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Abstract  

Metabolomics remains one of the rapidly growing tools for the identification of new 
disease diagnostic biomarkers. Mass spectrometry (MS) coupled to a liquid chroma-
tographic (LC) system and nuclear magnetic resonance (NMR) are the two major an-
alytical plafroms currently employed in metabolomic profiling studies of complex bi-
ofluid samples. However, due to its inherent higher sensitivity and fast data acquisi-
tion, MS remains one of the most dominant analytical techniques used in metabo-
lomics. 

In this project, metabolomics was employed in various studies to assess metabolite 
biomarkers associated with health and disease. All the studies employed liquid chro-
matography-mass spectrometry (LC-MS) on an Orbitrap Exactive mass analyser, and 
using ZIC-pHILIC or/and C18 analytical columns. Data was acquired using XCalibur 
software and metabolite identification was ascertained based on accurate mass de-
tection, retention time comparisons with authentic external standards, and database 
searching. The acquired data was analysed using both unsupervised (PCA-X) and su-
pervised (OPLS-DA) models in SIMCA in order to determine discriminating metabolite 
biomarkers responsible for the observed clustering patterns.  

Investigation of metabolomic effects of an 80 km ultramarathon exercise among 
healthy volunteers on a treadmill gave clear separation between the pre- and post-
80km samples. The study revealed that many of the amino acids were lowered in 
plasma post-exercise but the clearest impact of endurance exercise observed was on 
fatty acid metabolism with respect to formation of medium chain unsaturated and 
partially oxidised fatty acids and conjugates of fatty acids with carnitines, which sug-
gested that exercise may have led to increased peroxisomal metabolism. 

It is becoming increasingly clear that human health is strongly impacted by the gut 
microbiome. Evaluation of metabolomics effects of E. coli incubation in vivo with dif-
ferent carbon sources of 1% cooked meat, 1% maize meal and 1% olive kernel oil 
revealed that there were significant effects on amino acid, lipid, carbohydrate, and 
nucleotide metabolism. In addition, there were effects on intermediates of peptide 
and polyketide biosynthesis, as well as on xenobiotic breakdown products and vita-
min cofactors. These findings suggested that the E. coli metabolome is closely asso-
ciated with the type of fibre that the microorganism is exposed to and this was con-
sistent with a number of other previous studies. 

The study of metabolomic effects of dietary fibres on urinary metabolites from pa-
tients with Crohn’s disease revealed that each of the 7 dietary fibres did not induce 
any significant differences in Crohn’s disease patients relative to the controls. On the 
other hand, it was found that metabolites were affected by the time of sample col-
lection post treatment, and the overall effect was that the levels of specific metabo-
lites tended to increase post treatment. The most common pathways affected were 
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those of amino acid metabolism, lipid metabolism, nucleotide metabolism, polyke-
tides, vitamins and cofactors, and xenobiotics, but the effect on carbohydrate metab-
olism was minimal. 

Finally, the study to ascertain whether it was possible to predict cancer associated 
muscle wasting from plasma metabolites in patients with upper gastrointestinal can-
cer (oesophageal, gastric, pancreatic) revealed that the levels of significantly altered 
metabolites were generally higher in patients who had lost so much weight (>7.6 kg 
weight loss). The discriminating metabolites belonged mainly to the lipid metabolic 
pathways where long chain fatty acids and lysolipids were affected. The observed 
effects on lipid metabolisms in cancer cachexia suggests that there is an increased 
tendency towards peroxisomal proliferation in patients who had lost significant mus-
cle mass.  

Based on these findings, it can be concluded that LC-MS based metabolomics is a 
valuable tool in discriminating various disease states from the normal physiological 
state. Although the studies presented in this thesis considered vastly differing physi-
cal states ranging from healthy participants performing a simulated ultramarathon 
exercise on a treadmill to diseased participants suffering from either Crohn’s disease 
or gastrointestinal cancer, the technique was capable of determining the metabolic 
alterations associated with each disease state. This further reinforces the capacity for 
metabolomics in discovering new biomarkers for various diseases that could be cru-
cial in the diagnosis, monitoring disease progression, therapeutic efficacy evaluation 
of novel treatment, and detecting relapses following treatment.  
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1 GENERAL INTRODUCTION 

1.1 What is metabolomics? 

Metabolomics is the comprehensive analysis of small molecule metabolites (Mol. Wt. 

<1,000 Daltons) in a given organism or a specific biological sample. It is considered one 

of the latest of the so-called “omic” technologies and is concerned with intermediates 

and products of metabolism which include amino acids, carbohydrates, nucleotides, 

fatty acids, organic acids, vitamins, antioxidants, pigments, among others. The complete 

set of metabolites synthesised within a particular organism form its “metabolome” in 

analogy with related terms such as “genome”, “proteome” and “transcriptome”. The 

growing popularity of metabolomics has coincided with the increasing need for better 

understanding of disease aetiology, particularly in the assessment of the influence of 

genetic and environmental factors on the disease state, and in the elucidation of individ-

ualised therapeutic interventions (Nicholson, 2006, Holmes et al., 2008).  

Thus metabolomics is important in the understanding of effects of new therapeutic in-

terventions in certain diseases, elucidating the impact of exercise regimens or food in-

take on the body’s metabolism, determining the mechanisms of action of new drug mol-

ecules, identifying biomarkers for detection and diagnosis of disease states, etc (Wishart, 

2008). However, although the field of metabolomics is considered to be relatively new 

in systems biology, the first reported application of metabolic studies were reported in 

ancient China, where ants were employed in the detection of diabetes based on glucose 
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levels in urine (van der Greef and Smilde, 2005). In addition, “urine charts” for correlating 

the smell, taste, and color of urine were employed in the Middle Ages to diagnose met-

abolic diseases (Nicholson and Lindon, 2008). However, it was not until recently, in the 

1940’s, that the idea that individuals might have distinctive “metabolic profiles” that 

could be “fingerprinted” was proposed by Williams et al. in the 1940s (Gates and 

Sweeley, 1978). 

1.2 Approaches to metabolomics studies 

The metabolic alterations associated with a given disease state or treatment can be stud-

ied using targeted, semi-targeted or untargeted metabolomic approaches (Dunn et al., 

2013). The choice between any of these approaches depends on the need for quantitat-

ification, expected levels of precision and accuracy, sample complexity, and the number 

of metabolites involved. 

1.2.1 Targeted approaches in metabolomics studies 

Targeted metabolomic approaches deal with a few known metabolites which allows the 

analytical techniques to be optimised for high precision, accuracy and selectivity. For this 

reason, targeted metabolomics is mainly quantitative. Conversely, semi-targeted or un-

targeted approaches are less quantitative but their main aim is to identify all the metab-

olites detected in a given sample for hyphothesis generation. For this reason, targeted 

approaches utilise hypotheses generated from untargeted or semi-targeted studies to 

obtain conclusive evidence on the observed biological phenomena.  
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1.2.2 Untargeted approaches in metabolomics studies 

Untargeted metabolomics deals with detection of thousands of metabolites in a given 

set of samples with limited or no prior knowledge of the expected metabolite profiles. 

The observations made from these studies enable the investigator to derive hypotheses 

for testing at a later stage during targeted analyses. As there are normally a lot of me-

tabolites involved, untargeted methods normally are less quantitative and in most cases 

some of the metabolites cannot be easily identified. 

1.3 Analytical techniques  

Metabolites constitute a diverse group of chemical compounds of varying molecular 

weights and functional groups. Although their analysis may be performed using the same 

techniques employed in routine chemical analyses, there is need for higher sensitivity 

and selectivity to enable identification of individual metabolites in complex mixtures 

(Dunn and Ellis, 2005). The most commonly used techniques include those based on 

chromatographic separation such as liquid chromatography (LC), gas chromatography 

(GC), and capillary electrophoresis (CE). These techniques can be coupled to suitable de-

tectors and the commonest of these are mass spectrometers (MS) (Katajamaa and 

Orešič, 2007). Thus, LC-MS and GC-MS are some of the commonly encountered analytical 

platforms in metabolomic profiling studies. The MS coupled chromatographic systems 

enable the detection of hundreds of metabolites in a single run (Budczies et al., 2012, 

Dettmer et al., 2007, Takahashi et al., 2011, Johnson et al., 2003). Other analytical pla-

forms previously employed in metabolomics include Fourier transform infrared (FT-IR) 
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spectroscopy (Kim et al., 2010), nuclear magnetic resonance (NMR) spectroscopy 

(Serkova et al., 2005), and direct infusion mass spectrometry (DIMS) (Kaderbhai et al., 

2003). Certainly, the choice of technique depends on sample type/complexity and the 

required levels of selectivity, sensitivity, accuracy and speed of the analysis. 

1.3.1 LC-MS  

Chromatography is a technique of physical separation of compounds in a mixture based 

on differential affinities of the analytes for two phases, namely, the mobile phase and 

the stationary phase (Watson, 2012). Chromatographic techniques can be classified 

based on the stationary and mobile phases used. In liquid chromatography (LC), the mo-

lie phase is a liquid, while in gas chromatography (GC), the mobile phase is a gas. LC can 

be further categorized as reversed phase (RP), normal phase (NP), and hydrophilic inter-

action liquid chromatography (HILIC) depending on the nature of the stationary phase. 

Generally, RP is the commonest of the three LC techniques used because of its wider 

applicability. It utilizes a hydrophobic stationary phase (for example, a C18) and a hydro-

philic mobile phase in which water is mixed with a miscible organic modifier such as 

methanol, ethanol, acetonitrile, or tetrahydrofuran (Harris, 2010). Despite its populal-

rity, RP is not well suited for highly polar metabolites that are normally encountered in 

metabolomics because these are not well retained in non polar stationary phases. For 

this reason, there has been a growing trend in the use of HILIC-based techniques in 

metabolomic studies in recent years. HILIC’s retention properties are orthogonal to 
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those of RP, so that it shows higher retention of hydrophilic metabolites and low reten-

tion for hydrophobic ones. 

The modern LC-MS system consists a high performance liquid chromatograph (HPLC) 

connected to a mass spectrometer (MS). The main parts of a HPLC itself include a solvent 

reservoir, an online degasser, a pump, an autosampler, a column compartment, and a 

suitable detection system (Figure 1.1). The most commonly used detectors in HPLC are 

ultraviolet (UV) detectors, diode array detectors (DAD), evaporative light scattering de-

tectors (ELSD), and mass spectrometers (Harris, 2010). Each of these detectors are asso-

ciated with certain strengths and limitations. For instance, UV detectors are unable to 

detect compounds lacking chromophores while ELSD has limited quantitative capacity 

due to nonlinearity of the detector response signal with increasing concentration. The 

mass spectrometer in combination with a HPLC offers a very powerful and reliable ana-

lytical platform for metabolomics studies (Watson, 2012).  

 

Figure 1.1: A schematic diagram to illustrate the components of an HPLC system. The figure was 

been accessed from https://laboratoryinfo.com/hplc/ on 05 February 2019. 

https://laboratoryinfo.com/hplc/
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Although reversed phase chromatography is the most popular in pharmaceutical analy-

sis, both in industry and quality control laboratories, it is not very popular in metabolom-

ics profiling studies due to the fact that it does not retain most metabolites. Instead, 

metabolomics analysis employs stationary phases capable of separation by HILIC since 

these are designed to retain polar compounds that constitute most metabolomics me-

tabolites. Various HILIC columns are currently available with varying chemistries includ-

ing bare silica gel, silicon hydride, and derivatised phases such as phenylhydride, but 

zwitterionic phases such as ZICHILIC columns have also been popular in metabolomics 

profiling studies due to their high reproducibility (Zhang et al., 2014). In general HILIC 

separations employ reversed phase type mobile phases with normal phase columns; thus 

water, rather than the organic component such as acetonitrile, is the stronger solvent in 

HILIC unlike in reversed phase (Watson, 2012).  

 

The mechanisms of separation of analytes in HILIC are not fully understood but it is 

thought that partitioning into a stationary layer of water established on the surface of 

the stationary phase plays an essential role in achieving resolution between analytes 

(Santali et al., 2014, Bawazeer et al., 2012). However, other mechanisms have also been 

described which include ionic interactions, dipole-dipole interactions, van der Waals 
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forces, etc. The number of possible interactions in a HILIC column depends on the chem-

istry. For instance, ZIC-HILIC columns contain oppositely charged groups (zwitterions) 

which can provide additional sites of interactions through repulsion (similar charges) or 

attraction (opposite charges) of any charged analytes thus affecting their retention on 

the column. The strength of these ionic interactions can be modified in the presence of 

competing ions from mobile phase additives such as buffers which might modulate the 

retention behaviour.  On the other hand, the mobile phase additives can modify the 

thickness of the layer on the stationary phase surface thus affecting the strength of par-

titioning and subsequently its retentivity. In general, increase in the ionic strength of the 

salts increases the thickness of the water layer depending on the hydration energies of 

the counter ions in the mobile phase. Thus, analyte separation is based on differences in 

analyte polarity, molecular weight, shape, and charge. 

The role of the mass spectrometer as a detector in LC-MS is to measure the mass-to-

charge ratio (m/z) of the analytes present in a sample. Mass spectrometry is the tech-

nique of choice in metabolomics studies and as such it is the most commonly used tool 

(Katajamaa and Orešič, 2007). The MS is superior to other common methods of detection 

such as UV, ELSD, fluorimetry, and NMR due to a combination of its high sensitivity, se-

lectivity, resolution, and ability to give accurate mass data depending on the instrument 

used. The mass spectrometer (MS) has three main components: an ionisation chamber, 

a mass analyser, and a detector (Figure 2). The ion source is used to produce gas phase 

ions from sample. The ionization processes used in MS vary in their techniques and they 
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include those which operate under vacuum such as electron impact (EI) and chemical 

ionization (CI), and those which operate at atmospheric pressure such as electrospray 

ionisation (ESI) and atmospheric pressure chemical ionization (APCI) (Kraj et al., 2008, 

Watson and Sparkman, 2007). The ions produced by the ion source are accelerated 

through a region of electric and magnetic fields so that only those ions with m/z in a 

given range can reach the analyser and be detected.  

 

 

Figure 1.2: A schematic diagram to show the main components of a mass spectrometer. The figure has been 

accessed from Bijaya U. Kumar (2014) available at https://www.slideshare.net/bijayauprety/mass-spectrome-

try-41214136 on 05 February 2019. 

 

The second main component of MS instrument is the analyzer, where the ions are sepa-

rated based on their mass-to-charge (m/z) ratios. There are different mass analyzers 

https://www.slideshare.net/bijayauprety/mass-spectrometry-41214136
https://www.slideshare.net/bijayauprety/mass-spectrometry-41214136
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which are currently used in MS systems to separate the ions in time or space and they 

include quadrupoles (Q), ion traps (IT), time of flight (TOF), Fourier transform ion cyclo-

tron resonance (FT-ICR), and the Orbitrap analyser (Hu et al., 2005). The main differences 

between these mass analyzers arise from their resolving power, mass accuracy, sensitiv-

ity, dynamic range and fragmentation capabilities for MSn studies. Recent developments 

have led to hybrid mass systems that combine strengths of various mass analysers so 

that a single mass spectrometer can have various capabilities based on the ion separa-

tion techniques being encompassed in the hybrid system. Examples of such hybridized 

mass analysers include triple-Q, Q-IT, TOF-TOF, Q-TOF, IT-Orbitraps, LTQ-Orbitraps and 

Q-Exactives (Michalski et al., 2011). The current MS systems were made suitable for ap-

plication to metabolomics by the addition of soft ionization techniques such as APCI or 

ESI which form mainly molecular ions without fragmentation, allowing the compounds 

to be identified based on their databases constructed specifically using accurate mass 

data of the common metabolites (Watson and Sparkman, 2007, Kraj et al., 2008).  

The third part of MS is the detector. In this region, the mass-to-charge ratios (m/z) of the 

detected ions and their abundances are measured. In the Orbitrap, for example, detec-

tion is based on image current of the ions in the mass analyser (Makarov and Scigelova, 

2010). The conversion of the image current into the mass spectrum utilizes mathematical 

algorithms such as Fourier transformation (FT) which is also employed in other FT instru-

ments such as FT-ICR (Michalski et al., 2012).  

 



11 
 

An ideal MS system should be able to detect very low concentrations of a given analyte 

in a sample (sensitivity), achieve high mass resolution between very closely related 

masses (selectivity), provide high mass accuracy, and should have a high dynamic scan 

range. These attributes can all be achieved in some modern mass spectrometers such as 

the Orbitraps and Orbitrap Exactives (Hu et al., 2005) (Figure 3). Additionally, mass spec-

trometers allow the analyst to tailor the conditions of the analysis to the specific analytes 

in the sample which improves the robustness of the detection method. Generally, LCMS 

systems have better sensitivity in the analysis of metabolites than GCMS without need 

for prior derivatisation. The capabilities of LCMS can be expanded through MS/MS stud-

ies and high-energy C-trap dissociation (HCD) on the Orbitrap to enhance parent ion 

characterisation and to elucidate the structures of fragment from analyte breakdown 

(Kamleh et al., 2009a, Holčapek et al., 2012). 

 

Figure 1.3: A schematic diagram representing the Orbitrap Mass Spectrometer. The figure has been obtained 

from Hu et al., 2005. The Orbitrap: a new mass spectrometer. J Mass Spectr, 40, 430-443. 
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Recent advancements in mass analyser technologies have transformed mass spectrom-

eters into essential analytical tools for biological research. The high sensitivities and mass 

accuracy of Orbitrap analysers, for example, has increased data richness and the value 

of metabolomics data that can be achieved from the analysis of a single sample com-

pared with earlier technologies (Hu et al., 2005). Currently, there are different genera-

tions of Orbitrap mass analysers of which the LTQ Orbitrap is the first generation first 

commercialized around 2005 (Makarov et al., 2006). This MS combines a linear ion trap 

(LTQ) and a Fourier transform mass analyser (Orbitrap) which gives it capabilities for MSn 

studies in addition to the enhanced sensitivity, mass accuracy and resolution of the Or-

bitrap technology. The high mass accuracy and resolving power of Orbitrap mass analys-

ers permit accurate mass measurements which are essential for the determination of 

elemental composition of metabolites, which facilitates their identification (Makarov, 

2000, Makarov et al., 2006, Hu et al., 2005).  

1.3.2 GC-MS 

Gas chromatography (GC) uses an inert gas as mobile phase, hence its name. The most 

commonly used gases in GC include nitrogen, helium, and hydrogen. The use of gas as 

the mobile phase is the key difference between the GC and LC as the latter uses liquid. 

The columns used in modern GC systems are long capillary columns which contain sta-

tionary phases coated onto the internal wall. The stationary phase coatings vary in their 

polarity, polar ones include carbowax phases while methyl silicone phases are less polar. 

There is a range of commercial GC columns available whose stationary phases vary in 
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terms of their polarity and suitability for the analysis of different analytes. Samples can 

be injected in split or splitless mode depending on their concentration; the splitless mode 

is preferable for samples containing very low levels of the metabolites being analysed 

(Watson, 2012). The main compartments of the GC such as column and injection port 

are maintained at high temperatures in an oven maintained to keep analytes in the gas 

phase. The temperature gradient of the column compartment is employed to modify 

retention times of the analytes. Apart from temperature, retention times depend also 

on the molecular weight and polarity of the compound which in turn affect its volatility.  

A GC-MS system consists of a GC with a MS as the detector, as illustrated in Figure 4. 

Different types of mass spectrometers can be interfaced to the GC but since analytes 

entering the MS are in gas phase, only MS ion sources that are capable of dealing with 

gas-phase analytes are employed. These ion sources include chemical ionisation (CI) and 

electron impact (EI) ionisation. The latter uses high collisional energy (70eV) with fast 

moving electrons to ionize analytes, which results in extensive fragmentation of the com-

pound that can facilitate identification procedures. GC-MS can be carried out with quad-

rupole and time of flight (TOF) mass analysers. GC-quadrupole systems have high dy-

namic range and sensitivity but mass accuracy and scan speed are quite low. On the 

other hand, GC-TOF/MS has higher mass resolution and mass accuracy (Bedair and 

Sumner, 2008). 
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Figure 1.4: A schematic diagram showing a GC-MS system. The figure was accessed on 

05 February 2019 at https://chem.libretexts.org/Bookshelves/Analytical_Chemis-

try/Supplemental_Modules_(Analytical_Chemistry)/Instrumental_Analysis/Chromatog-

raphy/Gas_Chromatography. 

GC-MS is one of the preferred techniques applied in metabolomics research because it 

combines the high separation efficiency (chromatographic resolution) of a capillary GC 

column and the high sensitivity and robustness of the mass spectrometer (Kopka, 2006). 

The availability of GC-MS spectral libraries also makes the job of metabolite identification 

easier. Compared to LC-MS, GC-MS has a limited application because of the need for the 

samples to be volatile and thermally stable. For some non-volatile analytes such as fatty 

acids, volatility can be achieved by derivatisation, for instance fatty acids can be derivat-

ised through methylation to form esters which are volatile (Schauer et al., 2005, Kopka, 

2006). Another common method for derivatisation is by oxime/silylation derivatisation. 
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Silylation introduces a trimethylsilyl (TMS) group onto the non-volatile compound result-

ing into volatility and the method can be applied to alcohols, amides, amino acids and 

thiols (Roessner et al., 2000, Dunn et al., 2005). The TMS derivatives are less polar than 

the parent metabolites and have less dipole-dipole interactions which increase their vol-

atility that is suitable for analysis by GC-MS (Dunn et al., 2005). It should be noted that 

the derivatisation process can be time-consuming and the additional sample preparation 

might introduce extra technical errors into the experiment thus increasing the total var-

iability in the samples. In the case of thermal stability, except small molecular weight 

hydrocarbons, short chain alcohol and esters, most metabolites are affected by the high 

temperatures employed in GC-MS which can be as high as 350°C (Bedair and Sumner, 

2008). 

1.4 Data processing 

During metabolomic studies, huge amounts of complex data are generated even for a 

few samples, and this requires statistical software for analysis before interpretation. The 

processing of metabolomics data enables the extraction of all relevant information about 

the analytes present in a sample and at the same time it minimizes background noise in 

order to facilitate subsequent data analysis and interpretation. Depending on the tech-

niques employed, such as GC-MS, LC-MS, direct infusion MS, and NMR (Cui et al., 2008; 

Kuhn et al al., 2008), data processing commences with its acquisition from the analytical 

instrument. For example, the data resulting from LC-MS analysis as collected by XCalibur 

software requires pre-processing prior to multivariate statistical analysis (MVA). This 
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pre-processing is intended to remove background ions and to correct for retention time 

drifts.  

In general, there are four considerations which should be made during data processing 

of LC-MS metabolomics data. To begin with, the LC/MS technique captures data of the 

whole metabolome thus it contains a large number of diverse metabolites varying in 

their molecular structures and concentrations in the sample. Secondly, data processing 

prior to MVA can be a significant source of errors that may lead to false signals being 

produced by peak picking, alignment, and noise. Thus, these parameters should to be 

optimised for a given set of samples during pre-processing in order to obtain the most 

accurate results from MVA (Dettmer et al., 2007). 

Thirdly, LC-MS can generate adduct and fragment ions that may be generated by a single 

metabolite during the process of ionization in the ESI. This signal redundancy interferes 

with the process of metabolite identification by increasing the number of variables that 

can produce a false positive in MVA. Another matter of concern is that the identification 

step of acquired signals in metabolomic experiments consumes time and effort. It is usu-

ally done by matching databases with the filtered mass spectra. Further experiments 

such as MS/MS fragmentation are needed to rigorously confirm the results (Werner et 

al., 2008). 
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Broadly, two methods for extracting information from metabolomics data which are cur-

rently employed are chemometric (or non-targeted) and quantitative (or targeted) meth-

ods. Chemometrics is defined as “the application of mathematical, statistical, graphical 

or symbolic methods to maximize the information which can be extracted from chemical 

or spectral data”. It can be used to distinguish between sample categories under differ-

ent conditions by reducing the number of dimensions to simplify the dataset display sig-

nificant differences between the samples being analysed. It is useful for identifying phe-

notypes and drawing conclusions without the need to identify and quantify the specific 

metabolites. Indeed, the chemometric analysis approach presents two most widely uti-

lized approaches for pattern recognition, namely, principal components analysis (PCA) 

and partial least squares discrimination analysis (PLS-DA). PCA allows the clustering ten-

dency to be easily detected by visualization in an unsupervised manner. The chemomet-

ric tools for metabolomics data processing must be selected based on the purpose of the 

study. If the purpose is sample discrimination, and prior information on sample identity 

is unknown, then unsupervised methods such as PCA are used. Supervised methods such 

as PLS may be used when the class of some samples is known. Contrary to the chemo-

metric methods, the quantitative methods require the metabolites in a given biological 

sample to be identified and quantified prior to analysis. These methods can be applied 

to the data as acquired by NMR or MS via available reference databases to identify their 

signals. Chemometric approaches may be less applicable to LC-MS data because the 
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number of peaks present in a sample run can be > 20,000, and because the alignment of 

chromatograms drifts from run to run (Trygg et al., 2007, Werner et al., 2008).  

1.5 Data analysis  

Metabolomics data are highly rich in information which requires processing by software 

or web-based tools in order to facilitate the interpretation. Commonly used software for 

this purpose include: MZMatch, MZMine and SIEVE. Both MZMatch and MZMine are 

non-commercial open-source software that allows for peak detection, filtering, normal-

ization and identification based on local and online databases. One key drawback of 

MZMatch is the need for the user to possess some knowledge of computer programming 

before proper use of this software (Pluskal et al., 2010). MzMine was first introduced in 

2005 for the processing of mass spectrometry based profile data (Katajamaa et al., 2006). 

It has been applied to various metabolomic analyses (Guan et al., 2009, Macintyre et al., 

2014, Muhsen Ali et al., 2016).  

1.6 Data visualisation 

1.6.1 Unsupervised Techniques 

Due to the nature of the information contained in biological data sets (such as metabo-

lomics data), LC-MS can generate very large amounts of data. As in this research, it is 

required to establish possible relationships (or correlations) among the various subjects 

or variables; the greater the amount of information there is to analyse, the higher the 

difficulty and complexity of obtaining the required results will be. It would be almost 
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impossible to properly examine and analyse the data without appropriate statistical soft-

ware. Hence, it is necessary to apply suitable statistical methods to increase the chance 

of identifying any potential similarities or differences among the various samples in the 

data, by reducing the dimensionality of the input space of the data to a small number of 

dimensions.  

To classify the samples into groups of similar characteristics, which can give an insight in 

the situation under investigation, statistical methods such as Principal Components Anal-

ysis (PCA) and Cluster Analysis such as Hierarchical Cluster Analysis (HCA) can be used. 

Samples classified in a group will have similar characteristics, but be different from those 

in other groups. No information about the groups is known beforehand and no assump-

tions are necessary concerning the group into which a sample may be classified. These 

unsupervised pattern recognition techniques aim to reduce the amount of data com-

plexity and afterwards present in a graphical form the patterns or clusters identified in 

the data (Prelorendjos, 2014).  

1.6.2 Principal Component Analysis (PCA) 

This is an unsupervised model employed to explore how variables cluster regardless to 

which class an observation is belongs to (Kirwan et al., 2012). It considered the main tool 

used by analysts for data reduction to extract meaningful information (Yamamoto et al., 

2009). This achieved by combining variables that correlate with each other into few la-

tent variables (components). The higher the correlation among variables is the smaller 
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the number of components that will be needed with components < observations, with-

out losing an important amount of the total variation of the data (Prelorendjos, 2014). 

PCA is normally employed as the first step in the analysis of metabolomics data (Kirwan 

et al., 2012, Trygg et al., 2007) in order to visualize data and detect outliers. 

1.6.3 Hierarchical Clustering Analysis (HCA) 

The concept of HCA or dendrogram –both are used interchangeably- as a clustering anal-

ysis tool is to try to find a natural grouping of a data set, so that there is high similarity 

(low variability) of observations within clustered groups and less similarity (high variabil-

ity) of observations between clustered groups. In HCA clustering, the two closest clusters 

or observations are merged, thereafter the two closest clusters or points are again 

merged, etc, until one super cluster remains (Lozano et al., 2014). HCA is extensively 

used when a study is done with no previous knowledge about grouping, and is consid-

ered a preface for supervised multivariate techniques. 

1.6.4 Supervised Techniques 

PCA provides an overview of the dataset but it does not relate the phenotype-disease 

state for instance- of an individual to the measured parameters. Partial least squares-

discriminant analysis (PLS-DA) performs a PCA analysis on the Y-matrix (observa-

tions/samples) to yield a small number of latent variables, and then constructs a series 

of latent variables from the X-matrix (descriptors/variables/metabolites) which explain 

the maximum variance in these Y latent variables.  
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Orthogonal partial least squares - discriminanat analysis (OPLS-DA) is an extension of 

PLS-DA  modelling, and has an advantage over the PLS-DA that it can separate variation 

in X that correlates to Y (horizontally) called predictive variation, and also separate vari-

ation in X that is uncorrelated to Y (orthogonal). OPLS-DA is most powerful technique 

that is employed to examine the difference between groups (Kirwan et al., 2012), it can 

identify reliable biomarkers that have a strong association with separation between 

groups (Trygg et al., 2007) and relate disease to perturbations in metabolic pathways 

(Goodacre, 2007) and thus help expanding our understanding of the pathophysiology 

and of future therapeutic targets. 

The quality of a supervised model is assessed by R2 (the goodness of fit) and Q2 (the 

goodness of prediction), and P CV-ANOVA (the p-value of the model) from cross-valida-

tion procedures which determine the degree of significance of the model (Triba et al., 

2015) and are called quality parameters (Wheelock and Wheelock, 2013). 

1.7 Model validation  

During analysis, the quality parameters R2 and Q2 are the most powerful tools for vali-

dating any applied model. R2 is a quantitative measure of the goodness of fit, it relates y 

(observations) to x (variables), by quantifying the fraction of y (observations) explained 

by the variation in x (variables). The issue with such a parameter is that it can be made 

arbitrarily close to one, the maximal value, as long as we increase the number of compo-

nents. This might lead to over-fitting the data due to the large number of variables com-

pared to small number of observations and thus give too optimistic results. However, 
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this can be controlled by the goodness of prediction parameter Q2, it is obtained via cross 

validation (CV) (Kirwan et al., 2012) by which predefined number of observations should 

be left out and followed by refitting the model, this process applied to all the data until 

all have been kept out only once (Eriksson et al., 2013a). Then the average value of the 

refitted models Q2 are compared to the R2 of that model which provides an indication 

that it predicts much better than chance. 

For the purpose of cross validation SIMCA P software - by default - leaves 1/7th of the 

data out. An “observed” vs “predicted” plot is employed to examine the efficiency of CV, 

by which the R2 of the regression line should be improved. Moreover, in order to evalu-

ate whether the specific grouping of the observations in the two designed classes is sig-

nificantly better than any other random grouping in two arbitrary classes, permutations 

test applied (Westerhuis et al., 2008). 

In this test, the R2 and Q2 parameters obtained from the original model are compared to 

newly permuted R2 and Q2, this process can be repeated to generate new quality param-

eters. The new parameters generated from this permutation should all be lower in value 

than the original values. In addition to that, the regression line of the predictive model 

should cross the horizontal zero line (Eriksson et al., 2013b). In order to test the signifi-

cance of the variation predicted by the supervised model, ANOVA of the cross validated 

residuals is employed (CV-ANOVA). Once the predictive ability of the model is validated, 

then the accuracy of the model in discriminating observations based on their metabolic 
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profile should be assessed and reported using area under the receiver operating charac-

teristic (ROC) curve. 

1.7.1 Cross validated ANOVA (CV-ANOVA) 

The validity of a supervised model can be well assessed using cross validated ANOVA (CV-

ANOVA) which tests the variation predicted by the model against the null hypothesis (H0) 

of equal cross validated predictive residuals around the mean (Eriksson et al., 2008).  

1.7.2 Biomarkers identification using an S-plot 

The S-plot is a tool used to identify biomarkers based on a supervised model. The me-

tabolites in the upper right and lower left corners of the plot are highly associated with 

the differences between the two groups being considered. However, there are no clear 

cut-offs that can be relied upon when selecting metabolites using an S-plot, which may 

lead to some of the significant metabolites being inadvertently neglected. In order to 

overcome this shortcoming, it would be appropriate to employ univariate analysis so that 

all metabolites are afforded equal chance of selection without losing potential bi-

omarkers. 

1.7.3 Variable importance in the projection (VIP) 

The contribution a given metabolite in a model is examined by considering its variable 

importance in the projection (VIP). This parameter estimates and ranks the importance 

of each variable (metabolite) in the projection and it is often used for variable selection 

during metabolomics (Chong and Jun, 2005). Metabolites are generally considered to 
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have a high contribution in the model if VIP > 1 (Eriksson et al., 2013d, Zhang et al., 2016). 

VIP provides two VIP values for each metabolite one denoting its contribution to the 

difference between groups (VIPpred) and the second denoting its contribution to the 

within group variability (VIPortho). Any metabolite with high VIPpred and low VIPortho 

values is sensitive and specific. 

 

1.8 Aims and Objectives 

The project was aimed at addressing four major objectives as follows: 

1.8.1 Aim 1:  

To investigate the metabolomic effects of an 80 km ultramarathon exercise simulated on 

a treadmill in healthy adults.  

1.8.2 Aim 2:  

To evaluate the metabolomic effects of E. coli incubation in different carbon sources us-

ing three types of fibres: 1% cooked meat, 1% maize meal and 1% olive kernel oil in co-

parison with a negative control of 1% D glucose.  

1.8.3 Aim 3: 

To investigate the effects of incubating fecal samples from Crohn’s disease patients and 

controls with different dietary fibres on the metabolomic profiles of these samples. .  
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1.8.4 Aim 4:  

To investigate the capacity for prediction of cancer associated muscle wasting from 

plasma metabolites of adult patients with gastrointestinal cancer.  
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2 MATERIALS AND METHODS  

 

2.1 Participants and study samples 

All study samples (plasma or urine) presented in this work were obtained from collabo-

rating hospitals and research groups in the U.K. as described in detail in the relevant 

sections. The samples were stored frozen at -20°C until required for analysis. 

 

2.2 Solvents and chemicals 

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, UK) 

and HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Millipore, 

Watford, UK). AnalaR-grade formic acid (98%) was obtained from BDH-Merck (Poole, 

UK). Authentic stock standard metabolites (Sigma-Aldrich, Poole, U.K.) were prepared as 

previously described [19] and diluted four times with ACN before LC-MS analysis. Am-

monium acetate was purchased from Sigma-Aldrich (Poole, UK). 

 

2.3 Instrumental techniques and columns 

Liquid chromatographic separation was carried out on an Accela HPLC system interfaced 

to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 
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using either a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading UK) or/and a 

reversed phase column (ACE C4, 150 × 3.0 mm, 3 µm, HiChrom Reading UK).  

 

2.4 Mobile phases 

The ZICpHILIC column was eluted with a mobile phase consisting of 20 mM ammonium 

carbonate in HPLC-grade water (solvent A) and acetonitrile (solvent B), at a flow rate of 

0.3 mL/min. The elution gradient was an A:B ratio of 20:80 at 0 min, 80:20 at 30 min, 

92:8 at 35 min and finally 20:80 at 45 min. The mobile phase for elution of the ACE C4 

column consisted of 1 mM acetic acid (A) and 1 mM acetic acid in acetonitrile (B), at a 

fow rate of 0.4 ml/min. The elution gradient was as follows: A:B ratio 60:40 at 0 min, 

0:100 at 30 min, 0:100 at 36 min, 60:40 at 37 min, 60:40 at 41 min.  

 

2.5 The MS run conditions 

The nitrogen sheath and auxiliary gas flow rates were maintained at 50 and 17 arbitrary 

units. The electrospray ionisation (ESI) interface was operated in both positive and neg-

ative modes. The spray voltage was 4.5 kV for positive mode and 4.0 kV for negative 

mode, while the ion transfer capillary temperature was 275°C. Full scan data were ob-

tained in the mass-to-charge ratio (m/z) range of 75 to 1200 for both ionisation modes 
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on the LC-MS system fully calibrated according to manufacturer’s guidelines. The result-

ing data were acquired using the XCalibur 2.1.0 software package (Thermo Fisher Scien-

tific, Bremen, Germany).  

 

2.6 Data extraction and analysis 

Data extraction for each of the samples was carried out using either MZMine or 

MZMatch software. The extracted ions, with their corresponding m/z values and reten-

tion times, were pasted into an Excel macro of the most common metabolites prepared 

in–house to facilitate identification. The lists of the metabolites obtained from these 

searches were then carefully evaluated manually by considering the quality of their 

peaks and their retention time match with the standard metabolite mixtures run in the 

same sequence. All metabolites were within 3 ppm of their exact masses. Statistical anal-

yses were performed using both univariate with Microsoft Excel and multivariate ap-

proaches using SIMCA-P software version 14.1 (Umetrics, Umea, Sweden.). 

 

2.7 Other equipment used 

The ultrasonic bath was a Branson 1510 from Branson Ultrasonics (Slough, UK). Auto-

matic pipettes (Gilson) were from Anachem (Luton, UK). All glassware was Fisher Scien-

tific (Loughborough, UK). The centrifuge was a Benchmark MyFuge Mini from Benchmark 
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Scientific (Edison, NJ, USA). Acrodisc® syringes and filters were purchased from Fisher 

Scientific (Loughborough, UK).   
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3 METABOLOMICS EFFECTS OF ULTRAMARATHON EXERCISE 

3.1 Introduction 

There has been an upward trend in life expectancy over the past few years in developed 

countries, but lifestyle risks still pose real challenges to longevity. These risks factors in-

clude obesity, unhealthy diet, cigarette smoking, sedentary lifestyle, and alcohol con-

sumption (Harper and Howse, 2008). Regular physical exercise, coupled with proper diet 

and moderate alcohol consumption, can significantly decrease the impact of these risk 

factors resulting into an increased life expectancy and wellbeing (Williams, 1997). For 

instance, it has been reported that regular exercise attenuates sarcopenia and promotes 

cardiovascular health (Trappe, 2007, Faulkner et al., 2008, Sarris et al., 2014). It is also 

prescribed for people with diabetes (Organization, 2009), obesity, and mild to moderate 

depression (Sarris et al., 2014). Moreover, it has been reported that incidences of hyper-

tension, hypercholesterolemia, and diabetes decrease with the frequency of participa-

tion in marathons independent of the total distance run annually, but this might be due 

to longer training runs or genetic and innate differences between marathoners and those 

who are not (Williams, 2009). However, despite the clear benefits of regular exercise, 

sedentary behaviour is still widespread. For instance, the indirect cost of physical inac-

tivity is estimated to be 1.5%–3% of total direct healthcare costs in developed countries, 

including the U.K. where this cost has been estimated at £8.2 billion per annum in Eng-

land (Scarborough et al., 2011).   
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A clear understanding of the metabolomic effects of physical exercise and how they cor-

relate with physical performance could give insights into comprehensive and individual-

ised healthcare plans for promotion of wellbeing. Currently, data on the metabolomics 

alterations that occur during exercise are still limited. A previous study of healthy adults 

subjected to submaximal exercise showed significant increases in a range of purine me-

tabolites and several acyl carnitines (Muhsen Ali et al., 2016). High intensity and pro-

longed exercises such as marathon, which have recently become a worldwide social and 

fitness phenomenon, can give a better indication of the metabolic changes in the body 

and enable correlations with other physical performance indicators. Understanding of 

such metabolic changes could enable the elucidation of individual’s ability to maintain 

peak physical performance and physiological function (Tanaka and Seals, 2008). 

Physical performance in a marathon can be affected by gender (Sparling et al., 1998, 

Baker and Tang, 2010, Hunter et al., 2011), age (Ransdell et al., 2009), lifestyle, and body 

mass index (BMI) (Knechtle et al., 2009), through differences in physiological (e.g., mus-

cle strength, oxygen carrying capacity) and morphological (e.g., percentage of body fat, 

muscle mass) characteristics of an individual (Lepers and Cattagni, 2012). However, the 

amount of exercise optimal for a given individual remains unknown due to absence of 

definitive data on the molecular mechanisms underlying exercise in relation to health.  

Thus investigation of the metabolomic effect of exercise on the human metabolome 

could provide insights into phenotypic responses, permit development of personalised 

training regimes based on initial metabolic status of an individual (Daskalaki et al., 2014), 
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and yield vital diagnostic and prognostic biomarkers for use by physicians in the manage-

ment of cardiovascular and other related diseases (Carnethon et al., 2005). The maximal 

rate of oxygen consumption, known as VO2max, is the most effective indicator of cardi-

ovascular fitness and can be determined by measuring respiratory variables during an 

incremental exercise test to exhaustion (Muhsen Ali et al., 2016).  

This investigation was a controlled laboratory study involving 9 healthy male participants 

in an 80 km marathon simulated on a treadmill. Plasma samples collected at two differ-

ent points before, and immediately after the marathon were analysed for their metabo-

lomic profiles using both hydrophilic interaction (HILIC) and reversed phase (RP) liquid 

chromatography-mass spectrometry (LC-MS) methods. Multivariate data analysis was 

employed with SIMCA by fitting PCA-X, OPLS-DA and OPLS models to determine the met-

abolic changes due to extreme exercise in order gain some insight into how metabolism 

is adapted for endurance performance. 

3.2 Materials and Methods  

3.2.1 Chemicals and Solvents 

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, UK) 

and HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Millipore, 

Watford, UK). AnalaR-grade formic acid (98%) was obtained from BDH-Merck (Poole, 

UK). Authentic stock standard metabolites (Sigma-Aldrich, Poole, U.K.) were prepared as 
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previously described (Zhang et al., 2014) and diluted four times with ACN before LC-MS 

analysis. Ammonium acetate was purchased from Sigma-Aldrich (Poole, UK). 

3.2.2 Participants 

The healthy participants were 9 males with mean (±SD) age of 33.7±6.7 years, body mass 

69.2±7.0 kg, BMI 22.7±2.0 kg/m2. Table 3 summarises all the participants’ characteris-

tics. 

3.2.3 Plasma samples 

Plasma samples were collected from the 9 participants at two time points during an 80 

km run on a treadmill, namely: Pre-marathon and Post-80 km. The ‘Pre 80 km’ samples 

were collected at rest immediately prior to the participants starting the 80 km treadmill 

ultramarathon and the ‘Post 80 km’ samples were taken immediately upon the partici-

pants completing the 80 km distance. In addition, baseline samples were taken on the 

day that the participants came to perform their familiarization, and baseline testing (VO2 

max test) was within a two-day window prior to their 80 km run. 

Table 3.1: Participant biographic information and metadata 

Participant 

ID 
Gender 

Age 

(years) 

Body Mass 

(kg) 

BMI 

(kg/m2) 

VO2 max 

(ml.min.kg) 

Total Elapsed Time for 

80.5 km (hr:min:sec) 

P00 Male 27 65.55 20.5 62.2 08:12:00 

P01 Male 32 77.3 23.9 62.5 07:40:48 

P03 Male 33 83.55 25.2 55.6 10:37:37 

P04 Male 33 61.95 20.5 66.9 07:04:19 

P05 Male 34 69.45 22.8 59.5 09:20:37 

P07 Male 50 67.47 21.7 57.8 10:02:38 

P14 Male 33 72.76 22.7 58.5 10:20:25 
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P15 Male 29 68.15 20.7 62.4 10:17:14 

P16 Male 31 67.5 21.2 68.7 10:00:00 

3.2.4 Sample preparation 

Exactly 100 µL of the sample was mixed with 400 µL of acetonitrile containing 5 µg/ml of 

13C2 glycine (Sigma-Aldrich, Poole, U.K.) as an internal standard to ensure retention time 

stability, and then centrifuged for 10 min before transferring into a vial with an insert. 

The pooled sample was prepared by pipetting 50 µL from each of the 46 samples and 

then mixing them together before diluting 0.2 ml of the pooled sample with 0.8 ml of 

acetonitrile containing 5 µg/mL of 13C2 glycine internal standard and centrifuged. Addi-

tionally, the prepared mixtures of authentic standard metabolites (Zhang et al., 2014) 

containing 5 µg/mL of 13C2 glycine as internal standard were run.  

3.2.5 LC-MS conditions  

Liquid chromatographic separation was carried out on an Accela HPLC system interfaced 

to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

using both a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading UK) and a re-

versed phase column (ACE C4, 150 × 3.0 mm, 3 µm, HiChrom Reading UK). The ZICpHILIC 

column was eluted with a mobile phase consisting of 20 mM ammonium carbonate in 

HPLC-grade water (solvent A) and acetonitrile (solvent B), at a flow rate of 0.3 mL/min. 

The elution gradient was an A:B ratio of 20:80 at 0 min, 80:20 at 30 min, 92:8 at 35 min 

and finally 20:80 at 45 min. The mobile phase for elution of the ACE C4 column consisted 

of 1 mM acetic acid (A) and 1 mM acetic acid in acetonitrile (B), at a fow rate of 0.4 
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ml/min. The elution gradient was as follows: A:B ratio 60:40 at 0 min, 0:100 at 30 min, 

0:100 at 36 min, 60:40 at 37 min, 60:40 at 41 min. The nitrogen sheath and auxiliary gas 

flow rates were maintained at 50 and 17 arbitrary units. The electrospray ionisation (ESI) 

interface was operated in both positive and negative modes. The spray voltage was 4.5 

kV for positive mode and 4.0 kV for negative mode, while the ion transfer capillary tem-

perature was 275°C. Full scan data were obtained in the mass-to-charge ratio (m/z) range 

of 75 to 1200 for both ionisation modes on the LC-MS system fully calibrated according 

to manufacturer’s guidelines. The resulting data were acquired using the XCalibur 2.1.0 

software package (Thermo Fisher Scientific, Bremen, Germany).  

3.2.6 Data extraction and analysis 

Data extraction for each of the samples was carried out by MZMatch software. The ex-

tracted ions, with their corresponding m/z values and retention times, were pasted into 

an Excel macro of the most common metabolites prepared in–house to facilitate identi-

fication. The lists of the metabolites obtained from these searches were then carefully 

evaluated manually, by considering the quality of their peaks and their retention time 

match, with the standard metabolite mixtures run in the same sequence. All metabolites 

were within 3 ppm of their exact masses. Statistical analyses were performed using both 

univariate with Microsoft Excel and multivariate approaches using SIMCA-P software 

version 14.1 (Umetrics, Umea, Sweden.). 
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3.3 Results 

3.3.1 Physiological response to the marathon 

The mean (±SD) values of VO2max and marathon completion time were 61.56±4.25 

ml.min.kg and 9.28 h ±1.3 hours respectively.  

3.3.2 Variation of metabolic profile with exercise  

The data set of polar metabolites was filtered by excluding 96 metabolites which had 

RSD values > 20% within the pooled samples. Figure 3.1 shows a clear separation of the 

pre- and post 80K samples according PCA based on 446 metabolites annotated to MSI 

level 2 (Sumner et al., 2007). The pooled QC samples are clustered in the middle of the 

plot indicating technical stability throughout the run. There was a technical problem with 

one of the post-80K samples which was removed from the plot. The model explained 

82.6% of the variation in the data in PC1 and PC2. From figure 3.1 it can be seen that 

ultra-exercise has a strong impact on the levels of polar metabolites in plasma although 

there is considerable variation between individuals with regard to their response. In 

addition, there was no separation between two baseline samples one taken prior to the 

day of the run and the one taken on the day of the run immediately prior to the start (t 

= 0). This means that the metabolite profiles of the participants at baseline were quite 

consistent.. 
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Figure 3.1: PCA separation of pre- 80K samples (C n=9) and post 80K (E n=8) samples based on 

polar metabolites analysed on a ZICpHILIC column. P= pooled samples. One post sample in the 

set is missing due to a technical failure.  The data was Pareto scaled and log transformed. The y-

axis represents variation within the groups while the x-axis represents variation between the 

groups. 

 

The data for the lipophilic metabolites was filtered by excluding 200 metabolites which 

had RSD >20% in the pooled samples as previously reported (Muhsen et al., 2016). The 

PCA model shown in figure 3.2 is based on 220 metabolites annotated to MSI level 2. The 

model explains 70.2% of the variation in the data in four components. It is thus not as 

strong as the model based on polar metabolites and pre-80K sample C2 and the corre-
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sponding post-80K sample are outliers. Figure S2 shows that there was no clear separa-

tion between the two sets of baseline samples although again sample B1 is an outlier for 

the same individual who produced outliers in figure 3.2.  

 

 

Figure 3.2: PCA separation of pre- 80K samples (C n=9) and post 80K (E n=9) samples based on 

lipophilic metabolites analysed on an ACE C4 column. P= pooled samples. The data was Pareto 

scaled. The y-axis represents variation within the groups while the x-axis represents variation be-

tween the groups. 
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3.3.3 Univariate comparisons 

As can be seen in table 3.2 there were a very large number of metabolic changes resulting 

from exercise with many amino acids decreasing in abundance while there were in-

creases in the levels of many acylcarnitines, fatty acids and oxidized fatty acids. The P 

values from a 2 tailed T test are in many cases are very low for the comparison of the 

pre- and post-80K samples and a FDR test confirmed the significance to all metabolites 

with P value <0.05 (Benjamini and Hochberg, 1995). In order to gain a comprehensive 

overview, analysis was also carried out by RP chromatography which was useful for get-

ting a clearer picture of the lipophilic compounds in plasma including long chain acyl-

carnitines, fatty acids and oxidized fatty acids. The results from the reversed phase anal-

ysis of acylcarnitines, fatty acids and oxidized fatty acids are also shown in table 3.2. The 

reversed phase mode was better for these classes of compounds since in HILIC mode 

they all eluted close to the column void volume.  

Table 3.2: Table showing all the significant metabolites affected by the marathon exercise.* 

Matches retention time of standard. ‡Data from runs on ACE C4 column. 

 

Mass RT (min) Metabolite 

Ratio 80K/pre-

80K P value 

Amino acids 

75.0321 15.4 *Glycine 0.510 <0.001 

89.0477 14.4 *Alanine 0.603 0.012 

103.063 13.4 *3-Amino-isobutanoate 0.392 <0.001 

105.043 15.7 *Serine 0.512 <0.001 

111.032 9.5 Pyrrole-2-carboxylate 0.413 <0.001 

115.063 12.4 *Proline 0.420 <0.001 

116.047 1.7 Oxopentanoic acid 0.819 <0.001 

117.054 15.5 Guanidinoacetate 0.627 0.001 
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117.079 12.1 *Valine 0.447 <0.001 

117.079 10.8 *Betaine 0.505 <0.001 

118.063 1.8 Hydroxypentanoate 1.393 <0.001 

119.058 14.4 *Threonine 0.217 <0.001 

125.015 15.4 *Taurine 0.565 0.001 

130.063 1.8 Oxohexanoic acidǂ 0.808 0.725 

129.043 14.1 5-Oxoproline 0.352 <0.001 

131.058 14.1 *Hydroxyproline 0.361 <0.005 

131.095 10.3 *Leucine 0.455 <0.001 

131.095 10.8 *Isoleucine 0.430 <0.001 

132.079 2.1 Hydroxyhexanoic acidǂ 2.237 0.004 

132.053 15.2 *Asparagine 0.465 <0.001 

132.053 12.5 N-Carbamoylsarcosine 1.430 0.057 

132.09 25.5 *Ornithine 0.189 <0.001 

138.043 8.8 *Urocanate 0.626 0.019 

146.069 14.8 *Glutamine 0.710 <0.001 

146.106 23.8 *Lysine 0.369 <0.006 

147.053 11.2 *Glutamate 0.528 <0.001 

149.051 11.2 *Methionine 0.609 <0.003 

154.038 11.7 Imidazol-5-yl-pyruvate 0.469 <0.001 

159.068 8.1 Indole-3-acetaldehyde 0.432 0.001 

161.069 9.9 O-Acetylhomoserine 0.524 <0.001 

165.079 9.6 *Phenylalanine 0.839 0.063 

174.112 25.4 *Arginine 0.387 <0.003 

175.096 15.6 *Citrulline 0.673 0.047 

181.074 12.8 *Tyrosine 0.761 0.016 

182.058 9.4 Hydroxyphenyllactate 0.541 0.002 

188.116 16.2 *N6-Acetyl-L-lysine 0.233 0.054 

189.043 6.4 Kynurenate 2.322 0.001 

204.09 11.1 *L-Tryptophan 0.539 <0.001 

208.085 10.2 Formylhydroxykynurenamine 0.668 0.004 

219.053 4.9 Hydroxyindolepyruvate 5.131 0.010 

Acylcarnitines 

204.1227 10.3 *Acetylcarnitine 3.353 <0.001 

218.1383 9.1 Propanoylcarnitine 1.420 0.042 

232.1539 7.9 Butanoylcarnitine 1.775 0.010 

248.1488 3.5 Hydroxybutyrylcarnitineǂ 1.109 0.538 

258.1695 2.1 Hexenoylcarnitineǂ 6.350 0.002 

260.1852 2.4 Hexanoylcarnitineǂ 9.640 0.011 

260.1853 2.9 Hexanoylcarnitineǂ 13.091 0.045 

274.2008 3.0 Heptanoylcarnitineǂ 5.685 0.013 
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286.2008 3.6 Octenoylcarnitineǂ 6.009 0.003 

286.2009 3.1 Octenoylcarnitineǂ 5.184 0.001 

288.2165 4.0 Octanoylcarnitineǂ 1.990 0.405 

288.2166 4.2 Octanoylcarnitineǂ 7.119 0.004 

302.2322 4.8 Dimethylheptanoylcarnitineǂ 14.587 0.001 

312.2165 4.7 Decadienoylcarnitineǂ 7.016 0.001 

312.2165 3.7 Decadienoylcarnitineǂ 16.727 0.102 

314.2321 6.2 Decenoylcarnitineǂ 7.186 0.039 

314.2321 4.8 Decenoylcarnitineǂ 1.008 0.994 

314.2322 5.8 Decenoylcarnitineǂ 6.285 0.004 

316.2479 7.1 O-decanoyl-R-carnitineǂ 5.017 0.005 

330.227 4.4 Keto-decanoylcarnitineǂ 13.121 0.000 

330.2271 3.0 Keto-decanoylcarnitineǂ 7.719 0.003 

330.2634 8.3 Dimethylnonanoylcarnitineǂ 11.088 0.002 

342.2635 9.4 Dodecenoylcarnitineǂ 6.439 0.089 

342.2635 9.1 Dodecenoylcarnitineǂ 8.849 0.004 

360.274 6.0 Hydroxylauroylcarnitineǂ 4.825 0.003 

368.2791 10.8 Tetradecadiencarnitineǂ 5.659 0.022 

368.2791 9.5 Tetradecadiencarnitineǂ 24.743 0.012 

368.2792 9.9 Tetradecadiencarnitineǂ 19.098 0.055 

368.2792 11.9 Tetradecadiencarnitineǂ 9.195 0.031 

370.2948 13.3 Tetradecenoylcarnitineǂ 16.422 0.070 

370.2948 12.9 Tetradecenoylcarnitineǂ 9.253 0.004 

372.3104 15.3 Tetradecanoylcarnitineǂ 18.265 0.007 

384.2741 6.6 Hydroxytetradecadiencarnitine 11.908 0.001 

3862897 8.1 Hydroxytetradecenoylcarnitineǂ 6.193 0.007 

386.2897 8.9 Hydroxytetradecenoylcarnitineǂ 27.813 0.003 

388.3053 9.4 Hydroxymyristoylcarnitineǂ 4.245 0.006 

396.3103 15.2 Hexadecadienoylcarnitineǂ 90.958 0.149 

396.3105 14.5 Hexadecadienoylcarnitineǂ 17.816 0.016 

398.3261 17.1 Hexadecenoylcarnitineǂ 14.097 0.011 

400.3416 19.7 Palmitoylcarnitineǂ 4.618 0.089 

412.3053 9.3 Hydroxyhexadecadienoylcarnitineǂ 6.590 0.003 

414.3208 11.1 Hydroxyhexadecenoylcarnitineǂ 35.292 0.003 

424.3416 18.6 Linoelaidylcarnitineǂ 3.955 0.048 

424.3416 19.3 Linoelaidylcarnitineǂ 6.043 0.121 

430.3157 8.1 

Hexadecanedioicacid mono-

carnitineesterǂ 114475.436 0.015 

Fatty acids and oxidized fatty acids 

172.147 10.0 Decanoic acidǂ 1.909 0.034 

196.146 10.1 Dodecadienoic acid‡ 5.989 0.001 
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200.178 13.4 Dodecanoic acid 4.342 0.009 

202.12 3.2 Decanedioic acid‡ 6.045 0.004 

210.126 9.3 Hydroxydodecatrienoic acid‡ 4.709 0.001 

212.178 13.3 Tridecenoic acid‡ 13.224 0.006 

224.178 13.2 Tetradecadienoic acid‡ 10.003 0.013 

226.193 14.5 Tetradecenoic acid‡ 25.065 0.004 

226.193 14.9 Tetradecenoic acid‡ 14.409 0.020 

230.152 5.0 Dodecanedioic acid‡ 9.432 0.014 

240.173 8.2 Hydroxytetradecadienoic acid‡ 11.109 0.002 

240.209 16.5 Pentadecenoic acid‡ 3.192 0.007 

242.188 11.4 Hydroxytetradecadienoic acid‡ 4.066 0.001 

244.204 8.2 Hydroxytetradecanoic acid‡ 11.109 0.002 

244.204 9.3 Hydroxytetradecanoic acid‡ 3.581 0.000 

252.209 15.8 Hexadecadienoicacid‡ 10.174 0.059 

252.209 16.3 Hexadecadienoicacid‡ 13.108 0.041 

254.224 17.5 Hexadecenoic acid‡ 38.719 0.006 

258.183 7.4 Tetradecanedioic acid‡ 7.206 0.006 

266.188 13.6 Hydroxyhexatrienoic acid‡ 8.977 0.014 

268.204 11.3 Hydroxyhexadienoic acid 3.355 0.007 

268.24 18.9 Heptadecenoic acid‡ 29.923 0.004 

270.22 12.1 Hydroxyhexadecenoic acid‡ 3.553 0.004 

270.22 17.5 Hydroxyhexadecenoic acid‡ 8.969 0.001 

272.235 11.3 Hydroxyhexadecanoic acid‡ 8.969 0.001 

276.209 15.6 Octadecatetraenoic acid‡ 10.190 0.067 

278.225 16.9 Octadecatrienoic acid‡ 8.511 0.003 

280.24 18.4 Linoleate‡ 5.769 0.008 

282.256 20.3 Octadecenoic acid‡ 6.231 0.000 

284.199 9.1 Dihydroxyhexadecadienoic acid‡ 2.897 0.001 

286.214 10.5 Dihydroxyhexdecenoic acid‡ 16.426 0.001 

296.235 14.0 Hydroxyoctadecadienoic acid‡ 3.145 0.024 

300.266 14.3 Hydroxyoctdecanoic acid‡ 6.618 0.015 

316.261 9.8 Dihydroxyoctadecanoic acid‡ 4.040 0.002 

327.241 7.0 Nitrooctadecenoic acid‡ 10.453 <0.001 

328.24 18.3 Docosahexaenoicacid‡ 4.266 0.022 

330.256 19.0 Docosapentaenoic acid‡ 9.179 0.003 

332.272 20.5 Docosatetraenoic acid‡ 14.588 0.002 

Steroids and bile acids 

362.209 4.5 Hydrocortisone 1.787 0.014 

364.225 5.0 Urocortisone 3.243 0.003 

376.298 3.9 Hydroxycholanate 0.315 0.004 

392.293 4.3 Deoxycholanoic acid 0.361 0.026 
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449.314 4.3 Chenodeoxyglycocholate 0.162 <0.001 

465.309 4.9 Glycocholate 0.174 0.003 

515.291 4.5 Taurocholate 0.275 0.039 

568.324 7.3 

Chenodeoxycholic acid glucu-

ronide 0.311 <0.001 

612.387 4.5 Cholestane--tetrol-glucuronide 0.443 0.001 

Miscellaneous 

136.039 9.8 *Hypoxanthine 1.917 0.003 

244.069 9.5 *Uridine 0.420 <0.001 

 244.07 11.7 Pseudouridine 0.416 <0.001 

136.064 23.7 *1-Methylnicotinamide 0.226 0.090 

164.069 11.8 Rhamnose 0.348 <0.001 

179.079 10.8 Galactosamine 0.181 <0.001 

180.064 14.1 Hexose 0.447 <0.001 

214.132 9.4 Dethiobiotin 1.517 0.002 

 416.366 3.4 gamma-Tocopherol 0.529 <0.001 

430.381 3.4 Alpha-Tocopherol 0.509 <0.001 

 

3.4 Discussion 

The observed clear separation between baseline and samples collected during and im-

mediately after the marathon shows that there are significant metabolic changes in-

duced by physical activity. For some metabolite the changes are very large and are con-

sistent across all the individuals in the trial. The major changes concern fatty acid metab-

olism. There is a large elevation in acylcarnitine levels in plasma for a wide range of these 

compounds. The impact of exercise on carnitines has been observed before in a number 

of studies (Neal et al., 2012, Lustgarten et al., 2013, Huffman et al., 2014, Xu et al., 2016, 

Zhang et al., 2017). A possible explanation is that the carnitines reflect the requirement 

of muscles for glucose as an energy source under the impact of physical activity. The rate 
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of production of energy from glucose is faster than when fatty acids are used as an en-

ergy source (Zajac et al., 2014). Most recently it has been hypothesized that acyl car-

nitines have neuroactive properties that can regulate exertion via interaction with the 

neurons regulating muscle activity (Zhang et al., 2017). Less frequently studied are the 

products of fatty acid oxidation that accumulate in plasma during exercise (Nieman et 

al., 2014, Nieman et al., 2016). Many oxidized fatty acids have potent effects on blood 

vessels promoting either vasodilation or vasoconstriction. As can be seen in table 3.2 

there is a complex mixture of these compounds all of which are greatly elevated in 

plasma following exercise. The oxidation products of linoleic acid 9-hydroxylinoleic acid 

and 13-hydroxylinoleic acid have been proposed as markers of oxidative stress following 

exercise and several isomers of these compounds are elevated particularly in the 80 K 

samples in comparison to baseline (table 3.2). Figure 3.3 shows extracted ion chromato-

grams for the pre- and post- levels of oxidized linoleic acid. As can be seen table 3.2 the 

range of oxidised fatty acids elevated post-exercise is extensive and the increases very 

marked. Thus the elevation of hydroxylinoleic acids is not exclusive and there are many 

other hydroxy acids which are elevated post-exercise plus some dioic acids. Whether or 

not these acids also have biological activities is unknown as is the precise reason for their 

elevation. When the heat map shown figure 3.4 is considered, it is evident that many of 

the oxidised fatty acids, although elevated in as shown in table 3.2, are of relatively low 

abundance.  It has been suggested that oxidised acids are a marker of oxidative stress 

(Nieman et al., 2014, Nieman et al., 2016) but it might be expected that other readily 
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oxidised acids present in plasma such as eicosapentaenoic acid (EPA) might also be oxi-

dised in the same but despite EPA being relatively abundant in the plasma no peaks for 

hydroxy EPAs can be seen. Thus, it is possible that there is some biological mechanism 

that keeps oxidation products of EPA at low levels since many of these metabolites have 

potent inflammatory and vasoactive effects. Given the wide range of unsaturated fatty 

acids and hydroxylated fatty acids shown in table 1 it would seem likely that these com-

pounds are arising from peroxisomal metabolism and this might provide a protective 

mechanism for ensuring that the levels of oxidised long chain unsaturated acids are kept 

at low levels. Peroxisomes are known to be responsible for degrading prostaglandins 

(Wanders and Waterham, 2006). Unlike mitochondrial beta-oxidation of fatty acids pe-

roxisomal beta-oxidation of fatty acids does not necessarily go to completion and acids 

may only be shortened by 3-4 cycles of 2 carbon chain shortening (Wanders and 

Waterham, 2006) yielding a molecule of acetyl CoA/acetyl carnitine at each cycle. For 

instance, it might be significant that hexadecadienoic acid, tetradecadienoic acid and do-

decadiencoic acid are all elevated, these are not abundant naturally occurring fatty acids, 

but they are all products of chain shortening of linoleic acid via beta oxidation (Wanders 

and Waterham, 2006). Similarly, hexdecatrienoic acid could arise from chain shortening 

of linolenic acid via one beta-oxidation step. The reason for the metabolism pausing 

when a double bond is encountered within the fatty acid chain is that at this point further 

metabolism requires the commitment of NADPH in the reduction of the double bond 
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before further chain shortening can occur (Wanders and Waterham, 2006). Under con-

ditions of aerobic stress there will be generally a high requirement for NADPH in coun-

tering oxidative stress; it is required for instance in the recycling of GSSG back to GSH. 

The elevated levels of acetylcarnitines are consistent with increased beta-oxidation fatty 

acids by peroxisomes since they are the major product exported out of peroxisomes re-

sulting from fatty acid beta-oxidation. It has been demonstrated that physical exercise 

increases peroxisome levels in rat heart (Zipper, 1997). Acetyl carnitine is readily utilised 

by mitochondria as a source of acetyl CoA which can be metabolised via the Krebs cycle. 

The major question with regard to carnitines is whether they are waste products or uti-

lisable as substrates for further oxidation. Conversion of acylCoAs to acylcarnitines is 

necessary in order to preserve free levels of CoA so that further fatty acid metabolism 

can occur via their conversion of acylCoA esters (Ramsay and Zammit, 2004). The heat 

map shown in figure 4 indicates in terms of absolute abundance that the common dietary 

fatty acids are much higher in plasma than the unusual acids which are promoted by 

exercise observed in the current study. Thus it seems probable that medium chain length 

unsaturated fatty acids are minor metabolites due to partial metabolism of long chain 

unsaturated fatty acids by peroxisomes providing an additional source of acetylcarnitine 

for export to mitochondria. The heat map in figure 3.5 shows the relative abundance of 

the 40 most abundant acyl carnitines in plasma. Acetyl carnitine is highly abundant while 

the carnitines corresponding to the medium chain fatty acids are of much lower abun-

dance. Although the levels of some acyl carnitines rise in urine post-exercise they do not 
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increase to the same extent as the plasma levels in the current study and no increase in 

urinary acetyl carnitine was observed (Muhsen Ali et al., 2016). This suggests that the 

carnitines may be produced for utilisation as energy substrates. Conversion of free fatty 

acids to acyl CoAs requires the investment of a molecule of ATP. When the muscles are 

working hard this is likely to be available in reduced amounts. However, acyl carnitines 

are an activated form of fatty acid substrate and are convertible into acyl CoAs without 

the investment of ATP in creating the thioester bond and thus they can be taken up into 

mitochondria and further metabolised (Ramsay and Zammit, 2004, Reddy and 

Mannaerts, 1994). Thus, the pattern of fatty acids and carnitines observed in the current 

study points strongly towards a large increase in peroxisomal metabolism. For example 

a widely studied substrate of peroxisomal metabolism is phytanic acid which is present 

in dairy products (Wanders and Waterham, 2006). This compound undergoes α-oxida-

tion in the peroxisomes producing pristanic acid which is then further metabolized by 

the peroxisomes yielding propanolyl CoA (carnitine) and dimethyl nonanoyl CoA (car-

nitine) after six cycles of beta oxidation.  Both of these carnitines are elevated in post-

exercise samples and provide potential substrates for mitochondrial metabolism in the 

muscles. The increased activity of the peroxisomes is further underlined by elevated lev-

els of some dioic acids (table 3.2) which are also only produced by peroxisomes. The 

hypothesis that the metabolite patterns are consistent with peroxisomal proliferation is 

consistent with our earlier observations where it was proposed that exercise increased 

the proliferation of PPAR-γ ligands in plasma (Thomas et al., 2011). From the current case 
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these ligands might well be long chain unsaturated fatty acids which are substrates for 

peroxisomal metabolism as discussed above. 

 

Figure 3.3: Hydroxy linoleic acids in a pre-80 K sample and a post 80K sample run on an ACE C4 

column. 

 

Figure 3.4: Heat map showing the relative abundance of the 30 most abundant fatty acids in 

plasma for the pre- and post-80K samples and two post-exercise samples. Red = highest value 

(3.93 x 107), Yellow = 1x 105 and blue = 5 x 103. 

Mass Rt Fatty acid Mean pre 80K Mean post-80K 

282.256 20.3 Octadecenoic acid 
  

280.24 18.4 Octadecadienoic acid 
  

256.24 19.5 Hexanoic aicd 
  

254.224 17.5 Hexadecenoic acid 
  

228.209 16.5 Tetradecanoic acid 
  

278.225 16.9 Octadecatrienoic acid 
  

284.271 22.3 Octadecanoic acid 
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200.178 13.4 Dodecanoic acid 
  

226.193 14.5 Tetradecenoic acid 
  

328.24 18.3 Docosahexaenoicacid 
  

306.256 19.5 Eicosatrienoic acid 
  

330.256 19.0 Docosapentaenoic acid 
  

268.24 18.9 Heptadecenoic acid 
  

242.225 18.0 Pentadecanoic acid 
  

332.272 20.5 Docosatetraenoic acid 
  

172.147 10.1 Decanoic acid 
  

242.225 17.7 Pentadecanoic acid 
  

226.193 14.9 Tetradecenoic acid 
  

298.251 12.5 Hydroxyoctadecenoic acid 
  

238.157 11.7 Hydroxytetradecatrienoic acid 
  

224.178 13.2 Tetradecadienoic acid 
  

314.245 20.3 Dihydroxyoctadecenoic acid 
  

272.235 11.3 Hydroxypentadecanoic acid 
  

252.209 15.8 Hexadecadienoic acid 
  

300.266 14.3 Hydroxyoctadecanoic acid 
  

258.183 7.4 Tetradecanedioic acid 
  

316.261 9.8 Dihydroxyoctadecenoic acid 
  

276.209 15.6 Octadecatetraenoic acid 
  

230.152 5.0 Dodecanedioic acid 
  

212.178 13.3 Tridecenoic acid 
  

 

The levels of almost all the amino acids in the plasma samples fall significantly. The fall 

in the amino acids used in protein biosynthesis might be due to an increase in protein 
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biosynthesis during exercise which has been observed to occur (Harber et al., 2009, 

Walker et al., 2011). Hydrocortisone and its metabolite urocortisone are increased dur-

ing exercise and this has been observed to occur in previous studies (Gatti et al., 2005, 

Dovio et al., 2010). Hydrocortisone is responsible for maintaining a homeostasis under 

stress conditions. The most studied metabolites with regard to the effect of exercise and 

the determination of fitness are metabolites in the purine pathway such as hypoxanthine 

and inosine. There is a marked change in levels of hypoxanthine. The re-uptake of hypo-

xanthine into muscle has been observed to be more efficient in highly trained individuals 

(Zieliński et al., 2013) and the elevation of hypoxanthine in plasma during exercise is less 

marked than we observed in urine samples taken post-exercise (Muhsen Ali et al., 2016). 

However, since the athletes in the current study were highly trained it might be expected 

that their metabolism was geared to conserving purines (Stathis et al., 2006). Changes in 

uridine following exercise have been observed previously most often increases have 

been observed, in the current case there was a marked decrease (Dudzinska et al., 2013). 

Changes in tocopherols have also been observed previously in exercise studies and γ-

tocopherol has been correlated to VO2 max level (Subudhi et al., 2001, Lustgarten et al., 

2013). 
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Figure 3.5: Changes in the 40 most abundant acylcarnitines in plasma following an ultramarathon 

analysed by RP method. 

row m/z 

Rt 

(min) Metabolite Mean Pre-80K Mean Post-80K 

204.1227 1.7 O-Acetylcarnitine   
316.2479 7.1 Decanoyl-R-carnitine   
288.2166 4.2 L-Octanoylcarnitine   
314.2322 5.8 Decenoylcarnitine   
370.2948 12.9 Tetradecenoylcarnitine   
342.2635 9.1 Dodecenoylcarnitine   
286.2009 3.1 Octenoylcarnitine   
288.2165 4.0 L-Octanoylcarnitine   
370.2948 13.3 cis-5-Tetradecenoylcarnitine   
368.2791 10.8 Tetradecadiencarnitine   
342.2635 9.4 trans-2-Dodecenoylcarnitine   
302.2322 4.8 2-6dimethylheptanoylcarnitine   
260.1852 2.4 O-hexanoyl-R-carnitine   
372.3104 15.3 Tetradecanoylcarnitine   
330.2634 8.3 4-8dimethylnonanoylcarnitine   
232.1539 1.8 O-Butanoylcarnitine   
398.3261 17.1 trans-Hexadec-2-enoylcarnitine   
314.2321 6.2 Decenoylcarnitine   
218.1383 1.8 O-Propanoylcarnitine   
312.2165 4.7 Decadienoylcarnitine   
424.3416 18.6 Linoelaidylcarnitine   
386.2897 8.9 Hydroxtetradecenoylcarnitine   
286.2008 3.6 Octenoylcarnitine   
424.3416 19.1 Linoelaidylcarnitine   
400.3416 19.7 O-Palmitoyl-R-carnitine   
424.3416 19.3 Linoelaidylcarnitine   
386.2897 8.1 Hydroxytetradecenoylcarnitine   
312.2165 3.7 Decadienoylcarnitine   
360.274 6.0 Hydroxylauroylcarnitine   
260.1853 2.9 O-hexanoyl-R-carnitine   
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396.3105 14.5 Hexadecadienoylcarnitine   
274.2008 3.0 Heptanoylcarnitine   
330.2271 3.0 Keto-decanoylcarnitine   
368.2792 11.9 Tetradecadiencarnitine   
388.3053 9.4 Hydroxymyristoylcarnitine   
330.227 4.4 Keto-decanoylcarnitine   
414.3208 11.1 Hydroxyhexadecenoylcarnitine   
412.3053 9.3 Hydroxyhexadecadienoyl carnitine   
384.2741 6.6 Hydroxytetradecadien carnitine   
248.1488 3.5 Hydroxybutyrylcarnitine   

 

3.5 Conclusions  

The clearest impact of endurance exercise is on fatty acid metabolism but with respect 

to formation of medium chain unsaturated and partially oxidised fatty acids and conju-

gates of fatty acids with carnitines. The most likely explanation for the complex pattern 

of medium chain and oxidised fatty acids formed is that exercise provokes the prolifera-

tion of peroxisomes. The peroxisomes may serve two functions one of providing a readily 

utilisable form of energy in the form of acetyl carnitine and other acyl carnitines for ex-

port to mitochondria in the muscles, without the investment of the ATP required to con-

jugate free fatty acids to CoA. Secondly the peroxisomes may serve to regulate the levels 

of oxidised metabolites of long chain fatty acids since many of these metabolites can 

provoke biological responses such as vasoconstriction or have pro-inflammatory activity. 

It was possible to build a model which was predictive of VO2max based on five metabolites 

all of which had some potential biological significance with regard to the impact of exer-

cise. 
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4 EVALUATION OF THE METABOLOMICS EFFECTS OF E. COLI INCUBATION IN DIFFER-

ENT CARBON SOURCES 

 

4.1 Introduction 

Among the “Omic” approaches, metabolomics is one of the most reliable techniques cur-

rently used in the identification of novel targets for diagnosis and specific markers for 

diseases, and has been increasingly applied in the characterisation of the link between 

gut microbiota or host metabolism and pathophysiological alterations in various diseases 

(De Preter and Verbeke, 2013). Metabolomics, unlike other technologies such as ge-

nomics and proteomics which rely on gene expression and protein data, not only indi-

cates the potential for specific metabolic functions, also the effective physiological pro-

cesses since the influence of several downstream regulatory mechanisms involved are 

also taken into consideration within the metabolome (De Preter and Verbeke, 2013, 

Fiehn, 2002). For this reason, metabolomics integrates all the effects of gene regulation, 

post-transcriptional regulation and pathway interactions, making it a more comprehen-

sive tool in the understanding of a cell’s physiological phenotype (Fiehn, 2002, Assfalg et 

al., 2008). 

Metabolomics is a powerful exploratory tool for understanding the interactions between 

nutrients, the intestinal metabolism and the microbiota composition in health and dis-

ease and, to gain more insight in metabolic pathways. Although genomic and proteomic 
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methodologies have, until recently, often been applied to uncover gastrointestinal re-

lated pathophysiological processes (Berndt et al., 2007, Olsen et al., 2009, Arijs et al., 

2010, Lamendella et al., 2012, Yau et al., 2013, van Beelen Granlund et al., 2013), cur-

rently, metabolomics is increasingly used to discover gastrointestinal disease signatures 

and has been applied for the screening of different pathological conditions that are 

linked with a metabolic imbalance such as ulcerative colitis, inflammatory bowel disease 

(IBD), Crohn’s disease and irritable bowel syndrome (IBS) (Olsen et al., 2009, Arijs et al., 

2010, Lamendella et al., 2012, Yau et al., 2013, van Beelen Granlund et al., 2013). 

The human GIT microbiota, particularly the one associated with large intestines, is con-

sidered to be one of the most complex and metabolically active organs of the human 

body. This microbial ecosystem contains about 500-1000 different species of bacteria, of 

which, in healthy adults, 80% belong to the phyla of Firmicutes, Bacteroidetes and Ac-

tinobacteria (Tuohy et al., 2009, Huttenhower et al., 2012), with substantial variation 

between different individuals (Ventura et al., 2009). A total of about 1014 bacterial cells 

are present in the adult intestine, which is ten times the number of cells in the human 

body (Xu and Gordon, 2003). This microbiome outnumbers the host’s genetic potential 

by two orders of magnitude (Methé et al., 2012) and provides a diverse range of bio-

chemical and metabolic activities to complement the host’s physiology. The presence 

and metabolic activities of a specific bacterial community play an important role in main-
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taining the host’s overall health and well-being, and has been shown to respond to met-

abolic challenges and dietary factors. This complex microbial system varies with the 

host’s age, diet and health status (Claesson et al., 2012). 

The bacteria in the colon can ferment food nutrients and residues to produce a wide 

range of chemical compounds which may have an influence on the host’s physiological 

processes, both locally within the colon and systemically, and it has been observed that 

colonic bacteria exhibit functional redundancy given that several bacteria can ferment 

the same substrate to produce the same product (Mahowald et al., 2009). This implies 

that both composition and functional capacity of the intestinal microbiota are important 

in determining the clinical endpoint, although metabolic insights from these processes 

are still limited due to inability to access intestinal habitat and complexity of the micro-

biota (Tuohy et al., 2009). 

It should be noted that, apart from microbial composition and functional capacity of the 

gut microbiota, various other factors can influence the gut metabolome and these in-

clude nutrient availability and its physicochemical properties, age of host, and transit 

time of the colon. Nutrient availability, particularly the carbohydrate to nitrogen ratio, is 

believed to be the most important regulator of bacterial metabolism, as it influences 

preference of saccharolytic vs proteolytic fermentation (De Preter et al., 2011). Whereas 

short-chain fatty acids (SCFA) result from colonic fermentation of carbohydrates, protein 

fermentation generates phenolic compounds, amines and ammonia, branched chain 

fatty acids, and S-containing compounds (Cummings, 1981). Protein fermentation gives 
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rise to a variety of metabolites such as phenolic compounds, branched chain fatty acids, 

S-containing compounds, amines and ammonia (Smith and Macfarlane, 1996). The for-

mer are believed to be beneficial to the host while the latter may have undesirable ef-

fects such as toxicity (Cummings, 1981). 

In this study, the metabolomics effects of E. coli incubation under various carbohy-

drate/protein sources were investigated. E. coli was selected for this study based on its 

ubiquity as a gut microorganism associated with various disease states. Samples were 

taken from the cultures at 0, 24 and 48 h. These samples were extracted following the 

standard metabolomics protocol and injected into a liquid chromatography-mass spec-

trometry (LC-MS) system based on the Orbitrap and the data obtained were processed 

through MZMine, identified, and analysed statistically by means of both supervised and 

unsupervised models in SIMCA-P software. Any observed differences between the car-

bon sources for each group were compared with those observed with the glucose control 

group. 

4.2 Materials and Methods  

4.2.1 Chemicals and Solvents 

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, UK) 

and HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Millipore, 

Watford, UK). AnalaR-grade formic acid (98%) was obtained from BDH-Merck (Poole, 

UK). Authentic stock standard metabolites (Sigma-Aldrich, Poole, U.K.) were prepared as 
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previously described (Zhang et al., 2014) and diluted four times with ACN before LC-MS 

analysis. Ammonium acetate was purchased from Sigma-Aldrich (Poole, UK). 

4.2.2 Study samples  

Different E. coli (DH5a) cultures were incubated in minimal medium with 1% D-glucose 

(control; G), 1% maize meal (carbohydrates; M), 1% cooked meat medium (protein; B), 

and 1% olive kernel oil (fat; O) as carbon sources. The incubations were all made in trip-

licate. Samples were taken from the cultures at 0, 24 and 48 h, resulting to a total of 36 

samples. These samples were frozen until the time of analysis. The 36 samples were 

coded as follows: 

Table 4.1: Description summary of the test sample groupings and control 

Letter code Medium (Carbon sources) 

G Control (1% Glucose)  

M Fibre (1% maize carbohydrate meal) 

B Fibre (1% cooked meat medium) 

O Fibre (1% Olive kernel oil as C source) 

 

4.2.3 Sample preparation 

Exactly 100 µL of the sample was mixed with 400 µL of acetonitrile and then centrifuged 

for 10 min before transferring into a HPLC vial with an insert. The pooled sample was 

prepared by pipetting 50 µL from each of the 126 samples and then mixing them to-

gether before diluting 0.2 ml of the pooled sample with 0.8 ml of acetonitrile, centrifug-
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ing for 10 min and transferring the supernatant into the HPLC vial for analysis. Addition-

ally, the prepared mixtures of authentic standard metabolites (Zhang et al., 2014) were 

run in the same sequence for later identification of metabolites in the samples.  

4.2.4 LC-MS conditions  

Liquid chromatographic separation was carried out on an Accela HPLC system interfaced 

to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

using a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading UK). The column was 

eluted with a mobile phase consisting of 20 mM ammonium carbonate in HPLC-grade 

water(solvent A) and acetonitrile (solvent B), at a flow rate of 0.3 mL/min. The elution 

gradient was an A:B ratio of 20:80 at 0 min, 80:20 at 30 min, 92:8 at 35 min and finally 

20:80 at 45 min. The nitrogen sheath and auxiliary gas flow rates were maintained at 50 

and 17 arbitrary units. The electrospray ionisation (ESI) interface was operated in both 

positive and negative modes. The spray voltage was 4.5 kV for positive mode and 4.0 kV 

for negative mode, while the ion transfer capillary temperature was 275°C. Full scan data 

were obtained in the mass-to-charge ratio (m/z) range of 75 to 1200 for both ionisation 

modes on the LC-MS system fully calibrated according to manufacturer’s guidelines. The 

resulting data were acquired using the XCalibur 2.1.0 software package (Thermo Fisher 

Scientific, Bremen, Germany).  
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4.2.5 Data extraction and analysis 

Data extraction for each of the samples was carried out by MZMine software. The ex-

tracted ions, with their corresponding m/z values and retention times, were pasted into 

an Excel macro of the most common metabolites prepared in–house to facilitate identi-

fication. The lists of the metabolites obtained from these searches were then carefully 

evaluated manually by considering the quality of their peaks and their retention time 

match with the standard metabolite mixtures run in the same sequence. All metabolites 

were within 3 ppm of their exact masses. Statistical analyses were performed using both 

univariate with Microsoft Excel and multivariate approaches using SIMCA-P software 

version 14.1 (Umetrics, Umea, Sweden.).  

4.3 Results  

 

4.3.1 Unsupervised analysis 

Figure 4.1 shows the PCA-X analysis of all 36 samples and 5 QC samples. PCA-X, an unsu-

pervised model in SIMCA-P, produces a natural scatter of the samples based on their 

characteristic metabolomics footprints. It can be seen in the figure (samples coloured 

according to the carbon sources) that, in general, the samples are clustered according to 

the carbon sources. However, there is some variability in the G and O samples, as re-

flected in the splitting of their respective clusters; the sub-clusters formed from the split-
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tings still contain samples taken at different times, implying that time was not the con-

tributing factor to the sub-clustering. The 5 QC samples are tightly clustered together 

which confirms reproducibility of different injections throughout the entire experiment. 

 

Figure 4.1: PCA-X analysis of the metabolomics footprint of the 36 samples from E. coli cultures 

in different carbon sources. Circles coloured according to the time of sample collection post diet. 

The y-axis represents variation within the groups while the x-axis represents variation between 

the groups. 

 

4.3.2 Supervised analysis 

Supervised models enable identification of metabolites that have the most significant 

contribution to a clustering pattern. In SIMCA-P, supervised analysis can be carried out 

using OPLS-DA models. To achieve this, three comparisons were made where each of the 
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samples from a given carbon source was compared with the glucose control. For each 

OPLS-DA model, permutation tests were carried out to check validity of the model. 

 

 

Figure 4.2: OPLS-DA analysis to compare B samples (Fibre = 1% cooked meat medium) with con-

trols (G samples, representing 1% glucose). There is clear separation of both groups implying sig-

nificantly different metabolic footprints. The CV-ANOVA = 9.9604e-017. The y-axis represents 

variation within the groups while the x-axis represents variation between the groups. 
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Figure 4.3: Cross validation of the OPLS-DA model comparing B samples (Fibre = 1% cooked meat 

medium) with controls (G samples, representing 1% glucose). 
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Figure 4.4: OPLS-DA analysis to compare M samples (Fibre = 1% maize carbohydrate meal) with 

controls (G samples, representing 1% glucose). There is clear separation of both groups implying 

significantly different metabolic footprints. The CV-ANOVA = 6.26598e-011. The y-axis represents 

variation within the groups while the x-axis represents variation between the groups. 
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Figure 4.5: Cross validation of the OPLS-DA model comparing M samples (Fibre = 1% maize car-

bohydrate meal) with controls (G samples, representing 1% glucose). 
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Figure 4.6: OPLS-DA analysis to compare O samples (Fibre = 1% Olive kernel oil as C source) with 

controls (G samples, representing 1% glucose). There is clear separation of both groups implying 

significantly different metabolic footprints. The CV-ANOVA = 4.7657e-012. The y-axis represents 

variation within the groups while the x-axis represents variation between the groups. 
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Figure 4.7: Cross validation of the OPLS-DA model comparing O samples (Fibre = 1% Olive kernel 

oil as C source) with controls (G samples, representing 1% glucose). 

 

4.3.3 Metabolite alterations 

Tables 4.2 to 4.4 show the metabolites found to be significantly altered in each carbon 

source compared with the glucose control. The metabolites have been categorised into 

the major metabolic pathways of amino acid, protein, carbohydrate, lipid, polyketide, 

nucleotide metabolism and xenobotics among others. The ratio of each metabolite con-

centration in the medium relative to its concentration in the control carbon source is also 

given.  
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4.3.3.1 Effect of 1% cooked meat fibre on E. coli metabolome 

The majority of the metabolites significantly altered by incubation of E. coli in 1% cooked 

meat medium were those in the amino acid metabolic pathway. Among these were L-

Arogenate, L-Glutamyl-5-phosphate, 5-Hydroxy-L-tryptophan, 3-Sulfino-L-alanine, 4-

Guanidinobutanamide, (1-Ribosylimidazole)-4-acetate, Guanidinoacetate, Tryptamine, 

and L-Methionine S-oxide. Others were L-Carnitine, Creatine, O-Acetylcarnitine, and N-

Formimino-L-glutamate. On the other hand, the three most significantly downregulated 

metabolites in this pathway were L-Kynurenine, N-Succinyl-LL-2,6-diaminoheptanedi-

oate, and N2-Acetyl-L-aminoadipate. 

On the other hand, using carbohydrate as a carbon source produced only a few metab-

olites signficantly altered in comparison with 1% cooked meat relative to the control. 

Moreover, it should be worth noting that all the three significantly altered carbohydrate 

metabolites were down regulated and these were D-Ribose, D-Glucosamine, and 4-

Methylene-L-glutamine. 

The incubations with this fibre also produced significant effects on phospholipid precur-

sor metabolites whereby there were increased levels of Taurine, sn-Glycerol 3-phos-

phate, N-Methylethanolamine phosphate, and Choline phosphate metabolites. In addi-

tion, with the exception of lipoate, the rest of the glycerophospholipids such as [FA tri-

hydroxy(2:0/2:0)] N,N-dimehyl-9S,11R,15S-trihydroxy-5Z,13E-prostadien-1-amide, [FA 
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amino(16:0)] 2R-aminohexadecanoic acid, and [FA (11:1)] 2-undecenal were all in-

creased in the E. coli cultures treated with 1% cooked meat compared to minimal glucose 

treated cultures. 

Among the polyketides, only peonidin was down regulated but the rest, including [Fv] 

Naringenin, Deoxyelephantopin, [PR] Bixindial/ Bixin aldehyde, [SP] 3-dehydrosphin-

ganine, and Cortol were severally increased in cultures incubated with 1% cooked meat. 

Additionally, there were increased levels of all the nucleotide metabolites such as xan-

thine, inosine, guanosine, and guanine, as well as increases in the xenobiotic markers 4-

Carboxy-4-hydroxy-2-oxoadipate and 4-Amino-2-hydroxylamino-6-nitrotoluene. How-

ever, some of the xenometabolites such as Protoanemonin, Nitrosobenzene, and [FA 

methyl,oxo(5:0/2:0)] 2-methylene-4-oxo-pentanedioic acid were  significantly lowered 

in the 1% cooked meat incubated E. coli cultures. Many of the altered metabolites are 

xenobiotics and it is difficult tell how genuine these peaks are. However, there are some 

large changes in glycerol phosphate which can potentially be incorporated into the gly-

colysis pathway and may be derived from lipid breakdown. Two lyso lipids hexadecanoyl 

glycerol phosphocholine and octadecenoyl glycerol phosphocholine are greatly in-

creased suggesting that fatty acid chains many also being lost and used as energy sub-

strates and this might be the cause of an increased level of acetyl carnitine which is a 

product fatty acid oxidation.  Amino acids can potentially be used as a nitrogen source. 

There is no indication of amino acid breakdown, however, xanthine, hypoxanthine and 
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inosine are all products resulting from the loss of nitrogen from metabolites in the purine 

pathway and may be evidence if nitrogen scavenging via purine breakdown. 

A summary of all significantly altered metabolites has been presented in Table 4.2, show-

ing the fold changes in comparison to the negative control (1% D glucose) and the VIP-

pred values reflecting the importance of the given variable in the OPLS-DA model. 
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Table 4.2: Showing the significant metabolites between Control-G vs meat proteinB. 

Var ID P-value Var ID  RT Formula Metabolite name Ratio B/G VIPpred 

Amino Acid Metabolism  

1258 9.12E-04 161.107 10.20 C10H12N2 Tryptamine 1.80 0.71 

1717 8.28E-13 204.123 9.31 C9H18NO4 O-Acetylcarnitine 1.53 0.74 

1409 5.40E-08 291.118 14.94 C11H18N2O7 N-Succinyl-LL-2,6-diaminoheptanedioate 0.07 1.05 

1423 2.97E-09 173.057 10.92 C6H10N2O4 N-Formimino-L-glutamate 1.50 0.70 

1628 4.91E-16 175.107 13.67 C7H14N2O3 N-Acetylornithine 1.43 0.71 

1411 1.00E-10 204.086 12.94 C8H13NO5 N2-Acetyl-L-aminoadipate 0.06 1.20 

1088 3.17E-18 118.086 11.39 C5H11NO2 L-Valine 1.30 0.76 

1358 7.36E-04 166.053 13.84 C5H11NO3S L-Methionine S-oxide 1.75 0.69 

1272 7.92E-11 209.092 9.11 C10H12N2O3 L-Kynurenine 0.66 0.75 

1636 4.30E-07 228.027 15.06 C5H10NO7P L-Glutamyl-5-phosphate 6.44 1.00 

1367 2.46E-22 162.112 13.34 C7H15NO3 L-Carnitine 1.60 0.93 

1304 4.24E-09 228.087 15.35 C10H13NO5 L-Arogenate 12.47 1.14 

1493 2.43E-11 171.042 13.18 C6H8N2O4 Hydantoin-5-propionate 1.47 0.67 

1522 2.02E-15 118.061 16.12 C3H7N3O2 Guanidinoacetate 1.89 0.90 

1675 7.11E-08 114.066 9.82 C4H7N3O Creatinine 1.25 0.67 

1524 3.65E-21 132.077 14.86 C4H9N3O2 Creatine 1.57 0.92 

1521 6.69E-10 104.107 18.60 C5H13NO Choline 1.26 0.71 

1295 6.66E-06 221.092 10.86 C11H12N2O3 5-Hydroxy-L-tryptophan 4.30 0.97 

1585 2.32E-11 174.087 14.53 C6H11N3O3 5-Guanidino-2-oxopentanoate 1.36 0.67 

1373 7.30E-13 160.096 6.80 C7H13NO3 5-Acetamidopentanoate 1.32 0.69 

1700 1.59E-13 146.092 15.24 C5H11N3O2 4-Guanidinobutanoate 1.39 0.74 

1701 1.30E-05 145.108 28.06 C5H12N4O 4-Guanidinobutanamide 2.58 0.97 

1590 4.32E-08 152.002 11.26 C3H7NO4S 3-Sulfino-L-alanine 3.45 1.11 

1508 9.98E-04 259.092 11.14 C10H14N2O6 (1-Ribosylimidazole)-4-acetate 2.05 0.75 
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Biosynthesis of Polyketides and Nonribosomal Peptides  

1083 1.37E-09 526.338 9.49 C28H47NO8 Pikromycin 13.65 1.12 

1001 1.10E-09 203.102 12.43 C8H14N2O4 Proclavaminic acid 0.76 0.68 

1002 9.67E-08 245.124 12.79 C9H16N4O4 Guanidinoproclavaminic acid 4.61 1.11 

971 6.56E-08 218.104 9.89 C10H13N5O cis-Zeatin 7.28 1.08 

1008 1.50E-05 193.074 10.44 C8H10N4O2 Caffeine 3.44 0.93 

Carbohydrate Metabolism  

794 5.49E-17 149.046 15.24 C5H10O5 D-Ribose 0.68 0.79 

967 6.48E-17 180.086 16.59 C6H13NO5 D-Glucosamine 0.69 0.78 

906 2.04E-12 159.076 11.17 C6H10N2O3 4-Methylene-L-glutamine 0.61 0.86 

Lipid Metabolism             

787 2.53E-08 124.007 15.96 C2H7NO3S Taurine 2.31 1.02 

778 2.59E-09 171.007 15.65 C3H9O6P Glycerol 3-phosphate 13.89 1.12 

776 2.94E-11 156.042 11.40 C3H10NO4P N-Methylethanolamine phosphate 17.06 1.19 

772 8.56E-08 184.073 15.24 C5H14NO4P Choline phosphate 5.72 1.09 

Lipids: Fatty Acyls             

696 2.25E-03 382.294 4.15 C22H39NO4 

[FA trihydroxy(2:0/2:0)] N,N-dimehyl-9S,11R,15S-tri-

hydroxy-5Z,13E-prostadien-1-amide 1.72 0.67 

651 1.87E-04 315.252 4.13 C18H34O4 Dihydroxyoctadecenoic acid 1.95 0.74 

743 1.45E-04 272.258 4.98 C16H33NO2 Aminohexadecanoic acid 1.65 0.68 

749 3.74E-04 279.231 3.99 C18H30O2 Octadecatrienoic acid 2.15 0.80 

550 4.04E-07 324.289 4.14 C20H37NO2 Octadecadienoyl-ethanolamine 6.64 1.09 

553 1.26E-04 340.284 4.10 C20H37NO3 Octadecenoyl-glycine 2.61 0.86 

676 1.79E-04 265.216 4.10 C17H28O2 Heptadecatrienoic acid 2.52 0.71 

565 9.48E-04 167.144 4.29 C11H20O Undecenal 2.12 0.69 

Lipids: Glycerophospholipids 

492 2.42E-06 299.018 17.57 C8H13O10P Diacyl-sn-glycero-3-phospho-(1'-sn-glycerol) 3.87 1.00 

505 1.14E-15 298.143 6.57 C11H26NO6P Ethyl-2-methyl-sn-glycero-3-phosphocholine 1.42 0.70 
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508 4.17E-16 312.159 6.34 C12H28NO6P 

[PC diethyl(2:0)] 1,2-diethyl-sn-glycero-3-phosphocho-

line 1.45 0.72 

513 1.41E-07 424.284 4.83 C20H44NO6P 

[PC (6:2/6:2)] 1-hexyl-2-hexyl-sn-glycero-3-phospho-

choline 5.47 1.09 

514 2.22E-17 340.19 5.42 C14H32NO6P Hexyl-sn-glycero-3-phosphocholine 1.50 0.74 

515 9.55E-15 326.174 6.08 C13H30NO6P [PC (5:2)] 1-pentyl-sn-glycero-3-phosphocholine 1.53 0.72 

517 4.13E-05 520.339 4.41 C26H50NO7P Lyso octadecadienoyl-sn-glycero-3-phosphocholine 2.52 0.92 

524 2.77E-08 496.338 4.53 C24H50NO7P Lysohexadecanoyl-sn-glycero-3-phosphocholine 8.12 1.20 

Lipids: Polyketides 

472 6.64E-13 301.07 14.35 C16H12O6 Peonidin 0.64 0.79 

476 1.24E-07 273.075 13.34 C15H12O5 [Fv] Naringenin 6.94 1.09 

446 1.35E-12 345.133 9.48 C19H20O6 Deoxyelephantopin 1.44 0.75 

455 1.81E-07 347.202 4.12 C24H28O2 [PR] Bixindial/ Bixin aldehyde 6.86 1.06 

427 9.15E-05 300.289 4.24 C18H37NO2 [SP] 3-dehydrosphinganine 1.71 0.72 

414 1.36E-03 369.263 4.24 C21H36O5 Cortol 2.02 0.70 

402 7.70E-07 540.335 4.46 C29H51NO6S 

[ST hydrox] (25R)-3alpha,7alpha-dihydroxy-5beta-cho-

lestan-27-oyl taurine 4.14 1.08 

Metabolism of Cofactors and Vitamins 

397 2.65E-10 240.109 10.49 C9H13N5O3 Dihydrobiopterin 14.82 1.18 

400 3.84E-13 245.095 6.67 C10H16N2O3S Biotin 1.40 0.71 

327 1.50E-05 144.047 5.60 C6H9NOS 5-(2-Hydroxyethyl)-4-methylthiazole 3.48 1.01 

310 1.66E-07 184.06 5.32 C8H9NO4 4-Pyridoxate 5.43 1.08 

Nucleotide Metabolism  

278 1.63E-06 151.026 12.49 C5H4N4O2 Xanthine 2.47 1.04 

281 7.93E-05 269.087 11.20 C10H12N4O5 Inosine 2.01 0.88 

282 1.98E-14 137.046 10.47 C5H4N4O Hypoxanthine 1.47 0.84 

283 4.41E-08 284.098 12.90 C10H13N5O5 Guanosine 1.53 0.76 

284 4.12E-10 152.056 12.69 C5H5N5O Guanine 1.58 0.82 
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234 1.53E-09 244.092 12.15 C9H13N3O5 Cytidine 1.45 0.71 

289 1.80E-09 268.103 8.95 C10H13N5O4 Adenosine 1.33 0.67 

Xenobiotics Biodegradation and Metabolism  

213 1.10E-10 95.0136 15.28 C5H4O2 Protoanemonin 0.64 0.75 

27 7.42E-10 108.044 7.55 C6H5NO Nitrosobenzene 0.65 0.69 

169 4.21E-05 219.014 10.46 C7H8O8 4-Carboxy-4-hydroxy-2-oxoadipate 2.44 0.88 

11 1.85E-09 184.072 12.72 C7H9N3O3 4-Amino-2-hydroxylamino-6-nitrotoluene 9.05 1.16 

168 8.19E-07 157.014 16.03 C6H6O5 

[FA methyl,oxo(5:0/2:0)] 2-methylene-4-oxo-pentanedi-

oic acid 0.10 1.05 
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4.3.3.2 Effect of 1% maize carbohydrate meal on E. coli metabolome 

Unlike in incubation with 1% cooked meat, most of the metabolites in the amino acid 

metabolic pathway were significantly lowered by treatment with 1% maize carbo-

hydarate meal except L-Glutamyl 5-phosphate, 5-Hydroxy-L-tryptophan, and 4-Guanidi-

nobutanamide. Among those significantly lowered were S-Ribosyl-L-homocysteine, Ser-

otonin, N-Acetylserotonin, N-Acetyl-L-glutamate, N2-Succinyl-L-ornithine, N2-Acetyl-L-

aminoadipate, and L-Kynurenine. Others were gamma-Glutamyl-gamma-aminobutyral-

dehyde, 4-(beta-Acetylaminoethyl)imidazole, and 3-Methyldioxyindole. 

In addition, carbohydrate metabolism had all its significantly altered carbohydrate me-

tabolites down regulated and these were D-Ribose, D-Glucose, D-Glucosamine, 4-Meth-

ylene-L-glutamine, and 4-Hydroxy-4-methylglutamate. The effect induced by 1% maize 

carbohydrate meal on carbohydrate metabolism in E. coli was similar to the one ob-

served with 1% cooked meat fibre on the same organism. 

This fibre also produced significant effects on lipid metabolites whereby there were gen-

erally increased levels of both fatty acyls and glycerophospholipids with the exception of 

[FA (10:0/2:0)] Decanedioic acid and Peonidin Taurine respectively. The fatty acyls [FA 

hydroxy(18:0)] 9,10-dihydroxy-12Z-octadecenoic acid, [FA (18:3)] 9Z,12Z,15Z-octadeca-

trienoic acid, [FA (18:2)] N-(9Z,12Z-octadecadienoyl)-ethanolamine, and [FA (18:0)] N-

(9Z-octadecenoyl)-glycine were all increased in the E. coli cultures treated with 1% maize 

compared to 1% D-glucose treated cultures. On the other hand, [PC (18:2)] 1-(9Z,12Z-

octadecadienoyl)-sn-glycero-3-phosphocholine, [PC (16:0)] 1-hexadecanoyl-sn-glycero-
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3-phosphocholine, [PR] Bixindial/ Bixin aldehyde, and [ST hydrox] (25R)-3alpha,7alpha-

dihydroxy-5beta-cholestan-27-oyl taurine were some of the glycerophospholipids upreg-

ulated by treatment with 1% maize meal. 

Among the polyketides, only peonidin was down regulated but the rest, including [Fv] 

naringenin, deoxyelephantopin, [PR] bixindial/ bixin aldehyde, [SP] 3-dehydrosphin-

ganine, and cortol were severally increased in cultures incubated with 1% cooked meat. 

Unlike 1% cooked meat, the 1% maize meal did not induce significant alterations in the 

levels of nucleotide metabolites such as xanthine, inosine, guanosine, and guanine, ex-

cept 5,6-dihydrothymine which was decreased. The maize meal however induced several 

decreases in levels of xenobiotic markers and cofactors/vitamins. Among the latter, only 

dihydrobiopterin, 5-(2-hydroxyethyl)-4-methylthiazole, and 4-pyridoxate were increased 

in 1% maize meal treated E. coli cultures. 

A summary of all significantly altered metabolites has been presented in Table 4.3, show-

ing the fold changes in comparison to 1% D glucose and the VIPpred values which reflect 

the contribution of the given variable in the OPLS-DA model. 

 



79 
 

Table 4.3: Significant metabolite based on the comparisons of   Control vs Fibre-M 

Var ID P-value Polarity RT Formula Metabolite name Ratio B/G VIPpred 

Amino Acid Metabolism 

1357 0.069058 P 15.8 C9H17NO6S S-Ribosyl-L-homocysteine 0.38 1.03 

1269 <0.001 P 5.4 C10H12N2O Serotonin 0.83 0.98 

1270 0.000003 P 5.3 C12H14N2O2 N-Acetylserotonin 0.69 1.31 

1632 0.000387 N 9.7 C7H11NO5 N-Acetyl-L-glutamate 0.77 1.10 

1634 <0.001 P 13.7 C9H16N2O5 N2-Succinyl-L-ornithine 0.66 1.35 

1411 0.000000 P 12.9 C8H13NO5 N2-Acetyl-L-aminoadipate 0.19 2.17 

1272 <0.001 P 9.1 C10H12N2O3 L-Kynurenine 0.06 2.52 

1636 0.000001 P 15.1 C5H10NO7P L-Glutamyl 5-phosphate 6.22 1.96 

1407 <0.001 P 16.4 C6H11NO4 L-2-Aminoadipate 0.80 1.17 

1673 0.000004 P 10.8 C9H16N2O4 gamma-Glutamyl-gamma-aminobutyraldehyde 0.26 2.05 

1295 0.003099 P 10.9 C11H12N2O3 5-Hydroxy-L-tryptophan 2.76 1.18 

1701 0.018892 P 28.1 C5H12N4O 4-Guanidinobutanamide 1.67 1.03 

1506 0.000000 P 7.4 C7H11N3O 4-(beta-Acetylaminoethyl)imidazole 0.82 1.03 

1299 0.000000 P/N 6.3 C9H9NO2 3-Methyldioxyindole 0.69 1.42 

Biosynthesis of Polyketides and Biosynthesis of Nonribosomal Peptides 

1083 2.5E-08 P 9.5 C28H47NO8 Pikromycin 11.18 1.97 

1001 5.8E-09 P/N 12.4 C8H14N2O4 Proclavaminic acid 0.60 1.76 

1008 2.1E-03 N 10.4 C8H10N4O2 Caffeine 2.48 1.25 

1012 2.4E-09 N 12.7 C8H10N4O4 5-Acetylamino-6-formylamino-3-methyluracil 0.87 0.99 

Carbohydrate Metabolism  

794 4.90E-14 N 15.2 C5H10O5 D-Ribose 0.68 1.57 

804 3.89E-10 N 12.3 C6H12O6 D-Glucose 0.85 1.15 

967 1.78E-06 P 16.6 C6H13NO5 D-Glucosamine 0.41 2.04 

906 1.66E-12 P/N 11.2 C6H10N2O3 4-Methylene-L-glutamine 0.58 1.79 
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913 1.43E-07 N 11.5 C6H11NO5 4-Hydroxy-4-methylglutamate 0.72 1.20 

Lipids: Fatty Acyls  

651 0.00678 P 4.1 C18H34O4 Dihydroxy-octadecenoic acid 1.62 1.03 

749 0.00112 P 4.0 C18H30O2 Octadecatrienoic acid 2.03 1.46 

550 0.00002 P 4.1 C20H37NO2 
[FA (18:2)] N-(9Z,12Z-octadecadienoyl)-ethanola-

mine 
5.20 1.83 

553 0.00446 P 4.1 C20H37NO3 [FA (18:0)] N-(9Z-octadecenoyl)-glycine 2.07 1.27 

687 0.00376 P 5.3 C10H18O4 [FA (10:0/2:0)] Decanedioic acid 0.41 1.48 

Lipids: Glycerophospholipids 

517 1.18E-05 P 4.4 C26H50NO7P 
[PC (18:2)] 1-(9Z,12Z-octadecadienoyl)-sn-glycero-3-

phosphocholine 
2.58 1.85 

524 2.77E-08 P 4.5 C24H50NO7P 
[PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phospho-

choline 
7.65 2.34 

472 0.00035 P 14.4 C16H12O6 Peonidin 0.60 1.49 

476 0.0227 P 13.3 C15H12O5 [Fv] Naringenin 3.31 1.07 

446 6.17E-10 P 9.5 C19H20O6 Deoxyelephantopin 1.27 1.15 

455 6.92E-06 N 4.1 C24H28O2 [PR] Bixindial/ Bixin aldehyde 5.45 1.80 

402 0.000259 N 4.5 C29H51NO6S 
[ST hydrox] (25R)-3alpha,7alpha-dihydroxy-5beta-

cholestan-27-oyl taurine 
2.87 1.52 

Metabolism of Cofactors and Vitamins 

302 2.45E-12 P 7.6 C8H11NO3 Pyridoxine 0.71 1.33 

303 3.76E-11 P 6.2 C8H12N2O2 Pyridoxamine 0.84 1.01 

309 5.43E-14 P 10.8 C8H9NO3 Pyridoxal 0.74 1.27 

332 2.38E-07 P 15.3 C11H23N2O7PS Pantetheine 4'-phosphate 0.19 2.30 

397 0.0036 P 10.5 C9H13N5O3 Dihydrobiopterin 6.43 1.25 

327 0.0003 P 5.6 C6H9NOS 5-(2-Hydroxyethyl)-4-methylthiazole 2.85 1.68 

310 1.56E-06 P/N 5.3 C8H9NO4 4-Pyridoxate 4.71 1.92 

376 2.18E-09 N 15.5 C6H8O4 2,3-Dimethylmaleate 0.83 1.20 
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391 3.12E-13 P 6.5 C7H8N2O 1-Methylnicotinamide 0.81 1.20 

Nucleotide Metabolism  

252 4.97E-07 P 10.6 C5H8N2O2 5,6-Dihydrothymine 0.79 1.19 

Xenobiotics Biodegradation and Metabolism  

213 4.46E-08 N 15.3 C5H4O2 Protoanemonin 0.72 1.29 

27 5.90E-06 P 7.6 C6H5NO Nitrosobenzene 0.27 1.85 

39 6.53E-10 P 6.1 C6H7NO 4-Hydroxyaniline 0.85 1.05 

169 0.0118 N 10.5 C7H8O8 4-Carboxy-4-hydroxy-2-oxoadipate 1.73 1.02 

208 5.82E-06 P 9.3 C7H9NO3 2-amino-5-methyl-muconate semialdehyde 0.54 1.59 

168 2.27E-06 N 16.0 C6H6O5 
[FA methyl,oxo(5:0/2:0)] 2-methylene-4-oxo-pentane-

dioic acid 
0.15 2.07 
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4.3.3.3 Effect of 1% Olive kernel oil on E. coli metabolome 

Unlike in incubation with 1% cooked meat, most of the metabolites in the amino acid 

metabolic pathway were significantly lowered by treatment with 1% olive kernel oil ex-

cept 5-Hydroxy-L-tryptophan and L-glutamyl 5-phosphate. These results were almost 

similar to those obtained with 1% maize meal. Among those significantly lowered were 

N2-acetyl-L-aminoadipate, gamma-glutamyl-gamma-aminobutyraldehyde, N-acetylser-

otonin, 3-hydroxyanthranilate, 3-methyldioxyindole, and N2-succinyl-L-ornithine. Oth-

ers were phenylacetylglycine, N-acetyl-L-phenylalanine, L-2-aminoadipate, and 4-(beta-

acetylaminoethyl)imidazole.  

In addition, metabolites associated with carbohydrate metabolism were all significantly 

altered and these were D-Glucosamine, 2-oxoglutarate, 4-methylene-L-glutamine, 4-hy-

droxy-4-methylglutamate, D-ribose, (S)-Malate, and D-glucose. The effect induced by 1% 

olive kernel oil on carbohydrate metabolism in E. coli was similar to those observed with 

1% cooked meat fibre and 1% maize meal on the same organism. This is perhaps not 

surpising since neither substrate directly provides a source of carbohydrate. 

This fibre also produced significant effects on lipid metabolites although the number of 

lipids altered were lower than those observed with 1% cooked meat or 1% maize meal. 

With the exception of [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phosphocholine, the lev-

els of the affected lipids were lowered by the olive kernel oil. Among those lowered were 

lipoate, [FA trihydroxy(18:0)] 9S,12S,13S-trihydroxy-10E-octadecenoic acid, purpurin, 

peonidin, and [Fv] matteucinol 7-O-glucoside. These observations on lipids differs from 
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those observed with both 1% cooked meat and 1% maize meal where there was a gen-

eral increase in the levels of the lipids. 

The other metabolites affected by treatment with 1% olive kernel oil were the metabo-

lites of cofactors and vitamins, nucleotide, and xenobiotics degradants. In general, all 

these metabolites were significantly lowered in E. coli cultures treated with the 1% olive 

kernel oil compared to those treated with negative control (1% D glucose). The altered 

cofactors and vitamin metabolites included dethiobiotin, pyridoxal, 1-methylnicotina-

mide, pyridoxine, pyridoxamine, and 2,3-dimethylmaleate which were all decreased, but 

5-(2-Hydroxyethyl)-4-methylthiazole was increased. On the other hand, the altered nu-

cleotide metabolites included uracil, adenosine, 3-oxo-3-ureidopropanoate, and 5,6-di-

hydrothymine which were all decreased. Finally, the xenobiotic degradants included 2-

amino-5-methyl-muconate semialdehyde, protoanemonin, n-acetylisoniazid, 1-7-dime-

thyluricacid, and 4-hydroxyaniline and were also decreased relative to the negative con-

trol treated cultures. 

A summary of all significantly altered metabolites has been presented in Table 4.4, show-

ing the fold changes in comparison to 1% D glucose and the VIPpred values which reflect 

the contribution of the given variable in the OPLS-DA model. 
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Table 4.4: The significant metabolite for the comparisons of Control vs Fibre-O 

Var ID P-value Polarity RT Formula Metabolite name Ratio O/G VIPpred 

Amino Acid Metabolism           

1411 3.20E-09 P 12.94 C8H13NO5 N2-Acetyl-L-aminoadipate 0.11 1.32 

1673 1.30E-08 P 10.83 C9H16N2O4 gamma-Glutamyl-gamma-aminobutyraldehyde 0.12 1.31 

1270 0.0001 P 5.27 C12H14N2O2 N-Acetylserotonin 0.43 0.95 

1266 0.002371 P 11.46 C7H7NO3 3-Hydroxyanthranilate 0.46 0.79 

1299 0.000164 P/N 6.33 C9H9NO2 3-Methyldioxyindole 0.52 0.90 

1634 0.000339 P 13.69 C9H16N2O5 N2-Succinyl-L-ornithine 0.52 0.85 

1335 0.011972 P/N 6.41 C10H11NO3 Phenylacetylglycine 0.57 0.65 

1352 5.31E-06 P/N 5.76 C11H13NO3 N-Acetyl-L-phenylalanine 0.74 0.64 

1407 5.19E-09 P 16.37 C6H11NO4 L-2-Aminoadipate 0.77 0.72 

1506 8.21E-10 P 7.43 C7H11N3O 4-(beta-Acetylaminoethyl)imidazole 0.79 0.64 

1295 0.001152 P 10.86 C11H12N2O3 5-Hydroxy-L-tryptophan 2.99 0.81 

1636 1.98E-07 P 15.06 C5H10NO7P L-Glutamyl 5-phosphate 6.77 1.19 

Biosynthesis of Secondary Metabolites  

969 0.005398 P/N 5.60 C10H13N5 N6-(delta2-Isopentenyl)-adenine 0.48 0.66 

1001 7.47E-12 P/N 12.43 C8H14N2O4 Proclavaminic acid 0.53 1.09 

1062 0.001994 P 5.95 C9H12N2 Nornicotine 0.65 0.64 

1008 0.002021 N 10.44 C8H10N4O2 Caffeine 2.47 0.76 

Carbohydrate Metabolism  

967 5.93E-10 P 16.59 C6H13NO5 D-Glucosamine 0.07 1.52 

898 0.0029 N 16.75 C5H6O5 2-Oxoglutarate 0.53 0.80 

906 5.37E-13 P/N 11.17 C6H10N2O3 4-Methylene-L-glutamine 0.54 1.07 

913 0.000353 N 11.53 C6H11NO5 4-Hydroxy-4-methylglutamate 0.62 0.72 

794 1.33E-12 N 15.24 C5H10O5 D-Ribose 0.68 0.90 

894 7.10E-10 N 16.65 C4H6O5 (S)-Malate 0.83 0.62 
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804 7.78E-12 N 12.35 C6H12O6 D-Glucose 0.85 0.64 

Lipid Metabolism  

541 6.59E-07 N 43.52 C8H14O2S2 Lipoate 0.16 1.24 

534 0.038588 P 4.37 C18H34O5 

[FA trihydroxy(18:0)] 9S,12S,13S-trihydroxy-10E-

octadecenoic acid 0.42 0.62 

524 0.000487 P 4.53 C24H50NO7P 

[PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phos-

phocholine 5.15 0.92 

471 2.67E-09 P 13.71 C14H8O5 Purpurin 0.08 1.15 

472 3.54E-08 P 14.35 C16H12O6 Peonidin 0.17 1.35 

477 0.003249 P 8.92 C24H28O10 [Fv] Matteucinol 7-O-glucoside 0.69 0.65 

Metabolism of Cofactors and Vitamins 

399 0.001159 P 9.55 C10H18N2O3 Dethiobiotin 0.33 0.85 

309 3.87E-16 P 10.76 C8H9NO3 Pyridoxal 0.62 0.88 

391 4.27E-17 P 6.48 C7H8N2O 1-Methylnicotinamide 0.69 0.88 

302 1.18E-13 P 7.60 C8H11NO3 Pyridoxine 0.71 0.75 

303 1.12E-12 P 6.23 C8H12N2O2 Pyridoxamine 0.82 0.62 

376 4.92E-09 N 15.50 C6H8O4 2,3-Dimethylmaleate 0.83 0.68 

327 0.006572 P 5.60 C6H9NOS 5-(2-Hydroxyethyl)-4-methylthiazole 2.28 0.69 

Nucleotide Metabolism           

216 1.55E-08 P 13.00 C4H4N2O2 Uracil 0.08 1.15 

289 3.09E-05 P 8.95 C10H13N5O4 Adenosine 0.30 1.02 

261 0.000623 N 42.56 C4H6N2O4 3-Oxo-3-ureidopropanoate 0.48 0.83 

252 1.37E-07 P 10.63 C5H8N2O2 5,6-Dihydrothymine 0.77 0.74 

Xenobiotics Biodegradation and Metabolism       

168 3.76E-07 N 16.03 C6H6O5 

[FA methyl,oxo(5:0/2:0)] 2-methylene-4-oxo-pen-

tanedioic acid 0.09 1.21 

208 4.80E-07 P 9.34 C7H9NO3 2-amino-5-methyl-muconate semialdehyde 0.24 1.19 

213 0.00044 N 15.28 C5H4O2 Protoanemonin 0.54 0.85 
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54 0.000518 N 42.53 C8H9N3O2 N-Acetylisoniazid 0.54 0.77 

161 1.25E-07 N 14.93 C7H8N4O3 1-7-Dimethyluricacid 0.69 0.77 

39 7.78E-11 P 6.06 C6H7NO 4-Hydroxyaniline 0.82 0.65 
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4.4 Discussion 

In this study, the effect on the E. coli metabolome following incubation in three dif-

ferent dietary fibres was investigated. These fibres were 1% cooked meat, 1% maize 

meal and 1% olive kernel oil and each of these was compared to the negative control 

cultures enriched with 1% D glucose. The key observation is that there were signifi-

cant effects on various metabolite pathways particularly those associated with amino 

acid, lipid, carbohydrate, and nucleotide metabolism. In addition, there were effects 

on intermediates of peptide and polyketide biosynthesis, as well as on xenobiotic 

breakdown products and vitamin cofactors. 

Most importantly, it was revealed that although the pathways affected were the 

same, the different fibre sources imparted different effects on these pathways in 

terms of whether the metabolites were down regulated or up regulated. For instance, 

unlike incubation with 1% cooked meat, most of the metabolites in the amino acid 

metabolic pathway were significantly lowered by treatment with 1% olive kernel oil 

or 1% maize meal. However, in the case of carbohydrate metabolism, the overall ef-

fect on the pathway was essentially the same irrespective of the dietary fibre. That 

is, all the three fibres led to significant reduction in the levels of specific metabolites 

in this pathway. 

Regarding effect on lipid metabolism, olive kernel oil produced significant alterations 

in relatively fewer metabolites compared to those observed with either 1% cooked 

meat or 1% maize meal fibres. Surprisingly, whereas 1% cooked meat and 1% maize 
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meal each led to a general increase in the levels of most of the altered lipids, olive 

kernel oil was associated with lowered lipid content. 

Another crucial difference was observed in nucleotide metabolism where unlike 1% 

cooked meat, the 1% maize meal did not induce significant alterations in the levels of 

these metabolites. Moreover, whereas nucleotide metabolites were significantly in-

creased in cultures enriched with 1% cooked meat, those enriched with olive kernel 

oil revealed significant decreases in these metabolites.  

Taken together, these findings suggest that E. coli metabolome is closely associated 

with the type of fibre that the microorganism is subjected to. This observation is con-

sistent with many previous studies which suggest that the metabolome of the gut 

microbiota depends on the microbial composition and functional capacity of the gut 

microbiota, as well as nutrient availability and its physicochemical properties, age of 

host, and transit time of the colon. Nutrient availability, particularly the carbohydrate 

to nitrogen ratio, is believed to be the most important regulator of bacterial metab-

olism, as it influences preference of saccharolytic vs proteolytic fermentation (De 

Preter et al., 2011). 

  



  

89 
 

 

 

 

 

 

 

 

Chapter Five: 

Metabolomic analysis of the effects of different 
dietary fibres in incubations with fecal samples 

taken from Crohn’s disease patients 

 

 

 

 

 

  



  

90 
 

5 METABOLOMIC ANALYSIS OF THE EFFECTS OF DIFFERENT DIETARY FIBRES IN 

CROHN’S DISEASE 

 

5.1 Introduction  

The normal flora within the gastrointestinal tract produces a number of compounds 

through the process of fermentation of nutrients and xenobiotics. The latter are com-

pounds of non-host origin that normally enter the GIT with the diet or are produced 

by the microbiota. Some of these metabolites produced in the gut are excreted in 

faeces and others are absorbed through the colonic mucosa and enter the systemic 

circulation where they can be further modified by human metabolism (De Preter and 

Verbeke, 2013).  

It has been reported, for instance, that the bacterial fermentation of the aromatic 

amino acid tyrosine in the colon yields the product p-cresol which is entirely absorbed 

into the host’s systemic circulation. First pass effect involving conjugation of p-cresol 

in the colon mucosa or within the liver leads to formation of p-cresol sulphate or p-

cresol glucuronide which renders the compound highly water soluble for excretion 

through the kidney as part of urine (Evenepoel et al., 2009).  

On the other hand, some metabolites derived from the host’s systemic circulation 

can be returned to the gut through biliary excretion whereupon they are further me-

tabolised by gut microbiota leading to newer metabolites that are consequently re-

absorbed back into the host’s circulatory system. This latter process occurs for bile 
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acid metabolites that escape absorption in the terminal ileum which are first decon-

jugated and the converted to secondary bile acids by microbial metabolism within 

the colon (Bajor et al., 2010).  

These host-microbiota metabolic interactions tend to make interpretation of metab-

olite profiles rather complicated. In addition, the outcome of metabolomic analyses 

associated with gut microbiota depends on the type of biomatrix selected for analy-

sis. Thus, microbial metabolism is more comprehensively reflected within the faecal 

metabolome than in the urinary, serum or breath metabolomes (De Preter and 

Verbeke, 2013). It has been suggested that whereas urinary profiles reflect both hu-

man and human-microbial co-metabolites, the serum profiles are normally less en-

riched with products of microbial metabolism. Nevertheless, the commonest bioma-

trices used in assessing gut microbial metabolomes are faeces, urine and serum. 

In GIT diseases such as inflammatory bowel disease (IBD) and inflammatory bowel 

syndrome (IBS), it has been suggested that disease initiation and progression are as-

sociated with a dysbiosis of the microbiota (De Preter and Verbeke, 2013). In these 

disease states, studies have identified that there is a disproportion of the predomi-

nant bacteria in faecal samples (Mahowald et al., 2009, Joossens et al., 2011, Krogius-

Kurikka et al., 2009). For instance, both IBD and IBS are frequently associated with a 

reduction in the diversity and abundance of Firmicutes. Thus, in order to understand 

disease pathogenesis in both IBD and IBS, it is necessary to determine the unique 

differences between metabolic activities of microbiota in these disease states in com-

parison with healthy controls (McNiven et al., 2011, Olivares et al., 2013). Such a 
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measure could also be employed as a diagnostic tool in these conditions (De Preter 

and Verbeke, 2013). 

Inflammatory bowel disease consists of two phenotypes, namely: Crohn’s disease 

(CD) and ulcerative colitis (UC). The two phenotypes share similar features in their 

pathophysiology and clinical presentation but their therapeutic management and 

prognosis are quite different. The two disease manifestations are influenced by he-

reditary factors as well as microbial and environment factors. Current diagnostic cri-

teria for IBD rely on clinical features, endoscopy, radiologic and histological examina-

tion all of which require the disease to be in an advanced stage for accurate diagnosis 

to be possible. An alternative diagnostic tool based on metabolomics would be less 

invasive as it would rely on convenient biofluids such as urine, serum, or faeces, and 

it would offer additional advantages over current strategies based on its potential for 

primary diagnosis, disease surveillance, and early detection of relapses (De Preter 

and Verbeke, 2013). In addition to discovering new biomarkers, metabolomics is in-

creasingly being considered in improving stratification of IBD patients into the differ-

ent subtypes.  

Among the biomarkers previously reported in IBD and IBS studies and which have 

been tested in clinical trials include faecal markers (such as lactoferrin, calprotectin, 

and PMN-elastase), acute phase proteins such as C-reactive protein, and serological 

markers (antibodies against luminal antigens and anti-glycan antibodies) (Dotan, 

2010). Metabolomics has been used to discriminate IBD patients from healthy con-

trols, CD from UC patients, and patients with active disease from those in remission. 
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These trends suggest that there is a growing acceptance of the role of metabolomics 

in the understanding of the gut microbiota and its influence on the host’s urinary, 

faecal and serum metabolomes through metabolite profiling studies. 

The previous methods used in IBD studies of host-microbiome metabolomes have 

employed mainly 1HNMR (Marchesi et al., 2007, Le Gall et al., 2011, Williams et al., 

2009, Schicho et al., 2012, Stephens et al., 2013, Bjerrum et al., 2009, 

Balasubramanian et al., 2009, Sharma et al., 2010, Bajpai et al., 1975, Zhang et al., 

2013) and GC-MS (Walton et al., 2013, Ooi et al., 2011, Öhman and Simrén, 2013, 

Ahmed et al., 2013) analytical platforms, although techniques such as ICR-FT/MS 

(Jansson et al., 2009) and AA analyser (Hisamatsu et al., 2012) have also been re-

ported. Marchesi et al (Marchesi et al., 2007) was the first to differentiate IBD pa-

tients from healthy controls based on 1H-NMR analysis of aqueous extracts of faecal 

samples and to differentiate CD from UC patients. In that study, dysbiosis—a process 

of disruption of normal bacterial ecology in the gut—was characterised based on de-

pletion of bacterial metabolites such as short chain fatty acids (SCFA), dimethylamine 

and trimethylamine, suggesting that alteration of gut microbiota was either a cause 

or consequence of IBD. A number of other studies (Marchesi et al., 2007, Le Gall et 

al., 2011, Williams et al., 2009, Schicho et al., 2012, Stephens et al., 2013, Bjerrum et 

al., 2009, Balasubramanian et al., 2009, Sharma et al., 2010, Bajpai et al., 1975, Zhang 

et al., 2013, Walton et al., 2013, Ooi et al., 2011, Öhman and Simrén, 2013, Ahmed 

et al., 2013, Jansson et al., 2009) have revealed that CD patients can be clearly dis-

criminated from healthy controls based on the metabolite profiles of faecal or urine 

samples, and that patients with predominantly ileal involvement of the disease can 



  

94 
 

be separated from those in whom the disease predominantly involves the colon (De 

Preter and Verbeke, 2013).   

It can be seen from the foregoing that despite the successes of the analytical plat-

forms reported in earlier metabolomic studies of IBD, LC-MS has not yet been signif-

icantly involved insofar as analysis of gut microbiota is involved. This might be due to 

the low molecular weights of most metabolites associated with gut microbial fermen-

tation and the fact that such metabolites do not easily ionise which is a key criterion 

for mass detection. However, such shortcomings have been overcome in other re-

lated studies by means of derivatisation prior to analysis (Bawazeer et al., 2016). 

5.2 Materials and Methods  

5.2.1 Chemicals and Solvents 

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, 

UK) and HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Mil-

lipore, Watford, UK). AnalaR-grade formic acid (98%) was obtained from BDH-Merck 

(Poole, UK). Authentic stock standard metabolites (Sigma-Aldrich, Poole, U.K.) were 

prepared as previously described (Zhang et al., 2014) and diluted four times with ACN 

before LC-MS analysis. Ammonium acetate was purchased from Sigma-Aldrich 

(Poole, UK). 
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5.2.2 Participants 

Faecal homogenates from three patients with Crohn’s disease and 3 normal controls 

were incubated with seven different dietary fibres (including a blank) and the result-

ing metabolomics profiles were determined at 0, 24 and 48 hours post resulting in 

126 samples. The dietary fibres used in the incubation are shown in table 5.1  

Table 5.1 Dietary fibres used in the incubations 

Number Fibre 
1 Blank 
2 Hi-Miaze 
3 Pectin 
4 Raftulose 
5 Wheat bran 
6 Cellulose 
7 Mixed fibre 

 

5.2.3 Sample preparation 

Exactly 200 µL of the sample was mixed with 800 µL of acetonitrile and then centri-

fuged for 10 min before transferring into a vial with an insert. The pooled sample was 

prepared by pipetting 50 µL from each of the 126 samples and then mixing them 

together before being diluting 0.2 ml of the pooled sample with 0.8 ml of acetonitrile 

and centrifuging for 10 minutes, then transferring the supernatant into HPLC vials for 

analysis. Additionally, the prepared mixtures of authentic standard metabolites 

(Zhang et al., 2014) were run in the same sequence for purposes of metabolite iden-

tification within the samples.  
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5.2.4 LC-MS conditions  

Liquid chromatographic separation was carried out on an Accela HPLC system inter-

faced to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany) using a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading UK). 

The column was eluted with a mobile phase consisting of 20 mM ammonium car-

bonate in HPLC-grade water(solvent A) and acetonitrile (solvent B), at a flow rate of 

0.3 mL/min. The elution gradient was an A:B ratio of 20:80 at 0 min, 80:20 at 30 min, 

92:8 at 35 min and finally 20:80 at 45 min. The nitrogen sheath and auxiliary gas flow 

rates were maintained at 50 and 17 arbitrary units. The electrospray ionisation (ESI) 

interface was operated in both positive and negative modes. The spray voltage was 

4.5 kV for positive mode and 4.0 kV for negative mode, while the ion transfer capillary 

temperature was 275°C. Full scan data were obtained in the mass-to-charge ratio 

(m/z) range of 75 to 1200 for both ionisation modes on the LC-MS system fully cali-

brated according to manufacturer’s guidelines. The resulting data were acquired us-

ing the XCalibur 2.1.0 software package (Thermo Fisher Scientific, Bremen, Germany).  

5.2.5 Data extraction and analysis 

Data extraction for each of the samples was carried out by MZMine software. The 

extracted ions, with their corresponding m/z values and retention times, were pasted 

into an Excel macro of the most common metabolites prepared in–house to facilitate 

identification. The lists of the metabolites obtained from these searches were then 

carefully evaluated manually by considering the quality of their peaks and their re-

tention time match with the standard metabolite mixtures run in the same sequence. 
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All metabolites were within 3 ppm of their exact masses. Statistical analyses were 

performed using both univariate with Microsoft Excel and multivariate approaches 

using SIMCA-P software version 14.1 (Umetrics, Umea, Sweden.).  

5.3 Results  

5.3.1 Unsupervised analysis 

Figure 5.1 shows the PCA-X analysis of all the samples from the three normal patients 

with different fibres and at different time points. PCA-X, an unsupervised model in 

SIMCA-P, produces a natural scatter of the samples based on their characteristic met-

abolic footprints. It can be seen in the figure (samples coloured according to time of 

collection for convenience) that, in general, there are two major clusters, namely, at 

the time = 0 hrs on the one hand, and that of the time = 24 or 48 hours on the other, 

with just two outliers. This implies that, for these participants at least, time appears 

to be the most important classifying variable. However, there are no significant dif-

ferences between individual dietary fibres as shown in Figure 5.2. 
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Figure 5.1: PCA-X analysis of the metabolomics footprint of the 63 samples from healthy con-

trols showing that time of sample collection plays a key role in sample classification according 

to the model. Circles coloured according to the time of sample collection post diet. The y-axis 

represents variation within the groups while the x-axis represents variation between the 

groups. 
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Figure 5.2: PCA-X analysis of the metabolomics footprint of the 63 samples from HC partici-

pants showing that diet does not significantly affect sample clustering as each cluster contains 

all the 7 dietary fibres. Circles coloured according to the dietary fibres. The y-axis represents 

variation within the groups while the x-axis represents variation between the groups. 

 

On the other hand, samples from patients with Crohn’s disease (CD) showed a differ-

ent pattern of scatter, revealing clusters that could not be wholly accounted for on 

the basis of time of sample collection. A total of five groupings was formed, two of 

which consisted entirely of samples at time zero, two comprising both time 24 and 

48 samples, and the final one encompassing all three time points, as shown in Figure 

5.3. Looking at the samples more closely, it appears that, apart from the time factor, 

patient differences are also at play. For instance, considering the blue circles (time 

zero samples), each of the three clusters corresponds to a given patient, as there are 

also three patients. In addition, the three mixed (24 and 48) clusters correspond to 
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each of the three CD patients. Thus, in this case, both time and patient individualities 

have combined to produce a natural clustering in which dietary effects are less no-

ticeable, as can be deduced from Figure 5.4. 

 

Figure 5.3: PCA-X analysis of the metabolomics footprint of the 63 samples from CD patients 

in which both time of sample collection and individual patient peculiarities combine to define 

the model. The y-axis represents variation within the groups while the x-axis represents var-

iation between the groups. 
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Figure 5.4: PCA-X analysis of the metabolomics footprint of the 63 samples from CD patients. 

Each of the five natural groupings has representations from all 7 diets, implying that diet did 

not have much contribution to the scatter. As observed in Figure 3, time and individual pa-

tient peculiarities had more significant contribution to the observed clustering pattern. The y-

axis represents variation within the groups while the x-axis represents variation between the 

groups. 

 

Figure 5.5 shows a PCA-X when all the 126 samples were considered altogether. The 

fact that CD samples were separated from the HC samples (with the exception of two 

outliers) shows that there are clear metabolomics differences associated with CD. 
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Figure 5.5: PCA-X analysis of all 126 samples showing near complete separation of CD and 

HC samples. There are two outliers in the model (sample 49 and sample 75) which are mis-

classified. Samples coloured according to whether they are CD or HC. The y-axis represents 

variation within the groups while the x-axis represents variation between the groups. 

 

Basing on the findings from unsupervised models described above, it is apparent that 

the main factors contributing to the metabolomic footprints of the sample which in 

turn determine their clustering in the scatter plot are the disease status (CD or HC), 

time of sample collection (0, 24, 48 h) and, especially in the case of CD samples, the 

individual patient differences. 
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5.3.2 Supervised analysis 

Supervised models enable identification of metabolites that have the most significant 

contribution to a clustering pattern. Based on the observations from PCA-X described 

above, it is apparent that metabolomics profiles of samples do not change between 

24 and 48 h, and so these have been combined to form one group which was then 

compared with the group representing samples at 0 h. As seen in Figures 5.6 and 5.7, 

the OPLS-DA was able to clearly separate the two groups in both healthy controls and 

CD participants respectively. Both models were found to be valid based on cross val-

idation as shown in Figures 5.8 and 5.9 for HC and CD samples respectively. 

 

Figure 5.6: OPLS-DA analysis to compare samples at 0h with those at 24 and 48 h in healthy 

controls. CA-ANOVA =1.9506e-029. The y-axis represents variation within the groups 

while the x-axis represents variation between the groups. 
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Figure 5.7: OPLS-DA analysis to compare samples at 0h with those at 24 and 48 h in CD pa-

tients. CV-ANOVA = 3.08413e-035. The y-axis represents variation within the groups while 

the x-axis represents variation between the groups. 
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Figure 5.8: Cross-validation of the model for healthy controls. 
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Figure 5.9: Cross-validation of the model for CD patients. 

 

The OPLS-DA analysis of the 126 samples to compare metabolites between CD and 

HC showed clear separation as shown in Figure 5.10. Besides the between group sep-

aration, there were subclusterings based on time of collection which was more pro-

nounced for CD samples. Modelling the samples with respect to time separately it 

can be seen that both the CD and HC samples separate into 0 h and 24/48 h hour 

groups (Figures 5.11 and 5.12). 

 

Figure 5.10: OPLS-DA analysis of the 126 samples showed clear separation between CD and 

HC groupings but with subgroupings based on time of collection (especially in CD samples) 

and possibly due to patient differences. The y-axis represents variation within the groups 

while the x-axis represents variation between the groups. 
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Figure 5.11: OPLS-DA analysis of the 63 samples showing clear separation between CD time 

0 and CD 24/48h. The y-axis represents variation within the groups while the x-axis represents 

variation between the groups. The separation illustrates that the effect of time on the metab-

olite profiles in the samples from Crohn’s disease patients is likely to be significant between 

0 and 24 hours and 0 and 48 hours of incubation with the dietary fibres. 

 

Figure 5.12: OPLS-DA analysis of the 63 samples showing clear separation between HC time 

0 and HC 24/48h. The y-axis represents variation within the groups while the x-axis represents 



  

108 
 

variation between the groups. The separation illustrates that the effect of time on the metab-

olite profiles of the samples from health controls is likely to be significant between 0 and 24 

hours and 0 and 48 hours of incubation with the dietary fibres. 

 

5.3.3 Metabolite alterations 

Table 5.1 shows that most of the metabolites altered in CD relative to HC patients 

belonged to the pathways of amino acids metabolism, biosynthesis of secondary me-

tabolites, carbohydrate and lipids metabolism, metabolism of cofactors and vitamins, 

and xenobiotics biodegradation and metabolism. Except for L-cystine and aconitine 

which were raised in CD, all the metabolites were significantly decreased in CD com-

pared to HC. 

Table 5.2 shows a comparison of the metabolite levels at 24+48 h on the one hand 

and those at 0h on the other, within the healthy controls. It can be observed that a 

number of metabolites significantly differed between the two groups and these be-

longed to pathways of amino acid metabolism, carbohydrate metabolism, nucleotide 

metabolism, polyketides, vitamins and cofactors, and xenobiotics. In addition, most 

of these metabolites are higher at 24+48 h compared to those at 0 h except for a few 

such as N2-(D-1-carboxyethyl)-L-arginine, N2-acetyl-L-aminoadipate and a host of bil-

irubin intermediates (bilirubin, L-urobilin, D-urobilinogen) which were lowered at 

24+48 h compared to zero. 

In Table 5.3, a comparison of the metabolites in CD at time 24+48h vs. time 0h re-

vealed varied responses in metabolite levels. Indole-3-acetaldehyde, ethanolamine 

phosphate, N-acetylornithine and 2-hydroxy-6-oxonona-2,4-diene-1,9-dioate (all 
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amino acid metabolism) and dihydroceramide and sphinganinewere (lipid metabo-

lites) were significantly raised while the rest were lowered  compared to baseline 

levels at 0h. 
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Table 5.1: The below table showing the comparisons of healthy patients with Crohn’s disease (CD vs HC) 

Rt min MW Molecular Formula Metabolite Ratio (CD/HC) P value VIP 

Fatty Acids 

4.1 200.178 C12H24O2 Dodecanoic acid 0.060 2.7E-06 3.770 

4.0 228.209 C14H28O2 Tetradecanoic acid 0.258 4.8E-09 2.954 

4.2 302.225 C20H30O2 Eicosapentaenoic acid 0.047 7.9E-07 0.303 

4.0 280.24 C18H32O2 Linoleate 0.532 1.9E-05 0.207 

3.9 282.256 C18H34O2 Octadecenoic acid 0.496 1.2E-06 0.223 

4.2 320.235 C20H32O3 Hydroxyeicosatetraenoic acid 0.261 3.1E-06 0.130 

4.1 338.246 C20H34O4 Dihydroxyeicosatrienoic acid 0.392 7.3E-06 0.159 

Haemoglobin Metabolism 

10.3 226.095 C10H14N2O4 Porphobilinogen 2.397 3.5E-04 0.327 

4.3 562.258 C34H34N4O4 Protoporphyrin 1.875 8.2E-03 0.160 

4.0 584.263 C33H36N4O6 Bilirubin 13.793 8.0E-04 0.244 

4.8 590.31 C33H42N4O6 D-Urobilinogen 15.911 1.9E-06 1.154 

4.6 588.295 C33H40N4O6 D-Urobilin 14.176 2.5E-03 0.363 
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7.6 594.342 C33H46N4O6 L-Urobilin 0.115 1.7E-11 0.294 

Tryptophan Metabolism 

6.4 136.064 C7H8N2O 1-Methylnicotinamide 0.350 2.4E-07 0.129 

7.3 152.059 C7H8N2O2 N1-Methyl-2-pyridone-5-carboxamide 2.323 1.1E-05 0.143 

5.2 165.043 C8H7NO3 Formylanthranilate 0.312 7.9E-22 0.165 

8.2 180.09 C9H12N2O2 5-Hydroxykynurenamine 0.347 0.0E+00 0.161 

5.8 218.106 C12H14N2O2 N-Acetylserotonin 0.163 8.5E-20 0.150 

6.7 236.08 C11H12N2O4 L-Formylkynurenine 17.791 1.3E-05 0.524 

7.0 248.116 C13H16N2O3 6-Hydroxymelatonin 0.151 7.9E-29 0.168 

Phenyl Alanine Metabolism 

20.7 137.084 C8H11NO Tyramine 0.303 1.6E-24 0.146 

7.3 165.079 C9H11NO2 L-Phenylalanine 0.436 1.6E-22 0.237 

9.2 197.069 C9H11NO4 3,4-Dihydroxy-L-phenylalanine 10.301 1.3E-06 0.545 

10.8 207.09 C11H13NO3 N-Acetyl-L-phenylalanine 0.105 2.1E-17 0.233 

Purines and Pyrimidines 

8.5 126.043 C5H6N2O2 Thymine 0.463 1.2E-12 0.176 
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6.3 128.059 C5H8N2O2 5,6-Dihydrothymine 0.141 6.2E-13 0.208 

9.5 135.055 C5H5N5 Adenine 0.339 1.2E-08 1.876 

8.9 267.097 C10H13N5O4 Adenosine 0.232 1.8E-06 0.478 

6.2 278.127 C14H18N2O4 alpha-Ribazole 0.376 1.2E-14 0.159 

Creatine Metabolism 

9.8 113.059 C4H7N3O Creatinine 10.746 3.0E-05 1.979 

16.4 117.054 C3H7N3O2 Guanidinoacetate 3.103 5.5E-05 0.149 

Bile Acids/Cholesterol Metabolism 

4.1 384.339 C27H44O Cholestadienol 0.092 5.1E-07 0.496 

4.7 392.293 C24H40O4 Cholanoic Acid 2.358 1.3E-02 2.362 

4.0 412.371 C29H48O Dimethyl-cholestadienol 0.242 5.2E-09 0.258 

4.0 410.355 C29H46O Dimethylcholestatrienol 0.395 3.0E-10 0.160 

4.2 416.329 C27H44O3 Cholestatrienetriol 0.163 1.0E-10 0.147 

Miscellaneous 

6.0 131.095 C6H13NO2 L-Leucine 0.492 6.0E-13 0.314 

10.1 140.059 C6H8N2O2 Methylimidazoleacetic acid 0.157 1.8E-18 2.919 



  

113 
 

12.1 161.105 C7H15NO3 L-Carnitine 0.209 6.0E-07 0.389 

9.7 167.058 C8H9NO3 Pyridoxal 0.258 2.0E-30 0.273 

13.9 165.046 C5H11NO3S L-Methionine S-oxide 0.362 7.5E-04 0.462 

11.7 169.074 C8H11NO3 Pyridoxine 0.291 2.2E-15 0.334 

13.2 169.085 C7H11N3O2 Methyl-L-histidine 1.818 3.2E-05 0.124 

11.5 203.079 C8H13NO5 N2-Acetyl-L-aminoadipate 3.545 5.8E-04 0.265 

13.8 232.106 C9H16N2O5 N2-Succinyl-L-ornithine 0.158 1.6E-26 0.168 

5.4 299.282 C18H37NO2 [SP] 3-dehydrosphinganine 2.292 2.4E-04 0.253 

6.4 301.298 C18H39NO2 Sphinganine 0.444 8.2E-07 0.274 
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Table 5.2: Significant metabolite differences based on time points (0 hrs vs. 24+48 hrs) among the Crohn’s disease (CD) Table 5.3: Significant metabolite differences 

based on time points (0 hrs vs. 24+48 hrs) among the Crohn’s disease (CD) 

Rt min MW Molecular Formula Metabolite Ratio (CD/HC) P value VIP 

Fatty Acid Metabolism 

4.1 200.178 C12H24O2 Dodecanoic acid 0.599 2.59E-02 1.299 

4.5 399.335 C23H45NO4 Palmitoyl-R-carnitine 0.275 2.80E-03 0.304 

Haemoglobin Metabolism 

10.3 226.095 C10H14N2O4 Porphobilinogen 0.512 2.37E-02 0.716 

4.3 562.258 C34H34N4O4 Protoporphyrin 0.363 4.17E-06 0.544 

4.0 584.263 C33H36N4O6 Bilirubin 0.136 1.94E-04 0.840 

4.6 588.295 C33H40N4O6 D-Urobilin 0.083 1.05E-04 1.326 

4.4 582.248 C33H34N4O6 Biliverdin 0.201 9.33E-05 0.185 

4.4 586.279 C33H38N4O6 (3Z)-Phycocyanobilin 0.137 2.46E-04 0.401 

Tryptophan Metabolism 

6.5 139.027 C6H5NO3 6-Hydroxynicotinate 4.510 9.75E-03 0.161 

8.0 149.048 C8H7NO2 5,6-Dihydroxyindole 4.935 7.74E-06 0.110 
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5.3 161.084 C10H11NO Indole-3-ethanol 26.188 2.61E-08 0.245 

6.1 163.063 C9H9NO2 3-Methyldioxyindole 1.673 2.68E-03 0.094 

5.2 165.043 C8H7NO3 Formylanthranilate 1.696 4.13E-04 0.136 

5.7 159.068 C10H9NO Indole-3-acetaldehyde 4.338 1.49E-07 0.487 

13.5 176.095 C10H12N2O Serotonin 0.137 1.00E-13 0.259 

5.8 218.106 C12H14N2O2 N-Acetylserotonin 6.309 5.21E-05 0.151 

7.9 208.085 C10H12N2O3 L-Kynurenine 0.680 2.66E-03 0.155 

9.3 220.085 C11H12N2O3 5-Hydroxy-L-tryptophan 0.324 3.03E-03 0.174 

8.1 205.074 C11H11NO3 Indolelactate 7.628 9.77E-03 0.320 

5.4 232.121 C13H16N2O2 Melatonin 5.360 7.85E-06 0.096 

17.3 155.069 C6H9N3O2 L-Histidine 0.040 0.00E+00 2.021 

6.7 236.08 C11H12N2O4 L-Formylkynurenine 0.406 2.43E-02 1.111 

Purines and Pyridines 

10.2 125.059 C5H7N3O 5-Methylcytosine 4.132 2.22E-03 0.175 

9.5 135.055 C5H5N5 Adenine 4.723 6.28E-03 2.917 
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10.5 136.039 C5H4N4O Hypoxanthine 0.394 1.49E-04 2.111 

12.7 151.049 C5H5N5O Guanine 0.186 2.21E-11 1.224 

12.2 243.086 C9H13N3O5 Cytidine 0.064 1.16E-12 0.601 

12.0 251.102 C10H13N5O3 Deoxyadenosine 0.134 3.97E-06 0.242 

9.6 252.086 C10H12N4O4 Deoxyinosine 0.045 1.91E-08 0.191 

8.9 267.097 C10H13N5O4 Adenosine 1.558 4.22E-02 0.350 

6.2 278.127 C14H18N2O4 alpha-Ribazole 0.348 2.70E-15 0.326 

13.0 283.092 C10H13N5O5 Guanosine 0.045 5.13E-28 0.614 

11.6 323.052 C9H14N3O8P CMP 0.118 5.42E-06 0.231 

9.3 329.053 C10H12N5O6P 3',5'-Cyclic AMP 0.108 1.21E-04 0.250 

Phenylalanine Metabolism 

7.3 165.079 C9H11NO2 L-Phenylalanine 0.558 7.38E-07 0.332 

7.6 183.09 C9H13NO3 L-Adrenaline 1.397 3.08E-02 0.256 

10.8 207.09 C11H13NO3 N-Acetyl-L-phenylalanine 1.867 1.93E-02 0.098 

Vitamins and Co-Factors 
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10.9 168.09 C8H12N2O2 Pyridoxamine 2.758 8.70E-04 0.107 

11.5 214.132 C10H18N2O3 Dethiobiotin 0.129 2.95E-21 0.714 

21.2 264.104 C12H17N4OS Thiamine 26.976 1.88E-03 0.096 

8.3 376.138 C17H20N4O6 Riboflavin 3.569 6.02E-03 0.124 

8.4 455.155 C20H22N7O6 Methenyltetrahydrofolate 0.268 1.55E-02 0.135 

Miscellaneous 

13.2 169.085 C7H11N3O2 N(pi)-Methyl-L-histidine 0.471 6.75E-06 0.496 

15.3 160.085 C6H12N2O3 D-Alanyl-D-alanine 0.177 5.15E-26 0.757 

15.6 146.069 C5H10N2O3 L-Glutamine 0.052 5.18E-24 3.176 

15.6 129.043 C5H7NO3 Pyrroline-3-hydroxy-5-carboxylate 0.094 4.81E-22 1.339 

13.9 165.046 C5H11NO3S Methionine S-oxide 0.068 7.24E-22 1.684 

16.5 175.096 C6H13N3O3 L-Citrulline 0.111 1.81E-19 2.580 

17.1 240.024 C6H12N2O4S2 L-Cystine 0.015 1.40E-16 1.315 

10.0 218.127 C9H18N2O4 Carboxyethyl-L-lysine 0.184 1.69E-14 0.178 

14.3 309.106 C11H19NO9 N-Acetylneuraminate 0.041 1.36E-12 0.249 
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9.4 368.166 C19H28O5S 
3beta-Hydroxyandrost-5-en-17-one 3-

sulfate 
0.020 1.46E-10 0.454 

13.8 232.106 C9H16N2O5 N2-Succinyl-L-ornithine 0.330 1.46E-10 0.167 

11.7 119.058 C4H9NO3 L-Threonine 0.299 4.98E-10 0.295 

8.3 153.09 C7H11N3O Acetylhistamine 5.316 8.42E-08 0.140 

16.0 132.053 C4H8N2O3 L-Asparagine 0.010 2.63E-07 0.391 

12.0 221.09 C8H15NO6 N-Acetyl-D-glucosamine 0.475 8.54E-07 0.247 

10.1 204.111 C8H16N2O4 N6-Acetyl-N6-hydroxy-L-lysine 0.037 3.53E-06 1.019 

15.8 161.069 C6H11NO4 L-2-Aminoadipate 0.464 2.07E-05 0.096 

4.5 166.048 C5H10O6 L-Arabinonate 0.301 2.97E-05 0.423 

12.4 117.079 C5H11NO2 L-Valine 0.355 6.30E-04 0.932 

8.8 111.032 C5H5NO2 Pyrrole-2-carboxylate 5.707 1.08E-03 0.097 

4.8 141.019 C2H8NO4P Ethanolamine phosphate 3.145 1.13E-03 0.131 

6.4 301.298 C18H39NO2 Sphinganine 2.427 1.56E-03 0.376 

8.3 132.09 C5H12N2O2 L-Ornithine 3.350 1.69E-03 0.197 

17.6 246.133 C9H18N4O4 N2-(D-1-Carboxyethyl)-L-arginine 0.466 2.60E-03 0.126 
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9.6 584.32 C30H48O11 Cholicacidglucuronide 0.000 2.70E-03 0.225 

15.6 174.1 C7H14N2O3 N-Acetylornithine 2.974 4.37E-03 0.358 

4.2 329.293 C19H39NO3 Dihydroceramide 8.849 7.03E-03 0.186 

22.5 188.152 C9H20N2O2 N6,N6,N6-Trimethyl-L-lysine 0.523 1.11E-02 0.248 

11.9 174.064 C6H10N2O4 N-Formimino-L-glutamate 0.555 1.94E-02 0.119 

25.8 129.09 C5H11N3O 4-Guanidinobutanal 0.764 2.46E-02 0.253 

8.9 135.053 C4H9NO4 4-Hydroxy-L-threonine 2.393 2.96E-02 0.157 

16.4 117.054 C3H7N3O2 Guanidinoacetate 0.526 3.95E-02 0.306 

15.4 147.053 C5H9NO4 L-Glutamate 0.745 4.50E-02 0.198 

4.3 376.298 C24H40O3 3alpha-Hydroxy-5beta-cholanate 2.700 4.50E-02 3.510 

7.1 204.147 C9H21N2O3 
3-Hydroxy-N6,N6,N6-trimethyl-L-ly-

sine 
0.457 4.67E-02 0.123 

15.1 258.085 C10H14N2O6 Ribosylimidazoleacetate 0.044 2.57E-24 0.585 

21.5 124.064 C6H8N2O Methylimidazole acetaldehyde 0.803 4.90E-02 0.191 
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Table 5.3: Significant metabolite differences based on time points (0 hrs vs. 24+48 hrs) among the healthy controls (HC)  

Rt min MW Molecular Formula Metabolite 24+48h/0h P value VIP 

Fatty Acid Metabolism 

4.1 200.178 C12H24O2 Dodecanoic acid 0.572 1.4E-01 4.380 

4.0 228.209 C14H28O2 Tetradecanoic acid 0.662 6.8E-02 3.078 

4.0 280.24 C18H32O2 Linoleate 1.515 3.9E-02 0.231 

4.5 354.241 C20H34O5 prostadienoic acid 2.858 3.5E-02 0.224 

Haemoglobin Metabolism 

10.3 226.095 C10H14N2O4 Porphobilinogen 0.499 1.3E-04 0.332 

4.3 562.258 C34H34N4O4 Protoporphyrin 0.098 5.4E-06 0.388 

4.8 590.31 C33H42N4O6 D-Urobilinogen 0.369 4.6E-09 0.442 

Tryptophan +Histidine Metabolism 

21.5 124.064 C6H8N2O Methylimidazole acetaldehyde 0.734 1.1E-02 0.211 

10.1 140.059 C6H8N2O2 Methylimidazoleacetic acid 1.203 2.9E-01 1.605 
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17.3 155.069 C6H9N3O2 L-Histidine 0.048 3.4E-16 0.778 

5.2 165.043 C8H7NO3 Formylanthranilate 2.132 1.4E-10 0.220 

13.5 176.095 C10H12N2O Serotonin 0.072 5.3E-20 0.219 

5.7 159.068 C10H9NO Indole-3-acetaldehyde 2.600 1.0E-08 0.301 

5.3 161.084 C10H11NO Indole-3-ethanol 44.636 1.2E-19 0.206 

5.8 218.106 C12H14N2O2 N-Acetylserotonin 1.9 7.6 E-5 0.004 

5.4 232.121 C13H16N2O2 Melatonin 5.2 1.3 E-7 0.004 

Purines and Pyrimidines 

9.5 135.055 C5H5N5 Adenine 2.024 9.2E-04 2.460 

10.5 136.039 C5H4N4O Hypoxanthine 0.352 3.2E-06 1.792 

12.7 151.049 C5H5N5O Guanine 0.166 2.6E-26 1.115 

12.2 243.086 C9H13N3O5 Cytidine 0.277 1.1E-11 0.383 

12.0 251.102 C10H13N5O3 Deoxyadenosine 0.165 1.2E-15 0.283 

15.1 258.085 C10H14N2O6 (1-Ribosylimidazole)-4-acetate 0.002 2.6E-30 0.285 

8.9 267.097 C10H13N5O4 Adenosine 1.929 7.8E-02 0.487 

6.2 278.127 C14H18N2O4 alpha-Ribazole 0.438 2.7E-17 0.315 

13.0 283.092 C10H13N5O5 Guanosine 0.160 5.7E-10 0.358 
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Vitamins And Cofactors 

11.5 214.132 C10H18N2O3 Dethiobiotin 0.075 3.5E-24 0.429 

21.2 264.104 C12H17N4OS Thiamin 422.058 7.2E-03 0.203 

Micellaneous 

9.8 113.059 C4H7N3O Creatinine 0.428 9.9E-05 0.777 

4.7 392.293 C24H40O4 Dihydroxy-5beta-cholan-24-oic Acid 0.539 3.1E-02 1.590 

4.3 376.298 C24H40O3 3alpha-Hydroxy-5beta-cholanate 0.798 4.3E-01 2.061 

12.4 117.079 C5H11NO2 L-Valine 1.532 3.6E-01 0.385 

15.9 103.063 C4H9NO2 4-Aminobutanoate 2.261 1.9E-05 1.140 

13.9 165.046 C5H11NO3S L-Methionine S-oxide 0.012 3.5E-27 1.901 

9.7 145.11 C7H15NO2 4-Trimethylammoniobutanoate 2.013 3.5E-02 0.387 

25.8 129.09 C5H11N3O 4-Guanidinobutanal 0.648 1.4E-20 0.424 

7.6 183.09 C9H13NO3 L-Adrenaline 1.438 1.8E-05 0.276 

10.1 204.111 C8H16N2O4 N6-Acetyl-N6-hydroxy-L-lysine 0.019 6.5E-30 1.504 
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6.4 301.298 C18H39NO2 Sphinganine 1.292 2.1E-01 0.233 

7.3 165.079 C9H11NO2 L-Phenylalanine 0.702 3.2E-07 0.264 

15.2 131.069 C4H9N3O2 Creatine 0.344 8.1E-06 0.471 

15.6 146.069 C5H10N2O3 L-Glutamine 0.034 2.4E-23 1.787 

9.0 177.046 C6H11NO3S N-Formyl-L-methionine 0.284 1.4E-03 0.609 

16.5 175.096 C6H13N3O3 L-Citrulline 0.127 1.1E-10 1.267 

15.6 129.043 C5H7NO3 L-1-Pyrroline-3-hydroxy-5-carboxylate 0.083 1.1E-21 0.678 

12.0 221.09 C8H15NO6 N-Acetyl-D-glucosamine 0.262 1.2E-11 0.372 

9.6 584.32 C30H48O11 Cholicacidglucuronide 0.000 4.3E-13 0.418 

17.1 240.024 C6H12N2O4S2 L-Cystine 0.000 3.0E-24 0.674 

9.4 368.166 C19H28O5S Hydroxyandrost-5-en-17-one 3-sulfate 0.013 1.3E-32 0.498 

16.0 132.053 C4H8N2O3 L-Asparagine 0.015 1.0E-11 0.442 

11.7 119.058 C4H9NO3 L-Threonine 0.343 6.3E-12 0.219 

4.5 166.048 C5H10O6 L-Arabinonate 0.421 1.0E-06 0.249 

14.3 309.106 C11H19NO9 N-Acetylneuraminate 0.003 1.6E-26 0.255 
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5.4 Discussion  

Many gut metabolites are absorbed into the host’s circulatory system before being excreted 

unchanged or after undergoing further metabolism by the human enzymes. Thus excreted 

metabolite profiles may offer an insight into the composition of gut microbiota associated 

with certain disease states (Nicholls et al., 2003). Several studies have been reported to dis-

criminate samples collected from patients with inflammatory bowel disease from those col-

lected from healthy controls based on profiling of urinary metabolites (Williams et al., 2009, 

Schicho et al., 2012, Stephens et al., 2013). All these 3 studies showed that hippurate levels 

were significantly lowered in patients with IBD as compared to healthy controls which sug-

gested that this metabolite may be used as a unique biomarker for IBS. 

The best models for discrimination between the 126 samples analysed were those based on 

time post treatment. None of the comparisons performed between the 7 dietary fibres 

showed a good discriminatory model in SIMCA. This observation is consistent with a study by 

Williams et al. (2009) who observed that, in urine samples from CD, UC and HC, although 

discrimination based on patient group was possible, the clustering of samples was independ-

ent of the diet and medication (Williams et al., 2009). Our study shows that discrimination is 

possible between CD and HC, and between samples at 0 hours and 24 hours, 0 hours and 48 

hours, but not between 24 hours and 48 hours. Due to the similarity in metabolite profiles 

between samples as 24- and 48-hours, these samples were combined and compared with 

those at 0 hours in order to determine the metabolites responsible for separation of these 

groups in the SIMCA models under both supervised and unsupervised approaches. 
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5.4.1 Metabolites in Crohn’s disease vs. healthy controls at all time points 

The most important variables discrimating the CD from HC samples were dodecanoic acid and 

eicosapentaenoic acid. These seemed to be almost absent from the CD samples suggesting 

possibly and increased rate of fatty acid metabolism in the CD incubations. Previous studies 

have observed that CD patients exhibit a faster rate of fatty acid oxidation in comparison with 

controls and have lower levels of medium chain fatty acids (Mingrone et al., 1999, Al-Jaouni 

et al., 2000, De Preter et al., 2015). 

A number of degradation products of haemoglobin including bilirubin are elevated in in the 

CD samples and this is in line in previous studies which report that bilirubin is elevated in the 

bile of CD patients as a consequence of malbabsorption of bile acids. The malabsorption of 

bile acids increases their levels in the gut and thus promoting the reuptake of bilirubin into 

the enterohepatic circulation (Lapidus et al., 2006, Leníček et al., 2014). There is no great 

indication of bile acid elevation in the CD samples apart for chenodeoxy cholate which is ele-

vated 2.3fold in comparison with the HC samples.  

The tryptophan degradation product formyl kynurenine is greatly increased in the CD samples 

and this corresponds with earlier observations where metabolites in the kynurenine pathway 

were found to be increased in Crohn’s disease (Gupta et al., 2011, Kennedy et al., 2017). It 

was proposed that an increase in tryptophan degradation indicated and aberrant immune 

response in CD to a sub-population of commensal bacteria in the GI tract. A number of tryp-

tophan metabolites are down regulated in the CD samples including N-acetyl serotonin, 

formyl anthranilic acid and hydroxyl melotonin. Formyl anthranilate is a direct degradation 

product of formyl kynurenine and this suggests a downregulation of the enzyme responsible 

for this conversion in the CD samples. 
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5.4.2 Metabolites at 0 vs. 24/48 hrs in CD faecal incubations 

 

Figure 5.12. Extracted ion trace showing the formation of low levels of melotonin and its precursor N-acetyl serotonin in the 

CD incubations after 48 h in comparison with time 0 (lower traces).  

 

There is a very strong separation between the time 0 samples for the CD incubations and the 

24/48 h samples. This suggests that the microbial activity in the samples is having a marked 

effect on the metabolome. Dodecanoic acid levels are decreased following inubation but not 

greatly suggesting that fatty acid metabolism under the conditions of the incubation is not 

rapid. All of the haemoglobin metabolites decrease markedly following incucation probably 

because they provide a source of nitrogen. More interesting is the large impact of incubation 

on tryptophan metabolism. Metabolism of tryptophan appears to be activated via two path-

ways. The kynurinine pathway in the incubations over time is reduced and tryptophan ap-

pears to be catabolised via deamination forming metabolites including indole lactate, indole 

acetaldehyde and indole ethanol. Possibly of greater significance is the formation of low but 

detectable levels of melatonin and its precursor N-acetyl serotonin (Figure 5.12). Serotonin is 
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produced extensively in the GI tract (Kennedy et al., 2017) but the formation of melatonin 

has not been described. In this case it is clear that melotonin is being produced by bacterial 

activity. While melatonin occurs in blood at very low levels the levels have been found to be 

up to 100 times higher in the GI tract which is a major source of melatonin in the body and it 

has been reported the meltonin has an influence on the GI tract immune system (Terry et al., 

2008). However, trials using melatonin as a treatment in experimental colitis found that while 

acute treatment with melatonin reduced the colitis chronic administration provokes it 

(Marquez et al., 2006). Interestingly melotonin production why comesal bacteria in plants has 

been found to be important in plant function (Tan et al., 2013), it is possible that melatonin 

production by commensal bacteria might also be important. 

There are many other metabolites affected by incubation of the CD samples, however, of 

greatest interest are those that increase since decreasing metabolites may just reflect break-

down of these by the bacteria as nitrogen or carbon sources. There is a marked increase in 

levels of adenine and adenosine while levels of other purines and pyrimidines largely de-

crease. The increase in adenosine might be related to an increased requirement for NAD+ 

which is required for the production of ATP from the TCA cycle. It would seem likely that 

oxidative metabolism will increase in the bacterial population in the samples since in the large 

colon metabolism is anaerobic. This might explain why there is a very large increase in thia-

mine during the incubation since thiamine is required for the conversion of pyruvate to acetyl 

CoA which can then enter the Krebs cycle. 

 



  

128 
 

5.4.3 Metabolites at 0 vs. 24/48 hrs in HC faecal incubations 

As for the incubations with the CD samples there were not many samples which increased in 

the HC incubations with time. Dodecanoic acid and and tetradecanoic acid levels were de-

creased to a similar extent as observed in the CD samples and haemoglobin metabolites were 

also markedly decreased. In the HC samples the levels of tryptophan metabolites formed via 

deamination increases as observed for the CD samples. The OPLSDA model separating time 0 

and the 24/48 h samples in the HC incubations did not select melatonin and N-acetylserotonin 

as being important variables. However, as in the case of the CD samples there are marked 

increases in these low abundance metabolites (Figure 5.13).  This reinforces the idea that 

conversion of N-acetyl serotonin to melatonin is dependent on aerobic metabolism. Melato-

nin is a powerful antioxidant and this might explain why it is produced when the faecal sam-

ples are incubated in air (Tan et al, 2013). As in the case of the CD samples there is a marked 

increase in thiamine indicating a switch to aerobic metabolism. Among the few metabolites 

which increase in the incubations a marked increase in the levels of GABA is of interest. The 

production of GABA by commensal bacteria is known to occur (Sharon et al, 2014) and the 

increase in GABA in the CD incubations is smaller and not statistically significant so this could 

be a marker of a more favourable bacterial profile in the HC samples. 
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Figure 5.13: Extracted ion current showing increase in N-acetyl serotonin and melatonin in HC incubations in 24/48 h sam-

ples in comparison with 0 h samples (lower traces). 

 

5.5 Conclusion 

It can be concluded incubation of faecal samples from Crohn’s disease patients with 7 dietary 

fibre options did not yield good discriminatory models in SIMCA, implying that the fibres as 

carbon sources did not produce significantly different levels of metabolites in each group. It 

might have been of more interest to observe the effect of the fibres on the production of 

short chain fatty acids such as butyrate which have a role in microbiome health, however the 

screen used was not designed to pick up these metabolites. On the other hand, it was found 

that metabolites differed between the CD samples and HC samples particularly with respect 

to fatty acid metabolism and haemoglobin metabolism. Most interestingly the time of incu-

bation had a marked effect on the production of melatonin both in the HC and the CD incu-

bations. The ability of the microbiome to influence the immune system and the brain is be-
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coming increasingly apparent. The current work provides the first observation of the for-

mation of melatonin as a result of the action of microbes isolated from the gut and indicates 

that this is in some way linked to aerobic metabolism. 
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6 PREDICTION OF CANCER ASSOCIATED MUSCLE WASTING FROM HUMAN PLASMA ME-

TABOLITES 

 

6.1 Introduction 

Cancer cachexia has been defined as "a multifactorial syndrome characterized by an ongoing 

loss of skeletal muscle mass that cannot be fully reversed by conventional nutritional support 

that leads to progressive functional impairment” (Fearon et al., 2011). The agreed diagnostic 

criterion for cachexia are either weight loss >5% over 6 months or BMI <20 with any degree 

of weight loss >2% or appendicular skeletal muscle index consistent with sarcopenia (males 

<7·26 kg/m2; females <5·45 kg/m2) and any degree of weight loss >2% (Fearon et al., 2011). It 

is characterized by loss of adipose tissue, muscle atrophy, and loss of appetite and impacts 

negatively on the quality of life of patients with cancer, response to treatment and survival 

(Fearon et al., 2006). Managing cachexia should therefore be considered a central component 

of cancer patient treatment.  

 

Skeletal muscle mass is maintained by a balance between protein synthesis and degradation, 

which is principally regulated by physiologic inputs such as nutritional status and physical ac-

tivity (Fearon et al., 2012). Many studies have shown that muscle loss may occur inde-

pendently of changes in fat mass and can be an early phenomenon that is difficult to detect 

against a background of excess body weight (Martin et al., 2013). As cachexia can develop 

progressively through various stages, from pre‐cachexia to cachexia to refractory cachexia, 

early screening and staging is particularly important to prevent or delay its onset (Fearon et 

al., 2011). An improved approach for detecting the evolution of muscle and or fat wasting 
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could possibly help target early intervention and treatment. Imaging methods such as CT and 

MRI are currently considered the most precise measures of body composition but have sev-

eral limitations including cost and exposure to radiation (Yip et al., 2015).  

 

Recent progress in high-throughput analytical technologies and bioinformatics now permits 

simultaneous analysis of hundreds of compounds constituting the metabolome (Mestrangelo 

et al., 2014). Metabolomic analyses give complex fingerprints that appear to be characteristic 

of a given metabolic phenotype or diet. There have been very few previous studies attempting 

to quantify metabolites associated with cachexia. Those that have have identified metabolites 

that are possibly discriminative of cachexia indicating there maybe scope for metabolomics 

based studies to identify biomarkers of cachexia (O’Connell et al., 2008, Eisner et al.,, 2011, 

Fujiwara et al., 2014, Yang et al., 2018, Cala et al., 2018). 

 

Although many have suggested that metabolomic analysis has the potential to change how 

nutrition research is conducted, much of this potential remains unrealised. Building upon the 

theory that metabolites produced from tissue breakdown are likely to be found in plasma and 

could potentially be a sensitive indicator of tissue wasting we investigated whether we could 

detect metabolites associated with cachexia from the plasma of cancer patients. Plasma was 

selected as the biofluid of choice, since as previously shown several end products of muscle 

catabolism (e.g. creatinine and methylhistidine) can be easily measured here (Argiles et al., 

2014). We therefore attempted to identify patterns of plasma metabolic profiles that discrim-

inate the condition of weight loss. 
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6.2 Materials and Methods  

6.2.1 Chemicals and Solvents 

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, UK) and 

HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Millipore, Watford, 

UK). AnalaR-grade formic acid (98%) was obtained from BDH-Merck (Poole, UK). Authentic 

stock standard metabolites (Sigma-Aldrich, Poole, U.K.) were prepared as previously de-

scribed and diluted four times with ACN before LC-MS analysis. Ammonium acetate was pur-

chased from Sigma-Aldrich (Poole, UK). 

6.2.2 Participants 

Patients over 18 years of age were recruited to the study from the regional upper GI multi-

disciplinary team meeting. Written informed consent was obtained from all subjects and eth-

ical approval received from Lothian Research Ethics Committee (UK). Participating patients 

had a diagnosis of upper gastrointestinal cancer (oesophageal, gastric, pancreatic) and were 

undergoing surgery with the intent of curative resection of the primary tumour. Skeletal mus-

cle cross-sectional area (CSA) was measured from routine CT scans performed prior to any 

surgical or oncological intervention. A transverse CT image from the third lumbar vertebrae 

(L3) was assessed for each scan date and tissue volumes estimated using semi-automated 

software. Cross-sectional area for muscle was normalized for stature (cm2/m2) to calculate 

the skeletal muscle index (SMI).  

6.2.3 Sample collection and storage 

Fasting venous blood samples were taken at induction of anaesthesia approximately four to 

six weeks after the cessation of any neoadjuvant chemotherapy. Samples were allowed to 
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clot at room temperature. Serum was separated by centrifugation at 1300 RPM for 12 

minutes at a temperature of 20 degrees. C-reactive protein (CRP) was measured in Clinical 

Chemistry, Royal Infirmary, Edinburgh (fully accredited by Clinical Pathology Accreditation 

Ltd.) using standard automated methods. A CRP ≥5 mg/l was considered consistent with the 

presence of systemic inflammation. Clinical details, degree of weight loss from self-reported 

pre-illness stable weight and body mass index (BMI) were recorded. Samples were stored at 

-80°C until they were transported to the laboratory located at the Strathclyde Institute of 

Pharmacy and Biomedical sciences in cool bags at -30°C for further analysis. Samples were 

analysed blindly by the metabolomics laboratory. 

6.2.4 Sample preparation 

Exactly 200 µL of the sample was mixed with 800 µL of acetonitrile containing 10 µg/ml of 2 

13C glycine (Sigma-Aldrich, Poole, U.K.) as an internal standard to ensure retention time sta-

bility, and then centrifuged for 10 min before transferring into a vial with an insert. The pooled 

sample was prepared by pipetting 50 µL from each of the 18 samples and then mixing them 

together before diluting 200 µL of the pooled sample with 800 µL of acetonitrile containing 

10 µg/mL of 2 13C glycine internal standard and centrifuging. Additionally, the prepared mix-

tures of authentic standard metabolites containing 10 µg/mL of 2 13C glycine as internal stand-

ard were run.  

6.2.5 LC-MS conditions  

Liquid chromatographic separation was carried out on an Accela HPLC system interfaced to 

an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) using 

both a ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading UK). The column was eluted 

with a mobile phase consisting of 20 mM ammonium carbonate in HPLC-grade water (solvent 
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A) and acetonitrile (solvent B), at a flow rate of 0.3 mL/min. The elution gradient was an A:B 

ratio of 20:80 at 0 min, 80:20 at 30 min, 92:8 at 35 min and finally 20:80 at 45 min. The nitro-

gen sheath and auxiliary gas flow rates were maintained at 50 and 17 arbitrary units. The 

electrospray ionisation (ESI) interface was operated in both positive and negative modes. The 

spray voltage was 4.5 kV for positive mode and 4.0 kV for negative mode, while the ion trans-

fer capillary temperature was 275°C. Full scan data were obtained in the mass-to-charge ratio 

(m/z) range of 75 to 1200 for both ionisation modes on the LC-MS system fully calibrated 

according to manufacturer’s guidelines. The resulting data were acquired using the XCalibur 

2.1.0 software package (Thermo Fisher Scientific, Bremen, Germany).  

6.2.6 Data extraction and analysis 

Data extraction for each of the samples was carried out by MZMine software. The extracted 

ions, with their corresponding m/z values and retention times, were pasted into an Excel 

macro of the most common metabolites prepared in–house to facilitate identification. The 

lists of the metabolites obtained from these searches were then carefully evaluated manually 

by considering the quality of their peaks and their retention time match with the standard 

metabolite mixtures run in the same sequence. All metabolites were within 3 ppm of their 

exact masses. Statistical analyses were performed using both univariate with Microsoft Excel 

and multivariate approaches using SIMCA-P software version 14.1 (Umetrics, Umea, Swe-

den.).  

 

6.3 Results 

Plasma samples from 18 patients were analysed and the metabolomic profiles produced al-

lowed division of the patients into two distinct groups. These profiles corresponded to weight 
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loss data of the patients with the separation of the groups corresponding with less than or 

more than 5% weight loss as demonstrated in Table 6.1. There were more males in the <5% 

weight loss group. The mean % weight loss in the >5% weight loss group was 14.40% and 

these patients had a higher mean CRP (17.88mg/l compared with 32.56mg/l in the >5% weight 

loss group). SMI was similar between the two groups (47.17 compared with 45.82 in the >5% 

weight loss group). Overall a total of 37 metabolites were significantly associated with weight 

loss. The metabolomes with the highest fold change were species of LysoPE, Lyso PA and 

LysoPC (P=0.002). The largest affected group were the glycerophospholipids. Fatty acyls and 

products of lipid and amino acid metabolism were also increased. 

 

Table 6.1: Patient details 

 Group 1 

<5% weight loss (n=9) 

Group 2 

>5% weight loss (n=9) 

Male: Female 8:1 5:4 

% weight loss 0.86 (2.47) 14.40 (6.56) 

Skeletal Muscle Index 47.17 (6.26) 45.82 (7.72) 

BMI (kg2/m2) 26.29 (4.64) 24.93 (4.42) 

CRP (mg/l) 17.88 (27.06) 32.56 (50.45) 

Cancer type Pancreatic – 1 

Oesophageal – 6 

Gastric - 2 

Pancreatic – 6 

Oesophageal – 2 

Duodenal - 1 

All data are: mean (standard deviation) 

 

Figures 6.1 and 6.2 show the principal components analysis (PCA-X) of all 18 samples and 3 

quality control (QC) samples. PCA-X, an unsupervised model in SIMCA-P, produces a natural 

scatter of the samples based on their characteristic metabolomics footprints. It can be seen 

in the figure (samples colored according to weight loss) that, in general, there is no separation 

of samples into groupings based on weight loss. Additionally, one of the three QC samples is 
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quite separated from the other two which points to some lack of detection stability (Figure 

6.1). 

 

Figure 6.1: PCA-X analysis of the metabolomics footprint of the 18 plasma samples from cancer patients. 

Circles colored according to the weight loss categorization as weight stable or weight losing. The red 

circles represent pooled samples. Green circles (group 1) = weight stable. Blue circles (group 2) = weight 

losing. The y-axis represents variation within the groups while the x-axis represents variation between 

the groups. 
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Figure 6.2: PCA-X analysis of the metabolomics footprint of the 18 plasma samples from cancer patients 

with the pooled samples removed. Green circles (group 1) = weight stable. Blue circles (group 2) = weight 

losing. The y-axis represents variation within the groups while the x-axis represents variation between 

the groups. 

 

Supervised models enable identification of metabolites that have the most significant contri-

bution to a given clustering pattern. In SIMCA, supervised analysis can be carried out using 

OPLS-DA models. The OPLS-DA model works by identifying metabolomics differences in two 

pre-determined groupings. Based on OPLS-DA, both group 1 (weight stable) and group 2 

(weight losing) samples were clearly separated implying that there are clear metabolomics 

differences between the two groups (Figure 6.3). The permutation test carried out on the 

model showed validity (Figure 6.4). 
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Figure 6.3: OPLS-DA analysis to compare weight losing samples with weight stable samples. There is 

clear separation of both groups implying significantly different metabolic footprints. The CV-ANOVA 

= 0.0477247. The y-axis represents variation within the groups while the x-axis represents variation be-

tween the groups. 
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Figure 6.4: Cross validation of the OPLS-DA model comparing the weight losing samples with weight 

stable samples 

 

Table 6.2 shows the metabolites found to be significantly different between the two weight 

group categories. The ratio represents the intensity of the metabolites relative to the “weight 

stable” patient group. 
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Table 2: Significant metabolites that differ between weight loss vs. weight stable groups 

Var ID M/Z Rt min Formula Metabolite  Ratio 2/1 P-value VIPpred 

Fatty acids 

2585 279.23 4.18 C18H32O2 Linoleate 1.27 0.002 1.2 

3144 283.26 4.17 C18H36O2 Octadecanoic acid 1.24 0.015 1 

130 303.23 4.12 C20H32O2 Eicosatetraenoic acid 1.32 <0.001 1.3 

129 305.25 4.17 C20H34O2 Eicosatrienoic acid 1.37 <0.001 1.4 

2223 255.23 4.27 C16H32O2 Hexadecanoic acid 1.2 0.006 1 

3629 329.25 4.09 C22H34O2 Docosapentenoic acid 1.38 <0.001 1.5 

133 331.26 3.91 C22H36O2 Docosatetraenoic acid 1.66 0.001 1.6 

Lipid metabolism/ glycerophospholipids 

24 363.16 4.37 C16H29O7P LysoPA 16:0 1.55 0.024 1.7 

2628 435.25 4.46 C21H41O7P LysoPA18:1 1.35 0.005 1.4 

257 437.27 4.23 C21H43O7P LysoGP 18:0 1.23 0.01 1.1 

296 454.29 4.56 C21H44NO7P LysoPE 16:0 1.29 0.014 1.3 

258 457.24 4.25 C23H39O7P LysoPA 20:4 1.47 <0.001 1.7 

261 464.28 4.42 C22H44NO7P LysoPC 14:0 1.3 0.007 1.3 

2729 478.29 4.39 C23H44NO7P LysoPE18:2 1.64 0.024 1.9 

305 480.31 4.36 C23H46NO7P LysoPE18:0 1.79 0.012 1.8 

277 480.34 4.37 C24H50NO6P Lyso PC 16:1 1.34 0.026 1.2 

3177 485.27 4.27 C25H43O7P LysoPA20:4 1.61 0.02 2 

275 496.34 4.43 C24H50NO7P LysoPC 16:0 1.3 0.014 1.1 

2730 504.31 4.36 C25H48NO7P LysoPE20:2 1.42 0.021 1.6 

281 508.34 4.45 C25H50NO7P LysoPE 18:0 1.27 0.027 1.2 

2722 514.29 4.28 C26H46NO7P LysoPC18:4 1.79 0.003 1.9 

286 520.34 4.36 C26H50NO7P LysoPC18:2 1.49 0.013 1.6 

282 524.37 4.33 C26H54NO7P LysoPC18:0 1.36 0.031 1.1 

2734 526.29 4.29 C27H46NO7P LysoPE22:5 1.78 0.002 2.2 
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2733 528.31 4.33 C27H48NO7P LysoPE22:4 1.82 0.003 1.9 

288 540.31 4.35 C28H48NO7P Lyso PC 20:5 1.38 0.027 1.9 

2726 544.34 4.31 C28H50NO7P LysoPC20:4 1.65 0.002 1.7 

2725 546.35 4.29 C28H52NO7P LysoPC20:3 1.64 0.005 1.8 

2727 570.36 4.24 C30H52NO7P LysoPC22:5 1.61 0.008 2 

Bile acids and steroids 

413 367.23 4.16 C24H32O3 Oxocholatrienoic Acid 1.41 0.044 1.8 

808 317.25 4.32 C21H34O2 Tetrahydroprogesterone 1.21 0.042 1 

Metabolism of cofactors and vitamins 

3059 124.04 7.94 C6H5NO2 Nicotinate 0.58 0.031 1.5 

PE = phosphatidyl ethanolamine, PC = phosphatidyl choline, PA =phosphatidic acid. 
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6.4 Discussion 

In this study we performed LC-MS based metabolomics analysis to reveal the metabolic 

profile of cancer cachexia. We were able to demonstrate distinct profiles associated with 

more or less than 5% weight loss. It can be seen that most of the metabolites affected 

fall within the lipid pathways. The clearest effect is that several long chain fatty acids and 

lysolipids are elevated in the plasma of the patients with higher weight loss. Lysolipids 

are very abundant in plasma and for instance Lyso PC 16:0 is the most abundant com-

pound by response in this set of sample thus an increase of 1.3 fold between weight 

stable and weight losing patients represents a major shift in metabolic output, shifts in 

minor components might not be as significant. Figure 6.5 shows a heat map showing the 

relative abundance of the lyso lipids in these plasma samples. Lyso PC18:2 is almost as 

abundant as lyso PC 16:0 and is elevated by 1.49 fold. Beyond these two lysolipids the 

response is much lower but there are many more minor lipids showing similar or greater 

fold changes in the weight losing patients. In a previous study it was found that lysolipids 

in several classes were elevated in blood and ascites from ovarian cancer patients (Xu et 

al., 2001). The current study therefore demonstrates an association between of lipolysis-

promoting activity in the serum of cachectic cancer patients and weight loss. Most cur-

rent research into cancer cachexia focuses on muscle wasting however, the importance 

of lipid metabolism is beginning to be recognised. It has been observed that lyso PA lipids 

stimulate the growth of ovarian and breast cancer cells (Xu et al., 1995). 
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Figure 6.5: Heat map showing relative levels of lysolipids purple= > 30%, yellow >1% blue >0.1% 

 

Lipids are biochemical intermediates that play an important role in cellular homeostasis, 

including cell cycle regulation, cell signalling and energy storage (Meer et al., 2008). Ad-

ipose loss in cachexia is believed to be mainly caused by an increase in lipolysis rather 

than a reduction in lipid synthesis (Dahlman et al., 2010). Increased lipolytic activity, ev-

idenced by elevated fasting plasma glycerol and free fatty acids is a driver of fat loss in 

advanced cancer patients but the underlying causes of elevated lipolysis are not known 

m/z Rt min Chemical formula Metabolite name Group 1 Group 2 

496.339 4.4 C24H50NO7P LysoPC 16:0 

  520.339 4.4 C26H50NO7P LysoPC18:2 

  544.338 4.3 C28H50NO7P LysoPC20:4 

  435.252 4.5 C21H41O7P LysoPA18:1 

  464.278 4.4 C22H44NO7P LysoPC 14:0 

  546.354 4.3 C28H52NO7P LysoPC20:3 

  437.267 4.2 C21H43O7P LysoGP 18:0 

  480.344 4.4 C24H50NO6P Lyso PC 16:1 

  478.292 4.4 C23H44NO7P LysoPE18:2 

  570.356 4.2 C30H52NO7P LysoPC22:5 

  480.308 4.4 C23H46NO7P LysoPE18:0 

  454.292 4.6 C21H44NO7P LysoPE 16:0 

  526.292 4.3 C27H44NO7P LysoPE22:5 

  457.235 4.3 C23H39O7P LysoPG 20:4 

  524.278 4.3 C27H44NO7P LysoPC18:0 

  508.341 4.3 C25H52NO7P LysoPE 18:0 

  504.31 4.4 C25H48NO7P LysoPE20:2 

  485.267 4.3 C25H43O7P LysoPA20:4 

  363.158 4.4 C16H29O7P LysoPA 16:0 

  514.294 4.3 C26H46NO7P LysoPC18:4 

  528.31 4.3 C27H48NO7P LysoPE22:4 

  540.309 4.4 C28H48NO7P Lyso PC 20:5 
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(Tsoli et al., 2016). Other mechanisms including decreased lipogenesis impairment in ad-

ipogenesis, elevated fat oxidation, and decreased lipid deposition have also been at-

tributed to fat loss in cancer (Zuijdeest-Van et al., 2000). Compared to non-cancer cells, 

cancer cells demonstrate significant metabolic alterations. Normal cells are able to reg-

ulate anabolic and catabolic pathways in response to changes in nutrient availability 

whereas cancer cells show unregulated growth regardless of nutrient availability (Vander 

Heiden et al., 2010). Lipid metabolism is highly altered in proliferating cells. Unlike nor-

mal cells which rely mostly on the uptake of fatty acids, cancer cells increase adipogen-

esis which is needed for membrane synthesis and signalling molecules (Belorbi-Diefaflia 

et al., 2016). Recent studies have demonstrated that activation of growth promoting 

pathways results in a dependence on unsaturated fatty acids for survival under oxygen 

deprivation (Ackerman et al., 2015).  

Different types of lipids have distinct physiological roles. Triacyglycerols are mainly used 

as storage within adipose tissue. Following hydrolysis of triacyglycerols, free fatty acids 

are released into the circulation as an energy source for most cells (Ahmadian et al., 

2009). Glycerophospholipids along with cholesterol are the major lipid component of cell 

membranes. Lysophospholipids (LPL) are usually the result of phospholipase type A en-

zymatic activity (Raynal et al., 2005). LPLs have been shown to be involved in many phys-

iological and pathological processes such as inflammation and tumorigenesis (Raynal et 

al., 2005). Over the past decade, it has become clear that medically relevant LPLs activi-

ties are mediated by specific G protein-coupled receptor (GPCR), implicating them in the 
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etiology of a growing number of disorders including cancer (Yan et al., 1996, Sutphen et 

al., 2004, Zhao et al., 2007). Phosphatidylcholine (PC) is a glycerophospholipid with a 

polar phosphocholine head group and two non-polar fatty acid hydrocarbon chains 

(Meer et al., 2008). It is the main membrane-forming phospholipid in mammalian cells. 

Removal of one of the fatty acids either by an enzyme or spontaneously by hydrolysis 

results in lyso-phosphatidylcholine (LPC) (Berdel et al., 1986). LPC exerts a lytic action on 

cell membranes (Taylor et al., 2007). In contrast to the present study several studies have 

shown that an increased demand for lipids by the tumour is reflected in decreased levels 

of several lipids in the blood. Decreased levels of lysoPC have been seen in lung and liver 

cancers (Kriat et al., 1993).  

 

Many different biomarkers have been correlated with cachexia. In particular cancers of 

the oesophagus and pancreas have been linked with high levels of plasma glycerol and 

free fatty acids (Shaw et al., 1987, Das et al., 2013). Weight losing cancer patients have 

been shown to have an increased turnover of both glycerol and fatty acids compared 

with cancer patients without weight loss (Ebadi et al., 2015). Others have suggested that 

observed increases in lipolysis and triglyceride-fatty acid cycling in cachectic patients 

with oesophageal cancer was due to alterations in nutritional status rather than disease 

presence (Klein et al., 1990). Cachectic ovarian cancer patients have been shown to have 

increased levels of free fatty acids, monoacylglycerides and diglycerides in their serum 
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and ascitic fluid (Gercel-Taylor et al., 1996). Free fatty acids may therefore provide en-

ergy for the tumour or signaling molecules with the glycerol molecules released during 

the breakdown of triacylglycerides being used for gluconeogenesis by the liver.  

 

There have been very few previous attempts to profile metabolites associated with ca-

chexia with varying results and important metabolites produced in each study. Metabo-

lomics research in cachexia only began in 2008 in the C26 mouse model of cancer ca-

chexia (O’Connell et al., 2008). This was the first study to demonstrate a distinct meta-

bolic profile associated with the onset of muscle wasting which included increased levels 

of very low and low density lipoprotein and abberant glycosylation of -DG. The first 

human based study in cancer cachexia also found large numbers of glycerophospholipids 

and metabolites associated with amino acid metabolism, the urea cycle, intermediary 

metabolism (glycolysis, TCA cycle, 1-carbon metabolism) and creatinine were prominent 

(Eisener et al., 2011). This group were therefore able to develop a single time-point urine 

test using concentrations of 63 urinary metabolites to diagnose muscle wasting. This 

minimally invasive test was rapid, robust, quite accurate (82.2%), and able to detect a 

small but physiologically relevant rate of muscle loss. One such other quantitative 

metabolomics study supported the hypothesis that lean and fat mass have distinct met-

abolic profiles and that broad categories of high and low muscle mass quantity were able 

to be accurately predicted from metabolite concentrations in urine and serum. They 
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were therefore able to identify occult sarcopenia in patients with cancer (Stretch et al., 

2011).  

 

Recent studies have attempted to separate pre-cachectic, cachectic, weight stable can-

cer patients and healthy controls using serum metabolomics analysis. They showed a 

clear separation of the four groups with 45 metabolites and 18 metabolic pathways being 

associated with cachexia; fifteen of these metabolites being identified as highly discrim-

inative (Yang et al., 2018). Levels of metabolites have been shown to vary throughout 

the day in patients with pancreatic cancer. Lower levels of paraxanthine (caffeine me-

tabolite) being the only metabolite linked to cachexia not to show diurnal variation. They 

did not however control for coffee consumption leading to possible bias in their results 

(Fujiwara et al., 2014). The most recent cachexia-based metabolomics study included 8 

cachectic and 7 non cachectic patients and analysed them using three analystical plat-

forms. Contrary to the present study they found a significant reduction in amino acids 

and glycerophospholipids associated with cachexia – a difference that has not previously 

been associated with cachexia and a high increase in cortisol levels (Cala et al., 2018). 

Together these findings suggest that metabolomics based research has potential to pro-

file lipid and amino acid metabolism but large patient numbers are required to account 

for the multiple variations in metabolites that have already been seen.  
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All bar one of these studies (Eisener et al., 2011) similarly to ours used 5% weight loss as 

a cut off to divide patients. Eisener et al., used serial CT scanning and SMI to measure 

muscle loss or gain over time to compare predictive models. What is particularly inter-

esting about the current study is that the analysis was performed blindly. Patients were 

not grouped until the metabolic profiles were determined suggesting that metabolomics 

is able to predict percentage weight loss in these patients. Future studies should also 

compare cancer patients with proven CT sarcopenia and weight loss to those who are 

weight stable.  

 

Although many have suggested that metabolomic analysis has the potential to change 

how nutrition research is conducted, much of this potential remains unrealised. Blood‐

based metabolomics is a promising method for cachexia research. However, as seen re-

sults are often difficult to replicate due to the heterogeneity of the populations and study 

sizes. One obvious limitation of this study is the number of samples used and the differ-

ences in sex between the groups. This was an exploratory study involving patients with-

out refractory cachexia and was not designed to identify sex specific differences. It was 

designed to give a better understanding of the complex pathophysiology apparent in ca-

chexia. There was a mixture of tumour types in each of the groups. Despite this we were 

able to demonstrate a metabolic profile consistent with the definition of 5% weight loss. 

This may have implications when considering the definitions of cachexia for use in clinical 

trials.  
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6.5 Conclusion  

These results show that metabolomics profiling of plasma from cancer patients is differ-

ent between cachectic and non-cachectic patients. Differences highlighted in the break-

down of lipids provide an understanding of the mechanisms involved in the pathogenesis 

of cachexia. A better understanding of these mechanisms and the potential sharing of 

these datasets between groups might identify novel therapeutic approaches to treat this 

clinical condition. 
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7 GENERAL DISCUSSION AND CONCLUSION 

From the outset, this study was intended to investigate the application of metabolomics 

in human health and disease by assessing biomarkers associated with various diseases. 

All the studies described in this thesis employed  a liquid chromatography-mass spec-

trometry (LC-MS) analytical platform based on the Orbitrap Exactive mass analyser, and 

using hydrophilic interaction liquid chromatography (HILIC) or/and reversed phase (RP) 

analytical columns. The LC-MS platform employed XCalibur software through which the 

system functionality was controlled. This platform has the advantage of accurate mass 

detection which provides capacity for direct metabolite identification even in the ab-

sence of chromatographic resolution. Metabolite identification was based on retention 

times of the samples relative to authentic reference standards injected at specified in-

tervals into the system in the same sequence. In addition, all the studies employed both 

unsupervised (PCA-X) and supervised (OPLS-DA) models in SIMCA in order to determine 

discriminating metabolite biomarkers responsible for the observed natural clustering 

patterns and supervised separations in OPLS-DA.  

The first project under this study (Chapter 3) investigated the metabolomic effects of an 

80 km ultramarathon exercise. The runners underwent an 80K treadmill and metabo-

lomic profiling was carried out on plasma samples obtained before (pre-80K) and after 

the trial (post-80K). The samples were analysed by using high resolution mass spectrom-

etry in combination with both HILIC and RP chromatography. The data was extracted and 
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searched against a metabolite library. The extracted and putatively identified features 

were modelled using Simca P14.1 software. A principal component analysis (PCA) of the 

HILIC data showed clear separation between the pre- and post-exercise samples. The 

pre- and post-samples analysed by RP were also separated by PCA. FDR analysis indicated 

that all features with a P value <0.05 were significant. In this study, many of the amino 

acids were lowered in plasma post-exercise but the clearest impact of endurance exer-

cise observed was on fatty acid metabolism but with respect to formation of medium 

chain unsaturated and partially oxidised fatty acids and conjugates of fatty acids with 

carnitines. Many of these metabolites were increased several fold. The most likely expla-

nation for the complex pattern of medium chain and oxidised fatty acids formed could 

be that exercise provokes the proliferation of peroxisomes. The peroxisomes may serve 

two functions. First, they may provide a readily utilisable form of energy through for-

mation of acetyl carnitine and other acyl carnitines for export to mitochondria in the 

muscles; which can utilise these substrates without investment of the ATP required to 

conjugate free fatty acids to CoA. Secondly the peroxisomes may serve to regulate the 

levels of oxidised metabolites of long chain fatty acids since many of these metabolites 

can provoke biological responses such as vasoconstriction or have pro-inflammatory ac-

tivity. 

The second study described in Chapter 4 evaluated the metabolomics effects of E. coli 

incubation in different carbon sources using three types of fibres: 1% cooked meat, 1% 

maize meal and 1% olive kernel oil. Each of these was compared to the negative control 
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cultures enriched with 1% D glucose. The key observation from this study was that there 

were significant effects on various metabolite pathways particularly those associated 

with amino acid, lipid, carbohydrate, and nucleotide metabolism. In addition, there were 

effects on intermediates of peptide and polyketide biosynthesis, as well as on xenobiotic 

breakdown products and vitamins cofactors. Taken together, these findings suggested 

that the E. coli metabolome is closely associated with the type of fibre that the microor-

ganism is subjected to. This observation is consistent with many previous studies which 

reported that the metabolome of gut microbiota depends on the microbial composition 

and functional capacity of the microorganisms, as well as nutrient availability and its 

physicochemical properties, age of host, and transit time of the colon. Nutrient availabil-

ity, particularly the carbohydrate to nitrogen ratio, is believed to be the most important 

regulator of bacterial metabolism, as it influences preference of saccharolytic vs proteo-

lytic fermentation. 

In Chapter 5, the findings of the third study are reported. This study investigated the 

metabolomic effects of 7 different dietary fibres on incubations of faecal samples taken 

from Crohn’s disease patients and healthy controls. There was little effect on the meta-

bolic profile of the samples resulting from the seven different fibres. The major differ-

ences were between the CD samples and the HC samples which had higher levels of fatty 

acids and lower levels of haemoglobin metabolites. There were also major differences 

between the 0h incubation samples and the 24/48 h incubation samples for both the HC 
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and CD samples where the most interesting observation was the formation of the neu-

rologically active compound melatonin with time. 

The final study reported in Chapter 6 investigated whether it was possible to predict 

cancer associated muscle wasting from plasma metabolites. Participants recruited for 

this study were men and non-pregnant women over 18 years of age. Written informed 

consent was obtained from all subjects and ethical approval received from Lothian Re-

search Ethics Committee (UK). Participating patients had a diagnosis of upper gastroin-

testinal cancer (oesophageal, gastric, pancreatic) and were undergoing surgery with the 

intent of resection of the primary tumour. The key findings observed in this study were 

that the levels of significantly altered metabolites were generally higher in patients who 

had lost so much weight (>7.6 kg weight loss). The discriminating metabolites belonged 

mainly to the lipid metabolic pathways where long chain fatty acids and lysolipids were 

affected. Unlike in previous studies on urinary metabolites in cancer cachexia, there were 

virtually no significantly affected metabolites in the amino acid metabolic pathway, the 

urea cycle, intermediary metabolism (glycolysis, TCA cycle, 1-carbon metabolism) and 

creatinine pathway due perhaps to different levels of these metabolites in the two bio-

fluids. It should be remembered that all participants considered in this study had some 

form of gastrointestinal cancer; the only difference between them was in the extent of 

the associated weight loss. It is thus not surprising that the differences observed be-

tween the two groups of weight loss were not very marked. Nevertheless, the observed 
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effects on lipid metabolisms in cancer cachexia suggests that there is an increased ten-

dency towards peroxisomal proliferation in patients who had lost significant muscle 

mass, thus demonstrating an association between lipolysis-promoting activity in the se-

rum of cachectic cancer patients and weight loss. 

In conclusion, the various studies presented in this thesis have reiterated the ability of 

LC-MS based metabolomic profiling in discriminating certain disease states from the 

physiological state. Although the studies considered vastly differing physical states rang-

ing from healthy participants performing a simulated ultramarathon exercise on a tread-

mill to diseased participants suffering from either Crohn’s disease or gastrointestinal can-

cer, our findings reveal that LC-MS based metabolomics was capable of determining the 

metabolic alterations associated with each disease state. This further reinforces the ca-

pacity for metabolomics in discovering new biomarkers for various diseases that could 

be crucial in the diagnosis, monitoring disease progression, therapeutic efficacy evalua-

tion of novel treatment, and detecting relapses following treatment. It is considered that 

depending on the disease involved, metabolite enrichment in various biofluids (such as 

plasma or urine) may vary and so it is recommended that careful elaluation of different 

biofluids should be conducted to ascertain the one with the most unique biomarkers for 

diagnostic purposes.  

FUTURE WORK 
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With regard to the metabolomics of extreme exercise there is still more information that 

can be obtained from the the data set since there is rich metadata associated with it such 

as VO2max, measurments and marathon completion times. Thus, more data modelling 

could be carried out on the existing data set.  

The observations on the incubations of faecal samples with different dietary fibres pro-

duced some interesting preliminary observations. It would be interesting to explore the 

metabolism of tryptophan in detail in these samples by using stable isotope labelled tryp-

tophan as a substrate which both provide strong confirmation of the identities of metab-

olites such as melatonin and allow the rate of metabolism to be explored. 

Extending the work on cachexia would ideally require another cohort of patients to pro-

vide samples in order to confirm that the metabolomic changes are reproducible. Dis-

covery of reliable biomarkers could improve treatment through allowing the markers to 

be monitored to indicate the effectiveness of treatment. 
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