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Abstract

The parasitic nematode, Teladorsagia (Ostertagia) circumcincta is the primary
cause of Parasitic Gastro-Enteritis (PGE) in lambs in Britain. Control of this
parasite has largely depended on the use of broad spectrum anthelmintic drugs
since their inception three decades ago. Widespread and unconstrained use of an-

thelmintics has resulted in selection for resistant strains of nematode, particularly
within the T. circumcincta species.

Control of PGE now involves optimizing parasite control whilst preserving the
susceptibility of the parasites to the anti-parasitic drugs.

Two aspects of the epidemiology of T. circumcincta are investigated in this thesis.
First, the effect of temperature on the development and survival of the free-living
stages is investigated. The conventional nematode development models are re-
placed by more sophisticated and biologically meaningful methods of describing
temperature-dependent development rate phenomena in nematodes. The effect of
geographical, temporal and developmental variation on the population dynam-
ics of T. circumcincta are explored to determine possible sources of observed
variability in infection levels in the field.

Next, a suite of models generic to most direct life cycle parasites undergoing
intensive drug therapy, is constructed and analysed. Provision is made within
these models to explore the impact of important life history events such as refugia
and immigration on the evolution of resistance. A novel technique in resistance
control involving overwhelming a resistant strain of nematode with a susceptible

strain is modelled and suggestions made for the practical implementation of such
a method.
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Chapter 1

Introduction

1.1 Parasites and Parasitic Diseases

Parasitism, as defined by Soulsby (1969), is

“.. a state in which an organism, (the parasite), is metabolically

dependent to a greater or lesser extent on another, (the host)”.
An eloquent description of this dependency is given by Gordon (1948),

“ .. a parasites existence is usually an elaborate compromise between
extracting sufficient nourishment to maintain and propagate itself,

and not impairing too much the vitality, or reducing the numbers of
its host which is providing it with a home and a free ride.”

Parasitic diseases of domestic livestock in the temperate, tropical and sub-tropical
regions of the world impose massive constraints on economic growth and pros-

perity. In developing countries, such diseases can have devastating effects on
animal and human populations. For example, it is estimated that approximately
one third of the 150 million cattle distributed over 37 countries in Africa are at

risk of trypanosomiasis, (Nagana), predominantly a cattle disease of sub-Saharan
Africa. The causal agent of trypanosomiasis is the protozoal parasite of the genus

Trypanosoma and is transmitted to the bovine host by the tsetse, (Glossina spp.).
Consequently, 50 million humans risk contracting sleeping sickness, the human

form of trypanosomiasis. After rabies, human trypanosomiasis is the most infec-
tious of all communicable diseases on the African sub-continent. Losses in meat



production are estimated to be in the region of $5 billion i)er year. This figure

does not include losses in milk production or bi-products of the cattle industry
(ILRAD publication, 1988).

In the developed world, parasitic diseases pose less of a threat to humans. Good
public health facilities and education programmes help to prevent infection and
highly effective anti-parasitic drugs are widely available to treat infection.

Nevertheless, nematode parasitic diseases of domestic livestock in Western Eu-
rope, Australia and the U.S.A. are considered serious economic threats to the
agricultural industry world-wide. Taylor (1938) stated that

“..with the sole exception of the bacterial diseases of dairy cattle,
the diseases of farm animals caused by parasitic worms are of greater

cconomic importance than are any other group of diseases with which
the husbandsman has to contend.”

In Britain, gastro-intestinal trichostrongylid nematode parasites of sheep are con-
sidered one of the major threats to agriculture production, and cause significant
economic loss. Directly measurable losses as a result of parasitic diseases include
losses due to animal death, decreased meat, wool, and milk production and the
cost of anti-parasitic drugs. It is estimated that reductions in wool yield, milk
yield and liveweight gain in sheep infested with worms is around 26%, 17% and
52%, respectively (MAFF, 1991). Additional costs are incurred when produce
from a treated animal cannot be used due to the enforcement of drug withdrawal
periods, and when pastures cannot be grazed due to high levels of infection. In
lambs alone, it has been estimated that losses of £30-40 million per year result
from worm infestation (MAFF, 1991). Furthermore, animal welfare concerns cou-

pled with environmental worries over chemical residues in the environment are
mounting.

Three species of nematode are commonly considered to pose the most serious
threat to sheep populations around Britain. These are the abomasal parasite
Teladorsagia circumcincta, and the intestinal parasites Trichostrongylus vitrinus
and Nematodirus battus. In Northern Britain, particularly during the summer
months, sheep suffering from Parasitic Gastro-Enteritis, (PGE) would invariably
be infested by a single species of nematode, namely T. circumcincta , (Jackson,

1989). This parasite 1s primarily responsible for PGE in lambs and is regarded
as being one of the most important causes of losses in sheep flocks in Britain,
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(Crofton, 1963).

1.2 The Life Cycle of T. circumcincta

The trichostrongylid nematode, T. circumcincia , like most helminths of sheep,
has a direct life cycle consisting of free-living and intra-host stages. This life cycle
1s given in Figure 1.1.

E% as
I
|
Adults : 1
|
T Parasitic : Free-Living
LS Stage : Stage
I E 2
4 l
I
I
L3

Figure 1.1: Typical life cycle of a nematode with an egg, five larval and an adult
stage split into a free-living and a parasitic stage with a possibility of inhibition
in the fourth larval stage.

Free-Living Stages of the Life Cycle

Eggs from the sexually mature female worms are expelled in the faeces of the
sheep onto pasture and remain within the faecal mat during development to the
first and second larval stages, namely L1 and L2.

Environmental factors play an influential role in the development and survival of
the larval stages on pasture. Temperature is the primary factor governing the rate
of development of individuals free-living on pasture, (Levine, 1963; Kates, 1965;
Crofton, 1963; Young et al, 1980; Salih and Grainger, 1981; Pandey, 1993). In
countries with warmer climates, such as Australia and South Africa, development



from the egg to the infective stage (L3) is more rapid than in the UK for all
nematode species. This causes shorter generation times which in turn leads to
higher infection levels on the pasture. The presence of moisture films on the grass
swards facilitate the vertical migration of infective L3s, as they await ingestion by
a suitable host. Therefore the relative humidity within the microhabitat is also an
important factor in the development and survival of the free-living stages. Other
factors such as soil type, herbage constituents, size, consistency and location of

the faecal mat play a secondary role in influencing development and survival of
the free-living stages (Crofton, 1963).

Intra-Host Stages of the Life Cycle

Grazing sheep will unknowingly ingest the questing larvae, which then pass
through the alimentary canal of the animal. After exsheathment of the L3, fur-

ther development takes place in the lumen of an abomasal gland, (Urquhart et
al, 1991). Inhibition in the early fourth larval stage, (EL4), may occur for any

period up to 6 months, usually if larvae are ingested near the end of the season
(Urquhart et al, 1991), after which normal development is resumed. A final moult

occurs to produce the fifth larval stage, (or immature adult). Sexual maturation
occurs on emergence of the L5 onto the mucosal lining. It is at this stage that
the deleterious effect on the infected animal, resulting in digestive disturbances
characterised by inappetance, poor growth and diarrhoea occurs (MAFF, 1983).

1.3 Parasitic Gastro-Enteritis

Parasitic Gastro-Enteritis, (PGE) is the collective term for the complex of diseases
caused by parasitic helminths. It was originally diagnosed in sheep in 1895,
(Soulsby, 1969). On average since 1983, 2.26% of total ovine submissions to the
Veterinary Investigation Diagnosis Analysis (VIDA) were diagnosed as PGE. It is
suspected that the actual figure is much higher as many cases are treated locally,
or go undiagnosed (Jackson, 1989). Figure 1.2 shows the number of reported
cases of PGE in sheep and cattle in the whole of Britain, presented to VIDA over
the last 20 years. Clearly, there appears to be a decreasing trend in the number
of cattle diagnosed with PGE. In sheep populations there is some evidence of a
decline in cases. However, the decline is much more gradual. This may be an
indication of the problems associated with ovine nematodes developing resistance



to anthelmintics, not yet experienced to the same extent in cattle populations.
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Figure 1.2: Total submissions to VIDA of PGE in cattle and sheep between 1976
and 1999.

It is very difficult to attribute an outbreak of PGE to any one species of nematode.
However, in Britain, the timing of the outbreak may indicate which species is

likely to predominate due to the distinctive seasonality in emergence patterns of
the three main species.

1.4 Epidemiology of T'. circumecincta in Britain

In the temperate regions of Western Europe, a periparturient rise in the levels
of infective T. circumcincta larvae is observed between the months of July and
October. This is as a result of ewe egg deposition from around two weeks prior
to lambing until about 6 weeks after (Urquhart et al, 1991). Also contributing to
this periparturient rise are the larvae descended from overwintered L3s, picked
up by the new lambs at the start of the season. Type I ostertagiasis is commonly
diagnosed during this period as a result of the development of L4 to immature

adults within lambs during their first season of grazing. Type II ostertagiasis



occurs in animals who harbour inhibited EL4s near the end of one season that
subsequently resume development early in the next season.

1.5 Parasitic Control

Since their introduction in the 1960s, anthelmintic drugs have been used ex-
haustively to treat parasitic helminths of sheep. There are seven main drug
groups (Urquhart et al, 1991) three of which are most commonly used: the ben-
zimadazoles, the imidazothiazoles and the most recently developed avermectins.
In general the mode of action is to target the adult and developing larval stages
within the host. Coyne and Smith (1994) give figures for lamb mortality and

quote results from Barger (1982) and Gulland (1991). They compare treated and
untreated lambs parasitized with several nematode species. Mortality in treated

lambs ranged from 0 to 10%, but rose considerably in untreated lambs from 10%

to 68%. Live weight gain and fleece weight were higher in treated sheep.

For a period in the 1970s, it appeared that parasitic diseases were controllable.
However, disturbingly, the events of the following decade closely mirrored the

situation in the insect domain where pesticide resistance had rapidly evolved,
rendering the majority of those drugs ineffective.

1.6 Anthelmintic Resistance

The introduction of broad spectrum anthelmintic drugs in the 1960s was heralded
as the beginning of the end for parasites and their associated diseases. However,
this euphoria was short lived.

In Australia, initial reports of resistance to anthelmintics in 1962 were confined to
research stations and were regarded as “parasitological curiosities” (Waller, 1994).
Unfortunately, under the broad acre husbandry regimes common in the Southern
Hemisphere, resistance spread to commercial farms. By 1994, benzimadazole

resistance in T. circumcincta in Australia had reached levels of between 50% and
98% (Waller, 1994).

Resistance to an anthelmintic compound is described as the ability of a strain
to tolerate therapeutic doses of the drug that normal members of the population
cannot. In addition, resistance must be heritable in order that frequencies of the



gene conferring resistance increase over time due to selection for those individ-

uals which survive supposed lethal exposures to the drug (Prichard et al, 1980;
LeJambre, 1977).

The first case of anthelmintic resistance in the UK was in a commercial farm
in Cheshire in 1981 (Britt, 1982). T. circumcincta was the species implicated
and the drug was a member of the benzimadazole group. A further two reported
cases of benzimadazole resistant strains of T. circumcincta in Southern England
followed in 1983, one at the Ministry of Agriculture Central Veterinary Laborato-
ries, Weybridge and the other on a commercial farm in the surrounding area. In
Scotland around the same time the Moredun Research Institute, Edinburgh and
the Hill Farming Research Organisation, Hartwood, reported T. circumcincta re-

sistance to benzimadazoles (Scott et al, 1990). Since then, resistance has rapidly
disseminated throughout the country.

1.6.1 Anthelmintic Resistance Surveys

Recently, a review of anthelmintic resistance in nematode parasites of sheep in
the UK was undertaken (Hazelby et al, 1994). The results of a number of sur-
veys on the prevalence of anthelmintic resistance were summarised (Cawthorne
and Cheong, 1984; Taylor and Hunt, 1989; Coles, 1992; Hong et al, 1992). The
majority of these surveys were carried out in southern England where the farm-
ing is more intensive and hence more favourable to selection for resistance than
anywhere else in the country. Here it was discovered that levels of resistance to
benzimadazoles in T. circumcincta was around 36%, an increase in prevalence of
more than 20% in five years. Further north however, in Newcastle, Evans (1988),
found no evidence of benzimadazole resistance. In Scotland, the incidence was
found to be 24.3%, the equivalent of 1 out of 4 farms surveyed revealing evidence
of anthelmintic resistance, (Scott et al, 1990).

These figures illustrate that the problems of anthelmintic resistance are no longer

solely a concern for the countries in the Southern Hemisphere, it is now a problem
of international significance (Waller, 1993).

Whilst immediate action is being taken to avoid the worst excesses of drug use,

such as avoiding underdosing, using dose and move strategies, rotating drugs and
treating imported stocks, alternative methods of control are being considered.
The most promising include the development of novel vaccines, the breeding of
resistant hosts and the discovery of nematophagouss fungi as a means of biological
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control (Barnes and Dobson, 1995; Waller, 1993; Stear, 1996).

1.7 Mathematical Modelling

Despite the existence of mathematical models for human disease since the 18"
century, it has only been in the last three decades of this century that veterinary
mathematical modelling has been recognised as an important tool in the under-
standing of animal disease (Thrusfield, 1995). Models are being used to assess

the risk, control and impact of disease, and to provide a deeper understanding of
disease dynamics.

A wide range of modelling methods are currently practised with respect to animal
management systems. Here, we shall discuss a broad range of models encompass-
ing many of the modelling techniques currently in use today, paying particular
attention to models of parasites and parasitic diseases.

1.7.1 Index Models

In 1959, Olleranshaw and Rowlands developed a very simple index model to
predict the risk of fascioliasis, (liver fluke), in sheep and cattle populations around
Britain. Fasciola hepatica has an indirect life cycle. This means that the parasite

develops in three different environments: on pasture, within a snail and within a

sheep.

Observations made on the bionomics of F. hepatica revealed two significant factors
limiting the development and survival of the parasite. The first was the discovery
that below a temperature of 10°C, development of the parasite is negligible. Con-
sequently, there was little danger of high infection levels in the months between
November and April in Britain. Secondly, the importance of moisture during the
egg and intra-host stage was identified, without this film of moisture the eggs

and metacecariae would desiccate. These important observations facilitated the
construction of the M;, or wetness index.

This index determined the suitability of the habitat for development of the par-

asite using meteorological data between the months of May and October. The
wetness score,



Mt=(R—P+5)n

where R is the monthly rainfall in inches, P is potential transpiration, and n is the
number of rain days, was calculated each month. The monthly M, indices were
weighted and summed. The wetness score fell into one of three risk categories:
no loss, some loss and heavy loss. From this, preventative measures could be
taken by farmers to minimise the levels of infection on pasture and the exposure
of their sheep to infection.

The model predictions were made available to farmers all over Britain, and
monthly wetness scores for different regions were broadcast over the radio.

Following the success of the M; index in relating weather conditions to the bio-
nomics of the liver fluke, a similar method was adopted by Thomas and Starr
(1978), to forecast peak infection levels of nematodes in lambs. The Wet Score
Unit, W, over a 12-hour period depended on certain rainfall limits as well as
historical information on rainfall. The limits were based on individual experience

and a consideration of the rainfall data available to agriculture. Critical levels

and a warning index were given so that prophylactic measures could be taken to
minimise infection levels on pasture.

In relating historical climatic data to infection levels or morbidity, index models
are empirical and make no attempt to model the dynamical behaviour of a par-
asite population or its interaction with the host or environment. The following
group of models, broadly described as analytical models work on the philosophy
that complex physical or biological phenomena have simple underlying mathe-
matical laws.

1.7.2 The Spherical Cow

An approach described as the reductionist principle by Harte (1988) in his book,
”Consider a Spherical Cow”, involves extracting simple key factors within a com-

plex system and constructing a model that can be analysed quickly so that im-
mediate action can be taken as a consequence.

As more realism is introduced to the model, the mathematical complexity in-
creases and simple on the "back of envelope” solutions cannot be obtained.



1.7.3 Differential /Difference Equations

The rate of change of numbers in parasite and host populations can be conve-
niently represented using calculus equations. The strength of this approach lies
in the ease with which complex biological systems, such as host-vector-parasite
systems can be represented by a finite set of equations for the interaction between
the various populations.

Formulation of the equations differ depending on whether changes to population
numbers are considered to be a continuous or discrete process. Differential equa-
tions describe rates of change of numbers in the population whereas difference

equations update the population numbers at discrete equally spaced points in
time.

Bacterial models are easily represented by differential equations where the possi-
ble states of the host individual, such as susceptible, infectious, immune, death,

are thought of as compartments within which an individual can remain, migrate
from or migrate to with specific probabilities or rates (Renshaw, 1993).

Smith (1990) proposed a mathematical model for the evolution of anthelmintic
resistance in a direct life cycle nematode parasite. A system of paired differential .
equations was developed to predict changes in the genotype distribution of free-
living and parasitic stages,

ab;

— = PhLi- (a+bP)F;
dI;

PR AP;9i — pili — B

(1.1)

where ¢ = 1, 2, 3 represents the genotypes, RR, (resistant), RS, (heterozygote),
and SS, (susceptible), respectively,
I; and F; are the numbers of free-living and intra-host parasites of
genotype 1,
u; is the free-living mortality,
A is the female fecundity,
G is the rate of infection, and

¢; is the genetic component of the model determining the offspring
genotype distribution from the parent genotype distribution.
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1.7.4 Stability Analysis

The non-linear effects due to genetic mixing in the model means that conventional
methods of solution used for linear differential equations cannot be used. Analysis
of non-linear models involves examining the behaviour. of the system in a region
around the steady states using local linearisation techniques. A steady state is
said to be locally stable if small perturbations about the equilibrium return the
system to that equilibrium. Otherwise the steady state is said to be unstable.
This is quite a powerful method of analysis which provides stability criteria with

respect to different permutations of the model parameters (Nisbet and Gurney,
1982; Renshaw, 1993). ‘

Using this technique, Smith assessed whether simultaneous use of two drugs,
that is mixtures, or the sequential use of two drugs, would impede the evolution
of resistance greater. The model favoured the use of mixtures as opposed to
the sequential use of two drugs as a means of impeding resistance. This is in
general agreement with other nematode models (Barnes and Dobson, 1995) and
insect models (Mani, 1985). The fact that only a proportion of the entire parasite
population are exposed to treatment at any one time, given the remainder remain
on pasture, means that some susceptibility is conserved. Within the host, the
mixture of drugs kills more individuals than the sequential use of the same drugs.
This means that the surviving population contributes relatively fewer progeny to
the next generation, resulting in the increase in the gene conferring resistance
being minimised.

1.7.5 Stochastic Models

Models, such as that of Smith (1990), described previously are considered de-
terministic in nature, in that the behaviour of the model in the future can be
predicted from prior/historical knowledge of the system in the past. In contrast,
stochastic models work on the assumption that the future behaviour of the sys-
tem is not predictable from the present or previous states, but is based on a set of
probabilistic rules. Recently, stochastic models have been formulated to describe
host-parasite interactions, particularly for describing the relationship between the
levels of immunity in the host, variation in infection rates and observed levels of
parasitism in the field, (Isham, 1995; Grenfell, Dietz and Roberts, 1995).
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1.7.6 Matrix Models

Describing changes in human demography using matrices was pioneered by Leslie
in 1945 for age-classified populations and was subsequently extended by Lefkovitch
in 1965 for stage-classified populations. In essence, a state vector containing num-
bers of individuals at time ¢, split by age or stage is multiplied by a transition
matrix containing the relevant demographic parameters such as fecundity, mor-
tality and transition probabilities, to give the corresponding state vector in the
next time unit.

Gettinby and McLean (1979) formulated the life cycle of the liver fluke, F. hep-
atica as a matrix model to assess different methods of controlling fluke infection

levels in sheep. The state vector contained the life stages of the liver fluke and the
transition matrix contained all the relevant life history parameters of the fluke.

The model was extended to investigate possible population control measures on
infection numbers. The principal conclusion from the analysis of this matrix
model was that good drainage is an effective means of control, so that an initial

investment in installing a good drainage system would eliminate the need for the
use of long term expensive drug treatments.

Matrix properties can be exploited in these circumstances to determine limiting

behaviour of the population provided reliable parameter estimates are used.

1.7.7 Simulation Models

The life cycles of infectious agents, vectors and hosts can be integrated with
environmental factors that vary from site to site and season to season to model
the dynamics of a disease over time. Representation of such a complex system as
a finite number of equations would be impossible, but simulation of the system
using a computer model is relatively simple.

There are many examples of computer simulation models for parasitic diseases.
Paton, Thomas and Waller (1984) present a simulation model that successfully

predicts infection levels of parasites on pasture over a two year period using
historical climatic data. Mathematical models for development of the free-living
stages, for adult establishment and for ewe egg output, in addition to site specific
data such as stocking rate, pasture area, herbage density and initial contamination

levels are integrated into this model, and the dynamics of the parasite population
simulated.
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Results from this model indicated that the lamb contribution to infection may
be greater than once suspected. The summer wave of infection had previously
been attributed to the post-parturient rise in ewe egg output. However when the
lamb contribution to infection was examined in isolation, it proved to be quite
significant. In addition, it was noted that if climatic conditions were right, up to
three generations of parasites could pass through the lambs during one season,
contrary to common belief that at most two generations would get through. These
conclusions had practical implications for the control of parasite infection levels.
Subsequently provision was made in the model for assessing the impact of different
control regimens on infection levels. As a result, it was recommended that the

lambs were dosed early in the season to minimise their contribution to the summer
wave of infection.

In the wake of large scale resistance to anthelmintics, simulation modelling has
made it possible to investigate the long term exposure of parasite populations
to drugs. Information on the genetic fitness of the parasite, climatic conditions,
animal response and pasture management have been combined with anthelmintic
control regimens to determine how rapidly there would be selection for a resistant
strain (Gettinby et al, 1989; Barnes and Dobson, 1995).

The model of Barnes and Dobson (1995) was used to answer a set of concise ques-
tions pertaining to the effectiveness of current measures of impeding the dissem-
ination of resistance throughout a population. Although the authors addressed a
wide range of topical issues, three points emerged as being most relevant. Firstly,
the model highlighted the importance of acquired immunity in lambs, suggesting
that some exposure of lambs to infection shortly after birth would be desired.
Using the model, two ways of conserving susceptibility to drugs were recom-
mended. The first involves using a grazing management scheme and the second
improved use of the available drugs. Finally, the model was used to examine al-
ternative, non-chemotherapeutic methods of parasite control. In comparing the
performance of novel vaccines with anthelmintic drugs, it was discovered that

efficacies required for successful vaccination of sheep are well below the efficacies
required for anthelmintics.

1.7.8 Future Modelling Trends

Currently, epidemiological modelling is moving towards a holistic approach that

incorporates mathematical models, expert rules, environmental data and litera-
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ture into a powerful integrated knowledge management tool. It is hoped that
through the use of hypertext knowledge bases, this approach will bridge the gap
between the model and the user. Successful integrated models have been devel-
oped for the study of equine welfare, (Revie et al, 1994) and currently a generic

modelling approach has been adopted for the control of epizootic diseases, in the
first instance, theileriosis and trypanosomiasis in Eastern Africa.

1.8 Thesis Outline

During its lifetime, the nematode parasite T. circumcincta spends a period free-
living on pasture and the remainder inside a sheep host.

On the pasture, the free-living stages are exposed to external environmental stim-
uli. Chapters 2 and 3 examine the effect of temperature on the free-living de-
velopment rate of T. circumcincta . A development rate temperature model is
proposed in Chapter 2 that is both flexible and biologically interpretable. In
Chapter 3, this model is incorporated into a simulation model of the population
dynamics of T. circumcincta called Osterant and the concept of developmental

variability is explored as a means of explaining observed variation in infection
levels on pasture.

Chapter 4 presents a theoretical modelling framework for the entire life cycle of
T. circumcincta incorporating developmental variability and genetical mixing to-
gether with other important epidemiological aspects of the nematodes life history,
such as areas of refugia and host ingestion.

Chapters 5, 6 and 7 focus on an important aspect of the parasitic stages of the
nematode life cycle, that of anthelmintic resistance. A basic modelling structure
1s presented in Chapters 5 and 6 that describes the evolution of drug resistance
In a parasite population undergoing intensive drug treatment, and a model is
given that assesses the impact of different life history parameters on the time to
significant resistance within such a population. In Chapter 7, a novel method of
resistance control is addressed and the previous models used to assess the effect of
this control technique on the resistance status of a typical nematode population.

Practical advice is given on the optimal way to suppress resistance and control
parasitism.
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Chapter 2

The Effect of Temperature on the

Free-Living Development of
Nematodes of Sheep

2.1 Introduction

It has long been recognised that the development and survival of the free-living
stages of poikilothermic organisms such as nematodes is governed by the sur-
rounding environment. The effect of environmental factors on the development
and survival of organisms has been documented in the book Temperature and
Life (Precht et al, 1973). Temperature, relative humidity, photoperiodicity, soil
and vegetation types are the main environmental factors governing the complex
developmental process of such organisms. It has been concluded, however that
temperature exerts the primary influence on development and survival of the
free-living stages of nematodes (Crofton, 1963; Soulsby, 1969; Kates, 1965). Sev-
eral attempts have been made to quantify this relationship for certain species
of nematode within specific climatic zones (Paton, 1983; Leathwick et al, 1992;
Barnes and Dobson, 1995), however no serious attempt has been made to accu-
rately model this temperature-dependent relationship over the entire temperature
range in both temperate and tropical regions.

In the insect domain, it has been recognised that the quantification of the rela-
tionship between development and temperature is of great practical importance

for accurate scheduling of census samples and in the control of insect populations
(Wagner et al, 1984).

Early accounts of models of this dependency have been recorded as far back
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as the last century. These models have their origins in chemistry where they

were used to determine the effect of temperature on the rate of enzyme-catalysed
biochemical reactions.

In the last two decades advances have been made in the mathematical treatment

of this phenomenon in insect populations to produce quite sophisticated and in
some cases, quite complex models.

It is the intention here to give a brief guide through the modelling literature on this
subject over the past twenty years, and then to arrive at the most recent models.
From these, it is hoped to apply similar techniques to nematode populations in

a bid to solve some of the problems that have arisen in agriculture as a result of
these parasites.

2.2 A Review of Mathematical Models for Tem-
perature Dependent Development Rate

Three models of insect development will be discussed in the order that they ap-
pear in the literature. The chronology of these models reflects the evolution and
sophistication of ideas developed through years of collaboration between ento-
mologists and modellers seeking to explain insect behaviour.

In addition, a model of nematode development will be reviewed alongside the
three for insect development in an attempt to see if recent techniques in the
insect domain can be adapted to improve current nematode models.

2.2.1 Temperature Dependent Development Modelled Us-
ing the Degree - Days Method

The Degree-Day concept (Sanderson and Peairs 1913; Arnold 1960; Baskerville
and Emin 1969; Abrami 1972; Allen 1976; Sevacherian et al 1977), has been
around since the beginning of the century and has probably enjoyed the longest
and most varied usage out of the three models under discussion. It assumes a
linear relationship between temperature and the development rate of an organism
between two temperature bounds. A threshold temperature, T},.., below which,

development does not occur, 1s incorporated into the equation. The degree-days
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on day % are calculated to be
DD; =T; — Thase (21)
where T; is the average temperature on day :.

Within certain temperature boundaries, it is accepted that as temperature rises,
the rate of development increases. For each species there exists an optimal tem-
perature, such that development time is minimal. Experimentally, this optimum
can be found and the minimum time in which an organism may develop fully to
the next stage can be established. Development is said to be complete once

Y DD; > DD,y (2.2)

1=1

where DD, is the minimum number of degree-days taken for an organism to
develop to the next stage under optimum temperature conditions.

Within certain temperature bounds, the development rate of most organisms
varies linearly with temperature, in agreement with this model. Historically,
development at temperatures outwith these boundaries was either modelled em-

pirically or ignored. With the increasing prevalence in diseases of crops and
livestock in both temperate and tropical climates, comes an increasing need to
use these models over a broader range of temperatures. They are of no practical
use if they cannot model the development of organisms at temperature extremes,
as it may be that in these extreme conditions the most interesting and important
behaviour occurs.

In most poikilothermic organisms, development rate rises either exponentially
or sigmoidally between a base and an optimum temperature. Beyond the opti-
mum temperature, a sharp decline in development rate is observed until a lethal

maximum temperature is reached and the life of the organism can no longer be
sustained (Andrewartha and Birch, 1954).

The following models attempt to address development outwith the previously
imposed temperatures boundaries.

2.2.2 Temperature Dependent Development Modelled as
an Inverted Logistic Equation

Stinner et al (1974), modelled the development rate of the insect, Trichoplusia

ni as a function of temperature using a sigmoid curve which was inverted once
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an optimal temperature was exceeded. The form that the sigmoid curve takes

is derived from the following differential equation for the rate of change of the
development rate with temperature

— =aDr [1 - —-—-—-] - (23)

where Dr is the development rate at temperaturé T,

D, is the optimum development rate, and
a is the natural uninhibited growth rate.

The development rate at temperature T is then calculated to be .

DO eaTnpt +b |
_pt.______]_ (2.4)

DT = 1+ ea’r'+b
where
r T T < Topt
T = { Ty —T T>T,, (2:5)

and T, is the optimum temperature.

Effectively, once the temperature exceeds the optimum level, that temperature
is mirrored about this optimum to determine the development rate. Figure 2.1
illustrates this model graphically.
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Figure 2.1: Illustration of the inverted sigmoid curve of Stinner et al (1974),

where growth is logistic from a base to an optimum temperature, (Tyase — Topt),
and inversion of the function beyond the thermal optimum, T,,.
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2.2.3 Temperature Dependent Development Modelled by

Matching Two Independent Solutions with a Com-
mon Limit

Logan et al (1976), acknowledged that two distinct relationships exist between
development rate and temperature, which they demonstrated for the McDaniel

spider mite, Tetranychus mcdanieli McGregor. The first relationship, which they
called Phase 1, describes the development rate of an individual when exposed to
temperatures between a threshold and an optimum temperature (Tpase = Topt)-
For many species this is in the form of a sigmoid or exponential growth curve (An-
drewartha and Birch, 1954). Once the temperature has exceeded this optimum
level, the associated development rate decreases rapidly until a lethal maximum

temperature is reached whereby the life of the organism cannot be sustained,
which they called Phase 2. Figure 2.2 gives an illustration of this.
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Figure 2.2: Illustration of the matched asymptote method of Logan et al (1976).

The challenge here was to produce a single analytic equation describing the be-
haviour of the development rate of an organism over the entire range of temper-
atures (Tpase — Trnaz)-

Logan et al (1976) recognised that their problem could be approached as a bound-
ary layer problem. Boundary layer problems arise in situations where the be-

haviour of the system changes very quickly over a relatively small area. Using
singular perturbation methods, solutions for Phases 1 and 2 were found.

For this particular case, the solution to Phase 1, called the outer solution and

denoted D,(T'), represented the increase in development rate with increasing
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temperature from a base to an optimum level, and for the parasite under study,
was exponential in nature

D,(T) = DyeT (2.6)

where D, represents the development rate at base temperature, and
p is the natural rate of increase in development rate.

The solution to Phase 2, called the inner solution, described the behaviour of the
development rate within the high temperature boundary layer, denoted by D;(7).
A special scaling factor, 7, was introduced to take account of relative distances
within the boundary layer. This equation took the form

Di(7) = Co(1— &™) (2.7)

Co is a constant yet to be determined.

By matching the asymptotes of these solutions, the common limit was found to
be

DO(TM) — 1'1-12310 D,'(T) = Co = DOGPTM (2.8)
Adding the equations for the inner and outer solutions (2.6) and (2.7) and sub-
tracting their common limit in equation (2.8) yields a uniform approximation to
the required solution valid over the entire range of temperatures (Tpase — Trnaz)

Dy(T) = Dy [efT — e~ (2.9)

This provided the most flexible modelling technique to date as it addressed the
change in behaviour of development rate once an optimum temperature had been
exceeded. It could be adapted for any species inhabiting any climatic region, as
all that needed altering was the nature of the inner and outer solutions, provided
a common limit existed between them.

2.2.4 Temperature Dependent Development of Nematodes
Modelled as a Step Function

Paton (1983), developed a model for the free-living development of O. circum-
cincta as a function of temperature, which was incorporated into a population

simulation model called Osterant. Development was seen to occur in three dis-
tinct phases
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e development at low temperatures from 4°C — 10°C,
¢ development in the mid temperatures from 11°C — 21°C, and

e development at high temperatures from 21°C' upwards.

Three separate equations were formulated using the data provided by Christie
(pers.comm), and Salih and Grainger (1982), to estimate the parameters. The
step function model took the following form

ﬂ1Tl+b1
—1— 10<T <2l (2.10)

1 T > 21

Dr =

{ L 4<T<10

where D,(T), Do(T) and D3(T') represent the development rate within the three

temperature ranges and a; 2 and b; o are parameters to be estimated. Figure 2.3
Illustrates this model graphically.

This model was one of only a few models of temperature-dependent development
of free-living nematodes. It was adequate for the purpose of simulation, however,
analytically, it provided no insights into the biology of the parasite system, and
was not flexible enough to incorporate high temperature development. Clearly a
model that was analytic, rather than empirical in nature, and explained develop-
ment over a wider range of temperatures using a single equation with biologically

meaningful parameters was desirable.

2.3 An Analytic Model for the Temperature De-
pendent Development Rate of TI. circum-
cincta

An investigative study was undertaken to develop an analytical model that accu-
rately described the effect of temperature on the free-living stages of the abomasal
nematode T. circumcincta . The step model of Paton (1983), the inverted logistic
model of Stinner et al (1974), and the matched asymptote model of Logan et al
(1976), were fit to data on the development of the free-living stages of T. cir-

cumcincta exposed to constant temperature stimuli. The resultant models were
compared in order to obtain the best fitting model for this species.
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Figure 2.3: Illustration of the step function of Paton, 1983.

2.3.1 Development Data for T. circumcincta Under Con-
stant Temperatures

Mean Time To Hatching of T'. circumcincta Eggs

Table 2.1 gives data on the mean hatching times of T. circumcincta eggs under
constant temperatures from three different studies. The data provided by Christie
(pers.comm), covered the lower end of the temperature scale, ranging from 4°C
to 21°C, whereas the data generated by Salih and Grainger (1981), covered a
broader temperature range, from 5°C to 35°C in 5°C intervals. The third data
set, that of Young et al (1980), gave a distribution of hatching times over a
range of constant temperatures from 6°C to 20°C. The mean hatching times
In all three data sets were in broad agreement and followed a similar pattern.
Development time decreases as temberatures rise from a base to an optimum.
Development at very high temperatures was only recorded by Salih and Grainger
(1981). This data showed that development times began to increase once an
optimum temperature was exceeded until a lethal maximum was reached and
the organism died. There was general agreement that the base temperature, or

developmental zero, appeared to be about 4°C, and hatching would not occur at
40°C or beyond.
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Table 2.1: Mean hatching times (in days) of eggs and development times of L1
to L3 T. circumcincta for a range of data sets.

Egg to L1 Stage L1 to L3 Stage
Temperature Salih and Grainger Christie Young et al Salih and Grainger Christie
(°C) (1981) (pers.comm.) (1980) (1981) (pers.comm)
4 - 17 - - 62
D 11.745 15 - . 46
6 - - 12.6 - 35
8 - 8 - . 24
10 4.016 5 3.958 20 20
12 - 4 - - 18
14 - 3 - - 14
15 2.058 - 2.135 13.14 -
20 1.495 - 1.1854 10.41 -
21 - 1 - . 1
25 0.9916 - - 8.11 -
30 1.000 - - 4.89 -
35 1.245 - - - .
40 o0 . - - -

Mean Development Time of T. circumcincia L1 to L3

Table 2.1 also gives the mean development times of T. circumcincta L1 to L3 life
stages from two separate data sets (Salih and Grainger, 1981; Christie (pers.comm)).
The data provided by both were not really comparable as different temperature
ranges were investigated. Christie provided data on temperatures at the low end
of the scale, from 4°C to 21°C, and Salih and Grainger (1981) gave data on tem-
peratures ranging from 10°C to 30°C at 5° intervals. Again, the developmental
zero appeared to be about 4°C. Neither of the studies investigated development

at very high temperatures, although Salih and Grainger (1981) stated that there
was negligible development at 35°C.

2.3.2 A Model for the Mean Hatching Time from Egg to
L1

The step function (Paton, 1983), the inverted logistic (Stinner et al, 1974), and
the matched asymptote model (Logan et al, 1976) were fit to the data of mean
hatching times in Table 2.1 in an attempt to determine the best predictive model
of hatching times of T. circumcincta in the field. Non-linear parameter estimation
using the standard non-linear least squares routine, the Levenberg-Marquardt
method (Press et al, 1992), was carried out. The parameter estimates are given
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Figure 2.4: Fitting (a) step function (Paton, 1983) (b) inverted logistic function
(Stinner et al, 1974), and (c) matched asymptote function (Logan et al, 1976) to
mean hatching time (in days) of 7. circumcincta eggs given in Table 2.1.

The Step Function

The step function of Paton (1983), for the mean hatching times of T. circumcincta
egg to L1, given in Table 2.1, takes the following form

1
s ST =10

1 I'> 21

Figure 2.4(a) shows that this function (Paton, 1983), fits the data quite well
between 4°C and 21°C. However, no attempt was made to model the behaviour
of the development rate beyond 21°C. This becomes a problem certainly in
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tropical climates where temperatures can exceed 21°C throughout the year, and
more often than not in temperate climates where it is not unusual to experience
temperatures above this level. As a consequence, using this model to predict
development times in the field could cause serious errors in the prediction of peak

infection levels.

The Inverted Logistic Model

The inverted logistic function (Stinner et al, 1974) was next fit to the data for

mean hatching times, given in Table 2.1, at different temperatures. Figure 2.4(b)
graphically presents the following equation

24.23 [6-0'31Tnpt+4.59]

Dr = ] 4+ e—0.317 +4.69 (2.12)
where
J T T < TOpt
_ S 1

It 1s clear that the fit- was good over the initial temperature range (Those — Topt)-
However, due to the assumption of symmetry about the thermal optimum, the
function did not fit the data well over the final temperature range (Tpp: — Thnaz)-
Despite addressing the problem of development at high temperatures, the inverted
logistic model was unsuccessful in modelling this phenomenon due to the assumed
symmetry about the thermal optimum, which in reality does not exist.

The Logistic-Exponential Model

The final model fit to the mean hatching times of T circumcincta eggs was that of
Logan et al (1976). A function representing development over the initial temper-
ature range, Phase 1, was proposed and asymptotically matched to the function
for development over the final range of temperatures, Phase 2. A common limit
was subtracted from the sum of the two functions to produce a single analytic
equation uniformly valid over the entire temperature range, (Those — Tnaz)-

On examination of the plotted data, Phase 1 it appears, is well described by a
sigmoidal curve. This means that the outer solution is of the form

D,(T) = 'ﬁ":p'l%——_m (2.14)
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where k = "—? and
p and «y are defined as before.

The behaviour of the data in Phase 2 from an optimum to a lethal maximum tem-
perature is characterised by a rapid declining function such as an exponentially
decaying function, given by the inner solution,

Di(T) = Co [1— €] (2.15)

where 7 = ~M=L_
T "Topt

The asymptotes of equations (2.14) and (2.15) were matched and the common
limit subtracted from the sum of the inner and outer solutions to produce a single

analytic function uniformly valid over the entire temperature range

D, = ;y’i {[1 + ke""T]_l ~ e"'} (2.16)

Non-linear parameter estimation, (Press et al, 1990), resulted in the following

equation for the mean hatching rate of T. circumcincta eggs at any temperature,
T

0.23 -1
Dr = 9_..23 [[1 + Qﬂe‘o-%T] — e_%:l (2_17)

It is clear from Figure 2.4(c) that this function gave a very good fit over the entire
range of temperatures. It was a continuous function, uniformly valid between Thase
and T,,,, and many of the parameter values, given in Table 2.2, had biological
significance. For example, ¢ represents the developmental threshold, p is the
unconstrained growth rate, and v is a heat denaturization effect triggered by
high temperatures.

The final column in Table 2.2 gives the associated final sum of squares (FSS) for
each model fit to the data sets. The final sum of squares for the step function
(Paton, 1983) was the highest at 1.0747. This was due to the inadequacy of the
model to predict development rates at above optimal temperatures. The inverted
logistic model of Stinner et al (1974) yielded a final sum of squares of 0.2083
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Table 2.2: Table containing parameter estimates obtained when comparing the
step function (Paton, 1983), the inverted logistic function (Stinner et al. 1974)
and the logistic-exponential model of Logan et al, 1976 for hatching rates of T.

circumcincte eggs and the logistic-exponential model of Logan et al (1976), for
the development of T. circumcincta L1 to L3.

Life Stage Function Parameter Estimates FSS
Egg to L1 S@Zﬂo?licgtgn T UL, . TS ¥ 71
Egg to L1 Logistic-Exponential P v ¢  Topt  Tmaz _ 0.0526

Logan et al, 1976 0.23087 0.18431 0.05747 35.15831 40.03

e ——i e —————— e ey el eteerar e e e ——— e ——————————————————————————————————————————————

L1 to L3 Logistic-Exponential p y ¢ Topt /

Logan et al, 1976 ~ 0.07435  0.0005 002895 36.82304 37.a711 0008

suggesting that it gave a better fit to the data than the step function of Paton,
(1983). However, the final sum of squares for the logistic-exponential model of
Logan et al, (1976), 0.0526, was markedly lower than the other two. It was
concluded that this model represented the best fitting model to the data.

A more sensitive test of goodness of fit involving the residual mean square de-
viances could have been used, however, for our purposes, the differences in the
fits of the various models was so great that visual comparisons could be made.

By far, this modelling technique provided the most flexible and best fitting model
to the available data for T. circumcincta egg hatching rates as a function of
temperature.

Description of the temperature development rate relation using the technique of

matching asymptotes of two curves (Logan et al, 1976), for the remainder of the
free-living stages of T. circumcincta now follows.
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2.3.3 A Model for the Mean Development Time of T. cir-
cumcincta L1 to L3

As was mentioned previously, there was little data available on the development
times of L1 to L3 life stages of T. circumcincta at high temperatures. From the
data on the mean development time of L1 to L3 at lower temperatures (Phase
1), the relationship appears sigmoidal in nature. Generally at high temperature
levels, small changes in temperature are characterised by more rapid changes in
development times which suggests that as a preliminary step, Phase 2 behaviour
may assume an exponentially decaying function. Using the data from Table 2.1,

the parameters were estimated in the same way as before and the function,

0.07
0.0005

Dr =

0.07 -1
[1 + M’—"-B—Oz%-ﬂ—z—%e'o"’”] _ e-“———a—f-’.:{%lf;fsa] (2.18)

was fit to the data for mean development times of T. circumcincta L1 to L3.
From Figure 2.5 it is clear that the function fits the data well. Table 2.2 gives
the parameter estimates derived from the non-linear parameter estimation rou-
tine. As data was not provided for temperatures above 30°C, the function was
used to estimate the behaviour of the development rate beyond this temperature.
Initial estimates of the optimum and maximum temperatures were provided, and
were then used by the estimation procedure to estimate optimum and maximum
temperatures.

2.4 Variation In Response to Temperature

Comparison of the most recent practical nematode temperature development
model with two of the commonly used insect development models revealed that
the model of Logan et al, (1976) had greater success in modelling the tempera-

ture dependent rate phenomena in nematode populations than the others, both
for the egg to L1 and L1 to L3 stage.

Traditionally, the next step from here would be to incorporate the best fitting

model into a population dynamics model in order to predict parasite emergence
levels in the field so that control measures could be optimised in terms of efficacy
and safety.
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Figure 2.5: Fitting the logistic boundary layer function (Logan et al, 1976), in

equation (2.18), to mean development time (in days) of T. circumcincta L1 to
L3.

The timing and magnitude of peak pasture contamination levels 1s seen to fiuc-
tuate geographically and temporally, and there has been much difficulty in ac-
counting for these fluctuations. Changes in climate cause much of this variation,
however changes in temperature, precipitation and relative humidity do not ex-
plain all of it. Another source of this variation may come directly from the
parasites in their individual response to temperature.

Experiments to determine development rates at various constant temperatures
yield a distribution of development times within a population ranging from those
who develop quickly to those who take a good deal longer to develop. How-
ever, more often than not, it is only mean development rates (or times) that are
reported, and those individuals in the tails of the distribution that develop sig-
nificantly faster or slower than the average developers are generally omitted from
further analysis.

The effect that variation in developmental response to temperature stimuli has

on the population dynamics of the sheep nematode T. eircumcincta is unknown.
Only one publication that we know of provides a distribution of development times
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with temperature (Young et al, 1980). Experiments have since been undertaken at
the Moredun Research Institute, Edinburgh, to provide additional data. Despite

this lack of data, it 1s clear from these initial findings that there is a great deal of

variation in response to temperature stimuli between individuals in a population.

From here, it is necessary to quantify this variation using the data available to us
to assess the impact that within-population variation may have on the population
dynamics of T. circumcincta .

The data provided by the various authors was the distribution of hatching times
and development times of T. circumcincta eggs and L1 to L3, respectively, under
different constant temperatures. To get an idea of the range in development

times exhibited in a single population, three percentile groups were chosen from
the distribution:

e The time until 1% of the population had completed their stage development
provided data for the fast developers,

e the time until 50% of the population had completed stage development
provided data for the average developers, and finally,

o the time until 80% of the population had completed their stage development
provided data for the slow developers.

The 50%" percentile was chosen here to represent the average behaviour in the
population. The 80* percentile was chosen here to represent slow developers
as it was quite unusual that 100% of the population would develop to the next
stage. There was always a few individuals that would not survive. On average,
just under 90% of the population would complete stage development (Young et

al, 1980).

In the last two sections of this chapter, prediction models have been given for

the development rate as a function of temperature for mean development times,
representing some average behaviour in the population.

In the following two sections, prediction models for the development rate of fast

and slowegg to L1 and L1 to L3 stages, respectively, are given using the technique
devised by Logan et al (1976).
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2.4.1 A Model for Fast Developers

An individual is categorised as a fast developer if the time to completion of a
specific life stage at a constant temperature corresponds to the time when 1%

of the experimental population under the same constant temperature completes
that life stage.

Hatching Times of Fast T. circumcincta Eggs

The first two columns of Table 2.3 gives data on the hatching times of fast devel-
oping T. circumcincta eggs, provided by Crofton (1963) and Young et al (1980).

Table 2.3: Hatching times (in days) of fast eggs and development times of fast
L1 to L3 T. circumcincta .

Egg to L1 Stage L1 to L3 Stage

M

Temperature(°C)  Crofton, (1963) Young et al, (1980) Young et al, (1980)
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Using a logistic function for Phase 1, and an exponentially decaying function for
Phase 2, the following equation was formulated by matching the asymptotes of
both curves

0.19 _ -1 _
Dp = 9_}2 [[]_ + .Q.:L_Q:_]:ie‘o-lgT] — e - 59?81] (2.19)

to give the development rate of fast T. circumcincta eggs at temperature T.

The fit of the data in Table 2.3 to this curve is shown graphically in Figure 2.6.
The final sum of squares for this model is 0.0351.
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Figure 2.6: Fitting logistic-exponential function (Logan et al, 1976), to fast hatch-

ing times (in days) of T. circumcincta eggs given by Crofton, (1963) and Young
et al, (1980).

Development Times of Fast T. circumcincta L1 to L3

The final column of Table 2.3 gives data on development of fast L1 to 1.3 parasites
under different constant temperatures. Due to the difficulty in obtaining data
for this percentile category in the population, dummy data points had to be
introduced into the parameter estimation routine. This provided the routine
with sufficient degrees of freedom to obtain parameter estimates. The use of
dummy data points is common in mathematical modelling of data sets (Press et
al, 1992). Generation of dummy data points when real data is unavailable can
be done by simulating data points from a specified curve with the assumption
that the development rate at temperature T is normally distributed with mean
ur and variance or. Random numbers are then generated to give development

rates at each temperature, I', representing the departure of that generated data
point at temperature T from the mean ur.

Identical forms for the equations in Phases I and 2 were used to model develop-

ment of fast L1 to L3 as a function of temperature. The data in Table 2.3 were
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used to estimate the parameters given in the equation for the development rate
of fast T. circumcincta L1 to L3 at temperature T

0.15 -1
Dy _g_:")_g, “:]_ + Me'o-lf’T] — e"é‘i%‘f%] (2_20)

Figure 2.7 is a plot of the equation in (2.20) fit to the data points in Table 2.3.
The final sum of squares for this particular data set is 0.000007.
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Figure 2.7: Fitting logistic-exponential function (Logan et al, 1976), to develop-
ment time (in days) of fast T. circumcincta L1 to L3 using data generated at the
Moredun Research Institute, Edinburgh.

2.4.2 A Model For Slow Developers

An individual is categorised as a slow developer if the time to completion of a
specific life stage at a constant temperature corresponds to the time when 80% of

an experimental population under the same constant temperature develops from
one life stage to the next.
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Table 2.4: Development times (in days) of slow T. circumcincta egg to L1 and
L1 to L3, respectively.

Temperature(°C) Egg to L1 L1 to L3

(Crofton, 1963) (Young et al, 1980)

4 ] _

5 - 100(D)
6 27.3333 -

10 4.6875 33.3(D)
15 2.0 20
20 1.291666 12
20 - 10
39 - 00
4() o0 -

Hatching Times of Slow T. circumcincia Eggs

The second column in Table 2.4 gives data on the hatching times of slow devel-
oping T. circumcincta eggs provided by Crofton (1964) and Young et al (1980).

Using a logistic function for Phase 1, and an exponentially decaying function for
Phase 2, the following equation was formulated by matching the asymptotes of
both curves

0.22 -1
DT — .0—-2-—- [[1 + QJL.&QE&'OQQT] - e_ 2043-3-9’{'36‘| (2.21)

o

0.16 0.05

The fit of the data in the second column of Table 2.4 to this curve is shown
graphically in Figure 2.8. The final sum of squares for this model is 0.0035.

Development Times of Slow T. ctrcumcincta L1 to L3

The third column in Table 2.4 gives data on development of slow L1 to L3 para-
sites under different constant temperatures. Unfortunately, very little data of this
type is available and dummy data points were introduced in order that parameter
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Figure 2.8: Fitting Logistic-Exponential Function (Logan et al, 1976), to hatching
times (in days) of slow T. circumcincta eggs.

estimates could be made. The following models were constructed and fit to the
data.

Identical forms for the equations in Phase I and Phase 2 were used to model
development of slow L1 to L3 as a function of temperature. The data in Table
2.4 were used in the parameter estimation algorithm to estimate the parameters

in the following equation

0.17 _ -1 )
DT — _g__;l_?'_;_ [[1 + 0'770.01(.):40148-0'1”] — 6-313:;55-523T761] (2_22)

The fit of the data in the third column of Table 2.4 to this curve is shown graph-
ically in Figure 2.9. The final sum of squares for this model is 0.000012.

Biological Significance of Estimated Parameter Values

From Table 2.5 of the estimated parameter values obtained when fitting logistic-

exponential models to data of fast, average and slow hatching and development
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Figure 2.9: Fitting logistic-exponential function (Logan et al, 1976), to develop-
ment times (in days) of slow T. circumcincta L1 to L3.

rates, it is clear that each parameter has a biological meaning. For example, ¢
represents the developmental zero, that is, the development rate at a certain base
temperature below which life of the organism cannot be sustained. The estimated
¢ for the hatching rate of eggs at a base temperature is greater than the estimated
¢ for the development rate of L1 to L3 in all three development groups. This
is consistent with the data, where development from egg to L1 is faster at 4°C
than development from L1 to L3 at the same temperature. The growth rate p,
of the exponential part of the logistic curve is consistently greater for the egg to
L1 life stage than the L1 to L3 life staﬁge for all three development groups. This
is in broad agreement with the data as over all temperatures, L1s take longer to
develop to L3s compared to the time taken for eggs to hatch to L1s.

2.5 - Discussion

Two separate issues have been addressed in this chapter. The first is concerned
with developing an accurate mathematical description of the relationship between
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Table 2.5: Table of estimated parameter values for both life stages and three

development groups, fast(F'), average(M) and slow(S), with final sum of squares
after the non-linear parameter estimation.

Life Stage F,M,S p vy QY Topt P FSS

Egg to L1 Fast 0.1889  0.1305 0.1361 39.8079 40.0021 0.0351

Eggto Ll Average 0.2309 0.1843  0.0575  35.1583 40.0345 0.0526

EggtoLl  Slow 02199 01616  0.0509 39.3656 40.0060  0.0035

_—M—ﬂ

L1 to L3 Fast 0.173447 0.7736 0.013628 23.608 31.5472 0.000007
Ll1toL3 Average 0.0744 0.00186 0.02803 31.2262 31.2839  0.0008

L1 to L3 Slow 0.1467  0.5981 0.041438 29.6337 31.0729 0.000012

——e

the development rate of nematodes when free-living and the temperatures they
are exposed to in the environment. The second is concerned with quantifying the
variation in response to temperature within a nematode population.

Temperature-Dependent Development Models

Typically when modelling the life cycle of nematodes, the free-living period is
split into two distinct stages for convenience, the egg to L1 and the L1 to L3

stage, as distinguishing between the first and second larval stage is quite difficult
(Urquhart et al, 1991).

A comparative analysis of the development models of Paton (1983), Stinner et
al (1974), and Logan et al (1976) was undertaken by fitting each equation to a
sequence of temperature-development data sets produced under controlled exper-
iments. The final (residual) sum of squares, (FSS), for each fit is given in Table
9 5 and can be used to determine the goodness of fit of each model.

The step function developed by Paton (1983) for T. circumcincta , was not easily
adaptable to different species or climatic zones as development at high temper-
atures was not addressed. The inverted logistic model of Stinner et al (1974)

was unsuccessful in predicting development rate at high temperatures as the true
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behaviour of development rate beyond an optimum temperature was not sym-

metrical to the development rate at lower temperatures.

The technique used by Logan et al (1976), to model temperature dependent
development was by far the most flexible to date. With the exception of those
models that simulate the physiological processes involved in development and so
consequently are very complex (Sharpe and DeMichel, 1977), this model provides
the most accurate description of the developmental process.

The technique of matching the asymptotes of two curves to produce a single
analytic function has been successfully used in describing the relationship of de-
velopment time and temperature for insects and now in this thesis, nematodes.
This relationship in poikilotherm populations has two distinct phases, the first
typically characterised by a logistic growth equation from a threshold tempera-
ture to an optimum, the second by some rapid decaying function from the optimal
to lethal maximum temperature. Previous attempts at modelling this relation-

ship have fallen short of describing the full behaviour over the entire temperature
range.

Very little is known about the biological mechanisms governing Phase 2. There
have been suggestions that the heat denaturization effect may manifest itself by
slowing down the metabolic rate, causing a rapid decline in development rate
at high temperatures. More information must be gathered with respect to the
mechanisms of development at high environmental temperatures, particularly
now with suggestions that temperatures are increasing globally.

Variation In Response to Temperature

The second issue addressed in this chapter was concerned with quantifying the
variation in response to temperature within a nematode population.

In order to obtain an indication of the magnitude of developmental variation
within a population, three percentile points from the developmental distribution
were identified for investigation. These percentile points were labelled fast, aver-

age and slow, respectively, and models for both free-living stages were constructed
for each, producing 6 models in total.

The variation between the three percentile categories in the population was con-
siderable and would surely have implications for the dynamics of the entire popu-

lation. For example, the hatching times of T. circumcincta eggs under a constant
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temperature of 10°C varies from 47.5 hours for 1% of the population to hatch to
113 hours when 80% of the population have hatched. This is a difference of more
than three days between the fastest and slowest individuals hatching to the first
larval stage. At 15°C, development from first larval stage to third takes around 8
days for fast developers compared to 20 days for slow developers. Not accounting
for this kind of variation may seriously affect the success of any control strategy
due to the inability to accurately predict peak emergence times.

Developmental variability has, to date, never been addressed for nematode pop-
ulations. As a result of, or because of this, there is a distinct shortage of data for
the response of the entire population to external stimuli, such as temperature.
For our purposes, the non-linear parameter estimation could only be undertaken
In some cases by including dummy data points for temperatures where data was
unavailable. This shortcoming highlighted the need for good quality data over
entire temperature ranges for the whole population.

2.6 Conclusion

Previous models predicted mean development times at a range of different temper-
atures, which encompassed only a subsection of the individuals in a population.
Those individuals that developed slower or faster than average were unaccounted
for, yet their inclusion in any predictive model may have far reaching consequences
for the dynamics of the population.

In this chapter, six models of development were constructed and fit to experi-
mental data on development times under different constant temperature levels.
These models were for fast, average and slow development from egg to L1 and

fast, average and slow development from L1 to L3. Despite the shortage of data
for some parameter estimation, each model fitted well.

The final sum of squares, (FSS), gave a very good indication of the goodness
of fit of each model to the available data and were consistently lower when the

technique developed by Logan et al (1976) was used to develop temperature
dependent development rate models for this data.

This investigation has provided a sophisticated technique for modelling tempera-

ture dependent development and has introduced the concept of within population
variation with respect to individual response to temperature. To date, this is the
first time that this aspect of the population dynamics of nematodes has been ex-
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plored despite a substantial amount of work having been carried out in the insect
domain (Regniere et al, 1981; Wagner et al, 1984a; Stinner et al, 1974).

Before this work can be taken into the continuous domain by fitting some distri-
bution to our models rather than having distinct groups, additional experimental
data is required to validate the models we have now. There are concerns here,
especially when fitting the functions to the fast and slow data, that too few data
points were available to obtain accurate parameter estimates. Visually, the func-
tions fit the available data well, but at temperatures where data are missing, we
need to clarify that the model is making accurate predictions through experimen-
tal effort.
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Chapter 3

Exploring The Effect of
(zeographical, Temporal and
Developmental Variation on the
Population Dynamics of T.
circumeceincta

3.1 Introductioh

It was proposed in the previous chapter that variation in the development rate of
individual nematode parasites within a population may contribute to the observed
variation in pasture contamination levels recorded between locations and within
locations from year to year. Mathematical models of development as a function
of temperature for the three development groups, fast, average and slow were
presented. From the experimental data, it was clear that there was a significant
difference in the development times of the three groups, however, the effect that
this has on the population dynamics of the parasite is as yet unknown.

In the past, nematode population models assumed uniform development of the

population and sought to explain the observed variation in emergence patterns
through changes in climate.

The aim of this chapter is to investigate whether variation in emergence patterns
both geographically and temporally may be explained to some extent by devel-
opmental differences within the parasite population which may arise from genetic
variability rather than by changes in the environment experienced by a uniform
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parasite population.

This theory was investigated using a population dynamics model first developed

by Gettinby and Paton at the University of Strathclyde in the 1980s and is
discussed in detail in the following section.

3.2 OOsterant

Osterant (©STAMS) is a menu-driven simulation model, written in the Pas-
cal programming language, developed to predict outbreaks of parasitic gastro-
enteritis, (PGE), in lambs in Britain. One of the main causal organisms of PGE
In lambs in Britain is T. circumcincta (Jackson, 1989). In addition, Osterant
Incorporates a drug selection model that simulates the evolution of anthelmintic
resistance in a parasite population undergoing drug therapy. The model operates
In discrete time at a particular location using site-specific climatic data and offers
the user a choice of management strategies for the control of parasite populations.

The model provides the user with an effective way of inputting this data via a
sequence of menus and outputs the results to a text file. Each menu represents a
different aspect of the model. The following sections describe each menu and it’s

role in the overall model.

3.2.1 The Population Data

Information on the epidemiology of the disease, including daily survival proba-
bilities for each of the life stages of T. circumcincta , the frequency of the gene
conferring resistance in the population initially output by the ewes, and the fitness
of the anthelmintic drug are determined by the user.

Daily survival probabilities are site-specific and are typically determined from
laboratory experiments, where the percentage of individuals that hatch and sur-
vive from day to day are calculated under constant temperatures. Survival is

multiplicative in that the probability that an individual survives for n days given
that the daily survival probability is p, is p".

When the ewes are initially introduced to the pasture at the beginning of the

grazing season, they may be harbouring parasites in their abomasum. In Os-
terant, the user defines the genetic status of this population with relation to
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drug resistance. That is, the proportion of rr, rs and ss genotypes, representing

resistant homozygotes, heterozygotes and susceptible homozygotes, respectively,
within the host are specified, with the constraint that rr 4+ rs + ss = 1.

The fitness of an individual undergoing drug treatment depends on the genotype
of that individual and the anthelmintic preparation used. The user is able to

specify the proportion of each genotype, rr,rs and ss that the drug is expected
to kill.

3.2.2 The Meteorological Data

The free-living population dynamics of T. circumcincta are principally climate
driven. Given that at least half of the parasites life is spent free-living, tempera-
ture, rainfall and relative humidity will all have an effect on the epidemiology of
the disease. The development of the parasite is modelled in Osterant using me-
teorological data obtained from weather stations. This data consists of minimum,
average and maximum daily temperatures and total daily rainfall levels. The av-
erage daily temperature is entered into an equation that determines development
rate at different temperatures. The method of development fractions is used,
whereby the daily development rates for a particular life stage are summed until
unity is reached or exceeded, whence that life stage is said to be complete, and
development to the next life stage can then proceed using another development-
temperature function. The particular development-temperature functions used
in Osterant were developed and discussed in Chapter 2. A weight was incor-
porated into the daily development fraction to account for times during the day
when temperatures fell below the threshold temperature. This weight was the

estimated proportion of the day when temperatures were such that development
proceeded normally.

Not only is development temperature dependent, it is also known that rainfall
plays an important part in the free-living stages of nematodes, particularly in the
migration of newly hatched eggs from the faecal mat and infective L3s up the
grass swards. Two moisture effects have been incorporated into the model.

The first moisture effect involves the development from the first larval stage, L1,
to the third, L3. One of three conditions pertaining to the rainfall history and
herbage density must be satisfied for the pasture to be regarded as moist on a
specific day. Either, rain must have fallen on that day or on either of the two
days preceding it, or 10mm (or 15mm) of rain must have fallen over the preceding
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week (or 15 days) with herbage density exceeding 2500 (or 3000) kdm per hectare.
Herbage density is regarded as being important for migration as a high density of

herbage on pasture means that surface moisture is retained in higher quantities
for a longer time.

The development rate for an individual on a particular day would be weighted
according to the moisture index. The weight would be zero if none of the above

moisture conditions were satisfied and one if at least one of the conditions were
satisfied.

The second moisture effect involves the migration of the infective L3s from the
mat up the grass sward. A single days rainfall is required for newly developed
infective L3s to be available for ingestion by the sheep host. This follows from

the frequently observed appearance of large numbers of parasites on the pasture
immediately after rainfall.

The Julian date of commencement and end of the simulation is input by the users
as is the area of land in hectares on which the parasite and host populations

inhabit.

3.2.3 Grass Sample Data

If samples of herbage density taken at the site of simulation are available, the
model will incorporate these and interpolate over the simulation period using
established methods to determine daily herbage density levels on that particular
pasture. This aids in the calculation of the moisture index discussed above. The
grass sample data 1s easily entered into the program from the menu.

3.2.4 Thé Site of Simulation

Data specific to the site or location being simulated must be entered by the user.
This includes the number of ewes and lambs initially introduced onto pasture,
the faecal output of ewes and lambs respectively, the date of lamb movement, the
stocking rate, and the number of years which the simulation is to be run for.

The faecal output of ewes and lambs will be different, however obtaining actual
figures is likely to be difficult due to the variation in experimental methods. It is

necessary to know the expected daily faecal output of ewes and lambs respectively

as the parasite egg output is conventionally measured in terms of eggs per gram
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of faeces.

Movement of lambs to clean pasture has long been used as a control strategir in
the fight against resistance. To move lambs onto clean pasture in the simulation,
all that is needed is the date on which this is to happen, the program will then
set up a second clean pasture and move the lambs accordingly.

3.2.5 Nematode Treatment Data

Details of the treatment regimen operating at a particular site may be entered
into the model at this point. The days on which treatment is to be administered

must be specified. From this information, the model will reduce parasite numbers
on the days stated according to the efficacy of the drug.

3.2.6 L3 Sample Data

The genotype distribution of parasites harboured in the ewes is input by the user.
On initially contaminated pasture, the genotype distribution of overwintered L3s
is also required. It is assumed that infective L3s from the previous year will have
overwintered and re-emerge at the start of the new grazing season. There is also
the opportunity for the user to enter sample data collected from a particular site.
This data is then used by the model as real estimates of initial and intermediate

contamination levels on the pasture.

3.2.7 The Results Menu

The results menu provides the user with a resumé of the input data and the genet-
ical results from each simulation. This includes the final genotype distribution,
and the time taken to reach this distribution.

3.3 Dynamics of Osterant

All of the above factors are under the control of the user. However certain as-

pects of the epidemiology of the disease, the dynamics of the parasite population
and the genetical changes to the population cannot be altered, as to do so would
undermine the foundations of the model. These include the development func-
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tions, the genetic assumptions, the rate of adult establishment in the host, the
estimated herbage intake of ewes and lambs and the egg output of ewes and lambs
respectively. Development of the free-living stages of T. circumcincta has been
discussed in section (3.2.2), and the derivation of the equations can be found in
Chapter 2. The development-temperature functions used in this model are par-
ticular to each life stage. Each is a single analytic equation that calculates the
development rate of an individual in that life stage over the entire temperature
range which that individual would expect to be exposed to.

Using results from tracer lamb experiments, pasture larval contamination levels
were compared to adult worm burdens in the tracer lambs after slaughter. These
experiments indicated that an increased larval intake led to lower adult worm
burdens. This phenomenon was modelled using a step function that yielded the
proportion of ingested L3 that established as adults sixteen days later in the host.

Egg output of adult worms in lambs is thought to be governed by the hosts
immune response and whether the pasture is initially clean or contaminated.

Simple Mendellian principlengovern the segregation and recombination of genes
within the population. Resistance is assumed to be conferred by two alleles at a
single locus on the chromosome, denoted r(resistant) and s(susceptible). Mating
of parasites is random and the resultant ofispring are assumed to occur in Hardy-
Weinberg equilibrium, that is, if the frequency of the gene conferring resistance
in a parent population is r, then the resultant offspring genotypes will occur in
the ratio 7% : 2rs : s* for rr: rs : ss, respectively.

3.4 Validation of Osterant

The output from the model was validated by comparing the results obtained from
an observational study at an experimental station in Cockle Park in Northumber-
land (Waller, 1982) over a period of two years. Meteorological and epidemiological
data from that site were input into the model. The emergence patterns of in-
fective L3s on pasture for the two years generated by Osterant were compared
to those generated experimentally. Predicted emergence patterns followed the
observed results very closely (Paton, 1983) for both of the years despite very
difterent levels of parasitism in 1973 compared with 1974. That is, predicted ini-
tial emergence dates of L3 coincided with the observed emergence dates at very

similar levels. Observed and predicted peak pasture contamination levels were
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very similar and the timing of the peaks occur within days of each other. The
declines after the summer peak for both years follow a similar path for observed

and predicted, with predictions of a second autumnal peak in 1973 as observed,
but none in 1974, as observed. It can be concluded that at least for the predic-

tion model, despite the myriad of factors involved in the complex dynamics of
the population and its interaction with the host and the environment, the results

have been validated and the output of the model can be trusted at least as an
indicator of events in the field.

The integration of the drug selection model added another dimension to the
prediction model by presenting a way to examine the effect of various management

control strategies on the growth and evolution of anthelmintic resistance in a
population of nematodes at a particular site.

Ten management programmes were examined to reflect the variety of control
strategies in use around Britain. These were split into three categories. The first
category involved control via the transfer of lambs to safe pasture at different
times over the grazing season. The second category contained those strategies
involving control by moving both ewes and lambs to safe pasture, and the third
category contained those strategies where both ewes and lambs remained perma-
nently on the original pasture throughout the grazing season.

To examine the effect of different drug groups, the fitnesses of the genotypes were
varied. Five fitness sets were simulated. It was assumed that all drugs killed
all the susceptible homozygotes. The proportion of the heterozygotes and the
resistant homozygotes that are killed by the drug varied according to whether the

drug selected for dominance, recessiveness, incomplete dominance or heterozygote
superiority.

Having carried out the simulations (Gettinby et al, 1989), it was concluded that
switching to clean pasture and reducing the dosing frequency of the anthelmintics

would slow the drug selection process quite significantly. If frequent dosing was
unavoidable then it was recommended that it take place early on in the season

rather than late and that the drug used selected for dominance of the resistant
allele.

These general results have since been backed up by experimental effort and they
are now widely established methods of controlling or at least slowing down the

growth and evolution of anthelmintic resistance in nematode populations.
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3.5 Implementation of Osterant

Osterant as a predictive tool to be used at the farm level on a daily basis is still
a long way away. For the moment, its strength lies in its flexibility to change
scenarios very easily in order to answer What If ? questions. Such questions
provide a broad speculative view on the effect of certain changes to the system,
such as a global increase in temperature, a drop in average rainfall levels, the
effect of a new drug or control strategy on the population. Predictions for the

future primarily require accurate meteorological forecasts, due to the parasites
dependence on climate for survival.

In this chapter Osterant will be used experimentally to address whether varia-
tions arising from within the parasite population can contribute to the variation
in infection levels and effects thereof observed in the field, or whether geographical
or temporal variations cause these observed fluctuations in the field.

The population dynamics of T. circumcincta were simulated by Osterant at
four different climatic sites in Scotland: Paisley, Mylnefield, Kinloss and Dum-
fries, over a period of six years from 1985 to 1990, respectively. The locations
were chosen to reflect the diversity in climate experienced in Scotland. The de-
velopment functions derived in Chapter 2 were substituted into the model in
place of the step function originally used. The data were taken from the AFRC
Meteorological Database, AGREMET.

At each location in each year the model was run for fast, average and slow de-

velopers, respectively. The emergence patterns were analysed to determine the
sources of variation in peak pasture contamination levels and timing. Initial con-

tamination levels were kept constant at the beginning of each simulation in order
to retain as much uniformity as possible.
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3.6 Results

From these simulations, three sources of variation were identified

e Geographical : variation observed between locations over each year.

e Temporal : variation observed between years at a single location.

e Developmental : variation observed between development groups within a
single location in a single year.

3.6.1 Comparison of Emergence Patterns

In order to compare emergence patterns produced from the simulations, the fol-
lowing criteria were identified:

e Initial Emergence Date : the first day in the season when infective L3s are
observed.

¢ Peak Pasture Contamination Level : the highest number of infective L3s
observed on pasture on any one day.

e Timing of peak : the date when peak pasture contamination is observed.

Figures 3.5-3.12 present the emergence profiles obtained and Table 3.1 gives initial

emergence dates, peak pasture contamination levels and timing, for each of the
simulations.

Emergence Profiles of Fast Developers

The emergence profiles of fast developers at each location in each year are pre-
sented in the first column of Figures 3.5-3.12.

In general, fast developing parasites are seen to emerge onto pasture before the
medium and slow developers. As these parasites accumulate daily, the infection

level grows steadily to a peak around the middle of July. There follows a gradual
decline in infection levels until the end August when a second much smaller peak
occurs, possibly as a result of the lamb contribution to infection. Infection levels

are then seen to drop steadily until November when a sharp increase in infection
levels is observed.
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Emergence Profiles of Medium Developers

The emergence profiles of the medium developers at each location in each year
are presented in the second column of Figures 3.5-3.12.

Initial emergence of the medium developers occurs slightly later in the season
than the fast developing para,site's as does the peak pasture contamination level.
A small second peak possibly as a result of the lamb contribution to infection
is observed around the end of September, after which infection levels decline
until the end of November, where they are then seen to exhibit a similarly sharp
increase as observed when the fast developing population were simulated. The
overall magnitude of infection on pasture with a medium developing population

is greatly reduced from the infection levels in a simulated population of fast
developers.

Emergence Profiles of Slow Developers

The emergence profiles of the slow developers at each location in each year are
presented in the final column of Figures 3.5-3.12.

Slow developing infective L3s take a longer time to develop from eggs than the
other two groups. Typically, they will begin to emerge around the middle of June.
In many cases, a very small peak is observed at the end of August. The main

peak of infection is observed in September, the magnitudes of which are much

reduced from the other two groups. Again, a decline in infection levels occurs
with a sharp increase after the end of October.

3.6.2 Geographical Variation

The geographical locations simulated were chosen to represent areas in the north,
south, east and west of Scotland, to give a sample of the range of climatic be-
haviour experienced in this country. Within each year, in each development

group, the emergence patterns at each location were very similar, with the ex-
ception of Dumfries in 19895.

In order to determine the effect of geographical location on the population dy-
namics of the T. circumcincta population, all other sources of variation were held
constant. That is, the emergence profiles produced in Dumfries, Kinloss, Paisley
and Mylnefield were compared within each development group within each year.
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Differences in Initial Emergence Dates Between Locations

Differences in the initial emergence dates within development groups in a single
year at each location can be attributed to climatic fluctuations between the four
locations. For example, from Table 3.1, the initial emergence date for fast devel-
opers in Dumfries in 1985 is much later than the initial emergence date in this
year at the other locations. In Dumfries, infective L3 were initially detected on
pasture on the 31* of May compared to the 9** of May in Paisley and Kinloss,
respectively, and the 14** of May in Mylnefield. From the bioclimatographs in
Figures 3.1-3.2, this difference in timing of initial emergence may be attributed to
the fact that that although Dumfries experienced average temperature levels in
April, 1985, the rainfall levels were not adequate for the migration of the infective
L3 up the grass sward. In April 1985, the rainfall totalled only 13.5mm over a
period of 8 day<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>