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Abstract 

The parasitic nematode, Teladorsagia (Ostertagia) circumcincta is the primary 
cause of Parasitic Gastro-Enteritis (PGE) in lambs in Britain. Control of this 

parasite has largely depended on the use of broad spectrum anthelmintic drugs 

since their inception three decades ago. Widespread and unconstrained use of an- 
thelmintics has resulted in selection for resistant strains of nematode, particularly 
within the T. circumcincta species. 

Control of PGE now involves optimizing parasite control whilst preserving the 
susceptibility of the parasites to the anti-parasitic drugs. 

Two aspects of the epidemiology of T. circumcincta are investigated in this thesis. 
First, the effect of temperature on the development and survival of the free-living 

stages is investigated. The conventional nematode development models are re- 
placed by more sophisticated and biologically meaningful methods of describing 

temperature-dependent development rate phenomena in nematodes. The effect of 

geographical, temporal and developmental variation on the population dynam- 

ics of T. circumcincta are explored to determine possible sources of observed 

variability in infection levels in the field. 

Next, a suite of models generic to most direct life cycle parasites undergoing 
intensive drug therapy, is constructed and analysed. Provision is made within 
these models to explore the impact of important life history events such as refugia 
and immigration on the evolution of resistance. A novel technique in resistance 
control involving overwhelming a resistant strain of nematode with a susceptible 
strain is modelled and suggestions made for the practical implementation of such 
a method. 
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Chapter 1 

Introduction 

1.1 Parasites and Parasitic Diseases 

Parasitism, as defined by Soulsby (1969), is 

"... a state in which an organism, (the parasite), is metabolically 
dependent to a greater or lesser extent on another, (the host)". 

An eloquent description of this dependency is given by Gordon (1948), 

"... a parasites existence is usually an elaborate compromise between 

extracting sufficient nourishment to maintain and propagate itself, 

and not impairing too much the vitality, or reducing the numbers of 
its host which is providing it with a home and a free ride. " 

Parasitic diseases of domestic livestock in the temperate, tropical and sub-tropical 
regions of the world impose massive constraints on economic growth and pros- 
perity. In developing countries, such diseases can have devastating effects on 
animal and human populations. For example, it is estimated that approximately 
one third of the 150 million cattle distributed over 37 countries in Africa are at 
risk of trypanosomiasis, (Nagana), predominantly a cattle disease of sub-Saharan 
Africa. The causal agent of trypanosomiasis is the protozoal parasite of the genus 
Trypanosoma and is transmitted to the bovine host by the tsetse, (Glossina spp. ). 

Consequently, 50 million humans risk contracting sleeping sickness, the human 

form of trypanosomiasis. After rabies, human trypanosomiasis is the most infec- 

tious of all communicable diseases on the African sub-continent. Losses in meat 
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production are estimated to be in the region of $5 billion per year. This figure 
does not include losses in milk production or bi-products of the cattle industry 
(ILRAD publication, 1988). 

In the developed world, parasitic diseases pose less of a threat to humans. Good 

public health facilities and education programmes help to prevent infection and 
highly effective anti-parasitic drugs are widely available to treat infection. 

Nevertheless, nematode parasitic diseases of domestic livestock in Western Eu- 

rope, Australia and the U. S. A. are considered serious economic threats to the 

agricultural industry world-wide. Taylor (1938) stated that 

"... with the sole exception of the bacterial diseases of dairy cattle, 
the diseases of farm animals caused by parasitic worms are of greater 
economic importance than are any other group of diseases with which 
the husbandsman has to contend. " 

In Britain, gastro-intestinal trichostrongylid nematode parasites of sheep are con- 
sidered one of the major threats to agriculture production, and cause significant 
economic loss. Directly measurable losses as a result of parasitic diseases include 
losses due to animal death, decreased meat, wool, and milk production and the 

cost of anti-parasitic drugs. It is estimated that reductions in wool yield, milk 

yield and liveweight gain in sheep infested with worms is around 26%, 17% and 
52%, respectively (MAFF, 1991). Additional costs are incurred when produce 
from a treated animal cannot be used due to the enforcement of drug withdrawal 

periods, and when pastures cannot be grazed due to high levels of infection. In 
lambs alone, it has been estimated that losses of £30-40 million per year result 
from worm infestation (MAFF, 1991). Furthermore, animal welfare concerns cou- 
pled with environmental worries over chemical residues in the environment are 
mounting. 

Three species of nematode are commonly considered to pose the most serious 
threat to sheep populations around Britain. These are the abomasal parasite 
Teladorsagia circumcincta, and the intestinal parasites Trichostrongylus vitrinus 
and Nematodirus battus. In Northern Britain, particularly during the summer 
months, sheep suffering from Parasitic Gastro-Enteritis, (PGE) would invariably 
be infested by a single species of nematode, namely T. circumcincta , 

(Jackson, 

1989). This parasite is primarily responsible for PGE in lambs and is regarded 
as being one of the most important causes of losses in sheep flocks in Britain, 
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(Crofton, 1963). 

1.2 The Life Cycle of T. circumcincta 

The trichostrongylid nematode, T. circumcincta , like most helminths of sheep, 
has a direct life cycle consisting of free-living and intra-host stages. This life cycle 
is given in Figure 1.1. 

Egs 

Adults 

T Parasitic Free-Living 
L5 Stage I Stage 

T L2 

4" 

L3 

Figure 1.1: Typical life cycle of a nematode with an egg, five larval and an adult 
stage split into a free-living and a parasitic stage with a possibility of inhibition 
in the fourth larval stage. 

Free-Living Stages of the Life Cycle 

Eggs from the sexually mature female worms are expelled in the faeces of the 
sheep onto pasture and remain within the faecal mat during development to the 
first and second larval stages, namely Ll and L2. 

Environmental factors play an influential role in the development and survival of 
the larval stages on pasture. Temperature is the primary factor governing the rate 
of development of individuals free-living on pasture, (Levine, 1963; Kates, 1965; 
Crofton, 1963; Young et at, 1980; Salih and Grainger, 1981; Pandey, 1993). In 

countries with warmer climates, such as Australia and South Africa, development 
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from the egg to the infective stage (L3) is more rapid than in the UK for all 

nematode species. This causes shorter generation times which in turn leads to 
higher infection levels on the pasture. The presence of moisture films on the grass 

swards facilitate the vertical migration of infective L3s, as they await ingestion by 

a suitable host. Therefore the relative humidity within the microhabitat is also an 
important factor in the development and survival of the free-living stages. Other 

factors such as soil type, herbage constituents, size, consistency and location of 

the faecal mat play a secondary role in influencing development and survival of 

the free-living stages (Crofton, 1963). 

Intra-Host Stages of the Life Cycle 

Grazing sheep will unknowingly ingest the questing larvae, which then pass 
through the alimentary canal of the animal. After exsheathment of the L3, fur- 

ther development takes place in the lumen of an abomasal gland, (Urquhart et 

al, 1991). Inhibition in the early fourth larval stage, (EL4), may occur for any 

period up to 6 months, usually if larvae are ingested near the end of the season 
(Urquhart et al, 1991), after which normal development is resumed. A final moult 

occurs to produce the fifth larval stage, (or immature adult). Sexual maturation 

occurs on emergence of the L5 onto the mucosal lining. It is at this stage that 

the deleterious effect on the infected animal, resulting in digestive disturbances 

characterised by inappetance, poor growth and diarrhoea occurs (MAFF, 1983). 

1.3 Parasitic Castro-Enteritis 

Parasitic Gastro-Enteritis, (PGE) is the collective term for the complex of diseases 

caused by parasitic helminths. It was originally diagnosed in sheep in 1895, 
(Soulsby, 1969). On average since 1983,2.26% of total ovine submissions to the 
Veterinary Investigation Diagnosis Analysis (VIDA) were diagnosed as PGE. It is 

suspected that the actual figure is much higher as many cases are treated locally, 

or go undiagnosed (Jackson, 1989). Figure 1.2 shows the number of reported 
cases of PGE in sheep and cattle in the whole of Britain, presented to VIDA over 
the last 20 years. Clearly, there appears to be a decreasing trend in the number 
of cattle diagnosed with PGE. In sheep populations there is some evidence of a 
decline in cases. However, the decline is much more gradual. This may be an 
indication of the problems associated with ovine nematodes developing resistance 
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to anthelmintics, not yet experienced to the same extent in cattle populations. 

8 

N 
m gý 
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Figure 1.2: Total submissions to VIDA of PGE in cattle and sheep between 1976 
and 1995. 

It is very difficult to attribute an outbreak of PGE to any one species of nematode. 
However, in Britain, the timing of the outbreak may indicate which species is 

likely to predominate due to the distinctive seasonality in emergence patterns of 
the three main species. 

1.4 Epidemiology of T. circumcincta in Britain 

In the temperate regions of Western Europe, a periparturient rise in the levels 

of infective T. circumcincta larvae is observed between the months of July and 
October. This is as a result of ewe egg deposition from around two weeks prior 
to lambing until about 6 weeks after (Urquhart et al, 1991). Also contributing to 
this periparturient rise are the larvae descended from overwintered L3s, picked 
up by the new lambs at the start of the season. Type I ostertagiasis is commonly 
diagnosed during this period as a result of the development of L4 to immature 

adults within lambs during their first season of grazing. Type II ostertagiasis 
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occurs in animals who harbour inhibited EL4s near the end of one season that 
subsequently resume development early in the next season. 

1.5 Parasitic Control 

Since their introduction in the 1960s, anthelmintic drugs have been used ex- 
haustively to treat parasitic helminths of sheep. There are seven main drug 

groups (Urquhart et al, 1991) three of which are most commonly used: the ben- 

zimadazoles, the imidazothiazoles and the most recently developed avermectins. 
In general the mode of action is to target the adult and developing larval stages 

within the host. Coyne and Smith (1994) give figures for lamb mortality and 
quote results from Barger (1982) and Gulland (1991). They compare treated and 
untreated lambs parasitized with several nematode species. Mortality in treated 
lambs ranged from 0 to 10%, but rose considerably in untreated lambs from 10% 
to 68%. Live weight gain and fleece weight were higher in treated sheep. 

For a period in the 1970s, it appeared that parasitic diseases were controllable. 
However, disturbingly, the events of the following decade closely mirrored the 
situation in the insect domain where pesticide resistance had rapidly evolved, 
rendering the majority of those drugs ineffective. 

1.6 Anthelmintic Resistance 

The introduction of broad spectrum anthelmintic drugs in the 1960s was heralded 

as the beginning of the end for parasites and their associated diseases. However, 
this euphoria was short lived. 

In Australia, initial reports of resistance to anthelmintics in 1962 were confined to 
research stations and were regarded as "parasitological curiosities" (Waller, 1994). 
Unfortunately, under the broad acre husbandry regimes common in the Southern 
Hemisphere, resistance spread to commercial farms. By 1994, benzimadazole 
resistance in T. circumcincta in Australia had reached levels of between 50% and 
98% (Waller, 1994). 

Resistance to an anthelmintic compound is described as the ability of a strain 
to tolerate therapeutic doses of the drug that normal members of the population 
cannot. In addition, resistance must be heritable in order that frequencies of the 
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gene conferring resistance increase over time due to selection for those individ- 

uals which survive supposed lethal exposures to the drug (Prichard et al, 1980; 
LeJambre, 1977). 

The first case of anthelmintic resistance in the UK was in a commercial farm 
in Cheshire in 1981 (Britt, 1982). T. circumcincta was the species implicated 

and the drug was a member of the benzimadazole group. A further two reported 
cases of benzimadazole resistant strains of T. circumcincta in Southern England 
followed in 1983, one at the Ministry of Agriculture Central Veterinary Laborato- 

ries, Weybridge and the other on a commercial farm in the surrounding area. In 
Scotland around the same time the Moredun Research Institute, Edinburgh and 
the Hill Farming Research Organisation, Hartwood, reported T. circumcincta re- 
sistance to benzimadazoles (Scott et al, 1990). Since then, resistance has rapidly 
disseminated throughout the country. 

1.6.1 Anthelmintic Resistance Surveys 

Recently, a review of anthelmintic resistance in nematode parasites of sheep in 
the UK was undertaken (Hazelby et al, 1994). The results of a number of sur- 
veys on the prevalence of anthelmintic resistance were summarised (Cawthorne 

and Cheong, 1984; Taylor and Hunt, 1989; Coles, 1992; Hong et al, 1992). The 

majority of these surveys were carried out in southern England where the farm- 
ing is more intensive and hence more favourable to selection for resistance than 

anywhere else in the country. Here it was discovered that levels of resistance to 
benzimadazoles in T. circumcincta was around 36%, an increase in prevalence of 
more than 20% in five years. Further north however, in Newcastle, Evans (1988), 
found no evidence of benzimadazole resistance. In Scotland, the incidence was 
found to be 24.3%, the equivalent of 1 out of 4 farms surveyed revealing evidence 
of anthelmintic resistance, (Scott et al, 1990). 

These figures illustrate that the problems of anthelmintic resistance are no longer 

solely a concern for the countries in the Southern Hemisphere, it is now a problem 
of international significance (Waller, 1993). 

Whilst immediate action is being taken to avoid the worst excesses of drug use, 
such as avoiding underdosing, using dose and move strategies, rotating drugs and 
treating imported stocks, alternative methods of control are being considered. 
The most promising include the development of novel vaccines, the breeding of 
resistant hosts and the discovery of nematophagouss fungi as a means of biological 
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control (Barnes and Dobson, 1995; Waller, 1993; Stear, 1996). 

1.7 Mathematical Modelling 

Despite the existence of mathematical models for human disease since the 18th 

century, it has only been in the last three decades of this century that veterinary 
mathematical modelling has been recognised as an important tool in the under- 
standing of animal disease (Thrusfield, 1995). Models are being used to assess 
the risk, control and impact of disease, and to provide a deeper understanding of 
disease dynamics. 

A wide range of modelling methods are currently practised with respect to animal 
management systems. Here, we shall discuss a broad range of models encompass- 
ing many of the modelling techniques currently in use today, paying particular 
attention to models of parasites and parasitic diseases. 

1.7.1 Index Models 

In 1959, Olleranshaw and Rowlands developed a very simple index model to 

predict the risk of fascioliasis, (liver fluke), in sheep and cattle populations around 
Britain. Fasciola hepatica has an indirect life cycle. This means that the parasite 
develops in three different environments: on pasture, within a snail and within a 

sheep. 

Observations made on the bionomics of F. hepatica revealed two significant factors 
limiting the development and survival of the parasite. The first was the discovery 
that below a temperature of 10°C, development of the parasite is negligible. Con- 

sequently, there was little danger of high infection levels in the months between 
November and April in Britain. Secondly, the importance of moisture during the 
egg and intra-host stage was identified, without this film of moisture the eggs 
and metacecariae would desiccate. These important observations facilitated the 

construction of the Mt, or wetness index. 

This index determined the suitability of the habitat for development of the par- 
asite using meteorological data between the months of May and October. The 

wetness score, 
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Mt = (R-P+5)n 

where R is the monthly rainfall in inches, P is potential transpiration, and n is the 
number of rain days, was calculated each month. The monthly Mt indices were 
weighted and summed. The wetness score fell into one of three risk categories: 
no loss, some loss and heavy loss. From this, preventative measures could be 
taken by farmers to minimise the levels of infection on pasture and the exposure 
of their sheep to infection. 

The model predictions were made available to farmers all over Britain, and 
monthly wetness scores for different regions were broadcast over the radio. 

Following the success of the Mt index in relating weather conditions to the bio- 

nomics of the liver fluke, a similar method was adopted by Thomas and Starr 
(1978), to forecast peak infection levels of nematodes in lambs. The Wet Score 
Unit, Wp over a 12-hour period depended on certain rainfall limits as well as 
historical information on rainfall. The limits were based on individual experience 

and a consideration of the rainfall data available to agriculture. Critical levels 

and a warning index were given so that prophylactic measures could be taken to 

minimise infection levels on pasture. 

In relating historical climatic data to infection levels or morbidity, index models 
are empirical and make no attempt to model the dynamical behaviour of a par- 

asite population or its interaction with the host or environment. The following 

group of models, broadly described as analytical models work on the philosophy 
that complex physical or biological phenomena have simple underlying mathe- 
matical laws. 

1.7.2 The Spherical Cow 

An approach described as the reductionist principle by Harte (1988) in his book, 
"Consider a Spherical Cow", involves extracting simple key factors within a com- 
plex system and constructing a model that can be analysed quickly so that im- 

mediate action can be taken as a consequence. 

As more realism is introduced to the model, the mathematical complexity in- 

creases and simple on the "back of envelope" solutions cannot be obtained. 
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1.7.3 Differential/Difference Equations 

The rate of change of numbers in parasite and host populations can be conve- 
niently represented using calculus equations. The strength of this approach lies 
in the ease with which complex biological systems, such as host-vector-parasite 

systems can be represented by a finite set of equations for the interaction between 
the various populations. 

Formulation of the equations differ depending on whether changes to population 

numbers are considered to be a continuous or discrete process. Differential equa- 
tions describe rates of change of numbers in the population whereas difference 

equations update the population numbers at discrete equally spaced points in 

time. 

Bacterial models are easily represented by differential equations where the possi- 
ble states of the host individual, such as susceptible, infectious, immune, death, 

are thought of as compartments within which an individual can remain, migrate 
from or migrate to with specific probabilities or rates (Renshaw, 1993). 

Smith (1990) proposed a mathematical model for the evolution of anthelmintic 
resistance in a direct life cycle nematode parasite. A system of paired differential 

equations was developed to predict changes in the genotype distribution of free- 
living and parasitic stages, 

dP; 
dt = 13I - (a + bP) P; 

dIi 
= RO. - Fiji - ßli 

dt 
(1.1) 

where i=1,2,3 represents the genotypes, RR, (resistant), RS, (heterozygote), 

and SS, (susceptible), respectively, 
Ii and Pi are the numbers of free-living and intra-host parasites of 

genotype i, 

p,; is the free-living mortality, 
A is the female fecundity, 
ß is the rate of infection, and 
c1 is the genetic component of the model determining the offspring 

genotype distribution from the parent genotype distribution. 
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1.7.4 Stability Analysis 

The non-linear effects due to genetic mixing in the model means that conventional 
methods of solution used for linear differential equations cannot be used. Analysis 

of non-linear models involves examining the behaviour, of the system in a region 
around the steady states using local linearisation techniques. A steady state is 

said to be locally stable if small perturbations about the equilibrium return the 

system to that equilibrium. Otherwise the steady state is said to be unstable. 
This is quite a powerful method of analysis which provides stability criteria with 
respect to different permutations of the model parameters (Nisbet and Gurney, 

1982; Renshaw, 1993). 

Using this technique, Smith assessed whether simultaneous use of two drugs, 

that is mixtures, or the sequential use of two drugs, would impede the evolution 
of resistance greater. The model favoured the use of mixtures as opposed to 
the sequential use of two drugs as a means of impeding resistance. This is in 

general agreement with other nematode models (Barnes and Dobson, 1995) and 
insect models (Mani, 1985). The fact that only a proportion of the entire parasite 
population are exposed to treatment at any one time, given the remainder remain 
on pasture, means that some susceptibility is conserved. Within the host, the 

mixture of drugs kills more individuals than the sequential use of the same drugs. 

This means that the surviving population contributes relatively fewer progeny to 

the next generation, resulting in the increase in the gene conferring resistance 
being minimised. 

1.7.5 Stochastic Models 

Models, such as that of Smith (1990), described previously are considered de- 
terministic in nature, in that the behaviour of the model in the future can be 

predicted from prior/historical knowledge of the system in the past. In contrast, 
stochastic models work on the assumption that the future behaviour of the sys- 
tem is not predictable from the present or previous states, but is based on a set of 
probabilistic rules. Recently, stochastic models have been formulated to describe 
host-parasite interactions, particularly for describing the relationship between the 
levels of immunity in the host, variation in infection rates and observed levels of 
parasitism in the field, (Isham, 1995; Grenfell, Dietz and Roberts, 1995). 
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1.7.6 Matrix Models 

Describing changes in human demography using matrices was pioneered by Leslie 
in 1945 for age-classified populations and was subsequently extended by Lefkovitch 
in 1965 for stage-classified populations. In essence, a state vector containing num- 
bers of individuals at time t, split by age or stage is multiplied by a transition 

matrix containing the relevant demographic parameters such as fecundity, mor- 
tality and transition probabilities, to give the corresponding state vector in the 

next time unit. 

Gettinby and McLean (1979) formulated the life cycle of the liver fluke, F. hep- 

atica as a matrix model to assess different methods of controlling fluke infection 
levels in sheep. The state vector contained the life stages of the liver fluke and the 
transition matrix contained all the relevant life history parameters of the fluke. 
The model was extended to investigate possible population control measures on 
infection numbers. The principal conclusion from the analysis of this matrix 
model was that good drainage is an effective means of control, so that an initial 
investment in installing a good drainage system would eliminate the need for the 

use of long term expensive drug treatments. 

Matrix properties can be exploited in these circumstances to determine limiting 
behaviour of the population provided reliable parameter estimates are used. 

1.7.7 Simulation Models 

The life cycles of infectious agents, vectors and hosts can be integrated with 
environmental factors that vary from site to site and season to season to model 
the dynamics of a disease over time. Representation of such a complex system as 
a finite number of equations would be impossible, but simulation of the system 
using a computer model is relatively simple. 

There are many examples of computer simulation models, for parasitic diseases. 
Paton, Thomas and Waller (1984) present a simulation model that successfully 
predicts infection levels of parasites on pasture over a two year period using 
historical climatic data. Mathematical models for development of the free-living 

stages, for adult establishment and for ewe egg output, in addition to site specific 
data such as stocking rate, pasture area, herbage density and initial contamination 
levels are integrated into this model, and the dynamics of the parasite population 
simulated. 
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Results from this model indicated that the lamb contribution to infection may 
be greater than once suspected. The summer wave of infection had previously 
been attributed to the post-parturient rise in ewe egg output. However when the 

lamb contribution to infection was examined in isolation, it proved to be quite 

significant. In addition, it was noted that if climatic conditions were right, up to 

three generations of parasites could pass through the lambs during one season, 

contrary to common belief that at most two generations would get through. These 

conclusions had practical implications for the control of parasite infection levels. 

Subsequently provision was made in the model for assessing the impact of different 

control regimens on infection levels. As a result, it was recommended that the 

lambs were dosed early in the season to minimise their contribution to the summer 

wave of infection. 

In the wake of large scale resistance to anthelmintics, simulation modelling has 

made it possible to investigate the long term exposure of parasite populations 
to drugs. Information on the genetic fitness of the parasite, climatic conditions, 

animal response and pasture management have been combined with anthelmintic 

control regimens to determine how rapidly there would be selection for a resistant 

strain (Gettinby et al, 1989; Barnes and Dobson, 1995). 

The model of Barnes and Dobson (1995) was used to answer a set of concise ques- 
tions pertaining to the effectiveness of current measures of impeding the dissem- 

ination of resistance throughout a population. Although the authors addressed a 

wide range of topical issues, three points emerged as being most relevant. Firstly, 

the model highlighted the importance of acquired immunity in lambs, suggesting 

that some exposure of lambs to infection shortly after birth would be desired. 

Using the model, two ways of conserving susceptibility to drugs were recom- 

mended. The first involves using a grazing management scheme and the second 
improved use of the available drugs. Finally, the model was used to examine al- 
ternative, non-chemotherapeutic methods of parasite control. In comparing the 

performance of novel vaccines with anthelmintic drugs, it was discovered that 

efficacies required for successful vaccination of sheep are well below the efficacies 

required for anthelmintics. 

1.7.8 Future Modelling Trends 

Currently, epidemiological modelling is moving towards a holistic approach that 

incorporates mathematical models, expert rules, environmental data and litera- 
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ture into a powerful integrated knowledge management tool. It is hoped that 
through the use of hypertext knowledge bases, this approach will bridge the gap 
between the model and the user. Successful integrated models have been devel- 

oped for the study of equine welfare, (Revie et al, 1994) and currently a generic 

modelling approach has been adopted for the control of epizootic diseases, in the 

first instance, theileriosis and trypanosomiasis in Eastern Africa. 

1.8 Thesis, Outline 

During its lifetime, the nematode parasite T. circumcincta spends a period free- 
living on pasture and the remainder inside a sheep host. 

On the pasture, the free-living stages are exposed to external environmental stim- 
uli. Chapters 2 and 3 examine the effect of temperature on the free-living de- 

velopment rate of T. circumcincta .A development rate temperature model is 

proposed in Chapter 2 that is both flexible and biologically interpretable. In 
Chapter 3, this model is incorporated into a simulation model of the population 
dynamics of T. circumcincta called Osterant and the concept of developmental 

variability is explored as a means of explaining observed variation in infection 

levels on pasture. 

Chapter 4 presents a theoretical modelling framework for the entire life cycle of 
T. circumcincta incorporating developmental variability and genetical mixing to- 

gether with other important epidemiological aspects of the nematodes life history, 

such as areas of refugia and host ingestion. 

Chapters 5,6 and 7 focus on an important aspect of the parasitic stages of the 

nematode life cycle, that of anthelmintic resistance. A basic modelling structure 
is presented in Chapters 5 and 6 that describes the evolution of drug resistance 
in a parasite population undergoing intensive drug treatment, and a model is 

given that assesses the impact of different life history parameters on the time to 

significant resistance within such a population. In Chapter 7, a novel method of 
resistance control is addressed and the previous models used to assess the effect of 
this control technique on the resistance status of a typical nematode population. 
Practical advice is given on the optimal way to suppress resistance and control 
parasitism. 
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Chapter 2 

The Effect of Temperature on the 
Free-Living Development of 
Nematodes of Sheep 

2.1 Introduction 

It has long been recognised that the development and survival of the free-living 

stages of poikilothermic organisms such as nematodes is governed by the sur- 

rounding environment. The effect of environmental factors on the development 

and survival of organisms has been documented in the book Temperature and 
Life (Precht et al, 1973). Temperature, relative humidity, photoperiodicity, soil 

and vegetation types are the main environmental factors governing the complex 
developmental process of such organisms. It has been concluded, however that 

temperature exerts the primary influence on development and survival of the 

free-living stages of nematodes (Crofton, 1963; Soulsby, 1969; Kates, 1965). Sev- 

eral attempts have been made to quantify this relationship for certain species 

of nematode within specific climatic zones (Paton, 1983; Leathwick et al, 1992; 

Barnes and Dobson, 1995), however no serious attempt has been made to accu- 

rately model this temperature-dependent relationship over the entire temperature 

range in both temperate and tropical regions. 

In the insect domain, it has been recognised that the quantification of the rela- 
tionship between development and temperature is of great practical importance 
for accurate scheduling of census samples and in the control of insect populations 
(Wagner et al, 1984). 

Early accounts of models of this dependency have been recorded as far back 
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as the last century. These models have their origins in chemistry where they 

were used to determine the effect of temperature on the rate of enzyme-catalysed 
biochemical reactions. 

In the last two decades advances have been made in the mathematical treatment 

of this phenomenon in insect populations to produce quite sophisticated and in 

some cases, quite complex models. 

It is the intention here to give a brief guide through the modelling literature on this 

subject over the past twenty years, and then to arrive at the most recent models. 
From these, it is hoped to apply similar techniques to nematode populations in 

a bid to solve some of the problems that have arisen in agriculture as a result of 
these parasites. 

2.2 A Review of Mathematical Models for Tem- 
perature Dependent Development Rate 

Three models of insect development will be discussed in the order that they ap- 
pear in the literature. The chronology of these models reflects the evolution and 
sophistication of ideas developed through years of collaboration between ento- 
mologists and modellers seeking to explain insect behaviour. 

In addition, a model of nematode development will be reviewed alongside the 

three for insect development in an attempt to see if recent techniques in the 
insect domain can be adapted to improve current nematode models. 

2.2.1 Temperature Dependent Development Modelled Us- 
ing the Degree - Days Method 

The Degree-Day concept (Sanderson and Peairs 1913; Arnold 1960; Baskerville 

and Emin 1969; Abrami 1972; Allen 1976; Sevacherian et at 1977), has been 

around since the beginning of the century and has probably enjoyed the longest 

and most varied usage out of the three models under discussion. It assumes a 
linear relationship between temperature and the development rate of an organism 
between two temperature bounds. A threshold temperature, Tbase, below which, 
development does not occur, is incorporated into the equation. The degree-days 
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on day i are calculated to be 

DDi = Ti - T6ase 

where Ti is the average temperature on day i. 

(2.1) 

Within certain temperature boundaries, it is accepted that as temperature rises, 
the rate of development increases. For each species there exists an optimal tem- 

perature, such that development time is minimal. Experimentally, this optimum 

can be found and the minimum time in which an organism may develop fully to 

the next stage can be established. Development is said to be complete once 
n 

DDS > DDopt (2.2) 
s-i 

where DD0pt is the minimum number of degree-days taken for an organism to 
develop to the next stage under optimum temperature conditions. 

Within certain temperature bounds, the development rate of most organisms 
varies linearly with temperature, in agreement with this model. Historically, 
development at temperatures outwith these boundaries was either modelled em- 
pirically or ignored. With the increasing prevalence in diseases of crops and 
livestock in both temperate and tropical climates, comes an increasing need to 

use these models over a broader range of temperatures. They are of no practical 

use if they cannot model the development of organisms at temperature extremes, 

as it may be that in these extreme conditions the most interesting and important 

behaviour occurs. 

In most poikilothermic organisms, development rate rises either exponentially 

or sigmoidally between a base and an optimum temperature. Beyond the opti- 
mum temperature, a sharp decline in development rate is observed until a lethal 

maximum temperature is reached and the life of the organism can no longer be 

sustained (Andrewartha and Birch, 1954). 

The following models attempt to address development outwith the previously 
imposed temperatures boundaries. 

2.2.2 Temperature Dependent Development Modelled as 
an Inverted Logistic Equation 

Stinner et al (1974), modelled the development rate of the insect, Trichoplusia 

ni as a function of temperature using a sigmoid curve which was inverted once 
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an optimal temperature was exceeded. The form that the sigmoid curve takes 
is derived from the following differential equation for the rate of change of the 
development rate with temperature 

-; n = aDT 1-DT (2.3) 
opt 

where DT is the development rate at temperature T, 

Dopt is the optimum development rate, and 

a is the natural uninhibited growth rate. 

The development rate at temperature T is then calculated to be 
, 

DT 
Dopt reaTo t+aj J (2.4) 

1+ ear'+b 

where 

T T<T0pt 
T- 2Tpt -T T> Topt 2.5 

and T,, pt is the optimum temperature. 

Effectively, once the temperature exceeds the optimum level, that temperature 
is mirrored about this optimum to determine the development rate. Figure 2.1 

illustrates this model graphically. 

Dm; 

k 

a 

s 
W Q 

Dm 

TEMPERATURE 

Figure 2.1: Illustration of the inverted sigmoid curve of Stinner et al (1974), 

where growth is logistic from a base to an optimum temperature, (Tbase - Tit), 
and inversion of the function beyond the thermal optimum, Topt. 
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2.2.3 Temperature Dependent Development Modelled by 
Matching Two Independent Solutions with a Com- 
mon Limit 

Logan et al (1976), acknowledged that two distinct relationships exist between 
development rate and temperature, which they demonstrated for the McDaniel 

spider mite, Tetranychus mcdanieli McGregor. The first relationship, which they 

called Phase 1, describes the development rate of an individual when exposed to 
temperatures between a threshold and an optimum temperature (Tbase - Topt) 
For many species this is in the form of a sigmoid or exponential growth curve (An- 

drewartha and Birch, 1954). Once the temperature has exceeded this optimum 
level, the associated development rate decreases rapidly until a lethal maximum 
temperature is reached whereby the life of the organism cannot be sustained, 
which they called Phase 2. Figure 2.2 gives an illustration of this. 

Dmax 

U 

q 
U 

a 
0 
U 
U 
A 

Dmii 

Temperature 

Figure 2.2: Illustration of the matched asymptote method of Logan et al (1976). 

The challenge here was to produce a single analytic equation describing the be- 
haviour of the development rate of an organism over the entire range of temper- 
atures (Tbase - Tmax)" 

Logan et al (1976) recognised that their problem could be approached as a bound- 

ary layer problem. Boundary layer problems arise in situations where the be- 
haviour of the system changes very quickly over a relatively small area. Using 

singular perturbation methods, solutions for Phases 1 and 2 were found. 

For this particular case, the solution to Phase 1, called the outer solution and 
denoted D0(T), represented the increase in development rate with increasing 
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temperature from a base to an optimum level, and for the parasite under study, 
was exponential in nature 

D0(T) = Doe )T (2.6) 

where Do represents the development rate at base temperature, and 
p is the natural rate of increase in development rate. 

The solution to Phase 2, called the inner solution, described the behaviour of the 
development rate within the high temperature boundary layer, denoted by Di(r). 
A special scaling factor, r, was introduced to take account of relative distances 

within the boundary layer. This equation took the form 

DS(T) = Co(1 - e-T) (2.7) 

where ,r= TM-T and TM -Tops 
Co is a constant yet to be determined. 

By matching the asymptotes of these solutions, the common limit was found to 
be 

DO(TM) =m Di(T) = Co = D08PTM (2.8) 

Adding the equations for the inner and outer solutions (2.6) and (2.7) and sub- 
tracting their common limit in equation (2.8) yields a uniform approximation to 
the required solution valid over the entire range of temperatures (Tbase - Tmax) 

D,, (T) = Do [OPT 
- e1TM-Tl 

(2.9) 

This provided the most flexible modelling technique to date as it addressed the 

change in behaviour of development rate once an optimum temperature had been 

exceeded. It could be adapted for any species inhabiting any climatic region, as 
all that needed altering was the nature of the inner and outer solutions, provided 
a common limit existed between them. 

2.2.4 Temperature Dependent Development of Nematodes 
Modelled as a Step Function 

Paton (1983), developed a model for the free-living development of 0. circurn- 
cincta as a function of temperature, which was incorporated into a population 
simulation model called Osterant. Development was seen to occur in three dis- 

tinct phases 
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" development at low temperatures from 4°C - 10°C, 

" development in the mid temperatures from 11°C - 21°C, and 

" development at high temperatures from 21°C upwards. 

Three separate equations were formulated using the data provided by Christie 
(pers. comm), and Salih and Grainger (1982), to estimate the parameters. The 

step function model took the following form 

1 4<_T<_10 a1T+61 
DT - a2T+b2 

10 <T< 21 (2.10) 
1 T>21 

where D1(T), D2(T) and D3(T) represent the development rate within the three 
temperature ranges and a1,2 and b1,2 are parameters to be estimated. Figure 2.3 
illustrates this model graphically. 

This model was one of only a few models of temperature-dependent development 

of free-living nematodes. It was adequate for the purpose of simulation, however, 

analytically, it provided no insights into the biology of the parasite system, and 
was not flexible enough to incorporate high temperature development. Clearly a 

model that was analytic, rather than empirical in nature, and explained develop- 

ment over a wider range of temperatures using a single equation with biologically 

meaningful parameters was desirable. 

2.3 An Analytic Model for the Temperature De- 

pendent Development Rate of T. circum- 
cincta 

An investigative study was undertaken to develop an analytical model that accu- 
rately described the effect of temperature on the free-living stages of the abomasal 

nematode T. circumcincta. The step model of Paton (1983), the inverted logistic 

model of Stinner et al (1974), and the matched asymptote model of Logan et al 
(1976), were fit to data on the development of the free-living stages of T. cir- 

cumcincta exposed to constant temperature stimuli. The resultant models were 
compared in order to obtain the best fitting model for this species. 
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Figure 2.3: Illustration of the step function of Paton, 1983. 

2.3.1 Development Data for T. circumcincta Under Con- 
stant Temperatures 

Mean Time To Hatching of T. circumcincta Eggs 

Table 2.1 gives data on the mean hatching times of T. circumcincta eggs under 

constant temperatures from three different studies. The data provided by Christie 
(pers. comm), covered the lower end of the temperature scale, ranging from 4°C 

to 21°C, whereas the data generated by Salih and Grainger (1981), covered a 
broader temperature range, from 5°C to 35°C in 5°C intervals. The third data 

set, that of Young et al (1980), gave a distribution of hatching times over a 
range of constant temperatures from 6°C to 20°C. The mean hatching times 
in all three data sets were in broad agreement and followed a similar pattern. 
Development time decreases as temperatures rise from a base to an optimum. 
Development at very high temperatures was only recorded by Salih and Grainger 
(1981). This data showed that development times began to increase once an 
optimum temperature was exceeded until a lethal maximum was reached and 
the organism died. There was general agreement that the base temperature, or 
developmental zero, appeared to be about 4°C, and hatching would not occur at 
40°C or beyond. 
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Table 2.1: Mean hatching times (in days) of eggs and development times of Ll 
to L3 T. circumcincta for a range of data sets. 

Temperature 
(°C) 

Egg to Ll Stage 

Salih and Grainger Christie 
(1981) (pers. comm. ) 

Young et at 
(1980) 

LI to L3 Stage 

Salih and Grainger Christie 
(1981) (pers. comm) 

4 - 17 - - 62 
5 11.745 15 - - 46 
6 - - 12.6 - 35 
8 - 8 - 24 
10 4.016 5 3.958 20 20 
12 - 4 - - 18 
14 - 3 - - 14 
15 2.058 - 2.135 13.14 - 
20 1.495 - 1.1854 10.41 - 
21 - 1 - - 1 
25 0.9916 - - 8.11 - 
30 1.000 - - 4.89 - 
35 1.245 - - - - 
40 00 - - - - 

Mean Development Time of T. circumcincta L1 to L3 

Table 2.1 also gives the mean development times of T. circumcincta Li to L3 life 

stages from two separate data sets (Salih and Grainger, 1981; Christie (pers. comm)). 
The data provided by both were not really comparable as different temperature 

ranges were investigated. Christie provided data on temperatures at the low end 

of the scale, from 4°C to 21°C, and Salih and Grainger (1981) gave data on tem- 

peratures ranging from 10°C to 30°C at 5° intervals. Again, the developmental 

zero appeared to be about 4°C. Neither of the studies investigated development 

at very high temperatures, although Salih and Grainger (1981) stated that there 

was negligible development at 35°C. 

2.3.2 A Model for the Mean Hatching Time from Egg to 
L1 

The step function (Paton, 1983), the inverted logistic (Stinner et al, 1974), and 

the matched asymptote model (Logan et al, 1976) were fit to the data of mean 
hatching times in Table 2.1 in an attempt to determine the best predictive model 

of hatching times of T. circumcincta in the field. Non-linear parameter estimation 

using the standard non-linear least squares routine, the Levenberg-Marquardt 

method (Press et al, 1992), was carried out. The parameter estimates are given 
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in Table 2.2. 
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Figure 2.4: Fitting (a) step function (Paton, 1983) (b) inverted logistic function 
(Stinner et al, 1974), and (c) matched asymptote function (Logan et al, 1976) to 
mean hatching time (in days) of T. circurncincta eggs given in Table 2.1. 

The Step Function 

The step function of Paton (1983), for the mean hatching times of T. circumcincta 
egg to L1, given in Table 2.1, takes the following form 

I1 4<T<10 
-2.12T}25.43 

DT 
- -2.36T+5.99 

10 <T< 21 (2.11) 
1 T>21 

Figure 2.4(a) shows that this function (Paton, 1983), fits the data quite well 
between 4°C and 21°C. However, no attempt was made to model the behaviour 

of the development rate beyond 21°C. This becomes a problem certainly in 
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tropical climates where temperatures can exceed 21°C throughout the year, and 
more often than not in temperate climates where it is not unusual to experience 
temperatures above this level. As a consequence, using this model to predict 
development times in the field could cause serious errors in the prediction of peak 
infection levels. 

The Inverted Logistic Model 

The inverted logistic function (Stinner et al, 1974) was next fit to the data for 

mean hatching times, given in Table 2.1, at different temperatures. Figure 2.4(b) 

graphically presents the following equation 

24.23 [e 
-0.3lTot+4.691 

DT 
1 +e-0.31T +4.69 

J (2.12) 

where 
TT< Topt 

T- 2Topt-T T>T0 2.13 

It is clear that the fit- was good over the initial temperature range (Tbase - Tost) 
However, due to the assumption of symmetry about the thermal optimum, the 
function did not fit the data well over the final temperature range (To0t - Tmax) 
Despite addressing the problem of development at high temperatures, the inverted 
logistic model was unsuccessful in modelling this phenomenon due to the assumed 
symmetry about the thermal optimum, which in reality does not exist. 

The Logistic-Exponential Model 

The final model fit to the mean hatching times of T. circumcincta eggs was that of 
Logan et al (1976). A function representing development over the initial temper- 

ature range, Phase 1, was proposed and asymptotically matched to the function 
for development over the final range of temperatures, Phase 2. A common limit 

was subtracted from the sum of the two functions to produce a single analytic 
equation uniformly valid over the entire temperature range, (Tbase - Tmax). 

On examination of the plotted data, Phase 1 it appears, is well described by a 
sigmoidal curve. This means that the outer solution is of the form 

D0(T) - 
Ph (2.14) [1 + ke-PT 
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where k= and 

p and ry are defined as before. 

The behaviour of the data in Phase 2 from an optimum to a lethal maximum tem- 

perature is characterised by a rapid declining function such as an exponentially 
decaying function, given by the inner solution, 

D; (T) = Co {1- e-T1 (2.15) 

where T= TM-T 
TM-Tope 

The asymptotes of equations (2.14) and (2.15) were matched and the common 
limit subtracted from the sum of the inner and outer solutions to produce a single 

analytic function uniformly valid over the entire temperature range 

Du =1 
[1 + ke-PT] -1 

- e-7} (2.16) 

Non-linear parameter estimation, (Press et al, 1990), resulted in the following 

equation for the mean hatching rate of T. circumcincta eggs at any temperature, 

T 

0.23 
0.13 - O. OÖ 

-0.23T 
-1 

- 
40.03-T rý DT -1+e-e 40.03-35.16 

(2.17) 

0.18 0.057 

It is clear from Figure 2.4(c) that this function gave a very good fit over the entire 

range of temperatures. It was a continuous function, uniformly valid between Tbo,, e 
and Tmax, and many of the parameter values, given in Table 2.2, had biological 

significance. For example, ¢ represents the developmental threshold, p is the 

unconstrained growth rate, and y is a heat denaturization effect triggered by 

high temperatures. 

The final column in Table 2.2 gives the associated final sum of squares (FSS) for 

each model fit to the data sets. The final sum of squares for the step function 

(Paton, 1983) was the highest at 1.0747. This was due to the inadequacy of the 

model to predict development rates at above optimal temperatures. The inverted 

logistic model of Stinner et al (1974) yielded a final sum of squares of 0.2083 
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Table 2.2: Table containing parameter estimates -obtained when comparing the 
step function (Paton, 1983), the inverted logistic function (Stinner et at, 1974) 
and the logistic-exponential model of Logan et al, 1976 for hatching rates of T. 
circumcincta eggs and the logistic-exponential model of Logan et al (1976), for 
the development of T. circumcincta L1 to M. 

Life Stage Function Parameter Estimates FSS 

Egg to Ll Inverted Logistic Dot aQ0.2083 
Stinner et at, 1974 24.2324 -0.3129 4.6917 

E to Ll Step Function al a2 bi b2 Egg Paton, 1983 -1.91332 -2.36308 23.4669 5.99449 
1.0747 

Egg to Li Logistic-Exponential P It 0 Topf Tmax 0.0526 Logan et at, 1976 0.23087 0.18431 0.05747 35.15831 40.03 

Ll to L3 Logistic-Exponential p ry .0 Tope Tma: 0.0008 Logan et at, 1976 0.07435 0.0005 0.02895 36.82324 37.1711 

suggesting that it gave a better fit to the data than the step function of Paton, 
(1983). However, the final sum of squares for the logistic-exponential model of 
Logan et al, (1976), 0.0526, was markedly lower than the other two. It was 
concluded that this model represented the best fitting model to the data. 

A more sensitive test of goodness of fit involving the residual mean square de- 

viances could have been used, however, for our purposes, the differences in the 
fits of the various models was so great that visual comparisons could be made. 

By far, this modelling technique provided the most flexible and best fitting model 
to the available data for T. circumcincta egg hatching rates as a function of 
temperature. 

Description of the temperature development rate relation using the technique of 
matching asymptotes of two curves (Logan et al, 1976), for the remainder of the 
free-living stages of T. circumcincta now follows. 
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2.3.3 A Model for the Mean Development Time of T. cir- 
cumcincta L1 to L3 

As was mentioned previously, there was little data available on the development 
times of L1 to L3 life stages of T. circumcincta at high temperatures. From the 
data on the mean development time of Ll to L3 at lower temperatures (Phase 

1), the relationship appears sigmoidal in nature. Generally at high temperature 
levels, small changes in temperature are characterised by more rapid changes in 
development times which suggests that as a preliminary step, Phase 2 behaviour 

may assume an exponentially decaying function. Using the data from Table 2.1, 
the parameters were estimated in the same way as before and the function, 

0.07 0.07 - 0.028 -1 37.7-T DT =1}0.0005 e-0.07T - e- 37.17-36.82 (2.18) 
0.0005 0.028 

was fit to the data for mean development times of T. circumcincta Ll to L3. 
From Figure 2.5 it is clear that the function fits the data well. Table 2.2 gives 
the parameter estimates derived from the non-linear parameter estimation rou- 
tine. As data was not provided for temperatures above 30°C, the function was 

used to estimate the behaviour of the development rate beyond this temperature. 

Initial estimates of the optimum and maximum temperatures were provided, and 

were then used by the estimation procedure to estimate optimum and maximum 
temperatures. 

2.4 Variation In Response to Temperature 

Comparison of the most recent practical nematode temperature development 

model with two of the commonly used insect development models revealed that 
the model of Logan et al, (1976) had greater success in modelling the tempera- 
ture dependent rate phenomena in nematode populations than the others, both 
for the egg to L1 and L1 to L3 stage. 

Traditionally, the next step from here would be to incorporate the best fitting 

model into a population dynamics model in order to predict parasite emergence 
levels in the field so that control measures could be optimised in terms of efficacy 
and safety. 
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Figure 2.5: Fitting the logistic boundary layer function (Logan et al, 1976), in 
equation (2.18), to mean development time (in days) of T. circumcincta L1 to 
M. 

The timing and magnitude of peak pasture contamination levels is seen to fluc- 

tuate geographically and temporally, and there has been much difficulty in ac- 
counting for these fluctuations. Changes in climate cause much of this variation, 
however changes in temperature, precipitation and relative humidity do not ex- 
plain all of it. Another source of this variation may come directly from the 

parasites in their individual response to temperature. 

Experiments to determine development rates at various constant temperatures 

yield a distribution of development times within a population ranging from those 

who develop quickly to those who take a good deal longer to develop. How- 

ever, more often than not, it is only mean development rates (or times) that are 
reported, and those individuals in the tails of the distribution that develop sig- 
nificantly faster or slower than the average developers are generally omitted from 
further analysis. 

The effect that variation in developmental response to temperature stimuli has 

on the population dynamics of the sheep nematode T. circumcincta is unknown. 
Only one publication that we know of provides a distribution of development times 
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with temperature (Young et al, 1980). Experiments have since been undertaken at 
the Moredun Research Institute, Edinburgh, to provide additional data. Despite 
this lack of data, it is clear from these initial findings that there is a great deal of 
variation in response to temperature stimuli between individuals in a population. 

From here, it is necessary to quantify this variation using the data available to us 
to assess the impact that within-population variation may have on the population 
dynamics of T. circumcincta . 

The data provided by the various authors was the distribution of hatching times 

and development times of T. circumcincta eggs and L1 to L3, respectively, under 
different constant temperatures. To get an idea of the range in development 

times exhibited in a single population, three percentile groups were chosen from 

the distribution: 

" The time until 1% of the population had completed their stage development 

provided data for the fast developers, 

" the time until 50% of the population had completed stage development 

provided data for the average developers, and finally, 

" the time until 80% of the population had completed their stage development 

provided data for the slow developers. 

The 50th percentile was chosen here to represent the average behaviour in the 

population. The 80th percentile was chosen here to represent slow developers 

as it was quite unusual that 100% of the population would develop to the next 
stage. There was always a few individuals that would not survive. On average, 
just under 90% of the population would complete stage development (Young et 
al, 1980). 

In the last two sections of this chapter, prediction models have been given for 

the development rate as a function of temperature for mean development times, 

representing some average behaviour in the population. 

In the following two sections, prediction models for the development rate of fast 

and slow egg to Ll and Ll to L3 stages, respectively, are given using the technique 

devised by Logan et al (1976). 
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2.4.1 A Model for Fast Developers 

An individual is categorised as a fast developer if the time to completion of a 

specific life stage at a constant temperature corresponds to the time when 1% 

of the experimental population under the same constant temperature completes 
that life stage. 

Hatching Times of Fast T. circumcincta Eggs 

The first two columns of Table 2.3 gives data on the hatching times of fast devel- 

oping T. circumcincta eggs, provided by Crofton (1963) and Young et al (1980). 

Table 2.3: Hatching times (in days) of fast eggs and development times of fast 
L1 to L3 T. circumcincta . 

Egg to Ll Stage Ll to L3 Stage 

Temperature(°C) Crofton, (1963) Young et at, (1980) Young et at, (1980) 

4 9 - - 
5 - - - 
6 7 9 - 
10 - 1.979 33.33 
13 2 - - 
15 - - 8 
20 1 1.06 5 
34 0.708 - - 
35 - - 00 
40 00 00 - 

Using a logistic function for Phase 1, and an exponentially decaying function for 

Phase 2, the following equation was formulated by matching the asymptotes of 
both curves 

0.19 o'ls - 0.14 -1 40-T 

= DT 
0.13 L{1 +o 1s 

0.14 e-o. 19T - e-40-39.8 (2.19) 

to give the development rate of fast T. circumcincta eggs at temperature T. 

The fit of the data in Table 2.3 to this curve is shown graphically in Figure 2.6. 

The final sum of squares for this model is 0.0351. 
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Figure 2.6: Fitting logistic-exponential function (Logan et al, 1976), to fast hatch- 
ing times (in days) of T. circumcincta eggs given by Crofton, (1963) and Young 
et al, (1980). 

Development Times of Fast T. circumcincta L1 to L3 

The final column of Table 2.3 gives data on development of fast Ll to L3 parasites 
under different constant temperatures. Due to the difficulty in obtaining data 
for this percentile category in the population, dummy data points had to be 
introduced into the parameter estimation routine. This provided the routine 
with sufficient degrees of freedom to obtain parameter estimates. The use of 
dummy data points is common in mathematical modelling of data sets (Press et 
al, 1992). Generation of dummy data points when real data is unavailable can 
be done by simulating data points from a specified curve with the assumption 
that the development rate at temperature T is normally distributed with mean 
AT and variance QT. Random numbers are then generated to give development 

rates at each temperature, T, representing the departure of that generated data 

point at temperature T from the mean µT. 

Identical forms for the equations in Phases 1 and 2 were used to model develop- 

ment of fast L1 to L3 as a function of temperature. The data in Table 2.3 were 

32 

10 ZO 30 40 
Temperature (degrees C) 



used to estimate the parameters given in the equation for the development rate 
of fast T. circumcincta Ll to L3 at temperature T 

0.15 0.15 0.041 -1 
31.073-T 

DT 
0.59 

[[i 
+ o. ss0.041 e-o. i5T -e 31.073-29.634 (2.20) 

Figure 2.7 is a plot of the equation in (2.20) fit to the data points in Table 2.3. 
The final sum of squares for this particular data set is 0.000007. 
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Figure 2.7: Fitting logistic-exponential function (Logan et al, 1976), to develop- 
ment time (in days) of fast T. circumcincta Ll to L3 using data generated at the 
Moredun Research Institute, Edinburgh. 

2.4.2 A Model For Slow Developers 

An individual is categorised as a slow developer if the time to completion of a 

specific life stage at a constant temperature corresponds to the time when 80% of 

an experimental population under the same constant temperature develops from 

one life stage to the next. 
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Table 2.4: Development times (in days) of slow T. circumcincta egg to Ll and 
L1 to L3, respectively. 

Temperature(°C) Egg to Ll Ll to L3 

(Crofton, 1963) (Young et at, 1980) 

4 - - 
5 - 100(D) 
6 27.3333 - 
10 4.6875 33.3(D) 
15 2.5 20 
20 1.291666 12 
25 - 10 
35 - 00 
40 00 - 

Hatching Times of Slow T. circumcincta Eggs 

The second column in Table 2.4 gives data on the hatching times of slow devel- 

oping T. circumcincta eggs provided by Crofton (1964) and Young et al (1980). 

Using a logistic function for Phase 1, and an exponentially decaying function for 

Phase 2, the following equation was formulated by matching the asymptotes of 
both curves 

= 
0.22 °'22 - 0.05 -1 40-T 

DT 
0.16 

1+o. is0.05 e-°. 22T -e X9.36 (2.21) 

The fit of the data in the second column of Table 2.4 to this curve is shown 

graphically in Figure 2.8. The final sum of squares for this model is 0.0035. 

Development Times of Slow T. circumcincta L1 to L3 

The third column in Table 2.4 gives data on development of slow Ll to L3 para- 
sites under different constant temperatures. Unfortunately, very little data of this 
type is available and dummy data points were introduced in order that parameter 
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Figure 2.8: Fitting Logistic-Exponential Function (Logan et al, 1976), to hatching 
times (in days) of slow T. circumcincta eggs. 

estimates could be made. The following models were constructed and fit to the 
data. 

Identical forms for the equations in Phase 1 and Phase 2 were used to model 
development of slow Ll to L3 as a function of temperature. The data in Table 
2.4 were used in the parameter estimation algorithm to estimate the parameters 
in the following equation 

0.17 0 
. 
17 

-0.014 
- 

-1 
31.55-T 

DT 
0.77 

1+0.770.014 eo 17T - 31.55-23.61 (2.22) 

The fit of the data in the third column of Table 2.4 to this curve is shown graph- 
ically in Figure 2.9. The final sum of squares for this model is 0.000012. 

Biological Significance of Estimated Parameter Values 

From Table 2.5 of the estimated parameter values obtained when fitting logistic- 

exponential models to data of fast, average and slow hatching and development 
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Figure 2.9: Fitting logistic-exponential function (Logan et al, 1976), to develop- 
ment times (in days) of slow T. circumcincta L1 to M. 

rates, it is clear that each parameter has a biological meaning. For example, 0 

represents the developmental zero, that is, the development rate at a certain base 

temperature below which life of the organism cannot be sustained. The estimated 
for the hatching rate of eggs at a base temperature is greater than the estimated 
for the development rate of Ll to L3 in all three development groups. This 

is consistent with the data, where development from egg to L1 is faster at 4°C 

than development from L1 to L3 at the same temperature. The growth rate p, 
of the exponential part of the logistic curve is consistently greater for the egg to 
L1 life stage than the Ll to L3 life stage for all three development groups. This 

is in broad agreement with the data as over all temperatures, Lls take longer to 
develop to L3s compared to the time taken for eggs to hatch to Lls. 

2.5 Discussion 

Two separate issues have been addressed in this chapter. The first is concerned 
with developing an accurate mathematical description of the relationship between 
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Table 2.5: Table of estimated parameter values for both life stages and three 
development groups, fast(F), average(M) and slow(S), with final sum of squares 
after the non-linear parameter estimation. 

Life Stage F, M, S p ry ýO Topt 'max FSS 

Egg to Ll Fast 0.1889 0.1305 0.1361 39.8079 40.0021 0.0351 

Egg to Ll Average 0.2309 0.1843 0.0575 35.1583 40.0345 0.0526 

Egg to Ll Slow 0.2199 0.1616 0.0509 39.3656 40.0060 0.0035 

Ll to L3 Fast 0.173447 0.7736 0.013628 23.608 31.5472 0.000007 

Ll to L3 Average 0.0744 0.00186 0.02893 31.2262 31.2839 0.0008 

Ll to L3 Slow 0.1467 0.5981 0.041438 29.6337 31.0729 0.000012 

the development rate of nematodes when free-living and the temperatures they 

are exposed to in the environment. The second is concerned with quantifying the 

variation in response to temperature within a nematode population. 

Temperature-Dependent Development Models 

Typically when modelling the life cycle of nematodes, the free-living period is 

split into two distinct stages for convenience, the egg to L1 and the Ll to L3 

stage, as distinguishing between the first and second larval stage is quite difficult 

(Urquhart et al, 1991). 

A comparative analysis of the development models of Paton (1983), Stinner et 

al (1974), and Logan et al (1976) was undertaken by fitting each equation to a 

sequence of temperature-development data sets produced under controlled exper- 

iments. The final (residual) sum of squares, (FSS), for each fit is given in Table 

2.5 and can be used to determine the goodness of fit of each model. 

The step function developed by Paton (1983) for T. circumcincta , was not easily 

adaptable to different species or climatic zones as development at high temper- 

atures was not addressed. The inverted logistic model of Stinner et at (1974) 

was unsuccessful in predicting development rate at high temperatures as the true 
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behaviour of development rate beyond an optimum temperature was not sym- 
metrical to the development rate at lower temperatures. 

The technique used by Logan et al (1976), to model temperature dependent 
development was by far the most flexible to date. With the exception of those 

models that simulate the physiological processes involved in development and so 

consequently are very complex (Sharpe and DeMichel, 1977), this model provides 
the most accurate description of the developmental process. 

The technique of matching the asymptotes of two curves to produce a single 

analytic function has been successfully used in describing the relationship of de- 

velopment time and temperature for insects and now in this thesis, nematodes. 
This relationship in poikilotherm populations has two distinct phases, the first 

typically characterised by a logistic growth equation from a threshold tempera- 
ture to an optimum, the second by some rapid decaying function from the optimal 
to lethal maximum temperature. Previous attempts at modelling this relation- 
ship have fallen short of describing the full behaviour over the entire temperature 

range. 

Very little is known about the biological mechanisms governing Phase 2. There 
have been suggestions that the heat denaturization effect may manifest itself by 

slowing down the metabolic rate, causing a rapid decline in development rate 
at high temperatures. More information must be gathered with respect to the 

mechanisms of development at high environmental temperatures, particularly 
now with suggestions that temperatures are increasing globally. 

Variation In Response to Temperature 

The second issue addressed in this chapter was concerned with quantifying the 

variation in response to temperature within a nematode population. 

In order to obtain an indication of the magnitude of developmental variation 
within a population, three percentile points from the developmental distribution 

were identified for investigation. These percentile points were labelled fast, aver- 
age and slow, respectively, and models for both free-living stages were constructed 
for each, producing 6 models in total. 

The variation between the three percentile categories in the population was con- 
siderable and would surely have implications for the dynamics of the entire popu- 
lation. For example, the hatching times of T. circumcincta eggs under a constant 
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temperature of 10°C varies from 47.5 hours for 1% of the population to hatch to 
113 hours when 80% of the population have hatched. This is a difference of more 
than three days between the fastest and slowest individuals hatching to the first 

larval stage. At 15°C, development from first larval stage to third takes around 8 
days for fast developers compared to 20 days for slow developers. Not accounting 
for this kind of variation may seriously affect the success of any control strategy 
due to the inability to accurately predict peak emergence times. 

Developmental variability has, to date, never been addressed for nematode pop- 
ulations. As a result of, or because of this, there is a distinct shortage of data for 

the response of the entire population to external stimuli, such as temperature. 
For our purposes, the non-linear parameter estimation could only be undertaken 
in some cases by including dummy data points for temperatures where data was 
unavailable. This shortcoming highlighted the need for good quality data over 
entire temperature ranges for the whole population. 

2.6 Conclusion 

Previous models predicted mean development times at a range of different temper- 

atures, which encompassed only a subsection of the individuals in a population. 
Those individuals that developed slower or faster than average were unaccounted 
for, yet their inclusion in any predictive model may have far reaching consequences 
for the dynamics of the population. 

In this chapter, six models of development were constructed and fit to experi- 

mental data on development times under different constant temperature levels. 

These models were for fast, average and slow development from egg to Ll and 
fast, average and slow development from Ll to L3. Despite the shortage of data 

for some parameter estimation, each model fitted well. 

The final sum of squares, (FSS), gave a very good indication of the goodness 

of fit of each model to the available data and were consistently lower when the 
technique developed by Logan et al (1976) was used to develop temperature 
dependent development rate models for this data. 

This investigation has provided a sophisticated technique for modelling tempera- 
ture dependent development and has introduced the concept of within population 
variation with respect to individual response to temperature. To date, this is the 
first time that this aspect of the population dynamics of nematodes has been ex- 
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plored despite a substantial amount of work having been carried out in the insect 
domain (Regniere et al, 1981; Wagner et al, 1984a; Stinner et al, 1974). 

Before this work can be taken into the continuous domain by fitting some distri- 
bution to our models rather than having distinct groups, additional experimental 
data is required to validate the models we have now. There are concerns here, 

especially when fitting the functions to the fast and slow data, that too few data 

points were available to obtain accurate parameter estimates. Visually, the func- 

tions fit the available data well, but at temperatures where data are missing, we 

need to clarify that the model is making accurate predictions through experimen- 
tal effort. 
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Chapter 3 

Exploring The Effect of 
Geographical, Temporal and 
Developmental Variation on the 
Population Dynamics of T. 
circumcincta 

3.1 Introduction 

It was proposed in the previous chapter that variation in the development rate of 
individual nematode parasites within a population may contribute to the observed 
variation in pasture contamination levels recorded between locations and within 
locations from year to year. Mathematical models of development as a function 

of temperature for the three development groups, fast, average and slow were 
presented. From the experimental data, it was clear that there was a significant 
difference in the development times of the three groups, however, the effect that 
this has on the population dynamics of the parasite is as yet unknown. 

In the past, nematode population models assumed uniform development of the 

population and sought to explain the observed variation in emergence patterns 
through changes in climate. 

The aim of this chapter is to investigate whether variation in emergence patterns 
both geographically and temporally may be explained to some extent by devel- 
opmental differences within the parasite population which may arise from genetic 
variability rather than by changes in the environment experienced by a uniform 
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parasite population. 

This theory was investigated using a population dynamics model first developed 
by Gettinby and Paton at the University of Strathclyde in the 1980s and is 
discussed in detail in the following section. 

3.2 Osterant 

Osterant (©STAMS) is a menu-driven simulation model, written in the Pas- 

cal programming language, developed to predict outbreaks of parasitic gastro- 
enteritis, (PGE), in lambs in Britain. One of the main causal organisms of PGE 
in lambs in Britain is T. circumcincta (Jackson, 1989). In addition, Osterant 
incorporates a drug selection model that simulates the evolution of anthelmintic 
resistance in a parasite population undergoing drug therapy. The model operates 
in discrete time at a particular location using site-specific climatic data and offers 
the user a choice of management strategies for the control of parasite populations. 

The model provides the user with an effective way of inputting this data via a 
sequence of menus and outputs the results to a text file. Each menu represents a 
different aspect of the model. The following sections describe each menu and it's 

role in the overall model. 

3.2.1 The Population Data 

Information on the epidemiology of the disease, including daily survival proba- 
bilities for each of the life stages of T. circumcincta , the frequency of the gene 
conferring resistance in" the population initially output by the ewes, and the fitness 

of the anthelmintic drug are determined by the user. 

Daily survival probabilities are site-specific and are typically determined from 
laboratory experiments, where the percentage of individuals that hatch and sur- 
vive from day to day are calculated under constant temperatures. Survival is 

multiplicative in that the probability that an individual survives for n days given 
that the daily survival probability is p, is p". 

When the ewes are initially introduced to the pasture at the beginning of the 
grazing season, they may be harbouring parasites in their abomasum. In Os- 
terant, the user defines the genetic status of this population with relation to 
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drug resistance. That is, the proportion of rr, rs and ss genotypes, representing 

resistant homozygotes, heterozygotes and susceptible homozygotes, respectively, 

within the host are specified, with the constraint that rr + rs + ss = 1. 

The fitness of an individual undergoing drug treatment depends on the genotype 
of that individual and the anthelmintic preparation used. The user is able to 

specify the proportion of each genotype, rr, rs and ss that the drug is expected 
to kill. 

3.2.2 The Meteorological Data 

The free-living population dynamics of T. circumcincta are principally climate 
driven. Given that at least half of the parasites life is spent free-living, tempera- 

ture, rainfall and relative humidity will all have an effect on the epidemiology of 
the disease. The development of the parasite is modelled in Osterant using me- 
teorological data obtained from weather stations. This data consists of minimum, 

average and maximum daily temperatures and total daily rainfall levels. The av- 

erage daily temperature is entered into an equation that determines development 

rate at different temperatures. The method of development fractions is used, 

whereby the daily development rates for a particular life stage are summed until 

unity is reached or exceeded, whence that life stage is said to be complete, and 
development to the next life stage can then proceed using another development- 

temperature function. The particular development-temperature functions used 
in Osterant were developed and discussed in Chapter 2. A weight was incor- 

porated into the daily development fraction to account for times during the day 

when temperatures fell below the threshold temperature. This weight was the 

estimated proportion of the day when temperatures were such that development 

proceeded normally. 

Not only is development temperature dependent, it is also known that rainfall 

plays an important part in the free-living stages of nematodes, particularly in the 

migration of newly hatched eggs from the faecal mat and infective L3s up the 

grass swards. Two moisture effects have been incorporated into the model. 

The first moisture effect involves the development from the first larval stage, L1, 

to the third, M. One of three conditions pertaining to the rainfall history and 
herbage density must be satisfied for the pasture to be regarded as moist on a 
specific day. Either, rain must have fallen on that day or on either 'of the two 
days preceding it, or 10mm (or 15mm) of rain must have fallen over the preceding 
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week (or 15 days) with herbage density exceeding 2500 (or 3000) kdm per hectare. 

Herbage density is regarded as being important for migration as a high density of 
herbage on pasture means that surface moisture is retained in higher quantities 
for a longer time. 

The development rate for an individual on a particular day would be weighted 
according to the moisture index. The weight would be zero if none of the above 
moisture conditions were satisfied and one if at least one of the conditions were 
satisfied. 

The second moisture effect involves the migration of the infective L3s from the 

mat up the grass sward. A single days rainfall is required for newly developed 
infective L3s to be available for ingestion by the sheep host. This follows from 

the frequently observed appearance of large numbers of parasites on the pasture 
immediately after rainfall. 

The Julian date of commencement and end of the simulation is input by the users 
as is the area of land in hectares on which the parasite and host populations 
inhabit. 

3.2.3 Grass Sample Data 

If samples of herbage density taken at the site of simulation are available, the 

model will incorporate these and interpolate over the simulation period using 

established methods to determine daily herbage density levels on that particular 

pasture. This aids in the calculation of the moisture index discussed above. The 

grass sample data is easily entered into the program from the menu. 

3.2.4 The Site of Simulation 

Data specific to the site or location being simulated must be entered by the user. 
This includes the number of ewes and lambs initially introduced onto pasture, 
the faecal output of ewes and lambs respectively, the date of lamb movement, the 

stocking rate, and the number of years which the simulation is to be run for. 

The faecal output of ewes and lambs will be different, however obtaining actual 
figures is likely to be difficult due to the variation in experimental methods. It is 

necessary to know the expected daily faecal output of ewes and lambs respectively 
as the parasite egg output is conventionally measured in terms of eggs per gram 
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of faeces. 

Movement of lambs to clean pasture has long been used as a control strategy in 

the fight against resistance. To move lambs onto clean pasture in the simulation, 
all that is needed is the date on which this is to happen, the program will then 

set up a second clean pasture and move the lambs accordingly. 

3.2.5 Nematode Treatment Data 

Details of the treatment regimen operating at a particular site may be entered 
into the model at this point. The days on which treatment is to be administered 

must be specified. From this information, the model will reduce parasite numbers 

on the days stated according to the efficacy of the drug. 

3.2.6 L3 Sample Data 

The genotype distribution of parasites harboured in the ewes is input by the user. 
On initially contaminated pasture, the genotype distribution of overwintered L3s 

is also required. It is assumed that infective L3s from the previous year will have 

overwintered and re-emerge at the start of the new grazing season. There is also 

the opportunity for the user to enter sample data collected from a particular site. 
This data is then used by the model as real estimates of initial and intermediate 

contamination levels on the pasture. 

3.2.7 The Results Menu 

The results menu provides the user with a resume of the input data and the genet- 
ical results from each simulation. This includes the final genotype distribution, 

and the time taken to reach this distribution. 

3.3 Dynamics of Osterant 

All of the above factors are under the control of the user. However certain as- 

pects of the epidemiology of the disease, the dynamics of the parasite population 
and the genetical changes to the population cannot be altered, as to do so would 
undermine the foundations of the model. These include the development func- 
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tions, the genetic assumptions, the rate of adult establishment in the host, the 
estimated herbage intake of ewes and lambs and the egg output of ewes and lambs 
respectively. Development of the free-living stages of T. circumcincta has been 
discussed in section (3.2.2), and the derivation of the equations can be found in 
Chapter 2. The development-temperature functions used in this model are par- 
ticular to each life stage. Each is a single analytic equation that calculates the 
development rate of an individual in that life stage over the entire temperature 

range which that individual would expect to be exposed to. 

Using results from tracer lamb experiments, pasture larval contamination levels 

were compared to adult worm burdens in the tracer lambs after slaughter. These 

experiments indicated that an increased larval intake led to lower adult worm 
burdens. This phenomenon was modelled using a step function that yielded the 
proportion of ingested L3 that established as adults sixteen days later in the host. 

Egg output of adult worms in lambs is thought to be governed by the hosts 
immune response and whether the pasture is initially clean or contaminated. 

Simple Mendellian principles govern the segregation and recombination of genes 
within the population. Resistance is assumed to be conferred by two alleles at a 
single locus on the chromosome, denoted r(resistant) and s(susceptible). Mating 

of parasites is random and the resultant offspring are assumed to occur in Hardy- 
Weinberg equilibrium, that is, if the frequency of the gene conferring resistance 
in a parent population is r, then the resultant offspring genotypes will occur in 
the ratio r2 : 2rs : s2 for rr : rs : ss, respectively. 

3.4 Validation of Osterant 

The output from the model was validated by comparing the results obtained from 

an observational study at an experimental station in Cockle Park in Northumber- 
land (Waller, 1982) over a period of two years. Meteorological and epidemiological 
data from that site were input into the model. The emergence patterns of in- 
fective L3s on pasture for the two years generated by Osterant were compared 
to those generated experimentally. Predicted emergence patterns followed the 
observed results very closely (Paton, 1983) for both of the years despite very 
different levels of parasitism in 1973 compared with 1974. That is, predicted ini- 
tial emergence dates of L3 coincided with the observed emergence dates at very 
similar levels. Observed and predicted peak pasture contamination levels were 
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very similar and the timing of the peaks occur within days of each other. The 
declines after the summer peak for both years follow a similar path for observed 
and predicted, with predictions of a second autumnal peak in 1973 as observed, 
but none in 1974, as observed. It can be concluded that at least for the predic- 
tion model, despite the myriad of factors involved in the complex dynamics of 
the population and its interaction with the host and the environment, the results 
have been validated and the output of the model can be trusted at least as an 
indicator of events in the field. 

The integration of the drug selection model added another dimension to the 

prediction model by presenting a way to examine the effect of various management 
control strategies on the growth and evolution of anthelmintic resistance in a 
population of nematodes at a particular site. 

Ten management programmes were examined to reflect the variety of control 
strategies in use around Britain. These were split into three categories. The first 

category involved control via the transfer of lambs to safe pasture at different 

times over the grazing season. The second category contained those strategies 
involving control by moving both ewes and lambs to safe pasture, and the third 

category contained those strategies where both ewes and lambs remained perma- 

nently on the original pasture throughout the grazing season. 

To examine the effect of different drug groups, the fitnesses of the genotypes were 

varied. Five fitness sets were simulated. It was assumed that all drugs killed 

all the susceptible homozygotes. The proportion of the heterozygotes and the 

resistant homozygotes that are killed by the drug varied according to whether the 
drug selected for dominance, recessiveness, incomplete dominance or heterozygote 

superiority. 

Having carried out the simulations (Gettinby et al, 1989), it was concluded that 

switching to clean pasture and reducing the dosing frequency of the anthelmintics 
would slow the drug selection process quite significantly. If frequent dosing was 
unavoidable then it was recommended that it take place early on in the season 
rather than late and that the drug used selected for dominance of the resistant 
allele. 

These general results have since been backed up by experimental effort and they 

are now widely established methods of controlling or at least slowing down the 
growth and evolution of anthelmintic resistance in nematode populations. 
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3.5 Implementation of Osterant 

Osterant as a predictive tool to be used at the farm level on a daily basis is still 
a long way away. For the moment, its strength lies in its flexibility to change 
scenarios very easily in order to answer What If ? questions. Such questions 
provide a broad speculative view on the effect of certain changes to the system, 
such as a global increase in temperature, a drop in average rainfall levels, the 

effect of a new drug or` control strategy on the population. Predictions for the 
future primarily require accurate meteorological forecasts, due to the parasites 
dependence on climate for survival. 

In this chapter Osterant will be used experimentally to address whether varia- 
tions arising from within the parasite population can contribute to the variation 
in infection levels and effects thereof observed in the field, or whether geographical 
or temporal variations cause these observed fluctuations in the field. 

The population dynamics of T. circumcincta were simulated by Osterant at 
four different climatic sites in Scotland: Paisley, Mylnefield, Kinloss and Dum- 
fries, over a period of six years from 1985 to 1990, respectively. The locations 

were chosen to reflect the diversity in climate experienced in Scotland. The de- 

velopment functions derived in Chapter 2 were substituted into the model in 

place of the step function originally used. The data were taken from the AFRC 

Meteorological Database, AGREMET. 

At each location in each year the model was run for fast, average and slow de- 

velopers, respectively. The emergence patterns were analysed to determine the 

sources of variation in peak pasture contamination levels and timing. Initial con- 
tamination levels were kept constant at the beginning of each simulation in order 
to retain as much uniformity as possible. 
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3.6 Results 

From these simulations, three sources of variation were identified 

" Geographical : variation observed between locations over each year. 

" Temporal : variation observed between years at a single location. 

" Developmental : variation observed between development groups within a 
single location in a single year. 

3.6.1 Comparison of Emergence Patterns 

In order to compare emergence patterns produced from the simulations, the fol- 
lowing criteria were identified: 

" Initial Emergence Date : the first day in the season when infective L3s are 
observed. 

" Peak Pasture Contamination Level : the highest number of infective L3s 

observed on pasture on any one day. 

" Timing of peak : the date when peak pasture contamination is observed. 

Figures 3.5-3.12 present the emergence profiles obtained and Table 3.1 gives initial 

emergence dates, peak pasture contamination levels and timing, for each of the 

simulations. 

Emergence Profiles of Fast Developers 

The emergence profiles of fast developers at each location in each year are pre- 
sented in the first column of Figures 3.5-3.12. 

In general, fast developing parasites are seen to emerge onto pasture before the 

medium and slow developers. As these parasites accumulate daily, the infection 
level grows steadily to a peak around the middle of July. There follows a gradual 
decline in infection levels until the end August when a second much smaller peak 
occurs, possibly as a result of the lamb contribution to infection. Infection levels 

are then seen to drop steadily until November when a sharp increase in infection 
levels is observed. 
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Emergence Profiles of Medium Developers 

The emergence profiles of the medium developers at each location in each year 
are presented in the second column of Figures 3.5-3.12. 

Initial emergence of the medium developers occurs slightly later in the season 
than the fast developing parasites as does the peak pasture contamination level. 

A small second peak possibly as a result of the lamb contribution to infection 

is observed around the end of September, after which infection levels decline 

until the end of November, where they are then seen to exhibit a similarly sharp 
increase as observed when the fast developing population were simulated. The 

overall magnitude of infection on pasture with a medium developing population 
is greatly reduced from the infection levels in a simulated population of fast 
developers. 

Emergence Profiles of Slow Developers 

The emergence profiles of the slow developers at each location in each year are 

presented in the final column of Figures 3.5-3.12. 

Slow developing infective L3s take a longer time to develop from eggs than the 

other two groups. Typically, they will begin to emerge around the middle of June. 

In many cases, a very small peak is observed at the end of August. The main 

peak of infection is observed in September, the magnitudes of which are much 

reduced from the other two groups. Again, a decline in infection levels occurs 

with a sharp increase after the end of October. 

3.6.2 Geographical Variation 

The geographical locations simulated were chosen to represent areas in the north, 

south, east and west of Scotland, to give a sample of the range of climatic be- 

haviour experienced in this country. Within each year, in each development 

group, the emergence patterns at each location were very similar, with the ex- 

ception of Dumfries in 1985. 

In order to determine the effect of geographical location on the population dy- 

namics of the T. circumcincta population, all other sources of variation were held 

constant. That is, the emergence profiles produced in Dumfries, Kinloss, Paisley 

and Mylnefield were compared within each development group within each year. 
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Differences in Initial Emergence Dates Between Locations 

Differences in the initial emergence dates within development groups in a single 
year at each location can be attributed to climatic fluctuations between the four 
locations. For example, from Table 3.1, the initial emergence date for fast devel- 

opers in Dumfries in 1985 is much later than the initial emergence date in this 

year at the other locations. In Dumfries, infective L3 were initially detected on 
pasture on the 31'i of May compared to the 9tß` of May in Paisley and Kinloss, 

respectively, and the 14th of May in Mylnefield. From the bioclimatographs in 
Figures 3.1-3.2, this difference in timing of initial emergence may be attributed to 
the fact that that although Dumfries experienced average temperature levels in 
April, 1985, the rainfall levels were not adequate for the migration of the infective 
L3 up the grass sward. In April 1985, the rainfall totalled only 13.5mm over a 
period of 8 days in Dumfries, compared to 50.8mm in 23 days, 61mm in 19 days 

and 62.5mm in 25 days recorded in Paisley, Mylnefield and Kinloss, respectively. 

Differences in Peak Pasture Contamination Levels and Timing Between 
Locations 

It was suggested previously that below average rainfall levels in April, 1985, 

caused later than usual initial emergence times in Dumfries for the fast and 
medium developers. This has had a knock-on effect for the general emergence 

pattern during this year. Peak pasture contamination levels in Dumfries in 1985 
for the fast developers did not occur until the end of the year, with a magnitude 

of 9543 L3 per kdm, compared to peak levels of 15128 and 15069 L3 per kdm 

for Paisley and Kinloss, both on the 12th of July, and 15128 L3 per kdm on 17th 
July in Mylnefield. For medium developers, peak pasture contamination levels in 
Dumfries in 1995 were reached on the 18th November at a magnitude of 4678 L3 

per kdm, compared to peak levels of 8532,7463 and 8124 L3 per kdm in Paisley 

on the 27th July, in Mylnefield on the 1st August and in Kinloss on the 29th 
July respectively. The slow developers in Dumfries in 1985 were not as severely 

affected by the shortage of moisture in April, as newly voided eggs in April did not 
develop to infective L3 until 16th of June, thus avoiding the drought conditions 
in April that hampered migration of the fast and medium infective L3s up the 

grass sward. 

Although there were slight differences between the time of initial emergence and 

of peak pasture contamination levels for all of the locations over the six years, 
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it was discovered that within each of the development groups, fast, medium and 
slow, the average time between initial emergence date and peak pasture contami- 
nation timing, was approximately the same for each of the locations. The climate 
determines at what point in time infective L3s will initially emerge on pasture, 
however, the time interval that passes until peak pasture contamination occurs 
appears only to depend on what development group the individual belongs. 

It is clear from this that climatic differences between geographical locations do 

not produce sufficient variation in parasite emergence levels to account for the 

variation observed. 

3.6.3 Temporal Variation 

Comparisons of emergence profiles were made within development groups at a 
single location in order to determine the effect of time on the population dynamics 

of T. circumcincta . 

Six years of climatic data were simulated in order to determine if changes in cli- 
mate from year to year would account for the observed fluctuations in emergence 
patterns in the field. 

When the fast population were simulated at each location over the six years, 

similar emergence profiles were produced for the years 1985,1986,1987 and 
1990. In 1988 at Paisley, Mylnefield and Kinloss (no data for Dumfries in this 

year was available), and 1989 at Mylnefield, Kinloss and Dumfries, peak pasture 

contamination levels were much reduced, ranging from 8715 to 10541 L3 per kdm 

compared to 13997 to 17309 L3 per kdm in the other years. 

In contrast, when medium and slow populations were simulated, there was only 

a single emergence profile that differed considerably from the others, that of 
Dumfries in 1985. All other profiles at each location over each of the six years 

were very similar. Because fast developers are changing faster, there is bound to 
be more variation inherent than the medium and slows. 

From this it can be concluded that observed variation in parasite emergence levels 

from year to year at a single site cannot be solely attributed to changes in climate 
from year to year. 
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3.6.4 Developmental Variation 

The final source of variation identified is that of variation between the fast, 

medium and slow development groups. For each development group: fast, medium 
and slow, the model was run at each location over all six years. The results for 

each group were compared at each site within each year. Effectively, the model 
was run initially assuming that the entire parasite population were fast, then 

medium and them slow developers, respectively. The emergence profiles pro- 
duced when simulating a fast developing population were quite different to those 

emergence profiles produced when medium and slow developing populations were 
simulated. In turn, the profiles produced by the medium development group were 
quite different to those produced from simulating the slow developing population. 
This variation is consistently observed across the four locations over the six years. 

Initial Emergence Times 

When the fast developing population were simulated over the six years and four 
locations, the date of initial emergence extended from the 3" to the 31st May. 
In comparison, when the medium developing population were simulated, they 
initially emerged between the 12th May and the 12th June, whereas when the 

slow developing population was simulated, the initial emergence dates ranged 
from 28th May to the 25th June. 

There is approximately nine days lag between initial emergence of the fast and 

medium developers and sixteen days between initial emergence between medium 

and slow developers. It follows that there is almost 4 weeks difference in initial 

emergence dates between fast and slow developers. 

With a few notable exceptions the variation in initial emergence dates within 
each development group occurred between locations rather than between years 

within locations. 

Peak Pasture Contamination Levels and Timing 

For the fast developing population over the six years and four locations, peak 
pasture contamination of infective L3s typically occurred between 24th June and 
the 19th July. In a few of the years, peak levels did not occur until the end of the 

grazing season. In those simulations where this was the case, peak levels were 
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Table 3.1: Table containing initial emergence dates, peak contamination levels 
and timing over four locations, six years and three development groups. * repre- 
sents missing data. 

Location Year Emergence Day Peak Level (in L3 per kdm) (Day) 

Fast Med Slow Fast Med Slow 

Paisley 1985 129 143 158 15128.54 (193) 8532.967 (208) 4793.949 (213) 
1986 126 138 159 14326.62 (175) 7029.296 (210) 4011.963 (233) 
1987 129 133 148 17309.96 (198) 10600.04 (209) 4695.484 (237) 
1988 123 132 150 10361.01 (197) 7956.819 (220) 5717.840 (239) 
1989 129 144 153 16848.12 (191) 5891.488 (217) 4515.047 (235) 
1990 125 134 148 15438.31 (177) 9184.295 (208) 5289.488 (226) 

Mylnefield 1985 134 144 159 15219.69 (198) 7463.317 (213) 3436.476 (255) 
1986 129 142 159 14982.35 (185) 6250.264 (213) 3000.810 (235) 
1987 130 148 156 16498.42 (193) 8893.417 (215) 5845.449 (247) 
1988 123 136 151 8715.036 (325) 7957.883 (213) 4757.301 (254) 
1989 135 148 163 9876.848 (191) 7221.019 (237) 4887.796 (250) 
1990 129 142 158 15724.45 (196) 5268.384 (210) 5788.589 (248) 

Dumfries 1985 151 163 169 9543.193 (315) 4678.26 (323) 3950.76 (324) 
1986 134 143 158 15692.61 (191) 7633.822 (213) 3964.887(232) 
1987 129 143 160 13997.94 (175) 6438.044 (213) 3073.298 (234) 
1988 
1989 128 139 153 8465.832 (325) 7071.79 (209) 3455.681 (254) 
1990 135 153 176 16002.09 (191) 4529.039 (226) 4487.525 (240) 

Kinloss 1985 129 142 158 15069.29 (193) 8124.095 (210) 3386.219 (247) 
1986 129 145 155 15806.50 (184) 9330.083 (211) 2775.585 (219) 
1987 131 148 158 15945.49 (192) 8759.948 (213) 4153.342 (252) 
1988 130 137 152 10541.54 (197) 8001.106 (218) 5345.077 (254) 
1989 128 143 155 9566.886 (315) 8051.306 (216) 5230.353 (238) 
1990 135 144 157 15461.53 (200) 7414.890 (215) 4713.913 (228) 
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much reduced. Peak pasture contamination levels for fast developing parasites 
varied from 9876.848 L3 per kdm in Mylnefield in 1989, to 17309.96 L3 per kdm 
in Paisley in 1989. 

The peak pasture levels produced by the medium developers were lower than those 
produced by the fast developers, ranging from 4529.039 L3 per kdm in Dumfries 
in 1990, to 10600.04 L3 per kdm in Paisley in 1987. 

Slow developers experienced much reduced peak pasture levels, occurring later in 
the year than the medium and fast developers. Peak levels were recorded between 
1St August and the 12th September, ranging from 2775.585 L3 per kdm in Kinloss 
in 1986, to 5845.449 L3 per kdm in Mylnefield in 1987. 

Conclusion 

As was expected, large differences were observed in the emergence patterns of 
fast, medium and slow developers. Initial emergence dates were earliest for the 
fast developers. This meant that the parasites would emerge, be ingested by a 
host and complete intra-host development at an earlier stage than the medium 
and slow developers. Completion of the life cycle after reproduction would then 
lead to the emergence of fast developing parasite eggs onto pasture. This cycle 
would continue with up to three generations of fast developers being produced 
in a single season from April to October, leading to a rapid build-up of infective 
L3s on pasture to a peak level. After this, temperatures would drop and ewe egg 
production would cease, leading to a decrease in the abundance of parasites on 
pasture. 

The medium developers began to emerge approximately nine days after the fast 
developers and did not attain such high levels of infection on pasture. These 

parasites develop slower than the fast developers under identical climatic con- 
ditions. They will have longer generation times and so fewer generations in a 
single season, which explains the reduction in magnitude of parasite infection on 
pasture. 

The slow developers began emerging approximately three weeks after the initial 

emergence of the fast population. Generation time was long for the slow devel- 

opers. When the optimal development and survival conditions occurred during 
July, the majority of the slow developers were completing their intra-host devel- 

opment, and so were unable to take advantage of the good conditions for optimal 
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development. Therefore the culmination of long generation times and spending 
the optimal development period inside their host led to low levels of pasture 
contamination being produced much later on in the year. 

3.7 Discussion 

The hypothesis that climate is solely responsible for observed variation in parasite 
contamination levels was tested by simulating the population dynamics of T. 

circurncincta at four different sites, Paisley, Mylnefield, Kinloss and Dumfries, 

over a period of six years from 1985 to 1990, using the appropriate climatic 
data. If climate was the main source of variation, it would be expected that 
yearly fluctuations in temperature and precipitation would have an effect on the 
emergence patterns of these parasites. 

The previous sections explored the effect of geographical, temporal and devel- 

opmental variation on the population dynamics of T. circumcincta . It appears 
that with the exception of those times when extreme climatic conditions im- 

peded development and survival of parasites, in general, the variation produced 
between locations and from year to year was not sufficient to explain the ob- 
served variation. This suggested that another source of variation may produce 
the fluctuations in pasture contamination levels observed. 

Consistently, over the four locations and six years, fast developers emerged earlier 
in the season and were in greater abundance then the medium or slow develop- 

ers. This suggested that differences between individuals within a population may 
be an important source of the observed variability in infection levels on pasture 
from year to year. Previously each member of a population was treated as be- 
having in a uniform manner-any inherent variability in developmental response 
to temperature stimuli was ignored. 

This reinforces the idea that individuals in a population do not behave in a 
uniform manner with respect to development and so consideration of this genetic 
diversity within such a population must be made. 

It appears from this that the fast developing parasite has an advantage over the 

medium and slow developer in terms of producing progeny in sufficient numbers 
to ensure the continuation of this group into future generations. If this was an un- 
conditional advantage the fast population would ultimately be selected for. This 

clearly does not happen to any great extent in reality. This suggests that some 
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mechanism exists to prevent fast developers ultimately taking over. Two hypothe- 

ses are given here, one, a physiological, the other, an environmental hypothesis. 
The first is that the fast developers may be exposed to higher natural mortal- 
ity rates due to "burn-out". The second reason is that although fast developers 
have an obvious advantage when the climate is favourable, when environmental 
conditions are harsh, the medium and slow developers are likely to be still within 
the host sheltered from climatic extremes and so avoid desiccation due to dry 

weather or flooding out due to wet weather. Therefore the medium and slow de- 

velopers may have a better chance of survival during periods of adverse weather 
conditions. 

The results from this chapter are important not only from a theoretical point 
view, but also practically. For any form of chemotherapeutic drug to be effective, 
the time when the greatest number of parasites are most likely to be exposed 
to the drug needs to be known. Mathematical models have been used to advise 
on the optimal timing of peak parasite levels in the field, (Barnes and Dobson, 
1995; Paton, 1983). The optimal time is the time when the optimal number of 
parasites are targeted by the drug, simultaneously ensuring the dosing strategy 
does not encourage the evolution of anthelmintic strains of parasite. Predicting 
the optimal time to administer treatment to a host has been difficult for the 

conventional mathematical models. This chapter has highlighted a major source 
of variation coming from within the parasite population, which has previously 
been omitted from the most recent models of nematode population dynamics to 
date. By effectively removing climate as a source of variation, it was possible to 
gauge the effect of developmental variation from within the parasite population 
on the dynamics of that population. 

It is acknowledged that in reality there are not three distinct groups of devel- 

opers but a continuum beginning with fast through average to slow. However, 
to develop this theory, it is initially assumed that the population is either fast, 

medium or slow developers to explore the effect that this variation may have on 
the population dynamics of T. circumcincta . 

It is hoped in the next chapter to deal with mixing between the three genotypes 
to establish conditions under which an equilibrium gene frequency exists. 
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Figure 3.1: Bioclimatograph of total rainfall against mean monthly mean tem- 
peratures for Dumfries over the years 1985-1990. 
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Figure 3.2: Bioclimatograph of total rainfall against mean monthly mean tem- 
peratures for Kinloss over the years 1985-1990. 
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Figure 3.3: Bioclimatograph of total rainfall against mean monthly mean tem- 
peratures for Paisley over the years 1985-1990. 
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Figure 3.4: Bioclimatograph of total rainfall against mean monthly mean tem- 
peratures for Mylnefield over the years 1985-1990. 
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Figure 3.5: Emergence profiles for Dumfries for fast, medium and slow developers 
for 1985,1986 and 1987. 
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Figure 3.6: Emergence profiles for Dumfries for fast, medium and slow developers 
for 1989 and 1990. Data is missing for 1988. 
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Figure 3.7: Emergence profiles for Kinloss for fast, medium and slow developers 
for 1985,1986 and 1987. 
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Figure 3.8: Emergence profiles for Kinloss for fast, medium and slow developers 
for 1988,1989 and 1990. 
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Figure 3.9: Emergence profiles for Paisley for fast, medium and slow developers 
for 1985,1986 and 1987. 
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Chapter 4 

Modelling the Life Cycle of T. 
circumcincta with variable 
Development Times 

4.1 Introduction 

In Chapter 2, three models were constructed from empirical data that described 
the free-living development rate of fast, average and slow developing nematodes, 
respectively, over a range of temperatures. In Chapter 3, these models were 
incorporated into Osterant, a prediction model for PGE in lambs, to explore 
the impact of development rate on the population dynamics of T. circumcincta 
when the entire nematode population was assumed to be either fast, average or 
slow developers. 

The first model in this Chapter, the non-mixing model, describes the dynamics of 
a nematode population divided into three development groups that are assumed 
not to mix at reproduction. Classification into these groups is according to the 

rate at which an individual develops whilst free-living on pasture. 

A genetic component is then integrated into the basic model representing the 

more realistic situation where the three subgroups interact and mix at repro- 
duction. This adds considerably to the complexity of the model, as interactions 
between subpopulations give rise to non-linear components. We demonstrate the 
intractability of such models, outline possible methods of analysis and present a 
model for the genetic mixing of a simple single staged population. 
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4.2 The Life Cycle of T. circumcincta Without 
Random Mixing 

The Non-Mixing Model 

4.2.1 Assumptions 

1. The rate at which an individual develops whilst free-living on pasture is 

assumed to be conferred by two alleles at a single locus on the chromo- 
some, F (fast development) and S (slow development). This results in 

three genotypes for development: FF, FS and SS. FF individuals are fast 
developers, SS are slow, and FS develop at a rate somewhere between fast 

and slow depending on the dominance of the F gene. 

2. There are five larval stages, an adult and egg stage in the life cycle of T. 

circumcincta. Three of the larval stages are spent free-living, the remaining 
two intra-host. For simplicity, the life cycle will be reduced to three life 

stages only - an egg stage, an infective larval stage and an adult stage, as 

shown in Figure 4.1. Lewis (1977a) has shown that life cycle graphs can be 

reduced in this way to simplify analysis. 

3. Within a life stage, each individual is classified as being either FF, FS 

or SS. The genotype of an individual defines the length of time it spends 
free-living on the pasture before becoming infective to a host. 

4. For the moment, the time spent in the parasitic phase inside the host, is 

not genotype-dependent and is assumed to be constant. 

5. At reproduction, it is assumed that no mixing occurs between genotypes. 
Effectively, individuals within a genotype group are confined to that group 

at reproduction. 

Thus, the population is divided by life stage, by genotype within stage and by 

age within genotype. 

4.2.2 Synthesis of the Non-Mixing Model 

This section describes the reduced life cycle of T. circumcincta as a system of 
linear difference equations. Figure 4.1 is a graphical description of this model. 
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The number of newly voided eggs of genotype i (with i=1,2,3, representing 
FF, FS and SS respectively), in the first age group, at time t+1 is 

Ei, 1(t + 1) = O; P34Ad=(t) (4.1) 

where P34 is the transition probability from adult to egg stage, 
Os is the fecundity of female worms of genotype i, and 
Adi(t) is the number of female adult worms of genotype i at time t. 

Development time from egg to the third larval stage, (L3), is genotype dependent, 

where those individuals with SS genotypes have a longer free-living development 

period than those with FS genotypes, and likewise, individuals with FS geno- 
types spend a longer time free-living on pasture than those with FF genotypes. 

The number of eggs of genotype i (i = 1,2,3), in age group ni, (ni = 2... T; ), where 

Ti is the genotype dependent development time from egg to L3, is determined by 

Ei, 
n,; 

(t + 1) = Fii, 
ni-1(t)a 

(4.2) 

where a is the daily survival probability of eggs from one age class to the next. 

(1-µ) 

P34 

Figure 4.1: Flow diagram for life cycle of a typical nematode with three life stages 
without random mixing. 

Once individuals have developed to the third larval stage (L3), they are either 
ingested immediately by a host or may spend up to m days on the pasture, 

uningested, after which they die. Hence 
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L3z, l (t + 1) = Ei,, i (t)Pi2 (4.3) 

L3i, k(t+ 1) = (1- µ)sL3i, k_l(t) (4.4) 

where k=2.. m, 
P12 is the transition probability of eggs to L3, 

p is the daily ingestion rate of the host, and 

s is the daily survival rate of L3 on pasture. 

Once ingested by a host, the parasites (irrespective of genotype), spend h days 

in development to adults, after which they mate at random and offspring are 

produced. It is assumed that no mixing between genotypes occurs at reproduction 

and so each member of the population may only mate with another member 

within the same genotype group. The number of newly developed adults of 

genotype i at time t+1 is then 

m 

Ad; (t + 1) = µP23 > L3;, k(t +1- h) 
k=l 

(4.5) 

where P23 is the transition probability from L3 to adults, and µ, k and m are 
defined above. 

For explanatory purposes we shall assume that infective L3s can remain on pas- 
ture for up to m=3 days, after which, they die. This assumption serves only to 

reduce the complexity of the model and in no way reflects events in the field. 

This system of linear difference equations can be reduced to a single linear dif- 

ference equation by direct substitution of equations (4.2) to (4.5) into equation 
(4.1) to give 

Ei, 1 
(t) = P12P23P30®iar-1 

x [Ei, l(t- (Ti - 1) -h-2) 
+ Ei, l(t-Ti-h-2)(1-µ)s 
+. Eij(t-(Ti+1)-h-2)(1-µ)2s2] (4.6) 
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Biological Interpretation of Equation (4.6) 

This equation can be explained using, as an example, changes in the FS popula- 
tion (that is, i= 2). The number of newly voided eggs with genotype FS at time 
t, denoted by E2,1(t), is equal to the number of newly voided eggs of genotype 
FS at time (t- (7-2 -1) -h-2), (t - T2 -h- 2) and (t- (T2+1) -h-2) days 

ago that developed to L3 and were immediately ingested, ingested after one day 

as L3, and ingested after two days as L3, respectively, by a host, became adults, 
mated and produced FS offspring. Similar explanations apply to genotypes FF 

and SS. 

4.3 Linear Difference Equations 

A set of simple recurrence relations with associated time delays, Ts, (i = 1,2,3), 

representing the development times from the egg stage to L3 of the three genotype 
groups, FF, FS, SS, was formulated in the previous section to describe changes 
in the egg population on pasture for the three genotype groups, assuming no 
mixing occurs between groups. Before an analysis of this model is undertaken, 

some notation must be defined. 

A linear difference equation is defined to be 

fo(k)yk+n + fl(k)yk+n-1+ 
... + fn-1(k)yk+1+ fn(k)Yk = g(k) (4.7) 

Here, fo, fl, ..., A and g are functions of k, but not Yk, defined for all values of 
k in the set S. If the coefficients, fo, fl, ..., fn, do not vary with k, the above 
equation is a linear difference equation with constant coefficients. In addition, 
provided fo and f� are not zero, equation (4.7) is said to be of order n over S. 
Finally, if g(k) = 0, the equation is said to be a linear nth order homogeneous 
difference equation with constant coefficients. 

4.4 Methods of Solution for Linear Difference 
Equations 

4.4.1 General Solution of the Homogeneous Equation 

Returning to equation (4.6) in the previous section 
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P12P23P34p®i«Ti-1 

x [Ei, l(t- (Ti-1)-h-2) 

+ E;, 1(t-Ti-h-2)(1-µ)s 
+ Ei, 1(t-(Ti+1)-h-2)(1-/1)282] (4.8) 

This equation is a homogeneous (r1 +1+h+ 2) th order linear difference equation. 
For illustration purposes, the daily ingestion rate of the sheep host is assumed 
to be equal to one (p = 1). In the field, this would mean that an individual 

would spend only a single time unit as infective L3 on pasture before ingestion. 
Consequently, equation (4.6) becomes, in standard form 

et+i; - Cet =0 (4.9) 

where C= ari-IP12P23P346i, and 
li=Tt+h+1, 

which has the auxiliary equation 

mlti - Cm =0 (4.10) 

This is an algebraic equation of degree l;. This equation has exactly i roots 
that may be real or complex and either repeated or distinct. A set of l; solu- 
tions, eýl), e; 2), 

..., eý") form the fundamental set of solutions where the nth order 
determinant, 

eol) eo2) ... eon`) 
ell) e12) ... el i') (4.11) 

ei-, ei, 1 ... eii-1 

must be different to zero. Each solution in the fundamental set is then summed to 
form the general solution to the homogeneous equation with li arbitrary constants. 
A unique solution is found by obtaining particular solutions of the complete 
equation using prescribed initial conditions. 
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Having obtained a solution to the linear difference equation in (4.9), the limiting 
behaviour of that solution can be investigated. The largest root of the auxiliary 
equation (4.10), denoted p, determines the behaviour of the solution in the future. 

" If p<1, the solution will converge to zero, irrespective of initial conditions. 

" If p>1, divergent solution sequences are to be expected. 

" If p is complex or negative, the limiting behaviour of the solution will be 

oscillatory. 

" Damped oscillations will occur if p<1. 

Unfortunately, an auxiliary equation of degree five or more is analytically in- 
tractable and numerical methods of solution have to be employed. In the next 
section an alternative method of solution is explored. 

4.4.2 Method of Generating Functions 

The method of generating functions was developed by Euler, as an aid to solving 
complex equations involving sequences of numbers. 

The solution to equation (4.9) can be represented as an ordered sequence of real 
numbers, {ek}, k=0,1,2,.... 

In general, the generating function of a sequence of numbers 

YO) Yli Y2j Y31 

is the power series 

1'8=YO +yis+yzs2-i-y3s3+... (4.12 

Given that Y, is a power series in s, the Taylor Series expansion of Y, about s=0 

gives, 

Ye Yo+Yos+ 
2i 

+... + 
n! 

+... (4.13) 
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Equating coefficients of s in equation (4.12) with those in equation (4.13) gives 

yºº yººº Yn 
Yo = YO; y1 = Y0; y2 =; y3 = ýi3.; 

... ; Yn =0 2. (4.14) 

The coefficient of the nth power of s is determined by differentiating equation 
(4.12) n times with respect to s about s=0. 

We begin by considering the simple case of p=1 in equation (4.6), representing 
immediate ingestion of newly developed infective L3s. We proceed to the case 

where µ<1, representing the more realistic situation where only a proportion 
of newly developed infective L3s are ingested. Those remaining, may stay on 

pasture for a number of days, after which, if not ingested, they are assumed to 

perish. 

Case 1: Immediate Ingestion of Infective L3s (p = 1) 

Consider equation (4.9), which is equivalent to equation (4.6) with µ=1, 

et+t; - Cet =0 

where C= a'i-iP12P23P340; 

(4.15) 

The generating function of {ek}, denoted E� is constructed in a similar way to 
that in (4.12). That is we define 

E3 =eo+els+e2s2+e3s3+... 

The generating function for {ek+:; } is therefore 

= el; + et; +ls + et; +2s + 
... 

+ eksk-t; 
e=st 2 

st; 
+ 

... 

Substituting the generating functions for {ek} and {ek+t; } into equation (4.15) 

yields 
1: -1 i Es - Es=o eis % 

CE =0 (4.16) 
Sli 
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Collecting like terms results in 

l: -1 i ýt-o eis E' 
1- Csl$ 

(4.17) 

If it is assumed that initial egg deposition on the pasture occurs only on day zero, 
and is eo, then Eöe; si = eo. 

The Taylor Series Expansion of equation (4.17) about s=0 will yield the sequence 
{ek} as the coefficients of the kth power of s, k=0,1,2,.... 

E3 = eo + eoCsl' + eoC2s21i + eoC3s31' + e0C4s41' + e0C5s5f' + eoC6s61 
i- eoC's 1' +... +O(s513) 

as required. 

(4.18) 

For this particular model, with it = 1, and an initial population level determined 

eo, eggs will appear on pasture every i days. In between these times, the pasture 
should be free of eggs in this age group. 

When the power of s in the Taylor Series Expansion of (4.17), is a multiple of Ii, 

the associated coefficient is non-zero, the actual value depending on the values of 
C. That is 

" if C>1 the population will grow from its initial value without constraint, 

" if C<1, the population will eventually die out, and 

" if C=1, the population will remain in a steady state. 

For example, if ll, the generation time for FF individuals is 27 days, say, the 

number of newly voided FF eggs on pasture on day 162 can be found by differen- 

tiating (4.17) 162 times with respect to s about s=0, and taking the coefficient 

of s162 as the result. That is 

E8sal8_o = eocss'62 (4.19) 

whereas the number of newly voided FF eggs on pasture on day n, where n mod 
Ii 0 can be seen from equation (4.18) to be zero. 
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Case 2: Introducing a Host Ingestion Rate To the Basic Model (µ < 1) 

When 0< It < 1, only a proportion of the parasites on pasture on any day 

are ingested by the host. We assume that those remaining may spend up to 

m=3 days on the pasture before being ingested, after which they die. This 

alters equation (4.9) to give, in standard form 

et+t, +2 - fiC 
[et+2 + (1 - µ)Set+i + (1 - µ)2s2et] =0 (4.20) 

where C is defined above. 

If the generating function for ek is E� the generating function for ek+l; +2 is 

Ee - Eti" eis' i-0 (4.21) 
sli+2 

it follows that the generating function for ek+2 is 

E3 - eo - els (4.22) 
s2 

and similarly, the generating function for ek+1 is 

E. - e° (4.23) 
s 

Substitution of equations (4.21) (4.22) and (4.23) into equation (4.20) gives 

Es-E+21eisi 
-ILC 

E, - S2-els+(1-µ)E3 S eo, +. (1-µ)2E91 =0 
(4.24) 

Multiplying (4.24) through by s1i+2 and collecting like terms yields 

E. 
Es= of eisi - s'ipC [eo + els + (1- µ)eos] (4.25) 

[1 - s"iµC [1 + (1 - µ)s + (1- µ)2s2]] 

This is the generating function for the sequence generated by the difference equa- 
tion in (4.20). In the same way as before (4.25) is expanded about s=0 to obtain 
the egg numbers on pasture daily. 
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4.4.3 Using the Generating Function E3 to Explore the 
Impact on the Population Dynamics of Variation in 
Free-living Development Time Between Genotype 
Groups 

A generating function is developed here that models patterns of egg deposition on 
pasture over a typical grazing season. The development times are hypothetical, 

and have been chosen to illustrate the method of generating functions rather 
than to provide any realistic biological insights. The generating function for a 
fast developing population, FF is outlined here. It is assumed that development 

time from the egg to infective L3 stage is 10 days, with up to an additional three 
days spent on pasture before ingestion or death. Intra-host development to the 

adult stage is assumed to take 16 days. Thus, ll = 27 days. 

The generating function for such a population is therefore, 

26 

E9 =E eis' 
i=O 

+ [iCeo] s27 

+ [µC(1- µ)eo] s28 
+ [pC(1 

- tL)2eo] Sts 

+... 

+ 
[(I-LC)2e0] 

s54 

+ý 2(µC)2(1 - Z)eol s55 

+ (3(µC)2(1 
- /z)2eoj s56 

+ [2(µC)2(1 
_ p)seol s57 

* 
l[(µC)2(1 _ µ)4e0J 

1 
s58 

+ O(s59) (4.26) 

where C= a9P12P23P3401. 

Figure 4.2 shows how descendants of eggs voided onto pasture on a single day, 

that is, day zero, will be distributed temporally in the future. 

New eggs are expected to appear on pasture on days 27,28 and 29 as a result 

of the initial egg deposition on day zero, provided It < 1. A proportion, p, of 
those eggs on day zero that develop to L3, will be ingested immediately by a host, 
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I 

Figure 4.2: Flow diagram for emergence times of nematode eggs following equa- 
tion (4.6). 

become adult and produce offspring who will be deposited onto pasture on day 

27. Of the proportion of infective L3 remaining on pasture, (1 - µ), a proportion 

µ will be ingested the following day, will reach maturity within the host and 

produce offspring that will be deposited on pasture on day 28. Finally, of the 

proportion of L3 remaining on pasture on the third day of being in the infective 

stage, (1 - p)2, µ will be ingested and will subsequently produce offspring to be 

deposited on pasture on day 29 (having developed to adults and mated). Those 

infective L3s remaining on pasture, derived from the initial batch on day zero are 

assumed to die. 

Those new eggs on days 27,28 and 29 will take at least 27 days to complete their 
life cycle. Hence the next "batch" of new eggs will begin to appear on pasture 

on day 54. A proportion, p of those eggs on day 27 that develop to L3 and are 
immediately ingested by a host, become adult and produce offspring who will 

emerge onto pasture on day 54. Those eggs on day 27 that develop to L3, but are 

not ingested until a day later will subsequently produce offspring that emerge as 

eggs on pasture on day 55. In addition to this, eggs on day 28, that develop to 
L3 and are immediately ingested by a host will subsequently produce offspring 
that emerge as eggs on day 55. A proportion, it, of those eggs on day 27 that 
develop to L3, and remain uningested on pasture until the third day will now be 

ingested and will be expected to appear on pasture on day 56. 

The first term of equation (4.26) is simply eo, as initial contamination of the 

pasture occurs only on day zero. Taking a single time point on the tree in Figure 
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4.2, for example day 56, an explanation of the derivation of the numbers of eggs 
in age group one is given. 'If C contains mortality, fecundity and transition 

parameters, the number of newly voided eggs on day 56 will be 

µ(1- µ)2Ce27 + µ(1- µ)Ce28 + pCe29 

On days 27,28 and 29, the numbers of new eggs, respectively is jCeo, µ(1-µ)Ceo 
and µ(1 - µ)2Ceo. Substituting these into the equation for day 56 gives 

3(1(1- µ)C)2eo (4.27) 

which is equivalent to the coefficient of the 5611 power of s in (4.26). 

The model, as shown in equation (4.26) provides the flexibility of variable time de- 

lays and multiple initial contamination sources. Figure 4.2 is a simple realisation 

of the model developed for explanatory purposes. 

Models for medium and slow developers are similarly constructed with adjust- 
ments being made to the time lags, li. 

4.4.4 The Limiting Behaviour of the Non-Mixing Popula- 
tion Using Matrix Algebra 

Matrix Notation 

Conveniently, the linear difference equations in the previous section can be rep- 

resented in matrix notation. Separate transition matrices are constructed for 

the genotype groups due to the assumption of no interaction between individuals 

from different genotype groups. The dynamics of the FF population are given 
here as an example, the structure for the remaining two populations being similar 
but requiring more space. 

Consider the sub-population of individuals with FF genotype, where changes in 

population numbers are represented by the following equation 

IlFF(t + 1) = BFFnFF(t) (4.28) 

where 
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nFF (t) and nFF (t + 1) are the population state vectors at time t and t+1, 

respectively and BFF is the state transition matrix. A simple example is given 
here to illustrate how population dynamics can be modelled using matrix algebra 
techniques. The numerical values chosen in this example are unrealistically short- 
they serve only to illustrate the method and are in no way to be interpreted as 
biologically meaningful. 

Example 

It is assumed that eggs spend three days in development to the infective L3 stage, 
that is, Ti = 3. Once infective, the parasites may spend up to m=3 days free- 
living on pasture where they may be ingested by a host on any one of these days. 
Intra-host development is assumed to last h=2 days after which the parasites 
become sexually mature, mate and produce offspring. Free-living and intra-host 
development times here are unrealistically short, however, for explanatory pur- 
poses, we shall forfeit realism for clarity. 

The transition matrix is 

0 0 0 0 0 0 0 0 0l 
a 0 0 0 0 0 0 0 0 
0 a 0 0 0 0 0 0 0 
0 0 P12 0 0 0 0 0 0 

BFF = 0 0 0 (1 - 0 0 0 0 0 (4.29) 
0 0 0 0 (1-µ) 0 0 0 0 
0 0 0 µ it µ 0 0 0 
0 0 0 0 0 0 P23 0 0 

0 0 0 0 0 0 0 P34 0 

with an associated state vector 

n(t) = [co, el, e2, L31, L32, L33, ..., Ad] 

When no mixing occurs between genotypes at reproduction, convergence of the 

population is assured if the birth terms in the model balance the death terms. 

From equation (4.6), convergence to a steady state egg population size will occur 
when 

Et+j, +z = Et+2 = Et+i = Et =E 

That is, 
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Ei _ Paz. -1P12P23P34E)iA [1 + (1- µ) + (1 - 11)2] 

Es [l - µa'r`-1P120i [1 + (1 - µ) + (1- µ)2]] =0 (4.30) 

this results in the condition for convergence of the sequence generated by the 
difference equation 

et+t; +a - PC 
[et+2 + (1 - µ)et+i + (1 - µ)2et] =0 (4.31) 

where C: -- µa'i-1P12P23P340; as before, to be 

E)' =1 (4) 
µaTº-1P12[1+(1-µ)+(1 -µ)2] . 32 

Using the matrix notation above and some fundamental theorems of matrix prop- 
erties (Caswell, 1989), the limiting behaviour of such a population can be evalu- 
ated. 

The solution to the projection equation in (4.28), from Caswell (1989), is 

nt = ctAiwi (4.33) 

where the cis are coefficients dependent on no, 
Ais are the eigenvalues of B, and 
wi are right eigenvectors of B. 

The long term behaviour of nt as t increases will depend on the eigenvalues at in 
(4.33), as they are raised to higher and higher powers of t. 

The Perron-Frobenius Theorem defines the dominant eigenvalue, denoted by A 1, 
to be that eigenvalue of B that is largest in magnitude. This eigenvalue deter- 

mines the ergodic properties of population growth in this system. 

This is the basis for the Strong Ergodic Theorem (Caswell, 1989), where from 

equation (4.33), given that the eigenvalues are ordered in decreasing magnitude, 
A, is the dominant eigenvalue. Dividing both sides of (4.33) by A, gives 

()tw2+c3()tw2+... nt 
= clNJ + c2 i (4.34) 
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Taking the limit as t -+ oo, and assuming that B is a primitive matrix so that 

strictly Al> A2 then 

n 

-i 
= clwi lim00 

ýi t 
(4.35) 

This means that the future behaviour of the population nt is dependent on the 

magnitude of the dominant eigenvalue al. Its associated eigenvector, w1, is the 

stable population structure. Hence multiplication of BFF by wi is analogous to 

scalar multiplication. 

4.4.5 The Rate of Convergence of Population Vector n 

The rate of convergence of the population vector n is determined by the ratio of 
the moduli of the first two eigenvalues. This ratio is called the Damping Ratio, 

and is denoted by p 

lall 
P -121 

(4.36) 

From equation (4.34), it is clear that the greater A, is in relation to a2, the more 

rapid convergence to a stable distribution will be. 

A2i the second largest eigenvalue of B, provides information on the approach to 

convergence. If A2 and A3 are complex conjugates, the approach is likely to be 

oscillatory. 

4.5 A Numerical Analysis of the Effect of Vari- 

able Development Time Within a Popula- 
tion 

The models presented so far are very simple linear models of nematode population 
dynamics and assume no mixing between development groups. 

The following section uses hypothetical parameter estimates of the vital rates of a 

population described by the model in equation (4.6) to demonstrate the powerful 

mathematical modelling techniques outlined previously. 
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Here we are interested in the impact on nematode population dynamics when 
the length of time the free-living stages spend on pasture is dependent on the 

genotype of the individual. 

A numerical simulation model written in the Pascal programming language was 
developed to examine the effect of varying development times on a nematode 

population free-living on pasture. Effectively, the life cycle of the parasite, as 
described in Figure 4.1 was translated into programming code where population 

numbers were updated daily based on specific survival, ingestion and fecundity 

parameters. The results from the simulation program could then be compared to 

the results obtained from the numerical solution of the matrix equation. 

For illustrative purposes, the vital rates, a, µ, P121 P23 and P34, have been chosen 

so that each population modelled will reach a steady state distribution, irrespec- 

tive of development time on pasture. This is exercised by simply choosing values 
for µ, a, Ti, P12 arbitrarily and then employing equation (4.32) to determine the 

number of new additions to the population, 0=, required to balance those leaving. 

The assumption that the population converges to a steady state is made in order 
that the effect of altering development times within groups could be investigated. 

If this assumption was not satisfied the model could exhibit all sorts of undeter- 

mined behaviour that would make a comparative analysis difficult. 

Parameter Values For the Non-Mixing Model 

For simplicity, it is assumed that the only source of mortality occurs during the 
free-living phase of the life cycle, where a daily survival rate of a=0.9 is assumed. 
In conjunction with this, it is assumed that any infective individuals not ingested 

within three days, m=3, of becoming infective also perish. 

Transitions between life stages, P12 (egg to L3), P23 (L3 to intra-host), and P34 
(intra-host to adult), are assumed to occur with certainty (that is, they all equal 

one). Intra-host development time is genotype independent and is assumed to 

take h= 16 days. 

These values in no way represent reality, they have been chosen to illustrate the 
impact of variable development time on the population dynamics of a typical 

nematode population. 
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4.6 Results 

Equation (4.35) shows that the ultimate fate of a population with a non-negative, 

primitive projection matrix B and initial population vector no, is dependent 

on the dominant eigenvalue al and its associated eigenvector w1. That is, the 

population vector nt will approach a stable population structure, proportional to 

w1, as t -+ oo. The actual population numbers are determined by multiplying 

wi by the coefficient cl, determined by initial conditions. 

Using the parameter values outlined in the last section, the population will reach 
a steady state genotype distribution provided the dominant eigenvalue of the 
transition matrix is unity, that is, A, = 1. For the simple non-mixing model, 
it was discovered that for a stable population structure to exist, some form of 
genotype-dependent regulator had to be in operation. As mortality of the free- 
living stages, a, was fixed, this regulator was chosen to be the fecundity of female 

parasites, denoted by O;. 

In order to eliminate bias, initial population numbers in each of the genotype 

groups were the same. 

A simple example of the effect of development time on the stable population 
structure follows. 

Example 

In the first instance, assuming all other parameters take the values assigned pre- 
viously, the development times from egg to L3 for FF, FS and SS genotypes 
are assumed to be Ti =1 day, r2 =2 days and r3 =4 days, respectively. This 

provides a very simple illustration of the dynamics of the model. The next step is 

to introduce a more realistic set of time delays into the model that reflect typical 
time delays experienced in the field (see chapter 2). These are, for FF, FS and 
SS genotypes, respectively, rl = 10 day, T2 = 17 days and r3 = 28 days. 

We shall outline model construction and analysis for the simple case and then 

present the results of the more realistic case graphically. 
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Eigen Analysis 

Case 1: T1=1, r2=2, T3=4 

We shall display the transition matrices, state vectors and mathematical analysis 
for the FF genotype group. Analysis of the FS and SS genotype groups is 

similar. 

Changes in FF population numbers are represented by the following projection 

equation 

IlFF(t + 1) = BFFnFF(t) (4.37) 

The projection matrices and state vectors for this particular system are derived 
by substituting into the matrix in 4.29, the numerical parameter values discussed 

in the previous section 

0 0 0 0 0 0 1.143 
1 0 0 0 0 0 0 
0 0.5 0 0 0 0 0 

BFF = 0 0 0.5 0 0 0 0 (4.38) 
0 0.5 0.5 0.5 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 

nFF (t) = [eo, L31, L32, L33 i.., 
Ad]t 

Transition matrices and state population vectors for FS and SS populations are 

similarly constructed, but are not given here explicitly due to space restrictions. 

In each case E )j, the fecundity of female parasites, has been calculated in order that 

Al = 1. The eigenvector, wl associated with the dominant eigenvalue represents 
the stable population structure that the state vector n(t) approaches as t -+ oo. 

The dominant eigenvalue of the transition matrix, BFF, in (4.38) is known to be 

unity. The eigenvector, wi, associated with A is found by solving 

BFFw1 = Alwi (4.39) 

82 



In other words, this eigenvector satisfies the condition that matrix multiplication 
is equivalent to scalar multiplication. Numerically, for the FF population, 

wl = [0.262613,0.262613,0.131306,0.06565,0.22979, 
..., 0.22979,0.22979] 

Simulation Model 

Alternatively, numerical simulation of the population dynamics over a long pe- 
riod of time produces the population vector, n', that results from the computer 
program of the life cycle run for a long period of time (over 100000 time units). 
The steady state population vector for those individuals with FF genotypes was 

n* _ [539.46,539.46,270.23,135-62,472.16,..., 472.16,472.16] 

The equation 

n* lim -= clwl Ai t-+oo 
(4.40) 

is satisfied, in this case, when cl = 2054, and is determined from initial conditions. 

Figures 4.3,4.4 and 4.5 provide graphical illustrations of the results of a numerical 
simulation of actual population numbers using the simulation model written in 
Pascal, and the results from a numerical simulation of the matrix model. 

The Pascal simulation model was run for a period of 100000 time units or until the 

population had converged to some equilibrium distribution, the results of which 
are plotted as a solid black line on Figures 4.3,4.4 and 4.5. These points are 
measured from the left-hand y-axis of each plot representing actual population 
numbers. Equation (4.37) was solved numerically on MAPLE and the resulting 
eigenvector, wl elements plotted as open red circles. The right hand y-axis, 
represented the relative population structure at equilibrium. 

The x-axis represents the life stages within the nematode life cycle. 

The red circles lie directly on the solid black lines which suggests that the ele- 
ments of the eigenvector associated with the dominant eigenvalue, Al are in direct 

proportion to the equilibrium population vector obtained from the numerical sim- 
ulation of the life cycle, verifying that indeed 
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Figure 4.3: Comparison of simulated 
equilibrium population numbers and 
stable stage distribution from the tran- 
sition matrix for FF population, rl =1 
day. 

Case 2: ýrl = 10, ýr2 = 17, r3 = 28 

Figure 4.4: Comparison of simulated 
equilibrium population numbers and 
stable stage distribution from the tran- 
sition matrix for FS population, r2 =2 
days. 

A more realistic case is now presented, where the time in development from the 

egg to L3 stage is, for FF, FS and SS, respectively, 10,17 and 28 days. Again, 

transition matrices and state vectors were formed using the same survival, inges- 

tion and transition probabilities as were used for the first case above. Fecundities 

were calculated from equation (4.32). The simulation model was run and the 

eigenvectors calculated using equation (4.39). The results from both analyses 

were then compared. Both n* and wl are presented graphically for FF, FS and 
SS groups in Figures 4.6,4.7 and 4.8, respectively. 

As before, the solid black line represents the equilibrium population numbers 

obtained from the simulation model and the open red circles are the elements 

of the eigenvector corresponding to the dominant eigenvalue of the transition 

matrix. 
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Figure 4.5: Comparison of simulated equilibrium population numbers and stable 
stage distribution from the transition matrix for SS population, r3 =4 days. 

The x-axis represents the various life stages of the nematode population. 

For all three populations, FF, FS and SS, the red circles lie entirely on the solid 
black lines. It therefore can be concluded that indeed 

lim n* 
-= clwl t-ºoo Vi 

4.7 Conclusion 

(4.42) 

Three models of the life cycle of T. circumcincta assuming no mixing occurs 
between development groups have been presented in the first part of this Chapter. 

The first model used the technique of generating functions to describe changes in 

population numbers over time, given the appropriate vital rates of the population. 
This is a very simple but elegant method of solving quite complex linear difference 

equations and has the added advantage that information on population numbers 

can be retrieved very quickly with little effort particularly when the time frame 

is short. 

The particular model developed for T. circumcincta is very flexible and allows for 

variable time delays and multiple initial contamination sources to be incorporated 
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Figure 4.6: Comparison of simulated 
equilibrium population numbers and 
stable stage distribution from the tran- 
sition matrix for FF population, rl = 
10 days. 
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Figure 4.7: Comparison of simulated 
equilibrium population numbers and 
stable stage distribution from the tran- 
sition matrix for FS population, r2 = 
17 days. 
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Figure 4.8: Comparison of simulated equilibrium population numbers and stable 
stage distribution from the transition matrix for SS population, r3 = 28 days. 

into the general framework. This method is ideal when examining the behaviour 

of a population within a single season, for example. 

Determining long term or equilibrium behaviour of a population is possible using 
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this method of analysis, however, the computing power involved is high and so 
alternative methods are sought. 

Representation of the life cycle of organisms by matrix notation allows for pow- 

erful analysis techniques to be used. The next model in this Chapter represented 
the life cycle of T. circumcincta with no mixing between development groups, in 

matrix notation and a stable age/stage distribution was determined using matrix 

algebra. 

To validate the results from this analysis, a computer simulation model written 
in Pascal was developed that simulated daily changes in population numbers over 
time. 

Results of the limiting behaviour of the transition matrix, B, derived analytically, 
were compared to the output from the simulation model having run it for a long 

period of time. 

For each development group, FF, FS and SS, the analytical results were in total 

agreement with the simulated results. Not surprising was the discovery that those 
individuals who spent less time free-living on pasture, that is, the FF genotypes, 
would equilibrate at higher numbers than those who were slower to develop on 

pasture, say FS or SS, despite all subgroups starting off with equal numbers. 
This effect was stronger as the difference in development rates increased. 

Realistically, the individuals in each of the development groups do not confine 
themselves to a single development group at reproduction. Within a host, mating 
between adult parasites can be expected to be at random, and so segregation and 

recombination of genes will occur, and the genotype distribution in the population 

will change. This adds a genetic dimension to the model, which will be explored 
in the next section. Once a certain level of realism is achieved, however, it is 

quite likely that non-linear effects will enter the model and non-linear methods 
of analysis need to be used. 
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4.8 The Life Cycle of T. circumcincta With 
Random Mixing Of Genotypes 

The Mixing Model 

Introducing A Genetic Component to the Basic Model 

Consider a population in which the members are divided into groups according 
to the rate at which they develop during their free-living phase. It is assumed 
that development is conferred by two alleles at a single locus on the chromosome, 
with F representing fast development, and S, slow development. This results in 

three genotype groups, FF, FS and SS within the population. 

The stochastic matrix, F, below, contains the probabilities that a parent of geno- 
type j produces an offspring of genotype i, Fjj, for all i, j=1,2,3. 

For example, consider the probability that an offspring has genotype FF, given 
one parent, say the mother, has genotype FF 

Pr{an offspring has genotype FF I it's mother has genotype FF} 

The offspring will have inherited one of the F alleles from the mother with a 

probability of 1. The second F allele must come from the father with a proba- 
bility f, which is the frequency of the F allele in the male population (assuming 

the sex ratio is 1: 1). Therefore 

Pr{an offspring has genotype FF I it's mother has genotype FF} = Fl, i =f 

This value is entered into the following matrix along with the other probabilities 
that are similarly calculated 

FF FS SS 

FF fs0 

FS f1 
z2 

SS 0fs 

88 



where, s is the frequency of the S gene in the male population and f+s=1. 

The frequency of the gene conferring fast development, f, at time t, is determined 

to be 

F1'i(t) 
Aa ()1+ A 2(t) 

+)Ad3(t) (4.43) 

where Ad, (t), Ad2(t) and Ad3(t) are the number of adults in each genotype group 
at time t, the equations having been presented in the previous section. 

Nematodes can only reproduce within a host. Therefore the incorporation of a 
genetic component into the model affects only equation (4.1) in the preceding 
section. This equation now becomes 

3 

E2, l(t + 1) = O1P34 > Ad3(t)Fj, 1(t) (4.44) 
"7=1 

where Fj,; (t) is the probability that an adult of genotype j produces an offspring 
of genotype i at time t, 
P34 is the transition probability from adult to egg stage, and 
O; is the fecundity of female worms. 

Progress through the free-living stages of the life cycle is exactly as before as no 
mixing of genotypes occurs outwith the host. This leads to the genetic analogue 
of equation (4.6), 

3 

Et, i(t) = P12P23P34µe1 E aT'-'F9, i(t - 1) 
j=l 

x [E3,1(t-(T3-1)-h-2) 

+ EE, 1(t-r, -h-2)(1-µ)s 
+ E;, 1(t -(T,; + 1) -h- 2)((1 - µ)s)2] 

(4.45) 

where Fj, i(t) has been defined above. 

This model is shown diagrammatically in Figure 4.9. 
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Figure 4.9: Flow diagram for life cycle of a typical nematode population with 
three life stages with random mixing of genotypes FF, FS and SS. 

Biological interpretation of equation (4.45) 

The explanation of this equation is somewhat more involved than that for the 

non-genetic equation. For example, the number of eggs of genotype FS at time 
t is equal to the number of eggs of genotype FF at time (t - (r1 - 1) -h- 2), 
(t - Tl -h- 2) and (t - (Tl + 1) -h- 2) days ago that developed to L3 and were 
immediately ingested, ingested after one day as L3 and ingested after two days 

as L3, respectively, by a host, became adults, mated and produced FS offspring 

plus the number of FS eggs at time (t - (r2 - 1) -h- 2), (t - 7-2 -h- 2) and 
(t - (7-2 + 1) -h- 2) days ago that developed to L3 and were immediately ingested, 
ingested after one day as L3 and ingested after two days as L3, respectively, by 

a host, became adults, mated and produced FS offspring plus the number of SS 

eggs at time (t-(T3-1)-h-2), (t-, r3-h-2) and (t-(73+1)-h-2) days 

ago that developed to L3 and were immediately ingested, ingested after one day 

as L3 and ingested after two days as L3, respectively, by a host, became adults, 

mated and produced FS offspring. 

This model is quite complex. It has three life stages, two time delays and two 

multiplier functions with three sub-populations moving through it. As a result 
of mixing between the genotype groups at reproduction, the model now consists 
of non-linear components, representing interaction between the groups. Conse- 

quently, the methods of analysis applied to the non-mixing model in the previous 
sections cannot be used here. Instead, the only available method of analysis for 
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non-linear systems is a local linearization analysis (or neighbourhood stability 
analysis), of the model at equilibrium. The equilibria of a non-linear system 
need not be a constant value, stable limit cycles, where the population numbers 
cycle within well defined boundaries may exist (May, 1974). The local stability 
of the equilibrium configuration, whether it be an equilibrium point, or a limit 

cycle is ensured if all eigenvalues of the Jacobian matrix, A, lie in a circle on the 

complex plane. The Jacobian matrix, or community matrix (Aij), describes the 

effect of subgroup i on subgroup j at or near a point of equilibrium. From the 

characteristic equation derived from the determinant of (A - AI), conditions for 

the stability of the model can be determined and a stability boundary can be 

sketched in terms of the parameters of the model. 

The model developed here is analogous to a three species interaction model with 
multiple time delays. Successful local stability analyses have been done on in- 

teracting species with uniform time delays (for a general review, see Nisbet and 
Gurney, 1982; May, 1974), however, in our case, the generation times of different 

interacting species (or groups), are not identical in length. This adds an addi- 
tional element of complexity to an already complex model. For the sake of brevity 

and since such an analysis as described above would be very time consuming, the 

genetic component of the model was examined in isolation as a preliminary anal- 

ysis. 

4.9 Extension of the Chiang Matrix to Incorpo- 
rate Non-Uniform Generation Times 

Consider a simple scenario where individuals are categorised into one of three 

groups according to their genotype for speed of development. These individuals 

are assumed to be single stage organisms that spend a specific period of time in 

maturation, after which they enter the gene pool, reproduce and are subsequently 
distributed amongst the genotype groups according to the probabilities in the 

matrix 4.8. Figure 4.10 is a graphical depiction of the above scenario. 

Numbers of individuals in each genotype group over time are described by the 
following set of (non-linear) difference equations, 

FFt+I = FFt-Tl ft-T1 + 

FSt-T, ft-T1 

2 
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Figure 4.10: Flow diagram for life cycle of a single life staged organism. 

FSt+I = FFt-T, st-Tl + 
FSt-T2 

+ SS 
-f 

E T3 L-Tl 

SSt+1 = 
FSt-2 se-T, + SSt-T3 St-71 (4.46) 

where 

f (t - r1) is the frequency of the gene conferring fast development at time (t - Tl), 

given in full in equation (4.43), and s=1-f. 

This is a closed system with replacement, that is, there is no mortality and each 
individual is replaced by a single individual at reproduction. The aim here is to 
investigate whether an equilibrium genotype distribution exists when generation 
times are non-uniform. 

An equilibrium genotype distribution exists where 

FFt+I = FFt_T1 = FF 

FSt+I = FSt_T, = FS 

SSt+I = SSt_T3 = SS (4.47) 

Substituting the expressions in equation (4.47) into (4.46), and solving simulta- 

neously gives the equilibrium genotype distribution, at any one time point, to 
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be 

FS2 
FF = 4SS 
FS = FS 

9S= SS (4.48) 

If the frequency of the F gene in the population is f and the frequency of the S, is 

s where f+s=1, then when development times are equal for each development 

group, after one generation of mating, the genotype distribution, FF : FS : SS, 

follows the Hardy-Weinberg equilibrium f2: 2f s: s2 (Strickberger, 1976). In our 

case, when the development times vary between genotype groups, an equilibrium 

genotype distribution, as in equation (4.48) is obtained. 

This simple genetic model was simulated over time in ITERATOR (©STAMS) for 

four different sets of time delays, assuming that initial numbers in each genotype 

group were the same. A further two runs were simulated to look at the effect of 
initial f gene frequency on the outcome of the model. The aim was to investigate 

the nature of the genotype distribution equilibrium. 

4.10 Results 

The development times for each genotype differ, in that FF genotypes are as- 

sumed to spend fewer days on pasture than FS genotypes who in turn are assumed 
to spend fewer days on pasture than the SS genotypes. These times were varied 
for different runs of the model. 

Figures 4.11,4.12,4.13 and 4.14 give the results from four different runs of the 

simulation model, each run corresponding to different time delays, but all starting 

at the same initial size, FFo = FSo = SSo = 10000. Table 4.1 gives the different 

time delays used in each of the four simulations. 

All populations eventually converge to the steady state distribution in equation 
(4.48), with the time until convergence being longer as generation time increases. 

At any one time point, individuals will be distributed throughout the age classes 

within each genotype group. For example if FS individuals have a generation 
time of 3 days, say, at any one time point, there will be FS individuals in age 
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Table 4.1: Time delays for FF, FS and SS genotype groups. 

Figure 7*1 72 T3 

4.11 1 2 4 
4.12 10 17 28 
4.13 1 2 3 
4.14 10 20 30 

classes 1,2 and 3 respectively. 

For each simulation run when the numbers at the final time point are summed 

over each age class within each genotype group, it is evident that the total pop- 

ulation size has been retained. In addition the numbers in each genotype group 

at equilibrium for each simulation are in the ratio f2 : 2f s: s2, where f is the 

frequency of the gene for fast development, F, and s=1-f (see Table 4.2). 

In other words, these preliminary results suggest that despite non-uniform gen- 

eration times within a population, the initial gene frequency is conserved over 

time. 

Table 4.2: Equilibrium genotype distribution for non-uniform generation times. 

Figure Time Delay FFo: FSo: SSo FF*: FS*: SS* fo f* 

4.11 1,2,4 10000: 10000: 10000 7500: 15000: 7500 0.5 0.5 
4.12 10,17,28 10000: 10000: 10000 7500: 15000: 7500 0.5 0.5 
4.13 1,2,3 10000: 10000: 10000 7500: 15000: 7500 0.5 0.5 
4.14 10,20,30 10000: 10000: 10000 7500: 15000: 7500 0.5 0.5 

- 1,2,4 1000: 20: 50 953.694: 112.6125: 3.6937 0.943 0.943 

- 1,2,4 100: 500: 2000 50.9376: 598.125: 1950.94 0.1346 0.1346 
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Figure 4.11: Population numbers over 
time for the single-staged organism, 
with generation times, r1 =1 day, 

T2 =2 days and r3 =4 days for FF, 
FS and SS genotypes respectively. 

I -Sý 

t 

TMU DAY0 

Figure 4.13: Population numbers over 
time for the single-staged organism, 
with generation times, r1 =1 day, 

, r2 =2 days and r3 =3 days for FF, 
FS and SS genotypes respectively. 
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Figure 4.12: Population numbers over 
time for the single-staged organism, 
with generation times, r1 = 10 days, 
T2 = 17 days and r3 = 28 days for FF, 
FS and SS genotypes respectively. 
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Figure 4.14: Population numbers over 
time for the single-staged organism, 
with generation times, r1 = 10 day, 
-r2 = 20 days and r3 = 30 days for FF, 
FS and SS genotypes respectively. 
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4.11 Conclusion 

The Non-Mixing Model 

The, first part of this chapter introduces a mathematical model for the life cy- 
cle of a typical nematode population wherein generation time is uniform, and 
examines the effect of different generation times on the outcome of such a popu- 
lation. It was discovered that faster developers not only equilibrated faster, but 

at higher equilibrium values than those with longer generation times, a result 
already presented in Chapter 2 by numerical simulation. The techniques used to 

model the life cycle exploit the inherent linearity of the system and so analysis 
was straightforward. 

The Mixing Model 

The assumption that individuals within each genotype group were confined to 
that group at reproduction was relaxed in the second half of the chapter and a 
model incorporating genetic mixing of genotypes at reproduction was proposed. 
The population being modelled now had non-uniform development times, which 
meant that generations were no longer distinct, a feature distinguishing nematode 

worms from insect species. The mixing model is non-linear. Due to the complexity 

of the mixing model, it was decided to examine small components of the model 

separately in order to gain insights otherwise masked by the complexity of the 

whole model. Here, the genetic component was isolated from the model with 
the aim' of investigating the effect on the equilibrium genotype distribution of 

non-uniform generation times within a single population. 

The Genetic Mixing Model with Non-Uniform Generation 
Times 

In populations with uniform generation times, it is a well-established result 
(Strickberger, 1976), that, provided individuals within a population mate at ran- 
dom, if the frequency of a specific gene at a single locus on the chromosome, is 

f, say, the genotype distribution of the next generation will be in the ratio 

f2 : 2fs : s2 
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This ratio is called the Hardy Weinberg equilibrium, where, effectively, the gene 
frequency is conserved from generation to generation. 

In populations with non-uniform generation times where development rate is con- 
ferred by two alleles at a single locus on the chromosome, it appears from these 

preliminary results that such a population will also reach an equilibrium geno- 
type distribution similar to the Hardy Weinberg equilibrium, only the population 
numbers are now distributed amongst age classes rather than all individuals being 
in the same stage. 

As this is a closed system with replacement, there is an intrinsic assumption that 
births equal deaths. So provided that this is the case, then in any population 
with non-uniform generation times, an equilibrium genotype distribution exists. 

Having determined the outcome of the genetical mixing of a population with non- 
uniform generation times, the model could now be reconstructed with the results 

of this analysis in mind, and as was mentioned earlier, a stability boundary 

sketched in terms of other parameters such as fecundity, mortality and ingestion 

rates. 

Both the mixing and non-mixing models described in this chapter are discrete, 
deterministic representations of a complex biological system where change is con- 
tinuous and some events occur at random. When there are multiple time delays, 
however, and members of the population are within an age class structure, deter- 

ministic difference equations lend themselves well to such phenomena. 

Conclusions 

Methods of analysis are readily available for linear systems as was demonstrated 

in the first section of this Chapter. Unfortunately, very few biological systems 

can be represented by linear models. Furthermore, few non-linear methods of 

analysis exist, those that do consist of examining the behaviour of populations 

at or near points of equilibrium after perturbing the system. The computational 
difficulties that arise when analysing such models have been outlined here, and 
it is necessary to point out that transient behaviour of the system far away from 

equilibria may be of interest when examining nematode population dynamics. 

It is recognised that this model focuses in detail on the free-living dynamics of 

nematode parasites. The dynamics of the intra-host stage is equally as important 

and must be given due consideration, particularly with respect to host induced 
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population regulatory mechanisms known to operate when high adult worm bur- 
dens are being harboured within the host. 

In this Chapter, no account has been taken of environmental influences on the 
free-living development of nematode parasites. Factors such as temperature, rel- 
ative humidity, etc govern the rate at which individuals develop whilst free-living 

on pasture. Considering the temperature-dependent development rate data in 
Chapter 2, generally at the start and end of a typical grazing season, temper- 

atures are quite low, therefore, development times are quite long. As summer 
approaches, the development time decreases to a minimum at the height of sum- 
mer, then slowly begins to increase as autumn approaches. 

An interesting addition to the final model in this chapter would be the inclusion 

of a seasonality function, which could be in the form of a parabola, that would 
alter the free-living development times according to the temperature the parasites 
would be exposed to at different times of the year. 
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Chapter 5 

Modelling The Genetics of 
Resistance within a Parasite 
Population 

5.1 Introduction 

The widespread and sporadic use of compounds designed to eradicate pests has 

resulted in the selection for drug resistant strains of organism. In this Chapter we 
shall discuss the problems of resistance with respect to ecto- and endo-parasites. 
Current insecticide and anthelmintic resistance models are reviewed and a math- 
ematical framework is presented to model the evolution of drug resistance in a 
nematode population in a bid to identify the major factors influencing the growth 
of resistance. 

5.2 Current Models of Drug Resistance 

5.2.1 Insecticide Resistance 

In 1972, Georghiou reported over 300 cases of insecticide resistance since the 

introduction three decades previously of modern organic pesticides. In 1986, 

just a decade later, that number had risen to 447. The sporadic use of these 

chemicals in an uncontrolled manner has led to the acceleration of resistance in 

insect populations, with a growing trend towards the development of multiple 

and cross resistance. 

Having identified the major genetic, biological and operational factors influencing 
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insecticide resistance, Georghiou and Taylor (1977a, b) developed mathematical 

models to explore the effect of these factors on the growth and evolution of resis- 
tance. 

Around the same time Comins (1977) presented a mathematical model of in- 

secticide resistance. He introduced the concept of migration into and out of an 
insect population as a means of controlling resistance. It was discovered that if 
drug-susceptible individuals were introduced into the population, the evolution of 

resistance may be delayed. Taylor and Georghiou (1979) use a system of coupled 
difference equations to describe changes in the frequency of the gene conferring 
resistance, and changes in the population size in an insect population exposed to 
insecticide. The authors re-examined the novel technique of controlling insecti- 

cide resistance via the inward migration of insecticide-susceptible strains initially 

explored by Comins (1977). Their approach differed to that of Comins (1977) 

in that the migrant pool is assumed to be unaffected by the outward migration 
of resistant strains from the population. In making this assumption, Taylor & 
Georghiou (1979), with their model, successfully achieved control of resistance 
and population numbers simultaneously provided the migration rate was high 

and the resistant allele recessive. 

More recently, similar modelling techniques have been used to explore the phe- 

nomenon of multiple resistance and the effect of mixtures of compounds on the 

progression of insecticide resistance (Mani, 1985). In this study Mani (1985) as- 

sessed the effect of administering mixtures of insecticide as opposed to sequential 
treatment of an insect population. This was mathematically more challenging as 

a two-locus instead of a single-locus modelling approach was taken which involved 

considering linkage disequilibrium and recombination factors . It was concluded 
that the use of mixtures will delay the onset of resistance in a population, quite 
drastically when the recombination factor, r, is above a certain specified thresh- 

old. 

Roush (1990) reviews the genetics and management of insecticide resistance and 

considers whether the lessons learned by entomologists may be usefully applied 
to similar problems associated with internal parasites, particularly nematodes. A 

great many similarities exist between both disciplines. As a result, preventative 

measures can be undertaken to avoid making the same mistakes that were made 
two decades ago in the insect domain. 
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5.2.2 Anthelmintic Resistance 

Simulation Models 

Models, such as those developed by Gettinby et al (1989) for T. circumcincta 

, and Barnes and Dobson for T. colubriformus (1995), simulate the evolution 
of resistance in a specific parasite population using the relevant epidemiological, 
climatic and genetic factors at a particular site. These models are very complex 
and so are unable to provide simple analytical results on how resistance evolves 
in a population. 

Analytical Models 

Smith (1990) proposed a drug resistance model that was generic to most direct 
life cycle nematode populations with overlapping generations, undergoing some 
form of selective drug treatment. A system of deterministic differential equa- 
tions was developed to model changes in the genotype distribution of free-living 

parasites and sexually mature adults in a typical nematode population. The 

equations incorporated many of the important biological aspects of a parasite 

population undergoing intensive drug treatment, including host ingestion rate, 
fecundity of female parasites and mortality of free-living parasites. In addition, 

a genetic component that determined the genotype distribution of the offspring 

population given the parent population genotype distribution after drug treat- 

ment was incorporated into the model. Analytical results were obtained for the 

pre-treated population, where equilibrium gene frequencies were found by im- 

posing a heterozygote advantage on the mortality of the free-living stages. The 

effect of treatment on this population was explored by numerical simulation, and 
it was concluded that sequential treatment using different anthelmintics was less 

effective at delaying the onset of resistance than simultaneous treatment with 

mixtures. 
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5.3 Difference Equation Models for the Evolu- 
tion of Drug Resistance in Parasite Popula- 
tions 

This Chapter presents a pair of models for the evolution of drug resistance in a 
parasite population in a bid to identify the major factors influencing the growth 
of resistance in a population. 

5.3.1 Genetic Component of the Models 

It is assumed that resistance is conferred by two alleles at a single locus on 
the chromosome, with R and S representing the resistant and susceptible alleles 

respectively. This results in three genotypes, denoted by RR, RS and SS. The 
frequency of the R gene in generation t is denoted pt and the frequency of the S 

gene in generation t is denoted qt, where pt + qt = 1. Of those parasites exposed 
to an anthelmintic, all RR genotypes will survive, a proportion, 1-h, of the RSs 

will survive and all SSs will be killed. The value of h determines the relative 
dominance of the R allele, (0 <h< 1). That is, if h=0, the R gene is fully 

dominant; if h=1, the S gene is fully dominant; if 0<h<1, there is partial 
dominance. 

Mating between parasites within the host is assumed to be at random. After a 
single generation of mating, the resultant genotype distribution in the offspring 

population is in the Hardy-Weinberg ratio. That is, if the frequency of the gene 
conferring resistance in the population before reproduction is pt and the frequency 

of the susceptible gene in the population is qt, where qt = 1- pt, in the following 

generation, the offspring genotype distribution will be in the ratio pt : 2ptgt : qt 
(RR: RS : SS) (Strickberger, 1976). 

5.3.2 Host-Pasture Model (HP Model) 

In a single generation, it is assumed that a proportion, a, of the population on 

pasture will be ingested by a single host. Once inside the host, these parasites are 

exposed to an anthelmintic. Those surviving treatment will mate and produce 

offspring which will be deposited onto the pasture. Meanwhile, those individuals 

not ingested by the host will remain on the pasture and will decrease over time 
due to natural mortality, at a rate 1-0. The proportion of the original population 
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surviving on pasture is therefore (1 - a)ß. This is illustrated in Figure 5.1. 

a 

P 

G (a) 

1-ß 

H 

1-G (a) 
Figure 5.1: Flow Diagram for Host-Pasture Model depicting the flow of parasites 
from pasture to host undergoing drug treatment, with offspring returning to the 
pasture after a single generation. 

It follows that the proportion of individuals from the population that survive 
treatment within the host will be 

wt(H)=a[pt+2pt(1-pt)(1-h)] (5.1) 

The proportion of individuals from the population that survive on the pasture is 

wt (P) = (1- a) 0 (5.2) 

Let the number of individuals that would have survived if the animal was not 
dosed, and natural mortality was zero, be Nt. Thus the frequency of the R gene 
in the subsequent generation is 

Pt+i = 
fa Pt+pt (1-Pt)(1-h)]+(1-a)Qpt 

(5.3) 
f? ut(H) +'wt(P) 

The change in population numbers is modelled using the simple relationship 

Nt+1 = Nt (wt (P) + f'wt(H)) (5.4) 

where f is the fecundity of female worms. 
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5.4 Analysis of the HP Model 

Equilibrium occurs when the gene frequency and population size are unchanging. 
That is, when 

Opt = Pt+i - Pt =0 

and 
ONt = Nt+i - Nc =0 

5.4.1 Gene Frequency Equilibrium 

The gene frequency is unchanging where 

Opt _fa 
[ä + pt (1 - pt) (1 - h)] + (1 - a), 3 [pt] 

_ Pt =0 (5.5) 
fwt(H)+zvt(P) 

fa [pt + pt (1 -pt) (1- h)] + (1 - a), 3[pt] = pt [ft(H) + wt (P)] (5.6) 

fa(2h-1)pt+fa(2-3h)pt-fa(1-h)pt =0 (5.7) 

Dividing equation (5.7) by fa results in a cubic equation in pt 

pt[(2h-1)pt+(2-3h)pt-(1-h)] =0 (5.8) 

the roots of which represent the equilibrium gene frequencies, pö, p1 and p2. These 

are given by 

Po=0 

3h-2f (2-3h)2-4(2h-1)(h-1) 
AIA= 

2(2h-1) 
(5.9) 

and so one root is 

4h -25.10 1) Pi = 4h -2 
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and the other is 
h-1 (5.11) = P2 2h -1 

By definition, 
AIA 2<1 

From equation (5.10), it is clear that pl =1 satisfies this condition. For p*2 to 

satisfy this condition, 
h-1 

0<_2h-1< 
-1 

Given that 0<h<1, the only reasonable value that h can take is h=1. 

Substitution of h=1 into (5.11), gives the second root of equation (5.9) to be 

p2 = 0, representing the trivial solution to equation (5.9). A value of h=1 

represents complete recessiveness of the R gene. 

5.4.2 Population Size Equilibrium 

The equilibrium population size under the HP model is calculated by setting 
ANt =0 and so 

ONt = Nt+l - Nt =0 (5.12) 

Ntwt(P) + Ntwt(H) f- Nt =0 (5.13) 

This means that either 

N* =0 

or that 

(5.14) 

wt (P) + wt(H)f -1=0 (5.15) 

N* =0 is the trivial equilibrium for this system. An alternative equilibrium 

exists only when (5.15) is satisfied. If this is the case, N* can effectively take one 

of an infinite number of possible values. Expanding equation (5.15) gives 

(2h-1)afpt+(2-2h)afpt+(1-a)ß-1=0 (5.16) 

This result suggests that conditional on there being a gene frequency equilibrium 
(or equilibria), pi, p2, that can be substituted into the final equation in (5.16), a 

population size equilibrium will exist provided equation (5.16) is satisfied. 

105 



Equilibrium Population Size with pi =1 

Substituting pi =1 into equation (5.16) reveals that a non-trivial population size 

equilibrium will exist provided 

fa=1-(1-«)Q 

That is to say that once a population has reached the gene frequency equilibrium 
of pi = 1, the size of the population will reach equilibrium provided the incomers 

to the population equal those leaving the population each generation. 

Equilibrium Population Size with p2 =0 

Substitution of p2 =0 into equation (5.16) demonstrates that for an equilibrium 

population size to exist, 
(1-a), ß=1 

When the population is fully susceptible, an equilibrium population size will be 

reached only if the proportion of individuals that remain on pasture and survive 
is 1. 

Given that a and ,ß must both lie between 0 and 1, the only valid solution of this 

equation is a=0 and ,ß=1. This corresponds to no parasites being ingested by a 
host and 100% survival on the pasture. Clearly if any member of this population 
leaves the pasture and enters a host, it will be killed by the anthelmintic drug. 

Effectively, once p* =1 has been reached, the process defined in equation (5.4) 

becomes a simple birth death process where an infinite number of steady state 

population sizes exist provided births equal deaths. Otherwise, if af>1- 
(1 - a), 8 the population will increase monotonically, and if af<1- (1 - a), 8 

the population will decrease to below 1 and become extinct. The second case 

reported above is looked on as the trivial case and will not be pursued further. 

5.4.3 A Neighbourhood Stability Analysis of the Gene 
Frequency Equilibria 

The equilibrium state or fixed point, p*, is said to be stable if all initial values in 

some neighbourhood are attracted to it, (Mickens, 1990). 
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Let p* be a fixed point of equation (5.3). We consider the behaviour of states in 

some neighbourhood of pt = p*, that is 

Pt = P` + Pt (5.17) 

where pt is assumed to be very small. On substitution of equation (5.17) into 

equation (5.3), and expansion of equation (5.3) about p* we get 

Pt+i + p* = F(p* + Pt+l) 

= F(p*) + F'(P*)Pt +1 Fl(p*)pt +1F... (p*)Pi + .... 
(5.18) 

26 

which leads to 

Pt+i = F'(p*)Pt + 
2Fýl(p*)Pt 

+ 6F... (P*)Pi +. 
. 
.. (5.19) 

Discarding terms of second order or more results in 

Pt+l = F'(p*)Pt (5.20) 

the solution of which is 

Pt = Po [FF(p*)]t (5.21) 

The stability of p* is therefore determined by the sign of the first derivative of 
equation (5.3) about this point. 

Equation (5.3) becomes 

fa[i+pt(1-pt)(1-h)]+(1-a)Opt 
F'(pt) = fwt(H) + wt(P) 

(5.22) 

It follows that 
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fa(1-h)+(1-a)ß 
(5.23) 

fa+(1-a), ß 

In order for p* .=1 
to be stable, the RHS of equation (5.23) must be less than 

one. This means that fah > 0. Since f, a and h are all positive parameters, this 

condition holds for all p*. For p* to be unstable, F'(p*) > 1, this would result in 

-fah > 0, which under the circumstances in this model, is not possible. 

5.5 Numerical Simulation of the HP Model 

5.5.1 Frequency of the Gene Conferring Resistance 

It has been determined that under normal circumstances, the frequency of the 

gene conferring resistance, R, will always reach 1 eventually, provided po > 0, 
independent of N, the population size. 

The HP Model was simulated for eleven different parameter sets using ITERATOR 
(©STAMS), a numerical solutions package for difference equations, to determine 

the effect of the parameters on the evolution of resistance. The parameter values 
are given in Table 5.1. The parameter values were chosen to reflect the entire 
range of possible values. For the ingestion rate, a, initial R gene frequency, po, 
survival rate, ß and proportion of heterozygotes killed by the drug, h, possible 
values ranged from zero to one. We chose a minimum, a maximum and an 
intermediate value for each parameter. For f, the fecundity of female parasites, 
values of 10,100 and 1000 were chosen. 

Initial Gene Frequency po 

Figure 5.2(a) demonstrates the effect of initial gene frequency on the evolution 

of resistance in a typical parasite population. Provided that po > 0, a fully 

resistant population will always evolve. At low initial gene frequencies, growth to 

resistance appears to be sigmoidal. However, when the gene frequency is initially 

high or in the mid values, growth to resistance is exponential in nature. We 

can explain this by recalling the principles of segregation and recombination of 

genetic material at reproduction (Strickberger, 1976). When the frequency of the 

R allele is initially low, after one generation, provided the population mixes at 
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Table 5.1: Table of parameter values chosen to illustrate the behaviour of the HP 
model using numerical simulation. 

Simulation Po a0fh 

1 0.1 0.1 0.9 100 1 
2 0.4 0.1 0.9 100 1 
3 0.9 0.1 0.9 100 1 
4 0.1 0.4 0.9 100 1 
5 0.1 0.9 0.9 100 1 
6 0.1 0.1 0.1 100 1 
7 0.1 0.1 0.5 100 1 
8 0.1 0.1 0.9 10 1 
9 0.1 0.1 0.9 1000 1 
10 0.1 0.1 0.9 100 0.75 
11 0.1 0.1 0.9 100 0.25 

random, the majority of R alleles are to be found in the heterozygotes. According 

to Mendellian principles of segregation, the mating combination RS x RS yields a 
probability of 0.5 of producing an R allele, whereas the combination of RR x RR 
has a probability of 1 of producing an R allele. Therefore the R gene frequency 

will grow more slowly when the majority of the R alleles are within heterozygotes 

rather than within the homozygotes. 

Ingestion Rate, a 

The rate at which the host ingests parasites will have an effect on the rate at 
which a fully resistant 'population evolves, as it is only the ingested proportion 
that can reproduce and contribute their genetic material to future generations. 
It is clear from Figure 5.2(b) that the higher the fraction of the population that 
is ingested at any one time, the quicker resistance evolves. 

Survival Rate, 0 

Figure 5.2(c) illustrates the effect of varying survival on the pasture. A high 

survival rate on pasture will lead to full resistance much slower than a low survival 
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rate. If fewer parasites are available to the host, fewer will reproduce, and so it 

will take longer for resistance to evolve in a population. As the survival rate 
decreases, the rate at which the population becomes fully resistant increases. 

Fecundity of Female Worms, f 

In this model, the fecundity of the female worms is assumed to be uniform ir- 

respective of genotype. Figure 5.3(a) shows the effect on the R gene frequency 

over time that varying the egg output of female parasites from 10 to 100 to 1000, 

respectively will have. Reducing fecundity from 1000 to 100 and 100 to 10 eggs 

per female respectively has a very different effect on the rate at which the pop- 

ulation converges to resistance. Fecundities of 1000 and 100 lead to very similar 
behaviour of the model. However a fecundity of 10 eggs per female has a dramatic 

effect on the dynamics of the R gene frequency, and convergence to resistance is 

notably slower. 

Proportion of heterozygotes killed by the drug, h 

The dominance of the R gene is the only factor in this model that is at least 

partially under the control of the experimenter. Provided that the dominance 

of the gene conferring resistance is dependent on the dose of anthelmintic, the 

parameter, h, the proportion of heterozygotes killed by the drug, can be adapted. 
Figure 5.3(b) demonstrates the effect that this parameter has on the system. 
Consider three populations where h=1, h=0.75 and h=0.25, respectively. 
In the first population, the drug kills all heterozygotes, in the second, the drug 

kills 75% of the heterozygotes and in the third population, the drug kills 25% 

of the heterozygotes. In all three populations the R gene frequency is initially 

low, (po = 0.1). This means that the majority of the R genes are to be found in 

heterozygotes. Resistance in the first population will evolve slower than in the 

other two populations, whilst the R gene frequency is low. In fact the higher the 
h value, the slower resistance will proceed provided the initial R gene frequency 

is low. Recall that when the R gene frequency is initially low, there will be a 

greater number of heterozygotes than homozygote RRs if mating is at random 
(Strickberger, 1976). This increases the chances of an RSxRS mating rather than 

a RRxRR or RRxRS. The latter mating combinations producing on average a 
higher proportion of R genes than the former mating combination. Once the R 

gene frequency has reached some critical level in the population, there is a greater 
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number of RR homozygotes now than heterozygotes which results in more R genes 
being introduced to the population than before. 
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Figure 5.2: Changes in the frequency of the R gene over time for the HP model, 
when (a) the initial gene frequency, po, is varied; (b) the ingestion rate, a, is 
varied; and (c) the survival rate, , Q, is varied. 

112 

02468 
time (generations) 

time (generations) 

uo 

time (generations 



0 
>, T- 

CO 
O 

UÖ 

Co 
N 

cc 0 
0 

0 
TT 

co 

7 CD 
NÖ 
I- w 
0O 

N 

cc 0 
0 

r- 
1 
ý (a) 
º 
i 
º f=100 º 
°' 

W- 
- 

1: 18 
0 0 

0 10 20 30 40 50 
time (generations) 

fib) 

=0.25 
=0.75 

02468 
time (generations) 

Figure 5.3: Changes in the frequency of the R gene over time for the HP model, 
when (a) the fecundity of female worms, f, is varied; and (b) the proportion of 
heterozygotes that are killed by the drug, h, is varied. 
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5.5.2 Population Size 

Figure 5.4 shows the behaviour of the population size over time for four dif- 
ferent starting conditions, No = 1000000,500000,100000,10000. Provided fa= 
1- (1- a)Q, the condition for population size equilibrium, the steady state values 
will depend only on the starting conditions. The steady state values of popula- 
tions with initial population sizes of 1E6,5E5,1E5 and 1E4, respectively, are 
245.848,122.924,24.5848 and 2.45848, respectively. In other words, the equilib- 
rium population size is directly proportional to the initial population size, since 
we have a very simple population growth function that does not contain any reg- 
ulatory mechanism such as host immunity. However, there are suggestions that 
density dependent effects will not affect the results. 
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Figure 5.4: Trajectory of population sizes when fa=1- (1 - a), ß for different 
starting conditions. 

5.6 Host-Pasture-Refugia Model (HPR Model) 

Refugia are areas where parasites avoid exposure to drug treatment. For nema- 
tode populations, there are two forms of refugia. Those parasites that remain 

on pasture, uningested by a host, are said to be in refugia as they are avoiding 

exposure to the drug. Similarly those parasites ingested by a host that manage 
to avoid treatment by concealing themselves in areas of the abomasum inacces- 

sible to the drug are also said to be in refugia. Refugia of the former kind has 
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already been modelled in the previous section where a fraction of the free-living 

population remain on pasture whilst the remainder are ingested by a host and 
are exposed to the drug. 

Refugia of the latter kind is modelled here by assuming that a fixed proportion 
of the parasites ingested by the host are not exposed to the anthelmintic. That 

proportion is denoted by p. It is assumed that those individuals entering refugia 
only do so for a single time period. This model is presented diagrammatically in 
Figure 5.5. 

a 

pýlH 
G (a) 

1-ß 1-G (a) 

Figure 5.5: Flow Diagram for Host-Pasture-Refugia Model depicting the flow of 
parasites from the pasture to the host with a proportion of parasites entering 
refugia once inside the host. 

If the R allele frequency in generation t is pt, then, the proportion of individuals 

that undergo and survive treatment is now 

wt(H)' =a(1 -µ) 
[P2t +2Pt(1-Pt)(1-h)] 

As before, a is the ingestion rate of the host, ß, the survival of free-living parasites, 

and 1-h, the proportion of heterozygotes that survive treatment. 

It follows that the proportion of parasites that are returned to free existence by 

the host after one generation is 

wt(H) =f [wt(H)' + ap] 

assuming that all those in refugia survive and reproduce successfully. 

The proportion of individuals that survive mortality on pasture is again 

wt(P) = (1- a) 0 

The frequency of the R gene in the subsequent generation is now 
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fa(1-µ) [e+Pt(1-Pt)(1-h)1 +(fam+(1-a)Q)Pt 
1-; -t- J. = wt (H) + wt(P) 

(5.24) 

and the population size after one generation is 

Nt+i = Nt [wt(P) + wt(H)] (5.25) 

5.7 Analysis of the HPR Model 

5.7.1 Gene Frequency Equilibrium 

The gene frequency under these conditions will be in equilibrium when 

fa (1 - lý) [p + pt (1 - Pt) (1 - h)] + (f aµ + (1 - a) /3) [pt] 
Apt =- Pt =0 

Pt (wt(H) +f ali + wt (P)) 
(5.26) 

which simplifies to 

fa(1-p)(2h-1)pt+fa(1-p)(2-3h)pt+fa(1-p)(h-1)pt=0 
(5.27) 

Dividing equation (5.27) throughout by fa (1 - p) gives a cubic equation in pt 

pt [(2h 
- 1) pt + (2 - 3h) pt - (1 - h)] =0 (5.28) 

with roots pä, pi and p2, that represent the equilibrium gene frequencies. These 

are 

Po=O 
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3h-2f (2-3h)2 -4(2h- 1) (h- 1) 
PlIPa = (2h - 1) 

From this it is clear that 

Pi=1 

irrespective of h, and 

P2 =0 

if and only if h=1. 

(5.29) 

(5.30) 

(5.31) 

These are identical to the roots obtained for the HP model in the previous section. 
This suggests that the inclusion of refugia into the model has no effect on the 
equilibria. From equation (5.29), it is clear that only the parameter h has any 
effect on the equilibria. 

Therefore, under these conditions, where a small fraction of the population may 
enter an area inaccessible to the drug, prior to treatment, ultimately, the popula- 
tion will become fully resistant, irrespective of the rate of ingestion (a), proportion 
in refugia (µ), survival rate (ß) or fecundity (f), provided po 0. 

5.7.2 Population Size Equilibrium 

An equilibrium population size, if it exists, can be calculated as follows 

ONt = Nt+l - Nt =0 (5.32) 

Nt (wt(P) + (tD (H) + aµ) f) - Nt =0 (5.33) 

fa(1-µ)(2h-1)pt+fa(1-µ)(2-2h)pt+ß(1 -a)+faµ-1=0 
(5.34) 

When the non-trivial equilibrium gene frequency, pi = 1, has been reached, the 

population size will go into equilibrium only if fa=1- (1 - a) ß, representing 

a balance of birth and death terms. 
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5.7.3 A Neighbourhood Stability Analysis of the Fixed 
Points in the HPR Model 

The stability of the steady state p* =1 in the HPR model is determined in a 
similar way to the stability of the fixed point in the HP model. The behaviour 

of states in some neighbourhood of p* =1 is investigated by perturbing the 

equilibrium by a small quantity, pt, such that 

pt = P* + pt (5.35) 

The system will return to its fixed state, if 

l im pt =0 (5.36) 

and the fixed point will be stable. As in Section 5.4.3, we consider 

FHPR 
fa (1 -µ) [p +pt (1-Pt)(1-h)J+(falt +(1-a)Q)pt (5.37) 

wt(H) + zut(P) 

The first derivative of equation (5.37) about p*, according to equation (5.23) must 
be less than one if p* is to be a stable point, 

fa(1-µ)(1-h)+fap+(1-a)ß 
(5.38) FHPR - fa + (1 - a)ß 

It follows that FHPR <1 if and only if µ<1, indicating that provided 100% of 
parasites do not avoid exposure to the drug, p* =1 will be a (locally) stable fixed 

point. Selection for resistant strains could not occur if none of the parasites were 
exposed to the drug. 

5.8 Numerical Solution of the HPR Model 

A series of plots have been produced to illustrate the effects of varying the pa- 

rameter values on the growth and evolution of resistance for the HPR model. 

Similar patterns are observed in this model when the parameters are varied as 

were observed under the HP model, and are shown in Figures 5.6 (a), (b) and (c) 

for initial R gene frequency, po, ingestion rate a, and survival rate, ß, respectively, 
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and Figure 5.7 (a) and (b) for fecundity, f and the proportion of heterozygotes 
killed by the drug, h 

In this section we shall discuss the effect of refugia on the resistance status of a 

population. 

Proportion of the ingested population entering refugia, It 

The same parameter values were used in the simulation of the HPR model that 

were used in the HP model (Table 5.1). However, unless otherwise stated, it 
is now assumed that 50% of individuals enter areas of refugia each generation. 
Figure 5.7(c) illustrates the effect of varying that proportion in a population. 

From Figure 5.7(c), the rate at which the population converges to resistance is 
decreased when a proportion, (µ = 0.1), of the ingested population go into refugia. 
When this proportion is increased to µ=0.9, meaning that 90% of the parasites 
ingested avoid contact with the anthelmintic and can go onto reproduce regardless 
of genotype, the result is still a fully resistant population. However, as can be 

seen from Figure 5.7(c), the evolution of resistance under these circumstances is 

much slower due to the sigmoidal shape of the growth curve compared to the 

other two curves, representing 50% and 10% in refugia, respectively. 
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Figure 5.6: Changes in the frequency of the R gene over time for the HPR model 
when (a) the initial gene frequency, Po, is varied; (b) the ingestion rate, a, is 
varied; (c) the survival rate, ß, is varied. 
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model when (a) the fecundity of female worms, f, is varied; (b) the proportion of 
heterozygotes killed by the drug, h, is varied; (c) the proportion of the ingested 
population in refugia, p, is varied. 
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5.9 Exploring the Rate of Convergence to Re- 
sistance under the HP and the HPR Models 

Analyses of the previous two models suggest that a fully resistant population will 
evolve provided no measures are taken to control the dissemination of resistance 
throughout the population. From the numerical simulations of the HP and HPR 

models, the rate at which a population converges to resistance varies considerably 

with changing parameter values. 
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Figure 5.8: Representation of the change in gene frequency 

Figure 5.8 shows the progress of anthelmintic resistance in a population with 
time. Geometrically, it is possible to determine how many time units it takes 

to reach a gene frequency of pt from an initial gene frequency of po by simply 

counting along the x-axis the appropriate number of time steps. 

For example, in one time unit, the gene frequency changes by Opi = p; +l - pi. 
In two time units, the gene frequency changes by Opi + Opi+l. It follows that 

in t time units, the gene frequency will change by Ei=1 zpi. So that after t time 

points, the new gene frequency will be 

t 
pt = Po + Opt 
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(5.39) 

If we replace Ei=10pt; in equation (5.39) with some average value, tApt, then 
(5.39) becomes 

Pt - Po = taps (5.40) 

The quantity £ is the gradient of the slope in Figure 5.8 that begins at po and 
ends at pt. We can use the approximation 

dpt 
dt.. 'ýpt 

For the HP model, the time t that it takes to reach a gene frequency of pt from 

an initial value of po is 

Apt = Pt+i - Pt 

-fa 
[(1 - 2h)pt + (3h - 2)pt + (1 - h)pt] 

(5.41) 
wt (H) + wt (P) 

This can be approximated by 

dpt fa ((1 - 2h)pt + (3h - 2)pt + (1 - h)pt] 
(5.42) 

dt tz (H) + wt(P) 

Similarly for the HPR model 

dpt 
,,, 

f a(1 - µ) [(1 - 2h)pt + (3h - 2)p + (1 - h)pt] 
dt ,v iv -t + wt (P) +f aµ 

(5.43) 

For explanatory purposes, the complexity of both equations is reduced by assum- 
ing that h=1, that is, the susceptible allele is fully dominant, and hence all 
heterozygotes are killed by the drug. And so for the HP model: 

dpe 
P, 

f api [1 - pt] 
dt fapt +(1-a)p 

(5.44) 
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and again for the HPR model 

dpt 
,fa 

(1 - lt) Pt [1 - Ptl 
dt ~ fa (1-p)pt+fap+ß(1 - a) 

(5.45) 

Conveniently, equations (5.44) and (5.45) can be solved to give the time, t, in 

generations for the gene frequency to change from po to pt . The solution to 

equation (5.44) is 

(1 - a) ß ýc 1111- 
tHpN 

[in 
+In Po - +--- +In Po 

fa po pt -1 Po Pt 1- Pt 
(5.46) 

and for the HPR model , equation (5.45) 

fap + (1 - a)Q Pt p0 -111 [1-po] 
*PR -ý In -+ In +---+ In fa (1 - µ) Po Pt -1 Po Pt 1 -Pt 

(5.47) 

Examination of the terms outside the brackets in equations (5.46) and (5.47) 

shows how each of the model parameters affect the time taken to reach significant 
levels of resistance. For both models, the higher the survivorship on pasture, ß, 
the longer it will take for 100% resistance to evolve. This is because if more 
parasites survive on pasture, the ratio of free-living to parasitic stages will be 
higher than if the survival rate was lower on the pasture, and so the relative 
proportion of R genes will decrease as ,ß is increased. The higher the ingestion 

rate a, the quicker resistance will evolve. Clearly this is because those individuals 
ingested by a host will undergo selection due to drug treatment whereas those 

remaining on pasture do not. For the HP model, increasing the fecundity leads 

to a reduction in the time until 100% resistance evolves. This effect is not the 

same in the HPR model, however when refugia is incorporated into the model. 

A comparison can now be made between the analytical results and the results 
from the numerical simulation using ITERATOR(©SIAMS). Table 5.2 gives the 

time taken for the gene frequency to reach a value of pt from an initial value of 

po, using numerical simulation and the analytical equation derived above for both 

the HP and HPR models. 
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Table 5.2: Table of times to significant resistance derived analytically, equations 
(5.46) and (5.47), and by simulation in ITERATOR. 

Model po pt ITERATOR ANALYTICAL 

HP 0.1 0.99997 201 202.8 
HPR 0.1 0.99997 225 226.7 
HP 0.4 0.99997 117 119.6 

HPR 0.4 0.99997 '130 133.5 
HP 0.9 0.99997 80 82.3 

HPR 0.9 0.99997 89 91.5 

5.10 Discussion 

The two models presented in this Chapter serve as the starting block for a series 
of models designed to investigate the evolution and control of drug resistance 
within a parasite population. We have assumed that 

" changes to the population structure occur at discrete points in time, in this 

case, generations, 

" all parasites on pasture are in the same life stage, irrespective of the time 
spent on the pasture, 

" once ingested by a host the parasites become adults, 

" treatment occurs post reproduction, 

" mating occurs at random, therefore offspring are produced in Hardy-Weinberg 

equilibrium, (Strickberger, 1976), 

9 the ingestion, mortality and refugia rates are genotype independent, and 

" the parasite-host system involves only a single host. 

A continuous time model for the evolution of anthelmintic resistance in a typical 

nematode population was developed by Smith in 1990 to deal with the direct life 
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cycles of these parasites and overlapping generations. Unfortunately, no analyt- 
ically tractable mechanism was provided in this model to determine changes in 

gene frequency after administration of treatment. As a result, the equations were 
solved numerically. 

Thi's made it impossible to derive general qualitative insights into how patterns of 
resistance might develop over time as any inferences that are made from numerical 
methods of solution usually cannot be extrapolated outwith the scope of the 

numerical solution. 

Changes in the frequency of the resistance gene coupled with changes in the overall 
population size were modelled using a system of non-linear difference equations. 
Steady state gene frequencies and population sizes were obtained and the (local) 

stability of these fixed points determined. The HP and HPR models describe the 
dynamics of a typical nematode population undergoing selective drug therapy. 
Combined, they incorporate many of the important factors governing the speed 
of dissemination of resistance throughout a parasite population. 

Results from the models indicate that provided the gene pool initially contains 
some R genes, that is, po > 0, eventually the entire population will become 

resistant to the drug. This result holds irrespective of the values of the model 
parameters, a, Q, it, h or f. 

This provides strong evidence that managing existing problems by simply altering 
the vital rates may slow down the evolution of resistance, but will not stop it 

altogether. Clearly interventionist measures must be employed if we are to totally 
suppress resistance in a population. 

A stability analysis of the fixed points in the models revealed local stability of 
the equilibria. 

The change in population size is. represented here by a very simple equation. In 

this model, control of parasite numbers on pasture can only be achieved if the 

additions to the population, that is births, balance those that are removed from 

the population, once that population has become fully resistant. This would be 

a difficult control strategy to implement, as first, the population numbers would 
have to be low, and secondly to maintain the equilibrium strict control over 
births and deaths would have to be taken which would in practice be impossible. 

It is widely known that density dependent mechanisms act on the population 
to regulate numbers when parasite levels are high. Recently, host issues have 
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been addressed by Roberts (1991,1992), however, examining the effect on the 

evolution of anthelmintic resistance within a heterogeneous host population has 

yet to be addressed. 

Time To Significant Resistance 

The analytical expression derived to determine the time taken for the gene fre- 

quency to reach pt from an initial value of po for both the HP and HPR models 
appears to be a good approximation to the'real time generated from the simula- 
tion model, differing by at most two generations. When a fraction of the ingested 

population enter refugia in the HPR model, the equilibrium behaviour of the en- 
tire population does not change from that in the HP model. However, the time 
taken for the population to converge to the steady state gene frequency increases 
by a factor 

p 1+(1-a)ß 
1-µ fa 

From this, we can explore the effect of biologically meaningful parameters on the 
time to 100% resistance and through this make recommendations on the optimal 
methods of impeding the dissemination of resistance. 

The time to significant resistance is minimised by reducing mortality on pasture, 
1-Q, slowing down the rate of host ingestion of parasites, a, and increasing the 
proportion of individuals entering refugia in any one generation, p. 

We have shown in this Chapter that when no measures are taken to control 
resistance, even when initial resistance levels in a 

. 
population are very low, the 

entire population will become resistant in time. We have provided a means of 
determining how long under present circumstances it would take for resistance 
to evolve in a population and have examined ways in which the dissemination 

of resistance could be slowed down whilst research is continuing on alternative 
methods of resistance control. 
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Chapter 6 

The Effect of Immigration , on the 
Evolution of Anthelmintic 
Resistance In a Parasite 
Population 

6.1 Introduction 

The introduction of a new host onto pasture brings with it the danger of in- 

advertently introducing resistant strains of parasite into the established worm 
population. In this chapter we examine the effect on a nematode population 
when an influx of migrants with RR genotypes enter the pasture. 

6.2 The Resistant Immigrants Model (RIM Model) 

Synthesis of this model proceeds from that of the HP and HPR models in the 

previous Chapter. Of the proportion of the population ingested by a host, a, a 

proportion, p go into refugia and avoid exposure to the anthelmintic. Those not 
in refugia are treated with an anthelmintic and survive according to the dose of 
drug administered and the genetic composition of the parasite population. Of the 

population remaining on pasture, a proportion 1- , ß, die from natural mortality. 
In addition, in each generation, it is assumed that a number, r, of RR genotypes 

are introduced as migrants onto pasture. A diagrammatic representation of the 

flow of parasites to and from the pasture is given in Figure 6.1. 

If the frequency of the R allele in generation t is pt, and all susceptible homozy- 
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Figure 6.1: Flow diagram of Resistant Immigrants Model depicting the flow of 
parasites from pasture to host undergoing treatment with an anthelmintic drug, 

with a constant input of r RR immigrants being introduced to the pasture each 
generation. 

gotes and a proportion h of the heterozygotes are killed by the anthelmintic and 

mating between those remaining is at random, it follows that the proportion of 
individuals that are expelled onto the pasture by the host after one generation 

will be 

wt(H) = fa(1- µ) [p +2pt(1 - pt)(1- h)] +. faµ (6.1) 

Again, the proportion of individuals that survive mortality on the pasture, as- 

suming that the mortality rate is the same for each genotype, is 

wt(P) = (1- a) 0 (6.2) 

If the number of resistant genotypes entering the population as migrants in a sin- 

gle generation is r, then the frequency of the R gene in the subsequent generation 

will be 

Nt[. fa(l-µ)[t+Pt(l-Pt)(1-h)]+[fait +(1-a)Q]Pt]+r 
Pt+i - Nt [wt(H) + wt(P)] +r 

(6.3) 

Changes in population size over time are described by the following simple equa- 

tion 

Nt+i = Nt [wt(H) +'Dt(P)] +r (6.4) 

where the population size in generation t is Nt. 
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6.3 Analysis of the RIM Model 

As with the HP and HPR models in the previous chapter, the existence of non- 
linear components within the model leads to an analysis of the stability of the 

system in the vicinity of the equilibrium points. 

6.3.1 Gene Frequency Equilibrium 

A gene frequency equilibrium will be reached when Ap = pt+l - pt =0 

Nt[fa(1-µ)I +pt(1-pt)(1-h)I +[. faµý-(1-a)ß]pt]+r 
Nt [wt (H) + wt (P)] +r- Pt =0 

(6.5) 

When simplified, the following cubic in pt is obtained 

[Nt f a(1 - µ) (2h - 1)] pt 

+ [Nt f a(1- µ)(2 - 3h)] pt 

+[r-Ntfa(1-p)(1-h)] pt -r=0 (6.6) 

The roots of this cubic will yield three equilibrium gene frequencies. 

Cardano's Formula (Abramowitz and Stegun, 1970) gives the solution of the 
general normalised cubic equation 

x3+ bx 2+ cx +d=0 (8.7) 

to be 

xl +y 3 ,y 

_b 
w2p 

3 3y x2 = +wry+ 

X3 =-3+ w2ry + 3- (6.8) 

where w is either root of the equation 

x2+x+1=0 

and ry is any value of 
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1 
233 

-24+ 
27 (6.9) 

where 
_2b3_bc q 27 3+d 

and 
b2 

p=c- 3 

The discriminant, 02, of this cubic equation is 

If 

02 =4+ 
27 (6.10) 

" 02 <0 there exists three real roots, 

" 02 >0 exactly one real root exists, and 

. 02 =0 the roots are repeated. 

The three roots, p;, pi and p are determined to be 

Pö=1 

and 

Nf a(1 - µ) (h - 1) f (N f a(1 - µ) (h - 1))2 - 4rN f a(1 - p) (2h - 1) 
P1, P2 - 2Nf a(1- µ)(2h - 1) 

(6.11) 

The gene frequencies, pö, pi and p2, by definition must lie between zero and one. 
pö satisfies this condition. The remaining two roots of equation (6.6) must be 

examined to determine their validity. For 0< pi, p2 < 1, 

Nfa(1-µ)(h-1)f (Nfa(1 -µ)(h-1))2-4rNfa(1-µ)(2h-1) 0< 2Nfa(1-µ)(2h-1) <-1 

(6.12) 
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For both roots to be positive (that is, > 0), both the numerator and denominator 

in equation (6.11) must be of equal sign. The denominator in (6.11) is positive 

only if h>1, however, the numerator is positive only if h<1, (assuming that 22 
r, N, f>0 and 0<a, p, h< 1). Under these conditions, the numerator and 
denominator will never be of equal sign and so the roots, pi and p2 will never 
be positive. A similar case exists when both the numerator and denominator are 
negative. This means that the only valid root of equation (6.6) is pö = 1. 

In populations described by the RIM model, where immigrants introduced onto 
pasture have the RR genotype, intensive drug treatment will result in 100% 

resistance, provided po 0 and r>0. 

6.3.2 Population Size Equilibrium 

The population size will reach a steady state when ONt = Nt+l - Nt = 0, that 
is, where 

Nt+i = Nt [wt(H) + wt(P)] +r (6.13) 

which results in the following quadratic in pt 

[fa (1 - µ) (2h - 1)] pt 

+[fa(1-p)(2-2h)] Pt 

+[faµ+(1-a)#-1+ r 
=0 

(6.14) 

In the previous section, it was shown that an equilibrium R gene frequency of 

one would result in populations described by the RIM model. On substitution of 
pl =1 into equation (6.14), it is clear that the population size will equilibrate at 

*_ r N* 
1- (fa + (1 - a)ß) 

(6.15) 

This represents a balance between additions to the population and deaths out of it 

due to natural mortality. No individuals are killed by the drug as the population 

consists of RR individuals only. 
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The value at which the population size equilibrates, given by equation (6.15), 

must be positive, that is, N* > 0. It is assumed that r>0 and so the denominator 

1- (f a+ (1 - a)ß) > 0, therefore, f Effectively, this means that 

additions to the population, f a, must be less than or equal to the number leaving 

the population due to mortality, 1- (1 - a)ß so that the introduction of new 
individuals can still occur. 

6.3.3 A Neighbourhood Stability Analysis of the Fixed 
Points in the RIM Model 

At equilibrium, a population described by the RIM model will be fully resistant 

with p* = 1, and will have reached a steady state population size of N* _ 

1_(fa+(1_c)ß), provided po > 0. 

The stability properties of the fixed points, 

x=f(x, 9), 

y= 9(xl y) 

of a coupled difference equation, 

Xk+i =f (xk) yk) 

Yk+i =9 (xk, Yk) 

are determined by the partial derivatives of the functions 

f (xkº Yk) 

and 

9 (xk, Yk) 

evaluated at the fixed points, (Mickens, 1990). For the RIM model, 

P* _ ,f 
(p*, Na) 

N* = 9(p*, N*) 

are solutions to the coupled difference equation 

(6.16) 

f= Pt+l = 
Nt[fa(1-µ)[P? +pt(1-pt)(1-h)]+[fag +(1-a)Q]pt]+r 

Nt [wt(H) + wt(P)] +r 
(6.17) 
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and 

9=Nt+i = Nt[wt(H)+wt(P)]+r (6.18) 
The behaviour of the solution in a neighbourhood of the fixed points, (1_ßf«+ 

is investigated here. 

The stability of the fixed points requires that 

l im =0 

m77t=0 (6.19) t 

where 

pc=p*+pt (6.20) 

and 

Nt=N*+71t (6.21) 

assuming that pt and rjt represent infinitesimal perturbations away from the equi- 
librium. 

Substituting equations (6.20) and (6.21) into equation (6.17) and linearising the 

resultant equation, discarding all second order terms and higher, gives 

Pt+l = AliPt + A1277t 

i7c+l = A21Pc + A227jc (6.22) 

where 

Of A1l= 
I 

P=P"; N=N" op 

(If A12 l 

p=p*; N=N* ON 

199 A21 = 49P P=P'; N=No 

A22 199 (6.23) l 

p=p*; N=N* ON 

The characteristic equation that is formed on substitution of the second equation 

in equation (6.22) into the first is 

m2 - qm +y=0 (6.24) 

where 0= All + A22 and ry = Ai1A22 - A12A21. 
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Since 

Im1'2I-ýf 
(, 2-47) 

< 
2 

(6.25) 

1+ ry > q5 (6.26) 

Because y= ml. m2 and Im1,2I < 1, it follows that 

O<l+y<2 (6.27) 

Equation (6.27) defines the condition for stability. 

For the RIM model 

All = fa(1-h(1 -µ))+(1-a), ß 
A12 =0 

_ 
2rfa(1-µ)h A21 

1- (fa + (1 - a)ß) 
A22 = fa+(1-a)# 

(6.28) 

Hence 

0=f a(1 - h(1- µ)) -}- (1 - a)ß +fa+ (1 - a), ß (6.29) 

and 

7= (fa(1-h(1-µ))+(1-a)Q)(fa+(1 -a)ß) 
(6.30) 

The following two subsections present conditions that satisfy the stability criteria 
in equation (6.27). 

Condition 1: 1+ ry <2 

This condition is satisfied if 

[fa(1-h(1 -p))+(1-a)ß][fa+(1 -a)ß]+1 <2 (6.31) 
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Equation (6.31) is a quadratic equation in f, the fecundity of female parasites. 
Note that the coefficient of f 2,1 - h(1- µ), in equation (6.31) is positive. There- 
fore, provided the fecundity lies between the roots of 

[fa(1-h(1-ii))+(1-a)ß][fa+(1-a), ß]-1=0 (6.32) 

condition 1 will be satisfied. 

Condition 2: 1 +, y > 101 

This condition is satisfied if 

(1+7)2>02 (6.33) 

which, after some simple algebra results in the same quadratic as in equation 
(6.32) with identical conditions for stability, that is, provided f lies between the 

roots of 

[fa(1-h(1-µ))+(1-a)Q][fa+(1-a)ß]-1 =0 (6.34) 

the condition that (1 +, y)' > 02 is satisfied. 

Provided that the condition imposed on f in order that the population size equi- 
librium is valid, that is, f< '- (' a Q, has a common interval with the con- 
dition for local stability, see equations (6.32) and (6.34), the equilibrium point 
(i-ýf«+(1-«)tp) ' 1) will be at least locally stable. 

Global Stability 

Examining the trajectory plane of population size with R gene frequency in Figure 

6.2, there is some evidence that this equilibrium point may be globally stable. 
A population originating in any valid region of the N-p plane, is attracted to 

the equilibrium point, (1_(f«+r1), provided the fecundity, f is within the 

regions defined by equations (6.32) and (6.34). 
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Figure 6.2: Trajectory of R gene frequency (p), and population size, (N), from an 
initial population size, No and R gene frequency, po under circumstances where 
(N*, p*) is a stable point. 

Theoretically, a fixed point or set of fixed points is globally stable if a function, 

called a Lyapunov function, L(N1, N2), exists such that 

1. L(N1, N2) = 0; 

2. L(N1, N2) >0 for all (NI, N2) 0 (Nl , N2*); 

. 3. dt <0 with equality only if (Ni, N2) = (Nl 
, N2*) 

There is no available method for choosing an appropriate Lyapunov function, 

which restricts the use of this technique in determining global stability. In ad- 
dition, it is argued that even when a Lyapunov function is obtained, biological 

insights from it are often obscured (Renshaw, 1993). 
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6.4 The Dynamics of a Nematode Population 
Described by the RIM Model 

The RIM model was simulated over time using a computer program written in the 
Pascal programming language, under a range of different conditions to provide 
an insight of the transient as well as the long term behaviour of this particular 
system. Each of the model parameters was varied one at a time with all others 
remaining constant and the behaviour of the population over time under these 
different conditions is shown in Figures 6.3 - 6.14. 

6.4.1 Results 

From the previous sections, it was determined analytically that irrespective of 
parameter values, every individual within the modelled population will have RR 

genotype after a period of time (which is determined by the parameter values). 
However, certain conditions must hold before the population size equilibrates. 
Figures 6.3 - 6.14, illustrate these results for the various different parameter sets. 
The first plot in each pair illustrates the change in gene frequency over time, the 

second, the change in population size over time. 

The parameter estimates have been chosen to illustrate the behaviour of the 
RIM model. The numeric values reflect the range of possible values that each 

parameter could take. 

Initial Gene Frequency, po 

From Figure 6.3, it is clear that varying the initial R gene frequency from 0.1 to 
0.5 to 0.9 alters the rate at which the population converges to resistance. The 

time to full resistance decreases as the initial gene frequency is increased. 

Host Ingestion Rate, a 

Figure 6.5 shows that by increasing the host ingestion rate, a, a fully resistant 

population will develop in a shorter time, as a higher proportion of the population 

are undergoing selective drug treatment. The ingestion rate a, influences the 

value at which the population size, N, equilibrates. It therefore also influences 

the fecundity threshold; below which a population size equilibrium value exists; 
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above which, the population size grows unconstrained. It follows that when a is 

changed, f, the fecundity threshold changes, and hence N* changes accordingly. 
This explains why for different values of a in Figure 6.6, the population size 
converges to different equilibria. 

Mortality Rate, 1-Q 

Similarly, an increasing mortality rate, 1-ß, on pasture leads to a fully resistant 
population in a shorter time (Figure 6.7). Again, the value for ß influences the 
fecundity threshold and hence the equilibrium population size, N*. When the 

mortality rate is high, that is, p is low, a higher population size equilibrium value 
is reached compared with high values of ß meaning low mortality rates. This is 

clearly demonstrated in Figure 6.8. 

The Proportion of heterozygotes killed by the drug, h 

Recall that when the initial R gene frequency is low, the majority of the R genes 
are to be found in the heterozygotes. Growth of the R gene frequency is more 

rapid when h is low as fewer R genes are being destroyed by the drug. However, 

as the R gene frequency exceeds a certain level, the majority of the R genes are 

now to be found in homozygotes, which means that the majority of S genes are to 
be found in the heterozygotes and therefore a high h value will lead to the S genes 
being killed off faster than a low h value. This results in the R gene frequency 

growing faster after a certain level under a high h value rather than a low h 

value as is evident in Figure 6.9. The population size equilibrium is unchanged 
by'changing h, however the time taken to reach equilibrium is affected by h. 

Number of immigrants, r 

Figures 6.11 and 6.12 demonstrate the effect that the inward migration of resis- 

tant genotypes to the population will have on the rate at which the population 

converges to resistance and a steady state population size. As the number of im- 

migrants increases, the time until a fully resistant population develops decreases. 

From Figure 6.12, the value at which the population equilibrates, N*, is directly 

proportional to the migration rate. 
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Proportion in refugia, p 

Finally, Figure 6.13 illustrates the effect that varying the proportion of the in- 

gested population that go into refugia will have on the evolution of anthelmintic 
resistance. The higher the proportion of parasites that go into refugia, the longer 
it will take for a fully resistant population to evolve. The population size con- 
verges to the same equilibrium, (see Figure 6.14), for all possible values of µ, the 

approach to this equilibrium is markedly different for values of µ less than 2 than 
for values of p greater than 2. 
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6.5 Exploring the Rate of Convergence to Re- 
sistance under the RIM Model 

Given that a fully resistant population will eventually evolve, it is of interest to 

examine the time taken for resistance to reach a critical level in the population. 

In Chapter 5 the change in gene frequency in one generation, Opt = pt+l -pt was 
approximated by d and the resulting differential equation solved for t, the time 
for the gene frequency to reach pt from an initial frequency of po. For the RIM 

model, 

dpt 
,,, 

Nt. f a(1 - /1) [p - pi] + r(1- Pt) (6.35) 
dt Nt [w(H) + iv-(P)) +r 

Note here, that to reduce the mathematical complexity, h has been set equal to 

1, representing complete recessiveness of the gene conferring resistance. 

Note also that this equation contains N, the population size, which is changing 

with time according to equation (6.4). This means that we must consider the 

fact that N is changing in this equation. The rate of change of N with time is 

dN 
= Nt [tz (H) + wt(P) - 1] +r (6.36) 

dt 

In order to determine the time taken for the gene frequency to reach pt from an 
initial level of Po, when the initial population size was No and the final popula- 
tion size is Nt, the two differential equations, (6.35) and (6.36) must be solved 

simultaneously. The existence of transcendental as well as single order factors 

prevents a tractable solution . 

Fortunately in the last chapter the simulated model approximated quite well the 

exact analytic results for time to significant resistance. Here, obtaining a tractable 

analytic solution for the time taken for the gene frequency to reach pt from an 
initial value of po when initial and final population sizes are No and Nt, will be 

very difficult, if not impossible. The use of simulation under these circumstances 
becomes necessary. 
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6.6 Conclusion 

A new host introduced to the pasture may be the source of immigrant parasites. 
Worms harboured by this host will more than likely be RR genotypes as the host 

will almost certainly have been dosed with an anthelmintic prior to its introduc- 
tion onto the pasture. This is of particular interest in sheep management systems 
where hosts are replaced on a regular basis. 

The RIM model is a progression of the HP and HPR models in the previous 
Chapter. In addition to modelling the flow of parasites from pasture to host, 

parasites in refugia, parasites undergoing drug treatment and the evolution of 
resistance in a population, it also incorporates immigration of RR genotypes onto 
the pasture. This is a very useful addition to the model when we wish to examine 
the contribution of a new host to the resistance status in the population. Using 
difference equations to describe changes in the gene frequency and population 
size, the results were presented analytically and validated numerically. 

An equilibrium analysis revealed that the gene frequency would ultimately reach 
1, representing a fully resistant population, and the equilibrium population size 
would be a function of the parameters that balanced incomers to the population 
with those leaving the population. 

The effect of immigration of RR genotypes onto pasture each generation was 
simply to speed up the rate at which the population converged to resistance, the 
higher the number of resistant immigrants introduced per generation, the quicker 

resistance evolved. 

This chapter highlighted the dangers of introducing new hosts onto pasture par- 
ticularly when they had been dosed with an anthelmintic and were assumed to be 

free of infection, and provided a means of quantifying the risk to the population 

at different levels of immigration. 

A 
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Chapter 7 

The Control of Resistance by the 
Inward Migration of Susceptible 
Individuals 

7.1 Introduction 

In Chapter 5, a basic model of the evolution of anthelmintic resistance in a 
parasite population with a direct life cycle was constructed. This model was 
used to identify primary factors influencing the outcome of an intensive drug 
programme on such a population. The model was extended to incorporate areas 
of refugia in the host and an expression for the time to significant resistance was 
formulated. 

In this Chapter, the model is used to explore a novel method of controlling drug 
resistance in the field. 

Biological control of anthelmintic resistance through the inward migration of sus- 
ceptible strains of nematode has been proposed by Van Wyk (1990). The idea 
is that under a controlled situation, resistant strains of parasite are replaced by 

susceptible ones. Provided sufficient numbers of SS genotypes are introduced 

onto pasture and mating is at random, individuals with RR genotypes are more 
likely to mate with the SS migrants than with each other. This has the effect of 
reducing the number of RR offspring in the subsequent generation. 

Here, we extend the previous models by introducing s susceptible migrants onto 
the pasture each generation in a bid to explore the novel method of resistance 
control. 
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7.2 The SIM Model 

Here, the structure of the model in Chapter 5 is expanded. Provision is made 
within the model for s susceptible parasites to be introduced onto the pasture in 

each generation. The SIM model is illustrated in figure 7.1. 

S 

Figure 7.1: Flow diagram of Susceptible Immigrants Model illustrating the flow of 
parasites from host to pasture undergoing anthelmintic treatment, with a constant 
input of s susceptible (SS) genotypes onto pasture. 

Therefore 

17vt(H)=fa(1-µ)[p +2Pt(1-Pt)(1-h)] +fa/1 (7.1) 

and 

wt(P) = (1 - a) ß (7.2) 

The gene frequency in generation t+1 becomes 

Nt[fa(1-µ)[pt+Pt(1-Pt)(1 -h)]+[fait +(1-a 
Pt+i - Nt [wt(H) + wt(P)] +s 

(7.3) 

and the population size in generation t+1 is 
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Nt+i = Nt [wt(H) + wt(P)] +s (7.4) 

7.3 Equilibrium Analysis of the SIM Model 

At equilibrium, both the gene frequency and population size are unchanging. 
That is, 

Apt = Pt+i - Pt =0 (7.5) 

and ' 

ONt = Nt+l - Nc =0 (7.6) 

Substituting equation (7.3) into (7.5) yields a cubic equation in pt as follows 

pt (2h - 1)pt + (2 - 3h)pt + 
[Nfa(1- 

µ) - (1- h) =0 (7.7) 

It is easy to see that one root of this equation, is pö = 0. 

The remaining two roots of this equation pi and p2 are 

/3h 
-2f h2 - sh-4 s l) Ntfý(1-µ) 

PAIP2 - 2(2h - 1) 
(7.8) 

Substitution of equation (7.4) into (7.6) results in 

(2h-1)pi+(2-2h)pt+ 
faµ_(1-a)#-1 

+s =0 fa(1 -µ) Ntfa(1- p) 
(7.9) 

The roots of equation (7.9), pl and p2, represent those gene frequencies that 

equilibrate the population size 
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Pi, P2 = 
(2h - 2) ± (2 - 2h)2 - 4(2h - 1) f«ý+(ý-«)Q-ý +9 f«('-µ) Ntf«(1-µ)l J 

2(2h -1 
(7.10) 

Of interest here are the circumstances under which the population will equilibrate 
at zero resistance and 100% resistance, respectively. 

Complete eradication of resistance from worm populations on pasture is proving 
a very difficult goal to achieve. Instead, we are now forced to examine possible 
methods of impeding the dissemination of resistance throughout the parasite 
population. This requires determining circumstances under which the population 
will equilibrate somewhere between zero and 100% resistance. 

7.3.1 Boundary Equilibria 

In this section we shall first examine the circumstances under which the popu- 
lation remains free of resistance and then determine circumstances under which 
the population will become fully resistant. 

The two cases outlined above will be discussed here. The subsequent section will 
deal with the existence of intermediate equilibria. 

A Resistance Free Population 

A resistance-free population exists when p=0 and N= 
1_ýfaµ+ýl_«)p) 

A Fully Resistant Population 

The population will approach 100% resistance asymptotically as N --* oo. That 

is, 

lim pt+i = 
Nt[fa(1-µ)pt +pt(1-pt)(1-h)]+[. fap+(1-a 

N- oo Nt [iv- (H) + w(P)] +s 

=1 

(7.11) 
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This point is obtained by substituting p=1 into equation (7.7) and solving for 
N. If, alternatively, we substituted p=1 into equation (7.9), the equilibrium 
population size obtained would be negative. The population will get larger and 
larger as 100% resistance is reached, and will never realistically become negative. 
Equilibria outwith these boundaries may exist, but are biologically meaningless 
and will not be pursued further here. 

The two equilibria derived previously represent boundary equilibria for the SIM 

model. Either the population is resistance free and the population size remains 
constant, or resistance evolves and the population grows out of control. Ideally, it 
is hoped that a nematode population remains resistance free and the population 
size controlled. The existence of equilibria between these boundaries may identify 

a middle ground between full resistance and zero resistance. 

7.3.2 Intermediate Equilibria 

An internal, or intermediate equilibrium will exist if the cubic equation defined 
in equation (7.7) intersects with the quadratic in equation (7.9) in a valid region 
of the N-p plane. 

The roots of equation (7.7) are the equilibrium gene frequencies 

PO - 

3h-2f Vh2 42h-1s 

Pi P2 - 2(2h - 1) 
(7.12) 

and the roots of equation (7.9) are the gene frequencies that equilibrate population 

size 

2h -2± 
V(2 

- 2h)2 - 
4(2h-1)(N(fap+(1-a)ß-1)+s) 

a(1-µ) Nf 

P1, P2 - 2(2h- 1) 
(7.13) 

We are interested in the point where the quadratic in equation (7.12) intersects 

with the quadratic in equation (7.13). This point, denoted by (N*, pj) is as 
follows 
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f a(1 - µ)sh2 N- 
[1 - (f a+ (1 - a)ß)] [f a(µ - 1)h2 - [1 - (fa + (1 - a)ß)] (2h - 1)] 

(7.14) 

and 

Pf-1-}-(1-(fa+(1-a)ß)) (7.15) 
f a(1- µ)h 

A few preliminary points of interest are noted here 

(i) an increase in h, the proportion of heterozygotes killed by a drug, produces 
an increase in pl. An increase in h corresponds to a greater number of 
heterozygotes, (RS), being killed by a drug. Given that all SSs exposed 
to the drug will be killed by it and all RRs survive treatment, a higher 

proportion of R genes in the population will survive leading to a higher 

gene frequency at which the population equilibrates, 

(ii) as the proportion of the population that enter refugia, u, increases, the gene 
frequency equilibrium decreases. This means that more SSs and RSs avoid 
treatment, thus survive to produce progeny contributing relatively more S 

genes to the gene pool in the next generation, 

(iii) the number of immigrants introduced to the population each generation, s, 
occurs only in the numerator of 1V, thus by increasing the number of immi- 

grants per generation the value of 9 at which the population equilibrates 
increases by the same magnitude, and 

(iv) the frequency at which the gene conferring resistance equilibrates is not 
affected by s. 

7.4 Biological Significance of (N, pI) 

For (9, pl) to have practical significance in a biological population, it must lie in 

a valid region of the N-p plane. That is, 

(i) the population size equilibrium, 1V, must be positive, and 

(ii) the equilibrium gene frequency, pj, must lie between zero and one. 
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7.4.1 N>0 (The population size must be positive) 

The intersection of the gene frequency equilibrium and the gene frequency that 

equilibrates the population size was determined in the previous section to occur 
when 

fa(1-µ)sh2 
N [1-(fa+(1-a)/3)][fa(p-1)h2-[1-(fa+(1-a), ß)] (2h-1)] 

(7.16) 

N is positive, if both the numerator and denominator are of equal sign. Clearly 

this is true if and only if 

(i) f a(1- µ)sh2 > 0, and 

(ii) [1 - (f a+ (1- a)ß)] [f a(µ - 1)h2 - [1- (f a+ (1- a)#)] (2h - 1)] >0 

since under no circumstances can the numerator be negative. 

The first condition is satisfied provided f, a, s, h>0 and µ01. 

The second condition is satisfied in one of two ways. Either 

Case 1 

(i) [1- (f a+ (1- a)ß)] > 0, and 

(ii) [f a(µ - 1)h2 - [1 - (fa + (1 - a)ß)] (2h - 1)] >0 

or 

Case 2 

(i) [1- (f a+ (1- a)ß)] <0 and 

(ii) [f a(µ - 1)h2 - [1- (f a+ (1 - a)/3)] (2h -1)] <0 

Consider Case 2. It follows that if [1 - (f a+ (1 - a)ß)] < 0, then f> 1- ä-° a 
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Provided this is the case for 9 to be positive part (ii) in Case 2, that is, 

fa(µ-1)h2-2[1-(fa+(1-a), ß)]h+[1-(fa+(1-a)ß)]<0 (7.17) 

must be satisfied. 

Thus, values of h are sought such that the quadratic in equation (7.17) is negative 
and hE (0,1). By setting equation (7.17) equal to zero, the roots, hl and h2 are 

1-(fa+(1-a)ß)f [1- (fa +(1-a), Q]2- fa(µ-1)(1-(fa+(1-a)ß) 
hl, h2 

fa(p - 1) 
(7.1. 

Since the coefficient of h2 in (7.17) is negative (because µ< 1), the quadratic will 
be negative whenever h< hl or h> h2. We arbitrarily chose the positive root of 
equation (7.18). In order that hE (0,1), the following restrictions are imposed 

on f, the fecundity of female parasites 

1-(ä a)Q ý f< 1-(1aµ a), ß 
(7.19) 

Provided f lies within the interval defined above, any value of hE (0,1) will 
result in a positive value of N. Alternatively, restrictions could be imposed on 
any of the other parameters. The choice of f was arbitrary. However, in this way 
the effect of different drug efficacies, h, can be investigated. 

7.4.2 0< pI <1( The equilibrium gene frequency must 
lie between zero and one) 

The intersection of pi, p2 in equation (7.8) with J j, p2 in equation (7.10), occurs 

where 1V >0 provided 

1. f, a, ß, s, h, p>0and p1 

2" 1- 1-a p<< 1- 1-a p 
a aµ 

It is now necessary to determine the conditions under which the intersection will 

also occur in the valid region where pi E (0,1) of the N-p plane. 
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7.4.3 PI >0 

From equation (7.15), 

Pi-1+(1-(fa+(1-a)Q)) (7.20) 
f a(1- µ)h 

pI is positive or zero, if 

(f«+(1-«)p> 
(7.21) 

fa(1-µ)h 

Since the denominator in equation (7.21) is positive (because f, a, u, h>0 and 
µ; 1), the absolute value of the numerator must be less than f a(1- µ)h. That 
is 

11-(fa+(1-a)ß1< fa(1-µ)h (7.22) 

It follows that 

(1 - (fa + (1 - a)ß)2 < (f a(1 - µ)h)2 (7.23) 

Solving equation (7.23) results in the following quadratic in f 

a2(1 - ((1 - µ)h)2) f2- 2a(1 - (1 - a)#) f+ (1 - (1 - a)Q)2 <0 (7.24) 

Provided the coefficient of f2 in equation (7.24) is positive (which it is when 
p< 1), this quadratic will be negative between the roots of 

a2(1 - ((1 - µ)h)2)f2 - 2a(1 - (1 - a)Q)f + (1 - (1 - a)ß)2 =0 (7.25) 

Therefore, pr >0 if and only if 

(1- (1 - a)ß)(1- (1- µ)h) 
<f< 

(1- (1- a), ß)(1 + (1- µ)h) (7.26) 
a(1 - ((1 - µ)h)2 a(1- ((1- µ)h)2 
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7.4.4 pI <1 

The point of intersection of the gene frequencies, pr, by definition, cannot exceed 
unity, therefore, 

1+1-(fa+(1-a)ß) f a(1- µ)h 

1- (f a+ (1-a)ß) 
f a(1- µ)h 

(7.27) 

It follows that 

f> 
1-(ä a)ß (7.28) 

This results in the same condition imposed on f to ensure that N> 0( see 

equation (7.19)). 

7.4.5 Summary 

A biologically meaningful intermediate equilibrium point, (N, pr), will exist pro- 

vided the following conditions are satisfied. 

1. N>0 

(i) f, a, ß, s, h, µ>O, andµol 

1- 1-a ß <f 1- 1-a ß ý11) 
a< all 

2.0<pl<1 

(i) f, a, ß, s, h, p>0, and it j1 

1- 1-a ý 1- 1- hý 1- 1-a ß 1+ 1-µ h ý11ý 
a(1- (1-µ)h) 

f 
a(1-((1-µ h 

The fecundity of female parasites, f, must satisfy both conditions in 1(ii) and 
2 (ii) above. Thus, there must exist some common region, fE (f 1, f 2) within 
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which f must lie for both conditions to be satisfied and the point of intersection 

to be valid. This region is found to be 

(�_(�_c)ß (1 - (1 - a)ß)(1 + (1 - µ)h) fEa 
a(1- ((1- µ)h)2 

since 

1-(1-a)ß) (1-(1-a), ß)(1-(1-µ)h) 

a a(1- ((1- µ)h)2 
(7.29) 

and 

1-(1-a)# 
< 

(1-(1-a)#)(1+(1-µ)h) 
(7.30) 

aµ a(1- ((1- µ)h)2 
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7.5 A Numerical Study of The SIM Model 

Q 

ö 
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It has been established analytically that in a parasite population described by 

the SIM model, one of three outcomes is to be expected. Either resistance will 
evolve in the parasite population and the number of parasites will escalate beyond 

control, or the population will be resistance free and the number of parasites 

controlled. Alternatively, there are circumstances under which the frequency 

of the gene conferring resistance in a population will reach a steady state in 

conjunction with the population size which we denote by (1V, pi) and call it the 

intermediate equilibrium. 

7.5.1 How Do Initial Conditions Affect The Outcome of 
a Population ? 

The SIM model was numerically simulated using ITERATOR, (©STAMS), to 
illustrate the various possible outcomes of the model. Figures 7.2 and 7.3 are 

graphical descriptions of the resistance status and the population size, respec- 
tively, in a typical nematode population described by the SIM model over some 

period of time. 
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Figure 7.2: Changes in the R gene fre- 

quency over time for different starting 
conditions, shown in the legend. 
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Figure 7.3: Changes in population size 
over time for different initial conditions 
shown in the legend. 

Initial conditions are clearly important in determining the eventual outcome of 

a population. To investigate the effect of initial conditions on the fate of a pop- 

ulation, all other parameters in the model were held constant as indicated in 
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parameter set 1 in Table 7.1, and various combinations of low and high initial 
gene frequency and population size, respectively, were simulated. A population 
with an initial R gene frequency of po = 0.1 whose initial size is No = 100 (the 

grey line in Figures 7.2 and 7.3), will become virtually resistance free with the 
population size reaching a steady state value of N= 1111.11 within a few genera- 
tions. In contrast, if the same population has initially No = 10000 individuals to 
start with, (the aqua lines in Figures 7.2 and 7.3), within a few generations, that 

population will have become fully resistant and the population will have grown 
out of control. If, instead, the initial population size remains at No = 100 but 
the initial R gene frequency is increased to po = 0.9, (the purple lines in Figures 
7.2 and 7.3), resistance evolves and there is a population explosion. Finally, the 
magenta trajectories shown in Figures 7.2 and 7.3 depict a population with initial 

gene frequency of po = 0.9 and initial population size of No = 1234.567. Here, 
the gene frequency and population size remain unchanged from inception of the 

population. 

Thus there is some indication that under certain circumstances, resistance may 
be suppressed and population size controlled. 

7.5.2 Can the population size be controlled and resistance 
suppressed by immigration of susceptible parasites? 

A Numerical Study 

The curves representing equilibrium gene frequencies and equilibrium population 
sizes for the parameter sets in Table 7.1 are shown in Figures 7.8,7.11 and 7.14. 
They represent the N-p planes for each parameter set in Table 7.1. 

The solid line parabolas in Figures 7.8,7.11 and 7.14 correspond to the roots of 
the quadratic Opt =0 in equation (7.7) at a range of population sizes, N, 

(2h-1)pi+(2-3h)Pt+ 
Ntf«(1-µ) -(1-h) =0 (7.31) 

when all other parameters are held constant. 

The broken line parabolas in Figures 7.8,7.11 and 7.14 correspond to the roots 
of the quadratic ONt = 0, 
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Table 7.1: Parameter values assigned to the SIM model to illustrate the behaviour 
of the model over a spectrum of possible values. 

Parameter Set a 0 µ fecundity h s 

1 0.1 0.9 0.1 10 1 100 
2 0.1 0.9 0.9 2 1 100 
3 0.5 0.9 0.1 10 1 100 
4 0.1 0.1 0.1 10 1 100 

(2h-1)pi+(2-2h)Pt+ 
fa/i +(1-a)ß-1+ S 

=0 f a(1 - µ) Nt f a(1- µ) 
(7.32) 

The intersection of these curves represents the intermediate equilibrium. Already 

established is the fact that initial conditions are important in determining the 

outcome of a population. Plotting p* and p on the same plane means that we 
can determine the behaviour of the modelled population by the region in which 
it originates in this plane. 

Determining the future behaviour of the population from its starting 
point 

If the conditions derived previously and summarised in Section 7.4.5 are satisfied, 
the solid line parabolas will intersect with the broken line parabolas in a valid 
region that will represent population control and control of resistance within that 

population. 

For populations originating in many of the regions on the N-p plane, we can 
determine the eventual outcome of that population. 

Consider the first parameter set in Table 7.1. The change in gene frequency 

and population size in such a population are depicted graphically in the surfaces 
in Figures 7.6 and 7.7 respectively. From Figure 7.6, it is clear that the gene 
frequency equilibrates where the curve of Opt cuts the x-axis. It can be seen 
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clearly from the plots of the surfaces that there are three such roots, pö, pi, p2 for 
each value of N. If we assume that pö < pi < p2, then 

(i) the gene frequency will decrease ( Opt < 0), between pö and pi and above 
P2 

(ii) the gene frequency will increase between pi and p2 (Apt > 0). 

The solid line in Figure 7.8 represents pi and p2, and the x-axis represents pö. 

In other words, when the population is within the solid lined parabola, gene 
frequency will increase, whereas when the population is outwith the solid lined 

parabola, the gene frequency will decrease. 

Similarly, the population size equilibrates where the curve of ONt (shown in 
Figure 7.6 for parameter set 1 in Table 7.1), cuts the x-axis. Since ONt is a 
quadratic equation, there are two roots, pl and p2 for each value of N. The 

population size will decrease (ONt < 0), between pl and p2, and will increase 

outwith these points. This translates into a reduction in population size when 
a population starts off within the broken lined parabola in Figure 7.8, and an 
increase in population size when the population starts outside this parabola. 

Changing the values that the parameters of the model take results in different 
forms of the cubic and quadratic equations for Opt and ONt, respectively and 
different forms of the parabolas. Figures 7.9 and 7.10 are the curves obtained 
when the parameter values in the second row of Table 7.1 are substituted into 
the model, with Figure 7.11 representing the roots of the equations where Opt =0 
and ONt = 0. Figures 7.12 and 7.13 result when parameter values in the third 

row of Table 7.1 are substituted into the model. The corresponding N-p plane 
is given in Figure 7.14. 

Arrows have been superimposed onto each N-p plane in Figures 7.8,7.11 and 
7.14, indicating the direction of change of the population size and gene frequency 

over time. 

Example 

As an example, we consider the first parameter set in Table 7.1 that corresponds 
to the surfaces in Figures 7.6 and 7.7 and the N-p plane in Figure 7.8. 

159 



4 

a 

ga 'ý 

i 

ö 

ý., b� , ýý ýý - Maw ý_-- 

o 10 no 30 

nnr U. 9 fl * Orr) 

w. wý _l 

o 10 20 30 

T20 (In Cwserao r) 

Figure 7.4: Changes in the R gene fre- Figure 7.5: Changes in population size 
quency over time for different starting over time for different initial conditions 
conditions, shown in the legend. shown in the legend. 

Figures 7.4 and 7.5 show the trajectory of the R gene frequency and population 
size, respectively, when the population starts in one of the four regions labelled 
I-IV. 

Results 

A population whose initial gene frequency and population size lies in region I, 
for example (0.6,6000), will increase in size with a concomitant increase in gene 
frequency. This population will reach 100% resistance and its numbers will grow 

out of control. Conversely, a population originating in region II (0.01,2000), 

will be contained and resistance eradicated. Unless disturbed into any of the 

other regions, a population originating in region III (0.2,4000), will experience 

an increase in gene frequency and decrease in population size (as indicated by 

the arrows in Figure 7.8). A population originating somewhere in region IV 

above the dotted line (0.3,100), will have an initial decrease in gene frequency 

and increase in population size. By the nature of the dynamics of populations 

starting in either region III or IV above the dotted line, the eventual behaviour 

cannot be conclusively determined as it is easy for such a population to enter 
into another region and assume the behaviour of a population originating in that 

region. Finally, a population starting at the point of intersection of p* and j3 will 

remain at this point indefinitely. 
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Figure 7.6: Surface representing the Figure 7.7: Surface representing the 
change in gene frequency, Opt, as a change in population size, ANt, as a 
function of initial gene frequency and function of initial gene frequency and 
population size for parameter set 1 in population size for parameter set 1 in 
Table 7.1. Table 7.1. 
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Figure 7.8: N-p plane for parameter set 1 in Table 7.1 with p' and j3 representing 
equilibrium gene frequency and equilibrium population size respectively, with an 
intersection point of (0.1,1234.567). 
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Figure 7.9: Surface representing the Figure 7.10: Surface representing the 
change in gene frequency, Opt, as a change in population size , 

zNt, as a 
function of initial gene frequency and function of initial gene frequency and 
population size for parameter set 2 in population size for parameter set 2 in 
Table 7.1. Table 7.1. 
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Figure 7.11: N-p plane for parameter set 2 in Table 7.1 with p' and p representing 
equilibrium gene frequency and equilibrium population size respectively, with an 
intersection point of (0.5,20000). 
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Figure 7.12: Surface representing the 

change in gene frequency, Apt, as a 
function of initial gene frequency and 
population size for parameter set 3 in 
Table 7.1. 
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Figure 7.13: Surface representing the 
change in population size, ONt, as a 
function of initial gene frequency and 
population size for parameter set 3 in 
Table 7.1. 
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Figure 7.14: N-p plane for parameter set 3 in Table 7.1 with p' and p representing 
equilibrium gene frequency and equilibrium population size respectively, with an 
intersection point of (0.01,2022.47). 
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Consequently, for any arbitrarily chosen set of initial conditions, the outcome of 
that particular population is determined by the region in the N-p plane where 
the point originates. 

7.5.3 The effect of s, the number of immigrants per gener- 
ation, on the internal equilibrium (N, pI) under the 
SIM model 

Figures 7.15,7.16 and 7.17 represent the N-p planes for numerical values in 

parameter set 1 in Table 7.1, with s varying from 10 to 100 to 1000 respectively. 
The number of migrants introduced to the pasture each generation alters the 

horizontal positioning of the parabolas on the N-p plane, but does not affect 

the vertical placement of the parabolas. This means that as the immigration 

rate increases, the size at which the population equilibrates increases, but the 

equilibrium R gene frequency remains unchanged. 
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Figure 7.15: N-p plane for parameter Figure 7.16: N-p plane for parameter 
set 1 in Table 7.1 with 10 migrants per set 1 in Table 7.1 with 100 migrants per 
generation. generation. 

7.5.4 Neighbourhood Stability Analysis 

Stability of the SIM Model 

It has been shown that three points of equilibrium exist under the SIM model 

w 0 

r 
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Figure 7.17: N-p plane for parameter set 1 in Table 7.1 with 1000 migrants per 
generation. 

(i) p* = 0, N* _ 1-faµ-(1-a ß 

(ii) p'- 1asN`-+oo 

(111) pý =1+ 
(1 -(fa 

1-µ)h 
p N+ 

1-(fat(1-a)ß)] fa(µ-1)hµ [1 (fat(1-a A) (2h-1) 

In Chapter 6 we introduced the concept of stability of a two dimensional model. 
For the SIM model, 

Nt[fa(1-µ)[t+pt(1-Pt)(1-h)]+[fat+(1-a)Q]1ýt 
F'sriýr = Pt+i = Nt [wt(H) + wt(P)] +s 

GsIM = Ne+l = Nt [iv-t(H) + wt(P)] +s 

The equilibria, (N*, p*) will be (locally) stable if 

¢<y+1<2 

where 
0=Ail+A22 

and 
'Y=AlIA22-A12A21 

(7.33) 
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All, A12, A21, and A22 are the partial derivatives of both equations in (7.33) with 
respect to p and N. That is 

OFsIM All = CAP P=p*; N=N" 

OFsIM 
= A12 

ON p=P.; N=N" 
OGsim 

A21 = Öp7 P=P'; N=N" 

A22 
= 

OGsIM (7.34) l 
ON p=p*; N=N* 

and so 

= 
N[fa(1-p)(2p+(1-p)(1-h)-p(1-h))+fap+(1-a)ß] 

All 
N[fa(1-p) (p2+2p(1 -p)(1-h))+fap+(1-a), ß]+s 

_ 
N2[fa(1-µ)(p2+P(1-p)(1-h))+(fap+(1-a)Q)p] 

[N[fa(1-p)[p2+2p(1-p)(1-h)]+fap+(1-a)#]+s, 

f a(1 - p) + (1 - a)# [2p + s(1 - p)(1 - h) - 2p(1 - h)] 
* [N[fa(1-p)[p2+2p(1-p)(1-h)]+fap+(1-a)ß]+s]2 

(7.35) 

_ 
fa(1-µ)[p2+p(1-p)(1 -h)]+(faµ+(1 -a)Q)p A12 

N [f a(1 - p) [p2 + 2p(1- p)(1 - h)] + (fait + (1 - a)ß)] +s 

_ 
N[fa(1-µ) [p2+p(1-p)(1-h)]+(faµ+(1-a)ß)] 

[N [f a(1 -µ)[p2+2p(1-p)(1-h)]+faµ+(1-a), ß]+s 

* 
[fa(1-µ)[p2+2p(1-p)(1-h)]+fap+(1-a)ß] 

[N[fa(1-µ)[p2+2p(1-p)(1-h)]+fap+(1-a)ß]+s]2 
(7.36) 

A21 =Nf a(1 - pc) [2p + 2(1- p) (1- h) - 2p(1- h)] 

a), ß A22 =f a(1- p) 
[p2 + 2p(1- p) (1 - h)] +f aµ + (1 - 

(7.37) 

Evaluation of All, A12, A21, and A22 at the equilibria (p*, N*), increases the 

complexity of the equations quite drastically, and so we shall proceed with a 

numerical analysis of the stability of the fixed points 
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Table 7.2: Stability of equilibria in SIM Model for parameter values in Table 7.1. 

Parameter Set Equilibria Stability 

Boundary 

(1,00) (0, 
(1-(faµ+(1-a)Q 

1 (1, oo) (0,1111.111) 

2 (1,00) (0,10000) 

3 (1,00) (0,2000) 

4 (1,00) (0,123.4567) 

Intermediate 

(Pr, N) 

(0.1,1234.567) S/S/US 

(0.5,20000) S/S/US 

(0.01,2022.4719) S/S/US 

(0.9,1234.567) S/S/US 

It has been established that each population in Table 7.1 must approach or remain 
at one of three equilibria. Table 7.2 gives the three equilibria for each parame- 
ter set in Table 7.1, and shows which equilibrium points are (locally) stable (S), 

or not (US). A stable equilibrium point suggests that provided the population 
starts within the domain of attraction, it will always approach that equilibrium. 
Whereas, an unstable equilibrium suggests that unless the population starts ex- 
actly at that point, the population will end up approaching one of the other two 

equilibria, depending on which region the point is disturbed into. Table 7.2 shows 
that both boundary equilibria are stable within their domain of attraction, but 

that the intermediate equilibrium is unstable. 

In conclusion, it appears that although an equilibrium does exist that represents 

population control and the concomitant suppression of resistance, the point is 

not stable which means that small perturbations about this point will not return 
the system to equilibrium. This suggests that the system must start off at this 

point at which it will remain provided nothing is done to upset the equilibrium. 
However, once perturbed, the population will enter into the domain of attraction 
for one of the boundary equilibria. 
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7.6 Discussion 

The development of resistance to anthelmintics by the economically important 
species of nematode over the last two decades has many similarities with the 
development of insecticide resistance in insects since the start of the century 
(Roush, 1990). 

Despite obvious differences in the life cycles of ecto- and endo-parasites and in 
the mechanisms of resistance, a great wealth of knowledge is being exchanged by 
both disciplines. 

Currently, researchers are shifting the emphasis from documentation and monitor- 
ing of anthelmintic resistance to the task of controlling and managing resistance. 

To date, there have been three different approaches proposed for controlling and 
managing resistance. 

Chemical Control 

The catastrophic effects as a result of excessive and sporadic use of chemical 
agents on nematode worms have been instrumental in creating a more responsible 
approach to resistance control. Coupled with a greater willingness to conform 
to strict control guidelines is the introduction of practical management models 
such as those of Barnes and Dobson (1995), Gettinby et al (1989) and Smith 
(1990), that provide decision support on alternative drug usage that optimises 
drug efficacy whilst impeding the evolution of drug resistance. There are a number 
of strategies adopted to impede the onslaught of mass resistance 

(i) the sequential use of drugs involves using a drug with a specific mode of 
action until it becomes ineffective, then switching to another with an alter- 
native mode of action, 

(ii) drug rotation which involves alternating a variety of different drugs with 
different modes of action over a period of time, and finally, 

(iii) drug mixtures where two or more drugs with different modes of action are 
administered simultaneously. 

These may, at least in the short term, prolong the life of the highly effective 
drugs in use at the moment, and may play a significant role in the development 
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of new drugs. However, concern is mounting over the harmful effects of drugs 
in the environment as well as in the animal. Non-chemical methods of control 
are becoming a more realistic alternative to drug treatment as research effort in 

these fields increases. 

Biological Control 

Chemical control of anthelmintic resistance via sequential treatment, drug rota- 
tion or mixtures may extend the usefulness of these drugs into the next century. 
However as a long term strategy for the control or eradication of resistance, given 
that the development of new more effective drugs is becoming more costly and 
time consuming, may not be feasible. There is no option but to pursue other av- 

enues of control. First introduced as a means of controlling insecticide resistance 
(Comins, 1977; Taylor and Georghiou, 1979 ), the technique of overwhelming a 

resistant strain of nematode worm with a susceptible strain was suggested as a 

means of suppressing anthelmintic resistance by Van Wyk (1990). So far, this 

method has only been experimentally tested on veld ram units in South Africa. 

Two main problems have prevented widespread acceptance of this control method 
in the insect domain. The first of the problems is do to with the coverage of 

pesticide on pasture which is notoriously inconsistent and uneven, making it very 
difficult to ensure a high kill of the heterozygote genotypes (RS). The second 

problem is one of logistics-ensuring that a high proportion of the heterozygotes 

are killed whilst protecting the SS genotypes from pesticide exposure until after 
they have contributed their genetic material to the next generation, given that 

all individuals occupy the same area of pasture. 

Fortunately, neither of these problems affect nematode populations. The dose 

of anthelmintics given to nematodes is more tightly controlled than the dose 

of insecticide given to insects, as drug treatment is confined to the site in the 

host where the majority of parasites ingested are harboured. Secondly, if it is 

assumed that treatment is administered post-reproduction, then the susceptible 
immigrants are able to fulfil their function prior to their eradication by the drug. 

Under these circumstances, it appears that this novel method of control may 
have more success in the field of nematode resistance than it has had in the 

insect domain. 
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Genetical Control 

The important role of the host in regulating worm population numbers has long 
been recognised (Anderson and May, 1991). Recently, attempts have been made 
to model the host-parasite relationship of T. circumcincta and its sheep host 
(Roberts, 1995; Roberts and Heesterbeek, 1995; Roberts and Dobson, 1995; 
Barnes and Dobson, 1995). These models are based on continuous time and 
incorporate host factors such as acquired immunity. Stear at al (1996) have re- 

cently identified a major gene for sheep resistance to T. circumcincta , which 

means effectively that worm-resistant sheep may be bred. Further research is 

necessary to optimise this strategy so that productivity is not impaired in the 

process. 

Mathematical Implementation 

A mathematical model has been developed in this chapter to explore the feasibility 

of biological control of resistance in nematode populations. The model is an 

extension of the models in Chapters 5 and 6. These were based on the model 

of insecticide resistance developed by Taylor and Georghiou (1979). A necessary 

extension to the insect models was the inclusion of a host into the system. Since 

treatment is administered to the parasitic stages, it follows that only the ingested 

proportion of the parasite population are exposed to the drug; those not ingested 

by the host remain on pasture untreated. Thus the target population of nematode 

parasites is smaller and easier to access than the target population of insects. A 

further extension to the model involved the creation of areas of refugia within the 
host where parasites were inaccessible to the drug, a phenomenon not yet fully 

understood but thought to have considerable impact on nematode population 
dynamics. 

The SIM model in this chapter models anthelmintic resistance in a nematode 

population and investigates the possibility of control via the inward migration of 

susceptible strains. 

We demonstrated in Chapters 5 and 6, that once a population contains even 

a small proportion of resistant strains, without intervention, the population will 

eventually become fully resistant. Flooding the pasture with susceptible strains of 

parasite re-introduces susceptibility to the population and improves the chances 

of the drug working on the population by exploiting the fact that these parasites 
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mate at random. We have shown, however that in the long term conservation of 
susceptibility and the concomitant control of parasite numbers by inward migra- 
tion of susceptible strains is only possible under certain circumstances. 

A graphical approach was adopted to illustrate the effect of this novel technique 

of resistance control. There existed one region in the N-p plane, called region 
II, where control was possible if the population originated in that region. Within 

region II, the R gene frequency would decrease as would parasite numbers. Pre- 

dictions could be made about the fate of a population originating in any of the 

other regions, however, region II was the only region that represented resistance 

and parasite numbers control, respectively. This region could be increased in area 
by altering the migration rate per generation, s, so that control of the population 

would be possible with larger initial parasite infection levels. 

Van Wyk (1990) has called for the urgent attention of all researchers in this 
field to find alternate methods of control, as the use of anthelmintic compounds 

will not solve the problem of resistance alone. A great deal more research has 

to be undertaken on the alternative method suggested by these authors, both 

theoretically and practically. 
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Chapter 8 

Discussion 

In this thesis, the life cycle of T., circumcincta has been modelled from two 
different perspectives. First, the effect of environmental factors, in particular 
temperature, on the development rate of T. circumcincta free-living on pasture is 

examined. The impact of developmental variability on parasite infection levels in 

the field is then explored. Secondly, the parasitic stage of the nematode life cycle 
is investigated with respect to the growth and evolution of drug resistance within 
a typical nematode population. In particular, the effect of specific life history 

parameters on the growth and evolution of anthelmintic resistance is examined 

and a model to investigate the possible suppression or eradication of resistance is 

presented. 

8.1 The Effect of Environmental Factors on the 
Life Cycle of T. circumcincta 

Chapters 2,3 and 4 present models of the life cycle of T. circumcincta refer- 

ring specifically to the dynamics of the free-living stages. Three main points of 
discussion arose from this work. 

8.1.1 Development Models 

In Chapter 2, the need for a more accurate representation of the temperature 
development rate phenomena in free-living nematode worms was highlighted. 
Conventional models of nematode development (Paton, 1983) were shown to be 
inadequate at describing this phenomenon at high temperatures. Beyond an opti- 
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mum temperature, different biological mechanisms act on the organism, to those 

experienced by the organism at moderate temperatures and the developmental 

process is altered. A comparative analysis of a current temperature development 

rate model for nematodes (Paton, 1983) and the more sophisticated models for 

insect development (Stinner et al, 1974; Logan et al, 1976) was undertaken. It 

was concluded that the model of Logan et al (1976), whereby the assumed mech- 

anisms controlling development are described within the model, by far gave the 

best description of the temperature-development rate relation. This model has 

many advantages. By comparing the Final Sums of Squares for each model with 

that of Logan et at (1976), it was clear that the fit to the data for all free-living 

life stages of T. circumcincta was best for this model. Furthermore, the bio- 

physical properties of the model mean that biologists are provided with a greater 

understanding of the temperature dependent development response for a given 

species, (Wagner, 1984a). The flexibility of this modelling approach allows us to 

investigate various theories on the mechanisms of the heat denaturization effect 

on the development of organisms at high temperatures. 

8.1.2 Developmental Variation 

Having presented a usable model for the description of the temperature develop- 

ment rate phenomena in nematodes, the concept of developmental variability in 

response to temperature was introduced. Up until now, the dynamics of the free- 

living stages have been modelled under the assumption that development and 

survival on pasture is influenced by the environment, particularly temperature 

and hence patterns of infection can be predicted by climate. These models relate 

mean development time to temperature and so assume a uniform response within 

the population. No attempt has been made previously to examine the impact 

on the population dynamics of nematode parasites when we consider within- 

population variation in response to temperature. 

Previously variation in emergence patterns had been attributed to climatic changes 

either geographically or temporally. In Chapter 3, using Osterant, it was sug- 

gested that variation in response to temperature between individuals in a popula- 

tion may account for a great deal of the observed variation in emergence patterns 
in the field. Consistently, differences in simulated emergence patterns of infec- 

tive L3s in the field, between fast, average and slow developers were greater than 

simulated differences between locations or over years. These results serve as a 

primary indicator of possible alternative sources of variation in infection levels on 
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the pasture. It is accepted that climate governs free-living development and sur- 
vival, what is being proposed here is that the genetic constitution of the nematode 
population is not uniform with respect to individual response to environmental 
stimuli, and that this genetic variation may be a significant source of observed 

variation. 

Important oversights in the epidemiology of nematode parasites may occur as a 
result of ignoring those individuals who develop quicker or slower than average. 
Those individuals in the tails of the developmental distribution may be important 

contributors to infection levels in the subsequent season as they may be more 
likely to overwinter on pasture or inhibit within the host. 

8.1.3 A Genetic Model Incorporating Multiple Time De- 
lays 

A life cycle model incorporating both free-living and intra-host development was 
proposed in Chapter 4. Combining complex developmental models with genetic 

rules for mating and reproduction could only be facilitated through computer 

simulation rather than mathematical analysis. 

The genetic aspect of this model was investigated mathematically, however. A 

simple analytic model was formulated to explore the dynamics of a population of 

single stage organisms split into three genotype groups according to development 

rate: fast, average or slow. Of interest was the equilibrium genotype distribution 

of such a population that reproduced under the assumption of random mixing. 
Preliminary results indicate that a Hardy-Weinberg equilibrium exists for such a 

population with the individuals in each genotype group distributed throughout 

the age classes within that genotype group. Further analysis of this interesting 

result is now required. 

8.2 Drug Resistance 

The second half of this thesis addresses the issues of anthelmintic resistance in 

nematodes. A series of models were designed in Chapters 5 and 6 to explore 
the dissemination of resistant strains throughout a nematode population. A fi- 

nal model was presented in Chapter 7 to explore a novel method of controlling 
resistance not modelled previously. Important aspects of the nematode life cycle 

174 



were incorporated into these models. These were 

(i) the host and pasture environment, 

(ii) intra-host and free-living areas of refugia, and 

(iii) immigration of resistant and susceptible strains onto pasture. 

8.2.1 Describing the Dissemination of Resistance 

Analyses of the models in Chapters 5 and 6 revealed that when no form of re- 
sistance control was in operation, the population would eventually become fully 

resistant, the time taken for significant resistance to build up being a directly 

measurable quantity derived from the original model equations. The effect of the 

various model parameters on the approach to 100% resistance is discussed with 
the general conclusions that low ingestion rate (a), high free-living mortality 
(1 - /3), low fecundity (f), a high proportion of ingested larvae entering refugia 
(it), a low h value and a low rate of immigration of resistant strains (r), would 
result in the slowing down of the evolution of resistance. 

8.2.2 Controlling the Dissemination of Resistance 

At present, the rate of escalation of resistance world-wide is higher than the rate 
at which new anthelmintic drugs are being developed (Van Wyk, 1990). Practi- 

cal measures are being taken to slow down the progress of resistance, particularly 
in Australia with national integrated pest management schemes (IPM) (Waller, 
1993). Management of resistance via the careful use of anthelmintics is impor- 
tant in the short term, however, alternative methods of worm control need to 
be researched urgently. A great deal of experimental effort has gone into the 
development of alternative worm control programs including 

(i) the selection for resistant hosts, 

(ii) nematophagous fungi (Gronvold et al, 1993), and 

(iii) conventional and novel vaccines. 

In the meantime, until these methods become practical to use, we must focus on 
ways to retain susceptibility of the parasites to the drugs. 
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Barnes and Dobson (1995) explored two alternative methods of control: novel vac- 
cines and nematophagous fungi, using the simulation model for Trichostrongylus 

vitrinus. The results were encouraging, both the vaccine and the fungi worked as 
well as or better than conventional worm control programs. The need for further 

research was emphasised, however. 

In Chapter 7, a novel method of controlling the evolution of resistance is ad- 
dressed. This method had initially been advocated for the control of insecticide 

resistance (Taylor and Georghiou, 1979), and later was suggested as a means of 

controlling anthelmintic resistance in nematode populations by Van Wyk (1990). 

To date, the biological control of resistant strains of nematode by replacing them 

with susceptible strains has never been considered in a mathematical model. 

The novel method of controlling resistance by overwhelming the resistant strain 
by a susceptible one on pasture, exploits the Mendellian principle of segrega- 
tion and recombination of genes at reproduction (Strickberger, 1976; Crow and 
Kimura, 1970). A mathematical model was formulated in Chapter 7 to investi- 

gate the feasibility of such an approach. Results from the model suggest that the 
deliberate introduction of parasites susceptible to the anthelmintic drug onto a 

pasture containing resistant strains may suppress and even reduce levels of resis- 
tance in the field. Provided initial population size and gene frequency are within 

a well-defined region on the N-p plane, determined by parameters such as im- 

migration levels, (s), proportion of heterozygotes killed by drug, (h), fecundity, 

(f), ingestion rate, (a) and proportion of individuals ingested that enter refugia, 
(µ), the dissemination of resistance through the population will be suppressed. 
This means that there are possibilities of halting the evolution of resistance in a 

population and controlling corresponding levels of parasitism in the field. 

8.3 Future Course of Research 

In the last 15 years, a great deal of progress has been made in the development 

of practical models for animal disease control. Subsequently these models have 

been adapted and used to investigate and explore the evolution of resistance in 

parasite populations of sheep. This thesis has addressed certain issues relating to 

the nematode life cycle and drug resistance that many of the previous models had 

not considered, such as developmental variability and novel methods of resistance 

control. 
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In Chapter 2, the importance of within-population variability in development 

rates was highlighted. It is recommended that future data collection focuses on 
the entire distribution of development times rather than on mean population 
behaviour. This would provide the data needed in Chapter 3 to evaluate the 

contribution of individuals in the tails of the developmental distribution to sub- 
sequent infection levels in the field, particularly with respect to the succeeding 

seasons infection levels as a result of overwintered and inhibited larvae. 

Many of the current models of anthelmintic resistance focus on the progression of 

resistance and methods of controlling the dissemination of resistance using con- 

ventional resistance control methods, such as drug rotation, pasture switching 

and drug mixtures. Few attempts are being made to explore alternative methods. 
Now is the time to rigorously test alternative methods, both experimentally and 

practically, whilst the resistance management schemes are still effective. Mathe- 

matical models must be used in this process to save time and money and direct 

future research efforts. 
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