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ABSTRACT 

This thesis proposes a new non-intrusive method for residential load 

monitoring. The proposed method can detect appliance switching events, 

separate appliance electric features, and identify appliance types. Compared 

with other non-intrusive monitoring methods, the proposed method improves 

the monitoring accuracy and decreases the monitoring response time.  

Firstly, the monitoring hardware was designed and constructed to sample 

and acquire the aggregated electric data of one residential area.  

Secondly, the sampled data were processed and analysed with the 

proposed method, which achieves the monitoring of individual appliance 

running conditions and power consumption in this area in a non-intrusive way. 

The data analysis process includes three steps, 1) the appliance switching 

event is detected by the Heuristic detection method. 2) the working current of 

the switched appliance is separated according to the difference method, 3) the 

type of switched appliance is identified with the K-nearest neighbour method 

according to the appliance’s current harmonic components, and the 

identification result is modified and corrected according to appliance 

operation pattern with the aid of a Back Propagation Neural Network. 

Thirdly, the proposed NILM method was tested through offline and 

online applications. The offline application involves three days of pre-

recorded data which were processed and analysed. The online application 

consists of two parts. The first part is a direct application for four domestic 

homes during one day (24 hours). As for the second part, the proposed 

monitoring method was applied to one domestic home for ninety days. All the 

online and offline tests, the running conditions and the power consumption of 

appliances were monitored and recorded. 

Due to the test results, the proposed method is reliable and offers a 

powerful monitoring method for demand side management. 
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Chapter 1 Introduction 

1.1   Research Background 

Global electricity consumption has been increasing steadily in domestic, 

commercial, and industrial sectors around the world. Fig.1.1 shows the consumption 

of electricity worldwide, ranging from 7323 billion kWh in 1980 to 23000 billion kWh 

in 2021. The general trend of consumption is indicated by the red line which shows a 

steady increase except for the year 2020 and 2021where it shows a slight dip when 

compared to all previous years. The slight dip can be accounted for by the effect of 

Covid-19. Both personal and commercial activities in many countries were partially 

interrupted during those years resulting in a dip in energy demand. 

 

 

Fig.1. 1 The electricity consumption from 1980 to 2021 [1] 

The continuous increase may lead to a shortage of electric power [2], therefore it 

is essential to bridge any demand and supply gap as the trend requires [3]. One way is 

to expand the generation, transmission, and distribution system capacity [4]. However, 

there are difficulties in building new power stations and new transmission lines due to: 

(1) the availability of suitable sites, and (2) the attainability of access permission 

providing ‘way leave’ for transmission lines. All restrictions are a result of 

environmental protection policies [5, 6]. The concept of demand side management 

(DSM) is suggested as a way to alleviate power shortage and bridge the demand supply 

gap since it encourages customers to amend decisions about their energy usage pattern 
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and enables energy suppliers to minimize the peak demand overload and reshape the 

load profile [7, 8]. The benefit of DSM has been reflected in industrial sectors  [9] in 

countries such as China, where it has been applied in the building industry since 2004. 

The total electricity consumption within China’s building industry was 590 billion 

kWh, with the construction of large public buildings accounting for 30% of the 

electricity consumption in that industry. The implementation of effective DSM in large 

public building construction can effectively save 5% - 10% of electricity from being 

wasted and also improve power transformation and distribution efficiency[10]. 

When DSM is applied in the residential sector, although the total demand is 

comparable to the industrial sector, the number of residential loads is large, the power 

of each is low, which means that it is meaningless to manage a single residential load 

through the same type of DSM application as one would use in an industrial sector. To 

improve DSM efficiency and feasibility in the residential sector, obtaining individual 

load operational characteristics and power consumption totals is helpful since the 

aggregated control of load cluster could be an effective residential demand 

management tool [11, 12], a tool which would require accurate monitoring of a single 

residential load. However, in a residential home, the number of electrical appliances 

can easily be over a dozen, and the operation of these appliances is random. Several 

appliances are always operating in parallel, so the traditional monitoring way is unable 

to differentiate the power consumption of individual appliance and track appliance run 

times [13, 14]. This tracking only monitors the total electricity consumption of the 

customer within a period through energy meters [15]. To obtain the data needed for 

residential DSM, new residential load monitoring methods have been previously 

proposed. 

1.2   Residential Load Monitoring Methods 

In residential load monitoring, two main methods are direct and indirect 

monitoring. The direct approach involves the installation of sensors directly connected 

to the appliance, the sensors are embedding in each appliance, so it is an intrusive way 

of load monitoring. The indirect approach analyses the current, power and other 

electric parameters flow going into a residential home and then deduces what 

appliances have operated and their individual energy consumption[16, 17]. The latter 
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is a computational technique based purely on analytical tools, so it is a non-intrusive 

way of load monitoring [18, 19]. 

1.2.1   Intrusive load monitoring way 

Intrusive monitoring installs sensors for each appliance being monitored. The 

appliance operation status and power consumption information are obtained by 

directly measuring and recording the usage. Fig.1.2 shows the schematic diagram of 

intrusive monitoring. 

 

 

Fig.1. 2 Schematic diagram of intrusive monitoring 

 

Due to the different data needed, multiple dedicated sensors are used, such as 

Drenker [20] uses power sensors to monitor household appliances that are running and 

provides power measurements, and Kelly [21] uses sensor sets to monitor the working 

current, phase angle, active and reactive power of the specific appliance. Although the 

intrusive monitoring system has high accuracy and reliability, the implementation cost 

is high, and it is challenging to establish the sensor-distributed measurement network 

in actual practice [22]. Further, the installation and expansion of sensors cause 

inconvenience for customers. Intrusive monitoring is not a feasible solution for 

widespread residential load monitoring, it is more suitable for specific high-power 

consumption appliances. 

1.2.2   Non-intrusive load monitoring (NILM) 

All household appliances in residences are connected in parallel at the electricity 

supply point, which means switching ON and OFF these appliances changes the 
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current, power, and other electric parameters [23] at the electricity supply point. NILM 

can monitor household appliances' operating conditions and power consumption by 

analysing these electric parameters. Compared to intrusive monitoring which uses 

multiple sensors, NILM uses a single sensor. Fig.1.3 shows the schematic diagram of 

a household appliance monitored using NILM. 

 

 

Fig.1. 3 Schematic diagram of non-intrusive monitoring 

 

The technique of NILM was first applied to monitor residential appliances by 

Hart [24] in the 1980s. Data of the total active and reactive power (P-Q) was measured 

and collected at the electrical supply point of a home. The P-Q changes were then 

analysed and mapped into a power feature space to determine which appliance was 

responsible for the change. Since then, the technique has evolved to include more 

electric parameters and complex data analysis processing to improve monitoring 

accuracy [25]. 

Reference [26] showed how weighted images generated by different Voltage-

Current (V-I) curves were used as input for a convolutional neural network (CNN) to 

identify the working current of various appliances. The accuracy obtained for the 

public datasets (PLAID and WHITED) was around 80%. References [27] and [28] 

used Active Deep Learning (ADL) and Discrete Wavelet Transform (DWT) to extract 

and identify appliance features from the current data at the electrical supply point, 

achieving an accuracy of above 90% through testing three public datasets. In reference 

[29], a combination of Generative Adversarial Network (GAN) and CNN was used to 

denoise the current data and extract the appliance feature at the electrical supply point, 

which resulted in a monitoring accuracy of around 92%. Reference [30] utilized a deep 

neural network that combined a regression sub-network with a classification sub-
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network based on the power data and status information of the appliance to 

disaggregate the mixed power data at the electrical supply point. Finally, reference [31] 

proposed a brute-force method and a greedy method to disaggregate the mixed power 

data at the electrical supply point into the individual appliance level. 

Although monitoring accuracy has improved, there remains three limitations in 

the NILM application. Based on references [25]-[31], the first limitation is that 

monitoring takes a long time due to complex computation and data processing. The 

efficiency of identifying and monitoring the appliance is reduced. When frequent 

switching events occur, another appliance may also be activated during the data 

processing period and affect the final monitoring results. The second limitation is 

related to the design of the feature extractor, classifier, and decomposer. The features 

used to train and construct corresponding models are empirically selected, which can 

lead to fault monitoring if inappropriate features are used in the training and 

constructing process. The third limitation is low monitoring accuracy for appliances 

with the similar electric features. 

1.3   Motivation 

Power shortage has become a serious problem in the current power system, which 

cannot be resolved solely by enlarging the power supply. Demand-side management 

(DSM) utilizes monitoring and control technologies to innovate traditional power 

systems and manage power distribution, making it a potential solution to tackle this 

challenge. DSM can achieve several goals, such as providing customers with detailed 

energy efficiency information, illustrating the impact of customer behaviour on energy 

efficiency, and guiding them to take corresponding energy-saving measures. For power 

suppliers, DSM can help improve smart grid implementation, relieve power supply 

shortages, ensure power grid stability, balance power supply and demand, and analyse 

the composition of electric energy consumption, thereby providing reliably sourced 

power. 

Therefore, more and more policies and regulations encourage DSM. The EU 

energy efficiency directive allows everyday residential consumers to participate in 

power management, either alone or by aggregating scattered loads [32]. Furthermore, 

in the UK, Scottish Power cooperates with Honeywell (using their developed 
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automatic demand responses for industrial and commercial equipment) to improve 

power efficiency [33]. In the United States, with the Energy Policy Act [34] and the 

American Clean Energy Security Act [35] being promulgated, several major power 

companies and market institutions have begun to implement demand-side power 

management. In 2013, power transmission network operators could choose the 

auxiliary service directly from a third party and the settlement mechanism, including 

load management [36]. In 2018, the Federal energy regulatory commission (FERC) 

issued Act No. 841, which provided that the corresponding power management service 

can participate in the power market through market competition [37]. China, in 2015, 

specified detailed rules for demand-side power management concerning the 

background, principles and objectives of power management implementation [38]. In 

2016, the plan for electric industry development from 2016 to 2020 emphasized the 

significance of power management [39]. In 2017, the government issued new rules for 

power demand-side management. The practice of DSM operation is beneficial in 

environmental protection, green power, intelligent electricity, and promoting 

renewable energy enriched by the development of DSM. In 2020, the government and 

State Grid company issued the power reliability management rules to strengthen power 

management regulations, further giving DSM a higher focus on power system 

reliability [40].  

As rules encouraging DSM development become more prevalent and researchers 

focus more on DSM, it will eventually become widely applied in power systems [41]. 

However, any load management system must be based on a correct understanding of 

individual appliances’ running characteristics and power consumption conditions, 

making load monitoring technology increasingly vital in DSM. NILM is thus gaining 

more attention for two reasons: 1) NILM is more suitable for widespread deployment 

since the non-intrusive approach only requires the current, power, and other electric 

data to be analysed at the electrical supply entry point; 2) the power consumption and 

running condition of each appliance within the monitoring area can be obtained more 

economically. To widely apply NILM in the residential load monitoring, its 

weaknesses in accuracy, practicability and efficiency must be overcome. Here are 

some of the common weaknesses of NILM and the proposals on how to overcome 

them: 
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⚫ Faulty monitoring results are always caused by using inappropriate appliance 

features to train and construct the NILM model. To improve the NILM accuracy, 

effective appliance features must be selected and analysed before the model and 

method design, to filter out invalid features for load identification in advance. 

⚫ The computation process of NILM is too complex, resulting in a longer response 

time for monitoring. Another appliance may start running and affect the 

monitoring and results. This concern is negligible under the intrusive method. To 

reduce the response time of NILM, minimize the analysis of duplicate data, and 

simplify the calculation process of existing methods. 

⚫ The accuracy of non-intrusive monitoring is significantly challenged, especially 

in the monitoring of appliances with similar electric features. To improve 

monitoring accuracy, a combination of electric and non-electric appliances 

features can be used in the monitoring process. 

⚫ Most NILM models are tested using public datasets, which are not actual data in 

residential power environments, and thus are insufficient and unconvincing. To 

increase the credibility of testing, public datasets are combined with real data to 

test NILM models.  

1.4   Aims and Research Objectives 

This thesis investigates the potential of using a non-intrusive method for 

monitoring electric consumption in residences to replace the intrusive monitoring 

system. The aim is to improve the monitoring accuracy, decrease the monitoring 

response time, and enhance the practicability of NILM when applied in residential 

settings. Here are four main objectives: 

⚫ The first objective is to offer an updated review of the appliance features for load 

identification, as previous research has often randomly or empirically selected 

electric features for model construction and training. A systematic analysis and 

comparison of comprehensive features will ensure that the selected features are 

valid in NILM, which will help optimize later methods and model designing, 

making the monitoring process more accurate. 
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⚫ The second objective is to reduce the computational complexity and the response 

time of NILM. The disparate and variational data which occurs in switching on 

and off events are more valuable than reduplicative and invariable data. By 

separating and identifying only the data around the switching events, the 

computation process of NILM will be much simplified, and the NILM response 

time is reduced. Furthermore, the separating and identifying methods will redesign 

and improve to further reduce NILM response time. 

⚫ The third objective is to improve monitoring accuracy. As electric features are 

similar in many different appliances, no matter how much the model tries to 

optimize and train the identification process, the overlapping of electric features 

will inevitably cause faulty identification and decrease monitoring accuracy. 

Combining the appliance operation pattern into the monitoring can overcome this 

issue and largely improve the monitoring accuracy. 

⚫ The fourth objective is to offer a comprehensive testing method to check the 

practical application of NILM. Although there are many public datasets that can 

be used to test monitoring methods, the entire monitoring process is done in a 

computer program, which idealizes or downplay constraints and problems in 

actual practical applications. Testing the proposed NILM method using power data 

from an actual residential home and the power data from public datasets, which 

will provide more genuine results and allow a better understanding of the practical 

application of NILM. 

1.5   Original Contribution of the Thesis 

This thesis makes several original contributions which are summarized below 

with techniques used to achieve the research objectives: 

⚫ Original Contribution 1: Chapter 3 conducts a systematic comparison and analysis 

of appliance features to select the most effective features for NILM. By extracting 

and analysing features from frequently used household appliances, the most 

effective ones are combined and selected. The selected features in this thesis are 

actual measuring, which is used for the further monitoring process. Unlike other 
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researchers who did not carry out appliance feature analysis, this thesis places 

equal importance on both appliance features analysis and model establishment. 

This reduces the faulty monitoring results caused by the inappropriate selection of 

features. 

⚫ Original Contribution 2: Chapters 4 and 5 propose a monitoring method with a 

short response time and reduced computation complexity. Firstly, in Chapter 4, the 

Heuristic method is improved, which is used for fast detection of appliance 

switching events. The separation method of the current data being before and after 

the switching event is designed and improved to avoid the unnecessary analysis 

of reduplicative and invariable data. Secondly, in Chapter 5, the KNN model is 

reconstructed and trained based on the prior appliance feature analysis in Chapter 

3. This reduces the storage space required for the model and simplifies its structure 

as well as the data process program. 

⚫ Original Contribution 3: Chapter 5 proposes a correction method for monitoring 

results to consider appliance operation features in NILM. This overcomes the 

problem of appliance electric features overlapping in the monitoring process. A 

BPNN is trained with appliance non-electric features to fit the appliance operation 

pattern, which is used as a reference for correction purposes. Compared to other 

research, this correction strategy improves monitoring accuracy, and the BPNN is 

only used as an offline technology to obtain the appliance operation pattern. This 

approach incorporates the better regression ability of BPNN, without increasing 

the complexity of the monitoring method.  

⚫ Original Contribution 4: Chapter 6 tests the proposed monitoring process with 

both offline data and online data measured in an actual working environment. The 

offline test involves 3 days of pre-recorded data sampled directly from a real 

residential environment which proved the feasibility of the proposed method. The 

online test consists of two parts, which include a direct application to 4 domestic 

homes for a day (24 hours) to test the robustness of the proposed method, and 

another direct application to 1 domestic home for 90 days to test the reliability of 

the proposed method. Compared with testing of published papers on monitoring 

methods that use public datasets and where the whole monitoring process is 
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completed in the computer program, this testing method as proposed in this thesis 

to be carried out under a real and practical environment is more comprehensive 

and can effectively check the advantages and disadvantages of the NILM. 

 

1.6   Thesis Organization 

This thesis focuses on NILM based on the working current of a single appliance. 

A complete framework for this non-intrusive load monitoring system is designed using 

high-frequency sampling. The framework includes research on the separation and 

identification of working currents of appliances and the correction of load 

identification results to improve monitoring accuracy. The proposed algorithm is tested 

under practical environments to demonstrate its effectiveness. The thesis is structured 

as follows: 

Chapter 2 presents a general overview of NILM, including various solutions for 

data acquisition and analysis. The methodology of each solution is introduced, and 

their advantages and disadvantages are compared. Finally, the proposed method is 

presented.  

Chapter 3 analyses and compares various appliances’ features, which is the prior 

research for NILM, the features with higher identification are selected as the main 

contents for further research. The selected features are measured and extracted from 

the actual residential environments.  

Chapter 4 develops fast switching events detection and features separation 

methods. Firstly, the Heuristic method is improved to achieve fast switching event 

detection; when the switching event is detected, the working current of a switched 

appliance is separated through the modified difference method. 

Chapter 5 presents a method to improve the identification accuracy of loads with 

similar electrical characteristics. Firstly, based on the frequency components of 

different appliance working currents, the separated currents are transferred from the 

time domain to the frequency domain to identify the separated currents using the KNN 

method. The KNN model is reconstructed and trained. Secondly, home appliances 

have different switching probabilities in a day. A BPNN is trained, based on the 

running period and times of known appliances, to fit the operation pattern curve of 

these appliances. The operation pattern curve reflects the switching probability 
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distribution of the appliance, and then the identification results are modified based on 

the switching probability. 

Chapter 6 is the application of the proposed method. Different appliances of 4 

houses are monitored, the power consumption of each appliance is obtained, and the 

running of each appliance is tracked. 

Chapter 7 draws conclusions and provides recommendations for future work. 

1.7   Publication  

Sheng Wu and K.L.Lo,“Non-intrusive monitoring algorithm for resident loads 

with similar electrical characteristic,” in Processes, Vol. 08, Iss. 11, Art No. 1385, DOI. 

10.3390/pr8111385, 2020.  

Sheng Wu and Liya Liu,“Research on Features of Residential Loads and 

Establishment of Feature Library,’’ in 2018 2nd IEEE Conference on Energy Internet 

and Energy System Integration (EI2), DOI: 10.1109/EI2.2018.8582382. 
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Chapter 2 Literature Review and Methodology of Non-intrusive 

Load Monitoring 

2.1   Introduction 

This chapter conducts a literature review on the methodology of non-intrusive 

monitoring for residential appliances. First, the process of NILM is explained in 

Section 2.2 which involved two tasks: to acquire the integrated and accurate electric 

data at the power supply entry point; to analyse the obtained data for determining the 

appliances running states and power consumption characteristics. In Section 2.3, two 

common data acquisition methods for NILM are introduced: high-frequency sample 

and low-frequency sample. In Section 2.4, the data analysing process is introduced, 

which consists of the following three steps: 1) appliance switching detection, 2) 

switched appliance feature separation, and 3) appliance type identification. The 

advantages and disadvantages of the different solutions for each step are then 

compared. In Section 2.5, the proposed monitoring model is introduced. 

2.2   Overview of Non-intrusive Load Monitoring Research 

The purpose of NILM is to obtain running states and power consumptions of 

individual appliances from the data collected at the electricity supply point. The total 

power (the power of the electricity supply point) at any specific time is determined by 

the running states and corresponding power of each appliance at that time. The total 

power 𝑃(𝑡) at time t can be expressed as: 

𝑃(𝑡) = ∑ 𝑎𝑚(𝑡) ∗ 𝑃𝑚(𝑡)𝑀
𝑚=1                                 (2.1) 

𝑀 is the number of running appliances at time t. 𝑎𝑚(𝑡) represents the state of the 

appliance 𝑚  at time 𝑡 , 𝑎𝑚(𝑡) = 1 (the appliance is running steadily at time 𝑡 ), 

otherwise, 𝑎𝑚(𝑡) = 0 . 𝑃𝑚(𝑡)  is the power of appliance 𝑚  at time 𝑡 . Therefore, by 

processing the obtained data at the power supply entry point and determining the type 

of appliance, the 𝑎𝑚 and 𝑃𝑚 at each time 𝑡, the running states and power consumptions 

of every appliances can be monitored. Fig.2.1 illustrates the overall monitoring process: 
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   Fig.2. 1 The general monitoring process 

 
As shown in Fig.2.1, the electric data is first acquired at the electricity supply 

point by the monitoring sensor. Next, this acquired data is processed through the 

detecting, separating and identifying steps to obtain the type of appliance, the power 

𝑃𝑚  for each appliance and their appliance states 𝑎𝑚 . Finally, based on the type of 

appliance, the 𝑃𝑚 and 𝑎𝑚values, the power consumption and running period of each 

appliance are monitored.  

This data acquisition is essential to ensure the authenticity of the electric 

parameters collected, and the acquired data should contain a sufficient number of 

appliance features. Without accurate and integral electric data, the subsequent data 

analysis becomes meaningless due to data distortion and insufficient appliance features. 

For data analysis, as shown in Fig.2.1, the switching detection is the start of the 

monitoring, which affects the sensitivity of monitoring. The detection result also 
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affects the value of 𝑎𝑚, if an appliance was switched and the switching event was 

detected, this appliance state 𝑎𝑚 will be set as 1. The separation method affects the 

integrity of the appliance feature, the separated features is used in the appliance type 

identification and power 𝑃𝑚  calculation. The identification method affects the 

accuracy of monitoring. Thus, any errors in detecting, separating and identifying will 

affect the monitoring results (the type of appliance, the power 𝑃𝑚 of appliance, and the 

running state 𝑎𝑚 of appliance). To improve the monitoring accuracy, it is possible to 

use more sophisticated and advanced methods in each step. However, complex 

analysis processes may not be feasible for online NILM applications due to: 1) limited 

computing power of online NILM, 2) significant increase in the response time for 

monitoring. Therefore, a better monitoring model is required to combine all three 

aspects of detecting, separating and identifying, and better allocate the limited 

computation power for accurate and rapid monitoring.  

Lastly, it is important to ensure the final calculated results for the power 

consumptions and running periods are as close to the actual values and the error 

margins are not too large. 

2.3   Methodology of Monitoring Household Appliances with a Non-

intrusive System 

During the monitoring process of a household’s appliances, the final monitoring 

accuracy and the computation complexity are affected by factors such as data 

acquisition, appliance switching detection, switched appliance feature separation and 

appliance type identification. The following sections shall summarize and compare the 

advantages and disadvantages of these four factors. 

2.3.1   Data Acquisition 

At the power supply entry point of any residential home, only the voltage, current, 

active power and reactive power can be directly measured and acquired. As for the 

other electric parameters, such as the frequency components in the power spectrum, 

current harmonic waves, the apparent electromagnetic interference noise, the 

microscopic value changes in voltage and the impact peak in the current, they must all 

be derived and calculated from the measured current, voltage and power data. The 
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corresponding parameters will inevitably be distorted in the process of extraction and 

calculation, which may affect the accuracy of data analysis. Hence, the current, voltage 

and power are the three most suitable parameters used in NILM, as their corresponding 

data can be acquired directly at low and high frequencies that range from 1Hz to 10kHz. 

For low-frequency NILM, the sample frequency is usually in the range of 1Hz to 

60Hz. This simplifies the hardware inventory, making the data transmission and 

storage more convenient. However, low-frequency sampling in NILM is particularly 

challenging due to several reasons. Firstly, the change of appliances’ operating states 

is instantaneous, low frequency sampling may miss some data during transient states 

[42]. Secondly, noise from unknown appliances, abnormal transients and load 

fluctuations can distort the acquired data. Having few samples makes it difficult to 

distinguish between real data and distorted data. Thirdly, the appliance features may 

have serious overlapping when sampled at low frequency. Lastly, the authenticity of 

the electric parameters may be unguaranteed. References [43] and [44] show that 

although power data is acquired from one (same) appliance using different low-

frequency sample devices, the obtained data is not totally identical. The collected data 

from each different device always has a 10-20% rate of error, which may create more 

errors in subsequent data analysis. 

As for high-frequency NILM, the sample frequency is usually in the range of kilo-

Hz or mega-Hz. The obtained data is more refined, elaborate, and accurate. Although 

the obtained information is abundant and various appliance features can be separated 

from the high-frequency sampled data, the corresponding device usually draws a high 

cost and requires a special design. This is raised in reference [45], where the 

researchers designed a low-cost data acquisition system called YoMo (You Only 

Measure Once). The system uses current transformers to measure the current value in 

a non-intrusive way. The accuracy and resolution of the YoMo system can also meet 

various load monitoring requirements from 4W to 5kW. In reference [46], an 

intelligent digital power acquisition and analysing platform called C-meter (Cognitive 

Power Meter) was designed to support multichannel high-frequency data acquisition. 

The hardware requirements and costs are relatively high for this high-frequency NILM. 

Comparing the low-frequency and high-frequency sampling methods in NILM, 

the former method is more suitable for performing monitoring where there is less 
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system noise and the running of appliances is constant. The latter method is a better 

choice when the appliance running is more random and the system noise is high. This 

thesis focuses on the high-frequency sampling method. 

2.3.2   Switching Event Detection 

After the electric parameters (current, voltage or power) at the electricity supply 

point are sampled with high or low frequencies, the obtained data is presented in a 

discrete sequence (𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑛), where 𝑋1 to 𝑋𝑛 are the corresponding values of 

each sampled data. As shown in Fig.2.2, the obtained current sequence includes 1000 

sampled data. 

 

 

      Fig.2. 2 the sampled current sequence with 1000 sample points 

 
As seen from Fig.2.2, the sampled data becomes reduplicative and invariable 

when the running status of appliances is stable, for example, the values of 𝑋100, 𝑋300 

and 𝑋500 are the same. This suggests that most of the acquired data is redundant and 

only the data surrounding the switching event is useful for this monitoring. Therefore, 

knowing the appliance status change point and confirming the appliance in steady 

operation before disaggregating or identifying the sampled data [47] become essential 

in decreasing the response time and computational complexity of monitoring. The 

main objective of the switching event detection is hence to determine whether the 
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appliance running status has changed and has been steady. The detection can be 

achieved in two ways: firstly, by judging whether the sampled data is stable within a 

fixed period, and secondly, by detecting the mutation point from the sampled data.  

2.3.2.1   Judging Data Sequence Stability 

Heuristic detection [48] is the main method for judging data sequence stability in 

NILM. First, an observation period is determined, with one observation period 

including 𝑛 sampled data. Next, the sampled data in the observation period forms a 

data set [𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑛]. Finally, the difference between the maximum data |X|𝑚𝑎𝑥 

and minimum data |X|𝑚𝑖𝑛 within one data set is used to obtain the change amount. If 

the change amount is less than a certain threshold 𝜀 , this observation period is 

considered as a stable region, which indicates that the switching event has not occurred. 

If the change amount is greater than the threshold, the corresponding observation 

period is defined as the change area, where the switching event has occurred. Fig.2.3 

shows an example in which the entire detection process includes 6 × 106  sample 

points, with four observation periods. The change between |X|𝑚𝑎𝑥and |X|𝑚𝑖𝑛 for each 

observation period is 5.49, 0.2, 0.09 and 1.5 respectively. The change for Period 1 and 

Period 4 is significant, so they are identified as the change area where the switching 

event has occurred. 

 

 

Fig.2. 3 Heuristic detection process 
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The principle of Heuristic detection is simple with low consumption [48], so the 

response time of a switching event detection is almost in real-time. However, there are 

two disadvantages when it is used in NILM. The first one is that the auxiliary time 

meter is required during the observation period. However, the coordination between 

the auxiliary time meter and the data acquisition device is unsatisfactory, which can 

lead to an increase in the complexity of the hardware and monitoring process. The 

second disadvantage is the limited ability to detect the switching event of small power 

appliances with negligible data change. The inability to detect switching events of 

these small power appliances decreases the sensitivity of this Heuristic detection 

method.  

2.3.2.2   Detecting Mutation Data 

The cumulative sum (CUSUM) [49] and log likelihood ratio (LIR) [50] are 

commonly used methods to detect mutation points in NILM. Instead of determining 

whether sampled data within an observation period is stable, these methods process 

each sampled data by calculation to detect if they are the mutation points. This enables 

a higher detecting sensitivity. 

The CUSUM is a sequential analysis approach which determines how the samples 

vary from their mean values based on the cumulative sum value. The cumulative sum 

of the samples can be calculated using the following functions: 

𝑀𝑒𝑎𝑛𝑛 =
1

𝑛
(∑ 𝑋𝑖

𝑛
𝑖=1 )                                          (2.2) 

𝐶𝑛 = 𝐶𝑛−1 + (𝑋𝑛 − 𝑀𝑒𝑎𝑛𝑛)                                 (2.3) 

where 𝑋𝑛  is the 𝑛𝑡ℎ  sampled electric data (such as real power, reactive power and 

current); 𝑀𝑒𝑎𝑛𝑛 is the average value of sampled data from 1𝑠𝑡 to 𝑛𝑡ℎ, and 𝐶𝑛 is the 

𝑛𝑡ℎ cumulative sum value of 𝑛𝑡ℎ sampled data. The initial cumulative sum value 𝐶0 is 

taken to be zero; the mutation data is obtained depending on the abrupt changes in the 

cumulative sum. When applying CUSUM to online residential appliance monitoring, 

one disadvantage is that the residential site’s current, power and voltage are all 

sinusoidal signals. Although the appliance running state is stable, the 𝑀𝑒𝑎𝑛𝑛  of 
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sampled data changes and the cumulative sum must be modified, leading to more 

errors in the detection process. 

As for the LIR method [51], it relies on the change of sampled data mean value 

to calculate the log likelihood ratio when the mean value of electrical parameters 

changes beyond a specific value, it can overcomes the problem of cumulative sum 

modifying in CUSUM. The main calculation process is as follows: 

𝑑𝑠(𝑖) = {
𝜇𝑖−1−𝜇𝑖+1

𝜎2
× |𝑋𝑖 −

𝜇𝑖+1−𝜇𝑖−1

𝜎2
| ,     |𝜇𝑖+1 − 𝜇𝑖−1|  > 𝑃𝑡ℎ 

                     0,                                |𝜇𝑖+1 − 𝜇𝑖−1|  ≤ 𝑃𝑡ℎ 
   (2.4) 

where 𝑋𝑖 is the 𝑖𝑡ℎ sampled data; 𝑑𝑠(𝑖) is the LIR of 𝑖𝑡ℎ sampled data; 𝜇i−1 and 𝜇i+1 

are the mean values of sampled data sets before and after 𝑖𝑡ℎ sampled data. 𝜎2 is the 

variance; 𝑃𝑡ℎ is the threshold. The mutation data within a data set is detected using the 

𝑑𝑠(𝑖) value. If the log likelihood ratios in a data set are not all zero, then the data with 

the maximum|𝑑𝑠(𝑖)| is the mutation point of this set. The disadvantage of this method 

is that the set of threshold value 𝑃𝑡ℎ is difficult when the system noise is high and there 

is a large number of appliances. When the 𝑃𝑡ℎ value is too small, the noise may be 

detected as a switching event. On the other hand, when the 𝑃𝑡ℎvalue is large, some 

switching events may be missed. 

While mutation data can be detected by the CUSUM and LIR calculations to 

indicate the occurrence of switching events, the number of such data in power systems 

becomes too huge. Especially since NILM is based on high-frequency sampling, every 

minute of the sampled data contains a mutation point. This would require the removal 

of irrelevant points. Intelligent algorithms are thus used to determine whether the 

mutation point is caused by the appliance switching or the operation state changing. 

Reference [52] builds on the LIR approach by combining it with the unsupervised 

clustering algorithm. It learns to adjust the parameters during the calculation process 

through immediate experience. In reference [53], an improved event detection method 

based on CUSUM is proposed. The concept of Surrogate-Based Optimization (SBO) 

is used instead to improve the robustness and efficiency of CUSUM. However, even 

though this helped to remove some irrelevant mutation data, the number of mutation 

points is still large and most of them are not relevant to the switching event, the 

efficiency of detection is low. 
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Comparing the CUSUM, LIR and Heuristic detection methods, the Heuristic 

detection method is the lowest in sensitivity and has the shortest response time for 

identifying the switching points of the appliances. If the detecting sensitivity could be 

improved and the observation period measured without the auxiliary time meter, the 

Heuristic detection method will be an effective tool for detecting appliance switching 

points. 

2.3.3   Appliance Feature Separation and Extraction 

Once the appliance switching events are detected, it is necessary to extract or 

separate a set of high-quality features from the sampled data to identify the appliance 

types and calculate the appliance power 𝑃𝑚. The extraction or separation will derive a 

feature or combination of features that can uniquely represent the individual appliances. 

There are two ways for feature separation and extraction. 

The first way for feature separation is when the current, power and other 

parameters are changed because of a switching event. The sampled data before and 

after the switching event are represented as two different sequences. Equation (2.5) 

and (2.6) shows two sampled discrete sequences before and after the switching event, 

represented by [𝑎1]  and [𝑎2]  respectively, where 𝑋1
1  to 𝑋𝑟

1  and 𝑋1
2  to 𝑋𝑟

2  are the 

corresponding values of each sampled data, 

[𝑎1] =  [𝑋1
1, 𝑋2

1, 𝑋3
1, ⋯ , 𝑋𝑟

1]                                     (2.5) 

[𝑎2] =  [𝑋1
2, 𝑋2

2, 𝑋3
2, ⋯ , 𝑋𝑟

2]                                     (2.6) 

hence the change value [∆𝑎2−1] between [𝑎1] and [𝑎2] can be directly separated by 

the difference method, 

[∆𝑎2−1] = [𝑎2 − 𝑎1] = [𝑋1
2 − 𝑋1

1, 𝑋2
2 − 𝑋2

1, 𝑋3
2 − 𝑋3

1, ⋯ , 𝑋𝑟
2 − 𝑋𝑟

1] (2.7) 

where [∆𝑎2−1]  represents the variation of [𝑎1]  changing into [𝑎2] . In other words, 

[∆𝑎2−1] contains features of the switched appliances that changed the current, power 

and other parameters. 

This principle of feature separation, based on the difference method, is simple and 

less time-consuming. The obtained features are represented in a dataset that contains  
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massive information. However, one disadvantage of this method is that the sampled 

data sequence from the residential sites is all in periodic waves. If there is no reference 

point to fix the phase of sampled data sequences before and after a switching event, 

then the change value between the two sampled sequences becomes divergent and the 

authenticity of the data is decreased.  

The second way for feature extraction is to use fast Fourier transform (FFT), 

wavelet transform, S transform or other signal analysis methods[54] [55] to extract 

electric features such as the appliance power factor, current harmonic components, 

mean current value, peak current value and power harmonic components. These 

extracted features can be used to easily identify any particular appliance [56]. However, 

if several appliances are running simultaneously, the obtained appliance features will 

be seriously distorted [56]. The resultant features obtained are for all combined 

appliances and not the individual ones. 

Upon comparing the difference method with the extracting parameter method, the 

former yields a more comprehensive and detailed representation of the appliance 

features, resulting in a more unique signature. This research will thus employ the 

difference method. A reference point of the phase will be determined for the two 

sampled data sequences. 

2.3.4   Appliance Type Identification 

Once the features of switched appliances are extracted or separated, the switched 

appliance type and working state can then be identified. In NILM, there are three key 

methods to do this: graph signal processing, pattern recognition and deep training. 

2.3.4.1   Identification Model Based on Graph Signal Processing 

Graph Signal Processing (GSP) [57] is a new data analysis tool for identification 

and classification. It provides an intuitive means to exhibit the dependency, similarities, 

or other properties among data elements. It can also represent and process datasets 

with complex structures. In NILM research, GSP uses a group of nodes that have 

previously been defined and a weighted adjacency matrix to represent the separated 

features, and then determine the maximum categories of separated features. It is more 
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suitable for data classification problems with short training times but establishing 

appropriate models is challenging. 

In GSP, the aggregation of separated features is represented by an unknown 

dataset 𝑥, which is expressed in the graph of 𝐺 = (𝑉, 𝐴), where 𝑉 is the set nodes of 

graph 𝐺, and 𝐴 is an 𝑁 × 𝑁 matrix which is the weighted adjacent matrix of graph 𝐺. 

Each element 𝑥𝑖  in dataset 𝑥  corresponds to one node 𝑣𝑖  in 𝑉 . The relationship 

between node 𝑣𝑖 and 𝑣𝑗  is determined by the element 𝑥𝑖 and 𝑥𝑗, which is written as:  

𝐴𝑖,𝑗 = 𝑒𝑥𝑝 [−
(𝑥𝑖−𝑥𝑗)2

𝜌2
]                                       (2.8) 

where 𝜌 is a scaling factor, 𝑥𝑖 and 𝑥𝑗 are any two elements in dataset. Based on the 

relationship between any nodes 𝑣𝑖 and 𝑣𝑗 , a graph is constructed. Fig. 2.4 shows an 

example of a four-node graph constructed from 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4].  

 

 V1  V2  V3  V4

S1

S2
S3

S4

A1,2 A2,3 A3,4

A1,3 A2,4

 
Fig.2. 4 A GSP example with four nodes 

 

In Fig.2.4, the thickness of the edges in the graph depicts the correlation between 

nodes. 𝑆1, 𝑆2, 𝑆3 and 𝑆4 denote a set of classification labels. Each edge is similar to a 

label, and if the difference in features between dataset 𝑥 and 𝑆 is small, 𝑆 is considered 

piecewise smooth relative to G. The smallest 𝑆 output is indicated by the smoothest 

graph signal and hence the best classification label. GSP thus provides a powerful, 

scalable, and flexible data mining and signal processing approach, particularly suitable 

for data classification when training periods are too short to build any appropriate class 

models [58]. However, the biggest limitation of using GSP in NILM is that the 

appliance electrical parameters from the sampled data, such as the working current, 
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power factor, harmonic components active and reactive power, are transformed into a 

new matrix during the construction of the graph. In constructing this graph, the 

physical meaning of the relevant parameters changes, resulting in partial loss of the 

feature information. Although GSP can identify the type of electrical appliances, it 

cannot further calculate and quantify the power consumption of the identified 

appliances. 

2.3.4.2   Identification Model Based on Pattern Recognition 

Pattern recognition identifies and classifies unknown samples into specific 

categories based on the feature difference between known and unknown samples. In 

NILM research, this pattern recognition model must first learn the feature patterns of 

home appliances to identify the separated features, and then the pattern recognition 

can obtain the types of home appliances used. The learning process can be done with 

a supervised learning algorithm or an unsupervised learning algorithm. 

For a supervised learning algorithm, prior training on the identification model is 

necessary to learn the appliance electric features for the appliance identification to be 

processed online. K-nearest neighbor (KNN) [59, 60] and support vector machine 

(SVM) [61] are two commonly used supervised learning tools in NILM. 

Fig.2.5 shows a basic identification example using the KNN method to illustrate 

the principle. 

 

 

Fig.2. 5 Basic principle of KNN 
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In Fig.2.5, the black circle represents the unknown sample while the triangle and 

rectangle represent the known training samples. The model training process is to learn 

the features of the known samples. Once the feature learning is completed, the 

unknown sample is fed into an identification model. If the training samples match the 

feature of the unknown sample, they will distribute themselves around the latter. When 

K = 3, it means that there are 3 training samples in the green circle. As there are more 

triangles than rectangles, the black circle is thus identified as the triangle category. 

Conversely, if K = 5, which means 5 training samples are found. The black circle is 

identified to belong to the rectangle category because there are more rectangles than 

triangles (see the yellow circle area). There are three key factors for identification 

using this KNN method [59]. They are feature difference measurement, size of K, and 

classification of the unknown sample based on the K found training samples. Each of 

these factors is discussed separately below.  

First, the feature difference between the training sample and the unknown sample 

is calculated. The training samples set is 𝐴 = {(𝑁1, 𝑦1), (𝑁2, 𝑦2), ⋯ , (𝑁𝑖, 𝑦𝑖)}, where 

𝑁𝑖 is the number label of the training sample, and 𝑖 is the number of training samples; 

𝑦𝑖  is the 𝑖𝑡ℎ  training sample in set A, where the feature aggregation of 𝑦𝑖 =

(𝐹1, 𝐹2, ⋯ , 𝐹𝐿) , and 𝐹1, 𝐹2, ⋯ , 𝐹𝐿  are the corresponding values of the component 

features. Once the training samples set 𝐴 is constructed, the training of the KNN model 

is completed. 

The unknown sample is represented by 𝐵 = {(𝑀𝑙, 𝑥)}, where 𝑀𝑙 is the number 

label of the unknown sample. 𝑘  is one unknown sample, 𝑥 = (𝐺1, 𝐺2, ⋯ , 𝐺𝐿) , 

(𝐺1, 𝐺2, ⋯ , 𝐺𝐿)  is the feature aggregation and  𝐺1, 𝐺2, ⋯ , 𝐺𝐿  are the corresponding 

values of the component features. 

Based on the feature aggregation of the training sample and the unknown sample, 

the difference between the two samples is commonly calculated by: 

𝐷(𝑥, 𝑦𝑖) = (∑ |𝐺𝑗 − 𝐹𝑖
𝑗
|

𝑝
𝐿
𝑗=1 )

1

𝑝                               (2.9) 

In equation (2.9), 𝐷(𝑥, 𝑦𝑖) is the feature difference between the unknown sample 

𝑘  and the training sample 𝑦𝑖 . 𝐺𝑗  is the 𝑗𝑡ℎ  component in feature aggregation of 

unknown sample 𝑥. 𝐹𝑖
𝑗
 is the 𝑗𝑡ℎ component in the feature aggregation of the training 
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sample 𝑦𝑖. 𝐿 is the number of components contained in the feature aggregation of the 

training sample and the unknown sample. The value of 𝑝 is set artificially, which is 

usually 1 or 2. When p = 2, this distance is Euclidean distance. 

Secondly, the size of 𝐾  is determined. As previously established, all training 

samples are divided into different categories. Each training sample can only belong to 

one category. The size of K affects the number of samples that can be used in the 

identification process, hence it can significantly impact the accuracy of the algorithm 

used. If the size of 𝐾 is small, such as when 𝐾 =  1, the unknown sample is related to 

only one sample and category, thus increasing the identification error. However, if the 

value of 𝐾  is large, the unknown sample can be associated with samples from 

numerous categories, resulting in an underfit. Generally, for practical applications, 𝐾 

is a small odd number.  

Thirdly, the unknown sample is classified according to the feature difference and 

the size of 𝐾. 𝐾 training samples which are nearest to unknown sample’s feature in set 

𝐴 = {(𝑁1, 𝑦1), (𝑁2, 𝑦2), ⋯ , (𝑁𝑖, 𝑦𝑖)}  are found. This is recorded as set 𝐶 =

{(𝑁1, 𝑦1), (𝑁2, 𝑦2), ⋯ , (𝑁𝐾, 𝑦𝐾)}, and then the category of the unknown sample 𝑥 is 

classified. To keep the classification error rate small, the empirical risk of 

identification must decrease, and using majority voting can minimize this risk. 

Therefore, the unknown sample is simply and directly classified by majority voting of 

𝑁1, 𝑁2 ⋯ 𝑁𝐾. 

KNN recently gained prominence as a load monitoring identification algorithm 

due to its simple principle. However, the identification accuracy is linearly dependent 

on the feature space dimensionality of training samples [62], it also determines the 

complexity of model training. When it is applied to detect online residential appliance 

monitoring, if the feature space dimensionality of training data is large, it is more 

difficult for online devices to meet such storage needs, yet, if the feature space 

dimensionality of training data is small, the model training will be insufficient, and the 

features learning will be uncompleted. The identification accuracy is lower. 

Besides the KNN method, SVM is another model that has proven to be successful 

in various classification scenarios. The SVM’s approach is to identify the separation 

features by finding a set of hyperplanes in high-dimensional space [63], which requires 

a large support vector (SV) set to ensure identification accuracy but this can lead to an 
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increase in memory usage and larger computing effort. High dimensionality also 

demands similar increase in memory usage and computation effort. Hence, SVM may 

not be suitable for online real-time monitoring but is more suited for off-line data 

NILM processing. 

An unsupervised learning algorithm does not need the prior model training which 

can directly mine the similar currents used by the electric appliance features. 

Clustering methods such as K-means, Density-based spatial clustering of applications 

with noise (DBSCAN) and others are used to extract appliance features for 

identification, which uses Hilbert transform and other data processing tools to cluster 

the load with similar signatures [64]. The identification based on an unsupervised 

learning algorithm can be treated as a blind signal separation problem, which 

embeds the clustered appliance feature to filter out unwanted features and effectively 

improves the identification performance [65, 66]. Because unsupervised algorithms 

achieve identification only through similarity in appliance features, this means that 

with more types of appliances running in the homes or with multiple appliances always 

running at the same time, the accuracy is usually lower than that of supervised 

algorithms, though this is not commonly used in residential sites load monitoring.  

2.3.4.3   Identification Model Based on Deep Learning 

In recent years, identification based on deep learning (DL) has been gradually 

applied in this field to help monitoring systems achieve better performance. ANN [67] 

and BPNN [68] have been gradually applied in NILM. The DL system can analyse 

massive amounts of data, recognize patterns, and make predictions or decisions 

without being explicitly programmed to perform these tasks. The DL systems also 

operate by ‘learning and improving from experience’ [69]. Its algorithm is capable of 

evaluating whether a prediction and identification is accurate or not. The real 

capabilities of such a system can be summarized as a process that predicts future events 

based on past occurrences. 

Yang [70] proposed a two-layer neural network with bidirectional recurrent 

architecture. It combines the HMM (Hidden Markov model) and deep neural network 

to disaggregate power data, which is tested with the REDD data set [71]. Although the 

monitoring accuracy is almost 90% based on REDD data, the monitoring accuracy is  
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greatly decreased under the other data set, because the prior learning experience from 

the REDD data is useless for a new monitoring scenario. Kelly developed two kinds 

of deep learning network architecture for non-intrusive load monitoring tasks. The first 

one is a long short-term memory (LSTM) network [72]; the second one is a 

denoising auto-encoder (DAE) network [73]. The two deep learning networks were 

tested using the UK domestic appliance level electricity (UK-dale) data set [74]. The 

test results show that: the LSTM network has higher identification accuracy for large 

power appliances, but it is unable to identify low power appliances. The DAE network 

has higher identification accuracy for low power appliances, but the monitoring 

accuracy for large power appliances is lower. These two networks cannot keep high 

monitoring accuracy for all appliances, because the learning strategy and network 

structure cannot support identification of all types of appliances.  

The main disadvantages of monitoring based on the DL system are that: first and 

foremost, there is no widely accepted a learning strategy and a network structure can 

be universally used for any monitoring scenario and all household appliances. 

Designing the specific network structure and learning strategy according to the specific 

monitoring scenario is the reason behind the highest-accuracy identification result, but 

a large amount of data is needed to support the learning process, which is an order of 

magnitude higher than the training data of pattern recognition algorithms, so it is 

virtually impossible to design a specific network structure and learning strategy for 

every electricity consumption situation of each load type and each resident home. 

Secondly, by adopting a DL system in online monitoring, although the ability of 

learning is more powerful than the traditional pattern recognition method, in order to 

support the corresponding learning and error correction capability, the hardware 

requirements of monitoring devices become very high, and the computation process 

of the whole NILM will be too complex.  

Comparing the graph signal processing, pattern recognition and deep learning. 

The graph signal processing can only identify the appliance type, but it cannot obtain 

the further data for the power consumption accounting and running characteristics 

analysing. The identifying accuracy of pattern recognition is lower since the limited 

online devices storage ability. The deep learning identifying needs to design a specific 

network structure and learning strategy for different monitoring scenario. Therefore,  
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when the identification model is completed by combining the pattern recognition and 

deep training together, the shortcomings of each method can be mutually compensated. 

The combining of pattern recognition and deep training can improve the accuracy of 

pattern recognition identifying and use the fixed learning strategy for majority 

monitoring scenario. 

2.4   Proposed Monitoring Approach 

After reviewing the data sampling, event detection, feature separation and feature 

identification methods, a successful online NILM for residential appliances can be 

achieved by leveraging the strengths of relevant methods and overcoming their 

limitations. To complete the monitoring with low computational complexity, separate 

the integral appliance features, and accurately identify the appliance type with a short 

response time, the monitoring method is designed as follows: firstly, the current data 

is sampled with high frequency at the home electricity supply entry point. Secondly, 

the sampled data is processed through these three steps to obtain the appliance type, 

power 𝑃𝑚, and state 𝑎𝑚. 1) the Heuristic method is used to detect appliance switching 

events, 2) the difference method separates the appliance features, 3) the KNN method 

combines with BPNN to identify the appliance type. The reason why choosing 

corresponding methods and what improvements have been made to the shortcomings 

of the chosen methods are introduced briefly.  

2.4.1   Switching Event Detecting with Heuristic Method 

The Heuristic method is used to detect appliance switching events. Due to its 

simple calculation process and reduced complexity, this method minimizes the use of 

online computing power and shortens the response time.  

To overcome the issue of low detecting sensitivity for small power appliances, 

the threshold value is combined with an additional judging condition such as 

evaluating the change of all sampled data rms value between two observation periods. 

This enhances detection noise immunity and improves detection sensitivity. For this 

thesis, the auxiliary time meter is eliminated to improve the feasibility of Heuristic 

detection in NILM. The specific detection process is discussed in detail in Section 4.3.  
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2.4.2   Separating Current Feature with Difference Method 

The difference method is chosen as the method used to separate the appliance’s 

current features for two reasons. Firstly, the difference method can maintain the 

authenticity of data and ensure the separated data contains enough information for 

appliance type identification. Secondly, the system noise will always exist in the 

practical power system, and the difference method has a stronger anti-noise ability to 

separate electrical features, without noise reduction on the original data.  

As for the issue of having no reference point to fix the phase of sampled data 

sequences when using this method, it can be resolved by using the voltage and current 

signals together. The voltage datasets as the reference to sample and separate current 

data. This process is further elaborated in Section 4.4. 

2.4.3   Accurate Identification of Appliances with Similar Feature 

The identification is achieved by combining the KNN method with the DL 

networks to optimize both approaches’ identification accuracy and response time 

requirements. The identification is fundamentally based on the KNN method which 

shortens the overall monitoring response time. The identification result is then 

modified and corrected using the appliance operation pattern which is regressed by 

BPNN to improve its monitoring accuracy. 

A KNN identification model is reconstructed, and the feature space 

dimensionality of training data is selected and compressed based on the prior appliance 

features analysis to minimize the effect of insufficient online storage capacity. The 

specific KNN model building process is set out in Section 5.2. To overcome the issue 

of poor universality learning strategy and high calculation complexity in BPNN 

application, this thesis uses BPNN to regress the appliance operation pattern, so that 

the learning strategy for obtaining appliance operation pattern can be applied to the 

majority monitoring scenario. Furthermore, the BPNN is only used as an offline 

technology to process the appliance operation feature without increasing the 

complexity of the monitoring method. This process of BPNN training and operation 

pattern regressing is detailed in Section 5.3. 
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2.5   Summary 

Using NILM for demand-side power management received noticeable interest 

due to its significant advantages over intrusive monitoring. This chapter reviewed each 

step towards achieving NILM. This includes data acquisition, appliance switching 

event detection, appliance feature separation, and appliance identification. The 

strengths and limitations of different solutions in each step were also analysed. 

Although low-frequency data acquisition is the widely used technology for NILM, 

high-frequency data acquisition has gained significant attention due to its attractive 

advantages of preserving the appliance features. Compared to the slow processing of 

mutation point detection, Heuristic detection is found to be more suitable for NILM. 

Using a pattern recognition method to identify the appliance type, the appliance’s 

electric features and operation features are combined to improve the monitoring 

accuracy. This review showed that as each step of NILM is highly related to appliance 

features, a comprehensive understanding of this parameter is fundamental for 

successful appliance switching event detection, appliance feature separation, and 

appliance identification model build. In the next chapter, a comprehensive comparison 

and combination of available appliance features will thus be first explored. 
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Chapter 3 Appliance Features Analysis and Extraction for NILM 

3.1   Introduction 

Extensive research in NILM focuses on identifying an effective set of features 

with unique appliance signatures that can discriminate different loads. While many 

appliance features have been reported in research, only a limited subset of them were 

used. There is also an absence of research that carried out a systematic comparison and 

combination of the features. Systematic selection of various electric features to 

discriminate appliances was also not present. This chapter shall analyse some 

appliance features and compare them systematically. 

Firstly, the different electric features are carefully described and reviewed, then 

the different electric features are extracted individually from public data dataset. The 

features with obvious peculiarity are then selected and combined as the key ones for 

online NILM processing in Section 3.2. Next, the electric data of eight typical 

appliances are sampled in a real residential power consumption environment to extract 

the selected appliance features. The results are shown in section 3.3. Lastly, the non-

electric features of appliances to overcome the overlapping electric features are 

discussed in Section 3.4. 

3.2   Researching of Household Appliance Electric Feature 

The features that can be extracted from the measurement data depend on the 

sampling rate [75]. All features can be categorized into steady and transient states, 

depending on the state of the measured waveform they represent [76]. Identifying and 

distinguishing the different appliance features is the most important step in the 

monitoring process. However, not all features can be recognized and distinguished in 

NILM. In contrast to other direct monitoring methods, the objective of this section is 

to choose a subset of features that can either better or provide comparable 

discriminative performance to using all of them. A comprehensive list of steady and 

transient state features, including references to their extraction steps, is outlined in 

Table 3.1. 
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Table 3. 1 Notation and description of extracted features 

 

 

 

 

 

 

 

Steady 

State 

Features 

𝑃   Real power[77] 

𝑃𝑛𝑜𝑟𝑚  Normalized real power[78] 

𝑄  Reactive power[79] 

𝑄𝑓  Reactive power based on Fryze's formula 

𝑆  Apparent power[80] 

𝐼−𝑟𝑚𝑠  Current root mean square 

𝐼𝑓−𝑟𝑚𝑠  Nonactive current root mean square 

𝐼−ℎ𝑎𝑟(𝑗)  𝐽𝑡ℎ current harmonic coefficient 

𝐼𝑓−ℎ𝑎𝑟(𝑗)  𝐽𝑡ℎ nonactive current harmonic coefficient 

𝑉−ℎ𝑎𝑟(𝑗)  𝐽𝑡ℎ voltage harmonic coefficient 

𝐼𝑇𝐻𝐷  Total harmonic distortion of current[81] 

𝐼𝑓𝑇𝐻𝐷  Total harmonic distortion of nonactive current 

𝑉𝑇𝐻𝐷  Total harmonic distortion of voltage 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦  Asymmetry measure of asymmetry in V-I 

trajectory[82]  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  Number of intersections in V-I trajectory[82] 

𝐴𝑟𝑒𝑎  Enclosed area by VI trajectory with consideration of 

trajectory direction[82] 

𝑁𝑒𝑡 𝑎𝑟𝑒𝑎  Net area enclosed by VI trajectory without 

consideration of its direction[82] 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒  Measure of distortion of mean line of VI trajectory 

from a straight line[82] 

𝑆𝑙𝑜𝑝  Slope of the middle segment of V-I trajectory[82]  

 

 

 

 

 

Transient 

State 

Features 

𝑊𝑑(𝑖)  Energy of detail wavelet coefficients at 𝑖𝑡ℎ 

scale[83] [84] 

𝑊−𝑚𝑎𝑥−𝑖𝑑𝑥  Index of the maximum energy wavelet 

coefficient[83] [84]  

𝑊−𝑚𝑎𝑥  Maximum value of the wavelet coefficient 

𝐼−𝑚𝑎𝑥−𝑡𝑟  Maximum value of the transient current[85]  

𝐼−𝑚𝑎𝑥−𝑡𝑟−𝑖𝑑𝑥  Location of maximum transient current[85] 

𝐼−𝑚𝑖𝑛−𝑡𝑟  Minimum value of the transient current 

𝐼−𝑚𝑖𝑛−𝑡𝑟−𝑖𝑑𝑥  Location of minimum transient current 

𝑑𝑖𝑓𝑓−𝐼−𝑖𝑑𝑥  Difference between maximum and minimum values 

of transient current 

𝑃−𝑚𝑎𝑥−𝑡𝑟  Maximum value of the transient power  

𝑃−𝑚𝑎𝑥−𝑡𝑟−𝑖𝑑𝑥  Location of maximum transient power[86]  

𝑃−𝑚𝑖𝑛−𝑡𝑟  Minimum value of the transient power 

𝑃−𝑚𝑎𝑥−𝑡𝑟−𝑖𝑑𝑥  Location of minimum transient power[69] 

𝐼−𝑝𝑒𝑎𝑘−𝑛𝑢𝑚−𝑡𝑟  no. of local maximums of transient current[87] 
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In Table 3.1, the 32 appliance features are commonly employed for load 

identification in NILM research. They can be classified into the four parameters of 

power, current, harmonic and wavelet:  

Power category: Real power (𝑃) and reactive power (𝑄) are the most commonly 

used steady state features to identify appliances that have only two running states 

(ON/OFF) and high-power consumption. However, it is difficult to discriminate the 

low-power consumption appliances using only these 𝑃  or 𝑄  features due to the 

significant overlap in the corresponding feature space. To overcome these overlaps 

during the identification process, the 𝑃𝑛𝑜𝑟𝑚  (real power after normalizing), the 𝑄𝑓 

(reactive power after Fryze’s formula), the 𝑃𝑚𝑎𝑥 (maximum steady power) and 𝑃𝑚𝑖𝑛 

(minimum steady power) are used instead and they are extracted as a feature set. 

However, these four features are only effective in identifying appliances with 

significant spikes in their power draw which is followed by slower changing variations. 

Comparing these six steady state power features (𝑃 , 𝑄 , 𝑃𝑛𝑜𝑟𝑚 , 𝑄𝑓 , 𝑃𝑚𝑎𝑥 , and 𝑃𝑚𝑖𝑛 ) 

with instantaneous power features such as the 𝑃𝑚𝑎𝑥−𝑡𝑟 (maximum value of transient 

power) and 𝑃𝑚𝑖𝑛−𝑡𝑟  (minimum value of transient power), the instantaneous power 

features are higher in their uniqueness, as transient features can overcome overlapping 

issues to identify most appliances. 

According to the above-mentioned analyses, the eight power features are 

extracted individually from the public dataset. Fig.3.1 displays the extracting result, it 

compares the feature differences between appliances of the same type and the feature 

similarities between appliances of different types. In Fig.3.1(a), the low-power 

consumption appliances such as Lamp, Bulbs, Compact Fluorescent and Incandescent 

Lamp have significant overlaps in 𝑃  and 𝑄  features. In Fig.3.1(b), although all the 

𝑃𝑛𝑜𝑟𝑚, 𝑄𝑓, 𝑃𝑚𝑎𝑥, and 𝑃𝑚𝑖𝑛 features are extracted from the Washing Machine electric 

data, there is a significant difference in the corresponding values of the same parameter. 

Therefore, these six power features of 𝑃 , 𝑄 , 𝑃𝑛𝑜𝑟𝑚 , 𝑄𝑓 , 𝑃𝑚𝑎𝑥 , and 𝑃𝑚𝑖𝑛  may not be 

suitable for further appliance identification. Conversely, Fig.3.1(c) shows that the 

instantaneous power feature can distinguish the 11 appliances from different categories. 

In Fig.3.1(d), the similarity of the instantaneous power feature is also high in the 

Washing Machine category. Therefore, instantaneous power features of appliances 

have a better distinguishable nature in the power category, and it will be extracted for 
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further NILM processing.  

 
(a)   The power Features Comparation

    of 4 Small Power Appliances

(d)   5 sets of Pmax-tr and Pmin-tr

       from Washing Machine

(b)    The Power Features Comparation

    between 3 Washing Machines

(c)    The Pmax-tr and Pmin-tr 

    Comparation in 11 Appliances

1:Washing Mashing  2: Refrigerator  3:Lamb  4:Vaccum  

5:Air-conditioning  6: Microwave oven  7:Geyser  8:Bulb

9:Compact Fluorescent  10:Kettle  11:Hairdryer   

 

Fig.3. 1 Power features comparing between different appliances 

 
Current category: With more non-linear appliances being used, the steady and 

transient working currents of these appliances get more non-linear and non-sinusoidal, 

so the current features become more multi-dimensional. Firstly, the differences in 

𝑖(𝑡)(the steady working current) and 𝑖𝑟𝑚𝑠(the root mean square of current) of different 

appliances become distinct enough to directly differentiate the appliances. Secondly, 

the steady working current 𝑖(𝑡) can be decomposed into active current 𝑖𝑎(𝑡) and non-

active current 𝑖𝑓(𝑡). The similarity between 𝑖𝑎(𝑡) draws in different appliances (with 

similar power levels) is lower compared to their power waveforms. Thirdly, plotting 

the steady current signal against the steady voltage signal for an appliance V-I curve 

makes the shape-based feature extraction computationally efficient, making this 
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current feature approach more robust. However, the voltage signal is stable in 

residential sides, the six parameters of V-I trajectory (Asymmetry, Intersections, Area, 

Net Area, Curvature and Slope) are dependent on the steady current signal. Based on 

the twelve current features analyses, the appliances’ 𝑖𝑟𝑚𝑠 , active current 𝑖𝑎(𝑡) , 

nonactive current 𝑖𝑓(𝑡) and V-I trajectory parameters are extracted individually from 

the public dataset. The results are displayed in Fig.3.2, which shows a reduced overlap 

between each feature, making the corresponding current features more identifiable. 

Therefore, the appliance steady working current is vital for appliance identification 

and further feature extraction. A steady working current will thus be used as the 

primary feature for further NILM processing. 

 

 

Fig.3. 2 Appliances current features comparing 

 
Harmonic category: Harmonic contents of current waveforms (obtained by Fast 

Fourier Transform of high frequency measurements) not only can discriminate non-

linear and multi-state appliances, but also make current features more recognizable. 

The magnitude and phase angle of the 𝐼ℎ𝑎𝑟−𝐽 ( Jth current harmonic) of steady state 

current are unique signatures for appliance identification. Furthermore, the 1st to 4th 

harmonic can specifically improve the discrimination between appliances, making 

them a key coefficient for non-linear appliance identification. The harmonic 

components along with total harmonic distortion (I-THD) of current waveforms pave 

the way for the identification of non-linear and variable-working state appliances. The 
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appliances’ steady current harmonic components are extracted from the public dataset, 

and the result is shown in Fig.3.3, it demonstrates a clear and distinguishable pattern. 

The overlaps between different appliance harmonic component sets are lesser. 

Therefore, the appliance harmonic contents of steady working current can be extracted 

for further application. 

 

 

Fig.3. 3 Appliances harmonic features comparing 

 
Wavelet category: A wavelet transform can decompose a signal into time and 

scale using wavelets that have adaptable scale properties. Continuous wavelet 

transforms (CWT) of a signal can construct a new load signature that is totally different 

from the original signal. It decomposes switching voltage transients and is thus 

recommended in reference[88] as a promising approach to extracting transient features 

in NILM. To avoid computational complexity using CWT, a Discrete Wavelet 

Transform (DWT) is used as an alternative to extract features for NILM applications. 

Reference[89] applied DWT of the turn-on current transient as a feature set and 

showed advantages over CWT in the transient analysis of loads. Wavelet features 

achieve high discrimination accuracy due to the higher difference between various 

appliances in this wavelet category. But the wavelet features among appliances of the 

same category are also very different, making them unsuitable for real-time 

applications. Hence, wavelet features will not be extracted and used for further 

identification.  
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While power, current, harmonic and wavelet features are effective in appliance 

type identification when used individually, the combination of features in different 

categories can further improve the uniqueness of these features. Millers [90] and 

Niesche [91] used the regression coefficient of the appliance working current to 

complement the P-Q features. Lu[52] used the total harmonic distortion of current 

waveforms along with P and Q for load identification. Ahmadi[92] used FFT of voltage 

noise to define appliance signatures and later extended their work to consider Fourier 

features of the electromagnetic interference signals in the 36-500 kHz range [93]. 

Kong [94] used the frequency and amplitude of the dominant peaks in the smoothed 

cepstrum of the voltage and power signal as appliance features to distinguish ON/OFF 

appliances. The cepstrum is defined as the inverse Fourier transform of the logarithm 

of the spectrum of a signal [94]. Sultanem [95] combined the current harmonics with 

low frequency-based power features and voltage wavelets. However, this combination 

is only used to distinguish appliances in the electric dimension, and for some 

appliances, the electric features will always be similar. To improve the degree of 

appliance differentiation, it is vital to take non-electric features into account. The 

appliance non-electric features such as the time and frequency of the appliance usage 

are used to complement the feature combination set when the corresponding 

appliances cannot be identified. Therefore, the continuous power signal with a set of 

discrete pulses which are about human behaviour information (time of appliance 

switching and duration of appliance operation) will be also extracted for the 

identification.  

Effective and universal appliance electric features will be extracted in a real 

residential power consumption environment. The extraction results will be discussed 

in the next Section 3.3, which include active power, reactive power, working current, 

working current harmonic components, instantaneous power and non-electric feature 

related to appliance operation. 

3.3   Appliance Electric Feature Extraction 

In this section, voltage and current data of different appliances were sampled 

using the independent data acquisition device. The various electric features were then 

extracted from this acquired data. The data acquisition device is shown in Fig.3.4. The 
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parameters of the data acquisition device are as follows: the main device used is the 

EM9636B high-precision data acquisition card, which can realize the analogue-to-

digital data conversion and support 16-channel differential parallel sampling; the ratio 

of the voltage transformer in the data acquisition device is 220:6; the ratio of the 

current transformer is 1000:1; the resistance of the current transformer is 150 Ω; the 

sampling frequency of the data acquisition device is set to 10kHz; the main frequency 

of the power system is set at 50Hz; the voltage of the power system is 220V.  

 

Electrical 

supply 

point 

220 6

Voltage 

Transformer

Current 

Transformer

Data 

Acquisition 

Device

EM9636 

NEUTRAL WIRE

Socket

Appliance

1000 1150 Ω
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LIVE WIRE

 

Fig.3. 4 Schematic diagram of data acquisition device 

 
The current and voltage data of the air conditioning, refrigerator, geyser, electric 

kettle, microwave oven, TV, vacuum cleaner and laptop were sampled. During this 

data acquisition process, the socket as shown in Fig.3.4 is connected to the main power 

supply point of the house, and the appliance is connected to the socket to enable the 

collection of the current and voltage data of the independent operation appliance.  

3.3.1   Appliance Steady State Working Current 

Using the current transformer developed in the data acquisition device, the 

appliance steady state working current data can be extracted directly. The sampled 

current data sequence of appliances is plotted to show the appliance working current 

waveform, in which an entire sequence includes 1000 sampled data within 0.1 seconds. 

Fig.3.5 shows plots of sample data of the eight appliances’ working current waveforms 

and their steady state working currents.  

 



39 

 

 

 

Fig.3. 5 the steady state working currents of appliances 

 
The steady state working current for different appliances is distinctive. The steady 

state working current of the electric kettle and geyser is obviously in the form of a sine 

wave, while the working currents of the microwave oven, vacuum cleaner, laptop, air 

conditioning and refrigerator were distorted differently and formed different shapes. 

To better describe the distinct steady-state working current of each appliance, the root 

mean square ( 𝐼rms ) and amplitude ( 𝐼𝑃 ) of the steady-state working current are 

calculated as: 

𝐼rms = √
1

𝑁
∑ 𝑖(𝑘)2𝑁

𝑘=0                                            (3.1) 

𝐼𝑃 = 𝑚𝑎𝑥( 𝑖(𝑘)), 0 ≤ 𝑘 ≤ 𝑁                             (3.2) 

where 𝑖(𝑘) is 𝑘𝑡ℎ sampled current data, 𝑁 is the number of the sampled data in one 

current sequence, amplitude  𝐼𝑃 is the peak current in one current sequence, the crest  
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coefficient (𝐼𝐶𝐹) is the ratio of the peak current and 𝐼rms value. Using the equations (3.1) 

and (3.2), the result is as shown in Table 3.2: 

 

Table 3. 2 Feature values of steady state current for each appliance 

Appliance rms/(A) Amplitude/(A) 
Crest 

Coefficient 

Electric Kettle 3.5376 5.0000 1.4134 

Geyser 4.5021 6.4000 1.4216 

Air Conditioning  8.6570 10.4288 1.2047 

Refrigerator 4.8666 5.2500 1.4424 

Microwave oven 1.9510 3.6000 1.8452 

Vacuum cleaner 3.4555 5.4000 1.5627 

Laptop 0.2692 0.4577 1.7002 

TV 0.6782 0.5273 1.9381 

 

According to Table 3.2, it is clear that the steady state working currents of specific 

domestic appliances have certain regularities, such as their crest coefficients, that can 

be used to realize appliance identification. The crest coefficient of resistive appliances 

is closer to 1.4. Furthermore, the higher the non-resistive component of the appliance, 

the more the crest coefficient deviates from 1.4. 

3.3.2   Appliance Working Current Harmonics  

Transferring the current data into the frequency domain can make the current 

features even more distinct. The sampled current data sequence can be processed to 

obtain its harmonics in frequency domain using Fourier series as shown below: 

𝐼(𝑡) = 𝑎𝑘0 + 𝑎𝑘1 sin(𝜔𝑡 + 𝜃𝑘1) + 𝑎𝑘2 sin(2𝜔𝑡 + 𝜃𝑘2) + ⋯ +

𝑎𝑘𝑖 sin(𝑖𝜔𝑡 + 𝜃𝑘𝑖)      (3.3) 

where, 𝐼(𝑡) is the obtained current signal, 𝑎𝑘0 is the DC component, 𝑎𝑘1 represents 

the fundamental component of current signal, 𝜃𝑘1 is phase angle of the fundamental 

signal, 𝑎𝑘𝑖 represents the 𝑖𝑡ℎ harmonic component of current signal, 𝜃𝑘𝑖 is phase angle 

of the 𝑖𝑡ℎ harmonic signal. Once the frequency spectrum is obtained, the fundamental  
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component (first harmonic) is taken as the baseline to normalize the other harmonic 

components. The appliance working current harmonics are shown in Fig.3.6. 

 

 

Fig.3. 6 Current harmonics of domestic appliance load 
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In addition, the total harmonic distortion (THD) value of each appliance can also 

be calculated based on the current harmonic components. The calculation equation is 

represented as follows: 

        𝑇𝐻𝐷 = √∑ (
𝑖(𝑘)

𝑖(1)
)2𝑁

𝑘=2                                        (3.4) 

where 𝑖(1) is the fundamental component of the appliance working current, 𝑖(𝑘) is the 

𝑘𝑡ℎ harmonic of working current. According to equation (3.5), the THD value of each 

appliance load is calculated, and their results are presented in Table 3.3. 

 

Table 3. 3 THD value for each appliance 

Appliance  THD 

Microwave oven 38% 

Vacuum cleaner 47% 

Air conditioning 14% 

Laptop 37% 

TV 14% 

Electric kettle 2% 

Geyser 7% 

Refrigerator 13% 

 

Comparing the working current harmonics of different electrical appliances, it is 

evident that the distortion rate of the vacuum cleaner is the highest, with a THD value 

of up to 47%. The THD values of microwave oven and laptop are both approximately 

38%. The difference in amplitude between each harmonic is significant, making the 

distinction between them clear. 

3.3.3   Appliance Transient and Steady Power Features 

The appliance instantaneous power can be derived from the appliance working 

current and voltage data, using the following equation: 

 𝑝(𝑘) = 𝑣(𝑘)𝑖(𝑘)                                             (3.5) 
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where 𝑝(𝑘) represents the instantaneous power, 𝑣(𝑘) is the 𝑘𝑡ℎ sampled voltage data,  

𝑖(𝑘) is 𝑘𝑡ℎ sampled current data, 1 ≤ 𝑘 ≤ 𝑁, 𝑁 is the number of the sampled data in 

one period of 0.02 second. Fig.3.7 shows the instantaneous power curve of a typical 

load. The fundamental characteristic of the instantaneous power curves of different 

appliances is the periodicity, but the amplitude of each waveform is different. The 

overlapping between these instantaneous power curves is unserious, which can be 

treated as a unique feature.  

 

 

Fig.3. 7 Instantaneous power curve of typical load 

 
To provide a clearer description of the instantaneous power of each appliance, the 

power amplitude (𝑃𝑝 ) and the doublet area (𝑆𝑝𝑤 ) are introduced to re-represent 

instantaneous power feature, which are defined as follows:  

𝑃𝑝 = max(|𝑝(𝑘)|) , 1 ≤ 𝑘 ≤ 𝑁                                 (3.6) 

 𝑆𝑝𝑤 = ∑ |𝑝(𝑘)|𝑁
𝑘=1                                                         (3.7) 

The amplitude and doublet area of appliance instantaneous power are calculated as the 

main parameters, as listed in Table 3.4: 
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Table 3. 4 Instantaneous power feature of each appliance 

Appliance Doublet area/(J) Amplitude/(VA) 

Microwave 

oven 

75.42 1032.46 

Vacuum cleaner 116.41 1632.95 

Air conditioning 98.68 1067.56 

Laptop 5.35 79.59 

TV 36.61 409.43 

Electric kettle 31.03 363.52 

Geyser 154.63 1524.63 

Refrigerator 135.46 1419.57 

 

It can be seen from Table 3.4 that the instantaneous power parameters of different 

appliances are significantly different. The maximum value of the vacuum cleaner is 

1632.95VA, but the amplitude of the laptop is only 79.59VA. These large differences 

can thus be extracted to realize load identification. 

Compared with the appliance instantaneous power, appliance steady state power 

is not suitable for appliance type identification because of the serious overlapping, but 

steady state power is a vital parameter to calculate power consumption and analyse the 

running state characteristic, such as the active (P) and reactive (Q) power which are 

calculated as follows: 

𝑃 = ∑ 𝑃𝑘
∞
𝑘=0 = ∑ 𝑉𝑘𝐼𝑘 𝑐𝑜𝑠( 𝜑𝑘)∞

𝑘=0                      (3.8) 

𝑄 = ∑ 𝑄𝑘
∞
𝑘=0 = ∑ 𝑉𝑘𝐼𝑘 𝑠𝑖𝑛( 𝜑𝑘)∞

𝑘=0                     (3.9) 

where 𝑉𝑘 and 𝐼𝑘are the kth harmonic value of voltage and the kth current respectively 

of a normal working appliance. 𝜑𝑘  is the power factor angle, and k represents the 

harmonic number. 

3.4   Non-electric Feature Introduction 

Despite all the above efforts to select and extract appliance electric features, it 

remains challenging to generate a unique appliance signature capable of discriminating 

between various loads. As for the non-electric features, these features are dependent 
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on the customer’s usage habits, which is another almost unique appliance feature, such 

as the appliance running regularity and operation patterns. Fig.3.8 shows the running 

duration of different appliances for one customer in a day, the running of eight 

appliances is highly distinct, which illustrates that the operation pattern of each 

appliance is a unique and valid feature.  

 

 

Fig.3. 8 Appliances running period 
 

In Fig.3.8, each appliance exhibits a unique operation period curve. Compared to 

other appliances, the running periods of the refrigerator are relatively fixed, and the 

duration of the running time are relatively constant. In other words, the operation 

pattern for the refrigerator is uniform throughout the day. Therefore, even if the electric 

feature of the refrigerator is similar to other appliances, its operation pattern remains 

unique. In contrast, the microwave oven and other kitchen electrical appliances are 

usually switched on/off and running between 11 pm to 1 pm. Though their running 

periods are relatively stable, their operation patterns will require a longer observation 

period to obtain. The running time of the air-conditioning, TV, laptop and geyser is not 
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constant throughout the day, so the operation patterns vary and will also require a 

longer observation period to obtain operational regularity. Based on the different usage 

characteristics of the eight appliances, the appliances were thus classified into three 

categories. Each appliance was observed over different periods to obtain its 

corresponding operation pattern. Once obtains the appliance operation pattern, it will 

be unique features, which can help to improve load identification accuracy, especially 

for loads with similar electrical characteristics [56]. 

1. Self-running appliance: This type of appliance keeps running intermittently 

throughout the day such refrigerator and geyser. The appliance running pattern is 

fixed, and the switching probability is unchanged. The number of switchings and 

the corresponding switching time recorded within one day can reflect a non-

electric feature. 

2. Manually switch on/off appliance: These appliances running is determined by 

usage habits, such as TV, oven, and laptop, which is highly related to personal 

work and rest. The switching probability is related to usage habit, so the number 

of switchings and the corresponding running time need to record over a long 

period. The longer the recorded period, the more precise its non-electric feature is 

extracted. 

3. Seasonal appliance: These appliances switching probability varies in different 

seasons, such as air-conditioning and heating appliances when these non-electric 

features need to be extracted individually for a different season. 

3.5   Summary 

This chapter concludes the review of appliance features for the purpose of load 

identification. Through systematic analysis and comparison of a wide variety of 

features, some of the more distinguishable and relevant features were selected for use 

in NILM. These features were then extracted from actual residential appliances.  

Once the features of different appliance are effectively obtained and extracted, 

the prior research of NILM is completed. These features will then be used to train and 

construct the monitoring model, for the monitoring of individual appliances in a non-
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intrusive way. This monitoring process includes appliance switching event detection, 

appliance feature separation and appliance type identification, and they will be 

discussed in the next two chapters. 
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Chapter 4 Appliance Switching Event Detection and Working 

Current separation  

4.1 Introduction 

In the introduction in Chapter 1 and the review in Chapter 2, it was explained how 

an individual appliance can be monitored through the analysis of sampled data at the 

electricity supply point. This process includes appliance switching event detection, 

appliance electric feature separation, and the appliance type identification. This 

chapter aims to propose an approach for the switching event detection and the 

appliance working current separation.  

Firstly, the characteristics of the household appliance running and switching are 

analysed. The relationship between the appliance working current and the house 

current will be further discussed in Section 4.2. 

Secondly, the switching event of appliance is detected using the improved 

Heuristic detection method, which improves the efficiency of the original approach by 

reducing the analysis of duplicate data. Furthermore, the improved Heuristic method 

eliminates the use of an auxiliary time meter and adapts the high noise environments. 

This process will be elaborated in Section 4.3. 

Thirdly, the current feature of the switched appliance is separated after the 

switching event using the difference method. The limitation of the difference method 

is resolved, and the phase angle of the separated current can be obtained. More details 

are provided in Section 4.4.  

Lastly, the proposed method for switching event detection and appliance current 

separation is tested using the UK-DALE [57] dataset. The results are listed and 

discussed in Section 4.5. 

4.2 The Character of Running Household Appliances  

Fig.4.1 illustrates the relationship between the various appliances within a house. 

All the appliances are connected in parallel, with the running of each appliance 

independent to the others. Once the appliance is switched on and starts running. The  
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appliance power is supplied by the electricity supply point. The power at the electricity 

supply point is the sum of all the running appliance powers.  

 

Appliance M

Appliance 3Appliance 2

Appliance 1

Electrical Supply 
Entry Point NILM

System

 

Fig.4. 1 Appliance’s connection diagram 

 

In Fig.4.1, the house current at the electricity supply point is also the sum of all 

operating appliances’ working currents. Therefore, the house current can be expressed 

by equation (4.1). 

   𝐼(𝑡) = ∑ 𝐼𝑘(𝑡) + 𝐼𝑛(𝑡)𝑀
𝑘=1                                    (4.1) 

where, 𝐼(𝑡) represents the house current which increases or decreases depending on 

whether the appliance is switched ON or OFF. 𝐼𝑘(𝑡) represents the working current of 

an appliance. 𝑀 represents the number of running appliances. The 𝐼𝑛(𝑡) represents the 

noise causing distortion to the appliance working current and fluctuation to the house 

current. There are two noise sources. The first is from the appliance abnormal 

transients and appliance running fluctuations. As this causes minimal change to the 

appliance working current, power and other electric parameters, this source is 

considered negligible. The second noise source comes from the large harmonic 

intrusion from the external environment. This can cause fluctuation to the house 

current.  

If the harmonic intrusion is not significant, the ∑ 𝐼𝑘(𝑡)𝑀
𝑘=1   in equation (4.1) 
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remains stable and unchanged prior to the appliance switching event. Once the 

appliance is switched on, the house current will change to a new stable state, and this 

steady state will maintain for a period as most household appliances almost never 

switch off once they are turned on. Therefore, the house current 𝐼(𝑡) after a switching 

event can be expressed using the following equation: 

𝐼(𝑡) = ∑ 𝐼𝑘(𝑡) + 𝐼𝑀+1(𝑡) + 𝐼𝑛(𝑡)𝑀
𝑘=1 = 𝐼𝑏(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑛(𝑡)   (4.2) 

In this equation, 𝐼(𝑡)  is the stable house current after appliance switching event. 

∑ 𝐼𝑘(𝑡)𝑀
𝑘=1  is the stable house current before the appliances were switched, and it is a 

mix current consisting of 𝑀  appliances’ working currents, which is represented by 

𝐼𝑏(𝑡). 𝐼𝑀+1(𝑡) is the working current of switched appliances and also the current that 

causes the house current ∑ 𝐼𝑘(𝑡)𝑀
𝑘=1  to change to a new state, 𝐼𝑀+1(𝑡) is represented 

by 𝐼𝑎(𝑡). 𝐼𝑛(𝑡) represents the system noise. 

According to this equation (4.2), all appliances’ working currents can be divided 

into two parts: the combined current in the circuit before an appliance is switched; the 

working currents of the switched appliances. Equation (4.2) thus lays the foundation 

for further switching event detection and appliance working current separation. 

4.3 Appliance Switching Event Detecting Based on Heuristic Detection 

Method 

The house current is represented as 𝐼(𝑡)  in Section 4.2. 𝐼(𝑡)  may fluctuate 

because of a switching event. The value of 𝐼(𝑡)  can be obtained by sampling at a 

constant frequency. As explained in the review on the principle of Heuristic detection 

in Chapter 2, each sampled value of 𝐼(𝑡) in an observation period is first examined to 

find the maximum and minimum sampled data, and then the difference between these 

values is calculated to detect the switching event. During the detection process, it 

requires an auxiliary time meter and most of the data are duplicates. In order to 

improve the efficiency of this process and eliminate the use of the auxiliary time meter, 

this thesis employs the calculation of the house current rms value in each observation 

period to replace checking of each sampled data, and calculating the number of sample 

times can substitute for the auxiliary time meter. 
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As for the detection process, the observation period is set as 2 seconds. Since the 

frequency is kept constant, the number of sampled data in each observation period is 

fixed, and the length of the observation period can then be determined by calculating 

the number of sample times. Based on the number and value of sampled current data 

in each observation period, the house current rms value 𝑖𝑟𝑚𝑠  is calculated using 

equation (3.1). After calculating the 𝑖𝑟𝑚𝑠  value within each observation period, the 

difference between 𝑖𝑟𝑚𝑠 values in adjacent periods can be calculated using: 

𝛥𝑖𝑟𝑚𝑠(𝑗) = 𝑖𝑟𝑚𝑠(𝑗) − 𝑖𝑟𝑚𝑠(𝑗 − 1)                              (4.3) 

In equation (4.3), ∆𝑖𝑟𝑚𝑠(𝑗) is the difference value of 𝑖𝑟𝑚𝑠 between 𝑗𝑡ℎ and (𝑗 −

1)- 𝑡ℎ observation periods. 𝑖𝑟𝑚𝑠(𝑗) and 𝑖𝑟𝑚𝑠(𝑗 − 1) are the current rms value for 𝑗𝑡ℎ 

and (𝑗 − 1)- 𝑡ℎ observation period respectively. When the 𝑖𝑟𝑚𝑠 value in 𝑗𝑡ℎ and (𝑗 −

1) - 𝑡ℎ observation periods remains unchanged, 𝛥𝑖𝑟𝑚𝑠(𝑗) is zero, there is no switching 

event in 𝑗𝑡ℎ observation period. By contrast if two adjacent results of 𝑖𝑟𝑚𝑠 values are 

different, 𝛥𝑖𝑟𝑚𝑠(𝑗)  is non-zero, the switching event occurs at the 𝑗𝑡ℎ  observation 

period, and the sample point being with the max sampled data in 𝑗𝑡ℎ period is detected 

as the switching point. The switching event is detected though comparing the 𝑖𝑟𝑚𝑠 

difference, which replaces the checking of each sampled current data. 

However, according to equation (4.2), both system noise and switching events 

can affect the house current. Because of such noise existence, the 𝛥𝑖𝑟𝑚𝑠(𝑗) between 

𝑗𝑡ℎ and (𝑗 − 1) - 𝑡ℎ observation period may never be zero. According to the original 

Heuristic principle, a threshold 𝜀 , commonly ranging from 0.1 to 1, is used to 

overcome the influence of noise. This threshold 𝜀  is thus applied in the proposed 

method to check the 𝛥𝑖𝑟𝑚𝑠(𝑗) . If the 𝛥𝑖𝑟𝑚𝑠(𝑗)  between 𝑗𝑡ℎ  and ( 𝑗 − 1) - 𝑡ℎ 

observation period is larger than the threshold 𝜀 , |∆𝑖𝑟𝑚𝑠(𝑗)| > 𝜀 , a switching event 

may occur. When ∆𝑖𝑟𝑚𝑠(j) > 0, some of the appliances may be switched on while 

others remain switched off. 

Fig.4.2 is an example of an actual house current sequence in one hour. The 

sequence is sampled at the fixed frequency of 10000Hz, and the current signal to noise 

ratio (SNR) is high. Ten switching events occurred within that hour, as marked with 

red lines. The switching event detection method is used to analyse this current 

sequence.  
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Fig.4. 2 One hour’s house current sequence 

 

From Fig.4.2, the house current 𝐼(𝑡) increases or decreases with the appliance 

switching events. Based on the sampled current data, the 𝑖𝑟𝑚𝑠  of each observation 

period is calculated, which includes 20000 sampled data. Table 4.1 compares the real 

switching event point and the detected point (with non-zero 𝛥𝑖𝑟𝑚𝑠(𝑗)). 

 

Table 4. 1 Switching event detecting result  

Real Switching Event Detected Switching Event 

Switching  

Event 

No. of Switching 

Point 

No. of point with 

non-zero 𝛥𝑖𝑟𝑚𝑠(𝑗)  

The value 

of 𝛥𝑖𝑟𝑚𝑠(𝑗) 

1 2702617 2710987 3.27 

2 3029814 3037159 0.26 

3 15281873 5029811 0.03 

4 20873691 15291339 0.03 

5 21022965 20881357 3.54 

6 21738922 21032751 0.27 

7 23281873 21747159 2.78 

8 30962900 23290139 0.51 

9 33541472 23929735 0.02 

10 33762578 29189134 0.03 

  30962900 1.73 

  33541472 0.21 

  33762578 3.23 

Sample Frequency:10000Hz

1 2 3 4 5 6 7 8 9 10
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In Table 4.1, all switching event points are obtained through that: the 𝛥𝑖𝑟𝑚𝑠(𝑗) 

between 𝑗𝑡ℎ  and (𝑗 − 1) - 𝑡ℎ  period is calculated. If the 𝛥𝑖𝑟𝑚𝑠(𝑗)  is non-zero, the 

sample point with the maximum sampled data in the 𝑗𝑡ℎ  period is detected as the 

switching point. 

If the threshold was not applied, there would be 13 points detected as the 

switching points, when only 10 switching events happened. To prevent such noise 

fluctuation from being detected as an appliance switching event, the threshold was set 

as 0.1 to minimize this. Fig.4.3 compares all 𝛥𝑖𝑟𝑚𝑠(𝑗) values with the value of 0.1, the 

abscissa consists of all the sample points. If a sample point was detected as a switching 

point, the value of 𝛥𝑖𝑟𝑚𝑠(𝑗) is assigned to the corresponding ordinate value, otherwise, 

the ordinate value is 0. In Fig.4.3, with the threshold included, if the 𝛥𝑖𝑟𝑚𝑠(𝑗) are less 

than 0.1, the corresponding detected switching points would be screened out. The 

retained detecting switching points will match real switching event points, with a 

detection accuracy of 100%. The interval between the real switching event point and 

the detected switching point does not exceed 10000 sampling points, in other words, 

the time difference between the real switching event point and the detected switching 

point is less than one second. Hence, setting the threshold is an effective approach for 

detecting the switching event in a low noise system. 

 

Threshold
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Fig.4. 3 The 𝜟𝒊𝒓𝒎𝒔(𝒋) values compare with the threshold of 0.1 

 

The current sequence in Fig.4.2 was collected in a low noise environment with a 

high SNR. But for houses that are close to the harmonic source, the SNR can be low.  
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Fig.4.4 shows the current sequence sampled from a high noise power system for an 

hour. Though only eight switching events occurred during that hour, the house current 

was always fluctuating. 

 

Sample Frequency:10000Hz

 

     Fig.4. 4 One hour’s current sequence with low SNR 

 

The sampled current sequence in Fig.4.4 is also processed by calculating 𝑖𝑟𝑚𝑠 

values and checking 𝛥𝑖𝑟𝑚𝑠(𝑗)  values to detect switching events. The observation 

period was also 2 seconds with 20000 sample points. When the 𝑖𝑟𝑚𝑠 between 𝑗𝑡ℎ and 

(𝑗 − 1) - 𝑡ℎ  adjacent observation periods is calculated, the 𝛥𝑖𝑟𝑚𝑠(𝑗)  is always non-

zero between two observation periods, almost each observation period contains a 

sample point that is detected as a switching point. 

Fig.4.5 shows all sample points taken to each representing a switching event. The 

abscissa consists of all sample points, if a sample point was detected as a switching 

point, the value of 𝛥𝑖𝑟𝑚𝑠(𝑗) is assigned to the corresponding ordinate value, otherwise, 

the ordinate value is 0. Two threshold values are set as 0.1 and 1, which are marked as 

red and blue lines respectively in Fig.4.5. Two threshold values are used to screen out 

detected points caused by noise, completely different results were obtained under 

different thresholds. 
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Threshold Value：0.1

Threshold Value：1

 

Fig.4. 5 The switching detection result under 0.1 and 1 

              threshold for current sequence with low SNR 

 

From Fig.4.5, there are many 𝛥𝑖𝑟𝑚𝑠(𝑗) between two observation periods above 

the threshold of 0.1. The noise influence and harmonic intrusion were detected as 

switching events. Although all the real switching events were detected, real events only 

account for 2% of the total detected points and 98% of the detected points had nothing 

to do with the switching events. These detected points were not only irrelevant but may 

also decrease the efficiency of detection. Conversely, in Fig.4.5, some of the 𝛥𝑖𝑟𝑚𝑠(𝑗) 

that are below the threshold of 1 may be missed. These are the switching events for 

small appliance working currents. Using this threshold, only 70% of the real switching 

events were detected, which is considered low detection accuracy. In summary, a small 

threshold value decreases the sensitivity of detection, while a large threshold value 

decreases the accuracy of detection. Detecting switching events and avoiding noise 

interference through a fixed threshold 𝜀  setting can be challenging in a high noise 

environment. It is often necessary to adjust the threshold according to the different 

system noise conditions. In practical applications, once the threshold value is set, it 

cannot be arbitrarily changed. 

Besides using the threshold approach, the |∆𝑖𝑟𝑚𝑠(𝑗)| between 𝑗𝑡ℎ and (𝑗 − 1)- 𝑡ℎ 

adjacent observation periods can be compared with |𝑖𝑟𝑚𝑠(𝑗)| of the first observation 

period and the |𝑖𝑟𝑚𝑠(𝑗 − 1)| of the last observation period. When |∆𝑖𝑟𝑚𝑠(𝑗)| is larger 
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than one fifth of |𝑖𝑟𝑚𝑠(𝑗)|  or |𝑖𝑟𝑚𝑠(𝑗 − 1)| , a switching event may occur. The 

switching event in high noise environment can thus be detected with a fixed threshold 

using the following equation: 

 |∆𝑖𝑟𝑚𝑠(𝑗)| >
1

5
∗ |𝑖𝑟𝑚𝑠(𝑗)| ∪ |∆𝑖𝑟𝑚𝑠(𝑗)| >

1

5
∗ |𝑖𝑟𝑚𝑠(𝑗 − 1)|      (4.4) 

Using a threshold value of 0.1 and this equation (4.4), the current sequence in 

Fig.4.4 was processed and analysed. The detected result is shown in Fig.4.6,  
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Fig.4. 6 The switching detection result under threshold 0.1               

and additional  𝜟𝒊𝒓𝒎𝒔(𝒋) comparing 

 

In Fig.4.6, where the ∆𝑖𝑟𝑚𝑠(𝑗) between two adjacent observation periods accords 

with equation (4.4), the sample point, which is the maximum sampled data in the latter 

period, will be detected as the switching point. The value of 𝛥𝑖𝑟𝑚𝑠(𝑗) is assigned to 

the corresponding ordinate value, otherwise the value is 0. Six points were detected 

and retained, where the detected points all represent an appliance switching event. 

Table 4.2 compares the real switching event point and the detected switching point. 

The time difference between the real switching event point and the detected switching 

point was less than a second. Although this was a high-noise environment, the 

detection accuracy and detection efficiency were satisfactory.  
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Table 4. 2 The real switching event point and the detected switching point 

Real Switching Event Detected Switching Event 

Switching  

Event 

No. of data 

Point 

No. of point with 

non-zero 𝛥𝑖𝑟𝑚𝑠(𝑗)  

The value 

of 𝛥𝑖𝑟𝑚𝑠(𝑗) 

1 2567152 2571275 0.71 

2 4323874 4330162 2.26 

3 6769432 6775793 2.93 

4 9309814 9314821 1.54 

5 11142372 11151618 0.55 

6 28089843 28097987 0.35 

 

After each switching event, the house current will undergo a sudden change and 

then quickly settle into its steady state. This process of switching to a steady state is 

known as the transient state. Once the transient state subsides, the house current will 

remain relatively stable, and detection of the next switching event begins. Therefore, 

determining whether a transient state is over or not becomes vital to the switching 

event detection process. The primary parameter for determining this is the |∆𝑖𝑟𝑚𝑠(𝑗)| 

between two observation periods. When ∆𝑖𝑟𝑚𝑠(𝑗)  and ∆𝑖𝑟𝑚𝑠(𝑗 − 1)  remains 

unchanged, the transient state is over. The switched appliance is in a steady state, and 

the house current should remain stable until the next switching event. To account for 

system noise, a determining threshold 𝛾 is used, as shown in equation (4.5): 

|∆𝑖𝑟𝑚𝑠(𝑗)| ∪ |∆𝑖𝑟𝑚𝑠(𝑗 − 1)| < 𝜀
|∆𝑖𝑟𝑚𝑠(𝑗)| = |𝑖𝑟𝑚𝑠(𝑗) − 𝑖𝑟𝑚𝑠(𝑗 − 1)|    

|∆𝑖𝑟𝑚𝑠(𝑗 − 1)| = |𝑖𝑟𝑚𝑠(𝑗 − 1) − 𝑖𝑟𝑚𝑠(𝑗 − 2)|   

                    (4.5) 

The flow chart in Fig.4.7 provides an overall description of the proposed 

switching event detection method using the house current rms value. In Fig,4.7, the 

observation period is set as 2 seconds have been measured with the number of sample 

times, the house current rms value of each observation period is calculated, and then 

the rms value difference for the two periods is obtained. When the difference value 

meets the conditions of the threshold value and equation (4.4), an appliance switching 

event is considered to have occurred. After a switching event is detected, the house 
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current enters a transient state. The house current rms value in each observation period 

is calculated continuously, the rms value meets the condition in equation (4.5). When 

the house current goes into a steady state, the switching event detection is considered 

over. 

Sampling  
current data

Calculating the 
Irms(j), Irms(j-1)and 

 Irms(j)

Yes

No

Appliance switching 
event may happen

Yes

Calculating the Irms(j), 
Irms(j-1),Irms(j-2), 

 Irms(j) and  Irms(j-1)

No

One switching event detecting 
finishs and starts separating current 

| Irms(j)|> ε

| Irms(j)|>1/5|Irms(j)| | Irms(j)|>1/5|Irms(j-1)| 

| Irms(j)|=|Irms(j)-Irms(j-1)|
| Irms(j-1)|=|Irms(j-1)-Irms(j-2)|

| Irms(j)| | Irms(j-1)|> ε

 

Fig.4. 7 Flow chart of switching event detection 
 

4.4 Separating the Appliance Working Current though the Difference 

Method 

After detecting an appliance switching event, the working current of the switched 

appliance will then be separated to identify the appliance type. Using equations (2.7) 
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and (4.2), the working currents of switched appliances can be separated, in which the 

steady state house current sequence before switching is subtracted from the steady state 

current sequence after switching. In a residential power environment, all voltage and 

current signals are single phase sine waves. Fig.4.8, Fig.4.9 and Fig.4.10 show three 

sampled current and voltage signals. 

 

 

Fig.4. 8 The −𝟗𝟎°difference between current and voltage sequence phase 

angle  

 

 

Fig.4. 9  The 𝟎°difference between current and voltage sequence phase 

angle  
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Fig.4. 10 The 𝟗𝟎°difference between current and voltage sequence phase 

angle  

 

In Fig.4.8, Fig.4.9 and Fig.4.10, the amplitude and frequency of the current and 

its voltage are fixed. However, as the switching of appliances is random, the beginning 

of each sequence sampling is also random. With sampling taken at different times, the 

phase angles of the sampled sequences can be different. The phase angle differences 

between these sampled voltage and current sequences are -90°, 0° and 90° respectively. 

Although all these sequences were sampled from the same current and voltage signals, 

the features of the obtained sequence vary due to the different sampling times. This 

reduced the accuracy for further identification, so separating the appliance working 

current under varying phase angle is thus very challenging. In order to avoid the 

features distortion caused in the sampling process, the voltage signal is used as the 

reference. 

As for residential power systems, the voltage parameter is fixed at standard values 

such as 230V/50Hz in the UK and 120V/60Hz in the US. Hence, the house voltage 

𝑉(𝑡)  remains stable regardless of the number of switching events. If the voltage 

sequence is sampled from the same voltage value, the phase angle of the sampled 

sequence will stay unchanged. In this thesis, the voltage sequence is acquired by 

sampling starting from a zero voltage and in an increasing trend. The corresponding 

conditions are as follows: 
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𝑉(𝑡 − 1) < 0

𝑉(𝑡) = 0
𝑉(𝑡 + 1) > 0

                                                  (4.6) 

When the voltage value meets the conditions in (4.6), 𝑉(𝑡) will be sampled. The 

sampled voltage sequence is 𝑉 = {𝑉1, 𝑉2, 𝑉3, ⋯ , 𝑉𝐿},  where L is the number of sample 

times, and 𝑉1to 𝑉𝐿 are the sampled voltage values. All these data compose a periodic 

voltage sequence with a phase angle of 0°. Therefore, the phase angle of sampled house 

voltage sequence is 0°, if the sampling of the house voltage and current start at the 

same time, with the phase angle of the sampled voltage sequence fixed at 0°, the phase 

angle of the sampled house current sequence can then be determined accurately. A 

current sequence 𝐼 = {𝐼1, 𝐼2, 𝐼3, ⋯ , 𝐼𝐿} can be obtained with its phase angle, where 𝐿 

represents the number of data points in the sequence. Using this approach, the problem 

of the uncertain phase angle of the house current in the sampling process is resolved. 

When the house current sequence can then be sampled with the fixed phase angles, the 

working current of switched appliance can now be separated.  

According to equation (4.2), 𝐼𝑏(𝑡) is the stable house current before appliances 

switching, 𝐼𝑎(𝑡) is the stable house current after appliances switching. Based on the 

sampled sequence of 𝐼𝑎(𝑡)  and 𝐼𝑏(𝑡) , The working current sequence of switched 

appliances can be separated according to equation (2.7), which is the difference 

between the steady house current before and after switching, expressed as follows:  

[𝐼𝑎] − [𝐼𝑏] =   [𝐼𝑎
1 −  𝐼𝑏

1,  𝐼𝑎
2 −  𝐼𝑏

2, ⋯ ,  𝐼𝑎
𝐿 −  𝐼𝑏

𝐿]           (4.7) 

In equation (4.7), [𝐼𝑎] = [ 𝐼𝑎
1,  𝐼𝑎

2, ⋯ , 𝐼𝑎
𝐿], it represents the sampled steady state current 

sequence after the appliance was switched. [𝐼𝑏] = [𝐼𝑏
1,  𝐼𝑏

2, ⋯ , 𝐼𝑏
𝐿] , it represents the 

sampled steady state current sequence before the switching event. [𝐼𝑎
1 −  𝐼𝑏

1,  𝐼𝑎
2 −  𝐼𝑏

2,

⋯ ,  𝐼𝑎
𝐿 −  𝐼𝑏

𝐿]  is the working current sequence of the switched appliances, which 

causes the current sequence [𝐼𝑏] changing to the current sequence [𝐼𝑎]. Fig.4.11 shows 

a current separation example, the house current sequence was processed by using this 

sampling approach to obtain the working currents of the switched appliances, the 

length of the current sequence is 100 seconds. 
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(B) The Current Before Switching

(C) The Current After Switching (D) The Difference Between the Current 
After and Before Switching

Switching Event

(A) The Sampled Current Sequence

Sample Frequency:10000Hz

 

Fig.4. 11 Appliance working current separating process 

 

In Fig.4.11A, the current sequence includes 1 million sample points, which are 

sampled at 10000Hz (100 seconds), and the switching event happened in the 601479th 

sampled point. In Fig.4.11B, the sequence includes 1000 points (0.1 seconds), the 

sampled sequence is the house current before the switching event, which is also the 

working current of a single appliance. In Fig.4.11C, the sequence includes 1000 points, 

the sampled sequence is the house current after the switching event. It is also the sum 

of the switched appliance working currents and the appliance working currents before 

the switching event. In Fig.4.11D, the sequence includes 1000 points. The sequence is 

the difference between the current before and after the switching event, which would 

be the working current of the switched appliance. The obtained sequences had regular 

and periodic waveforms, indicating that the separated sequences are not noise but the 

actual currents of the appliances. 
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4.5 Testing of Switching Event Detection and Working Current Separation 

This section presents the testing results of the detecting and separating process 

using the UK-DALE [57] dataset. Fig.4.12 shows the house current waveform within 

an hour from 18:00-18:59, Each switching event is marked with a blue line. 

 

1 3 4 5 6 7 8 9 10 11

Sample Frequency:10000Hz

2

 

Fig.4. 12 The one hour’s current sequence  

 

Using the sequence in Fig.4.12, the proposed method first detects the switching 

event, the detecting results are shown in Fig.4.13,  
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Fig.4. 13 The switching event detecting result 
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In detection process, the observation period is 2 seconds with 20000 sample 

points. When the 𝑖𝑟𝑚𝑠  between two adjacent observation periods is obtained, the 

𝛥𝑖𝑟𝑚𝑠(𝑗) between 𝑗𝑡ℎ and (𝑗 − 1)- 𝑡ℎ adjacent period is calculated. If the 𝛥𝑖𝑟𝑚𝑠(𝑗) is 

over the threshold value of 0.1 and accords with equation (4.4), the sample point with 

the maximum sampled data in the latter period is detected as the switching point. In 

Fig.4.13, the abscissa consists of the sample points, and if a sample point is detected 

as a switching point, the corresponding ordinate value of 𝛥𝑖𝑟𝑚𝑠(𝑗)  is assigned, 

otherwise given a value of 0. Table 4.3 compares the real switching event point in one 

hour and the point been with non-zero 𝛥𝑖𝑟𝑚𝑠(𝑗).  

Table 4. 3 The real switching point and the detected switching point 

Real Switching Event Detected Switching Event 

Switching  

Event 

No. of data 

Point 

No. of point with 

non-zero 𝛥𝑖𝑟𝑚𝑠(𝑗)  

The value 

of 𝛥𝑖𝑟𝑚𝑠(j) 

1 4200987 4213687 3.27 

2 1346350 1352645 0.26 

3 2980401 2991389 2.03 

4 6220782 6234571 0.31 

5 9220600 9223148 1.95 

6 11741369 11753722 2.19 

7 15280251 15289784 0.33 

8 21263691 21274781 0.35 

9 26540028 26551195 2.87 

10 29461139 29469852 2.71 

11 31285391 31289171 3.12 

 

The detected switching points all match real switching event points, the detection 

accuracy is 100%. Furthermore, the interval between the real switching event point 

and the detected switching point does not exceed 20000 sampling points, so the time 

difference between the real switching event point and the detected switching point is 

less than two seconds. 
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Once the switching event is detected, the switched appliance working current will 

be sampled according to equations (4.6) and (4.7). Fig.4.14 shows 12 sampled current 

sequences which were taken before and after the 11 switching events.  

 

1 2 3

4 5 6

7 8 9

10 11 12

The current before 1st switching 
event

The current after 1st and before 
2nd  switching event

The current after 2nd and before 
3rd  switching event

The current after 3rd and before 
4th   switching event

The current after 4th and before 
5th   switching event

The current after 5th and before 
6th   switching event

The current after 6th and before 
7th   switching event

The current after 7th and before 
8th   switching event

The current after 8th and before 
9th   switching event

The current after 9th and before 
10th   switching event

The current after 10th and before 
11th   switching event

The current after 11th switching 
event

 

Fig.4. 14 Working current sequence before and after 11 switching events 

 

Using equation (4.8), the working current of switched appliances is separated 

based on the current sequences before and after each switching event. The steady state 

house current sequence before the switching event is subtracted from the steady state 

current sequence after the switching event. Fig.4. 15, Fig. 4.16 and Fig.4.17 shows the 

current separation process after the 1st, 2nd and 7th switching events, with each one of 

them representing respectively the event of appliance switching ON, the appliance 

operation state changing and the appliance switching OFF.  
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In Fig.4.15, the black curve represents the steady state house current sequence 

before the switching event. When switching event 1 occurred and was detected, the 

house current was then sampled, and the sampled current sequence showed as the red 

curve. The current sequence before switching was subtracted from the current 

sequence after switching, the subtracting result is shown as the blue curve, which 

represents the switched appliance working current. The steady state current after the 

switching event is then stored for the next separation process. 

 

 

Fig.4. 15 The current separation after 1st switching event 

 
In Fig.4.16, the switching event was just a change in the working state of the 

appliance, and hence the current sequences before and after the event were almost 

identical except for their amplitudes. The black curve is the steady state house current 

sequence before the appliance operation state change, the red curve is the steady state 

house current sequence after the appliance operation state change. The current 

sequence before running state change also was subtracted from the current sequence 

after running state change, using the same separation process as the switched appliance 

working current. The resulting separated sequence was periodic, with no significant 

distortion, allowing for the separation of some small current changes using the 

difference method.  
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Fig.4. 16 The current separation after 2nd switching event 

 
In Fig.4.17, the black curve represents the steady state house current sequence 

before the appliance switching OFF event. When the switching OFF event occurs, the 

current sequence before switching OFF was subtracted from the current sequence after 

switching OFF and the resulting difference gives the working current of the switched 

off appliance.  

 

 

Fig.4. 17 The current separation after 7th switching event 
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The other separated current sequences are shown in Fig.4.18, and the current 

waveforms generally coincide with the sine waveform, The separated sequences are 

regular and periodic. However, there are obvious differences in the shapes of the 

current waveforms of some of the sequences, such as sequences 8 and 9. On the other 

hand, other sequences are almost identical, making it difficult to distinguish them 

directly. Therefore, the separated waveforms need to be further analysed for the 

identification purposes. 

 

The separated current after 3rd 

switching event
The separated current after 4th 

switching event

The separated current after 5th 

switching event

The separated current after 6th 

switching event
The separated current after 8th 

switching event

The separated current after 9th 

switching event

The separated current after 10th 

switching event

The separated current after 11th 

switching event

 

Fig.4. 18 The separated current sequences after switching event 

4.6 Summary  

This chapter presents the detection and separation of switched appliance working 

current. Firstly, the original Heuristic method is improved to achieve a high detection 

sensitivity and less detection response time. These improvements are explained and 

tested using real residential electric data. Secondly, when an appliance is switched and 
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the switching is detected, the house current is different before and after switching, so 

subtracting the house current before a switching event from the house current after the 

switching event, provides the working current of the switched appliance. The entire 

separation process is based on the difference method, in which the shortcoming of not 

being able to obtain the phase angle of separated current is resolved. In the next chapter, 

the separated appliance working current feature will be identified. 
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Chapter 5 The Switched Appliance Type Identification 

5.1   Introduction 

With the working current of a switched appliance separated, the frequency feature 

of the separated current can thus be used to identify the type of appliance. However, 

current frequency features may overlap between some appliances. To improve 

identification accuracy, other than the appliance’s current frequency features, the user 

behaviour and appliance operation pattern will also be incorporated into the 

identification process. There are three parts to this chapter. Firstly, the usage behaviour 

and running pattern of household appliances are analysed, providing the foundation 

for further appliance operation pattern regressing and identification modification. 

Secondly, by using the appliance working current frequency, the K-nearest neighbor 

(KNN) method can be used to achieve basic identification of appliance types. The 

KNN model is trained and reconstructed to adapt to the limited online storage space 

and reduce the response time of identification. Thirdly, regressing the appliance 

operation pattern with a back-propagation neural network (BPNN) to modify and 

correct the identification results.  

For the first part, the non-electric data, from the public dataset UK-DALE [21], 

on appliance switching is used to analyse the usage habits of customers and the 

appliance running pattern. This analysis shows that the customer behaviour and 

appliance running pattern is an effective strategy for appliance identification. The 

specific analysis and process are discussed in Section 5.2.2. 

For the second part, a training set is formed using the known appliance features, 

the KNN model is constructed and trained based on this. The KNN model compares 

the unknown appliance features with those of each known appliance and makes an 

identification based on the best match. The general process of KNN model building 

and appliance identification is given in more detail in Section 5.3.1, while this specific 

approach for appliance identification is tested in Section 5.3.2. 

In the third part of this chapter, a BPNN is used to reproduce appliance operation 

patterns from the appliance switching data. The general process of building the BPNN  
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model and regressing the operation pattern curve are described in sections 5.4.1 and 

5.4.2. The obtained operation pattern curve is validated and tested in Section 5.4.3. 

The basic identification result of the KNN method can then be corrected, to avoid 

mistakes caused by overlaps in the appliances’ electric features. The modification and 

correction methods are tested in section 5.4.4. 

5.2 Analyse the usage habits of customer and the appliance running pattern 

UK-DALE dataset is the data resource for this analysis, and it contains the electric 

and non-electric data of appliances in five different households in London. Table 5.1 

shows the data information used in this thesis.  

 

Table 5. 1 The UK-DALE data set details [21] 

 House A House B 

Date of start 

measurement 2012-11-09 2013-02-17 

Date of end 

 measurement 2015-01-05 2013-10-10 

Duration of 

measurement 786 234 

Number of 

 appliances 53 19 

 

Electric 

parameters 

House current, 

House voltage, 

Total power, 

Appliance power 

House current, 

House voltage, 

Total power 

Non-electric 

parameters 

Appliance 

switching time  

Appliance 

switching time 

 

Different switching regularities imply different usage behaviours. The appliance 

operation patterns and switching probabilities can be obtained by analyzing usage 

behaviours, as shown in Fig.5.1. It shows the statistical results of the switching times 

of four appliances, namely the oven in House A, the kettle in House A, the oven in 

House B and the kettle in House B. This provides a rough profile of the appliance 

operation patterns and the appliance switching probabilities of different periods, and it 

is a unique feature for the different appliances. 
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Fig.5. 1 Four appliances switching times in one week 
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In Fig.5.1, the switching times of the oven (Fig.5.1 C and Fig.5.1 D) and kettle 

(Fig.5.1 A and Fig.5.1 B) were counted for one week in two households. The ordinate 

represents the number of times of appliance switching, the abscissa is the time period 

of a day. From the corresponding axis, the histogram shows the switching times of the 

kettle and the oven for every quarter of an hour. These four diagrams show completely 

different trends and waveforms. Although these four appliances are similar in electric 

features, the switching times of these four appliances are different for each quarter-

hour, due to different user behaviour and operation pattern. Furthermore, the appliance 

usage is random and switching events are not well distributed throughout the day. The 

switching of appliances is concentrated during specific time periods, for example, the 

switching of the oven in house A is mostly around 4 pm (Fig.5.1 A), and the switching 

of the oven in house B is around 5 pm (Fig.5.1 B), which are consistent with the living 

habits of the customers. 

The appliance usage habits of the customer and a rough regress of the appliance 

operation pattern can be mined from the statistics of the appliances switching times to 

determine the periods when the switching probability of the appliances is higher. 

However, such simple statistics cannot reflect the switching regularity of all appliances. 

From Fig.5.1.D, the switching regularity of the appliance is lower compared to the 

other three, in other words, the operation pattern of the kettle in House B is not obvious. 

Without clear switching regularity of the appliance, it is challenging to regress an 

accurate operation pattern, and the calculation of switching probability based on this 

operation pattern becomes meaningless. Increasing the statistical period can 

effectively enhance the regularity of the appliance switching data for more accurate 

operation patterns and clearer customer usage habits. Fig.5.2 shows the statistical 

results of the kettle’s switching times in House B for different periods: one week, three 

weeks, six weeks and ten weeks. 
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Fig.5. 2 The statistical results of the kettle’s switching times for one week, three 

weeks, six weeks and ten weeks  
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In Fig.5.2 A, the switching times of the kettle in one week were counted, which 

did not produce significant patterns. By extending the statistical period, the user 

behaviour and appliance operation patterns were fully extracted, with the regularity 

becoming clearer moving from Fig.5.2.B to Fig.5.2.D. Increasing the statistical period 

enables some small-probability events of the appliance switching at certain time points 

to be included in the statistics, for example, there was an oven switching event at 4 am 

With such inclusions, the obtained operation pattern becomes closer to the real running 

conditions. By considering the probability of appliances being switched at any time of 

the day, the calculation of the switching probability distribution (Fig.5.2.D) becomes 

more accurate. However, a period of ten successive weeks may be too long to be 

realized in practical applications. It is thus vital to use more intelligent algorithms to 

process shorter-term statistical data to regress accurate appliance operation patterns 

and switching probability distribution curves. The BPNN demonstrates a strong 

learning capability to do exactly this and hence will be applied in appliance operation 

pattern regressing for short-term statistical data. 

5.3   Identification of Appliance Type  

The KNN method [96] is used to classify and identify the separated current, then 

the type of switched appliance is obtained. The structure of the KNN model is 

simplified, the learning strategy of the KNN model is redesigned, and the classifying 

rule of KNN is modified. With all improvements, the fast online identification is 

achieved, and the improved KNN method is more suitable for the residential 

application scenario. 

5.3.1   The KNN Method reconstructing and separated current identifying 

The separated current is identified through the KNN method in these four steps. 

Firstly, the KNN model is trained and reconstructed by the training samples’ features 

set. Secondly, the electric feature difference between the unknown sample (the 

separated current) and all training samples is measured. Thirdly, by setting a specific 

value K, the K training samples that are closest to matching the features of the 

unknown sample are found. Lastly, the unknown sample is classified into the feature 

category it most closely aligns with. 
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The first step of this process is to obtain currents from different known appliances 

and then expand them using the Fourier series. Table 5.2 lists eight appliances and their 

respective appliance harmonic components, which were analysed into their current 

sequences in Chapter 3. These currents are measured from real appliances in actual 

residential power environment. The first to fourth harmonic components of each 

appliance’s working current is shown, and the unit of the harmonic component is in 

ampere.  

 

Table 5. 2 Fist to fourth harmonics of eight appliances  

Appliance 1st 

 Harmonic 

2nd 

Harmonic 

3rd 

Harmonic 

4th  

Harmonic 

TV 0.345 0.009 0.310 0.008 

Refrigerator 1.205 0.033 0.079 0.007 

Microwave Oven 7.620 0.682 2.943 0.103 

Air-conditioning 4.477 0.691 0.334 0.187 

Laptop 2.769 0.172 0.432 0.272 

Electric Kettle 5.146 0.005 0.089 0.001 

Geyser 2.301 0.538 0.139 0.015 

Vacuum Cleaner 6.513 0.728 2.138 0.236 

 

In Table 5.2, each known appliance serves as a training sample in the KNN model. 

The features of the training samples are represented by the first to fourth harmonics. 

Once the feature of the training sample has been learned, the training and constructing 

of the KNN model is complete. The learning process involves using physical storage 

space to record each feature element value of each training sample. This thesis uses 

one training sample with four elements to minimize storage space and reduce response 

time for later steps. 

In the second step, the feature difference between an unknown sample (the 

separated working current of switched appliance) and the training samples is measured 

using the Euclidean distance. The Euclidean distance between any appliance features 

can be calculated using equation (2.9). Table 5.3 compares the Euclidean distance 

between 8 training samples with each other. 
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Table 5. 3 The Euclidean distance between 8 training samples to each other 

 TV RE MO AC LAP GE EK VC 

TV 0 0.8603 7.3061 4.1879 2.4240 4.8011 6.2046 6.2056 

RE 0.8603 0 6.4477 3.3375 1.5642 3.9410 5.3475 5.3486 

MO 7.3061 6.4477 0 3.1430 4.8975 2.5577 1.1070 1.1070 

AC 4.1879 3.3375 3.1430 0 1.8391 0.9384 2.0360 2.0360 

LAP 2.4295 1.5702 4.8777 1.7851 0 2.3811 3.7786 3.7798 

GE 4.8010 3.9411 2.5650 0.9582 2.3770 0 1.5255 1.5295 

EK 6.2046 5.3475 1.1070 2.0360 3.7786 1.5255 0 0.8603 

VC 6.2056 5.3486 1.1070 2.0360 3.7798 1.5295 0.8603 0 

 

In Table 5.3, the Euclidean distance intuitively reflects the electric feature 

difference or similarity between appliances. By measuring the Euclidean distance 

between the unknown sample (the separated working current of switched appliance) 

and each training sample, it reveals the degree of feature matching between them. 

These measured results are used in the next step of the process. 

In the third step, the value of K was set to 3 in the KNN model [97]. Based on the 

Euclidean distance calculated earlier, the first K training samples nearest to the 

unknown sample will be determined. If the nearest Euclidean distance exceeds a 

certain value, the unknown appliance will not be identified as it may belong to other 

appliance types not included in the training sample set.  

In the fourth step, the unknown sample is identified to be a certain appliance 

category through majority voting [98] of K training samples. If the K samples belong 

to the same category, there is a high possibility that the unknown sample also belongs 

to this category. However, the number of home appliances is limited, and there may be 

only one or two appliances in each category, so the K training samples are always from 

different categories. The number of samples in each category may also be almost 

identical and hence decrease the reliability of majority voting. 

In order to improve the reliability of majority voting and the accuracy of 

identification, different weighting is given to different training samples in the majority 

voting process. The Euclidean distances between the unknown sample and the K 

training samples are also not the same. The larger the Euclidean distance, the greater  
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the difference between the unknown sample and the training sample. This means the 

probability that the unknown sample and training sample belong to the same category 

is low. Hence, training samples with a larger Euclidean distance to the unknown 

sample carry a lower weighting in the majority voting process. Conversely, the training 

samples with small Euclidean distances to the unknown sample carry a higher 

weighting in the majority voting process. To obtain the weighting of each training 

sample for the majority voting process, all Euclidean distances need to be normalized. 

Equation (5.1) is used to achieve the normalization, 

𝑃𝑥𝑖,𝑚 =
w(𝑥𝑖,𝜓𝑚)

∑ w(𝑥𝑖,𝜓𝑚)𝐾
𝑚=1

                                       (5.1) 

where 𝑃𝑥𝑖,𝑚 is the normalization result, w(𝑥𝑖 , 𝜓𝑚) is the reciprocal of the Euclidean 

distance between the training sample 𝜓𝑚 and the unknown sample 𝑥𝑖, 𝑚 = 1,2 ⋯ , 𝐾.  

w(𝑥𝑖 , 𝜓𝑚) can be calculated by  

𝑤(𝑥𝑖 , 𝜓𝑚) = 1

𝐷(𝑥𝑖,𝜓𝑚)
                                    (5.2) 

After normalization, the weightings of the training samples are obtained. The 

larger the weighting, the higher the probability that the unknown sample and training 

sample are from the same category of appliances, and the majority voting becomes 

more reliable. The basic identification through KNN is hence achieved. 

5.3.2   Identification Testing Based on KNN  

The above method is an improvement of the original KNN method in reference 

[97], with the construction of the KNN model and incorporation of the rule of majority 

voting. It saves storage space for the training samples set and is better suited for 

identification scenarios that have few appliances in each category. This thesis uses the 

proposed method and the method in reference [97] to identify the separated currents 

from House A of the UK-DALE data set. The date was 2012/11/09, and the time period 

was 06:00 to 22:30. A total of 59 switching events were detected and identified for this 

period. The 9 separated currents are displayed in Fig.5.3, and the corresponding times 
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to separate each sequence are given in Table 5.4. These nine sequences illustrate the 

identification process of the proposed KNN method. 

 

 

Fig.5. 3 Separated current working wave 

 

Table 5. 4 The switching time point of 9 unknow appliance 

Current Sequence Separating Time 

Separated current 1 19:33pm 

Separated current 2 19:05pm 

Separated current 3 18:47pm 

Separated current 4 13:23pm 

Separated current 5 11:25am 

Separated current 6 10:11am 

Separated current 7 07:41am 

Separated current 8 07:04am 

Separated current 9 20:03pm 
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In this identification process, the working current of the switched appliance was 

first separated, it is an unknown sample. The first to fourth harmonics of that separated 

current was then used to calculate the feature differences with training samples for the 

KNN model. The corresponding harmonic values are shown in Table 5.5.  

 

Table 5. 5 The frequency feature aggregation of separated currents 

    1st   2nd    3rd 4th  

Separated current 1 0.307 0.017 0.224 0.010 

Separated current 2 1.447 0.029 0.424 0.008 

Separated current 3 0.632 0.023 0.524 0.020 

Separated current 4 5.655 0.023 0.478 0.022 

Separated current 5 0.611 0.026 0.504 0.018 

Separated current 6 5.978 0.036 0.158 0.011 

Separated current 7 0.279 0.018 0.195 0.011 

Separated current 8 0.632 0.025 0.520 0.016 

Separated current 9 1.543 0.042 0.493 0.017 

 

Secondly, the Euclidean distances between the unknown sample and all the 

training samples were calculated using equation (2.6). The calculated values are listed 

in Table 5.6. 

 

Table 5. 6 Euclidean distance between the training sample and separated 

current 

 TV RE MO AC LAP GE EK VC 

Separated current 1 0.03 0.58 7.34 4.22 1.67 4.83 6.24 6.24 

Separated current 2 0.59 0.24 6.20 3.10 1.09 3.69 5.10 5.10 

Separated current 3 4.28 2.36 1.05 3.90 5.13 4.51 5.91 3.78 

Separated current 4 6.31 5.36 4.85 5.35 5.88 3.31 3.23 4.78 

Separated current 5 1.58 3.92 7.03 5.93 0.26 4.53 5.93 5.93 

Separated current 6 5.63 4.77 3.76 1.63 1.76 1.57 1.46 2.84 

Separated current 7 1.26 2.92 1.27 4.25 2.48 4.86 6.26 6.26 

Separated current 8 3.28 5.57 7.01 3.90 2.13 0.42 0.34 5.91 

Separated current 9 2.19 4.33 3.07 3.60 5.08 6.60 5.01 1.02 
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Thirdly, K was set as three, which means three training samples with similar 

frequency features as the separated current were found. Their three Euclidean distances 

were normalised using equation 5.2, and the results are as shown in Table 5.7.  

 

Table 5. 7 The normalized Euclidean distances the training sample and 

separated current 

 TV RE MO AC LAP GE EK VC 

Separated current 1 0.944 0.040 0 0 0.014 0 0 0 

Separated current 2 0.156 0.712 0 0 0.130 0 0 0 

Separated current 3 0 0.227 0.630 0 0 0 0 0.141 

Separated current 4 0 0 0 0 0 0.368 0.377 0.255 

Separated current 5 0.133 0.053 0 0 0.812 0 0 0 

Separated current 6 0 0 0 0 0.301 0.338 0.363  

Separated current 7 0.413 0.178 0 0 0.409 0 0 0 

Separated current 8 0 0 0 0 0.082 0.407 0.510 0 

Separated current 9 0.259 0 0.184 0 0 0 0 0.556 

 

Based on the normalization results, the appliance type was then identified using 

the majority voting process. The identification result is listed in Table 5.8.  

 

Table 5. 8 Identification result based on KNN method 

Separated current 1 TV - - - - - - - 

Separated current 2 - RE - - - - - - 

Separated current 3 - - MO - - - - - 

Separated current 4 - - - - - GE EK - 

Separated current 5 - - - - LAP - - - 

Separated current 6 - - - - LAP GE - - 

Separated current 7 TV - - - LAP - - - 

Separated current 8 - - - - - GE EK - 

Separated current 9 - - - - - - - VC 

 

Unknown appliance No. 1 has been identified as the TV, No. 2 as the refrigerator, 

No. 3 the microwave oven, No. 5 the laptop, and No. 9 the vacuum cleaner. As for the 
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other unknown appliances, their features were found to be too similar to multiple 

appliances, resulting in similar weighting for corresponding training samples. 

Therefore, their identification results would require further modification and 

correction. Fig.5.4 compares the identification accuracy and identification period of 

eight appliances between the proposed method of this thesis and the method used in 

reference [97].  

 

（A） （B）  
Fig.5. 4 The comparing of identification accuracy and period between two 

methods 

 

In Fig.5.4 A, the proposed method used to identify laptop (LAP) and air-

conditioning (AC) has an accuracy rate lower than 50%. This is lower than the 

accuracy rate achieved by the method in reference [97]. Furthermore, this proposed 

method could not identify the appliances with similar electric features, such as the 

kettle (EK) and geyser (GE). The main reason of the low identification accuracy is that 

when a separated current exhibits electric features of two appliances, there are no 

subdivided features to help differentiate them. In contrast, the method in reference [97] 

built a stronger granular training sample set, which required large storage space to 

overcome feature overlapping, but contributed to a higher total accuracy rate is higher 

than this proposed method. However, the identification accuracy of kettle (EK) and 

geyser (GE) remains around 50% for the method used in reference [97], which is still 

unsatisfactory for monitoring purposes. 

Fig.5.4 B presents the time period used by the above two methods to complete 

each appliance identification. The method in reference [97] required a longer period to 
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identify each appliance than the proposed method for this thesis. The time required for 

such identification varied, depending on the type of appliance involved. For example, 

the identification of a laptop took 1 second to complete, but the identification of a TV 

took 0.4 seconds to complete. In contrast, the proposed method utilized fewer elements 

in its training feature set, which resulted in less time spent comparing and measuring 

the feature differences. Consequently, the proposed method took roughly the same 

amount of time to identify each appliancee. 

In other words, the proposed method uses a shorter identification period and 

required less storage space. To achieve higher accuracy for this method, the 

identification process for appliances with similar electric features must be modified 

and corrected. 

5.4   Modification of Identified Result Based on Appliance Operation 

Pattern 

During the last identification test using the KNN method, certain appliances could 

not be identified because their electric features were too similar, leading to interference 

in the identification results. As discussed in Section 5.2, for appliances with similar 

electric features, their non-electric features, such as the time when the appliance is 

switched on and its running duration, are generally distinct. While electric kettles and 

geysers have almost the same current features, their switching times and running 

durations are completely different. The appliance operation pattern can hence be 

applied to improve the identification accuracy. This section aims to propose the 

following modified method to help identify the appliances using their operation 

patterns. 

First, the non-electric data about known appliance switching times are collected 

to train BPNN. After completing the training, the operation pattern curves of known 

appliances can then be obtained. 

Next, three additional weeks of appliance switching data are gathered, which 

includes the times of the appliance being switched on and each appliance running 

period, to validate the appliance operation pattern curve obtained.  

Lastly, the running and switching conditions of the unknown appliance are 

compared with the operation pattern curves of the known appliances. If the unknown 
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appliance operations did not match with the operation pattern curves of a given known 

appliance, the unknown appliance is not the same type as the known appliance. 

Conversely, the unknown appliance type can be identified if its operation patterns are 

consistent with that of a known appliance. 

5.4.1   BPNN Principle for Operation Pattern Regression 

As outlined in Section 5.2, a longer statistical period of non-electric data is vital 

to obtain accurate appliance operation patterns and switching probability distribution. 

However, this can be difficult to realize in practical applications. Therefore, BPNN is 

used to process the short-term statistical data to obtain accurate appliance operation 

patterns and switching probability distribution curves. 

BPNN is a feed-forward network model with a multilayer system [100] [69], 

which comprises an input layer, a hidden layer, and an output layer. The input layer 

receives data that holds significance in the real world. The hidden layer processes the 

input data based on the corresponding activation function. The output layer exports the 

network’s response to the input data. Each layer contains multiple neurons which are 

connected between layers via connection weights. The topological diagram of a typical 

BPNN structure is shown in Fig.5.5. 

 

 

Fig.5. 5 BPNN structure 
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Fig.5.5 shows how the BPNN performs the induced propagation and the weight 

update. 𝐼, 𝐽 𝑎𝑛𝑑 𝑆 are the number of neurons in the input layer, the hidden layer, and 

the output layer, respectively. Each layer has its independent input and output. 𝑢𝑖𝑗 

denotes the connection weighting between 𝑖𝑡ℎ  neuron of the input layer and 𝑗𝑡ℎ 

neuron of the hidden layer. 𝑣𝑗𝑠 is the connection weighting between 𝑗𝑡ℎ neuron of the 

hidden layer and 𝑠𝑡ℎ neuron of the output layer respectively.  

The quantity of input layer neurons is determined by the nature of the BPNN’s 

input data. An activation function is not used in the input layer, so the input 𝑡𝑖  of 

neurons in the input layer is mapped to the hidden layer directly. 

As for data processing in the hidden layer, the number of neurons in the hidden 

layer is set manually and can adjust according to different application requirements. 

Every neuron in the hidden layer has independent input data which is derived from 

each input layer neuron. The input of the hidden layer’s neurons is ℎ𝑗. The output of 

the hidden layer is 𝑌ℎ(𝑗). Then 𝑌ℎ(𝑗) is mapped to the output layer.  

As for data processing in the output layer, the number of neurons is set manually 

according to requirements. Based on the output data from the hidden layer, the output 

layer feeds back its response to the BPNN’s input data. The input of the output layer’s 

neuron is 𝑂𝑆. The output of the output layer’s neuron is 𝑌𝑂(𝑠). The induced propagation 

is completed when obtaining the output of each neuron in the output layer.  

The network error in the BPNN is then obtained by calculating the difference 

between the expected input data and the induced response. If the error is large, the 

network error will be decreased through connection weight updates. 

The BPNN is constructed once the activation function and the number of neurons 

in each layer have been fixed. The induced propagation and connection weighting 

updates are repeated until the network error falls within an acceptable pre-determined 

range. This is the training of the BPNN. If a trained BPNN was obtained, the BPNN 

will be used in the corresponding application. 

5.4.2   Operation Pattern Regression Based on BPNN 

This section presents the building of BPNN and the learning strategy for operation  
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pattern regression. First, the dataset being used for training the BPNN is constructed. 

Secondly, depending on the size of training dataset, the network layers and the number 

of neurons in each layer are determined. Thirdly, the BPNN is trained using a 

consecutive update of connection weight. Finally, the appliance operation pattern 

curve can be regressed according to the designed learning strategy. 

5.4.2.1   Training data set building 

The size of training data affects the convergence of training. The potential dataset 

on appliance operations is huge, which can include data such as running period, startup 

time, and switching times. The more data is being used, the more accurate the operation 

patterns obtained, but this may affect the convergence of training [101] [102]. To 

improve convergence speed while maintaining data diversity, the one day period was 

divided into 24 time periods. The number of times a known appliance was switched 

on in each period was counted respectively, using the UK-DALE data set. By 

considering the number of appliance switching times, the appliance running periods 

and switching time points are captured within one single dataset. Four appliances, 

namely the geyser, TV, laptop, and microwave oven (MO), were selected to train the 

BPNN as shown in Table 5.9: 

 

Table 5. 9 The number of switching times of four appliance [UK] 

Period  
AM

:1-2 

AM

:2-3 

AM

:3-4 

AM

:4-5 

AM

:5-6 

AM

:6-7 

AM

:7-8 

AM

:8-9 

AM:  

9-10 

AM:  

10-11 

AM:  

11-12 

AM:12

-PM:1 

Geyser 6 7 8 9 9 8 8 8 8 10 9 9 

TV 0 0 0 0 0 0 0 0 0 0 1 3 

Laptop 0 0 0 0 0 0 0 3 7 7 5 2 

MO 0 0 0 0 0 0 0 0 1 0 0 1 

Period 
PM

:1-2 

PM

:2-3 

PM

:3-4 

PM

:4-5 

PM

:5-6 

PM

:6-7 

PM

:7-8 

PM

:8-9 

PM:  

9-10 

PM:  

10-11 

PM:  

11-12 

PM:12-

AM:1 

Geyser 10 10 10 9 7 10 9 12 11 13 12 9 

TV 0 0 1 1 2 5 4 4 3 3 1 0 

Laptop 1 1 2 1 0 4 7 6 8 6 2 1 

MO 0 0 0 0 0 0 1 1 3 0 0 0 

 

In Table 5.9, the first six rows show the 24 time periods of the day: 1:00 am to 

2:00 am is the 1st period, 2:00 am to 3:00 am is the 2nd period, and 12:00 pm to 1:00  
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am is the 24th period. The remaining rows show the number of times each device was 

switched on during each corresponding period. 

The data in Table 5.9 was subsequently converted into a matrix for training 

purposes. The first row of the matrix displays the 24-hour time periods, and the second 

row displays the number of times an appliance was switched on in each corresponding 

period. The data matrixes 1 to 4 are then used to train the network on the operations of 

the geyser, TV, laptop, and microwave oven. 

 

[
𝟏 𝟐 𝟑 𝟒    𝟓   𝟔 𝟕 𝟖 𝟗
𝟎 𝟎 𝟎 𝟎   𝟎   𝟎 𝟏 𝟒 𝟒

     𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖
     𝟐    𝟎   𝟎 𝟎    𝟎   𝟎 𝟏   𝟔   𝟗

    
𝟏𝟗 𝟐𝟎 𝟐𝟏
𝟐 𝟐 𝟐

    
𝟐𝟐 𝟐𝟑 𝟐𝟒
𝟎 𝟎 𝟎

] 

Matrix 1: Training data set of Geyser 

 

[
𝟏 𝟐 𝟑 𝟒    𝟓   𝟔 𝟕 𝟖 𝟗
𝟎 𝟎 𝟎 𝟎   𝟎   𝟎 𝟏 𝟒 𝟒

     𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖
     𝟐    𝟎   𝟎 𝟎    𝟎   𝟎 𝟏   𝟔   𝟗

    
𝟏𝟗 𝟐𝟎 𝟐𝟏
𝟐 𝟐 𝟐

    
𝟐𝟐 𝟐𝟑 𝟐𝟒
𝟎 𝟎 𝟎

] 

Matrix 2: Training data set of TV 

 

[
𝟏 𝟐 𝟑 𝟒    𝟓   𝟔 𝟕 𝟖 𝟗
𝟎 𝟎 𝟎 𝟎   𝟎   𝟎 𝟏 𝟒 𝟒

     𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖
     𝟐    𝟎   𝟎 𝟎    𝟎   𝟎 𝟏   𝟔   𝟗

    
𝟏𝟗 𝟐𝟎 𝟐𝟏
𝟐 𝟐 𝟐

    
𝟐𝟐 𝟐𝟑 𝟐𝟒
𝟎 𝟎 𝟎

] 

Matrix 3: Training data set of Laptop 

 

[
𝟏 𝟐 𝟑 𝟒    𝟓   𝟔 𝟕 𝟖 𝟗
𝟎 𝟎 𝟎 𝟎   𝟎   𝟎 𝟏 𝟒 𝟒

     𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖
     𝟐    𝟎   𝟎 𝟎    𝟎   𝟎 𝟏   𝟔   𝟗

    
𝟏𝟗 𝟐𝟎 𝟐𝟏
𝟐 𝟐 𝟐

    
𝟐𝟐 𝟐𝟑 𝟐𝟒
𝟎 𝟎 𝟎

] 

 Matrix 4: Training data set of Microwave Oven 

 

5.4.2.2   BPNN Training 

After obtaining the training data, the BPNN for operation pattern regressing is 

constructed and trained next. Depending on the size of the training dataset used, the 

BPNN is constructed accordingly, in this case, it consisted of one input layer, two 

hidden layers and one output layer. The input layer had 2 neurons. The first hidden 

layer had 32 neurons, and the second hidden layer had 64 neurons. The output layer 

had 1 neuron. The proposed BPNN structure and the general data process is illustrated 

in Fig.5.6. 
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Fig.5. 6 BPNN structure for operation pattern training 

 

Once the layer and neuron structures of the BPNN were established, the training 

data was input into the network, and a response from the network was obtained. Using 

the geyser as an example, the process of obtaining a response was as follows: 

First, the geyser was switched on six times in the first period of the day, from 1 

am to 2 am, so  [
1
6

] was input into the network. and the output of the BPNN is obtained 

using equations (5.3) to (5.7). 

Next, the geyser was switched on six times in the second period of the day from 

1am to 2 am, so  [
2
6

] was input into the BP network. The corresponding output of the 

BPNN was then obtained.  

This process was repeated for all 24 columns of training data which were inputted 

into the network one after another to obtain the 24 outputs of the BPNN.   

Using these 24 outputs of the BPNN, the training data was regressed to an 

operation pattern curve.  

Lastly, the error between the regressed operation pattern curve and the real data 

is calculated using equations (5.8) to (5.11), then the connection weighting is updated 

to decrease the error. The connection weighting was updated 10000 times. Fig.5.7 

shows the convergence trend of network error for the four BPNNs during the training  
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process. As the number of updates increased, the error decreased to almost zero. 

Furthermore, the network error of all four BPNNs decayed exponentially, which 

suggests that the activation function and structure of the network are both appropriate.  

 

TV Microwave oven

Geyser Laptop

TV

TV

 

Fig.5. 7 BNPP error trend during training process 

 

When the network error was close to 0, the training of the network is completed. 

A mature BPNN is constructed. 

5.4.2.3   The Appliance Operation Pattern Regression 

Once the training of BPNN is completed, the operation pattern curve regressed 

by the BPNN will closely approximate to the actual running situation. However, this 

operation pattern curve only conforms to the running situation of the specific day on 

which the training data was extracted. Hence, the obtained operation pattern curve 

cannot reflect a universal appliance running situation. Take for instance the UK-DALE 

dataset which includes 786 days of switching data. Based on the regressed operation  
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pattern curve, it is difficult to accurately evaluate and reflect the possibility of 

appliance switching patterns across the entire 786 days. Therefore, it is necessary to 

fit and regress multiple days’ operation pattern curves, subsequently analysing and 

evaluating the possibility of appliance switching under multiple operation pattern 

curves. 

A random extraction of 40 days’ data was taken from the 786 days, focusing on 

the switching data of geyser, TV, laptop and microwave. Each day’s switching data 

was regressed to obtain an operation pattern curve which is then placed under the same 

coordinate system. The ordinate represents the number of times of appliances 

switching, the abscissa represents the time of the day. Fig.5.8 shows 40 regressed 

operation pattern curves obtained.  

 

Geyser

TV

Microwave oven

Laptop

 

Fig.5. 8 The operation pattern curves sets 
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In Fig.5.8, the abscissa is the time of day, the ordinate is the number of switching 

events, the 40 regressed appliance operation pattern curves form a specific zone, the 

upper edge of the area represents the maximum number of switching events at a given 

time, the lower edge of the area represents the minimum number of switching events 

at a given time. Take for example the switching of geyser over the 40 days. Of all the 

geyser switching events, a minimum of 9 and a maximum of 13 of them occurred at 

10.23 am. It is highly probable that the switching events that occurred at any time of 

any day fall within this zone. Therefore, based on the obtained zone and operation 

pattern curves, the average values of the 40 curves can be calculated, and a new 

operation pattern curve is thus derived. Using this new operation pattern curve, the 

total number of switching events within one day can now be calculated. The number 

of switching events at each minute is divided by the total number of switching events 

to calculate the switching probability of the appliance at every minute of the day. The 

appliance operation pattern curves with the switching probability are shown in Fig.5.9 

to Fig.5.12, which gives the probability of the appliance switched at each minute of 

the day. 

 

         Fig.5. 9 The general operation pattern curve of a geyser 
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     Fig.5. 10 The general operation pattern curve of a TV 

 

 

       Fig.5. 11 The general operation pattern curve of a laptop  
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          Fig.5. 12 The general operation pattern curve of a microwave oven  

5.4.3   Verification and Testing of Operation Pattern Curve 

When the operation pattern curve and appliance switching probability were 

obtained, the others three weeks’ data was used to prove and test the operation pattern 

curve and switching probability. The number of switching events of a geyser, TV, 

laptop, and microwave oven (MO) in each hour was counted, it is also measured from 

the UK-DEAL data sets, Table 5.10 shows the average number of switching times of 

the four appliances during each hour. 

 

Table 5. 10 The number of switching times of four appliances [UK] 

Period 
AM

:1-2 

AM

:2-3 

AM

:3-4 

AM

:4-5 

AM

:5-6 

AM

:6-7 

AM

:7-8 

AM

:8-9 

AM

9-10 

AM: 

10-11 

AM: 

11-12 

AM:12- 

PM:1 

Geyser 5 7 9 8 9 7 9 7 8 11 8 8 

TV 0 0 0 0 0 0 0 0 0 0 1 3 

Laptop 0 0 0 0 0 0 0 3 7 7 5 2 

MO 0 0 0 0 0 0 0 0 1 0 0 1 

Period 
PM:

1-2 

PM:

2-3 

PM:

3-4 

PM:

4-5 

PM:

5-6 

PM:

6-7 

PM:

7-8 

PM:

8-9 

PM: 

9-10 

PM: 

10-11 

PM: 

11-12 

PM:12-

AM:1 

Geyser 10 10 9 9 8 11 7 10 11 12 12 11 

TV 0 0 1 1 2 5 4 4 3 3 1 0 

Laptop 1 1 2 1 0 4 7 6 8 6 2 1 

MO 0 0 0 0 0 0 1 1 3 0 0 0 
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Fig.5.13 compares the geyser's operation pattern curve and the actual statistical 

switching times of the geyser in each hour. In Fig.5.13, the line chart and the histogram 

chart are compared together. As for the histogram chart, the right ordinate is the 

number of times the appliance is switching, the top abscissa is each hour of the day, 

under the corresponding axis, and the histogram is the actual statistical times of the 

geyser running in each hour. As for the line chart, the lift ordinate is the probability 

being the appliance has been switched on, the bottom abscissa is each minute of the 

day (1440 minutes), under the corresponding axis, and the black line shows the 

appliance operation pattern curve, which represents the probability of the appliance 

switching on. 

 

Fig.5. 13 Geyser regression operation pattern curve and real statistical times 

 

In Fig.5.23, comparing the number of switching times and the operation pattern 

curve that the geyser was operated, most of the geyser switching-on events happened 

when the probability was high in the operation pattern curve, which means the 

switched-on probability distribution curve is reliable, and the operation pattern of the 

appliance is completely regressed. 

From Fig.5.14 to Fig.5.16, they compare the number of a given appliance 

switching times and the appliance's operation pattern curve. For all the appliances 

tested, the number of appliances switching times follows the curve trend of the 

regressed operation pattern. In the periods in which it was determined as a high 
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probability that appliances were switched on, the number of appliance switching times 

was also high. By contrast, in the period in which it was determined as less likely that 

an appliance was switched on, the number of times was also low. Therefore, the 

appliance running coincides with the trend of the operation pattern curve. 

 
Fig.5. 14 TV regression operation pattern curve and real statistical times 

 

 

Fig.5. 15 Laptop regression operation pattern curve and real statistical times 
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Fig.5. 16 Microwave oven regression operation pattern curve and real statistical 

times 
 

5.4.4   Identification Correction Testing 

The operation pattern curve gives the regularity and possible future trajectory of 

an appliance running. It can be used as a reference to check whether identification is 

correct or not. Therefore, the whole identification process includes two parts, the first 

part is the basic identification according to the KNN method, which can identify the 

appliance with unique electric features. The second part is the correction and 

modification of the identification results. The correction and modification are 

completed under the appliance operation pattern. The flow chart Fig.5.17 shows the 

whole identification process. 
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The Separated Current 
of Switched Appliance 

 Expanding separated current using 
the Fourier series to obtain the 1st to 

4th harmonic components 

Calculating Euclidean distance between Separated 
current and each training sample based on the 1st 

to 4th harmonic components 

Finding K training samples being similar 
with frequency feature of the separated 
current based on the Euclidean distance 

Identifying the separated current 
according to the normalized Euclidean 

distances and the majority voting

The identification result is obtained

Output the identification result

Modifying and correcting the identification result  
according to the prior regressed appliances operation 

pattern 

Output the identification result

Yes

No

 

Fig.5. 17 The flow chart of the whole identification process 

In identifying about nine separated currents in Fig.5.3, the separated currents 4, 

6, 7, and 8 can be identified as two different appliances, which is obviously 
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problematic. However, the switched-on probabilities of different appliances are 

different at specific time points, derived as they are from the operation pattern of each 

different type of appliance. Using this data to correct the KNN method’s findings 

allows for more secure identification. 

Separated current 4 provides a example. The appliance was switched on at 13:23 

pm, the 803rd minute of the day. Fig.5.18 and Fig.5.19 show the probability of the 

geyser and kettle being switched on at 13:23 pm: 

 

 

Fig.5. 18 Switched-on probability of the geyser in 803rd minute 

 
 

 

Fig.5. 19 Switched-on probability of the kettle in 803rd minute 
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From these figures, the geyser has a higher switched-on probability than the kettle 

at the corresponding point in time. This appliance is thus extremely unlikely to be the 

kettle. The separated current 4 belongs to the geyser. The mistake in identity attribution 

in the KNN method is corrected by using the operation pattern curve. As for the 

separated current 7 could be identified as either the TV or laptop. Fig.5.20 and Fig.5.21 

shows that the laptop was likely being operated at the corresponding time: 

 

 

Fig.5. 20 Switched-on probability of the laptop at the 461st minute 

 

 

      Fig.5. 21 Switched-on probability of the TV at 461st minute 



100 

 

Given both the appliance working currents and the appliance operation pattern 

curves, the identification of nine separated currents was obtained and is shown in Table 

5.11. 

Table 5. 11 The nine separated current identification result 

Current Sequence Identified result 

Separated current 1 TV 

Separated current 2 Refrigerator 

Separated current 3 Microwave oven 

Separated current 4 Geyser 

Separated current 5 Laptop 

Separated current 6 Electric kettle 

Separated current 7 Laptop 

Separated current 8 Geyser 

Separated current 9 Vacuum cleaner 

 

5.5   Summary  

This chapter aims to identify the working current of switched household 

appliances. The KNN method for classifying and identifying appliances is first 

outlined. A general process is then presented for achieving the current identification of 

a switched household appliance using the KNN method. The proposed process thus 

completes the basic identification of appliance type. 

In order to overcome the mistakes caused by overlaps in the appliances’ electric 

features, the BPNN regressed the operation pattern curve of the known appliance, 

which profiles the switched-on probability distribution curve for each individual 

appliance. This appliance operation pattern serves as a reference to correct and 

modifies the identification of unknown appliances. Once the methodology and 

construction of BPNN for regressing appliance operation patterns are completed, the 

learning strategy to obtain a general operation pattern is designed. Using the BPNN 

and learning strategy, the general operation pattern is regressed to verify and refine the 

identification results of the KNN model. 

Once the identification model is established, it is integrated with the switching 



101 

 

detection and current separation model to form a complete NILM system. This 

integrated system can be applied to real-world power environments, and the results 

can be processed. The NILM system was applied in the following three ways: (1) a 

three-day trial using recorded data from a real-world power environment; (2) a one-

day trial application conducted in four households; (3) a 90-days application conducted 

in a single household. The next chapter shall present these in greater details. 
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Chapter 6 Application of Proposed Method 

6.1   Introduction 

According to the proposed method, two sets of tests are performed. The first one 

is an offline test but uses life-recorded data. The second test is online and is a direct 

application to domestic homes. 

In the first offline test, the physical monitoring device is constructed, which is 

used to capture live data, the duration of recorded data is up to three days. Then the 

recorded data was processed.  

In the second online test, the monitor device is connected to four homes. The 

duration of the monitor is one day. Then the monitoring device was connected to one 

home to monitor the power consumption over three months (ninety days). This last-

long period test can be used in the future to improve power network stability for 

demand-side management. 

6.2   Monitoring Hardware  

As the proposed method utilizes high-frequency data, specialized data acquisition 

devices need to be designed. The monitoring hardware are shown in Fig.6.1.  

 

A

B C

 

Fig.6. 1 Schematic diagram of device and system 
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Fig.6.1A shows the schematic diagram of such a monitoring device, while 

Fig.6.1B shows the prototype hardware, and Fig.6.1C displays the sampled electric 

data.  

In Fig.6.1 A, the monitoring device comprises a data acquisition device, current 

transformer and voltage transformer that possess high sampling rate, high resolution 

and wireless transmission capabilities.  

As seen in Fig.6.1B, the data acquisition device is installed at the electricity 

supply point. Generally, low current is employed in signal processing. However, both 

the current of the house and individual household appliances involve high currents. If 

the house current is processed and monitored directly, it would be difficult to achieve 

a high accuracy monitoring. Therefore, current and voltage transformers are used to 

act as the bridge between the power system and the monitoring system, converting the 

high current into lower current for easier processing of the current. Concurrently, the 

acquired data is transmitted to the computer through Wi-Fi for analysis. 

In Fig.6.1 C, the obtained current and voltage sequence are undistorted and 

integrated sine waveforms.  

Once the data acquisition device is constructed, it is applied in three scenarios to 

verify the effectiveness of individual appliance level monitoring. The first one, based 

on the data acquisition device, 3 days’ data are collected and recorded from a student 

office at one university (Beijing), there are four students in this office, the collection 

date is from the 26/08/2020 to 28/08/2020. The second one, the data acquisition device 

is used in four normal domestic homes, which covers 24 hours, the application date is 

07/16/2020, the homes are in a residential block at Taiyuan, the number of people in 

one home is from three to five; The third one, 90 days' on-line application is based on 

1 domestic home for long time monitoring, the application date is from 01/06/2020 to 

01/09/2020, the home is locating at Taiyuan, the number of people in home is three. 

6.3   Off-line Application Based on 3 days’ recorded Data 

Based on the student office, the monitoring device is installed at the electricity 

supply point, Fig.6.2 shows the office and monitoring environment, the office keeps 

away from noise sources, the harmonic intrusion is unserious, and the SNR of the 

current signal is high. 
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Fig.6. 2 Monitoring environment of office 

 

Four postgraduate students work in the office. The office includes the working 

zone, meeting zone, and resting zone. The number of appliances in the office is less. 

The original current and voltage data are completely recorded from the electricity 

supply entry point, the sampling frequency is 5kHz, and there is not any pre-processing 

of the data, such as noise reduction and data smoothing. Then the recorded data was 

processed by the proposed method in Chapter 4 and Chapter 5. The main monitoring 

objects are eleven appliances: four laptops, three air-conditioners, a kettle, a geyser, a 

microwave oven, and a TV. All appliance details are shown in Table 6.1. 

 

Table 6. 1 Appliance name and type 

Appliance Name Brand Abbreviation 

for monitoring 

Air-conditioning  Haier AC-A/B/C 

Laptop Lenovo L-A 

Laptop HP L-B 

Laptop Dell L-C 

Laptop Lenovo L-D 

Microwave oven SHARP MO 

Kettle SUPOR K 

TV LG TV 

Geyser Haier G 
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6.3.1   Appliance switching detection and type identification 

The sampling frequency is 5kHz, so around 1.8×107 data were recorded every 

hour. Fig.6.3 to Fig.6.5 shows the first day’s recorded data, another two days’ data are 

in the appendix Ⅰ.  

 

1
st
 Hour 2

nd
  Hour

3
rd

  Hour 4
th

  Hour

5
th

 Hour 6
th

  Hour

7
th

  Hour 8
th

  Hour

 

Fig.6. 3 Total current of office from 1st hour to 8th hour 
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Fig.6. 4 Total current of office from 9th hour to 16th hour 
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Fig.6. 5 Total current of office from 17th hour to 24th hour 

For the 24 hours’ current waveform in Fig.6.3 to Fig.6.5, there is no heater and 

refrigerator in office, so the current from the 1st hour to the 7th hour was unchanged 

since no one at the office. When an appliance is switched or the working state is 

changed, the total office current before switching is different from the current after 
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switching. The switching event is detected according to the change in total office 

current. After detecting the appliance switching event, the working current of the 

appliance is separated to identify the appliance type.  

Taking one hour as an example for a detailed display, which was from 8:00 AM 

to 8:59 AM, Fig.6.6 shows the office's total current waveform. 

 

 

Fig.6. 6 The current waveform and current change point 

In Fig.6.6, the office's current waveform fluctuates and changes. According to the 

recorded data, the rms value of office current was calculated, if the rms value has 

changed, it indicates that some appliances switching or working state changed, then 

the appliance working current was separated and identified. The switching and state-

changing points are marked with red lines in Fig.6.9, each switching and state-

changing point will be described and analysed. 

Firstly, the switching event was detected at the 2970000th sample point. The 

corresponding time point was 08:10:29. Then the working current of the switched 

appliance is separated, according to the appliance’s working current frequency, using 

the KNN method and the appliance operation pattern to identify the separated current. 

The separated current waveform was identified as laptop-B. The result is shown in 

Fig.6.7. 
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Fig.6. 7 Separated current after laptop-B switching 

 

Secondly, the laptop-B operates stably after the switching event, so the total 

current is relatively stable. Then, the total office current increased greatly, the point of 

the switching event was detected at 4140000th sample point, and the corresponding 

time was 08:14:37. The working current of the switched appliance was separated, and 

the separated working current waveform was identified as air-conditioning A, the 

result is in Fig.6.8. 

 

 

Fig.6. 8 Separated current after air-conditioning A switching 

 

Thirdly, the office current reached the peak value after a period of time but did 

not increase instantaneously. This is because some appliances were turned on at almost 

the same time. Although some appliances were switched, each appliance reaches a 
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stable working state step by step. Therefore, three current waveforms were separated, 

the separated currents were identified as Laptop-C, Laptop-A, and Laptop-D 

respectively, and the corresponding switching time were 08:19:16, 08:20:39, and 

08:23:18 respectively. The separated working current waveform of 3 laptops are shown 

in Fig.6.9. 

 

 

Separating Current after Laptop-D switching

Separating Current after Laptop-A switching

Separating Current after Laptop-C switching

 

Fig.6. 9 Separated current after Laptop-C, Laptop-A and Laptop-D switching 

Fourthly, the total office current decreased greatly, which was caused by the air-
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conditioning A operation state changes, the point of state-changing was detected at the 

65100000th sample point which corresponds to the time point of 08:23:18. Then the 

working current of the appliance was separated and identified, the result is in Fig.6.10. 

 

 

Fig.6. 10 Separated current after air-conditioning A state change 

 

Fifthly, the operation state of the air-conditioning A changed again, so the office 

current increased. The state-changing was detected at the 7410000th sample point and 

the time was 08:26:09. The result is in Fig.6.11. 

 

 

Fig.6. 11 Separated current after air-conditioning A state change 

 

Finally, with four laptops and one air-conditioning working together in the office, 
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the office's current waveform fluctuated and changed continually, because the 

changing of the laptop's state is more frequent than other appliances. For example, 

when the laptop is editing documents and running the program MATLAB, the states 

of the CPU and other components are different, and the laptop's working current will 

be different under different states. Therefore, when four laptops work together, the 

office current looks like a noise current waveform, but the laptop's working state 

change can be detected, and the working current after state change can be separated. 

Four events about working state changes were detected, the result is shown in Fig.6.12. 

 

Separated current after Laptop B working 

state change

Separated current after Laptop C working 

state change

Separated current after Laptop D working 

state change

Separated current after Laptop D working 

state change

 

Fig.6. 12 Separated current after Laptop-B, Laptop-C and Laptop-D working 

state change 

 

Totally 232 switching events happened during the three days. Table 6.2 shows the 

switching point and corresponding time point. 
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Table 6. 2 The appliance switching point and time point 

  No. Time   

Point 

 No. Time   

Point 

  No. Time   

Point 

  No. Time   

Point 

1 08:10:29 59 17:48:23 117 09:27:13 175 01:21:11 

2 08:14:37 60 17:48:30 118 09:34:31 176 01:21:17 

3 08:18:43 61 17:48:36 119 09:53:16 177 09:38:07 

4 08:19:16 62 17:50:18 120 11:32:56 178 09:38:13 

5 08:20:39 63 17:50:24 121 11:36:00 179 09:40:20 

6 08:23:18 64 17:54:13 122 11:36:06 180 09:40:27 

7 08:23:24 65 17:59:11 123 11:45:57 181 09:40:46 

8 08:26:09 66 18:19:00 124 11:46:04 182 09:40:52 
9 08:27:32 67 18:20:26 125 12:20:07 183 09:40:52 
10 08:29:58 68 18:42:40 126 12:24:21 184 09:41:24 

11 08:30:04 69 18:58:46 127 12:24:28 185 09:45:25 

12 08:31:01 70 19:21:04 128 12:31:33 186 09:54:19 

13 10:00:32 71 19:25:18 129 12:31:40 187 09:54:32 

14 10:11:00 72 19:41:37 130 12:35:47 188 09:56:52 

15 10:07:44 73 19:41:43 131 12:40:14 189 09:57:30 

16 11:34:44 74 19:41:49 132 12:55:35 190 10:03:04 

17 11:36:00 75 19:42:02 133 14:10:23 191 10:05:49 

18 11:36:57 76 19:42:15 134 14:21:49 192 10:06:15 

19 11:37:04 77 19:55:42 135 14:22:01 193 10:07:44 

20 11:37:10 78 19:56:52 136 14:44:03 194 10:29:13 

21 11:37:23 79 19:57:11 137 14:44:09 195 10:35:03 

22 11:38:02 80 20:21:36 138 14:44:09 196 10:43:05 

23 11:38:26 81 20:31:01 139 14:44:16 197 12:40:27 

24 11:38:32 82 20:31:40 140 14:44:22 198 12:45:32 

25 11:40:08 83 20:31:46 141 14:55:54 199 13:06:28 

26 11:40:46 84 20:31:52 142 14:56:32 200 13:14:43 

27 11:42:21 85 20:32:56 143 14:58:14 201 13:58:46 

28 11:47:26 86 20:37:42 144 16:13:04 202 14:21:42 

29 11:48:36 87 20:51:21 145 18:02:01 203 14:43:25 

30 11:48:42 88 20:51:28 146 18:31:46 204 15:05:11 

31 11:58:14 89 20:53:09 147 18:32:11 205 15:05:18 

32 12:26:41 90 20:53:22 148 18:32:43 206 15:06:02 

33 12:41:05 91 22:12:36 149 18:35:41 207 15:06:08 

34 12:43:37 92 22:23:18 150 18:42:15 208 15:11:20 

35 13:15:40 93 22:23:56 151 18:43:50 209 15:21:04 

36 13:20:02 94 22:24:15 152 18:48:04 210 15:22:46 

37 13:30:36 95 22:24:21 153 20:20:39 211 15:22:52 

38 13:31:08 96 22:49:14 154 20:55:54 212 15:39:36 

39 13:31:14 97 22:50:18 155 20:56:45 213 15:39:42 

40 13:42:40 98 23:43:50 156 20:56:52 214 15:40:40 

41 13:42:53 99 00:10:48 157 20:56:52 215 15:41:11 

42 13:55:54 100 00:10:54 158 20:57:04 216 15:43:50 

43 13:56:01 101 00:12:04 159 21:02:01 217 15:43:56 
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Table 6. 2 The appliance switching point and time point 

  No. Time   

Point 

 No. Time   

Point 

  No. Time   

Point 

  No. Time   

Point 

44 13:56:07 102  00:27:57 160 21:10:10 218 15:58:20 

45 13:56:20 103 08:59:18 161 21:17:09 219 16:06:21 

46 13:56:26 104 08:59:24 162 21:17:41 220 16:30:55 

47 14:09:32 105 09:38:00 163 21:19:42 221 16:33:28 

48 14:09:38 106 09:44:00 164 21:56:32 222 19:14:49 

49 14:09:57 107 09:09:13 165 21:59:18 223 19:15:08 

50 14:10:04 108 09:12:36 166 22:16:06 224 19:33:02 

51 14:10:16 109 09:12:55 167 22:16:12 225 19:33:28 

52 14:10:35 110 09:13:14 168 22:33:40 226 19:46:23 

53 14:10:42 111 09:13:27 169 22:35:09 227 19:52:12 

54 14:11:26 112 09:13:27 170 22:36:06 228 19:52:18 

55 14:28:04 113 09:16:12 171 01:13:40 229 20:41:49 

56 17:47:20 114 09:18:00 172 01:15:08 230 20:42:02 

57 17:47:32 115 09:21:04 173 01:15:21 231 20:47:07 

58 17:47:39 116 09:21:23 174 01:21:04 232 22:22:08 

 

According to the 232 times switching events, some events are caused by 

appliance operation state changing. For the working current of an appliance under 

different operating conditions, the frequency components of currents are similar since 

the similarity of main waveforms, and the main differences between currents are 

reflected in the amplitude, so according to the frequency features and current 

amplitude can know the appliance operation state changing. Furthermore, some 

switching events are happening at the same time, multiple appliances switching does 

not affect the current separation. The number of switching events for appliance 

operation state change, single appliance switching, and multiple appliance switching 

are shown in Table 6.3 individually. 

 

Table 6. 3 The Switching event classifying 

 

Table 6.2 shows 232 switching events, but some appliances switching-off 

immediately after being switched on. Therefore, some switching events are filtered out, 

and the 229 switching events remain in Table 6.3. 

Appliance operation 

state changing times 

Single appliance 

switching times 

Multiple appliances 

 switching times 

171 37 21 
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When detecting appliance switching event, the working current of the appliance 

will be separated to identify the appliance type. The identification result of 229 

switching events is in Table 6.4. 

 

Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

1 08:10:29 
Laptop-B switch 

on 
116 09:25:43 

Laptop-B state 

change 

2 08:14:37 
Air-conditioning 

A switch on 
117 09:27:13 

Laptop-B state 

change 

3 08:19:16 
Laptop-C switch 

on 
118 09:34:31 

Laptop-C state 

change 

4 08:20:39 
Laptop-A switch 

on 
119 09:53:16 

Laptop-A state 

change 

5 08:23:18 
Laptop-D switch 

on 
120 11:32:56 

Kettle  

switch on 

6 08:23:18 
Air-conditioning 

A state change 
121 11:36:00 

Kettle 

 switch off 

7 08:26:09 
Air-conditioning 

A state change 
122 11:36:06 

TV  

switch on 

8 08:27:32 
Laptop-B state 

change 
123 11:44:57 

Kettle  

switch on 

9 08:29:58 
Laptop-C state 

change 
124 11:46:04 

Kettle  

switch off 

10 08:30:04 
Laptop-D state 

change 
125 12:20:07 

Laptop-D state 

change 

11 08:31:01 
Laptop-D state 

change 
126 12:24:21 

Kettle  

switch on 

12 10:00:32 
Air-conditioning 

B switch on 
127 12:24:28 

Kettle 

 switch off 

13 10:11:00 
Laptop-D state 

change 
128 12:31:33 

Laptop-A state 

change 

14 10:07:44 
Air-conditioning 

A state change 
129 12:31:40 

Laptop-A state 

change 

15 11:34:44 
Laptop-A state 

change 
130 12:35:47 

TV  

switch off 

16 11:36:00 
Air-conditioning 

A state change 
131 12:40:14 

Laptop-B switch 

off 

17 11:36:57 
Laptop-B state 

change 
132 12:55:35 

Laptop-A switch 

off 

18 11:37:04 
Laptop-A state 

change 
133 14:10:23 

Geyser  

switch on  

19 11:37:10 
Laptop-A state 

change 
134 14:21:49 

Laptop-B switch 

on 
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Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

20 11:37:23 
Laptop-D state 

change 
135 14:22:01 

Laptop-B state 

change 

21 11:38:02 
Air-conditioning 

A state change 
136 14:44:03 

Geyser  

switch off 

22 11:38:26 
Air-conditioning 

B state change 
137 14:44:09 

Laptop-A switch 

on 

23 11:38:32 
Air-conditioning 

B state change 
138 14:44:09 

TV  

switch on  

24 11:40:08 
Laptop-A state 

change 
139 14:44:16 

Laptop-D state 

change 

25 11:40:46 
Laptop-D state 

change 
140 14:44:22 

Laptop-C state 

change 

26 11:42:21 
Laptop-D state 

change 
141 14:55:54 

Geyser  

switch on 

27 11:47:26 
Laptop-C state 

change 
142 14:56:32 

Laptop-B state 

change 

28 11:48:36 
Air-conditioning 

A switch off 
143 14:58:14 

Laptop-A state 

change 

29 11:48:42 
Air-conditioning 

A switch off 
144 16:13:04 

Geyser 

 switch off 

30 11:58:14 
Laptop-C state 

change 
145 18:02:01 

Laptop-B state 

change 

31 12:26:41 
Laptop-A switch 

off 
146 18:31:46 

Laptop-D state 

change 

32 12:41:05 
Laptop-B switch 

off 
147 18:32:11 

Laptop-A state 

change 

33 12:43:37 
Laptop-D switch 

off 
148 18:32:43 

Laptop-C state 

change 

34 13:15:40 
Laptop-C switch 

off 
149 18:35:41 

Laptop-B state 

change 

35 13:20:02 
Air-conditioning 

A switch on 
150 18:42:15 

Laptop-B state 

change 

36 13:30:36 
Air-conditioning 

A state change 
151 18:43:50 

Laptop-B state 

change 

37 13:31:08 
Air-conditioning 

B switch on 
152 18:48:04 

Laptop-A state 

change 

38 13:31:14 
Air-conditioning 

B state change 
153 20:20:39 

Laptop-A state 

change 

39 13:42:40 
Laptop-A switch 

on 
154 20:55:54 

Laptop-D state 

change 

40 13:42:53 
Laptop-A state 

change 
155 20:56:45 

Kettle  

switch on 
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Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

41 13:55:54 
Laptop-D switch 

on 
156 20:56:52 

Kettle 

 switch off 

42 13:56:01 
Laptop-D state 

change 
157 20:56:52 

Laptop-B state 

change 

43 13:56:07 
Air-conditioning 

B state change 
158 20:57:04 

Laptop-A state 

change 

44 13:56:20 
Laptop-B switch 

on 
159 21:02:01 

Laptop-C state 

change 

45 13:56:26 
Laptop-B state 

change 
160 21:10:10 

Laptop-A state 

change 

46 14:09:32 
Laptop-C switch 

on 
161 21:17:09 

Laptop-D state 

change 

47 14:09:38 
Laptop-A state 

change 
162 21:17:41 

Laptop-A state 

change 

48 14:09:57 
Laptop-C state 

change 
163 21:19:42 

Laptop-D state 

change 

49 14:10:04 
Laptop-D state 

change 
164 21:56:32 

Laptop-A state 

change 

50 14:10:16 
Laptop-A state 

change 
165 21:59:18 

Laptop-C state 

change 

51 14:10:35 
Laptop-C state 

change 
166 22:16:06 

Laptop-D state 

change 

52 14:10:42 
Laptop-B state 

change 
167 22:16:12 

Laptop-B state 

change 

53 14:11:26 
Laptop-D state 

change 
168 22:33:40 

Laptop-A state 

change 

54 14:28:04 
Laptop-A state 

change 
169 22:35:09 

Laptop-A state 

change 

55 17:47:20 
Laptop-C state 

change 
170 22:36:06 

Laptop-B switch 

off 

56 17:47:32 
Laptop-D state 

change 
171 01:13:40 

Laptop-D switch 

off 

57 17:47:39 
Laptop-B state 

change 
172 01:15:08 

Laptop-A switch 

off 

58 17:48:23 
Laptop-A state 

change 
173 01:15:21 

Laptop-C switch 

off 

59 17:48:30 
Laptop-A state 

change 
174 01:21:04 

Unknown 

60 17:48:36 
Laptop-D state 

change 
175 01:21:11 

Unknown 

61 17:50:18 
Laptop-B state 

change 
176 01:21:17 

Unknown 
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Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

62 17:50:24 
Laptop-C state 

change 
177 09:38:07 

Laptop-C switch 

on 

63 17:54:13 
Laptop-A state 

change 
178 09:38:13 

Laptop-C state 

change 

64 17:59:11 
Laptop-C state 

change 
179 09:40:20 

Laptop-B switch 

on 

65 18:19:00 
Laptop-B state 

change 
180 09:40:27 

Laptop-B state 

change 

66 18:20:26 
Laptop-A state 

change 
181 09:40:46 

Air-conditioning A 

switch on 

67 18:42:40 
Laptop-C state 

change 
182 09:40:52 

Laptop-D switch 

on 

68 18:58:46 
Laptop-A state 

change 
183 09:40:52 

Air-conditioning B 

switch on 

69 19:21:04 
Laptop-D state 

change 
184 09:41:24 

Laptop-C state 

change 

70 19:25:18 
Laptop-B state 

change 
185 09:45:25 

Laptop-B state 

change 

71 19:41:37 
Laptop-A state 

change 
186 09:54:19 

Laptop-D state 

change 

72 19:41:43 
Laptop-C state 

change 
187 09:54:32 

Laptop-B state 

change 

73 19:41:49 
Laptop-B state 

change 
188 09:56:52 

Laptop-D state 

change 

74 19:42:02 
Laptop-D state 

change 
189 09:57:30 

Laptop-C state 

change 

75 19:42:15 
Laptop-A state 

change 
190 10:03:04 

Laptop-B state 

change 

76 19:55:42 
Laptop-C state 

change 
191 10:05:49 

Geyser  

switch on 

77 19:56:52 
Laptop-B state 

change 
192 10:06:15 

Laptop-A 

 witch on 

78 19:57:11 
Laptop-B state 

change 
193 10:07:44 

Laptop-A state 

change 

79 20:21:36 
Laptop-A state 

change 
194 10:29:13 

Geyser 

 switch off 

80 20:31:01 
Laptop-C state 

change 
195 10:35:03 

Microwave oven 

switch on 

81 20:31:40 
Laptop-A state 

change 
196 10:43:05 

Microwave oven 

switch off 

82 20:31:46 
Laptop-D state 

change 
197 12:40:27 

Laptop-B switch 

off 
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Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

83 20:31:52 
Laptop-A state 

change 
198 12:45:32 

Laptop-D switch 

off 

84 20:32:56 
Laptop-B state 

change 
199 13:06:28 

Laptop-A switch 

off 

85 20:37:42 
Laptop-B state 

change 
200 13:14:43 

Laptop-C switch 

off 

86 20:51:21 
Laptop-C state 

change 
201 13:58:46 

Geyser  

switch on  

87 20:51:28 
Laptop-A state 

change 
202 14:21:42 

Air-conditioning B 

switch off 

88 20:53:09 
Laptop-C state 

change 
203 14:43:25 

Geyser  

switch off 

89 20:53:22 
Laptop-D state 

change 
204 15:05:11 

Laptop-B state 

change 

90 22:12:36 
Laptop-B state 

change 
205 15:05:18 

Laptop-B state 

change 

91 22:23:18 
Laptop-A state 

change 
206 15:06:02 

Laptop-A state 

change 

92 22:23:56 
Laptop-C state 

change 
207 15:06:08 

Laptop-C state 

change 

93 22:24:15 
Laptop-D state 

change 
208 15:11:20 

Laptop-A state 

change 

94 22:24:21 
Laptop-A state 

change 
209 15:21:04 

Laptop-D state 

change 

95 22:49:14 
Laptop-B state 

change 
210 15:22:46 

Laptop-B state 

change 

96 22:50:18 
Air-conditioning 

B switch off 
211 15:22:52 

Laptop-C state 

change 

97 23:43:50 
Laptop-C switch 

off 
212 15:39:36 

Laptop-A state 

change 

98 00:10:48 
Laptop-D switch 

off 
213 15:39:42 

Laptop-C state 

change 

99 00:10:54 
Laptop-A switch 

off 
214 15:40:40 

Laptop-A state 

change 

100 00:12:04 
Laptop-B switch 

off 
215 15:41:11 

Laptop-C state 

change 

101  00:27:57 
Air-conditioning 

A switch off 
216 15:43:50 

Laptop-B state 

change 

102 08:59:18 
Laptop-C switch 

on 
217 15:43:56 

Laptop-A state 

change 

103 08:59:24 
Laptop-C state 

change 
218 15:58:20 

Laptop-C state 

change 
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Table 6. 4 The identification result of 229 switching events(3days) 

No. Switching 

Time 

Identifying 

Result 

No. Switching 

Time 

Identifying 

Result 

104 09:38:00 
Laptop-A switch 

on 
219 16:06:21 

Laptop-A state 

change 

105 09:44:00 
Laptop-B switch 

on 
220 16:30:55 

Laptop-D state 

change 

106 09:09:13 
Laptop-A state 

change 
221 16:33:28 

Air-conditioning B 

switch on 

107 09:12:36 
Laptop-D switch 

on 
222 19:14:49 

Laptop-B state 

change 

108 09:12:55 
Laptop-D state 

change 
223 19:15:08 

Laptop-A state 

change 

109 09:13:14 
Laptop-B state 

change 
224 19:33:02 

Air-conditioning A 

switch on 

110 09:13:27 
Geyser switch 

on  
225 19:46:23 

Laptop-A 

state change 

111 09:13:27 
Laptop-B state 

change 
226 19:52:12 

Laptop-B state 

change 

112 09:16:12 
Laptop-B state 

change 
227 20:42:02 

Laptop-A switch 

off 

113 09:18:00 
Laptop-C state 

change 
228 20:47:07 

Laptop-B  

switch off 

114 09:21:04 
Laptop-A state 

change 
229 22:22:08 

Air-conditioning A  

switch off 

115 09:21:23 
Geyser switch 

off 
  

 

 

After obtaining the appliance switching detection and identification result, the 

monitored results compare with actual switching conditions. The comparison is in 

Table 6.5. 

 

Table 6. 5 The monitored and real switching condition 

 

 

 

 

 

 Real Switching 

times (Data) 

Monitored Switching 

times (Test results) 

Appliance operation 

state changing times 195 171 

Single appliance 

switching times 38 37 

Multiple appliances 

switching times 29 21 
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According to Table 6.5, the appliance operation state changing occupies more 

than 80% of all switching events, and only 9% of events are multiple switching. 90% 

of switching events can be detected and identified through the proposed method. 

6.3.2   Power consumption monitoring 

Based on the result in section 6.3.1, once knowing the appliance type, the 

appliance working current and voltage are already obtained, the appliance power can 

be calculated according to equation (3.8). Then according to the appliance switched 

ON and switched OFF time, the appliance power consumption can be calculated. The 

actual power consumption is also directly measured by the connected intelligent 

switchers which are used to check the calculated values. Table 6.6 shows the monitored 

power consumption of all appliances and the actual power consumption. 

Table 6. 6 The monitored power consumption 

Appliance Power 

Consumption 

(kWh) 

Day 1 Day 2 Day 3 

Monitored 

Value 

Real 

Value 

Monitored 

Value 

Real 

Value 

Monitored 

Value 

Real 

Value 

Laptop-A 0.103 0.1 0.135 0.12 0.101 0.11 

Laptop-B 0.129 0.12 0.0717 0.06 0.102 0.11 

Laptop-C 0.076 0.08 0.029 0.1 0.105 0.11 

Laptop-D 0.126 0.12 0.078 0.07 0 0 

Microwave oven 0 0 0 0 0.086 0.08 

Air conditioning A 0.83 0.8 0 0 1.025 1.04 

Air conditioning B 0.7 0.64 0 0 1.45 1.53 

Air conditioning C 0 0 0 0 0 0 

TV 0 0 0.723 0.77 0 0 

Kettle 0 0 0.136 0.15 0.109 0.11 

Geyser 0 0 1.37 1.49 1.421 1.63 

 

When obtaining the power consumption of different appliances, the proportion of 

different loads in total energy consumption can be calculated, it is shown in Fig. 6.13.  
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Fig.6. 13 Proportion of monitored electricity consumption in each day 

In Fig.6.13, the laptops account for a low proportion of power consumption 

among the users. Air conditioning is a high energy consumption appliance, and the 

proportion of power consumption by air conditioning is more than 30%; the geyser 

also consumes about 33% of total energy. Therefore, the operation of these two kinds 

of appliances in our daily life needs to decrease. Although the kettle also a high-power 

load, higher than a laptop, the operation period is shorter, so power consumption is 

relatively low. 

6.4   One Day On-line Test (24hours) 

This section is focused on the actual on-line testing of the proposed method, 

which involves a direct connection to the domestic homes. The duration of the tests is 

24 hours (1day). The monitoring device was installed at the electricity supply point to 

capture the total current and voltage of these homes. The original data is then directly 

transmitted and processed, without any pre-processing of the data.  
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6.4.1   Appliance switching detection and type identification 

The proposed method was applied to 4 homes, which are named Home A, Home 

B, Home C, and Home D respectively. The main monitoring objects are shown in Table 

6.7, these 6 appliances' power consumption is monitored respectively. 

 

Table 6. 7 Appliance name and type 

Appliance 

Name 

Abbreviation for 

monitoring 

Air- 

conditioning  

AC 

Laptop LT 

Kettle EK 

TV TV 

Geyser WH 

Refrigerator RF 

 

Taking home A as an example for a detailed display, during the monitoring 

process, the total home current was recorded and provided the reference data for 

identification results. Fig.6.14 to Fig.6.16 shows the 24 hours’ current data of Home 

A, the data sample frequency is 10000Hz, so around 3.6××107 data were recorded 

every hour. The current waveform of Homes B, C, and D are in Appendix Ⅱ. 
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Fig.6. 14The 1st hour to 8th hour total current waveform of home A 
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Fig.6. 15 The 12th hour to 16th hour total current waveform of home A 
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Fig.6. 16 The 17th hour to 24th hour total current waveform of home A 

 

Based on the total home current, the switching event is detected by the change in 

total home current, the appliance switching detection results of Home A in 24 hours 

are shown in Table 6.8 
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Table 6. 8 The appliance switching event and switching time point of Home A 

(24hours) 

NO. Time 

Point 

NO. Time 

Point 

NO. Time 

Point 

NO. Time 

Point 

1 16:04:42 33 22:20:56 65 04:45:02 97 10:31:26 

2 16:07:45 34 22:20:58 66 04:55:16 98 10:35:56 

3 16:11:51 35 22:41:26 67 05:05:18 99 10:35:58 

4 16:16:03 36 22:43:22 68 05:08:23 100 10:41:24 

5 16:18:06 37 22:45:28 69 05:13:32 101 10:47:48 

6 16:45:51 38 22:51:44 70 05:20:32 102 11:07:38 

7 16:49:21 39 23:10:12 71 05:22:02 103 11:10:08 

8 16:50:15 40 23:27:05 72 05:27:58 104 11:43:32 

9 17:55:33 41 23:32:42 73 05:30:22 105 11:44:38 

10 17:56:42 42 0:40:22 74 05:41:05 106 11:47:02 

11 17:59:24 43 00:41:01 75 05:54:12 107 11:49:02 

12 17:59:58 44 00:42:54 76 06:04:01 108 12:26:44 

13 18:34:08 45 00:46:56 77 08:00:44 109 12:30:48 

14 18:35:03 46 01:03:04 78 08:05:00 110 12:54:06 

15 19:01:02 47 01:04:38 79 08:10:26 111 12:57:05 

16 19:08:34 48 01:07:24 80 08:15:24 112 13:11:54 

17 19:12:04 49 01:09:40 81 08:19:36 113 13:15:48 

18 19:12:58 50 01:10:12 82 08:25:03 114 13:58:00 

19 19:19:13 51 01:11:02 83 08:35:28 115 14:01:56 

20 19:19:04 52 01:55:42 84 08:44:16 116 14:17:00 

21 19:22:12 53 01:57:01 85 08:49:08 117 14:20:14 

22 19:34:46 54 02:01:46 86 08:52:01 118 14:43:26 

23 19:35:32 55 02:27:42 87 09:11:03 119 14:55:14 

24 19:40:14 56 02:30:46 88 09:12:52 120 15:00:02 

25 19:41:04 57 03:18:03 89 09:17:18 121 15:04:00 

26 20:17:02 58 03:19:16 90 09:20:28 122 15:07:08 

27 20:20:36 59 03:43:55 91 09:35:16 123 15:15:03 

28 20:47:52 60 03:46:38 92 09:45:44 124 15:17:43 

29 20:50:48 61 03:49:05 93 10:08:16 125 15:36:05 

30 21:41:12 62 04:10:03 94 10:18:58 126 15:45:05 

31 21:44:05 63 04:20:18 95 10:22:22 127 15:53:42 

32 22:18:00 64 04:40:34 96 04:45:02 128 15:58:04 

 

Totally 128 switching events are detected in Home A during 24 hours, the working 

current of a switched appliance is separated to identify the appliance type when 

detecting a switching event, based on the frequency of separate currents and the 

appliance operation pattern, and the identification result of 128 switching events are 

listed in Table 6.9. 



128 

 

 

Table 6. 9 The identification result of 128 switching events in Home A 

NO. Time 

Point 

Identified  

Result 

NO. Time 

Point 

Identified  

Result 

1 16:04:42 
TV  

switch off 
65 04:45:02 

Refrigerator 

switch on 

2 16:07:45 
Laptop  

switch off 
66 04:55:16 

Refrigerator 

switch off 

3 16:11:51 
Refrigerator 

switch on 
67 05:05:18 

Geyser  

switch on 

4 16:16:03 Unknown 68 05:08:23 Geyser switch off 

5 16:18:06 
Refrigerator 

switch off 
69 05:13:32 

Unknown 

6 16:45:51 
Refrigerator 

switch on 
70 05:20:32 

Unknown 

7 16:49:21 
Unknown 

71 05:22:02 
Refrigerator 

switch on 

8 16:50:15 
Refrigerator 

switch off 
72 05:27:58 

Refrigerator 

switch off 

9 17:55:33 
Refrigerator 

switch on 
73 05:30:22 

Unknown 

10 17:56:42 
Microwave oven 

switch on 
74 05:41:05 

Unknown 

11 17:59:24 
Microwave oven 

switch off 
75 05:54:12 

Unknown 

12 17:59:58 
Refrigerator 

switch off 
76 06:04:01 

Geyser  

switch on 

13 18:34:08 
Kettle  

switch on 
77 08:00:44 

Refrigerator 

switch on 

14 18:35:03 
Kettle  

switch off 
78 08:05:00 

Refrigerator 

switch off 

15 19:01:02 
Refrigerator 

switch on 
79 08:10:26 

Microwave oven 

switch on 

16 19:08:34 
Refrigerator 

switch off 
80 08:15:24 

Microwave oven 

switch off 

17 19:12:04 Unknown 81 08:19:36 Laptop switch on 

18 19:12:58 Unknown 82 08:25:03 Unknown 

19 19:19:04 Noise  83 08:35:28 Unknown 

20 19:19:13 
Geyser  

switch on 
84 08:44:16 

Refrigerator 

switch on 

21 19:22:12 
Geyser  

switch off 
85 08:49:08 

Refrigerator 

switch off 

22 19:34:46 Unknown 86 08:52:01 TV switch on 

23 19:35:32 
Refrigerator 

switch on 
87 09:11:03 

Kettle 

 switch on 

24 19:40:14 Unknown 88 09:12:52 Kettle switch off 
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Table 6. 9 The identification result of 128 switching events in Home A 

 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

25 19:41:04 
Refrigerator 

switch off 
89 09:17:18 

Refrigerator 

switch on 

26 20:17:02 
TV  

switch on 
90 09:20:28 

Refrigerator 

switch off 

27 20:20:36 
Air-conditioning 

switch on 
91 09:35:16 

Laptop  

switch off 

28 20:47:52 
Refrigerator 

switch on 
92 09:45:44 

Laptop  

switch on 

29 20:50:48 
Refrigerator 

switch off 
93 10:08:16 

Laptop  

switch off 

30 21:41:12 
Refrigerator 

switch on 
94 10:18:58 

Refrigerator 

switch on 

31 21:44:05 
Refrigerator 

switch off 
95 10:22:22 

Refrigerator 

switch off 

32 22:18:00 
Refrigerator 

switch on 
96 10:27:02 

Geyser  

switch on 

33 22:20:56 
Refrigerator 

switch off 
97 10:31:26 

Geyser  

switch off 

34 22:20:58 
Noise 

98 10:35:56 
Air-conditioning 

switch on 

35 22:41:26 
Geyser  

switch on 
99 10:35:58 

Air-conditioning 

switch on 

36 22:43:22 Geyser switch off 100 10:41:24 Unknown 

37 22:45:28 
Air-conditioning 

switch off 
101 10:47:48 

TV  

switch off 

38 22:51:44 
TV  

switch off 
102 11:07:38 

Refrigerator 

switch on 

39 23:10:12 
Laptop  

switch on 
103 11:10:08 

Refrigerator 

switch off 

40 23:27:05 
Laptop  

switch off 
104 11:43:32 

Microwave oven 

switch on 

41 23:32:42 Unknown 105 11:44:38 Kettle switch on 

42 0:40:22 Laptop switch on 106 11:47:02 Kettle switch off 

43 00:41:01 
Unknown 

107 11:49:02 
Microwave oven 

switch off 

44 00:42:54 
Unknown 

108 12:26:44 
Refrigerator 

switch on 

45 00:46:56 
Geyser  

switch on 
109 12:30:48 

Refrigerator 

switch off 

46 01:03:04 Geyser switch off 110 12:54:06 Geyser switch on 
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Table 6. 9 The identification result of 128 switching events in Home A 

 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

47 01:04:38 
Refrigerator 

switch on 
111 12:57:05 

Geyser 

 switch off 

48 01:07:24 
Geyser  

switch on 
112 13:11:54 

Refrigerator 

switch on 

49 01:09:40 
Noise 

113 13:15:48 
Refrigerator 

switch off 

50 01:10:12 Geyser switch off 114 13:58:00 TV switch on 

51 01:11:02 
Refrigerator 

switch off 
115 14:01:56 

Air-conditioning 

switch off 

52 01:55:42 
Refrigerator 

switch on 
116 14:17:00 

Refrigerator 

switch on 

53 01:57:01 
Refrigerator 

switch off 
117 14:20:14 

Refrigerator 

switch off 

54 02:01:46 
Unknown 

118 14:43:26 
Air-conditioning 

switch on 

55 02:27:42 
Refrigerator 

switch on 
119 14:55:14 

Laptop  

switch on 

56 02:30:46 
Refrigerator 

switch off 
120 15:00:02 

Refrigerator 

switch on 

57 03:18:03 
Refrigerator 

switch on 
121 15:04:00 

Refrigerator 

switch off 

58 03:19:16 
Refrigerator 

switch off 
122 15:07:08 

TV  

switch off 

59 03:43:55 
Geyser  

switch on 
123 15:15:03 

Refrigerator 

switch on 

60 03:46:38 
Refrigerator 

switch on 
124 15:17:43 

Refrigerator 

switch off 

61 03:49:05 Geyser switch off 125 15:36:05 Laptop switch off 

62 04:10:03 
Refrigerator 

switch off 
126 15:45:05 

Air-conditioning 

switch off 

63 04:20:18 
Air-conditioning 

switch on 
127 15:53:42 

Refrigerator 

switch on 

64 04:40:34 
Air-conditioning 

switch off 
128 15:58:04 

Refrigerator 

switch off 

 

 After obtaining the monitoring result, the monitored result compares with the real 

switching condition, which is shown in Table 6.10. 
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Table 6. 10 The monitored and real switching condition in Home A 

 

 

According to Table 6.10, in the domestic Home A, the single appliance switching 

occupies more than 80% of all switching events, but only 4 events were multiple 

appliances switched at the same time. Most switching events could be detected and 

identified through the proposed method. 

121, 103, and 107 switching events are detected in Homes B, C, and D 

respectively during 24 hours, and their identification results are listed in Appendix Ⅲ. 

 

6.4.2.   Power consumption monitoring 

Through 24-hour monitoring, the appliance switching and identifying of Homes 

A, B, C, and D are obtained. Once knowing the appliance type, the appliance's working 

current and voltage are already sampled, based on equation (3.8), the appliance power 

can be obtained, then according to the appliance switched ON and switched OFF time, 

the appliance power consumption can be calculated. The monitored power 

consumption of 4 homes is in Table 6.11. 

 

Table 6. 11 Power consumption of appliances in four homes 

Appliance Power 

Consumption (kWh) 

Appliance Name 

AC TV LP WH EK RF 

Home A 
Monitoring 

Value 
44.005 4.619 0.174 8.440 10.908 13.755 

Home B 
Monitoring 

Value 
55.018 1.611 0.106 6.269 17.992 16.123 

Home C 
Monitoring 

Value 
41.619 4.412 0.198 11.519 17.799 24.76 

Home D 
Monitoring 

Value 
24.976 8.472 0.397 11.136 34.912 15.936 

 Real Switching 

times 

Monitored 

Switching times 

Appliance operation 

state changing times 12 10 

Single appliance 

switching times 129 114 

Multiple appliances 

switching times 6 4 
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Table 6.11 compares the power information of six monitored load power 

consumption within four different homes based on the proposed method Based on 

power consumption, laptops account for a low proportion of power consumption 

among users. Air conditioning is a high energy consumption appliance, and the 

proportion of power consumption by air conditioning is more than 30% in three homes; 

the geyser also consumes about 31% of total energy in home 4. Therefore, the 

operation of these two kinds of loads in our daily life needs to decrease total energy 

demand. Furthermore, though the refrigerator is a low power consumption load, 

contrary to popular opinion, the operation period is long, power consumption is 

relatively high ranging from 5% to 12% depending on home usage. 

6.5   Three Months Monitoring of Power Consumption for a Normal Home 

To verify the effectiveness of the proposed identification method over a longer 

time period, the power of a normal home was monitored for 90 days. The main 

appliances monitored were air conditioning (AC), TV, laptop (LT), electric kettle (EK), 

geyser (WH), refrigerator (RF) and microwave oven (MO). Besides these seven 

appliances, all appliances’ switching events were also detected and tracked over 90 

days. There were 35 operation state changing, 1173 single switching and 25 multiple 

switching events. Table 6.12 shows the monitored power consumption of nine 

appliances.  

 

Table 6. 12 Appliance power consumption 

Appliance 

Name 

Power 

(kW) 

Operation 

Period(h) 

Power 

Proportion(%) 

Microwave Oven 1.73 29.2 5.3% 

Air Conditioning 2.125 176 12.5% 

Electric Kettle 2.11 15.1 3.2% 

Geyser 2.45 50.7 11.3% 

Laptop 0.27 310 5.3% 

Refrigerator 0.93 721 40.2% 

TV 0.35 348 8.7% 

Electric Kettle 2.11 15.1 3.2% 

Unknown 1 0.55 ___ 9.1% 

Unknown 2 0.53 ___ 4.1% 
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In Table 6.12, two of them were unidentified and marked as unknown appliances 

as there were no training samples in the KNN model that matched their appliance 

features. However, the power consumptions of these two unknown appliances are quite 

significant in the total power consumption, hence it is necessary to gather statistics on 

them to account for their power consumption compared to the other appliances. The 

power consumption of the unknown appliance can also be calculated using equation 

(3.8), which is based on the separation of current and voltage. 

Fig.6.17 shows the calculated proportion of different loads in total energy 

consumption, providing information about the power consumption of different 

appliances. For example, the refrigerator is a high energy consumption appliance, 

contributing to a power proportion of over 40%. The air-conditioning also consumed 

about 12.5% of the total energy. Therefore, it is important to reduce the operations of 

these two kinds of loads in our daily life. Contrary to public opinion, the kettle is also 

a high-power consumption load. Although the operation period is often short, its power 

consumption can be relatively high. 

 

 

Fig.6. 17 Appliance power consumption proportion 

6.4   Summary 

This chapter provides the application and testing of the proposed model. The 

monitoring of household appliance running condition and power consumption is 
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achieved, which can improve power network stability for demand-side management.  

The monitoring hardware is described first. To verify the effectiveness of 

monitoring, offline and online testing was performed. In the offline test, 3 days of 

monitoring were processed in a university office, which is based on the recorded data 

of office current and voltage. For an online test, the monitoring was processed in four 

domestic homes, 1 day’s monitoring based on four households, and 90 days' 

monitoring based on one household. In both offline and online testing, the power 

consumption of each appliance was obtained. 
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Chapter 7 Conclusion and Future Work 

7.1   General conclusions  

This thesis focused on non-intrusive load monitoring (NILM) on residential sites 

with the primary goals of improving monitoring accuracy, decreasing monitoring 

response time, and enhancing the practicability of NILM. To achieve this, a physical 

monitoring device was constructed to capture live data. The methods used to analyse 

the captured data were continuously improved to achieve this project’s aim. 

Chapter 3 systematically compared and discussed the appliance features. 

Effective and valid features for appliance identification were extracted and sampled 

from real residential power environments. This prior research laid the foundation for 

further training and constructing of the monitoring model.  

Chapter 4 improved on the detection method for appliance switching and the 

separation method for appliance working current, thereby reducing the response time 

for monitoring and enhancing the integrity of the separated features. This is done by 

improving the efficiency and sensitivity of the Heuristic detection method, and 

eliminating the use of the auxiliary time-meter during the detection process. Based on 

sampled data at the electricity supply point, the proposed method can detect any 

switching events of low or high-power appliances in real-time. Furthermore, the issue 

of the difference method not being able to obtain the phase angle of the separated 

current was resolved. The improved difference method separated the appliance 

working current with accurate phase angles from the mixed current sequence at the 

electricity supply point. Finally, the proposed detecting and separating method were 

tested using all the examples and cases from actual residential power environments, 

verifying the practicality of the method.  

Chapter 5 proposed the identification method for the appliance type using the 

KNN method to reduce the response time and improve the identifying accuracy. First, 

the KNN model was reconstructed and trained according to the appliance feature 

analysis discussed in Chapter 3. The KNN model structure was simplified to shorten 

the data processing time, thereby reducing the response time and the storage space 

used to save training samples. Next, to address the issue of incorrect identification due 
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to similar electrical features in two different appliances, appliance operating patterns 

were used as auxiliary references for the appliance type identification. A learning 

strategy for obtaining the general operation pattern was proposed. The obtained 

operation patterns were verified and tested using real data. The results demonstrate 

that the operation pattern curve provides regularity and possible future trajectory of a 

running appliance. It is hence used to modify the identification result, which 

overcomes the problem of overlapping appliance electric features and improves the 

monitoring accuracy. 

Chapter 6 tested and applied collectively the data acquisition device, the 

switching event detecting method, the appliance current separating method and the 

appliance type identifying method as a complete monitoring process. This process was 

applied both off-line and on-line. There were 232 switching events in the off-line test 

and 459 switching events in the on-line test. Upon detecting the switching event, the 

operation of each appliance was differentiated. The switching on-off time, frequency 

and duration of each operation were monitored, and the power consumption of each 

appliance during their operation period was obtained. 

7.2   Suggestions for future research 

The research on the implementation and application of NILM presented in this 

thesis is non-exhaustive. Future work is recommended to address the following aspects: 

1. Parameters involved in the detection of the switching events are often 

predetermined based on prior analysis, such as setting the observation period 

as 2 seconds. This can affect convergence speed, separation accuracy, and 

application promotion of the identification algorithm. Therefore, future 

research with an adaptive parameter selection strategy is suggested. 

2. In this thesis, the appliance's electric and non-electric features were extracted 

manually. However, the electric features of different appliances always have 

subtle differences, and non-electric features also require updates according to 

the seasons and years. Therefore, realizing the self-extraction of household 

appliance features is crucial for the further development of NILM. 

3. In the KNN identification process, as there are only one or two home 

appliances belonging to the same category, the number of training samples per 
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category is therefore very few. This thesis proposes giving different weightings 

to each category in the majority identification process. However, this may 

result in a decrease in the identification accuracy. Future work can analyse 

more appliances to enlarge the case number in each category and treat all these 

analysed appliances as training samples for the KNN process. 

.  
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Appendix Ⅰ Data: Office current waveform from 25th hour to 72nd hour 
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Appendix Ⅱ Data: Home B, Home C and Home D current waveform  
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Appendix Ⅲ: The identification result of appliance switching in Home B, Home 

C and and Home D  

 Table 1 The identification result of appliance switching in Home B 

NO. Time 

Point 

Identified  

Result 

NO. Time 

Point 

Identified  

Result 

1 00:05:23 
TV 

 switch off 
62 11:51:12 

Microwave oven 

switch off 

2 00:08:45 
Laptop switch 

off 
63 12:24:15 

Refrigerator 

switch on 

3 00:13:56 
Refrigerator 

switch on 
64 12:32:11 

Refrigerator 

switch off 

4 00:41:35 
Refrigerator 

switch off 
65 12:57:39 

Geyser  

switch on 

5 00:42:23 Unknown 66 12:58:50 Geyser switch off 

6 00:43:12 
Unknown 

67 13:12:45 
Refrigerator 

switch on 

7 00:47:23 
Geyser  

switch on 
68 13:17:18 

Refrigerator 

switch off 

8 01:04:34 
Geyser switch 

off 
69 13:55:02 

TV  

switch off 

9 01:05:38 
Refrigerator 

switch on 
70 14:02:00 

Air-conditioning 

switch off 

10 01:08:45 
Geyser 

 switch on 
71 14:16:22 

Refrigerator 

switch on 

11 01:10:22 
Noise 

72 14:21:41 
Refrigerator 

switch off 

12 01:11:41 
Geyser switch 

off 
73 14:40:37 

Air-conditioning 

switch on 

13 01:12:56 
Refrigerator 

switch off 
74 14:51:41 

Laptop  

switch on 

13 01:12:56 
Refrigerator 

switch off 
74 14:51:41 

Laptop  

switch on 

14 01:54:13 
Refrigerator 

switch on 
75 15:03:20 

Refrigerator 

switch on 

15 01:58:35 
Refrigerator 

switch off 
76 15:09:59 

TV 

 switch off 

16 02:03:35 
Unknown 

77 15:18:34 
Refrigerator 

switch off 

17 02:22:52 
Refrigerator 

switch on 
78 15:34:55 

Laptop  

switch off 

18 02:32:41 
Refrigerator 

switch off 
79 15:47:50 

Air-conditioning 

switch off 
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Table 1 The identification result of appliance switching in Home B 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

19 03:19:11 
Refrigerator 

switch on 
80 15:56:24 

Refrigerator 

switch on 

20 03:27:24 
Refrigerator 

switch off 
81 15:59:43 

Refrigerator 

switch off 

21 03:44:46 Geyser switch on 82 16:54:10 TV switch on 

22 03:47:58 
Refrigerator 

switch on 
83 17:13:30 

Kettle  

switch on 

23 03:50:21 
Geyser switch 

off 
84 17:15:25 

Kettle 

 switch off 

24 04:11:31 
Refrigerator 

switch off 
85 17:18:31 

Refrigerator 

switch on 

25 04:44:24 
Refrigerator 

switch on 
86 17:25:38 

Refrigerator 

switch off 

26 04:57:59 
Refrigerator 

switch off 
87 17:37:51 

Laptop  

switch off 

27 05:15:24 
Refrigerator 

switch on 
88 17:46:53 

Laptop  

switch on 

28 05:21:27 
Refrigerator 

switch off 
89 18:13:21 

Laptop  

switch off 

29 05:22:25 
Noise 

90 18:14:42 
Refrigerator 

switch on 

30 05:28:18 
Geyser 

 switch on 91 18:20:33 
Refrigerator 

switch off 

31 05:32:26 
Geyser switch 

off 
92 18:25:20 

Geyser  

switch on 

32 06:06:15 
Refrigerator 

switch on 93 18:33:29 
Geyser 

 switch off 

33 06:11:57 
Refrigerator 

switch off 94 18:34:53 
Air-conditioning 

switch on 

34 07:28:45 
Refrigerator 

switch on 95 18:34:46 
Air-conditioning 

switch on 

35 07:33:26 
Refrigerator 

switch off 
96 18:42:31 

Unknown 

36 08:27:32 Geyser switch on 97 18:49:37 TV switch off 

37 08:33:37 
Geyser switch 

off 98 19:10:39 
Refrigerator 

switch on 

38 08:45:47 
Refrigerator 

switch on 99 19:20:51 
Refrigerator 

switch off 
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Table 1 The identification result of appliance switching in Home B 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

39 08:47:55 
Geyser  

switch on 
100 19:44:23 

Microwave oven 

switch on 

40 08:53:42 
Refrigerator 

switch off 
101 19:46:57 

Kettle  

switch on 

41 09:13:36 
Geyser switch 

off 
102 19:48:23 

Kettle  

switch off 

42 09:14:26 
Unknown 

103 19:50:21 
Microwave oven 

switch off 

43 09:19:51 
Refrigerator 

switch on 
104 20:27:25 

Refrigerator 

switch on 

44 09:22:36 
Refrigerator 

switch off 
105 20:35:37 

Refrigerator 

switch off 

45 09:37:41 Unknown 106 20:55:47 Geyser switch on 

46 09:58:55 
Refrigerator 

switch on 
107 20:59:50 

Geyser  

switch off 

47 10:06:41 
Refrigerator 

switch off 
108 21:10:45 

Refrigerator 

switch on 

48 10:19:31 
Microwave oven 

switch on 
109 21:21:36 

Refrigerator 

switch off 

49 10:23:25 
Microwave oven 

switch off 
110 21:55:49 

TV  

switch on 

50 10:28:36 
Geyser  

switch on 
111 22:05:51 

Air-conditioning 

switch off 

51 10:32:27 
Refrigerator 

switch on 
112 22:13:03 

Refrigerator 

switch on 

52 10:36:48 
Geyser switch 

off 
113 22:21:41 

Refrigerator 

switch off 

53 10:37:51 
Refrigerator 

switch off 
114 22:48:20 

Air-conditioning 

switch on 

54 10:43:42 
Air-conditioning 

switch on 
115 22:50:41 

Laptop  

switch on 

55 10:49:39 
TV  

switch on 
116 23:01:21 

Refrigerator 

switch on 

56 11:10:29 
Kettle  

switch on 
117 23:06:00 

Refrigerator 

switch off 

57 11:12:24 Kettle switch off 118 23:09:51 TV switch off 

58 11:24:33 
Refrigerator 

switch on 
119 23:35:36 

Refrigerator 

switch on 

59 11:33:56 
Refrigerator 

switch off 
120 23:47:34 

Refrigerator 

switch off 

60 11:44:27 
Microwave oven 

switch on 
121 23:50:41 

Air-conditioning 

switch off 

61 11:46:31 Kettle switch on    
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Table 2 The identification result of appliance switching in Home C 

NO. Time 

Point 

Identified  

Result 

NO. Time 

Point 

Identified  

Result 

1 12:23:51 
Refrigerator 

switch on 
53 23:35:36 

Refrigerator 

switch on 

2 12:35:31 
Refrigerator 

switch off 
54 23:47:34 

Refrigerator 

switch off 

3 12:55:37 Geyser switch on 55 23:50:41 Unknown 

4 12:57:05 
Geyser  

switch off 
56 01:30:46 

Refrigerator 

switch on 

5 13:20:54 
Refrigerator 

switch on 
57 01:35:23 

Refrigerator 

switch off 

6 13:23:48 
Refrigerator 

switch off 
58 02:41:46 

Refrigerator 

switch on 

7 13:50:22 
TV  

switch on 
59 02:45:23 

Refrigerator 

switch off 

8 14:01:56 
Refrigerator 

switch on 
60 03:18:03 

Refrigerator 

switch on 

9 14:17:00 
Refrigerator 

switch off 
61 03:29:16 

Refrigerator 

switch off 

10 14:20:14 
Microwave oven 

switch on 
62 03:43:55 

Geyser  

switch on 

11 14:43:26 
Microwave oven 

switch off 
63 03:46:38 

Refrigerator 

switch on 

12 14:55:14 TV switch off 64 03:49:05 Geyser switch off 

13 15:01:02 
Kettle  

switch on 
65 04:10:03 

Refrigerator 

switch off 

14 15:05:40 
Kettle  

switch off 
66 05:17:41 

Refrigerator 

switch on 

15 15:08:58 
Laptop  

switch off 
67 05:23:28 

Refrigerator 

switch off 

16 15:16:30 
Air-conditioning 

switch on 
68 05:24:51 

Noise 

17 15:19:34 
Refrigerator 

switch on 
69 05:29:29 

Geyser  

switch on 

18 15:38:25 
Refrigerator 

switch off 
70 05:33:36 

Geyser  

switch off 

19 15:47:50 
Noise  

71 06:10:51 
Refrigerator 

switch on 

20 15:51:24 
Geyser  

switch on 
72 06:15:57 

Refrigerator 

switch off 

21 15:55:40 
Geyser  

switch off 
73 06:57:16 

Refrigerator 

switch on 

22 16:37:46 
Kettle  

switch on 
74 07:02:53 

Refrigerator 

switch off 
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Table 2 The identification result of appliance switching in Home C 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

23 16:38:32 
Refrigerator 

switch on 
75 07:21:50 

Unknown 

24 16:40:14 Kettle switch off 76 07:34:21 Unknown 

25 16:45:04 
Refrigerator 

switch off 
77 07:44:10 

Geyser  

switch on 

26 17:17:02 
TV  

switch on 
78 08:10:19 

Refrigerator 

switch on 

27 17:20:36 
Air-conditioning 

switch on 
79 08:15:31 

Refrigerator 

switch off 

28 17:35:52 
Refrigerator 

switch on 
80 08:20:35 

Microwave oven 

switch on 

29 17:46:48 
Refrigerator 

switch off 
81 08:25:42 

Microwave oven 

switch off 

30 18:41:12 
Microwave oven 

switch on 
82 08:29:47 

Laptop  

switch on 

31 18:44:05 
Microwave oven 

switch off 
83 08:35:30 

Unknown 

32 18:18:00 
Refrigerator 

switch on 
84 08:45:37 

Unknown 

33 18:20:56 
Refrigerator 

switch off 
85 08:54:45 

Refrigerator 

switch on 

34 19:23:58 
Noise 

86 08:59:13 
Refrigerator 

switch off 

35 19:31:26 
Geyser  

switch on 
87 09:21:30 

Microwave oven 

switch on 

36 19:43:22 
Geyser  

switch off 
88 09:22:25 

Microwave oven 

switch off 

37 19:45:28 
Air-conditioning 

switch off 
89 09:27:28 

Refrigerator 

switch on 

38 20:27:25 
Refrigerator 

switch on 
90 09:30:38 

Refrigerator 

switch off 

39 20:35:37 
Refrigerator 

switch off 
91 09:45:26 

Laptop  

switch on 

40 20:55:47 Kettle switch on 92 10:08:16 Unknown  

41 20:59:50 
Kettle  

switch off 
93 10:28:58 

Refrigerator 

switch on 

42 21:10:45 
Refrigerator 

switch on 
94 10:34:22 

Refrigerator 

switch off 

43 21:21:36 
Refrigerator 

switch off 
95 10:37:02 

Geyser  

switch on 
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Table 2 The identification result of appliance switching in Home C 

NO. Time Point 
Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

44 21:55:49 
TV switch on 

96 10:41:26 
Geyser switch 

off 

45 22:05:51 
Air-conditioning 

switch off 
97 10:45:56 

Air-conditioning 

switch on 

46 22:13:03 
Refrigerator 

switch on 
98 10:47:48 

TV  

switch on 

47 22:21:41 
Refrigerator 

switch off 
99 11:07:38 

Refrigerator 

switch on 

48 22:48:20 
Air-conditioning 

switch on 
99 11:10:08 

Refrigerator 

switch off 

49 22:50:41 
Laptop  

switch on 
100 12:26:44 

Refrigerator 

switch on 

50 23:01:21 
Refrigerator 

switch on 
101 12:30:48 

Refrigerator 

switch off 

51 23:06:00 
Refrigerator 

switch off 
102 12:43:06 

TV 

 switch off 

52 23:09:51 
TV switch off 

103 12:55:15 
Laptop switch 

off 

 

Table 3 The identification result of appliance switching in Home D 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

1 20:11:32 
TV switch on 

55 09:15:53 
Refrigerator 

switch off 

2 20:15:46 
Air-conditioning 

switch on 
56 09:24:15 

Refrigerator 

switch on 

3 20:27:52 
Refrigerator 

switch on 
57 09:25:36 

Air-conditioning 

switch on 

4 20:36:18 
Refrigerator 

switch off 
58 09:34:14 

Unknown 

5 20:39:17 Laptop switch on 59 09:58:15 Laptop switch on 

6 20:45:41 Unknown 60 10:07:21 Unknown 

7 20:45:47 
Unknown 

61 10:18:43 
Refrigerator 

switch on 

8 21:31:21 
Refrigerator 

switch on 
62 10:23:25 

Refrigerator 

switch off 

9 21:43:50 
Refrigerator 

switch off 
63 10:30:36 

Geyser  

switch on 

10 22:28:00 
Refrigerator 

switch on 
64 10:33:16 

Kettle 

 switch on 
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Table 3 The identification result of appliance switching in Home D 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

11 22:36:13 
Refrigerator 

switch off 
65 10:38:27 

Kettle  

switch off 

12 22:40:38 TV switch off 66 10:41:20 Geyser switch off 

13 22:43:37 
Geyser switch  

on 
67 10:44:42 

Unknown 

14 22:45:24 
Geyser switch  

off 
68 10:51:48 

TV switch on 

15 22:50:30 
Air-conditioning 

switch off 
69 11:13:39 

Kettle  

switch on 

16 22:55:34 
Refrigerator 

switch on 
70 11:15:42 

Kettle  

switch off 

17 23:02:15 
Refrigerator 

switch off 
71 11:34:33 

Refrigerator 

switch on 

18 23:32:42 
Unknown 

72 11:43:15 
Refrigerator 

switch off 

19 00:40:22 
Refrigerator 

switch on 
73 11:46:38 

Microwave oven 

switch on 

20 00:47:01 
Refrigerator 

switch off 
74 11:49:13 

Microwave oven 

switch off 

21 00:43:45 
Unknown 

75 12:35:24 
Refrigerator 

switch on 

22 00:47:16 
Geyser  

switch on 
76 12:39:27 

Refrigerator 

switch off 

23 01:13:40 
Geyser switch  

off 
77 12:53:59 

TV switch off 

24 01:15:29 
Refrigerator 

switch on 
78 12:59:51 

Laptop  

switch off 

25 01:19:32 
Geyser  

switch on 79 13:01:56 
Air-conditioning 

switch on 

26 01:20:40 Noise 80 13:07:00 Unknown 

27 01:22:21 
Geyser 

 switch off 81 13:21:43 
Refrigerator 

switch on 

28 01:26:20 
Refrigerator 

switch off 
82 13:33:15 

Refrigerator 

switch off 

29 01:58:42 Unknown 83 13:55:41 TV switch on 

30 02:04:11 
Unknown 

84 14:21:23 
Refrigerator 

switch on 

31 02:07:45 
Unknown 

85 14:35:04 
Refrigerator 

switch off 

32 02:47:31 
Refrigerator 

switch on 
86 15:06:18 

TV 

 switch off 
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Table 3 The identification result of appliance switching in Home D 

NO. 
Time 

Point 

Identified  

Result 
NO. 

Time 

Point 

Identified  

Result 

33 02:50:37 
Refrigerator 

switch off 
87 15:07:38 

Laptop 

 switch on 

34 03:27:13 
Refrigerator 

switch on 
88 16:25:47 

Refrigerator 

switch on 

35 03:39:25 
Refrigerator 

switch off 
89 16:35:32 

Refrigerator 

switch off 

36 03:53:15 
Geyser  

switch on 
90 16:55:47 

Air-conditioning 

switch on 

37 03:56:47 
Refrigerator 

switch on 
91 16:58:03 

Kettle  

switch on 

37 03:56:47 
Refrigerator 

switch on 
91 16:58:03 

Kettle  

switch on 

38 04:04:15 Geyser switch off 92 17:01:16 Kettle switch on 

39 04:05:37 
Refrigerator 

switch off 
93 17:19:13 

Refrigerator 

switch on 

50 08:23:52 Geyser switch off 103 19:53:35 Laptop switch off 

51 08:34:36 
Refrigerator 

switch on 
104 20:24:52 

Refrigerator 

switch on 

52 08:35:41 
Geyser  

switch on 
105 20:36:26 

Refrigerator 

switch off 

53 08:42:21 
Refrigerator 

switch off 
106 20:45:39 

Kettle  

switch on 

54 09:03:52 
Geyser   

switch off 
107 20:48:05 

Kettle switch off 
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