomedical materials research, 

8(5), pp.299–319.  

Braidotti, P. et al., 1995. An elastic compound tube model for a single osteon. 

Journal of biomechanics, 28(4), pp.439–444.  

Brezny, R. & Green, D.J., 1990. Characterization of edge effects in cellular 

materials. Journal of Materials Science, 25(11), pp.4571–4578.  

Buechner, P.M. & Lakes, R.S., 2003. Size effects in the elasticity and viscoelasticity 

of bone. Biomechanics and modeling in mechanobiology, 1(4), pp.295–301.  

Burstein, A.H. et al., 1975. Contribution of collagen and mineral to the elastic-plastic 

properties of bone. Journal of Bone and Joint Surgery. 

Buskirk, R. & Rice, J.C., 1982. A continuous wave technique for the measurement of 

the elastic properties of cortical bone. Journal of biomechanics, 17(5), pp.349–

361. 

Choi, K. et al., 1990. The elastic moduli of human subchondral, trabecular, and 

cortical bone tissue and the size-dependency of cortical bone modulus. Journal 

of biomechanics, 23(11), pp.1103–13.  

Cowin, S., 1989. Bone mechanics, CTC Press (Boca Raton, Florida). 

Cristofolini, L. et al., 2009. Stress shielding and stress concentration of contemporary 

epiphyseal hip prostheses. Proceedings of the Institution of Mechanical 

Engineers, Part H: Journal of Engineering in Medicine, 223(1), pp.27–44.  

Currey, J. D., 1969. The mechanical consequences of variation in the mineral content 

of bone. Journal of Biomechanics, 2(I), pp.1–11. 

Currey, J. D. 1975. The effects of strain rate, reconstruction and mineral content on 

some mechanical properties of bovine bone. Journal of Biomechanics, 8, pp.81–

86. 



195 

 

 

Currey, J.D., 1988. The effect of porosity and mineral content on the Young’s 

modulus of elasticity of compact bone. Journal of Biomechanics, 21(2), pp.131–

139.  

Dong, X.N. & Guo, X.E., 2004. The dependence of transversely isotropic elasticity 

of human femoral cortical bone on porosity. Journal of biomechanics, 37(8), 

pp.1281–7.  

Ebacher, V. et al., 2012. Sub-lamellar microcracking and roles of canaliculi in human 

cortical bone. Acta biomaterialia, 8(3), pp.1093–100.  

Ellison, B. et al., 2009. Minimal stress shielding with a Mallory-Head titanium 

femoral stem with proximal porous coating in total hip arthroplasty. Journal of 

orthopaedic surgery and research, 4, p.42.  

Eringen, A., 1966. Linear theory of micropolar elasticity. 

Eringen, A., 1967. Linear theory of micropolar viscoelasticity. International Journal 

of Engineering Science, 5(2), pp.191–204.  

Evans, G.P. et al., 1990. Microhardness and Young’s modulus in cortical bone 

exhibiting a wide range of mineral volume fractions, and in a bone analogue. 

Journal of Materials Science: Materials in Medicine, 1(1), pp.38–43.  

Fatemi, J., Van Keulen, F. & Onck, PR, 2002. Generalized Continuum Theories: 

Application to Stress Analysis in Bone. Meccanica, 37(4), pp.385–396.  

Forest, S., Barbe, F. & Cailletaud, G., 2000. Cosserat modelling of size effects in the 

mechanical behaviour of polycrystals and multi-phase materials. Science, 37, 

pp.7105–7126. 

Gauthier, R.D. & Jahsman, W.E., 1975. A quest for micropolar elastic constants. 

Journal of Applied Mechanics, 42, pp.369–374. 

Ghanbari, J. & Naghdabadi, R., 2009. Nonlinear hierarchical multiscale modeling of 

cortical bone considering its nanoscale microstructure. Journal of biomechanics, 

42(10), pp.1560–5.  

Ghoniem, N. et al., 2003. Multiscale modelling of nanomechanics and 

micromechanics: an overview. Philosophical Magazine, 83(31), pp.3475–3528.  

Gitman, I.M. et al., 2010. Stress concentrations in fractured compact bone simulated 

with a special class of anisotropic gradient elasticity. International Journal of 

Solids and Structures, 47(9), pp.1099–1107.  



196 

 

Goda, I. et al., 2012. A micropolar constitutive model of cancellous bone from 

discrete homogenization. Journal of the Mechanical Behavior of Biomedical 

Materials.  

Gupta, H.S. & Zioupos, P, 2008. Fracture of bone tissue: The “hows” and the 

“whys”. Medical engineering & physics, 30(10), pp.1209–26.  

Hasegawa, K. et al., 1995. Elastic properties of osteoporotic bone measured by 

scanning acoustic microscopy. Bone, 16(1), pp.85–90.  

Hasegawa, K., Turner, C H & Burr, D.B., 1994. Contribution of collagen and 

mineral to the elastic anisotropy of bone. Calcified tissue international, 55(5), 

pp.381–6.  

Hernandez, C.J. et al., 2001. The influence of bone volume fraction and ash fraction 

on bone strength and modulus. Bone, 29(1), pp.74–8.  

Hoc, T. et al., 2006. Effect of microstructure on the mechanical properties of 

Haversian cortical bone. Bone, 38(4), pp.466–74.  

Hoffler, C.E. et al., 2000. Heterogeneity of bone lamellar-level elastic moduli. Bone, 

26(6), pp.603–9.  

Hogan, H.A., 1992. Micromechanics modeling of Haversian cortical bone properties. 

Journal of Biomechanics, 5, pp.549–556. 

Huiskes, R., 1990. The various stress patterns of press-fit, ingrown, and cemented 

femoral stems. Clinical orthopaedics and related research, (261), pp.27–38.  

Iyo, T. et al., 2004. Anisotropic viscoelastic properties of cortical bone. Journal of 

Biomechanics, 37, pp.1433–1437. 

Johnson, T.P.M., Socrate, S. & Boyce, M.C., 2010. A viscoelastic , viscoplastic 

model of cortical bone valid at low and high strain rates. Acta Biomaterialia, 

6(10), pp.4073–4080.  

Katz, J.L. & Yoon, H.S., 1984. The structure and anisotropic mechanical properties 

of bone. IEEE transactions on bio-medical engineering, 31(12), pp.878–84.  

Kouznetsova, V., Geers, M.G.D. & Brekelmans, W. a. M., 2002. Multi-scale 

constitutive modelling of heterogeneous materials with a gradient-enhanced 

computational homogenization scheme. International Journal for Numerical 

Methods in Engineering, 54(8), pp.1235–1260.  

Ladevèze, P., 2004. Multiscale modelling and computational strategies for 

composites. International Journal for Numerical Methods in Engineering, 

60(1), pp.233–253.  



197 

 

Lakes, R., 1995. Experimental methods for study of cosserat elastic solids and other 

generalized elastic continua. Continuum models for materials with 

microstructure, Ch. 1, p. 1-22. 

Lakes, R., 1983. Size effects and micromechanics of a porous solid. Journal of 

Materials Science, 18(9), pp.2572–2580.  

Lakes, R., 1979. Viscoelastic properties of wet cortical bone. Journal of 

Biomechanics, 12, pp.679–687. 

Lee, J.H. et al., 2005. Effect of implant size and shape on implant success rates: a 

literature review. The Journal of prosthetic dentistry, 94(4), pp.377–81.  

Lees, S., Heeley, J.D. & Cleary, P.F., 1979. A Study of Some Properties of a Sample 

of Bovine Cortical Bone Using Ultrasound. Bone, 117, pp.107–117. 

Macione, J. et al., 2010. Correlation between longitudinal, circumferential, and radial 

moduli in cortical bone: effect of mineral content. Journal of the mechanical 

behavior of biomedical materials, 3(5), pp.405–13.  

Martin, R.B. et al., 1996. Collagen fiber organization is related to mechanical 

properties and remodeling in equine bone. A comparison of two methods. 

Journal of biomechanics, 29(12), pp.1515–21.  

Martin, R.B. & Boardman, D.L., 1993. The effects of collagen fiber orientation, 

porosity, density, and mineralization on bovine cortical bone bending 

properties. Journal of biomechanics, 26(9), pp.1047–54. 

Mayya, A., Banerjee, A. & Rajesh, R., 2013. Mammalian cortical bone in tension is 

non-Haversian. Scientific reports, 3, p.2533.  

Najafi, a R. et al., 2007. Micromechanics fracture in osteonal cortical bone: a study 

of the interactions between microcrack propagation, microstructure and the 

material properties. Journal of biomechanics, 40(12), pp.2788–95.  

Najafi, R. et al., 2009. A fiber-ceramic matrix composite material model for osteonal 

cortical bone fracture micromechanics: solution of arbitrary microcracks 

interaction. Journal of the mechanical behavior of biomedical materials, 2(3), 

pp.217–23.  

Norman, T.L. & Wang, Z., 1997. Microdamage of human cortical bone: incidence 

and morphology in long bones. Bone, 20(4), pp.375–9.  

Park, H. & Lakes, R., 1986. Cosserat micromechanics of human bone: strain 

redistribution by a hydration sensitive constituent. Journal of biomechanics, 

19(5), pp.385–97.  



198 

 

Pazzaglia, U.E. et al., 2009. Anatomy of the intracortical canal system: scanning 

electron microscopy study in rabbit femur. Clinical orthopaedics and related 

research, 467(9), pp.2446–56.  

Pidaparti, R.M. V & Chandran, A., 1996. Predictions of a composite model for 

osteonal. Science, 29(7), pp.909–916. 

Pope, M.H., 1974. Mechanical properties of bone as a function of position and 

orientation. Journal of Biomechanics, 7, pp.61–66. 

Ramézani, H. et al., 2012. Size effect method application for modeling of human 

cancellous bone using geometrically exact Cosserat elasticity. Computer 

Methods in Applied Mechanics and Engineering, 237-240, pp.227–243.  

Reilly, G. C. & Currey, J. D., 1999. The development of microcracking and failure in 

bone depends on the loading mode to which it is adapted. The Journal of 

experimental biology, 202(Pt 5), pp.543–52. 

Reilly, G. C. & Currey, J. D, 2000. The effects of damage and microcracking on the 

impact strength of bone. Journal of Biomechanics, 33, pp.337–343. 

Remond, A. & Naili, S., 2005. Transverse isotropic poroelastic osteon model under 

cyclic loading. Mechanics Research Communications, 32(6), pp.645–651.  

Rho, J. Y. et al., 2002. Microstructural elasticity and regional heterogeneity in human 

femoral bone of various ages examined by nano-indentation. Journal of 

biomechanics, 35(2), pp.189–98.  

Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P, 1998. Mechanical properties and the 

hierarchical structure of bone. Medical engineering & physics, 20(2), pp.92–

102.  

Rho, J. Y., Roy, M. & Pharr, G.M., 2000. Comments on “Elastic modulus and 

hardness of cortical and trabecular bone lamellae measured by nanoindentation 

in the human femur”. Journal of biomechanics, 33(10), pp.1335–7.  

Rho, J. Y., Tsui, T.Y. & Pharr, G.M., 1997a. Elastic properties of human cortical and 

trabecular lamellar bone measured by nanoindentation. Biomaterials, 18(20), 

pp.1325–30.  

Rho, J. Y., Ashman, R.B. & Turner, Charles H., 1993. Young’s modulus of 

trabecular and cortical bone material: Ultrasonic and microtensile 

measurements. Journal of Biomechanics, 26(2), pp.111–119.  

Sasaki, N. & Enyo, A., 1995. Viscoelastic properties of bone as a function of water 

content. Journal of biomechanics, 28(7), pp.809–15.  



199 

 

Sasaki, N. et al., 2008. Effect of mineral dissolution from bone specimens on the 

viscoelastic properties of cortical bone. Journal of biomechanics, 41(16), 

pp.3511–4.  

Sathappan, S.S. et al., 2009. Does stress shielding occur with the use of long-stem 

prosthesis in total knee arthroplasty? Knee surgery, sports traumatology, 

arthroscopy : official journal of the ESSKA, 17(2), pp.179–83.  

Sevostianov, I. & Kachanov, M., 2000. Impact of the porous microstructure on the 

overall elastic properties of the osteonal cortical bone. Journal of biomechanics, 

33(7), pp.881–8.  

Smit, T.H., Huyghe, J.M. & Cowin, S.C., 2002. Estimation of the poroelastic 

parameters of cortical bone. Journal of biomechanics, 35(6), pp.829–35.  

Swanson, S.R., 2001. Anticlastic effects and the transition from narrow to wide 

behavior in orthotropic beams. Composite Structures, 53, pp.449–455. 

Tai, K. et al., 2007. Nanoscale heterogeneity promotes energy dissipation in bone. 

Nature materials, 6(6), pp.454–62.  

Taylor, D. & Lee, T.C., 1998. Measuring the shape and size of microcracks in bone. 

Journal of biomechanics, 31(12), pp.1177–80.  

Tekoglu, C. & Onck, P, 2008. Size effects in two-dimensional Voronoi foams: A 

comparison between generalized continua and discrete models. Journal of the 

Mechanics and Physics of Solids, 56(12), pp.3541–3564.  

Turner, C H, Chandran, a & Pidaparti, R.M., 1995. The anisotropy of osteonal bone 

and its ultrastructural implications. Bone, 17(1), pp.85–9.  

Vashishth, D., Behiri, J C & Bonfield, W., 1997. Crack growth resistance in cortical 

bone: concept of microcrack toughening. Journal of biomechanics, 30(8), 

pp.763–9.  

Vashishth, D., Tanner, K.E. & Bonfield, W., 2000. Contribution, development and 

morphology of microcracking in cortical bone during crack propagation. 

Journal of biomechanics, 33(9), pp.1169–74.  

Wang, X. & Ni, Q., 2003. Determination of cortical bone porosity and pore size 

distribution using a low field pulsed NMR approach. Journal of orthopaedic 

research, 21(2), pp.312–9.  

Waseem, A. et al., 2013. The Influence of Void Size on the Micropolar Constitutive 

Properties of Model Heterogeneous Materials. European Journal of Mechanics 

- A/Solids, 40, pp. 148–157. 



200 

 

Wirtz, D.C. et al., 2000. Critical evaluation of known bone material properties to 

realize anisotropic FE-simulation of the proximal femur. Journal of 

biomechanics, 33(10), pp.1325–30.  

Yamato, Y. et al., 2006. Distribution of longitudinal wave properties in bovine 

cortical bone in vitro. Ultrasonics, 44 Suppl 1, pp.e233–7.  

Yang, J. & Lakes, R., 1982. Experimental study of micropolar and couple stress 

elasticity in compact bone in bending. Journal of biomechanics, 25, pp.91–98. 

Zhang, J., Niebur, G.L. & Ovaert, T.C., 2008. Mechanical property determination of 

bone through nano- and micro-indentation testing and finite element simulation. 

Journal of biomechanics, 41(2), pp.267–75.  

Zioupos, P., and Currey, J., 1994. The extent of microcracking and the morphology 

of microcracks in damaged. Journal of Materials Science, 29, pp. 978-986. 

Zioupos, P., 1998. Recent developments in the study of failure of solid biomaterials 

and bone: “fracture” and “pre-fracture” toughness. Materials Science and 

Engineering: C, 6(1), pp.33–40.  

Zioupos, P, Hansen, U. & Currey, John D, 2008. Microcracking damage and the 

fracture process in relation to strain rate in human cortical bone tensile failure. 

Journal of biomechanics, 41(14), pp.2932–9.  

Zysset, Philippe K., Guo, X., Hoffler, C., Goldstein S.,  1999. Elastic modulus and 

hardness of cortical and trabecular bone lamellae measured by nanoindentation 

in the human femur. Journal of Biomechanics, 32, pp.1005–1012. 

 



201 

 

Appendix 

Example mesh convergence study 

A convergence study was carried out on the 2-D finite element mesh for each void 

radius, VR from 0.05 to 0.3 at 0.05 intervals with SX and SY fixed at 1 and 0.866 

respectively. The numbers of nodes in the mesh were altered by using a user defined 

refine variable which was added to the input file. The percentage variation in 

calculated deflection was calculated and the mesh was deemed to have converged 

when the values were within 0.5% from the previous mesh. It can be seen that even 

with a relatively coarse mesh of less than 5000 nodes the models converged fairly 

well.
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