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Abstract
Cold atom systems in optical lattices provide a promising platform for a wide variety
of applications, ranging from quantum simulation to quantum metrology, due to
their extremely high tunability and the ability to derive microscopic models under
well-controlled approximations that allows us to model them. The proper character-
ization of those systems requires, in many scenarios, taking into account that they
are subject to some dissipation sources, as dissipation can drastically modify the
behaviour of the known phases of matter or even generate new ones.

In this thesis, we investigate several important examples of dissipative many-body
dynamics. The first one relates to the use of engineered coupling to the environment,
both coherent and dissipative, to robustly create spin-symmetric fermionic states.
This scheme, which combines a Raman transfer between Bloch bands and sympa-
thetic cooling with a reservoir gas, prepares entangled states that exhibit quantum
enhanced precision for metrology. In the second topic we explore, we focus on the
study of one-dimensional spinless fermions and hard-core bosons. We observe how
dissipation induces differences in local observables that are identical in the closed
system. The third topic that we include in this thesis focuses on characterizing the
role of dissipation, specifically particle loss and dephasing, in the long-time behaviour
of many-body localized systems. We analyze under which conditions dissipation leads
to thermalization in the localized phase.

In all these projects, we make use of tensor network techniques to tackle the open
system dynamics combining matrix product states and matrix product operator
approaches, in both cases, exploiting symmetries in the system to optimize the
numerical performance.

All in all, the application of open system ideas to the study of quantum many-body
problems provides not only an improved description of the realistic scenario but also
can give access novel tools to engineer cold atomic systems in regimes that are not
accessible for closed systems.
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Chapter 1

Introduction

In recent years, atomic, molecular and optical (AMO) systems have proven to be a
reliable platform towards Quantum Simulation [1]. This is due to the high tun-
ability and control over the practical implementation of these systems and the
well-understood microscopic models that describe them which we can derive from
first principles. In particular, thanks to their high controllability the study of
quantum many-body systems have permitted access to interesting quantum regimes
at low temperatures in a robust manner; thus, allowing us to investigate fundamental
questions of condensed matter physics (e.g. high-Tc superconductors [2]), explain
out-of-equilibrium dynamics or becoming a relevant platform for high-precision mea-
surements [3, 4, 5] exploiting their non-trivial quantum properties, e.g. Ramsey
spectroscopy experiments with cold atoms [6].

1.1 Cold atoms in optical lattices

The study of many-body systems as a platform for quantum simulation reached an
important milestone when the quantum phase transition between a Mott Insulator
and a superfluid was observed in a bosonic system [7, 8]. This was only possible due
to the enormous development of cooling techniques over the course of many decades
including laser cooling [9], evaporative cooling [10] and, later on, sympathetic cooling
[11, 12] which is specially relevant for the case of fermions and will play a vital role
in the discussion of chapter 5.

1
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By combining different cooling schemes, dilute clouds of neutral atoms (with typical
densities of ∼ 1013 − 1015 cm−3) were cooled to a Bose-Einstein condensate (BEC)
(originally in three different alkali atomic species 87Rb [13] , 7Li [14] and 23Na [15], but
currently in a broad variety of alkali, alkaline-earth and lanthanide atoms) reaching
temperatures of the order of nK. An essential advantage of these systems is that not
only temperatures but also dynamical scales correspond to frequencies ∼ Hz-kHz
allowing for the experimental observation of the dynamics of the system in real time;
with dynamics being also compatible with typical lifetimes (& 1 s) of atomic states.

As mentioned before, another essential feature in quantum many-body systems is the
high degree of control and tunability that AMO systems possess. In particular, given
the temperature of the system, the inter-particle interaction can be characterized
(from low-energy scattering theory) by a single parameter, the scattering length.
This parameter can be continuously tuned through a wide range of interaction
strength (including attractive and repulsive) via optical or magnetic Feshbach reso-
nances [16, 17, 18].

In addition, neutral atoms can be trapped in periodic potentials formed by counter-
propagating laser beams, known as optical lattices. Due to the AC-Stark shift these
neutral atoms are trapped in the intensity minima (or maxima) of a far detuned laser
field with trapping frequencies of the order of several recoil energies1. It is important
to note that experimental development has allowed to not only realize bosonic models
in the lattice like the Bose-Hubbard model [19] but also to trap fermionic species
[20, 21, 22] observing non-trivial quantum phases [23, 24].

In this thesis, we will focus on the case of dilute Fermi gases trapped in optical
lattices. The realization of non-trivial phases of fermions was especially challenging
due to the slowing down of scattering at low-temperatures caused by the fermionic
Pauli blocking. This problem was overcome by using s-wave evaporative cooling with
several spin species. Alternatively, it is possible to use sympathetic cooling [11, 12],
immersing fermionic atoms into another species where standard evaporative cooling

1The recoil energy is the energy acquired by a trapped atom after emitting a lattice photon, see
chapter 2.
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techniques are possible. Although sympathetic cooling is typically less efficient than
multi-spin evaporation, it provides an important idea that is the controlled coupling
of the system to an external bath which plays a vital role throughout this thesis as
we discuss briefly in section 1.3.

Furthermore, these periodic structures can present a wide range of geometries de-
pending on the beam alignments which increase the flexibility of these experiments;
it is also possible to modify the lattice depth (and so modifying the tunneling
amplitude) and to create local offsets on demand (using digital-micromirror-devices,
see [25]) to implement random potentials. These random offset are relevant in
fundamental condensed-matter phenomena like many-body localization (MBL) [26]
as we will discuss in depth in chapter 7.

Finally, in the recent years an enormous advance in the resolution of cold atom
experiments led to the development of quantum gas microscopes, both in bosonic
[27, 28] and later in fermionic experiments [29, 30, 31, 32, 33, 34]. These experiments
allow for single-atom resolution and addressing and, consequently, giving access to
the study of the dynamics of individual atoms. As a result, not only collective
signatures of the dynamics can be observed but also theoretical predictions for
few-atom systems can now be benchmarked in the experiment.

1.2 Numerical methods in quantum many-body
systems

The focus of this thesis is the study of dynamical and static properties of cold atomic
systems. When studying quantum many-body systems we typically have to perform
computations on Hilbert spaces with a prohibitive number of elements. In certain
circumstances, we can make use of analytical or semi-analytical approximations that
simplify the problem greatly. However, in general we need to tackle the complicated
task of manipulating or diagonalizing exponentially large Hamiltonians.
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This problem arises due to the quantum nature of the systems we study, since
the superposition principle allows for an exponential number of state configurations
even for reduced system sizes (a few atoms). In general, if we consider a set of N
2-level atoms (e.g. two hyperfine states of a neutral atomic species or any other
implementation of a qubit) the possible state configurations will scale as 2N . If
we consider the storage of the Hamiltonian associated to such a system this task
becomes quickly impossible. In particular, if we consider N = 4 we only require to
store the complex coefficients associated to 24 = 16 states that compose the total
Hilbert space H, however, for the case of N = 300 atoms we would require to store a
matrix of approximately 1082 GB using double precision that is not only extremely
large and impractical but it is also larger than the estimated number of barionic
particles in the observable universe (∼ 1080).

Even though the size of the Hilbert Space is a complex bottleneck for our calculations,
in many cases, we will have certain symmetries of the system that we can exploit.
A relevant example that we implement in this thesis is particle number conservation
(see chapter 6 and 7). We can take advantage of this symmetry in two different ways:
reducing the representation to the particle sector we are interested in (e.g. for N
atoms in a lattice of lengthM described by the Hubbard model, dim(HN) = M !

N !(M−N)!

for an individual particle sector, in contrast with the total Hilbert space dim(H) =∑
N dim(HN)); secondly, even if several particle sectors are relevant we can exploit

the block-diagonal form of the Hamiltonian to consider every sector simultaneously.
Nevertheless, even given a set of conserved quantities in the system, at certain sizes
(tens of atoms), the dimension of every sector will grow exponentially and eventually
become impractical to store.

As a result, it is crucial to find approximate methods that capture the most relevant
features of these cold atomic systems with moderate computational costs. This is the
case of the density matrix renormalization group (DMRG), introduced by S. R. White
[35, 36] for the calculation of ground states of large one-dimensional systems. It was
later shown that these ground states are represented by so-called matrix product
states (MPS) (see [37, 38]). MPS form the basis of the main approximate methods
included in this thesis, not only for ground state calculations but also for time-
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dependent algorithms (t-DMRG) as introduced by Vidal [39, 40, 41]. These methods
provide an efficient truncation of the Hilbert Space based on the amount of bipartite
entanglement in the system. As a result, they provide accurate representation for
low excited states in one-dimensional systems with gapped Hamiltonians. Later on,
extensions to higher dimensions (see [42]) have been developed, finding moderate
success in representing the Hilbert Space of the quantum many-body problems in
2D and 3D.

Finally, it is important to consider that beyond the complexity of the pure states
systems that we study, in practice they are also subject to some kind of coupling
to their environment. The problem of dynamics of open quantum systems is again
quite complex. Nevertheless, the existence of well-understood microscopic models
and well-controlled approximations in these systems allows for the derivation of
equations of motion for the open problem such as master equations [43] or quantum
stochastic Schrödinger equation [44]. This is possible due to the existence of a well-
defined hierarchy of timescales in the system and environment. Moreover, successful
stochastic approaches to map the master equation evolution have been developed
throughout the years [45, 46, 47, 48], usually denoted as quantum trajectories. This
approach consist on an average of pure state trajectories that map the evolution
of the density operator. This method is compatible not only with exact methods
but also with MPS approaches, using standard t-DMRG techniques to compute the
evolution of every individual trajectory.

1.3 Open systems: Reservoir Engineering

The fact that AMO systems are coupled to their environment poses certain chal-
lenges to our ability to describe such systems, but it also provides a new means
of controlling and probing cold atomic systems. In particular, the modeling and
control of dissipation in AMO systems is not only fundamentally important as it
tackles questions such as the understanding of decoherence or the back-action in the
system due to the environment; but also, necessary for a complete description of
the realistic experimental conditions, but also it provides a useful toolbox for the
engineering of quantum many-body states.
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This is usually referred to as reservoir engineering [49], and the main idea is based on
the tuning of the coupling between the system and environment in such a way that
the desired state becomes the stationary state of the open system dynamics, using
the environment as a mean to reduce the entropy in the system. This concept was
imported to AMO systems from Quantum Optics, where important developments
in these directions were widely used for many years. Relevant examples are optical
pumping [50] and laser cooling [9] which are commonly applied in experimental
atomic physics.

Another important example now in the context of cold atoms is the case of sym-
pathetic cooling [12] where an atomic species (typically harder to cool to physically
relevant temperatures) is immersed into another atomic species that is cooled down
into a BEC state. The second species, usually referred as reservoir gas, acts as a
T = 02 bath that cools the other species to the lowest Bloch bands by emitting
Bogoliubov excitations into the reservoir. We can compare its role with the one of
the background radiation field in Quantum Optics. More refined examples in cold
atoms combine this with ideas of dark-state driving [52, 53] to improve the cooling
schemes, even within the lowest Bloch band [54, 55].

Furthermore, the coupling to the environment can be used beyond cooling schemes
to create relevant states in the optical lattice such as entangled states [56, 57, 58]
potentially useful for quantum enhanced metrology (see [6, 59]) or topologically
protected states [60, 61]. All of these methods give access to new forms of robust
state preparation in the lattice and complement the existing techniques for closed
systems.

Finally, the study of dissipative dynamics of many-body systems give rise to fun-
damental questions beyond the practical applications we just described. Incoherent
dissipative processes can substantially alter known phases of matter, even generating
new ones [62, 63]. In the recent years, a new field has appeared focused on the

2Since kBTBEC � ∆E with ∆E the energy separation between Bloch bands, see [51].
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non-equilibrium critical behaviour of such open systems and analyzing the emergence
of new universality classes in driven-dissipative scenarios, see [64, 65].

1.4 Thesis Outline

In this section we describe the structure of the thesis, which is composed of 8 chapters
that we can group in three different parts. The first part consists of the overview of
the background material related to cold atom systems, to contextualize the discussion
of the research results of this thesis. The second part is dedicated to the main
numerical techniques used to obtain the research results, including exact (chapters
3) and approximate (chapter 4) methods. Finally, in the last part we will describe
the three research projects (chapters 5-7) that compose the results for this thesis.
Additionally, we include a conclusion (chapter 8) at the end of the thesis where we
provide some final remarks.

More specifically, in chapter 2 we describe in depth the fundamental physics as-
sociated with cold atom systems. In particular, we focus on cold atoms in optical
lattices, studying the coupling with the laser field and the band structure arising
from the periodicity of the system, deriving the Hubbard and Bose-Hubbard models
from first principles and discussing the well-controlled approximations that were
made to derive those. Furthermore, we emphasize on how these systems couple to
their environment and how this can be described and exploited systematically. In
particular, we describe the concept of sympathetic cooling that plays a vital role in
the cooling of fermionic atoms in optical lattices (see chapter 5).

In chapter 3, we introduce the numerical tools required to compute the time evolution
of quantum many-body systems. In particular, we distinguish between: (i) the
closed system scenario where we present methods for the exact diagonalisation of the
Hamiltonian represented in the entire Hilbert Space; (ii) and open system dynamics
where we derive the master equation describing the evolution of the system density
operator. Also, we map the open system evolution to a stochastic sampling of
quantum trajectories.
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In chapter 4, we extend the ideas of chapter 3 to matrix product states (MPS) that
provide a representation of the state in an efficiently truncated Hilbert Space. We
describe the main routines for calculations of dynamical and equilibrium observables
in the language of MPS, linking again to closed and open quantum systems.

In chapter 5, we describe the first of the original research contributions included in the
thesis. The project is based on the concept of reservoir engineering to prepare useful
states towards metrology. We present a stroboscopic scheme, combining coherent
and dissipative driving, to prepare spin-entangled states with fermions. Moreover, we
introduce the notion of Quantum Fisher Information (QFI), a metrological quantity
to characterize the utility of the proposed scheme. We provide numerical simulations
of the time evolution of the QFI as the stroboscopic scheme is iterated testing its
robustness against spatial imperfections such as the presence of a field gradient.
Finally, we analyze the results obtained and discuss some possible future directions
for the project.

In chapter 6, we present the result derived from the project that analyses the
role of particle statistics in the presence of single-particle loss in the optical lattice.
First, we discuss the differences of hard-core bosons and spinless fermions that we
can formalize through a Jordan-Wigner transformation, highlighting the non-local
character of losses in the fermionic case. Then, we present a refined algorithm using
number-conserving codes, introduced in chapter 4, to compute the dynamics of the
system. We consider the differences arising from distinct particle statistics in the
presence of both deterministic and stochastic particle loss. Finally, we describe our
finding and link the results to the results of chapter 7 and to possible new directions
to investigate in the future.

In chapter 7, we discuss a second research project related to single particle-loss.
However, this time we focus on its role in many-body-localization. In particular,
we analyze the interplay between interaction, particle loss and dephasing in the
system and study relevant quantities such as the odd-even imbalance (relevant for
experiments) or the entanglement entropy. Finally, we link the results to some of
the findings in chapter 6 and propose interesting new directions.
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To conclude, in chapter 8, we briefly describe the main findings that are included in
this thesis and its relevance in the context of quantum many-body physics.

1.5 Publications during PhD

1. Evert P. L. van Nieuwenburg, Jorge Yago Malo, Andrew J. Daley, Mark H.
Fischer, Dynamics of many-body localization in the presence of particle loss,
Quantum Science and Technology 3 (1), 01LT02 (2017).

The author of this thesis performed the quantum-trajectory calculations in-
cluded in this publication. This is described in chapter 7.

2. Jorge Yago Malo, Evert P. L. van Nieuwenburg, Mark H. Fischer, Andrew
J. Daley, Particle statistics and lossy dynamics of ultracold atoms in optical
lattices, Physical Review A 97 (5), 053614 (2018).

The author of this thesis performed the calculations, produced the plots and
wrote most of the manuscript text for this publication. This is described in
chapter 6.

3. Jorge Yago Malo, Suzanne McEndoo, Ana M. Rey, Andrew J. Daley, Dissi-
pative preparation of spin-entangled states with ultracold fermions in optical
lattices, in preparation.

To be submitted to Physical Review Letters, 2018. This is described in chapter
5.
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University of Strathclyde, UK.

4. Numerical methods for Quantum Optics QUINFOG, January 2017, Madrid,
Spain

5. QuProCS III workshop, March 2018, Oxford, UK.



Chapter 2

Cold Atoms in Optical Lattices

2.1 Introduction

In this chapter we provide the fundamental description of cold atom system coupled
to laser fields that allows us to derive the many-body Hamiltonians, i.e. Hubbard
models, that we study throughout the results of this thesis.

In particular, in section 2.2 we discuss the atom-light interaction from a semiclassical
approach, introducing the important AC Stark shift; in section 2.3 we describe
inter-atomic interaction through scattering theory and how scattering properties can
be modified by external fields. Finally, in section 2.4 we use the previous models
to derive the many-body Hamiltonian for bosonic and fermionic atoms in an optical
lattice. Additionally, we introduce the Jordan-Wigner transformation, a mapping
between fermionic and spin operators of this model that we extensively use in this
thesis.

2.2 Atom-light interaction

In this section, we provide a brief overview of the atom-light interaction and how
this can be used to trap neutral atoms in periodic potentials formed by laser light,
so-called optical lattices. For a more detailed discussion, see [66, 67].

11
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We consider the coupling of the atom and the light field via the dipole-approximation
to describe the coupling Hamiltonian given by

Ĥ = −d(r, t) ·E(r, t) , (2.1)

with d the dipole moment of the atom and E is the electric field associated with the
laser light that we can express as

E(r, t) = [E0(r) p exp(−iωoptt) + c.c.] , (2.2)

where E0 contains the spatial dependence of the field, p is the polarization vector
and ωopt is the laser frequency. For a weak driving, the dipole moment acquires the
same frequency and can be written as

d(r, t) = [d0(r) exp(−iωoptt+ ϕ) + c.c.] , (2.3)

with ϕ a given phase.

Let us consider now the spectrum of the atomic Hamiltonian given by the set of
states {|n〉} with energies En. Our objective is to perturbatively compute the effects
of a weak field on the atomic ground state |0〉. The first term of our perturbation
theory expansion is given by

∆E(1)(r) = −〈0|d0(r) · E0(r) p|0〉 = 0 . (2.4)

This term vanishes due to the eigenstates parity. Therefore, we require to study the
second order terms

∆E(2)(r) = α(ωopt) |E0(r)|2 . (2.5)

where α(ωopt) is denoted as the dynamic polarizability and is given by

α(ωopt) =
∑
n=1
|〈0|d0(r) · p|n〉|2

(
1

E0 − En + ~ωopt
+ 1
E0 − En − ~ωopt

)
. (2.6)
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This second order term accounts for the interaction of the ground state with an
excited state together with the emission or the absorption of a photon of frequency
ωopt. From Eq.(2.5) we observe that the energy of the ground state is modified
according to the intensity of the laser field; this is known as the AC Stark shift and
will play a vital role in our ability to trap neutral atoms.

The most interesting scenario occurs when the laser frequency ωopt is in the vicinity
of an atomic transition between the ground state |0〉 ≡ |g〉 and an excited state
|n0〉 ≡ |e〉. Then, we can restrict our description to these two levels and define the
transition frequency from

~ωeg = Ee − Eg . (2.7)

From Eq.(2.6) we observe that for energies close to the transition, the second term
in the sum, with a much smaller denominator E0 − En − ~ωopt, will have a much
larger contribution. Then, we can write the polarizability as

α(ωopt) = 1
~∆ |〈g|d0(r) · p|e〉|2 . (2.8)

where ∆ = ωopt − ωeg is the laser detuning. We can also define the Rabi frequency
as

Ω0(r) = 2〈g|d0(r) · pE0(r)|e〉/~ . (2.9)

And, consequently,

∆E(2)(r) = ~ |Ω0(r)|2

4∆ . (2.10)

All in all, we can describe the energy shift of the ground state energy due to the
presence of the laser field by two parameters. Moreover, the energy change is
proportional to the intensity of the field (AC Stark Shift). Thus, a neutral atom
in the presence of the laser field experiences an optical potential

Vopt(r) ∝ I(r)
∆ . (2.11)
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This effect constitutes one of the foundations of the optical trapping and manipula-
tion of neutral atoms. Moreover, we observe that by changing the sign of the detuning
∆ we can change the behaviour of the atoms. For a blue-detuned laser (∆ > 0)
neutral atoms will be repelled by the intensity maxima, while for a red-detuned one
(∆ < 0) intensity maxima will attract the atoms.

Finally, if several laser beams are combined a wide variety of optical periodic poten-
tials can be created. In particular, using counter-propagating beams with identical
polarization and frequency we can create a standing wave potential given by

Vopt(x) = V0 sin2(kLx) (2.12)

with V0 the lattice depth, kL = 2π/λ the laser field wavenumber and λ the laser
wavelength. We can create higher dimensional lattices by intersecting beams in
the other orthogonal directions. Moreover, changing the alignment of the beams
and their polarization gives rise to interesting geometries in the periodic potentials,
substantially increasing the experimental possibilities.

2.3 Atom-atom interaction

In this section we provide the model to describe inter-atomic interaction in the cold
atom gas in an optical lattice. In particular, we will describe it through low-energy
scattering theory justified by the low temperatures of optical lattices experiments.
Moreover, we will consider a dilute gas so that we can restrict our treatment to
two-body interactions (this is discussed in section 2.4).

We can define the two-body scattering Hamiltonian in the relative center of mass as

Ĥscat = p2

2µ + V (r) , (2.13)

with µ = m/2 the relative mass for two atoms of mass m and V (r) the interaction
potential. The eigenstates of the Hamiltonian in the far-field (implying that r � b

with b the effective interaction range of the potential, see [68]) are given by
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φk(r) = eik·r + f(k,n) eikr/r , (2.14)

with the direction vector n = r/r and the scattering amplitude

f(k,n) = − µ

2π~2

∫
dr′ e−ik·r

′
V (r′)φk(r′) . (2.15)

The scattering amplitude can be subject to certain approximations that will lead to
its description by a single free parameter, the scattering length aS. First, if we assume
that we are in the low-energy regime, i.e. k � b−1, we can restrict the scattering
to s-wave and so our scattering amplitude becomes independent of the direction
n (spherical symmetry). The second approximation is to assume weak-interaction
(aS � k−1). If both conditions are met, we can approximate our scattering amplitude
as1

f(k,n) = − 1
(1/aS) + ik

. (2.16)

In the general many-body problem, using a second-quantized description, we can
describe the inter-particle interaction by a coupling constant depending only on aS,

g = 4π~2aS/m . (2.17)

More importantly, we can not only describe the interaction properties by a single
parameter but also tune it experimentally with great precision. In particular, the
scattering length can be modified by the use of Feshbach resonances. These reso-
nances occur by the coupling of atoms into bound molecular states which possess
substantially different scattering properties and these can be externally controlled
by, for example, a magnetic field [70, 71]. In particular, near the resonance we can
parametrize the scattering length as

aS(B) = aS,0

(
1− ∆B

B −Bres

)
, (2.18)

where aS,0 is the scattering length in the absence of the molecular coupling, Bres is
the resonant field value and ∆B is the resonance width.

1For a detailed derivation, see [68, 69].
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2.4 Cold atoms in optical lattices

Now that we have discussed how to model atom-light and inter-atomic interaction,
we have the necessary tools to characterize the behaviour of atoms trapped in optical
lattices. Describing these periodic potentials is vital since they constitute the main
platform for the trapping of atoms that we will model in all of the research chapters
included in this thesis (chapters 5, 6 and 7).

We can describe the many-body Hamiltonian of a cold fermionic or bosonic gas
experiencing the optical lattice potential with lattice constant a from a microscopic
second-quantized picture as

Ĥ =
∑
σ

∫
d3r Ψ̂†σ(r)

[
−~2∇2

2m + V (r)
]

Ψ̂σ(r) (2.19)

+g2
∑
σ,σ′

∫
d3r Ψ̂†σ(r)Ψ̂†σ′(r)Ψ̂σ′(r)Ψ̂σ(r) ,

with Ψ̂(†)
σ (r) the fermionic/bosonic annihilation (creation) field operator of a par-

ticle with spin σ. These operators obey the corresponding fermionic or bosonic
commutation rules. The first term in Eq.(2.19) describes the kinetic energy of atoms
with mass m and their interaction with the external potential V (r) = Vopt(r) +
Vext(r) that we can divide into the periodic 3D optical lattice potential Vopt(r) =∑
i=x,y,z V0,i sin2(kiLi) and some additional external fields Vext(r) (e.g., trapping field

in an experiment.). The second term in Eq.(2.19) accounts for the inter-particle
interaction with interaction constant g = 4π~2aS/m [68].

We can consider now the expansion of the field operator Ψ̂σ(r) in terms of the
Wannier functions [72, 73]

Ψ̂σ(r) =
∑
n,j,σ

w[n](x− xix)w[n](y − yiy)w[n](z − ziz)âj,σ , (2.20)

with w[n] the Wannier function associated to the n-th Bloch band and âj,σ is the
annihilation operator on site j with coordinates j ≡ (xjx , yjy , zjz), i.e. the location
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of the j-th lattice potential minimum. The Wannier functions form an orthonormal
basis that describe single-particle wavefunctions that are localized around a lattice
site. They are obtained as a transformation of the Bloch functions basis [74]

w[n](x− xjx) =
√
a

2π

∫ π/a

−π/a
dq φ[n]

q (x)e−iqxjx , (2.21)

and similarly for y and z directions. Here, φ[n]
q = eiqxu[n]

q (x) with u[n]
q (x) the Bloch

functions, which possess the same periodicity as Vopt(r), and q the quasi-momentum
in the first Brillouin zone (−π/a, π/a].

We can apply this transformation to Eq.(2.19) to obtain the general multi-band
Hamiltonian Ĥ

Ĥ = −
∑
i,j,σ
m,n

Jm,ni,j â
[m],†
iσ â

[n]
j,σ +

∑
i,j,k,l,σ,σ′
m,n,p,q

Um,n,p,q
i,j,k,l â

[m]†
i,σ â

[n]†
j,σ′ â

[p]
k,σ′ â

[q]
l,σ +

∑
i,σ
m,n

εm,ni â
[m],†
iσ â

[n]
i,σ ,

(2.22)
where the corresponding constants for tunneling, interaction and local offset are
respectively given by

Jm,ni,j =
∫
d3r w[m]∗(r − ri)

[
−~2∇2

2m + Vopt(r)
]
w[n](r − rj) , (2.23)

Um,n,p,q
i,j,k,l = g

2

∫
d3r w[m]∗(r − ri)w[n]∗(r − rj)w[p](r − rk)w[q](r − rl) , (2.24)

εm,ni =
∫
d3r w[m]∗(r − ri)Vext(r)w[n](r − ri) . (2.25)

This Hamiltonian contains a large number of terms, however, in practice there are
certain well-controlled approximations that will significantly simplify this Hamilto-
nian. On top of these approximations, we will focus on the case of one-dimensional
lattices as it is the case of the numerical studies throughout this thesis. Quasi-1D
systems can be experimentally realized by tightly confining the atoms along two
directions such that V0,y = V0,z = V0,⊥ � V0,x = V0.

Now, let us consider the first approximation which is to assume that atoms will
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only populate the lower Bloch band, this is true if all energy scales (temperature,
tunneling and onsite-interaction constants) are smaller than the energy associated to
the band separation given by the trapping frequency ~ωT . Then, we can restrict to a
one-dimensional single-band Hamiltonian described in terms of w[0](x). Furthermore,
we can consider that the lattice is deep enough so that the tunneling amplitude
is only relevant for nearest-neighbours and so that we can approximate any other
longer-range tunneling term to zero; similarly, for inter-atomic interactions where
only onsite interactions are not negligible. Finally, we consider that the temperature
is low enough so that inter-particle interaction are two-body2 and can be described
through low-energy s-wave scattering theory, as we discussed in section 2.3.

After taking this set of approximations we obtain

Ĥ = −J
∑
〈ij〉,σ

â†iσâj,σ + U
∑
i,σ

â†i,σâ
†
i,σ′ âi,σ′ âi,σ +

∑
i,σ

εi â
†
iσâi,σ , (2.26)

with 〈ij〉 denoting a sum over nearest-neighbours, J the tunneling amplitude, U
the onsite-interaction constant and εi the onsite energy offset (this term can also
correspond to the chemical potential). These constants are given by

J =
∫
dx w[0]∗(x)

[
−~2∇2

x

2m + Vopt(x)
]
w[0](x− a) , (2.27)

U = g

2

∫
dx

∣∣∣w[0](x)
∣∣∣4 , (2.28)

εi =
∫
dx Vext(x)

∣∣∣w[0](x− xix)
∣∣∣2 . (2.29)

The Hamiltonian we just derived corresponds to the Hubbard model which describes
the dynamics of a dilute ultracold gas in the lowest band of an optical lattice.
This Hamiltonian is the object of study of numerous theoretical and experimental
efforts in the last decades. One of the main reasons is the extreme tunability of this
Hamiltonian. For example, increasing the lattice depth V0 will decrease the tunneling
amplitude to neighbouring sides and also modify the onsite interaction; similarly we
can modify the scattering length aS through Feshbach resonances (as we explained in

2This requires the cold gas to be dilute, i.e. ρr3
aa � 1 as we indicate later on in this section.
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section 2.3) leading to a change in U ; in addition, the application of external fields can
modify the values of εi arbitrarily (using digital-micromirror-devices, see [25]). Note
that in typical experiments, the lattices are usually subject to a certain harmonic
local offset εi 6= 0 dependent on the experimental laser beam waist. This can be
avoided by restricting the dynamics to the central region of the lattice potential.

Let us now summarize and justify the approximations that we used to derive the
single-band Hubbard model:

1. The system energy scales are lower than the inter-band separation, meaning
that ~ωT � J, U, kBT and justifying a single band model. This condition is
fulfilled when the trapping potential V0 is greater than several recoil energies
ER = ~2k2/2m. For example, for V0 = 10ER and optical wavelengths for
the trapping we obtain that the band separation is ωT ∼ 100 kHz while the
tunneling J ∼ 100Hz and the onsite interaction U ∼ 1 kHz.

2. The gas is dilute enough so that we can restrict to two-body interactions,
implying that ρr3

aa � 1 with ρ = N/V being the atomic density in the trapped
volume V and raa the range of the atom-atom interaction. In this scenario
two-body collisions are unlikely enough so that three or more particle events
can be neglected.

3. The temperature of the system is required to be low enough so that we can
describe the two-body interactions via low-energy s-wave scattering theory. In
this case, the range of the atomic interaction raa is much smaller than their
thermal wavelength λdB = 2π~/p with the momentum p ∝

√
mkBT . As a

result, the scattering properties are characterized by a single parameter, the
scattering length aS, independently of the energy of the particles. Hence, we
can rewrite condition 2. as ρa3

S � 1.

4. The lattice is deep enough so that long-range tunneling or inter-site interactions
can be neglected. To justify this condition one should evaluate equations
(2.23) and (2.24). If we consider again the case of V0 = 10ER, then Ji,i+3 ∼
0.01Ji,i+2 ∼ 0.01Ji,i+1 and with a similar decrease for the inter-site interac-
tions.
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2.4.1 Hubbard model

Throughout this thesis we will consider both the bosonic and fermionic cases of
the Hubbard model and in some cases exploit their differences (see chapter 6).
Hence, it is relevant to discuss the main features of the Hubbard (fermionic) and
the Bose-Hubbard (bosonic) model.

The Hubbard model was originally derived in the context of fermionic particles,
as it was the case of strongly correlated electrons [75]. This model can be directly
applied to fermionic atoms in optical lattices, where we typically consider a two-spin-
component mixture of fermionic atoms, i.e. σ ∈ {↑, ↓}, in the lowest Bloch band of
a lattice of length M

Ĥ = −J
∑
〈ij〉,σ

â†i,σâj,σ + U
M∑
i

n̂i,↑n̂i,↓ +
M∑
i,σ

εi n̂i,σ . (2.30)

Here, the operator â(†)
iσ creates (annihilates) a particle with spin σ in site i and

n̂i,σ = â†iσâiσ is the number operator of spin σ in site i. These operators follow the
canonical fermionic commutation rules {âi,σ, â†j,σ′} = δi,jδσ,σ′ . Given the fermionic
nature of the model, the site occupation for each spin species can only be 0 or 1. As a
result, the filling factor plays an important factor in the ground state properties of the
model: metallic for average lattice occupations n = N/M < 1 and a band insulator
for n = 1. Even though the model can be analytically solved using the Bethe Ansatz
[76] in 1D, we lack a proper analytical or numerical approach in higher dimensions
to resolve the full phase diagram of the model. Even in 1D, the problem becomes
numerically challenging due to the rapid growth of the Hilbert space. For example,
in a lattice of length M with N↑ and N↓ atoms with spin ↑ and ↓ respectively, the
dimension is given by

dim(H) = (M !)2

N↑! (M −N↑)!N↓! (M −N↓)!
. (2.31)

Nevertheless, there are certain well-studied regimes in the phase diagram of the
Hubbard model [77]. For attractive interactions we observe a BCS-BEC crossover
as the interaction increases [78, 79, 80]. On the other hand, in the case of repulsive
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interaction we observe antiferromagnetic ordering at low temperatures [81, 82].

In this thesis, we discuss several examples of fermionic systems including a multiple
Bloch band description (chapter 5), fermionic systems subject to disorder (chapter 7)
and, in general, open fermionic systems (chapters 5-7). In many of these instances,
the anticommutation of fermionic operators will play an important role, e.g. giving
non-local properties to single-particle loss (chapters 6-7). In the following section we
formalize this anticommutation through the Jordan-Wigner (J-W) transformation.

2.4.1.1 Jordan-Wigner transformation

In this section, we apply the J-W transformation [83] to the Hubbard model as a
means to systematically account for all the signs arising from the fermionic anti-
commutation. This transformation will be used explicitly in chapters 6 and 7 to
describe single-particle loss. The J-W transformation is a well-established technique
that allows for the mapping of fermionic systems into spin operators or vice-versa.
Please note that here we define the transformation restricting to 1D.

In order to define this transformation we need to choose an order convention for
our state description, we select the lattice ordering

â†1,↑â
†
2,↑...â

†
M,↑â

†
1,↓â

†
2,↓...â

†
M,↓ |vac〉 (2.32)

with |vac〉 the vacuum state. From this choice, the transformation is defined as

â
(†)
l,σ = exp

∓iπ∑
j<l

ŝ+
j,σŝj,σ

 ŝ
−(+)
l,σ ; ŝ

−(+)
l,σ = exp

±iπ∑
j<l

â†j,σâj,σ

 â
(†)
l,σ , (2.33)

and, consequently a string operator is associated with every spin operator

â
(†)
l,σ → (−1)θl ŝ−(+)

l,σ , (2.34)

where we define the phase factor as θl = ∑
i<l ŝ

+
a,j ŝa,j = ∑

i<l n̂i,σ. The spin op-
erators obey the fermionic commutation relation for a given site and the bosonic
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commutation rules for different sites:{
ŝ−(+)
α,σ , ŝ−(+)

α,σ

}
= 0;

{
ŝα,σ, ŝ

+
α,σ

}
= 1;

[
ŝ−(+)
α,σ , ŝ

−(+)
β,σ

]
= 0;

[
ŝα,σ, ŝ

+
β,σ

]
= 1.

(2.35)

We can apply the transformation to Eq.(2.30) to obtain

Ĥ = −J
∑
〈ij〉,σ

ŝ+
i,σŝj,σ + U

M∑
i

ŝ+
i,↑ŝ

+
i,↓ŝi,↓ŝi,↑ +

M∑
i,σ

εi ŝ
+
i,σŝi,σ . (2.36)

We observe that crucially all phases vanish for the single-band Hubbard model in 1D.
For the onsite-interaction and onsite-energy terms this can be immediately under-
stood as they are quadratic in âiσ, â†i,σ and so they are proportional to (−1)2θi = 1.
For the tunneling terms, all phases disappear if only first neighbours are included, for
example, we can consider â†i,σâi+1,σ = (−1)θi ŝ+

i,σ(−1)θi+1
ŝi+1,σ = ŝ+

i,σ (−1)n̂i,σ ŝi+1,σ =
ŝ+
i,σŝi+1,σ since Pauli exclusion principle requires n̂i,σ = 0 for this tunneling element
to be non-zero (

(
â†i,σ

)2
≡ 0).

However, more generic terms, such as, the case of single-particle loss given by
âi,σ = (−1)

∑
i<l

n̂i,σ ŝi,σ, do have a non-vanishing string operator associated to them.
Other relevant examples are long-range tunneling (where the sign depends on the
occupation in the intermediate sites), inter-band tunneling processes or particle injec-
tion terms. In the presence of this type of terms, the use of the J-W transformation
allows for the systematic bookkeeping of all the corresponding signs and simplifies
notably our calculations. Moreover, this representation will simplify in great degree
the use of symmetry-preserving numerical techniques in section 4.1.6 that we then
apply to the calculations in chapters 6 and 7.
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2.4.2 Bose-Hubbard model

A single-species ultracold bosonic gas trapped in an optical lattice can be described
through the Bose-Hubbard Hamiltonian

Ĥ = −J
∑
〈ij〉

b̂†i b̂j + U
M∑
i

n̂i (n̂i − 1)− µ
M∑
i

n̂i . (2.37)

Here, the operator b̂(†)
i creates (annihilates) a bosonic particle in site i and n̂i =

b̂†i b̂i is the number operator in site i. These operators follow the canonical bosonic
commutation rules

[
b̂i, b̂

†
j

]
= δi,j. In this model the addition of εi = µ (∀i), with µ

the chemical potential, guarantees a well-defined fixed particle number in the system.
Similarly, to the Hubbard model, the dimension of the Hilbert Space grows rapidly.
In particular, in a lattice of length M with N atoms

dim(H) = (N +M − 1!)
N !(M − 1)! . (2.38)

Moreover, as cooling techniques of bosonic atoms in optical lattices have proven to
be less demanding experimentally, the implementation of the Bose-Hubbard model,
and the observation of its quantum phase transition [19] from a Mott insulator (MI)
into a superfluid (SF) phase, set one of the first milestones in the field of quantum
simulation with cold atomic gases [7]. These two phases, which are the ground states
of the Bose-Hubbard model for different regimes of the ratio U/J , have substantially
different properties.

On the one hand, in the case of U/J → 0 bosonic atoms are delocalized along
the lattice minimizing their kinetic energy. In this case, the atoms are in the
superfluid phase and the spectrum becomes gapless. Moreover, in 1D, off-diagonal
single particle density matrices 〈b̂ib̂i+l〉 decay polynomially with the lattice distance
l. The SF state is given by

|ψSF〉 ∝
(

1
M

M∑
i=1

b̂†i

)N
|vac〉 (U/J → 0) . (2.39)
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In the limit of M,N →∞, with N/M fixed, the state exhibits Poisson statistics and
approaches a coherent state

|ψSF〉 ∝
M∏
i=1

exp
√N

M
b̂†i

N |vac〉 . (2.40)

On the other hand, in the limit of J/U → 0 on-site interactions reduce the probability
of tunneling events. In the commensurate filling regime (N = M), the most energet-
ically favourable occupation for every lattice site is the average filling n = N/M and
all particles become exponentially localized. The spectrum of the system exhibits
a finite gap ∆ = U . In the MI phase single-particle density matrix elements decay
exponentially with the lattice distance. The MI state is given by

|ψMI〉 =
M∏
i=1

(
b̂†i
)n
|vac〉 . (2.41)

There has been an extensive theoretical effort over the last decades to characterize
this phase transition beyond the two limits we just discussed. The difficulty of it
arises from the fact that the problem cannot be solved analytically beyond the case
of an integer average filling factor n via mean-field theory [84]. For 1D, the critical
point has been numerically predicted (U/J)C ≈ 3.3 via DMRG techniques [85], we
will discuss this technique in chapter 4.



Chapter 3

Dynamics in closed and open
quantum systems

3.1 Introduction

In this chapter we will briefly describe the main numerical techniques to compute the
dynamics of quantum many-body systems considering the complete Hilbert Space.
Due to the exponential growth of the Hilbert Space dimension with the system size,
all the methods presented have a limited applicability regarding the system sizes we
can describe with them. However, they will connect with the approximate techniques
that we will describe in chapter 4 to describe bigger systems.

In section 3.2 we first analyze the problem of computing the dynamics of quantum
systems that are isolated and describe several approaches to compute the evolution
operator; while in section 3.3 we adapt the formalism to tackle systems that are
subject to dissipative processes due to their coupling to their environment. In this
section we derive a master equation for the system density operator.

25
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3.2 Closed quantum systems: exact diagonalisa-
tion

First, let us describe the basics of the problem to introduce the notation that we
follow. In the study of dynamics of closed quantum systems the problem reduces to
the computation of the evolution of a state described by the Schrödinger equation,

d|ψ〉/dt = −i~Ĥ(t)|ψ〉 , (3.1)

with Ĥ(t) the time-dependent Hamiltonian of the system and |ψ〉 the state of the
system. In the case of a time-independent Hamiltonian Ĥ(t) ≡ Ĥ, the state vector
|ψ(t)〉 is given by

|ψ(t)〉 = Û(t)|ψ(0)〉 = e−iĤt|ψ(0)〉 , (3.2)

where Û(t) is the evolution operator. Now, we can express any state in the eigenbasis
of Ĥ,{|λ〉}, as

|ψ(0)〉 =
∑
λ

α 0,λ|λ〉 , (3.3)

with α 0,λ = 〈λ|ψ(0)〉 and Ĥ|λ〉 = Eλ|λ〉. Hence,

Û(t) = e−iĤt =
∑
λ

e−iEλt|λ〉〈λ| . (3.4)

so that, substituting in (3.2),

|ψ(t)〉 = Û(t)|ψ(0)〉 =
∑
λ

e−iEλt|λ〉〈λ|ψ(0)〉 =
∑
λ

e−iEλtα 0,λ|λ〉 . (3.5)

As a result, the computation of the evolution turns into an eigenvalue problem of
the form

Ĥ|λ〉 = Eλ|λ〉 . (3.6)

Due to the exponential growth of the Hilbert Space, this task will quickly become
numerically unaffordable as the size Ĥ explodes.
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Note, that even if we are interested in static properties, such as ground state prop-
erties, we will in general still require to diagonalize the Hamiltonian: either to find
the spectrum minimum or to use imaginary-time evolution (see section 4.3.1 where
we apply this technique in the context of matrix product states).

3.2.1 Numerical tools for exact diagonalisation

In general, the main strategies to overcome the diagonalization task rely on a certain
form of time discretization of the evolution or exponentiation of Ĥ; this implies that
the evolution of the state gains a stroboscopic character where approximate forms
of the evolution operator are applied in intervals of length ∆t. Within this approach
we can consider two different ways to tackle the problem, namely explicit or implicit
methods. The former is the simplest of them and relies on the explicit computation
of the state after a timestep |ψ(t+ ∆t)〉 from the known state vector |ψ(t)〉 at time
t:

|ψ(t+ ∆t)〉 =
(
I − iĤ∆t

)
|ψ(t)〉+O(∆t2) . (3.7)

However, this, so-called Euler method [86] is not the most stable due to the large
timestep error and the fact that the evolution operator applied is not unitary.
Consequently, we require the state to be renormalized in every step. We can refine
this technique by combining it with implicit algorithms using the Crank-Nicholson
method [86]:

|ψ(t+ ∆t)〉 =

(
I − iĤ∆t/2

)
(
1 + iĤ∆t/2

) |ψ(t)〉+O(∆t2) . (3.8)

This expression, which is norm-preserving, arises from a subdivision of the evolution
into an intermediate step with:


|ψ(t+ ∆t/2)〉 =

(
I − iĤ∆t/2

)
|ψ(t)〉+O(∆t2),

|ψ(t+ ∆t/2)〉 =
(
I + iĤ∆t/2

)
|ψ(t+ ∆t)〉+O(∆t2),

(3.9)
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where we have computed the intermediate state vector |ψ(t+ ∆t/2)〉 from a forward
and backward time evolution. It might seem that for this method to be practical
we require to know in advance the evolved state |ψ(t + ∆t)〉. However, we can
iteratively solve the first part of Eq.(3.9) for the intermediate step and then consider
that |ψ(t+ ∆t/2)〉 = (|ψ(t)〉+ |ψ(t+ ∆t)〉) /2 to obtain the evolved state as:

|ψ(t+ ∆t)〉 = 2|ψ(t+ ∆t/2)〉 − |ψ(t)〉+O(∆t2) . (3.10)

This method has a better robustness and scaling with the timestep truncation than
the Euler method.

Furthermore, there are numerous generalizations of these methods to higher orders.
A relevant example is the popular 4th-order Runge-Kutta method [86]. Moreover,
there are two particular examples that it is worth mentioning as they have both been
an essential part in the diagonalisation routines used to produce the results of this
thesis, namely Krylov subspaces and Trotter expansions.

1. Krylov subspace expansion: the first of the methods relies on a decomposition of
the time evolution consisting on a Taylor expansion of the evolution operator.
Given the evolution operator, we can expand it as

Û(t) = e−iĤt = I +
(
−iĤt

)
+

(
−iĤt

)2

2! + ... , (3.11)

and so,

|ψ(t)〉 = Û(t)|ψ(0)〉 = |ψ(0)〉+
(
−iĤt

)
|ψ(0)〉+

(
−iĤt

)2

2! |ψ(0)〉+ ... (3.12)

Thus, for a expansion of k-th order our evolved state can be spanned by a basis
of so-called Krylov subspace given by {|ψ〉, Ĥt|ψ〉, ...,

(
Ĥt
)k
|ψ〉}:

|ψ(t)〉 = |ψ(0)〉+a1
(
Ĥt
)
|ψ(0)〉+a2

(
Ĥt
)2
|ψ(0)〉+...+ak

(
Ĥt
)k
|ψ(0)〉+O(tk+1) .

(3.13)
This method is based on the idea that the Taylor coefficient may not be the
best set of {ak} to represent the evolved state. Thus, this method search for
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the optimal linear combination in the Krylov subspace to represent |ψ(t)〉.
Efficient implementations of this method rely on a representation of the sub-
space elements on an orthonormal basis (see discussion on Arnoldi and Lanczos
processes in [87]). Typically for sparse matrices, Krylov methods require
k values much smaller that the dimension of H where |ψ(t)〉 and U(t) are
represented.

In addition, this technique constitutes the essential ingredient for the standard
routines used in MATLAB for matrix diagonalisation and the computation of
time evolution (extensive details can be found in [88]). This plays a vital role
in the calculations for small systems in chapters 5, 6 and 7.

2. Suzuki-Trotter decomposition: the second method we mentioned is the Suzuki-
Trotter decomposition1. The main idea of the algorithm is to decompose the
evolution operator into local operators that describe the Hamiltonian acting on
a reduced number of sites. This comes as a natural step when we consider short-
ranged (i.e. first-neighbour tunneling or interactions) Hamiltonians although
it can be generalized to long-ranged ones. As a result, we can express the
evolution operator as a product of local terms of the form:

Û(∆t) = e−iĤ∆t =
M−1∏
j

e−iĤj,j+1∆t +O(∆t2) . (3.14)

where Ĥj,j+1 is composed by the terms of the total Hamiltonian that act on
sites j and j+ 1. By applying this decomposition we no longer require to store
or manipulate a Hamiltonian of the size of the whole Hilbert Space but much
smaller operators Ĥj,j+1. As a result, we gain access to computing system sizes
of which we can no longer store the whole Hamiltonian.

Something relevant to consider is that in general the terms Ĥj,j+1 do not
commute with each other and so refined versions of this method account for
the error associated with the commutation of these operators. For example,

1For a longer discussion see section 4.3 where we apply it in the context of tensor networks and
we describe in greater detail the practical implementation.
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a relevant case is the 4th-order decomposition (see [89]). As this technique
will be used throughout this thesis in the context of tensor networks, a longer
discussion about the practical implementation and usefulness of the method
together with higher order expansions is provided in section 4.3.

Finally, another important point when considering the diagonalisation of Ĥ is the
possibility of exploiting certain system symmetries (we will also discuss this advan-
tage in section 4.1.6). In many of the systems we study we have certain conservation
laws, for example, when we study the Hubbard model for two Bloch bands in section
5.3. For that specific system, we know that the particle number is preserved since[
Ĥ, N̂

]
= 0, with N̂ = ∑M

k n̂k the total particle number operator. Then, we can
restrict our total Hilbert Space to the sector corresponding to the initial particle
number N0, avoiding to compute the Hamiltonian for all the particle number sectors.

In general, the main idea is to find these conserved quantities that allow for the
construction of Hamiltonians in restricted spaces or Hamiltonians in the global
Hilbert space that become block-diagonal. In all these cases, the problem reduces
to the diagonalisation of the individual blocks instead of the larger Hamiltonian
providing a relevant speed-up and allowing to access bigger systems.

So far, we have focus on the evolution of a system that is isolated from its environ-
ment. However, in all physical scenarios the system will experience some external
coupling with the environment. In the following section, we discuss how our ability
to describe the system is modified in those cases.

3.3 Open quantum systems

An important consideration that we did not mention in chapter 2 when describing
the quantum-many body problem is that in general all the systems that we study
are open systems. Even in the case of cold atoms were experimental conditions
guarantee them to be better isolated than many other quantum many-body systems
(low temperatures, ultra-high vacuum, etc.), the coupling to the environment can
play an important role in the system.
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Figure 3.1: (Left) Open system diagram, the system couples to different modes ω
of the environment with a coupling γ(ω); (right) depiction of the relevant frequency
scales in the open system problem for the example of a two-level atom coupling to
a radiation field. The system-environment coupling constant Γ ≡ γ2(ωsys) must be
much smaller than the dominant frequency ωsys given by the energy separation ∆E
of the two-levels |e〉 and |g〉 with ∆E = ~ωsys, i.e. Γ� ωsys. Moreover, if the system
is subject to an external coherent driving characterized by the coupling strength Ω0
of the Rabi oscillations and detuning ∆ = ωsys−ω to the resonant coupling, both of
these quantities are also required to satisfy Ω0,∆� ωsys.

As a result, throughout this thesis we require tools to describe the dynamics of
systems weakly coupled to their environment as depicted in Fig.3.1. In this section,
we will discuss the main approximations that allow for a Master Equation description
of the quantum systems based on the separation of timescales between system and
environment. With this derivation we will be able to not only tackle the dynamics of
the system but also analyze how this coupling to an external bath can be exploited,
for example, for the robust preparation of interesting states in the system2.

3.3.1 Deriving the Master Equation

When describing the dynamics of the system plus its environment there are several
important points to consider. First, the system is generally much smaller than
its environment as for a thermal bath in Thermodynamics. Despite the fact that
our closed system can be quite complex (with an exponential growth of its Hilbert
Space), we always consider a bath composed of a much greater number of degrees

2For a relevant example, see chapter 5.
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of freedom. This is clear in most examples in the context of Quantum Optics or
Quantum Many-Body Physics, including a background radiation field or a reservoir
gas for sympathetic cooling.

When we consider the global system (system and bath) we can decompose its
Hamiltonian into different contributions:

Ĥtot = Ĥsys + Ĥenv + Ĥint , (3.15)

where Ĥsys describes the Hamiltonian of the system, Ĥenv describes the Hamiltonian
corresponding to the environment degrees of freedom and finally Ĥint is associated
with the (weak) coupling between both system and bath. As an example, we can
consider the system as a two-level system composed of a ground state |g〉 and an
excited state |e〉 that will couple to the bath. Therefore, its Hamiltonian can be
described as Ĥsys = ωsysa

†
sysasys where ωsys is the frequency related to the separation

of the two system levels with ∆E = ~ωsys and asys = |g〉〈e|. In principle, the
system can be subject to some external driving whose coupling constants are the
associated Rabi frequency Ω0 and the detuning ∆. Moreover, the reservoirs that
we consider are typically composed by bosonic modes whose Hamiltonian is given
by Ĥenv =

∫
dω ω b†(ω)b(ω) with the bosonic operators satisfying the standard

commutation rules
[
b(ω), b†(ω′)

]
= δ(ω − ω′). Finally, the coupling between system

and environment is described by terms of the form:

Ĥint ∝ γ(ω)
(
a†sysb(ω) + b†(ω)asys + b(ω)asys + b†(ω)a†sys

)
, (3.16)

with γ(ω) the system-environment (S-E) coupling constant that, in principle, has a
certain frequency dependence.

The aim is to compute the dynamics of the system in the presence of the environment.
We can describe the system through the reduced density operator ρsys = Trenv(ρtot)
that we obtain by tracing out the environment degrees of freedom from the density
operator ρtot describing the global system. In the following, we outline the main
steps and key approximations to derive the evolution of ρsys via a Master Equation
(for a complete derivation see [43, 44]).
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We know that the equation of motion of the global system in the Schrödinger picture
will be given by (~ ≡ 1):

ρ̇tot = −i
[
Ĥsys + Ĥenv + Ĥint, ρtot

]
. (3.17)

From this expression we can move into the interaction picture, where:

ρ̃tot(t) = ei(Ĥsys+Ĥenv)tρtot(t) e−i(Ĥsys+Ĥenv)t , (3.18)

and
Ĥint(t) = ei(Ĥsys+Ĥenv)tĤint e

−i(Ĥsys+Ĥenv)t , (3.19)

to obtain the following expression:

˙̃ρtot = −i
[
Ĥint(t), ρ̃tot(t)

]
. (3.20)

Now, we can differentiate and integrate again Eq.(3.20) to obtain the integro-differential
equation:

˙̃ρtot = −i
[
Ĥint(t), ρ̃tot(0)

]
−
∫ t

0
dt′
[
Ĥint(t),

[
Ĥint(t′), ρ̃tot(t′)

]]
. (3.21)

Then, if we trace over the bath degrees of freedom in Eq.(3.21) we obtain:

˙̃ρtot = −
∫ t

0
dt′Trenv

([
Ĥint(t),

[
Ĥint(t′), ρ̃tot(t′)

]])
, (3.22)

where we used that Trenv
(
Ĥint(t)ρ̃tot(0)

)
= 0. In general, we can satisfy this by

simply adding any diagonal term of Ĥint to Ĥsys when considering the diagonal basis
of Ĥenv.

So far, the derivation has been exact. However, in order to derive a master equation
from Eq.(3.22) we need to introduce the two key approximations namely the Born
and Markov approximations. These are described below:

1. Born Approximation: this first approximation assumes that the dynamics
induced by the S-E coupling are small compared to the system or environment
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ones. This implies that we can factorize our density operator as:

ρ̃tot(t) ≈ ρsys(t)⊗ ρenv . (3.23)

In other words, we consider that the S-E induced dynamics can be considered
irrelevant for the environment while they can still be relevant for the system.
Thus, the bath is assumed to be static. We can insert Eq.(3.23) this into
Eq.(3.21) to obtain.

˙̃ρtot = −
∫ t

0
dt′Trenv

([
Ĥint(t),

[
Ĥint(t′), ρsys(t′)⊗ ρenv

]])
, (3.24)

2. Markov Approximation: this approximation has two implications. First, it as-
sumes a constant S-E coupling (not frequency dependent over short timescales),
that we implicitly used when defining Γ. Secondly, it implies that the dynamics
of the system do not depend on its own previous history.

Indeed, if we consider the bath correlation functions given by 〈b†(t)b(0)〉 → 0
for times of the order of t = τenv. Typical decay times of the correlations τenv3,
for example, thermal correlations, will be much smaller than the rate of change
of ρ̃tot(t′) which is given by t ∼ Γ−1 (see [43, 91]). That is to say,

τenv � Γ−1 . (3.25)

As a result, we can substitute ρ̃tot(t′) by ρ̃tot(t) and since the S-E coupling is
weak we consider that t→∞.

From these approximations, we can derive a general form of the master equation
given by:

˙̃ρtot = −
∫ ∞

0
dτ Trenv

([
Ĥint(t),

[
Ĥint(t− τ), ρsys(t)⊗ ρenv

]])
, (3.26)

This equation, often referred as Redfield equation [43], does not guarantee a positive
map for the density operator. For that condition to be fulfilled we require another
approximation, namely the rotating-wave approximation [43, 92], that neglects the

3Values of τenv are related to the inverse of the spectral width of the bath, see [90].
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fast rotating terms of Ĥint (in particular b(ω)asys and b†(ω)a†sys). This approximation
requires that Ω0,∆� ωsys.

Since in typical cold atom systems τenv . ω−1
sys [43, 90], it is quite common in the

literature (see for example [92]) to discuss the existence of a dominant frequency in
the total system or, in other words, the existence of a hierarchy of timescales given
by:

Γ,Ω0,∆� ωsys , (3.27)

which ensures the correctness of the Born, Markov and rotating-wave approxima-
tions; consequently, making it possible to derive the equation of motion for the
density operator describing the system in the presence of dissipation induced by its
environment.

We could stop this derivation here but it is important to consider a particular form of
the master equation that is the one we utilize throughout the numerical calculations
of this thesis. This is the case of the Lindblad form of the master equation (for a
complete derivation see [93, 94]). This form defines the Lindbladian L as a map to the
evolution of ρsys that preserve the density operator properties (i.e. trace, hermiticity
and positivity), treating the master equation as a quantum Markov process. The
Lindblad master equation is given by4:

ρ̇ = Lρ = −i
[
Ĥsys, ρ

]
+
∑
i

Γ
2
(
2L̂iρL̂†i −

{
L̂†i L̂i, ρ

})
, (3.28)

where the operators L̂i describe the i-th dissipation channel acting on the system
after tracing out the environment degrees of freedom. This equation is equivalent to
Eq.(3.26) after applying the rotating-wave approximation.

It is useful to provide some example of the type of operators that we consider
throughout the different chapters of this thesis. As we consider atoms in optical
lattices and the dissipation processes are usually local it is quite natural to associate

4To simplify the notation we use ρsys ≡ ρ
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the index i with the i-th site of the lattice, however, in many occasions different
dissipation processes are present in our models or these terms affect several sites.
Then, in those cases the index will only have an ordering purpose. Typical examples
of L̂i that we encounter range from completely local operators related to dephasing
L̂i = a†sys,iasys,i or single-particle loss L̂i = asys,i (chapters 6 and 7) to more general
terms that involve a set of sites L̂i = b†sys,i+la

†
sys,ibsys,iasys,i with l a given distance in

the lattice (chapter 5).

The master equation in Eq.(3.28) allows us to compute the evolution of the reduced
density operator describing the system in a simple way. However, the exponential
growth of the Hilbert Space causes the computation of open system dynamics to
face serious bottlenecks as the system size grows since our reduced density operator
ρ has a matrix representation of dimension dim(H) × dim(H). One of the possible
solutions to overcome this limitation is to consider the Markov process character of
this equation and map the evolution into some form of stochastic evolution that after
averaging recovers the same map. This is the topic of the following section.

3.3.2 Quantum trajectories:
Monte Carlo wave-function method

The notion of quantum trajectories was introduced by several independent groups
studying a variety of Quantum Optics systems [45, 46, 47, 48], resulting in similar
implementations of the same principle: a pure state sampling of the master equation
(see reviews [92, 95]). The idea behind quantum trajectories is to overcome the
obstacle of computing the evolution of ρ by evolving stochastically pure states that
we can sample from the initial ρ(0). In every instance a state |φ〉 ∈ H evolves under
a non-Hermitian Hamiltonian and undergoes certain quantum jumps. Thus, every
trajectory is numerically much less costly at the price of requiring certain sampling.
It is clear that if the required sampling is smaller that the dimension of H we obtain
in principle an advantage by using quantum trajectories.

In order to provide a clear picture of how this works, let us now specify how the
pure state evolution is calculated in a simple (first order) example. First, is it useful
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to look at the form of Eq.(3.28) where we can absorb the commutator with the
dissipation into our Hamiltonian to obtain:

ρ̇ = Lρ = −i
[
Ĥeff, ρ

]
+
∑
i

Γ
(
L̂iρL̂

†
i

)
, (3.29)

where the effective Hamiltonian Ĥeff is given by:

Ĥeff = Ĥ0 −
iΓ
2
∑
j

L̂†jL̂j . (3.30)

As a result, if we interpret Eq.(3.29) we can consider that the system evolves under
a non-Hermitian Hamiltonian Ĥeff and at certain times undergoes quantum jumps
described by the operators L̂i. From this interpretation we can deduce the specifics
of the implementation of the quantum trajectory method.

Firstly, suppose that we know the wavefunction that describes the system at time t,
|φ(t)〉. Then, we will calculate the “tentative” state at time t+ δt as (first order):

∣∣∣φ(1)(t+ δt)
〉

= (I − iĤeff δt) |φ(t)〉 . (3.31)

Simply by evolving under the effective Hamiltonian. As the system is evolving non-
unitarily, the norm of the wavefunction will decrease:

〈
φ(1)(t+ δt)

∣∣∣φ(1)(t+ δt)
〉

= 1− δp , (3.32)

where δp = 〈φ(t)| iδt(Ĥeff−Ĥ†eff)+O(δt2) |φ(t)〉 = Γδt∑j 〈φ(t)| L̂†jL̂j |φ(t)〉 = ∑
j δpj .

Based on the change on the norm of the wavefunction, we can make the evolved
state selection. We will choose:

• With probability 1− δp: the propagated state is just the normalized version of
the “tentative” state:

|φ(t+ δt)〉 =

∣∣∣φ(1)(t+ δt)
〉

√
1− δp . (3.33)
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• With probability δp: the system will perform a quantum jump:

|φ(t+ δt)〉 =
√

ΓL̂j |φ(t)〉√
δpj/δt

. (3.34)

The j-th dissipative channel is chosen taking into account the weight of each
δpj in δp:

Πj = δpj/δp =
Γδt 〈φ(t)| L̂†jL̂j |φ(t)〉

δp
. (3.35)

Simply by iterating this method over time, and then, treating it as a stochastic
propagation that should be averaged over trajectories we can calculate the time
evolution of the system. What is now left to show is how this recovers the evolution
given by the master equation.

Recovering the master equation

As we previously pointed out, we are going to relate this trajectory time evolution
with the one provided in Eq.(3.28). Firstly, let us define the density operator from
our initial pure state:

σ(t) = |φ(t)〉 〈φ(t)| . (3.36)

Then, in a single time step, the trajectory averaged propagation of the density
operator will be given by:

σ(t+ δt) = (1− δp)

∣∣∣φ(1)(t+ δt)
〉

√
1− δp

〈
φ(1)(t+ δt)

∣∣∣
√

1− δp + δpΓ
∑
j

Πj

L̂j |φ(t)〉 〈φ(t)| L̂†j
δpj/δt

,

(3.37)
simply by choosing the evolved state or the jump instance with the corresponding
probability. In first order, we can write

∣∣∣φ(1)(t+ δt)
〉

= (I − iĤeffδt) |φ(t)〉 and
substitute in Eq.(3.37):

σ(t+ δt) = |φ(t)〉 〈φ(t)| − iδt
(
Ĥeff |φ(t)〉 〈φ(t)| − |φ(t)〉 〈φ(t)| Ĥ†eff

)

+Γδt∑j L̂j |φ(t)〉 〈φ(t)| L̂†j +O(δt2) .
(3.38)
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Thus, if we neglect second order terms in δt we obtain:

σ(t+ δt) = σ(t)− iδt(Ĥeffσ(t)− σ(t)Ĥ†eff) + Γδt
∑
j

L̂jσ(t)L̂†j . (3.39)

That we can rewrite as:

σ(t+ δt)− σ(t)
δt

= −i(Ĥeffσ(t)− σ(t)Ĥ†eff) + Γ
∑
j

L̂jσ(t)L̂†j . (3.40)

The expression in Eq.(3.40) is equivalent to the master equation evolution (Eq.(3.28))
in a single step. Thus, we can interpret the master equation as a weighted stochastic
average over all possible jumps at all possible times.

Now, that we have proposed a method to overcome the problem of computing the
evolution in the squared Hilbert Space, it is important to note that these techniques
can be applied not only to the exact methods for time evolution presented in section
3.2 but also are applicable to the approximate methods that we discuss in chapter 4,
related to matrix product states, where we can combine both methods to compute
open system dynamics of larger systems.

3.4 Reservoir engineering and dark-state prepa-
ration

An immediate application of open many-body systems arises from a parallelism with
a well-established technique in the closed system scenario. This technique, usually
denoted as Hamiltonian engineering, is based on the modification of the system
Hamiltonian in such a way that the desired state becomes the ground state of the
engineered Hamiltonian. Then, it is enough to cool the system to its ground state
to systematically prepare such a state:

|ψ(t)〉 = e−iĤt|ψ(0)〉 → |g〉 〈g| ( t→∞ ) . (3.41)

To complement this method we can consider the possibility of engineering the cou-
pling to external reservoirs in such a way that the stationary state of the dissipative
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dynamics is the target state. This method is usually referred to as reservoir engi-
neering.

As we explain in previous sections, under the Born-Markov approximation, we can
describe the dissipative evolution via a master equation in Lindblad form:

ρ̇ = Lρ = −i
[
Ĥsys, ρ

]
+
∑
i

Γ
2
(
2L̂iρL̂†i −

{
L̂†i L̂i, ρ

})
. (3.42)

The steady state solution under such an evolution can be found from

Lρ = 0 ⇒ ρ(t→∞) = ρsteady . (3.43)

If the steady state is pure we can describe it by its wavefunction |φsteady〉 which
should satisfy

Ĥsys|φsteady〉 = Eφ |φsteady〉

L̂i|φsteady〉 = 0 ∀i

 . (3.44)

Thus, the state requires to be an eigenstate of the unitary Hamiltonian and also, a
dark state of the jump operators describing the dissipation.

The method of dark-state driving [52, 53] has been successfully applied, for example,
in cooling schemes [54, 55] or in the preparation of entangled states [56, 57, 58].



Chapter 4

Reduced Hilbert Space
Techniques: Density Matrix
Renormalization Group (DMRG)

As we already mentioned in the previous chapter, the nature of quantum mechanics
poses important challenges when we try to compute static or dynamical properties
of a quantum system. The main obstacle is the exponential growth of the Hilbert
Space H of these systems. The dimension of the Hamiltonians that describe cold
atomic models grows too quickly to be able to numerically handle systems that have
more than a few tens of atoms. In the case of a complicated local physical structure
(such as several hyperfines levels per site or several Bloch bands included in the
description) the size limit can become even smaller.

Moreover, if we pick a state from our large H at random, the entanglement in spatial
modes of such state will typically be much higher than the ones we are interested in.
More specifically, in one-dimensional systems entanglement is known to be moderate
for the ground or low-excited states of the Hamiltonians describing local motion and
interactions. Then, in many cases the full Hilbert Space representation is unnecessary
since the statics and dynamics of the system are restricted to a smaller part of these
exponentially large spaces. Then, it is vital to consider methods that can represent
efficiently the states we are interested in at a lower numerical cost.
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This is the case of Density Matrix Renormalization Group introduced by S. R. White
[35, 36], that allows for the calculation of ground states of large one-dimensional
systems. These ground states can be represented by matrix product states (MPS)
as it was later shown in ([37, 38, 96]). Later on, the concept of time-dependent
DMRG (t-DMRG) ([39, 40, 41]) that adapts the Hilbert Space basis as the evolution
occurs allowed for the calculation of dynamical quantities. Finally, it is important to
mention the representation of operators in the language of matrix product operators
(MPOs) as an extension of MPS [97, 98]. Throughout the years t-DMRG techniques
have developed in different ways (see reviews [42, 99]) providing tools to tackle system
that include higher dimensions. However, as the object of study in this thesis are
one-dimensional systems we will restrict to the case of 1D tensor networks here, i.e.
matrix product states.

The chapter is structured as follows: in section 4.1 we introduce the concept of
MPS and how to systematically express a quantum state in this form. Moreover,
we present the main properties of this formalism and how the success of this repre-
sentation links to bipartite entanglement; in section 4.2 we discuss the extension to
the representation of operators through MPOs; in section 4.3 we describe the main
ideas behind t-DMRG and computing time evolution using MPSs; in section 4.4 we
present the variational state search algorithm applying it not only to ground states
but also to dissipative system calculations; finally, in section 5.6 we summarize the
main advantages and possibilities that MPS provide. All the diagrams included are
original unless indicated otherwise.

4.1 Matrix product state representation

4.1.1 Graphical notation for tensor networks

Before jumping into the explanation of matrix product states, it is useful when mak-
ing use of density matrix renormalization group techniques to introduce a graphical
notation to support the representation of the high-dimensional tensors that form
the networks representing our states and operators. In the graphical notation the
tensor representation becomes quite natural and so do all of the typical contractions
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. . .

c (Scalar) Mab (Matrix) T �
ab (3-Tensor)v� (Vector) T (N-Tensor)

= = =

Multiplication

Mac =
X

b

AabBbc

Trace

t =
X

a

Maa
General contraction

Typical contractions:

Figure 4.1: Summary of the graphical notation of tensor networks. The number of
legs or links in every object denotes the dimension of the tensor which in general can
have any number of legs. We will use greek letters to denote vertical links (related
to the local physical dimension) and roman ones for horizontal legs (related to state
compression). This will come naturally as we construct our matrix product state. In
the bottom part we include some of the typical contractions that we perform: any
two links that are connected indicate matrix multiplication through that index, we
can also close indices of the same object as shown in the case of the trace.

that the algorithms that we will include require. Moreover, this notation will allow
us to simplify the long matrix multiplications that typically represent states and
operations.

In Fig.4.1 we include a summary of the rules of the graphical notation that will
simplify in great manner the expressions required to compute relevant static and
dynamical quantities in the language of matrix product states. In the next section
we will describe how to construct a matrix product state from a given state expressed
in the standard Hilbert space.
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A�2
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aM�1c�1,...,�M

1 12 2M M

Figure 4.2: Graphical representation of the state |φ〉 in standard and matrix
product state form.

4.1.2 Matrix product state construction

In the following we will consider open boundary conditions (OBC), as that is the case
of the models we will study in the result chapters and also it is the most relevant in
optical lattice experiments1. In order to construct the matrix product state (MPS)
form, let us consider a state |φ〉 in the Hilbert space H with dim(H) = dM where
d is the local physical dimension of our system (e.g. d = 2 for spin-1/2 particles
or d = 3 for spin-1 particles) and M is the system size. As we mentioned earlier
this space is exponentially large in the system size. If we want to describe our
state |φ〉 we will require a set of dM coefficients that we denote as cσ1,...,σM with
cσ1,...,σM = 〈ψ |σ1, ..., σM〉 where the set |σ1, ..., σM〉 forms a complete basis in H each
local base σi with local dimension d. Then, we can express our state as:

|φ〉 =
∑

σ1,...,σM

cσ1,...,σM |σ1, ..., σM〉 . (4.1)

We can rewrite this set of coefficients in the following form2:

cσ1,...,σM =
∑

a1...aM−1

A[1]σ1
a1 A[2]σ2

a1,a2 ...A
[M−1]σM−1
aM−2,aM−1

A[M ]σM
aM−1

, (4.2)

where the matrices A[i]σi
ai−1,ai

are three-dimensional matrices (there is a matrix for every
local state on site [i] with base {σi}). Each matrix has dimension dD2

i with d again
1Similar analysis can be made for the case of periodic boundaries obtaining equivalent

expressions (see [42, 99]) but this will not be covered in the chapter.
2This form might seem unnatural at first but we will justify it in section 4.1.3.



4.1. Matrix product state representation 45

describing the local dimension and Di so-called bond dimension that correspond to
the dimension of the link between matrices (the links we multiply over). Please note
that here we are considering that the local physical dimension d is homogeneous but
this condition is just a simplification that is not required for this mapping. Then,
we can express:

|φ〉 =
∑

σ1,...,σM

A[1]σ1A[2]σ2 ...A[M−1]σM−1A[M ]σM |σ1, ..., σM〉 . (4.3)

The state of the system is now expressed via a matrix product state and can be
graphically depicted as in Fig.4.2. So far we have not obtained any advantage from
this new form since we have simply rewritten the state coefficients into a product of
matrices of dimension MdD2

i instead of the general vector of coefficients of length
dM . The key-point here is the size of the bond dimension Di. In order to understand
this better let us consider two examples:

- Product state: If the state of the system is a product state then the global state
of the system is just the product of the local states. Consequently, it is clear that
every matrix A[i]σi

ai−1,ai
should be able to capture the state in every site independently

from the state in other sites. As a result, a product state has the trivial bond
dimension Di = 1 as shown in Fig.4.3.

We can immediately observe that this representation has a great advantage in the
case of a product state since we simply need to keep MdD2

i = Md complex numbers
in comparison with the standard dM . Even though the case of a product state is
quite specific, product states or states closely related to them appear quite naturally
in many of the projects discussed in this thesis. In particular, current experimental
advantages allow to prepare systematically product states as initial state for many
of the schemes that we will discuss.

For example, let us suppose that we have two spin-1/2 particles that are prepared
independently in a superposition of state |0〉 and |1〉. Then, the state of the system
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. . .

1 2 M

Figure 4.3: Graphical representation of a product state. The matrix product state
representation of the state has the trivial bond dimension D = 1.

is given by the tensor product of both superposition states:

|φProduct〉 = |0〉+ |1〉√
(2)

⊗ |0〉+ |1〉√
(2)

. (4.4)

And, we have ∀ci,j = 1/2. This can be then expressed in the matrix product form:

A[1]0 = A[2]0 = A[1]1 = A[2]1 = 1/
√

2 . (4.5)

Here, as the bond dimension becomes D = 1, these matrices become scalars.

- Bell state [100]: This is an interesting example not only for its physical
relevance but also from the fact that it is the first state with non-trivial bond
dimension D that we consider. The state is given by:

|φBell,+〉 = (|01〉 |02〉+ |11〉 |12〉) /2 , (4.6)

and so, we have c0,0 = c1,1 = 1/
√

(2), c1,0 = c0,1 = 0. In terms of our matrix
representation, we cannot express the state with just scalars as the state on one site
conditions the state on the other one. We obtain:

A[1]0 =
(

1 0
)
, A[1]1 =

(
0 1

)

A[2]0 =
 1/

√
2

0

 , = A[2]1 =
 0

1/
√

2

 . (4.7)
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And cσ1,σ2 = ∑
j A

[1]σ1
1j A

[2]σ2
j1 . We observe that our bond dimension is D = 2. Later

on in section 4.1.4 we will link the growth of the bond dimension to the bipartite en-
tanglement in the system and how these conditions our ability to represent efficiently
a state in MPS form.

4.1.3 Canonical form of an MPS and gauge freedom

In order to construct our state we make use of a tool of the singular value decompo-
sition (SVD). Given a matrix M with dim(M) = dM1× dM2 we can decompose it in
a product of matrices of the following form:

M = USV †, (4.8)

with U composed of orthonormal columns as they fulfill the property U †U = I and
dim(U) = dM1×min(dM1, dM2); S is a diagonal matrix of dim(S) = min(dM1, dM2)×
min(dM1, dM2) formed by the singular values λ1 < λ2 < ... < λr, we denote as
Schmidt rank r the number of non-zero entries of S (we will describe the physical
meaning of this rank in section 4.1.4); and, V † is composed of orthonormal rows as
V V † = I and dim(V ) = min(dM1, dM2)× dM2.

One essential property of this decomposition is the fact that the best approximation
to M with a smaller rank r′ < r is given by M ′ = US ′V † with S ′ the resulting
diagonal matrix if we set to zero the singular values between r′ and r. Then, we
immediately observe that this provides a natural mechanism for the truncation of
the matrices that we will describe in 4.1.4.

Now, we can apply this decomposition to our quantum state systematically and
exploit the properties of orthonormality of U and V †.
Let us consider a given quantum state in a system of length M in one dimension in
the same for as in Eq.4.1:

|φ〉 =
∑

σ1,...,σM

cσ1,...,σM |σ1, ..., σM〉 . (4.9)
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In order to be able to perform SVD on our state we should first reshape the vector
of coefficients into a matrix cσ1,...,σM = Mσ1,(σ2,...,σM ) of dimension (d× dM − 1). We
can decompose this matrix:

Mσ1,(σ2...,σM ) =
r1∑
l1

Uσ1,l1Sl1,l1V
†
l1,(σ2...,σM ) (4.10)

In order to recover a form consistent with MPS, we can group Sl1,l1V
†
l1,(σ2...,σM ) and

obtain a new vector c. We also reshape Uσ1,l1 as a set of row vectors M [1]σ1
l1 . With

these transformations we can rearrange our state as:

cσ1,...,σM =
r1∑
l1

M
[1]σ1
l1 cl1,(σ2...,σM ) (4.11)

This form already provided the desired MPS form in the first lattice site. Then, the
process can be iterated to the next site:

cl1,(σ2...,σM ) = M(l1σ2),(σ3,...,σM ) = U(l1σ2),l2Sl2,l2V
†
l2,(σ3,...,σM ) (4.12)

We can apply this new transformation to the state and again using U(l1σ2),l2 = M
[2]σ2
l1,l2

and Sl2,l2V
†
l2,(σ3,...,σM ) = cl2,(σ3,...,σM ) we obtain the following expression:

cσ1,...,σM =
r1∑
l1

r2∑
l2

M
[1]σ1
l1 M

[2]σ2
l1,l2 cl2,(σ3...,σM ) (4.13)

This procedure can be continued until we have covered the whole lattice as indicated
in Fig.4.4. We finally obtain the form

|φ〉 =
∑

σ1,...,σM

r1∑
l1

r2∑
l2

...
rM∑
lM

M
[1]σ1
l1 M

[2]σ2
l1,l2 ...M

[M−1]σM−1
lM−2,lM−1

M
[M ]σM
lM−1,lM

. (4.14)

This form of an MPS is known as left-canonical3 since we have constructed it from
the set of matrices U that contain the left singular vectors resulting of our SVD
process. As a result, the matrices M possess the property of left-normalization:

3For a longer discussion of the different canonical forms see [99].
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Figure 4.4: Iterative construction of a left-canonical MPS. Starting from the left
hand-side, a singular value decomposition is performed taking one physical index σi
at a time. After every decomposition the matrix U is reshaped into the appropriate
form to create M [i] and the product of SV † is reshaped into a vector formed by a
bond index to the left li and the set of left physical indices σi+1, ..., σM . This process
is iterated until the whole lattice is covered. Original diagram based on [99].

∑
σi

(
M [i]σi

)†
M [i]σi = I . (4.15)

The utility of this normalization will be systematically explored in section 4.1.3.1,
where we make use of the different normalization possibilities. Note that as the
matrices are constructed from a systematic SVD taking a physical index of dimension
d at every step, the maximum bond dimensions of the local tensors M [i] will follow
the sequence (1×d), (d×d2)..., (dL/2−1×dL/2)...(d2×d), (d×1), the fact that the first
and last indices have dimension 1 is not surprising since the product of all matrices
should produce a scalar that is the corresponding state coefficient.

We could naturally have started the process from the other end of the lattice and used
the right singular vectors from V † during SVD operations to create our local matrices.
If this second choice is iterated, the resulting matrices will be right-normalized
fulfilling:

∑
σi

M [i]σi
(
M [i]σi

)†
= I , (4.16)
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Figure 4.5: (Top) Overlap of two quantum states in MPS form; (bottom) local
expectation value of the operator Ôi acting on site i through the use of left- and right-
normalization we can eliminate any contribution outside the site were the operator
acts on.

and the MPS is said to be in right-canonical form.

Moreover, we could consider the case of a mixture of both, where the SVD is
performed starting from both left and right sides, meeting at site i, this choice
becomes particularly useful when computing expectation values of local operators
on site i (see 4.1.3.1). We note that here we have only presented a few possible
representations but the MPS gauge freedom is much larger. In particular, in any
bond with bond index li between matricesM [i] andM [i+1]we could insert an identity
in the form Ili,li = AA−1. Then, matrices A and A−1 could be absorbed into the
left and right matrices generating M̃ [i] = M [i]A and M̃ [i+1] = A−1M [i+1]. We
immediately observe that the representation has been modified keeping the state
unchanged.

4.1.3.1 Typical operations in canonical form

The existence of the gauge freedom in the MPS representation will play a significant
role in the calculation of overlaps and expectation values in MPS form. First, let us
consider the overlap of two states in MPS form:
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〈ψ |φ〉 =
∑

σ1,...,σM

(
N [1]σ1N [2]σ2 ...N [M−1]σM−1N [M ]σM

)†
· (4.17)(

M [1]σ1M [2]σ2 ...M [M−1]σM−1M [M ]σM
)
,

where we have omitted for simplicity the indices for the matrix multiplication. We
can rearrange the expression in a more natural way:

〈ψ |φ〉 =
∑
σM

(
N [M ]σM

)† (
...

(∑
σ1

(
N [1]σ1

)†
M [1]σ1

)
...

)
M [M ]σM . (4.18)

The graphical notation for the overlap can be found in the top part of Fig.4.5.

On the other hand, we could consider how we would compute expectation values
of operators. Let us for the time being consider the operators to be local (if that is
not the case we will typically make use of methods in section 4.2).

Given an operator Ôi acting on site i with dimension (d× d) we can first simply
multiply it to either the bra or the ket , what it is important is that this operator
will only appear in the link σi leaving the rest of the links unchanged. As we discussed
before, if we choose to set the sites to the left 1, ..., i− 1 to be left-normalized then,∑
σj

(
M [j]σj

)†
M [j]σj = I and consequently all the local contraction of indices just

give an identity until reaching the site i. In the same way we could use right-
normalization for sites i + 1, ...,M given again no contribution in the contractions
but an identity. As a result, computing expectation values of local operators becomes
just the contraction of three matrices

〈ψ|Ôi |φ〉 =
∑
li−1,li

∑
σi,σ′i

(
M

[i]σ′i
li−1,li

)†
· Ôσi,σ

′
i

i ·M [i]σi
li−1,li

(4.19)

=
∑
σi,σ′i

Ô
σi,σ

′
i

i Tr
((
M [i]σ′i

)†
M [i]σi

)
,

which is numerically efficient (it scales with O(MD3d), see [99]).
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Often we require to compute expectation values of the form 〈ψ|ÂiB̂j |φ〉 (e.g., two-
point correlators). Then, normalization of our MPS can only be exploited in the
region outside of the operators applied (between 1, ..., i−1 and j+1, ...,M , assuming
i < j), but still offers a numerical advantage.

4.1.4 Entanglement and truncation error

We can relate the systematic application of SVD to the state to the concept of
Schmidt decomposition [100] of the quantum state. The Schmidt decomposition
allows for the expression of a pure state in a pair of orthonormal bases {|i〉A}, {|j〉B}
spanning two partitions of the system that we denote as A and B:

|φ〉 =
∑
i,j

λab|i〉A|j〉B . (4.20)

From this representation we can immediately construct the reduced density operator
of the system bipartitions as ρA/B = TrB/A (|φ〉〈φ|). Then, if we choose this biparti-
tion to correspond to the local matrices to the left and to the right of a given bond
i. We can express our reduced density operator of a subsystem as:

ρ1,...,i−1 = Tri+1,...,M (|φ〉〈φ|) =
ri∑
li

(λi)2 |i〉A〈i|A . (4.21)

where λi represent the singular values associated with the partition at site i.

Typically, our representation has a fixed maximum bond dimension Dmax that we
can numerically afford. The existence of this cutoff forces us to truncate the size of
the local matricesM [i] . As we mentioned in section 4.1.3 SVD naturally provides the
best approximation for our matrices with a given fixed rank (simply by keeping the
Dmax greater singular values when storing the result of our SVD) with an associated
truncation error:

εi ≡
ri∑

li=Dmax+1
(λi)2 . (4.22)
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Thus, this truncation has certain consequences in the states that we have the ability
to represent efficiently (with manageable εi). An easy way to interpret which ones are
those well presented states comes from Eq.(4.21) and the definition of Von Neumann
entropy [100]:

SvN = −Tr (ρ1,...,i−1 ln ρ1,...,i−1) = −
ri∑
li

(λi)2 ln (λi)2 . (4.23)

Consequently, there is an upper bound for the entanglement entropy that we can
represent given by:

Smax
vN ≤ ln (Dmax) . (4.24)

As a result, the MPS representation will only be able to represent states with an
entanglement inside this bound. Our truncated MPS representation covers now a
much smaller region of the total Hilbert space H.

Nevertheless, MPS has found great success in representing the lower energy states
of gapped 1D systems. This is due in part to the existence of so-called “area laws”
[101, 102, 103] that cause the entanglement entropy to be only dependent of the size
of the partition boundary and not on the size of the system itself (not scaling with
its volume) for the ground state of gapped Hamiltonian with local interactions. This
is usually applicable more broadly to the low-energy states.

In the case of time evolution this condition becomes more complex as not always
the dynamics will remain restricted to the small sector represented. In some of the
cases we can faithfully represent the evolved state [104]. However, in general, the
system will couple to highly excited states and that will limit the times that we are
able to reach with the MPS representation as typical linear growths of entanglement
will imply the need to exponentially increase Dmax.
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4.1.5 Vidal’s notation

In section 4.1.3 we discussed the fact that the MPS representation is not unique and
how we can exploit normalization properties to obtain interesting features in our
representation. Now, it is important to introduce a different representation, namely
Vidal’s notation [39], that is particularly useful when considering system bipartitions.

This notation arises naturally from the concept of Schmidt decomposition that
we introduced in section 4.1.4, as instead of a single matrix M [i]σi per site, our
representation now consist of a matrix Λ[i−1] including the Schmidt coefficients
associated with the bipartition in link i− 1 and a matrix Γ[i]σi such that:

M
[i]σi
li−1,li

= Λ[i−1]
li−1,li−1

Γ[i]σi
li−1,li

(4.25)

Thus, the total state can be written as

|φ〉 =
∑

σ1,...,σM

Γ[1]σ1Λ[1]Γ[2]σ2Λ[2]...Γ[M−1]σM−1Λ[M−1]Γ[M ]σM (4.26)

The main advantage of this notation is that it gives immediate access to relevant
quantities such as the reduced density operators on link i− 1 or the Von Neumann
entropy associated with the bipartition (see Eq.4.21 and Eq.7.19). We will benefit
from this notation in the calculations in chapter 6 and chapter 7. In the latter, we
will explicitly use this notation when describing our parity-preserving algorithm (see
section 7.3.3) that bases on ideas that we describe below in section 4.1.6.

4.1.6 Symmetries and number conserving codes

So far we have discussed how MPS provide an efficient representation of states with
moderate entanglement. We can go one step farther and try to exploit certain
properties of the system we aim to represent via MPS, to gain extra numerical
advantages [105, 106]. In particular, in many instances we will have certain conserved
quantities that reduce the sector of the global Hilbert space that we require to
explore.
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Figure 4.6: (a) Restructure of the MPS representation into the symmetry
conservation rule. All Schmidt states acquire an associated quantum number related
to the conserved quantity. We store our state in a vector of MPSs with each of the
entries containing the MPS related to a given value of N [i]

L ; (b) when a local operator
Ôi,i+1 acts on our number conserving MPS, the resulting matrixMi,i+1 that we have
to recompress into an MPS is block-diagonal due to the symmetry conservation rules.
This provides a relevant numerical advantage.
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This is the case of number conserving codes that exploit the fact that our Hamiltonian
possess that symmetry. For example, when studying closed system Hubbard models
(see chapter 2) our Hamiltonian commutes with the particle number operator n̂i =
a†iai with [Ĥ, n̂i] = 0 and so the application of Ĥ to our state (for variational state
search or time evolution) will preserve n̂i.

Moreover, if we consider a bipartition of the system, we know that Schmidt de-
composition provides an orthonormal basis to the left and to the right of that bond.
Then, we can associate to every Schmidt vector in the basis the corresponding particle
quantum number to the left or the right N [i]

L/R. With this sorting index N [i]
L/R, we can

group together our MPS in a vector that contains in every entry the reduced MPS
associated with a particular quantum number N [i]

L/R = n.

The utility of this sorting becomes clear when we update our state after applying a
local operator. In order to enforce this symmetry into our algorithms we can make
use of the fact that during our MPS routines we typically modify matrices locally
(see sections 4.4 and 4.3). Both variational state search and time evolution rely on
every step on a SVD of the updated site or pair of sites.

If we apply a local operator Ôi,i+1 (see Fig.4.6) onto our state such that [Ôi,i+1, n̂i +
n̂i+1] = 0. Then, the total particle quantum number NT should be preserved,
imposing that NT = N

[i]
L + N [i] + N [i+1] + N

[i+1]
R with N [i] and N [i+1] the local

quantum numbers of the site affected by the operator. This constrain simplifies the
resulting matrixMi,i+1 that we generate after applying Ôi,i+1 on our state, making it
block-diagonal since only elements that fulfill the number condition can be non-zero.

As a result, we can perform SVD on a set of smaller matrices instead of the full
Mi,i+1 gaining a significant advantage in the numerical performance. Furthermore,
as this storage scheme is sparse we can typically deal with bigger Dmax values, as
the overall size of the matrices gets significantly reduces. A final advantage that
is important to mention is the fact that this storage naturally provides a mean for
parallelization as different particle sectors get treated independently.
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Note, that the particle conservation rules can be adapted to certain operators that
do not preserve particle number as long as we update the indexing accordingly.
An example is single-particle loss (we include this type of dissipation in many
calculations in chapters 6 and 7). We can update the state as the loss occurs by
a single-site operator âi acting on site i only modifying the particle number in the
given site (N [i]

L and N [i]
R do not change). As a result, the application of the operator

implies ÑT = N
[i]
L +N [i] +N

[i]
R = NT −1 and we just need to update the index values

of N [j 6=i]
L/R in the rest of sites.

The use of symmetries in MPS will have an enormous impact in our calculations
in chapters 6 and 7 where we make use of the number conserving in two ways. On
the one hand, we will exploit the numerical advantages just mentioned to provide a
relevant speed-up to our calculations. On the other hand, including this symmetry in
our representation allows for the immediate extraction of the particle number N j<i

to the left of a given site i. This number operator is quite crucial when computing
fermionic operators as anticommutation of fermions creates highly non-local string
operators associated with the Jordan-Wigner transformation (see section 2.4.1.1).
Then, if our state representation stores these population sectors separated we do not
require to compute the non-local strings but simply apply the appropriate phases.
This avoids dealing with non-local operators in MPS language which typically re-
quires the use of matrix product operators as we will now explain.

4.2 Matrix product operators

Now that we have introduced the notion of MPS and how it represents a given
quantum state, we can easily generalize this concept to operators [98, 99]. When we
considered operators so far in this chapter they were completely local. As a result,
we can represent them as local matrices Ôσi,σ′i

with dimension (d × d) that act on
the physical indices of our MPS, this was also generalized to a two-site operator
Ô(σi,σ′i),(σi+1,σ′i+1) with dimension (d2 × d2).

However, operators in general are non-local and require an expression in the whole
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Figure 4.7: (Top) Graphical representation of a matrix product operator (MPO);
(bottom) application of an MPO on a MPS representation of a state. The application
does not alter the MPS form of the state at the cost of requiring a higher bond
dimension l̃i to represent it.

Hilbert space of dimension
(
dM × dM

)
. Given an operator we can express it as:

Ô =
∑

σ1,...,σM ,σ′1,...,σ
′
M

c(σ1,...,σM ),(σ′1,...,σ′M)|σ1, ..., σM〉〈σ′1, ..., σ′M | . (4.27)

Then, we should be able to find a representation of operators as a generalization of
the MPS representation of states. In particular, we can find the matrix elements of
an operator as

〈~σ|Ô|~σ′〉 =
∑
~σ, ~σ′

O[1]σ1σ′1O[2]σ2σ′2 ...O[M−1]σM−1σ
′
M−1O[M ]σMσ′M , (4.28)

where |~σ〉, |~σ′〉 are two given states in H. This expression, that we denote as matrix
product operator (MPO), is simply an extension of the form of an MPS with two
physical indices instead of one corresponding to the in- and out-going indices acting
on an operator. Then, the local matrices Oσ1σ′1 are now 4-legged tensors with two
physical indices and as MPS two bond dimensions Di−1, Di that in principle can be
different, so every local tensor has dimension d2 ×Di−1 ×Di.

Although with the use of MPO we cannot find a canonical representation of our
operators as we did with states, MPO representations are typically quite sparse and
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require moderate bond dimensions Di for the model that we usually consider in 1D
many-body physics. This can be seen in the example we include below. Furthermore,
another advantage of the use of MPO is that it preserves the form of the MPS when
acting on a state:

Ô|φ〉 =
∑

σ1,...,σM ,σ′1,...,σ
′
M

(
O[1]σ1σ′1O[2]σ2σ′2 ...O[M−1]σM−1σ

′
M−1O[M ]σMσ′M

)
×

(
M [1]σ1M [2]σ2 ...M [M−1]σM−1M [M ]σM

)
, (4.29)

this can be reexpressed as:

Ô|φ〉 =
∑

σ′1,...,σ
′
M

N [1]σ′1N [2]σ′2 ...N [M−1]σ′M−1N [M ]σ′M , (4.30)

with

N
[i]σ′i
(Di−1li−1),(Dili) =

∑
σi

O
[i]σiσ′i
Di−1,Di

M
[i]σi
li−1,li

. (4.31)

Where the MPS structure has been preserved at the cost of increasing the bond
dimensions as the product of the original bond dimensions of the MPO and the
MPS. This can also be incorporated naturally to the graphical notation as depicted
in Fig.4.7.

4.2.1 MPO example: Transverse Ising model

We are going to consider the Ising model as an example for the MPO construction.
Since it only includes first-neighbour interaction and a local field term we will
obtain bond dimensions that are quire small so it is an illustrative example. The
Hamiltonian of the Ising model with transverse field is given by:

Ĥ = −J
M∑
〈ij〉

σ̂zi σ̂
z
j − h

∑
i

σ̂xi , (4.32)

with 〈ij〉 denoting first neighbour summation, J the spin-interaction strength, h the
magnetic field constant and σ̂i the Pauli matrices on the local Hilbert space of site
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i. This Hamiltonian can be expressed as a product of local 4-legged matrices that
can be obtained from the general rule provided in [99, 107], which takes into account
when sweeping from one end of the lattice the operators we can find moving along
the lattice,

O [i] =


Î
√
Jσ̂zi hσ̂xi

0 0
√
Jσ̂zi

0 0 Î

 , (4.33)

with the boundaries

O [1] =
(
Î
√
Jσ̂z1 Î hσ̂x1

)
, O [M ] =


hσ̂xM√
Jσ̂zM

Î

 . (4.34)

As was the case of the MPS, the boundary matrices O[1], O[M ] differ in their dimen-
sions as they need to provide an scalar at both ends of the chain. We immediately
observe that the bond dimension is rather small due to the fact that we are only
considering first-neighbour terms.

MPOs allow for the efficient representation of models that have more complex cou-
pling such as long-range interactions at the cost of an increasing bond dimension (see
[98]) in general any function can be expressed as a sum of exponentials that can be
then inserted into our MPO. MPO find also utility when representing open quantum
systems as they can be used to encode density operators in the form of MPDO (see
[97]).

4.3 Time-Evolving Block Decimation

Different algorithms for the computation of time-evolution in the language of MPS
have been developed over the years. Here we will focus on the Suzuki-Trotter
decomposition applied to the tensor network language (see also section 3.2.1). This
method, so-called Time-Evolving Block Decimation, ([39, 40]) adapts the application
of local partitions of the evolution operator to the language of matrix product states.
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Figure 4.8: Diagram of the iterative application of the time-evolving blocks to the
state in MPS form. Each evolution operator has dimension (d2 × d2).

This method seems as a natural step when we consider Hamiltonians with short-range
interactions (as it is the cases of this thesis) as every term of the evolution operator
can be decomposed into a set of local evolution operators Ûj,j+1(t) = e−iĤj,j+1t where
Ĥj,j+1 is composed by the terms of the total Hamiltonian that act on sites j and
j + 1. Thus, we can express:

Û(δt) = e−iĤδt =
M−1∏
j

e−iĤj,j+1δt +O(δt2) . (4.35)

Note that given a Hamiltonian with first-neighbours coupling only, we can imme-
diately provide a higher order approximation by considering that all terms with
odd or even values of i commute with each other. Then, we can define e−iĤoddδt =∏
j∈odd e

−iĤj,j+1δt and e−iĤevenδt = ∏
j∈even e

−iĤj,j+1δt with which we can easily express
the second-order Trotter expansion:
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Figure 4.9: Application of a single TEBD gate to the local MPS tensors, the
contraction of the tensors generates Θi,i+1 over which we perform SVD to truncate
our increasing bond dimension and recover the local MPS structure.

Û(δt) = e−iĤδt = e−iĤoddδt/2e−iĤevenδte−iĤoddδt/2 +O(δt3) . (4.36)

Similar extensions to higher-order Trotter expansions can be constructed (see [89]).
The main idea is that extending the algorithm to higher orders allows for the
increase in the size of the time-step and potentially provide and speed-up for the
calculation. A relevant factor to take into account is that the application of the
evolution operators in the local tensors of our MPS will increase the required bond
dimension to represent them. As our resources are limited (see section 4.1.4) we need
to truncate our tensor after every application to a maximum bond dimension Dmax.

The process is depicted in Fig.4.9. After we apply the evolution operator on sites i
and i+ 1, we contract the inner indices generating a 4-legged tensor that we reshape
into a matrix Θi,i+1 of dimension (dDi − 1 × dDi), grouping together the left and
right indices. Then, we can perform SVD on Θi,i+1 keeping theDmax greater Schmidt
coefficients. After this, the resulting truncated matrices can be reshaped into the
local tensors to preserve the MPS structure.

By iteratively applying TEBD steps to our state we can compute the desired time
evolution. Note that there are two different error sources here. On the one hand, we
have the truncation error in every SVD step which is the one that we can monitor
from the Schmidt coefficients that we discard. This first error source is the one that
usually sets the maximum times we can evolve to, as at a given point in the evolution
our Dmax will not be able to represent our state within an acceptable error. On the
other hand, there is the error associated with the Trotter expansion that accumulates
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over the application of TEBD steps. A study of the convergence for different values
of δt can ensure that this error does not affect our result.

4.3.1 Imaginary time evolution

An interesting application of our time evolution algorithm is imaginary time evo-
lution that instead of dynamics allows for the computation of the system’s ground
state. The idea behind it is rather simple, we simply consider time evolution under
imaginary time τ = −it. If we express our state in terms of the eigenvectors of Ĥ:

|ψ〉 =
∑
n

αn|φn〉 (4.37)

with Ĥ|φn〉 = En|φn〉 and E0 < E1 < .... Thus, we can decompose the time evolution
as:

|ψ(τ)〉 =
∑
n=0

αne
−Enτ |φn〉 =

∑
n=0

αne
−E0(En/E0)τ |φn〉 = (4.38)

= e−E0τ |φ0〉+
∑
n=1

αne
−E0(En/E0)τ |φn〉

τ→∞= |φ0〉

Then, we observe that as the ground state is the slower decaying term in the
imaginary time evolution the system will converge to |φ0〉. In principle, for this
method to be successful we require that there is some overlap of our initial state
and the ground state 〈ψ|φ0〉 6= 0. However, numerical error comes in our aid since
any numerical noise proportional to the ground state will be exponentially amplified
during the procedure. As a result, in practical terms this requirement can be relaxed.

4.4 Variational state search

Now, that we have discussed the building blocks of our representation it is quite
pertinent to discuss the algorithms that we can develop with them in order to be
able to calculate equilibrium quantities or to compute the system evolution.

The first of the algorithms we will discuss is based on the variational modification of
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our state locally. This method is a natural extension of the real space renormalization
of the original DMRG techniques [35, 36].

4.4.1 Ground state variational search

MPS techniques allow for two straight-forward ways of computing ground states:
variational state search, which modifies our state locally minimizing the energy in
every local iteration and imaginary time evolution (see section 4.3.1). The main
idea behind variational DMRG is to iteratively minimize the energy on a given
site sweeping from side to side of the lattice until convergence to the ground state
is obtained. First, we can express the Hamiltonian as an MPO that we then
apply to our state building the expectation value of the state energy 〈ψ|Ĥ|ψ〉 in
an MPS-MPO-MPS form.
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Then, we can remove the local tensors representing the state on site j. In order
to optimize this calculation, we can exploit the gauge freedom on our MPS (mixed
canonical form centered in the considered site) obtaining:

|ψ〉 =
∑
σ

Aσ1 ...Aσj−1ΨσjBσj+1 ...BσM |~σ〉 . (4.39)

The removal of the local tensors in site j allows for the construction of an effective
Hamiltonian of dimension (d2 ×D2

j−1 ×D2
j ) out of the contraction of the rest of the

sites:

〈lj−1σjlj| Ĥ
∣∣∣l′j−1σ

′
jl
′
j

〉
= ∑

bj−1,bj L
lj−1,l′j−1
bj−1

H
σj ,σ

′
j

bj−1bj
R
lj ,l
′
j

bj

L
lj−1,l′j−1
bj−1

= ∑
{li,bi,l

′
i;i<j−1}

(∑
σ1σ′1

(
Aσ1

1,l1

)∗
H
σ1,σ′1
1,b1 A

σ′1
1,l′1

)
...(∑

σj−1σ′j−1

(
A
σl−1
lj−2,lj−1

)∗
H
σj−1,σ′j−1
bl−2,bl−1

A
σ′j−1
l′j−2,l

′
j−1

)

R
lj ,l
′
j

bj
= ∑

{li,bi,l
′
i;i>j}

(∑
σj+1σ′j+1

(
B
σj+1
lj ,lj+1

)∗
H
σj+1,σ′j+1
bj ,bj+1

B
σ′j+1
l′j ,l
′
j+1

)
...(∑

σMσ
′
M
BσM
lM−1,lM

H
σL,σ

′
L

bM−1,bM
B
σ′L
l′M−1,l

′
M

)
.

(4.40)

This construction is depicted in Fig.4.10. Thus, our goal is to iteratively minimize
the following local expression4:

min

V [j]†H
(j)
effV

[j]

V [j]†N
(j)
effV

[j]

 , (4.41)

where N (j)
eff is nothing but the effective norm of the state given by the MPS obtained

by performing the same contraction around the site j. Here V [j]
σjaj−1aj

represents the
vectorization of the MPS for site j of dimension (dDi−1Di). Once we have obtained
this lower energy eigenvector, we can reshape it into our updated Mσl

al−1,al
. Then,

we perform either QR decomposition (if we are moving to the right) or LQ (if vice
versa). Supposing we are moving to the right, then:

Mσl
al−1,al

= Qσl
al−1,al−1

Rσl
al−1,al

, (4.42)

4This expression corresponds to the generalized eigenvalue problem ĤV − λN̂V = 0.
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where we are only store the matrix Q, which is a unitary matrix. Through the use
of QR decomposition we can ensure normalization of the local state and thus turn
the problem into a standard eigenvalue problem.

This process can be iterated through the lattice until we find convergence to the
ground state.

4.4.2 Variational search for a dissipative steady state

Similarly, to what we just presented we can use a variational state update to search
for the steady state solution of open system dynamics [108]. In the same spirit as in
section 3.3 we search for a state that satisfies:

Lρss = ρ̇ss = 0 . (4.43)

That is to say, ρss is an eigenvector with eigenvalue zero of the superoperator L.
Furthermore, this state also satisfies:

L†Lρss = 0 . (4.44)

Then, the steady state ρss corresponds to the lower eigenvalue of L†L since L†L ≥ 0.
As a result, we are presented with an equivalent problem to the case of the ground
state variational search although now the space of the problem is H2 instead of H.
Note that in general, L†L can become not local and, thus only certain L can be
tackled through this method.

Choi’s Isomorphism: vectorizing the density operator

Since our density operator is indeed an operator, it should be represented through
a MPDO and, consequently, we cannot immediately make use of all the existing
tools that we have presented for variational search. In order to do so, we have to
vectorize ρ to be able to express it through a MPS. This procedure is known as
Choi’s Isomorphism and it is given by:

|σi〉 〈σ′i| ⇒ |σiσ′i〉 ρ =
∑
σi,σ′i

ρσiσ′i |σi〉 〈σ
′
i| → ρ :=

∑
σi,σ′i

ρσiσ′i |σiσ
′
i〉 , (4.45)
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⇢Ô !
⇣
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Figure 4.11: (a) Choi’s Isomorphism for the density operator: the rearrangement
of the local matrices allows for the expression of ρ in the form of an MPS of physical
dimension d2. This vectorization can be generalized to any operator; (b) rules of the
extension of local operators acting on the matrices of the vectorized |ρ〉.

with |σiσ′i〉 := |σi � σ′i〉. This is illustrated in Fig.4.11.(a). Although the underlying
idea is quite simple, just a rearrange of the indices, it has some relevant implications
in our formalism as we have access to the toolbox of MPS at the price of representing
our density operator as an MPS with squared local dimension d2. At the same time
this representation should preserve certain properties of a density operator, namely:
trace unitarity, hermiticity and positivity. The two first conditions can be easily
enforced from the local matrices. On the other hand, the third condition is non-local
as it requires to consider the whole spectrum so it cannot be immediately enforced.
There are certain ways to work around this problem, the main one is the purification
(see [109] and [110]for 2D) of the state that consist in the construction of our density
operator from a pure state tracing out some auxiliary degrees of freedom that we
introduce.

Now that we have a vectorized form of our density operator, we can think of L simply
as an operator acting linearly on |ρ〉 . Nevertheless, it is important to consider the
way that operators have to be extended to the squared physical space and how they
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act on the MPS of dimension d2 (see Fig.4.11.(b)). Let us consider a simple case:

Ôρ = ∑
σi,σ′i

(
Ôρ
)
σiσ′i
|σi〉 〈σ′i| =

∑
σi,σ′i,k

Ôσikρ(kσ′i) |σi〉 〈σ
′
i|

→ ∑
σi,σ′i,k

Ôσikρ(kσ′i) |σiσ
′
i〉 .

ρÔ = ∑
σi,σ′i

(
ρÔ
)
σiσ′i
|σi〉 〈σ′i| =

∑
σi,σ′i,k

ρ(σik)Ôk,σ′i
|σi〉 〈σ′i|

→ ∑
σi,σ′i,k

ρ(σik)Ôkσ′i
|σiσ′i〉 = ∑

σi,σ′i,k
ÔT
σ′ik
ρ(σik) |σiσ′i〉 .

(4.46)

Then, given our local extended basis, we can see that the operators can be described
depending on the side on which they act as

Ôρ →
(
Ôσ � Îσ′

)
|ρ〉 ,

ρÔ →
(
Îσ � ÔT

σ′

)
|ρ〉 ,

(4.47)

with Îσ/σ′ the identity of dimension (d × d) acting on the corresponding physical
index. The essential point is that from this rule we can extract the form of the
Lindbladian for the vectorized density operator space directly as

L = −i
(
Ĥ � Î − Î � ĤT

)
+

+γ
[∑

i L̂i �
(
L̂i
)
− 1

2

(∑
i L̂
†
i L̂i
)

� Î − 1
2 Î �

(∑
i L̂

T
i

(
L̂i
))]

,

(4.48)

where the operators Li define the local dissipation jumps that we want to model, the
overbar defines complex conjugation and γ is the dissipation strength that we have
chosen to be constant for the sake of simplicity. Let us consider again an example
with the transverse Ising model

Ĥ = −J
M∑
〈ij〉

σ̂zi σ̂
z
j − h

∑
i

σ̂xi . (4.49)
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In addition, our Lindbladian is given by

Lρ = −i
[
Ĥ, ρ

]
+
∑
i

γ

2
(
2L̂iρL̂†i −

{
L̂†i L̂i, ρ

})
, (4.50)

where we have chosen as an example that our dissipator is given by L̂i = σ̂+
i . Now,

our goal is to express this sum of local operators as an MPO. In order to do that we
can consider the same method discussed in [99, 107]. If we consider the commutator,
we have to take into account the fact that the operators σx, zi are indeed now σx, zi � Î

or vice-versa. Let us then define to simplify our expressions

σ̃x, zi := σ̂x, zi � Î τx, zi := Î � σ̂x, zi . (4.51)

First, let us consider the terms arising from the commutator −i
[
Ĥ, ρ

]
in MPO form

O [i] =


Î � Î −i

√
Jσ̃zi i

√
Jτ zi −ih (σ̃xi − τxi )

0 0 0
√
Jσ̃zi

0 0 0
√
Jτ zi

0 0 0 Î � Î

 , (4.52)

with the boundaries

O [1] =
(
Î � Î −i

√
Jσ̃z1 i

√
Jτ z1 −ih (σ̃x1 − τx1 )

)
, (4.53)

O [M ] =


−ih (σ̃xM − τxM)√

Jσ̃zM√
Jτ zM

Î � Î

 .

If we consider now the addition of the local dissipation given by L̂i, those elements
will only appear on the right upper corner term as they are completely local. Then,
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the rest of the matrix will remain unchanged obtaining

L → O
[i]
L =


Î � Î −i

√
Jσ̃zi i

√
Jτ zi O

[i]
L 03

0 0 0
√
Jσ̃zi

0 0 0
√
Jτ zi

0 0 0 Î � Î

 , (4.54)

with the boundaries

O
[1]
L =

(
Î � Î −i

√
Jσ̃z1 i

√
Jτ z1 O

[1]
L 03

)
, O

[M ]
L =


O

[M ]
L 03√
Jσ̃zM√
Jτ zM

Î � Î

 . (4.55)

where, we remind the reader that given the dissipator choice we have L̂i = σ+
i ,

L̂†i = σ−i and
(
L̂i
)

= σ+
i , then:

O
[i]
L 03 = −ih (σ̃xi − τxi ) + γ

[
σ̂+
i � τ+

i −
1
2
(
σ̂−i σ̂

+
i � Î + Î � τ−i τ

+
i

)]
. (4.56)

Variational search for steady state

Once we have obtained the expression of the Lindbladian as a MPO, there are several
alternatives in order to search for the steady state solution. In principle, all the
tools developed for the ground state variational search can be used with the physical
dimension of all our tensors being now d2.

1. We could consider to simply find the eigenvector of eigenvalue λL = 0 of the
operator L (see [111]). In this way we do not need to compute L†L, which
would substantially increase the bond dimension of the MPO. The cost of this
choice is that typically as a non-Hermitian operatorL behaves worse in terms
of convergence for the variational algorithm.

2. We can consider the product L†L as an MPO already contracted before the
construction obtaining a expression similar to Eq.(4.54) and (4.55). This allows
for the immediate use of the variational search algorithm. However, the MPO
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is not the most efficient as the bond dimension of the product of operators
increases substantially.

3. The best approach is to consider both terms L† and L as different MPOs, then
we can contract it in the most efficient way, as it is discussed in [99] for the
case of a single MPO. Then, our tensor structure will be composed of an MPS,
MPO, MPO and MPS (see Fig.4.12) optimizing the contractions and providing
a relevant speed-up.

Regardless of the method chosen, to find the steady state of a master equation, is it
enough to formulate again a generalized eigenvalue problem as we did for the ground
state (Eq.(4.41)). We can formulate our problem as an eigenvector equation for the
vector arising when we vectorize |ρ〉, into a vector V [j]σjσ′j

lj−1lj
of dimension (d2Dj−1Dj):
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min

V [j]†M(j)
effV

[j]

V [j]†N
(j)
effV

[j]

 , (4.57)

with M(j)
eff the effective matrix generated from the contractions of all sites but j

of our MPS and our MPO (representing either L or L†L depending on the choice).
There are certain technical points that it is important to mention regarding this
method and its comparison with ground state search.

First, the convergence of the variational search for steady state, as for ground states
of 1D systems depends on the existence of an energy gap in the spectrum. Then,
the convergence of this algorithm can be compromised if there is some degeneracy
on the steady state of the Lindbladian (e.g. the model in chapter 5). In general,
the spectrum of typical Lindbladians for cold atom systems will be typically worse-
behaved than the corresponding Hamiltonians requiring higher bond dimensions for
convergence.

Secondly, as we mentioned before, the vectorized form of |ρ〉 cannot ensure the
physicality of the result by construction. This is due to the fact that we cannot
guarantee the positivity of the spectrum. However, on the models that we tested
we observed that starting from a positive state and updating the state locally, as
shown in Fig.4.12, positivity was preserved. This was, nevertheless, an observation
from the benchmarking in simple Lindbladians that we cannot assume as a general
property.

It is also important to mention that this method has shown better performance
when the steady state of the system is mixed. We can intuitively understand this by
thinking of the bond dimension cost of representing a maximally mixed state (ρ ∝ I)
with the vectorized MPS is rather small compared to the density operator coming for
a highly-entangled pure state. Thus, mixed states exhibit typically better numerical
performance with this variational method.
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As a result, this method will provide an additional tool for the calculations on open
systems and an interesting method to test our results of other methods. However,
more generally we will focus on combining time-evolution techniques as TEBD (see
section 4.3) and quantum trajectories (see section 3.3.2) to tackle open systems.

4.5 Conclusion

In this chapter we presented a summary of relevant numerical techniques that we will
exploit throughout this thesis. In particular, we have presented why MPS provided a
useful truncated representation of one-dimensional quantum systems. This is due to
the fact that MPS support sufficient bipartite entanglement to represent low-excited
states of physically relevant Hamiltonians.

In addition, we provided a set of tools to compute both ground-state properties
and dynamics where we systematically compress our state representation to the best
possible way for the given resources. In all of the presented techniques we have the
ability to monitor the errors derived from the different approximations performed
and so we have access to the regimes of validity of the calculations performed.

All of the MPS-related techniques, together with the exact methods provided in
chapter 3, allowed to compute the numerical results obtained in the different result
chapters. In particular, the combination of quantum trajectories and MPS played a
vital role in tackling open system dynamics.

In the following chapters, we will make use of these techniques adapting existing
codes in the group in C++ and MATLAB. In particular, the group codes contained
a wide set of standard routines with MPS (section 4.1.3.1 and 4.1.4) including time
evolution (section 4.3) or ground state calculation (section 4.4). The author of this
thesis adapted the existing TEBD algorithms to open systems (see section 3.3.2) also
in the case of quantum number conversation (section 4.1.6) and developed the codes
for density matrix algorithms including the variational steady state search (section
4.4.2). None of the presented results was based on an open access library.



Chapter 5

Dissipative engineering of
spin-entangled fermionic states in
optical lattices

5.1 Introduction

The efficient and systematic engineering of many-body entangled states in atomic
and molecular (AMO) systems has become an essential tool in the field of quantum
simulation and also in quantum metrology, where the use of entanglement has allowed
us to surpass the precision of classical schemes [112, 3, 5, 113, 114]. The preparation
of many entangled states relies on the cooling of the system to the ground state of
a tunable Hamiltonian. However, this approach usually requires in order to obtain
a highly-entangled state for experimentally relevant system sizes not only a really
fine control over the system parameters but also a preparation scheme that is robust
to imperfections and noise sources in the system. Recently, inspired by ideas of
Quantum Optics, the ultracold atom community has considered the possibility of
including dissipative drivings, coherent and non-coherent, that can filter the system
into states that were not accessible in the closed system scenario or that improve
the efficiency with which those states are prepared. Relevant examples of dissipation
processes for the present discussion include particle losses in the optical lattice [63, 62]
and the coupling to a reservoir gas [51, 54, 55]. The ideas presented can be included
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in the more general framework of reservoir engineering (see section 3.4), which is
based on the modification of the coupling of the system and environment interaction
in such a way that the desired state is the steady state of the open system dynamics.

In this chapter we propose a new scheme, based on dissipative dynamics, for the
preparation of completely spin-symmetric states exploiting statistics of fermions in
an optical lattice which are coupled to a BEC reservoir [51]. We make use of the
correspondence between spatial and spin symmetries in fermions [115] and the fact
that for ultracold atoms the dominant scattering is s-wave two-body collisions, which
is spatially symmetric, to dynamically filter out the desired spin symmetry sector.
Previously, proposals suggested to use this collisional mechanism at the cost of a
significant decrease in the particle number [58]. By combining a Raman coupling
between lattice bands and dissipative coupling with a BEC reservoir, this new scheme
prepares a spin-symmetric state preserving the particle number and enhancing the
potential precision for quantum metrology experiments.

The structure of this chapter is as follows: in section 5.2 we discuss the dissipative
model that we based on and how we can exploit the symmetries to create a useful dark
state; in section 5.3 we discuss in depth the specific scheme to prepare a completely
spin-symmetric state; in section 5.4 we characterize the properties of this steady state
and link it to relevant quantities in metrology; in section 5.5 we discuss the results
obtained from our numerical simulations; and, in section 5.6 we present our findings
and propose some future directions with which this scheme could be improved.

5.2 The dissipative model

Our goal is to create a highly entangled state in the lattice by preparing a completely
spin-symmetric state starting with a random configuration with N atoms in M sites
where we choose that in our system N↑ = N↓ (the relevance of this choice is discussed
in depth in the coming sections).

To prepare our entangled state, we take inspiration from the fact that s-wave scat-
tering provides a natural mechanism to filter out space symmetry sectors. As we did
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in section 2.3, for low temperatures we can describe the inter-atomic interaction via
low-energy scattering theory. For sufficiently low temperatures, s-wave scattering is
the only relevant contribution. The important point here is that scattering properties
become independent of the direction, as s-waves have spherical symmetry. As s-wave
collisions are space-symmetric only space-symmetric wavefunctions are affected by
those.

Moreover, the fermionic wavefunction posses a global antisymmetry under exchange
of particles. This creates a direct correspondence between space and spin symmetries;
i.e, if one of them is symmetric that forces the other to be antisymmetric to fulfill
Fermi statistics.

Finally, we also take into account the fact that in a one-dimensional Hubbard model
(see section 2.4.1) the symmetry sectors are not coupled by the tunneling terms or
the onsite-interaction (we discuss this in section 5.2.1.1 and 5.2.1.2). Therefore, if we
drive the system to the desired symmetry sector through some dissipative coupling,
the unitary dynamics will not compete with this driving. We incorporate all these
ideas while designing our dissipative driving scheme.

5.2.1 Making use of the fermionic symmetries to design our
dissipator

In this section we will discuss the main ingredients required for the proposed scheme
of state distillation.

First, let us assume, that we can express the open system evolution under the
Born-Markov approximation1 in a master equation of the Lindblad form [43]:

ρ̇ = dρ

dt
= −i

[
Ĥ0, ρ

]
− 1

2~
∑
m

γm(Ĵ†mĴmρ+ ρĴ†mĴm − 2ĴmρĴ†m) . (5.1)

1The Born-Markov approximation was discussed in length in section 3.3 and we will revisit it
later on this chapter to justify it in this particular system based on the existence of a dominant
frequency scale.
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Here ρ describes the density operator of the system, Ĥ0 is the Hamiltonian of the
closed system, γm is the amplitude of the dissipation channel Ĵm that model the
dissipation process through the m-th channel. It is interesting to restate that a pure
steady state solution of the evolution ρ∞ = |ψ∞〉〈ψ∞| should satisfy:

1. Ĵj |ψ∞〉 = 0 ∀j : it should be a dark state of the jump operators that represent
the different dissipative channels.

2. Ĥ0 |ψ∞〉 = E∞ |ψ∞〉: it should be an eigenstate of the Hermitian Hamiltonian,
i.e. a stationary state of the unitary evolution.

As a result, one can easily make use of the properties of the system, such as its
symmetries, to prepare the desired state. As we mentioned we want to filter the
space symmetries of the system, which are naturally selected by s-wave collisions
(two-body losses). The jump operator associated with s-wave collisional losses is
given by ĉj ≡ âj↑âj↓.

However, we aim to consider a preparation that does not require to include losses
as in previous proposals (see [58]). In the coming section we will design a jump
operators that acts on the same symmetry sector as s-wave collisions but preserve
the particle number.

5.2.1.1 Two-site system

First, let us consider a one-dimensional two-component Hubbard model (as described
in section 2.4.1) with N = M = 2. The choice of fermionic atoms is justified by
the connection between spatial and spin symmetries as we already indicated. We
consider a jump operator that in the presence of two particles per site causes one of
the two species to tunnel to a neighbouring site2. We have:

Ĥ0 = −J∑σ(â†LσâRσ + â†RσâLσ) + U
∑
j=L,R n̂i↑n̂i↓

Ĵj ≡ (â†j+1↑ + â†j−1↑)â
†
j↓âj↑âj↓

, (5.2)

2We will justify this choice that might seem surprising a priori, as it is a good one-band effective
model of the scheme we will propose later on.
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where n̂iσ = â†iσâiσ, is the number operator on site i of spin σ. Note that in the
double well only one of the two directions for the operator Ĵj will be non-zero (j + 1
for L and j − 1 for R). Let us analyze our basis states to determine which fulfill the
conditions indicated:

1. From the expression of Ĵj we see that all states that have no site multiply occu-
pied, are dark to the jump operators since Ĵj ∝ âj↑âj↓, then, the only remaining
candidates to be a steady state are the triplet |t〉 = 1√

2

(
â†L↑â

†
R↓ − â

†
R↑â

†
L↓

)
|vac〉

and singlet |s〉 = 1√
2

(
â†L↑â

†
R↓ + â†R↑â

†
L↓

)
|vac〉.

2. However, the second condition is only fulfilled by |t〉, since:

Ĥ0 |t〉 = 0 |t〉 and cj |t〉 = 0 ,

Ĥ0 |s〉 = −J(|L〉+ |R〉) 6= Es |s〉 withEs ∈ R, although Ĵj |s〉 = 0 .
(5.3)

As a result, the steady state of the effective model proposed (for the small dimension
case) is |t〉, which corresponds to a completely antisymmetric spatial state, i.e. a
completely symmetric spin state. Meanwhile, the singlet state |s〉 rotates to the other
two states with a doublon on site L or R, with the three of them being symmetric
in space (spin-antisymmetric).

5.2.1.2 General system sizes

In the case of larger systems, with N particles and M sites, the model of the system
remains unchanged: 

Ĥ0 = −J∑M
〈ij〉, σ â

†
iσâjσ + U

∑M
i n̂i↑n̂i↓

Ĵj ≡ (â†j+1↑ + â†j−1↑)â
†
j↓âj↑âj↓

, (5.4)

In the general system size, where we usually analyze the state in terms of local
quantities like the site occupations, it is difficult to keep track of the symmetries.
In this context, we will need to define new criteria to study if the system has been
driven into the desired symmetry sector.
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First, let us show that the set of completely spin-symmetric states will be steady
states of the open dynamics (in general the steady state will exhibit some spatial
degeneracy). A state with a completely spin-symmetric component can be written
in the form:

|φ〉 = |J, Jz〉� |φspa,A〉 (5.5)

where |J, 0〉 corresponds to the spin degrees of freedom and |φspa,A〉 to the spatial
ones, here A denotes the fact that the spatial state is antisymmetric (global anti-
symmetry of the wavefunction is required). As far as spin is concerned, we can make
use of the properties of angular momentum theories, to build a spin-symmetric state
with the constraint of N↑ = N↓. Starting from a trivial spin-symmetric state (all
spins with the same z-component), we can act with operators (Ĵ±) on our state in
the following way:

↑↑↑↑↑↑ →Ĵ− 1
M

(↓↑↑↑↑↑ + ↑↓↑↑↑↑+ ...+ ↑↑↑↑↑↓) ,

∣∣∣J = N
2 , Jz = +N

2

〉
→ Ĵ−

∣∣∣J = N
2 , Jz = +N

2

〉
=
∣∣∣N2 , +N

2 − 1
〉
.

Then, by starting with a completely polarized state and acting with local operators
we can build a state in the Jz = 0 manifold, leaving the symmetries unchanged. As
a result, the state |J, 0〉, describes a spin-symmetric state in the fulfilling N↑ = N↓.

On the other hand, we have the spatial component associated to our wavefunction
|φspa,A〉. It is important to consider how Ĥ0 acts on |φspa,A〉. Let us consider
the onsite energy term, which is proportional to the number operators, that is to
say, operators that are symmetric under exchange of particles. Thus, any spatial-
antisymmetric wavefunction |φspa,A〉 will satisfy

U
M∑
i

n̂i↑n̂i↓ |φspa,A〉 = 0 . (5.6)

because of symmetry. Then the only term left to be discussed now is the kinetic
one, that we can express in terms of the Fourier modes, according to the following
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transformations for the creation and annihilation operators

âjσ = 1√
N

∑
k e

ikaj f̂kσ , f̂kσ = 1√
N

∑
j e
−ikaj âjσ ,

â†jσ = 1√
N

∑
k e
−ikaj f̂ †kσ , f̂ †kσ = 1√

N

∑
j e

ikaj â†jσ ,

(5.7)

where a describes the lattice spacing and the normalizing constant is chosen to fulfill∑
j â
†
jσâjσ = ∑

k f̂
†
kσf̂kσ = N . Then, we can apply the Fourier transform to the kinetic

term:

−J∑M
〈ij〉, σ â

†
iσâjσ = −J/N ∑

j, σ

∑
k, q(eiaj(k−q)f̂ †kσf̂qσeiqa + h.c.) =

= −J∑σ

∑
k(f̂ †kσf̂kσeika + h.c.) = −2J∑M

k, σ f̂
†
kσf̂kσ cos(ka) .

(5.8)

We recover the band structure of the lattice model −2J cos(ka) where k ∈ (−π
a
, π
a
),

that is to say, it belongs to the first Brillouin zone. So, the energy shifting simply
reflects the fact that the momentum of the particle corresponds to a given value in
the lower Bloch band.

Then, any antisymmetric superposition of single-particles states, whose energies are
given by Eq.(5.8), constitutes an spatial-antisymmetric state |φspa,A〉 . Moreover,
this state is by construction an eigenstate of Ĥ0, since, as we mentioned before, the
onsite energy term vanishes for antisymmetric states.

As a result, we have only left to show that such a state is dark to the dissipation, i.e.
Ĵj|φ〉 = 0. But this is straightforward since Ĵj ∝ âj↑âj↓. Consequently, only states
proportional to â†j↑â

†
j↓will survive and, as no antisymmetric state can be proportional

to that term since it implies multiple occupancy in a given site j, we learn that
cj |φspa,A〉 = 0.

To sum up, we have shown that:

Ĥ0|φ〉 = Eφ |φ〉

Ĵj|φ〉 = 0

 . (5.9)



5.3. Proposed scheme 81

That is to say, the set of states of the form

|φ〉 = |J, 0〉� |φspa,A〉 , (5.10)

are dark to the dissipative dynamics and also eigenstates of the effective Hamiltonian.
Thus, they are steady state solutions of the model shown in Eq.(5.4). The fact that
this set of states is in general not unique, and so we do not drive to a pure state, will
be important in the following sections. As we will show, this will affect the efficiency
of our driving scheme, as the preparation time will be reduced with the increasing
size of the dark manifold.

5.3 Proposed scheme

So far we have shown how for fermionic atoms in a single band the manifold of
completely spin-symmetric states is dark to the dissipator given by Ĵj ≡ (â†j+l↑ +
â†j−l↑)â

†
j↓âj↑âj↓ . Now, it is essential to propose how such a jump operator would be

implemented. We are going to use a combination of coherent and dissipative driving
to do so approximately as a stroboscopic map. Before directly simulating the process
we want to show how this scheme produces a steady state with the desired properties.
Let us again consider a one-dimensional two-component Fermi gas, but now we will
include the second Bloch band in our description. In this way, we can make use of
interband transitions to provide the mechanism for the particle to tunnel a distance
l. For the implementation we need:

1. A mechanism to target and excite the spin-symmetric states to a higher Bloch
band: for this we use a state and spin-selective Raman transfer.

2. A mechanism for the excited atoms to cool down to the lower Bloch band: we
do so through sympathetic cooling (see [12]) of the fermionic species which is
embedded in a one-species bosonic system cooled to the BEC state.

A depiction of the proposed scheme is provided in Fig.5.1. In order to target the
desired symmetry sector (symmetric under exchange in space) we will tune the
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Figure 5.1: Proposed implementation combining a state- and spin-selective Raman
transition between lattice bands with amplitude Ω and the coupling to a BEC
reservoir with coupling ratio Γ. The transition is resonant with the doubly occupied
states with onsite interaction strength U . The tunneling amplitude in the higher
band is given by J1.

Raman transition to be resonant to the energy of a doubly-occupied site U . Then
we can add a polarization-dependent term to separate the higher Bloch band so
that only one of the two spin species is transferred and we can avoid the existence of
double occupancies (which are in the undesired symmetry sector) in the higher band.

Once the particles are excited to the higher lattice band, they will be sympathetically
cooled by a bosonic reservoir. The fermions interact via low-energy collisions with
the reservoir, which has an effective TBEC = 0 as long as kBTBEC � ~ω10, with ω10

the transition frequency between band 1 and band 0 and kB the Boltzmann constant.
The typical timescales of the cooling are τ10 ∼ 10− 100 KHz (for a Rubidium BEC
with scattering length a ∼ 100a0, where a0 is the Bohr Radius, density ρ ∼ 1014 cm−3

and trapping frequency ω ∼ 2π× 105 s−1, see [51]). For this procedure to be efficient
it is important that this decay time is at the most of the order of the tunneling in
the higher band as the scheme requires the particle to displace a certain number of
sites before decaying. This condition can be satisfied in the lower limit of τ10.

Through sympathetic cooling, the particle will stochastically decay to the lower Bloch
band either in the spin-symmetric or spin-antisymmetric sector. However, we can
ensure that as soon as the particle decays to the spin-symmetric state the dynamics
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will not rotate the state into a spin-antisymmetric state, and simply by iterating
this process of Raman transitions and the reservoir cooling we will drive the system
to the dark state manifold. Thus, with this recycling scheme, combining coherent
and dissipative driving, we can distillate the desired spin state of the fermions in the
optical lattice. Even more importantly, this scheme preserves the number of particles
N in the lattice, a major improvement from previous proposals.

Let us discuss now the Hamiltonian describing the system. Under the tight-binding
approximation the fermionic system can be modeled through the Hubbard Hamilto-
nian with two bands:

Ĥ =
∑
〈ij〉,σ,b

Jb â
†
iσbâjσb +

∑
i,b,b′

Ubb′ (n̂i↑bn̂i↓b′ + n̂i↑b′n̂i↓b) (5.11)

−∆
∑
i

n̂i↑1 −
Ω
2
∑
i

(
â†i↑0âi↑1 + â†i↑1âi↑0

)
,

where J0 and J1 are the tunneling amplitudes in the lower and higher lattice band
respectively; U00 and U11 are the onsite interaction constants and U10 the interband
interaction one; ∆ is the constant of the polarization dependent energy shift for ↑-spin
in band 1 and Ω is the interband transition ratio modeling the Raman transition.
Simply by setting ∆ = −(U10−U00) we make the transfer to the higher band resonant
for ↑-spin.

The only ingredient left in our description is the dissipative coupling to the con-
densate. We can describe the dynamics of the system coupled to the reservoir,
whose density operator is ρtot, under the Born-Markov approximation, justified by
the existence of a single dominant frequency which is the interband transition, ω10

(similarly to the approach in [54, 55]). This approximation leads to a master equation
of the system reduced density operator ρ = TrBEC[ρtot]:

ρ̇ = Lρ = − i
~
[
Ĥ, ρ

]
− 1

2~
∑
m

γm(J†mJmρ+ ρJ†mJm − 2JmρJ†m) , (5.12)

where Jm = â†m↑0âm↑1 represents the decay of a ↑-spin particle from the higher to
the lower band on site m and γm is the decay amplitude for the m-th dissipation
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channel. Numerical solutions to this evolution of the system will be discussed in
further sections.

5.3.1 Stroboscopic implementation of the driving scheme

We could consider the dynamics of the system directly through Eq.(6.16) for a fixed
value of the system parameters. However, a more efficient implementation can be
achieved if we consider an stroboscopic change of the system parameters that exploits
the fact that the timescales of the system are strongly separated with the Raman
transfer being much faster than the typical decay time through the coupling to the
reservoir gas:

1. Transfer to the higher band from a deep lattice:

|φ1〉 = e−iHT1 |φ0〉 (5.13)

with ΩT1 = π: π-pulse that allow tunnel to upper band. In this step, we
increase the lattice depth preventing tunneling inside any of the two bands
during the process. The parameters are as follows: U00 = 10J0, U11 = U00/2,
U10 = U00/

√
(2) , ∆ = −(U00−U10) (resonant condition) and Ω = ∆/10. This

could also be implemented through an adiabatic swap, that will present greater
robustness.

2. Delocalization in the higher band:

|φ2〉 = e−iHT2 |φ1〉 (5.14)

with J1T2 = π
2 . The parameters are then J0 = 1, J1 = 3, for varying values

of U00 = 0, J0, 2J0..., maintaining U11 = U00/2, U10 = U00/
√

(2) , ∆ =
−(U00 − U10) (resonant condition) and Ω = 0 (no Raman coupling to upper
band).
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3. Decay through coupling to the reservoir:

|ρ3〉 = e−iLT3 |ρ2〉 (5.15)

with γm = Γ = J0, maintaining the rest of the parameters from step 2
unchanged. Here T3 is chosen so that essentially all the population on the higher
band has been removed, typical values that we consider are T3 ∼ 10J0 = 10γm.
Note that as the dynamics are now open we have represented the vectorized
version of the density operator ρ for easier comparison with Eq.(5.13).

We can iterate this process of transfer to the higher band, delocalization and decay
over time until we populate the spin-symmetric manifold. Once this occurs, as no
part of the wavefunction will be couple to doubly occupied states our state will
become dark.

5.4 Steady state characterization and Quantum
Fisher Information

The proposed scheme aims to prepare a highly entangled state in spin, that could
then be applied for quantum metrology. It is therefore essential to characterize and
define a proper measure to assert whether the stationary state of the proposed open
system dynamics will have an advantage for metrology.

5.4.1 Bloch Sphere picture and Ramsey spectroscopy

As we mentioned, we are interested in using our preparation scheme as an input
state that can then be used for quantum enhanced measurements. A useful way to
represent and characterize our state during the dynamics is through the use of an
enlarged Bloch Sphere [100]. This representation is commonly used in the context
of cold atom interferometry.

In particular, Ramsey spectroscopy experiments with cold atoms [6, 59] have been
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performed in recent years beyond classical accessible precision and showing how
quantum properties can be exploited to perform extremely precise measurements.
In this context, we consider the existence of two atomic states that are the two
modes (equivalent to the two arms) of the interferometer and they will be repre-
sented as the poles of the Bloch sphere. Then, a superposition of both states is
prepared (equivalent to the beam-splitter in traditional interferometry) where the
measurement is performed, since the state will acquire a phase ψ proportional to
the quantity to be estimated. This is followed by a new mixing of the two-modes
closing the interferometry loop. The key point here is the superposition state as if
these states satisfies certain properties the sensitivity of the phase estimation ∆ψ
can overcome classical scaling by a factor of N .

In our system, we choose the completely polarized states |+〉 = | ↑↑↑ ... ↑〉 and
|−〉 = | ↓↓↓ ... ↓〉, that we introduced in section 5.2.1.2, to be represented by the poles
of the sphere, and so, they would correspond to the two-modes of the interferometer.
Thus, any state with N↑ = N↓ corresponds to a vector in the equatorial plane and
will act as the superposition state that we just described. Consequently, our scheme
will prepare a state in the equatorial plane were the measurement will take place. A
depiction of the initial state and the dark state manifold is provided in Fig.5.2.

5.4.2 Quantum Fisher Information

We know that for the smallest system size that one can consider (M = N = 2)) the
target state is simply the triplet state |t〉 = 1√

2

(
â†L↑â

†
R↓ − â

†
R↑â

†
L↓

)
|vac〉 (see section

5.2.1.1); however, increasing the system size will enlarge the dark-state manifold and
so our steady state will not be unique anymore. More specifically, as the system size
increases the steady state will present a mixture in the motional degrees of freedom
while it remains pure in the spin degrees of freedom (we will analyze this in depth in
section 5.5.5). As a result of the lack of uniqueness of our steady state it is difficult
to rely on measures such as the state overlap 〈φprepared|ψtarget〉 or more generally
the state fidelity [100] Fψ,φ =

√
〈ψtarget|ρprepared|ψtarget〉 to determine the success

of our preparation scheme. This, together with the fact that we are interested in
determining the usefulness of the prepared state, make us introduce the concept of
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BEC U J1 Γ

Ω

(a)

(b)Figure 5.2: Initial (random) state and target manifold configurations withN↑ = N↓,
represented both in the lattice and in the generalized Bloch sphere. The system is
driven to a completely spin symmetric state living in the equatorial plane.

Quantum Fisher Information (QFI).

In this section, we present the notion of Quantum Fisher Information [116, 117, 118]
denoted as FQ. This quantity arises from the context of Quantum Estimation Theory.
In order to provide a definition for it, the simplest way is to consider the more general
concept of Fisher information F .

Let us consider a given state, described by a density operator ρ over which we perform
a measurement generated by Ĝ, so that the state transforms as ρ(θ) = e−iθĜρeiθĜ

with θ the phase shift that we would like to measure. We can define an estimator
θest(~µ) which is a function of the outcomes ~µ = µ1, ..., µm with m the number of
measurements performed. The error associated with this estimator is subject to the
Cramer-Rao bound [119, 120]

∆θest ≥ 1/
√
mF , (5.16)

where ∆θest is the variance of our estimator. We immediately can infer that a higher
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Fisher information would reduce the variance of our estimator and so, it is related
to the sensitivity of the state. The classical Fisher Information is given by:

F =
∑
mui

1
p(µi|θ)

(
∂p(µi|θ)
∂θ

)2

, (5.17)

with p(µi|θ) the conditional probability of measuring the value µi with the phase shift
produced by the transformation being θ. Each measurement is, in fact, a positive
operator valued measurement (POVM) with an associated operator Êµi ; thus, the
conditional probabilities are related to the Born rule p(µi|θ) = Tr(ρ(θ)Êµi).

By maximizing F over the total set of POVMs we obtain3 the QFI FQ:

FQ[ρ, Ĝ] = 2
∑
k,k′

(αk − αk′)2

αk + αk′
| 〈k| Ĝ |k′〉 |2, (5.18)

with ρ = ∑
k αk |k〉 〈k| and the sum only including terms that fulfill αk + αk′ > 0.

Then, we can restate the Cramer-Rao bound as:

∆ϕ ≥ 1/
√
mF ≥ 1/

√
mFQ . (5.19)

From Eq.(5.18) we can make two observations: firstly, computing FQ has reduced
to computing matrix elements 〈k| Ĝ |k′〉 of the generator of the measurement we
want to perform; secondly, this expression requires the diagonalisation of the density
operator which quickly becomes an expensive computation to perform (it scales as
the square of the size of our Hilbert space). Consequently, the system sizes for which
the expression in Eq.(5.18) can be computed are rather small due to the exponential
growth of the Hilbert space.

Now, to make this computation efficient in our case it is important to consider
which type of transformations will take place in our system. The state preparation
we propose will then be used in an interferometry scheme, as we discussed in section
5.4.1. In this kind of two-mode interferometers we can consider our transformations
as rotations along the generalized Bloch Sphere.

3A careful derivation of the QFI expression from Eq.(5.17) can be found in [121, 117].
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If we impose again the condition of N↑ = N↓ (or, equivalently, that our state lies in
the equator of the Bloch Sphere with Jz = 0) a possible transformation would be a
coherent spin-flip from the XY-plane (a tilt of the manifold along the most sensitive
direction), for which the generator is a collective spin operator

Ĵx = 1
2
∑
l

(c†l↑cl↓ + h.c.). (5.20)

Hence, in our case

FQ[ρ, Ĝ] = 2
∑
k,k′

(αk − αk′)2

αk + αk′
| 〈k| Ĵx |k′〉 |2. (5.21)

We can relate this to the system size scaling in the metrological schemes. Classical
states of atoms possess a sensitivity on the phase estimation scaling with ∆θest ≥
1/
√
mN which corresponds to the Standard Quantum Limit (SQL). However, these

can be overcome by the introduction of entanglement in the system up to the
Heisenberg scaling [112, 3] with ∆θest ≥ 1/

√
mN . Thus, affecting the scaling of

QFI [122], from FQ ∼ N for the SQL to FQ ∼ N2 for Heisenberg scaling.

5.4.3 Reduction to the pure state expression for the QFI

As we mentioned computing Eq.(5.18) requires the diagonalisation of the density
operator that is computationally unaffordable for many system sizes. However, if
the input state is pure ρ = |ψ〉 〈ψ| (αk = 0∀ k 6= ψ), the expression becomes rather
simple:

FQ = 2∑k,k′
(αk−αk′ )

2

αk+αk′

∣∣∣〈k ∣∣∣Ĝ∣∣∣ k′〉∣∣∣2 =

= 2∑k=ψ,k′ 6=k

∣∣∣〈k ∣∣∣Ĝ∣∣∣ k′〉∣∣∣2 + 2∑k′=ψ,k 6=k′
∣∣∣〈k ∣∣∣Ĝ∣∣∣ k′〉∣∣∣2 =

= 4∑k′ 6=ψ

∣∣∣〈ψ ∣∣∣Ĝ∣∣∣ k′〉∣∣∣2 = 4∑k′ 6=ψ

〈
ψ
∣∣∣Ĝ∣∣∣ k′〉 〈k′ ∣∣∣Ĝ∣∣∣ψ〉 =

= 4 〈ψ
∣∣∣Ĝ∣∣∣ (I − |ψ〉 〈ψ|) ∣∣∣Ĝ∣∣∣ ψ〉 = 4

(〈
Ĝ2
〉
−
〈
Ĝ
〉2
)

= 4∆Ĝ.

(5.22)
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There we made use of the identity I = ∑
k′ |k′〉 〈k′|. Then, in the case of having a

pure state we would only require to compute the expectation value of the variance
of an operator (FQ = 4∆Ĵx). This is not only a much simpler procedure but also
it allows us to exploit the better scaling with system size of quantum trajectories
(scaling with the size of the Hilbert space and not the square of it).

This property might seem difficult to exploit as, in general, we will not drive our
system to a pure steady state or be pure during the time evolution. Nevertheless, we
show that for N↑ = N↓ any rotation generated by Ĵx will project our system out of
the Ĵz = 0 manifold and in this case, we obtain an expression as simple as Eq.5.22
even in the case of mixed states.

Consider the state of the system described by ρ = ∑
k αk |k〉 〈k|, where {|k〉} forms a

complete basis in the Hilbert spaceH. Since the order of our basis is arbitrary we can
choose it so that αk > 0 for k < k0 and αk = 0 for k ≥ k0. From the expression of FQ:

FQ = 2
∑
k,k′

(αk − αk′)2

αk + αk′
| 〈k| Ĝ |k′〉 |2, (5.23)

we can distinguish three different situations:

1. k, k′ ≥ k0 which is automatically eliminated as we sum over states which satisfy
αk + αk′ > 0;

2. k, k′ < k0 which vanishes in our case, as we explain below;

3. k ≥ k0, k
′ < k0 or k′ ≥ k0, k < k0 which is the one that can be reduced to the

pure state expression as we will show now.

First, we have to show that 2. does not contribute to the FQ in our specific model. As
we impose the condition of N↑ = N↓ and we restrict our dynamics to the equator of
the Bloch sphere we know that any state contributing to ρ (corresponding to k < k0)
has a well-defined number of each spin N |k〉↑ = N

|k〉
↓ = N/2 with N the total particle

number. Then, if both k, k′ belong to the equator as the generator Ĵx = Ĵ+ + Ĵ−

does not conserve the spin number, any term of the form | 〈k| Ĵ± |k′〉 | will vanish if
both k and k′ have the same N↑ and N↓.
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Then, the only terms left to consider are the ones in 3. corresponding to k ≥
k0, k

′ < k0 or k′ ≥ k0, k < k0:

FQ = 2∑k,k′
(αk−αk′ )2

αk+αk′
| 〈k| Ĵx |k′〉 |2 =

= 2(∑ k,k′

k<k0

αk| 〈k| Ĵx |k′〉 |2 +∑
k,k′

k′<k0

α′k| 〈k| Ĵx |k′〉 |2) =

= 2(∑ k,k′

k<k0

αk| 〈k| Ĵx |k′〉 |2 +∑
k′,k
k<k0

αk| 〈k′| Ĵx |k〉 |2) =

= 4∑ k,k′

k<k0

αk| 〈k| Ĵx |k′〉 |2 = 4∑ k,k′

k<k0

αk 〈k| Ĵx |k′〉 〈k′| Ĵx |k〉 =

= 4Tr
(
ĴxρĴx

)
= 4Tr

(
ρĴ2

x

)
.

(5.24)

The expression is similar to the pure state case for the choice of the generator Ĵx,
but misses the contribution of the 〈Ĵx〉2 term as this is zero for any state on the
equator of the Bloch sphere.

As an example of this, we show in Fig.5.3 the ratio between Tr(ρĴ2
x) and the QFI

computed from the complete expression given by Eq.(5.21). We compare both
expressions for different example states with mixtures along or outside the equator.
The results show clearly how mixedness along the equator does not prevent the FQ
from saturating the pure state expression 4(∆Ĝ)2.
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Figure 5.3: Ratio between QFI for a mixed and pure state for different mixtures
of states inside and outside the equatorial plane (N↑ = N↓).

5.4.4 Relation between angular momentum and QFI

We already mentioned that if the state prepared scales beyond classical sensitivity
then FQ ∼ N2. Making use of angular momentum theory we can predict the
saturation value for Tr(ρĴ2

x) and how it will scale with the system size N . Given our
generator:

Ĵx = 1
2
∑
l

(â†l↑âl↓ + h.c.) . (5.25)

As we already mentioned in section 5.2.1.2, we can define the spin component of the
completely spin-symmetric state wavefunction as:

|J, Jz〉 → |J, 0〉 (Jz = 0) . (5.26)
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Therefore, it is only left to calculate:

〈J, 0| Ĵ2
x |J, 0〉 = 〈J, 0|

(1
2
(
Ĵ+ + Ĵ−

))2
|J, 0〉 , (5.27)

with the angular momentum eigenstates satisfying:

Ĵ2 |J, 0〉 = J(J + 1) |J, 0〉

Ĵz |J, 0〉 = Jz |J, 0〉

Ĵ± |J, 0〉 =
√
J(J + 1) |J, 0〉


. (5.28)

So,

〈J, 0|
(

1
2 (J+ + J−)

)2
|J, 0〉 = 1

4 (〈J, 0| J+J− |J, 0〉+ 〈J, 0| J−J+ |J, 0〉) +

+1
4

(
〈J, 0| J2

+ |J, 0〉+ 〈J, 0| J2
− |J, 0〉

)
= 1

4 (〈J, 0| J+J− |J, 0〉+ 〈J, 0| J−J+ |J, 0〉) =

= 1
4(〈J, 0| J(J + 1) |J, 0〉 〈J, 0| J(J + 1) |J, 0〉 = 1

2J(J + 1) .
(5.29)

For N spin-1
2 particles, we have J = N/2:

∆J2
x

∣∣∣
Jz=0

= 〈J, 0| J2
x |J, 0〉 = 1

2J(J + 1) = N

4

(
N

2 + 1
)
. (5.30)

Finally, we obtain:
FQ = N

(
N

2 + 1
)
. (5.31)

So we can conclude that if we successfully drive the system to a completely spin-
symmetric state, we will obtain a sensitivity in our phase estimation scaling with N2

and so, our system will show a sensitivity beyond the SQL.
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5.5 Numerical results

In this section, we will describe the results we obtained from our numerical simu-
lations of the open system dynamics making use of the Monte Carlo Wavefunction
Method (see section 3.3.2). The main reason for the choice of this method is the
fact that we do not require the computational cost associated with calculating the
density operator, whose scaling is the square of the dimension of the Hilbert space.
This method, however, requires averaging over stochastic trajectories of pure states.

We will discuss different regimes and dependences with system parameters. In
particular, we will focus on the effect of the onsite interaction on the cooling step, how
the filling factor affects the efficiency of the driving process and also the robustness
of the method against some experimental imperfections. Finally, we will analyze the
purity of the state during the process and how it affects its efficiency.

5.5.1 Dependence on the onsite interaction

As we discussed in section 5.3.1, we will stroboscopically modify some of the system
parameters during the preparation scheme. In particular, we will start with a
depth lattice and a large onsite interaction compared to J0. However, during the
delocalizing and cooling steps the lattice will be shallower and the interaction energy
smaller. The first study we address consist in analyzing how this onsite interaction –
small but in principle finite – affects the driving of the system during the cooling step.

In Fig.5.4 we present the QFI evolution as the stroboscopic driving is iterated over
time. We present the values for a varying onsite interaction U00 on the cooling step
while maintaining it fixed at U00 = 10J0 during the driving to the higher Bloch
band. We see that increasing the value of the onsite interaction decreases the speed
at which the system approaches the steady state but only in a distinguishable manner
when reaching values of the order of U00 ∼ 3J0. The main message to extract from
this analysis is that, as long as we remain in the moderate onsite interaction regime,
small differences in the value of U00 will have small impact in the timescales of the
drive or in the steady value obtained (see inset of Fig.5.4). Then, we can choose an
intermediate value that in our case it will be U00 = 2J0 (observing high values of
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FQ at rather short times) and assume that the system is quite robust if the value is
slightly different.
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Figure 5.4: (a) Evolution of the QFI as the process of excitation to the higher band
and decay is iterated ν times for a system with N = 4, M = 6, J1 = 3J0, U00 = 2J0
for the cooling step (U00 = 10J0 for the transfer to the higher band), U10 = U00/

√
2,

∆ = U10−U00, Ω = ∆/10, Γ = J0. Here, the time per iteration τν = Π/Ω+(10γ)−1 ∼
(10/J0). Every line corresponds to the average over 100 trajectories, with associated
errorbars included only for one curve as they are comparable for the rest. We observe
that QFI approaches its maximum value FQ = 4∆Ĵx = N(N/2 + 1). Varying the
value of the onsite interaction during the cooling process affects the efficiency of the
process but differences are rather small before reaching U00 = 3J0 where we observe
that the timescales at with we reach the steady state become slower. Inset: same as
(a) for the last 50 iterations of the process, here we observe that all the saturating
values are close to the maximum FQ but are slightly reduced for non-zero values of
U00.
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5.5.2 Filling factor dependence of the dissipative driving
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Figure 5.5: (a) Evolution of the QFI as the process of excitation and decay is
iterated ν times for a system with N = 4, J1 = 3J0, U00 = 2J0 for the cooling step
(U00 = 10J0 for the transfer to the higher band), U10 = U00/

√
2, ∆ = U10 − U00,

Ω = ∆/10, Γ = J0. Here, the time per iteration τν = Π/Ω + (10γ)−1 ∼ (10/J0).
Every line corresponds to an average over 500 trajectories with associated errorbars
(errorbars for M = 6 are similar to the case of M = 8 and are not displayed for
better visualization). The QFI saturates to the maximum possible value given by
FQ = 4∆Ĵx = N(N/2 + 1). Commensurate filling effects reduce the efficiency of the
process as doublons are more likely to form during decay from higher band when
the occupation in the lower band is higher. (b) Same as (a) but analyzing the
double-occupancy in the lower band ∑i〈n̂i↑n̂i↓〉/M .

The second analysis that we will perform is related to the filling factor. A priori,
this is expected to have a big impact in the process. On the one hand, we know
that any filling factor corresponding to more than one particle per site would force
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any configuration to have at least a doubly-occupied site (making it impossible for
the system to reach a completely spin-symmetric state). Consequently, we will focus
on filling factors n ≤ 1, with n = ∑

i〈n̂i↑0〉/M . On the other hand, it is clear that
low fillings will immediately provide low multiply-occupancy population, however, it
will be more difficult for particles to entangle to each other and for triplets in that
case and so the FQ might saturate slower. It is also important to consider that our
sensitivity scales with N and so, it is positive to maintain n relatively high.

In Fig.5.5 we study the influence of the filling factor on the efficiency of our scheme.
As predicted, for a fixed number of atoms increasing the lattice length has a positive
effect on the timescales although it will not affect the saturation values.

This effect is specially dramatic in the case of N = M (commensurate filling) where
we observe a much slower growth towards the steady state, and so, to the saturation
of FQ that occurs outside the simulated times. This is better understood in section
5.5.5 were we indicate the fact that the steady state becomes pure for the case
of N = M . However, we can understand it simply by considering the fact that
when the atom decays from the higher Bloch band in the case of unit filling, the
probability for the site to be already occupied by another atom is higher and so
is the probability of creating a doublon after decaying. Consequently, the target
region in the Hilbert space becomes narrower and our driving slower. Meanwhile,
for N < M the symmetry sector we target is larger and the driving becomes more
efficient.

We can observe similar signatures if we analyze the multiple occupancies in the
lattice (Fig.5.5b). As the system is driven to the completely-symmetric state all
the population of doublons disappears, this decrease is slower again in the case of
commensurate filling as the driving becomes less efficient.

We can conclude from this analysis that filling factor n . 1 are the most efficient as
they provide the best trade-off between preparation timescales and sensitivity (which
is proportional to N).
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5.5.3 Spatial inhomogeneities: magnetic field gradient
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Figure 5.6: (a) Evolution of the QFI as the process of excitation and decay is
iterated ν times for a system with M = N = 6, J1 = 3J0, U00 = 2J0 for the cooling
step (U00 = 10J0 for the transfer to the higher band), U10 = U00/

√
2, ∆ = U10−U00,

Ω = ∆/10, Γ = J0 in the presence of a local magnetic field gradient of amplitude
αFG. Here, the time per iteration τν = Π/Ω + (10γ)−1 ∼ (10/J0). Every line
corresponds to the average over 200 trajectories with the corresponding errorbars.
We observe how the QFI increases even in the presence of a small field gradient only
failing to saturate for the case of αFG = 0.01J0. (b) Same as (a) for ∑i〈n̂i↑n̂i↓〉/M .
The scheme is robust to small values of the gradient (αFG = 0.001J0). All errorbars
are of the order of the ones shown, the rest have been remove to allow for better
visualization of the profiles.

It is essential to test the robustness of the method against spatial imperfections which
can couple the two spin-symmetry sectors. For example, space inhomogeneity could
lead to a coupling of the symmetric and antisymmetric states which is undesired.
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In this section, we analyze the robustness of the driving scheme against spatial
imperfections in the system. In particular, we consider the presence of a field
gradient in the lattice of the form ∑M

i,b εi↑bn̂i↑b where the local energy shift is given
by εi↑b = αFG(i −M/2). Note that in the results discussed here we only include
a field gradient of this form, however, different profiles of the magnetic field were
investigated and the results were qualitatively equivalent to those included here.

In Fig.5.6 we present the QFI and double occupancies profiles in the presence of
a magnetic field gradient with varying local strength αFG, small field gradient values
do not affect the profiles (differences within error intervals). However, if the gradient
per site is of the order of αFG = 0.01J0 after a transient time, both quantities
remain approximately constant. This due to the competing effects of our driving
scheme with the symmetry recombination that the spatial imperfection produces.

It is important to understand what realistic values for αFG would be in an ex-
perimental implementation. Thus, we can determine if the scheme is robust or not
in realistic conditions. In order to do so, let us consider that our spin states ↑, ↓
belong to the 1S0 manifold of 87Sr. This choice is related with the fact that, in the
ground state manifold, both the orbital angular momentum and the electron spin are
zero. Thus, only nuclear spin contributes, which scales with µN , so-called nuclear
magneton, instead of the Bohr magneton µB ∼ 1000µN . As a result, with this choice
we immediate obtain a three order of magnitude advantage against uncontrolled
magnetic fields.

We can estimate the field gradient tolerance between neighbour sites as ∆εi,i+1 =
µNmIαFG ∼ 0.001J0, where mI is the angular momentum projection of the chosen
hyperfine states (we propose to use 9/2 and 7/2). Thus, the field gradient should
satisfy αFG . 500 mG/mm, for a typical lattice distance of a ∼ µm this will
correspond to αFG . 0.5 mG/site, a value that is currently accessible in most cold
gas experiments.
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5.5.4 Average steady values

Figure 5.7: (a) QFI averaged over the final 50 iterations of the loop process, when
200 loops were performed; (b) Multiple occupancy proportion in the final state of
the system averaged over the final 50 iterations of the loop process. The system size
is N = 4, different sizes of the lattice and values of the field gradient are explored.
The results correspond to the average of 500 trajectories. The result correspond to a
system with J1 = 3J0, U00 = 2J0 for the cooling step (U00 = 10J0 for the transfer to
the higher band), U10 = U00/

√
2, ∆ = U10 − U00, Ω = ∆/10, Γ = J0 in the presence

of a local magnetic field gradient of amplitude αFG.
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An alternative approach to the previous studies is to consider a fixed number of
iterations and study how the final average value of the interesting quantities: the
QFI that reflects the utility of the state for metrology and the multiple occupancy
that reflex the presence of the undesired symmetry sector,; and how the filling factor
and the spatial imperfections such as the field gradient affect them.

In Fig.5.7, we include both the effects of the lattice size and the field gradient on
the average final state quantities. On the one hand, we observe that commensurate
filling reduces the efficiency of the process and thus for the timescales considered,
neither the QFI saturates nor does the multiple occupancy vanish completely. On the
other hand, as we increase the field gradient the saturating value of QFI decreases
considerably. It is important to remember that for the proposed realization with
87Sr, typical values of the field gradient will remain on the left part of the diagram.
We can easily observe how for the case of M = 6 that corresponds to the already
mentioned n . 1 regime the results are more robust to the presence of the field
gradient as the driving has its maximum efficiency with this filling factor.

5.5.5 State purity analysis

When analyzing the efficiency of the dissipative driving in section 5.5.2, we observed
that commensurate filling has a detrimental effect on the timescales of the prepara-
tion; this can be understood by the fact that higher filling increases the probability
of doubly occupied sites in the lattice. However, this is not the only reason why the
case N = M is particularly interesting. Specifically, in this section we identified that
the timescales of the state distillation are also affected by the purity of the target
state.

In Fig.5.8 we compare the overall purity with the spin purity for two filling factors.
Due to the choice of an initial random configuration fixing N↑ = N↓, the initial state
is pure in spin but has a high mixture in the motional degrees of freedom. Away from
half filling, the overall purity remains almost unchanged and highly mixed for the
motional modes, while the spin state becomes rapidly pure as the dynamics converge
towards the steady state. Nevertheless, in commensurate filling where the possible
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Figure 5.8: (a) Purity of the density operator (dashed lines) and purity of the
reduced density operator in spin (solid lines) as the process of excitation and decay
is iterated ν times for a system with M = 6, J1 = 3J0, U00 = 2J0, U10 = U00/

√
2,

∆ = U10 −U00, Ω = ∆/10, Γ = J0. Here, the time per iteration τν ∼ 3− 4J0. Every
line correspond to the average over 50 trajectories. After starting from a random
configuration the spin state becomes pure as the system reaches its steady state,
while the overall state remains highly mixed due to the coupling to different motional
modes. Only in the case of commensurate filling were the accessible motional modes
for a single spin state are reduced, we observe an increase in the overall purity. (b)
Same as (a) including a field gradient term (αFG = 0.01J0), the presence of the field
gradient limits the purity in spin of the steady state in a similar manner to the QFI,
as the target state is not completely saturated. Apart from this the effect of the field
gradient is quite small in the evolution of the purity.
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motional modes are fewer we observe both the spin and the overall state to converge
towards a pure state. This provides another reason for the driving to be less efficient
as the target manifold narrows down. Moreover, the presence of the field gradient
(Fig.5.8b) does not affect in great degree the purity profiles, even though it prevents
the steady state to become completely pure and it remains mixed both in the global
and the spin purity. Note that this effect is small since we are considering a large field
gradient (one order of magnitude higher than the tolerated value for the proposed
setup with 87Sr).

5.6 Conclusion

In this chapter, we have proposed an scheme, based on coherent and dissipative
driving, that filters the spin symmetry for cold fermions in an optical lattice. A
completely spin-symmetric state is prepared based on a combination of state-selective
Raman transfer and sympathetic cooling with a bosonic reservoir gas. It is important
to mention again that previous proposals required collisional losses in order to prepare
the state and we have overcome this requirement with the current proposal.

Moreover, we applied the notion of Quantum Fisher Information and analyzed the
sensitivity of the prepared state in an interferometric scheme, identifying the parame-
ter regimes where the entanglement generated in the state will produce an advantage
over classical states gaining a factor of N in the best scenarios. We have studied
the robustness of the state against system imperfections such as a magnetic field
gradient. We have shown that for realistic experimental parameters, we are able to
efficiently drive the system to the desired symmetry sector.

On the other hand, it is important to consider that we have only included relatively
small system sizes and so it is relevant to estimate the scaling of the scheme with
the system size towards experimental particle numbers. This is an ongoing work
where we make use of density matrix renormalization group (DMRG) techniques, in
particular we compute the time evolution of the system through the Time-Dependent
Variational Principle (TDVP) technique [123]. It is most efficient to then to simulate
the effective one-band model described by Eq.(5.4), which will help us to confirm
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the scaling of the timescales with N .

Finally, another possible improvement of the scheme is related to the inclusion of
the reservoir gas which posses certain experimental complications. We are currently
exploring the possibility of designing a full-optical scheme were we also optically
generate the decay from the higher Bloch band using Raman sideband cooling [124].
This method, however, could induce light-assisted collisions in the system if the atom
decays to an already occupied site and so we could loose a certain portion of our
population with this procedure. Alternatively, we also consider the possibility of
driving the system to metastable states. In this case the delocalization would take
place in the atoms in the lower band and not by the excited atom. We consider the
latter as the most promising future direction for implementation.



Chapter 6

Particle statistics and dynamics
with loss of ultracold atoms in
optical lattices

6.1 Introduction

In this chapter, we include and discuss in depth the findings that we published in
[125] related to the role of particle statistics in dynamics with atom losses in optical
lattices.

Current technology in quantum gas microscopes [126, 12, 127] has allowed us to
study cold atomic systems, both with bosonic and fermionic atoms, in low dimen-
sions. In 1D, despite the different particle statistics, both systems share many of
their dynamical and equilibrium properties as we can formally describe through a
Jordan-Wigner transformation [83]. In this chapter, we investigate to what extent
the addition of dissipation to the system can produce measurable differences between
spinless fermions and hard-core bosons (HCBs) which under most circumstances
have identical local properties in 1D in the closed system scenario. In particular, we
investigate the role of particle loss in distinguishing the particle exchange statistics,
identifying deterministic and probabilistic signatures of dynamical differences in
terms of local quantities that are accessible with quantum gas microscopes.

105
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Experiments with cold atoms involving optical lattices were originally focused on the
engineering of Hamiltonian dynamics in closed systems focusing towards quantum
simulation problems [1, 128]. However, an important aspect of the system is that we
have access to the same level of microscopic understanding for most of the dominant
forms of dissipation that occur naturally in experiments, developing models which
can be derived from first principles under well-controlled approximations. In this
chapter we focus on two forms of dissipation, single atom loss [129] and dephasing
due to inelastic light-scattering [130, 131]. We study these sources of dissipation
aiming not only to improve the realistic description of experimental conditions but
also to use them (i) in probing many-body states and their dynamics [132, 133],
(ii) in the controlled preparation of interesting many-body states [132, 134], and
(iii) in understanding how signatures of fundamental effects from closed systems
(e.g., many-body localization (MBL)) survive in the presence of coupling to an
environment [135, 136, 137, 138, 139].

Furthermore, we make use particle-number conversation in tensor-network-based
numerical methods (see section 4.1.6) to efficiently compute the dynamics of example
systems for typical experimental sizes and parameter scales in the presence of loss.
We include deterministic forms of dissipation when losses are produced on demand
and also we employ a quantum trajectory approach [46, 47, 92] to determine features
of HCBs and spinless fermions that survive in the presence of stochastic losses and,
potentially, with other sources of dissipation.

This chapter is structured as follows: in Sec.6.2 we discuss the similarities in the
theoretical description of spinless fermions and HCBs in one dimension, formalizing
it through a Jordan-Wigner transformation. In Sec.6.3 we include the analysis of
the differences for the two particle statistics in the context of losses being induced
on demand in an experiment. In Sec.6.4 we investigate how the previous results are
modified when the losses occur in an stochastic scenario and how realistic imperfec-
tions could affect our ability to distinguish particle statistics via local measurements.
Finally, in Sec.5.6 we discuss our findings and point out some future directions opened
by our work.
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6.2 Similarities of spinless fermions and hard-core
bosons

As mentioned, in this chapter we investigate the dynamics of spinless fermions
and HCBs allowed to move in one direction while tightly confined in the other
two directions. In chapter 2, we discussed that the study of one-dimensional (1D)
systems is one of the essential ingredients for the current theoretical understanding
of ultracold atoms; this is due to the fact that many of our numerical tools can
simulate comparable system sizes, parameter regimes and timescales to experiments
in 1D, while this remains in many cases inaccessible for higher dimensional systems.

These systems, were fermions and bosons behave similarly [140], have been realized
with cold bosonic atoms in strongly confined 1D tubes [141], and in lattices [8, 142],
and the consequences can be seen clearly, even for just two atoms, in quantum gas
microscope experiments [143].

This similarity between HCB and fermions on a lattice can be formally addressed
using a Jordan-Wigner transformation to spin operators [83] (for a full description
of the Jordan-Wigner transformation, see section 2.4.1.1). Note that other general
Bose-Fermi maps exist [140], for example in the case of contact interaction [144].

As a starting point, we can obtain the Hamiltonian describing HCBs in one-dimension
as a limiting case of the Bose Hubbard model we discussed in section 2.4.2(~ ≡ 1)

Ĥ = −J
M−1∑
i

(
b̂†i b̂i+1 + h.c.

)
+ U

2

M∑
i

(n̂b,i (n̂b,i − 1)) , (6.1)

where the operator b̂(†)
i annihilates (creates) a bosonic particle on site i, n̂b,i = b̂†i b̂i is

the bosonic number operator of the site i ∈ [1,M ], M is the lattice system size, J is
the tunneling amplitude in the lattice and U is the on-site interaction. The bosonic
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operators obey the following commutation rules1,

[
b̂

(†)
i , b̂

(†)
j

]
= 0;

[
b̂i, b̂

†
j

]
= δi,j . (6.2)

If we consider the case of U → ∞ then for low energies, the probability of con-
figurations with several atoms on a single site is negligible and so we can add the
constraint of n̂b,i ∈ [0, 1] or b̂2

l ≡ 0, hence, representing HCBs with this model.

After imposing these constraints we are left with a tight-binding model of the form

Ĥ = −J
M−1∑
i

(
b̂†i b̂i+1 + h.c.

)
, b̂2

l ≡ 0 , (6.3)

where the only contribution is related to the tunneling to neighbouring sites.

Similarly, for spinless fermions in the lowest Bloch band of the optical lattice, the
system is well described as well by a tight-binding Hamiltonian,

Ĥ = −J
M−1∑
i

(
â†i âi+1 + h.c.

)
, (6.4)

where the operator â(†)
i annihilates (creates) a fermionic particle on the site i with

n̂a,i = â†i âi ∈ [0, 1] is the fermionic number operator of the site i, and J is the
tunneling amplitude in the lattice. The fermionic operators obey the usual anticom-
mutation rules, {

â
(†)
i , â

(†)
j

}
= 0;

{
âi, â

†
j

}
= δi,j . (6.5)

As we mentioned before the similarity between HCB and spinless fermions can be
formalized via a Jordan-Wigner transformation for both particle types into spin
operators.

On the one hand, for bosons the mapping is rather simple since we have a direct
1Note that in the literature the commutation relations of HCBs are usually given by [bi, b

†
j ] =

(1 − 2ni)δij . However, we choose to use the standard bosonic ones adding the limit of infinite
interactions (implying b̂2

l ≡ 0) since they are computationally equivalent and we will explore the
limit of large but finite interaction in bosons.
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correspondence between a site with occupation 0 or 1 and the two states of a spin-1/2
particle. The local states and the operators are obtained by a direct replacement:

|1〉, |0〉 → | ↑ 〉, | ↓ 〉 , (6.6)

bi, b
†
i → σ−b,i, σ

+
b,i ,

where the spin states associated with each lattice site denote presence (|↑〉) or absence
(|↓〉) of a particle on that site. This direct replacement is possible since both spin
and bosonic operators satisfy the same commutation rules (Eq.(6.2)). Hence, the
transformed Hamiltonian from Eq.(6.3) is given by

Ĥ = −J
M−1∑
i

(
σ̂+
b,iσ̂
−
b,i+1 + h.c.

)
, (6.7)

On the other hand, the same mapping for fermions is not trivial. In order to explain
it, we have to consider, as we explained in section 2.4.1.1, that any fermionic state
in second quantisation requires an order convention that we choose to be the natural
lattice site ordering, where we describe a state with full occupation in the lattice in
the following form

â†1â
†
2...â

†
M |vac〉 . (6.8)

This ordering choice is arbitrary but it is the simplest for bookkeeping when operators
are applied on the state. From this ordering we infer that when applying any operator
acting on site l to the state, this operator will need to anticommute with any other
operator on sites 1 to l − 1 in the state description. And so, expressing this in
terms of spin operators (with bosonic commutation rules) requires the addition of
a string operator to account for anti-commutation of the applied operator. The
transformation is defined as

â
(†)
l = exp

∓iπ∑
j<l

σ̂+
a,jσ̂a,j

 σ̂
−(+)
a,l ; σ̂

−(+)
a,l = exp

±iπ∑
j<l

â†j âj

 â
(†)
l , (6.9)
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implying that

|1〉, |0〉 → | ↑ 〉, | ↓ 〉 , (6.10)

â
(†)
l → (−1)θl σ̂−(+)

a,l ,

with the phase factor θl = ∑
i<l σ̂

+
a,jσ̂a,j = ∑

i<l n̂a,i accounting for any anticommuta-
tion of fermionic operators. One can immediately observe that both transformations
in Eq.(6.6) and (6.10) , are different. Nevertheless, in the transformed Hamiltonian
all phases θl vanish for fermions and we obtain the same expression as (6.7):

Ĥ = −J
M−1∑
i

(
σ̂+
a,iσ̂

−
a,i+1 + h.c.

)
, (6.11)

We can explicitly observe how the phases vanish considering the hopping terms in
(6.10):

â†l âl+1 → (−1)(
∑

i<l
n̂a,i) σ̂+

a,l (−1)(
∑

i<l
n̂a,i) σ̂−a,l+1 = (6.12)

= (−1)(
∑

i<l
2n̂a,i)︸ ︷︷ ︸

1

(−1)n̂a,l σ̂+
a,l σ̂

−
a,l+1 = σ̂+

a,l σ̂
−
a,l+1 , (6.13)

since we require initially n̂a,l = 0 for the element to be non-zero as fermionic
commutation rules impose

(
a†l
)2
≡ 0, that is to say, that only one particle can

occupy a lattice site. And so, Hamiltonians including only first-neighbour tunneling
are identical in 1D.

In general, any term that is quadratic in âl, â
†
l or a combination of both will have

no fermionic phase since it will be proportional to (−1)(
∑

i<l
2n̂a,i) = 1. For example,

the local density is proportional to a product of two operators n̂a,i = â†l âl, thus any
phase that arises from the commutation will cancel and n̂a,i = σ̂+

l σ̂
−
l . Similarly, for a

nearest-neighbour offsite interaction ∝ n̂a,ln̂a,l+1 where again all phases would cancel
as the terms are proportional to the local densities (quadratic operators in âl, â†l ).

As a result, in these local models, the densities and energy eigenvalues will be
identical, and local correlations – both for the eigenstates and out-of-equilibrium
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Figure 6.1: Momentum distribution schematic of the one-dimensional ground state
of spinless fermions (top), governed by Fermi-Dirac statistics and hardcore bosons
(bottom) given by Bose-Einstein distribution in the thermodynamic limit.

dynamics induced by changing local trap quantities – will be equal as well. Note that
differences exist – already in 1D – in the momentum distribution of both fermions
and HCBs, governed by Fermi-Dirac and Bose-Einstein statistics respectively [145].
As a result, the momentum distribution of the ground state will be different [146]:
a flat distribution with a sharp drop in the Fermi energy for fermions and a peak
around zero momentum for bosons as depicted in Fig.6.1.

The momentum distribution can be accessed with time-of-flight type measurements.
However, we expect that even a few loss events will lead to distinguishable behaviour
between fermions and HCBs when simply measuring local quantities. And so, our
approach is to introduce these dissipative terms that could disturb the dynamics
producing relevant differences in the behaviour and that would not appear in the
closed system.

The dissipative channel we consider in subsequent sections is single-particle loss
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which is proportional to
âl = (−1)(

∑
i<l

n̂a,i)σ̂−, (6.14)

where the string operator does not vanish. From the form of Eq.(6.14), we can infer
that a loss event generates differences in local quantities due to the different exchange
symmetries in the many-body wavefunction. Moreover, we will be able to observe
differences in quantities that were identical in the closed system dynamics such as
density distributions, which are accessible with current experimental techniques in
quantum gas microscopes [29, 30, 31, 32, 33, 34]. And so, as we show in the following
sections, particle loss will allow us to probe closed system properties as it is the case
of bosonic or fermionic particle statistics.

6.2.1 Tensor network representation of loss operators

Before presenting the results, it is important to highlight that the numerical results
that we will present in the coming sections aim to describe relevant system sizes for
the current experiments [29, 30, 31, 32, 33, 34] that are of the order of tens of sites. In
general, exact-diagonalization methods do not allow us to reach these sizes and so it
is essential to make use of tensor-network techniques [35, 42, 147], that we introduced
in chapter 4. Usually, when dealing with dissipative dynamics there are two major
approaches. On the one hand, it is possible to map the density operator describing
the state of the open system ρ to a matrix product operator [98, 97]. Another
possibility is to make use of quantum trajectories [46, 47, 92](see subsection 3.3.2),
which transforms the dynamics of the density operator into an stochastic sampling
of pure-state evolutions that are described through matrix product states. In the
results that we will present in this chapter we make use of the latter method. In this
formalism, we apply the time-evolving block decimation (TEBD) [39] (see subsection
4.3) in order to compute the time evolution of one-dimensional many-body systems.

One of the bottlenecks that the simulation through tensor networks faces when
describing our particular system is that fermionic losses as we discussed in sec-
tion 6.2 are non-local. Due to the presence of a string operator proportional to
N<i = (−1)

∑
k<i

n̂a,k , this non-local quantity cannot be easily expressed in terms of
a local tensor similar to the ones we apply in TEBD to compute time evolution.
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Consequently, it would require an expression in terms of a MPO, which would in
general be exponentially coupled. Alternatively, this operator can be expressed as a
local operator if we split our state representation into parity conserving sectors (see
section 4.1.6). In addition, expressing our state in terms of symmetry conserving
algorithms [105, 40] helps to optimize our time evolution calculations of pure states
through TEBD.

More specifically, in our tensor network every local tensor Adi – with the notation
of section 4.1 – gathers together any state with particular population to the left or
the right of a given site i. Since this quantum number is encoded in our tensor
description, the value of the string operator N<i = ±1 becomes trivial as we know
the specific value. As a result, we simply need to apply the annihilation operator
âi, that is represented as a local operator in terms of our MPS structure, multiplied
by a phase that is known for each part of the tensor. in this way, the losses in the
system can be modeled in an affordable way.

Note that all other terms appearing in the dynamics [Eq.(6.3), Eq.(6.4) and Eq.(6.16)],
both in the unitary and the dissipative part, are either proportional to n̂a,i = â†i âi,
or proportional to â†i âi±1, with all string operators evaluating to one as discussed
in Sec.6.2. Thus, the only non-local phase arises from the loss term that we have
already discussed. As a result, we can apply standard TEBD algorithms to compute
the time evolution and study the dissipative dynamics through quantum trajectories
efficiently as all our terms become local.

Below we will first use these techniques to compute the dynamics resulting from
loss on demand at a particular site and a particular time. We then follow this by
simulating a master equation that describes loss processes that occur at random
during the dynamics.
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6.3 Differences in the presence of deterministic
losses
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Figure 6.2: (a) Diagram of a loss event in an optical lattice on site i with probability
γi. The density hole created will propagate through normal tunneling processes and
will delocalize over time; (b) Evolution of the particle density for bosons n̂bi , fermions
n̂fi and the normalized difference of these, ∆ni, as a function of time. In this case,
loss occurs on site i = 10 on a lattice withM = 20 from an initial product state with
a single particle on each site, so a single sign is applied to the fermionic wavefunction
for all basis states and both profiles remain identical, i.e. ∆ni = 0. Diagram taken
from [125].

In this section, we study the dynamics of the system when we induce the loss of
a particle and the differences that this event produce between fermions and HCBs.
Fig.6.2 shows a schematic view of the type of processes we will study. We investigate
the density profiles after a deterministic loss event. In the case of the diagram we
choose the loss to occur in the middle site at t = 0, beginning from an initial product
state with one atom on every lattice site. Because of the simple initial state and the
single loss process, the density distributions for bosons and fermions as a function
of time are identical, i.e., the normalized difference,

∆ni = nbi − n
f
i

nbi + nfi
, (6.15)

where nbi = 〈n̂b,i〉 and nfi = 〈n̂a,i〉, is zero in this case. Note that for the case of
vanishing densities nbi + nfi = 0, which happen only in certain initial states, we set
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the normalized difference to ∆ni = 0. The vanishing of ∆ni is due to the fact that
(−1)(

∑
i<l

n̂a,i) = ±1 when we consider a well-defined number of particles to the left
as it is the case of a product state with unit-filling. As a result a global phase is
applied to the fermionic wavefunction with no effect on the density distributions.
However, a second loss event in the system would not be identical anymore since the
delocalization of the first hole, propagating in a light-cone, would produce parts of
the wavefunction to get different phase factors. This will be the idea we will exploit
in the following results.

In the following, we will study and identify differences between HCB and spinless
fermions, focusing particularly on ∆ni when we induce losses on demand. This
could be achieved in a quantum gas microscope in different ways. Here we include
two methods that have been experimentally realized:

1. Single-site addressing [127]: the loss will be produced by a sequential change of
the lattice depth that will first increase, freezing the dynamics of the system.
After this, a single site will be addressed with an auxiliary laser field modifying
the internal state of the atom which is then removed from the lattice with a
beam resonant to the new internal state. Finally, the lattice depth will be
decreased and the dynamics will continue.

2. Electron beam [126]: the loss is now produced by collisional ionization of the
neutral atoms by an electron beam focused on a lattice site. The ions generated
in the given site are guided out of the system using an electric field.

Now, that we have provided means to induce losses deterministically, we compute the
time evolution of spinless fermions and hard-core bosons governed by the Hamiltoni-
ans in Eq.(6.3) and Eq.(6.4). We first consider the atoms to be in a product state and
induce a loss at t = 0 on siteM0 = M/2. This first loss event, as we discussed before
(see Fig.6.2), will produce no difference between particle statistics as the fermionic
state will get a single global phase from the application of the annihilation operator
since N<M/2 = ±1. Then, after a certain evolution time t = τ0 a second loss is
induced on site M0 − δM , with δM a chosen lattice distance.
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Figure 6.3: (a) Evolution of the difference in density distribution ∆ni after inducing
a loss at t = 0 on site M0 = M/2 and a second loss is induced on site M0 − δM for
a system with M = 20, n0 = 1, D = 100, dt = 0.001, J = 1, τ0 = 1, δM = 0; (b)
Same as (a) with τ0 = 2 and n0 = 0.5; (c) Same as (a) with τ0 = 2 and δM = 4; (d)
Same as (a) with τ0 = 2, n0 = 0.5 and δM = 4. These calculations are performed
beginning from a product state with the corresponding densities indicated above: a
single particle on each lattice site (n0 = 1) or every odd site (n0 = 0.5).

In Fig.6.3, we present the difference in density distribution ∆ni after computing
time evolutions of the kind we just described for different initial times and different
filling factors. In particular, we will start both with a configuration consisting
of a single atom per site with n0 = 1 (an eigenstate of Ĥ, and so, stationary)
and a charge-density wave state (CDW), with only odd sites occupied initially, i.e.
n0 = 0.5. The CDW will exhibit evolution in the density distributions regardless of
the presence of losses while the unit-filling will allow us to investigate the interplay
of the two losses in the simpler scenario. For the first configuration, differences only
appear in the dynamics after the second loss, as described above, since only after the
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Figure 6.4: (a) Evolution of the weighted difference in the entanglement entropy
∆S at every lattice bipartition M̃ ∈ [1,M − 1] for a system with M = 20, n0 = 1,
D = 100, dt = 0.001, J = 1, τ0 = 1, δM = 0; (b) Same as (a) with τ0 = 2 and
n0 = 0.5; (c) Same as (a) with τ0 = 2 and δM = 4; (d) Same as (a) with τ0 = 2,
n0 = 0.5 and δM = 4. These calculations are performed beginning from a product
state with the corresponding densities indicated above: a single particle on each
lattice site (n0 = 1) or every odd site (n0 = 0.5).

delocalization of the initial hole we obtain a superposition of different numbers of
particles to the left of any given site, and so the effect of the phase is non-trivial for
fermions. Consequently, spinless fermions and HCBs exhibit density distributions
that start to differ ballistically in a well-defined light cone. This is reminiscent of the
spreading of correlation functions we expect in this system [148]. In the unit-filling
regime (Fig.6.3a and Fig.6.3c), we observe that only losses near the location of the
first loss (δM ∼ 0), i.e. where the population is not still deeply in the unit-filling
Mott phase, lead to a significant difference between bosons and fermions, as it is only
in this case that the effects of the string operator are non-trivial. In this way, the
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light-cone defined by the spreading of the first loss marks the area where a second
loss event would produce a clear distinction between particle statistics. In the case of
half-filling (Fig.6.3b and Fig.6.3d), as the particles are allowed to quickly delocalize,
we observe greater differences and the relevance of the position where the second loss
occurs disappears rapidly due to the richer dynamics.

Similarly, we can study the effect that the losses produce in other quantities such
as the Von Neumann Entropy of entanglement between two partitions of the system
(see section 4.1.4). In Fig.6.4, we present the weighted difference in the entanglement
entropy ∆S = SbvN−S

f
vN

SbvN+SfvN
, where Sb/fvN = −tr(ρb/f ln ρb/f ) at every bipartition of both

the bosonic and fermionic systems. The entropy2 is an interesting indicator theo-
retically as it provide information about the evolution of the system entanglement.
We can observe that the non-local phase associated with the fermionic loss permits
a faster spreading of the entanglement along the system while we observe bosonic
entanglement being higher (red areas) around the location of the loss. The higher
mobility in the case of half-filling (Fig.6.4b and Fig.6.4d) causes the SvN to be larger
for both particle statistics, consequently the weighted differences we observe are
smaller for the case of CDW. As before, losses that occur near the boundary of the
lattice (Fig.6.4c,d) lead to a smaller observable difference as the fermionic state is
closer to a product state.

Note that now lattice configurations away from unit filling (compare Fig.6.4a and
Fig.6.4b) exhibit smaller differences between fermions and bosons. This is due to
the fact that the higher mobility in the lattice contributes to overall higher values of
SvN for both species and we are representing normalized differences.

2Other measures of entanglement entropy, such as Renyi Entropies, can be directly measured in
quantum gas microscope experiments for both fermions and HCBs [149, 150, 151]
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Figure 6.5: (a) Evolution of the difference in density distribution ∆ni for a system
with M = 20, n0 = 0.5, D = 128, dt = 0.001, J = 1, δM = 0 with no loss at t = 0, a
first loss is induced at t = τ0 = 2 and a second loss occurs at t = τ1 = 2τ0; (b) Same
as (a) for the ∆S . In contrast with the case of the first loss induced in the product
state, differences between bosons and fermions are observed from the first loss event.

For completeness, in Fig.6.5 we analyze the impact of dynamics prior to the first
loss event, presenting weighted difference of both density distribution ∆ni and ∆S
entropies in the case of losses with t > 0. The profiles differ from the time of the
initial loss due to the initial coherent dynamics prior to the loss (the state no longer
has a well-defined particle number to the left). However, we do not observe significant
qualitative differences in the behaviour, and we consider the behaviour included in
Fig.6.3 and 6.4 is quite general.

With the results provided we conclude that by inducing losses on demand we can
probe properties of the closed system such as the intrinsic particle statistics in a ro-
bust way. Moreover, we have identified relevant observables that are experimentally
accessible and theoretically relevant, and which exhibit clear behaviours which we
can identify and describe.
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6.4 Differences in the presence of stochastic losses

While experimental techniques allow for particle losses to be engineered on demand,
natural stochastic particle losses are an inherent form of dissipation in current optical
lattice experiments that can impact the behaviour of the system. These losses are
produced, e.g. by collisions with background gas and photon scattering bursts [135].
Moreover, on similar timescales to the ones of loss rate we expect to observe inelastic
light-scattering with the laser field leading to dephasing [130, 152, 131, 135]. Despite
the fact that these events occur at random, we have a good theoretical description
based on the Born-Markov Approximation (section 3.3). As a result, the dynamics of
the system in the presence of particle losses can be described via a master equation
for the evolution of the system density operator ρtot.

On the microscopic level, we can justify the use of the Born-Markov approximation
based on the fact that we have a large separation of energy scales with dominant
frequency scales associated with the energy of the single-particle loss event and by
the photon frequency for dephasing due to light scattering (see section 3.3). The
resulting equation is given by:

dρ

dt
= −i

[
Ĥ, ρ

]
− 1

2

M∑
m,α

γα,m(Ĵ†α,mĴα,mρ (6.16)

+ρĴ†α,mĴα,m − 2Ĵα,mρĴ†α,m) ,

where α ∈ {l, d} is an index summing over the separate terms for dephasing and loss,
Ĵl,m = âm(b̂m) represents the loss of a fermion (boson) on site m, Ĵd,m = n̂a,m(n̂b,m)
describes the dephasing process and γl/d,m is the decay amplitude for the m-th
dissipation channel that will be different for dephasing and loss processes.

With the inclusion of both stochastic losses and dephasing we investigate if the
differences that we observed in the deterministic case persist in a more general
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scenario or if we can find other relevant local observables that will exhibit dynamics
that are dependent on particle statistics. Furthermore, we will consider the fact that
in experiments the onsite interaction (so far we assumed U →∞) will be very large
but finite. This is important since for finite interaction strengths between bosons, a
perturbation theory expansion dictates the appearance, in second order, of an offsite
nearest-neighbour interactions of the form ∑

〈ij〉 V n̂in̂j with V ∝ J2/U and U the
onsite interaction that we will consider as finite when including this term. We note
that this can also arise, e.g., due to direct dipole-dipole interactions between atoms
on neighbouring lattice sites [153], which allow for larger V values, including up to
V ≈ J , which we will use in some of the calculations below.

6.4.1 Closed system dynamics

We investigate in this section a variety of local and lattice-averaged quantities. It
is important to first study these in the closed system to obtain a good measure for
comparing the open system profiles. These quantities should be identical for both
particle statistics in the absence of losses as we discuss in section 6.2. The quantities
we will study in this section are: (i) the local densities n̂i; (ii) the density fluctuations
σni = 〈n̂2

i 〉 − 〈n̂i〉2; (iii) the odd-even density imbalance, a common quantity in the
study of MBL systems (see chapter 7), given by the expression

I = no − ne

no + ne
, (6.17)

where no/e = ∑M
i∈odd/even〈n̂i〉.

In Fig.6.6 we present the dynamical profiles of both the density in the central lattice
site and the imbalance. Both quantities are identical, within numerical precision,
for both fermionic and bosonic evolution (see Inset in Fig.6.6 a). In Fig.6.6 a, we
observe that the density oscillates around the average density nsteady = nT/M with
fluctuations of decreasing amplitude. However, these oscillations remain relevant for
all the simulation time. As a highly-oscillating quantity it will be interesting to study
if the presence of losses increases or decreases this amplitude and in which way it
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affects differently bosons and fermions. We will analyze these fluctuations in detail
later in subsection 6.4.3.
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Figure 6.6: (a) Closed system evolution of the middle site density 〈n̂M/2〉 for a
system with M = 16, n0 = 0.5, J = 1, γl = 0, γd = 0; numerical parameters are
dt = 0.001 andD = 150. In the absence of loss both fermionic and bosonic results are
identical, fluctuating around n0. Inset: averaged density difference between fermions
and bosons, as predicted this quantity is zero; (b) Same as (a) for the imbalance
I. Again, fermions and bosons show the same profile, fluctuating around zero as
expected for a non-disordered system. Inset: short-time imbalance (blue) compared
with the analytical result (red) that can be derived for free fermions. Note that the
disagreement occurs at time ∼ M/2J that corresponds to the time required by an
excitation to travel through the whole lattice, which is a finite-size effect.

Regarding the imbalance (Fig.6.6 b) we obtain a similar profile with long-lived
fluctuations around the expected value of I = 0 since the system is not disordered.
Note, that for the case of the imbalance we can obtain analytical results for free
fermions (see [154]) that should agree with our profile before the first revival occurs.
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Figure 6.7: (a) Comparison of bosonic and fermionic evolution of the middle site
density 〈n̂M/2〉 for a system with M = 16, n0 = 0.5, J = 1, γl = 0.01, γd = 0;
numerical parameters are dt = 0.001 and D = 200. The inset shows the total particle
number 〈n̂T 〉 to provide some guidance over the evolution of the total occupation
in the lattice as losses occur. (b) Same as (a) for the normalized total density
fluctuations ∑i σni/M . These calculations are performed beginning from a charge
density wave at half-filling, with a particle on each even-numbered site.

Since the typical time for an excitation to cover the whole lattice twice is given by
t ∼ M/2J , the profile can be compared for short times to the analytical solution
given by I ∝ J0(4Jt) where J0 denotes the zeroth-order Bessel function. We include
the comparison in the inset of Fig.6.6 b, observing a good agreement before the
finite-lattice effects become relevant.

We will revisit all these quantities later on, analyzing how they vary in the presence
of dissipation and in which way different particle statistics plays a role in the different
profiles.
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6.4.2 Stochastic losses and the distinction of fermions and
HCBs

In this subsection, we compute the dissipative dynamics in the presence of both
losses (with amplitude γl) and dephasing (with amplitude γd), again for the initial
charge-density wave, with one particle in every second lattice site. We focus our in-
terest again on quantities related to local densities that can be measured in quantum
gas microscopes as shown in Subsection 6.4.1, with the aim of comparing with those
results.

In Fig.6.7, we consider the evolution of local densities, spatially-averaged density
fluctuations and total particle numbers for both fermions and bosons. In Fig.6.7a
we present the local density on the middle of the lattice 〈n̂M/2〉, these results can
be compared to the ones obtained in Fig.6.6a. We observe that the fluctuations
in both species persist over the simulation time. However, bosonic fluctuations get
considerably more damped over time than in the case of fermions where they retain a
similar amplitude over the studied times (longer study in subsection 6.4.3). In both
cases, the average value decrease over time as particles are removed from the lattice.
We include the total particle number 〈n̂T 〉 as an inset in Fig.6.7a to indicate the
typical densities at longer times. The total particle number is identical for bosons
and fermions since both are subject to the same dissipation amplitude γl. We can
conclude that after a transient time, fermions exhibit larger fluctuations, which we
could in principle detect despite the fact that the total particle number and the
average density coincides with that for bosonic particles.

In Fig.6.7b, we present the lattice-averaged fluctuations ∑i σni = ∑
i(〈n̂2

i 〉 − 〈n̂i〉2).
Despite the fact that again fermions exhibit higher fluctuations than bosons, the
difference is smaller. The differences involve decreased fluctuations associated with
revivals of the CDW correlations after these are reflected by the boundaries. We
observe that these persist longer in time for the fermions. Hence, the distinction
here relies on boundary effects, which are dependent on system size. Also, these
drops are quite sharp in time and so they might be difficult to measure them reliably
in an experiment. We can conclude that local densities exhibit clear differences in
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the fermionic and bosonic profiles while lattice-averaged quantities like the lattice-
averaged fluctuations seem to remain closer to each other.
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Figure 6.8: (a) Comparison of bosonic and fermionic evolution of the middle site
density 〈n̂M/2〉 for a system with M = 16, n0 = 0.5, J = 1, γl = 0.01, γd = 0;
numerical parameters are dt = 0.001 and D = 200. The inset shows the total particle
number 〈n̂T 〉 to provide some guidance over the evolution of the total occupation
in the lattice as losses occur. (b) Same as (a) for the normalized total density
fluctuations ∑i σni/M . These calculations are performed beginning from a charge
density wave at half-filling, with a particle on each even-numbered site. Note that
these functions are rapidly oscillating, and that each point represents a snapshot of
the values on a randomly spaced grid in time. The data includes statistical error
bars, which are contained within the point markers in most of the cases.

As a complementary step, we include the results of Fig.6.7 after filtering them with a
random time grid in Fig.6.8 (both of the figures are generated with the same dataset).
The idea is to imitate the conditions of an experiment were we cannot resolve the full
dynamics and also individual measurements take some time that might vary in every
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instance. Since all the presented quantities are highly-fluctuating curves in time, we
intend to test which of the features observed before are robust in this scenario. Some
features cannot be captured in this random grid like the fact that both bosons and
fermions overlap at short times since no loss has occurred on average.

Nonetheless, we can still resolve the differences between bosons and fermions, spe-
cially in the case of the local density (Fig.6.8a) where the higher amplitude of the
fermionic fluctuations manifests clearly even in the random grid. For the case of the
total fluctuations, Fig.6.8b, we still observe some of the drops in the curve due to
correlation revivals. However, these are now captured less often and so differences
between fermions and bosons at long times (t ∼ 100 − 150) are smaller. However,
we consider that overall the ability to distinguish particle statistics is robust in this
worst-case-scenario conditions.

We would now like to study if the addition of dephasing to the system, which
typically occurs in experiments at similar timescales to losses, plays a role in the
distinction between different particle statistics in the dynamics. We will study
again the case of local densities in the central lattice site and we will now include
the odd-even imbalance as our global quantity to compare with. This choice is
based on the fact that we expect it to exhibit higher differences that the ones we
obtained for the total fluctuations. The imbalance should be more sensitive to any
density-density correlation between neighbour sites. Since our initial state has an
antiferromagnetic-like density distribution, fluctuations over time in the imbalance
might be larger for fermions as the loss operator, see Eq.(6.14), carries non-local
information of the particle occupation.
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Figure 6.9: (a) Comparison of bosonic and fermionic evolution of the middle site
density 〈n̂M/2〉 for a system with M = 16, n0 = 0.5, J = 1, dt = 0.001, γl = 0.01,
γd = 0; (b) same as (a) with γd = 0.01; (c) Comparison of bosonic and fermionic
evolution of the odd-even imbalance I with same parameters as (a); (d) same as (c)
with γd = 0.01. These calculations are performed beginning from a charge density
wave at half-filling, with a particle on each odd-numbered site. Note that these
functions are rapidly oscillating, and that each point represents a snapshot of the
values on a regularly spaced grid in time.

In Fig.6.9, we show both the local density on the central lattice site and the system
odd-even imbalance, analyzing the robustness of both in the presence of dephasing.
In Fig.6.9a and c, we compare the single site density and the imbalance without
dephasing. We can observe that even though in both cases fermions and bosons
oscillate around the same average value the fermionic fluctuations are much higher
specially in the case of the imbalance. The addition of dephasing (Fig.6.9b and d)
has a detrimental effect on the distinction, reducing the ability to observe differences
between fermionic and bosonic dynamics. However, the imbalance maintains a
robust difference between the fermionic and bosonic profiles showing that even in
the presence of dephasing, the imbalance can be considered as a valid indicator of
the particle statistics.
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Figure 6.10: Comparison of bosonic (dashed line) and fermionic (solid line)
evolution of the time-block averaged imbalance Ī = ∑i+Nδt

i |I(ti)|/Nδt for a system
with M = 16, n0 = 0.5, J = 1, dt = 0.001, Nδt = 300, γl = 0.01, γd = 0 and
variable off-site interaction strength V . The imbalance average drops over time in
the presence of interaction but remain distinguishable for both species. Inset: total
density fluctuation for the same parameters, included for the purpose of comparison.
Here, all lines overlap while we observe relevant differences in the imbalance. These
calculations are performed beginning from a charge density wave at half-filling, with
a particle on each odd-numbered site.

Finally, we also mentioned in the previous sections the possibility of including an
offsite-interaction term of the form ∑

〈ij〉 V n̂in̂j either due to finite but large in-
teraction strengths in bosons or by a dipole-dipole type of coupling that is added
externally. As the imbalance has shown so far the best response in the sense of
our ability to distinguish particle statistic in the stochastic-loss regime, we would
like to investigate its robustness in the presence of this type of terms. Since the
imbalance is a highly-oscillating function specially for the fermionic case in Fig.6.10,
we present a time-block averaged imbalance Ī = ∑i+Nδt

i |I(ti)|/Nδt, where Nδt is the
number of time points over which we average. Averaging the absolute value allows



6.4. Differences in the presence of stochastic losses 129

us to study smoother profiles, which we can more easily compare. We observe in the
results that the differences between fermions and bosons are reduced as we increase
the offsite-interaction strength but they remain distinguishable for the simulated
time even for the case of V/J = 0.5. This can be compared to the case of the
lattice-averaged density fluctuations, another lattice-averaged quantity, included in
the inset for the sake of comparison where we observe that all the curves almost
overlap for any choice of parameters.

From this analysis we can establish that the imbalance – a global quantity related
to local densities – is robust to moderate interactions and to moderate dephasing
at rates comparable to the losses, and provides an interesting quantity with which
to investigate differences between HCBs and spinless fermions also in the case of
randomized losses in space and time.

6.4.3 Analysis of the density fluctuation damping

In Fig.6.6a and Fig.6.7a we presented the local densities of fermions and HCBs both
in the presence and the absence of loss, with all the curves fluctuating around an
average value nsteady = nT (t)/M . However, it was difficult to compare the amplitudes
of these fluctuations as in the case of γl 6= 0 the overall density was decreasing over
time (nT (t → ∞) = 0). In Fig.6.11 we compare the normalized density fluctuation
from the predicted average density |〈n̂M/2〉−〈n̂T/M〉|/〈n̂T 〉 for closed, fermionic and
bosonic system.

By normalizing the fluctuations to the total particle number we can observe that
the relative fluctuations decrease over time in the closed system and in the bosonic
case, with the latter damping being stronger. On the other hand, fermionic losses
seem to maintain the relative density fluctuations approximately constant for the
simulated time. Highlighting once again the difference in behaviour between bosonic
and fermionic atoms. As these curves overlap quite strongly for the three cases in
Fig.6.11 we also provide time-block averages (solid lines) to help visualize how the
fermionic fluctuations persist over time in comparison with bosons and the case of
no losses.
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Figure 6.11: Evolution of the middle site density fluctuation from the expected
long-time average |〈n̂M/2〉 − 〈n̂T/M〉|/〈n̂T 〉 for a system with M = 16, n0 = 0.5,
J = 1, γl = 0.01, γd = 0 and a closed system (γl = 0). We provide time-block
averages (lines) with a block length of 50 data points of the full dataset (shades) for
better visualization. We observe how the fermionic deviation remains approximately
constant for the studied time while the bosons and the closed system approach the
long-time expected average with the former exhibits smaller deviations.

6.4.4 Short-time imbalance profile

As a complementary result we present the short-time evolution of the system imbal-
ance since these can be analytically calculated for the case of no offsite interaction
(free fermions). In Fig.6.12, we observe a good agreement with the analytical results
for all the curves before the revivals due to finite-size systems take place. After
that, all numerical calculations depart from the analytical result. We also observe
a higher damping in the oscillation of the bosons as it was the case when analyzing
the local density in subsection 6.4.3 while fermions remain closer to the case of no
losses (where both fermions and bosons coincide).
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Figure 6.12: Short-time evolution of the system odd-even imbalance I for a system
with M = 16, n0 = 0.5, J = 1, γd = 0 . We compare the case of closed system
(γl = 0), fermionic and bosonic systems subject to loss (γl = 0.01) and the analytical
result for free fermions given by the zeroth order Bessel function I ∝ J0(4Jt).

6.5 Conclusion

In this chapter, we have proposed a method to probe particle statistics of the system,
an inherent property of the closed system, through the use of dissipation. In this
way, we have shown how particle losses generate differences even in local quantities
for hardcore bosons and spinless fermions. We have identified relevant signatures
in experimentally measurable observables such as local densities or entropies, which
would behave remarkably different in the presence of loss. In addition, we have
shown that losses produce differences between HCBs and fermions whether they are
deterministically induced, or occur randomly due to natural experimental processes.
Thus, studying losses in these system has proven not only relevant for the improved
description of the experimental conditions but also insightful as it provides infor-



6.5. Conclusion 132

mation about closed-system properties, such as the particle statistics. Moreover, we
have provided a careful analysis of the robustness of the differences proposed, testing
how other dissipation sources, such as dephasing, or the presence of second-order
terms would affect the results.

In the future, we would like to relate the measurements on section 6.3 with more
general two-point correlation measurements as the quantities that we investigate are
quite similar to them since they are given by ∝ 〈âlU(t)âk〉.

Some other of the future directions are focused on systems with slow intrinsic time
scales, like the case of many-body localized systems connecting with chapter 7. In
particular, we would be interested in exploring how these analysis would apply to
quasi-periodic systems, like the case of quasi-crystals, where disorder is not required.
However, these system usually require increasing the dimensionality of the system
and so our numerical algorithms would need to be extended.

Alternatively, we would be interested in applying neural-network-related techniques
[155] (which connect with tensor network ideas) to the systematic distinction of par-
ticle statistics. We would like to explore if Machine Learning algorithms would help
us not only distinguish particle statistics but also if they could provide information
about the system by analyzing properties we obtain from tensor networks, such as
the entanglement spectrum.



Chapter 7

Dynamics of many-body
localization in the presence of
particle loss

7.1 Introduction

In this chapter, we present the results included in our publication [139], which focuses
on the role of single-particle loss in the dynamics of experiments to study many-body
localization (MBL).

The question we address in this chapter arises in the context of current cold atomic
experiments, whose development has allowed for the engineering of paradigmatic
Hamiltonians for quantum simulation [1]. Despite the extreme control and tunability
of these experiments, under certain circumstances our ability to describe them as
perfectly isolated systems fails. All systems in nature are in some degree open
systems, but our good understanding of dissipation on a microscopic level in cold
gases allows us to systematically study these effects. In previous chapters (5 and 6)
we explore the effects of engineered coupling to the environment and how our control
over the system and environment interaction provides a novel toolbox for the state
engineering in the lattice. However, now we take another perspective on the open
system problem. Instead of focusing on the tunable control of the dissipation, we

133
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study the case of an uncontrolled residual coupling to an external bath and its effect
on the long-time dynamics in the system that can differ strongly from the closed
system case.

In particular, our focus is on the study of many-body localized systems, an important
example of systems with intrinsically long timescales [156, 157]. In the absence of
dissipation, these systems fail to thermalize, breaking the system’s ergodicity even at
infinite times. MBL has been experimentally observed both using trapped ions [158]
and ultracold atom systems in optical lattices [26, 159, 160]. In the case of optical
lattices, dephasing and particle loss have been experimentally observed [135] and
prevent the localization to survive for the accessible experimental timescales (∼ 1s)
as decoherence induces thermalization in the system. The failure of the closed system
description gives rise to relevant effects in the observables that can be experimentally
measured at intermediate times. Therefore, it is essential to properly describe both
dephasing and single-particle loss, typically caused by incoherent photon scattering.
While the former was widely studied in the past [136, 138, 137], showing that it
can prevent localization even in the absence of inter-particle interaction, the role
of particle loss in the MBL problem remains unclear and has only been addressed
phenomenologically for specific initial conditions [138]. We focus on the case of
fermionic systems in these dissipative dynamics, following recent experimental and
theoretical work [131].

It is important to note that the inclusion of single-particle loss in our description
poses certain challenges given the ‘non-local’ character of the fermionic annihilation
operator1. In order to provide an efficient description of the dynamics we present
a method based on symmetry-preserving matrix product operators (following ideas
introduced in section 4.1.6).

This method allows us to study the interplay of particle loss and dephasing in
the MBL experiments, analyzing not only relevant observables but also how the
dissipation affects the density operator and properties associated to it such as the
bipartite entanglement.

1We can infer this from a Jordan-Wigner transformation of the loss operator, see section 2.4.1.1.
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This chapter is structured as follows in Sec.7.2 we provide an overview of the concept
of thermalization in quantum system and why MBL systems fail to thermalize. In
Sec.7.3, we introduce the concept of density imbalance, the equations of motion of
the open system and the symmetry-preserving MPO method that we implement to
calculate the evolution. In Sec.7.4, we summarize our main findings discussing the
role of both dissipation sources for different parameter regimes. Finally, in Sec.7.5
we discuss the findings of this chapter and provide some ideas of interesting future
directions to investigate based on our results.

7.2 Overview on MBL in cold atoms

7.2.1 Thermalization in quantum systems and Eigenstate
Thermalization Hypothesis

Many-body localized states constitute an important example of the class of systems
that do not thermalize. Thus, it is important to provide a criterion for thermalization
in the context of quantum many-body systems.

In the context of a closed quantum system, we should discuss the operational un-
derstanding of what it means for the system to thermalize. The evolution of the
closed system is unitary and, as a result, the system should retain information of its
initial state as we could always evolve backwards to recover it. Moreover, given the
unitary evolution any eigenstate of the Hamiltonian Ĥ will give rise to stationary
populations, consequently, if the state thermalizes this will occur at the level of
individual eigenstates. Then, in these systems there should be a different mechanism
that allows for the system to loose the information of its initial correlations.

We can summarize thermalization in the quantum context as the system relaxation
to states were macroscopic observables become stationary as the system acts as its
own bath, with local degrees of freedom (d.o.f.) entangling with each other and
local quantum correlations being decohered. Moreover, when a quantum system
thermalizes these observables can be predicted through statistical mechanics and are
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universal – in the sense that they do not depend on the initial conditions.

In order to specify what we meant from the previous statement, let us divide our
total quantum system, composed by a set of D d.o.f., into a subsystem S and a bath
B containing all the d.o.f. we have not included in S.

If the subsystem thermalizes S, the reduced density operator ρsys should be dictated
by statistical mechanics. And thus, it should coincide with the thermal equilibrium
density operator ρeqsys, defined for a system to be at equilibrium at temperature T :

ρeqsys = Tr bath (ρeqtot) = Tr bath
(
e−βEeq/Tr

(
e−βĤ

))
, (7.1)

with ρeqtot the thermal density operator of the total system and Eeq the total energy
at equilibrium. Thus, the equilibrium operator contains no information of the initial
state.

In order to establish the comparison between ρsys with ρeqsys we need to take both
the long-time and the thermodynamic limit. The latter is taken by increasing the
d.o.f. in the bath, while keeping the size of S unchanged. Thus, the condition for
thermalization can be written as [156]:

lim
D→∞

(
lim
t→∞

ρsys(t)
)

= lim
D→∞

ρeqsys . (7.2)

Now that we have a criterion to evaluate thermalization, we require an expression
for ρsys(t). We can decompose it into the eigenbasis of the system {|n〉} with
Ĥ|n〉 = En|n〉, so that every matrix element of the density operator is given by
ρnn′(t) = 〈n|ρsys(t)|n′〉 = ρnn′(0)e−i~(En′−En)t. Note that then, ρnn(t) = ρnn(0).
Moreover, if the system thermalizes it should do so regardless of its initial state,
implying that every eigenstate of the many-body Hamiltonian, which correspond to
a stationary density operator ρ(n)(t) = ρ(n)(0) = |n〉〈n| is indeed thermal. This is
known as the Eigenstate Thermalization Hypothesis (ETH) [161, 162, 163].

Hence, from the ETH we can associate a temperature Tn with the system such
that En = 〈Ĥ〉Tn . Furthermore, if the system is in an eigenstate, it can be described
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simply again by ρ(n) and ρ(n)
sys(t) = ρ(n)

sys(0) = Tr bath(|n〉〈n|), which in the thermody-
namic limit corresponds to ρ(n)

sys = ρeqsys(Tn).

It is important to consider that we usually do not have access to the density operator
but rather need to establish our analysis on the level of observables. For a given initial
state |φ(0)〉 = ∑

n cn|n〉, the time evolution is given by |φ(t)〉 = ∑
n cn e

−iEnt|n〉.
Hence, we can express the time evolution of the expectation value of an operator Ô
as:

〈Ô〉 =
∑
n,n′

c∗ncn′ e
i(En−En′ )t〈n|Ô|n′〉 . (7.3)

In order to obtain the thermal value for the expectation value we can take the
long-time and time-averaged limit [161]:

〈Ô〉thermal = lim
T→∞

1
T

∫
dt
∑
n,n′

c∗ncn′ e
i(En−En′ )t 〈n|Ô|n′〉 =

∑
n

c2
n 〈n|Ô|n〉 . (7.4)

This result only depends on the matrix elements of this operator and the state
coefficients in the eigenbasis of Ĥ. And, more importantly, it coincides with the value
obtained from statistical mechanics using the microcanonical ensemble for a system
with energy En (for a detailed discussion on this comparison see [161]). Systems
that satisfy Eq.(7.4) are denoted as ergodic2. Hence, ergodicity is responsible for the
emergence of local thermodynamic equilibrium in the system.

7.2.2 Localization in quantum systems

This chapter focuses on systems that do not satisfy the ETH and so, they do not
thermalize. In particular, we are interested in a subset of such states known as
many-body localized states. The discussion presented in subsection 7.2.1 does not
apply to many-body localized states.

Localization in quantum system was already reported by Anderson at the level of
single particles [164] with a model consisting of a single particle tunneling in an

2Note that the definition of ergodic systems is different in other contexts.
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infinite lattice with a random onsite potential or random tunneling elements. The
version including random potentials can be simply described through a tight-binding
model (as described in chapter 2) plus a local offset term

Ĥ = −J
∑
〈ij〉

(
ĉ†i ĉj + h.c.

)
+
∑
i

(
∆iĉ

†
i ĉi
)
, (7.5)

with J the tunneling amplitude, ĉi the annihilation operator of a particle in site i
and ∆i the random local potential in every lattice site. Note that 〈ij〉 denotes a sum
over nearest neighbour sites. Despite the simplicity of the model, this system shows
exponentially localized eigenstates and fails to thermalize. This has been observed
experimentally in a large variety of systems [165, 166, 167], including cold atoms
[168, 169, 170].

The concept of Anderson localization can be extended to the case of interacting
particles, which is known as MBL [171, 172, 173, 174]. In the case of MBL, all
eigenstates exhibit localization for high disorder values [175]. However, for weaker
disorders the theoretical analysis points at numerical evidence of localization of only
certain eigenstates in 1D [176] in contrast to Anderson localization. Therefore, the
system undergoes a phase transition depending on the disorder strength, passing from
a thermal stationary state that follows ETH to a localized ‘non-ergodic’ phase that
violates ETH. It is important to mention that this phase transition not only occurs
for random disorder but it is also present in quasiperiodic systems [177] when the
periodicity is larger than the system size. This is the case of the Aubry-André model
[178]. Lately, the use of digital micromirror devices has permitted to implement
random potentials on demand (for experimental details see [25]) complementing the
use of incommensurate pseudorandom models.

The many-body-localized-to-thermal quantum phase transition has been the focus
of great experimental effort in the recent years, leading to conclusive observations
in 1D [26], quasi-2D [159] and 2D [160]. The case of 2D is specially interesting as
it becomes theoretically challenging to study and only recently certain thermalizing
phases have been reported [179] that could destabilize MBL in 2D.
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Finally, one of the more important points and the one we focus in is the fact that in
any experimental setups the presence of decoherence plays an important role in the
long-time limit, in particular in the case of MBL, which is a phenomenon that we
associate with closed systems. More specifically, incoherent light scattering causes
both dephasing and particle losses. Both dissipative processes eventually leads to
thermalization at long times due to dissipation even for deeply localized regimes [135].
Hence, it is essential to understand the role of both of these dissipation sources and
their interplay in the MBL phase transition. This is the focus of the rest of this
chapter.

7.3 System description

7.3.1 Imbalance: experimental figure of merit

The calculations that we present in this chapter are tightly connected to the exper-
iments with fermionic atoms mentioned in the introductory sections (see [26, 135]).
In particular, we focus on simulating the most important observable in these exper-
iments that is the odd-even density imbalance I. We already introduced I briefly
(see section 6.4.1) when comparing dissipative dynamics of different particle statistics
and it is given by:

I = no − ne

no + ne
, (7.6)

where no/e = ∑M
i∈odd/even〈n̂i〉 and n̂i is the number operator on site i. The imbalance

allowed us to observe distinct behaviour in bosonic or fermionic systems. However,
in those calculations we did not consider any disorder term in the dynamics and, as
a result, the systems were deeply in the ergodic phase.

Here the perspective is slightly different as the imbalance is not used to highlight
differences in particle statistics but rather to distinguish if the state is in the ergodic
or non-ergodic phase focusing on fermionic atoms only. Monitoring the imbalance is
a common procedure in the MBL experiments as we briefly describe now.
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The fermionic atoms in the optical lattice can be described by the following Hamil-
tonian:

H = −J
∑
i

(ĉ†i ĉi+1 + h.c.) +
∑
i

Vin̂i + U
∑
i

n̂in̂i+1 . (7.7)

Here, n̂i = ĉ†i ĉi , where ĉ
†
i creates a fermion on site i, and Vi ∈ [−h, h] are on-site

energies, which are independent uniformly distributed random variables. This Hamil-
tonian composed by a tunneling term with amplitude J , a random onsite contribution
and a first-neighbour interaction term with constant U , has been extensively studied
as a model (closed) system and (for U = 2J) is expected to be localized for h & 7.2J
[176, 180, 181].

In these experiments, the atoms are initially prepared in a charge-density-wave
(CDW) state with single-atoms occupying all the odd sites. This is achieved by
superimposing a second lattice with associated wavelength λ2 = 2λlat creating a
superlattice structure where it is possible to systematically load atoms only in the
odd sites. As a result, at t = 0 the value of the imbalance is I ≈ 1 and atoms
are systematically prepared in an approximately pure state. Then, as particles
are allowed to tunnel the imbalance evolves over time. This can be monitored by
measuring the population of the odd or even sites with a superlattice band-mapping
technique or considering individual site populations with a quantum gas microscope.

By monitoring the imbalance at long times, we learn about the thermalization
properties of the system. This is due to the fact that in the absence of dissipation
I exhibits a fast initial decay followed by a damped oscillatory behaviour towards
a steady value. In the ergodic phase, the imbalance vanishes at long times I(t →
∞) = 0. However, if the state of the system is localized it fails to thermalize and
thus the initial correlations do not completely disappear. As a result, the imbalance
will relax to a finite value after the transient oscillations. Therefore, the imbalance
provides an accessible experimental witness for the MBL quantum phase transition.
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7.3.2 Open system dynamics

In order to compute the dynamics of such systems coupled to a reservoir we can make
use of the techniques presented in chapter 3 and 4. In particular, as the Born-Markov
approximation is applicable in the current system we describe it through a master
equation (see section 1.3). Moreover, we map the problem to the language of MPS
(chapter 4) solving both the master equation directly and also making use of quantum
trajectories (section 3.3.2). In both cases, we compute time evolution through TEBD
(section 4.3).

As we discussed in chapter 3, the time evolution of a system coupled to a Markovian
bath is governed by the master equation in the Lindblad form (see 1.3) for the density
matrix given by the following expression:

∂

∂t
ρ = L[ρ] = −i[Ĥ, ρ] +

∑
i

γi

(
L̂iρL̂

†
i −

1
2{L̂

†
i L̂i , ρ}

)
, (7.8)

where L is denoted as Lindbladian operator, here L̂i are the jump operator that
describe the dissipation process on site i with amplitude γi. Since our interest is to
model events that occur naturally in experiments, we consider single-particle loss,
i.e., L̂i = ĉi[129], as well as dephasing or local density measurement with L̂i = n̂i

[130, 131].

7.3.3 Bond-Parity Matrix-Product-Operator Formalism

In section 6.2.1, we already highlighted the difficulty of simulating fermionic losses in
the language of MPS due to their ‘non-local’ character that we can formalize using
a Jordan-Wigner transformation. In that case, we made use of number-conserving
representation of MPS to overcome the difficulty. In this chapter we will combine
this technique with similar ideas on the level of the density operator to represent
fermionic losses.

Our objective is to represent the density operator and its evolution (given by Eq.7.8)
in an efficient way in the language of MPO (section 4.2). As a reminder, a state in
the MPS form can be written as
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|ψ〉 =
∑

i1,i2,...,iM

Tr(Ai1 · · ·AiM )|i1 · · · iM〉 , (7.9)

where each Ain is a tensor with dimension D×D per physical index in. For spinless
fermions, the physical index in represents the local occupation, i.e., the Hilbert
space is spanned by all |n1n2 . . . 〉 = Π{i}ĉ†i |vac〉, where the product runs over the
set {i} of occupied sites and |vac〉 represents the vacuum state with no particles.
This representation can be adapted to represent a vectorized version of the density
operator (see 4.4.2). Alternatively, we can also represent it by an MPO as we choose
here.

Given a density operator described in the occupation basis

ρ =
∑

n1,n2,...,nM

∑
n′1,n

′
2,...,n

′
M

ρ
{ni}
{n′i}
|n1 · · · 〉〈· · ·n′1| , (7.10)

the first term that we need to consider from Eq.7.8 is L̂iρL̂
†
i . If we focus on the case

of single-particle loss (L̂i = ĉi), we immediately observe that L̂iρL̂
†
i terms acquire a

phase related to the particle number to the left of site i for each L̂i:

L̂iρL̂
†
i = ĉi| · n̂i · 〉〈 · n̂′i · |ĉ

†
i = (−1)N<i+N ′<i| · (n̂i − 1) · 〉〈 · (n̂′i + 1) · | , (7.11)

where N<i = ∑
j<i〈n̂j〉 . The state of the system only differs in the occupation on

site i in both sides of the equation. We can define the phase arising in this product of
operators as the bond parity Pi = (−1)N<i+N ′<i , which is a highly non-local operator
as it depends on populations on sites 1, ..., i − 1. In principle, we should consider
all the other terms in Eq.(7.8), however, they are all quadratic in ĉ

(†)
i and so all

phases cancel. As an example, we can consider the term L̂†i L̂iρ whose bond parity
is (−1)2N<i = 1.

In order to implement the bond-parity in our operator representation let us separate
the Lindbladian into bond and single-site terms:

L[ρ] = L(2)[ρ] + L(1)[ρ] , (7.12)
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Figure 7.1: Schematic of a TEBD step for updating the MPO matrices Γ and λ,
preserving the subspaces P = ±1. (a) For the bond terms, the same operator L(2) is
applied in each subspace. For the case (b) of the single-site Lindblad superoperators,
each block P = ±1 has its own single-site operator L(1)

± applied in the respective
subspace. The sets of indices α± and β± correspond to the subspaces with associated
quantum numbers P = ±1.

where L(2) contains the unitary evolution, and L(1) =
(∑

i L̂iρL̂
†
i − 1

2{L̂
†
i L̂i , ρ}

)
contains only single-site terms. As we explained only terms in L(1) can exhibit a
non-vanishing phase. We can split those terms further into

L(1)
i,±[ρ] = γi

(
±ĉiρĉ

†
i −

1
2{ĉ

†
i ĉi , ρ}

)
, . (7.13)

The key point of our representation comes from the fact that both single-site and
bond terms preserve the bond parity on the left and right bond from the site where
they are applied (only modify local parity). As a result, the system has bond parity
symmetry and so all updates in our MPO can be performed in the subspaces of
Pi = ±1 (similar to the implementation with number-conserving representation in
section 4.1.6).

We can adapt the TEBD algorithm (section 4.3) to density operators [182], which we
can express using Vidal’s notation (section 4.1.5). Hence, the expression in Eq.(7.10)
takes the form:

ρ =
∑

j1,j2,...,jL

Tr
(
λ0Γj1λ1 · · ·ΓjLλL

)
σj1 ⊗ · · · ⊗ σjL . (7.14)

Here, σj forms a basis for the 2 × 2 matrices (corresponding to the local bond
dimension of ρ, d = 4), we choose to use the Pauli matrices together with the
identity σ0. The physical indices then come with respective (bond parity) quantum
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numbers +1 for the diagonal σ0 and σ3 and −1 for σ1 and σ2.

Now, that the density operator has been constructed in the MPO form we can
decompose the Lindbladian into two-site Trotter gates (section 4.3), in this case
using second order TEBD where we account for even and odd bond operators L(e)

and L(o) :
eLt ≈

(
Πe ∆t

2N L
(1)Πe ∆t

2N L
(e)Πe∆t

N
L(o)Πe ∆t

2N L
(e)Πe ∆t

2N L
(1)
)N

. (7.15)

In the same spirit as in section 4.1.6, we can modify the bond index keeping track
of the parity by including in each bond index αi a map P : αi → ±1. As a result
of the incorporation of this symmetry, when a Trotter gate is applied we distinguish
two situations:

1. Gates composed by bond operators (no sign associated) are applied as shown
in Fig.7.1(a) regardless of the parity sector for the update of the state.

2. For single-site terms, the corresponding phase has to be applied to the operator
in order to preserve the parity subspaces, see Fig.7.1(b). For the case of
other jump operators, such as dephasing, as they are quadratic in ĉi, L̂i = n̂i,
L(1)
i,+[ρ] = L(1)

i,−[ρ] this procedure becomes trivial.

As a result, the state is updated during the time evolution preserving the parity
sectors. The most important consequence is that, as we achieved in chapter 6,
by incorporating a symmetry in the system we have access to the sign associated
with the loss event for every parity sector. Then, we do not need to compute the
non-local term N<i = ∑

j<i n̂j and so every update is local in the parity preserving
representation.
Moreover, the MPO representation of the density operator allows for the simulation
of mixed initial states and complements the calculations that we can achieve through
the use of stochastic evolution in the form of quantum trajectories (as in chapter 6).
In this chapter, we will combine both methods taking close attention at how both
perform. In particular we focus on the analysis of the entanglement entropy (for
the pure state evolution) and its comparison with the operator-space entanglement
entropy (OSEE), which measures the factorizability of the density matrix [183] and
is a measure for the efficiency of the matrix product formalism. We discuss the
findings on this comparison in section 7.4.4.
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7.4 Results

Here, we summarize the main results obtained from numerical simulations that we
computed with the formalism presented in the previous section. We focus primarily
on the evolution of the imbalance (described by Eq.(7.7) and (7.8)) and how its profile
is affected by the different dissipation sources, namely dephasing and single-particle
loss (with respective coupling rates γd and γl). Our initial state is chosen to be
the perfect CDW with one fermion in every odd site initially and we use numerical
parameters D = 100 (bond dimension) and ∆t = 0.1 [1/J ], unless we indicate
otherwise.

7.4.1 Pure loss

The first case that we analyze is the effect of single-particle loss alone while in the
localized regime since dephasing has been studied in depth in the past [136, 138,
137]. We can understand the effect of loss in the system for both, weak and strong,
interactions in the system from a phenomenological approach. But first let us provide
some intuition for the two extreme cases:

1. In the limit of no interactions we expect the imbalance to be unaffected by
losses. This is due to the fact that the population decrease. which follows an
exponential decay, is homogeneous along the lattice. Since the imbalance is a
normalized quantity that depends on the relative population it should remain
unaffected.

2. However, in the presence of first-neighbour interactions (U 6= 0) the picture
becomes more complex. In this case, eliminating a particle from the lattice
modifies the energy of atoms in neighbour sites, enabling in many cases particle
hopping. A relevant example, in the strong coupling regime (i.e., U � J) where
the system is close to an eigenstate and any tunneling event from the initial
configuration |101010...〉 is energetically prohibitive, causing that I(t→∞) ∼
1. Thus, we expect that in the presence of losses the imbalance relaxes to a
lower value as the removal of a particle enables system dynamics. Moreover,
after the particle density has been reduced sufficiently the system becomes
effectively non-interacting.
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Figure 7.2: (a) Dynamics of the imbalance and particle density (inset) for loss only
(γl = 0.01) for h = 10J , N = 20, and U/J = 0.5 . . . 50.0. (b) Effective decay rate of
the imbalance extracted via a fit to Eq.(7.17) for U ≥ 10J . For U/J = 0.5, 1.0, 2.0
and 5.0, the qualitative behavior (gray dashed line) is confirmed via a collapse of the
imbalance time traces by scaling the time with γlJ(JU/h2)2 (inset).
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The behavior of the imbalance in the presence of loss can be qualitatively described in
a mean-field picture, where the time evolution of the imbalance can be approximated
by [138, 137]

dI
dt
≈ −γeff(t)I(t) ≈ −γn(t)I(t) = −γ̃e−γltI(t), (7.16)

where n(t) = n0 exp(−γlt) is the particle density and γ̃ = γn0 is an effective decay
rate. Integrating (7.16) yields the time dependence for the imbalance

I(t) ∝ exp
{
−
[
γ̃

γl
(1− e−γlt)

]β}
. (7.17)

The exponent β can be introduced phenomenologically as done here, to account for
the fact that the mean-field picture is a simplification [138] and as it provides a
better fit to the numerical results. At short times, where γlt� 1 the imbalance can
be approximated by a stretched exponential:

I(t) ≈ I0 exp[−(γ̃t)β]. (7.18)

This behaviour is confirmed by the results provided in Fig.7.2(a) where we rep-
resent the evolution of the imbalance in the ‘non-ergodic’ regime (h = 10J), for
different first-neighbour interaction strengths. We observe an initial rapid decay in
the imbalance that occurs faster with increasing U . At long times, the imbalance
saturates to a non-zero value (even in the limit of vanishing particle number, see
inset of Fig.7.2(a)). In the regime of U � h the initial decay can be calculated
perturbatively and is expected to scale as γl(JU/h2)2 [138]. On the other hand,
for large interactions we note that the initial decay is independent from the value
of U and curves only differ in the long-time limit of the imbalance. In Fig.7.2(b)
we analyze the value of the effective decay rate γ̃. We observe that for interactions
U ≥ 10J , Eq.(7.17) provides a robust fit with an estimated β ≈ 0.9 approximately
constant. For smaller interactions, we confirm the initial decay rate γ̃ ∝ U2 via a
data collapse of the time traces shown in the inset of Fig.7.2(b).
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7.4.2 Dephasing and loss: weak interactions
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Figure 7.3: Imbalance dynamics in the presence of dephasing and loss for
intermediate interactions U = 2J and disorder h = 10J (lower traces) and h = 20J .
The more rapidly decaying traces represent the cases of both dephasing and loss
combined [(γd, γl) = (0.02, 0.02)]. The ‘loss only’ (‘dephasing only’) traces have
(γd, γl) = (0.0, 0.02) [(0.02, 0.0)]. The inset shows the ratio γ̃d/γ̃b of the decay rates
extracted from pure dephasing and the combination of both dephasing and loss,
respectively. For larger disorder the decay rate is dominated by the dephasing, as
shown by this ratio approaching unity.

Now that we have analyzed the effects of single-particle loss, it is important to
understand the interplay with other dissipation phenomena, namely dephasing. We
will consider independently the case of weak and strong first-neighbour interactions.

The results associated with weak interaction (U = 2J � h) are included in Fig.7.3.
As it was the case with the inclusion of losses, the addition of dephasing to the system
reduces the overall imbalance and reduces localization. However, dephasing leads to
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constant dissipation in the system rather than to a saturation (imbalance does not
plateau at the end of the simulated times). As a result, loss has only a subleading
effect in this scenario, especially for strong disorders. This comparison between the
effect of both dissipation sources is examined in the inset of Fig.7.3 where we consider
the values of the initial decay rate3 in the presence of dephasing only γ̃d and with
both loss and dephasing γ̃b. The inset highlights the leading role of dephasing in the
weak interaction case. This result is consistent with recent experiments [135].

7.4.3 Dephasing and loss: strong interactionsDynamics of many-body localization in the presence of particle loss 9
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Figure 4. Imbalance evolution for for pure dephasing (�d = 0.02, blue), pure loss

(�l = 0.02, orange), and both (green) for densities n = 0.5, 0.4, and n = 0.3 (top to

bottom, increasingly lighter colors) for large interactions, U = 50J . Here, �t = 0.025

[1/J ] was used. Inset: Imbalance evolution for an ergodic system, h = 0.1J , for a

closed system (black) and pure loss for comparison (for N = 12 sites).
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P

↵(�i
↵)2 log �i

↵ for bond i = N/2 is a measure of the factorizability of the density

matrix and thus its unbound growth signals the breakdown of the MPO approach.

Figure 5 compares the OSEE evolution for various baths starting from the perfect

density wave, a product state. For U = 50J , the OSEE stays close to zero until particle

loss removes the system from being close to an eigenstate, confirming the observations

of the previous section for n = 0.5. For U = 2J , the closed system OSEE shows a

log t growth, in accordance with the (pure state) entanglement entropy, which limits

the accessible times to t ⇡ 100/J . Pure dephasing leads to a decrease of the OSEE at

intermediate times, but a characteristic log t growth sets in at long times [14]. With

the inclusion of loss, however, the OSEE quickly drops to zero after times t ⇠ 1/�l

irrespective of interaction strength, since at this timescale the loss of particles becomes

significant and e↵ectively prevents long-range correlations. Note, however, that there is

still a significant number of particles left in the system at this time.

Finally, we compare the evolution of the OSEE with the entanglement entropy

obtained via a quantum trajectory method [2, 31] as shown with dashed lines in figure 5.

Note that these need not be the same, since the latter describes the average entanglement

entropy generated for the stochastically sampled pure states evolution. For comparison,

Figure 7.4: Imbalance evolution for pure dephasing (blue), pure loss (orange), and
both (green) for densities n = 0.5, 0.4, and n = 0.3 (top to bottom, increasingly
lighter colors) for large interactions, U = 50J . Here, ∆t = 0.025[1/J ] was used.
Inset: Imbalance evolution for an ergodic system, h = 0.1J , for a closed system
(black) and pure loss (for N = 12 sites).

3Obtained by a fit to a stretched exponential decay, see Eq.7.17 and Eq.7.18, for several disorder
strengths.
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If we consider stronger interaction values it is important to recall the intuitive
picture provided in section 7.4.1, where we indicated that in the limit of strong
interaction, the CDW state is approximately an eigenstate of the Hamiltonian, with
dissipation-induced tunneling scaling as 1/U24. In this scenario, dephasing alone
cannot generate sufficient tunneling events to have a strong impact in the imbalance
and dynamics are approximately frozen. As a result, particle loss, which produces
strong differences in the energy landscape of neighbouring sites, is expected to be
dominant. This is highlighted in the inset of Fig.7.4 where loss enables dynamics in
the system, compared to the closed system where CDW is approximately constant
and dynamics are effectively suppressed (note that here we are not requiring strong
disorder).

This is confirmed in Fig.7.4, where we choose U = 50J � h. If we compare the
darker lines of each colour (corresponding to n = 0.5 for loss only, dephasing only and
both dissipations) we observe that loss reduces strongly the imbalance of the system
compared to dephasing. In the presence of both dissipation sources, dephasing causes
a significant decay in the long-time imbalance due to the fact that after a sufficient
number of atoms have been eliminated from the lattice (the CDW is no longer an
eigenstate) dephasing-induced hopping events become more likely.

Hence, it is important to investigate how this interplay between dephasing and par-
ticle loss takes place with initial configurations with n 6= 0.5 that can be affected by
dephasing from earlier stages. In Fig.7.4 we include results associated to density-wave
states with densities of n = 0.4, 0.3 (lighter shades), which is easily incorporate in
the density operator MPO representation. We observe that in the three dissipation
scenarios decreasing initial densities lead to smaller values of imbalance at the initial
times. The effect of dephasing (blue curves) is enhanced strongly by the decreasing
densities as we predicted since the interaction cannot prevent tunneling events in
every site. Interestingly, in the case of pure loss (orange lines), even though the
transient profiles differ from each other the steady imbalance is independent of the
initial density. Finally, in the presence of both dissipation sources (green lines) we

4This factor is obtained by using perturbation theory in the limit of large U , see [138].
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observe that the dependence at long times with the initial density is again rather
small.

7.4.4 Evolution of entanglement entropy
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Figure 7.5: Evolution of the Von Neumann entropy SvN of the middle bond i = N/2
of the lattice for a system with N = 20 and disorder strength h = 10J . We include
results for U = 2J (blue lines) and U = 50J (red lines) including the closed system
scenario, pure loss and loss and depashing (from darker to lighter). these results are
obtained with a quantum trajectory approach (pure state evolution), with numerical
parameters D = 250, ∆t = 0.001 [1/J ]. Errorbars come from trajectory averaging
and are included in one of the curves only to facilitate visualization as the rest present
similar errors.

As a final study beyond the experimental observables, we are interested in investigat-
ing the efficiency of the different approaches that we can use to simulate dissipative
dynamics in this system. In particular, we want to study the entanglement entropy,
both in the pure state and in the density operator approach. This provides an insight
on not only the entanglement properties of the system but also on the bond dimension
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cost of representing it through MPS. We focus again on the localized regime starting
from a pure CDW state.

On the one hand, for the case of a pure state evolution, as it is for quantum
trajectories, we consider the Von Neumann entropy as introduced in section 4.1.4,
given by

SvN = −
ri=1∑
li

(λi)2 log (λi)2 , (7.19)

with li the index over the bond dimension at bond i and ri the Schmidt rank of
the bipartition. The Von Neumann entropy is an essential quantity as it indicates
the amount of entanglement existing between system bipartitions. In the context
of open systems, SvN also accounts for the entanglement of the system with its
environment so it cannot be used as a measure of entanglement within the system
itself. However, since the MPS representation can only support a limited bipartite
entanglement SvN ≤ log (D) for a given bond dimension D, studying SvN provides
a useful indication into the efficiency of the MPS representation.

In Fig.7.5 we represent the Von Neumann entropy in the middle bond of the lattice
and its dependence with both the interaction strength U and the different dissipation
mechanisms in the ‘non-ergodic’ regime. For strong interactions (U = 50J , red
curves) we observe moderate entanglement in the system; this is specially dramatic
in the closed system case where no dissipation can enable dynamics and the CDW
(close to an eigenstate) is approximately frozen. The addition of dissipation in the
system enables dynamics increasing the value of SvN . Interestingly, the addition
of dephasing reduces the overall entropy as it disentangles the system. In the case
of weak interactions (U = 2J , blue curves) we observe the logarithmic growth of
entanglement for the closed localized systems, limiting our ability to model them
at long times. The addition of dissipation, prevents this growth; this can be easily
understood as removing particles from the system prevents the survival of long-range
correlations along the system. In this case, dephasing has a subleading effect in
contrast with what we observe in the case of OSEE as we explain below.
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Figure 7.6: Evolution of the OSEE for U = 2J and U = 50J and disorder
strength h = 10J (solid lines) and the entanglement entropy obtained from quantum
trajectory simulations (dashed lines). We used a base d, corresponding to the local
Hilbert space dimension in each method, for the logarithm of the respective entropy
for better comparison. The timestep used for the OSEE was ∆t = 0.005 [1/J ]. For
the quantum trajectories a timestep of size ∆t = 0.001 [1/J ] and bond dimension
D = 250 were used.

For the case of the density operator approach, the OSEE provided by the MPO
representation of the density matrix (Eq.(7.14)) is given by

S] = −
∑
αi

(λαi)2 log (λαi)
2 , (7.20)

for bond i = N/2 with bond index αi. The OSEE is a measure of the factorizability
of the density matrix and thus its unbound growth signals the breakdown of the
MPO approach.

In Fig.7.6 we compare the evolution of the entanglement entropy (dashed lines) and
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the OSEE (solid lines) for different interaction strengths and baths starting from a
CDW. For comparison, we calculated the entanglement entropy using a logarithm
with base equal to the local Hilbert space dimension for both the quantum trajectory
method (d = 2) and the density matrix evolution (d = 4).

In the case of strong interactions (U = 50J) we observe similar behaviour as the
one Fig.7.5 with the OSEE remaining small until a relevant number of particles have
been removed from the system, what enables dynamics. We observe a sharper growth
and decay of the OSEE compared to SvN but the profiles are qualitatively similar.
The richer behaviour comes in the limit of weak interactions (U = 2J). In the closed
system (grey), the OSEE exhibits the logarithmic growth that we observed for pure
states, limiting our numerical ability to simulate it in the later times (t ∼ 100J).
The addition of dephasing (blue) decreases the OSEE for intermediate times, leading
again to a logarithmic growth at long times (see [136]) that we observe towards
the end of the simulated time. In contrast, the addition of dephasing does not
affect the pure state entanglement entropy (blue dashed) that sits on top of the
close system value. Furthermore, if we analyze the inclusion of losses (orange), the
profiles are similar to the close system until t ∼ γ−1

l when losses in the system
become significant and a sudden drop in the OSEE is observed. It is important to
note that at those times the population fraction is still significant and we cannot link
to vanishing densities; then, loss is also preventing the persistence of correlations.
Similar behaviour is observed for SvN but with a slower growth and decay. Finally,
if dephasing is present on top of losses, we observe a faster drop in both the OSEE
and SvN with a similar qualitative behaviour.

It is important to highlight now the differences we have observed between the
entanglement entropy using both methods which are specially noticeable in the case
of dephasing only. In all the cases studied, the trajectory approach provides curves
that evolve more smoothly, we expect experimental results, which also have this
probabilistic nature, to remain closer to the trajectory case. The differences between
SvN and OSEE become important when dephasing is added to the system. In the
trajectory approach SvN is mostly unaffected by the presence of dephasing. On the
other hand, in the density matrix approach, the dephasing (that we represent as
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a local density measurement) resets the system into a product state, disentangling
the system. This property is obviously lost in a pure state picture. Thus, we can
conclude that in the case of analyzing this system subject to dephasing at long times,
the use of the MPO representation of the density operator can be quite advantageous.

7.5 Conclusion

In this chapter, we have computed the time evolution of an open fermionic many-
body systems coupled to a bath, modeling relevant experimental conditions and
discussing the interplay between interactions, loss and dephasing. In order to do so,
we have combined a number-conserving quantum trajectory approach (as presented
in chapter 6) and a MPO approach to directly compute the Lindbladian evolution
preserving the ‘bond-parity’ symmetry sectors. The latter has proven to be well
suited for the simulation of complex (mixed) initial states and efficient for the
computation of long-time open dynamics. All this has given insight into the effects
of dissipation on many-body localized states that are relevant in recent experiments.

In particular, we have focused on the effects of single-particle loss deep in the
many-body localized phase. We have determined that especially in the presence
of strong interactions, losses can enhance the dynamics in the localized phase, so
reducing the stationary density imbalance. The results obtained agreed with the
intuition gained from the phenomenological model that we proposed. Also, we have
identified parameter regimes where loss or dephasing become the dominant dissi-
pation mechanism, modifying the long-time behaviour of imbalance; even inducing
thermalization in the system. Moreover, we have studied entanglement properties of
the system and how different methods can provide an efficient representation of the
open dynamics.

The methods presented are potentially useful to describe other systems such as
experiments with large dipole-dipole interaction, e.g. lattice models with Erbium
atoms [184]. Another possible system of study would be the case of quasi-periodic
systems where we do not consider random local profiles but rather quasi-crystal
structures.



Chapter 8

Conclusion

In this thesis we have presented a set of examples in the wide range of applications
of cold atom systems not only towards quantum simulation but also in the context
of quantum enhanced metrology. Cold atoms in optical lattices represent a power-
ful platform thanks to their high experimental tunability and flexibility and, also,
the good microscopic characterization under well-controlled approximations that we
possess of such systems, both as closed and open systems. Despite the theoretical
and experimental effort in describing ultracold gases there are still interesting funda-
mental questions left to be answered, such as a better description of the properties
beyond 1D or the characterization of out-of-equilibrium phases. Below, we discuss
some of the directions in which we would like to drive the research projects presented
in this thesis.

In chapter 5, we demonstrated the robust preparation of spin-symmetric states in
fermionic models through the combination of coherent and dissipative driving for
moderate system sizes. However, a proper characterization of the timescales of the
stroboscopic scheme (and its scaling with N) for experimentally-relevant system sizes
is essential. This requires to investigate the system dynamics beyond standard TEBD
where the entanglement built-up in the system is too large to properly characterize
the steady state. Alternatively, we would like to implement the number-conserving
algorithm (as it was the case for chapter 6 and 7) for this model; another possibility
is to study the time evolution through TDVP [123]. In addition, the variational
approach presented in section 4.4.2 could allow us to investigate if the proposed
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steady state is also reached in larger systems while not providing information of the
timescales. Beyond the use of alternative numerical tools in the problem, we would
like to analyze other experimental possibilities such as full-optical schemes using
Raman sideband cooling [124] or optical transitions to metastables states to relax
the requirement of sympathetic cooling.

In chapter 6, we have shown how dissipative dynamics can herald closed-system
properties such as particle statistics for system that are identical in the absence
of dissipation. We are interested in investigating if these differences are present in
other scenarios such as quasi-periodic systems which links naturally with ideas of
disordered systems and MBL and nicely connect to chapter 7. There is a growing
interest in describing the phases near the MBL-to-thermal transition which are less
well-understood and it would be interesting to apply open quantum system ideas to
such intermediate phases. Moreover, incoherent processes can drastically modify the
known phases of matter or even create new ones. A new field has emerged focused
on the characterization of dynamical critical phenomena and the emergence of new
universality classes through dissipation, see [64, 65].

In chapter 7, we characterize the role of different dissipation sources in the behaviour
of systems with intrinsically long timescales, i.e. MBL systems. Moreover, in
any open quantum system, we require powerful numerical tools that can efficiently
describe the dissipative dynamics. We have observed that certain types of dissipation
can positively impact our DMRG representation of the dynamics, such as dephasing
notably reducing the OSEE at intermediate times while not affecting the required
numerical resources of quantum trajectories. Thus, it is interesting to compare the
different approaches to the numerical solution of dissipative evolution (quantum
trajectories [92], MPO mapping of the density operator[139], variational approach
[108] and so on) and construct a robust numerical toolbox that exploit the advantages
of the different methods.

All in all, the open system perspective is an efficient way of dealing with many
non-equilibrium problems, by tracing out part of the many-body problem in such
a way that we only keep the more relevant degrees of freedom. This becomes
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particularly relevant in the case of complex environments or S-E couplings in which
we have to go beyond the usual approximations [185], like Markov or Lindblad.
The rising number of applications based on out-of-equilibrium quantum system, e.g.
dissipative driven Floquet systems [186], are making the open system perspective
indispensable in the theoretical description.
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