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Abstract 

Space has become increasingly congested, commercialised, and inter-connected over the 

past few decades. The “New Space” era and the use of federated space systems are intended 

to make space more affordable and accessible to more users. The use of agile space has also 

increased in the past few decades. To sustain this increase, new, fast, efficient, and robust 

methodologies are required for satellite orbit designs, constellation determination and 

satellite tasking paradigms. Additionally, methods aiding the increase in the value of assets 

already in space are also a valuable contribution to the space industry especially in reducing 

the rising space congestion and “space pollution”. The asset value increase may be found in 

filling coverage gaps or supplementing the functionality of existing space population for 

diversified service providers. A rapid, robust, and efficient approach for orbit 

design/determination based on desired target coverage is herein proposed. The proposed 

method is fully analytical and of the so-called embarrassingly parallel nature. The fully 

analytical property eliminates the necessity for iterative computations resulting in increased 

efficiency. The embarrassingly parallel nature makes the method analyse each orbital 

element and time combination within a given search space independently allowing for 

efficient parallel execution. This provides a basis for robust multi-objective optimisation of 

the determined orbits. The development of the method and some application scenarios 

while considering both single and multi-objective missions are presented. The research 

presented also develops a novel graph-theory based method for multi-satellite tasking which 

is aimed at value addition to satellites already in space. The interaction between satellites in 

different orbits and ground targets is modelled using bipartite networks. Determination of 

the satellite(s) to be tasked is based on the optimisation of different requirements and this 

can be modelled as a combinatorial network problem. The developed method uses an 

analysis of static bipartite graphs to determine the optimum satellite and ground target 

interactions based on the mission objectives, referred to as tasks. Optimum satellites for 

various tasks are determined using a combination edge weight and graph structure analysis. 

The network developed give insights for scalable analysis of options involving multiple 

ground targets and satellite options. To illustrate the application of the method, different 

networks are studied; simple networks and complex networks considering complexity both 

in terms of number of satellites and ground targets. This method proves to be fast, simple, 

efficient, and robust in determining optimal satellites for multiple objective function tasking. 
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Chapter 1 

1 Introduction 

Satellite technology currently plays a big part in the modern world. Satellites are used for 

different purposes such as communication, Earth observation, weather monitoring, 

navigation, and research, amongst other uses [1, 2]. For decades, with the increase in the use 

and need of satellite technologies, many methods have been developed to design satellite 

orbits, and satellite constellations, based on the mission requirements such as desired 

coverage, revisit frequency, etc. Some current missions have used the Two-Line Elements 

(TLE), and different software such as the General Mission Analysis Tool, GMAT, and systems 

tool kit, STK to determine their orbits, then optimise these using different numerical methods 

[3-5]. The accuracy of tools like TLE are still however being developed [3]. More so, now with 

smaller satellites being used [6], and targeting smaller areas, the desire for increased 

precision in orbit design is continuously increasing [7, 8]. There is a need for satellite orbit 

designs that facilitate the overflight of specific targets with as much accuracy as possible [9]. 

Moreover, with the end of the decade of action fast approaching, satellites are used to 

monitor and evaluate the indicators of sustainable development goals (SDGs) and for this, 

the connectivity, the localisation, and the digitalisation of global areas is required [10, 11]. 

Constellations such as the first Sustainable Development Goals Satellite (SDGSAT-1), have 

been launched for monitoring the SDG indicators, and some areas have been found to still 

lack coverage and even very basic internet connectivity [12]. This means there is still a need 

to fill in coverage gaps. Filling these gaps require methods that get away from the traditional 

patterns for global and regional satellite orbit and constellation designs, and determination, 

as well as development of more robust methods for tasking satellites.    

There are continuous efforts being made to develop the designs of optimum (or “best” 

depending on the requirements) responsive satellite orbits [9]. The developing designs are 

geared towards filling various coverage gaps, getting clearer images, trying to get as much 

spatial and temporal coverage as possible, maximising or minimising revisit times [13], and 

supporting the developments of agile space systems. The use of agile space has significantly 

increased in the past few decades [1]. Some agile space systems involve missions such as, 

tracking mobile ground targets, disaster imaging, and other emergency purposes [14-16]. 
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These missions facilitate informed response in cases ranging from disaster assessment and 

urgent data collection in areas lacking connectivity. 

The application spectrum of small satellites has significantly increased, and fairly broadened 

as they have become a powerful tool especially for global, regional, and local monitoring [17]. 

This can be attributed to their low cost of operation, and the recent emergence of “New 

space”  [17, 18]. The low cost can be ascribed to the recent development of the Federated 

Space Systems (FSS), [19] which is aimed at improving the performance of core functions of 

the satellites or satellite constellations that have different missions and are operated by 

members of the federation [20].  

 

1.1 Motivation 

In some cases where orbit designs involve overflying a specific target area, the traditional 

approach is to firstly determine the orbital parameters that yield an orbit whose ground track 

almost facilitates an overflight. Subsequently, the parameters are optimised to obtain the 

optimal orbit for the desired ground track [15, 21]. When orbits that overfly specific target 

points or areas are required however, some previously used orbit design algorithms can 

eventually get the precise orbits but the compromise between accuracy and computational 

costs can be a disadvantage [22, 23]. Moreover, some numerical methods have tendencies 

to get stuck in local optimums hence missing the global optimums which might have better 

solutions [24].  

For cases like response to on-going disasters or monitoring of complicated scenes, (e.g., 

natural disasters or meteorological phenomenon such as, hurricanes and tornadoes), fast 

and accurate, localised targeting is desired [15].  These are challenges that can be solved with 

satellite orbits designed with high degrees of accuracies to overfly the specific areas [15]. For 

example, if monitoring the eye of a hurricane to categorise it, a method that accurately 

determines the orbit that will overfly the next predicted position of the eye is needed. The 

gap of developing a fast and accurate orbit design methodology is still at hand. Despite the 

reduction of satellite operating costs due to the emergence of FSS and the “New Space” era 

in the recent decades, the pressure to achieve the mission objectives within the short lifespan 

of the satellites with operation cost efficiency has also increased. This enhances the need for 

more accurate and precise orbit designs that can achieve multiple objectives within a given 
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period. Additionally, the search space of such federated missions may be large as mission 

requirements such as monitoring an on-going disaster may require determination of orbits 

that facilitate overflight of different localised parts of the globe. The urgency of each mission 

requirement, herein referred to as “objective function”, and an understanding of the full 

search space is therefore crucial to getting to the desired orbits as fast as possible. For such 

cases, some numerical methods incur high computational costs whereas some fully analytical 

methods may compromise on the accuracy due to main assumptions related to the equations 

of motion used [25, 26]. The implementation of a general perturbation approach while 

minimising the assumptions is studied in the development of the proposed analytical orbit 

design method.  

The need for multiple objective function optimisation methods that are robust have also 

been highlighted in the past few decades. Some orbit design methods require re-calculation 

of the orbits for each objective function to be optimised. Therefore, there is a gap for a 

method that would be more computationally efficient by determining the orbits once and 

use the results to optimise for multiple objective functions. Some real-life missions have 

different requirements hence require multiple objective function optimisation. Numerical 

methods such as differential evolution have been used for optimisation of one objective 

function [27], and the addition of adaptive grids enable them to be used for multiple 

objectives, but with a higher computational cost [27]. The analytical orbit design method 

proposed in this dissertation is aimed at enabling operators to explore multiple objective 

functions and still maintain computation cost and time efficiency. In some cases, an orbit that 

performs well over multiple objective functions could be preferable to an orbit that only 

maximises a single objective function. This leads to a selection of the “robust” orbit for 

multiple objective functions even if not the “optimal” for the individual objective functions. 

In a case where multiple objective function optimisation is needed, this work develops 

algorithms for robust orbit determination. For the same search space values and targets, the 

method developed in this work does not require re-simulation of the orbits, even when the 

objective function changes.  

An addition of a multi-level adaptive grid to the developed analytical method is proposed. 

The adaptive grid addition aims to increase the efficiency of the developed method in terms 

of the computational time needed to determine the optimum orbits for large search spaces. 

Responsive satellites can be said to have dynamic tasks. A gap of methods aimed at tasking 
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reconfigurable satellites is identified. Fast, accurate and efficient methods for satellite 

tasking need to be developed especially for agile space systems and maximisation of existing 

space assets. Using some of the orbital solutions obtained from the analytical method 

proposed in this dissertation, a graph theory method is proposed and developed with an aim 

to task satellites that are already in space. This is to maximise on value of the existing space 

population for any emerging tasks or new users. The graph theory method presented proves 

to be robust due to its applicability to multiple tasks hence, making it computationally 

efficient. 

 

1.2 Orbit Design Methods 

Orbit propagation techniques are essential tools in orbit design methodologies. Orbit 

propagation is an area that has been under research for decades and is used to determine 

the position of an object in space [28]. The methods of orbit propagation are divided into 

special perturbation methods and general perturbation methods, and they can either be 

numerical, analytical, or semi-analytical [29]. Special perturbation methods mostly use 

numerical integrators that provide accurate prediction of the positions and velocities of 

space objects. The disadvantages of such methods lie in the processing, where stepwise 

calculations are used from epoch to epoch [29-31]. Despite currently having more methods 

that have variable steps such as the Runge-Kutta-Fehlberg method, RKF45, see ref [32], such 

methods have a significant increase in computational costs. For more accuracy, both the 

computational costs and the computational time increases significantly for some numerical 

methods.  

General perturbation methods make use of analytical equations of motion. Eliminating the 

stepwise processing technique of numerical methods enables them to compute solutions 

more generally, and the use of analytical equations have higher computational efficiencies. 

Their accuracy is however reduced due to the use of some restrictive assumptions [29-31] 

[33]. Semi-analytical methods combine both the general and the special perturbation 

methods depending on the period being considered [29]. Some third-party software such as 

the French National Centre of Space Research’s, Semi-analytical Tool for End-of-Life Analysis 

(STELA), use a semi-analytical approach [34]. 
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For purposes of mission design as well as orbit determination, orbit propagation methods 

are required to be fast and efficient [29]. An example of this is the general perturbation 

models which are used in the Simplified General Perturbations-4 (SGP4) orbit model [35] and 

provide the basis for propagating the ‘‘2-line” orbital elements. R. Flores et. al.,[29] propose 

a method to improve the computational performance of some numerical methods while still 

maintaining the level of accuracy, by adjusting the number of geopotential spherical 

harmonics during the integration, and determining the allowable acceleration error. With the 

use of a Molniya orbit, R. Flores et. al., maintain the accuracy of their solution while reducing 

the costs of computation by a factor of 3 or more. R. Flores et. al., however, find some 

computational inefficiencies for some cases such as when using dynamic expansion, where 

an increase in accuracy of the baseline solutions by two orders of magnitude requires a 90% 

rise in computational costs [29].  

Orbit design methodologies have been developing for decades with some past designs having 

focused on improving the efficiency of existing numerical methods, and some on developing 

semi-analytical methods [13, 23, 25, 36-38]. Orbit design methods are based on numerous 

criteria mainly related to satellite coverage [39], revisit strategies and repeat ground tracks 

amongst many others [21, 39-44]. 

1.2.1 Orbit Designs Based on Coverage 

Traditionally, the main criteria of satellite orbital design methods focus on the type of 

coverage desired which was initially divided into global and regional coverage. As observed 

by G. Dai et. al., [39], Earth observation by satellites and the data that needs to be transmitted 

between the satellites and the users are both related to satellite coverage. The main criterion 

for orbital designs is the type of coverage desired.  

At first, the desire to have global coverage dominated most design methodologies. Methods 

such as the Walker and the Flower methods are developed for constellation designs aiming 

at continuous global coverage[45, 46]. An example of a design for single satellite global 

coverage is presented by scholars like M. Xu et. al.,[47]. M. Xu et. al., formulate an analytical 

algorithm for global coverage using a revisit orbit and apply it to a mission revisiting all points 

on the Earth within long periods of time. As an extension to this but using constellations, S. 

Y. Ulybyshev et. al., [48] present an analytical technique based on basic solutions obtained 

by previous authors. S. Y. Ulybyshev et. al., use those solutions for a single spacecraft to 
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calculate the optimum argument of latitude and the right ascension of ascending node 

between satellites in their constellations. With this, S. Y. Ulybyshev et. al., minimise the revisit 

for any point on the Earth’s surface ensuring that the constellation has an operational global 

monitoring with a one-day repeat ground-track. The technique S. Y. Ulybyshev et. al. develop 

can only be used for orbits with direct and inverse inclinations for fields of view that cover 

polar points. S. Y. Ulybyshev et. al. suggest future work to be done using similar methods 

developed for orbits that have higher multiplicities than theirs. On the other hand, P. Zong 

et. al, [49] present a constellation global coverage design in one revisit time. In their work, P. 

Zong et. al, use a model of constellations which are fully connected by crosslinks and maintain 

continuous communication. P. Zong et. al, find that their designs are closer to optimal 

coverage of the globe, compared to results of some previously used methods. 

The design of regional coverage satellites later on emerge and some of the algorithms used 

are such as the grid point algorithms and latitude strip algorithms amongst many others[50]. 

Regional coverage has become more attractive to research than global coverage. Z. Song et. 

al., [51] study the option of regional coverage and develop a novel grid point approach for 

efficiently solving the constellation to ground-regional coverage problem by giving a strategy 

that addresses some challenges of the previously used grid point approach. Z. Song et. al., in 

Ref. [52], give an approach to further solve the constellation to ground coverage problems 

using three main judgement theorems. Z. Song et. al., develop the judgment theorems to 

evaluate the coverage of satellite constellations and they achieve higher computational 

efficiency compared to more traditional methods such as grid point approaches. However, 

the method by Z. Song et. al., is only applicable to constellations that have complete ground 

region coverage. 

Methods based on overflying sets of target areas and target points have more recently been 

developed especially due to Earth observation using responsive Low Earth Orbit (LEO) 

satellites [25]. Many numerical methods have been studied on how to design satellite orbits 

based on specific desired targets. T. Li, J. Xiang et. al., [22], design a method to address some 

problems of previous coverage area based numerical methods such as the computational 

cost, as well as, failure to obtain desired orbits by various methods. T. Li, J. Xiang et. al., use 

their method to determine the existing conditions of the solutions to revisit orbits by use of 

a special kind of repeating ground track orbit, which T. Li et. al., refer to as a circular revisit 

orbit (CRO). 
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Some methods for calculating optimal orbits focus on the duration of view of target areas, 

whereas some focus on the amount of time that it will take to revisit the target as in [6].  Prior 

to this however, Y. Chen et. al., in [53] consider a satellite orbit design using a set of target 

sites which need to be visited within an assigned period and the optimisation of the orbit 

design considers target priority and duration of observation time. Y. Chen et. al use a self-

adaptive differential evolution (SA-DE) algorithm. This algorithm is an improvement to 

previously used differential evolution algorithms, and this is demonstrated in their regional 

and global case studies, as Y. Chen et. al show that the SA-DE is a more suitable optimizer for 

orbit design. Later, however, M. Pu et. al., [6] present an orbit design approach by combining 

a robust optimization model with a multi-objective optimization algorithm. M. Pu et. al., use 

Monte Carlo simulation results to demonstrate that the robust orbit solutions are more 

reliable compared to nominal orbit solution designed from the traditional single objective 

stochastic optimization algorithms. In Ref. [38], G. Zhang et. al., use approximate analytical 

solutions for single and dual coplanar impulsive maneuverers to observe given Earth sites for 

exact overflight and conical sensor cases. G. Zhang et. al., modify a known orbit and use 

impulse approaches to be able to get to the desired ground track. G. Zhang et. al., extend 

their work to a three-impulse method associated with bi-elliptical transfer and four impulse 

methods. G. Zhang et. al., later on formulate a semi analytical method to obtain the longitude 

differences, and then use approximations to get to the desired orbit as presented in Ref. [54].  

1.2.2 Agile Space System Orbit Designs 

To enable better temporal coverage, there has been a recent rise in the desire to have more 

localised coverage, as global coverage focuses more on spatial performance[1, 25, 55]. The 

desire to overfly more specific target points and target areas gave rise to responsive satellites 

[25]. These are becoming more and more attractive to the space industry as the world, and 

its needs keep changing. Monitoring and predicting changes and disasters is an area of special 

interest to research at large. Mission requirements for responsive satellites change overtime. 

These changes include coverage area changes, reconnaissance changes, revisit schedule 

changes amongst others. Most of the sustainable development goals that are satellite 

technology based depend on such monitoring hence, making it very valuable. Monitoring the 

change of an area requires accuracy of overflight. Different numerical methods have been 

studied on how to design a satellite orbit based on specific desired targets. Indeed, Earth 

observation using LEO satellites that are more dynamic has become a common main 
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objective. The envelope curve method by [50] design a coverage boundary about which a 

specific area target can be obtained by the intersection of the target area and envelope 

curves. To minimize the number of satellites in a constellation as well as to achieve a set 

maximum revisit time, C. Zhang et. al., [56] formulate a method to design a LEO constellation 

to eliminate long revisit time, and large number of satellites which is a problem faced by 

traditional design methods.  

Z. Song et. al., [1] develop an agile satellite orbit design that considers spatial resolution and 

temporal resolution simultaneously and use a repeat ground track orbit in an accurate 

geopotential model of the Earth. Z. Song et. al., formulate a multi-objective optimization 

technique for obtaining the optimal feasible orbits. These objective constraints include the 

maximum repeat cycle for the satellite, the maximum tilt angle and full coverage at the 

equator. Other numerical methods such as the self-adaptive method, self-adaptive 

differential method and many more have been developed further for purposes of target 

overflight. W. Yao et. al., [57] for example, present an improved differential algorithm that is 

applicable in orbit designs. W. Yao et. al., use a double self-adaptive differential evolution 

(SA-DE) algorithm with a random mutant which is an improvement of the work by Y. Chen et. 

al., [53]. W. Yao et. al., [57] apply a random mutant as well as introduce a double self-adaptive 

scaling factor to the traditional differential evolution algorithm. The scaling factors of the 

proposed algorithm are found to be able to adjust with the optimization procedure, and this 

makes the algorithm able to jump out of the local optimal. Different from the previous 

research, the self-adaptive scaling factors in the work by W. Yao et. al., can be affected by 

not only the number of generations but also the fitness function of the last generation. When 

the algorithms are applied to several test function studies including low dimension and high 

dimension and compared with the other algorithms, the simulations demonstrate that the 

advanced algorithm give a better performance in solution accuracy, convergence, and the 

results’ standard deviation. The case studies presented by W. Yao et. al., prove that the novel 

self-adaptive algorithm with random mutant can provide an improved performance on 

multiple targets and manoeuvre optimal problems than others.  
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1.3 Objective Function Optimisation in Orbit Designs 

Just like in many real-life applications, orbit designs are optimised using several mission 

requirements which are equivalent to multiple objective functions [27]. For single objective 

function optimizations, methods such as differential evolution have proven to be efficient 

[27]. W. Yao et. al.,  [57], use a single objective function relating to the observation duration 

of targets, and optimise the orbits using an improved differential evolution method. 

In the past couple of decades, there has been emergence and development of Federated 

Space Systems. This means that space systems have now geared towards agile space with 

different capabilities and missions[19]. The study of multi-objective optimisation in orbit 

designs is therefore essential. S. Ghorbanpour et. al., in [58] modify a differential evolution 

algorithm by using an adaptive grid for the multi objective optimisation. S. Ghorbanpour et. 

al., extend the mutation strategy that is used in single objective function optimisation to 

multi-objective optimization using the modified method. The main contribution in the work 

of S. Ghorbanpour et. al., is adding the adaptive grid to the commonly used traditional 

differential evolution algorithm. Other studies such as the one by H.-D. Kim et. al., [59]  also 

aim to achieve multi-objective optimisation based on the average revisit time and average 

transmitted power. H.-D. Kim et. al., use multi-objective heuristic algorithms which include 

genetic evolution, particle swamp optimisation, and differential evolution algorithms, then 

compare the results from them. H.-D. Kim et. al., find that the developed and modified 

differential evolution algorithms obtain more efficient results than generic algorithms, 

particle swamp optimisation and analytical approaches.  

In this work, multiple objective function optimisation is studied and the advantages of using 

the developed analytical method in analysing different objective functions is highlighted. In 

chapter 4 of this dissertation, an adaptive grid is introduced in the optimisation phase for 

enhanced computational efficiency. This is applied to both single and multiple objective 

functions and examples of the simulation results are given.  
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1.4 Design Optimisation Using Adaptive Grids 

Adaptive grids have been incorporated into methods such as differential evolution and 

genetic algorithms to improve their performance. J. Cheng et. al., in ref. [27] for example, use 

a grid based adaptive algorithm to improve the dynamical adjustment of convergence and 

diversity of a differential evolution algorithm. The method by J. Cheng et. al, exploit the 

feedback during the evolutionary process and base their grid on three metrics i.e., the grid 

fitness, the grid density, and the grid objective-wise standard deviation. J. Cheng et. al, 

compare their method to nine other algorithms based on differential evolution and genetic 

algorithms, and find their method to be better at optimising multi-objective function 

problems. Traditional particle swarm optimisations are said to have inefficient convergence 

as well as a tendency to get stuck in local optimums [60, 61]. To solve the problem of particle 

swarm optimization (PSO), getting stuck in local optimums and having low convergence rates, 

K. H. Rubinder Mannan et. al., [61] propose an adaptive particle swarm optimisation 

algorithm based on directed and weighted complex networks. The method by K. H. Rubinder 

Mannan et. al., improves the convergence efficiency by having a higher convergence rate 

than some other particle swarm optimisation methods. In Ref. [60], J. E. Harries et. al., also 

propose an adaptive response strategy to activate stagnated particles so that they would not 

get stuck in local optimums.  

The application of adaptive grids can also be implemented while using analytical methods to 

increase the computational efficiency of the method by refining the grids in the areas of 

interest hence, reducing the search space. This approach is explored herein as a multi-level 

adaptive grid which is implemented into the developed orbit design method.  

 

1.5 Satellite Tasking Methods 

In most cases, satellite tasking also involves scheduling. This has been done previously using 

different heuristic algorithms aimed at selecting the most urgent tasks. Satellite tasking and 

scheduling is an NP hard problem that has been recently achieved using different numerical 

algorithms to task and schedule the satellites [62]. S. Liu et. al., [63] for example, study the 

tasking of intelligent satellites for earth observation using a linear programming algorithm 



Chapter 1                 Introduction   11 
 

11 
 

and a heuristic search algorithm, which when compared with some previously used search 

algorithms have better results in terms of profitability.  

Graph theory is an area that has been under research for centuries even dating back to the 

seventeenth century [64]. It has been commonly used to find solutions to networking 

problems used in cases such as traffic systems, internet connectivity and the medical field 

amongst many others. Connecting a task to a satellite is a combinatorial problem, that can 

use graph theoretical methods to be solved. The work presented in this dissertation proposes 

the use of graph theory in tasking satellites already in space. This aims to maximise the assets 

that are already in space and reduce the emerging space congestion. At the same time, this 

can be profitable to an operator if new users emerge. The proposed method proves to be 

robust and can be used to identify satellites that optimally perform multiple tasks.  

 

1.6 Gaps Identified in the Literature  

Literature review of existing satellite tasking, orbit design and propagation algorithms, reveal 

a need for the development of methodologies that facilitate rapid orbital solutions of 

acceptable accuracy levels [29]. An identified research gap exists in orbit design 

methodologies that give fast and accurate orbital solutions for overflights of both static and 

moving targets within a defined field of regard.  

The literature review highlights a gap of orbit design methods that offer fast comprehensive 

search space analysis enabling informed decision making for engineers and operators 

regarding optimal orbits. This research aims to address this gap by development of an orbit 

design methodology that will enhance computational time efficiency for large search space 

analysis. The application of the method presented in this work for example includes an 

analysis of orbits with inclinations from 50 degrees to 130 degrees and right ascension of 

ascending node of 0 to 360. Some previous orbit design methods only consider prograde 

orbits, due to computational time and cost constraints. The developed orbit design method 

is analytical and uses an embarrassingly parallel approach. An embarrassingly parallel 

method is an approach where there is elimination of reliance between the processes and so 

the results are independent of each other. In the developed method, the results of a certain 

timestep is generated without knowledge of the previous timestep results because the time, 

the inclination, and the right ascension of the ascending node are all analysed in parallel. The 
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approach of the algorithm and implementation are further explained in section 2.2.2. A fast 

general overview gives engineering and design insights into complex search spaces that may 

show, for example, that some optimal solutions might not necessarily be the most robust 

solutions for different objective functions. The insights can also guide where an orbit designer 

can concentrate more to suit various design needs.  

Some previous numerical orbit design methods require a re-run of the orbit determination 

simulations when the objective functions change. The developed orbit design method in this 

dissertation is efficient in that different objective functions can be explored without the need 

to re-run the simulation to determine the orbits because, the orbital elements are analysed 

in parallel and so is time. The method is generalised and independent of specific optimisation 

techniques while calculating the orbits. This means that the proposed method is robust for 

Multi-Objective Function Optimisation (MOO). 

With the emergence of “New Space”, there is an increased desire for robust multi mission, 

multi objective and multifunctional satellites [65, 66]. Some previous orbit design methods 

that use numerical simulations such as differential evolution have been excellent optimisers 

for single objective functions [27]. For such methods to be used for multi-objective 

optimisation (MOO), additional computations are needed see Ref. [27]. Adaptive grids are 

used in some methods such as the one by S. Ghorbanpour et. al. [58], who add an adaptive 

grid based mutation to differential evolution in order to get MOO. Considering the high 

computational cost of numerical methods, such additions mean adding to these costs. 

The adaptive grid added to the proposed method enhances the computational efficiency 

attained by refining the grid on the main areas of interest of a large search space. The 

analytical method can also be implemented with other numerical methods to increase the 

accuracy. 

The lack of robust reconfigurable/agile satellite tasking strategies has been established. 

Despite the recent development of using smaller satellites, hence reducing costs, it would be 

more cost efficient and space sustainable for new emerging users to use the pre-existing 

space population than launching their own satellites. Some of the previous satellite tasking 

methods are ad hoc and not applicable to diverse scenarios or cases.  A graph-theory based 

method is herein proposed for tasking in-orbit satellites to achieve user specific mission 

requirements even in a case where a new user emerges, or if the mission requirements 
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change. The method takes advantage of insights that can be drawn from a graph network of 

satellites in orbit after ground propagation within a given field of regard and the desired 

ground targets. 

 

1.7 Aims and Objectives of the Presented Work 

In relation to the gaps identified in literature, this dissertation addresses the following issues 

and research questions: 

i. Develop a novel fast analytical embarrassingly parallel orbit 

design/determination methodology (a method that parallelises the orbital 

elements and time for robust results). This is developed throughout Chapter 2 of 

this dissertation and highlighted in section 2.2.2. 

ii. Develop a robust orbit design method that gives fast general insights into 

complex search spaces (search spaces that include both prograde and retrograde 

orbits for clearer insights) hence improving on exhaustive search algorithms. This 

is illustrated in section 2.3 where the method is used for a search space 

containing both prograde and retrograde orbits. 

iii. Perform the optimisation of multiple objective functions without a need to re-

simulate valid overflight orbits hence, an added efficiency to computational time 

and cost when considering multiple objective functions. The simulations in 

section 3.3 have been performed without the need to recalculate the orbits. 

iv. Introduce an adaptive method to the developed orbit design method to increase 

its computational efficiency and still obtaining the optimum orbits (this also 

shows that the method can be used with a numerical algorithm once the area of 

interest is identified to increase the results accuracy). This is presented in chapter 

4. 

v. Develop a novel graph theory approach that can be used for tasking satellites for 

different/multiple user requirements with applicability to both new space 

populations and pre-existing space population. This can be used to determine 

optimum satellites for multiple tasks as is shown in chapter 5 of this dissertation. 
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In summary, the work herein proposes an analytical, embarrassingly parallel method that 

aims to fill in some of the gaps identified in literature that are related to previous orbit design 

methods. The developed analytical method determines orbits that are aimed at overflying 

specific target areas. Kepler’s equations and spherical geometry equations are used for the 

calculations that relate the satellite orbit and the ground target points as derived by [67]. 

These equations have been previously used to find orbital solutions and obtain subsatellite 

points for various solutions. [25] for example, used the equations in the designing of their 

analytical method for reconfiguration of satellite constellations using low-thrust 

manoeuvres, and the work developed in this dissertation shares many of their advantages. 

The developed method is novel and a contribution to knowledge as it determines orbits that 

have greater values of an objective function when compared to a previously used method 

(see section 3.1). The results from the proposed method can also be used to optimise 

multiple objective functions without the need to recalculate the orbits for a given search 

space (see section 3.3). The work herein also explores the use of graph theory for satellite 

tasking based on required objective functions (see Chapter 5).  
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Chapter 2 

2 Development of an Analytical Orbit Design Methodology 

This chapter aims to fill in some of the gaps that are identified and highlighted in section 1.6. 

This aim is achieved by developing a methodology that; determines orbits based on desired 

ground target overflight, gives insights to large orbital search spaces with minimum 

computational time and cost, and is applicable to diverse and complex scenarios.  

The proposed methodology is developed from general perturbation techniques and so it is 

analytical. Generally, analytical algorithms give deeper insights to the physical mechanisms 

of a system [29]. The method in this chapter shares this advantage by giving full insights to 

both small and large search spaces, with minimised computational time compared to some 

previous orbit design methods. The method develops previous analytical orbit propagation 

algorithms and uses the general basic equations of motion derived by J.E Harries [67]. 

Compared to some analytical orbit design methods, which make assumptions of a circular 

Earth, the method developed in this chapter includes the Earth’s secular perturbations of the 

first zonal harmonic, J2, for increased accuracy. For the method in this chapter however, other 

secular perturbations such as atmospheric drag are not considered. Validation of the 

developed method’s accuracy is done by analysing the error between ground-tracks of the 

orbits obtained using the proposed method against those from simulating the same orbital 

values on a third-party software which uses numerical methods. This validation is presented 

in section 2.3, and the National Aeronautics and Space Administration’s, (NASA’s), General 

Mission Analysis Tool GMAT is the third-party software used.   

The method developed herein also has an embarrassingly parallel nature which includes 

parallelising time. The factor of making each time-step parallel means that each orbital 

element, i.e., each inclination, right ascension of the ascending node and semi-major axis 

combination is evaluated against each time-step value after epoch; this is further explained 

in section 2.2.2. The embarrassingly parallel nature gives the developed method an added 

advantage over some previously used algorithms as it eliminates the need of re-simulating 

the orbits when optimising them for different objective functions; this is analysed in chapter 

3. 
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2.1 Main Orbit Design Equations 

The method proposed and developed in this chapter is an orbit design methodology based 

on desired ground passes. The method determines the main orbital elements, i.e., the 

inclination (INC), the argument of perigee (AOP), the right ascension of the ascending node 

(RAAN), and the semi-major axis (SMA), by considering sets of known longitudes (LON) and 

latitude (LAT) points that are to be overflown. This study is based on a circular orbit and so 

the Argument of latitude, (AoL), is considered because the argument of perigee is not 

defined. Generally, values of classical orbital elements (COEs) are used to determine orbits 

that facilitate the overflight of specific targets. Unlike traditionally used propagation 

algorithms, and orbit determination methodologies, in this work the target points, i.e., the 

longitudes and latitudes, are used as inputs to determine the orbital elements that satisfy 

overflight. 

Previous work by authors such as C. N. McGrath et. al., [25], give derivations and equations 

for calculating the longitudes and latitudes from orbital elements i.e., ground track 

propagation. A method to reciprocate this is initially studied in this chapter. The algorithm 

takes the equations by Refs. [25, 67] as the initial ground point calculation method, then the 

equations are developed to make the longitudes and latitudes the inputs, and the orbital 

elements satisfying the overflight of these ground points the outputs. Generally, an orbital 

search space considered to facilitate an overflight of a given target would be infinite, and so 

to make the method feasible, a search space constituting the orbital elements and time range 

is also defined. 

2.1.1 Initial Orbit and Ground-Track Propagation Equations 

The initial calculations of the method are based on the ground track propagation equations 

presented in Ref. [67], where the inputs are values of inclination, Argument of Latitude, 

Eccentricity, and the Period (calculated from the semi-major axis). Some of the main 

assumptions applied to the initial development of the method include, 

i. The orbit is circular; Eccentricity (e) = 0, 

ii. The orbit calculation is from epoch, therefore starts at time, t = 0 to a 

given/desired value of t, 

iii. The J2 perturbations are neglected for the initial calculations.  
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The calculation steps are as presented in equation (2.1) – (2.6) which include some basic 

orbital equations.  

As derived from Kepler’s laws by authors such as Ref. [68], the period of the orbit is given as, 

𝑇 = 2𝜋√
𝑎3

𝜇𝐸
                                                                (2.1) 

Where 𝑎 is the semi-major axis and 𝜇𝐸 is the standard gravitational parameter of the Earth. 

From the mean angular velocity also known as mean motion constant [67],  

𝑛 =  
2𝜋

𝑇
                               (2.2) 

the Mean Anomaly is, 

𝑀 = 
2𝜋

𝑇
𝑡                                                                   (2.3) 

The argument of latitude of a circular orbit is equal to the true anomaly, TA, which is the 

same as the Mean anomaly (for a circular orbit), and is given as, 

𝑢 =  2𝜋𝑡

√
4𝜋2

𝜇𝐸
𝑎3⁄
                                                    (2.4) 

And the spherical geometry orbit subsatellite points as derived by [67], is given as, 

𝛿 =  𝑠𝑖𝑛−1(𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛(𝑢))                                                   (2.5)

   

ᴪ = 𝑡𝑎𝑛−1 (
𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢)

𝑐𝑜𝑠(𝑢)
) + 𝛺0 − 𝛺𝑒𝑡0  − (

𝑑𝛺𝑒

𝑑𝑡
−
𝑑𝛺

𝑑𝑡
) (𝑡 − 𝑡0)                               (2.6) 

where 𝛿 is the Latitude, ᴪ is the longitude of the subsatellite points, 𝑡0 is the time at epoch 

(t==0), 𝑖 is the inclination, 𝛺 is the right ascension of the ascending node of the satellite, 𝛺𝑒 

is the right ascension of Greenwich, and (
d𝛺e

dt
) is the relative rotation of the Earth, 𝜔𝑒, 

relative to the orbital plane [67].  

For the initial calculations, the following additional assumptions are made. 

i. the rate of change of RAAN, 
𝑑𝛺

𝑑𝑡
 , is not considered, 

ii. the Greenwich apparent sidereal time (GAST) at epoch, 𝛺𝑒𝑡0 , of the orbit is at 0 

degrees, and the longitude of ascending node at epoch time, given by 𝛺0 is also 

0 degrees. 
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With these assumptions, the subsatellite points are then calculated as, 

𝛿 =  𝑠𝑖𝑛−1(𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛(𝑢))                                                                   (2.7) 

ᴪ = 𝑡𝑎𝑛−1 (
𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢)

𝑐𝑜𝑠(𝑢)
) − 𝜔𝑒𝑡                                             (2.8) 

from equation (2.7) and (2.8) the ground track is propagated and can be plot from the 

subsatellite points. In this work, the simulation is done on MATLAB R2020, and using the 

values presented on Table 2.1, the ground track Figure 2.1 is obtained. The calculation does 

not consider any perturbations and so the ground track presented in Figure 2.1 may be 

accurate for short periods but for long periods, the error accumulates making the inaccuracy 

increase, this is further analysed in section 2.2. 

Table 2.1: Orbital element values used to simulate the initial ground-track. 

Input, units Value 

Inclination, deg 70 

Argument of Perigee, deg 0 

Semi-major axis, meters 7039000 

Earth’s rotation rate, rads/sec 7.292115e-5 

Start time - End time, sec 0 – 10000 

Eccentricity 0 

 

 
Figure 2.1: Initial Ground track from equation 2.8 
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From equation (2.1) – (2.8), the method is further developed to have the latitudes and the 

longitudes as inputs, and the values of the valid orbits in terms of their classical orbital 

elements, as the outputs. The results from both the initial orbit propagation equations and 

the developed method when compared and analysed verify that the developed method 

results are as expected, and this is done in section 2.1.2.  

The development of the inverse method equations is as follows; considering two known 

ground points (𝛿1, ᴪ1), and (𝛿2, ᴪ2), equation (2.7) and (2.8) are, 

       𝛿1 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛(𝑢1))                                         (2.9) 

           𝛿2 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛(𝑢2))                                  (2.10)             

ᴪ1 = 𝑡𝑎𝑛
−1 (

𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢1)

𝑐𝑜𝑠(𝑢1)
) − 𝜔𝑒𝑡1                                 (2.11) 

  ᴪ2 = 𝑡𝑎𝑛
−1 (

𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢2)

𝑐𝑜𝑠(𝑢2)
) − 𝜔𝑒𝑡2                             (2.12) 

Equation (2.11) – (2.12) are simplified to, 

ᴪ1 = 𝑡𝑎𝑛
−1 (

𝑐𝑜𝑠(𝑖) 𝑡𝑎𝑛(𝑢1)

1
) − 𝜔𝑒𝑡1                                (2.13) 

  ᴪ2 = 𝑡𝑎𝑛
−1 (

𝑐𝑜𝑠(𝑖) 𝑡𝑎𝑛(𝑢2)

1
) − 𝜔𝑒𝑡2                             (2.14) 

For the time, 𝑡, the latitude, 𝛿, and longitude, ᴪ , to be the inputs, equation (2.9) – (2.14) are 

rearranged as follows, 

         𝑠𝑖𝑛 𝛿1  
1

𝑠𝑖𝑛(𝑖)
= 𝑠𝑖𝑛(𝑢1)                                                 (2.15) 

                   𝑠𝑖𝑛 𝛿2  
1

𝑠𝑖𝑛(𝑖)
= 𝑠𝑖𝑛(𝑢2)                                        (2.16) 

              𝑡𝑎𝑛(ᴪ1 +𝜔𝑒𝑡1) × 
1

𝑐𝑜𝑠 (𝑖)
= 𝑡𝑎𝑛(𝑢1)                              (2.17) 

𝑡𝑎𝑛(ᴪ2 +𝜔𝑒𝑡2) × 
1

𝑐𝑜𝑠 (𝑖)
= 𝑡𝑎𝑛(𝑢2)                            (2.18) 

Because time, 𝑡, is one of the inputs used to determine the orbital element values, the 

argument of latitude, u, can be written in terms of t as presented in equation (2.4), resulting 
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in having the semi-major axis, a, as an unknown. Equation (2.4), is substituted into the 

latitude and longitude equations, (2.15) – (2.18) as follows, 

   𝑠𝑖𝑛 𝛿1  
1

𝑠𝑖𝑛(𝑖)
= 𝑠𝑖𝑛 (

2𝜋𝑡1

√
4𝜋2

𝜇𝐸
𝑎3

⁄
  )                         (2.19) 

    𝑠𝑖𝑛 𝛿2  
1

𝑠𝑖𝑛(𝑖)
= 𝑠𝑖𝑛 (

2𝜋𝑡2

√
4𝜋2

𝜇𝐸
𝑎3

⁄
  )           (2.20) 

𝑡𝑎𝑛(ᴪ1 +𝜔𝑒𝑡1) × 
1

𝑐𝑜𝑠 (𝑖)
= 𝑡𝑎𝑛(

2𝜋𝑡1

√
4𝜋2

𝜇𝐸
𝑎3

⁄
  )   (2.21) 

𝑡𝑎𝑛(ᴪ2 +𝜔𝑒𝑡2) × 
1

𝑐𝑜𝑠 (𝑖)
= 𝑡𝑎𝑛(

2𝜋𝑡2

√
4𝜋2

𝜇𝐸
𝑎3

⁄
  )  (2.22) 

The latitude equations can be rearranged to calculate the inclination , 𝑖, as follows, 

𝑠𝑖𝑛−1

(

 
 
 

𝑠𝑖𝑛(𝛿𝑛)

𝑠𝑖𝑛(
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄
)

)

 
 
 
=  𝑖                                        (2.23) 

For a single orbit to overfly multiple targets, the inclination does not change. This means that 

for a single orbit,  

𝑠𝑖𝑛(𝛿1)

𝑠𝑖𝑛(
𝑡1

√
𝑎3

𝜇𝐸

⁄
)

= 
𝑠𝑖𝑛(𝛿𝑛)

𝑠𝑖𝑛(
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄
)

= 𝑠𝑖𝑛(𝑖)                                (2.24) 

This can be re-arranged to be, 

𝑠𝑖𝑛(𝛿1) 𝑠𝑖𝑛 (
2𝜋𝑡𝑛

√
4𝜋2

𝜇𝐸
𝑎3

⁄
) = 𝑠𝑖𝑛(𝛿𝑛) 𝑠𝑖𝑛 (

2𝜋𝑡1

√
4𝜋2

𝜇𝐸
𝑎3

⁄
)           (2.25) 
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The equation can be solved for 𝑎 then for 𝑖, if the three inputs, time, Latitude, and Longitude 

are given. 

Using the inclination equation (2.23), the longitude equation can be rewritten in terms of the 

semi-major axis, 

𝑡𝑎𝑛(ᴪ𝑁+𝜔𝑒𝑡𝑛)

𝑐𝑜𝑠

(

 
 
 
 
 
 
 
 

𝑠𝑖𝑛−1

(

 
 
 
 
 
 
 

𝑠𝑖𝑛(𝛿𝑛)

𝑠𝑖𝑛

(

 
 
 
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄

)

 
 
 

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

= 𝑡𝑎𝑛(
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄
  )                (2.26) 

Which can be simplified and rewritten as, 

𝑡𝑎𝑛(ᴪ𝑛+𝜔𝑒𝑡𝑛)

√1−𝐶𝑜𝑠𝑒𝑐(
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄
)

2

𝑆𝑖𝑛 (𝛿𝑛)
2

= 𝑡𝑎𝑛(
𝑡𝑛

√
𝑎3

𝜇𝐸

⁄
  )                           (2.27) 

Equation (2.27) requires inputs of time, latitude, and longitude to find the unknown value, 𝑎. 

This cannot be solved directly as the time of target overflight is unknown and therefore there 

are two unknowns in these equations, i.e., the semi-major axis and the time. For this, a simple 

solver can be used to find one unknown. Alternatively, an appropriate time range can be used 

to solve equation (2.27) for the possible semi-major axis solutions. These semi-major axis 

solutions can then be used, with the chosen time range to solve for the required inclination 

solutions using equation (2.23). From these, three vectors can be obtained, related to time, 

semi-major axis, and inclination. The three vectors can be plotted in 3D space. The projection 

of this line in 3D onto the semi-major axis/inclination plane is a variable time contour of the 

span of possible solutions. To demonstrate that the three vectors obtained can be used to 

give the desired results, the following steps are taken: 

1. A simulation of the initial equations, is done on MATLAB using the values presented 

in Table 2.2, 

2. The values used for step 1 above yield the SSPs, (longitude, latitude), and time results 

presented in Table 2.3, 



Chapter 2                 Development of an Analytical Orbit Design Methodology   22 
 

22 
 

3. These results are then used to check if equation (2.23) – (2.27) generate the expected 

orbit values. One of the SSP Latitude and Longitude values and expected time of 

overflight are selected,  

4. When these are simulated, on MATLAB, the results are calculated and are found to 

be approximate to the expected semi-major axis value of a, ≅ 7700km and inclination 

angle value of ≅70 degrees. This shows that the inverse equation method works 

within a given accuracy level.  

5. The method is further developed to finding the best single orbit without the 

knowledge of time of passage over each point. The three SSPs previously calculated 

are used to simulate this. To show that given a time range, the vectors of time, 

inclination and semi-major axis solutions can be used to determine an orbit that will 

overfly all the SSPs, the simulation results are presented in section 2.1.2. 

Table 2.2: Orbital values used for inputs of the initial method simulation. 

𝑎 (km) 𝑖(deg) �̇�(rad/s) 𝜔(deg) 𝛺𝑒𝑡0(deg) 𝑒 

7700 70 0 0 0 0 

Table 2.3: Three subsatellite points and times obtained from the initial calculations. 

 Latitude (deg)  Longitude (deg) Time (sec) 

1 21.06 6.30 420 

2 46.32 18.48 940 

3 47.71 19.53 970 

 

2.1.2 Analysis of The Developed Analytical Method Equations 

To verify the validity of the proposed method, Equation (2.27) can be used with subsatellite 

point sets that are known to be valid, and this should resolve an orbit that would overfly the 

known ground points at defined times within a given time range. Additionally, for times such 

as, t == 0, there will not be a valid semi-major axis that solves this equation. However, there 

will be a range of times at which a range of semi-major axis will overfly the target. 

Using any one of the combinations of subsatellite points on Table 2.3, equation (2.27) can be 

used to find the number of solutions within a given time span. To verify this, an analysis is 

done using the last set of the SSPs on Table 2.3, (latitude 3 and longitude 3). This analysis of 

(2.27) is done using a solver and by plotting the left-hand side against the right-hand side for 

a range of times, an equality check, of the equation. The plots resulting from this analysis are 

in Figure 2.2 (a) and (b) where the intersections show equation (2.27) time solutions. Figure 
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2.2 (a) shows the equality check for 7700km semi-major axis, for multiple orbits over a period 

of just under a day and it graphically presents the number of solutions that can be obtained 

from equation (2.27). Figure 2.2 (b) gives a graphical view of the equality check for 7700km 

semi-major axis, for just over one orbit showing the number of valid solutions expected for 1 

orbit.  

 
Figure 2.2: Equality check for 7700km semi-major axis, latitude 47.71 deg., longitude 19.53 
deg.; (a) for multiple orbits over a long period (70000 seconds) and (b) for just over one orbit  

Figure 2.2 (a) and (b) show that Equation (2.27) has up to two solutions per orbit for a given 

semi-major axis and, a real solution only exists when, 

1 − csc (
𝑡

√𝑎3 𝜇𝐸⁄
)
2

sin(𝛿)2 ≥ 0            (2.28) 

 which can be re-arranged as 

𝑐𝑠𝑐 (
𝑡

√𝑎3 𝜇𝐸⁄
)
2

𝑠𝑖𝑛(𝛿)2 ≤ 1                                 (2.29) 

Finding the limits allows the solver to be constrained to the correct time span, so 

csc (
𝑡

√𝑎3 𝜇𝐸⁄
)
2

sin(𝛿)2 = 1                                  (2.30) 

which can be rearranged to find time as, 

𝑡 = √𝑎3 𝜇𝐸⁄ csc−1√
1

sin(𝛿)2
             (2.31) 

For further analysis, the first of the previously defined sub-satellite points, from Table 2.3, 

(Latitude = 21.06 deg. & Longitude = 6.30 deg.),  is used to solve equation (2.27) for time at 
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a defined semi-major axis range. The corresponding inclination for each (semi-major axis, 

time) solution can be calculated using equation (2.23). 

At this point three vectors can be acquired: inclination, time, and altitude (H). The altitude is 

a function of the semi-major axis and the Earth’s radius where, 

𝐻 = 𝑎 − 𝑅𝐸                                                              (2.32) 

Where 𝑅𝐸 is the radius of the Earth (6378km).  

The three vectors can be plot in 3D space or 2D space of each. The 2D solutions are presented 

in Figure 2.3. The time – Inclination graph shows that just as in the equations, the time and 

inclination relate in a sinusoidal manner. Figure 2.3 shows the solutions for latitude 

21.06deg., longitude 6.30deg. Whereas Figure 2.4 shows the solutions for latitude 46.32deg., 

longitude 18.48deg. Figure 2.5 then shows the combination of these two solutions and from 

these the solutions of satellites at the orbit Inclinations and altitudes that overfly these two 

ground points can be determined. These are presented and explained in Figure 2.6 - Figure 

2.9 and an explanation given for each.   

 
Figure 2.3: Orbital element solutions for overflights of latitude 21.06deg., longitude 6.30deg.: 
(a) time vs altitude, and (b) time vs inclination. 
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Figure 2.3 (a) shows the possible orbital altitude(s) that can be used to facilitate overflight of 

the given ground point at the inclination(s) given in Figure 2.3 (b). At times of approximately 

20000 seconds after epoch for example, no orbit facilitates overflight of the target. This can 

be seen as there is no altitude nor inclination points corresponding to this time for the 

altitude range and the inclination range selected. This is further clarified when a second 

ground point is considered and the plots from both are compared as in Figure 2.5. To get to 

these figures however, the process to obtain Figure 2.3 is repeated for the set of sub-satellite 

points (Latitude = 46.32 deg. & Longitude = 18.48 deg.). 

 
Figure 2.4: Orbital element solutions for overflights of latitude 46.32deg., longitude 
18.48deg. (a) time vs altitude, and (b) time vs inclination. 

From both Figure 2.3 and Figure 2.4, there are two graphs, (one per ground point), that can 

be plotted against each other and where there is a crossing on the inclination/altitude plane, 

a satellite on that orbit may be said to overfly both points if the time of the two solutions is 

not equal. If an orbit is valid to overfly both ground points, a satellite in that orbit will not 

overfly the two points at the same time after epoch. Figure 2.5 presents the result of plotting 

the two graphs, Figure 2.3 and Figure 2.4, against each other.  
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Figure 2.5: Orbital element solutions for overflights of Ground Point 1 (latitude 21.06 deg., 
longitude 6.30 deg.), Ground Point 2 (latitude 46.32 deg., longitude 18.48 deg.) 

From Figure 2.5, a few solutions, other than the original orbit, are found to be possible. It is 

however worth noting that the inclination is not an exact match, rather it is very close and so 

whilst an exact overflight may not happen, both ground points would likely be visible within 

a certain spacecraft swath width. This will depend on the field of view (FoV) of the on-board 

instrument. The Field of View is influenced by the semi-major axis as presented in section 

2.2.1.2.  

From Figure 2.5, it can be observed that determining the points with the same orbits directly 

from the graph presents a challenge. An algorithm is therefore implemented to be able to 

print out and to also mark the determined orbits for the different ground positions on the 

graphs. These are indicated by the green squares in Figure 2.6 – Figure 2.9 and the valid orbits 

vary depending on the inclination increments used. 

The formulation is based on analysis of ground point 1 and ground point 2 in Table 2.3. The 

altitude at the valid inclinations must be equal for both ground points and the times must be 

different for a solution to be valid. 
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Different scenarios are simulated where the inclination tolerance is varied for each case. As 

the exact values are known for this formulation, it is observed that for an exact overflight 

solution, a tolerance of Inclination +/- 0.001 degrees is the most accurate and it yields the 

graph presented in Figure 2.6.   

 
Figure 2.6: Overflights for Ground Point 1 (latitude 21.06 deg., longitude 6.30 deg.), Ground 
Point 2 (latitude 46.32 deg., longitude 18.48 deg.) (inc. tolerance +/- 0.001 degrees). The 
green squares are the orbits inclinations and altitudes valid for crossing both target points. 

From Figure 2.6, it can be observed that two orbits are found to facilitate overflight over both 

targets. The orbital altitude found is the same for both SSPs and the inclination obtained is 

one a prograde and one a retrograde inclination. This is the altitude and inclinations expected 

hence showing that the method works as expected. For a desired satellite swath width 

allowance, more solutions may be valid, but this depends on factors such as the instrument 

on-board. When the tolerance is set to and Inclination +/- 0.01, more near solutions are 

obtained as shown on Figure 2.7. The near solutions show that for an allowable larger swath 

width, the target points will be viewed by some additional orbits. In the case presented in 

Figure 2.7, there are four orbit solutions. 
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Figure 2.7: Overflights for Ground Point 1 (latitude 21.06 deg., longitude 6.30 deg.), Ground 

Point 2 (latitude 46.32 deg., longitude 18.48 deg.) inclination tolerance 0.01degrees. The 

valid orbits (green squares) are more than when the tolerance was lower.  

Four scenarios are analysed, i.e., when the inclination tolerance is 0.001 degrees, 0.01 

degrees, 0.1 degrees and 0.2 degrees respectively. The solutions for inclination increments 

of 0.1 degrees and 0.2 degrees are presented in Figure 2.8 and Figure 2.9. These figures show 

that the near solutions for 0.2 deg. increments are more. These results for the graphically 

presented solutions are numerally presented in Table 2.4 – Table 2.8. For an inclination 

tolerance of 0.001 degrees, only the known to be valid orbit where the altitude is 1322km, 

the inclination is approximately 70 degrees, and the times are 420 seconds and 940 seconds 

respectively are found as the solutions.  
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Figure 2.8: Overflights for Ground Point 1 (latitude 21.06 deg., longitude 6.30 deg.), Ground 
Point 2 (latitude 46.32 deg., longitude 18.48 deg.) inclination tolerance 0.1 degrees.  

 
Figure 2.9: Overflights for Ground Point 1 (latitude 21.06 deg., longitude 6.30 deg.), Ground 

Point 2 (latitude 46.32 deg., longitude 18.48 deg.) inclination tolerance 0.2 degrees. 
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Multiple near solutions are obtained at a tolerance of 0.2 degrees compared to the lower 

increments as expected. The tolerance in this case is related to the precision of the orbital 

inclination needed to overfly the target.  

Table 2.4: Key for Table 2.5 – Table 2.8  

Time 1 Time 2 Inclination 
1 (deg) 

Inclination 
2 (deg) 

Semi-Major 
Axis 

Time for ground 
point 1 
overflight (sec) 

Time for ground 
point 2 overflight 
(sec) 

Retrograde 
inclination 
(deg) 

Prograde 
inclination 
(deg) 

Altitude for 
targets 
overflight (km) 

Table 2.5:Near solutions at inclination increments of +/-0.2 degrees. 

Time 1 Time 2 Inclination 1 Inclination 2 Semi-Major Axis 

86120 85756 105 75 1222 

355 794 109 71 522 

359 803 109 71 572 

363 812 109 71 622 

371 830 110 70 722 

375 839 110 70 772 

412 921 110 70 1222 

420 940 110 70 1322 

424 949 110 70 1372 

45075 49134 123 57 722 

45075 49134 123 57 722 

3346 21839 132 48 572 

Table 2.6: Near solutions at inclination increments of +/-0.1 degrees. 

Time 1 Time 2 Inclination 1 Inclination 2 Semi-Major Axis 

86120 85756 105 75 1222 

375 839 110 70 772 

412 921 110 70 1222 

420 940 110 70 1322 

424 949 110 70 1372 

3346 21839 132 48 572 

Table 2.7: Near solutions at inclinations of +/-0.01 degrees 

Time 1 Time 2 Inclination 1 Inclination 2 Semi-Major Axis 

420 940 110 70 1322 

424.2 949.4 110 70 1372 

Table 2.8: Near solutions at inclination increments of +/-0.001 degrees. 

Time 1 Time 2 Inclination 1 Inclination 2 Semi-Major Axis 

420 940 110 70 1322 
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From the results presented in the Table 2.4 – Table 2.8, the method of analysing a search 

space to determine orbits based on ground target overflight proves to be valid. The exactness 

of the solutions depends on the number of steps taken/inclination tolerance used. 

Nevertheless, instead of considering an exact point of contact, this method is further 

developed to include a field of view, FoV and considers the swath width. This takes into 

consideration the FoV of an on-board instrument and the method is further developed in 

section 2.2.1.2 to include this. Additionally, J2 perturbations are included in further 

developments of the method. In section 2.2 also, the equations relating to the rate of change 

of RAAN, and the Greenwich Apparent Sidereal Time (GAST), are included in the development 

of the method.  

2.2 Development of Ground-Target Based Orbit Determination Method 

Equations Eliminating Previous Assumptions 

To track a satellite from the earth and to position it in space, [67] use two methods, the vector 

rotation method and the spherical geometry method. The method presented in this chapter 

is focused on the second method, i.e., the spherical geometry method. This method is used 

by [25] in the analytical description of the ground track motion. It has also been used by other 

researchers to enable them to propagate a ground track.  

2.2.1 Main Analytical Equations to Determine the Valid Orbit(s) 

From spherical geometry, the subsatellite latitudes and longitudes of a satellite can be 

calculated, from a known orbit by using the following equations. 

𝛿 =  𝑠𝑖𝑛−1(𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛(𝑢))                         (2.33) 

ᴪ = 𝑡𝑎𝑛−1 (
𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢)

𝑐𝑜𝑠(𝑢)
) − 𝜔𝑒𝑡 + Ω𝑠 + 

𝑑𝛺

𝑑𝑡
𝑡 − 𝛺𝑒𝑡0          (2.34) 

Where 𝛿 and ᴪ are the subsatellite latitudes and longitudes respectively. 𝑖 and 𝑢 are the 

orbital inclination and the argument of latitude respectively. 𝜔𝑒, Ω𝑠 and 𝛺𝑒𝑡0 are the relative 

rotation rate of the Earth, the right ascension of the satellite and the right ascension of 

Greenwich at epoch time, respectively. (Ω𝑠 − 𝛺𝑒𝑡0) is the equivalent to the longitude of the 

ascending node at epoch time[67]. 

The argument of latitude is a sum of the true anomaly and the argument of perigee.  
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𝑢 =  𝜃 +  𝜔              (2.35) 

Where 𝜃 is the true anomaly and 𝜔 is the argument of perigee. 

The orbit being considered is however a circular orbit. For this reason, the argument of 

perigee is zero and so the argument of latitude, AoL, is equal to the true anomaly. This 

therefore means that the argument of latitude can be calculated as, 

𝑢 =
2𝜋𝑡

𝑇
=

2𝜋𝑡

2𝜋√𝑎3 𝜇𝐸⁄
= 

𝑡

√𝑎3 𝜇𝐸⁄
         (2.36) 

Where 𝑇 is the period, 𝑎 is the semi major axis, and 𝜇𝐸 is the gravitational constant of the 

Earth. In the initial methods presented in this chapter, there are assumptions such as not 

considering J2 perturbations as well as assuming the last two terms of the longitude 

calculation to be negligible i.e., (==0). This simplifies the work, but the results incur some 

errors compared to the results from some more accurate methods especially for longer 

periods. This is one disadvantage of using simplified analytical equations. To solve this 

problem and reduce the errors incurred, the assumptions are eliminated only maintaining 

one of the conditions that the orbit is circular, i.e., e=0.  

To compute the errors, the great circle distance between the subsatellite points is calculated. 

This distance is given known as the haversine distance. An example of the errors incurred 

when using a non-perturbed method as compared to a perturbed method is graphically 

represented in Figure 2.10 which gives a haversine distance between the ground tracks 

obtained when including J2  and an unperturbed simulation using different periods. The 

accumulation of errors leads to inaccuracy of the results especially over a long period of time.  



Chapter 2                 Development of an Analytical Orbit Design Methodology   33 
 

33 
 

 

Figure 2.10: (a) Haversine distance between ground-track of orbit when J2 is included and 
when J2 is not included for short period (1-Day), Medium Period (2-Days) and Long period 
(10-Days) and (b) zoomed in graph showing that the distance between the ground-tracks is 
never zero. 

From the haversine distance on Figure 2.10, it is observed that the assumption of no 

perturbations attracts errors regardless of the period being considered. Moreso, Figure 2.10 

(b) shows that using the same propagation values and software (MATLAB), the SSPs of the 

non-perturbed orbit and the perturbed orbit are never equal. In a case of monitoring an area 

such errors can lead to coverage gaps, hence data gaps and even in a case of a target revisit 

schedule.   

Third party software and methods such as SGP4 orbit propagator account for secular and 

periodic orbital perturbations caused by Earth's geometry and atmospheric drag and is 

applicable to near-Earth satellites whose orbital period is short [69]. One such software that 

includes J2 perturbations is used for comparison of the J2 included method developed. The 

software used is NASA’s GMAT, version GMAT R2022a. 

2.2.1.1 Inclusion of Secular Perturbations to Orbital Calculations 

Secular perturbations due to the oblate nature of the Earth must be considered for accuracy 

of orbital results. In this work, the second order perturbations, J2, are considered. This mainly 

affects the period (in the case of a repeating ground track orbit), mean anomaly, hence the 
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argument of latitude and the right ascension of the ascending node. These affect the 

equations of motion as follows, [30, 68, 70, 71] 

The Mean Anomaly, 

𝑀 = 𝑛 = 
2𝜋

𝑇
= √

𝜇𝐸

𝑎3
                           (2.37) 

With the inclusion of J2 perturbations, the mean anomaly changes with time as follows, 

�̅� =
𝑑𝑀

𝑑𝑡
=  𝑛 [1 +

3

2
 𝐽2(

𝑅𝐸

𝑎
)2 (1 − 𝜀2)

−(
3

2
)
(1 −

3

2
𝑠𝑖𝑛2(𝑖)]          (2.38) 

The Right Ascension of the ascending node, 

Ω =  Ω0 + (
𝑑Ω

𝑑𝑡
∆𝑡)                           (2.39) 

For which,  

𝑑𝛺

𝑑𝑡
= − �̅�  [

3

2
 𝐽2(

𝑅𝐸

𝑎
)2 (1 − 𝜀2)−2𝑐𝑜𝑠 (𝑖)]          (2.40) 

The argument of latitude, 

       𝑢 =   𝑢0 + (
𝑑𝑢

𝑑𝑡
∆𝑡)                                             (2.41) 

For which, 

             
𝑑𝑢

𝑑𝑡
=
𝑑𝑀

𝑑𝑡
+
𝑑𝜔

𝑑𝑡
                                                (2.42) 

And, 

𝑑𝜔

𝑑𝑡
= �̅� [

3

2
 𝐽2(

𝑅𝐸

𝑎
)2 (1 − 𝜀2)−(2)(2 −

5

2
𝑠𝑖𝑛2(𝑖))]          (2.43) 

          
𝑑𝑢

𝑑𝑡
= �̅� + �̅� [

3

2
 𝐽2(

𝑅𝐸

𝑎
)2 (1 − 𝜀2)−(2)(2 −

5

2
𝑠𝑖𝑛2(𝑖))]        (2.44) 

The secular perturbation due to the Earth’s oblateness has effects on the semi-major axis of 

a repeat-ground track orbit. It mainly affects the nodal period, defined as the period from 

ascending node to ascending node, and this in turn affects the semi-major axis. The Keplerian 

period, defined from perigee to perigee without considering the perturbations is given as, 
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𝑇 =  
2𝜋

𝑛
 𝑎𝑛𝑑 𝑛 = √

𝜇𝐸

𝑎3
                           (2.45) 

This period is however affected by the oblateness of the Earth as it will change depending on 

the inclination of the orbit as well as the argument of perigee. The period is as defined by 

[33], the anomalistic period or the osculating Keplerian period. When perturbations are not 

considered, this value is the same as the Keplerian period. To obtain the actual period and in 

turn the semi-major axis, J2 should be considered because the nodal period changes 

according to the Earth’s rotation, the Earth’s oblateness, and the argument of perigee. This 

will have effects on the equator crossings as well as the Greenwich meridian cross times. To 

calculate the nodal period, the formula for a circular orbit is given by [33] as; 

𝑇Ω = 𝑇 [1 − 
3𝐽2

2
(
𝑅𝐸

𝑎𝑜
)
2
(3 − 4𝑠𝑖𝑛2(𝑖))]                         (2.46) 

But as derived and explained by ref. [31], the mean values of these osculating semi-major 

axis can be calculated using the formula; 

𝑎 =  𝑎0  {1 − 
𝐽2

𝑎0
2 (1 − 

3

2
𝑠𝑖𝑛2(𝑖))}                       (2.47) 

For a repeat ground track, the effect of this change is mainly the distance to the successive 

equator crossing points. This is influenced by the nodal period and is given by [33] as; 

∆𝜆𝑟𝑒𝑣 = (𝜔 − Ω̇)𝑇Ω                                        (2.48) 

In some previous work however, to maintain a fully analytical solution it is shown that the 

effect of J2 on the semi-major axis, when the period being considered is short and the 

inclinations are high, the effects are minimal and can be neglected. This is mentioned in the 

work by C. N. McGrath et. al.,  [25], who do not consider the changes due to J2 but only focus 

on the propulsive acceleration effects on the semi-major axis during manoeuvres. The effect 

of J2 on the semi-major axis is however considered for the method proposed herein.  

In all cases, the subscript ( 0) denotes the initial value (values at epoch time 0). 

Due to the secular perturbations, equation (2.33) and (2.34) can be rewritten as, 

𝛿 =  𝑠𝑖𝑛−1 (𝑠𝑖𝑛(𝑖) 𝑠𝑖𝑛 ( 𝑢0 + (
𝑑𝑢

𝑑𝑡
∆𝑡)))                           (2.49) 
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ᴪ = 𝑡𝑎𝑛−1 (
𝑐𝑜𝑠(𝑖) 𝑠𝑖𝑛(𝑢0+ 

𝑑𝑢

𝑑𝑡
∆𝑡)

𝑐𝑜𝑠(𝑢0+ 
𝑑𝑢

𝑑𝑡
∆𝑡)

) − 𝜔𝑒𝑡 + (Ω𝑠 +
𝑑Ω

𝑑𝑡
∆𝑡) − 𝛺𝑒𝑡0                         (2.50) 

And for the semi-major axis, when considering a repeat ground track, the equation is, 

𝑎𝑥+1 =
𝜇
1
3⁄

(𝑛𝜔𝐸)
2
3⁄
 [ 1 −

3

2
(−𝐽2) (

𝑅𝐸

𝑎𝑥(1−𝜀
2)
)
2
(1 −

3

2
𝑠𝑖𝑛2𝑖)]

3
2⁄

[1 − 𝐽2 (
𝑅𝐸

𝑎𝑥(1−𝜀
2)
)
2
 
3

2
(𝑛 𝑐𝑜𝑠 𝑖 −

 
3

4
(5 𝑐𝑜𝑠2𝑖 − 1))]

3
2⁄

                    (2.51) 

Where it is iterated to a tolerance where 𝑎𝑥+1 − 𝑎0 < 0.000001 metres and, 

𝑎0 =
𝜇
1
3⁄

(𝑛𝜔𝐸)
2
3⁄
  𝑎𝑛𝑑 𝑛 =  

𝑅

𝐷
              (2.52) 

Where R = number of revolutions and D = number of days – these give the expected repeat 

schedule. From the repeat schedule, 𝑎0 is the desired semi-major axis to obtain the repeat. 

𝑎𝑥+1 is therefore iterated until the difference between it and 𝑎0 is almost zero. This is done 

to get the semi major axis of a repeat ground track orbit while considering the secular 

perturbation, J2. 

Apart from the J2 inclusions, to accurately propagate the ground track and determine 

whether a satellite in an orbit overflies a certain target or not, the field of view or field of 

regard, FoR, must be considered. Especially for data collection, the field of view determines 

the amount of time the overflight takes and so this should be included in the equations for 

added accuracy of the method. Section 2.2.1.2 highlights the addition of the FoV to the 

method.  

2.2.1.2 Extension of Ground-Track Equations to Overflight Based on Swath Width. 

The instrument on board has an impact on the capability of a satellite in some ways such as 

the quality of data received and most of all the collection of the correct data from a target 

area. The collection of data from a target area is dependent on whether the satellite swath 

width is large enough to get views of the target. The FoV also influences the duration that a 

target will be viewed for. This overflight is generally dependent on factors such as the angles 

of the ground, the instrument, the distance from the instrument to the ground, etc. In this 

study, the field of view angle is important because if the earth central angle between the sub 
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satellite point and a target are not within the field of view angle of the instrument, the orbit 

will not be valid for an overflight.  

From the work by [53] and further developed by [57], the effective Earth central angle of a 

given field of view are calculated using the following equations:  

𝑎 = 𝑅𝐸 +𝐻                                                            (2.53) 

𝛾 = 𝑠𝑖𝑛−1 (
𝑎 𝑠𝑖𝑛 𝜂

𝑅𝐸
)                                       (2.54) 

𝜌 = 𝑅𝐸 𝑐𝑜𝑠 𝛾 + 𝑎 𝑐𝑜𝑠 𝜂                                       (2.55) 

𝜆 = 𝑠𝑖𝑛−1 (
𝜌 𝑠𝑖𝑛 𝜂

𝑅𝐸
)                                        (2.56) 

Where 𝛾 is the supplementary angle, i.e., the spacecraft elevation angle, 𝛽, plus 90 degrees, 

𝑎 is the semimajor axis, 𝜂 is the half effective angle (the Field of view angle) which is specified 

by the mission requirements depending on the instrument on board, 𝑅𝐸  is the radius of the 

Earth, 𝜌 is the distance between the satellite and the bounds of the sensor projected onto 

the Earth’s surface and 𝜆 is the effective Earth central angle. These angles and the spherical 

geometry are presented in Figure 2.11. 

 

Figure 2.11: Spherical geometry of the field of view of a satellite 

Using spherical triangles, the angle between the ground point and the subsatellite point can 

then be calculated. If it is assumed that the projection of the view from the satellite to the 

Earth is a circle, an Earth central angle, 𝑑𝑎, can be calculated using spherical triangles and 

using the sub-satellite points and the target points as shown in equation (2.57) [57]. 
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𝑑𝑎 = 𝑐𝑜𝑠
−1 (𝑐𝑜𝑠 (

𝜋

2
− 𝜑1) 𝑐𝑜𝑠 (

𝜋

2
− 𝜑2) + 𝑠𝑖𝑛 (

𝜋

2
+ 𝜑1) 𝑠𝑖𝑛 (

𝜋

2
+ 𝜑2) 𝑐𝑜𝑠( 𝜏1 −  𝜏2))  

                           (2.57) 

Where subscript 1 indicates longitudes and latitudes of the sub-satellite point and subscript 

2 is for the target point. 

The angles calculated from the target and sub-satellite points are then compared to those of 

the desired half-effective angle. If the half-effective angle is greater than the angle from the 

calculation of target points and sub-satellite points, then the satellite overflies the target i.e., 

if 𝜆 > 𝑑𝑎 , then the orbit facilitates an overflight of the target. 

2.2.2 Development of the Proposed Method’s Algorithm Using an Embarrassingly 

Parallel Approach 

Search and optimisation problems can be classified into sequence or parallel, amongst other 

classifications [72]. For some cases, running processors in parallel tend to be more efficient 

than in sequence. This has been found to be true in cases that getting stuck in local optimums 

is a possibility. Parallel methods are also used to save on computational time [72]. 

Parallelisation techniques can be used with algorithms such as, evolutionary algorithms and 

genetic algorithms amongst many other numerical and analytical methods [72, 73]. For some 

methods however, there is still a level of communication between the processes. In some 

cases, the processes are not independent on time. The elimination of this communication 

completely is what in this case is known as an embarrassingly parallel method. In other works, 

it is referred to as a naturally parallel method or pleasingly parallel methods. According to 

Amdahl’s Law, the advantage of using parallel algorithms is limited by the part of the 

computation that ends up being sequential [74]. For generally parallel or almost 

embarrassingly parallel algorithms, the communication between the processes cause a 

significant increase in computational costs [75]. In their work, J.-C. Régin et. al., [76] use an 

embarrassingly parallel algorithm to conduct a search in constraint programming. J.-C. Régin 

et. al., present an Embarrassingly parallel search where they divide their problem into 

subproblems and find it more efficient with average factor gains of over 10. J.-C. Régin et. al., 

extend this work in A. Malapert et. al., [75] where the method then proves to be efficient, 

easy to implement, and has almost no communication between workers.  
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Parallel algorithms can be divided into data division, where the processes are run on each 

batch of data or task division where each worker performs different tasks. In the case of the 

work herein presented, data division is used, where each worker performs the same process 

on different batches of data. 

The simulation of the developed method is done in MATLAB R2022B. The flow diagram of 

this simulation is presented in  

Figure 2.12 which gives the embarrassingly parallel architecture used for propagation.  

The summary of the algorithm is as follows: 

i. The search space is defined with the INC, RAAN and Time, range and increments 

respectively, the target Longitudes and Latitudes and physical constant 

parameters are also given. 

ii. The search space parameters are combined to form a 4-dimensional matrix. From 

the matrix, each of the values are combined to determine if an orbit at a certain 

time facilitates the overflight of a target. For example, if Inclination = 50:1:60 

degrees, Right Ascension of the Ascending Node = 0:1:360 degrees, and Time = 

0:10:86400 seconds, (i.e. the search space is of 50 degrees inclination to 60 

degrees inclination with a step size of one degree, Right Ascension of the 

Ascending node of 0 degrees to 360 degrees in 1 degree step sizes, and time is 

from 0 seconds to 86400 seconds in 10 second increments),  and there is a target 

with a latitude and a longitude of 56 degrees North and 65 degrees West 

respectively, each combination such as an Inclination of 60 degrees, a Right 

Ascension of Ascending Node of 34 degrees, and a time of 400 seconds will be 

analysed against that target. 

iii. Once this is done and the subsatellite point to target Earth central angle is 

obtained it is compared to the effective Earth central angle of the onboard 

instruments’ field of view which can be calculated. If the Earth central angle of 

the SSP to the target point is less than the effective Earth central angle of the 

instrument, then there is an overflight hence that orbit is valid. If it is greater 

however, there is no overflight, and this orbit is discarded. 
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Figure 2.12: Embarrassingly Parallel Method Architecture 

For each value of the inclination, a RAAN value is simulated with a time value. What this 

means is that for example, if the INC range is 50 – 60 degrees in increments of 1 degree, 

RAAN range of 0 – 360 degrees in increments of 1 degree and time range of 0 – 86400 seconds 

in increments of 10 seconds, the simulations will be done 10 × 360 × 8640 =  31,104,000 

times. This is done in parallel then stitched together to give the results. In this work it is done 

using MATLAB R2023b and uses the inbuilt MATLAB Parfor, on an intel core i7 64-bit laptop. 

It can be done using other programming languages, where different processors can be used. 

The algorithm developed based on the embarrassingly parallel approach is as presented in 

Algorithm 2.1. 

Algorithm 2.1: Developed method algorithm 

Inputs: Physical constants, Desired targets (LAT, LON), INC (max, min, increments), 

RAAN (max, min, increments), Time (max, min, increments) 

Outputs: Orbits – Targets relationships and data 

for each RAAN 
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 for each INC 

  for each time 

   subsatellite LON and LAT do// use parallel loop to calculate for each 

RAAN, INC, time combination 

   for each target 

    Earth central angle of the field of view of satellite do// calculate from 

each SSP and target combination 

    storage do// store in a 4D matrix of target, INC, RAAN and Time 

   End 

  End 

 End 

End 

for each target 

 Test if within field of view of instrument do// filter the matrix of field of view for orbits 

that see all targets 

 Stitch the search space together 

 generate and store the orbits and results 

End 

orbits = generated results 

The developed method has an advantage where each of the simulated orbits, (Inclination – 

RAAN) combinations, are simulated for each time. Giving an advantage of having a full view 

of the search space with less computational costs. Also, for different objective functions, 

there is no need to simulate the results again as each orbit result is already independent of 

the time. Nevertheless, the method efficiency depends on the increments used for the search 

space given. Generally, the smaller the increments the more the computational cost, but the 

better the chances of locating global maximums when optimising the results. For this reason, 

an adaptive grid that only refines the most optimum orbits is studied in chapter 4 of this 

dissertation.   

The orbit determination method proposed applies the inverse of Kepler’s equations that 

have been developed. The inputs to this method are the target points and physical constants. 

The search space which includes time, inclination and RAAN ranges are also given for the 

method to simulate in finite time. Depending on the search space size, the method yields 
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thousands of possible orbits that will facilitate overflight of the given targets. A condition that 

the orbits determined must facilitate overflight of all the targets or not, can be applied to the 

method as a filtration to the results obtained. The next step in this work is therefore 

optimising the orbits based on the specific requirements. In Chapter 3, different objective 

functions are used to optimise the orbital results. Depending on the operator requirements, 

the objective functions can be selected and optimisation done without the need for a re-run 

of the simulations. For this work the studies include the number of times that a satellite in 

an orbit views the targets and the duration of view of the targets within a given period of two 

days. One of these objective functions is compared to some previous work as a validation of 

the developed method; see section 3.1.  Section 2.3 gives a presentation of the simulation of 

the method. Throughout the work, unless otherwise stated, the physical constants used are 

as presented in table 2.9. 

Table 2.9: Simulation Physical Search Space Parameters used throughout the thesis (unless 
otherwise stated). 

Parameter Symbol Value Units 

Revolutions R 29 Cycles 

Number of days D 2 Days 

Radius of the Earth RE 6,378,000 Meters 

Half Effective Angle Η 20 Degrees 

Start Time t0 00:00:00 1 January 2017 Julian Date 

Greenwich Hour Angle Ωet0 100.84 Degrees 

Earth’s rotation Ω 7.292106590880652e-05 Rads/sec 

Standard gravitational parameter of 

the Earth 

μE 3.986004418e14 M3/s2 

Earth′s gravitational zonal harmonic J2 1.0827e-3  - 

 

2.3 Developed Method Simulation, Results and Analysis 

This section presents the results, analysis, and discussions obtained from simulating the 

method described in section 2.1 – 2.2. The simulations, results and analysis given in this 

section are in the following sequence: 

i. The main simulation of the method is done and the orbit solutions obtained are 

given. 
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ii. The orbits are simulated from two different angles; the first is when a selected 

orbit must facilitate overflight of all targets at least once, and the second, is that 

an orbit is selected if it facilitates overflight of any one of the targets at least once. 

iii. Insights obtained from the results are presented and some advantages of using 

the proposed methods as seen in the results are highlighted. 

iv. Justification of the added accuracy when including J2 perturbations to the orbit 

determination methodology is given. 

v. Method error analysis is done using a third-party software. 

2.3.1 Simulation of the Proposed Method and the Results Obtained  

Using the developed method algorithm described in section 2.2, the simulation is done using 

MATLAB R2022b. The inputs to the simulations as required by the method are, orbital search 

space parameters, physical parameters, and desired ground targets. The inputs used for the 

simulations in this section are presented in Table 2.10 – Table 2.11 for the orbital search 

space and the targets respectively.  The physical parameters used are presented in Table 2.9. 

Table 2.10: Search Space parameters giving the range and increments of the inputs. 

Parameter Range Increments Units 

Inclination 50-130   0.05  Deg 

Right Ascension of Ascending Node 0-360  0.5  Deg 

Time (From Epoch) 0 – 172800 10 Sec 

    
Table 2.11: List of targets required to be overflown. 

Target City Longitude, deg Latitude, deg 

1 Moscow 37.4 55.5 

2 London 0.1 51.3 

3 Peking 116.2 39.6 

4 Washington, D.C -77.0 38.5 

5 Los Angeles -118.2 34 

6 Miami -80.1 25.5 

7 Hong Kong 115.1 21.2 

8 Rio -43.2 -22.5 

9 Sydney 151.1 -33.5 

10 Buenos Aries -58.3 -34.4 
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These 10 geographical target locations are presented in Figure 2.13.  

 

Figure 2.13: Global view of the 10 Targets Used for the simulation of the developed 
analytical method in this section. 

The developed method algorithm is simulated using the given search space values, physical 

constants values and targets. First, the orbits that facilitate overflight of any of the given 

targets are determined. The orbital results from these are graphically presented in Figure 

2.14 in terms of the inclination and Right Ascension of the Ascending Node values. The black 

and shaded parts show the inclination and right ascension of the ascending node values of 

orbits that have been determined to facilitate overflight of the targets. 

 
Figure 2.14: Solutions of the orbits, (Inclination and RAAN), which can facilitate the overflight 
of any of the targets at least once in 2 days. 
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From Figure 2.14, it is evident that within the given search space, most orbits can ensure 

overflight of at least one of the desired targets at a certain time after epoch. There are, 

however, some orbits that at no given time will they facilitate a view of any the targets within 

the duration of 2 days. The results need extra analysis to determine the optimum orbits 

depending on the mission requirements. Insights such as which targets will be overflown by 

satellites on which orbits, which satellites overfly the targets for longer durations of time, etc 

need further analysis and querying of the results. This analysis is presented in the Case 

Studies section of this dissertation, chapter 3. 

An advantage of this method being analytical, is a simplified analysis of a ground-track shift 

using the longitude values. A RAAN-shift while maintaining the shape of the ground-track and 

the other orbital values can be achieved by changing the epoch time. For example, when the 

start date is set to 1st January 2017 00:00:00, UTC Gregorian time, the longitude of the 

ascending node at epoch time, in this work referred to as the Greenwich Apparent Side Real 

Time (GAST) is calculated as 100.8 degrees. The GAST value indicates an addition of a factor 

of 100.8 degrees to the longitude calculation and if this value is set to zero, the ground-tracks 

will have a similar shape but there will be a shift in the longitudes hence RAAN. To verify this, 

a simulation is performed using a GAST of 100.8 degrees, 70 degrees and 0 degrees. The 

analysis is done for search space parameters presented in Table 2.12, with physical 

parameters and targets previously presented in Table 2.9 and Table 2.11, respectively. The 

results for these simulations are presented in Figure 2.15 which shows the differences 

between orbits obtained when using the different GAST values. 

Table 2.12: Search Space parameters used for the different GAST values 

Parameter Range Increments Units 

Inclination 50-80   0.2  Deg 

Right Ascension of Ascending Node 0-270  1  Deg 

Time (From Epoch) 0 – 172800 10 Sec 
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Figure 2.15: Inclinations and RAANs of orbits that were found after simulating GASTs of (a) 0 
degrees,  (b) 100.84 degrees, and (c) 70 degrees on the bottom left. 

From Figure 2.15, the impact of the GAST value on the orbit solutions can be observed. At 80 

degrees inclination for example, when RAAN is 0 degrees, there is an overflight of at least 

one target by a satellite on those orbits, when the GAST is 0 and 70 degrees, but when the 

GAST is 100.84 degrees, there is no overflight.  

To further analyse the effect of the GAST and the advantage in terms of using the presented 

method, a ground-track comparing the different GAST values is presented in Figure 2.16. This 

figure shows that the main effect is a shift of the initial ground track longitude. To produce 

the ground track, one of the calculated orbits obtained when GAST = 100.84 deg. is used. The 

orbital values and the time span are as presented in Table 2.13. From these results, it can be 

observed that the orbital solutions are dependent on the reference epoch time and to get to 

a target, a ground-track shift can be achieved using the GAST. This is shown by the shift in 

ground tracks as the GAST value changes.  

Table 2.13:  Orbital element values used to simulate the difference in ground-tracks for 
different GAST values. 

Parameter Inclination RAAN Time Span 

Value 56.60 deg 213.01 deg 7200 sec 
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Figure 2.16: Ground tracks of different GAST values when all other orbital elements are the 
same 

From this analysis, it is observed that a ground track shift using the starting time can ensure 

a pass over a desired target. The difference in longitude to get to a target in case an orbit 

does not facilitate its overflight, can be calculated. This may determine how much the ground 

track’s starting longitude needs to be shifted to ensure an overflight. The case presented in 

Figure 2.16 uses an orbit that facilitates the overflight of the targets with a GAST of 100.84 

degrees; when the orbit is shifted however, i.e., using a different GAST, some of the targets 

viewed by the GAST 100.84 degrees orbit are not viewed. This concept of shifting ground 

tracks to get the desired orbits has been studied by scholars such as C. Circi et. al., [21] who 

use a sliding ground track method to get to their desired orbit. C. Circi et. al., do this by 

implementing manoeuvres in inclination and altitude. The method developed in this chapter 

can therefore provide guidance on an orbit that would require shifting the RAAN instead and 

this can be done as future work. Generally, this analysis shows that the derived method can 

be an ideal guide for, orbit designers, satellite orbit determination, and the fact that it is fast 

and gives general insights, it saves on computational time and ideally computational costs.  

Some valuable initial insights can be drawn from the results as it shows the full search space 

solutions. The errors and validation are however analysed in section  2.3.2 and 3.1 of this 



Chapter 2                 Development of an Analytical Orbit Design Methodology   48 
 

48 
 

dissertation. To show an application of the results obtained from the method, a condition 

that all determined orbits must facilitate overflight of all ten targets at least once is imposed. 

The full simulation does not need to be re-run but an algorithm that includes this condition 

is added. From this, the full search space solutions of the determined orbits are graphically 

given on Figure 2.17 in terms of the orbit Inclinations and the RAANs. The values of the search 

space, the targets and the physical values are as in, Table 2.10, Table 2.11, page 43, and Table 

2.9, page 42, respectively. 

  
Figure 2.17: Solutions of orbits, (Inclination and right-ascension combinations), which 
facilitate a view of all the targets at least once in 2 days. 

Figure 2.17 illustrates the orbital solutions that provide at least one overflight of all ten 

targets within 48 hours of epoch time. Due to the condition that the determined orbits must 

facilitate overflight of all targets, the solutions are fewer than those that overfly at least one 

of the targets. This shows that the method gives results that are logical. From the results 

presented in Figure 2.17, it can also be observed that satellites on some orbits below 55.5 

degrees inclination are found to view all the targets but that no orbits below approximately 

53.4 degrees inclination enable the view of all the targets. This can be attributed to the fact 

that the highest latitude target point is target 1, Moscow, which is at 55.5 degrees latitude. 

Due to the field of view angle of the instrument selected, i.e., 20 degrees, at an inclination of 

53.4 degrees, target 1 is viewed. This again shows that the method logically works as 
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expected. Some insights can be drawn from these results. One is that even above an 

inclination of 55 degrees, there are some inclinations that do not view all the targets, and 

those that do, have some RAAN values that do not view all the targets. This can be quite a 

useful insight to an operator or for certain satellite tasking purposes as well as revisit orbit 

designs.  

Another insight is that satellites on more orbits that are between inclination 50-60 degrees 

and approximately 120-130 degrees, view all the targets at least once than inclinations above 

60 degrees and below 110 degrees. Generally, changes in inclination require more fuel and 

change in velocity, Δ-V, increase for such manoeuvres. It is therefore more viable to change 

the RAAN than changing the inclination. At some Inclinations also, some RAANs do not 

facilitate the viewing of all the targets but when the RAAN changes, they eventually do. This 

shows that if the inclination, semi-major axis and other classical orbit elements are held 

constant, the drift in RAAN will cause it to eventually view the targets again without using 

much fuel. This however depends on the type of mission as some missions require either a 

specific revisit or in cases of emergencies, it requires exact overflight at specific times. The 

change of RAAN with time can be computed using equation (2.40). Taking for example an 

Inclination = 56.9 degrees, Semi-major axis of 7042.1 km, and physical constants same as the 

ones on Table 2.9 the rate of change of RAAN and other values can be calculated. In this 

example, the rate of change of RAAN per second is calculated to be -4.45e-05 degrees per 

second. The change of RAAN per day is therefore 3.84 degrees. 

From this, analysis, if RAAN starts at 0 degrees, it will take approximately 93.57 days for it to 

be at 0 degrees again in an ideal scenario. Further analysis and simulation of this using third 

party software gave 91 days for the RAAN to be equivalent to the epoch RAAN value. The 

proposed method can therefore give further insights into what orbital elements to change to 

achieve overflight of the desired targets. 

2.3.2 Justification of Including J2 to the Proposed Method Calculations 

In section 2.3.1, the full developed method while including the J2 earth’s oblateness 

perturbation is simulated. In section 2.2 on the other hand, the haversine distance between 

a perturbed orbit and an orbit using the same orbital elements but without considering J2 is 

given. In this section, further analysis is done on the results obtained from the method 

developed in this dissertation when J2 is included in the calculations and when J2 is not 
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included. A comparison of the two is used to show the impact of not including the 

perturbation in the developed method. For this, three target points are considered. The input 

orbital parameters, the targets, and the physical constants are presented in Table 2.14, Table 

2.15 and Table 2.9, respectively.  

Table 2.14: Search Space parameters, the increments are now 0.2 degrees for inclination 
and 0.5 degrees for right ascension of the ascending node. 

Parameter Range Increments Units 

Inclination (deg.) 50-70   0.2  Deg 

RAAN (deg.) 0-360  0.5  Deg 

Time (From Epoch) (sec.) 0 – 172800 10 Sec 

    
Table 2.15: List of targets used for simulation of inclusion and exclusion of J2, Earth secular 

perturbations. 

Target Description Longitude, deg Latitude, deg 

1 Celtic Park, Centre spot -4.2055 55.8497 

2 Fenway Park, Home Plate -71.0977 42.3462 

3 Eden Park, Centre Spot 174.744 36.8749 

From the simulations, Figure 2.18 and Figure 2.19 which show the orbit solutions when 

perturbations are considered and when they are not is obtained.  

 
Figure 2.18: Inclinations and Right-ascensions of orbits that enable the view of all targets at 
least once when no perturbations are included. 
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Figure 2.19: Inclinations and Right-ascensions of orbits that enable the view of all targets at 

least once when J2 perturbations are included. 

From Figure 2.18 and Figure 2.19 presented, it is evident that when J2 is not included, there 

are not only RAAN errors but inclination errors are evident as well. The impacts of the errors 

are illustrated when considering mission objectives such as maximising the mean number of 

target overflights. Some of these differences are highlighted in the 3D plot presented in 

Figure 2.20 showing the inclination, RAAN, and the mean maximum number of overflights of 

target point 1. Table 2.16 highlights some of these major differences in orbits for the results 

when J2 is included and when not for the different target locations. The considered results 

are those within an inclination range of 50-60 degrees. However, as the period of simulation 

is short, set to two days, atmospheric drag is not considered despite the orbits being Low 

Earth Orbits, LEO. For greater periods however, this would be considered for increased 

accuracy. 

Table 2.16: Differences observed for orbits when J2 is included and when J2 is not included. 

Parameter Value with J2 Value without J2 

Number of orbits determined 46381 46391 

Maximum number of target 1 overflights 7 6 

Maximum number of target 2 overflights 3 4 

Maximum number of target 3 overflights 2 3 
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Figure 2.20: 3D graph of Inclination, RAAN and number of times viewed showing the 
differences when J2 is present and J2 not present for target point 1. 

For the other targets, as well, there are expected errors in the calculations when J2 is not 

included compared to the simulation when it is. Other errors are in the duration of view, 

which is expected due to different orbits being found, but these are further presented in the 

appendix section of this dissertation. This shows that the inclusion of J2 is necessary for the 

accurate usage of the developed method and more so when target specific missions are being 

considered. 

2.3.3 Error Analysis Using Third Party Software 

As research for more accurate methods for both orbit and ground-track propagation are still 

on going, numerical methods are said to have a higher accuracy but also higher 

computational cost than analytical methods. This section gives an analysis of the accuracy 

errors incurred from the presented method by comparing the calculated results to ground-

track propagation done using a third-party software. The analysis in this section uses NASA’s 

GMAT, version GMAT R2022a. The numerical propagator of GMAT is set to use RungeKutta89 

and the JGM-3 gravity model of degree 70 and order 70. The targets used are the 10 targets 

presented in Table 2.11 and the simulation is done using the orbital search space values on 

Table 2.17.  
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Table 2.17: Orbit values used for simulation, in this case the RAAN increments are 1 degree. 

Parameter Value(increments) 

Inclination Range (Increments) (deg.) 50-60 (0.2)  

RAAN Range (Increments) (deg.) 0-360 (1)  

Time Range (Increments) (sec.) 0-172800 (10)  

Some of the orbits that the method identifies to enable a view of all the targets are also found 

to overfly all the targets on GMAT. To enable the simulation of an exact scenario used in the 

method to be used on GMAT, the target minimum elevation angle which is related to the 

spacecraft elevation angle is calculated to be 67.82 degrees. The calculation used to obtain 

this angle is presented in Appendix C. To illustrate the validity of the method, two orbits that 

the method yielded are selected. The total duration of view of the targets by the orbits in 48 

hours is calculated. The selected orbits and their total duration of view values both from the 

method and GMAT are presented in Table 2.18. The two orbits are found to have almost the 

same total duration of view values when calculated from the developed method and when 

simulated on GMAT.  

Table 2.18: Solutions found for total duration of view by the highlighted orbits when 
ground-track is propagated by the developed analytical method and on GMAT (2 orbits) 

Parameter GMAT 

Developed 

method GMAT 

Developed 

method 

Semi-Major Axis (km) 7040.5 7040.5 7040.9 7040.9 

Inclination (deg) 55.2 55.2 55.6 55.6 

RAAN (deg) 150.0074 150.074 225.112 225.0112 

Duration of view of targets (sec) 830.407 830 809.1896 810 

These results of the ground track from GMAT and the ground track from the method for the 

55.2-degree inclination orbit are presented in Figure 2.21 and Figure 2.22 respectively.  
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Figure 2.21: Ground track simulated from GMAT propagation for orbit with 55.2 deg. 
Inclination and RAAN 150.074 deg. 

 
Figure 2.22: Ground track plot from MATLAB simulation for orbit with RAAN==150.0074 deg. 
and Inclination==55.2 deg. 
 

The differences in longitude and latitude are not obvious from the ground track plots. The 

results from both simulations are therefore analysed further by considering the longitudes 

and latitudes individually. The start point from the two methods are similar in epoch 

longitude as the GAST used is the same for both. The latitudes on the other hand are found 

to be very similar and have a positive covariance diagonal and a correlation factor of 

approximately 1 whereas the longitudes have a negative covariance diagonal and a 

correlation coefficient of -0.0284 which is approaching zero.  
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Table 2.19: Covariance and correlation comparison of longitude and latitudes from method 
ground-track and GMAT. 

Method Longitude result Latitude result 

Covariance -306.00 1376.057 
Correlation -0.0284 0.9865 

When ground-track results from the proposed method and the GMAT longitudes and 

latitudes are analysed and compared for errors, it is observed that the method and GMAT 

have some differences in both latitude and more so in longitude. To further analyse the 

differences, and hence validate the developed method, the haversine distance between both 

simulations are also calculated using the equation for haversine distance, given as, 

𝐻𝑑 = 2𝑅𝐸 𝑠𝑖𝑛
−1 [√𝑠𝑖𝑛2 (

𝛿1− 𝛿2

2
)  + 𝑐𝑜𝑠(𝛿1) 𝑐𝑜𝑠(𝛿2) 𝑠𝑖𝑛

2 (
𝜓1− 𝜓2

2
)]                         (2.58) 

From this analysis, Figure 2.23 shows the difference in the distance of SSPs between the 

method results and the GMAT simulation is obtained. It is observed from Figure 2.23 that the 

differences in ground distance between the simulations of both methods are no more than 

20km. The results of the errors in distance are due to the longitude differences. This can be 

due to the ground-track simulation using an analytical method and a numerical method 

(GMAT) hence the differences in methods used, not limited to but including the error models 

used.  

 

Figure 2.23: Haversine distance differences between the orbit ground track from the 
developed analytical method and GMAT simulation. 



Chapter 2                 Development of an Analytical Orbit Design Methodology   56 
 

56 
 

Other orbits are also compared, and, in some cases, the method found some orbits enabling 

the viewing of all the targets but when simulated on GMAT do not view some targets and 

have a larger value of the duration of view. This can be attributed to the differences in the 

methods of simulation, the increments used for the presented method, as well as some 

errors that may occur when using an analytical method compared to using a numerical 

method. Based on this analysis however, the ground-track errors of the method can be 

identified and are not too extreme. The difference in propagation methods and possibly 

equations used for the propagation and more so, the methods used for ground-track plotting 

may be the reasons for these errors. This is further analysed in appendix D. 

 

2.4 Chapter Summary 

A method that determines orbits that can overfly a given number of desired ground passes 

has been developed in this chapter. The method is analytical as well as embarrassingly 

parallel in nature. It is robust and applicable to large search spaces. In section 2.3, the method 

has demonstrated capabilities of determining orbits given both prograde and retrograde 

search spaces. The key novelties obtained from the development of the method are 

contributing a novel method that can determine orbits for a given set of ground points using 

analytical equations and minimising assumptions by including the J2 secular perturbation. 

The accuracy of the method has also been studied by doing an error analysis against a third-

party software, GMAT, that is used by orbit designers to propagate their orbits.  A case study 

that would include the atmospheric perturbations may be included to further develop the 

method’s accuracy. The method has filled the gap in literature of an analytical ground-track 

propagator that determines orbits based on desired overflights.  

  



Chapter 3                Validation and Case Study Applications of the Proposed Method   57 
 

57 
 

Chapter 3 

3 Validation and Case Study Applications of the Proposed 

Method 

Some previous methods for orbit determination and design use single objective function 

optimisation [77]. More recently the need for multi-objective function optimisations (MOOs), 

has been realised [78]. Some MOOs are high-dimensional and dynamic hence challenging to 

the performance of some algorithms [78]. In general, most realistic scenarios call for MOO. 

For the study of multi-objective functions, scholars use methods such as, Genetic Algorithms 

(GA), improved GA’s, Differential Evolution, and other Evolutionary Algorithms, amongst 

others [58, 77, 79-81]. As presented in studies done by authors such as Refs. [78, 81], all these 

algorithms have their advantages and disadvantages depending on the optimisation. This 

chapter presents the optimisation of the orbits determined by the developed analytical orbit 

design method. Optimisation is done with single-objective function then with multiple 

objective functions. The embarrassingly parallel nature of the presented method makes it 

more robust in that the determined orbits are not objective function based and so even when 

the objective function changes, there is no need to re-simulate the valid orbits. This makes 

the method robust and ideal even for multiple objective function optimisation. A validation 

of the developed method is first presented using a single objective optimisation comparison.  

 

3.1 Validation of the Results of the Proposed Method by Comparison with 

Results from Previous Methods 

To validate the presented method, a comparison is done with the results from a previous 

method, which uses an improved self-adaptive differential equation, (SA-DE), to determine 

the orbit that maximises the total duration of view over multiple targets [57]. W. Yao et. al., 

[57], use a double SA-DE algorithm with a random mutant to determine the orbit that 

facilitates an optimum total duration of view of 10 targets. The targets W. Yao et. al., use are 

the 10 targets presented in section 2.3, Table 2.11 but they assigned a priority value for each 
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target. The method by W. Yao et. al., improves on previously used numerical methods by 

enabling them to jump out of local optimums due to the introduction of a random mutant. 

The methodology developed in Chapter 2 of this dissertation aims to improve this search for 

optimum solutions by using analytical equations to determine orbits that facilitate overflight 

of the targets, and to give an overview of solutions of the entire search space. The duration 

of view objective function is used for this validation. The objective function is formulated as 

follows just like in W. Yao et. al., [57]: 

𝐽𝑡 = ∑
𝑃𝑖(∑ 𝑡𝑖,𝑗

𝑁2
𝑗=1 )

10
  𝑁1

𝑖=1                               (3.1) 

 𝐽𝑏 = ∑ 𝑃∗. 𝑜𝑖
𝑁1
𝑖=1                                                                   (3.2) 

𝐽𝑡 represents the priority weighted part of the objective function and in this case the division 

by 10 is because there are 10 targets being overflown. 𝐽𝑏 is a binary function of the objective 

function indicating whether a target has been overflown or not. Where 𝑜𝑖 indicates whether 

a target has been visited or not in binary i.e., for a visit 𝑜𝑖 = 1 and when not visited 𝑜𝑖 = 0 ; 

𝑃∗ is then assigned 100 if the target needs to be visited. 𝑡𝑖,𝑗  represent the duration of time 

each visit is, per target, 𝑃𝑖, is the priority value assigned to each target, and 𝑁1,𝑁2 are the 

number of targets and the times of visit for each target respectively. The objective function 

in W. Yao et. al. is then optimised using, 

𝑚𝑎𝑥(𝐽) =  𝐽𝑡 + 𝐽𝑏                                                (3.3) 

For the comparison however, as all the 10 targets need to be visited at least once, the 

objective function only considers max (𝐽𝑡) as 𝐽𝑏 (== 1000) for all orbits (i.e., all orbits visit all 

targets at least once).  

The parameters for this simulation are, physical constants in Table 2.9, search space 

parameters presented in Table 3.1 and the targets with their priority values presented in 

Table 3.2. 

Table 3.1: Search Space parameters for validation of the developed method 

Parameter Range Increments Units 

Inclination 50-130   0.05  deg. 

Right Ascension of Ascending Node 0-360  0.05  deg. 

Time (From Epoch) 0 – 172800 10 sec. 
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The desired targets with their priority values as per the work of W. Yao et. al., [57] are as 

follows, 

Table 3.2: List of targets and the priority values used for the objective function analysis and 
comparison with previously used methods’ results. 

Target City Longitude, deg. Latitude, deg. Priority values  

1 Moscow 37.4 55.5 0.72 

2 London 0.1 51.3 0.85 

3 Peking 116.2 39.6 1.00 

4 Washington, D.C -77.0 38.5 1.00 

5 Los Angeles -118.2 34 0.85 

6 Miami -80.1 25.5 0.73 

7 Hong Kong 115.1 21.2 0.68 

8 Rio -43.2 -22.5 0.62 

9 Sydney 151.1 -33.5 0.90 

10 Buenos Aries -58.3 -34.4 0.65 

The results obtained from the objective function simulation of the duration of view, 𝐽𝑡, are 

presented in Figure 3.1. From this analysis, the solution scope for the optimum  𝐽𝑡 value orbit 

is large and the optimum and sub-optimum values are very close to each other. This can 

easily lead some numerical methods to getting stuck in local optimums [24].  

Unlike previous methods used, the developed method includes a search space of both 

retrograde and prograde orbits. Retrograde orbits prove to have higher objective functions 

than prograde orbits. In the work by W. Yao et. al., [57], they only consider the prograde 

orbits and this may be due to the computational time needed. There is a gap in literature on 

the analysis of retrograde orbits for objective functions such as the duration of overflight 

over targets. This shows that the presented method is an improvement of some previously 

used orbit design methods. As a direct comparison to the method by Ref. [57] therefore, a 

comparison of the prograde orbit results is included for validation of the method herein 

developed.  
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Figure 3.1: Inclination and RAAN of determined orbits with the heat plot representing the 
duration of view objective function values where optimum duration of view orbits are the 
yellow spots in graph (a) and zoomed into on subgraph (b) and (c).  

Comparing the results from the developed method and that of Refs. [53] and  [57], the 

methodology developed in this dissertation find a higher objective function value. For [53] 

and [57], the two optimum objective functions are  𝐽𝑡 values of 79.43 and 80.11 respectively. 

The priority values used for each target and the physical constants are the same for all 

methods and the result of this analysis is presented in Table 3.3. 

Table 3.3: A comparison of objective functions of duration of view calculated from 
propagation by developed analytical method and previously used numerical methods. 

Methodology Objective Function Value (𝐽𝑡) Inclination, deg. RAAN, deg. 

[57] 80.11 55.51 125.69 

[53] 79.43 55.52 30.20 

Developed Method 
Optimum orbit 

94.16 126.20 111.21 

For a more direct comparison and to show the developed methods capabilities, the 

inclination of 55.51 +/- 0.05 deg. is simulated using the method developed in this study. 

When an optimisation of the orbits obtained is done, a more optimum duration of view orbit 

is obtained. The optimum objective function value is 84.47 at an inclination of 55.55 deg. and 

a RAAN of 54.20 deg. This can be attributed to the embarrassingly parallel nature of the 

developed method which eliminates the possibility of getting stuck in local optimums. It is 

also impacted by the refinement used in the simulation. The developed method calculates 

an optimum viewing duration for prograde orbits that is more than 30 seconds longer than 
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the results obtained by the previous numerical methods. Additionally, when simulating the 

orbits of the referenced methods on third-party GMAT, the optimum 𝐽𝑡 value orbit presented 

by Y. Chen et. al., [53] does not enable overflight of target 8, and the optimum 𝐽𝑡 value orbit 

presented by W. Yao et. al, [57], enables overflight of all the targets but almost misses target 

4. This shows the propagation errors whilst using different methods. With the GMAT 

simulation, the orbit calculated by the method developed in this dissertation have a greater 

duration of view compared to the referenced methods. The results from the presented 

method prove to determine/calculate more optimum 𝐽𝑡 orbits. This shows that the method 

is an improvement of some previous orbit design methods. The methods by Y. Chen et. al. 

and W. Yao et. al, also include J2 perturbations and do not include the atmospheric drag; they 

also use the same epoch time as in the developed method presented.  

 

3.2 Case Study 1: One Objective Function  

From the simulation of the presented method as given in chapter 2, the results are analysed 

and optimised based on different objective functions without a need to re-run the orbital 

simulations unless the inputs, i.e., the search space values (range or increments), the target 

points, or the physical constants, change. For the case studies, the targets and their three 

assigned priority values are presented in Table 3.4. The search space physical constants are 

as in Table 2.9, with a GAST of 259.16 degrees, and the orbital search space parameters are 

presented in Table 3.5. 

Table 3.4: List of targets with additional objective function priority values. 

Target City Longitude, 
deg 

Latitude, 
deg 

Priority 
values 1 

Priority 
values 2 

Priority 
values 3 

1 Moscow 37.4 55.5 0.72 0 2 

2 London 0.1 51.3 0.85 1 1 

3 Peking 116.2 39.6 1.00 1 1 

4 Washington, D.C -77.0 38.5 1.00 1 1 

5 Los Angeles -118.2 34 0.85 1 1 

6 Miami -80.1 25.5 0.73 1 1 

7 Hong Kong 115.1 21.2 0.68 1 1 

8 Rio -43.2 -22.5 0.62 1 1 

9 Sydney 151.1 -33.5 0.90 1 1 

10 Buenos Aries -58.3 -34.4 0.65 1 1 
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Table 3.5: Search Space parameters used to determine valid orbits. 

Parameter Range Increments Units 

Inclination 50-130  0.2  Deg 

Right Ascension of Ascending Node 0-360  0.2  Deg 

Time (From Epoch) 0 – 172800 10 Sec 

    

3.2.1 Mean Number of Times Seen Objective Function: 

The first objective function in this study is based on the number of times that a target is seen. 

For this first analysis, no target is prioritised over the others and from the method, the 

determined orbits are those that facilitate overflight of at least one of the targets. The 

equation used for the optimisation is, 

𝐽𝑡𝑠 = ∑
(∑ 𝑡𝑖,𝑗
𝑁2
𝑗=1 )

10
  𝑁1

𝑖=1                 (3.4) 

Where 𝐽𝑡𝑠  is the calculated mean number of times seen objective function value of each 

orbit, and 𝑡𝑖,𝑗 is a visit of each target is overflown by each orbit. 

From the simulation and the calculations, the optimisation heat plot results obtained for the 

mean number of times of view facilitated by each determined orbit are presented in Figure 

3.2. It can be observed from Figure 3.2 that prograde orbits give lower mean number of times 

in view values than retrograde orbits. The optimum 𝐽𝑡𝑠 value and the associated orbit 

Inclination and RAAN are given in Table 3.6. 
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Figure 3.2: Inclination and right ascension of orbit heat plot showing the mean number of 
times of view (objective matrix value) of each orbit when the targets are viewed without 
assigning any  priority values i.e., each target has equal priority. 

Table 3.6: From Figure 3.2, these is the data of the Maximum Objective function value 
calculated. 

Parameter Maximum Jts INC (Deg) (Maximum Jts) RAAN (Deg) (Maximum Jts) 

Value 5.00 times 124.20 153.42 

In the first optimisation, for the results generated on Figure 3.2, all targets are considered to 

have equal priority. In some cases, however, the targets may have different levels of priority. 

The varying priority values of each target are given in Table 3.4, and the calculation for this 

is equation (3.5), 

𝐽𝑡𝑠 = ∑
𝑃𝑖(∑ 𝑡𝑖,𝑗

𝑁2
𝑗=1 )

10
 𝑁1

𝑖=1                            (3.5)  

Where 𝑃𝑖 is the priority value assigned to each target accordingly. On running an optimisation 

of the determined orbits, the results are presented in Figure 3.3 where it is observed that as 

the priority values of the targets change as per Table 3.4, the maximum objective function 

value of the mean number of times each target is seen changes. This shows that as the 

priorities of the targets change, the optimum 𝐽𝑡𝑠 orbit also changes. As this work requires no 

re-run of the orbital simulation, the advantage is that the changing optimum 𝐽𝑡𝑠 orbits can 
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be determined with minimum computational time and cost. On Figure 3.3, the colour bar 

shows the objective function values. Table 3.7 shows some of the optimum 𝐽𝑡𝑠 values 

obtained from this simulation and the orbits that facilitate this maximisation.  

 

Figure 3.3: Objective function values of mean number of times seen for different target 
priority values as listed in Table 3.4 respectively i.e., graph (a) target priority values are 
varying according to Priority values 1 on Table 3.4, graph (b) target priority values are varying 
according to Priority values 2 on Table 3.4, graph  and graph (c) target priority values are 
varying according to Priority values 3 on Table 3.4, graph.  

Table 3.7: The details of the Maximum and minimum mean number of times seen objective 
function when targets have varied priority values. 

Parameter Priority Values of target 

1 to 10 respectively 

Maximum 

𝐽𝑡𝑠 

Inclination 

(deg.) 

RAAN 

(deg.) 

Value 0.72,0.85,1.00,1.00,0.85, 

0.73,0.68,0.62,0.90,0.65 

3.97 124.20 153.42 

Value 0,1,1,1,1,1,1,1,1,1 4.30 52.60 84.20 

Value 2,1,1,1,1,1,1,1,1,1 6.00 122.20 2.00 

These values show that different orbits facilitate the “best” or “Optimum” 𝐽𝑡𝑠 values for 

different priority values of the targets even when considering just one objective function. 
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The problem becomes even more complicated when there are multiple objective functions. 

As previously mentioned however, in real life applications, it is rare that a satellite is needed 

for only one objective. Most of the real-life scenarios involve multi-objective optimisation. 

Such kind of a problem is considered highly combinatorial. Section 3.3, highlights cases of 

multiple objective functions and the solutions.  

 

3.3 Case Study 2: Multiple Objective Function Applications 

In the recent past, some space missions have been found to have more than one mission 

requirement. As in the case of the Korean SAR satellite, KOMPSAT-5, the focus is on 

monitoring a local target area. The main requirements for their mission are, minimising the 

average revisit time as well as maintaining a repeat ground track orbit [59]. Other 

requirements such as viewing the targets for as long as possible within a given period, viewing 

the targets a given minimum number of times per day, and many other different 

requirements call for multiple objective function optimisation. Multiple mission 

requirements may also be used for tasking satellites on different orbits. Determination of 

orbits that facilitate the performance of multiple objective functions optimally with 

computational efficiency is a gap identified. This optimisation for multiple satellite missions 

can be used to also determine satellite constellation designs instead of using the traditional 

approaches such as the Fowler and Walker constellation paradigms.  

In this section, the possible orbits that can overfly 10 targets are determined using the 

embarrassingly parallel analytical method. This method as presented before, yields more 

than 10,000 orbits. For purposes of this work, one of the main mission requirements is that 

the orbit must be a repeat ground track orbit. The repeat period is set to be 2 days with a 

repeat revolution of 29. For all cases, J2 coefficient for earth is considered.  

Three objective functions are optimised and the optimum orbits identified. The three 

objective functions are as per the following sections: 

3.3.1 Mean Duration of View Objective Function 

This objective function is as in the work of both W. Yao et. al. [57] and Y. Chen et. al. [53] and 

is formulated as in equation, (3.1), page 58. That is, 
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𝑚𝑎𝑥(𝐽) =  𝐽𝑡                (3.6) 

3.3.2 Mean Number of Times Seen Objective Function 

The second objective function in this study is based on the number of times that a satellite 

in an orbit will overfly the targets. The mean number of times that a target is viewed by a 

satellite in each orbit is selected using equation (3.5), Page, 63.  

3.3.3 Revisit Time Objective Function. 

The third objective function considers the time it takes to revisit a target. H.-D. Kim et. al., 

[59], consider the average revisit time objective function. H.-D. Kim et. al., focus on the 

average revisit time between observations for the same ground point. The method by H.-D. 

Kim et. al., minimise this to be no more than 24 hours per revisit. In the study presented 

herein, three scenarios are simulated and presented. Scenarios such as determination of the 

orbits that enable views of each target at least once in a 6-hour period, then at least once in 

less than 6 hours can also be a mission requirement.  

Different conditions have been studied and applied in the case studies herein presented. 

These conditions can also be applied to different targets, for example, if target 1 needs more 

than two visits with a spacing greater than 12 hours each within the 48 hours.  

For a case where a satellite in orbit (o) first view of target T is x seconds after epoch time, if 

it views target T again after 12 hours, the orbit is selected. This can also be applied for 6 hours 

and for 24 hours and the approach for this is presented in Algorithm 3.1 . 

Algorithm 3.1 Calculation of the revisit time objective function 

input: data from propagation 

output: target revisit limits 

for each orbit and target, T(i,j) 

 x(T(i,j)) == first view // first view of each target by each orbit 

 if next view <(x + 21,600) seconds do// checks if the next view is within 6 hours 

  
𝛽(𝑜, 𝑡) =  1

0
{    
𝑖𝑓 𝑡𝑟𝑢𝑒
𝑖𝑓 𝑓𝑎𝑙𝑠𝑒

  

  each orbit number of views within this period = sum (𝛽(𝑖, 𝑗)) 

  if 0 < number of views >3 
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   rt = 1 

  Else 

   rt = 0 

  End 

  if 1<rt<3 

   Jrt = 1 

  Else 

   Jrt = 0 

  End 

 End 

End 

store Jrt 

The detailed method formulae are equations (3.7) and (3.8), 

𝐽1 =  ∑ 𝐾(𝑖, 𝑗) 𝑁1
𝑖=1
𝑗=1

                             (3.7) 

Where J1 is the total number of times the targets are overflown by an orbit within the given 

time 𝑥, 𝐾 indicates an overflight of target 𝑗 by orbit 𝑖; 

𝐽𝑅𝑇 = 
1
0
{    
𝑖𝑓 0 < 𝐽1 < 3
𝑖𝑓 𝑛𝑜𝑡

                             (3.8) 

3.3.4 Multi-Objective Function Optimisation 

The objective functions are first calculated individually. The objective functions are then 

optimised simultaneously without having to re-simulate the valid orbits. The individual 

objective functions are normalised where the maximum objective function of each == 100. 

Priority functions are assigned to each normalised objective function as X, Y and Z. These 

values of X, Y and Z can be different for the different objective functions. Some objective 

functions may be more weighted than others in a case where they are to be more prioritised. 

Considering this, the calculation of the generalised objective function then becomes, 

                                       𝑓1 =  𝑀𝑖𝑛 
1

𝑋𝐽𝑡+𝑌 𝐽𝑡𝑠+ 𝑍 𝐽𝑅𝑇 
                       (3.9) 
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Where, 𝐽𝑡 is the mean duration of view objective function as presented in in equation, (3.1), 

page 58, 𝐽𝑡𝑠 is the mean number of times that a target is viewed objective function as 

presented in equation (3.5), Page, 63, and 𝐽𝑅𝑇 is the revisit time objective function as 

presented in equation (3.5), Page, 66. F1 is the generalised objective function value and X + 

Y + Z == 1 in increments and reductions of 0.1 

The search space parameters are as in Table 3.5, the 10 targets in Table 2.11, and the physical 

parameters are as in Table 2.9 but with a GAST of 259.16 degrees. 

For the mean duration of view, mean number of times seen and revisit schedules both actual 

and normalised objective functions are obtained. The normalised values are presented in 

Figure 3.4 and Figure 3.5. For all cases, the calculations consider that all targets have a priority 

of 1.  Figure 3.4 shows that the maximum values for the duration of view objective function 

are found to be on the retrograde orbits as expected.  

 
Figure 3.4: Inclination and RAAN heat plot results for orbits showing the normalised mean 
duration of view objective function values. 

From Figure 3.5, it can be seen that for the mean number of times viewed objective function 

values, despite the maximum objective function (OF) value (normalised value of 100) being 

a retrograde orbit, there are some prograde orbits that have OF values very close to the 

maximum. 
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Figure 3.5: Inclination and RAAN heat plot results for orbits showing the normalised mean 
times of view. 

For the revisit times, three different scenarios are simulated, 

i. when at least one view is needed for a time of view difference less than 6-hours,  

ii. when one or two views are needed for time of view difference not less than 12 

hours and,  

iii. when at least one view when difference between view times is greater than 24 

hours.  

The results from these three scenarios are presented as heat plots in Figure 3.6 ((a) – (d)) 

respectively. The option of 2-views in a time difference greater than 12 hours, i.e. option (c) 

from Figure 3.6 is selected for the multi-objective function simulation due to its diverse orbit 

solutions hence presenting a complex case for study. Figure 3.7 (a) presents the normalised 

results of the 2 views in 12 hours for 48 hours option chosen for multi-objective optimisation.   
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Figure 3.6: Inclination and RAAN heat plot results showing the best orbits for different revisit 
schedule time objective functions (OF); (a) 1 view spaced out in less than 6 hours for 48 hours, 
(b) at least 1 view in 12 hours for 48 hours, (c) 2 views every 12 hours for 48 hours and (d) 
view within 24 hours for 48 hours. 

 
Figure 3.7: Zoomed in Inclination and RAAN heat plot results for orbits showing the best 
orbits for 12-hour revisit schedule showing the normalised values. 

When the objective functions are simulated individually, the maximum objective function 

values are as in Table 3.8. 

Table 3.8: Maximum objective functions for the individual objective functions for 
inclination 50 – 130 degrees, RAAN 0 – 360 degrees and time 0 – 172800 seconds 

 Inclination 
(deg.) 

RAAN 
(deg.) 

Max. Objective 
Function 

Mean Number of view times 124.20 153.42 5.00 

Duration of view 124.20 256.03 108.00 

12-hour revisit time  Multiple Multiple 10.00 
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It can be observed that the optimum orbits for the individual objective functions are not the 

same and so f1, as per equation (3.9), page 67, is needed to be able to get an orbit that relates 

to them all. For equation (3.9), to be applied, the normalised objective functions need to be 

calculated. The maximum objective functions are taken to be 100 then the rest are 

normalised to this. When this is done, the graph of the normalised objective function values 

which are greater than 80 (maximum values) is presented in Figure 3.8. This shows the obits 

that are within 80 – 100 normalised values of each objective function. Where, 𝐽𝑡𝑁 is the 

normalised mean duration of view objective function, 𝐽𝑡𝑠𝑁 is the normalised mean number 

of times that a target is viewed objective function and 𝐽𝑅𝑇𝑁 is the normalised revisit time 

objective function. From this, the insight drawn is that the orbits that have the maximum 

objective functions are retrograde for both mean number of times seen and duration of view.   

 
Figure 3.8: 3D plot of the maximum normalised for each individual objective function. 

Using 0.1 increments from 0.1-1, the objective functions are then simulated to show the best 

objective function for different cases. The orbits found when changing the priority values of 

the objective functions are as in Table 3.9. 

Table 3.9: Orbits determined for the individual optimum prioritised objective functions. 

Objective function with highest priority Inclination (Deg) RAAN (Deg) 

Mean number of times seen 123.40 235.8235 

Mean Duration of view 124.00 223.2223 

Revisit time 123.80 222.4222 
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When considering multiple objective functions, several orbits, depending on the priority 

values of the objective functions are found to be optimal. Normalised objective function 

values are used for this analysis. A heat plot of when each objective function is prioritised 

over the others is presented in Figure 3.9.  This shows that there are no optimum objective 

function values between inclinations of 60 degrees and approximately 110 degrees. For the 

desired targets therefore, satellites on the orbits that have inclinations between 50 – 60 

degrees and 110-130 degrees give more optimum orbit solutions.  

        
(a)                                                                        (b) 

 
(c) 

Figure 3.9: Inclination and RAAN heat plot results for orbits showing the optimum orbits 
when objective functions have different priorities; (a) mean duration of view has higher 
priority, (b) revisit time (12 hours) has higher priority, and (c) mean number of times has 
higher priority. 

The optimum orbits for the changing priority values are presented in Figure 3.10. For 

example, when the duration of view objective function is a priority, these orbits are indicated 

by the green star (*). This further verifies that the satellites on the retrograde orbits give 

more optimum values of the objective functions no matter which one is prioritised. For the 

revisit however, some prograde orbits also prove to be optimum. 
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Figure 3.10: 3D plot of the Inclination, RAAN, and optimum orbits for the combined objective 
functions. 

This analysis can be used to select the best orbit for multiple objective functions. In chapter 

5 of this dissertation, a method using graph theory analysis has been developed to task 

optimum satellites based on different objective functions. The results of the analysis 

presented in this section can be used to determine the satisficing satellite orbits for the same.  

 

3.4 Chapter Summary 

The orbits determined by the developed analytical method give higher values of the studied 

objective functions than those obtained by previous methods. This has been highlighted in 

section 3.1. The developed method determined an orbit that has an optimum viewing 

duration for prograde orbits that is more than 30 seconds longer than the results obtained 

by previous numerical methods. There is a gap in literature on the analysis of retrograde 

orbits for objective functions such as the duration of overflight over targets. This method has 

facilitated this analysis due to the applicability to large search spaces. The retrograde orbits 

prove to have higher objective function values than prograde orbits which may be insightful 

to orbit designers and operators. The method is applicable to multiple objective function 

optimisation without the need to rerun simulations for every desired objective function when 

the search space is the same. The novelty in this case is contributing a method that can be 

used to determine orbits for multiple mission requirements and large search spaces.   
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Chapter 4 

4 Addition of a modified Multi-Level Adaptive Grid  

Adaptive methods have historically been used in numerical methods [82] and computational 

programming to efficiently get accurate or optimal solutions of certain regions of a search 

space. Methods such as adaptive grids have been used in Computational Fluid Dynamics to 

get clarity of some section(s) of a partial differential equation result as in the work of M.B. 

Bieterman et. al. [83]. Such methods are used to get results that have higher optimum values 

for dynamic methods with added efficiency. For the orbit determination method developed 

in this dissertation, an adaptive grid is added to reduce the time taken to get clarity and 

insight of the high optimum value regions of the results. The grid in this case is used to get 

the “optimum hotspots” of the objective functions and zooming into these regions to get 

‘better’ and more optimum results faster. The initial grid used is large and this is refined into 

smaller sizes at the areas of interest. This chapter explains the method, the application and 

gives the results for each refinement stage.  

The use of an adaptive grid adds value to the analytical method developed in this 

dissertation. This is by getting the optimum solutions related to certain objective functions 

by zooming into, (refining the increments of), the main areas of interest, hence, making the 

method have increased computational efficiency. The adaptive grid reduces the simulation 

time needed to identify these optimum orbits. In section 2, during the analysis of the orbits 

from the initial equations, it is observed that the inclination tolerance of 0.001 degrees is 

found to be most accurate in determining the orbit required to overfly desired targets. This 

is the same logic applied for the refinement of the orbits in the added adaptive grid to the 

developed method. Using such a refined grid in initial simulations incurs increased 

computational time. The adaptive method herein applies a modified type of grid referred to 

as the local refinement grid approach as in previous studies by scholars such as M.J. Berger 

et. al. [84]. For the algorithm developed in this dissertation, the grid is adapted in levels hence 

making it a multi-level local refinement adaptive grid method.  
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4.1 Literature Review of Adaptive methods: 

The use of adaptive methods started decades ago with authors like M. Ciment et. al., [85] 

investigating the use of adaptive grids in solving boundary layer problems by formulating 

them as differential approximations. A. Brandt et. al., [86] extend the research by M. Ciment 

et. al., by studying the application of multi-level adaptive techniques to the boundary layer 

problem. Adaptive grid methods are used to solve elliptical, hyperbolic as in B. Kreiss et. al., 

[87], and many other boundary layer problems in computational fluid dynamics, (CFD), and 

finite element analysis, (FEA).  

Just like in A. Brandt et. al.,  [86], the method in this work proposes a multi-level adaptive 

technique. As per the description by A. Brandt et. al., multi-level adaptive techniques do not 

work on a single grid, but with a sequence of grids hence increasing the fineness each time.  

A. B. Shamardan et. al., [88] modify the work of A. Brandt et. al.,  [86] and apply the use of 

multi-level adaptive methods to solve numerical Burgers’ equations for initial boundary layer 

problems. Multi-level adaptive methods are also used in mobile trajectory clustering cases 

such as animal migration determination, meteorology factors such as hurricane tracking and 

other weather patterns amongst many others [89]. Y. Mao et. al., [89] for example explore 

the use of an adaptive trajectory clustering approach based on grid and density to reduce the 

complexity of trajectory clustering.  

The refinement in this work is mainly of the search space and has a focus on orbital time, 

inclination, and the right ascension of the ascending node. A multi-level local adaptive grid 

method that refines the orbital search space i.e., inclination, RAAN and time is used to 

determine the optimum OF orbits. 

 

4.2 The Multi-level Adaptive Refinement Algorithm 

An added multi-level adaptive grid is developed to get more optimum results from the 

initially presented analytical orbit design method and reduce the time taken to determine 

optimum orbits. The adaptive grid is multi-level as it refines the results until a certain 

tolerance is reached in multiple levels. In this case, the tolerance used is in terms of time, 

inclination, and RAAN refinements. The refinement for the last grid is chosen to be time 

increments of 5 seconds, inclination increments of 0.05 degrees and RAAN increments of 
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0.05. Using such a refinement in the initial grid of the method would need increased 

computational time. 

The general architecture of the multi-level adaptive grid used is as shown in Figure 4.1. 

 

Figure 4.1: A chart flow architecture showing the multi-level adaptive grid method developed 
in this thesis. (a) shows the general grid flow architecture and (b) shows the grid level 
refinements, these can be as many as necessary. 
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The multi-level adaptive grid method algorithm uses the results from the derived analytical 

embarrassingly parallel orbit design method, and objective functions are then calculated to 

select the optimum orbits. These results are then analysed for the “peak values” and at these 

points, the grid is refined further in different levels as presented in Table 4.1. 

Table 4.1: Multi-level (3 level) grid refinement simulation of the developed analytical 
method the Initial Search Space inputs to the method. 

 Inclination Right Ascension of 
Ascending Node 
(RAAN) 

Time 

Grid Range 

(deg.) 

Increments 

(deg.) 

Range 

(deg.) 

Increments 

(deg.) 

Range 

 (sec.) 

Increments 

(sec.) 

1 50 – 90 1.0 0-360 2.0 0 – 172800 10 

2 50 – 90 

(for each 

OF peak 

values +/-

-1 degree) 

0.5 0-360 0.5 0 – 172800 10 

3 50 – 90 

(for each 

OF peak 

values +/-

-1 degree) 

0.05 0-360 0.05 0 – 172800 5 

 

From Table 4.1, Grid 1, the increment for the inclination is 1.0 degrees, right ascension of 

ascending node increment is 2.0 degrees, and the increment for time is 10 seconds. With 

these increments the grid of the search space is very large. This being an analytical method, 

one of the disadvantages is lower accuracy. In such a case where the grid is this large, it is 

prone to even larger inaccuracies. This was observed in section 2 when different inclination 

tolerances are used, and different orbits are found to be viable as the FoV amongst other 

factors are not included in the calculations. In this section however, the FoV used is 20 

degrees, and the determined orbits for all grids are based on this. Once the results are 

obtained from the inputs provided in Table 4.1, they may then be optimised using different 

objective functions. The objective function used in this case to illustrate the adaptive grid 

application is related to the duration of view of the targets. The algorithm can however be 
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applied to different objective functions. The orbit results with the higher objective functions 

are refined and the method is again simulated around those inclinations and RAANs within 

the objective function “hotspots”. The refinement used in this work is presented in Algorithm 

4.1. 

Algorithm 4.1: Algorithm for the refinement of the grids (For example first grid) 

𝑰𝒇  (𝑂𝐹)(𝑜𝑟𝑏𝑖𝑡(𝑥)) ≥ 99% × 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑀𝑂𝐹),   

 𝐼𝑛𝑐 𝑟𝑎𝑛𝑔𝑒 = 𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ± 1  

 𝑅𝐴𝐴𝑁 𝑟𝑎𝑛𝑔𝑒 = 0 − 360  

 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 0.5  

 𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑚𝑎𝑖𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑛𝑑 𝑟𝑢𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑎𝑔𝑎𝑖𝑛  

End 

After the results are obtained, the grid is refined, and this is done using the first refinement 

presented in Table 4.1, grid 2.  

This refinement can be done in many levels and can be further extended to orbits within 90% 

of the maximum objective function for more options especially when considering multiple 

objective functions. In this case, however, three levels are used, and the refinement is upto 

inclination and RAAN increments of 0.05. This makes up a 3-level adaptive grid refinement. 

Compared to starting with the main method with such a refined search space however, it 

proved more computationally time efficient. The grid refinement can be graphically 

visualised in Figure 4.2. Where the higher values of the objective functions are located 

between 50- and 60-degrees inclinations, for example, the refinement can be seen from the 

grid lines to be finer around these inclinations.  
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Figure 4.2: Sample grid refinement when using the optimum objective functions as 
presented in the adaptive grid method. (a) shows the full diagram and (b) zooms into the 
refined area which is between 55 deg. Inclination and 57 deg. Incination. 
 

4.3 Results and Discussions: 

The results from initial search space simulation using the inputs on Table 4.1, grid 1 are first 

presented. The duration of view objective function is used to optimise the orbits. From this, 

the results are, an optimum objective function == 89.00 at an inclination of 56.00 degrees 

and a RAAN of 2.00 degrees. The heat plot of this first (initial) grid results obtained is 

presented in Figure 4.3. 
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Figure 4.3: The initial calculation Grid 1 inclination and RAAN heat plot results while 
considering the duration of view of each orbit on each target.   

The optimum OF orbit in this case is simulated using GMAT to compare to the result from the 

first grid. For this, the developed method obtains an objective function of 89.00 while viewing 

all targets whereas for the same orbit, GMAT finds an objective function of 94.34 and also 

viewed all targets at this orbit. This can be due to the time refinement applied as satellites in 

orbits that view the targets for less than 10 seconds are not considered for this grid 

refinement. This shows that the method while using large grids might miss some orbits that 

faciltate more optimum objective functions.  

To obtain the results from first refinement as per Table 4.1, grid 2, the first grid refinement 

is done for values Inclination 55:0.5:57 which was +/-1 of the optimum inclination calculated 

by the initial simulation. It is worth noting that in this first refinement, the time increments 

are also refined to 5 seconds. This enables the method to get more possible orbit solutions 

as it also takes advantage of parallelising the time. On optimising the results from this for 

best orbit within that range, the objective function heat plot is presented in Figure 4.4.  
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Figure 4.4: Comparison of the heat plots of the inclination and RAAN while using Adaptive 
grid 1 and adaptive grid 2 respectively. Plot (a) is for grid 1 (initial simulation) and graph (b) 
is the two combined (initial simulation and refined grid 1 – with refinement around 
inclination 55 degrees). 

The best orbit OF for this grid size is found to be orbit 56.00 degrees inclination, 54.51 

degrees RAAN, and the objective function is calculated to be 106.00. Compared to the initial 

grid, this result already shows an increase in the maximum objective function meaning a 

more optimum orbit is found. At the initial grid due to the increments of 1 degree for 

inclination, and RAAN, some orbits with RAANs like 54.51 are not considered, but due to the 

refinement, more optimum orbits are obtained.   

For the second refinement done, the grid values are the ones presented in Table 4.1, grid 3. 

From the simulation, of values given in Table 4.1, grid 3, the objective function of the duration 

of view is again calculated. The heat plot of the final refinement is presented in Figure 4.5 

which shows a difference between the second grid (first refinement) and the final grid 

(second refinement).  
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Figure 4.5: 3-level adaptive grid heat plots of the inclination and RAAN of (a) second grid, and 
(b) final grid.  

From Figure 4.5, the maximum duration of view objective function orbit solution from the 

final refinement is an orbit of inclination 55.95 and RAAN 54.41. The orbit overflies all targets 

and with a maximum mean duration of view of 107 which is higher than the previously 

obtained orbits from simulation grid 1 and 2.  

The general objective of finding the optimum orbits by refining the grid around the 

maximums is shown to be achieved. This is mainly increasing of the method efficiency in 

finding the higher objective function value orbits. The objective function value for the final 

grid orbits is higher than the other two grids. The various objective function values and the 

orbits obtained are presented in Table 4.2. 

Table 4.2: The maximum duration of view objective function values, Inclination of this OF 
and RAAN from the adaptive grid multi-level refinement 

Grid Inclination (Deg.) RAAN (Deg.) Objective function value 

1 56.00 2.00 89.00 

2 56.00 54.51 106.00 

3 55.95 54.41 107.00 

From the presented results, the areas with the hotspots have the grid around them refined, 

and this gives more optimum results. Starting with a large grid then refining that to focus on 

those areas around the hotspots proved to reduce the computation time of obtaining the 
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optimum values as compared to starting from a refined grid using the method developed. 

For further work, the developed orbit design method can be applied with other numerical 

methods to get more accurate results.  

For the presented work, the total simulation time from the initial method grid to the final 

grid refinement, compared to having an initial refinement of 0.05 degrees increments for a 

similar search space saves on computational time. The computational time saving varies 

depending on different factors, such as, the specification of the computer being used, the 

range of objective function values being assessed (e.g. if the search spaces being refined are 

those that facilitate objective function values greater than 90 or greater than 99), etc. With 

the adaptive grid, the refinements and the search space, in this case, a third of the time was 

used when running the simulation with a refined grid from the beginning. This shows that 

using a large grid at the beginning saves on computational time. The results when using an 

analytical method combined with a large grid are however not as precise as for example, the 

maximum objective function is found to be 89.00 and the orbit determined is not the 

optimum for maximising the duration of view.  

The method is also applied to the mean number of times in view objective function. The 

algorithm used is like that one used for the duration of view and all that changed is the 

objective function input. From this, the hotspot refinement plots are as presented on Figure 

4.6. 
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Figure 4.6: Mean number of times objective function optimisation heat plots using adaptive 
grid (a) level 1 (b) level 2 and (c) level 3 

The values of the orbits that have the maximum mean number of times seen objective 

functions are presented in Table 4.3. 

Table 4.3: Values of the optimum orbits found for maximum objective function of the mean 

number of times targets are viewed. 

Grid level Maximum OF (Mean 
number of times seen) 

INC (Deg.) RAAN(Deg.) 

Level 1 4.20 57.00 42.00 

Level 2 4.40 54.50 54.51 

Level 3 4.60 56.40 53.51 

The differences in the values of the maximum objective function might not seem too 

different for the changing grids. It is however worth noting that these are the mean number 

of times seen. For example, grid level 1 and grid level 2 have a difference of a mean value of 

0.2 which is equivalent to 2 views. This means that the targets are viewed 2 times less by the 
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orbit found in level 1 as compared to level 2. Optimally, the third level found an orbit that 

views the targets 4 times more than the first level. 

4.3.1 Validation of the adaptive grid addition by comparing to previous results 

The adaptive grid simulation is done using Algorithm 4.1. The refinement is 3-level, and the 

grids are refined according to the increments presented in Table 4.1. The targets and their 

priorities are as presented in Table 3.2 which are the same ones used for the validation of 

the developed analytical method and as was also used by W. Yao et. al., [57]. The selected 

orbits are those that facilitate overflight over all 10 targets as per the work by W. Yao et. al. 

The results from the adaptive grid obtained are as presented in Table 4.4. 

Table 4.4: The maximum duration of view objective function values, Inclination of this OF 
and RAAN from the adaptive grid multi-level refinement 

Grid Inclination (Deg.) RAAN (Deg.) Objective function value 

1 126.00 136.01 87.28 

2 126.50 173.52 92.58 

3 126.40 61.91 110.54 

As per Table 4.4, a maximum value lower than the results obtained from the method without 

an adaptive grid is calculated using the first grid. The third grid however gives an objective 

function value greater than the objective function value obtained from simulating the 

method without an adaptive grid. This may be due to the time refinement used for the 

adaptive grid. To save on computational time on the method, a refinement of 10 seconds is 

used. This means that any times that are not factors of 10 are not analysed. For the final 

refinement however, a time increment of 5 seconds is used. This refines the time more hence 

getting results within timeframe factors of 5 seconds. The heat plots are presented in Figure 

4.7 and Figure 4.8. For this simulation, using the adaptive grid was found to be 3 times faster 

than using the method with an initial refined grid. The computer used is a Windows 11 laptop 

with intel core i7, 8th Generation, and MATLAB R2023a is the software used for this 

simulation. 
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Figure 4.7: Comparison of the heat plots of the inclination and RAAN while using Adaptive 
grid 1 and adaptive grid 2 respectively. Plot (a) is for grid 1 (initial simulation) and graph (b) 
is the two combined (initial simulation and refined grid 1 – with refinement around 
inclination 125 degrees). 
 

 
Figure 4.8: Comparison of the heat plots of the inclination and RAAN while using Adaptive 
grid 2 and adaptive grid 3 respectively. Plot (a) is for grid 2 (initial simulation) and graph (b) 
is the two combined (initial simulation and refined grid 3 – with refinement around 
inclination 125 degrees). 

Comparing the optimum objective function orbits obtained from different methods, Table 

4.5 gives a summary of the optimum objective function values from the methods, and the 
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orbits. The Self Adaptive Differential Evolution methods are found to determine orbits with 

lower objective function values. Using the multi-grid adaptive method finds a higher value 

objective function orbit than the others.     

Table 4.5: A comparison of optimum objective functions related to the duration of view 
calculated from orbits determined using the added adaptive grid to the developed method, 

developed analytical method and previously used numerical methods. 

Methodology Objective Function Value (Jt) Inclination, deg RAAN, deg 

[57] 80.11 55.51 125.69 

[53] 79.43 55.52 30.20 

Developed Method  94.16 126.20 111.21 

Developed method 
with Adaptive Grid 

110.54 126.40 61.91 

 

4.4 Chapter Summary 

The advantage of adding the adaptive grid to the method is mainly increase in method 

efficiency to obtain optimum results. The efficiency is based on the time it takes to determine 

the orbits. The time reduction is based on factors such as refinement values used; for 

example, finer grids will take more time. This reduction also depends on the number of orbits 

obtained in each refinement. In this case, despite doing an analysis of both retrograde and 

prograde orbits, the time efficiency for the simulation increases when using the adaptive grid. 

When the adaptive grid is added to the developed method also, a higher value objective 

function orbit is determined when compared to previously used methods. This can be seen 

in section 4.3. This chapter also shows that the adaptive grid can be used to optimise different 

objective functions. Once these optimisations have been done, normalisation of each 

objective function can be done and the best orbits for multiple objective functions can be 

determined. The novelty in this section is in showing that the orbit determination method 

can be used in different ways and can also be used with a numerical method to increase 

accuracy.  
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Chapter 5 

5 Satellite Tasking Using Graph Theory 

In this chapter, a hybrid method is developed using combined graph theoretical approaches 

to query a graph database of satellites and ground targets. The graph database is queried 

with the aim of identifying and selecting satellites to task based on different mission 

requirements related to the target overflights. A graph database is a type of not only SQL 

(NoSQL) database designed to leverage graph theory principles to manage and query 

complicated relationships. It does not use the relational model of storing data in fixed tabular 

forms like traditional SQL models. M. Lazarska et. al. [90], show that both the querying and 

modification performance of graph databases are more efficient in terms of time and 

computational costs when compared to relational databases.  

Numerical methods are frequently applied for tasking and scheduling satellites [77, 91-95]. 

S. Liu et. al. for example, study tasking of intelligent satellites for earth observation using a 

combination of a linear programming algorithm and a heuristic search algorithm [63]. The 

combined linear programming algorithm and heuristic search algorithm developed by S. Liu 

et. al. proves to have better results in terms of satellite planning profits and revenue gaps 

when compared to some traditional heuristic search algorithms. The method by S. Liu et. al. 

however has a disadvantage in terms of time consumption as they need additional 

computation time. Similarly, constellation and satellite orbit designs and patterns are 

optimised using different numerical algorithms [96]. The designs are based on different 

criteria such as coverage capabilities, temporal capabilities, amongst other requirements. 

Assigning a specific objective to a satellite is herein referred to as satellite tasking. Satellite 

tasking requires an analysis of all objectives and for space sustainability, minimisation of the 

number of satellites needed to achieve them. The satellite objectives are known as the 

satellite tasks in this chapter. The minimisation of the number of satellites requires 

identification of the satisficing satellites based on the tasks. “Satisficing satellites” refer to 

the satellites that give the ‘good enough’  objective performance after considering all the 

tasks and the trade-offs [97]. This chapter develops algorithms that combine different graph 

theoretical approaches to identify the satisficing satellites for multiple tasks. “Hybrid 

method” in this chapter refers to the combination of different graph analysis approaches. 
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In this chapter, a graph is created using the relationship between satellites in different orbits 

and targets desired to be over-flown after ground-track propagation within a given field of 

regard. The satellites and the targets are represented by nodes, and the connections 

between them are represented by edges, hence creating the graph. The tasks considered can 

either be quantifiable or non-quantifiable. In this chapter, “the quantifiable tasks” are those 

tasks that have a numerical value attached to them such as the amount of view time, known 

herein as the duration of view, and the number of overflights of a satellite over the targets. 

The quantifiable task values are stored as weights on the edges that connect the nodes of 

the graph. These task values are calculated from information that relates satellites in the 

various orbits, and the targets that they overfly. The information stored includes the start 

and end times of each view from epoch time. Non-quantifiable tasks are those that can be 

determined using binary analysis such as whether a satellite has overflown a target or not.  

The scenarios and method developed in this chapter envisages application to tasking 

satellites already in space where an operator has new customer requests but could equally 

be applied to support system or mission design. It is a method that proves to be applicable 

for agile space, where the mission requirements keep changing and tasking needs to be done 

fast and efficiently. The applicability of the proposed method to pre-existing spacecraft 

populations in a case where new users emerge, or new tasks are developed gives the method 

an advantage. Specifically, the proposed approach is less costly for a new user than deploying 

new satellites, giving an additional advantage to space sustainability in terms of reducing the 

congestion of space. It is also a method that enhances asset value for an operator.  

Before describing and developing the proposed hybrid method, a brief introduction and 

history of graph theory and its uses in space is first presented in this chapter. The aims, 

motivation and value of the study are then presented. Finally, the proposed method, its 

simulation, and the results as well as case study analysis are presented. 

 

5.1 Graph Theory Literature Review: 

Graph theory is an area that has been under research for centuries even dating all the way 

back to the seventeenth century [64]. It has been commonly used to find solutions to 

networking problems for cases such as traffic systems, internet connectivity, different uses 

in the medical field and more recently, it has been widely used by social media companies to 
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link networks of people, amongst many other uses [98]. It is a theory that uses mathematics 

for analysis of graph structural properties [99]. Graphs represent various connections and 

interactions amongst different or similar items. There are different types of graphs, and they 

are classified in several ways [100]. The classifications may be based on the node 

characteristics, edge characteristics and the data contained on the edges as well as the 

structure of the graph in terms of node connections. Some of the common and relevant types 

of graphs are as follows,  

i. Directed and undirected graphs – This classification is related to the edge direction. 

A directed graph is a graph where the edges have direction whereas in undirected 

graphs, the edges have no direction assigned to them and they are also said to be 

bidirectional [100-102]. The presented work mainly uses undirected graphs.  

ii. Finite and infinite graphs – This depends on the number of edges and nodes. Finite 

graphs have a finite number of nodes and edges whereas infinite graphs have neither 

node nor edge limits [103]. In the presented work, finite graphs are used to develop 

the satellite tasking method. 

iii. Weighted and unweighted graphs – This is related to the data stored on the edges. 

Weighted graphs have quantifiable data stored on the edges which are the weights 

between the connected nodes. Unweighted graph edges simply indicate the 

connection between two nodes [100]. Both weighted and unweighted cases are 

studied in the work herein presented.   

iv. Bipartite graph, unipartite graphs, and multipartite graphs; these are classifications 

based on the node partitioning. Unipartite graphs contain no distinct node partitions, 

and all nodes belong to a single set. A bipartite graph contains nodes connecting two 

different categories of objects, for example, students to courses, airlines to airports 

they land at, buses to the routes they use, amongst many others. The graph nodes 

can be divided into two partitions. When the graph has more than two distinct node 

partitions it is a multipartite graph [104]. The work presented in this chapter involves 

a network of satellites and ground targets. This kind of graph nodes can be grouped 

into two whereby if say a graph G = (S, T, E), means that S are the satellite orbit nodes, 

T are the target nodes and E is the edges that join these nodes. In this kind of graph, 

no S node can be connected to another S node and likewise, no T node can be 

connected to another T node. The connections are therefore only between S nodes 

and T nodes, hence a bipartite graph. 



Chapter 5                 Satellite Tasking Using Graph Theory   91 
 

91 
 

The network structure and connection patterns may be used to determine the analysis 

method that is applicable. The choice of the metrics to be used for querying graphs generally 

depend on different factors such as the research questions, the insights needed, and the 

structure of the graph [105, 106]. Understanding the differences between complex, large, 

small, and simple networks is essential for effective choice of metrics, analysis and modelling. 

The differences are characterized by the type and arrangements of connections or the 

quantity of the connections.   

Simple networks have regular structures where the nodes and edges are arranged in a 

predictable manner. They are deemed easier to mathematically analyse [107]. Complex 

networks are characterized by structures that deviate significantly from regular patterns. 

They have complex structures that make them more difficult to analyse [107, 108]. Large 

networks are characterized by a significant number of nodes and edges, making them 

computationally challenging to analyse and may require specialized algorithms and 

computational resources [109]. A small network on the other hand has relatively few nodes 

and edges.  

These categories are however not mutually exclusive in that a network can be both large and 

complex, small and complex, small and simple, or large and simple. The boundary between 

complex and simple networks is also at times blurred as real-world networks may have the 

characteristics of both. As noted by various authors in the field of network science, see [110, 

111], real-world networks often exhibit a hybrid nature, blending characteristics of both 

complex and simple network models. By recognizing the specific characteristics of different 

network types, researchers can select appropriate analytical tools and models to gain insights 

into the underlying structures and dynamics of different systems.  

The study of different types of sets in graph theory has been on the rise in the more recent 

past [98]. These sets are used for finding solutions to problems such as matching, 

combinatorics, independence, and covering amongst many others [98]. As defined by 

Zixuan Yang et. al. [112], matching, in graph theory, refers to when there is a set of edges 

such that no two edges share a node. The problem of matching has been studied for decades 

dating back to the assignment problem, the marriage problem [113-115] and transportation 

problems.  It has also been used in the medical field by scholars like S. Gentry et. al., [116], 

who study the application of maximum matching to allocate kidney donations. The Kőnig-

Egerváry theorem has also been extensively used and modified to solve maximum matching 
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problems [115]. Maximum weighted matching (MWM) is one such problem. M. Barketau et. 

al., [117] study bipartite graphs and focus on the minimisation of the maximum weight of 

subsets of a maximum matching in such graphs.  M. Barketau et. al., prove that this problem 

is strongly NP hard, and they develop a method that find solutions that are on average of 

0.5% of the optimum. Matching is applied in diverse fields including scheduling and resource 

allocation amongst others. In the work presented in this chapter, there is a matching of 

satellite nodes that have the maximum weights and jointly satisfy certain tasks.  

Depending on the tasks being analysed, satellite tasking may involve finding solutions to 

combinatorial problems which have weighted edges connecting the nodes. An area of 

network science known as spectral graph theory is used to relate the adjacency matrix with 

the graph structure properties  and it is used for graph partitioning as well as clustering as 

explained by Refs, [118],[119],[120]. An approach of evaluating the adjacency matrix of a 

network is proposed for the hybrid method. The adjacency matrix of a graph gives insight on 

whether nodes are adjacent or not [121] and it can be weighted or unweighted [106]. 

Unweighted adjacency matrices may be used to analyse the structure of a network by 

revealing which nodes are connected and help identify disconnected components in the 

network. They can be used to calculate centrality measures like degree centrality, which 

count the number of connections a node has [103, 106], [122, 123].  In a weighted adjacency 

matrix, each element represents the weight associated with the edge between two nodes. 

This weight can represent distance, time, cost, strength of connection, or any other relevant 

measure. In general, unweighted adjacency matrices give insights on the connections of a 

graph and hence the structure whereas weighted adjacency matrices give insights on the 

strength of the connections related to the weights [103, 106, 124-126] .  

To study centralities, the adjacency matrix, (𝐴), is first derived from the graph. The matrix 

may either be the weighted adjacency matrix or unweighted adjacency matrix, and the 

centralities are as described by Refs. [127-129] as: 

i. Degree centrality – is the analysis of the graph in terms of the neighbours of the 

nodes. The formulation of this is, 

𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑗                                                               (5.1) 
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Where 𝑥𝑖  is the degree of node 𝑖 and 𝑎𝑖𝑗  is the connection between node 𝑖 and 

𝑗. In general, degree centrality determines the importance of each node by the 

total of its neighbour’s degree i.e.,  

𝐷𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 =  
𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥

𝑠𝑢𝑚 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
                 (5.2) 

ii. Closeness centrality – is the analysis of node importance in terms of the closeness 

to all other nodes in the network. It finds the shortest path to get to all nodes in 

the network. 

iii. Betweenness centrality – is the analysis of the fraction of the shortest paths that 

include the studied node. It checks more on the influence of a node based on 

movement between other nodes.  

iv. Eigenvector centrality – is the analysis of node importance considering its 

neighbours. It gives an analysis of node degree and counts the number of links 

between the connected nodes. It uses the adjacency matrix decomposition and 

calculates the largest eigenvector for each node. From basic principles, 

𝐴𝑥 =  𝜆𝑥                                                    (5.3) 

 i.e., a matrix, 𝐴, multiplied by the eigenvector, 𝑥, is equal to the eigenvalues, 𝜆, 

multiplied by the eigenvector. The eigenvector centrality can be weighted or 

unweighted. The weighted eigenvectors consider the weight values and may be 

given as,  

𝑥𝑖 = (
1

𝜆
)∑(𝐴𝑖𝑗𝑥𝑗)

𝑁

𝑗=1

 

with 𝐴𝑖𝑗 = {
1 − if 𝑖, 𝑗 are connected

0 − otherwise
 

or  

with 𝑎𝑖𝑗 = {
weight value if 𝑖, 𝑗 are connected

0 − otherwise
 

for 𝑎𝑖𝑗 ≥ 0,∀𝑖, 𝑗                                                    (5.4) 

where, 𝑥𝑖 is the eigenvector centrality of a node 𝑖, 𝜆 is and eigenvalue of the 

adjacency matrix, 𝐴, and 𝑥𝑗 is the eigenvector centrality of the neighbours of 

node 𝑖. 

v. PageRank centrality gives an analysis of link direction and is however not 

analysed herein as the graph used in this chapter is an undirected graph. 
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The satellite-tasking hybrid method proposed in this chapter is developed using an 

undirected bipartite graph analysis hence the use of degree centrality and eigenvector 

centrality is proposed. The method however has an added advantage as it is also applicable 

to directed bipartite graphs as presented in section 5.4.4.  

Network robustness is inversely proportional to its vulnerability to node removal see, White 

et. al. [130]. In their work, White et. al., state that network robustness can be quantified by 

calculating the numbers of node-independent paths between nodes which they suggest is 

equal to the connectivity. White et. al. however find that the calculation for the node-

independent paths in large networks is computationally difficult and hence propose an 

approximate algorithm to get the lower bound on the number of node independent paths 

for large graphs.  

Moody et. al. [131] develop a concept of structural cohesion based on network node 

connectivity and define structural cohesion as the minimum number of actor nodes needed 

to be removed from a group to disconnect the group [131-133]. Subgroups that are 

structurally cohesive have been used to characterise the robustness of networks as 

presented by R. S. Sinkovits, [134]. Cohesive subgroups are characterized by strong inter-

vertex connections, even among distant nodes with no shared neighbours. However, 

identifying these subgroups is computationally demanding [134]. Sinkovits et. al. study a 

graph reduction technique based on cliques to identify cohesive subgroups. According to 

Cornwell et. al., in [135], though significant progress has been made in analysing one-mode 

networks, the development of robust methods to refine the detection of structural cohesion 

within two-mode networks remains a challenging problem. Cornwell et. al. propose a 

strategy that identifies the number of actors from one node set that may be removed before 

disconnecting actors in the other set but their method needs improvement on computational 

time.  

Analysing the structural cohesion is important in this chapter as it informs on the impacts of 

satellite node removal or addition to target coverage. Minimisation of the number of 

satellites needed for maximum coverage of targets is one of the objectives of the work in this 

chapter. If removal or loss of a satellite node from the network results in a disconnection of 

a target node from the network, the satellite node needed to maintain that connection needs 

to be identified and included in tasking. With similarities to previous studies, such as Ref. 

[135], the structural cohesion in this work may be said to be the identification of the 
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minimum number of satellite nodes needed to be removed from a network to disconnect a 

target node from the network.  

Technically, betweenness centrality is an ideal metric for determining a networks’ structural 

cohesion as it assesses the impact of adding or removing a node by giving insights into the 

structure and dynamics, such as identifying bottlenecks or critical points of failure. Removing 

a bridging node disrupts the shortest paths between many pairs of nodes, forcing information 

or flow to take longer or more circuitous routes. This significantly increases the number of 

shortest paths that pass through other nodes in the network, thereby boosting their 

betweenness centrality. Betweenness centrality relies on the shortest path but it is not 

normally defined for bipartite graphs [136].  

The analysis of bipartite graphs can be done in different ways, and some previous methods 

suggest simplifying bipartite graphs and analysing them as unipartite ones [109, 135]. M. 

Latapy et. al. in [109] however find that analysing a bipartite graph, (which they referred to 

as a two-mode network due to the two sets of nodes), as a unipartite graph, which they 

referred to as a one-mode network, may not be applicable to some studies such as those 

which rely on identification of neighbouring nodes. In the work presented in this chapter, 

information such as the connections (degrees and neighbours) of both the target and the 

satellite nodes is needed for insightfully selecting the satellites to task and the graph must 

therefore be analysed as bipartite. A brute force algorithm is therefore the proposed 

approach to identify satellite nodes that are needed to maintain maximum target overflights. 

These satellite nodes are said to be high cohesive nodes as they strengthen the connections 

between nodes and act as a bridge to target nodes that have no shared satellite nodes.  If for 

example a target is overflown by only 1 of the satellites in the network, say satellite B, for full 

coverage, satellite node B needs to be selected for tasking. Satellite node B is therefore said 

to be a high cohesive node.  

In graph theory, a set is a collection of objects whereas a subset is a portion of a set [137]. 

The subsets used in graph theory can be classified in various ways based on the elements. A 

proper subset, is a set which has all its elements contained in another set which is known as 

a superset [121]. For this work, subsets and supersets are applicable in a case where say a 

satellite node A is in contact with target nodes {T1,T2,T4,T5} and satellite node B is in contact 

with target nodes {T1,T2,T3,T4,T5,T6,T7}, then satellite node B target connections are a 

superset of satellite node A target connections i.e., A⊂B. Likewise, satellite node A target 
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connections are a proper subset of satellite node B target connections. For such a case, when 

considering maximum target coverage, satellite node B is preferred to be tasked. The 

proposed brute force algorithm of the hybrid method is developed to analyse the neighbours 

of each satellite node and determine the sets. The satellite nodes connected to similar sets 

of target nodes are then identified with an aim of having all the target nodes connected to 

at least one satellite node hence maximum coverage.  

G. Lohmann et. al. [138] find that the use of eigenvector centrality, is a computationally time 

efficient tool for their analysis of the connectivity patterns in functional magnetic resonance 

data for the human brain. From these findings by G. Lohmann et. al., the approach to tasking 

satellites in this work proposes the use of the eigenvector centrality to analyse the weighted 

satellite-target graphs.  

Satellite tasking can be said to be a dynamic problem especially when considering satellites 

that are already in orbit, as the desired tasks may change and have different properties. A 

requirement may, for example, be to task satellites that overfly a certain target twice in 12 

hours. Such a task requires development of unweighted graph querying methods. The 

method proposed in this chapter proves to be applicable to multiple tasks relating to both 

weighted and unweighted graphs.  

 

5.2 Graph Theory in Space: 

With the complexity of modelling current space networks, whether satellite to satellite 

(Inter-Satellite Links (ISLs)), satellite to target, or the general space system architectures, 

graph theory has proven to be a useful way of giving great insights into this [139-141]. The 

use of graph analysis has been efficient and on the rise with the increase in number of 

satellites and constellations being launched annually. This efficiency is seen especially now 

with more opportunities to develop federated satellites and constellations, inter-linking 

satellites, and trying as much as possible to reduce the costs of operation while reducing the 

data latency and maximising data transfer [142].  

C. J. Lowe et. al. , [142], present a method for data routing using satellite networks and 

develop an efficient routing of data by exploiting information on the future contact schedules 

between network nodes which proves to be beneficial in terms of network performance. C. 
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J. Lowe et. al., develop this in [143], by introducing a contact graph scheduling method aimed 

at minimizing latency between data arrival, delivery and pickup. C. J. Lowe et. al., improve on 

the previous work by combining both scheduling and routing solutions which increase 

fulfilment of requests and delivery latency is minimised.  

Other graph theory applications include minimum cost or maximum flow optimisation, which 

have also been applied to identify effective ground stations [144]. In [145], M. B. Larsen et. 

al. use graph theoretical quantities to describe a satellite formation that is tethered. M. B. 

Larsen et. al., use graph theory and Lagrange mechanics to allow a broad class of formations 

and validate their method for general tethered satellite formations. For other space 

applications, H. Fan et. al., [146] use graph theory to study how to improve the timelines on 

task scheduling of multi-satellite, multi-task scenarios. H. Fan et. al., propose a multi-layer 

network aggregation method for tasks that have similar and relevant properties.  

Determination of satellites that give optimum results to various tasks related to overflying 

specific targets especially for agile space systems, can be classified as a complex network 

problem where a network between the satellites and ground targets needs to be developed 

and queried. C. N. McGrath et. al., [147] present a graph approach for analysis of responsive 

satellites that are manoeuvrable. The work by C. N. McGrath et. al., show that better insights 

can be drawn from their analysis using graph theory as compared to previously used 

techniques. The work presented in this chapter shares similar advantages especially in the 

robust determination of satisficing satellites for various tasks.  

The use of centrality and eigenvalues to analyse graphs has been applied to many real-world 

sectors. An example of this is the study of eigenvector centrality to detect a community of 

influential disease spreaders which is presented by R. A. Clark et. al., [148]. R. A. Clark et. al., 

introduce a non-linear relationship between time and probability of disease spreading into 

network dynamics and alter the Laplacian matrix to highlight the reason why nodes with 

higher degrees are the most influential spreaders. R. A. Clark et. al., conclude that 

eigenvector-based selections optimise the initial rate of infection, or the average rate of 

infection or produced the fastest time to full infection. R. A. Clark et. al. [139], develop this 

further to find the relative influence of ground stations in terms of receiving data using 

eigenvectors of the adjacency matrix. By first modelling the space systems as a flow network, 

R. A. Clark et. al., [139], use the dominant eigenvectors of the adjacency matrix of the 

network to identify influential communities of ground stations so that users can make 
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informed decisions on the ground station selection. In a similar way, this work aims to identify 

groups of satellites that can be used to achieve both single and multiple tasks optimally/sub-

optimally.  

Satellite tasking and scheduling has been done using different heuristic algorithms and other 

algorithms aimed at selecting the most urgent tasks then scheduling them. X. Zhao et. al. 

[149] for example, find a need to address limitations of efficiently generating run-time task 

configuration for multi-mission satellites that are autonomous. X. Zhao et. al.  develop a novel 

ontology-based method for task configurations focusing on satellite clusters. X. Zhao et. al. 

develop a mechanism that creates a solution space tree and finds the optimal solution of task 

configuration by having constraints from ontology then solving the constrained optimization 

problem. In the same way, this work addresses tasking optimum satellites for different tasks 

while minimising the number of satellites needed. Z. Shen., et. al. [150], identify a gap related 

to the optimization techniques for tasking and the work herein aims to address this. Z. Wang 

et. al [151], investigate the use of graph neural networks for multi-satellite scheduling which 

gives better quality solutions, and the results are generated quickly compared to meta-

heuristic algorithms. The proposed tasking method aims to share these advantages. 

 

5.3 Motivation and Introduction 

The main aim of the work presented in this chapter is increasing the value of assets already 

in space. This increase of value is achieved by tasking existing space population with different 

tasks as they arise, or as new users emerge. It is aimed at lowering the costs of obtaining 

needed data when a new need arises or when the data is needed by new space users. It is 

also aimed at increasing the profit of the assets already in space for the owners. With these 

aims achieved, the rise in space congestion may also be reduced despite the emergence of 

new users hence promoting space sustainability.  

The work presented in this chapter develops a hybrid method that uses different graph 

theory metrics and approaches to identify, select and task satellites. The method aims to 

analyse the graph and identify satellites that have optimum or near optimal performance of 

single and multiple tasks. The analysis of the nodes of graphs give a full scale view of solutions 

and hence better insights especially on optimality of nodes based on the weight values[147]. 

This work takes advantage of this characteristic of graphs.  
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In the context of complex networks requiring multi-objective optimization, a comprehensive 

analysis necessitates the consideration of both edge weights associated with the nodes and 

the topological relationships defined by node-to-node connections. Multi-objective satellite 

tasking is a highly combinatorial problem that requires different analysis approach of the 

graph depending on the task being analysed. The hybrid method proposed herein 

demonstrates that employing graph theory for satellite tasking by node identification and 

selection offers valuable insights. These insights include identifying nodes crucial to the 

graph's structure and determining optimal nodes based on the aggregate edge weights 

associated with each node. Leveraging these insights enables the selection of satisficing 

satellites that effectively optimize all defined objectives, surpassing the limitations of solely 

selecting satellites that optimize a single task. 

Using the satellite-target graph approach, this chapter examines three key tasks, which 

necessitate distinct graph theoretical approaches for analysis, as detailed below, 

i. The target coverage task – The objective for this is to have maximum or full target 

coverage while minimising the number of satellites tasked. It equates to an 

analysis of the structural cohesion of the graph. A brute force algorithm 

considering the neighbours of nodes is developed to identify the satellite node(s) 

which if removed will disconnect a target node from the network. 

ii. The duration of view task – this focuses on identifying satellite nodes that 

maximise observation time over the targets. This requires a graph theory 

approach for calculating and identifying optimal satellite nodes based on edge 

weights. For instance, if satellite node M observes target Q twice, with viewing 

durations of 20 and 30 seconds respectively, the edge connecting M to Q is 

assigned a weight of 50 seconds, representing the cumulative observation time. 

Within this chapter, this value is referred to as the 'node edge weight.' If satellite 

node M has no other target observations apart from the stated two of Q, its total 

edge weight with respect to duration of view is 50 seconds. 

iii. The number of times viewed task – this is also represented as a weight on the 

edge connecting two nodes together. In the case of satellite node M in point (ii) 

above, the total edge weight of node M in relation to the number of times seen 

task is 2. 



Chapter 5                 Satellite Tasking Using Graph Theory   100 
 

100 
 

This chapter is further divided as follows; the development of the proposed method by 

generating a simple graph and using distinct graph theory approaches to analyse two 

different tasks is presented in section 5.4 (5.4.1 – 5.4.3). The justification of the use of the 

two approaches to gain insights on the two tasks is then presented in section 5.4.4 and a 

larger network is then analysed in section 5.4.5. Section 5.5 then gives an analysis of a 

complex network and applies the two-graph theory approaches previously developed, 

proving the reliability of the approaches in complex network analysis while analysing an 

additional metric. Section 5.6 shows the combination of the studied graph theory approaches 

and hence introduces the developed hybrid method, which is given the name, the Multi-

Tasking Proposed Method (MTPM). Section 5.6.3 gives further application of the MTPM and 

shows how the MTPM algorithms can be easily edited to evaluate a new task. A task related 

to the time from epoch is introduced and the analysis is presented in section 5.6.4. 

 

5.4 Development of The Satellite Tasking Method 

To develop the proposed satellite tasking method, graphs are generated of satellites to be 

tasked and the targets that they are desired to overfly. The graphs are generated using 

satellites in orbits that have had their ground-tracks propagated within a given field of regard 

(FoR), which can be done using the method presented in chapter 2 of this dissertation. The 

field of regard is the area that can be seen by the satellite assuming its pointing nadir 

(downwards). The graphs generated are made up of satellite nodes and target nodes with 

the edges between them indicating an overflight. Based on different tasks related to the 

overflight of the targets, graph theory methods are proposed for identification of the 

satellites that optimise the performance of the tasks. Optimisation of the task performance 

refers to maximising the values for the quantifiable tasks (weighted graph analysis such as 

duration of view) and achieving the task for the non-quantifiable tasks which rely on logical 

analysis such as coverage. Information obtained from the ground track propagation while 

considering the field of regard that relates the satellites, and the target overflights is stored 

on the edges. The graphs are analysed to identify the satellites that give satisficing 

performance of the desired task(s).  

Satellite-target networks can be simple, small, large, complex, or a mixture of any. In this 

chapter, a “simple network” is used to refer to a network that is small, simple and can be 
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analysed using single metrics and even visual assessments can suffice. A “complex network” 

on the other hand refers to a larger network which needs more detailed analysis to give 

insights on the network, and it is difficult to visually assess.  

Different approaches and metrics may be used to give insights into how the satellites perform 

the tasks. Whether the tasks are quantifiable i.e. use weighted graphs or not may influence 

the metrics that can be applied to query the graph.  

5.4.1 Graph Architecture 

Once the ground-track of a satellite in orbit is propagated within a given field of regard, data 

such as the start time and the end times of each view of the desired targets is obtained and 

stored on the edges of the graph. The tasks to be analysed may include the duration of view 

per visit, the number of times each target is viewed within a given span of time, and the 

revisit time for each target by the satellite. Values related to the tasks may be calculated from 

the start and end times then attached to the edges as weights without the need of redoing 

the propagation which gives this method an added advantage. These weights can then be 

used for the weighted adjacency matrix for graph analysis as is presented herein. 

To show an example of the proposed network, and how it is implemented in a real-world 

scenario, an illustrative graph is generated. A single satellite in orbit is propagated within a 

given field of regard and the desired overflight targets are 4. After propagation, the general 

graph architecture is modelled by generating the graph, Figure 5.1. The satellite in orbit is 

found to overfly only three of the four targets and this is seen in Figure 5.1, as one of the 

targets has no edges to the satellite. The view start time and end time over each target by 

the satellite is stored on the edges as is observed in Figure 5.1.  
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Figure 5.1: Satellite-Target Graph for a single satellite and four targets with edges containing 
information related to the overflights 

For simple networks such as the one presented in Figure 5.1, visual assessments may be 

sufficient to give insights but when the networks become larger or more complex, further 

mathematical analysis is needed to provide the same insights. Some of the mathematical 

methods are studied herein, and combined to give insights that will aid in making the 

decisions on which satellites to task.  

Apart from using visual assessments, it is possible to query and analyse simple networks using 

individual metrics such as degree centrality and still get insights on the structure and node 

edge weight optimality. For large or complex networks however, which this work proposes a 

use in, more than one metric may be needed to gain both the structural and node edge 

weight insights.  

Understanding the structure of the network i.e., the structural cohesion [152], is vital in 

network studies as the loss or addition of a node may bring significant changes to the 

network. Satellites have an operating lifespan, hence, the impact of losing a satellite from 
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the network is insightful to both an operator and a user because it encourages more informed 

satellite tasking decisions. In terms of the edge weights, the total weights of the edges 

connected to a node, herein referred to as node weight, reflects how a node performs 

quantifiable tasks, and this is also needed for the tasking decision.   

The first proposed approach for the hybrid method involves the development of an algorithm 

that gives an analysis of the structural cohesion of the graph. This algorithm is developed and 

studied in section 5.4.2. 

5.4.2 Satellite Tasking, Task 1: Maximum Target Coverage Using the Minimum 

Number of Satellites 

In graph theory, a vertex cover refers to a case where for a subset S, of nodes, all the edges 

in the graph have at least one end point in S [153]. The minimum vertex cover is the smallest 

vertex cover [112, 154]. Methods that would be applicable to determining the minimum 

number of satellite nodes that are in contact with all the target nodes may include finding 

the minimum vertex cover, and more generally, an analysis of the subsets and supersets 

within the graph. The latter can be developed into an analysis of the ‘neighbours’ of the 

satellite nodes which form the first algorithm developed herein and referred to as the 

“neighbours’ algorithm”. Neighbours in this case refer to the direct connections of a node. 

Because this study involves a bipartite graph, the neighbours of each satellite node will be 

the target nodes that are in contact with it and the neighbours of a target node are the 

satellite nodes in contact with it.  

The proposed neighbours’ approach is a brute force algorithm used to identify the satellite 

nodes that when removed reduce the target coverage. The algorithm is developed to 

determine and identify the minimum number of satellite nodes that satisfy the requirement 

of full coverage or maximum coverage, and this is presented as Algorithm 5.1. Combinations 

of satellite nodes are also analysed, and, in this case, they are referred to as unions. The 

unions of satellite nodes are analysed to determine which combinations meet the 

requirement of being in contact with all the target nodes at least once. Being in contact with 

all target nodes in this work is referred to as full coverage. The sequence of the developed 

algorithm is, 

i. Find and store the neighbours of each satellite node, 
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ii. from this, the satellite nodes that are individually in contact with all the target nodes 

are identified and stored separately (N.B when there is a single satellite node in 

contact with all the target nodes, the minimum number of satellites needed to fulfil 

the full coverage requirement is one),  

iii. the satellite nodes that are individually in contact with all the target nodes are 

eliminated and an analysis of the remaining satellite nodes is done by making unions 

of each of the remaining nodes one to another,   

iv. each union of two satellite nodes that are in contact with all the target nodes is 

selected and stored. If no single or two satellites are in contact with all target nodes, 

the algorithm makes a union of the satellite nodes with other individual satellite 

nodes, and this is repeated until the minimum number of satellite nodes that are in 

contact with all, or the maximum number of target nodes is achieved. 

Algorithm 5.1: Algorithm to find minimum satellite nodes and satellite node 

combinations for contact with all the target nodes 

Input: Graph G(S (satellite),T (target), E (edge)) 

Output: Single Nodes and node pairs belonging to S with E ==10 

Create function: creates a call function for the neighbours algorithm 

Initialization of variables: set i, full_set_nodes and pair_nodes to zero 

for counter_n <= numel(S) do //loop through all satellite nodes and get the neighbours 

 Neighbours1 – store all target sets for all orbit nodes 

 if numel(T)==numel(Neighbours1) do// finds satellite nodes in contact with all (T) 

  Satellite nodes – gives all satellite nodes that are in contact with all targets 

 End 

 for 1<counter_n2<= numel(S) do//loop through all satellite nodes>1 

  Neighbours2 – store all target node sets for all alternate satellite nodes 

  Union – computes the unions between Neighbours1 and Neighbours2 

  if numel (T) == numel (Union) do//finds the orbit pairs in contact with all (T) 

   i = i+1 

   N_pairs((i),:)=[Satellite_nodeID,Satellite_nodeID2]; 

  End 

 End 

End 

single satellite = [Satellite nodes] 
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satellite pairs = [N_pairs] 

Application of Algorithm 5.1 on a satellite-target graph provides insights on the minimum 

number of satellites needed for maximum or full coverage. The results from the algorithm 

can also be used to give insights to the satellite nodes that if removed from the network will 

result in less target coverage. 

The simple networks used to develop the hybrid satellite tasking method extend the 

architecture presented in Figure 5.1 from a single satellite to a multi-satellite graph. For the 

simple networks, a relationship between three satellites and four targets is used to generate 

the graphs. The details of the ground target locations used for this simple case analysis and 

proposed method development are presented in Table 5.1. The satellites in the various orbits 

are presented in Table 5.2 where the orbits of the 3 satellites are presented in terms of their 

inclination and Right Ascension of Ascending node.  

Table 5.1: The targets for simple case analysis of graph theory use in satellite tasking. 

Node ID Node name Latitude (Deg) Longitude (Deg) 

‘Target 1’ 'Moscow' 55.5 37.4 

‘Target 2’ 'London' 51.3 0.1 

‘Target 3’ 'Washington, D.C' 38.5 -77 

‘Target 4’ 'Sydney' -33.5 151.1 

Table 5.2: The in-orbit satellites for simple case analysis of graph theory use in satellite 
tasking 

Node Name Inclination (Deg) Right Ascension of Ascending Node (Deg) 

'Satellite 1' 50 2 

'Satellite 2' 52 0 

'Satellite 3' 54 0 

From the ground-track propagation of the satellites in the orbits, Table 5.2, while considering 

the satellite field of regard, the graph presented in Figure 5.2 is generated. In Figure 5.2, the 

target nodes are named using the Node IDs presented in Table 5.1 and the satellites are 

labelled using the Node Names in Table 5.2. Figure 5.2 gives a representation of two possible 

scenarios. For the first scenario, all edges represent contact between the nodes, even the 

dotted ones i.e., two satellites (satellite 1 and satellite 3) are connected to three targets, and 

satellite 2 is connected to two targets. The second scenario is illustrative of a case when the 
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dotted edges are no longer connected i.e. satellite 1 has no contact with target 2 and 3, and 

satellite 3 has no contact with target 4.  

 

Figure 5.2: Satellite and target network architecture representing 2 scenarios used for the 
simple network study where for scenario 2, the dotted edges indicate no contact.  

In the simple networks presented in Figure 5.2, no satellite node is in contact with all the 

target nodes. For those networks, it can be seen from visually assessing the graphs the 

minimum number of satellites needed for maximum coverage of the targets, (which in this 

case is full coverage), is two for scenario 1 and 3 for scenario 2. The results from running 

Algorithm 5.1 are presented and analysed to verify the methods ability to find the minimum 

number of satellites needed either for maximum coverage or for full coverage. The results of 

larger networks are presented in sections 5.5 – 5.6 of this chapter.  

For the simple network presented in Figure 5.2, it is observable that the set of two satellites 

needed for full coverage for scenario 1 must include satellite 3. This is however not visually 

assessable for more complex networks and so methods that are efficient and give an accurate 

and clear analysis are needed.  Algorithm 5.1 is used for this analysis and the results obtained 

are presented in Table 5.3 for both the first scenario and second scenario in Figure 5.2. As 

expected, the results show that the minimum number of satellites needed to overfly all 

targets is two satellites for scenario 1 and for scenario 2 is all 3 satellites. This result can be 

confirmed through visual assessment of Figure 5.2.   
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Table 5.3: Results for minimum number of satellite nodes needed to overfly all targets. 

Parameter Scenario 1 Scenario 2  

Minimum number of satellites 

needed to view all targets 

2 3 

Number of 2-satellite sets viewing 

all targets 

2 0 

Possible satellite combinations to 

overfly all targets at least once 

[satellite 1, satellite 3] 

[satellite 2, satellite 3] 

[satellite 1, satellite 2, 

satellite 3] 

The results on Table 5.3 show that Satellite 3 appears in both unions of scenario 1 indicating 

that it is “important” to the network and may be said to be a critical node. Satellite nodes 

that appear in many sets when considering the maximisation of coverage in this work are 

said to be high cohesive nodes as without them the coverage is reduced. Without satellite 

node 3 for example, only 3 of the 4 targets will be overflown. In the case of the simple 

network for example, Satellite 3 is the only satellite node connected to target node 1. It can 

therefore be concluded that, satellite nodes common to multiple sets/unions are the 

important satellite nodes in that, inclusion of those satellite nodes for the tasks ensure that 

target nodes with few connections are considered in the tasking hence this is the metric 

proposed to identify the high cohesive nodes. Not including such satellites can be taxing to 

the network and such information is important for the decision-making process.  

Methods that may further relay other structural information and even consider the weighting 

of the network are also needed to aid in making informed tasking decisions. The method 

presented so far has only considered binary graph where the existence or non-existence of 

edges between nodes is assessed.  

5.4.3 Satellite tasking, Task 2: Maximisation of target observation time: 

In this section, the task related to the total target(s) observation time by a satellite, referred 

to as “the duration of view”, is analysed. The proposed approach aims to identify the 

satellite(s) that maximise the sum of the duration of view of all the targets that they overfly. 

A satellite’s total observation time over each target that it overflies is calculated from the 

propagation data (already stored on the edges when creating the graph), and the values are 

the edge weights related to the duration of view. The algorithm proposed for this task is 

based on the weighted adjacency matrix of the graph derived from the edge weights. An 
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analysis can be done using various methods to identify the satellite nodes that have 

maximum total node edge weights.  

As per the findings of G. Lohmann et. al., [155], eigenvector centrality gives computationally 

efficient insights on the structure of the network. Eigenvector centrality is the proposed 

approach studied in this section to give insights on the node optimality. Node optimality 

herein refers to identifying the nodes that maximise on the sum of node edge weights. 

Unweighted eigenvector centrality gives insights on the importance of nodes based on the 

importance of their connections and weighted eigenvector centrality considers weighted 

strength of a nodes connections [123, 156]. The satellite nodes that have optimum task 

performance (maximum sum of node edge weights), need to be identified. From definition, 

the satellite nodes with higher eigenvector centralities are connected to the targets that are 

viewed for the maximum durations hence maximising on the task. “Optimum task 

performance satellites” in this work refers to those satellite nodes that have the highest total 

sum of edge weight values, for example in terms of duration of view, the satellite nodes that 

maximise the observation time of all the targets that they overfly.  

For unweighted degree centrality, the number of connections is the primary indicator of 

importance. It however does not consider the quality or strength of connections based on 

edge weights nor the structural position of a node [122, 123]. The degree of the satellite 

nodes can however be used to inform on the number of target nodes the satellites are in 

contact with. The analysis of both the weighted and unweighted adjacency matrices are done 

in this section so that clear conclusions can be drawn on which centralities give the desired 

results and insights for tasking. For the simple network studied therefore, the degrees of the 

nodes and the weighted and unweighted eigenvector centrality of the graph are assessed 

with an aim of identifying the satellite nodes that individually optimise the duration of view 

of the targets. The choice to use the eigenvector and degree centralities is further justified 

and explained in section 5.5. 

From a given satellite and target network the adjacency matrix (𝐴) of the graph can be 

derived. For the simple network being analysed in this case, the nodes of the graph are 7, 

and so a 7 × 7 matrix is obtained. In the case of unweighted analysis, the adjacency matrix 

derived is a binary matrix, where 𝑎 is the element on the 𝑖th column and 𝑗th row,  

𝑓𝑜𝑟 𝑎𝑖𝑗 ≥ 0, ∀𝑖, 𝑗                                                     (5.5) 
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To model the bipartite adjacency matrix in terms of the partite (different parts), the 

adjacency matrix can be partitioned i.e., divided into two parts. This gives a 4 × 3 matrix. If 

the two parts of the bipartite graph are x and y, the partitioned adjacency matrix can be given 

as per ref. [157],  

𝐴 = (𝑎𝑖𝑗)𝑥×𝑦                               (5.6) 

where 𝑎𝑖𝑗 = 1 if node x and y are connected and 𝑎𝑖𝑗  = 0 if not.   

The adjacency matrix of the separate parts of the bipartite graphs may then be given as,  

𝐴𝑇𝐴 =  𝐵𝑥  and 𝐴𝐴𝑇 = 𝐵𝑦              (5.7) 

where y and x represent the different parts of the bipartite graphs and so the B matrices can 

be studied for the individual part centralities 

When the graph edge weights are considered however, the adjacency matrix is represented 

using the weight values of the connections. In terms of the duration of view task, the weight 

of the matrix is related to the total sum of duration of view that a satellite overflies each 

individual targets.  

Based on the first scenario of the illustrative architecture presented in Figure 5.2, page 106, 

the weighted graph presented in Figure 5.3 is obtained. The graph edges, defined as 𝐸(𝐺), 

where G is the graph, contain weights which give the total duration that a satellite in orbit is 

overflying each target. The colourmap on the graph indicates the degree of each node which 

represent the number of connections they have. Satellite 1 and Satellite 3 nodes have 

connections to 3 target nodes hence a degree of 3. Target node Moscow has only one satellite 

overflying it and so has a degree of 1. No satellite node has 4 edges nor a degree of 4 and so 

in this case, and as previously noted, there is no single satellite that views all targets. 
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Figure 5.3: Simple case Graph for Scenario 1 with weights related to the duration of view 
indicated on the edges and the colour bar indicating the degree of each node. 

In this chapter, the “weighting of a node” or “node weight” refers to the total sum of edge 

weights connected to that node. This represents the total sum of the duration of view in this 

section. Satellite 2 in Figure 5.3 for example has a total sum of the duration of view equal to 

160+40 = 200s and hence a node weight of 200. The eigenvector centralities are analysed 

using the adjacency matrix derived from the graph. The unweighted and weighted adjacency 

matrices are presented, in equations (5.8) and (5.9) respectively. 
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For the unweighted case, it is expected that satellite nodes with more connections to target 

nodes which have multiple connections will give high unweighted eigenvector centrality 

values. In the weighted case the strength of the connections, based on the weight of the 

node and in this case the duration of view, is influential in that, a satellite with many 

connections but connected to a target node with a low weight will have a lower weighted 

eigenvector centrality than one that connects to fewer targets that have higher weights. 

These expectations are observed when the eigenvector centralities of the graph, Figure 5.3, 

are calculated. The results obtained are presented in Figure 5.4 and Table 5.4, and a 

discussion based on these results is given. 

 
Figure 5.4: Eigenvector centrality values related to the duration of view task (a) weighted 
and (b) unweighted. 

The results graphically presented in Figure 5.4 show both the (a) weighted and (b) 

unweighted eigenvector centrality values highlighted using a colourmap. The values are 

tabulated on Table 5.4 for better clarity and analysis.  

Table 5.4: Weighted and unweighted centralities for satellites and targets from simple 
network, scenario 1 simulation. 

Node Name Weighted 
Eigenvector 
Centrality score 

Unweighted 
Eigenvector 
Centrality Score 

Node 
degree 

Total 
duration 
viewed (sec) 

Moscow (T1) 0.016 0.065 1 20 

London (T2) 0.307 0.192 3 370 



Chapter 5                 Satellite Tasking Using Graph Theory   112 
 

112 
 

Washington, D.C., (T3) 0.062 0.127 2 80 

Sydney (T4) 0.070 0.140 2 100 

Satellite 1 (S1) 0.132 0.186 3 170 

Satellite 2 (S2) 0.224 0.129 2 200 

Satellite 3 (S3) 0.189 0.161 3 200 

From Table 5.4, the unweighted eigenvector centrality results are observed to be closely 

related to the degree of the node. To verify this, the correlation of the data is calculated and 

presented in Table 5.5. The correlation shows that the p-value between the unweighted 

eigenvector centrality and the duration of view is below the chosen significance level of 0.05. 

Though this indicates a correlation significance, the correlation coefficients and the p-values 

generally indicate that the unweighted eigenvector centrality is more related to the number 

of edges than to the node weights (total sum of duration of view) which is expected as it is 

considering the binary adjacency matrix related to the node connections. 

Table 5.5: Unweighted eigenvector centrality correlation calculations 

Unweighted Eigenvector Centrality Vs Node Degree Total Duration of View 

Correlation 0.964 0.795 
P-Value 4.5e-4 0.032 

From Figure 5.4 (b), it is observed that if a satellite node connects to a high unweighted 

eigenvector centrality target node, it also increases the unweighted eigenvector centrality of 

that satellite node. Therefore, if a satellite node has the same degree as another satellite 

node but lower unweighted eigenvector centrality, it indicates that the satellite node is 

connected to a target node that has a lower node degree. Node S1 is observed to have the 

highest score in terms of the unweighted eigenvector centrality than the other satellites. S1 

and S3 have the same number of connections, but S3 has a notably lower centrality as one 

of its connections is the lowest centrality target T1. From these results therefore, satellite 

nodes with equal node degrees to others but lower unweighted eigenvector centralities may 

be further analysed for structural cohesion insights.   

If selecting a satellite to task based on the unweighted eigenvector centrality therefore, the 

satellite(s) to task based on the results on Table 5.4 while considering maximisation of the 

unweighted eigenvector centrality would be satellite node S1. In terms of duration of view 

however, this satellite does not give the maximum total sum of the duration of view and so 
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this shows that the unweighted eigenvector centrality does not give the desired clear insights 

while considering quantifiable tasks for undirected graphs.  

From the data on Table 5.4, the correlation coefficients of the weighted eigenvector are also 

calculated and presented in Table 5.6. As expected, the correlation coefficient and the p-

value indicate that the weighted eigenvector centrality is more related to the node edge 

weights than the number of edges attached to the node. 

Table 5.6: Weighted eigenvector centrality correlation values 

Weighted Eigenvector Centrality Vs Node Degree Total Duration of View 

Correlation 0.698 0.972 
P-Value 0.081 2.49e-4 

The weighted eigenvector centrality considers the strength of the nodes’ connections i.e., 

the sum of total edge weights (total sum of duration of view) of the neighbouring nodes as 

expected. For example, S2 and S3 have the same total sum of the duration of view value of 

200 seconds, but S3 has a notably lower centrality as one of its connections has the lowest 

weighted eigenvector centrality, i.e., target T1. Satellite 1, S1, has the lowest weighted 

eigenvector centrality score as it has the lowest sum of the duration of view, and this can be 

observed on the graph given in Figure 5.4 (a). If selecting the satellite to task based on the 

weighted eigenvector centrality therefore, satellite S2 would be selected as it has the highest 

value of the weighted eigenvector centrality. Selecting S2 would indeed maximise on the 

duration of view hence showing that relying on the weighted eigenvector centralities gives 

direct insights on the node optimality of weighted graphs.  

Insights such as which satellite node(s) will enable full coverage and in turn the general 

structure of the network are however not directly drawn from the eigenvector centrality 

values of an undirected graph. Moreover, the results show that due to the influence of the 

node’s neighbours, satellite nodes connected to the target nodes with low values may be 

overlooked for tasking if selection is based only on the eigenvector centralities values. This 

justifies the need for a hybrid method that makes use of multiple graph theory approaches 

to be able to task satellites with different mission objectives.  

5.4.3.1 Hybrid Method 

In the simple network first scenario presented in Figure 5.3 page 110, when considering 

tasking satellites that have the highest values of the sum of the duration of view and 
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contribute to maximum or full coverage, a combination of the results from the developed 

Algorithm 5.1 and eigenvector centralities can be used. If tasking based on both the full 

coverage hence structure of the network and the highest weights related to the tasks, the 

results from the developed neighbours’ brute force algorithm and eigenvector centralities 

on scenario 1 indicate that the satisficing satellites to task are satellites 2 and 3. Further 

analysis of the hybrid method is studied and analysed in section 5.6 when analysing complex 

networks. All the algorithms developed for the proposed hybrid method are presented in 

Appendix F. Additionally, the weighted eigenvector centrality analysis is seen to be both 

computationally and time efficient in identifying the satellites to be tasked based on node 

weight optimality. 

A justification of the use of the hybrid method for satellite identification and tasking is 

presented in section 5.4.4. Moreso, the justification of the use of Algorithm 5.1 to identify 

high cohesive nodes. Eigenvector centrality is used to identify optimum satellite nodes 

related to weight related tasks and this is comparable to the use of the 1st Principal 

Eigenvector.  

5.4.4 Justification of Using the Proposed Hybrid Method for Satellite Tasking  

The main aim of the work in this chapter is to develop a method for tasking satellites using 

graph theoretical approaches on satellite-target networks. The two tasks studied so far are 

related to the target coverage, and the total observation time of the targets by the satellites 

that overfly them. This research gives an analysis of the two distinct satellite tasking problems 

using two complementary graph theory approaches. The objective is to develop a hybrid 

methodology that leverages insights from both approaches to identify satellite nodes that 

achieve satisfactory performance for tasks simultaneously. To validate the effectiveness of 

this proposed hybrid approach compared to single-method analyses, the Principal 

Eigenvectors (PEVs) of the simple network presented in Figure 5.3, page 110 is studied.  

The first, second, and third principal eigenvectors (sometimes called dominant eigenvectors) 

in graph theory have been found to offer valuable insights into the structure and properties 

of a network, and they capture different aspects including the node community influence, 

the structural influence and the node global influence amongst others. Scholars like, Clark. 

et. al. [158] analyse the 1st 2nd and 3rd PEVs to determine influential nodes and node 

communities in a system. Herein, the 1st, 2nd and 3rd PEVs are calculated and analysed to 
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investigate the insights that can be drawn in relation to the tasks studied in section 5.4.2 and 

5.4.3. This work investigates the applicability of node community identification techniques 

to satellite tasking. The primary objective is to determine if these techniques can effectively 

identify critical satellite nodes. These critical nodes are herein defined as those nodes that: 

i. Maintain Network Cohesion i.e., identifying satellite nodes whose removal would 

disconnect target nodes from the network.  

ii. Optimise Node Performance: Assessing the overall satellite node optimality based 

on the total edge weights. This considers factors like the duration of view, where 

satellite nodes exhibiting the longest cumulative duration of view over the targets 

they observe are identified. 

This investigation aims to validate the use of both eigenvector centrality and Algorithm 5.1, 

here after referred to as the hybrid method, in identifying the critical satellite nodes.   

For bipartite graphs, a method to analyse the principal eigenvectors by using singular value 

decomposition (SVD) of the adjacency matrix is proposed by X. Shuang et. al., in [157]. X. 

Shuang et. al., use an analysis of the SVD method, as compared to using eigenvector 

centrality and develop two methods of identifying influential spreaders in bipartite networks 

which they name, the SVD-rank, and the SVDA-rank. In the latter, they use an augmented 

network where two ground nodes are added to the network. The method by X. Shuang et. 

al., prove to be robust to bipartite networks. As will be presented in the appendix however, 

the method by X. Shuang et. al., present a result correlating to the one obtained from the 1st 

principal eigenvector analysis and in turn the eigenvector centrality. 

Clark. et. al. [158], demonstrate that the first, second, and third Principal Eigenvectors (PEVs) 

are effective in identifying the most influential nodes and communities within a network. This 

study investigates the potential application of this approach to identify nodes such as satellite 

S3 by assessing their significance within the overall network structure. The 1st PEV is expected 

to give insights on the importance of a node in relation to the node degree for unweighted 

cases and in terms of the total sum of the edge weight values when using the weighted case. 

The 1st PEV is directly related to the eigenvector centrality of the node. The 2nd and 3rd PEVs 

on the other hand are expected to give insights into community and subcommunity nodes in 

a graph. Analysing the 2nd and 3rd PEV is expected to identify nodes with similar values and 

nodes that are more interconnected with each other.  
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With reference to the adjacency matrices of the simple network scenario presented in Figure 

5.3, page 110, the 1st, 2nd and 3rd PEVs are simulated. Both weighted and unweighted PEVs 

are analysed to assess their insights into the network structure. A key objective is to 

determine if PEV analysis, independent of Algorithm 5.1, can predict potential disruptions to 

target coverage. Specifically, can the analysis of PEVs anticipate situations where the loss of 

a satellite would lead to less target coverage and consequently disruption of the network's 

overall coverage structure? 

Figure 5.5 gives the graphs and the results of the unweighted adjacency matrix’ PEVs. For the 

unweighted case, Figure 5.5 (a), shows the graph being used for the analysis where compared 

to Figure 5.3 page 110, Moscow is T1, London T2, Washington D.C T3, Sydney T4 and Satellite 

1 is S1, Satellite 2 S2, and Satellite 3 S3. The graph of the 1st PEV, (V1) against the 2nd PEV, 

(V2) is presented in Figure 5.5 (b) which shows the position of the nodes in relation to these 

PEVs. Figure 5.5 (c) then shows the 2nd PEV against the 3rd PEV (V3) and Figure 5.5 (d) give a 

3-dimensional representation of the 3 PEVs. 

 
Figure 5.5: Plot of (a) the satellite and target network (b) unweighted 1st (V1) and 2nd (V2) 
PEVs, (c) unweighted 2nd (V2) and 3rd (V3) PEVs, and (d) 3D plot of unweighted 1st, 2nd, and 
3rd PEVs 
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The magnitude of the first principal eigenvector (V1) is observed to correlate strongly with 

eigenvector centrality as expected. Figure 5.5 (b), demonstrates that satellite S1 exhibits a 

higher V1 value compared to the other two satellites. This aligns with the unweighted 

eigenvector centrality results presented in  Figure 5.4, page 111.  

While Figure 5.5 (a) visually indicates that both S1 and S3 have three connections, S3 is 

connected to the lowest-degree target node (T1), resulting in a lower V1 value for S3 

compared to S1. V2 is expected to reveal graph structure and is known to be the basis of 

spectral clustering approaches. Figure 5.5 (b) and (c), demonstrate that, since T1 is solely 

connected to S3, V2 and V3 indicate a proximity between these two nodes. This suggests a 

potential community comprising S3, T4, and T1 based on their interconnections. However, 

the insights derived from V2 and V3 can be limited. For instance, without prior knowledge 

(such as from Figure 5.5 (a)), V2 might erroneously suggest that S3 has no connection to T2. 

Furthermore, while V2 and V3 offer some structural insights, they are less explicit than the 

neighbours’ algorithm approach, which directly identifies a node's connections. 

In the context of this, small, undirected network, the unweighted adjacency matrix's 2nd and 

3rd PEVs provide a general structural overview. For example, they might indicate that 

removing S3 would isolate T1. However, for more nuanced connection insights, the PEV 

analysis may be inconclusive. The interpretation of the results from the proposed hybrid 

method offers a more straightforward and insightful approach compared to relying solely on 

principal eigenvectors. This finding emphasizes the value of the hybrid method for analysing 

and identifying critical nodes in a network. 

Figure 5.6 shows the weighted 1st, 2nd, and 3rd PEVs, from this it is again evident based on V1 

that satellite node S2 has greater importance based on the value of the total edge weights 

connected to it as well as the total edge weights of the neighbouring nodes. Figure 5.6 (b), 

suggests a community comprising S2, T2, and T3, as all exhibit negative V2 values. While S1 

also connects to T2 and T3, its positive V2 value places it in a distinct cluster. Similarly, Figure 

5.6 (c), indicates a sub-community involving S3, T1, and T2, characterized by their positive V3 

values. However, the connection between T4 and S3 remains less evident based solely on V3 

analysis.  
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Figure 5.6: Plot of (a) satellite-target network, (b) Weighted 1st (V1) and 2nd (V2) PEVs, (c) 
Weighted 2nd (V2) and 3rd (V3) PEVs, and (d) 3D plot of 1st, 2nd, and 3rd PEVs 

Without the visual reference of Figure 5.6 (a), accurately determining the connectivity of 

other satellites would be challenging, potentially leading to erroneous conclusions. These 

limitations, particularly in a small, undirected network, underscore the potential challenges 

of relying solely on PEV analysis for comprehensive network understanding. This observation 

further supports the rationale for employing the proposed hybrid method for effective 

satellite tasking decisions. 

To further investigate these dynamics, a directed graph is constructed based on the satellite-

target network presented in Figure 5.3, page 110. This directed graph, depicted in, Figure 5.7 

is then analysed to determine the centralities and singular value decomposition of the out-

degree satellite nodes. On Figure 5.7, the node degrees are going outwards from the satellite 

nodes to the target nodes hence out-degree. This represents a directed graph where the 

direction of data flow is defined. The results of this analysis are summarized in Table 5.7.  
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Figure 5.7: Out-degree graph of directed satellite-target simple case graph 

In the directed graph, as with undirected graphs, the out-degree and in-degree provide 

insights into a node's connectivity. Table 5.7 confirms this expectation, reflecting the number 

of outgoing connections for each node. 

The calculated weighted in-degree and out-degree centralities exhibit a strong correlation 

with eigenvector centralities, given their reliance on the graph's adjacency matrix. By 

analysing the weighted centrality measures, deeper understanding of a node's position and 

influence within the directed network structure can be obtained. 

Table 5.7: Out-degree Centralities and Singular Value Decomposition analysis 

Node Node Name 

Node 
Out 
degree 

Total Node 
Out Edge 
Weight  

Out degree 
Weighted 
Centrality 

Weighted 
SVD 
Analysis 

'T1' 'Moscow' 0 0 0.00 0.00 
'T2' 'London' 0 0 0.00 0.00 
'T3' 'Washington, D.C' 0 0 0.00 0.00 
'T4' 'Sydney' 0 0 0.00 0.00 
'S1' 'Satellite 1' 3 170 0.24 0.41 
'S2' 'Satellite 2' 2 200 0.41 0.70 
'S3' 'Satellite 3' 3 200 0.35 0.59 

 

Using the principal eigenvectors (PEVs), proves to give some insights related to the node 

degrees and edge weighting and more so the 1st PEV in terms of the undirected graph and 
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the SVD analysis in terms of the directed graph. Even for the directed case, however, for a 

simple network, PEV analysis provides unclear predictions regarding the impact of node 

removal on network structure. This limitation underscores the need for the proposed hybrid 

methodology. The hybrid approach effectively addresses this by providing valuable insights 

into the critical satellite nodes. 

The proposed hybrid methodology demonstrates adaptability to directed graphs. By 

modifying the neighbours’ algorithm to consider 'successors' (nodes reachable via outgoing 

edges) within the directed graph (Figure 5.7), and incorporating outdegree weighted 

centrality, the methodology effectively identifies optimal satellite nodes for tasking. 

This modified approach yields results consistent with Scenario 1 in Table 5.3, page 107, 

identifying two sets of two satellites ({S1, S3} and {S2, S3}) capable of achieving full coverage. 

By prioritizing critical satellite nodes, the hybrid method selects the satisficing set {S2, S3} for 

tasking. 

This successful application to both directed and undirected graphs highlights the robustness 

and clarity of the results obtained through the proposed hybrid methodology. 

5.4.5 Small network with increased targets and satellites 

A graph of 11 satellites, in 11 different orbits and 10 targets is generated after ground track 

propagation considering the field of regard of the satellite. The graph for this is presented on 

Figure 5.8 where the top nodes are 10 target nodes, the bottom nodes are the satellite nodes. 

The colormap associated with the nodes represents their respective degrees within the 

graph.  
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Figure 5.8: Graph of 11 satellite nodes (S1 – S11) and 10 target nodes (T1 – T10) 

Algorithm 5.1 is applied to the network in Figure 5.8.  The analysis reveals that two satellite 

nodes, S4 and S9, maintain contact with all ten target nodes for unrestricted overflight 

period. However, when considering overflights exceeding ten seconds per visit, only satellite 

S4 provides full coverage. For overflights exceeding 10 seconds per visit, therefore, the 

network achieves maximum coverage (i.e., all targets observed) and the minimum of one 

satellite (S4) is necessary for complete coverage. 

Furthermore, excluding S4, eighteen distinct two-satellite combinations (unions) are 

identified that collectively achieve full coverage. Satellite S9 appears in eight of these 

combinations, indicating that it is a critical node for full coverage. S6 exhibits the second-

highest criticality. While these findings suggest prioritizing S4 or S9 for tasking, the optimal 

selection of the union should ultimately depend on other mission objectives. 

The presented case of 10 targets and 11 satellites can however be considered a simple small 

network as it can be assessed visually from the graph. A visual inspection of Figure 5.8 

corroborates the validity of Algorithm 5.1. 

To further analyse the network in Figure 5.8, eigenvector centralities are computed for the 

duration-of-view task. Figure 5.9 presents the resulting graphs for both weighted (Figure 5.9 

(b)) and unweighted (Figure 5.9 (a)) cases, while considering views exceeding ten seconds. 

Satellite S7 exhibits the highest eigenvector centrality in the weighted case, while S4, as 

expected, has the highest score in the unweighted case. 
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Figure 5.9: Eigenvector Centralities (a) unweighted (b) weighted 

The results presented in Table 5.8 further confirm that, based on weighted eigenvector 

centrality (reflecting total edge weights), satellite node S7 is the optimal choice for 

maximising the duration of view. While satellite nodes S9 and S6 offer the same duration of 

view, S9 exhibits a higher weighted eigenvector centrality due to its connections to high-

centrality target nodes. 

The maximum/optimal duration of view achievable by a single satellite is 890 seconds, 

provided by S7. Employing the proposed hybrid approach indicate satellite node sets N {S9, 

S7} and N {S6, S7} ensures full target coverage with a near-optimal average duration of view 

of (730+890)/2 = 810 seconds. Considering satellite node S9’s connectivity to high-centrality 

target nodes however, the preferred satisficing satellite set is N {S9, S7}. 

Table 5.8: Eigenvector Centralities for 10 target 11 orbit graph 

Satellite 
Unweighted 
Eigenvector Centrality 

Weighted Eigenvector 
centrality 

Node 
Degree 

Node Edge 
Weights 

S1 0.042 0.028 7 410 
S2 0.047 0.029 8 380 
S3 0.039 0.041 7 510 
S4 0.055 0.052 10 640 
S5 0.051 0.041 9 490 
S6 0.049 0.062 9 730 
S7 0.049 0.080 9 890 
S8 0.044 0.054 8 590 
S9 0.049 0.065 9 730 
S10 0.047 0.029 8 380 
S11 0.042 0.027 7 310 
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An analysis of the PEVs for the unweighted graph results are presented in Figure 5.10. The 

unweighted V1 values directly correspond to the node degrees, revealing that targets T1 and 

T7 possess the lowest degrees. However, the PEV analysis provides limited insights into the 

specific satellite-target connections. Notably, the PEVs do not explicitly indicate the impact 

of satellite loss on the network connectivity. This limitation further reinforces the necessity 

of employing the proposed hybrid method for effective satellite selection and tasking. 

 
Figure 5.10: Plot of (a) Unweighted eigenvector centralities, (b) Unweighted 1st (V1) and 2nd 
(V2) principal eigenvectors, (c) 2nd (V2) and 3rd (V3) principal eigenvectors, and (d) 3D plot 
of 1st, 2nd, and 3rd principal eigenvectors 

The weighted PEVs presented in Figure 5.11 demonstrate that the 1st PEV (V1) can effectively 

identify satellite nodes with optimal performance with respect to the task, in this case, 

maximising the duration of view. However, the 2nd and 3rd PEVs Figure 5.11 (b) – Figure 5.11 

(d) provide limited insights into the specific satellite node combinations required to achieve 

maximum target coverage, a crucial aspect of structural cohesion in this work. While 

identifying optimal task satellites for larger networks using PEV analysis can be valuable, this 

information is also obtainable through weighted eigenvector centrality analysis. These 
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observations further underscore the necessity of employing the proposed hybrid method for 

effective satellite selection and tasking. 

 
Figure 5.11: Plot of (a) Weighted eigenvector centralities , (b) Weighted 1st (V1) and 2nd (V2) 
PEVs, (c) Weighted 2nd (V2) and 3rd (V3) PEVs, and (d) 3D plot of 1st, 2nd, and 3rd PEVs 
 

 

5.5 Complex Satellite-Target Graph Analysis Related to Increased Number of 

Satellites 

To demonstrate the applicability of the proposed hybrid satellite tasking method to larger 

and more complex scenarios, analysis is further extended to a network comprising 50 

satellites and 10 targets. The analysis in this section aims to, 

i. Determine the minimum number of satellites required for full coverage, (to 

overfly all targets at least once) and identify the satellite nodes that if removed 

would limit this, 

ii. Identify the satellites with the highest cumulative duration of view across all 

observed targets, 

iii. Identify and select the satellite nodes that maximise on number of times of 

overflight across all targets (node optimality based on the sum of overflights), 
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iv. and determine a satisficing set of satellite nodes by considering trade-offs among 

the criteria defined in (i) - (iii) while minimizing the number of tasked satellites. 

The network of the 50 satellites and 10 targets is depicted in Figure 5.12. The colormap to 

the right of the graph represents the node degrees, where a degree of 50 indicates the 

maximum number of connections. Given the network structure, this maximum degree must 

belong to a target node, as the highest possible degree for a satellite node is limited to 10 

(the number of targets). The graph presented in Figure 5.12 is used for analysis in this section 

to demonstrate the robustness and efficiency of the proposed hybrid method in determining 

optimal satellite selections for maximizing coverage and weighted task performance. 

 
Figure 5.12: Network of the 50 satellites (S1 – S50) and 10 target points (T1 – T10) used for 

the complex network simulation and analysis. 

5.5.1 Minimum Number of Satellites Needed to Overfly All Targets. 

For the network, Figure 5.12, Algorithm 5.1 is employed to determine the minimum number 

of satellite nodes required to effectively maximise coverage while minimising the number of 

satellites to task. The analysis reveals that eight out of the 50 satellites each in a distinct orbit 

individually provide full coverage of all ten targets within a 2-day repeat orbit.  

This finding is corroborated by a visual inspection of Figure 5.12, where satellite nodes with 

a node degree of 10 (represented by yellow) are readily identifiable. These nodes, by 

definition, have connections to all ten targets. Consequently, the minimum number of 
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satellites necessary for full coverage in this scenario is one. This result demonstrates the 

continued suitability of Algorithm 5.1 for determining the minimum number of satellites 

needed for maximum coverage, even as the number of satellites and targets increase. 

Upon excluding the eight satellites that individually provide full coverage, the analysis 

identifies 473 distinct two-satellite combinations (referred to as "unions") capable of 

achieving full coverage. The evaluation of unions is further explored in Section 5.6, as they 

are particularly relevant when considering multi-tasking scenarios for the satellites. 

5.5.2 Analysis of Node Optimality Related to Duration of View of the Targets. 

The tasking method presented in this work proposes the combined use of Algorithm 5.1 and 

the eigenvector centrality of the network’s adjacency matrix. Eigenvector centrality is 

proposed to determine optimum satellite task performance, particularly for tasks such as the 

duration of view that are influenced by the network’s weighted properties.  

This section investigates both the unweighted and weighted eigenvector centralities and 

additionally, the weighted degree centralities and gives a comparison to further justify the 

use of eigenvector centrality. The goal is to further justify the robustness and suitability of 

eigenvector centrality as the primary metric to assess the node optimality for both small 

networks and complex, large networks. It is expected that both weighted and unweighted 

satellite node eigenvector centralities are significantly influenced by the connected target 

nodes i.e., eigenvector centralities reflect the node importance in relation to the importance 

of its neighbours.  

Using the 50 satellites and 10 targets network, presented in Figure 5.12, the analysis is 

focused on overflights exceeding 10 seconds, i.e., if a satellite overflies a target for less than 

10 seconds, it is not considered as an overflight of the target and is therefore not included in 

the analysis. In the present case of 50 satellites and 10 targets for example, Algorithm 5.1 

identifies the number of individual satellites that view all targets with view durations greater 

than 10 seconds to be 4 satellites. Additionally, 587 2-satellites sets (unions) also facilitate 

full coverage.  

The number of satellite nodes in contact with all the target nodes in this section is key to 

analysing the unweighted degree centrality and unweighted eigenvector centrality, as they 

are both influenced by the number of edges. This means that the 4 satellites that have full 
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coverage, are expected to have the highest values for both unweighted eigenvector and 

degree centralities.  

The results of the weighted and unweighted eigenvector centrality analysis for the 50 

satellites are presented in Figure 5.13. It is notable that significant disparities are observed 

particularly in the nodes that have maximum values for each of the centrality measures.   

  
Figure 5.13: Graph of weighted and unweighted Eigenvector centrality analysis for the 50 
satellite nodes, based on the duration of view weighting. 

Figure 5.13, indicates that in terms of the weighted eigenvector centrality, satellite 7 and 14 

have the highest scores. These two satellites have the longest total duration of view of the 

targets that they overfly which is 890 seconds each. They are also both in contact with nine 

target nodes, one of them being target node T2. Target node T2 has the highest total duration 

of view amongst the target nodes which is 5420 seconds while the second highest total 

duration of view is target T1 with 3440 seconds. This shows that nodes connected to T2 will 

exhibit high values of the eigenvector centralities. In general, based on the analysis of 

weighted eigenvector centralities, the mentioned factors make satellite 7 and 14 have 

weighted eigenvector centralities significantly higher than the other satellite nodes.   

Satellite 7 and 14 are however not the highest in terms of unweighted eigenvector 

centralities where satellite 4, 40, 46 and 47 have the highest values. These are highest 

because the unweighted eigenvector centrality is closely related to the degree of the nodes. 

The four satellites, 4, 40, 46 and 47 all have degrees of 10, i.e., they overfly all the targets, 
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but they have a low total duration of time of overflight. These are 640 seconds, 530 seconds, 

530seconds and 590 seconds respectively. In terms of the weighted eigenvector centrality 

therefore, despite being connected to target 2, they are also connected to weaker target 

nodes such as T6 which has a total duration of view of 1960 seconds, hence lowering their 

general weighted eigenvector centrality values.  

The weighted degree centrality analysis also gives results closely related to the weighted 

eigenvector results analysis. Mapping the normalised values of the two results on each other, 

however, shows that there are some differences. This is presented in Figure 5.14. The 

difference between the two results is because weighted degree centrality only considers the 

actual total duration of view weight values of the nodes whereas weighted eigenvector 

centrality considers the weight of the neighbours of the nodes i.e. the total sum of edge 

weights of the connections is included in eigenvector analysis. 

 
Figure 5.14: Graph of the weighted normalised eigenvectors and degree centralities 
showing the differences between the two for 50 satellites analysis.  

From Figure 5.14, taking satellite 28 for example, there is a significant difference between 

the weighted degree centrality and the weighted eigenvector centrality. This is again 

attributed to the connection of satellite 28 to 9 target nodes which exclude the second 

highest duration of view value target, T1. From this analysis, for the duration of view task, 

satellite nodes 7 and 14 have the highest centrality scores in terms of both weighted degree 

centrality and weighted eigenvector centrality. Based on the analysis and results showing 
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that the weighted eigenvector centrality gives different selections based on the neighbouring 

nodes however, it is proposed to add the weighted degree centrality analysis to the hybrid 

method. This addition is to enable an operator to obtain more robust and informed satellite 

selections that are purely based on the individual node weight without the influence of the 

neighbouring node. Although with a small difference, for example, eigenvector centrality 

shows that the second-best pair of satellites to be tasked based on the total duration of view 

should be satellite 15 and 23. These satellites however have lower duration of views than 

satellites such as satellite 6, 9 and 16. This is due to the connection of the three latter 

satellites to target nodes with lower centralities. It would therefore be ideal for a decision 

maker to be aware of such insights before selecting the satellites to be tasked. This addition 

is more profound in multi-tasking and is further analysed in section 5.6. 

Nevertheless, both weighted degree centrality and eigenvector centrality analysis have led 

to the conclusion that satellite 7 and 14 are the best satellites for maximisation of the total 

sum of the duration of view. For purposes of determining and tasking the satellite(s) that 

optimise the duration of view task, therefore, the weighted eigenvector centrality has again 

proved to be a suitable metric for even large, complex networks. 

5.5.2.1 Principal Eigenvector analysis for the Duration of View 

An analysis of the weighted and unweighted 1st, 2nd and 3rd PEVs are done based on Figure 

5.12. Using the developed hybrid method gives clear insights on the node optimality based 

on the tasks that consider the node weights as well as identifying the satellite nodes that 

ensure maximum coverage of the targets with minimum number of satellites.  

From Figure 5.15, the unweighted 1st principal eigenvector shows that target node T1 is the 

least overflown. It is however not clear which satellites overfly the target. This means that 

insights on which satellite node when removed will reduce coverage cannot be drawn from 

the 1st PEV, V1. The 2nd and 3rd unweighted PEV on the other hand give insights on which 

satellites overfly common targets. From  Figure 5.15 (b) for example, satellite nodes S34 and 

S26 have the same value of V2 and V3 and are found to overfly the same targets. This 

however does not give conclusive insights on which satellites nodes when removed will result 

in less coverage. 
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Figure 5.15: Plot of (a) Unweighted 1st (V1) and 2nd (V2) eigenvectors, (b) Unweighted 2nd 
(V2) and 3rd (V3) eigenvectors 

From calculating the 1st, 2nd and 3rd weighted principal eigenvectors, the plot, Figure 5.16 is 

generated.  
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Figure 5.16: Plot of (a) Weighted 1st (V1) and 2nd (V2) PEVs, (b) Weighted 2nd (V2) and 3rd 
(V3) PEVs  

Figure 5.16 (a), indicate that the satellites with the longest duration of view are found to be 

satellite S14 and S7 just as in the eigenvector centrality analysis. The two satellites, S14 and 

S7 however do not overfly target T3 and this is not evident either from Figure 5.15 nor from 

Figure 5.16. This shows that the hybrid method gives more insights related to the node 

optimality and the structural cohesion hence better-informed tasking decisions even for 

larger, complex networks. For the case of analysing a satellite-target network for 

maximisation of target coverage which requires structural cohesion analysis, the hybrid 

method developed gives clearer insights compared to using PEVs. When considering the 

maximisation of the total sum of the edge weights connected to a node, the eigenvector 

centrality and in turn the 1st principal eigenvector gives clear insights when considering the 

neighbours of the node.   

5.5.3 Analysis to Find Optimum Satellites for Number of Times Seen Objective 

Function. 

For the 50 satellite network, in terms of the number of times that the satellites view the 

targets, the centralities are calculated and the results for both eigenvector centrality and 

degree centrality are presented in Figure 5.17 and Figure 5.18 respectively. These results 
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again show some similarities in the weighted degree and eigenvector graph shape. There are 

however some differences due to eigenvector centrality not only considering the number of 

times that a satellite views a target but also the neighbouring targets’ number of times seen 

value. 

 

Figure 5.17: Graph of the weighted and unweighted Eigenvector centrality analysis of 50 
satellite nodes based on the number of times that a satellite views all the targets. 

 

 
Figure 5.18: Comparison of the weighted and unweighted Degree centrality based on the 
number of times that a satellite overflies the target nodes. 

For both the weighted eigenvector and the weighted degree centrality, satellite ID 6 is 

identified as the optimum satellite for number of times seen but does not overfly all the 

targets. For the unweighted values, as expected, the satellite nodes that maximise node 
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degree and hence coverage have the highest values. As before, using the weighted 

eigenvector centrality proves to be a robust method to selecting satellite nodes that optimise 

on the tasks related to the node weights. Addition of the weighted degree centrality gives 

better and clearer insights as to whether the selected satellites individually optimise the task, 

or it must rely on the weight of the neighbouring nodes. 

5.5.3.1 Satisficing Satellites selected 

Depending on the given mission requirements, two tasks, for example the duration of view 

task and the minimum number of satellites required to maximise on coverage, can be 

modelled as multi-objective/ multi-tasking problem. An operator may need the minimum 

number of satellites that overfly all targets as well as optimise the duration of view. This 

requires a selection of satellites that achieve both missions in a near optimum way. In the 

presented network, Figure 5.12, page 125, the satisficing satellites for the duration of view 

and the full coverage tasks are identified to be a 2 – Satellite union, i.e., satellite node 14, 

which is in contact with 9 targets excluding target node 3 and satellite node 28 which is in 

contact with target node 3 but excludes target node 1. Satellite 28 has a higher weighted 

degree centrality than its eigenvector centrality and this is due to a contact with target node 

T3 which has a low weighted eigenvector centrality. The average normalised weighted 

eigenvector and weighted degree centrality scores of the two satellite nodes are given in 

Table 5.9. The orbits of these two satellite nodes which are selected to optimise on the two 

mission requirements are also presented in Table 5.9.  

Table 5.9: Suggested satellite pair to maximize on duration of view task as well as view of all 
targets from the graph analysis. 

Satellite 14 28 Tasking both 
satellites 

Target nodes in contact [T1, T2, T4, T5, 

T6, T7, T8, T9, 

T10] 

[T2, T3, T4, T5, T6, 

T7, T8, T9, T10] 

Full coverage 

Weighted Eigenvector 

Centrality (normalised) 

100 59.5454 79.77 

Weighted Degree 

Centrality (normalised) 

100 70.7865 85.39 

Orbit Inclination (Deg) 56.00 50.00  

Orbit RAAN (Deg) 2.001 8.003  
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The combined results from selecting and tasking satellite 14 and 28 is, full coverage of 

targets, average normalised weighted eigenvector centrality of 79.77 and average 

normalised weighted degree centrality of 85.39. In relation to the duration of view, tasking 

the union of satellite 14 and 28 ensures a total duration of view equating to approximately 

1520 seconds within 2-days. This brings in the study of multiple task optimisations for the 

tasking of satellites using the proposed hybrid method and is studied further in section 5.6 

where optimum multi-task analysis for satellite tasking is presented. 

5.5.4 Application of the hybrid method to a scenario with more targets than 

satellites 

Given a scenario with 202 targets and 135 satellites in orbit, the hybrid methodology is used 

to determine the minimum number of satellites that will give maximum total durations of 

view as well as achieve the maximum coverage of the targets in a span of two days. The 202 

targets are presented on Figure 5.19. 

 
Figure 5.19: Map plot of the target points to be used for tasking satellites using the developed 
hybrid method 

For the coverage task, when the hybrid method’s, Algorithm 5.1 is applied to the 202 targets 

and 135 satellites graph, none of the satellites are found to individually overfly all the targets 

within the given time period of 2-days. 125 unions of 2 – satellites are however found to 

overfly all the targets.  
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When simulated for the duration of view task, two satellites overfly the targets with the 

maximum duration of view. These are satellites 5 and 48 of which overfly 135 and 160 of the 

202 targets respectively. Together, the two satellites, 5 and 48 overfly 182 targets out of the 

202. There is therefore no full coverage for the longest duration of view satellites. 

From the hybrid method, to have full coverage and get the maximum possible duration of 

view while minimising the number of satellites, the optimum sets of 2-satellites are 

determined and presented in Table 5.10. 

Table 5.10: Combined normalised values to get full coverage from sets of 2-satellites 

combined normalised duration of view satellite 1 satellite 2 
96.73 49 44 
96.44 61 49 
96.95 66 49 
95.03 76 49 
97.33 90 49 
96.27 102 49 

From Table 5.10., satellite 49 is a critical satellite node as it appears in all the satellite sets for 

full coverage. For satellite selection based on maximisation of the duration of view, and full 

coverage, satellite node set {90 49} is identified as the satisficing set from the hybrid method. 

A directed graph of the 202 targets and 135 satellites in orbit is generated and the PEVs of 

the Laplacian are calculated. The Laplacian is used in this case as the directed graph has an 

asymmetric adjacency matrix. The Laplacian if the difference between the adjacency matrix 

and the out-degree diagonal matrix.  

𝐿 = 𝐷 − 𝐴 

Where 𝐿 is the Laplacian matrix, 𝐷 is the out-degree diagonal, and 𝐴 is the adjacency matrix. 

It is observed that the results and insights are not as clear as using the proposed hybrid 

method. The communities are more evident in terms of the 2nd and 3rd PEVs but in terms of 

the network’s structural cohesion, the insights need further analysis to be conclusive. The 

results of the directed graph PEVs are as presented in Figure 5.20.  
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Figure 5.20: Principal Eigenvectors of the Laplacian of the directed graph of 202 targets and 
135 satellites (a) V1 – 1st PEV and V2 – 2nd PEV (b) V3 – 3rd PEV and V2 – 2nd PEV 
 

5.6 Case Study: Multi-Task Analysis Using Proposed Satellite Tasking 

Methodology 

Once the optimum satellite nodes for individual tasks have been identified, the graph can be 

further queried and analysed to determine combinations of satellite nodes that, after 

considering trade-offs between optimal nodes for different tasks, yield satisficing, multiple-

task performance. These combinations are referred to as satisficing satellite unions. This 

means that they satisfy multiple tasks in a near optimum way. Near optimum in this case 

means that when selecting satellites to be tasked, satellites that may not necessarily perform 

any of the tasks in an optimum way but perform all desired tasks in a near optimum way can 

be selected. For instance, Satellite A might excel in duration of view but underperform in the 

number of times seen. Conversely, Satellite C might have a high number of times seen but a 

low duration of view. A more balanced approach could involve Satellite B, which offers a 

compromise between these two metrics. Alternatively, a combination of Satellites A and C 

could be considered to optimize performance across both metrics. Different algorithms can 
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be used to determine the satellites to task for multiple objectives. Y. Zhang et. al. [159], for 

example used a pareto-optimal search to determine communities in a bipartite graph while 

considering both structural cohesiveness and the weighting values. The proposed hybrid 

method can be used for tasking satellites that optimise both single and multiple tasks, and it 

shares some of the advantages of the previously used multi-objective function optimisation 

method presented in chapter 3 of this dissertation.  

The results obtained from the single task optimisation formulate the starting point for the 

multi-task optimisation developed. For the duration of view and number of times seen tasks, 

both weighted eigenvector and degree centralities are calculated and normalised. The 

satellite nodes with the best performance in both tasks are identified and selected. The 50 

satellite graph presented in Figure 5.12 page 125 is used to illustrate the application of the 

hybrid method. The eigenvector centralities of the adjacency matrix considering both 

duration of view tasks and number of times seen tasks are first calculated. The eigenvector 

centrality scores for each of the tasks are then normalised.  

An analysis of the normalized values is conducted, involving a sensitivity analysis on task 

priorities. This involves adjusting the priorities assigned to the two tasks and recalculating 

the weighted sum of their normalized values. For instance, if the initial priorities are equal 

(1:1), the normalized values are averaged. By varying these priority values, different 

combinations of satellite nodes are evaluated to identify optimal solutions under various 

prioritization schemes. This means that if the normalised centrality for duration of view is 60 

and the normalised centrality for the number of times seen is 80, the combined centrality 

will be (1/2 *60) +(1/2 *80) = 70. For the 2:3 priority ratio on the other hand, if the same 

centralities are applied, i.e., 60 and 80, the combined centrality will be (2/5 * 60) + (3/5*80) 

= 24+48 = 72. 

The result for the analysis done using this change in priority of the tasks is presented in Figure 

5.21 which shows how the optimum satellites related to the two tasks are determined. In 

Figure 5.21, the priorities of the two tasks are varied according to the ratios on the legend 

(Duration of view: Number of times Seen) and this shows that the total normalised 

eigenvector centralities related to the two tasks vary as the priorities change. Satellite 7 and 

14 are the optimum satellites for most of the changing priorities but when the duration of 

view has a 20% priority compared to the number of times seen which has 80% however, the 
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6th satellite is the optimum for tasking (this is seen on the magenta line i.e., Duration of view: 

Number of times seen = 1:4).  

 
Figure 5.21: Optimisation of both duration of view objective function and mean number of 
times viewed when their priorities are different. 

From these results, the satisficing multi-task satellites that solely depend on the weighting 

can be determined by identifying the satellite nodes with the highest combined centrality 

values in the network. These satellite orbits will ensure that multiple tasks are achieved and 

in a near-optimal way. As previously observed, using the eigenvector centralities alone may 

overlook some important insights on the satellite tasking especially in relation to the 

structural cohesion. A more efficient and informed method of satellite task selection is 

realised by the inclusion of Algorithm 5.1 and in this section, the degree centralities are also 

integrated into the proposed hybrid method. This newly developed proposed method is 

herein known as the Multi-Tasking Proposed method (MTPM) and is formulated as follows, 

i. The graph is created after propagation of satellite orbit ground-tracks within a 

given field of regard, 

ii. The single satellite node(s) or node sets that maximise on the node connectivity 

which in this case is represented by the target coverage are determined from the 

simulation of Algorithm 5.1, 
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iii. Each satellite and satellite set eigenvectors and degree centralities are then 

calculated and normalised, 

iv. The best satellite node(s)/ node sets are then selected as those found to have 

highest weighted centrality values and together satisfy maximum coverage.  

The full algorithms used for these calculations, satellite tasking selections and determination 

are presented in the appendix section F.  

5.6.1 Multi-tasking of Satellites Using the MTPM  

This work employs centrality measures, specifically degree and eigenvector centrality, to 

analyse satellite-target networks. However, traditional methods for identifying influential 

nodes in bipartite graphs while considering both node cohesion and the weighting values 

often lack formal justification for identification see Y. Zhang et. al. [159]. To address this 

limitation, a multi-tasking approach to identify optimal satellite nodes that simultaneously 

satisfy three tasks is proposed. The tasks are:  

i. The least number of satellites needed to overfly all targets at least once, 

ii. The satellite nodes that optimise the duration of view of the targets, 

iii. The satellite nodes that optimise viewing the targets as many times as possible. 

The algorithm proposed to identify the satisficing satellite combinations is a modified multi-

task optimisation analysis which incorporates the normalised centrality results from each 

task. The summarised algorithm for this is presented in Algorithm 5.2.  

Algorithm 5.2: Optimisation of the combination of satellites 

𝑰𝒏𝒑𝒖𝒕𝒔:𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑛𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 −

𝑏𝑜𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑)   

𝑶𝒖𝒕𝒑𝒖𝒕𝒔: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠  

𝒇𝒐𝒓 𝑖 =  1: 𝑛𝑢𝑚𝑒𝑙(𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠)  

𝒊𝒇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑖) ≥ 80  

𝑓𝑝𝑟𝑖𝑛𝑡𝑓 (𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝐼𝑑)  

𝑂𝑝𝑡𝑖𝑚[ ] = 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 (𝑖)  

𝒆𝒏𝒅  

𝒆𝒏𝒅  

Optimal satellites = Optim. 
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For the 50 satellites and 10 targets network, which is presented in Figure 5.12, page 125,  

Algorithm 5.2 is simulated. The results obtained from this simulation when the combined 

normalised centralities are kept at a minimum value of 80, i.e., 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑖) ≥

80, the satisficing satellites are found to be satellite 7 and 14. These satellites however do 

not view all the targets as desired. They both do not overfly target 3.  

Compared to the previous analysis using the weighted eigenvector centrality analysis, these 

are the same satellite nodes that were selected as the optimal satellites. When the brute-

force neighbours’ algorithm, Algorithm 5.1, is simulated, the satellite node that is appearing 

in most sets/unions is considered to be the node holding the structure of the network 

together, i.e., acting as a bridge and ensuring structural cohesion. 

From the results of simulating Algorithm 5.2, if the satellite nodes with a minimum combined 

normalised values of 40 are considered, i.e., for all centralities (𝑖) ≥ 40,  the simulation 

obtained 12 satellite nodes. When simulated for full coverage, unions of 2 satellite nodes 

were found to fulfil achieve full coverage. Amongst the 12 satellite nodes, 29 unions of 2-

satellite nodes were found to be in contact with all the target nodes.  

From the 29 unions of 2-satellites, centralities are calculated to get the optimum normalised 

combinations for the unions. This results in the satisficing unions of satellites being union 

number 21 and 29, and near-optimal unions are union number 5, 8, 9 and 12. The satellite 

IDs, satellite orbit Inclinations and satellite orbit right ascensions of union 21, 29, 12 and 5 

are presented in Table 5.11. 

Table 5.11: Optimal satellite pair data from the simulated orbit network 

Satellite Pairs 1 (21) 2 (29) 3 (12) 4 (5) 

Satellite 1 ID 49 49 37 30 

Satellite 2 ID  14 7 7 14 

Satellite 1 orbit Inclination (Deg) 56.00 56.00 52.00 52.00 

Satellite 2 Orbit Inclination (Deg) 56.00 56.00 56.00 56.00 

Satellite 1 orbit RAAN (Deg) 12.005 12.005 2.001 8.003 

Satellite 2 Orbit RAAN (Deg) 2.01 2.00 8.004 2.01 

 

The satisficing satellites obtained show that for the fulfilment of the tasks, satellites at 

inclinations of 56 degrees and 52 degrees achieve the mission requirements optimally. This 

work was done with a satellite orbit ground track propagation limited to an orbit range of 50-
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60 degrees inclination with increments of 1 degree. With a more refined grid, these satisficing 

satellites would be more varied.  

Nevertheless, the proposed method developed, MTPM, from a combination of different 

graph theory techniques and developed algorithms is seen to be a valid method for 

determining satellites to task. The proposal of tasking satellites using graph theory has been 

proven to be able to attain the desired objectives efficiently in both time and computational 

efficiency while considering tasks that can be weighted and those that do not depend on 

weight.  The application of the method is extended to a wider range of targets and satellites 

making the network larger and more complex as will be presented in the sections following. 

5.6.2 Multi – Tasking of Satellites which are in Orbits at Different Altitudes. 

The satellite tasking results presented in this chapter have been based on satellites that have 

been on 2-day repeat ground track orbits. In this section, satellites in different orbital 

altitudes are considered for the analysis. The satellites are to overfly 10 desired target points.  

The satellite orbit ground tracks are propagated using the analytical method presented in 

chapter 2. The MTPM, is then used in this section to determine the satisficing satellites to 

task for the optimum performance of the duration of view and the number of times seen as 

well as obtain maximum target coverage.  

The 10 targets used are presented in Figure 2.13, page 44. The satellite orbital space 

parameters are then presented in Table 5.12. 

Table 5.12: Orbital Search Space parameters of where the satellites are located. 

Parameter Range Units 

Inclination 50-60   Deg 

Right Ascension of Ascending Node 0-5  Deg 

Altitude 300 – 800 km 

Time (From Epoch) 0 – 172800 Sec 

 

 The proposed Multi-Tasking Problem Model (MTPM) is simulated using graph theory-based 

algorithms detailed in Appendix F. The results and steps of the simulations are as follows,  

i. The first step takes the bulk of the work as it involves the creation of the graph. 

In this case, 1500 satellites in different altitudes have their ground-tracks 
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propagated and the graphs of the satellites and the targets are generated using 

Algorithm F.1.  

ii. From the graph, the minimum number of satellites needed to ensure full 

coverage, can be queried. This is done using Algorithm 5.1. In this case, the 

minimum number of satellites needed to overfly all the targets is found to be 1 

satellite. This may be due to the small number of targets required to be 

overflown.  

iii. The weighted and unweighted degree and eigenvector centrality of the graph for 

both tasks, of duration of view and number of times seen are then calculated and 

normalised using Algorithm F.3 and Algorithm F.5.  

iv. From this normalisation, the combined sets/unions of satellites that have high 

normalisation values and ensure full coverage are determined using Algorithm 

F.6.  

From this analysis, unions of 2-satellites that are determined to be optimum for the 

normalised centralities are selected. This is because none of the satellites that have full 

coverage optimise on both duration of view and number of times seen tasks. It is observed 

that there are no optimum or near optimum satellites at the lower altitudes (300-500) km. 

Table 5.13 presents the unions of satellites that are found to maximise on both tasks. 

Table 5.13: Maximum normalised combined objective function satellite orbits (satisficing 2-
satellite unions at different altitudes selected) 

 Satellite 1 
INC (Deg) 

Satellite 2 
INC (Deg) 

Altitude 
(m) 

Union 1 56.8 53 610000 

Union 2 53.4 52.6 670000 

Union 3 52.6 53.4 680000 

From the simulation of 1500 satellites at altitudes between 300-800 km and inclinations 

between 50-60 degrees, 6 satellites are found to perform the 3 tasks in a near optimal way. 

Using the MTPM, the analysis proved to be efficient for giving insights to this large, complex 

network of 1500 satellite nodes and 10 target nodes. This shows that the proposed method 

of satellite tasking using graph theory analysis is valid for different network structures. To 

further validate this, a complex satellite network using an increased number of targets is 

presented in section 5.6.3.  
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5.6.3 Case Study 2: Complex Network Analysis for Satellite Tasking with Increased 

Number of Targets. 

The MTPM is aimed at tasking of satellites that are already in orbit hence maximising on 

assets in space. The algorithms presented and developed for use in determining satellites to 

task is further validated when used in this section to determine and task over 3000 satellites 

overflying 202 targets that optimally satisfy given tasks. The 202 target locations to be 

overflown are presented in Figure 5.19, page 134. 

In this section, the application of the MTPM is presented considering the determination of, 

i. the minimum number of satellites needed to overfly all the targets in the span of 

48 hours from epoch, 

ii. best satellites to task that optimise the total duration of view and the mean 

number of times seen of the desired targets within the 48 hours i.e. multi-task 

optimisation considering both duration of view of the targets and number of 

times a satellite views the targets.  

iii. satellites that view the most targets within different amounts of time after epoch, 

the first has been set to within 500 seconds of Epoch. This is to show that tasking 

of the satellites that can view targets within a given amount of time can be 

achieved using graph theory.  

In this case, the satellite orbit range details are as presented in Table 5.14. 

Table 5.14: Satellite orbital parameters used for propagation. 

 Inclination (Deg) RAAN (Deg) Altitude (km) 

Range  0-180 (10-degree increments) 0-360 300-700 

For aim (i), approximately 3500 satellites are analysed using the first section of the method 

which uses Algorithm 5.1. From this analysis, the minimum number of satellites found to 

overfly all the targets at least once within 2-days from epoch is 2 satellites. Multiple unions 

of 2-satellites or more are found to achieve the task of full coverage within the same period.  

For aim (ii), the weighted centralities are calculated and the satellites with the highest values 

are determined based on the individual task of the duration of view and the mean number 

of times they view the targets.  The selected satellites are those found to have normalised 

centrality values above 90 for each of the individual quantifiable tasks. The satellites that 
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maximise on the duration of view are presented in Figure 5.22 (b). The duration of view 

satellite orbits presented in Figure 5.22 (b) show that the satisficing satellites to possibly task 

for optimisation of the duration of view are more than 10 satellites and Figure 5.22 (a) gives 

similar insights for the number of times seen. Using all the satellites found to optimise the 

tasks in this case would mean tasking many satellites. Minimisation of the number of 

satellites to be used is hypothetically more economical. An analysis of the combined satellite 

nodes that satisfy both tasks is used to minimise the satellites to task. To optimise both tasks, 

4 satellite nodes are found to have the normalised values greater than 90 for both tasks. 

These are as presented in Figure 5.22 (c) which shows the satellites that have near-optimum 

normalised centrality values related to both tasks and their orbital values are presented in 

Table 5.15.  

 
Figure 5.22: (a) Orbits of the number of times viewed satellites nodes with normalised 
values above 90.  (b) Orbits of the duration of view satellites nodes with normalised values 
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above 90 (c)Satellite tasking based on two objective functions - number of times of view 
and duration of view. 

Table 5.15: Satellites tasked for both duration of view and number of times seen 
optimisation. 

 Inclination 
(Deg) 

RAAN (Deg) SMA (m) 

Satellite 1 Orbit  130.00 330.032 6788000 
Satellite 2 Orbit  130.00 330.032 6728000 
Satellite 3 Orbit  130.00 47.0038 6678000 
Satellite 4 Orbit  50.00 11.0002 7008000 

 

These results show the application of the MTPM to task minimum number of satellites while 

ensuring full coverage of the targets. It also validates the use of the MTPM to task satellites 

based on multi-task optimisations using combined graph theory metrics, and particularly the 

centralities. The next section, section 5.6.4, validates the robustness of the method by 

developing it further by using it to task satellites that overfly the targets based on desired 

times from epoch.  

5.6.4 Development of Satellites Tasking Algorithm Based on Time Elapsed from 

Epoch Time. 

To further show the robustness of using graph theory to task satellites, the third (iii) task 

presented in section 5.6.3, page 143, where the time from epoch is to be considered is 

presented in this section. It is simulated using the graph obtained after propagation of the 

ground tracks within a given field of regard. The analysis for this is complex and selection is 

done using a modification of the previously given algorithms but with a change of task to 

consider the time from Epoch. The modified algorithm is presented as Algorithm 5.3. 

Algorithm 5.3 Tasking of satellites within a certain time from Epoch 

input: propagated satellite-target graph 

output: target visit times from epoch and satellite tasking 

for each satellite and target, node edge weight (target visit time), 

 if edge weight <= 500 (or preferred time from Epoch) 

  Store satellite-target nodes and edge weight (time from epoch) 

 End 
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End 

store optimum satellite nodes to achieve desired time from epoch 

Algorithm 5.3 determines the satellites that overfly various targets within a given epoch time. 

This can be useful for emergency cases and uses low computational time to identify the 

satellites that can be assigned for such a task. The method can also be used to task satellites 

to revisit targets after a specified minimum/maximum amounts of time. For example, if a 

target is overflown at 26000 seconds after epoch, a desire may be to overfly the target again 

within 4000 seconds, i.e., before 30000 seconds after epoch. Using Algorithm 5.3, satellites 

that satisfy such a task are determined. 

Given 202 targets and multiple satellites in orbit, approximately 3500, a satellite-target graph 

is created after ground track propagation of the satellites in orbit. Using this graph, Algorithm 

5.3  is simulated for 500 seconds after epoch. The results obtained are as presented in Figure 

5.23. The results presented in Figure 5.23 (a) shows a world map visual of the targets which 

were found to be overflown after 500 seconds. Figure 5.23 (b) then shows the satellites that 

may be tasked to overfly those targets.   
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Figure 5.23: Plot of targets viewed and those not viewed within 500 seconds of epoch time 
with (a) showing the ground targets viewed and not viewed, (b) shows both the target ID and 
the satellites at different orbits that view the targets. 

From Figure 5.23 (a), it is observed that less than half of the targets are viewed within 500 

seconds of epoch. The results show that for the orbits that the 3500 satellites are on, only 78 

targets are viewed within 500 seconds. 124 of the 202 targets are not viewed within this time 

from Epoch. The analysis also determines that 2707 of the 3500 satellites view at least 1 of 

the targets within 500 seconds whereas 793 of the satellites do not view even one target 

within 500 seconds. 

From the results obtained, it can be observed that not all targets can be viewed within 500 

seconds after epoch by the propagated satellite ground tracks. Some targets on the other 

hand can be viewed by multiple satellites within 500 seconds from epoch. Any of these 2707 

satellites can therefore be tasked to collect data/images from the targets viewed in this 

period. They are all possible satellites to task for emergency situations in those target areas. 

To assign fewer satellites for this duty however, further optimisation depending on the other 

tasks may be done. 

By modifying Algorithm 5.3 and simulating the 3500 satellite and 202 target graph, satellites 

that can overfly the targets a specified number of times within a given time from epoch can 

also be determined. Considering a case where tasking of satellites that overfly any of the 

targets at least twice within a given period is desired for example, the developed method 

may be used. In this case, if a satellite overflies any of the targets twice in a span of less than 

or equal to 7 hours, the satellite is considered for tasking. Algorithm 5.3 is modified and 

simulated for this case and the results from this are presented in Figure 5.24 which shows 

the satellites that can be tasked as well as the targets that those satellites overfly. From 

Figure 5.24 (a), it is observed that not all targets can be viewed twice within the selected time 

span by the satellites. Also, Figure 5.24 (b) shows that some satellites will view multiple 

targets twice within the span of 7 hours after the first view. 
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Figure 5.24:  Views within 7 hours of epoch, (a) shows the targets viewed and (b) shows the 
satellites that can be tasked to view targets twice within 7 hours of epoch and the targets 
viewed. 
 

The results presented in Figure 5.24, reveal that 790 satellites can overfly 121 targets out of 

the 202 targets twice in a span of 7 hours (25200 seconds). 101 targets were however not 

overflown twice in 7-hours, though some satellites are found to overfly more than one target 

twice. The number of targets viewed by each of the satellites is presented in Figure 5.25 and 

the orbital values of the satellites that view most targets within the desired span are 

presented in Table 5.16. Three satellites are observed to view the most targets. 
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Figure 5.25: Number of targets that each satellite views at least twice within a span of 7 
hours. 

Table 5.16: Satellite Orbits that view most targets twice in the 7-hour period. 

Number of targets 
viewed 

Satellite Obit INC 
(Deg) 

Satellite Orbit RAAN 
(Deg) 

Satellite Orbit SMA 
(km) 

46 40.00 0.00 7028 
37 50.00 10.00 6788 
38 60.00 0.00 6678 

Some targets have more than one satellite viewing them multiple times and this data is 

presented in Figure 5.26 and Table 5.17. 

 
Figure 5.26: Numbers of satellites that view each target twice in the 7-hour period 
analysed. 
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The targets that have most satellites to choose from for the 7-hour revisit tasking are as 

presented in Table 5.17. The targets are between latitude +/- 30 degrees and 50 degrees. 

This may justify why the optimum satellites are also between inclinations of 40 degrees and 

60 degrees.  

Table 5.17: Targets that can be viewed within a 7-hour period by most satellites. 

Target description Latitude (Deg) Longitude (Deg) 

'Luxembourg' 49.61 6.13 
'Melbourne' -37.81 144.96 

'Paris' 48.85 2.35 
'Plzen' 49.74 13.37 

 

From the 500 seconds after epoch analysis and the 7-hour revisit, more insights that can be 

drawn using the method results are such as, the greater the time needed before the first 

visit, the less the number of satellites needed to ensure full coverage. This can be seen as 

even with 3500 satellites; not all targets are overflown within 500 seconds.   

To further show the insights that can be drawn from the results obtained using this method, 

4 scenarios are analysed from the results obtained from Algorithm 5.3. These are: 

i. The percentage coverage of the targets within a span of 500 seconds. 

ii. The percentage coverage of the targets using the same number of satellites 

analysed at 1000 seconds after epoch, and a span of 2000 seconds. 

iii. The percentage coverage when the number of satellites is increased for 500, 

1000 and 2000 seconds. 

iv. The minimum amount of time needed for 100% coverage and with how many 

satellites. 

The result for this analysis is presented in Figure 5.27. This shows the number of satellites 

and the target coverage percentage when considering 500, 1000, 2000 and 5000 seconds 

after epoch.  
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Figure 5.27: Target coverage after 500 seconds, 1000 seconds, 2000 seconds, and 5000 
seconds. 

From Figure 5.27, not all the targets can be viewed within 2000 seconds after epoch with the 

satellites that have been propagated. There is however 35% coverage after 500 seconds, and 

approximately 83% coverage after both 1000 seconds and 2000 seconds.  

For full coverage, within 500 seconds after epoch, the propagated satellites showed that 

more than 3000 satellites are needed. From Figure 5.27, also, it is observed that for 5000 

seconds after epoch, the minimum number of satellites needed to be tasked for full coverage 

are approximately 3000 satellites. 

From the analysis carried out in this section, satellite tasking by modelling satellites and 

targets as nodes then using the ground propagation data as edges between the nodes hence 

creating graphs, then applying various graph theory techniques to gain specific task insights 

is seen to be valid and applicable to single and multiple tasks. The study in this chapter 

proposes the use of the developed brute force neighbours’ algorithm as the method to give 

structural insights on the graphs related to satellite node connections and hence target 

coverage. The algorithm is integrated with the analysis of the weighted and unweighted 

adjacency matrices of the graphs to increase efficiency of the method in terms of insights. 

These matrices are used to calculate the degree and eigenvector centralities to determine 
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satellites that optimise on quantifiable tasks. This is seen to give insights to which satellites 

to task based on multiple tasks or single tasks, as well as simple and complex networks. The 

tasking methods proposed prove to be robust, and both time and computationally efficient. 

The method algorithms have also been seen to be easily edited for different tasks as per the 

task relating to number of overflights within a given period. From the results obtained from 

simulating the developed algorithms which are fully presented in Appendix F, and hence the 

MTPM, insights drawn are seen to be clear concise and efficient for identifying the satellites 

to task.  

 

5.7 Chapter Summary 

This chapter introduces and develops a non-rigid method for storing data using graph 

databases then applying graph theoretical methods on the graphs to obtain required 

information. The novelty lies in having a graph database of satellites and the targets that they 

overfly. The information related to the overflights is stored on the nodes of the graph making 

it more robust and non-rigid in terms of intuitive data modelling and complex relationship 

analysis. The satellite tasking using graph theory offers greater flexibility and scalability 

especially for large numbers of satellites and targets as has been presented in section 5.5. 

Different scenarios have been presented as case studies where the graphs that the method 

has been applied to have been simple and small, as well as large and complex, proving the 

robustness of the method.  
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Chapter 6 

6 Conclusions  

This section gives a summary of the key findings, answers to the research questions and 

contributions of the research presented in this dissertation. It outlines the conclusions drawn 

from the conducted studies based on the gaps identified in literature, summarised as 

research questions and issues in section Error! Reference source not found. of this d

issertation.   

 

6.1 Research Summary: 

The introduction of this dissertation identified some gaps in literature and the limitations of 

some traditional orbit design, constellation determination and satellite tasking 

methodologies. This research proposed to fill in some of these gaps as a contribution to 

knowledge. One gap that this study aimed to fill was, the need to develop new, fast, and 

robust satellite orbit design and determination methodologies that are based on localised 

target overflight. The work herein also aimed to develop an orbit design method that would 

enhance the efficiency of multi-objective function optimisations to determine satellite orbits.  

The research developed a target based analytical orbit design methodology that gives fast 

and effective orbit insights that can be useful to orbit designers. Additionally, an adaptive 

grid based on desired objective functions was proposed to increase the efficiency of the 

developed analytical orbit design method, and the search for more optimum objective 

function value orbits by reducing the computation time.  

A novel methodology, grounded in graph theory was presented to optimize satellite task 

allocation. This approach aimed to identify optimal satellite configurations that balance 

multiple tasks, such as maximizing observation duration and minimizing resource utilization. 

By considering both the structural properties of a satellite-target network and the relative 

importance of different tasks, this method offered a more comprehensive and efficient 

solution to satellite tasking. This method considered both the structural cohesion of the 
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graph and the weighting, which is the numerical value related to either single or multiple 

tasks.  

6.2 Conclusions of the study 

The key findings and contributions of the research presented in this dissertation include: 

a. Development of a fast fully analytical, so-called embarrassingly parallel orbit design 

method based on desired ground target areas which included the first zonal harmonic 

of the central body perturbations, J2 was done in section 2. As the end of the decade 

of action is fast approaching, the use of satellites to monitor and obtain informed 

decisions especially in relation to SDGs has significantly increased.  One of the goals 

is to ensure satellite coverage in areas that do not currently have coverage which 

include remote and rural areas. Satellites are used to supplement information used 

by emergency services during evacuations, monitoring natural disasters and 

monitoring general development amongst many other uses. A gap of a fast and 

robust target-based orbit design method was identified in literature for such 

missions.  

The developed method incorporated the field of view of the instrument on board 

(see section 2.2.1.2) and used an embarrassingly parallel analytical approach (see 

section 2.2.2) which increased the robustness of the method especially when 

optimising multiple objective functions (see section 3.3).  

The orbits determined from the method were optimised using mission requirements, 

referred to as objective functions. The proposed methodology shifted from the 

traditional patterns previously used to design satellite orbits, determine 

constellations, and optimise different objective functions. The method proved to be 

fast and gave results within reasonable accuracy. To verify the accuracy of the 

method, analysis of the determined optimum orbits was done against propagation 

from a third-party software in section 2.3.3.  

Numerical methods have been proven to be more accurate in orbit determination 

than analytical methods. However, these accuracies come at the addition of 

computational time and costs in general. When the results of orbit design and 

optimisation using the developed method and a previously used improved 

differential evolution method were compared, the developed method results gave 
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orbit solutions that had greater values of the objective function hence global 

optimum results (see section 3.1). 

b. Development of a computationally efficient method that addresses the scalability 

challenges associated with large search space analysis, facilitating the acquisition of 

relevant insights. For large search spaces, previously used numerical methods take a 

long time to arrive at insights such as the ones that have been shown in this 

dissertation (see section 2.3 for insights and section 3.1 for comparison to previously 

used numerical methods). The orbit design method developed in this dissertation 

proved to be fast, robust, and can propagate large search spaces. From the analysis 

simulated throughout section 2 to 4, the developed method gave a range of useful 

insights on the various orbit search spaces which included both prograde and 

retrograde orbits. This was an added advantage as it gave a variety of orbit options 

to optimise hence addressed the gap related to optimisation of large search spaces.  

c. Due to the use of an embarrassingly parallel approach, the developed method results 

allowed for multi-objective function optimisations without a need to re-run the 

orbital simulations (see section 3.3). For the same search space parameters, targets 

and physical constants, the method was found to be efficient and robust for multiple 

objective function optimisations. For some previously used methods, when there is 

a change in objective functions the full simulations must be re-run. As presented in 

section 3.3, the method was used to obtain satisficing orbits based on importance of 

the objective functions. This addressed the gap identified in multi-objective 

optimisation of satellite orbits.  

d. An improvement of the developed analytical method’s efficiency by adding a 

modified multi-level local refinement adaptive grid to the method was presented in 

section 4. Identifying the critical regions of interest, the addition of the adaptive grid 

reduced the computation burden of the developed orbit design method. This showed 

that the method can be implemented with other algorithms and the contribution in 

this case, was the efficient identification of the critical search space areas, hence 

reducing computational complexities. When the grid was added to the method, 

compared to finding the optimum orbits with a refined grid in the initial simulation, 

the computational time was reduced by almost a third (for this work) and more 

optimum orbits were determined (see section 4.3.1).  



Chapter 6                 Conclusions   156 
 

156 
 

e. Development of a novel graph-based method for satellite tasking. Using a satellite-

target graph database and graph theoretical analysis, multi-objective function 

satellite tasking was achieved and presented in section 5. The method was aimed at 

tasking pre-existing space populations, leading to cost reduction and space 

sustainability. The combination of different graph theoretical techniques led to the 

development of a hybrid method for satellite tasking. The techniques focused on the 

network’s structural cohesion and the node weight analysis (see sections 5.4.2, 5.4.3, 

5.4.3.1). The structural cohesion was defined as the identification of the minimum 

number of satellite nodes needed to be removed to disconnect a target node from 

the network. This was in relation to the target coverage as minimising the number of 

satellites to be tasked to get maximum coverage was considered a mission objective. 

The node weight analysis was focused on tasks that could be assigned a numerical 

value such as the observation period of the targets. The weighted adjacency matrices 

were then used to identify the nodes that maximise on the various weight values. 

The developed hybrid method proved to be insightful for scalable analysis of options 

that also involved multiple ground targets and satellite options (see 5.6.3). 

The developed method analysed the satellite-target graphs and identified the 

optimum satellites based on either single or multiple mission requirements, here in 

referred to as tasks. This method can be implemented for both newly designed 

satellite orbits, and pre-existing satellites in orbit. The studies presented in chapter 5  

demonstrated that satellite can be tasked from an analysis of propagated orbit 

ground tracks within a given field of regard and targets using graph theory. The use 

of graph theory for satellite tasking was found to be insightful, computationally 

efficient and robust. The developed method can be automated using the algorithms 

presented in Appendix F. Such a system would be a great addition to the space sector 

as operators may save on time used to task their satellites.  

To validate the developed hybrid method, an option of using the principal 

eigenvectors of a graph to determine critical nodes was proposed (see 5.4.4, 5.4.5, 

5.5.2.1). An analysis encompassing the first, second, and third principal eigenvectors 

(PEVs) was conducted. However, this analysis failed to provide the required insights, 

specifically, for determining graph structural cohesion. Conversely, the developed 

hybrid method demonstrated high computational efficiency and robustness in multi-

task satellite determination and tasking, yielding clear and concise analytical results. 
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The developed hybrid method proved to be applicable to diverse mission 

requirements (see section 5.6). 
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Chapter 7 

7 Future work 
 

For future work, an increase of accuracy of the developed method would be a valuable 

addition; this can be done by including the effect of perturbations such as the atmospheric 

drag to the method. In the analysis of the analytical orbit design method, it was highlighted 

that including the secular Earth perturbations to the calculations made it more accurate. The 

consideration of solar radiation pressure and atmospheric drag should also be further 

analysed. In this dissertation, an adaptive grid was included to increase the efficiency of the 

method. However, an added numerical analysis on the higher objective function value 

regions may increase the accuracy even further. Therefore, the proposal is to use the method 

alongside a well-developed numerical algorithm for efficient computation and increased 

accuracy of the results.  

The prevalence of prograde orbital trajectories in space missions is largely attributable to the 

inherent launch complexities associated with achieving retrograde orbits. However, this 

research advocates for an increased use of retrograde orbits. In the context of escalating 

concerns regarding space sustainability, retrograde orbits present a viable supplementary 

strategy for active debris removal (ADR) operations. Furthermore, they offer a potential 

solution for mitigating congestion within heavily populated prograde low Earth orbit (LEO) 

satellite constellations. For coverage of some ground targets, retrograde orbits proved to be 

more optimal than prograde ones. Chapter 3 demonstrated that retrograde orbits exhibit 

improved performance for both target observation duration and revisit frequency objective 

functions. Retrograde orbits, when strategically implemented minimise collision risk due to 

lower population densities of satellites in these trajectories. This should however be studied 

with caution on collision possibilities. This work therefore proposes further investigation into 

the strategic use of retrograde orbits for enhanced satellite mission objective function 

optimisation with collision avoidance by more research on space situation awareness (SSA). 

The satellite tasking method may be further developed to include dynamic networks. In this 

work, the developed hybrid method is mainly studied for static satellite-target networks. A 

proposal to make the algorithms publicly available via html front-end is also given. This 

means putting the algorithms into an application so that users may get access i.e. creating a 
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web interface (using HTML) that allows anyone to interact with and use the algorithms 

through a standard web browser. This will be a valuable tool that can be used for both single 

and multiple tasking of pre-existing space populations.  

 

7.1 Closing Remarks 

This dissertation advances obit design methodologies through the development of a novel, 

analytical-based and embarrassingly parallel algorithm, enabling rapid solution derivation. 

This innovation contributes to the expansion of analytical methodologies for orbit design and 

determination providing a significant contribution to the field of orbit mechanics. The 

method has proven to be robust in giving useful engineering and design insights related to 

the accurate overflight of targets. Additionally, the method can be used to give fast and initial 

insights to large satellite orbit search spaces and efficient multi-objective function 

optimisations. The addition of an adaptive grid enhances computational time efficiency of 

the developed method and subsequently increases the overall efficiency.  

Another primary contribution of the work in this dissertation is the development of a novel 

graph-theoretic approach for adaptive satellite tasking, which enables the reassignment of 

on-orbit satellites to accommodate revised mission parameters or user-driven objectives. 

This methodology contributes to enhanced space sustainability through improved asset use 

and fulfilment of novel operational demands by optimising the satellite tasking. With the 

growing number of new satellite users, the developed satellite tasking methodology can also 

be an asset used together with the developed orbit design method to redesign on-orbit 

satellite trajectories and maximise on their usage. This may aid in taking a step forward 

towards solving the Sustainable Development Goals (SDG) using satellite technology. 

Therefore, the presented methods are a contribution to knowledge and if adapted, will be 

valuable to achieving the goals of the decade of action.  

The methods in this dissertation are an addition to knowledge in disparate ways but may be 

inter-linked and used by orbit designers at different stages of satellite orbit mission designs.  
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A. Appendix A: A Comparison of Optimum Results for 

Retrograde and Prograde Orbits.  

Despite the high launching costs and lack of enough ideal areas that can be used to launch 

into retrograde orbits, these orbits prove to have more optimum results for different 

objective functions. In this case the same objective functions of number of times seen and 

duration of view are presented and compared. Generally, retrograde orbits are found to have 

better performance in both. The inclination, RAAN and time increments used to simulate the 

results presented here are 0.05 degrees, 0.05 degrees and 10 seconds respectively. The 

search space and target values are identical to the ones presented in chapter 2 section 2.3. 

The heat plots for the mean duration of view and the mean number of times seen are as 

presented in Figure A.1 and Figure A.2. 

 

Figure A.1: duration of view objective matrix values figure of both retrograde and prograde 

orbits that view all 10 targets at least once. 
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Figure A.2: Mean number of times targets are seen objective matrix values figure of both 
retrograde and prograde orbits that view all 10 targets at least once. 

The maximum values for the objective functions of both the retrograde and prograde values 

are presented in Table A.1. 

Table A.1: Maximum mean values of duration of view and number of times seen for 
retrograde and prograde orbits: 

 Value of objective 
functions 

Inclination 
(Deg.) 

RAAN 
(Deg.) 

Duration of view objective 

function 

84.47 55.55 54.20 

Number of times in view 

objective function 

3.42 55.50 55.10 

Duration of view objective 

function 

94.16 126.20 111.21 

Number of times in view 

objective function 

3.73 126.40 209.68 
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The values of the retrograde orbits are higher than the ones for prograde, both for duration 

of view and number of view times of the targets.  

 

Figure A.3: Graph showing inclinations of all determined orbits against the normalised 
objective functions.  

Figure A.3 shows the normalised objective functions of the mean duration of view and mean 

number of times seen. The duration of view of the prograde orbit as expected is much less 

than the ones for the retrograde orbit.  

This was further analysed in terms of priorities of the objective functions. From this, the 

graphs presented in Figure A.4 were produced. 
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Figure A.4: Changing priority values of normalised objective functions to show the advantages of retrograde orbits over prograde orbits. 

Figure A.4 shows that retrograde orbits are better in terms of performance than prograde orbits.  
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B. Appendix B: Extended Analysis of Inclusion of J2 

Perturbation to the Proposed Analytical Method  

This appendix highlights an extended analysis of the use of the orbit design method 

developed in section 2 of this dissertation when the J2 perturbations are included in the 

method and when not. Some previous analytical methods did not consider any secular 

perturbations with an aim to keep the analysis as simple and analytical as possible. This as 

has been seen before, increases the errors that already challenge the use of analytical 

methods. This section therefore gives a general justification of the use of J2.  

Firstly, the analysis of incorporating J2 in the method and not has been highlighted in chapter 

2. Further analysis is however given herein. It has already been highlighted that the number 

of orbits and the number of times of viewing a target differ. This shows that using the method 

without perturbations gives some erratic orbits which may not be applicable in real-life 

situations. When an analysis was done on the mean duration that each orbit views the 

targets, the orbits that had the longest mean duration is presented in Table B.1 and the heat 

plot is presented in Figure B.1. 

Table B.1: Best Mean Duration of view orbit comparison when including J2 in the method and 
when no perturbation is included. 

Method used Mean Duration of View Best Orbit INC, 
deg 

Best Orbit RAAN, 
deg 

Including J2 193.33 seconds 56.60 353.04 

Without J2 190.00 seconds 57.20 183.02 
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Figure B.1: Mean duration of view analysis of method including J2 and with no perturbations. 

For the further analysis of the number of times each orbit it viewed, the results presented in 

chapter 2 produced the following graphs.  

 
Figure B.2: Target 2 number of times in view for when J2 is included and when J2 is not 
included. 

 

Figure B.3: Target 3 number of times in view for when J2 is included and when J2 is not 
included. 
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Analysis of results for orbit with inclination 56.6 degrees and RAAN 353.04 degrees was 

further carried out. This showed that the best mean duration of view orbit calculated when 

including J2 was also obtained by the analysis when not including J2. The orbit was calculated 

to have a mean duration of view of 126.67 seconds when J2was not included. In general, the 

maximum duration of view for the targets are as on Table B.2. 

Table B.2: duration of view differences in results using J2 and without 

Maximum duration of view With J2 on method 

(Sec.) 

Without J2 on method 

(Sec.) 

Target 1  365 350 

Target 2  210 160 

Target 3  140 140 

The orbit calculated to have mean duration of view, when J2 is included is used to analyse the 

actual differences when J2 is included on method, on GMAT.  

The GMAT simulation of orbit 56.60 degrees inclination and 353.04 degrees RAAN results are 

presented in Table B.3 which shows that when the method includes J2 perturbations the 

results are closer to the GMAT simulations than for simulations when J2 is not included.  

Table B.3: Comparison of mean maximum duration of view results from GMAT simulation 
and proposed analytical method with J2 and without J2. 

Number of times 

orbit is viewed per 

target 

 (GMAT 

simulation) 

Analytical method 

with J2 

Analytical method 

with no J2 

Target 1 5 5 4 

Target 2 3 3 2 

Target 3 2 1 1 

First to note is that the calculated orbit is a repeat ground track orbit that repeats after 2-

days periods, and this is confirmed by the simulation on GMAT. For the calculation that does 

not include J2 however, the orbit does not repeat. This is presented in Figure B.4. Also, in all 

cases, the orbit overflies ALL the 3 targets used (as presented in Table 2.15).  
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Figure B.4: Ground-track difference of developed method with J2, without J2 and GMAT 

The ground tracks of the simulation when J2 is included and when J2 is not included clearly 

show the errors incurred assuming that all secular perturbations are neglected. For this 

method therefore, the inclusion of the perturbation increases the accuracy of the method.  
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C. Appendix C: Calculation of Minimum Elevation Angle for 

GMAT Analysis and Comparison with Proposed Analytical 

Method Results. 

As presented by Refs. [53] the relationships between the satellite, the ground target and the 

Earth centre are herein presented. The diagram for this relationship is presented in Figure 

C.1. 

 

Figure C.1: Relationship of satellite view angles to get the FoV and minimum elevation 
angle to use in numerical method simulations. 

From the diagram, the half effective FoV angle, 𝜂 is dependent upon the instrument onboard 

the satellite and is therefore given by the mission. In this case, it is given as 20 degrees. It is 

measured from the SSP to the target, T, and determines the minimum value of the ground 

elevation angle. For propagation using third party software, this value is required for 

increased accuracy of computation. The equations previously presented in section 2 can be 

used for this calculation, but an alternative method is presented. The angular radius of the 

Earth,𝜖 and the Earth central angle can be calculated from the radius of the Earth and the 

semi-major axis using the mnemonic trigonometric function ratios, SOHCAHTOA. 

𝑠𝑖𝑛 𝜖 = 𝑐𝑜𝑠 𝜆0 = 
𝑅𝐸

𝑅𝐸+𝐻
                  (C.1) 

From this, the minimum elevation angle can be calculated from,  
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𝑐𝑜𝑠 𝛽 =  
𝑠𝑖𝑛 𝜂

𝑠𝑖𝑛 𝜖
                 (C.2) 

The effective Earth central angle, 𝜆, can then be calculated from previously presented 

equations as, 

𝑠𝑖𝑛 𝜆 =  
𝐷 𝑠𝑖𝑛 𝜂

𝑅𝐸
                 (C.3) 

  where,  

𝑠𝑖𝑛(90 + 𝛽) =  
𝑎 𝑠𝑖𝑛 𝜂

𝑅𝐸
                  (C.4) 

And  

𝐷 = 𝑅𝐸 𝑐𝑜𝑠(90 + 𝛽) + 𝑎𝑐𝑜𝑠 𝜂               (C.5) 

With this calculation, the minimum elevation angle used to simulate the orbit and targets it 

overflies is 67.816 degrees. Also,  

𝜂 +  𝜆 +  𝛽 = 90 𝑑𝑒𝑔 

Which confirms this calculation.  
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D. Appendix D: Further Ground Track, Latitude and 

Longitude Error Analysis of Proposed Analytical Method 

Using Third Party Software. 

From the analysis on section 2.3.3, comparing the method results from a direct third-party 

software analysis, there are some errors in the longitude simulations. This section further 

analyses the errors between the two ground-track simulation methods. The orbit used for 

this analysis is 55.2 degrees inclination and 150.074 degrees RAAN. The simulation for the 

orbits to get the ground tracks used an analytical orbit propagator where the SMA was 

constant. With this regard the ground track results have errors. For calculating the orbits 

however, the method updated the SMA according to J2, and the orbital inclination. This 

explains why the GMAT results for the found orbits were more accurate than for the ground 

track simulations. This shows that the short coming for the errors found are more in the 

ground track simulation than the method used. The starting period for both was found to be 

5879.2 seconds. By the 4th minute however, the GMAT simulation of the ground track is 

updated to 5877.87 seconds. For the analytical ground track, this is not updated and hence 

the differences in Longitudes simulated for the ground-track of the given orbit. These are 

some of the shortcomings of using analytical propagators as compared to numerical 

propagators.  

When this was redone using a semi-analytical ground-track simulator, the results of the two 

ground-tracks were much closer as shown below in Figure D.1. 

The respective longitude and latitude covariance and correlations both gave positive results. 

The ground plots, the ground plot errors as well as the relationships between the two values 

are presented. 
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Figure D.1: Ground-track simulation using analytical method, numerical method, and semi-
analytical method. 

The error analysis for this then gives the following longitude and latitude error plots.   

 
Figure D.2: Longitudes and latitudes when using a semi-analytical ground-track simulator 
and GMAT ground-track simulator. 
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Figure D.3: Longitudes and latitudes when using a semi-analytical ground-track simulator 
and GMAT ground-track simulator. 

 

Table D.1: Covariance and correlation between the values of the semi-analytical ground-
track and the numerical GMAT ground-track 

Covariance Longitude Covariance Latitude 

10872.87          10835.24 

10835.24          10872.56 

1397.64         1398.59 

1398.59          1399.56 

Correlation Longitude - 0.997             Corelation Latitude - 0.999 

 

With all these different simulations however, the orbit found by the developed method 

proved to overfly all the targets at least once and from the GMAT simulation in particular, 

the duration of view had a less than 10 second difference. This shows that the method does 

work as it should and though there might be some errors due to the analytical nature as well 

as the increments used for the simulation, it is a method that is helpful for initial orbit 

designs.  
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E. Appendix E: Adaptive grid using multiple objective 

functions. 

Section 3 presents an adaptive grid method used with the developed analytical method. The 

adaptive grid reduces computation time and refines the grids where the maximum objective 

functions are. In this appendix, the adaptive grid is used to optimise two objective functions, 

and the results are presented using the algorithms presented in section 3.  

The duration of view and the mean number of times optimised in section 3 are simulated 

using an orbit with inclination 50-90 degrees, RAAN 0-360 degrees, time 0-172800 seconds 

in increments of 1 degree, 1 degree and 10 seconds respectively. 

These orbits were set to overfly the 10 targets at least once each. The results from the 

simulations are presented in Figure E.1 – Figure E.3. 
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Figure E.1: Duration of View Objective function with refined grids. First figure shows the first grid when the refinement has not yet been done, second 
is for grid two (first refinement) and third is for grid 3 (second refinement) 
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Figure E.2: Mean number of times seen Objective function with refined grids. First figure shows the first grid when the refinement has not yet been 
done, second is for grid two (first refinement) and third is for grid 3 (second refinement) 
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Figure E.3: Combined Normalised Objective functions heat plot
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F. Appendix F: A Breakdown of all the Algorithms Used for 

Satellite tasking, Chapter 5.  

A series of algorithms were used for the optimisation of multi-objective functions to 

determine tasking of satellites. These algorithms are presented herein. The first algorithm is 

the one used to create the graph. 

Algorithm F.1: Graph creation 

Input: data from propagation file 

Output: graph of satellites and ground targets 

Define target nodes, T 

Define satellite nodes, S 

%create graph 

function graph(G) = inputs(data from propagation file) 

G = graph; 

G = addnode(G,T) 

Weights = data from propagation method do// select the optimisation data from 

propagation file 

G = addnode(G,S) 

G = addedges(G,S,T,weights) 

End 

graph = G 

 

The Algorithm F.1 gives the algorithm used to create a graph from the propagation data.  

Algorithm F.2: Algorithm to find minimum satellite nodes and satellite node 

combinations  

Input: Graph G(S,T,E) 

Output: Nodes and pairs belonging to S with E ==10 

Create function: creates a call function for the neighbours algorithm 

Initialization of variables: set i, full_set_nodes and pair_nodes to zero 
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for counter_n <numel(S) do //loop through all satellite nodes and get the 

neighbours 

 Neighbours1 – store all target sets for all satellite nodes 

 if numel(T)==numel(Neighbours1) do// finds satellite nodes in contact 

with all (T) 

  Satellite nodes – gives all satellite nodes that are in contact with all 

targets 

 End 

 for 1<counter_n2<numel(S) do//loop through all satellite nodes>1 

  Neighbours2 – store all target node sets for all alternate satellite 

nodes 

  Union – computes the unions between Neighbours1 and 

Neighbours2 

  if numel (T) == numel (Union) do//finds the orbit pairs in contact 

with all (T) 

   i = i+1 

   N_pairs((i),:)=[Satellite_nodeID,Satellite_nodeID2]; 

  End 

 End 

End 

single satellite = Satellite nodes 

satellite pairs = N_pairs 

 

Algorithm F.2 was used to find the neighbours of each satellite node then identify the satellite 

nodes and satellite node pairs that are in contact with all target nodes. 

Algorithm F.3: Basic algorithm to get the optimum satellites based on one 

objective function. 

input: G(S,T,E) 

output: (centralities) 

function (centralities(:,:)) = inputs // create function for centrality calculations 

eigenC (:,:) = eigencentrality(G); 

eigenCw(:,:) = eigencentrality weighted(G); 

End 
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centralities = [eigenC, eigenCw] 

Repeat for degree centrality and partitioned graphs of the original bipartite graph 

 

Algorithm F.3 calculates the centralities of the satellite nodes and stores them for further 

analysis. 

Algorithm F.4: Eigenvector and SVD algotithm 

input: G(S,T,E) 

output: (Eigenvectors, Singular Values) 

function (Eigen_vectors(:,:),svd(:,:)) = inputs 

A = adjacency (G); 

B1 = A*A(transpose); 

B2 = A(transpose)*A; 

Eigen = eigenvector(A); 

Eigen_1 = eigenvector(B1); 

Eigen_2 = eigenvector(B2); 

SVD = svd(A); 

SVD_1 = svd(B1); 

SVD_2 = svd(B2); 

End 

[Eigenvectors,svd] = [Eigen,Eigen_1,Eigen_2;SVD,SVD_1,SVD_2]; 

 

Algorithm F.4 calculates the eigenvectors of the adjacency matrix both joint bipartite graphs 

and the different partite eigenvectors and SVD’s. The principal values were then stored for 

further analysis. 

Algorithm F.5 :Normalisation of the centralities 

Inputs: Individual Objective function centralities 

Output: Optimal Satellites 

function Optim = inputs(Objective function centralities) 

normalise each set of centrality values 

for I = 1:numel(satellite nodes) 

 if for all centralities (i)>= 80 

  Optim[] = satellite node(i) 
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 End 

End 

Optim[] = Optim 

Algorithm F.5 calculates the normalised values of the objective function centralities and 

stores the optimum satellite nodes.  

 

Algorithm F.6: Optimisation of the combined centralities to best task the satellite 

combinations 

Inputs: (O),normalised_centralities_OF1,normalised_centralities_OF2 (for each orbit 

nodes), N_pairs, 1_Satellite(from neighbours algorithm) 

Outputs: Optimum nodes for combined OF1 and OF2 

function 𝑂𝑝𝑡𝑖𝑚_𝑐𝑜𝑛𝑠𝑡 =  𝑂𝑝𝑡_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑠) 

for n = 1:numel(N_pairs) 

 Opt_OF1(n) = normalised_centralityOF1(node2)+normalised_centralityOF1(node1) 

 Opt_OF2(n) = normalised_centralityOF2(node2)+normalised_centralityOF2(node1) 

End 

Normalise each set of the centrality values 

for i = 1:numel(satellite nodes) 

 𝒊𝒇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑖) ≥ 70  

  𝑂𝑝𝑡𝑖𝑚_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[ ] = 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒_𝑝𝑎𝑖𝑟(𝑖)  

 End 

End 

Optim_combination[] = optim_combination; 

 

Algorithm F.6 gives the optimisation of the combined objective function values and stores 

the optimum satellite nodes that can be used to get the tasks performed optimally. 

Algorithm F.7: Summary of algorithms 

Use create graph algorithm 

function neighbour = neighbours(G) 

function (centralities(:,:)) = inputs(G,G1,G2) 

function (Eigen_vectors(:,:),svd(:,:)) = inputs(G,G1,G2) 

function Optim = inputs(centralities) 
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function 𝑂𝑝𝑡𝑖𝑚_𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠 =  𝑂𝑝𝑡_𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠(𝑂𝑝𝑡𝑖𝑚, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠)  

fprintf(Optim_satellites) 

plot(Optim_satellites) 

All these algorithm results can be produced from the Algorithm F.7 which evaluates and 

simulates all the functions. This method can be made into a data base that simply in one click 

operators find the optimum satellites needed to achieve the mission objectives.  

When these algorithms are simulated using 1000 possible satellites and 10 targets, 141 of 

the 1000 satellites are found to view all 10 targets at least once. When this was simulated for 

satellite pairs using the three different requirements earlier presented in chapter 5 of this 

dissertation, the satellite pairs that are found to have optimal values that satisfy the mission 

requirements and have high optimums are 9,512 pairs.  

From these, 22 satellites were found to have the highest optimal values for all three 

requirements. These are satellites were mainly on orbits that have inclination values of 52 

degrees and 56 degrees but with different RAAN values. As before, the reason for this can be 

because the orbit design method considered orbits with INC increments of 1 degree. For 

more refined cases, the range of orbits obtained in terms of inclination may be larger.  
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G. Appendix G: A Comparison of Using the Partitioned 

Adjacency Matrix for the Bipartite Graph Analysis and the 

Unpartitioned, Full Adjacency Matrix While 

Implementing the Singular Value Analysis. 

For the graph theory method to identify constellations, it was proposed to compare the 

bipartite graph approach to the approach of directly analysing the centralities while ignoring 

the partitions. The results for these are herein presented.  

Principal eigenvectors while considering the partitions: 

When the adjacency matrix was partitioned as illustrated in equation G.1, i.e., 

𝐴𝑇𝐴 =  𝐵𝑥  and 𝐴𝐴𝑇 = 𝐵𝑦              (G.1) 

The principal eigenvector of the partition compared to the full matrix and eigenvector 

centrality results were simulated. From this, the patterns of all were similar and are as 

presented in Figure G.1. 

The method by which the adjacency matrix is computed should however be considered. For 

this, the adjacency matrix 𝐴 used to compute the eigenvector centrality for example must be 

a square matrix and so in this case, if the partitions are not applied, is a 60x60 adjacency 

matrix. A general computation of the adjacency matrix in the case of the 50 satellites and the 

10 targets for example, would be a 10x50 matrix in which case the computation of the 

eigenvectors would not be possible. For this, the option would be to either consider the 

partition as per equation G.1 or use the singular value decomposition of the matrix.  
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Figure G.1: A comparison graph of the eigenvector analysis of satellite nodes while using 
partitioned adjacency matrix and when using the full adjacency matrix. 

The same analysis is done on the target nodes and Figure G.2 is simulated.  

 
Figure G.2: A comparison graph of the eigenvector analysis of target nodes while using 
partitioned adjacency matrix and when using the full adjacency matrix. 

For the 50 satellites, using the eigenvector analysis of the 60x60 matrix and using the 

eigenvector analysis of the partitioned graph gives similar trends. Using the eigenvector 

analysis of the main adjacency matrix, 60x60, in this case does not incur any noticeable 
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losses. When the 10x50 matrix is analysed using singular value decomposition, the analysis 

of the left singular values results in the same trend. This is presented in Figure G.3 for the 

satellite nodes and Figure G.4 for the target node analysis. 

 

Figure G.3: A comparison graph of the eigenvector analysis and singular value decomposition 
of satellite nodes while using partitioned adjacency matrix and when using the full adjacency 
matrix. 
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Figure G.4: A comparison graph of the eigenvector analysis and singular value decomposition 
of target nodes while using partitioned adjacency matrix and when using the full adjacency 
matrix. 

To further validate this, a graph network of 1000 satellite nodes and 10 target nodes was 

analysed, and the results are as presented in Figure G.5 and Figure G.6. 
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Figure G.5: Satellite node analysis for 1000 orbits considering the eigenvector and principal 
eigenvector analysis while using partitioned adjacency matrix. 

 
Figure G.6: Satellite node analysis for 1000 orbits considering the eigenvector centrality and 
the singular value decomposition analysis. 
This analysis gives further validation of the method and algorithms used in section 5 for 

satellite tasking for simple and complex satellite-target networks. 


