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SUMMARY

This thesis contains eight chapters, dealing with machine
analysis and representation. A definition and a dbrief survey of
previous investigation devoted to shaded-pole motors and the
application of finite element method for solving the two-dimensional
electromagnetic field is given in Chapter l. An outline of the
present investigation is also given. In Chapter 2, the
experimental requirements and details of the equipment are given.
This includes the techniques of recording the transient torque
patterns and the method of measuring the complete torque-speed
characteristics. The experimental methods for parameters
determination are also mentioned.

The finite element method is outlined in Chapter 3. This
chapter deals also with the assumptions made, the formulation of the
non-linear energy function, the solution of Poisson's equation and an

example of a simple shape contianing 16 elements for illustrating

the method.

In Chapter 4, the computer program for the finite element 1is
outlined. The iteration process and the numerical representation of
the magnetization curve are mentioned. Application of the finite
element method to the shaded-pole motor is also given. Calculation
of parameters by finite element technique is given in Chapter JS.
Self inductance is calculated using the concept of stored energy and
the results of self and mutual inductances are tabulated. Basic

performance equations of an electrical machine are derived in
Chapter 6. Solution of the basic performance equations, by a
step~by-step numerical method, is also given.

In Chapter 7, the steady state performance equations are



established in terms of harmonic currents and inductance
coefficlients. The flux linkages are evaluated by the approximated
functions of mutual inductances. The electromagnetic torque is
calculated from the stored energy in the magentic field.

General conclusions and suggestion for further work are

mentioned in Chapter 8.
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CHAPTER 1

INTRODUCTION

A shaded-pole motor may be defined as a single-phase induction
motor provided with an auxiliary short-circuited winding displaced
in space from the main winding and carrying current which has a
phase displacement from the main winding current. Because of 1ts
simple construction, low cost and reliability, the shaded-pole motor
is one of the most popular motors for a large variety of
applications requiring power of 300 watts or less. The main
disadvantage is the low effeciency, 30X or less. The analysis of a
shaded pole motor is highly complex despite its simple construction.
The complexities are due mainly, to the unsymmetrical stator
windings and the abundance of space harmonics. Additional
difficulties arise in the analysis of the 'reluctance-augmented’
shaded-pole motor where saliency is introduced on the stator pole
face by increasing the air gap length under the leading pole tips.

As any other induction motor the shaded-pole motor runs due to
the action of revolving magnetic field. The shading coil causes the
flux in that portion of the pole surrounding it to lag behind the
flux in the rest of the pole. The resultant rotating field which
i1s produced by the main winding and the shading coil (two componant
fields displaced in space and phase) is enough, to produce
considerable torque to make the motor rotate. The direction of

rotation is always from the unshaded to the shaded portion of the

pOIB .



The starting torque is low. It varies from 20to 50 percent of

peak load” torque. The direction of rotation depends wupon the

position of the shaded portion of the pole relative to the main

portion of the pole, so to reverse the direction of rotation it is

necessary to change the position of the shading portion of the
pole.

To produce an accurate prediction of electrical machine
performance requires an accurate analytical model and correct
parameters. The present investigation will employ the finite
element method for the purpose of calculating accurate parameters to

produce a simple representation of the shaded-pole motor.

l.1 Review of Previous Work

The earliest theoretical analysis of shaded-pole motors was
published by Trickey (1,2). Performance equations under
locked-rotor conditions were derived in his first paper,

Kron (3) used both cross-field and revolving-field theories to
derive general performance equations and equivalent circuits, the
effects of saliency and space harmonics were considered. An
equivalent circuit, by separating the stator windings into a main
winding and an auxiliary winding, based on the flux divisions

between the shaded and unshaded portions of the pole, was developed

by Chang (4). Though the effects of space harmonics were taken into
consideration, the analysis assumes 90 degrees displacement between
the shaded and unshaded portions, and neglecting the effect of
gsaliency. Sherer and Hertzog (5) employed Chang's equivalent
circuit to study the effect of parameters variations on the

performance of the motor. Surk (6) developed an equivalent circuit



based on the resolution of the exciting winding and auxiliary

winding magnetomotive forces into quadrature components and then
applying symmetrical component theory. Performance equations in
terms of the two actual stator circuits and two equivant rotor
circuit, for the squirrel cage were developed by Desal and Mathew
(7). Transient performance, under locked-rotor and dynamic
starting conditions, was obtained numerically by solving the
performance differential equations. The equations are also used to
obtain the steady state performance of the motor. Butler and
Wallace (8, 9, 10) developed equivalent circuits applicable to
shaded-pole motors using transformation of the asymmetrical primary
windings to their equivalent tapped-quadrature windings and then
applying 2-phase rotating field theory. Poloujadoff (11) analysed
the characteristics of saturated shaded-pole motors by treating the
squirrel cage as a series of pseudostationary loops, and solved this
nunerically for the flux likages and loop currents by an iterative
technique. Since a steady state solution is obtained from the
transient solution, at the convergence stage, a large amount of
computing time is required.

All the authors mentioned before dealt with uniform air-gap.
Ooka (12, 13, 14, 15) and Williamson (16, 17, 18, 19) published
anlytical and experimental results on the reluctance-augmented
shaded pole motors with up to two rings per pole.

The analytigcal approach adopted by Williamson is based on the
electromegnetic model of the induction motor which was developed by

Cullen and Barton (20). Chin (21) made the first attempt inm this

department to develop machine representation based on circuit



equations which incorporate an analysis of the flux distribution in
the air-gap. By numerical solution of the basic performance
differential equations, Chin analysed the performance of a uniform
alir-gap shaded pole motor with removed shading rings. Lock (22)
established a mathematical model for performance analysis of the

shaded~pole motor based on 2-dimensionial field analysis of the air

gap flux distribution in conjunction with conventional ecircuit

theory. The effect of air gap variation, distribution of winding
and skew angle were taken into consideration. Finite-element method
is the new technique introduced to investigate electrical machines
or part of the machine. The versatility of the £finite~element
method is, by now, well known, and 1its use grew rapidly. The
application of finite element for solving the magnetic field
problems in the electrical machines was first proposed by Silvester
and Chari (23). Rather than dealing with Poisson's partial
differential equation.

Finite element work on wmachines divides broadly into two
categories. The first is the use of finite element analysis to
study a specific part of the machine in order to determine a
parameter or coefficlent for use in a standard equivalent cir;:uit.
In such studies, the current distribution is known, and the field is
determined for this known distribution. Chari and Sharma (24) used
this category to solve the magnetic field in the end region of a
turbine generators. The second category is to model the machine as

a whole, for predicting performance under specified operating
conditions., In this case some of the electrical variables are

unknown and must be determined.

. Brandl et al. (25) showed how the governing nonlinear circuit



equations could be solved in parallel with the nonlinear field

equations using a single iterative process. Williamson and Ralph
(26, 27) analysed the magnetic field of shaded-pole motors by the
finite element approach using complex current sources in the first
paper. In the second paper a constant voltage source was used, some

of the parameters were calculated and steady state characteristics
wvere obtained and there is a close agreement between experiment and

computed results.

l.2 Object and Scope of Present Work

The first main object of the present investigation 1is to
establish a new approach for solving field problems of electrical
machines using Finite-Element technique incorporating field
equations. The approach is based on a 2-dimensional field analysls
of flux distirbution through the machine. The second object 1s to
calculate the parameters of the machine and then derive simple
mathematical expressions for Dbasic performance equations.
Distribution of windings is considered. The cage rotor is treated
as a number of cascaded coils, each coill is formed by two adjacent
bars and the section of end ring joining the two bars. The first
category of finite element is used to investiage the magnetic field
of the machine where the currents are calculated, using the steady

state program developed by Lock (22), at different speeds and

different times for each speed. Self induc tance of each coil in
the machine and mutual inductance between any coil and the rest of
the colls are calculated for three values of speed and two times.

Flux maps are plotted for each particular coil in addition to flux



maps of all the coils at a time. The results which are obtained by
by the finite element technique are employed to study the machine
performance. Step~by—-step numerical method 1s used to solve the
basic differential performance equations. Figure 1.1 shows &
practical reluctance-augmented 8haded pole motor used in the

investigation.



CHAPTER 2

Eerriemental Reguirements and Determination of Parameters

Experiemental results are required from the test motor to
verify the validity and accuracy of the method of analysis. For
the steady state characteristics the main requirements for the
experimental work are:

1. A system for loading the test motor over its complete speed
range. This means that a closed loop control system is
required to operate the test motor at the unstable speed
region.

2. A means for measuring the torque and speed and input

quantitites.

To obtain the transient characteristics of the test motor, the
requirements are:

l. A device which can switch on the supply at a selected point on

t he supply wave.

2. A method of recording the transient torque-time pattern.

2.1 Test Rig

In the theoretical analysis, a concentric air gap is assumed.
To compare theoretical and experimental results on the same basis,

it is desirable that the test motor also has a concentric air gap.

However, this 1s seldom achieved with mass production of small

electrical machines because it is not economically feasible to keep

such close mechanical tolerance. The air gap of a typical

shaded-pole motor is 0.5 mm. A small eccentricity in the rotor

alignment can cause a large peripheral air gap variation. It was



found that a small eccentricity in the air gap did not significantly
affect the experimental results. Another reason for requiring a
test motor with a concentric air gap is for the measurement of
machine parameters using a search coil in the air gap. If there 1is
a large variation in the air gap under different poles the search
coil induced emf will also change from one pole to another.

A test rig was constructed for holding the stator and rotor
such that the air gap can be adjusted. Figure 2.1 shows the
structure of the test rig. The stator which is held in a V-block
can be moved in both the vertical and horizontal direction. The
rotor shaft is mounted on two well lubricated bearings, each bearing

is held by three finely threaded adjustable screws. Fine adjustment

of the air gap is achieved by using these six screws.

2.2 Measurement of Steady State Characteristics

The torque/speed characteristics of a shaded-pole motor, as
shown in Figure 2.2, 1is very sensitive to winding temperature
variations. It 1s therefore 1imperative to measure the
characteristic as rapidly as possible. This will ensure that the
high losses that occur in the motor, particularly over the unstable
region, do not produce a significant temperature rise. Ideally, the
characteristics should be measured when the windings are hot so that
the rate of temperature rise is small. From the experimental point
of view, 4t is rather difficult to maintain the same temperature
whenever any result i1s taken. So the characteristics are measured
jmmediately when the motor is switched on at room temperature. Main
winding resistance, before and after each measurement was noted. As

the whole characteristics were taken within very short time, the



change in winding resistance was small.
A magtrol dynamometer and speed control unit were employed for
the measurement of the steady state characteristic : their features

are described below.

2.2.1 Magtrol dynamometer and sEeed control unit

A hysteresis brake 1s used in the dynamometer. It consists of
a permanent magnet rotor in the form of a drag-cup revolving in the
field produced by the stator winding.

When the stator is energised, a torque 1s exerted on the rotor
by hysteresis action. The torque which 1s a function of the
existing current 1s independent of speed through the entire speed
range from zero to full speed This 1s an advantage over the norm;I
eddy current devices which depend on relative motion between stator

and rotor. The braking torque is measured by the stator reaction of

the dynamo—-meter. The suspended stator of the brake assembly 1is

weighted at the bottom so that it i1s able to rotate only as far as
the brake torque 1s able to lift the weight. The value of this
torque is indicated on a calibrated scale. Alternatively, a load

cell can be attached to the stator and 1its output signal, which is

proportional to the pressure exerted on it, can be calibrated to
measure the braking torque. The linearity of the output signal of
the load cell is checked by measuring the output signal
corresponding to several standard weights.

The principle of speed measurement 1is the resolution of
increments of a revolution by interrupting light on a photocell.

This interruption is obtained by a segmented plastic disc attached

to the rotor shaft of the brake assembly. As the light to the



photo cell is modulated, the cell changes its resistance resulting
in a8 voltage modulation across the cell. This modulated signal 1s
converted to an analogue signal, which is proportional to the speed,
to facilitate recording of torque/speed characteristic on a X-Y
plotter. The magtrol dynamometer is provided with & closed loop
control system to enable the test to include the unstable speed
region of the motor. A speed control damping switch is provided for
varying the rate feedback in the servo amplifier. Another feature
of[ :oh:trol unit 4s the inertia compensation control which allows for
the effect of torque changes due to acceleration and deceleration of

the rotor. Thus, an accurate torque/speed curve can be obtained

quickly without appreciably heating up the machine windings.

2.2.2 Recording of torque/speed and current/speed characteristic

The torque and speed signals from the Magrol dynamometer and
control unit are fed to a X-Y plotter. The complete torque/speed
curve is obtained by varying the speed control switch of the Magrol
unit. It is essential that this curve is not obtained too rapidly,
because once the recording rate exceeds the combined response time
of the feedback control system and the X-Y recorder, accuracy
deteriorates rapidly. However, 1f the performance curve is drawn
too slowly, excessive temperature rise in the motor may result.
For shading~pole motor under investigation, a plotting time of
approximately 15 seconds was found to be sufficient.

Since the input current is a.c. the voltage drop across the
shunt due to this current cannot be fed directly to the X-Y plotter.
Instead, this a.c. signal 1is rectified by a precision voltage

rectifier, whose d.c. output is proportional to the a.c. input

10



voltage. Calibration of the current scale on the X-Y plotter is

done by passing a known current through the shunt.

2.3 Recording of Transient Characteristics

The transient behaviour of induction motors received an active
investigation in this department since early 1960 (28, 29, 30, 31).
Various experimental techniques were successfully developed for the
recording of the transient torque characteristic. These techniques

are employed in the present investigation.

2:3.1 Switching angle selector

The transient characteristic of an electrical machine depends
on the point-on-wave of the supply voltage at the instant when the
supply 1s connected to the machine. For this reason, both
singlephase and three-phase point-on-wave switches were developed in
this department (32). To cater for three phase machines, 2-pole or
3-pole versions were designed so that the poles could be closed
either simultaneously or non-simultaneously. Since the shaded pole
motor is a single-phase machine, only the feature of a singlephase
switching angle selector 1s being examined here. A block diagram
1llustrating the principle of operation of the switching angle
selector 1is shown in Figure 2.3. The mag—-slip is essentially a
phase shifter. The phase of this mag-slip output voltage relative
to its stator input, is controlled by its rotor position. Thus any
switching angle can be selected by varying the rotor position. This
output voltage is fed via a pulse-forming unit to a trigger unit.
The output from the trigger unit is used to trigger the gate of the

thyristor and so connect the supply to the test motor. This

11



switching angle selector was capable of a consistancy and accuracy

for any selected switching angle of better than + 10,

2:.3.2 Transient torque sensing system

The direct method of measuring translent torque is by
measurement of the stator reaction using a force sensing device such
as the 1load cell. However, this method was found, in previous
investigations in this department (30), to be unsatisfactory
because the output signal of the load cell was badly distorted by
mechanical nolse from the suspended stator reaction system. The
natural frequency of oscillation of the mechanical system was of ghe

same order as that of the double slip frequency torque pattern. In

the present investigation an indirect method of measuring the rotor
acceleration was employed for the case of free-rotor torque
transients. A limitation of this indirect method is that the locked
rotor transient torque cannot be obtained. In any case, since
steady state performance is the main emphasis, no attempt was made
to obtain the locked rotor transient torque pattern. It is thought
that experimental results on free-rotor transient torque and current

patterns are sufficient to check the transient analysis employed.

2.3.3 Records of free~rotor transient pattern

A 2-phase drag-cup induction generator and storage oscilloscope

were used to obtain free-rotor transient torque patterns. When the
drag-cup induction generator is energised with alteranting current
on one phase, the output on the other phase is of the same frequency
and has a magnitude proportional to the speed (33, 34). With direct

current excitation, the output 1s proportional to the rate of

12



change of speed, {i.e. acceleration.
The accelerometer was calibrated by exciting it with an aecCe
supply and driving it at constant speed. .

The acceleration constant which is the ratio of output voltage

to acceleration is

V/W
K = L | mV B’Yrad

wvhere V = r.m.s8. output voltage of accelerometer

Ui = angular velocity of rotor

With an excitation current of 0.2 amp the sensitivity of the
accelerometer was found to be 0.272 mV g7/rad The acceleration

records were converted to torque records by using the moment of

inertia of the motor.

The acceleration pattern measures only the rotor accelerating
torque. However, for an unloaded motor, with negligible mechanical

loss, the developed torque 1is proportional to the acceleration of

the shaft
d%0 TV
dt J Ks
J
60 T = 'E"""'- V
&

where T = developed torque
J = moment of inertia of the rotor.
For this case the electromagnetic torque is equal to the rotor

acceleration torque. This was confirmed by examining the

13



deceleration pattern occuring when the supply was disconnected from

the rotating motor.
A plastic tube was used as the coupling between the
accelerometer and the motor. This eliminates the effects of

mechanical irregularities and yet provides sufficient rigid coupling

to ensure a correct transmission of acceleration torque.

2.4 Determination of parameters

The accurate prediction of an electrical machine performance
needs a correct set of parameters in addition to a good analytical
model.

Parameters required for the solution of the steady state

equations of shaded-pole motors are the winding details and the

physical dimensions of both the stator and the rotor, the
resistances and the inductances of the windings. Some of the

parameters were calculated while the others were obtained
experimentally.

2.4.1 Determination of Resistances

2.4.1.1 Resistance of Stator windings

The main winding resistance of the test motor was measured

using a Kelvin Double Bridge. The resistance was measured before
and after the test and the average value was taken. The shading

ring resistance was calculated from its dimensions.

2.4.1.2 Rotor bar resistance

In the steady state analysis the cage rotor was represented

by cascaded loops, each formed of two adjacent bars and the

14



Interconnecting portions of the end rings, only the effective
resistance of that portion of the end ring, as well as the bar
resistance, were required to be evaluated. Bar resistance cannot

be measured directly so it was calculated from the rotor

dimensions using the resistivity for die-cast aluminium.

2.4.1.3 End ring resistance

The value of end ring resistance required is the effective
resistance of that portion of the end ring which Jjoins two
adjacent bars, it is calculated from the ring dimensions. The

total resistance of the ring 1s divided by the number of rotor

bars to get the end ring resistance.

- t )) s s o0 2.4-1

where p is the resistivity of the ring at ts Oc,
a 1s the temperature coefficient, and Dr 1s the
diameter at which the bars enter the ring.

The above expression is based on the assumption that the curreant
would distribute itself uniformly in the end ring, but it is not
correct 1f the end ring is wide compared with the distance between
two bars.

Trickey (35) determined the distribution of end ring current
for different numbers of poles and different widths of rings.

Figure 2.4 gives the correction factor which should be applied to

v

the end ring resistance calculated using equation (2.4.l1).

The correction factor was given as

15



2Po
K - PO(I-C (1+C ) ® &8 e @ 2!4!2

ring (1_C2Po)

where Po = pair of poles

C = ratio of inside diameter of ring to outside

diameter.

The calculated end ring reslistance was corrected according to

equation 2.4.2.

2.4.2 Determination of Inductance Coefficients

Self and mutual 1inductances are required for the solution of
performance equationss The values of inductance coefficients
depend on the reluctance of the magnetic flux paths and the nature

of the winding. The flux produced by any winding is divided

Sl

whether or not it crosses the air gap. Inductance coefficients
due to flux crossing the air gap are functions of the rotor

position as well as the shape of the air gap.

2:4.2.1 Inductance coefficients of stator windings.
The stator has two asymmetrical windings, the main winding

(d) and the shading ring (q). The total impedence for each

winding per pole are termed Zd and Zq and are defined as

= (R, + Jwl) + JwM, + JuM,

zd dq

L IR N * e 0 2.1013

Z = (Rq~+ jwlq)'+ jwM

q d*+ jwMm

q qr

It is assumed that the impedance Zd of the main winding is

16



associated only with the main winding electromagnetic circuits when

it 1s the only one excited. 1d is the leakage inductance for the

main winding. qu is the mutual inductance between the main

winding and the shading ring on each pole.

Mdr 1s the mutual inductance due to the flux crossing the

airgap. A similar definition can be given to Zq, lq, qu and

M .
qr

Equation 2.4.3 may be written as:

Zd-Rd+jw(ld+Md) "Rd-l-ijd
e 99 L B B 2'&.4

Z = R <4+ jw(l + M = R <+ JjwlL

q q J(q q) q ] q

where Ld- ld+Md . Md-qu+Mdr

For the analysis of shaded-pole motors, the following inductance

coefficients are required.

1. Main winding leakage inductance
2. Shading ring leakage inductance

3. The mutual couplings for the main winding and the shading ring.

2.4.2.2 Determination of main winding leakage inductance

The main winding leakage inductance consists of two major

components, the slot and overhang leakage inductances. Because of

the complicated shape of the slot and the effect of saturation at

the pole tips, it is very difficult to calculate the slot leakage

accurately. Also it is not easy to determine the overhang

17



leakage, 80 the value of the leakage inductance is determined

experimentally by two separate methods, namely the rotor out test

and the search coil test.

a) The rotor out test

This method was used by Desali and Mathew (7). In this test
the shading rings are removed and the rotor is also removed. The
stator winding is energised at different values of supply voltage,
and the corresponding input current 1s measured. The 1input
jmpedance under these conditions consists of the resitance, the
leakage reactance and the magnetizing reactance due to the flux
crossing the'enlarged alr gaps Alger (36) showed that for a
stator without a rotor, the effective air gap length is equal to
the ratio of the radius of the stator bore to the number of
pole-pairs. The magnetizing reactance corresponding to this
equvalent air gap is calculated using the normal expression,

D.L £ .N2.KW2
b c Nd Kwh

see® ese 2-4:5
h Pozulg

D/2
Po

here 1 =
v g

D = diameter of stator bore
Lc = gtack length

For the test motor, Xm was found to be 3", The leakage

inductance of the main winding was calculated by substituting for

Xm and the winding resistance in the input impedance equation

18



\J = | R 2
z, =1=R+ X =|"RI+X

2 - D2 « Y2
50 Z1n Rd X

xl = l/ an — Ré - Xm ses ose 2.4-6

The following table shows the results of the out rotor test and

Figure 2.5 gives an idea how the leakage inductance varies with the

X
Vvolts Iamp ! ZinQ i () Rd ()

t
E

input current.

240 12 20 15.33
220 11.1 19.81 | 15.43
150 5.8 | 25.8 22.8 7.3

e e R
—r

peniesis  — gy eyl =iy, Cap B

125 i 4.6 27.17 24,17

‘ 110 3.6 27.7 24,7

the justification of the 'rotor out' method is that the leakage

reactance 1is very much larger than the equivalent magnetizing

reactance, and the error in evaluating the equivalent magnetizing

reactance does not significantly affect the calculated value of

leakage inductance.

b) The search coil test

This method can be used to evaluate the main winding leakage

reactance as well as the mutual inductances. A search coil of
serveral turns was wound on a dummy rotor without any bars. The
coil span of the search coll should be one pole pitch. The

19



shading rings were removed and a search coil of the same number of
turns was wound on each pole. It is assumed that all the flux
produced by the main winding links with the stator search coll.
The dummy rotor and the stator were set up on the test ring to
allow a balanced air gap to be adjusted. The rotor search coil was
adjusted to be coaxial with a stator pole to produce & maximum emf
in the search coil. The difference between the stator and the
rotor emf should be measured for different values of applied
voltage. An average value should be taken over all four poles to

allow small air gap irregularities. The total leakage inductance

of the main winding was calculated from

e « N

l], = __B.C_____g_ ese vacve 2:4.7

d N__.W.I
sC

wvhere Nd is the total number of the main winding turns, Nsc is the

number of search coil turns, eBc 1s the difference between the

stator and the rotor search coil enf.

2.4.2.3 Shading ring leakage inducatance

The slot leakage inductance is the most effective component of
the shading ring. This was calculated using the standard
expression (37) for the side of the shading ring situated in the
slot. The other side of the ring is linked by leakage flux which
has a circuit in the air and through the saturated pole tips. The
associated leakage inductance 1is comparatively small, so it was

taken as 25% of the slot leakage inductance.

Hence the leakage inductance was found to be 0.122x10-6 y_

20



2¢4.2.4 Mutual inductance between main winding and shading ring

This is due to the portion of the slot leakage flux of the

main winding which links the shading ring, it can be calculated by
using the search coil method or an approximate wvalue may be

obtained by assuming that one third of the total leakage flux of

the main winding links with the shading ring.

2.4.2.5 Bar and end ring leakage inductance

Because three sides of the end ring are surrounded by air and
the section of end ring between adjacent bars is short, the end

ring leakage inductance is assumed to be negligible. The rotor

bars are located in closed slots, with 0.5 mm below the rotor
surface. The leakage inductance of the rotor bar is mainly due to
the flux passing internally through the bar and the flux passing
through the magnetic bridge. The inductance due to the flux
passing internally is independent of the rotor diameter and it has
a value of 7.83x10-7 H/m (35). Since the rotor current is large
and the bridge is considered to be saturated, the closed slot is
replaced with an open slot of opening A which varies

o
proportionally with the bar current

B .A

where BB = gsaturation flux density, Ib = bar current.

The leakage inductance due to flux passing through the equivalent

slot opening is:
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where h = height of the bridge

Lc- core length of the rotor

Hence lb is inversely proportional to the bar current. Apart from

locked rotor condition, the bar current is a mixture of currents of
different frequencies. For this reason, Ib was taken as the total

re.m.s. value of all the harmonic bar currents.

2.4.2.6 Mutual inductance between & rotor loop and the main

winding.

The mutual 1inductance between a vrotor loop and the main
winding was measured using a search coil. Consider the emf of a

single turn of search coil wound on a dummy rotor without bars, the
shading rings being removed.

The emf is given by

d
e = 33 (M.1)
di dM
ME"" idt o0 o0 2-4-9

For stationary rotor, with a.c. excitation

di
TS
E
80 H 'ﬁ'i" see® o900 2-&-10
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The single turn search coil was wound with a coil span of one rotor

slot pitch and with the same skew as the rotor bars. Thus, the

value of M calculated by equation (2.4.10) 1is the mututal inductance
between a rotor loop and the main winding at a particular position.

Alternatively, the measurement of mwmutual 1inductance can be

obtained by exciting the main winding with dc and driving the rotor

at constant speed. The emf of rotor search coll is then

dM

= . ee e e00 21: ®
e Idc Tt 4.11
For constant speed
Q=W .t
r
80 dt --%2-
r

Substituting in equation 2.4.11

which shows that the search coll emf is proportional to the change
of mutual inductance with rotor position. Connecting the search

coll to an integrator.

ei - Ki Idc M see¢ o0 2:4.12

where e, = integrator output

Ki = Integrator constant
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As current and speed gye maintained constant, the integrated enf
waveform of the search coll is & measure of the cyclic variation
of wmutual inductance with rotor position. Figure 2.6 shows an
oscillogram of the integrated enf. A peak value of mutual

inductance of 0.177 mH was obtained from the oscillogram.

2:4.3 Skin Effect

For a rotor bar in a slot, the flux linking the lower part of
the conductor is greater than that linking the upper part, thus
increasing the effective resistance and decreasing the reactance.
The current density therefore falls in moving from the top to the
bottom of the bar, and increases the bar impedance. This
phenomenon 3is termed ‘'skin effect'. 1f a cage rotor has deep
bars, it will be necessary to use variable rotor parameters to
allow for changes in bar impedance with changes in the frequencies
of the bar current. The influence of skin effect on the test
motor was examined by Lock (22). He used the program written by
Fultun (38) and showed for the present rotor bar, of 5.6 mm

diameter, skin effect is negligible.

2.4.4 Determination of Moment of Inertia of Rotor

The 1inertia of the rotor was measured by means of the
trifilar method. 1In this method a disc 1s suspended horizontally
by means of three long parallel wires at three points equidistant
from the centre of the disc and equidistant from each other. The
rotor is placed vertically on the centre of the disc. The disc is
then rotated a few degrees and then released. The disc and the

rotor rotate. The equation of motion of the system, neglecting

the damping, being
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vhere J = inertia of rotor and disc (xg.m?)
W = weight of rotor and disc (mewtons)
L = length of suspension wires (metres)
R = distance from centre of the disc to points of
suspension on the disc (metre)

Solution of equation (2.4.13) for the frequency of oscillation

gives

or

L.J

f = 21{ ﬁz TEEEEE 2-41-1‘}

Equation 2.4.14 was applied to calculate the inertia of the disc and
the rotor. The accuracy of thls method was checked by applying it

to find the inertia of a solid cylinder. The difference between
the calculated and measured value was found to be less than 2%4.

The moment of inertia of the test rotor was therefore found to be

7-8}{10"*]«;3.1:12.

2-4-5 Losses

It 1s a well known fact that the shaded pole motors have very
low efficiency. This is mainly caused by the large amount of copper
loss which occurs in the main winding shading rings and the rotor

bars. Even at no load, the copper loss is high. Since copper loss

is accounted for by the set of perforamnce equations, losses which
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need to be determined separately are the friction and windage

losses, core losses and stray losses.

2.4.5.1 Windage and friction losses

Both windage and friction losses are associated with rotation
of the rotor. For the rotor without a fan, the windage loss is
proportional to its surface area and the square of the peripheral
velocity. The friction losses are caused by the presence of
bearings and are a function of the viscosity of the lubricant, and
are inversely proportional to the thickness of the oil film.

The friction and windage losses are usually determined by

empirical formulas. For example, Vickers (39) used the following

expressions:

The bearing loss in watts = (speed of journal in meters per

f.-w:c:f:tui)l""5 xd, x1, x0.19

3 J

where dj = diameter of journal in cm;

1§ = length of journal in cm.

The windage loss in watts = 0.17 x 10-3 rotor barrel surface in cm2

X (peripheral Bpeed in metre s per Set:!«:md)2
Generally, friction and windage losses constitute only a small
percentage of the output power of a motor. These losses were
ignored in the measured characteristics of the shaded-pole motor.
Therefore the windage and friction losses are considered to be

negligible.
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2:4.5.2 Core and stray losses.

Core losses resulting from hysteresis and eddy currents, are
usually determined by multiplying the volume of core and teeth by
empirical watt loss coefficients, depending on the maximum flux
density. For a normal 3-phase induction motor, they can be
measured by the standard 'no load' test. However this test is not
applicable to single phase motors such as the shaded-pole motor
which even at synchronous speed has other losses. To estimate the
magnitude of the core losses of the shaded-pole motor, its shading
rings were removed. The rotor was replaced with one without bars.
Subtracting copper loss of the main winding from the input power, a
value of 34 watts was obtained for core losses at rated voltage of
240 volts.

Interbar losses are caused by the flow of current through the
rotor iron between two adjacent bars. For a cast aluminium rotor.
They are the most significant part of the stray losses. Al though
there was a considerable amount of investigation (40.41) on the

stray losses of polyphase induction motors, the expressions derived

are not suitable for shaded-pole motors.

2.4.6 Detalls of Motor used

A commercial produced reluctance-augmented shaded pole motor,
as shown 1n figure (l.1), was used as the base or standard motor.

The following details were obtained:
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Rated output = 80 watts

Rated voltage = 240 volts
Frequency = 50 Hz
Number of poles - 4

Number of turns of stator winding per pole = 154

Number of shading ring per pole - 1

Number of rotor bars = 22

Rotor skew angle = 360 electrical
Rotor diameter = 7.19 cm

Stator stack length = 5,04 em

Stator winding reslstance - 7.3 (L

Rotor bar resistance = 0.6 x 10~% (L

Rotor end ring resistance between adjacent = 0.5 x 10~3 )

bars

Stator winding leakage inducl ance

Rotor bar leakage inductance = 0.234 x 1073 Henry
Resistance of each ring = 0.125 x 10~3 L
Leakage inductance between main winding s 0.122 x 10~% Henry

and shading ring

Span of shading ring = 18.50 electrical
Width of slot of shading ring = 120  electrical
Width of interpole air gap = 120 electrical
Narrow air gap length = (0.5 mm

Wide air gap length = ].5 mm

Width of step with wide air = 770 electrical
gap length

Rotor inertia = 7.8 x 10-% g, 2
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CHAPTER 3

Finite Element Method

3.1 ThEOrz

The application of the finite element method for solving the

magnetic field problems in Electrical Machines was first proposed by
Silvester and Chari [1]. Instead of dealing with Polssson's partial

differential equation.

2« 2=
—----—ma g + -——a - l.IJ 1111(3111!1)
004 oy

It exploits the fact known from variational calculus, that equation

(3.1.1) is satisfied when an energy functional

2 2

W = ”R'z'}a () 4 (%3-) - 2pJAJdx dy «.. (3.1.2)

is a minimum. This function is the basis of the finite element
technique which has been used to study the field problems of
different type of electrical machines. The method requires a grid,
usually congsisting of triangles, in the region belng investigated.
The grid can be made fine or coarse in various parts of the machine
in a very flexible way depending upon the particular requirements of
the solution. Such a grid can easily be fitted to the contours of
an electrical machine. It is assumed that the current density
vector J has a component in the z-direction only, of magnitude J.

The two dimensional magnetic vector potentionalizz(X;Y), then
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satisfies the nonlinear Poisson's equations (3.1.1), subject to the

appropriate boundary conditions, in a space of magnetic reluctivity

1
B
The basis of the variational finite element technique for

V= , Wwhich is generally both position and field dependant.
solving equation (3.1.2), is to give an initial approximation
variation to the function A(X,Y) in each element of the problem in
the region R depending on the values of i(x,y) at the vertices of
each triangle. This will constitute an approximate representation

forli(x.Y) equivalent to a linear variation within the element such

as
A = a, + a,x + a.y ... (3.1.3)

The potential variation over each element is expressed in terms of
the nodal potential considering the first order only.

A first order polynomial of the magnetic vector potential gives
constant flux in any element. A second order polynomial gives first

order variation in flux density, and so on.

The advantage of first-order interpolation is that only one
value of reluctivity applies to each element. Higher-order

polynomials results in flux-density variation within the elements,

therefore reluctivity also must vary in saturable materials. This

for
was catered|using the iterative solution where the flux density is

variable until convergence is reached.

The three vertices values.Ai, Aj and Am,Of each element are

varied until the energy function in equation (3.1.2) reaches a

minimum value. This is possible since there exist only a finite

nunber of vertex values. When a minimum 1s reached, the resulting
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approximation for Z(x,y) solution must be the best possible one.

3.2 Formulation of the non-linear energy functional

The energy function which is given in equation 3.1.2 is

formulated as follows:

d -2 - -
Pd * Tt WB + pJ y E ped
d Bz .= .7
=z -a—t- IO H.dB + J.E see 3e2el1

considering only J as source (i.e. p charge = 0)

- - a- a- e
VXE 3t B At VXA
th fore E=--—QK
ere At

SO

-4 BEgp-g A

where H 1s the magnetic field intensity vector, B is the flux

density vector,*i.is the magnetic vector potential, J 1s the current

density vector.

The energy density 1s

B= = _ = (A =
Wy = [Pedt = [ HedB=J [ dA

The total energy is the volume integration of energy density.

W= foyav = [ [fEdB - T [ ak]av
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Consider the two dimensional field, the total energy will be
B - - -
W= [[, [ [, HedB - JA] dx dy ... (3.2.2)

The first term of the right hand side 1s

HedB = o ’ EHE
¥
curl H = J  so curl B = p3
B = curl A

(E)2 = (curl 3)2

but
A(st) = Az(xtY)
2 2
-2 - OA 0A
S0 B (bx + (ay

Substituting in the energy expression (3.2.2)

-2 -2
W= ff -2-%; (&) + (%-3- - 27.A] dxdy  e..(3.2.3)

W= I!R f(Ax,.A , X, ¥, A) dxdy

y
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Applying the variational calculus to the energy function gives

W oW 3 oW

0
e T + — - e (3-2-4)
0A ox oy CAy
X
7 = Fya2A
where Ax = Ay Y
From equation (3.2.3)
0A
3 W 1 2°A
= ax P o’
2 aw__1 3°A
oy azy uay2
Substituting in equation (3.2.4) gilves:
aZK+ 3°A _
por ey R
0). oy

which is Poilsson's equation. Hence the energy function yields the

differential equation of the physical system.

3.3 Solution of Poisson's eguaﬁion

To solve equation (3.1.1) for linear or saturable magnetic
field problems using the variational finite element method it is
essential like any variational technique, to search directly for a
function related to the problem E(x,y), which minimizes the energy
functional, equation (3.1.2), Instead of attempting to solve

equation (3.1.1). Using the variational finite element method is



necessary to make the problem discrete. Discrete representation of
the magnetic field problem is achieved as follows:-

Considering the two dimensional fileld over region R of the
shaded-pole motor in the X-Y plane (Fig. 3.1), the entire region is
subdivided into L triangle and N points, each triangle representing
an element of the system in the region. The three vertices magnetic

vector potential for each element will take the form:

>4

e T R Y \.]
|

AJ = {Il + azxj + G3Yj | ees Je3.1

1

A_m=ll a1-+ azxm-+ anm

where Ai, Aj and Am are the values of (K) at the nodes 1, j and m of

element (k), hence equation 3.1.2 can be written as

W= T W eee 33,2

°k 1 al'&a“ 2 aﬁe“ 2 -=°K
W = IIR-iT; [( -S;' ) + (""'a";' - lJJA ] dxdy eee Jo3.3

The system of equation 3.3.1 will yield a unique solution for the

constants a5y a, and a provided that the determinant of the

coefficient matrix does not vanish, Norrie [43], that 1is
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i 1
ZA- 1 X Y # 0 eee 3-3-4
J J
1 X Y
m m

It i8 clear that the determinant equals twice the area A of the
triangle. Since the area of the triangle never equals zero, A#0,
the solution for @y & and T, exists and is unique, and solving

equation 3.3.1 yields

-%—(bA + b .A +bA) ves Je3eD

where ai = ijm -« mej’ bi - yi-ym’ ci - xm-xj and 33! aml bj! bml

c., ¢ can be obtained by permutation of the indices.

j m
Substitution of eqluation 3.3.5 into equation 3.1.2 yields the shape

function representation.

e

-k | § - -
A N(x,y ..EZ~[(ai-+ byx + c,y)A, + (aj-+ byx + ¢, y)A]
+(a +bx+ecy)A] ...3.3.6
1
where A= > (cmbj - cjbm) eee 3e3.7
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From equation 3.3.6

%1

24

5

[biz + b K + b z ] S & H 3'3.8

o

X

e 1 . - -
_g%, =3 lc A +cA t CA ] oo 3.3.9

and fron i = curl -A- eee 3-3-10

oy X Y
_ 2 _ 2
2 = R2 2 = (OA +y A ces 3¢3,
B Bx+By 3y (ax 3.3.11

Substituting from equation 3.3.8 and 3.3.9 into equation 3.3.l1

= 2 2 -"""]'." 2 + 2 = ¢ o nJdede
B =|/B2 + B2 = 3% |/(quAq) (2 A ) q=1, j, m 3.3.12

q q

Substituting from equations 3.3.8 and 3.3.9 into equation 3.3.3

k
W o= [—-——(bA +bA+bA
e, BAhu. i1 &

) _ _ 2 e

237 =%

Let A K to represent the value at the centre of the element.

36



This is the average of the magnetic vector potential values of the

three vertices of element K, thus

..ek

1
B o L I3i14
AXes (A +A+A) .03

J

Assuming constant current density within each element, the

integration in equation 3.3.13 is independent of the variables x and

Yy, 80

! dXdy = A see oo 3-3-15
“k

Equation 3.3.13 may be written

e

k 1 2 2
- + + +
W Shn [(b:LAi + bjAj + bmAm) (cj.Ai chj cmAm) ]
A
_.§.J (Ai +-Aj +-Am) coe seoe 3.3.16

Quch an expression can be obtained for each element.

Substituting all these elements' contributions into equation

3.3.2 transforms the functional in equation 3.1.2 into a function of

all the nodal values A Az, A3 yeeey A 8O

1’ n

W= H(Al, Az, A3 pgre e, An) vee ooe Je3e17
The condition for W to be minimum can therefore be written as

—QH— = 0 a = 1’ 2’ 3.:-&,“ sse o000 3:3-18

0Aa
Substituting equation 3.3.2 into equation 3.3.18 gives

e

L 1
'?M"H'"' = 7 oW = see 3.3.19
a 1i=1 aAa
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a=1, 2,3, ..., number of points
L = number of elements
Although the summation in equation 3.3.19 1is taken over all the
elements, only those elements, that have mode P in commo; have

non~zero contribution. Differentiating equation 3.3.16 with respect

e

i
to the proper Ap allows the contribution-%%- of element e, in
a

equation 3.3.19 to be determined. Thus if the node identifiers i, J

and m of element e, refer to the system node number p, q, and r

respectively, differentiation of equation 3.3.16 with respect toAa

yields
e
oW *—— [b(bA +bA +bA)+C(CA +0C
dA 44 W p%% T Pgfqg T Pete P PP 49 Crr)]
P °1 %
A J
e T !
3
e
ot L — [b(bA +bA +bA)+C(CA +CA +CA)]
2A 48, B, ¢ PP 949 rr T° PP qq rr
q 1 1
A J
I Ut
3
1
Wt o= 1 b(bA +bA +bA)+C
W 1 [b(bA +bA +bAY (e A +CA +Can]
OAr 4A
e, e
11
A J
I e
3
eoe 303.20

The assembly of the component element equations prescribed by

equation 3.3.20 13 an assembly by nodes since the assembly process

38



must be carried out separately for each node of the system. The

system of equation 3.3.20 can be written in matrix form and

considering the element e, is the object without putting the initial

1

e1 for each term.

oW
—_— K K K A
0A PP Pq pPr P

— == | K K K A |-
oA 4Ap qp qq qr q

— K
0A Krp ‘qu re Ar

-l

8] () f] oo

where [K] 1s the element K - matrix for element e

AeJ
3

oW 1 | AdJ
C

AeJ

3

J
I
I

or

i

b24G 2 b b+4+C c b bt+tc ¢
P P PqQ P 9 pTrT Pt
1
A —e——— + bz'l' 2 b b +c c ¢ 3‘3!22
LR vl LA QT qr
+ 2
brbp+crcp brbq crcq br.?'+cr

The generalisation of the contribution-gg- and thelr assembly will

bAa
be 1llustrated further by subdividing the region of the present

problem into 16 elements having a total of 15 nodes as shown in
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Figure 3.2. Table 3.1 relates the nodes identifiers i, j and m for
each element to the system node numbers.

Referring to figure 3.2 shows that the node identifiers avré
allocated counterclockwise. All elements are of the same size. The
x and y coordinates of the nodes are listed in table 3.2, the
and ¢ calculated according to

j m

equation 3.3.5 are given in table 3.3. Consider now, for

parameters bi’ bj’bm' €i» C

{llustration, element 5. Table 3.1 shows that the node identifiers
1, § and m for this element correspond, respectively, to

the system node numbers 7, 4 and 8. Substituting this information
and the appropriate parameters for element 5 from table 3.3 into

equation 3.3.16 yield the element contribution as follows:
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Element
i

1
2
3 s
4 3
5 7
é 6 5
7 5
Y 6

Table 3.1

Relationship between System Node Number and Element Node

Identifiers.

¢

—— | ———

Node Identifilers
3

41

Element

10
11
12
13
14
15

16

Node Identifiers

1

l 8

S o A wroal -——

11

13

11

14

12

3

11

12

14

11

15

m

12

14
10
15

11




1 0
2 1
3 2
4 0
s 1
6 | 2
7 o
s 1

Table 3.2

Nodal coordinates

0.5
0.5

0.5

10
11
12
13
14

15

42

Coordinate
X y

|
2 1

0 1.5

1 { 1-5

2 1.5
0 S
1 2 |
'f |
2 ' 2
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Table. 3.3

PARAMETERS

Element
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v -4 v~ vt —i i -

At by S ik e PR Bne Sl § eseabieema —

Element Characteristic Dimensions

. -—H—-mm.‘

ip— T Sl e
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1

S = e - A A SA )2
W Bﬁus[( 0.5 A, + 0A, + 0.5A,)2 +
3
) ~ _ AJe _
AW
From equation 3.3.23 it 1s clear that-sz—-is nonzero only when a =

a

7, 4 or 8. 1In other words element 5 1s one of the contributing

elements for the system equations involving A7, A& and AB. From

equation 3.3.23 the only nonzero derivatives for element 5 are:

W L [-0.5(-0.5A, + 0A, + 0.5 A )+(1A, = 1A, + OA,) - %575
— AA u . . A7 4 . B 7 z'. 8) 3
dA 55

> 1 - - - - - - B Je

o, " 4Agh,  [0(-0.5A, + 0A, + 0.5A;) -1(1A,-1A,+0A)) ] - =
........5 AJ
= - -0.5A, + OA A A 1% + O0E Y] - 55
el ¥ T [0.5¢=0.5A, + 0A, + 0.5A5) + O(1A, -1A, + 0AQ) | - —==
3Ag 5+5

¢ooe 3-3-2&

In matrix form the system of equation 3.3.24 become the element

matrix equation of element 5.

i B 1 71
5 | -

= s 1 K 3

0A |
t 7 : t
WS 1 - . Lg
; crat— = | "'"4 4 0 A = e g0 *J e
%3, 16A5ns 4 T F fren 303023
E . i _ 1
E __5_;"!_ -1 0 1 A : =
E AA 8 3
8 L.... L
where

I = 4g.J¢
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G ince the elements 1, 3, 5, 7, 9, 11, 13, 15 are of identical size
and orientation with respect to the frame of reference oxy, it can

be shown that the element K matrix is the same for these elements
provided the node identifiers are replaced by their proper
corresponding node numbers. Thus for element 9 the element matrix

equation 1is:

ik > A Ao 2

%10

P_gi 16A;ug - 4 0 7\'7 - _;_2 ese 33,26
%A

w2 -1 .0 1 ]

2, , 3

where 19 - 59119

The rest of the elements 2, 4, 6, 8, 10, 12, 14, 16 have also a

common element K-matrix, which for this particular case is identical

to that obtained above for elements 5 and 9. Thus for element 10,

the element matrix equation is:

— 5 -4 -l Ag 10
dA, 3
awlo 1 -
] -4 4 0 ALl - Lo ... 3.3.27
3A, 4 10%10 3
10 )
= S S A R e
A, 3
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e
Having obtained the contributions-gH-for all the elements, the

aAa

next step is to assemble these into the system matrix equation. For

assembly by nodes, the basic assembly equation is equation 3.3.19.

e
For node 7 the relvant assembly relation 1is:

W Lot

emman 35 z avemmpm—

- . L =16  ees eeo 3.3.28
=] AA
7 € 7

From figure 3.1 it is clear that for node 7 the only contributing

elements are 5, 9 and 10 so equation 3.3.28 reduces to;

ereamm— B come— +.__..+-—-—-—- o8 oo 3!3.29

SUbStitUting from equations 3-3-25, 3.3.26 and 3.3.27 for

5 9 10
-2?—-,-2?—-and ?H respectively, Iinto equation 3.3.29 gives
0A O0A 0A
7 7 7
X 162 [5 -4 -1][a ]+
84, 55
1 [-4 4 0][a,] +
16A9u9 2

&ds  BAgdg  Agd10
3

1
lﬁﬁﬂﬁn [ ][3] ( 3 3 )

eee see 3.3.30
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where

Aq Ao Ag —'
[a = 2, 5 [0 =|a7 [+ (a3l =4
Ag Al A7 ]

Hence equation 3.3.30 will have the form:

-1 1 A

4 1 - -4 |
Asks A gk

[(—-§—-+-———-—+ ) A, + r
575

1
Agis  Bghg L A

16

A.4 + ( 8

A 10] - RN ] e s w PR 3-3.31
9y 3

Equation 3.3.31 can be written in its expanded form as:

-—L[o 0 0 -—— 0 0 —> (= +-—u 4

16 Ag b A s

1 1 -4 -
- e - )O — 0 0 0 0 0jlAa
Asis 890 gy A ]

I_+1I +1

s 5 9 10 EENEEX 3.3.32
3
A
where [K] = KZ I = A . J
» Q a a
A16
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For each nodal parameter in the system, an equation similar to

equation 3.3.32 can be obtained. Assembling these equation into

a single matrix equation gives:

(S][A] = [I] «ee +ee 3.3.33

which 18 the system matrix equation.

The boundary condition was inserted using, Dirichlet boundary
condition, the method explained by Norrie [43] the method is
summarised as follows if P is a node for which the nodal value is
specified as A , so enter zero in the Pth row of the system matrix

P
[S] except for the diagonal position, where it should be enterd 1,

and enter Ap in the Pth row of the matrix [I].
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CHAPTER 4

Computation and AEEIication of Finite Element method

4.1 Computer program for the finite element method

The basic input data for the finite element program comprises

1) All the nodes and thelr x, y coordinates.
2) All the elements and their nodes identifiers.’

3) The relationship between the node numbers and the node
identifiers for all the elements.

4) The nodes numbers where the function 1s prescribed and 1its
value.

The programming strategy 1s outlined in the flow chart (figure
4.1). The basic structure of the pfogram is that of an assembly by
nddes. The element K matrix is computed for all the elements and
retained in storage for subsequent use since the assembly of the
element matrix equations are by nodes. These elements that surround
each node need to be ascertained. This information is compiled in
the array, ICEV(I,J). The variable I specifies not only the matrix
row but also which node is under consideration.

Column J = 1 lists the total number of elements surrounding
node I, and columns J = 2, 3, 4,... record the identification
ﬁumbers of these surrounding elements. Referring to figure 3.2 as
an example, column 1 is initially set to zero for all nodes as shown
in table 4.1, whiéh contains data for only the first 6 nodes.

The first element to be processed 18 element 1, which can be

seen from table 4.1, has the nodes numbered 4,1 and 5. In the array

49



the total number of surrounding elements listed for each of these
nodes is incremented by one. The identification of element namely
1, 13 recorded for each node in the next available coluﬁ J = 2, as
shown in table 4.2. Element 2, with nodes 2, 5 and 1, 1s the next
element to be processed in the same way. The total number of
surrounding elements listed for these nodes is incremented by ome
and the 1identificastion numbers of the element, namely 2, are
recorded in the next available column,

as table 4.3 illustrates. Continuing with
the above procedure we come to the array ICEV which i3 shown in

table 4.4 afer all the elements have been processed in turn.

ICEV (I, J)

Node Total number of | Identification numbers of surrounding
surrounding elements

elements

Table 4.1 Array ICEV after initialization
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Table 4.2

Array ICEV after Erocessing of element 1

ICEV (I, J)

Total number off Identification numbers of surrounding

surrounding elements
elements
T
1 1 1 i
: | |
2 | 0 0
3 0 0 |
4 1 1 §
| |
5 | 1 1 ?
6 | 0 0
|
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Table 4.3

Array ICEV after processing of elements 1 and 2

Node

Total number of
surrounding

elements

J =1

ICEV (I, J)

Identification numbers of surrounding

elements
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Table 4.4

Arraz ICEV after Erocessing of elements 1 - 16

Node

il e I A remrralge  WTORN

11
12
13
14

15

Total number of | Identification numbers of surrounding

surrounding
elements
J =1

2 L

3 1
1 4
3 1

6 1
3 3
3 5
6 5
3 7
3 9
6 9

3 11
| 13
3 13
2 15

| elements

ICEV (I, J)

13

10

12

14

16

10

12
14
11

16

15

10 11 12

14 15 16

e




4.2 The Iteration process for Finite Element Program

The saturation iteration procedure described by Demerdash [44]
was used for solving the saturable magnetic fleld of shaded-pole
MOt OXS .

Giving a guess for a set of reluctivity values over a continuum,
solving the system equation for m.v.p (A), hence flux density (B)
and field intensity (H) in each element. 1In this technique, one
enters the B-H saturable characteristics, for the iron region,

independently from B and H axes for each density and intensity of an

element respectively. This ylelds two values of reluctivity, the

assumed one v and the calculated reluctivity v .. 1In general v
as cal as

and V.al will not be equal until the nonlinear saturation iteration

1s reached and the correct value of element reluctivity has been
4
found. Before saturation iteration 1is completﬁ a8 guess for the true
reluctivity v is given as a linear combination of v and v as
tr as cal

follows:
Vv =Yy +f-(\)c -V)----utyy

where%fv i1s a deceleration factor which often takes a value as

0.001 < fv < 0.1,

The most recent values of reluctivity for all the element are
used to obtain a new solution, from which new flux densities and
field intensities are found. Then the process is repeated for
a given eicitation until convergence is achieved.

The criterla for reaching a satisfactory convergence is that
the difference between the calculated m.v.p.s at two successive

S
iteration|must not be a predetermined precision value (g) such as
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A, —- A
g = z in in-’.l <0# 004 eee o0 X X

=1 Af pel

where

i=1, 2, ..., nunber of points.
A, = m.v.p. value of node { at iteration n

in

A = m.v.p value of node { at iterationn + 1

i otl
The values of m.v.p's for all the nodes were set to zero at the

very beginning (initial values).

The convergence of an iterative procedure, in which some or all
of the results from one computation become the input for the next

calculation, is when the difference between successive results

continue to decrease, tending to zero in the limit.

4.3 Numerical Representation of Magnetization Curve

The magnetization curve, for steel sheets used for
manufacturing shaded—- .pole motors, is numerically represented in a

sub~program of the main finite-element program. Detailed tabulation

of the magnetic flux densities corresponding to definite magnetic

field intensities was avallable.

It is assumed that the nagnetization characteristics pass

through the origin, so B = 0 when H = 0 and-%%- 1s always positive.

The magnetization curve is subdivided into sections and an artifice

has been incorporated for sensing the portion of the curve to be

used to calculate the reluctivity for a given flux density.
The procedure of the numerical representation of the

magnetizing curve is illustrated below Fig. 4.2
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B (wb/m?)
in+l P p™

0.2

0.1

j=1

e
{ - T - = B

Hs H" (A/m)

Figure 4.2.

It 1s assumed that beyond a saturated magnetic induction, (B ), the

slope of the B-~H characteristics 1s given by the permeility of free

space.

The distance or the range between B3 and the origin 1is

sub~divided into equal sections, denoted as AB. The abscissae at J

and J + 1 intersect the magnetizing curve at points PJ and PJ+1.

Between these points the curve 1s replaced by the chord (PJ ’ PJ+1).

At the origin J = 1 and at the saturation point J = ntl.

The next step is that all the values of EJ are read and the

slopeMJ, between two points of the curve, PJ and'PJ+1 is calculated

using the method developed by Frederick and Edward [&5]

H, . - H
W . S

J m ® &8 L L I 4'3'1
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To find the reluctivity for a magnetic flux density B £ Bs’ at point
p, the following steps are taken:

1) Find the section J in which B is situated

B ;
J = AB'+ 1 see dee &-3:2

Only the integer parts of the results of equation 4.3.2 are
used.

2) Using tabulated values of HJ and Mj, the value of the magentic

intensity H is found as:

H = (B - BJ)- MJ + HJ ee s oo s a.3l3

3) The reluctivity at P is found to be

(B - BJ)‘MJ+ HJ
B
In the case of a flux density greater than the saturated flux

that
density value such! B” > BS’ the reluctivity is found as:

e & . o @ 4.314

vI

(B - BB).VO1+ HB

vﬂ B" ® &0 ¢ &0 4!3!5
Where vb=-'3;- i{s the reluctivity of ¢~ free space. The flow chart
o

of the computer sub-program is given in Fig. 4.3.2. BB was chosen

as 1.9 Wb/m? and n was chosen to bel9 so AB wasg equal to 0.1 Wb/m2.
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4.4 Application of Finite Element Method
The finite element method described in the previous chapter, is

applied to a shaded-pole induction motor (Figure 1l.1) for
investigating the flux distribution through the machine and to
calculate the parameters of the machine. It is possible to carry
out an investigation for half or part of the machine provided that
the machine is symmetrical for the part being investigated. In the
case of the shaded-pole motor there is a symmetry for half the
machine. Coming back to finite element theory, to calculate the
system matrix components, it requires a knowledge of all the
elements and all the surrounding elements for each node. To
calculate the system matrix components considering half the machine
requires those elements surrounding each node of the symmetry line
AB(Figure 4.3) to be ascertained. To overcome this problem, ¢come
elements were taken in the other half alongside the symmetry line.
These element were chosen to be symmetrical with elements of the
first half of the machine. The method was checked using a simple
shape as shown in figure 4.4.

The region was divided into 92 elements, the symmetry line AB
divides the problem into two symmetrical parts.

Flrst of all the magnetic field was solved using th whole
reglion. OSecond, the magnetic fleld was solved considering half the
shape, because of the symmetry. Referring to figure 4.4 nodes
1, 2, 3,..., B are symmetrical with 1', 2', 3',..., 8' the system

matrix will take the form:
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[s](a] = (1]

But Al' 'JAI’ AZ' -Az go ey AB' = AB

Substituting forAl,, AZ' yeeoy AB' and compressing the system

matrix gives the system matrix for half the shape.

P

0

0

C;1 C2 18 319 2110 1n
1 C21 v oot ?23 29 %210 ¢ * ° * %m
[s]=f: & ¢ L oo e et

cnl Cnl ° ¢ o ° » ° Cne ang anlo . ° ° :-ann

A

8 1

A

1, 2

. A

[t]= | : ' [A] - 3

) | A

o
pon |

where In is third the sum of the currents of elements surrounding

node n. -
= +
where ij akj bkj'
k - 1’ 2, 3, es e B
j - 1’ 2’ 3, se e 8

[s][a] = [1] «ev 400 40422
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The compressed system matrix equation 4.4.2 was solved for

‘Al’ Az,...,An.and then the values of A!, i,...,A‘ vere pubstituted

8

using equation 4.4.1l. Reconstructing the system matrix and

compressing it will be repeated for every iteration.

The flux density distribution was calculated and plotted on

figure 4.5a for Whole the shape, and figure 4.5b shows the flux

distribution for half the sﬁape.

From the comparison between figures 4.5a and 4.5b, it {8 clear

that the flux distribuion 1is the same for the complete shape or half

the shape.

The same method will be épplied to Investigate the magnetic

field of half the shading-ring motor. In the study the following

assumptions were made:

) |

2.

3.

4.

3.

The magnetic vector potential has only a component along the
axls of the machine.

The iron parts are 1isotropic and the B-H characteristics are
single~valued.

The individual currents in the element forming the stator and
rotor conductors are replaced by a uniform current density over

the cross section of the!r coils.

The magnetic field outside the machine contour is negligible
and therefore regions external to the stator are not

considered.

The current density vector J has a component only in the axial
direction.

Half the machine was conslidered in addition to extra elements

alongside the symmetrical line were taken. The total number of
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elements was 678 and 372 nodes before compressing the system matrix,
the system then contained 634 elements and 344 nodes. Thé mesh
generation was drawn by hand. Numbering the elements and the nodes
it is possible to use a random procedure, but it is better to start
nunbering all the elements in each particular region as the elements
in the air, the elements in the steel and the elements carrying
current. The computer program devised by Norrie (43) was modified
and used to calculate m.v.p.s, flux density and reluctivity for each
element. Element numbers and their identifier nodes, node
numbers and thelr x,y coordinates were supplied as an input data,
from mesh drawing (figure 4.6).

From the flow chart figure 4.1 it is clear that the current
density, for each element carrying curreat, must be known so the
currents of the machine were found using the steady~-state program
developed by Lock (22). The currents were calculated at different
values of speed. Three values of speed were chosen, 3 = 1, locked
rotor, s = 0.05, no-load speed and s = 0.5, half speed.

For each value of speed the instantaneous currents were

calculated at two instants of time t = 0 m.sec and t = 5 m.sec,

where the currents have sinusoidal variation.

i -'VE-I SIN(wt + 91) For stator winding
m m

1, =21, SIN(wt + 6,) For shading ring
1bar'- 2 Ibar SIN(wt + 63) For rotor bar
From the steady state program rms curreant values and their angles

were obtained and the following table shows the ingtantaneous values

of the currents.
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time(m.sec ) ish(amp)

"&07 - 78-7

4.44 -221 33.6

The bar currents are various, and differ from each other with

respect to time. Loop current is calculated using the concept of

forward and backward components as:

_ - -{(m~1l) «na j(wt-nb)
1I.«..tn.» : [ ﬁlf.n € ¢ -

+ Y7, L Qdlmhiema JJeml)y s
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wvhere

@ » glot angle between adjacent bars.
n = order of harmonic current

m = loop number

0= (1 ~g).wt , 8= 8lip

Firast order on'& was considered, so equation 4.4.3 will be

i[..n - l/'z" -if.l ;J(rl)-a. ejswt +V/2 .ib_]_ ej(m-l)a. ej(z-s)w;

e e® o8 4.4.4

Loops currents were calculated, using equation 4.4.4, at different

instants of time and slip. The following table shows the variation

of loops currents with time and slip.

Slip = 1 Slip = 0.05 Slip = 0.5

= t*3 m.sec! t=o0 t=5 m.sec , t=0

Loopa' currents.

-1.6  ~189 -13.3 -508.6
-53.6 3-160.7 -11.3 | -430
-88.6 |- 8l.4 | - 5.8 | -214.6
95.4 | 23.7 1.5 68.8
-72 121.4 8,46 | 330.4
-25.7 180.5 | 12.6 487 .1

28.7 182.3 | 12.8 489.2

74 126.3 9 336

95.9 30.2 2.2 76.1

87.3 |- 75.4 | - 5.2 | -207.9

51 -157.2 | -11 -425.9

(amps)
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The instantaneousg current values are used as excitation currents in

the finite element program.
Y

[

The number of itﬁltlons requied to reach convergence 1is
depending on the value of ¢ (equation XX) where the computation
results will be printed out when the value of ¢ becomes less or
equal to the pre~determined value. The lower value gives better
convergence and more accuracy. It 18 noted that the change in the

results, for € < 0.005, is very small so that value €, - 0.004 was

taken ags a predetermined value.

The following tables show the number of iterations and the

corresponding value of e.

N.ITR]| e N. ITR -

1 1.0 1
2 0.919 2
3 0.0502 3
4 0.0186 4
5 0.0093 * 3
6 0.0059 6
7 0.0044 7
8 0.0043 8
g 0.0034 9
10 0.0034 10
11
slip =1, t = o slip = 0.5, t = o
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Iiliii||i||!|illlllillllIiillllMIIiIII"IIIiIII |
0.203 0.0145(0.0076 [0.0052 0.0022

for Slip = 0-05, t = 0.

The following results show the element number, flux density and

reluctivity for slip = 0.05 and time = Q as an example.
1

Fispent B(Wb/n?) Ve

1 1.35 1600
2 1.22 1140
3 1.47 2829
4 1.48 2872
S 1.3 1767
| 6 1.37 2425
7 0.8 1123
8 0.96 1125
9 0.35 1138
10 0.57 1130
11 0.04 1203
12 0.04 1203
13 0.57 1130
14 0.4 1135
15 0.83 1124
16 0.74 1124
17 1.27 1134
18 1.2 1131
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The highest value of flux density was found to be 2.7 Wb/mz, and the
reluc‘'tivity was found to be 65556 for this particular case. The
highest value of flux density reached 2.85 Wb/m? for locked rotor
condition. Magnetic vector potentials were calculated for each node

and printed out. The following table shows some points and their

relative magentic potential values for slip = 0.5 and t = O,

Element | Magnetic | Element | Magnetic |[Element | Magnetic

Potential Potential

Potential

(amp)

(amp)

(amp)

36 0.00192 37 -0.00022 38 -0,0022

39 -0, 00404 40 -0.0066 41 -0.00783
42 ~0.00577 43 ~0,00662 44 -0.01178
45 -0.01359 46 |-0.01344 47 -0.0134

48 -0.01335 | 49  -0.01112 | 50 -0.00862
51 -0.0045 52 =0.00079 53 0.00363
54 0.00866 | 55 0.01488 | 56 0.01786
57 0.01786 58 | 0.01789 59 ' 0.01788
60 0.01521 61 i 0.00761 62 0.00675
63 0.01251 64 0.01782 65 0.01787
66 0.01789 67 0.01789 68 0.00973
69 0.0042 70 -0.00173 71 -0.00848
72 -0.01379 73 -0.01329 74 -0,01344
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The highest value of magnetic potential was found to be 0.0195

Tesla/meter.

The magnetic vector potentials are used to obtain flux plots

for any instant of time and speed.

Figures 4.7a and 4.7b illustrate the field patterns for slip =
1 and time = 0, slip = 1 and time = Sm.sec respectively. Figures
4.,8a and 4.8b show the field patterns for slip = 0.5, t = 0 and t =

5 m.sec respectively, Figures 4.9a, 4.9b illustrate the field

patterns for slip = 0.05 and times t = 0, t = Sm.sec.

The finite element method was also applied to the
reversing-speed motor (Figure 4.10). The flux plot was obtained
using only the stator current as an exciting current and figure 4.l1
shows the field pattern for this motor.

A computer program was developed to obtain the flux lines
distribution for each element. Figure 4.12 gives the flow chart of

this program.
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CHAPTER >

FINITE ELEMENT AND PARAMETERS CALCULATION

5.1 Theory
The main purpose of using the finite element method is to

Introduce an alternative approach to parameter calculations. The
aim of this method is to achieve better accuracy than the normal way
which is mentioned in Chapter 2.

The procedure of the method is outlined as follows: All the
lnstantaneous currents are calculated, for a given speed'and time,
and used as excitation currents in the finite element program. Flux
density and reluctivity is calculated for each element after a good
convergence 1s achieved.

At this stage the reluctivity 1s fixed for all the elements.
The fixed reluctivity is used as input data. The self inductance of

any coll 1s calculated using the concept of stored energy.

B
Ws - IV . jO Hedb « AV see s 5!1!1

B2 B2
» f T ° dv - - S P A.L
' Zpr Zp.r

W = 0.5 112 .00 cos 5el.2

S0

® AIL 0P ¢ 0O 5‘113
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where L, is the stack length of the machine

A is the area of any element under consideration

B is the flux density in an element
b is the fixed permability of any element

1 1s the conductor current of the coll being considered.

The value of flux density is calculated, for the existing

current and fixed permability, for each element in the re.gion.

Using equation 5.1.3 over all the elements of the machine to get the

partial inductances, then taking the summation, of these

inductances, gives the self induclance of the winding being

considered.

Mutual inductance between two coils is calculated using the

flux linkage concept. Flux produced by one coil and links another
coll, where the value of flux density and its angle is calculated

for each element and printed out.

Mutual inductance can be expressed as

M

1.2

N
- _____2:1'2 vee eee Sulod

1
¢1.2- ¢1+ ¢2+ soese T+ ¢n ees oo 5:1-5

= Bl - Ll e L ¥+ an L2L+ vees + Bnt LnlL

b1.2 = Le I By Ly = Lo X

n ¢ Bn! Ln- CO8 Bn

vhere N = number of turn, I, = conductor current of first coil

1
L = stack length, Ln = length of element n

Bn = flux density of element n

_Bn'- Bu « COS (en) or Bu.. Bn + Sin (en).
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The expression having cos Gh or sin Qn depends on the position

of the coil with respect to X.Y coordinates. If the centre of the

coil 48 in the X direction so Bn.. Bn_coa(en) and if the centre is

in Y direction then1§nQ- Bn. sin (Bn). Figure 5.l.|shows part of the

machine and illustrates the elements to be used to calculate a

mutual inductance and the cross length of each element (L1 . I...2 095
Ln)'
5.2 RESULTS

Equation 5.1.2 is used to calculate the self inductances of the
main winding, shading ring and rotor loops.

The following table shows the self inductance of the main

winding at slips equal 1, 0.5 and 0.05

0 3.25

0.1584

1 R 0.1834
0 0.1792

0.5 . 0.1863 B = coanstant
0 0.2411
0.05 5 0.2352

Self inductance of mainwinding

Self inductance of the ring and mutual inductance between two rings
e
for constant perJabilityand different speeds are illustrated in the

following table.
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"0 | s | 0.10m3m0] owkvemo”

1 _ -214.5 .85110 0. 355:10
-221 .9097:10 0. &68:10

Self inductance of one ring and mutual inductance between two rings

From the results shown in the table it is clear that the ring

inductance and mutual inductance between two rings do not have
significant variation with speed or time so they will be considered
constant.

Variations of rotor loop self inductance with position is
calculated, the self inductances are found for all the loops at omne

speed and 1lnstant of time. The following table shows the values of

rotor loops self inductances.
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Slip = 1 Slip = 0.5 Slip = 0.05

time = S| time = o | time = 5

| 0.944 1.8 1.16 2.22 2.46 7.6
! 1.07 2.15 1.23 3.35 1.82 8.86
| i.os | 2.36 1.19 3.45 1.73 6.51
1 0.838 | 1.66 0.956 1.64 1.87 3.4
0.688 | 0.922 | 0.768 0.904 1.85 1.3
I 0.734 0.858 | 0.834 0.853 1.91 1.51
0.868 1.17 | 0.997 1.68 1.73 5,47
0.96 2.4 1.04 3.12 1.62 6.83
0.976 1.11 1.17 2.36 2,07 3.46 |
10 | 0.78 1.1 0.955 1.06 2.03 1.56
11 | 0.98 1.42 1.19 1.34 2.66 3.84

Self inductances of rotor loops at different time and speed

Variations of rotor loop self inductance are plotted on figures

(512-113) for Blip - 1, (5-2-1-b) for Blip = 0.5 and (5-2-11C) for

slip = 0.05.

Fleld plottings of rotor loops are plotted on figures,

5¢2.2.a 512121&2 g oo ey 5-2-21311 for (Blip = 1, time = 0),

13
5-2-3131,

5-2-3-32 g 000,y 5-3.2131 for (Slip - 1, t =5 m.sec). Fleld

1

plottings of rotor loops are illustrated on figures 5.2.4.b1,

13




11 for (Blip - 0.05, Lt = 0)- Figures 5-2.5-8,

5.2.5.b and 5.2.5.¢c show flux distribution, produced by rotor bars,

5'2.4!b2 p "o ey 5'2'4‘b

for (slip =1, t = 0), (slip=1, t = 5 m.sec), and
(slip = 0.05, t = 0) respectively.

Flux of the main winding is obtained at different speed of the
motor at time = 0., Field maps of the main windings are plotted on
figures (5.2.6.a for S=1, t = 0), (5.2.6.b for S = 0.5, t = 0) and
(5+2.6.c for S = 0.05, t = 0).

Shading ring flux is calculated considering one ring carrying
current, for (slip = 1, 0.5, 0.05) and also 18 calculated for two
rings carrying currents. Flux produced by one ring is plotted on
figures (5.2.7), (5.2.8) and (5.2.9) for (slip = 1, 0.5, 0.05)
respectively and time = 0.

Mutual inductance between main winding and shading ring is
calculated, at t = 0 and t = 5 m.sec, for locked rotor condition,

half speed and no load speed. Also mutual inductance between main

winding and rotor loops is calculated for the same above conditions.

The following tables show the results which are obtained

slip time (m.sec)

4

1.018x10

0.876x10
0.969x10
0.895x10
1.105x10

0.05 1.06x10

Mutual inductance between main winding and shading rin
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Loop Slip = 1 Slip = 0.5 Slip = 0.05
No. |

Mutual inductance between main winding and rotor looEs

Mutual inductance between shading ring and rotor'100ps is
calculated considering one ring carries current, the results are

listed in the following table.
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Loop Slip = 1 Slip = 0.5 Slip = 0.05

1 0.336 0.25 0.46 0.35
2 0.39 0.14 0.21 0.65
3 3.1 2ed 3.4 2.7

4 l.1 1.07 1.55 1.8

> 0.614 0.59 0.76 0.77
6 0.52 0.47 0.63 0.64
7 0.48 0.38 0.44 0.5

8 0.48 0.37 0.37 0.41
9 0.3 0.37 0.61 0.56
10 0.4 0.42 0.7 0.697
11 0.5 0.55 0.82 0.868

(m.sec)

time = O|time = 5

(m.sec) |(m.sec)

w10~ my | Me0™7m) M0 H)

M(10"7H) M( 10'711)

time = 5

Mutual inductance between shading ring and rotor looEs

The results, listed in the last two tables, were checked by
finding the mutual inductances between rotor loops and main winding,

also between rotor loops and ring, where the current exists in one

rotor loop at a time.
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Figure 5.2.10 shows mutual inductance waveform between main
winding and rotor loop. Variations of mutual inductance between one
ring and a rotor loop, considering each loop represents a positionm,
are plotted on figure 5.2.ll.

Mutual inductances between rotor loops are calculated for each

individual loop at two times and three values of speed. The

calculated results are tabulated to be used for plotting the

waveform of mutual inductance between any two loops. The following

tables show the results at time = 5 m.sec and different speeds.
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Mutual inductance between loop I and loop J

-7
HI,J (H x 10 )

o N S R R R

6.75 0.946 0.41 0.41 0.342 0.274 0.34

6.2

0.779
0.394

0.393
0.323
0.272
0.323
0.41

0.508

2.35

5.22
0.465

0.362
0.29

0.239
0.286
0.357
0.381

0.834

5.48

757

0.615
0.481
0.389
0.39

0.427
0.467

0.68

0.466

7.4

0.756
0.571
0.448
0.436
0.434
0.477

0.631

0.335
0.534

0.69

1.49

0.522
0.475
0.468
0.514

0.671

0.27
0.429
0.532

1.51

0.864
0.485
0.402

0.44

0.233
0.363
0.437
0.551

0.899

4.09
0.504
0.378

0.488

0.293
0.414
0.479
0.572
0.54

4«36

10.1
0.645

0.689

0.568

9 10 11

0.37 0.451 2.46

0.381 0.404 0.782

0.44 0.447 0.606

0.454 0.453 0.578

0.538 0.536 0.686

0.448 0.446 0.565
0.539 0.364 0.462

9.45 0.518 0.588

1.74 0.983

1.07 1.94

Mutual inductances between rotor loops for s = 1. t = 5 m.sec
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Mutual inductance between loop I and loop J

10

|11

HI,J (H X 10-7)

1/J 1 2 3 4 5 6 7 8
1 N 882 2.2l 0.367 0.342 0.289 0.245 0.328
2 8.15 '“\\\\H}1.5 0.687 0.331 0.269 0.299 0.322
3 1.94 11 “\\\\\\z:?z 0.62 0.494 0,423 0.553
4 0.343 0.691 7.35 0.655 0.481 0.4 0.5
5 0.346 0.352 0.713 o.;;:\\““- 1.43 0.536 0.638
6 0.287 0.286 0.547 0.499 1.38 0.971 0.661
7 0.223 0.223 0.428 0.38 0.48 0.892 0.875
8 0.29 0.282 0.498 0.427 0.502 0.535

0.435 0.385 0.496 0.392 0.463 0.407 0.753 11.8

0.477 0.394 0.552 0.417 0.491 0.428 0.36 0.65

1.98 0.909 0.759 0.527 0.622 0.533 0.451 0.703
/3 9 10 11

1 0.369 0.417 2.21

2 0.385 0.4 0.872

3 0.448 0.49 0.683

4 0.406 0.401 0.496

9 0.52 0.511 0.634
6 0.439 0,426 0.525
7 0.737 0.329 0.408
8 10.3 0.504 0.564
9 1.62 0.939
10 1.92 1.93

11 1.02 1.78

Mutual inductances between rotor loops for s = 1. t = S m.gec



Mutual inductance between loop I and loop J

M

1 2 3

29.5 23

15.6

3.2 3.75

1,3 (8

4

X 10-7)

b

6

7 8

0.769 0.473 0.405 0.317 0.357

2.3
16

0.618 1.18

0.473 0.75

0.386 0.579

0.295 0.416

0.421 0.541

0.508 0.716

0.996 0.958

0.467 0.676 14.2

0.378 0.49 3.09

0.391 0.483 0.912
0.485 0.69 0.858
0.645 0.783 0.984
0.564 0.654 0.827
2.649 0.469 0.585
14.9 0.647 0.689

2.68 1.1l4

0.464

0.561
1.28

2.6
0.708
0.46
0.606
0.769

0.964

0.376
0.447
0.676

2.71

2.95

0.761
0.552
0.665

0.842

0.323 0.292
0.396 0.326
0.555 0.428

0.761 0.561

J.17 0.89
33

30.3

2.75 15.6

0.498 0.818

0.627 0.82

Mutual inductances between rotor loops for s = 1, t = 5 m.sec
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Using the results listed in the tables, waveforms are plotted, to
show the variation of mutual inductance, between rotor loops, when
they change their position. Mutual inductance between loop 1 and 2
1s plotted against rotor position as shown by figure 5.2.12.

Figures 5.2.13, 5.2.14, 5.2.15, 5.2.16, 5.2.17, 5.2.18, 5.2.19,

5.2.20 and 5.2.21 illustrate the variation of mutual inductance
between loops 1 and 3, 1 and 4, 1 and 5, 1 and 6, 1 and 7, 1 and 8,

1 and 9, 1 and 10 and 1 and 11 respectively.
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CHAPTER 6

TRANSIENT ANALYSIS OF SHADED-POLE MOTOR

Performance differential equations of the machine were derived
from the electro-physical construction of the machine. Half the
machine was considered because of the symmetry, so three stator
equations and eleven rotor equations were derived.

Electrical machine can be treated, in general, as a
configuration of coils interacting with each other through self and

mutual inductance. The performance of electrical machines can be

described by a set of voltage equations:

= . soe o000 ll
v im Rm + P(lmlm) + P¢m 6
where ma=1, 2, 3 «¢ces, ¢C

¢ = total number of colls

The flux.linkage.dh‘of coll m will be a function of every current in

the multi-coil system as well as their relative positions.

$ = f (11, 12, 13 gee e,y i ’ 91’ 62,-iu, Gc)

m c
Py = ?: -—-Mm i+ ; -——Mm 8 6.2
¢h ai p n ae 'p n s 00 oee .

n=] n n=1 n

In equation (6.2), the first summation involving rate of change
of currents is referred to as the emf of pulsation or transformation
since it iIs caused by the pulsation of flux.the latter summation is
the emf of rotation because it depends on relative motion between the
colls.

In addition to the electrical equations (6.1) and (6.2), the
mechanical equation was introduced to investigate the speed

behaviour of the machine.

Te"1JB'+ TL ess oes 6.3
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where Te is the electromagnetic torque developed

J = moment of inertia
8 = acceleration of the rotor

and TL = load torque including friction and windage

6.1 Derivation of Differential Performance Equations

Figure (6.1) shows the physical representation of half the

shaded-pole motor. The main winding voltage equation was derived as

follows

v = R1 +p(a 1)+ p(M o L)+ p(M o4+ p(M 1)

+ p(M 15) +eecseot p(M 1

1.5 1.15 15)

v, = R212-+ ];o(,t.2 12) + p(MZ.l 11)-+ p(Mz”3 13)-+ p(M2.4 14)

+ p(M 15) FTeosooot p(M i

23 2.15 15)

But 1, =4, =1, v +vV, =V

vV = Rsis-+ p(Ls 13)1+ p(M

S 1)*+ p(MB.qZ iqz)

S-ql iq

+ p(M irl) Toeseet p(M

S.rll irll)

Se.rl
11
VS - RSiB + Lsipis + Ms.qlipiql + Ms.qZPiqZ + nflP(Ms.rn irn)

¢ 0P L B 6'1'1

whereTMs q = constant, L3 = constant

20 M3ty =M g

1.4 s.q2 °’ MI.S ¥ M2.5 ) M‘s.rl

M1.6 +'M:.6 - Ms.rz and so on

Because the shading ring has a closed circuilt its voltage is

L = 1l + 1

8 +'2M1.

2

Mg tHy ™M

zero. The voltage equation for ring one 1s

Va = 0 = R313-+ £3p13 +-'Mq1.3.pis + Mql_q2p1q2*+

p(M irl) + p(Mq1'r2 nirz) Fooot p(M

ql.rl ql.rll'irll)
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+ 1 + M pl , +
vql R'qliql+ £q1piq1’ ‘Mql.sp s ql.q2 P q2
11
nfl p( q],.rn' irn) ees e s ov 6-1-2

= . + pi +M .pl , +
Vq2 Rq21q2'+ j"qZ piqZ qu.s Ptg q2.ql P ql
11 6 1.9
z p(qu.rnirn) see seve l].l .
n=1

6.2 ReEresentation of cage rotor

The cage rotor is represented, in the present investigation, by
a number of cascaded loops, each formed by two adjacent bars and the
two interconnecting portions of the rings. The number of loops 1is
equal to the number of rotor bars. Each loop 1s considered as a
single turn coil having flux linkage with itself, with other rotor
loops and with the stator windings. An equivalent circuit of the

cage rotor by this representation is shown in figure (6.2).

The voltage equation for nth loop 1is

11

0 = anirn - Rb ur.rﬂ-l t j'1:1...1:1--1) ¥ mfl p(Mrn...m irm)'

Fop(M 1)+ e g 1) TR g 1g0) eee eee 60201

6.3 Representation of Self and Mutual Inductance

Both self and mutual inductances were calculated, for each
winding in the machine, using finite-element methods. The results

were obtained at two times and different speeds.
The Self-inductance of the main winding and shading ring were
found to be constants. The mutual inductance between the main

winding and shading ring was also taken to be constant. The mutual

inductance between two rings was constant and the self inductance of
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rotor loop with the speed of the machine and the position of the
loop. Under locked rotor condition where the slip = 1 the variation

of the rotor loop self inductance is not significant. The rotor

loop self inductance variations appear clearly when the speed of the

motor was increased. This is noticed from the comparison between

figures (5.1.2.a) and (5.1.2.b) and between figures (5.1l.2.a) and

(5.1.2.¢). The purpose of representing a rotor loop self inductance
in this chapter is to be used in the transient equations where the
speed of the motor is initially zero thus the self inductance of a

rotor loop was considered constant.

6.3.1 Mutual inductance between main winding and a rotor loop

Field plotting of main winding and rotor loops show different
flux linkage between the main winding and each rotor loop. The flux
linkage 18 both speed and position dependant as shown in figures
(5¢2.2.), (5.2.3) and (5.2.4).

Mutual inductance between main winding and a rotor loop was
calculated by finite element methods. The variation of mutual
inductance between main winding and a rotor loop is illustrated by
figure (5.2.10). From the waveform it is clear that the mutual
inductance varies sinusoidally.

SO

A
M = M cos(0 + a)

Ser ST
where 0 is the angular displacement between a reference point on the
stator and a reference point on the rotor;
and a« 1s the initial angle between the main winding and a rotor

loop. Such an expression may be written for each loop.
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Considering the space displacement between each loop, the
mutual inductance between main winding and loop n will be-

A

s.rn.H‘Ms.rn cos (6 + a+ (n-1) al)

where a, is the slot angle

6.3.2 Mutual inductance between shading-ring and a rotor loop
Field maps of the shading-ring show different flux distirbution

for different speed as shown in figures (5.2.7, 5.2.8, 5.2.9).

Flux linkage with a rotor loop depends on the position of the
loop with respect to the shading ring. Mutual inductance between
shading ring and ; rotor loop was calculated for each loop at two
times and three values of slip. Mutual inductance waveform against
the rotor position is shown by figure (5.2.11l). It is obvious, from
the waveform, that the mutual inductance is a maximum when the loop
{s co~axial with the ring, and it is very small in all other

jole, sitions.

The mutual inductance expression was derived considering two
cases:?
l. The rotor loop is co-axial with the ring. This position

occupies two slots only.

Mq.r =1Mq.r cos (2(6+ a+ §))

where § is the angle between main winding and the ring so the mutual

inductance between shading-ring one and a rotor loop was expressed

a8
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A

Mq.rn = Mq‘rn COX(2(6+ at+ 6+ (n"l)al)) eoe see De3e2.1

wvhere n indicates to loop number was considered.

Equation (6.3.2.1) is applicable to this region if the angle

- = + - »
a1<91<a1 where 91 0+ a+ &+ (n l)a1

2. The rotor loop is outside the co—-axlal region. 1In this region
the mutual inductance is small for all the loops in this region and
it may be considered constant. An expression is given for loop n in

this region as:

N

Mq.rn = Mq.rn COS(G + a -+ 6 + (n"'l)dl) toe oo 6-3-2-2

Shading-ring two 1s displaceJIBO electrical degrees from
shading-ring one. Equation (6.3.2.1) will take, for shading~ring

two, the form
M = —Mq rn c03(2(9 + g+ &6+ (n"'l)al)) ¢eve eoo0 6-312-3

and equation (6.3.2.2) will be

A

Mq.rn = “Mq.rn coSs (e + a+ &+ (n""l)al) see soe 0324

Equations (6.3.2.3) and (6.3.2.4) express the mutual inductance

between a rotor loop and shading=-ring two in the co-axial and the

non co—-axial regions respectively.

633, Mutual Inductance between Rotor Loops

Each rotor loop was treated as a single turn coil. Flux
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distribution for each coil was calculated at two times and three
values of speed. Field maps are shown by figures (5.2.2), (5.2.3)
and (5.2.4).

Flux linkages between one rotor loop and the rest of the loops

depends on the position of the loop under consideration as well as

the speed of the machine. Therefore the mutual inductance between
rotor loops was calculated by finite element methods for each
individual loop. The results were obtained considering different

speed of the machine. Variation of mutual inductance, between a

rotor loop and other loops, are shown by figures (5.2.1.2),
(5.2.13), oo (5.2.21).

Mutual Inductance between rotor loops has a high value when the
machine i1s running at no load speed and it decreases with speed
deceleration of the machine. The mutual inductance is significant
between the adjacent loops as appears from the comparison between
figure (5.2.12) and figures (5.2.13, 5.2.14, 5.2.15), An expression

was obtained from the waveform of mutual inductance between the

loops:

A
Mr.n - i:Mr‘n + ( 1+ 0.5 cos(k.a1-+ 8))
wvhere Kal = (n—-r) a
The sign (+) or (=) depends on the value of the angle k.a..

1

6.4 Torque Evaluation

The induced voltage of a single coil carrying curreat i and

setting up flux linkage with itself is
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. d¢
e dt see s 6-411

Neglecting the power loss in the resistance of coil, the electrical

energy input will be stored in the field as magnetic energy LA The

energy stored in a time period t, £, 8 is

t t
2 _ 2 dg
1 1
ts
i-e- ws(tl, tz) = Itl i d q) *oee® oo 6.412

The flux linkage and current are related by the magnetising

curve as shown in figure 6.3

Ga 8 = constant
b T2
8c
T 1 F AV & BN A & ‘

f

i

i di

i 11 12 i

Figure 6.3
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Replacing the limits in equation 6.4.2
%

id d). w3(¢1’ ¢2) see oseoe 614-3

The co—~energy w; is defined with reference to figure 6.1 as

i

2
' = ee e eose ot o} o
wt (1, 1,) ]11 ¢ di 644

The co—~energy is related to the stored energy by

K K K
w = T [idy= I 1¢- I [ ¢di
S
n=} n=1 n=1
therefore
K ,
W = 2 i¢"'" W' o0 e oeo 6-415
S g
n=1

The power balance equation for any electro-mechanical system,

assuming the absence of electric flelds 1s:

d

Pe = Pm‘l"'a"é'wa cee osse Dedob

where P, ™ electrical power input

p. = mechanical power output.

m

w, = energy stored in the magnetic field.

Consider a multi-coil system

d¢ d¢ do do
1 2 _ 1 2 d
L et v =T ot Ty o teeet o
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For K coll system

K do¢ K do
n n, d
z in'aT Z T "'""t-"" dt Vs o909 oo 6-4.7
n=1 n=1
k
ws = E I indq’n oo eooe 6-418
n=]

where T = Torque,

6 = angular position
and ¢ = flux linkage
Neglecting the effects of hysteresis the energy stored in the
magnetic field depends only on the final values of the variables and
not on the way in which they reached those values. One method of
evaluating the total stored energy is to set all the flux linkages
to zero then increase each one in turn to its final values. Once a
flux linkage reaches its final value it is keptat that value and a
flux in the next coll is then allowed to increase to its final value
until all coils are considered.

w should be expressed as a function of flux linkages and positions

8
K
of coils, we= I oW (en . ¢n)
n=]
-2-9- = ?& 2 w-ifé“+ é S W 'EEE-
dt s p=] O¥, S dt g=] 08, 8 dt
K
O 0
— w =—— £ [1d¢ =1
a¢m 8 ¢h n=1 nn m
therefore
q K dqm K A dem
_cl?ws.zidt 269 wsl:
ms ] m=] m
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Substituting in equations 6.4.7 gives

n 0 m
therefore
O
Tn aen WB ((b, 9) ves sse 644.10

wsmust be a function of ¢ and 6

From equations (6.4.7) and (6¢4.5)

K d¢n. K deh 4 K 4
2 {1 =——= ¥ T —=——+4=— T 1 ¢ = —yu
1=] n dt nal n dt dt nal n'n dt s
o906 s e 6-4-11
K K dd K di
d n n
a I it Iotia YOl T
n=1 n=1 n=1
4 w' = I; 0 w' -——dim + I; 2 w! --—-dem
dt s n=] aim dt n=1 aem 8 dt
O .
ol 'wé ¢h
m

K den K A dam
E T — = 2 "'""'"""W' e ee ea 614!12
el B 9E pay 39 8 dE
K K A
= ——— L
) Tn ) 30 Wa e 8 e 6-4113

or for coil n the torque will be



vee oes Deb4.14

The co—energy must be a function of currents and positions
' 2 1yt .
WS Ws( i » 6)

The co—energy method is easier to employ in practical machines
than the stored energy method, since it is simpler mathematically to

keep the currents constant rather than flux linkages during the

virtual displacement. In the linear system w; -V Consider a

coll system such as in a rotating machine, with m rotor coils and n

stator coils the torque exerted on the rotor is

K
s 2 —g_-w'
rotor K=l aek S

Let Bk' 6+a.k

where 6 is the angular displacement between stator and rotor

reference points.

i1s the constant displacement between coil K and reference
Tk

point of the rotor

Therefore
_..gw' urg.—g._w'-a_?l&
A0 S K=l GGK s 00
E—?Enl
a0
Therefore
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The co—energy w;, for ¢ colls systems, in matrix form will be

6.4.16

L e 0" ae
L L BN BN BN OBE R NN
o BN BN BN B BN B
& o9 e 8 *
L L R IR BN B BN AN
» o0 P

[ escsoasn

i
Fll M12 M13 * &9 00 9 Mlc 11
|
MZ]. L22 M23 e s MZC. | 12
di{ . . . cescs .
T= 050ty 2y seees Lol g S SIS :
ﬂcl MCZ ¢ I N LCC |ic

eoe oos 0.4417

6.5 Solution of Performance Equations
To solve equations (6.1.1), (6.1.2), (6.1.3) and (6.2.1) for

the unknown currents, these equations were rewritten in differential
shape as follows:

For main winding

11
Vg Rsis'_ nfl irn,pMé.rn.' La'pis N Ma.q1p1q1+ Ma.quiqz
11
+ nfl Ms.rnpirn ces osae 645.1
For ring one
11
) quin- nfl 1rn qul.rn -jus-ql'pia'+ 1q1p1q1+'Mq1.q2piq2
11
+ % M pl ces os0s H545.2

n"']. q1 N a4 | rn
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For ring two

11
- 3 1
n=]

rn quZ.rn.nius.qZ'pia'+‘Mql.q2
11

+ ) MqZ.rnpirn eee soe He5:3
n=1

= Ryl

For rotor loop one

11
- I irmpM

-R .1 '+-Rb(ir2-+ i
m=1

rl rl - 13'er

rl.m l.s8

rll)

-1 ipM - 1 -pM M

ql * rl.ql q2 .s'pis T H

rl.q2 ' rl -pl
11

pl .+ ¥ m
q2 m=]1

rl.ql " ql

+M pi ee¢e oo 6-514

rl.q2" rlem © rm

Rotor loop two

11

-er 11:21+ Rb(iﬂ'+ 1:3)'- mfl irm'erZ;m}-iserZ.s

ql Pl + My quPd

r2.ql iq2' erZ.qz " Yr2.s

11
+ LT M
m=]

and so on for all the rotor loops.

ql

+M pi *88 oee 6-5-51

r2.q2piq2 r2.m - rm

These differential equations are simplified and written in

matrix form as

K1 I-is qul qu2 Msr:l M5r2 nrrerREeRese M31:11 pis
K2 qul lql Mq1q2 Mq1r1 iMqer tsscsessncs e Mqlrll piq1
K3 _quz Mq1q2 lq2 Mq2r1 Mq2r2 nrreTeReseees Mq2r11 piqZ
“4 | Msr1 Mqlrl Mq2rl Lr1 Merrg tereeeererees Moy || P
K1 Mgr2 Mq1r2 Mq2r2 Merrz bpa cerereceeeeee Moo [ PE2 I
R S0 00 ot | B
i : : : : erreesseees .

“14 Mer11 Mqirn1 Me2rnn Meaen Meiae2 coaeieann., B Pl

L BN ¢ ¢ O 6.5‘6
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11 N

where K]. -~ VS - RSiS - nfl i n-e ° Sin( Gfﬂ(n-l)al).ﬂsrn
11 5

K2 = -R,qliq1 - nfl i .sin(9+a+5+(n-1)a1).Mqlrn
11 ]
K. = =R 1 + I 1 D.sin (e'"a"'é'l'(n"'l)a )IM

3 q2 q2 hay I 1 q2rn
11

‘KA B “erj'rl'+ Rb(ir2'+ irll)'-mfi irmern

-Mrlaisésin(9+a)-—‘Mrlqlésin(9+a+6)

+M .lqzésin(6+a+5)

rlq2
11

KS N _Rr21r2 +'Rb(ir1+ ir3)'_ mfl irmern

- Mr231 B sin(9+a+a )

B.5in( 6+a+6+crl) + Mr2 2 2931n(9+a+&|'a )

11

Ke = =R, +R (L, +1,)- mfl 1 opM_ M . 1 e.sin(e+a+2a )

1913111( e+c+6+2a) + Mrziqziiqze Si'-n( e+a+6+zal)

r2q1 ql

r3 ql ql

K

K andK14 are obtained in the same way

Kys Kgo Kgs Ky Kpps Kygs Kyg

KA’ K5 and K6'

Equations (6.3) and (6.5.6) were solved numerically for

currents and speed. Runge-Kutta 4th order method was employed to

obtain the numberical solution. The method may be summarised as

follows:
if
d
E% = £ (x, ¥)
then
H1+2H2+2H3+H4

y(ntl) = y(n) + =
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where

Hl = h-f(xn, Yn)

H, = hef(x_+ 0.5h, y_+ 0.5H

2 1)

H, = h.f(xn + O-Sh, yn + 0.5H2)

3

H, = h.f.(xn + h, yn-+ H3)

4

h 1s step length in x.

pia, piql, piqz, pirl, pirz geeey pirll were obtained at every step
by solving matrix equation (6.5.6) using Gauss Elimination method.
Experimental results of transient torque~time were obtained for

the test motor, using the procedure which is mentioned in section
(2.3.3). Figure (6.4) illustrates the transient torque and speed
characteristics. Transient current-time patterns of main winding
are shown by figure (6.5). Flgure (6.6) shows transient curreat of

shading ring.
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CHAPTER 7

STEADY STATE SOLUTION

The steady-state performance of small induction machines is
more significant than the transient characteristics in respect to
machine design. The basic differential equations are derived in
order to build a steady state solution which takes into
consideration unsymmetrical windings, non-uniform air-gap and
disty) bution of the windings. Self and mutual inductances of all
the windings are calculated, by finite element methods, and
represented in the performance equations. Varlation of harmonic
rotor currents are also considered. Voltage equations are formed in
terms of harmonic currents and harmonic inductance coefficients.

Any number of space harmonics can be taken into consideration by
fncluding the appropriate number of inductance coefficient terms.
Because the performance of a shaded-pole motor is greatly affected
by the presence of space harmonics, Lock (22) examined briefly their

origin as shown in Appendix A.

7.l Steadz State Performance Equations

The stator harmonic currents are very small in comparison with
the fundamental so the harmonic currents will be ignored in the
stator windings. Voltage equations derived in Chapter 6 are the

basic equations of the steady state performance. For the main

winding the voltage equation is.

VB = 18RB + P(lsis) + PYB sese s o 7!1!1'!

The flux linkage TE is the contribution of all harmonic currents of



all windings.

Similarly the voltage equations of the shading rings are

0 = iquql -+ P(lql ql) + P?ql veeo one J1els2e
0 = i R -+ P(l ) -+ Pw see s o0 7-1:3

q2 q2 q2 q2 q2

Because the mutual inductances between stator windings are
constants, equations 7.l.ls, 7.1.2 and 7.1.3 will take the following

forms,

11

LpM _ 1 )

V =R1 <+ + p + i
L, pl M 1P M; 2P q2 =l SIn rn

5 § 8 8 s sql” ql 8q

LB B ® ¢ ¢ 7.1'4

11

0 = Roqdgy * LogPlog * Mgy PL o+ Mg 0Pt )+ I B(H

)
ql sql =1

qlrn rn

L AN L N 7'1.5

11

+ L P(M

O=R .1 .+
qupi o=l q2rn rn

q2+ quZPis * M'qlquiql )

ees oo Jolebe

The cage rotor is represented by cascade loops as discussed in

section 6.2. This yilelds voltage equations for the nth rotor loop

as follows:

0 = anirn - Rb(irni-l rn- 1) + 1)(]'rnir:n) t PY

" anirn-Rb(irtﬂl rn—-1 ) + P(Msrnia)

11

)+ I P(M 1 )

+ P(M + P(M
( ) ( q2rn q2 n=l rnm rm

qlrn ql

* e e ill711.7
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Referring to the series of space harmonic fields produced by the

stator windings, each rotor loop current consists of a series of

harmonic currents.

Considering only the real part of the exponential series, the
current for nth loop 1s

-  =J(n-l)k, ej( wt~kg)

(V21 e
" fk

+ v2 -fbkej(nﬂl)ka ej(mt ¥ ke)] coe oos /.1.8

where o is the slot angle between adjacent bars

and k = order of harmonic current.

The loop currents have the same magnitude but are displaced by

a phase angle which is a multiple of the slot angle a. Thus for the.

kth order harmonic current.

1(nr1)k'+ i(n+1)k ~ 21nk coB(ka) see oee 7.19

Subsituting in equation 7.1.7. gives

0 = (R__-2R, cos(ka)) i+ P(Msrnis)

+P(M r 1 1) + P(M iqz)-+ nE‘PCM i m) see ooe 7.1.10
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assuming N is the highest order of rotor harmonic currents

congsidered.

Since there are two components for each order of harmonic, a
forward and a backward component, there are 2(N+l1l) rotor equations.
Neglecting saturation effects, the stator harmonic currents can be
ignored. There are therefore three voltage equations of the stator
to be solde. The number of rotor equation can be reduced by the
fact that the flux linkage between the rotor and stator windings
producesonly odd order of rotor harmonic currents. Thus the voltage

equations are (N+1) for the rotor and three equations for the

stator.

le2 Representation of Inductances

For steady-state analysis, it is necessary to represent the
inductances as functions of rotor position 6. The position of the

rotor is a simple function of time when the speed 1s constant, i.e.
g = (1 - S) WE see oee 1.2.1.

Self inductances of the stator windings and the mutual inductances
between stator windings are assumed to be constant. The mutual

inductance between the main winding and a rotor loop is shown by
figure (5.2,10). From the curve given by (5.2.10) it is obvious
that there are significant harmonic contents. Lock (22) calculated
the percentage of each harmonic and he found that the harmonic above

the 7°P order is very small, less that 1XZ.

the mutual inductance between a rotor loop and the shading rings
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is illustrated by figure (5.2.11). From the waveform it is obvious

that the mutual inductance between the shading rings and a rotor
loop is very small over a wide region of the rotor position and it

has a significant value in the co—-axial position.,

The mutual inductance between a rotor loop and the main winding

is expressed as

Hl
H r - E ﬁgrkejke veeo o8 e 7-2:2-
5t k=1

Similarly the mutual inductance between the shading ring and a rotor
loop 1s

%)

M = T M kb

qr oy qu e see oo 7.2-3

wvhere k = 1, 3, 5, 7

Hl = h‘ig\west harmonic inductance coefficlent

and @ and akq are the angles of phase shift.

Since the net flux entering the rotor produced by a stator coil nmust

be zero the average terms in these inductance series are zero. In
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the case of rotor loops the average terms are the predominant terms

for the self and mutual inductances which are approximated by

moed®® .. ... 7.2.4.

7.3 Evaluation of Flux Linkages

In order to solve the set of voltage equations, discussed in
section 7.1, the flux linkage must be evaluated. The inductance

coefficients will be employed for this purpose.

7.3.1 TFlux linkage on a rotor loop

Considering the axis of the main winding as reference, the mth

rotor loop posituion 1s

pm = 9 + (ﬂl“l)a ee® oo 7!3111

where ¢ is the fundamental slot angle

0 = (1-s)wt is the position of the first rotor loop

and s = slip of the rotor

The flux linkages on a rotor loop are due to flux produced by the

main windings, shading rings and all rotor loops.

‘I’r - ‘Frs + Ytq + Trr cee ove 14342
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The flux linkage on rotor loop n by the main winding

- jut - J(kotk(n~1)a)
Mrske

- jlwt+kd) Jk(n-l)a
= IS X [Mrske e

k=1

N ﬁ: ej(wtike)é-jk(u-l)m]

rk L B B * e 0 7'3'3

This expression shows that each harmonic mutual inductance induces
two harmonic currents in the rotor. Their frequencies are dependent
on the speed of the rotor, the frequency of the stator current and

the order of the harmonic inductance coefficient.

fr 2% [l + k(l"’S) ]fO see see 1e3.b

The flux linkage on rotor loop n by the shading ring is

A 7 'iqej‘*’t k; ﬁque:l(kﬂk(n-l)a)
/2 - Hl - J(wt+k8) Jjk(n-1l)a
- I.‘__1 kfl [quke e
+ 1 ed(wEkO) e"Jk(n_l)“] vor eos 7.3.5,

rqk
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Since the magnitude of all rotor loop currents are the same, for the

same harmonic order, with a phase shift due to space displacement,

it is only necessary to find the harmonic currents in a reference

loop which is taken as loop 1. The flux linkages on rotor loop 1 by

the nth harmonic¢ current ofmth rotor loop is

- - 1 t-nb - (m=-1 t-n6
v = [/, e J(e-1ina dleend), 7 I(m-linagi(ut=ae) )

Hl-l
7 % ej(k9+k(m-1) )

k=0 mk

Hl-l

=|-—-'i E

[ﬁl ej(mrl)(k'n)aej[wt‘(n'k)9]
K=o mk

—*% -j(m-1(ntk)a ej[wt-(n+k)9]

+ Mmke ]
Hl—l [ ]
V2 = - j(m=1)(ktn)a Jjwtt(ntk)O
e TN Mo ¢

+ 7 oJ(m1) (k) eJ[wt"(n"“)e]

mk ] seP s 7-316

The total flux linkages on rotor loop 1 by the nth harmonic due to

the complete rotor is the sum of sub-flux linkages

NL

Yln = ) ?Imfl see 000 7#317-
m=}
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7¢3.2. Flux linkage on a stator winding

The flux linkages on a stator winding are due to the flux of

both stator and rotor windings

TE = ?33 -+ Wsr oo oo 0 7-3-8

Consider the flux linkagte on the main winding by nth rotor harmonic
current
H
NL 1
¥ = 3 i TN kej[ke"k(m 1a)

srn m=1 m k=1 rs

NL H1
) z1 kziE£% ifn [ﬁrske-j(mrl)(n-k)a ej[wt-(n-k)e]
m=s =

+ it~ dm ) (k) a ej[wt-(n+k)e]]

- k: +(ntk)6
2 bn[MrskeJ(mrl)( tn)a j[wtt(ntk)6]

= j(o-1)(n-K)a _3[wc+(n=k)6]

+ Mrsk ]] e S e 713-9

Similar equations apply for the shading rings.

The flux linkages on a stator winding due to a flux of a stator
winding is not a function of rotor position and it is expressed, for

the main winding, as

-  Jut - Jwt

+ quzlqze see evee 703.10

_ o T Jut
Tgs LsIse + ququle

Differentiation of the flux linkages with respect to time are

required in the voltage equations which are discussed in section

106



(7.1). These are obtained by direct differentiation of the flux
linkages expressions which are simple functions of time. After the
substitution, in the voltage equations, and simplification the

steady state equations are written 1n matrix form as shown in

appendix B.

7.4 Torque Evaluation

In order to calculate the steady state torque it is essential
to find the torque contribution of all harmonic currents. The
torque expression derived in section (6.4) was employed for this

purpose. For a c-coil system equation (6.4.17) will take the form.

T=L122-1—+11 dM12+11 &-3-+...+ i1 M
2 1 de 172 de 173 do l1°¢c db
+ =12 T2 + 4,1 —23 + 4,1 T tooot 1,1 e
2 "2 do 23 Tde @ 274 Tde 2%c Tdo
+l-12f§-+ e —=+ 1.1 iM-Q-é-h..-rii Me
2 3 de6 34 dB 35 do 3¢ db
d1 dM
1 ,2 4 45 45 4o
ol ae 43 3e t Wts T3e et L o6
+ I.I".Iiil."l..".'.'l".l..il'.'i'.l.i.l’l'Il.'
+ ..Iil'lll'llill..'.I.'I'.I.i.l'l.l"l‘.l'ill...i
+ ."ll.l"llli'.l.‘li'..l.'l'ill."'I'I.'i""l.‘.
+ }_12 ch-l + 1 1 nd-lc
2 ¢~1 do c~1l ¢ do
1 ,2 ch

+711-T§ S0 O S e (7!4!1)
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Since the self inductances of the stator windings and the mutual
inductance between stator windings are considered to be constant,
there are no torque contribution from these self and mutual

inductances. The torque is due to the mutual inductance between

stator and rotor windings as well as the self inductance of rotor

loops and mutual inductance between the loops.

Tebele. Torque due to interaction between stator and rotor currents

The average torque produced from the interaction between main

winding and rotor currents is evaluated by considering each harmonic

current of the rotor loops

NL Hl d
T =1 L 1 L = M
SY 8 w1 IB0 ., de “srh
= 2 T el I;L (Vs 1 e~ d(m=lina  J(wt-nb)
8 0 fmn
m=]
=  =J(m-Dna J(wtinb)
t (21, e e ]
")
r jh M he:“’[e*(“"”"‘] voe see Toba2
bl 5T

Equation (7.4.2.) simplifies to give the average torque produced by

the interaction between main winding and rotor currents.

H -
i ; jnP NL I_ [f* ok ok o ] ) a3
81 n=1 2 fn B8rn bn “‘srn~s *°*°* °*°*° (e
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A similar torque expression is obtained from the interaction between

shading rings and rotor harmonic currents

H -
l1 jnP NL I _
qr n=1

5 [T . Morn * Tbn qu]... ees Tobod

7ede2, Torque due to rotor currents Iinteraction -

Since the self inductance of the rotor loops and the mutual
inductance between the loops are variable with the rotor position,

the torque is produced by the interaction between the loops.

Consider the contribution of the nth forward harmonic current of

loop 1 and the kth forward harmonic current of the rest of the

loops

NL dM

T, = v2 T, el(WEmO) p pp §  QI(uEkO) ~i(m-l)ka _uh
ff fn fk do
o= 1

= j(wt-u8) B = j(wt-k8) =j(m=1)ka, = _3ho

= P /2 I_ e T VY21, e e jhM . e

0 fn =l fk ah

After the multiplication and simplification the torque expression

is
tho-ffn NL -j(m-1)ka r= j[2wt-(k-h+n)9
S 7 L My |
R ﬁ;hej[th-—(Hh'l-n)e] ]
= -L)kap=* k-h-n)6 , = k+h=
b3, e ket I(khma) J(kth-nm) @

+ Mmhe ] see e 714-5
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The first two terms produce average torque only at certain
sub-synchronous speeds and therefore are neglected. The third term

produces average torque under the condition

k-h-n=0 orh=%kk=n

For h > O or h=0, k > nor k = n and the torque expression for

this case 1is

T o0 ™ o tn tzq:L T, o, ell®llka 7.4.6
fnfk 2 fk mh sSeP e &9 ey e .

o=

whereﬁh is the hth

h

loop m

harmonic mutual inductance between loop 1 and

The fourth term producesaverage torque if the following condition is

satisfled:

k+ h=n=20 or h=n -k

Therefore n > k or n = k and the torque is

o fn

Tfnfk N 2
m=]

JjhP I, NL _,
=% - j(m=-1)ka
I'. Ifk Mmh e te¢ eo0as 7#&.7

110



The torque expression in respect to self iInductances is

-2
T - JhPoIfn NL ﬁ
fnfn 2 mo

Similar expressions are derived for the interaction between I

L/Ten bk ®

torque expression is

fn/Ibk'

and Ibn/I In the case of forward/backward currents the

JhP I_ NL
Tfnbk. — b Ifk Mmh e for h n+ k

m=]

The contribution of backward/forward currents is

thoIbn NL _x % Bj(m-l)ka

oh for h=k + n

Torque contribution of backward/backward currents 1is

JhP I, NL _, o i
Tbnbk.‘ -—EE—EE- Y, Ibk Mmh e J(m=1)ka for han =Xk
o=l
Jhe I NL _, .,
Tbnbn - 20 bn ) Ibn Mmh e J(m=l)ka for h= k = n

m=]

After finding the contribution of torque due to stator and rotor

currents interaction and as well as the contribution from rotor
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currents lnteraction, the electric torque is calculated by taking
the summation of all the torque countributions. 1In order to find the
currents, and hence the torque, the set of voltage equation (1.B) is
solved after separation into real and imaginary parts. The method
will be 1llustrated, considering three voltage equations, as

follows:

If the complex system matrix has the following form

1] A I s M
V2 - jx21 R2+jx2 jx23 12 e e o0 7:4118
v, I, ixq, Ratixy | |1,

Equation 7.4.8, after the separation, will take the form

Vel Ry, 0 0 =Xy Eslln
Ve2 0 R, 0 Xy ™% X3 | | L2
ez | _ |° O R Ty TRy Ty g
Vil 1 12 %13 By 0 0 Tl
V2 R T Ry 0 I
vm3 X31 ij X3 0 0 R3 Im3

cee oee 1.4.9
The complex voltage equation of the shaded pole motor has a similar
form as equation (7.4.8), therefore an equation similar to equation
(7.4.9) 18 used to find the currents of the stator, shading ring and
rotor harmonic currents. For each value of speed, currents and
torque are calculated. Torque/speed and current/speed
characteristics are shown by figure (7.1) and figure (7.2)

regspectively for both measured and caleculated results.
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CHAPTER 8

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In the present investigation, the finite element method is

employed to solve magnetic field problems of electrical machines. A
general approach is derived to solve the two~dimensional
electromagnetic field of the whole or part of the machine.

The finite element method described in Chapter 3 is based on
minimising an energy function satisfying natural boundary
conditions. This method of discretizing the two-dimensional field
problem, coupled with the convergence of Newton-Raphson algorithm,
yields a unique and stable solution.

The attraction of this method consists of its use as a
practical design tool for machine field analysis, especially where
different magnetic characteristics and different current densities
exist. Comprehensive information about the effect of saturation in
different parts of the machine is obtained from the flux plots.

Flux distribution of the machine is plotted for all the
currents existing in the colls as well as the flux distribution due
to each coil of the machine.

In order to calculate the self inductance of machine's coils
the concept of stored energy is employed for this purpose. Mutual
inductance between every palr of colls of the machine is calculated
by finite element methods. The method of calculating self and
mutual inductance is generalised to every electromagnetic multi-coil
system.

Referring to the results obtalned, in Chapter 6, by finite

element method, self inductance of stator windings and mutual
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inductance between stator windings are assumed to be constaat
because the changes of their values are relatively small.’ Self
inductance of rotor loops is both speed and position dependent.
From the results obtained by finite element, it is obvious that the
self inductance of a rotor loop increases with the increase of
speed. It reaches (0.88x10_5H) when the motor 1is running near the

b

synchronous speed and (0.108x10- H) for the locked rotor case.

The mutual inductance between rotor loops is variable and for this

reason the mutual inductances between a reference loop and the rest
of the loops are calculated at different speeds as shown by figures

(52.12), (5.2.13) ,¢4¢, and (5.2.21). The mutual inductance

between a rotor loop and the reference loop is both speed and

position dependent and is a maximum at no-load speed and decreases
with speed deceleration of the machine, and is particularly
significant between the adjacent loops. Fleld plotting of main
winding shows different flux linkage with each loop. This depends

on the speed of the machine as well as the position of the loop.

Mutual inductance between main winding and a rotor loop 1s shown by
figure (5.2.10). From the waveform it ig obvious that there are
harmonic contents. Mutual inductance between shading ring and a
rotor loop 18 calculated at different values of speeds The mutual

inductance is a maximum when the loop is co-axial with the shading

ring, and it 1s a minimum in all other positions. Figure (5.2.11)

illustrates the variation of mutual inductance with rotor loop
position,

The speed of the machine has little effect onithe mutual
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ain
{nductance between stator |windings and a rotor loop.

From the results obtained by finite element methods, the self
and mutual inductances of each winding of the machine are
represented as a function of position. The cage rotor is
represented by cascaded loops and each loop is considered to be a
single turn coil. A general approach 1s established for analysing
the shaded pole motor. The basic performance equatlons are derived
from the electrophysical construction of the machine. A
step-by-step numerical method is used for solving the basic
performance equations to study the transient behaviour of the
machine. The computed and experimental results, as shown by figures
(6.4), (6.5) and figure (6.6), are not exactly the same. Peak
values of experimental torque-time are greater than the computed
values by 30% and the shape of the computed and the experimental
pattern are not exactly identical. Computed transient current—-time
of the main winding has the same shape as the experimental one. The
peak values of the measured transient current 1s higher than the
predicted peak values.

The author believes that the difference between the
experimental and the computed results is due to the approximation
which was made for representing the parameters as a function of
rotor position and the fact that the effect of the speed was
neglecteds In addition to this there are harmonic contents in the
parameters waveforms which Qere ignored. In order to improve the
computed results a substantial modification of parameter
representation should be made. In the case of the steady state
performance the torque-speed and current-speed characterlistics of

both computed and measured results are shown by figure (7.1) and
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and figure (7.2). The predicted current 1s lower than the

experimental current by 15Z, also the computed torque~speed is lower

than the measured torque-speed. The difference between the
predicted and measured results of steady state is also due to the
parameters representation in the steady state equations.

For the future work on machine analysis and design the:r finite
element method is sufficiently accurate for analysing the
two-dimensional field of any electromagnetic circuit. 1In order to
improve the method and to get more accurate parameters the author
proposes the following:

1. Extending the finite element method for solving the
three-dimensional field of electrical machines.

2 Using an iterative solution between the finite element and the
performance equations, where a computer program, coupliqg the
finite element and the performance programs, is necessary to be
established. This method of study will enble the researcher
to calculate the parameters instantaneously by the finite
element method used in the performance equations.

J. Consider the system to be nom~linear whea calculating the
stored energy and the torque. This means that the parameters
are both current and position dependent M = M(1,9).

4« Application of the present finite element method to calculate

the parameters of the three-phase induction motor and

transformers.
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