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SUMMARY 

This thesis contains eight chapters, dealing with machine 

analysis and representation. A definition and a brief survey of 

previous investigation devoted to shaded-pole motors and the 

application of finite element method for solving the two-dimensional 

electromagnetic field is given in Chapter 1. An outline of the 

present investigation is also given. In Chapter 2, the 

experimental requirements and details of the equipment are given. 

This includes the techniques of recording the transient torque 

patterns and the method of measuring the complete torque-speed 

characteristics. The experimental methods for parameters 

determination are also mentioned. 

The finite element method is outlined in Chapter 3. This 

chapter deals also with the assumptions made, the formulation of the 

non-linear energy function, the solution of Poisson's equation and an 

example of a simple shape contianing 16 elements for illustrating 

the method. 

In Chapter 4, the computer program for the finite element is 

outlined. The iteration process and the numerical representation of 

the magnetization curve are mentioned. Application of the finite 

element method to the shaded-pole motor is also given. Calculation 

of parameters by finite element technique is given in Chapter 5. 

Self inductance is calculated using the concept of stored energy and 

the results of self and mutual inductances are tabulated. Basic 

performance equations of an electrical machine are derived in 

Chapter 6. Solution of the basic performance equations, by a 

step-by-step numerical method, is also given. 

In Chapter 7, the steady state performance equations are 
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established in terms of harmonic currents and inductance 

coefficients. The flux linkages are evaluated by the approximated 

functions of mutual inductances. The electromagnetic torque is 

calculated from the stored energy in the magentic field. 

General conclusions and suggestion for further work are 

mentioned in Chapter 8. 
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CHAPTER 1 

INTRODUCTION 

A shaded-pole motor may be defined as a single-phase induction 

motor provided with an auxiliary short-circuited winding displaced 

in space from the main winding and carrying current which has a 

phase displacement from the main winding current. Because of its 

simple construction, low cost and reliability, the shaded-pole motor 

is one of the most popular motors for a large variety of 

applications requiring power of 300 watts or less. The main 

disadvantage is the low effeciency, 30% or less. The analysis of a 

shaded pole motor is highly complex despite its simple construction. 

The complexities are due mainly, to the unsymmetrical stator 

windings and the abundance of space harmonics. Additional 

difficulties arise in the analysis of the 'reluctance-augmented' 

shaded-pole motor where saliency is introduced on the stator pole 

face by increasing the air gap length under the leading pole tips. 

As any other induction motor the shaded-pole motor runs due to 

the action of revolving magnetic field. The shading coil causes the 

flux in that portion of the pole surrounding it to lag behind the 

flux in the rest of the pole. The resultant rotating field which 

is produced by the main winding and the shading coil (two componant 

fields displaced in space and phase) is enough., to produce 

considerable torque to make the motor rotate. The direction of 

rotation is always from the unshaded to the shaded portion of the 

pole. 
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The starting torque is low. It varies from 20 to 50 percent of 

peak load' torque. The direction of rotation depends upon the 

position of the shaded portion of the pole relative to the main 

portion of the pole, so to reverse the direction of rotation it is 

necessary to change the position of the shading portion of the 

pole. 

To produce an accurate prediction of electrical machine 

performance requires an accurate analytical model and correct 

parameters. The present investigation will employ the finite 

element method for the purpose of calculating accurate parameters to 

produce a simple representation of the shaded-pole motor. 

1.1 Review of Previous Work 

The earliest theoretical analysis of shaded-pole motors was 

published by Trickey (1,2). Performance equations under 

locked-rotor conditions were derived in his first paper. 

Kron (3) used both cross-field and revolving-field theories to 

derive general performance equations and equivalent circuits, the 

effects of saliency and space harmonics were considered. An 

equivalent circuit, by separating the stator windings into a main 

winding and an auxiliary winding, based on the flux divisions 

between the shaded and unshaded portions of the pole, was developed 

by Chang (4). Though the effects of space harmonica were taken into 

consideration, the analysis assumes 90 degrees displacement between 

the shaded and unshaded portions, and neglecting the effect of 

saliency. Sherer and Hertzog (5) employed Chang's equivalent 

circuit to study the effect of parameters variations on the 

performance of the motor. Surk (6) developed an equivalent circuit 
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based on the resolution of the exciting winding and auxiliary 

winding magnetomotive forces into quadrature components and then 

applying symmetrical component theory. Performance equations in 

terms of the two actual stator circuits and two equivant rotor 

circuit, for the squirrel cage were developed by Desai and Mathew 

(7). Transient performance, under locked-rotor and dynamic 

starting conditions, was obtained numerically by solving the 

performance differential equations. The equations are also used to 

obtain the steady state performance of the motor. Butler and 

Wallace (8,9,10) developed equivalent circuits applicable to 

shaded-pole motors using transformation of the asymmetrical primary 

windings to their equivalent tapped-quadrature windings and then 

applying 2-phase rotating field theory. Poloujadoff (11) analysed 

the characteristics of saturated shaded-pole motors by treating the 

squirrel cage as a series of pseudostationary loops, and solved this 

numerically for the flux likages and loop currents by an iterative 

technique. Since a steady state solution is obtained from the 

transient solution, at the convergence stage, a large amount of 

computing time is required. 

All the authors mentioned before dealt with uniform air-gap. 

Ooka (12,13,14,15) and Williamson (16,17,18,19) published 

anlytical and experimental results on the reluctance-augmented 

shaded pole motors with up to two rings per pole. 

The analytical approach adopted by Williamson is based on the 

electromegnetic model of the induction motor which was developed by 

Cullen and Barton (20). Chin (21) made the first attempt in this 

department to develop machine representation based on circuit 
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equations which incorporate an analysis of the flux distribution in 

the air-gap. By numerical solution of the basic performance 

differential equations, Chin analysed the performance of a uniform 

air-gap shaded pole motor with removed shading rings. Lock (22) 

established a mathematical model for performance analysis of the 

shaded-pole motor based on 2-dimensionial field analysis of the air 

gap flux distribution in conjunction with conventional circuit 

theory. The effect of air gap variation, distribution of winding 

and skew angle were taken into consideration. Finite-element method 

is the new technique introduced to investigate electrical machines 

or part of the machine. The versatility of the finite-element 

method is, by now, well known, and its use grew rapidly. The 

application of finite element for solving the magnetic field 

problems in the electrical machines was first proposed by Silvester 

and Chari (23). Rather than dealing with Poisson's partial 

differential equation. 

Finite element work on machines divides broadly into two 

categories. The first is the use of finite element analysis to 

study a specific part of the machine in order to determine a 

parameter or coefficient for use in a standard equivalent circuit. 

In such studies, the current distribution is known, and the field is 

determined for this known distribution. Chari and Sharma (24) used 

this category to solve the magnetic field in the end region of a 

turbine generators. The second category is to model the machine as 

a whole, for predicting performance under specified operating 

conditions. In this case some of the electrical variables are 

unknown and must be determined. 

. Brandt et al. (25) showed how the governing nonlinear circuit 
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equations could be solved in parallel with the nonlinear field 

equations using a single iterative process. Williamson and Ralph 

(26,27) analysed the magnetic field of shaded-pole motors by the 

finite element approach using complex current sources in the first 

paper. In the second paper a constant voltage source was used, some 

of the parameters were calculated and steady state characteristics 

were obtained and there is a close agreement between experiment and 

computed results. 

1.2 Object and Scope of Present Work 

The first main object of the present investigation is to 

establish a new approach for solving field problems of electrical 

machines using Finite-Element technique incorporating field 

equations. The approach is based on a 2-dimensional field analysis 

of flux distirbution through the machine. The second object is to 

calculate the parameters of the machine and then derive simple 

mathematical expressions for basic performance equations. 

Distribution of windings is considered. The cage rotor is treated 

as a number of cascaded coils, each coil is formed by two adjacent 

bars and the section of end ring joining the two bars. The first 

category of finite element is used to investiage the magnetic field 

of the machine where the currents are calculated, using the steady 

state program developed by Lock (22), at different speeäs and 

different times for each speed. Self inductance of each coil in 

the machine and mutual inductance between any coil and the rest of 

the coils are calculated for three values of speed and two times. 

Flux maps are plotted for each particular coil in addition to flux 

5 



maps of all the coils at a time. The results which are obtained by 

by the finite element technique are employed to study the machine 

performance. Step-by-step numerical method is used to solve the 

basic differential performance equations. Figure 1.1 shows a 

practical reluctance-augmented shaded pole motor used in the 

investigation. 
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CHAPTER 2 

Experiemental Requirements and Determination of Parameters 

Experiemental results are required from the test motor to 

verify the validity and accuracy of the method of analysis. For 

the steady state characteristics the main requirements for the 

experimental work are: 

1. A system for loading the test motor over its complete speed 

range. This means that a closed loop control system is 

required to operate the test motor at the unstable speed 

region. 

2. A means for measuring the torque and speed and input 

quantitites. 

To obtain the transient characteristics of the test motor, the 

requirements are: 

1. A device which can switch on the supply at a selected point on 

the supply wave. 

2. A method of recording the transient torque-time pattern. 

2.1 Test Rig 

In the theoretical analysis, a concentric air gap is assumed. 

To compare theoretical and experimental results on the same basis, 

it is desirable that the test motor also has a concentric air gap. 

However, this is seldom achieved with mass production of small 

electrical machines because it is not economically feasible to keep 

such close mechanical tolerance. The air gap of a typical 

shaded-pole motor is 0.5 mm. A small eccentricity in the rotor 

alignment can cause a large peripheral air gap variation. It was 
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found that a small eccentricity in the air gap did not significantly 

affect the experimental results. Another reason for requiring a 

test motor with a concentric air gap is for the measurement of 

machine parameters using a search coil in the air gap. If there is 

a large variation in the air gap under different poles the search 

coil induced emf will also change from one pole to another. 

A test rig was constructed for holding the stator and rotor 

such that the air gap can be adjusted. Figure 2.1 shows the 

structure of the test rig. The stator which is held in a V-block 

can be moved in both the vertical and horizontal direction. The 

rotor shaft is mounted on two well lubricated bearings, each bearing 

is held by three finely threaded adjustable screws. Fine adjustment 

of the air gap is achieved by using these six screws. 

2.2 Measurement of Steady State Characteristics 

The torque/speed characteristics of a shaded-pole motor, as 

shown in Figure 2.2, is very sensitive to winding temperature 

variations. It is therefore imperative to measure the 

characteristic as rapidly as possible. This will ensure that the 

high losses that occur in the motor, particularly over the unstable 

region, do not produce a significant temperature rise. Ideally, the 

characteristics should be measured when the windings are hot so that 

the rate of temperature rise is small. From the experimental point 

of view, 'it is rather difficult to maintain the same temperature 

whenever any result is taken. So the characteristics are measured 

immediately when the motor is switched on at room temperature. Main 

winding resistance, before and after each measurement was noted. As 

the whole characteristics were taken within very short time, the 
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change in winding resistance was small. 

A magtrol dynamometer and speed control unit were employed for 

the measurement of the steady state characteristic : their features 

are described below. 

2.2.1 Magtrol dynamometer and speed control unit 

A hysteresis brake is used in the dynamometer. It consists of 

a permanent magnet rotor in the form of a drag-cup revolving in the 

field produced by the stator winding. 

When the stator is energised, a torque is exerted on the rotor 

by hysteresis action. The torque which is a function of the 

existing current is independent of speed through the entire speed 

range from zero to full speed This is an advantage over the normal 

eddy current devices which depend on relative motion between stator 

and rotor. The braking torque is measured by the stator reaction of 

the dynamo-meter. The suspended stator of the brake assembly is 

weighted at the bottom so that it is able to rotate only as far as 

the brake torque is able to lift the weight. The value of this 

torque is indicated on a calibrated scale. Alternatively, a load 

cell can be attached to the stator and its output signal, which is 

proportional to the pressure exerted on it, can be calibrated to 

measure the braking torque. The linearity of the output signal of 

the load cell is checked by measuring the output signal 

corresponding to several standard weights. 

The principle of speed measurement is the resolution of 

increments of a revolution by interrupting light on a photocell. 

This interruption is obtained by a segmented plastic disc attached 

to the rotor shaft of the brake assembly. As the light to the 
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photo cell is modulated, the cell changes its resistance resulting 

in a voltage modulation across the cell. This modulated signal is 

converted to an analogue signal, which is proportional to the speed, 

to facilitate recording of torque/speed characteristic on a X-Y 

plotter. The magtrol dynamometer is provided with a closed loop 

control system to enable the test to include the unstable speed 

region of the motor. A speed control damping switch is provided for 

varying the rate feedback in the servo amplifier. Another feature 
the 

of control unit is the inertia compensation control which allows for 

thle effect of torque changes due to acceleration and deceleration of 

the rotor. Thus, an accurate torque/speed curve can be obtained 

quickly without appreciably heating up the machine windings. 

2.2.2 Recording of torque/speed and current/speed characteristic 

The torque and speed signals from the Magrol dynamometer and 

control unit are fed to a X-Y plotter. The complete torque/speed 

curve is obtained by varying the speed control switch of the Magrol 

unit. It is essential that this curve is not obtained too rapidly, 

because once the recording rate exceeds the combined response time 

of the feedback control system and the X-Y recorder, accuracy 

deteriorates rapidly. However, if the performance curve is drawn 

too slowly, excessive temperature rise in the motor may result. 

For shading-pole motor under investigation, a plotting time of 

approximately 15 seconds was found to be sufficient. 

Since the input current is a. c. the voltage drop across the 

shunt due to this current cannot be fed directly to the X-Y plotter. 

Instead, this a. c. signal is rectified by a precision voltage 

rectifier, whose d. c. output is proportional to the a. c. input 
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voltage. Calibration of the current scale on the X-Y plotter is 

done by passing a known current through the shunt. 

2.3 Recording of Transient Characteristics 

The transient behaviour of induction motors received an active 

investigation in this department since early 1960 (28,29,30,31). 

Various experimental techniques were successfully developed for the 

recording of the transient torque characteristic. These techniques 

are employed in the present investigation. 

2.3.1 Switching angle selector 

The transient characteristic of an electrical machine depends 

on the point-on-wave of the supply voltage at the instant when the 

supply is connected to the machine. For this reason, both 

singlephase and three-phase point-on-wave switches were developed in 

this department (32). To cater for three phase machines, 2-pole or 

3-pole versions were designed so that the poles could be closed 

either simultaneously or non-simultaneously. Since the shaded pole 

motor is a single-phase machine, only the feature of a singlephase 

switching angle selector is being examined here. A block diagram 

illustrating the principle of operation of the switching angle 

selector is shown in Figure 2.3. The mag-slip is essentially a 

phase shifter. The phase of this mag-slip output voltage relative 

to its stator input, is controlled by its rotor position. Thus any 

switching angle can be selected by varying the rotor position. This 

output voltage is fed via a pulse-forming unit to a trigger unit. 

The output from the trigger unit is used to trigger the gate of the 

thyristor and so connect the supply to the test motor. This 

11 



switching angle selector was capable of a consistancy and accuracy 

for any selected switching angle of better than ± 10. 

2.3.2 Transient torque sensing system 

The direct method of measuring transient torque is by 

measurement of the stator reaction using a force sensing device such 

as the load cell. However, this method was found, in previous 

investigations in this department (30), to be unsatisfactory 

because the output signal of the load cell was badly distorted by 

mechanical noise from the suspended stator reaction system. The 

natural frequency of oscillation of the mechanical system was of the 

same order as that of the double slip frequency torque pattern. In 

the present investigation an indirect method of measuring the rotor 

acceleration was employed for the case of free-rotor torque 

transients. A limitation of this indirect method is that the locked 

rotor transient torque cannot be obtained. In any case, since 

steady state performance is the main emphasis, no attempt was made 

to obtain the locked rotor transient torque pattern. It is thought 

that experimental results on free-rotor transient torque and current 

patterns are sufficient to check the transient analysis employed. 

2.3.3 Records of free-rotor transient pattern 

A 2-phase drag-cup induction generator and storage oscilloscope 

were used to obtain free-rotor transient torque patterns. When the 

drag-cup induction generator is energised with alteranting current 

on one phase, the output on the other phase is of the same frequency 

and has a magnitude proportional to the speed (33,34). With direct 

current excitation, the output is proportional to the rate of 
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change of speed, i. e. acceleration. 

The accelerometer was calibrated by exciting it with an a. c. 

supply and driving it at constant speed.. 

The acceleration constant which is the ratio of output voltage 

to acceleration is 

V/ W 
Kr AV s/rad 

s 
&w 

where V-r. m. s. output voltage of accelerometer 

Wr- angular velocity of rotor 

With an excitation current of 0.2 amp the sensitivity of the 

accelerometer was found to be 0.272 mV s/rad The acceleration 

records were converted to torque records by using the moment of 

inertia of the motor. 

The acceleration pattern measures only the rotor accelerating 

torque. However, for an unloaded motor, with negligible mechanical 

loss, the developed torque is proportional to the acceleration of 

the shaft 

a2em TV 
dt2 J 

s 

so TýK V 

where T- developed torque 

J= moment of inertia of the rotor. 

For this case the electromagnetic torque is equal to the rotor 

acceleration torque. This was confirmed by examining the 
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deceleration pattern occuring when the supply was disconnected from 

the rotating motor. 

A plastic tube was used as the coupling between the 

accelerometer and the motor. This eliminates the effects of 

mechanical irregularities and yet provides sufficient rigid coupling 

to ensure a correct transmission of acceleration torque. 

2.4 Determination of parameters 

The accurate prediction of an electrical machine performance 

needs a correct set of parameters in addition to a good analytical 

model. 

Parameters required for the solution of the steady state 

equations of shaded-pole motors are the winding details and the 

physical dimensions of both the stator and the rotor, the 

resistances and the inductances of the windings. Some of the 

parameters were calculated while the others were obtained 

experimentally. 

2.4.1 Determination of Resistances 

2.4.1.1 Resistance of Stator windings 

The main winding resistance of the test motor was measured 

using a Kelvin Double Bridge. The resistance was measured before 

and after the test and the average value was taken. The shading 

ring resistance was calculated from its dimensions. 

2.4.1.2 Rotor bar resistance 

In the steady state analysis the cage rotor was represented 

by cascaded loops, each formed of two adjacent bars and the 
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interconnecting portions of the end rings, only the effective 

resistance of that portion of the end ring, as well as the bar 

resistance, were required to be evaluated. Bar resistance cannot 

be measured directly so it was calculated from the rotor 

dimensions using the resistivity for die-cast aluminium. 

2.4.1.3 End ring resistance 

The value of end ring resistance required is the effective 

resistance of that portion of the end ring which joins two 

adjacent bars, it is calculated from the ring dimensions. The 

total resistance of the ring is divided by the number of rotor 

bars to get the end ring resistance. 

Rer pS7r'är + a(tl - to)) ... ... 2.4.1 
2' 

where p is the resistivity of the ring at to 0C, 

a is the temperature coefficient, and Dr is the 

diameter at which the bars enter the ring. 

The above expression is based on the assumption that the current 

would distribute itself uniformly in the end ring, but it is not 

correct if the end ring is wide compared with the distance between 

two bars. 

Trickey (35) determined the distribution of end ring current 

for different numbers of poles and different widths of rings. 

Figure 2.4 gives the correction factor which should be applied to 

the end ring resistance calculated using equation (2.4.1). 

The correction factor was given as 
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Po(1-C)(1+C2Po) 
... ... 2.4.2 Kring 

(1-C 2Po) 

where Po - pair of poles 

C ratio of inside diameter of ring to outside 

diameter. 

The calculated end ring resistance was corrected according to 

equation 2.4.2. 

2.4.2 Determination of Inductance Coefficients 

Self and mutual inductances are required for the solution of 

performance equations. The values of inductance coefficients 

depend on the reluctance of the magnetic flux paths and the nature 

of the winding. The flux produced by any winding is divided 

whether or not it crosses the air gap. Inductance coefficients 

due to flux crossing the air gap are functions of the rotor 

position as well as the shape of the air gap. 

2.4.2.1 Inductance coefficients of stator windings. 

The stator has two asymmetrical windings, the main winding 

(d) and the shading ring (q). The total impedence for each 

winding per pole are termed Zd and Zq and are defined as 

Zd (Ad + jwld) + jwMdq + jwMdr 

... ... 2.4.3 

Zq w (Rq + jwlq) + jwMgd + jwmgr 

It is assumed that the impedance Zd of the main winding is 
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associated only with the main winding electromagnetic circuits when 

it is the only one excited. 1d is the leakage inductance for the 

main winding. Md4 is the mutual inductance between the main 

winding and the shading ring on each pole. 

Mdr is the mutual inductance due to the flux crossing the 

airgap. A similar definition can be given to Zq, 1q, qd and 

M. 
qr 

Equation 2.4.3 may be written as: 

Zd - Rd + jw(ld + Md) m Rd + jwLd 

... ... 2.4.4 

ZQ-Rq+ jw(1 
q+Mq)-Rq+ 

jwL 
4 

where Ld = 1d + Md , Md a Mdq + Mdr 

Lq - 1q + Mq , Mq a Mqd + Mqr 

For the analysis of shaded-pole motors, the following inductance 

coefficients are required. 

1. Main winding leakage inductance 

2. Shading ring leakage inductance 

3. The mutual couplings for the main winding and the shading ring. 

2.4.2.2 Determination of main winding leakage inductance 

The main winding leakage inductance consists of two major 

components, the slot and overhang leakage inductances. Because of 

the complicated shape of the slot and the effect of saturation at 

the pole tips, it is very difficult to calculate the slot leakage 

accurately. Also it is not easy to determine the overhang 
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leakage, so the value of the leakage inductance is determined 

experimentally by two separate methods, namely the rotor out test 

and the search coil test. 

a) The rotor out test 

This method was used by Desai and Mathew (7). In this test 

the shading rings are removed and the rotor is also removed. The 

stator winding is energised at different values of supply voltage, 

and the corresponding input current is measured. The input 

impedance under these conditions consists of the resitance, the 

leakage reactance and the magnetizing reactance due to the flux 

crossing the enlarged air gap. Alger (36) showed that for a 

stator without a rotor, the effective air gap length is equal to 

the ratio of the radius of the stator bore to the number of 

pole-pairs. The magnetizing reactance corresponding to this 

equvalent air gap is calculated using the normal expression, 

µo. D. Lý. f. Nd. KW2 
X-... ... 2.4.5 

mh Po2. lg 

where 1- D/2 
g Po 

D diameter of stator bore 

Lc - stack length 

For the test motor, Xm was found to be 3-A-. The leakage 

inductance of the main winding was calculated by substituting for 

Rm and the winding resistance in the input impedance equation 
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Zin --R+ jX R 

so Z2 - R2 X2 
in d 

X1 - 
VZin 

- Rd - Xm ... ... 2.4.6 

The following table shows the results of the out rotor test and 

Figure 2.5 gives an idea how the leakage inductance varies with the 

input current. 

volts 
Iamp Zino X1 (0) Rd (ß) 

I 

240 12 20 15.33 

220 11.1 19.81 15.43 

150 5.8 25.8 22.8 

125 4.6 27.17 24.17 

110 3.6 27.7 24.7 

7.3 

the justification of the 'rotor out' method is that the leakage 

reactance is very much larger than the equivalent magnetizing 

reactance, and the error in evaluating the equivalent magnetizing 

reactance does not significantly affect the calculated value of 

leakage inductance. 

b) The search coil test 

This method can be used to evaluate the main winding leakage 

reactance as well as the mutual inductances. A search coil of 

serveral turns was wound on a dummy rotor without any bars. The 

coil span of the search coil should be one pole pitch. The 
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shading rings were removed and a search coil of the same number of 

turns was wound on each pole. It is assumed that all the flux 

produced by the main winding links with the stator search coil. 

The dummy rotor and the stator were set up on the test ring to 

allow a balanced air gap to be adjusted. The rotor search coil was 

adjusted to be coaxial with a stator pole to produce a maximum emf 

in the search coil. The difference between the stator and the 

rotor emf should be measured for different values of applied 

voltage. An average value should be taken over all four poles to 

allow small air gap irregularities. The total leakage inductance 

of the main winding was calculated from 

N esc. d 
ld sN 

. W. I ... ... 2.4.7 
Sc 

where Nd is the total number of the main winding turns, Nsc is the 

number of search coil turns, esc is the difference between the 

stator and the rotor search coil emf. 

2.4.2.3 Shading ring leakage inducatance 

The slot leakage inductance is the most effective component of 

the shading ring. This was calculated using the standard 

expression (37) for the side of the shading ring situated in the 

slot. The other side of the ring is linked by leakage flux which 

has a circuit in the air and through the saturated pole tips. The 

associated leakage inductance is comparatively small, so it was 

taken as 25% of the slot leakage inductance. 

Hence the leakage inductance was found to be 0.122x10-6 H. 
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2.4.2.4 Mutual inductance between main winding and shading ring 

This is due to the portion of the slot leakage flux of the 

main winding which links the shading ring, it can be calculated by 

using the search coil method or an approximate value may be 

obtained by assuming that one third of the total leakage flux of 

the main winding links with the shading ring. 

2.4.2.5 Bar and end ring leakage inductance 

Because three sides of the end ring are surrounded by air and 

the section of end ring between adjacent bars is short, the end 

ring leakage inductance is assumed to be negligible. The rotor 

bars are located in closed slots, with 0.5 mm below the rotor 

surface. The leakage inductance of the rotor bar is mainly due to 

the flux passing internally through the bar and the flux passing 

through the magnetic bridge. The inductance due to the flux 

passing internally is independent of the rotor diameter and it has 

a value of 7.83x10'7 H/m (35). Since the rotor current is large 

and the bridge is considered to be saturated, the closed slot is 

replaced with an open slot of opening A0 which varies 

proportionally with the bar current 

BA 
i. e. B0 Ib 

µo 

where Bs - saturation flux density, Ib - bar current. 

The leakage inductance due to flux passing through the equivalent 

s1ot opening is: 
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lb w 
IT 

b 
B h. L 

so 1b '0 sIc... 
... 2.4.8 

b 

where h- height of the bridge 

Lc- core length of the rotor 

Hence lb is inversely proportional to the bar current. Apart from 

locked rotor condition, the bar current is a mixture of currents of 

different frequencies. For this reason, Ib was taken as the total 

r. m. s. value of all the harmonic bar currents. 

2.4.2.6 Mutual inductance between a rotor loop and the main 

winding. 

The mutual inductance between a rotor loop and the main 

winding was measured using a search coil. Consider the emf of a 

single turn of search coil wound on a dummy rotor without bars, the 

shading rings being removed. 

The emf is given by 

e dt 
(M. 1) 

=d+i "t 
... ... 2.4.9 

For stationary rotor, with a. c. excitation 

di 
es !' 

so M Wi """ """ 2.4.10 
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The single turn search coil was wound with a coil span of one rotor 

slot pitch and with the same skew as the rotor bars. Thus, the 

value of M calculated by equation (2.4.10) is the mututal inductance 

between a rotor loop and the main winding at a particular position. 

Alternatively, the measurement of mutual inductance can be 

obtained by exciting the main winding with dc and driving the rotor 

at constant speed. The emf of rotor search coil is then 

... ... 2.4.11 ea Ian dM 

For constant speed 

ow .t r 

so dt-ae 
W, 

r 

Substituting in equation 2.4.11 

dM 
e Idc'Wr d8 

which shows that the search coil emf is proportional to the change 

of mutual inductance with rotor position. Connecting the search 

coil to an integrator. 

ei Ki Idc M ... ... 2.4.12 

where eim integrator output 

Ki - integrator constant 
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As current and speed are maintained constant, the integrated emf 

waveform of the search coil is a measure of the cyclic variation 

of mutual inductance with rotor position. Figure 2.6 shows an 

oscillogram of the integrated emf. A peak value of mutual 

inductance of 0.177 mH was obtained from the oscillogram. 

2.4.3 Skin Effect 

For a rotor bar in a slot, the flux linking the lower part of 

the conductor is greater than that linking the upper part, thus 

increasing the effective resistance and decreasing the reactance. 

The current density therefore falls in moving from the top to the 

bottom of the bar, and increases the bar impedance. This 

phenomenon is termed 'skin effect'. If a cage rotor has deep 

bars, it will be necessary to use variable rotor parameters to 

allow for changes in bar impedance with changes in the frequencies 

of the bar current. The influence of skin effect on the test 

motor was examined by Lock (22). He used the program written by 

Fultun (38) and showed for the present rotor bar, of 5.6 mm 

diameter, skin effect is negligible. 

2.4.4 Determination of Moment of Inertia of Rotor 

The inertia of the rotor was measured by means of the 

trifilar method. In this method a disc is suspended horizontally 

by means of three long parallel wires at three points equidistant 

from the centre of the disc and equidistant from each other. The 

rotor is placed vertically on the centre of the disc. The disc is 

then rotated a few degrees and then released. The disc and the 

rotor rotate. The equation of motion of the system, neglecting 

the damping, being 
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d2A+ A2 
.8-0... ... 2.4.13 dtv L 

where J" inertia of rotor and disc (kg. m2) 

weight of rotor and disc (newtons) 

L length of suspension wires (metres) 

R distance from centre of the disc to points of 

suspension on the disc (metre) 

Solution of equation (2.4.13) for the frequency of oscillation 

gives 

F1Fs 2n 

or 

t Zn W-'j2 
""" """ 2.4.14 

Equation 2.4.14 was applied to calculate the inertia of the disc and 

the rotor. The accuracy of this method was checked by applying it 

to find the inertia of a solid cylinder. The difference between 

the calculated and measured value was found to be less than 2%. 

The moment of inertia of the test rotor was therefore found to be 

7.8x10-4k g. m2. 

2.4.5 Losses 

It is a well known fact that the shaded pole motors have very 

low efficiency. This is mainly caused by the large amount of copper 

loss which occurs in the main winding shading rings and the rotor 

bars. Even at no load, the copper loss is high. Since copper loss 

is accounted for by the set of perforamnce equations, losses which 
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need to be determined separately are the friction and windage 

losses, core losses and stray losses. 

2.4.5.1 Windage and friction losses 

Both windage and friction losses are associated with rotation 

of the rotor. For the rotor without a fan, the windage loss is 

proportional to its surf ace area and the square of the peripheral 

velocity. The friction losses are caused by the presence of 

bearings and are a function of the viscosity of the lubricant, and 

are inversely proportional to the thickness of the oil film. 

The friction and windage losses are usually determined by 

empirical formulas. For example, Vickers (39) used the following 

expressions: 

The bearing loss in watts s (speed of journal in meters per 

second) 
1.5 

x dj x 1j x 0.19 

where dj - diameter of journal in cm; 

lj - length of journal in cm. 

The windage loss in watts s 0.17 x 10-3 rotor barrel surface in cm2 

x (peripheral speed in metres per second)2 

Generally, friction and windage losses constitute only a small 

percentage of the output power of a motor. These losses were 

ignored in the measured characteristics of the shaded-pole motor. 

Therefore the windage and friction losses are considered to be 

negligible. 
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2.4.5.2 Core and stray losses. 

Core losses resulting from hysteresis and eddy currents, are 

usually determined by multiplying the volume of core and teeth by 

empirical watt loss coefficients, depending on the maximum flux 

density. For a normal 3-phase induction motor, they can be 

measured by the standard 'no load' test. However this test is not 

applicable to single phase motors such as the shaded-pole motor 

which even at synchronous speed has other losses. To estimate the 

magnitude of the core losses of the shaded-pole motor, its shading 

rings were removed. The rotor was replaced with one without bars. 

Subtracting copper loss of the main winding from the input power, a 

value of 34 watts was obtained for core losses at rated voltage of 

240 volts. 

Interbar losses are caused by the flow of current through the 

rotor iron between two adjacent bars. For a cast aluminum rotor. 

They are the most significant part of the stray losses. Although 

there was a considerable amount of investigation (40.41) on the 

stray losses of polyphase induction motors, the expressions derived 

are not suitable for shaded-pole motors. 

2.4.6 Details of Motor used 

A commercial produced reluctance-augmented shaded pole motor, 

as shown in figure (1.1), was used as the base or standard motor. 

The following details were obtained: 

27 



Rated output = 80 watts 

Rated voltage - 240 volts 

Frequency a 50 Hz 

Number of poles a 4 

Number of turns of stator winding per pole - 154 

Number of shading ring per pole 0 1 

Number of rotor bars a 22 

Rotor skew angle s 360 electrical 

Rotor diameter s 7.19 cm 

Stator stack length a 5.04 cm 

Stator winding resistance M 7.3 XL 

Rotor bar resistance 0.6 x 10`4 

Rotor end ring resistance between adjacent - 0.5 x 10-5 

bars 

Stator winding leakage induct ance 

Rotor bar leakage inductance 0.234 x 10`3 Henry 

Resistance of each ring a 0.125 x 10"3 -(ý` 

Leakage inductance between main winding 0.122 x 10-6 Henry 

and shading ring 

Span of shading ring 18.50 electrical 

Width of slot of shading ring a 120 electrical 

Width of interpole air gap = 120 electrical 

Narrow air gap length a 0.5 mm 

Wide air gap length a 1.5 MM 

Width of step with wide air = 770 electrical 

gap length 

Rotor inertia 7.8 x 10-4 Kg. m 
2 
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CHAPTER 3 

Finite Element Method 

3.1 Theory 

The application of the finite element method for solving the 

magnetic field problems in Electrical Machines was first proposed by 

Silvester and Chari [1]. Instead of dealing with Poissson's partial 

differential equation. 

2- 2- 
öAöA.... (3.1.1) 
ox2 ay2 

It exploits the fact known from variational calculus, that equation 

(3.1.1) is satisfied when an energy functional 

22 
W=ff Zµ ý(ä )+ä)- 24LJÄ]dx dy ... (3.1.2) 

is a minimum. This function is the basis of the finite element 

technique which has been used to study the field problems of 

different type of electrical machines. The method requires a grid, 

usually consisting of triangles, in the region being investigated. 

The grid can be made fine or coarse in various parts of the machine 

in a very flexible way depending upon the particular requirements of 

the solution. Such a grid can easily be fitted to the contours of 

an electrical machine. It is assumed that the current density 

vector j has a component in the z-direction only, of magnitude J. 

The two dimensional magnetic vector potentional Az(X. Y), then 
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satisfies the non-linear Poisson's equations (3.1.1), subject to the 

appropriate boundary conditions, in a space of magnetic reluctivity 

v"ü. which is generally both position and field dependant. 

The basis of the variational finite element technique for 

solving equation (3.1.2), is to give an initial approximation 

variation to the function A(X, Y) in each element of the problem in 

the region R depending on the values of A(x, y) at the vertices of 

each triangle. This will constitute an approximate representation 

for Ä(x, y) equivalent to a linear variation within the element such 

as 

A- a1 + a2x + a3y ... (3.1.3) 

The potential variation over each element is expressed in terms of 

the nodal potential considering the first order only. 

A first order polynomial of the magnetic vector potential gives 

constant flux in any element. A second order polynomial gives first 

order variation in flux density, and so on. 

The advantage of first-order interpolation is that only one 

value of reluctivity applies to each element. Higher-order 

polynomials results in flux-density variation within the elements, 

therefore reluctivity also must vary in saturable materials. This 
for 

was catered using the iterative solution where the flux density is 

variable until convergence is reached. 

The three vertices values Ai, Ai and Am of each element are 

varied until the energy function in equation (3.1.2) reaches a 

minimum value. This is possible since there exist only a finite 

number of vertex values. When a minimum is reached, the resulting 
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approximation for A(x, y) solution must be the best possible one. 

3.2 Formulation of the non-linear energy functional 

The energy function which is given in equation 3.1.2 is 

formulated as follows: 

02 Pd a dd t 
Ws + E'p. J 

dt 
jö H. dB + J. E ... 3.2.1 

considering only J as source (i. e. p charge 0) 

0X E_ -aB a- 
aX 

at at 

therefore 
i. 

- at 
1 

so 

pd dt 
fB R. di -Jä 

where H is the magnetic field intensity vector, B is the flux 

density vector, 
1 is the magnetic vector potential, 1 is the current 

density vector. 

The energy density is 

Wd sf Pd. dt s f13 H. dB -J jö A 

The total energy is the volume integration of energy density. 

Ws fv (Wd)dV 0 fv [f RA 
-3 fö dÄ]dv 
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Consider the two dimensional field, the total energy will be 

W' JJR [ Jo H. dB - JA] dx dy ... (3.2.2) 

The first term of the right hand side is 

2 
jä H. dB -2HmW 

curl H-J so curl B- pJ 

B- curl 1 

(B)2 ' (curl A)2 

but 

A(X, Y) - AZ(X, Y) 

so B2 "(ä) 
2 

+(ay) 
2 

Substituting in the energy expression (3.2.2) 

22 
w-ffR 2µ 

((E) + (ä) - 2µT. Ä] dxdy ... (3.2.3) 

W- ffR f(Ax, Ay, x, y, A) dxdy 
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Applying the variational calculus to the energy function gives 

aw a aw a aw + ... (3.2.4) 
aA aX ay any 

where x 
x-a, 

AY - by 

From equation (3.2.3) 

aw 
_ 

= -3 
aA 

a aw a2A 
ax 

a7AX µ aX2 

a aw 1 a2i 
ayy µ ay2 

Substituting in equation (3.2.4) gives: 

a2Ä a2A 

ax2 ay2 

which is Poisson's equation. Hence the energy function yields the 

differential equation of the physical system. 

3.3 Solution of Poisson's equation 

To solve equation (3.1.1) for linear or saturable magnetic 

field problems using the variational finite element method it is 

essential like any variational technique, to search directly for a 

function related to the problem Ä(x, y), which minimizes the energy 

functional, equation (3.1.2), instead of attempting to solve 

equation (3.1.1). Using the variational finite element method is 
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necessary to make the problem discrete. Discrete representation of 

the magnetic field problem is achieved as follows: - 

Considering the two dimensional field over region R of the 

shaded-pole motor in the X-Y plane (Fig. 3.1), the entire region is 

subdivided into L triangle and N points, each triangle representing 

an element of the system in the region. The three vertices magnetic 

vector potential for each element will take the form: 

Äi - a1 + a2Xi + a3Yi 

Aj = a1 + a2Xý + a3Yj i 
... 3.3.1 

Am = al + a2Xm + a3Ym 

where A, Aj and m are the values of (A) at the nodes i, j and m of 

element (k), hence equation 3.1.2 can be written as 

NE e 
W=EWk... 3.3.2 

K-1 

Where NE is number of elements 

ek 2 ek 2e 

w- ff 21 
[( )+ (a )- µJA 

k] dxdy ... 3.3.3 

The system of equation 3.3.1 will yield a unique solution for the 

constants al, a2 and a3 provided that the determinant of the 

coefficient matrix does not vanish, Norrie [43], that is 
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1 Xi Yi 

2e - 1 R Y 
ý j 

1 R Y 
m in 

*0... 3.3.4 

It is clear that the determinant equals twice the area A of the 

triangle. Since the area of the triangle never equals zero, A#O, 

the solution for al, a2 and a3 exists and is unique, and solving 

equation 3.3.1 yields 

0-1 
2 (aiÄ +a jA1 +am 

m) 

a2 =2 (b1Ä1 + bjA + bmAm) ... 3.3.5 

a3 =2 (c1Ä1 + cA + cmAc) 
1 

where ai - XjYm - Xm j, bi Yi ym' ci xm-xi and ai, am, bj, bm 

c3, cm can be obtained by permutation of the indices. 

Substitution of eqluation 3.3.5 into equation 3.1.2 yields the shape 

function representation. 

Äek(x, Y) - 
2D [(ai + bix + ciy)Ai + raj + box + ciY)Aj 

+ dam +bmx+ cmY)AmI 

where e=1 (cmbý - cýbý) 

... 3.3.6 

... 3.3.7 
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From equation 3.3.6 

_e k BA 
2 [biAi + b+ bm 

m] ... 3.3.8 
TX 

8ÄQ = 
ZA [ciA 

i+ c+ Cm Am] ... 3.3.9 

ay 

and from B- curl A ... 3.3.10 

by 
i- JB I+ ßj 

Y ax xy 

22 

B2 B2 + B2 = (by) + (ä) ... 3.3.11 

Substituting from equation 3.3.8 and 3.3.9 into equation 3.3.11 

B= BX + By = 2ý (EbAq) 2+ (ECgAq) 2 q=i, j, in ... 3.3.12 
4g4 

Substituting from equations 3.3.8 and 3.3.9 into equation 3.3.3 

Wek j2 (b+ b1A j+ bm8A 
µ 

Al 
tä 

2e 
+ 

8Q2 
(c1Ä1 + C+ CID ID) -JÄ 

k] dxdy ... 3.3.13 

e 
Let Ak to represent the value at the centre of the element. 
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This is the average of the magnetic vector potential values of the 

three vertices of element K, thus 

Äeti 3 (Ai +A+ ä) ... 3.3.14 

Assuming constant current density within each element, the 

integration in equation 3.3.13 is independent of the variables x and 

y, so 

dxdy -A... ... 3.3.15 
eý 

Equation 3.3.13 may be written 

w 8eµ 
[(biAi +b jA + bmAm)2 + (c1Ai +c jA + cm Am )2 

-3J (Ai + Ai + Am) ... ... 3.3.16 

5 uch an expression can be obtained for each element. 

Substituting all these elements' contributions into equation 

3.3.2 transforms the functional in equation 3.1.2 into a function of 

all the nodal values A1, A2, A3 ,..., An so 

W- W(A1, A2, A3 ,..., An) ... ... 3.3.17 

The condition for W to be minimum can therefore be written as 

aW 
=0a-1,2,3,..., n ... ... 3.3.18 

Ma 

Substituting equation 3.3.2 into equation 3.3.18 gives 

L ei 

iE 
8W' W-0... 3.3.19 

a 1-1 SA 
a 
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a-1,2,3, ..., number of points 

L- number of elements 

Although the summation in equation 3.3.19 is taken over all the 

elements, only those elements, that have mode P in common have 

nonzero contribution. Differentiating equation 3.3.16 with respect 

ei 

to the proper p allows the contribution 
äÄ 

of element ei in 

equation 3.3.19 to be determined. Thus if the node identifiers i, j 

and m of element ei refer to the system node number p, q, and r 

respectively, differentiation of equation 3.3.16 with respect to Aa 

yields 

öWei 1 
8Ap 46 

[bp(bp 
pA+ 

bgAq + brr A+ Cp 
pp+ 

CQAq +Cr Ar) 
ei ei 

pJ 
ei ei 

3 

aw 11 
4Q Ile 

bq(bpAp + bgAQ + br r) + Cq(CpAp + CgAq + CrAr) 

q ei i 
AJ 

ei ei 

3 

8W 
ei"1 

[br(bPAP + bgAq + brAr) + Cr(cpAp + CgAq + CrAr)] 
öÄr -4A 

ei µei 

QJ 
ei ei 

3 

... 3.3.20 

The assembly of the component element equations prescribed by 

equation 3.3.20 is an assembly by nodes since the assembly process 
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must be carried out separately for each node of the system. The 

system of equation 3.3.20 can be written in matrix form and 

considering the element ei is the object without putting the initial 

ei for each term. 

öw 
ex 

p 

ow 
8A 

q 
4, &g 

aw 
OAr 

or 

e. J rK 
KKA 

pp pq pr p3 

KKK Aq 
c _ 

qp qq qr 

A 
K 

rp 
Krq Krr Ar 3 

- 
[al [K][A1a- [1/3] 

... 3.3.21 

Where [K] is the element K- matrix for element ei 

b2+C2 
PP 

1 
4eµ bgbp+cgcp 

bb +c c rprp 

bpbq+Cpcq bpbr+cpcr 

bq c2 bgbr+cgcr ... 3.3.22 
q 

brbq+crcq br+c2 
r 

and [A] is the element nodal vectors matrix 

A 
P 

[Aa ]- Aq 

A 
r 

ei 
The generalisation of the contribution 

aw 
and their assembly will 

a 
be illustrated further by subdividing the region of the present 

problem into 16 elements having a total of 15 nodes as shown in 
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Figure 3.2. Table 3.1 relates the nodes identifiers i, j and m for 

each element to the system node numbers. 

Referring to figure 3.2 shows that the node identifiers a Ye 

allocated counterclockwise. All elements are of the same size. The 

x and y coordinates of the nodes are listed in table 3.2, the 

parameters bi, bj, bm, ci, cj and cm calculated according to 

equation 3.3.5 are given in table 3.3. Consider now, for 

illustration, element 5. Table 3.1 shows that the node identifiers 

i, j and m for this element correspond, respectively, to 

the system node numbers 7,4 and 8. Substituting this information 

and the appropriate parameters for element 5 from table 3.3 into 

equation 3.3.16 yield the element contribution as follows: 
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Node Identifiers Element Node Identifiers 
i( jº miIjIm 

1 4 I1 5 10 8 

2 2 5 1 11 11 

3 5 
F 

2 6 12 9 

4 3 6 2 13 13 

5 
1 

7 4 8 14 11 
`! 

6 5 8 4 15 14 

7 5 8 9 16 12 

8 6 
ý 

9 5 

1 9 110 
i` 

7 
r 

11 
t 

11 7 

8 12 

12 8 

10 14 

14 10 

11 15 

15 11 

Table 3.1 

Relationship between System Node Number and Element Node 

Identifiers. 
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Node Coordinate 

Xy 
Node Coord 

x 
inate 

y 

1 00 9 2 1 

2 10 10 0 1.5 

3 20 11 1 1.5 

4 0 0.5 12 2 1.5 

5 1 0.5 13 0 2 

6 2 0.5 14 1 2 

7 01 15 2 2 

8; 11 

t i ý 

Table 3.2 

Nodal coordinates 
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Table. 3.3 

PARAMETERS 

Element 

bi b b 
m 

ci ( cj c ni 

1 -0.5 0 0.5 1 -1 0 

2 0.5 0 -0.51 -1 1 0 

3 -0.5 0 0.5 1 -1 0 

4 0.5 0 -0.5 -1 1 0 

5 -0.5 0 0.5 1 -1 0 

6 0.5 0 -0.5 -1 1 0 

7 -0.5 0 0.5 1 -1 0 

8 0.5 0 -0.5! -1 1 0 

9 -0.5 0 0.5 1 -1 0 

10 0.5 0 -0.5 -1 1 0 

11 -0.5 0 0.5 1 -1 
f 

0 
1 

12 0.5 0 -0.5 -1 1 0 

13 -0.5 0 0.5 1 -1 0 

14 0.5 0 -0.5 -1 1 0 

15 -0.5 0 0.5 1 -1 0 

16 0.5 0 -0.5 -1 1 0 

Element Characteristic Dimensions 
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1 
W5 ' -L [(-0.5 Ä7 + OA4 + 0.518)2 + 8 A5 V5 

(1A7 - 'A4 + 0A8)2] - 3(A7 + A4 + A8) ... 3.3.23 

From equation 3.3.23 it is clear that 
5 

is nonzero only when a 
a 

7,4 or 8. In other words element 5 is one of the contributing 

elements for the system equations involving A7, A4 and A8. From 

equation 3.3.23 the only nonzero derivatives for element 5 are: 

8W 5 
4p1µ 

[-0.5(-0.5A7 + 0A4 + 0.5 A8)+(1A7 - 1A4 + 0A8) -3 
8ÄQ 55 

öW5 1A J5 

8X4 s 4p5µ5 [0(-0.5ÄQ + OA4 + 0.5X8) -1(1A7-1X4+0X8)1 3 

5pJ 
W= 

p1 µ5 
[0.5(-0.5ÄQ + 0A4 + 0.5Äs) + O(1Ä7 -lÄ4 + OÄ8)] - 

535 

öA8 4 

... 3.3.24 

In matrix form the system of equation 3.3.24 become the element 

matrix equation of element 5. 

aWS 5 
aA7 

OW 51 

b-A 
s 16A5µ5 

8WS 
-1 

aA8_ 

-4 -1 A7 
T I5 

3 

4 0 14 - 
5 

... 3.3.25 

0 1 A 
I5 

8 3 
L 

where 

15- A5. J5 
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S ince the elements 1,3,5,7,9,11,13,15 are of identical size 

and orientation with respect to the frame of reference oxy, it can 

be shown that the element K matrix is the same for these elements 

provided the node identifiers are replaced by their proper 

corresponding node numbers. Thus for element 9 the element matrix 

equation is: 

aw9 

bA io 
aw9 
äA7 

aw9 
6A 0A 11 

1 
16,69 pq 

5 -4 -1 

-4 40 

-1 01 

where 19- 9"I9 

I9 
A10 

7 39 

I9 X11 
3 

... 3.3.26 

The rest of the elements 2,4,6,8,10,12,14,16 have also a 

common element K-matrix, which for this particular case is identical 

to that obtained above for elements 5 and 9. Thus for element 10, 

the element matrix equation is: 

awl 0 

8A 8 

aW10 1-4 

o7A 
11 

s 16 X10 410 

awio 
aA 7 

-4 -1 Ag 10 
3 

40 All - 
110 

... 3.3.27 
3 

01 A7 ILO 

3 

45 



Having obtained the contributions 
e 

for all the elements, the 
a 

next step is to assemble these into the system matrix equation. For 

assembly by nodes, the basic assembly equation is equation 3.3.19. 

e 
For node 7 the relvant assembly relation is: 

aw 
sLZ 

aw e 
9L- 16 ... ... 3.3.28 

8A7 e-1 8A7 

From figure 3.1 it is clear that for node 7 the only contributing 

elements are 5,9 and 10 so equation 3.3.28 reduces to; 

aw = aws + aw9 + awl0 
... ... 3.3.29 

7 al 7 aX7 aA7 

Substituting from equations 3.3.25,3.3.26 and 3.3.27 for 

59 10 
aW 

, 
aW 

and 
aW 

respectively, into equation 3.3.29 gives 
M7 A7 OA7 

[s -4 -i ] [al ] ibesµs + 

119 
[-4 4 0][A2] + 160p 

16A 
1 [-1 0 1][A3] -( 

x'35 
+ 

ý39 010) 0 
10 µ10 

... ... 3.3.30 
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where 

A7 

ýA1 A4 

A$ 

A10 

[A2}-7, 

A11 

A8 

[A3 1- Al 1 

A7 

Hence equation 3.3.30 will have the-form: 

1 
16 (_E55 05 µ5 

+ A9 ý`4 9+ Q10 µl. 0, 
A7 + ý5 µ4 5 

A4 + (A5µ5 
Ql µ10, 

A8 

J5 A9 + J9 + X10J10 
+ 

ý5 
... ... 3.3.31 4 

101 ý3 
9µ9 

Equation 3.3.31 can be written in its expanded form as; 

16 
[o 00- 

A5 µ4 5oo '% µ5 
C 

A5 t5 5+ °9119 +X10 
X10, 

0000 0][ý1] ( 
°sµs °iotlio, 

0 
9119 

I5 +19+ I10 
... ... 3.3.32 

3 

Al 

where {Ä] s 
A2 

A16 

Ie Ae Je 
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For each nodal parameter in the system, an equation similar to 

equation 3.3.32 can be obtained. Assembling these equation into 

a single matrix equation gives: 

[S][A] - [I] 
... ... 3.3.33 

which is the system matrix equation. 

The boundary condition was inserted using, Dirichlet boundary 

condition, the method explained by Norrie [43] the method is 

summarised as follows if P is a node for which the nodal value is 

specified as Ap, so enter zero in the Yth row of the system matrix 

[S] except for the diagonal position, where it should be enterd 1, 

and enter Ap in the Pth row of the matrix [I]. 
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CHAPTER 4 

Computation and Application of Finite Element method 

4.1 Computer program for the finite element method 

The basic input data for the finite element program comprises 

1) All the nodes and their x, y coordinates. 

2) All the elements and their nodes identifiers. " 

3) The relationship between the node numbers and the node 

identifiers for all the elements. 

4) The nodes numbers where the function is prescribed and its 

value. 

The programming strategy is outlined in the flow chart (figure 

4.1). The basic structure of the program is that of an assembly by 

nodes. The element K matrix is computed for all the elements and 

retained in storage for subsequent use since the assembly of the 

element matrix equations are by nodes. These elements that surround 

each node need to be ascertained. This information is compiled in 

the array, ICEV(I, J). The variable I specifies not only the matrix 

row but also which node is under consideration. 

Column J-1 lists the total number of elements surrounding 

node I, and columns J-2,3,4,... record the identification 

numbers of these surrounding elements. Referring to figure 3.2 as 

an example, column 1 is initially set to zero for all nodes as shown 

in table 4.1, which contains data for only the first 6 nodes. 

The first element to be processed is element 1, which can be 

seen from table 4.1, has the nodes numbered 4,1 and 5. In the array 

49 



the total number of surrounding elements listed for each of these 

nodes is incremented by one. The identification of element namely 

1, is recorded for each node in the next available colua J-2, as 

shown in table 4.2. Element 2, with nodes 2,5 and 1, is the next 

element to be processed in the same way. The total number of 

surrounding elements listed for these nodes is incremented by one 

and the identificastion numbers of the element, namely 2, are 

recorded in the next available column, 

as table 4.3 illustrates. Continuing with 

the above procedure we come to the array ICEV which is shown in 

table 4.4 afer all the elements have been processed in turn. 

ICEV (I, J) 

Node Total number of Identification numbers of surrounding 

surrounding elements 

elements 

Jl J- 2 J- 3 J- 4 Js5 Ji6 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

Table 4.1 Array ICEV after initialization 
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Table 4.2 

Array ICEV after processing of element I 

ICEV (I, J) 

Node Total number of Identification numbers of surrounding 

I surrounding elements 

elements 

ja1 J- 2 Js3 Js4 Ja5 J- 6 

1 1 1 i 

2 0 0 

3 0 0 

4 1 1+ 

5 1 1 

6 0 0 
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Table 4.3 

Array ICEV after processing of elements 1 and 2 

ICEV (I; J) 

Node Total number of Identification numbers of surrounding 

I surrounding elements 

elements { 

J1 ýJ =2 J3J4 J5J6 

1 2 1 2 

2 1 1 

3 0 

4 1 1 

5 2 1 2 

6 0 
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Table 4.4 

Array ICEV after processing of elements 1- 16 

ICEV (I, J) 

Node Total number of Identification numbers of surrounding 

I surrounding elements 

elements 

J= 1 J=2 J=3 J=4 J=5 J=6 J'. 7 

1 2 12 

2 3 13 4 

3 1 4 

4 3 1M5 6 

5 6 1C2 3 6 7 8 

6 3 34 8 

7 3 59 10 

8 6 56 7 10 11 12 

9 3 78 12 

10 3 9 13 14 

11 6 9 10 11 14 15 16 

12 3 11 12 16 

13 1 13 

14 3 13 14 15 

15 2 15 16 
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4.2 The Iteration process for Finite Element Program 

The saturation iteration procedure described by Demerdash [44] 

was used for solving the saturable magnetic field of shaded-pole 

motors. 

Giving a guess for a set of reluctivity values over a continuum, 

solving the system equation for m. v. p (A), hence flux density (B) 

and field intensity (H) in each element. In this technique, one 

enters the B-H saturable characteristics, for the iron region, 

independently from B and H axes for each density and intensity of an 

element respectively. This yields two values of reluctivity, the 

assumed one vas and the calculated reluctivity vcal" In general v 
as 

and vcal will not be equal until the nonlinear saturation iteration 

is reached and the correct value of element reluctivity has been 
e 

found. Before saturation iteration is complet'd a guess for the true 

reluctivity vtr is given as a linear combination of vas and vcal as 

follows: 

v tr =v as 
+fv. (v 

ca- -v as) ... ... YY 

where fv is a deceleration factor which often takes a value as ' 
0.001 < fV < 0.1. 

The most recent values of reluctivity for all the element are 

used to obtain a new solution, from which new flux densities and 

field intensities are found. Then the process is repeated for 

a given excitation until convergence is achieved. 

The criteria for reaching a satisfactory convergence is that 

the difference between the calculated m. v. p. s at two successive 

iteration must not be a predetermined precision value (c) such as 
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rE 
Ain - Ai 

n+l ( 0.004 ... ... XX 
i-l ni 

n+l 

where 

i-1,2, ..., number of points. 

Ain - m. v. p. value of node i at iteration a 

Ai 
n+1 

- m. v. p value of node i at iteration n+1 

The values of m. v. p's for all the nodes were set to zero at the 

very beginning (initial values). 

The convergence of an iterative procedure, in which some or all 

of the results from one computation become the input for the next 

calculation, is when the difference between successive results 

continue to decrease, tending to zero in the limit. 

4.3 Numerical Representation of Magnetization Curve 

The magnetization curve, for steel sheets used for 

manufacturing shaded-. pole motors, is numerically represented in a 

sub-program of the main finite-element program. Detailed tabulation 

of the magnetic flux densities corresponding to definite magnetic 

field intensities was available. 

It is assumed that the nagnetization characteristics pass 

through the origin, so B-0 when H-0 and 
d' is always positive. 

The magnetization curve is subdivided into sections and an artifice 

has been incorporated for sensing the portion of the curve to be 

used to calculate the reluctivity for a given flux density. 

The procedure of the numerical representation of the 

magnetizing curve is illustrated below Fig. 4.2 
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(wb/m2) 

jn+1 

j+1 - ----- - 

o. 3 

0.2 
0.1 

j=1 

Figure 4.2. 

H 
(A/m) 

It is assumed that beyond a saturated magnetic induction, (Bs ), the 

slope of the B-H characteristics is given by the permLbility of free 

space. 

The distance or the range between Bs and the origin is 

sub-divided into equal sections, denoted as AB. The abscissae at J 

and J+1 intersect the magnetizing curve at points PJ and PJ+1" 

Between these points the curve is replaced by the chord (PJ , PJ+1)- 

At the origin J-1 and at the saturation point J- n+l. 

The next step is that all the values of HJ are read and the 

slope MJ, between two points of the curve, PJ and PJ+l is calculated 

using the method developed by Frederick and. Edward [45] 

MJ 
aJ+ 

... ... 4.3.1 

ýr 
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To find the reluctivity for a magnetic flux density B< Ba, at point 

p, the following steps are taken: 

1) Find the section J in which B is situated 

J+1... ... 4.3.2 

(: )my the integer parts of the results of equation 4.3.2 are 

used. 

2) Using tabulated values of Hi and MJ, the value of the magentic 

intensity H is found as: 

MJ + HJ ... ... 4.3.3 

3) The reluctivity at P is found to be 

(B - BJ). MJ + HJ 
vB . "" ... 4.3.4 

In the case of a flux density greater than the saturated flux 
that 

density value suchIB" > B5, the reluctivity is found as: 

(B" - Bg). v0 + HS 
vi 

B" . ..... 
4.3.5 

free Where v0 -µ is the reluctivity of space. The flow chart 
o 

of the computer sub-program is given in Fig. 4.3.2. Bs was chosen 

as 1.9 Wb/m2 and n was chosen to bel9 so AB was equal to 0.1 Wb/m2. 

57 



4.4 Application of Finite Element Method 

The finite element method described in the previous chapter, is 

applied to a shaded-pole induction motor (Figure 1.1) for 

investigating the flux distribution through the machine and to 

calculate the parameters of the machine. It is possible to carry 

out an investigation for half or part of the machine provided that 

the machine is symmetrical for the part being investigated. In the 

case of the shaded-pole motor there is a symmetry for half the 

machine. Coming back to finite element theory, to calculate the 

system matrix components, it requires a knowledge of all the 

elements and all the surrounding elements for each node. To 

calculate the system matrix components considering half the machine 

requires those elements surrounding each node of the symmetry line 

AB(Figure 4.3) to be ascertained. To overcome this problem, 5om e 

elements were taken in the other half alongside the symmetry line. 

These element were chosen to be symmetrical with elements of the 

first half of the machine. The method was checked using a simple 

shape as shown in figure 4.4. 

The region was divided into 92 elements, the symmetry line AB 

divides the problem into two symmetrical parts. 

First of all the magnetic field was solved using th whole 

region. Second, the magnetic field was solved considering half the 

shape, because of the symmetry. Referring to figure 4.4 nodes 

1,2,3,..., 8 are symmetrical with 1', 2', 3',..., 8' the system 

matrix will take the form: 
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aaaa........ abb... b 
11 12 13 14 In 11' 12' 18' 

S sI 

a a a ............. a b b ... b 
21 22 23 2n 21' 22' 28' 

. . . ........... .. " . . ... . 

. . . ............. " . " " .. . 

. . . ........ " .... . . . ... . 

. . . ."........... . . . ... . 

a a ............. a b b ... b 
nl n2 nn nl' n2' n8' 

b b b ............ bb b ... b 
1'1 1'2 1'3 i'n 1'1' 1'2' 148' 

. . . ............ .. . ... . 

. . . " ........... .. . ... " 

b b b ............ bb ".. b 
8'1 8'2 8'3 8'n 8'1' 8v811 

A 11 

I l1 11 

A 

A 
2 

A 
n 

A 
1' 

A 
2' 

A 
8' 

I- I 

2 

I 
n 

I 

I 
2' 

I 
8' 
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[S ][A] - (I 

But Ali - Al, A2, - A2 ,..., A8, - A8 

Substituting for A1,, A21 ,..., A8, and compressing the system 

matrix gives the system matrix for half the shape. 

ts] 

C11 C12 C18 a19 a110 ala 

121 121111 28 a29 a210 a2n 
........ ........ ........ 

........ ............ ................ ................ 
................ 
................ ................ 
Cnl Cni "0000. c 

n8 
an9 an10 ''0 "a an 

(I) - 

I1 

I2 
S 

. 

I 
n 

9 
[A ý- 

A 
1 

A 
2 

A 

.3 

A 
a 

where In is third the sum of the currents of elements surrounding 

node n. 

where Ckj - akJ + bkj, 

k-1,2,3, ... ,8 

j-1,2,3, ... ,8 
[S][A] - [I] 

... ... 4.4.2 
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The compressed system matrix equation 4.4.2 was solved for 

A. 1, AZ,..., An and then the values of Ai, A?,..., AB were substituted 

using equation 4.4.1. Reconstructing the system matrix and 

compressing it will be repeated for every iteration. 

The flux density distribution was calculated and plotted on 

figure 4.5a for whale the shape, and figure 4.5b shows the flux 

distribution for half the shape. 

From the comparison between figures 4.5a and 4.5b, it is clear 

that the flux distribuion is the same for the complete shape or half 

the shape. 

The same method will be applied to investigate the magnetic 

field of half the shading-ring motor. In the study the following 

assumptions were made: 

1. The magnetic vector potential has only a component along the 

axis of the machine. 

2. The iron parts are isotropic and the B-H characteristics are 

single-valued. 

3. The individual currents in the element forming the stator and 

rotor conductors are replaced by a uniform current density over 

the cross section of their coils. 

4. The magnetic field outside the machine contour is negligible 

and therefore regions external to the stator are not 

considered. 

5. The current density vector J has a component only in the axial 

directioa. 

Half the machine was considered in addition to extra elements 

alongside the symmetrical line were taken. The total number of 
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elements was 678 and 372 nodes before compressing the system matrix, 

the system then contained 634 elements and 344 nodes. The mesh 

generation was drawn by hand. Numbering the elements and the nodes 

it is possible to use a random procedure, but it is better to start 

numbering all the elements in each particular region as the elements 

in the air, the elements in the steel and the elements carrying 

current. The computer program devised by Norrie (43) was modified 

and used to calculate m. v. p. s, flux density and reluctivity for each 

element. Element numbers and their identifier nodes, node 

numbers and their x, y coordinates were supplied as an input data, 

from mesh drawing (figure 4.6). 

From the flow chart figure 4.1 it is clear that the current 

density, for each element carrying current, must be known so the 

currents of the machine were found using the steady-state program 

developed by Lock (22). The currents were calculated at different 

values of speed. Three values of speed were chosen, s-1, locked 

rotor, s-0.05, no-load speed and s-0.5, half speed. 

For each value of speed the instantaneous currents were 

calculated at two instants of time t-0m. sec and t-5m. sec, 

where the currents have sinusoidal variation. 

iiVI SIN(wt + 01) For stator winding 
mm 

ish C Ish SIN(wt + 02) For shading ring 

ibar ý Y` Ibar SIN(wt + 03) For rotor bar 

From the steady state program rms current values and their angles 

were obtained and the following table shows the instantaneous values 

of the currents. 

62 



Slip time(m. sec ) ia(amp) ih(amp) 'bar(amp) 

1 0 3.25 -504 -100 

5 4.9 -214 52 

0 1.3 -109 - 28 

0.05 

5 3.05 -360 -2 

0.5 0 2.62 -407 - 78.7 

5 4.44 -221 33.6 

l 

The rotor bars have different values of currents. 

bar I IL ' Ibr = It - IL , ... 
1 Ll 2223 

The bar currents are various, and differ from each other with 

respect to time. Loop current is calculated using the concept of 

forward and backward components as: 

i"E Lou* 
VIf 

on 
sj(m'1). na e 

j(wt-ne) 

n 

+ F2 1 
b. a . *J(crl). aa 

ej(vt+ne)] ... ... 4.4.3 
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where 

a- slot angle between adjacent bars. 

n- order of harmonic current 

n- loop number 

0- (1 - s). wt Is- slip 

First order onlj Was considered, so equation 4.4.3 will be 

1I.. 
n '1f. l 

ej(a-1). aß ejsvt +V 1 
b. l ej(M'I)a. ej(2-s)wt 

... ... 4.4.4 

Loops currents were calculated, using equation 4.4.4, at different 

instants of time and slip. The following table shows the variation 

of loops currents with time and slip. 

Slip -1 Slip - 0.05 Slip - 0.5 

t=o t-5 m. sect-o t-5 m. sec to t"5 m. sec 

-643.4 -1.6 -189 -13.3 -508.6 -91 

-543.3 -53.6 -160.7 -11.3 -430 -124.6 

-270.7 -88.6 81.4 - 5.8 -214.6 -118.6 

87.6 -95.4 23.7 1.5 68.8 - 74.9 

418.2 -72 121.4 8.46 330.4 - 7.4 

616.1 -25.7 180.5 12.6 487.1 62.5 

618.6 28.7 182.3 12.8 489.2 112.6 

424.7 74 126.3 9 336 127 

96.1 95.9 30.2 2.2 76.1 101 

-262.9 87.3 - 75.4 - 5.2 -207.9 43 

-538.6 51 -157.2 -11 -425.9 - 28.5 

Loops, currents. (d MPS) 
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The instantaneous current values are used as excitation currents in 

the finite element program. 

Ie ýr The number of it'rationa requied to reach convergence is 

depending on the value of e (equation XX) where the computation 

results will be printed out when the value of c becomes less or 

equal to the pre-determined value. The lower value gives better 

convergence and more accuracy. It is noted that the change in the 

results, for e40.005, is very small so that value E0 - 0.004 was 

taken as a predetermined value. 

The following tables show the number of iterations and the 

corresponding value of e. 

N. ITB E 

1 1.0 

2 0.919 

3 0.0502 

4 0.0186 

5 0.0093 

6 0.0059 

7 0.0044 

8 0.0043 

9 0.0034 

10 0.0034 

N. ITR £ 

1 1.0 

2 0.636 

3 0.0933 

4 0.0309 

5 0.0201 

6 0.0164 

7 0.0111 

8 0.0086 

9 0.0067 

10 0.0055 

11 0.0042 

slip - 1, t-o slip - 0.5, t-o 
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N. ITR 12 3 45 6 7 

e 1.0 0.203 0.0145 0.0076 0.0052 0.0032 0.0022 

for slip - 0.05, t-0. 

The following results show the element number, flux density and 

reluctivity for slip - 0.05 and time -0 as an example. 

nümlept B (Wb/m 2) ýs1 

1 1.35 1600 

2 1.22 1140 

3 1.47 2829 

4 1.48 2872 

5 1.3 1767 

6 1.37 2425 

7 0.8 1123 

8 0.96 1125 

9 0.35 1138 

10 0.57 1130 

11 0.04 1203 

12 0.04 1203 

13 0.57 1130 

14 0.4 1135 

15 0.83 1124 

16 0.74 1124 

17 1.27 1134 

18 1.2 1131 
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The highest value of flux density was found to be 2.7 Seib/m2, and the 

reluctivity was found to be 65556 for this particular case. The 

highest value of flux density reached 2.85 Wb/m2 for locked rotor 

condition. Magnetic vector potentials were calculated for each node 

and printed out. The following table shows some points and their 

relative magentic potential values for slip - 0.5 and t-0. 

Element Magnetic 

Potential 

(amp) 

Element Magnetic 

Potential 

(amp) 

Element Magnetic 

Potential 

(amp) 

36 0.00192 37 -0.00022 38 -0.0022 

39 -0.00404 40 -0.0066 41 -0.00783 

42 -0.00577 43 -0.00662 44 -0.01178 

45 -0.01359 46 1-0.01344 47 -0.0134 

48 -0.01335 49 -0.01112 50 -0.00862 

51 -0.0045 52 -0.00079 53 0.00363 

54 0.00866 55 0.01488 56 0.01786 

57 0.01786 58 0.01789 59 0.01788 

60 0.01521 61 0.00761 62 0.00675 

63 0.01251 64 0.01782 65 0.01787 

66 0.01789 67 0.01789 68 0.00973 

69 0.0042 70 -0.00173 71 -0.00848 

72 -0.01379 73 -0.01329 74 -0.01344 
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The highest value of magnetic potential was found to be 0.0195 

Tesla/meter. 

The magnetic vector potentials are used to obtain flux plots 

for any instant of time and speed. 

Figures 4.7a and 4.7b illustrate the field patterh5 for slip 

1 and time - 0, slip -1 and time = 5m. sec respectively. Figures 

4.8a and 4.8b show the field patterns for slip = 0.5, t-0 and t= 

5 m. sec respectively. Figures 4.9a, 4.9b illustrate the field 

patterns for slip = 0.05 and times t-0, t- 5m. sec. 

The finite element method was also applied to the 

reversing-speed motor (Figure 4.10). The flux plot was obtained 

using only the stator current as an exciting current and figure 4.11 

shows the field pattern for this motor. 

A computer program was developed to obtain the flux lines 

distribution for each element. Figure 4.12 gives the flow chart of 

this program. 
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CHAPTER 5 

FINITE ELEMENT AND PARAMETERS CALCULATION 

5.1 Theory 

The main purpose of using the finite element method is to 

introduce an alternative approach to parameter calculations. The 

aim of this method is to achieve better accuracy than the normal way 

which is mentioned in Chapter 2. 

The procedure of the method is outlined as follows: All the 

instantaneous currents are calculated, for a given speed and time, 

and used as excitation currents in the finite element program. Flux 

density and reluctivity is calculated for each element after a good 

convergence is achieved. 

At this stage the reluctivity is fixed for all the elements. 

The fixed reluctivity is used as input data. The self inductance of 

any coil is calculated using the concept of stored energy. 

Ws - fv 
. fö H. db . dv ... ... 5.1.1 

_ 
B2 B2 fv2 

" dV=2 
µr - A. L 

µr 

W 0.5 11 2 
... ... 5.1.2 

s 

so 

B2 1-. A. L ... ... 5.1.3 
12 
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where L is the stack length of the machine 

A is the area of any element under consideration 

B is the flux density in an element 

µr is the fixed permability of any element 

i is the conductor current of the coil being considered. 

The value of flux density is calculated, for the existing 

current and fixed permability, for each element in the r e. gion. 

Using equation 5.1.3 over all the elements of the machine to get the 

partial inductances, then taking the summation, of these 

inductances, gives the self inductance of the winding being 

considered. 

Mutual inductance between two coils is calculated using the 

flux linkage concept. Flux produced by one coil and links another 

coil, where the value of flux density and its angle is calculated 

for each element and printed out. 

Mutual inductance caa be expressed as 

M1.2 ' 
N2 h 

.2... ... 5.1.4 

e1.2 ý "1 + $2 + ... + mit ... ... 5.1.5 

- B1 . L1 .L+ B2. L2L + ... + Ba. LA. L 

m1.2 ' L. EnBß. Ln w L. 1n. Bn. Ln . cos 9n 

where N- number of turn, I, n conductor current of first coil 

L stack length, L. = length of element n 

Bn = flux density of element n 

Ba "BBa" Bý . sin (8n) . 
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The expression having cos n or sin 0 depends on the position 

of the coil with respect to I. Y coordinates. If the centre of the 

coil is in the I direction so in = Ba cos(O) and if the centre is 

in Y direction then in " Bn. sin (6n). Figure 5. L. 1shows part of the 

machine and illustrates the elements to be used to calculate a 

mutual inductance and the cross length of each element (L1 . L2 ,.., 

La ). 

5.2 RESULTS 

Equation 5.1.2 is used to calculate the self inductances of the 

main winding, shading ring and rotor loops. 

The following table shows the self inductance of the main 

winding at slips equal 1,0.5 and 0.05 

Slip Time (m. sec) Im (amp) 1 (H) 

0 3.25 0.1584 

1 5 4.9 0.1834 

0 2.62 0.1792 

0.5 5 4.44 0.1863 

0 1.3 0.2411 

0.05 5 3.05 0.2352 

Self inductance of mainwinding 

µ= constant 

Self inductance of the ring and mutual inductance between two rings 
e 

for constant permeability and different speeds are illustrated in the 

following table. 
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Slip Time (m. sec) I (amp) 
fth 

1 (H) M (H) 

0 -503.8 0.1083x10-5 0.433x10 7 

1 5 -214.5 0.85x10-6 0.355x10-7 

0 -407 0.1116x10 5 0.475x10-7 

0.5 5 -221 0.9097x10-6 0.468x10 7 

0 -109 0.1174x10 5 0.431x10-7 

0.05 5 -360. 0.118x10-5 0.473x10 7 

Self inductance of one ring and mutual inductance between two rings 

From the results shown in the table it is clear that the ring 

inductance and mutual inductance between two rings do not have 

significant variation with speed or time so they will be considered 

constant. 

Variations of rotor loop self inductance with position is 

calculated, the self inductances are found for all the loops at one 

speed and instant of time. The following table shows the values of 

rotor loops self inductances. 
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Loop Slip -1 Slip s 0.5 Slip 0.05 

No* 

time o time -5 time -. o time -5 time -o time -5 

(m. sec) (m. sec) (m. sec) 

1(10-6 H) (10 6H) (10 6H) ß. (10-6H) R(10-611) R(10-6H) 

1 0.944 1.8 1.16 2.22 2.46 7.6 

2 1.07 2.15 1.23 3.35 1.82 8.86 

3 1.08 2.36 1.19 3.45 1.73 6.51 

4 0.838 1.66 0.956 1.64 1.87 3.4 

5 0.688 0.922 0.768 0.904 1.85 1.3 

.6 0.734 0.858 0.834 0.853 1.91 1.51 

17 0.868 1.17 0.997 1.68 1.73 5.47 
!8 

0.96 2.4 1.04 3.12 1.62 6.83 

19 0.976 1.11 1.17 2.36 2.07 3.46 

10 0.78 1.1 0.955 1.06 2.03 1.56 
ý11 

0.98 1.42 1.19 1.34 2.66 3.84 

Self inductances of rotor loops at different time and speed 

Variations of rotor loop self inductance are plotted on figures 

(5.2.1. a) for slip . 1, (5.2.1. b) for slip - 0.5 and (5.2.1. c) for 

slip = 0.05. 

Field plottings of rotor loops are plotted on figures, 

5.2.2. a1,5.2.2. a2 ,..., 5.2.2. a11 for (slip - 1, time - 0), 

5.2.3. a1, 

5.2.3. a2 ,..., 5.3.2. a11 for (slip a 1, t-5m. sec). Field 

plottings of rotor loops are illustrated on figures 5.2.4. b1, 

73 



a 

5.2.4. b2 ,..., 5.2.4. b11 for (slip " 0.05, t- 0). Figures 5.2.5. a, 

5.2.5. b and 5.2.5. c show flux distribution, produced by rotor bars, 

for (slip - 1, t- 0), (slip " 1, t-5m. sec), and 

(slip - 0.05, t- 0) respectively. 

Flux of the main winding is obtained at different speed of the 

motor at time - 0. Field maps of the main windings are plotted on 

figures (5.2.6. a for S-1, t- 0), (5.2.6. b for S-0.5, t- 0) and 

(5.2.6. c for S-0.05, t- 0). 

Shading ring flux is calculated considering one ring carrying 

current, for (slip - 1,0.5,0.05) and also is calculated for two 

rings carrying currents. Flux produced by one ring is plotted on 

figures (5.2.7), (5.2.8) and (5.2.9) for (slip - 1,0.5,0.05) 

respectively and time - 0. 

Mutual inductance between main winding and shading ring is 

calculated, at t-0 and t-5m. sec, for locked rotor condition, 

half speed and no load speed. Also mutual inductance between main 

winding and rotor loops is calculated for the same above conditions. 

The following tables show the results which are obtained 

slip time (m. sec) M (H 

0 1.018x10-4 

1 5 0.876x10-4 

0 0.969x10-4 

0.5 5 0.895x10-4 

0 1.105x10-4 

0.05 5 1.06x10 4 

Mutual inductance between main winding and shading ring 
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Loop Slip -1 Slip - 0.5 Slip - 0.05 

N o. 

time -0 time -5 time -0 time =5 time -0 time -5 

(m. sec) (m. sec) (m. sec) 

Mx10 
4 

11x10_4 Mx10-4 Mx10-4 Mx10_4 Mx10 
4 

(H) (H) (H) (H) (H) (N) 

1 0.397 0.519 0.47 0.46 0.65 0.57 

2 0.553 0.427 0.6 0.38 0.52 0.46. 

3 0.4 0.359 0.45 0.32 0.45 0.33 

4 0.548 0.69 0.65 0.62 1.1 0.97 

5 0.532 0.78 0.64 0.78 1.15 1.08, 

6 0.471 0.67 0.56 0.66 0.99 0.94 

7 0.495 0.58 0.6 0.53 0.73 0.61 

8 0.206 0.144 0.23 0.185 0.21 0.26 

9 0.63 0.612 0.74 0.62 0.95 0.72 

10 0.47 0.712 0.57 0.71 1.09 1.02 

11 0.55 0.88 0.7 0.87 1.24 1.26 

Mutual inductance between main winding and rotor loops 

Mutual inductance between shading ring and rotor loops is 

calculated considering one ring carries current, the results are 

listed in the following table. 
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Loop Slip -1 Slip = 0.5 Slip " 0.05 

N o. 

time -0 time -5 time -0 time -5 time -0 time -5 

(m. sec) (m. sec) (m. sec) (m. sec) (m. sec) (m. sec) 

M(10 
7H) 

M(10-7H) M(10-7 H) M(10-7H) M(10-7 H) M(10 
7H) 

1 0.336 0.25 0.46 0.35 0.34 0.22 

2 0.39 0.14 0.21 0.65 0.37 0.299 

3 3.1 2.5 3.4 2.7 3.1 2.6 

4 1.1 1.07 1.55 1.8 1.09 0.898 

5 0.614 0.59 0.76 0.77 0.516 0.508 

6 0.52 0.47 0.63 0.64 0.44 0.43 

7 0.48 0.38 0.44 0.5 0.44 0.368 

8 0.48 0.37 0.37 0.41 0.48 0.466 

9 0.5 0.37 0.61 0.56 0.53 0.401 

10 0.4 0.42 0.7 0.697 0.34 0.394 

11 0.5 0.55 0.82 0.868 0.49 0.49 

Mutual inductance between shading ring and rotor loops 

The results, listed in the last two tables, were checked by 

finding the mutual inductances between rotor loops and main winding, 

also between rotor loops and ring, where the current exists in one 

rotor loop at a time. 
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Figure 5.2.10 shows mutual inductance waveform between main 

winding and rotor loop. Variations of mutual inductance between one 

ring and a rotor loop, considering each loop represents a position, 

are plotted on figure 5.2.11. 

Mutual inductances between rotor loops are calculated for each 

individual loop at two times and three values of speed. The 

calculated results are tabulated to be used for plotting the 

waveform of mutual inductance between any two loops. The following 

tables show the results at times 5 m. sec and different speeds. 
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Mutual inductance between loop I and loop i 

M10J (H x 10 
7) 

I/J 12345678 

1 6.75 0.946 0.41 0.41 0.342 0.274 0.34 

2 6.2 5.48 0.466 0.335 0.27 0.233 0.293 

3 0.779 5.22 7.4 0.534 0.429 0.363 0.414 

4 0.394 0.465 7.57 0.69 0.532 0.437 0.479 

5 0.393 0.362 0.615 0.756 1.51 0.551 0.572 

6 0.323 0.29 0.481 0.571 1.49 0.899 0.54 

7 0.272 0.239 0.389 0.448 0.522 0.864 4.56 

8 0.323 0.286 0.39 0.436 0.475 0.485 4.09 

9 0.41 0.357 0.427 0.434 0.468 0.402 0.504 10.1 

10 0.508 0.381 0.467 0.477 0.514 0.44 0.378 0.645 

11 2.35 0.834 0.68 0.631 0.671 0.568 0.488 0.689 

I/J 9 10 11 

1 0.37 0.451 2.46 

2 0.381 0.404 0.782 

3 0.44 0.447 0.606 

4 0.454 0.453 0.578 

5 0.538 0.536 0.686 

6 0.448 0.446 0.565 

7 0.539 0.364 0.462 

8 9.45 0.518 0.588 

9 1.74 0.983 

10 2.09 2.06 

-11- 1 
1.07 1.94 

Mutual inductances between rotor loops for a 1, t5m. sec 
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Mutual inductance between loop I and loop J 

MIýJ (H x 10 1) 

I/J 1 23 4 5 6 7 8 

1 8.82 2.21 0.367 0.342 0.289 0.245 0.328 

2 8.15 11.5 0.687 0.331 0.269 0.299 0.322 

3 1.94 11 7.02 0.62 0.494 0.423 0.553 

4 0.343 0.691 1.35 0.655 0.481 0.4 0.5 

5 0.346 0.352 0.713 . 734 0 1.43 0.536 0.638 

6 0.287 0.286 0.547 0.499 1.38 0.971 0.661 

7 0.223 0.223 0.428 0.38 0.48 0.892 0.875 

8 0.29 0.282 0.498 0.427 0.502 0.535 7.85 

9 0.435 0.385 0.496 0.392 0.463 0.407 0.753 11.8 

10 0.477 0.394 0.552 0.417 0.491 0.428 0.36 0.65 

11 1.98 0.909 0.759 0.527 0.622 0.533 0.451 0.703 

1/J 9 10 11 

1 0.369 0.417 2.21 

2 0.385 0.4 0.872 

3 0.448 0.49 0.683 

4 0.406 0.401 0.496 

5 0.52 0.511 0.634 

6 0.439 0.426 0.525 

7 0.737 0.329 0.408 

8 10.3 0.504 0.564 

9 1.62 0.939 

10 1.92 1.93 

11 1.02 1.78 

Mutual inductances bet ween rotor loops for 9- 1, t- 5 m. sec 
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Mutual inductance between loop I and loop 3 

MI, 3 
(H x 16-1) 

I/J 12345678 

1 3.2 3.75 0.769 0.473 0.405 0.317 0.357 

2 29.5 23 2.3 0.464 0.376 0.323 0.292 

3 3.44 23 16 0.561 0.447 0.396 0.326 

4 0.679 2.56 15.6 1.28 0.676 0.555 0.428 

5 0.463 0.492 0.618 1.18 2.71 0.761 0.561 

6 0.389 0.389 0.473 0.75 2.6 3.17 0.89 

7 0.268 0.302 0.386 0.579 0.708 2.95 33 

8 0.319 0.256 0.295 0.416 0.46 0.761 30.3 

9 0.486 0.418 0.421 0.541 0.606 0.552 2.75 15.6 

10 0.774 0.505 0.508 0.716 0.769 0.665 0.498 0.818 

11 14 3.184 0.996 0.958 0.964 0.842 0.627 0.82 

I/3 9 10 11 

1 0.467 0.676 14.2 

2 0.378 0.49 3.09 

3 0.391 0.483 0.912 

4 0.485 0.69 0.858 

5 0.645 0.783 0.984 

6 0.564 0.654 0.827 

7 2.649 0.469 0.585 

8 14.9 0.647 0.689 

9 2.68 1.14 

10 2.87 2.89 

11 1.19 2.7 

Mutual inductances between rotor loops for s'1, t-5m. sec 
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Using the results listed in the tables, waveforms are plotted, to 

show the variation of mutual inductance, between rotor loops, when 

they change their position. Mutual inductance between loop 1 and 2 

is plotted against rotor position as shown by figure 5.2.12. 

Figures 5.2.13,5.2.14,5.2.15,5.2.16,5.2.17,5.2.18,5.2.19, 

5.2.20 and 5.2.21 illustrate the variation of mutual inductance 

between loops 1 and 3,1 and 4,1 and 5,1 and 6,1 and 7,1 and 8, 

1 and 9,1 and 10 and 1 and 11 respectively. 
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CHAPTER 6 

TRANSIENT ANALYSIS OF SHADED-POLE MOTOR 

Performance differential equations of the machine were derived 

from the electro-physical construction of the machine. Half the 

machine was considered because of the symmetry, so three stator 

equations and eleven rotor equations were derived. 

Electrical machine can be treated, in general, as a 

configuration of coils interacting with each other through self and 

mutual inductance. The performance of electrical machines can be 

described by a set of voltage equations: 

viiR+ P(1 1)+ P4. ... ... 6.1 
mmmmmm 

where m-1,2,3 ...., c 

c- total number of coils 

The flux linkage 4, 
m of coil m will be a function of every current in 

the multi-coil system as well as their relative positions. 

%-f (il, i2, i3 ,..., ic, e1,82,..., 8c) 

c ay c 841 
Pc, 

Q =E aim pin +E ae Pon ... ... 6.2 
n=1 n n-1 n 

In equation (6.2), the first summation involving rate of change 

of currents is referred to as the emf of pulsation or transformation 

since it is caused by the pulsation of flux- the latter summation is 

the emf of rotation because it depends on relative motion between the 

coils. 

In addition to the electrical equations (6.1) and (6.2), the 

mechanical equation was introduced to investigate the speed 

behaviour of the machine. 

Te s JE) + TL ... ... 6.3 
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where Te is the electromagnetic torque developed 

J moment of inertia 

AS acceleration of the rotor 

and TL = load torque including friction and windage 

6.1 Derivation of Differential Performance Equations 

Figure (6.1) shows the physical representation of half the 

shaded-pole motor. The main winding voltage equation was derived as 

follows 

v1 a 8111 + Pi Y+ P(M1.2 12) + P(M1.3 13) + P(M1.4 14) 

+ P(M1.5 15) +..... + P(M1.15 115) 

v2 s R2i2 + P( 12 i2) + P(M2.1 Y+ P(M2.3 Y+ P(M2.4 14) 

+ P(M2.5 15) +..... + P(M2.15 i15) 

But il= i2 =i v1 + v2 s vs 

vs -Rsis+ P(Ls is) + P(Ms. 
gl 

iql) + P(Ms. 
g2 

iq2) 

+ P(Ms. r1 
irl) +..... + P(Ms. rll 

iris 

11 
vs 'Rsis+ Ls. pis + Ms. 

gl. 
piql + Ms. 

g2piq2 
+ 

aEIP(Ms. rn 
irn) 

"". ... 6.1.1 

where M 
s. q 

constant, Ls - constant 

Ls - 11 + 12 + 2M 1.2 , M1.3 + M2.3 Ms. 
gl 

M1.4 + M2.4 Ms. 
g2 ' M1.5 + M2.5 Ms. 

rl 
M1.6 + M2.6 a Ms. 

r2 and so on 

Because the shading ring has a closed circuit its voltage is 

zero. The voltage equation for ring one is 

ý3 ;0= 8313 + R3p'3 + Mgl. 
s. pi + Mgl. 

q2piq2 
+ 

p(Mgl. rl 
iri. + p(Mgl. r2*ir2) 

+... + p(Mgl. rll*irld 
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vql m Rgliql + glpiql, + Mgl. 
spis 

+ Mgl. 
q2. piq2 + 

11 
E p`Mgl. rn. 

irn) """ """ 6.1.2 

n1 

and the voltage equation for ring two is 

vq2 - Rg2iq2 + Ig2. piq2 + Mg2. 
s'pis 

+ Mg2. 
ql*piql 

+ 

11 
E p(M 2i rn 

) ... ... 6.1.3. 
n=1 q" rn 

6.2 Representation of cage rotor 

The cage rotor is represented, in the present investigation, by 

a number of cascaded loops, each formed by two adjacent bars and the 

two interconnecting portions of the rings. The number of loops is 

equal to the number of rotor bars. Each loop is considered as a 

single turn coil having flux linkage with itself, with other rotor 

loops and with the stator windings. An equivalent circuit of the 

cage rotor by this representation is shown in figure (6.2). 

The voltage equation for nth loop is 

11 
s Rrnirn - Rb (ir. 

n+l 
+ ir. 

n-1) 
+ 

mml 
P(Mrn. m 

irmý 

+ p(Mrn. sis) 
+ p(Mrn. gl 

iql) + P(Mrn. g2 
iq2) ... ... 6.2.1 

6.3 Representation of Self and Mutual Inductance 

Both self and mutual inductances were calculated, for each 

winding in the machine, using finite-element methods. The results 

were obtained at two times and different speeds. 

The Self-inductance of the main winding and shading ring were 

found to be constants. The mutual inductance between the main 

winding and shading ring was also taken to be constant. The mutual 

inductance between two rings was constant and the self inductance of 
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rotor loop with the speed of the machine and the position of the 

loop. Under locked rotor condition where the slip -1 the variation 

of the rotor loop self inductance is not significant. The rotor 

loop self inductance variations appear clearly when the speed of the 

motor was increased. This is noticed from the comparison between 

figures (5.1.2. a) and (5.1.2. b) and between figures (5.1.2. a') and 

(5.1.2. c). The purpose of representing a rotor loop self inductance 

in this chapter is to be used in the transient equations where the 

speed of the motor is initially zero thus the self inductance of a 

rotor loop was considered constant. 

6.3.1 Mutual inductance between main winding and a rotor loop 

Field plotting of main winding and rotor loops show different 

flux linkage between the main winding and each rotor loop. The flux 

linkage is both speed and position dependant as shown in figures 

(5.2.2. ), (5.2.3) and (5.2.4). 

Mutual inductance between main winding and a rotor loop was 

calculated by finite element methods. The variation of mutual 

inductance between main winding and a rotor loop is illustrated by 

figure (5.2.10). From the waveform it is clear that the mutual 

inductance varies sinusoidally. 

so 
A 

MM cos(O + a) 
s. r s. r 

where 0 is the angular displacement between a reference point on the 

stator and a reference point on the rotor 

and a is the initial angle between the main winding and a rotor 

loop. Such an expression may be written for each loop. 
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Considering the space displacement between each loop, the 

mutual inductance between main winding and loop n will be- 

A 
Ms. 

rn a Ms. 
rn cos (A +a+ (n-1) al) 

where a1 is the slot angle 

6.3.2 Mutual inductance between shading-ring and a rotor loop 

Field maps of the shading-ring show different flux distirbution 

for different speed as shows in figures (5.2.7,5.2.8,5.2.9). 

Flux linkage with a rotor loop depends on the position of the 

loop with respect to the shading ring. Mutual inductance between 

shading ring and a rotor loop was calculated for each loop at two 

times and three values of slip. Mutual inductance waveform against 

the rotor position is shown by figure (5.2.11). It is obvious, from 

the waveform, that the mutual inductance is a maximum when the loop 

is co-axial with the ring, and it is very small in all other 

positions. 

The mutual inductance expression was derived considering two 

cases: 

1. The rotor loop is co-axial with the ring. This position 

occupies two slots only. 

A 
Mq. 

r 
14 

q. r 
cos (2(8 +a+ S)) 

where 6 is the angle between main winding and the ring so the mutual 

inductance between shading-ring one and a rotor loop was expressed 

as 
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A 
M 

q. rn 
mMq. rn 

cox(2(O+ ac+ 8+ (n-1)x )) ... ... 6.3.2.1 

where n indicates to loop number was considered. 

Equation (6.3.2.1) is applicable to this region if the angle 

-a1t81<a1 where 81 =0+a+6+ (n-1)a1. 

2. The rotor loop is outside the co-axial region. In this region 

the mutual inductance is small for all the loops in this region and 

it may be considered constant. An expression is given for loop n in 

this region as: 

A 
Mq. 

rn 
= Mq. 

rn cos(8 +a+6+ (n-1) a ... ... 6.3.2.2 

Shading-ring two is displaced180 electrical degrees from 

shading-ring one. Equation (6.3.2.1) will take, for shading-ring 

two, the form 

A 
Mq. 

rn i -Mq. rn cos(2(8 +a+6+ (n-1)a1)) ... ... 6.3.2.3 

and equation (6.3.2.2) will be 

A 
Mq. 

rn a -M q. rn cos (6 + ac +8+ (n-1)al) ... ... 6.3.2.4 

Equations (6.3.2.3) and (6.3.2.4) express the mutual inductance 

between a rotor loop and shading-ring two in the co-axial and the 

non co-axial regions respectively. 

6.3.3. Mutual Inductance between Rotor Loops 

Each rotor loop was treated as a single turn coil. Flux 
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distribution for each coil was calculated at two times and three 

values of speed. Field maps are shown by figures (5.2.2), (5.2.3) 

and (5.2.4). 

Flux linkages between one rotor loop and the rest of the loops 

depends on the position of the loop under consideration as well as 

the speed of the machine. Therefore the mutual inductance between 

rotor loops was calculated by finite element methods for each 

individual loop. The results were obtained considering different 

speed of the machine. Variation of mutual inductance, between a 

rotor loop and other loops, are shown by figures (5.2.1.2), 

(5.2.13), ... (5.2.21). 

Mutual inductance between rotor loops has a high value when the 

machine is running at no load speed and it decreases with speed 

deceleration of the machine. The mutual inductance is significant 

between the adjacent loops as appears from the comparison between 

figure (5.2.12) and figures (5.2.13,5.2.14,5.2.15). An expression 

was obtained from the waveform of mutual inductance between the 

loops: 

A 

Mr. 
n -± Mr. 

a 
+(1+0.5 c. os(k. a1 + 0)) 

where Kai - (n-r) al 

The sign (+) or (-) depends on the value of the angle k. a1. 

6.4 Torque Evaluation 

The induced voltage of a single coil carrying current i and 

setting up flux linkage with itself is 
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d 6.4.1 

Neglecting the power loss in the resistance of coil, the electrical 

energy input will be stored in the field as magnetic energy ws. The 

energy stored in a time period t1 to t2 is 

jt2 e. i. dt - 1t2 di dt 
11 

t 
i. e. w(t1, t2) a Jt2 id c1, ... ... 6.4.2 

1 

The flux linkage and current are related by the magnetising 

curve as shown in figure 6.3 

T 

i 

Figure 6.3 

'if 

T2 Instant 

ýi 
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Replacing the limits in equation 6.4.2 

fid4, = ws( , ý2) ... ... 6.4.3 
41, 

The co-energy ws is defined with reference to figure 6.1 as 

ws (il, i) jg y di ... ... 6.4.4. 211 

The co-energy is related to the stored energy by 

KKK 
Ws =Ef id4, -E id) -Ef 4di 

n-i n=1 n=1 

therefore 
K 

Ws E 14 - w' ... ... 6.4.5 

nil 

The power balance equation for any electro-mechanical system, 

assuming the absence of electric fields is: 

pe s pm + dt w6 ... ... 6.4.6 

where pe - electrical power input 

pms mechanical power output 

vs - energy stored in the magnetic field. 

Consider a multi-coil system 

d4 d42 d81 d82 
h 

1 dt + i2 dt +"' a T1 dt + T2 dt +"'+ w s 
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For K coil system 

K d4, Kd On d 

nml 
in dt 

n1 
Tn dt + dt ws "' """6.4.7 

k 
wEfi dop ... ... 6.4.8 

$ n=I nn 

where T- Torque, 

0- angular position 

and cy - flux linkage 

Neglecting the effects of hysteresis the energy stored in the 

magnetic field depends only on the final values of the variables and 

not on the way in which they reached those values. one method of 

evaluating the total stored energy is to set all the flux linkages 

to zero then increase each one in turn to its final values. Once a 

flux linkage reaches its final value it is keptat that value and a 

flux in the next coil is then allowed to increase to its final value 

until all coils are considered. 

ws should be expressed as a function of flux linkages and positions 
K 

of coils, ws E ws (9n ,4) 
n=1 

K dyv K dg 
d Ws a 

m=l 
öyý ws dt + 

m£1 
8m ws dtm 

K 
s 

öc'm Vs aim 
nýl 

indýn s im 

therefore 

dKd ým 

ddttwsýM=l imd + 
xa dem 

1aemwsä 
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Substituting in equations 6.4.7 gives 

Kd An Kad Om 

nE 
Ta dt 

mE 
öo ws dt 

therefore 

Taw (ý e) ...... 6.4.10 ý'ýae S' n 

ws must be a function of 4 , and 0 

From equations (6.4.7) and (6.4.5) 

Kd4, 
n 

K den K_d 

n-l 
in 

dt 
n-l 

Tn dt +d 
n=l 

inn dt Ws 

".. ... 6.4.11 

KK d q, K di 

t in'n - 1a dt + - ý' 
n dt 

n 

n1 n l n l 

dKa dim K a dom 
dt ws Ws ý öi it + ý we ö8 dt 

m m l m l m 

i w s `gy ö $ m m 

Substituting in equation 6.4.11 and simplifying. 

K d8n Ka d8m 

""""6.4.12 
nE 

Tn dt 
M-1 

Som ws at 

KK 
ETaE we ... ... 6.4.13 

n=1 n n'1 
öon 9 

or for coil n the torque will be 
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Tn ae wg ... ... 6.4.14 
n 

The co-energy must be a function of currents and positions 

ws = w'(i, 9). 

The co-energy method is easier to employ in practical machines 

than the stored energy method, since it is simpler mathematically to 

keep the currents constant rather than flux linkages during the 

virtual displacement. In the linear system ws - ws. Consider a 

coil system such as in a rotating machine, with m rotor coils and n 

stator coils the torque exerted on the rotor is 

KaI 
E ws Trotor 

K-1 60k 

Let 0k-6+ ock 

where 0 is the angular displacement between stator and rotor 

reference points. 

ak is the constant displacement between coil K and reference 

point of the rotor 

Therefore 

a WI -ma wt 
aek 

ae S Ksj 60K s ae 

60K 
'1 80 

Therefore 

Ta 60 Ws' ... ... 6.4.15 
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The co-energy ws, for c coils systems, in matrix form will be 

L11 M12 .... ' Mlc 11 

M21 L22 M2c i2 

w' = 0.5(1 '1 6.4.16 2 $ 1 

M ..... L i 
cc cl s 

From equations (6.4.15) and (6.4.16) the matrix torque equation is 

L11 M12 

M21 L22 

'S 
T=0.5[il, i2 ,..., c] 

d 
de . 

Mc1 Mc2 

M13 ....... Mlc i1 

M23 """""" M2c i2 

i i i cc c 

... ... 6.4.17 

6.5 Solution of Performance Equations 

To solve equations (6.1.1), (6.1.2), (6.1.3) and (6.2.1) for 

the unknown currents, these equations were rewritten in differential 

shape as follows: 

For main winding 
11 

V- Ri-Ei pM =L . pi +M pi +M pi sss n-1 rn s. rn sss. ql ql s. q2 q2 
11 

+EM pi ... ... 6.5.1 
n-1 s. rn rn 

For ring one 

11 
- Rq1 iq1 - 

nEl 
i 

rn pMql. rn zu M 
s. q1 pi s+ 

1glpiql + Mgl. 
q2piq2 

11 
Mgl. 

rnpirn ... ... 6.5.2 + £1 
n 
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For ring two 

11 

- Rg2iq2 - 
nE1 

irn PMg2. rn i Ms. 
g2'pi8 

+ Mgl. 
q2. piql+ig2piq2 

11 
Mg2. 

rnpirn ... ... 6.5.3 + El 
n 

For rotor loop one 
11 

-Rrlirl + Rb(ir2 + irll 
mEl 

irmPMrl. 
m 

is. pMrl. 
s 

-iglýPMrl. ql 
ig2*pMrl. 

q2 a Mrl. 
s*pis 

+ Mrl. 
gl*piql 

11 
+H 

rl. 2. pi 2+E mrl. 
m. 

pirm ... ... 6.5.4 
qq m=1 

Rotor loop two 

11 
-R r2 

ir2 + Rb(ir1 + ir3) 
mE1 

irm'PMr2. 
m -ispMr2. s 

-ig1'PMr2. q1 - iq2' PMr2. q2 ' Mr2. 
spis 

+ Mr2. 
g1'piqi 

11 
+M 

r2. g2piq2 
+E Mr2. 

m"pirm ... ... 6.5.5. 
m=l 

and so on for all the rotor loops. 

These differential equations are simplified and written in 

matrix form as 

K1 Ls Msgl Msg2 Msrl Msr2 ..... ".. "' . Msrll pis 

K2 Msgl 1q1 Mg1q2 Mglrl Mglr2 . '.... " '.. " Mg1r11 pigl 

K3 Msg2 Mg1q2 1q2 Mg2r1 Mq2r2 *000009000000 Mg2r11 pi g2 

Marl Mglrl Mg2r1 Lrl Mrlr2 000090000,0000 Mrlrll pirl IK 4; I 

K5 iMsr2 Mglr2 Mg2r2 Mrlr2 Lr2 """"" "' Mr2r11 pi r2 
K ai. ............. . 6 
................... .. 

................... 
.. 

K Msrll Mglril Mg2r11 Mrllrl Mr11r2 
............. 

Lr11 pir11 

... ... 6.5.6 
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11 
where Kl s vs -Rsis-E ira. 8 . sin( Ofo: *(a-1) a1). Msrn 

n=1 
11 " 

K2 -Rgliql -E irn 0. sin(A+ai-b+(n-1)a1). Mglrn 
n=1 

11 
K3 -Rg2iq2 +E irn 9-sin (9ta+6+(n-1)a1). Mg2rn 

n'1 
11 

K4 = -Rrlirl + Rb(i'r2 + irll) -El irmpMrn 
ma 

-Mrlsis6sin(6+a) - Mrig1Asi. n(8+a 6) 

+Mr1g2.1q2Asin( 6+a+6) 

11 
K5 -Rr2ir2 +_b irl +'r3)-E1 irmpMrn 

m9 

- Mr2sis 6 sin(9+a+a1) 

-Mr2g1iq18. sin( 8+a}bi-al) + Mr2g2iq28sin(G+atö+a1) 

11 
K6 ' -R r3 

+ Rb(ir2 + ir4) -E1 irm. pM rn-Mr3. s 
is 9-sin( @+ a+2a ) 

m= 
1 

-Mr3. gliql. 
A. sin(& XF&f2a) + Mr2. 

g2'iq2e 
sin(@+a}ö+2a1) 

K7, K89 K9, K10, Kll, K12, K13 and K14 are obtained in the same way 

as K4, K5 and K6. 

Equations (6.3) and (6.5.6) were solved numerically for 

currents and speed. Runge-Kutta 4th order method was employed to 

obtain the numberical solution. The method may be summarised as 

follows: 

if 

d-f (x, y) 

then 

y(n+1) - y(n) + 
Hl + 2H 2+6 211 3+H4 
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where 

H1 = h. f(x , Yn) 

H2 h. f(xn + 0.5h, yn +0 . 5H1) 

H3 s h. f(xa + 0.5h, yA + 0.5H2) 

H4 m h. f. (xn + h, y+ H3) 

h is step length in x. 

pis, pigl, pig2, Pirl' pir2 '**" Pirll were obtained at every step 

by solving matrix equation'(6.5.6) using Gauss Elimination method. 

Experimental results of transient torque-time were obtained for 

the test motor, using the procedure which is mentioned in section 

(2.3.3). Figure (6.4) illustrates the transient torque and speed 

characteristics. Transient current-time patterns of main winding 

are shown by figure (6.5). Figure (6.6) shows transient current of 

shading ring. 
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CHAPTER 7 

STEADY STATE SOLUTION 

The steady-state performance of small induction machines is 

more significant than the transient characteristics in respect to 

machine design. The basic differential equations are derived in 

order to build a steady state solution which takes into 

consideration unsymmetrical windings, non-uniform air-gap and 

distribution of the windings. Self and mutual inductances of all 

the windings are calculated, by finite element methods, and 

represented in the performance equations. Variation of harmonic 

rotor currents are also considered. Voltage equations are formed in 

terms of harmonic currents and harmonic inductance coefficients. 

Any number of space harmonics can be taken into consideration by 

including the appropriate number of inductance coefficient terms. 

Because the performance of a shaded-pole motor is greatly affected 

by the presence of space harmonics, Lock (22) examined briefly their 

origin as shown in Appendix A. 

7.1 Steady State Performance Equations 

The stator harmonic currents are very small in comparison with 

the fundamental so the harmonic currents will be ignored in the 

stator windings. Voltage equations derived in Chapter 6 are the 

basic equations of the steady state performance. For the main 

winding the voltage equation is. 

v8 iSRa + P(1818) +P ýS ... ... 7.1.1. 

The flux linkage T8 is the contribution of all harmonic currents of 
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all windings. 

Similarly the voltage equations of the shading rings are 

0 iglRq1 + P(igliql) + PT 
ql ... ... 7.1.2. 

0- ig2Rq2 + P(1g21q2) +P q2 ... ... 7.1.3 

Because the mutual inductances between stator windings are 

constants, equations 7.1.1., 7.1.2 and 7.1.3 will take the following 

forms, 

11 
Vs Rsis + Ls pis + Msglpiql + Msg2p1Q2 + 

nE1P(Msrnirn) 

... ... 7.1.4 

11 
0- Rqi i 

ql 
+ Lglpiql + Msglpis + Mglq2piq2 + 

nE1P(Mglrnirný 

... ... 7.1.5 

11 
0 Rg2iq2 + Lg2piq2+ Msg2pis + Mglq2piq1 + 

nE1P(Mg2rnirn) 

... ... 7.1.6. 

The cage rotor is represented by cascade loops as discussed in 

section 6.2. This yields voltage equations for the nth rotor loop 

as follows: 

4i Rrni 
rn - Rb(irn+l+i 

rn-1) 
+ p(lrnirn) +PT 

R 
rni'rn --b(irn+l+'rn-1) 

4 P(Msrnia) 

11 
+ P(Mglrniql) + P(Mg2rniq2) + 

n-1P(Mrnmirm) 

... ... 7.1.7 

99 



Referring to the series of space harmonic fields produced by the 

stator windings, each rotor loop current consists of a series of 

harmonic currents. 

Considering only the real part of the exponential series, the 

current for nth loop is 

in E�2 Ifke-j(n-1)ka ej(Wt-ke) 
k 

+ , ý2 Ibkej(n-1)ka ej(wt 
+ k6) ] 

... ... 7.1.8 

where a is the slot angle between adjacent bars 

and k- order of harmonic current. 

The loop currents have the same magnitude but are displaced by 

a phase angle which is a multiple of the slot angle a. Thus for the. 

kth order harmonic current. 

1(n-1)k { 1(n+l)k = 21nk cos(ka) ... ... 7.19 

Subsituting in equation 7.1.7. gives 

0- (Rrn 2Rbcos(ka)) irn + P(Msrnis) 

+P(Mglrni )+ P(Mg2rniq2) + 
11 

E P(Mrnm irm) ... ... 7.1.10 
nil 
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assuming N is the highest order of rotor harmonic currents 

considered. 

Since there are two components for each order of harmonic, a 

forward and a backward component, there are 2(N+1) rotor equations. 

Neglecting saturation effects, the stator harmonic currents can be 

ignored. There are therefore three voltage equations of the stator 

to be solved. The number of rotor equation can be reduced by the 

fact that the flux linkage between the rotor and stator windings 

producesonly odd order of rotor harmonic currents. Thus the voltage 

equations are (N+l) for the rotor and three equations for the 

stator. 

7.2 Representation of Inductances 

For steady-state analysis, it is necessary to represent the 

inductances as functions of rotor position 8. The position of the 

rotor is a simple function of time when the speed is constant, i. e. 

e- (1 - s) wt ... ... 7.2.1. 

Self inductances of the stator windings and the mutual inductances 

between stator windings are assumed to be constant. The mutual 

inductance between the main winding and a rotor loop is shown by 

figure (5.2.10). From the curve given by (5.2.10) it is obvious 

that there are significant harmonic contents. Lock (22) calculated 

the percentage of each harmonic and he found that the harmonic above 

the 7th order is very small, less that 1%. 

the mutual inductance between a rotor loop and the shading rings 
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is illustrated by figure (5.2.11). From the waveform it is obvious 

that the mutual inductance between the shading rings and a rotor 

loop is very small over a wide region of the rotor position and it 

has a significant value in the co-axial position. 

The mutual inductance between a rotor loop and the main winding 

is expressed as 

l 
Msr -E Msrkeýke 

... ... 7.2.2. 
k-1 

Similarly the mutual inductance between the shading ring and a rotor 

loop is 

li1 

ork 
e Mqr z Mjke ... ... 7.2.3 

k1 

where k-1,3,5,7 

Hl = higiýe5t harmonic inductance coefficient 

J °kks 
Msrk _ Msrkd 

akq 
Mgrk s Mgrke 

and aks and akq are the angles of phase shift. 

Since the net flux entering the rotor produced by a stator coil must 

be zero the average terms in these inductance series are zero. In 
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the case of rotor loops the average terms are the predominant terms 

for the self and mutual inductances which are approximated by 

H1 1 

Mrr Mrkejke ... ... 7.2.4. E 
ka o 

7.3 Evaluation of Flux Linkages 

In order to solve the set of voltage equations, discussed in 

section 7.1, the flux linkage must be evaluated. The inductance 

coefficients will be employed for this purpose. 

7.3.1 Flux linkage on a rotor loop 

Considering the axis of the main winding as reference, the mth 

rotor loop posituion is 

Pm a0+ (m-1)a ... ... 7.3.1. 

where a is the fundamental slot angle 

0s (1-s)wt is the position of the first rotor loop 

and s- slip of the rotor 

The flux linkages on a rotor loop are due to flux produced by the 

main windings, shading rings and all rotor loops. 

Tr s frs -f '7rq + irr ... ... 7.3.2 
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The flux linkage on rotor loop n by the main winding 

H 

'F ý/s I e3C El M e'ý(k@+k(n-1)a) 
rs s k=1 rsk 

H 

i 
/2 

Is 
1 

[MrskeJ(Wt+kG) e 
jk(n-1) a 

ksl 

* j(wt-kA) -jk(n-1)ac + Msrke' e]... ... 7.3.3 

This expression shows that each harmonic mutual inductance induces 

two harmonic currents in the rotor. Their frequencies are dependent 

on the speed of the rotor, the frequency of the stator current and 

the order of the harmonic inductance coefficient. 

fr - [1 ± k(2-s) ]fo ... 400 7.3.4 

The flux linkage on rotor loop n by the shading ring is 

ý' /2 I ejwt E1 M ýj(k6+k(n-1)a) rq q k'1 rqk 

�ý Iq El I- ej 
(wt+k 8) 

ej 
k(n-1) a M, 

qk km l 

* j(wt-k9) -jk(a-1)a + Mr4ke e ... ... 7.3.5. 
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Since the magnitude of all rotor loop currents are the same, for the 

same harmonic order, with a phase shift due to space displacement, 

it is only necessary to find the harmonic currents in a reference 

loop which is taken as loop 1. The flux linkages on rotor loop 1 by 

the nth harmonic current of mth rotor loop is 

Tlmn= {/2Igne J(m-1)naej(wt-ne)+ AIbnej(m-1)naej(wt-n6) i 

H1-1 

E- ej(k9+k(m-1) 
a) M 

k=o mk 

H-1 

22 Ifn 
mkeJ(m-1)(k-n)aej[wt-(n-k)9] k- o 

+ M* e 
j(m-1(n+k)a 

ej[cýt-(n+k)9I, ink 

H1 
+ 

V2 
-£M 

eý(ý1)(k+n)a ej[wt+(n+k)A] 2 Ibn 
k-o mk 

* j(m-1)(n-k)a j[wt+(n-k)e] 
+ mke eI... ... 7.3.6 

The total flux linkages on rotor loop 1 by the nth harmonic due to 

the complete rotor is the sum of sub-flux linkages 

NL 
Tln -E P'lmn ... ... 7.3.7. 

msl 
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7.3.2. Flux linkage on a stator winding 

The flux linkages on a stator winding are due to the flux of 

both stator and rotor windings 

Ts - ! 
ss 

+ 'sr ... ... 7.3.8 

Consider the flux linkagte on the main winding by nth rotor harmonic 

current 

N' 
H1 

j [k8+k(m-1) a] 7 
ra mE 

im 
kE 

Rrske 
1 -1 

EHEl 'ý2 IM , 
)(°rl)(n-k) 

ej[wt-(n-k)6] 
M1k 1[ 2 fn 

[ 
rsk ea 

+M*e J(m-1)(n+k)a 
ej[Wt-(n+k)9]] 

+ 
ý2 

IM eu(m-1)(k+n)a ej[mt+(n+k)6] 2 bn[ rsk 

j(m-1)(n-k)ac j[aot+(n-k)A] + Mrske e 11 ... ... 7.3.9 

Similar equations apply for the shading rings. 

The flux linkages on a stator winding due to a flux of a stator 

winding is not a function of rotor position and it is expressed, for 

the main winding, as 

Asa m Lstsejwt + Mggllqleiwt + MSg2Iq2 ejWt ... ... 7.3.10 

Differentiation of the flux linkages with respect to time are 

required in the voltage equations which are discussed in section 
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(7.1). These are obtained by direct differentiation of the flux 

linkages expressions which are simple functions of time. After the 

substitution, in the voltage equations, and simplification the 

steady state equations are written in matrix form as shown in 

appendix B. 

7.4 Torque Evaluation 

In order to calculate the steady state torque it is essential 

to find the torque contribution of all harmonic currents. The 

torque expression derived in section (6.4) was employed for this 

purpose. For a c-coil system equation (6.4.17) will take the form. 

dl dM dM dMTsl 
i2 lii 12+'1"3 13+... +ii "7c 

21 W+ 12 d8 d8 1c dA 

dl dM dM dM2 L 
+112 2+i 23+ii 24t... 

+11 c 
2 2d8 23 d6 24 d8 2c d6 

112 dl 3+ dM 34 dM35 
ii 

dM3 
+ii 1i +... +c 2 3d6 34 d6 + 35 dO 3c dO 

dl dM dM dM 
+l 

2 4+'4'5 45+14 45+... 
+11 

4c 
14 d8 dB 45 d6 4c d6 

+ 
.................. ......................... 9 ... 9 

+ ................................................ 

............................................... . 

+1 12 
dLc-l 

+ii 
dM 

c-lc 
2 c-1 d0 c-1 c d0 

dL 
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Since the self inductances of the stator windings and the mutual 

inductance between stator windings are considered to be constant, 

there are no torque contribution from these self and mutual 

inductances. The torque is due to the mutual inductance between 

stator and rotor windings as well as the self inductance of rotor 

loops and mutual inductance between the loops. 

7.4.1. Torque due to interaction between stator and rotor currents 

The average torque produced from the interaction between main 

winding and rotor currents is evaluated by considering each harmonic 

current of the rotor loops 

NL 
H 

d Tsr is 
ME 

i 
rmn hE d8 Msrh 

�2 Is ejwtPo EL [(, /s lfmne 3(m-1)na 
ej(wt-n6) V2 

+ (�2 Ibmn e J(11)na 
ej(wt+n9) 3. 

H1 
jh[ß+(m-1)a] 

E jh Msrhe ... ... 7.4.2 
h-1 

Equation (7.4.2. ) simplifies to give the average torque produced by 

the interaction between main winding and rotor currents. 

Hl jnP NL I 
os Tsr 

nýl 
2 Ifn Msrn Ibn Msrn ... ... 7.4.3 
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A similar torque expression is obtained from the interaction between 

shading rings and rotor harmonic currents 

H1 jnPNLI * 0q Tqr a 
nE 

2 
ýI 

fn Mgrn + Ibn Mgrn]... 
... 7.4.4 

7.4.2. Torque due to rotor currents interaction - 

Since the self inductance of the rotor loops and the mutual 

inductance between the loops are variable with the rotor position, 

the torque is produced by the interaction between the loops. 

Consider the contribution of the nth forward harmonic current of 

loop 1 and the kth forward harmonic current of the rest of the 

loops 

T j(Wt-n0) E J(Wt-kA)jj(m-1)ka d 

ff ' �2 Ifn e �2 Ifke d0 
msI 

Po /2 I fnej(Wt-n 
A) N 

v(2 I fk ei(Wt-kO) e-j(m-1)kaih ýhe jhG 

msl 

After the multiplication and simplification the torque expression 

is 

IT J° f- 
ELI e 3(m-1)ka [M ej[2wt-(k-h+n)9] ff 2 

msl 
fk mh 

+ Mýhej[2wt-(k+h+n)8] 

+ zfkeJ(m-1)kaýM 
mhej(k-h-n)6 

+ MmheJ(k+h-nm)9 
1 ... ... 7.4.5 
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The first two terms produce average torque only at certain 

sub-synchronous speeds and therefore are neglected. The third term 

produces average torque under the condition 

k-h-a'0 or h- k- n 

For h>0 or h-0, k>n or k-n and the torque expression for 

this case is 

T--iKp -° 
fn Z I* M 

ej(m-1)kac ... ... 7.4.6. fnfk 2 
MM 1 fk mh 

where Mmh is the hth harmonic mutual inductance between loop 1 and 

loop m 

The fourth term producecaverage torque if the following conättion is 

satisfied: 

k+h-a-0 orh -a-k 

Therefore a>k or a-k and the torque is 

Tfafk - 
jý2ý0 1 fn NL 

ýE Ifk Mah ej(m-1)kac ... ... 7.4.7 
UMI 
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The torque expression in respect to self inductances is 

J hl, 12 NL 
o fn 

TM fnfn 2 mo 

Similar expressions are derived for the interaction between Ifn/Ibk' 

Ibk/Ifn and Ibn/Ibk' In the case of forward/backward currents the 

torque expression is 

Tsj oifn 
NL 

I j(m-1)kac for h'n+k 
fnbk 2 

Ma1 
fk h 

The contribution of backward/forward currents is 

ýbnfk 
Jh2oibn 

Ifk %h eJ(m_1)ka for h-k+n 
mal 

Torque contribution of backward/backward currents is 

T 
jhPo 

bn _M e_j(m-1)ka bnbk 2EA mh 

T 
JhPo bn EIMe j(m-1)ka 

bnbn 2 
E1 

bn mh 

for h- n-k 

forh -k-n 

After finding the contribution of torque due to stator and rotor 

currents interaction and as well as the contribution from rotor 
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currents interaction, the electric torque is calculated by taking 

the summation of all the torque contributions. In order to find the 

currents, and hence the torque, the set of voltage equation (1. B) is 

solved after separation into real and imaginary parts. The method 

will be illustrated, considering three voltage equations, as 

follows: 

If the complex system matrix has the following form 

°1 R1+3X1 

v2 jx21 

°3 jx31 

3x12 jx13 1 

R2+jx2 jx23 2 

jx32 R3+jx3 13 
... ... 7.4.8 

Equation 7.4.8, after the separation, will take the form 

vrl R1 00 -X1 -X12 -X13 1rl 

vr2 0 R2 0 -X21 -X2 -X23 1r2 

v0 00 R3 -X31 -X32 -X3 1r3 

vml X1 X12 X13 R1 00 Iml 

vm2 X21 X2 X23 0 R2 0 1m2 

vm3 X31 X32 X3 00 R3 I' 

... ... 7.4.9 

The complex voltage equation of the shaded pole motor has a similar 

form as equation (7.4.8), therefore an equation similar to equation 

(7.4.9) is used to find the currents of the stator, shading ring and 

rotor harmonic currents. For each value of speed, currents and 

torque are calculated. Torque/speed and current/speed 

characteristics are shown by figure (7.1) and figure (7.2) 

respectively for both measured and calculated results. 
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CHAPTER 8 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

In the present investigation, the finite element method is 

employed to solve magnetic field problems of electrical machines. A 

general approach is derived to solve the two-dimensional 

electromagnetic field of the whole or part of the machine. 

The finite element method described in Chapter 3 is based on 

minimising an energy function satisfying natural boundary 

conditions. This method of discretizing the two-dimensional field 

problem, coupled with the convergence of Newton-Raphson algorithm, 

yields a unique and stable solution. 

The attraction of this method consists of its use as a 

practical design tool for machine field analysis, especially where 

different magnetic characteristics and different current densities 

exist. Comprehensive information about the effect of saturation in 

different parts of the machine is obtained from the flux plots. 

Flux distribution of the machine is plotted for all the 

currents existing in the coils as well as the flux distribution due 

to each coil of the machine. 

In order to calculate the self inductance of machine's coils 

the concept of stored energy is employed for this purpose. Mutual 

inductance between every pair of coils of the machine is calculated 

by finite element methods. The method of calculating self and 

mutual inductance is generalised to every electromagnetic multi-coil 

system. 

Referring to the results obtained, in Chapter 6, by finite 

element method, self inductance of stator windings and mutual 
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inductance between stator windings are assumed to be constant 

because the changes of their values are relatively small. ' Self 

inductance of rotor loops is both speed and position dependent. 

From the results obtained by finite element, it is obvious that the 

self inductance of a rotor loop increases with the increase of 

speed. It reaches (0.88x10-5H) when the motor is running near the 

synchronous speed and (0.108x10 
5H) 

for the locked rotor case. 

The mutual inductance between rotor loops is variable and for this 

reason the mutual inductances between a reference loop and the rest 

of the loops are calculated at different speeds as shown by figures 

(5.2.12), (5.2.13) 
,..., and (5.2.21). The mutual inductance 

between a rotor loop and the reference loop is both speed and 

position dependent and is a maximum at no-load speed and decreases 

with speed deceleration of the machine, and is particularly 

significant between the adjacent loops. Field plotting of main 

winding shows different flux linkage with each loop. This depends 

on the speed of the machine as well as the position of the loop. 

Mutual inductance between main winding and a rotor loop is shown by 

figure (5.2.10). From the waveform it is obvious that there are 

harmonic contents. Mutual inductance between shading ring and a 

rotor loop is calculated at different values of speed. The mutual 

inductance is a maximum when the loop is co-axial with the shading 

ring, and it is a minimum in all other positions. Figure (5.2.11) 

illustrates the variation of mutual inductance with rotor loop 

position. 

The speed of the machine has little effect on the mutual 
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aih 
inductance between statorfiwindings and a rotor loop. 

From the results obtained by finite element methods, the self 

and mutual inductances of each winding of the machine are 

represented as a function of position. The cage rotor is 

represented by cascaded loops and each loop is considered to be a 

single turn coil. A general approach is established for analysing 

the shaded pole motor. The basic performance equations are derived 

from the electrophysical construction of the machine. A 

step-by-step numerical method is used for solving the basic 

performance equations to study the transient behaviour of the 

machine. The computed and experimental results, as shown by figures 

(6.4), (6.5) and figure (6.6), are not exactly the same. Peak 

values of experimental torque-time are greater than the computed 

values by 30% and the shape of the computed and the experimental 

pattern are not exactly identical. Computed transient current-time 

of the main winding has the same shape as the experimental one. The 

peak values of the measured transient current is higher than the 

predicted peak values. 

The author believes that the difference between the 

experimental and the computed results is due to the approximation 

which was made for representing the parameters as a function of 

rotor position and the fact that the effect of the speed was 

neglected. In addition to this there are harmonic contents in the 

parameters waveforms which (#ere ignored. In order to improve the 

computed results a substantial modification of parameter 

representation should be made. In the case of the steady state 

performance the torque-speed and current-speed characteristics of 

both computed and measured results are shown by figure (7.1) and 
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and figure (7.2). The predicted current is lower than the 

experimental current by 15%, also the computed torque-speed is lower 

than the measured torque-speed. The difference between the 

predicted and measured results of steady state is also due to the 

parameters representation in the steady state equations. 

For the future work on machine analysis and design the finite 

element method is sufficiently accurate for analysing the 

two-dimensional field of any electromagnetic circuit. In order to 

improve the method and to get more accurate parameters the author 

proposes the following: 

1. Extending the finite element method for solving the 

three-dimensional field of electrical machines. 

2. Using an iterative solution between the finite element and the 

performance equations, where a computer program, coupling the 

finite element and the performance programs, is necessary to be 

established. This method of study will enble the researcher 

to calculate the parameters instantaneously by the finite 

element method used in the performance equations. 

3. Consider the system to be non-linear when calculating the 

stored energy and the torque. This means that the parameters 

are both current and position dependent M- M(i, g). 

4. Application of the present finite element method to calculate 

the parameters of the three-phase induction motor and 

transformers. 
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APPENDIX A 

Origin of Space Harmonics and Harmonics Currents 

The air gap flux ý is related to the mmf F and permeance X by 

the simple relation 

"-F. X... ... (1. A) 

Thus space harmonic flux may arise due to mmf harmonics or permeance 

harmonics or a combination of both depending on the distribution of 

the windings and the shape of the air gap. For a uniform air gap 

machine, the permeance is a constant so the mmf harmonics are the 

only source of harmonic flux. In the case of reluctance-augmented 

shaded pole motors, they are the result of both the mmf harmonics 

from a concentrated stator windings and the permeance wave due to 

the non-uniform air gap. Lock (22) in Section 4.4 showed that by 

applying Fourier series analysis to the mmf waveform, a uniform air 

gap machine was considered and then 

FE2! sin(hß/2) cos by ... ... (2. A) 
h'1 

With a sinusoidal current 

101k cos(kwt) 

Each harmonic mmf wave can be resolved into a forward and a 

backward rotating component. 
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Fhk 
Ik 

sh (cos(hy-kwt) + cos(hy + kwt)) ... ... (3. A) 

where Fhk is the hth mmf harmonic produced by 

kth harmonic current 

and ksh - sin(hp/2) is the coil span factor of hth harmonic field. 

Each component in equation (3. A) is a rotating wave having a 

sinusoidal distribution in space with h times the basic number of 

poles. It rotates relative to the stator with velocity + kw/h 

electrical radians per second, or k/h times the basic synchronous 

speed. With respect to the rotor which rotates at a speed of wr, 

the wave of harmonic field moves at a speed of (kw+hwr)/h. This 

movement of the field over the rotor induces in the rotor winding 

two harmonic currents which in turn induce harmonic currents in the 

stator. This is a chain reaction with the magnitude of the harmonic 

currents decreasing rapidly at the later stages of the interaction. 

Lock (22) illustrated by figure (5.1) the interaction of a stator 

and a rotor coil through hth harmonic field. 

The frequencies of the harmonic currents in the rotor windings 

are dependent on the speed of the rotor, the frequency of the stator 

current as well as the order of the harmonic field. Thus, with a 

stator frequency fo and a rotor slip s, the frequencies of the rotor 

harmonic currents produced by the hth harmonic field is 

fr - 11 ± h(1-s) ]fo 
... ... (4. A) 

I 

123 



APPENDIX B 

Steady State Matrix Performance Equations 

Up to the 5th order of rotor harmonic currents are considered 

and the fundamental of the stator currents. Voltage equations are 

written in partitioned matrix form as follows 

v Z 
+Z 

Id d dd dr 
1 B 

k- 
. 

y z 
r LJ rd 

All the voltages are zero except the main winding voltage which 

equal to the supply voltage and where the current matrices are 

Irfl 

I Irbl 

[Id ] 
ql 

and [Ir ] Irf3 

Irb3 

Iq2 Irf5 

Irb5 

The impedance matrix Zdd is 

Zs jaisgl jwmsg2 

[zdd ]"J qls 
Zql JLM 

glq2 

JLMg2s jum 
g2q1 

Zq2 

where ZS - Ra + JULs 

Zq - Rq + j()Lq 
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rMdrl 

NL ýZdr ] jw 2 Mglrl 

LMq2nj 

NL 1 ýZdr] - jw 2 

[Zrr ]a 

Mdrl Mdr3 Mdr3 Mdr5 Mdr5 

Mgirl Mglr3 Mglr3 Mglr5 Mglr5 

Mg2r1 Mg2r3 Mg2r3 Mg2r5 Mg2r5 

Sf1Mdr1 SflMglrl Sf1Mg2r1 

Sb1Mdrl SblMglrl Sb1Mg2r1 

Sf3Mdr3 Sf3Mglr3 Sf3Mg2r3 

Sb3Mdr3 Sb3Mglr3 Sb3Mg2r3 

Sf5Mdr5 SfsMglrs Sf5Hg2r5 

Sb5Mdr5 Sb5Mglr5 Sb5Mg2r5 

Zf1 Zflbl Zf1f3 Zflb3 ZfUf5 Zflb5 

Zblf1 Zbl Zb1f3 Zblb3 ZblfS ZblbS 

Zf3f1 Zf3bl Zf3 Zf3b3 Zf3f5 Zf3b5 

Zb3f1 Zb3bl Zb3f3 Zb3 Zb3f5 1b3b5 

Zf5f1 Zf5b1 Zf5f3 Zf5b3 Zf5 Zf5b5 

Zb5fl Zb5bl zb5f3 Zb5b3 Zb5f5 Zb5 

125 



NL 
-J(ID_1)ha where Zfh m Rrn - 2Rbcos(ha) + JWSfh E Mio e 

m=1 

NL 
Zbh Rrn - 2Rbcos(ha) + JuBbh E Mmo e . 

)(m-1)ha 

m-1 

U' 
-j(m-1)ha Zfhfn_ jw Sfh mk e for h-n-k 

m-1 
NL 

JW S fh E Nk e j(m-1)ha 
for h- n+ k 

m=1 

NL_ 
zhbn JW Sfh EM e7i(m-1)ha for h-k-n ink 

u-1 

NL j(m-1)ha Zbhfn JC6 bh E Mmk e for h- k-n 
mm1 

and 

NL 
Zbhbn = JwSbh E mkej('m 

1)ha 
for h-n+k 

1 

NL 
=J Sbh E Mmkeýýý+ý 

)ha 
for h-n-k 

m. 1 
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Figure 1.1 Practical shaded-pole motor 



Figure 2.1 Test rig, control unit and magtrol dynamometer 
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Figure 2.3 Block diagram of a switching angle selector 
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Figure 2.6 Oscillogram showing variation of mutual 
inductance between main winding and a 
rotor loop as a function of rotor position 



Figure 3.1 Shaded-pole motor 
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Figure 3.2 Region subdivided into 16 finite elements 



Elements and nodes data such as x, y coordinates node and 
prescribed value of m. v. p. are read in for the problem 

s Drin 

The array ICEV is formed from input data. Which lists the 
total number of element surrounding each node and their 
identification number. 

The element K matrices are computed for all the elements and 
stored in memory. 

the current densities are computed for all elements carrying 
currents. 

Set A=0 for all elements in the region. 

V v0 for element in air, 
H 

V 0.9 
BS 

for elements in iron. 
s 

*** The element K matrices are assembled by nodes and the 
prescribed boundary conditions inserted, to obtain the system 
matrix equation consider 

The system matrix equation is solved using sub-rou tine Gauss- 
eliminations and computing B for all the elements. 

Adjust V for all elements according to calculated B using 
B-H curve sub-routine or equation yy. 

Test of convergence, if yes, print out the result, if no go 
back to ***, 

YES 

Print out the results 

Figure 4.1 Flow chart of computer program for finite element method 
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Figure 4.10 Reversing speed motor 
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Figure 6.2 Rotor loops representation 
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(a) Switching angle - 00, initial speed a0 

(b) Switching angle - 900, initial speed a0 

Figure 6.5 Recordings of current-time patterns 
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Figure 6.5c Transient current of main winding switching angle in 0 
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Figure 6.6 Transient current of shading ring switching ang ®0 



Torque (N. m) 
1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

Figure 7.1 Torque/speed characteristics 

Current (A) 

6 

5 

4 

3--- computed 

2 "'"" ý' measured 

1 

0.1 0.2 0.3 0.4 0.5 0,6 0.7 Ö, 8 

per unit speed 

Figure 7.2 Current/speed characteristics 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

per unit speed 


