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ABSTRACT 

 

The primary aim of the work presented in this thesis is to develop new and improved 

methods for analysing the microstructure of titanium alloys, specifically Ti-6Al-4V. 

This is achieved through the introduction of a software tool which incorporates novel 

image processing techniques to automate the measurement of a wide range of 

microstructural features in microscopic images of Ti-6Al-4V. It is shown that these 

measurements are performed in a faster, more repeatable way, with minimal input from 

expert materials scientists, when compared with existing methods.  

The microstructure of a material consists of individual grains of different shapes and 

sizes. Precise analysis of these provides information about the properties of the 

material and thus is valuable for quality assurance and development of new materials, 

models or manufacturing processes. However, performing this analysis usually 

depends manual analysis techniques, requiring extensive input from expert materials 

scientists. Attempts at more efficient automated methods have so far had limited 

success, largely due to the wide variations that can occur in microstructural images. 

In this thesis, a robust set of image processing techniques are proposed to automatically 

identify and measure key features of microstructural images. Due to the unique 

challenges posed by different microstructure types, two separate techniques are 

proposed; one aimed at measuring globular grains within microstructures and another 

aimed at measuring elongated grains, known as platelets. Measurements of globular 

grains are obtained using a novel segmentation algorithm that partitions the image such 

that each grain is individually labelled. Once identified in this way, the size and shape 

of each grain can then be measured, allowing both individual and aggregated 

measurements to be reported. The algorithm includes a variety of pre- and post- 

processing steps that dramatically reduce measurement errors, common in other 

segmentation methods. However, it was found that this method could not be reliably 

applied to segment and measure platelets. Measurements of these are instead 



 

 

determined by shape fitting techniques. Similar approaches are already used for 

analysing this type of elongated object in similar datasets. However, several limitations 

exist that negatively affect both the accuracy and usefulness of these methods when 

applied to the dataset in this study. This thesis proposes novel adaptations to such 

techniques to improve reliability and extend the range of properties that can be 

measured. The resulting technique can be applied to measure platelet width, 

orientation, and morphology. A separate algorithm is also proposed that uses this data 

to identify and measure colonies of platelets. A software tool is designed to allow these 

tools to be deployed by material’s scientists. This tool provides simple, intuitive 

feedback to the user to allow the proposed algorithms to be properly parameterised 

without image processing experience, or a good understanding of their operation. 

This work is validated through a range of trials conducted on real world datasets of Ti-

6Al-4V microstructural images. The dataset uses images from different microscopy 

technologies as well as different morphological types of microstructure. Results are 

validated through comparison with measurements performed by expert materials 

scientists using the most reliable procedures currently available, and demonstrate 

accurate results can be achieved automatically, significantly faster than before. The 

techniques proposed in this thesis also have general value in the wider domain of image 

processing, due to their robustness in challenging datasets. This is demonstrated by a 

detailed comparison with existing image processing tools, never before testing on 

microstructural data. 
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1 INTRODUCTION 

1.1 Motivation of research 

At a microscopic level, materials such as metal alloys consist of a series of grains of 

different shapes, sizes, and arrangements. These grains form a microstructure, the 

properties of which are key factors in determining the properties of a material [1]. 

Chemically identical materials, that would otherwise be expected to exhibit the same 

mechanical properties, can instead have quite different properties when their 

microstructures differ. Such differences are a common occurrence and are caused by 

the application of thermal or mechanical work to the material. The final microstructure 

of any component, therefore, depends on the manufacturing processes applied to create 

it. This makes the ability to accurately assess the microstructure of a material important 

when designing new manufacturing processes, building models to predict the 

properties of manufactured parts or evaluating existing parts to ensure they are fit for 

purpose. This is particularly important in high value manufacturing applications, such 

as aerospace, where the high-performance requirements of such components mean 

achieving the best microstructure to maximise the desired mechanical properties is 

critical. The cost of such materials also leads to a desire to reduce waste, meaning a 

better understanding of material behaviour and how to avoid failing parts is beneficial. 

However, the advanced alloys used in such applications often have complicated 

microstructures that are difficult to assess.  
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Several different imaging technologies exist to enable microstructures to be studied. 

These include relatively cheap and simple Optical Microscopes (OMs) through to 

more advanced and expensive Scanning Electron Microscopes (SEMs). These 

technologies can be used to capture images of the arrangement of individual grains 

that make up the microstructure of a material. However, accurately measuring relevant 

features of microstructures can be challenging. The greyscale images produced are 

often noisy and complex microstructures can contain touching grains of similar pixel 

intensity which makes the boundaries between these grains challenging to delineate. 

In other cases, grains are extremely thin or have undergone some deformation, further 

complicating the identification of their boundaries. For these reasons standardised 

automated software often fails to correctly identify features of the microstructure in all 

but the simplest cases. A review of the literature highlights several existing attempts 

to use image processing to aid the microstructure analysis process. However, every 

existing method reviewed has key issues that prevent them from producing accurate 

measurements of key features in Ti-6Al-4V microstructures. This means that analysis 

is often performed using manual methods, which is a laborious process requiring a 

large amount of input from experienced materials scientists. This makes the analysis 

process slow and often prone to human error. Furthermore, measurements performed 

in this way are often difficult to repeat as true boundary locations are unclear in 

complex microstructures and even experienced materials scientists will identify 

features differently in the same image.  

There is a clear need for new data processing techniques that can provide reliable 

measurement of complex microstructures. In this thesis, novel image processing 

methods are proposed to automatically analyse digital images of materials’ 

microstructures, produced by existing technologies, and provide quantitative 

measurements for each microstructural feature of consequence.  

1.2 Scope of work 

The aim of the work presented in this thesis is to develop novel algorithms to automate 

the quantitative analysis of microstructures. A wide range of materials and 

microstructures exist and it is widely accepted that over-generalised image processing 

techniques often do not work for complex cases [2]. However, large variations in 
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microstructural images of even the same material can exist either due to variations in 

the microstructure itself or differences in sample preparation or imaging technology 

used. It is important that the methods proposed are not over-trained to a single 

microstructure type and are robust enough to measure the types of variations that are 

likely to occur in real world microscopy. However, it is also important that the 

proposed methods are specific enough that accurate results can be realistically 

achieved. Selected a suitable dataset, which balances the risk of over-generalisation 

and over-training, is critical to the success of this project. As a result, this work is 

constrained in three ways, as set out in the following sections.  

1.2.1 Exclusive use of Ti-6Al-4V 

This thesis exclusively studies the popular Titanium alloy, Ti-6Al-4V. The primary 

reason for this is that this material is extremely widely used [3] but, due to its complex 

microstructure, no good automated analysis solutions did not already exist, therefore, 

this was an important material to focus on. However, there are several other factors 

also motivating this decision.  Ti-6Al-4V is a two-phase alloy, whose microstructure 

can exhibit different morphologies depending on  how the material is processed, 

resulting in a wide variety of interesting features to measure. This increases the 

likelihood that the techniques proposed in this thesis will be applicable to other 

challenging microstructures, or even datasets from other fields. Focusing on a single 

material made it possible to study a wide range of microstructural variations, to ensure 

the proposed algorithms to detect these. No specific limits were placed on the range of 

thermal or mechanical process applied to the material and Ti-6Al-4V samples from 

various experiments and manufacturing processes are used in this work. This means 

that the dataset included globular, fully lamellar and bimodal microstructures. If the 

focus has instead been to study different materials then the resulting dataset, if of 

similar size, may have included only globular microstructures, so would actually 

contain less variety. Given the time requirements and difficulty in obtaining ground 

truth data for each microstructure, it was important to keep the dataset to manageable 

size, while maximising morphological variations.  Ultimately, it is believed that the 

features present in Ti-6Al-4V microstructures, and the challenges in automatically 
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measuring these images are representative of the difficulties in performing 

microstructural analysis on other complex alloys.  

1.2.2 Imaging Technologies 

The scope of this thesis is constrained to study only 2D microstructural images 

produced by existing technologies. Both OMs and SEMs are used to increase the 

potential impact of this research, particularly in industrial settings where access to 

advanced SEMs is expensive and potentially limited. This thesis does not consider 

novel imaging techniques or any methods focusing on 3D imaging or modelling of the 

material. As microstructures of material are in reality 3D it would remain the 

responsibility of materials scientists using the techniques proposed in this thesis to 

apply them to 2D images at an appropriate set of positions and orientations on the 

material sample to generate relevant measurements, as is the case with many existing 

approaches. It is, however, noted that image processing techniques designed to operate 

in 2D can often be extended to operate in 3D, as has been shown in recent research 

into granular structures in other materials [4]. For the same reason a small amount of 

literature aimed at 3D image analysis is included in the review in Chapter 4, where the 

described technique is also relevant to 2D analysis. 

1.2.3 Accuracy 

A key constraint put on this work, or perhaps more accurately the claims made in this 

thesis, is to only match the level of measurement accuracy that expert materials 

scientists can achieve with existing manual analysis techniques. While it is possible 

that the proposed image processing techniques may also be more accurate, providing 

sufficient validation support that claim is problematic. The complex nature of the 

microstructures in this study means the true measurement of most microstructural 

features is not known with absolute certainty. Instead all that is known is an expert’s 

best estimate. Different materials scientists would provide slightly different 

measurements of each microstructural feature. As a result, assessing the accuracy of 

automated techniques is challenging, and any improvement in accuracy a new method 

provided could not be reliably and precisely measured in the absence of an absolute 

ground truth. Advanced microscopy techniques, such as EBSD, could help provide a 
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more definitive ground truth, however, access to this is limited and required this would 

have limited the dataset available. The work presented in this thesis, therefore, focuses 

on performing analysis in a faster, more repeatable and less labour-intensive way than 

existing manual methods, which is of significant value. The techniques described in 

this thesis are considered to be accurate provided they can produce measurements 

within an acceptable range of those produced by expert materials scientist, as defined 

by existing standards. 

1.3 Original contribution and thesis structure 

The research goal is to improve microstructural analysis by introducing novel digital 

image processing algorithms to automate the measurement of microstructural 

properties. Through the review of recent literature, summarised in Chapter 4, it is 

demonstrated that automated measurements are achieved in other fields and for a few 

properties of some microstructures. However, it is also found that a complete, robust, 

automated analysis of complex Ti-6Al-4V microstructures is not yet possible and this 

requires the development of new techniques. The core contribution of this thesis is the 

design of novel image processing algorithms that are robust enough to measure 

microstructural features of Ti-6Al-4V. Two distinct image processing techniques are 

proposed that are specifically designed to measure two unique types of microstructural 

feature. These are then incorporated into a software tool to allow these methods to be 

applied in industry or academia by materials scientists without prior training in image 

processing. As a result, microstructural analysis can now be performed in a faster, less 

labour intensive, less prone to human error and more repeatable way. To achieve the 

core aims of this research, contributions are made to both materials science and image 

processing. These contributions can be broken down as follows: 

For materials science the contributions are, 

• A new technique for measuring features related to the morphology of primary 

alpha grains of microstructures (Chapter 5) such as: 

o Primary alpha grain size 

o Volume fraction of globular alpha 

o Distribution of individual grain size and globularity 
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• A new technique for measuring features related to the morphology and 

orientation of platelets in microstructures (Chapter 6) such as: 

o Width of alpha platelets 

o Size of alpha platelet colonies 

o Shape of platelets and grains 

o Distribution of platelet orientations 

• A technique for identifying artefacts within microstructures (Chapter 5). 

• A new algorithm to identify colonies of platelets (Chapter 6). 

For image processing the contributions are, 

• A novel extension to the marker-based Watershed Algorithm [5], [6] to enable 

better segmentation of images containing touching objects (Chapter 5). 

• An improved granulometric procedure for simultaneously computing the 

dimensions and orientation of elongated structures in images (Chapter 6). 

The remainder of this thesis is laid out as follows. Chapter 2 describes the methodology 

used when conducting the research described in this thesis. Chapter 3 introduces key 

materials science and image processing concepts critical to understanding the 

remainder of the thesis. Chapter 4 presents a review of recent literature and establishes 

the requirements that the new image processing techniques must meet in order to 

improve microstructural analysis of Ti-6Al-4V when compared to existing 

approaches. The novel contributions of this thesis are then presented in 3 chapters. 

Chapter 5 and 6 describe the new image processing techniques proposed. Chapter 5 

shows segmentation methods for globular grains and Chapter 6 shows measurement 

techniques for elongated platelets. Chapter 7 describes a new software tool used to 

apply these methods to microstructural analysis and intuitively tune the parameters. 

Validation is provided in Chapter 8 to demonstrate the impact of the presented 

techniques. Finally, Chapter 9 summarises the work presented and describes some 

future improvements that could be made to extend this work. 
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2 RESEARCH METHODOLOGY 

This chapter describes the research methodology that was applied to meet the core 

objective of improving the microstructural analysis of Ti-6Al-4V using image 

processing. It is generally considered that a methodology should account for factors 

such as; sources of data, research techniques, outputs, validation and the relationship 

between these factors [7].  The first step in this project was to study the state-of-the-

art in microstructural analysis techniques for Ti-6Al-4V and identify any 

shortcomings. New techniques were then developed to address these shortcomings and 

make useful improvements. A suitable dataset was selected which is used to both aid 

development and evaluate the proposed techniques. Finally, results from experimental 

trials were used to evaluate whether the core aim of improving microstructural analysis 

had been met. The individual steps in this methodology and the relationship between 

them are outlined in the flowchart in Figure 2.1, with more detail on this provided in 

the remaining sub-sections of this chapter. As trials involving software are cheap and 

easy to set-up, an efficient way to develop the new techniques is to use an iterative 

process were ideas discovered in the literature are implemented and tested, with the 

results guiding future literature review or algorithm development. This type of 

approach was used in the research presented in this thesis and is indicated in the 

flowchart in Figure 2.1. 
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Figure 2.1: Flow chart of research methodology 

2.1 Analysis of existing methods 

The first step in this project was to review relevant literature, to identify conceptual 

gaps in current knowledge related to the research aims of this project. This required 

that the review include both existing manual methods of microstructural analysis and 

any attempts that have already been made to apply image processing techniques to this 

problem. The challenges and benefits of each method are assessed in order to identify 

a baseline performance that the new techniques proposed in this thesis must improve 

upon.  
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While this alone is sufficient to justify the contributions to material analysis made in 

this thesis, an additional review of more fundamental image processing research was 

also conducted in order to identify the best approach to take when developing the new 

methods. This was guided by the results of the review of materials science literature 

and focuses on techniques targeting the type of feature revealed to be both important 

and challenging to measure.  The image processing review included techniques that 

had not previously been applied to the microstructural analysis of titanium, and mostly 

not to any other metallic material, but had been successfully applied in other fields 

featuring similar datasets. Full details on what constitutes a similar dataset are 

explained in Chapter 4. It became apparent from this review that no existing image 

processing technique was perfectly suited to provide accurate measurements of all the 

microstructural features of interest in titanium alloys. Additionally, many potentially 

suitable methods failed completely in the most challenging cases and would likely not 

be robust enough to measure the variety of different microstructures investigated. 

Therefore, as well as identifying the most suitable techniques to incorporate into the 

new algorithms, important limitations in the knowledge in the field of image 

processing are also discussed. Addressing these conceptual gaps in the literature is 

essential to the design of suitable image processing algorithms for microstructural 

analysis and also leads to contributions in the field of image processing in addition to 

those in the fields of materials science and microstructural analysis.  

2.2 Application of a suitable dataset 

The Ti-6Al-4V alloy can exhibit a wide variety of microstructural arrangements 

depending on the thermal and mechanical history of the material sample investigated. 

Obtaining a suitable dataset that is varied enough to allow useful techniques to be 

developed is, therefore, a critical stage in this research. There are several possible 

approaches to obtain this dataset. Ostensibly, the most rigid and structured approach 

would be to perform an experiment where samples of material from the same source 

are subjected to different thermal and mechanical processes to produce a range of 

different microstructures. As sample preparation and microscopy methods could be 

tightly controlled, this would likely produce microstructural images that are relatively 

consistent and predictable with the same level of lighting, scratches and artefacts seen 
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in each. Such a dataset would allow techniques to be designed that can measure 

different microstructure types. However, this experiment would be time consuming 

and expensive and would not inherently add value when compared to existing 

microstructural data taken from other sources. Additionally, the controlled nature of 

that type of experiment would produce microstructures that do not reflect the full 

variation in microstructural images expected in real life situations. Differences in 

images are often produced by the variety of experimental procedures, material 

preparation and microscope set-up used in different factories and laboratories. As these 

factors can be difficult to control, and the effect on the microstructural images 

produced is difficult to predict. Thus, a more varied and less perfect dataset is preferred 

to ensure the results presented in this work are representative of what can be achieved 

in practise. A more pragmatic approach was, therefore, taken where the microstructural 

images for the titanium dataset were drawn from existing projects conducted at the 

Advanced Forming Research Centre (AFRC) and by their industrial partners. This 

allowed a large dataset of images to be obtained that were subject to a variety of 

different real-world conditions, imaged on different microscopy technologies and 

measured by different materials scientists. Many of the images used came from a single 

experimental trial that aimed to study the effects of thermal and mechanical treatment 

on the shape and size of grains. Therefore, the full range of different microstructure 

types that would be expected is included within the dataset. The approach taken means 

that the dataset gathered includes both genuine microstructural variations and image 

variations produced by differences in how the microstructure images are captured, 

which are not informative of the underlying microstructure. Both of which are 

important to include in the dataset in order to validate the robustness of the proposed 

techniques for real world microscopy.  

2.3 Design of new analysis procedures 

A new set of techniques are designed that can measure properties of microstructural 

images as consistently and accurately as possible. This is an iterative process which 

requires continuous experimentation to observe the effect of different operations on 

microstructural images. Such an approach is common in the development of software- 

based methods as there is little cost to this experimentation as it is non-destructive and 
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requires only a computer and researcher and processor time.  The success of this type 

of methodology depends upon the selection of a suitable development dataset for use 

during development. A developmental dataset was built by subjectively selecting one 

or two images from each microstructure type and imaging technology such that the 

dataset contained as much variations as possible for the smallest number of images. 

The remaining images were kept for testing and evaluation. As the new algorithms are 

designed to analyse images from the developmental dataset, it is important that this 

captures the type and level of variation expected in real-world images. If the 

developmental dataset does not capture this variety then the resulting techniques will 

be over-trained to a particular dataset and will likely perform very well on this data 

only and fail when applied to other data. It is also important that the developmental 

dataset is not excessively large as this would make the development process slower 

and more difficult. It is also beneficial to keep as many images as possible for a testing 

and evaluation dataset. As these are not used in the design of the algorithm, the results 

obtained on this data are informative of how the new algorithms are likely to perform 

when used by materials scientists.   

It appears likely that all the possible features of titanium alloys are too different to be 

measured reliably and accurately by a single method. Therefore, the decision is made 

to propose two distinct techniques; one for the segmentation and measurement of 

equiaxed features, best suited for globular alpha grains, and another for extracting 

orientation, size and shape information on a per pixel basis, best suited for elongated 

grains. A full explanation of the reasoning behind this decision is provided in the 

literature review in Chapter 4. The techniques proposed are shown in Chapters 5 and 

6 with the software implementation described in Chapter 7.  

2.4 Validation of new methods 

The techniques proposed in this thesis are validated on the set of microstructural 

images of Ti-6Al-4V, described in Section 2.2. As not all features exist in all 

microstructures, suitable images to test the measurements of each feature are selected 

qualitatively from the dataset by the researcher. In each case the largest possible 

dataset in which each feature could be measured are used.  
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The validation process requires results to be compared with an alternative 

measurement considered to be the ground truth. It is set out in the scope of this work, 

defined in Section 1.2, that the target is to match what expert materials scientists could 

achieve using manual procedures. Therefore, measurements performed by expert 

materials scientists using existing manual methods are used as the ground truth in this 

thesis. Any measurement of a microstructural feature that matches (within a small 

margin of error) the measurement achieved by a materials scientist indicates that the 

proposed technique is accurate. The time required to perform each measurement is also 

monitored to assess if the new techniques could also offer faster measurements. It 

should also be noted that the automated nature and software implementation of the 

proposed techniques makes the proposed methods inherently repeatable and less 

labour intensive than manual alternatives.  The contribution of this work is further 

demonstrated through comparison with existing automated approaches where 

applicable.  

As well as facilitating improved analysis of titanium microstructures, the techniques 

presented in this thesis also makes contributions to the field of image processing 

through the techniques described in Chapter 5 and 6. Validation of these contributions 

requires additional evidence other than measurements of microstructural properties. 

For the segmentation techniques in Chapter 5, the segmentation accuracy is assessed 

through comparison with a ground truth segmentation manually drawn by expert 

materials scientists. For the techniques for analysing thin structures in Chapter 6, 

measurements performed on a pixel by pixel basis are compared to the ground truth 

measurements. In both cases the contribution is demonstrated by comparing the results 

with existing image processing techniques for the same task. As this is used to 

demonstrate novelty in the image processing field, the experiment includes an 

evaluation of techniques that have not previously been applied to images of 

microstructures but have been successfully applied to other similar images.  
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3 FUNDAMENTALS OF 

MICROSTRUCTURAL 

ANALYSIS AND IMAGE 

PROCESSING 

This chapter describes key concepts underpinning this research that are critical to 

understanding the remaining content of this thesis. As the aim is to provide image 

processing tools to improve the analysis of titanium microstructures, it is necessary to 

provide some fundamental information from both the fields of materials science and 

image processing. The first section of this chapter focuses on materials science and 

provides an overview of different microstructure types that can exist, the constituent 

components of these microstructures and the effect that the size and morphology of 

these features have on a material’s properties. This information is used to determine 

which features of microstructures are the most important to measure. Analysis of some 

example images are provided to demonstrate the types of challenges that 

microstructural images present to automated image processing techniques. In the 

second section of this chapter, definitions are provided of several fundamental image 

processing concepts that are relevant to the new techniques proposed in this thesis.  

3.1 Material and microstructure 

The microstructure of a material affects many of its properties. Tensile strength, 

ductility, yield stress, hardness and surface roughness are all known to be impacted by 

variations in a material’s microstructure [1], [8]. Understanding these variations is 

important when designing new methods of automated microstructural analysis. As set 

out in Chapter 1, the scope of this work is restricted to the microstructure of the Ti-

6Al-4V alloy. Hence this section will present examples of only this material’s 
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microstructure and describe the variations that can exist within it as well as describing 

the features it is necessary to measure when analysing this microstructure. 

3.1.1 Microstructure types and features 

Ti-6Al-4V is a two-phase alloy containing an alpha and beta phase with each phase 

having a different chemical composition. A full discussion of the details of this 

composition is beyond the scope of this thesis. What is most important for the type of 

microstructural analysis methods studied here is that grains of each phase should be 

measured separately and that these phases typically present as a significantly different 

intensity in a greyscale microstructural image. Alpha grains can be either equiaxed or 

elongated [9]. Equiaxed grains are commonly called globular alpha while elongated 

grains are referred to either as laths or platelets [10].  

The shape and size of these grains is determined by the thermal and mechanical 

processes applied to the material. As the boundaries between these grains are not as 

strong as their internal structure, this in turn determines material properties. Therefore, 

the ability to analyse the microstructural evolution of a material is important to 

understand the effect of different manufacturing processes and the quality of final 

components. Grains in α+β alloys such as Ti-6Al-4V are nucleated during phase 

transformation from β phase, which occurs when the material is heated above the β 

transus temperature. This transformation can be either martensitic or by a diffusion 

controlled nucleation and growth process, more precise details on the chemistry of 

which are described in [1]. The martensite transformation involves atoms moving co-

operatively by a shear type process and produces a homogeneous microstructure, 

which contains nearly entirely platelets, the resulting microstructures are often referred 

to as martensitic microstructures. Nucleation and growth processes can produce 

different microstructure types based on cooling rates. Sufficiently slow cooling rates 

will lead to alpha grains nucleating preferentially first along the boundaries of existing 

beta grains and then into the grain in parallel platelets. This results in a colony structure 

where either these boundary grains or the existence of these parallel structures indicate 

the colonies. As the growth of platelets occurs within the beta phase there is often a 

clear phase change at the boundaries of platelets in this case, which is visible in 

microscopic images. At faster cooling rates the thickness of platelets decreases, as they 
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have less time to grow. The size of colonies also decreases as parallel platelets can no 

longer fill the entire prior beta grain and often nucleate on boundaries of these instead. 

In some cases, this can result in a basket weave type structure, referred to as a 

Widmanstatten microstructure, although the likelihood is dependent on the alpha or 

beta stabilisers in the alloy. The size of globular grains is also determined by the 

aforementioned processes, however, typically require additional mechanical work to 

produce them, with the strain applied by this work also contributing to the size and 

number of these grains.  

The microstructure of metal alloys can typically be classed as either globular, bi-modal 

or lamellar, depending on whether the microstructure consists entirely of one grain 

type or of a mixture of both. Figure 3.1 presents Scanning Electron Microscope (SEM) 

images of these microstructure types where the darker regions represent alpha phase. 

The key features to measure in each microstructure type differs due to the presence of 

different grain morphologies, as outlined in Section 3.1.2.  

   

a) b) c) 

Figure 3.1: Examples of different microstructure types images by an SEM  

where a) globular, b) bi-modal and c) lamellar 

3.1.2 Microstructural measurements 

This section lists and describes the features of Ti-6Al-4V microstructures that are 

desirable to measure.  

3.1.2.1 Volume fraction of alpha phase 

The volume fraction of alpha phase, Vα, is considered important to measure regardless 

of the morphological type of the microstructure [11], [12]. This is defined as the ratio 
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of the area of the microstructure occupied by alpha phase, Aα, to the entire 

microstructure area, AI, as in Equation (3.1).  

𝑉𝛼 =
𝐴𝛼

𝐴𝐼
 (3.1) 

3.1.2.2 Grain Size 

In globular and bi-modal microstructures the size of globular alpha grains are among 

the most common microstructural features to measure as there is a well-established 

relationship between grain size and yield strength through the Hall-Petch relationship 

[13]. Normally this is reported through the mean grain size, Gm, with size being an 

estimate of the average diameter of the grain, Gs, as in Equation (3.2) where Ng is the 

number of grains.  

𝐺𝑚 =
∑ 𝐺𝑖

𝑁𝑔

𝑖=1

𝑁𝑔
 

(3.2) 

3.1.2.3 Volume fraction of globular alpha 

In addition to measuring the size of alpha grains, the shape of these grains is also 

considered significant [11], [12], [14], [15]. The percentage of the microstructure that 

consists of globular alpha is of particular interest in microstructures containing alpha 

platelets due to the superior strength of platelet boundaries compared to globular grain 

boundaries [11]. This is quantified by the globular volume fraction, Vg. This can be 

defined either as the ratio of globular alpha grains, Ng, to all alpha grains, Nα, as in 

Equation (3.3), or as ratio of the area of globular alpha grains, Ag,  to the total alpha 

phase area, Aα, as in Equation (3.4).  

𝑉𝑔 =
𝑁𝑔

𝑁𝛼
 

(3.3) 

𝑉𝑔 =
𝐴𝑔

𝐴𝑎
 

(3.4) 

3.1.2.4 Platelet width 

Measurements of platelets pertain to microstructures that have undergone martensite 

or similar transformations such as bi-modal or lamellar microstructures. The width of 

alpha platelets, W, is the most widely measured feature of lamellar structures. 
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Typically it is the mean width of platelets, Wm, that is reported as this has a proven 

relationship to material properties [10]. This is shown in Equation (3.5) where w 

denotes platelet width and Nm is the number of measurements performed. 

𝑊𝑚 =
∑ 𝑊𝑖

𝑁𝑚
𝑖=1

𝑁𝑚
 

(3.5) 

The length of individual platelets is not typically measured as any information given 

by this is provided by the colony length. 

3.1.2.5 Colony size 

In certain alloys, such as Ti-6Al-4V, it is common for the alpha platelets to gather in 

parallel packets known as colonies, as illustrated in Figure 3.2. Colony microstructures 

can exist where a fully lamellar microstructure consists entirely of platelets organised 

into colonies. However, colonies can also exist alongside equiaxed alpha grains in bi-

modal microstructures. There are several reasons why the size of these colonies is 

important to measure. Colony size is effectively a measure of slip length [16] and 

therefore affects both plastic deformation and crack propagation [17]. Smaller colonies 

have also been found to lead higher tensile strengths [18]. Colony size, CS, is reported 

as the mean size of the colonies in the microstructure, as in Equation (3.6), with the 

size of each colony being determined by the average diameter of that colony, dc. 

𝐶𝑆 =
∑ 𝑑𝑐𝑛

𝑛
1

𝑛
 

(3.6) 

 

Figure 3.2: Examples of features in a bi-modal image taking using optical 

microscopy 
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3.1.2.6 Platelet orientation 

In addition to the platelet and colony sizes, the orientation of platelets is sometimes 

studied to provide information about slip plane and material texture [19]. Typically, 

this data is presented through histograms of platelet orientation rather than through a 

concise metric as is the case with the other properties discussed. 

3.1.2.7 Summary 

A range of features have been identified that are important to measure when analysing 

images of titanium microstructures. It should be noted that certain features only exist 

in certain morphological types of microstructures. Platelet width, orientation and 

colony size are only measured in bi-modal and lamellar microstructures. Globular 

volume fraction is only relevant in bi-modal microstructures, while alpha grain size is 

important in both globular and bi-modal structures. A summary of which 

measurements are of interest in each image is given in Table 3.1, with annotated image 

indicating the relevant features provided in Figure 3.2. 

 

Table 3.1: Measurements of interest in different microstructure types 

Microstructure Type Measurement 

Lamellar • Platelet width 

• Colony size 

• Volume fraction of alpha phase 

• Platelet/colony orientation 

Bi-modal • Grain size 

• Volume fraction of globular alpha 

• Volume fraction of alpha phase 

• Platelet width 

• Colony size 

Globular • Grain size 

• Volume fraction of globular alpha 

• Volume fraction of alpha phase 
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Features in microstructures are also sometimes referred to as either primary or 

secondary, depending on whether or not grains were pre-existing or formed during 

recrystallization as a result of thermal and mechanical process applied to the material. 

This thesis generally assumes measurements of primary grains, so this distinction is 

mostly ignored. However, size filtering methods, described in Chapter 5, could allow 

for separate measurements of secondary grains if required. 

3.2 Imaging technologies 

This section describes the image technologies used to produce the microstructural 

images analysed in this thesis and explains the challenges associated with images 

captured using each technology. As the scope is restricted to 2D microscopy, only 

optical microscopes and SEMs are discussed here. 

3.2.1 Optical Microscopy 

Optical microscopes are relatively cheap and readily available. As a result, they are 

commonly used for microstructural analysis, particularly in industrial factories where 

the cost of more advanced technologies may be prohibitive. They operate by directing 

a light source onto the surface of a material sample to be examined and using a 

powerful microscopic lens to view the microstructure. Magnification levels of up to 

2000x can be achieved which is often sufficient to analyse individual alpha grains in a 

Ti-6Al-4V microstructure. However, the images produced offer a relatively low spatial 

resolution and depth of field when compared to more advanced microscopes [9]. The 

relatively low resolution is particularly noticeable when studying thin platelets, as 

these can give the appearance of overlapping and it becomes unclear where the 

boundaries between these laths are.  The lower depth of field from these microscopes 

also result in all of the alpha phase being given almost exactly the same intensity value 

in a grayscale image. This makes boundaries between touching grains of the same 

phase difficult to identify. These challenges are illustrated in Figure 3.3. 
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Figure 3.3: Example of limitations of Optical Microscopy, where boundaries 

between grain are not clearly delineated 

3.2.2 Scanning Electron Microscopy 

A Scanning Electron Microscope produces images of the microstructure of a material 

by scanning the surface of the material with a beam of electrons. These electrons are 

reflected (or back-scattered) onto a screen to produce an image [9]. This type of 

microscope is more expensive than optical technologies but is still relatively common, 

particularly in academic studies. It requires the subject of the scan to be electrically 

conductive but in return can achieve high magnification rates of up to 50,000x and has 

an exceptional depth of field when compared with optical images. Microstructural 

images of Ti-6Al-4V, taken using this technology, display clear difference in intensity 

difference between primary alpha and beta phase. Figure 3.4 shows an example of an 

image captured using an SEM. 
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Figure 3.4: Example of SEM image of Ti6Al4V alloy  

From Figure 3.4 it can also be observed that individual alpha grains are sometimes 

indicated by a different grey level than adjacent alpha grains, due to changes in their 

crystallographic orientation, making grain boundaries easier to delineate in these 

cases. This is clearly not the case for optical images, shown in Figure 3.3. However, 

although this additional information is useful for identifying grains, it can be difficult 

to extract individual grains due to noise. Consider a close up of two, touching grains 

shown in Figure 3.5 a). The grain on the left is slightly darker, meaning it will have 

lower intensity values in a greyscale image. However, the grains are both also visibly 

noisy which results in the histogram in Figure 3.5 b) showing only one mode (ignoring 

the white background pixels) rather than the two modes expected. The effect of noise 

is further illustrated by the image of a single grain shown in Figure 3.5 c) and its 

histogram shown in Figure 3.5 d). It can be observed that pixel values within a single 

grain appear to follow a Gaussian distribution over a relatively wide range. This noise 

can mask the location of the additional grain boundaries SEM technologies are 

expected to reveal. If the additional information provided by an SEM is to be useful, 

then the analysis techniques must take this into accounting when identifying grains. 
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a) b) 

 
 

c) d) 

Figure 3.5: Close up of 2 adjacent grains where a) shows an image of the grains 

produced by SEM, b) shows a histogram of intensity values, c) show an 

individual grain and d) shows a histogram of pixel values within that grain 

3.3 Image processing techniques 

The following section defines the relevant fundamental image processing background 

theory and describes techniques that are used to design the novel algorithms proposed 

in Chapters 5 and 6. 
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3.3.1 Representations of digital images 

In this thesis digital images are represented as a 2D array where each entry in the array 

is a pixel. The row and column in the array correspond to the y and x position, 

respectively, of each pixel in the image. The value of each element in the array 

indicates the intensity of the corresponding pixel. The microstructural images 

investigated in this study are greyscale and do not contain any colour information, 

therefore, only greyscale and binary images need to be defined in this section. 

In binary images each pixel is either “on” or “off” and is represented by, respectively, 

a “1” or “0” in the matrix. Visually this appears as either white (on/1) or black (off/0) 

pixels, as shown in Figure 3.6. The convention is adopted that white pixels represent 

the image foreground and black pixel represent the background. Formally, a binary 

image, f, can be described as a mapping of the definition domain of f into {0,1} where 

the definition domain is a subset, Df of ℤn, as in Equation (3.7). 

 

                                              𝑓 ∶   𝐷𝑓 ⊂ ℤ𝑛
 

→ {0,1} (3.7) 

  

 

Figure 3.6: Example of a binary image 

In greyscale images, pixel values can be within a wider range of non-negative integer 

values from 0, representing a black pixel, up to n representing, a white pixel, where n 

is the number of bits used to store the image. Formally, a greyscale image is defined 

as the mapping of a definition domain into a bounded set {0,1,2,…,2n-1} where the 
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definition domain is a subset, Df of ℤn, as in Equation (3.8). An example of a greyscale 

image is given in                             Figure 3.7. 

 

𝑓 ∶   𝐷𝑓 ⊂ ℤ𝑛
 

→ {0,1,2, … . , 2𝑛 − 1} (3.8) 

 

 

                            Figure 3.7: Example of a greyscale image 

3.3.2 Spatial filtering 

Images from real world sources are typically imperfect and contain some form of 

noise. This noise masks the information that needs to be extracted by altering pixel 

values, usually, independently from image content. This is true for microstructural 

images, particularly when captured using sensitive microscopes such as an SEM. 

Spatial filters can be used to reduce this noise by modifying an image by a sub-image, 

commonly referred to as a filter, kernel, mask or window, to  compute an output image 

where the value of each pixel is based on the value of its neighbouring pixels in the 

input image [2]. A common way to perform this is convolution, denoted by *. A kernel 

is built such that each pixel in that kernel has a value, which is referred to here as a 

coefficient to avoid confusion with regular image pixels. The convolution of an image 
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by a kernel is the sum of products of the kernel coefficients and the corresponding 

image pixels, written generally in Equation (3.9) for each pixel, x, where, g is the 

kernel and Dg is a definition domain where the kernel and image overlap. 

 

[𝑓 ∗ g](𝑥) = ∑ [𝑓(𝑥 − 𝑏)g(𝑏)]
𝑏∈𝐷𝑔

 (3.9) 

In this way the output for each pixel can be thought of as a weighted sum of 

neighbouring image pixels. When filtering an image, the same kernel is applied to each 

point in the original image to produce a filtered output image. It is, therefore, necessary 

for the kernel to have an origin, which will be aligned with a pixel in the image when 

calculating the output value at that pixel. Examples of a 3x3 kernel is given in Figure 

3.8, with the equation for the response of this filter provided in Equation (3.10). 

 

Figure 3.8: Example of kernel applied to filter an image 

𝑅(𝑥, 𝑦) = 𝑔(−1, −1)𝑓(𝑥 − 1, 𝑦 − 1) + 𝑔(−1,0)𝑓(𝑥 − 1, 𝑦) 

+ ⋯ 𝑔(1,1)𝑓(𝑥 + 1, 𝑦 + 1) 
(3.10) 
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Kernels are typically rectangular but can be of different sizes. In spatial filtering the 

size of the kernel is critical to the success of the filter. Therefore, it is necessary to 

define a more generic equation for the filter response. For an arbitrarily sized 

rectangular j x k kernel it is assumed j=2a+1 and k=2b+1 where a and b are non-

negative integer values representing the width and height of the kernel. This means 

kernel length and height is an odd number and therefore symmetric across the x and y 

axis through some origin point. Non-symmetrical kernels are not defined in this thesis 

as these inherently cause distortion and are not useful for de-noising. A general 

equation for the response of a linear spatial filter is given in Equation (3.11). 

 

𝑅(𝑥, 𝑦) = ∑ ∑ 𝑔(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 (3.11) 

 

The design of coefficients in the kernel can be used to remove different types of noise. 

An example of this type of filter is Gaussian filters, which use coefficients values in 

the kernel designed to remove noise following a Gaussian distribution from the image. 

This type of filtering is often referred to as Gaussian blur as it has the effect of blurring 

adjacent pixels together [2]. Non-linear filters such as median filtering do not use 

convolution, but still use the same approach of applying a kernel to each pixel in an 

image to compute a new filtered image. This particular filter uses kernels designed to 

find the median of the pixel values in the original image that overlap with the kernel 

to remove bright and dark spots, called salt and pepper noise [2]. The most appropriate 

filter to use will depend on the type of noise present in the image. 

3.3.3 Thresholding 

Thresholding is the technique of categorising pixels by comparing their value to pre-

determined cut-off values. In image processing this is most commonly used to convert 

greyscale images to binary images by mapping all pixels with a value below a 

threshold, t, to “0” and all those greater than or equal to t to “1”. This is shown in 

Equation (3.12) where fBW is a binary image, fG is a greyscale image and x and y are 

pixel co-ordinates. 



27 

 

𝑓𝐵𝑊(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑓𝐺(𝑥, 𝑦) ≥ 𝑡

0, 𝑖𝑓 𝑓𝐺(𝑥, 𝑦) < 𝑡
 (3.12) 

3.3.4 Distance transform 

The distance transform is a simple but useful transform applied to binary data to 

measure the distance of each point in the image foreground from the background. The 

distance transform, DT, produces an image where each pixel in the foreground has a 

value equal to the shortest distance, d, between that pixel and the nearest non-

foreground, i.e. zero valued, pixel, as in Equation (3.13). All non-foreground pixels 

will remain at “0”. 

 

[𝐷𝑇(𝑓𝐵𝑊)](𝑥) = min {𝑑(𝑥, 𝑦)|𝑓𝐵𝑊(𝑦) = 0} (3.13) 

 

This transform can provide direct measurements of objects in a binary image, although 

is useful most effective when used to provide input data to more advanced image 

processing tools. 

3.3.5 Image gradient and edge detection 

The gradient of an image describes variations in the intensity level of neighbouring 

pixels. Two measures of gradient are often considered; the gradient magnitude which 

measures the difference in intensity values in that neighbourhood, and the gradient 

orientation which measures the direction in which the greatest difference in intensity 

variation occurs. An example of the gradient magnitude for a 1D signal is shown in 

Figure 3.9. 
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a) 

 

b) 

Figure 3.9: Example of gradient magnitude where a) is pixel intensity in 1 

dimension and b) is the corresponding gradient magnitude 

The process of finding locations of large image gradient is known as edge detection 

and is useful for finding boundaries between objects of differing intensity. These 

techniques traditionally use either the first or second derivative to compute gradient 

[2]. For 2D image data this normally involves filtering the image with pre-defined 

kernels, specially designed to approximate the derivative of the image. Several 
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different kernels have been used for this task, with the Sobel [20], and Prewitt [21] 

operators being among the most commonly used in practise [2]. Each kernel type 

performs the same task of computing image gradient but achieve slightly different 

results, a comparison of which is provided in [20]. The Sobel and Prewitt operators 

are shown in Figure 3.10 Each edge detection method consists of two separate kernels 

for computing the gradient in two perpendicular directions. The equations necessary 

to compute the gradient magnitude and orientation at each pixel using these methods 

is given in Equation (3.14) and Equation (3.15). 

  

Mask Gx Mask Gy 

a) 

  

Mask Gx Mask Gy 

b) 

Figure 3.10: Edge detections kernels where a) is the Sobel kernels and b) is the 

Prewitt kernels 
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𝐺 = √(𝐺𝑥
2 + 𝐺𝑦

2) (3.14) 

𝜃 = atan (
𝐺𝑦

𝐺𝑥
) (3.15) 

Edge detection can be thought of as a thresholding of the gradient magnitude of an 

image to find only the most significant edges in image data. The threshold value used 

will. Therefore, determine which potential edges in an image are detected. An example 

of gradient magnitude, computed using Sobel kernels, and edge detected images with 

different thresholds applied is given in Figure 3.11. 

  

a) b) 

  

c) d) 

Figure 3.11: Example of edge detection where a) original image, b) gradient 

image, c) edge detection with threshold=1 and d) edge detection where 

threshold=2 
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3.3.6 Mathematical Morphology 

Mathematical morphology is a theory and technique, first introduced by Matheron [22] 

and Serra [23]. It can be used to analyse spatial structures in images using techniques 

based on set theory, integral geometry and lattice algebra [24]. A myriad of distinct 

image analysis techniques exist that are based on Mathematical Morphology. Many of 

these are built from two fundamental morphological operators called erosion and 

dilation. These operators function by probing each location in a given image with a 

pre-defined sub-image known as a Structuring Element (SE).  The response from these 

operators is an image where pixel values are computed as a function of how the SE 

interacts with features of the investigated image. This section provides the definition 

of a SE, the two fundamental morphological operations specified, and two further 

operators, called the opening and closing, which are useful to the work presented in 

this thesis. 

3.3.6.1 Structuring Elements 

A SE is a set that is used to probe the image under investigation. A SE can have the 

same dimensions as an input image so can be either 2D, known as a flat SE, or 3D, 

known as volumic, non-flat or greyscale SE. The response of a morphological operator 

using a flat SE depends only on the shape and size of image features while greyscale 

SE are more sensitive to intensity variations. The aim of this research is to investigate 

the shape and size of grains so only flat SE are considered in the remainder of the 

thesis. 

A morphological operator will probe the image at every location a SE with an origin 

at that point. A SE requires a single point be designated as the origin, which is used 

for positioning the SE at each point in the studied image. The output of the operator 

will then be stored at the same co-ordinate in the output image. A SE does not need to 

be symmetrical and the origin can theoretically be any point either inside or outside 

the surface of the SE. However, for many practical applications a symmetrical SE with 

an origin at its centre is most useful. Symmetrical SEs are less likely to distort the 

image and any information extracted using them would relate directly the shape and 

size of image features. 
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The shape and size of SEs relative to image features have a significant impact on the 

output of morphological operators. This relationship is useful for extracting 

information about the image under study. A good example of this is granulometric 

techniques [25] where SEs of increasing size are used to obtain size information from 

an image, discussed later in Chapter 4. 

3.3.6.2 Erosion 

The erosion, ɛ, is a fundamental morphological operator named as it often has the effect 

of shrinking binary sets relative to the SE. If larger SEs were used objects would shrink 

more or even disappear completely. More precisely, the erosion of a binary image, fBW, 

by a SE, B, is the locus of points, x, for which B, with origin at x, fits completely within 

fBW where B is translated through all points in fBW. This is written in Equation (3.16) 

where Bx is a SE with origin at point x. It can be thought of as the answer to the 

question, “Does the SE fit the set?” [24]. 

𝜀𝐵(𝑓𝐵𝑊) = {𝑥|𝐵𝑥 ⊆ 𝑓𝐵𝑊} (3.16) 

The erosion of a binary set is illustrated in Figure 3.12 where the SE is a 3x3 square.   

  

a) b) 

Figure 3.12: Example of the erosion of a binary image with pixel values shown 

where a) original image and b) erosion by 3x3 square SE 

The effect of erosion can be observed here as objects in the image are made smaller as 

when a 3x3 SE overlaps the image with its origin at the outermost pixels of an object, 
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the SE does not entirely fit the image while SEs with origin at the centre of objects do. 

The object that was smaller than the SE was removed completely by this operation. 

For greyscale images there is no clear binary decision on whether or not the SE fits the 

image. In this case erosion is instead better defined not as a set of points that fit the SE 

but the minimum value of all pixels that coincide with that SE at each point, as written 

in Equation (3.17). 

[𝜀𝐵(𝑓)](𝑥) = min
𝑏∈𝐵

{𝑓(𝑥 + 𝑏)} (3.17) 

In greyscale images the erosion generally has the effect of reducing bright regions in 

the image relative to the SE. The effect of this is shown in Figure 3.13 where an 8-bit 

greyscale image is eroded by a 3x3 square SE. It can be observed that the objects are 

shrunk or removed as before, however, this time pixels close to object boundaries take 

on the value of the surrounding region rather than “0”.  

  

a) b) 

Figure 3.13: Example of the erosion of a greyscale image with pixel values 

shown where a) original image and b) erosion by 3x3 square SE 

3.3.6.3 Dilation 

The dilation, δ, is a fundamental morphological operator named as it often has the 

effect of increasing the area of a binary set relative to a SE. It is the dual operator of 
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the erosion defined in Section 3.3.6.2. Formally, the dilation of binary image, fBW, by 

a SE, B, is the locus of points, x, where B, with origin at x, coincides with any point in 

fBW where B is translated through all points in fBW. It can be thought of as the answer 

to the question, “Does the SE hit the set?” [24]. This is written in Equation (3.18) 

where �̂�x is a SE with origin at point x which is a reflection of B through its origin. 

This reflection has no effect on symmetrical SEs. However, for non-symmetrical SEs 

the reflection is necessary for erosion and dilation to be combined in meaningful ways, 

such the opening and closing operators. 

𝛿𝐵(𝑓𝐵𝑊) = {𝑥|�̂�𝑥 ∩ 𝑓𝐵𝑊 ≠ Ø} (3.18) 

The dilation of a binary set is illustrated in Figure 3.14 where the SE is a 3x3 square.  

This demonstrates that dilation generally has the effect of increasing the area of 

foreground objects. This occurs as all pixels originally in the foreground return a “1” 

as do pixels where the SE, with origin at that, would overlap with any point in the 

original foreground. If a larger SE was used the background between objects would be 

made larger still or, if the SE was large enough, the objects would merge and the 

background would disappear completely. 

  

a) b) 

Figure 3.14: Example of the dilation of a binary image with pixel values shown 

where a) original image and b) dilation by 3x3 square SE 
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For greyscale images there is no clear binary decision on whether or not an SE 

coincides with the image. For greyscale images dilation is therefore best defined, not 

as a set of points where the SE hits the image but, as the maximum value of all pixels 

that coincide with the SE at each point, as written in Equation (3.19). 

[𝛿𝐵(𝑓)](𝑥) = max
𝑏∈𝐵

{𝑓(𝑥 − 𝑏)} (3.19) 

In greyscale images the dilation generally has the effect of brightening and increasing 

the area of regions in the image that are brighter than their surrounding area relative to 

the size and shape of the SE. The effect of this is shown in Figure 3.15 where an 8-bit 

greyscale image is dilated by a 3x3 square SE. It can be observed that the area of the 

brighter objects increases, as was the case in binary images, however, the pixels close 

to object boundaries have the value of the brightest neighbouring pixel rather than “1”.  

  

a) b) 

Figure 3.15: Example of the erosion of a greyscale image with pixel values 

shown where a) original image and b) erosion by 3x3 square SE 

3.3.6.4 Opening 

The opening, γ, is a combination of the erosion and dilation operators named as it has 

the effect of removing binary sets that cannot fully contain the SE. An opening can be 
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implemented by first eroding an image and then dilating the result, as in Equation 

(3.20).  

𝛾𝐵(𝑓) = 𝛿𝐵(𝜀𝐵(𝑓)) (3.20) 

When performing an opening, the dilation operator attempts to reconstruct data lost 

during the initial erosion. However, as the dilation is not an inverse operator of the 

erosion, this is often not done perfectly and some data may still be lost. Critically, 

objects that are completely removed by the initial erosion cannot then be restored. An 

example of the erosion of a binary image using a 3x3 square SE is provided in Figure 

3.16. The two objects smaller than the SE are completely removed from the image 

while the other object remains. As the shape of the SE matches the shape of the object 

the remaining object is perfectly reconstructed. If the shape of the SE does not match 

the shape of the image object some distortion might occur in the remaining objects. 

   

a) b) c) 

Figure 3.16: Example of opening a binary image by a 3x3 square SE where a) 

original image, b) image after erosion and c) image after opening i.e. the 

dilation of b)  

 

3.3.6.5 Closing 

The closing, φ, is the combination of the erosion and dilation operators, named as it 

often has the effect of filling gaps between objects when the gap is small enough that 

a SE can be placed such that it coincides with multiple objects. A closing can be 

performed by first dilating the image and then eroding the result, as in Equation (3.21). 
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𝜑𝐵(𝑓) = 𝜀𝐵(𝛿𝐵(𝑓)) (3.21) 

When performing a closing the erosion operator attempts to restore the image to its 

prior state before the initial dilation, reconstructing the background data in the image. 

However, as this erosion is not an inverse operator of the dilation, this is not always 

done perfectly and some data may be lost. Background regions that are completely 

removed by the initial dilation, i.e. any point where previously separate foreground 

objects are joined, are often not restored to the previous state by the subsequent 

erosion. An example of the opening of an image by a 3x3 square SE is provided in 

Figure 3.17. It can be observed that gaps within objects or between adjacent objects 

are removed when these gaps are smaller than the SEs. Meanwhile objects that are 

further apart than the size of the SE remain separate. If the shape of the SE is different 

than the shape of background regions, then some distortion can occur when performing 

the closing. 

   

a) b) c) 

Figure 3.17: Example of closing on a binary image where a) original image, b) 

dilated image and c) is the closed image i.e. the erosion of b) 

3.3.6.6 Top-Hat Transform 

The Top-Hat Transform is a type of morphological filter than can be used for various 

tasks, including de-noising and resolving lighting inconsistencies. Two 

complementary operators exist, the White Top-Hat (WTH) and the Black Top-Hat. 

The WTH is the subtraction of the opening of an image from the original image, as in 

Equation (3.22). The BTH is the subtraction of the original image by the closing of 

that image, as in Equation (3.23).  
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𝑊𝑇𝐻(𝑓) = 𝑓 − 𝛾(𝑓) (3.22) 

𝐵𝑇𝐻(𝑓) = 𝜑(𝑓) − 𝑓 (3.23) 

3.3.6.7 Hit-or-Miss Transform 

The Hit-or-Miss Transform (HMT) can identify objects that fit specific size and shape 

requirements by extracting the pixels from an image matching a given neighbourhood 

configuration [26]. This is achieved by using two SEs, one which must fit within the 

foreground, BFG, of the image and another which must miss it, BBG. A formal definition 

of the HMT of f by B is written in Equation (3.24). 

𝐻𝑀𝑇𝐵(𝑓) = {x|(𝐵𝐹𝐺)𝑥 ⊆ f, (𝐵𝐵𝐺)𝑥 ⊆ f 𝑐} (3.24) 

This can also be written in terms of an intersection of two erosions, as in Equation 

(3.25). 

𝐻𝑀𝑇𝐵(𝑓) = 𝜀𝐵𝐹𝐺
(𝑓)⋂𝜀𝐵𝐵𝐺

(𝑓𝑐) (3.25) 

A simple illustrative example of the HMT to extract circular objects of a specific size 

is shown in Figure 3.18. 

 

a) b) c) 

Figure 3.18: Illustration of HMT where a) original image, b) is the set of SE 

used and c) is the transformed image with objects extracted 

3.3.7 Geodesy, Geodesic Distance and Time 

Generally, geodesy is the science of accurately measuring properties of the earth such 

as the shape and area of its surface. In image processing the concept of geodesy is used 

to study pixels in an image constrained to remain within some subset of the image 
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plane [24]. In particular, the idea of geodesic distance is important to image 

segmentation techniques such as the Watershed Transform, used in Chapter 5 to 

segment globular alpha grains. Geodesy is defined here primarily in order to facilitate 

the Watershed definition given later in this chapter.  

The geodesic distance is the shortest path between two points on a surface where the 

path is constrained to exclusively follow that surface. This differs from the Euclidean 

distance which would be the shortest path between the two points in Euclidean space, 

as illustrated in Figure 3.19. 

 

Figure 3.19: Illustration of geodesic and Euclidean distances between two 

points on a surface 

The geodesic distance, da(x,y), between point x and y of surface a is the minimum 

length, L, of all paths, P=(p1, p2,…,pl) that both join x and y and are included in a, as 

in Equation (3.26). 

𝑑𝑎(𝑥, 𝑦) = min {𝐿(𝑃)|𝑝1 = 𝑥, 𝑝𝑙 = 𝑦, 𝑎𝑛𝑑 𝑃 ⊆ 𝑎} (3.26) 

It is possible for multiple paths between two points to have the same minimal length. 

These paths are called geodesics and the surface, a, is called the geodesic mask. For 

two points on different geodesic masks, there is no path between them so the geodesic 

distance in considered infinite. It is often useful to consider the geodesic distance of a 

point from a set, rather than from another precise point. For such a set, often called a 

marker set, the geodesic distance, da(x,Y), between a point x and marker Y , where both 
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are subsets of a, is the smallest geodesic distance, da(x,y), between point x and any 

pixel y in Y, as shown in Equation (3.27). 

𝑑𝑎(𝑥, 𝑌) = ⋀ 𝑑𝑎(𝑥, 𝑦)

𝑦∈𝑌

 (3.27) 

The geodesic distance for each point in a mask, a, between that point and a set, Y, is 

given by the geodesic distance function, where da(Y) is the output of this function, as 

in Equation (3.28). 

[𝑑𝑎(𝑌)](𝑥) = 𝑑𝑎(𝑥, 𝑌) (3.28) 

The geodesic distances between a given point and marker sets within a geodesic mask 

are illustrated in Figure 3.20. These distances are useful later in the definitions of 

marker-based segmentation techniques as they allow the distance between points and 

a marker to be calculated taking account of the shape of the mask. More detail on this 

can be found in Section 3.3.9. 

 

a) b) 

Figure 3.20: Illustration of geodesic distances where a) shows the geodesic 

distance between point x and y and b) shows the geodesic distance between 

point x and set Y 

Geodesic time functions are also defined in this section. As static images do not 

actually have a time component in their data, the concept of “time” comes from 
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considering the value of pixels in a greyscale image as a speed for the image. This 

would imply faster speeds and lower transversal times for low grey levels and vice 

versa. From this convention the time, τf(P), to cover path, P, is the integral of f along 

p, as in Equation (3.29). 

𝜏𝑓(𝑃) = ∫ 𝑓(𝑠)𝑑𝑠
 

𝑃

 (3.29) 

For digital image processing a discrete version of this is required. In this case the time, 

τf(P), to cover path P of length l is the sum of the mean values of adjacent pairs of 

values in f along path p, as in Equation (3.30). 

𝜏𝑓(𝑃) = ∑
𝑓(𝑝𝑖−1) + 𝑓(𝑝𝑖)

2
=

𝑓(𝑝0)

2

𝑙

𝑖=1

+
𝑓(𝑝𝑙)

2
+ ∑ 𝑓(𝑝𝑖)

𝑙−1

𝑖=1

 (3.30) 

The geodesic time, τa(x,y), between two points x and y on geodesic mask a is a measure 

of the smallest amount of time required to cover any possible path, P, along a linking 

x and y, as in Equation (3.31). 

𝜏𝑎(𝑥, 𝑦) = min{𝜏𝑎𝑃| 𝑃 𝑙𝑖𝑛𝑘𝑠 𝑥 𝑡𝑜 𝑦} (3.31) 

The geodesic time, τa(x,Y), between a point x and a set Y on mask a is the smallest 

amount of time to link point x with any point in Y, as in Equation (3.32). 

𝜏𝑎(𝑥, 𝑌) = min
𝑞∈𝑌

𝜏𝑎(𝑥, 𝑦) (3.32) 

If x belongs to Y, then the geodesic time is zero. The key differences between geodesic 

time and distance is that as it assumes a relationship between the height of a surface 

and speed, therefore, geodesic time depends on the directionality of a path rather than 

just its length. This distinction between the time to reach equidistant points is useful 

in the definition of the Watershed Transform given later in this chapter. 

3.3.8 Segmentation by geodesic transforms 

The segmentation of a 2D dimensional set can be performed using the geodesic 

functions defined in this chapter. Although not directly applied to the images in this 

study the following functions form the basis of the Watershed Transform which plays 

a key role in the techniques proposed in this thesis. A geodesic mask, a, can be 

segmented by identifying the Influence Zones (IZ) of marker set, Y.  An Influence 
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Zone is defined as a set of points at a finite geodesic distance from a marker which are 

closer to that marker than any other [5], as in Equation (3.33). 

𝐼𝑍𝑎(𝑌𝑖) = {𝑥 ∈ 𝑎|∀𝑗 ≠ 𝑖, 𝑑𝑎(𝑥, 𝑌𝑖) < 𝑑𝑎(𝑥, 𝑌𝑗)} (3.33) 

 This can be calculated to form a complete segmentation of a by the union of the 

regions of influence for all markers in Y, as in Equation (3.34).  

𝐼𝑍𝑎(𝑌) = ⋃ 𝑑𝑎(𝑌𝑖)

𝑖

 (3.34) 

The boundaries between the zones of influence are known as the geodesic skeleton by 

zones of influence (SKIZ). The skeleton by zone of influence of Y in a, SKIZa(Y), is 

given in Equation (3.35) where / denotes the set difference. 

𝑆𝐾𝐼𝑍𝑎(𝑌) = 𝑋/𝐼𝑍𝑎(𝑌) (3.35) 

 An example of the IZ and SKIZ for a flat surface with two markers is shown in Figure 

3.21. 

 

 

Figure 3.21: Examples of zones of influence of a surface based on 2 markers 

3.3.9 The Watershed Transform 

The Watershed Transform is a useful image segmentation technique first proposed by 

Beucher and Lantuéjoul [27]. The concept is based on what happens when rain falls 
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onto a surface with a varied topography. As the rain falls each droplet of water will 

run down the hills and valleys of the surface until they reach a local minimum in the 

height of the surface. The water will then gather to form a basin which will continue 

to grow until it eventually overlaps with basins from other valleys. The moment before 

this overlap occurs a ridgeline in the surface appears between the them which is 

referred to as the watershed. Beucher and Lantuéjoul proposed that this concept could 

be applied to segment images by using a topographic representation of the image, 

where the relative differences in the height of the surface corresponds to the probability 

of adjacent pixels belonging to the same object in an image. The surface would be 

flooded with floods from different catchment basins are prevented from merging so 

that ridgelines, often referred to as watershed lines, remain even when the entire 

surface is flooded. These lines separate each region in the surface.  A common 

implementation is to use the gradient image, defined in Section 3.3.4, as the input to 

the Watershed Transform. Provided that adjacent pixels of similar intensity are more 

likely to belong to the same object this provides a suitable topographic representation 

of the image for segmentation using the Watershed algorithm. In the gradient image, 

high values are returned at points where a large intensity variation exists, most likely 

to be object boundaries, and flat, shallow minima are returned in locations where pixel 

intensity does not change significantly, most likely to be within a single object.  An 

illustration of the Watershed Transform applied to the gradient image is shown in 

Figure 3.22. 

 

Figure 3.22: Example of a topographic surface and the catchment basins and 

watershed lines that are formed 

Although helpful for understanding the origin of the concept, expressing the 

watersheds by falling drops of water is not useful in practical applications and cannot 
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be used to formally define the Watershed Transform. This is because it does not 

describe how water should flow when there are multiple possible directions of flow or 

if there is a plateau in the topographic surface. Instead formal definitions of the 

Watershed Transform fit better with the analogy that the topographic surface has holes 

punched through each local minimum before the entire surface is slowly submerged in 

water. Floods from different sources are still prevented from merging to preserve the 

watershed lines but with this description floods now have a clear origin and direction 

of flow which makes it possible to define how irregularities in the topographic surface 

should be handled. The Watershed Transform can be equivalently defined in terms of 

a simulation of the flooding of a surface or in terms of geodesic transforms [5]. In this 

section the Watershed definition based on geodesic transforms is used as it is more 

consistent with other definitions used in this thesis.  

To define the Watershed in terms of the geodesic transforms, described in Sections 

3.3.6.6 and 3.3.8, the topographic surface representing the image is considered as a 

geodesic mask, a, and the minima from which floods begin as marker sets, Y.  

Catchment basins (CB) are considered equivalent to the zones of influence of each 

marker set. The watershed lines (W) are then equivalent to the skeleton by zones of 

influence (SKIZ). In order for this to correctly mimic the flooding from local minima 

and perform a correct Watershed Transform a few modifications to the topographic 

function, representing the image to be segmented, are necessary. First the regional 

minima, Rmin, of the topographic function, f, representing the input image, should be 

set to the minimum value possible in this function hmin, as in Equation (3.36). 

𝑓′(𝑥) = {
ℎ𝑚𝑖𝑛, 𝑖𝑓 𝑥 ∈ 𝑅𝑚𝑖𝑛(𝑓)

𝑓(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.36) 

As the standard Watershed algorithm assumes the surface is flooded from all regional 

minima this ensures all minima are at the same depth, therefore, preventing floods 

from shallower minima from spilling over into adjacent catchment basins. Next the 

geodesic time function is applied to the internal gradient of the topographic function, 

τρ-(f’), with geodesic time measured with respect to the local minima, as in Equation 

(3.37). 



45 

𝑓′ = 𝜏𝜌−(𝑓′)[𝑅𝑚𝑖𝑛(𝑓)] (3.37) 

This assigns to each point on the surface a time value based on how long it should take 

to flood this from its nearest minima. This ensures that there is a clear order for floods 

to proceed even when there are plateaus in the topographic surface. The use of the 

geodesic time rather than distance means that lower points on the surface are 

prioritised, mimicking the flooding ideology on which the Watershed Transform is 

based. The catchment basins and watershed lines can now be found by computing the 

influence zones and SKIZ of f’ with respect to the local minima Rmin, as described in 

Equation (3.38) and Equation (3.39).   

𝐶𝐵𝑎(𝑌) = 𝐼𝑍𝜌−(𝑓′)(𝑅𝑚𝑖𝑛) (3.38) 

𝑊𝑎(𝑌) = 𝑆𝐾𝐼𝑍𝜌−(𝑓′)(𝑅𝑚𝑖𝑛) (3.39) 

The advantage of the Watershed Transform is its effectiveness at segmenting large 

clusters of objects in an image. As all catchment basins are growing simultaneously 

depending on the relative height of the topographic surface, this means that knowledge 

about one object can inform the segmentation of another. For example, if the boundary 

between objects is unclear then segmentation techniques that attempt to identify each 

object separately would likely fail as it could miss this boundary entirely. However, 

provided two local minima exist, the Watershed Transform will always segment the 

image into 2 regions, placing the boundary at the highest point in the topographic 

surface between these minima. Therefore, provided local minima in the topographic 

surface exist for each object, unclear boundaries between them will at worst be 

misplaced, rather than not being identified. For clustered objects this would often lead 

to lower segmentation errors than other methods. For example, consider the 

segmentation of two overlapping objects in a binary image using the Watershed 

Transform with distance transform as the input function is shown in Figure 3.23. Pixel 

values at the grain value show the same homogeneity as those within each object, 

however, as a minimum is found for each object the two objects are still segmented, 

despite boundary pixels themselves not being directly identifiable. 
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a) b) c) 

Figure 3.23 Illustration of segmentation using the Watershed Transform where 

a) is the original image, b) is the topographic function and c) is the segmented 

image 

3.3.10 Marker-based Watershed Transform 

In the standard definition, and examples given previously, the Watershed Transform 

floods the topographic surface from all local minima to produce a segmentation. 

However, this often produces segmentation errors particularly in noisy data as a 

significant number of small local minima can exist in the input image which do not 

relate to a region of interest in the image. Each of these minima form a catchment basin 

representing an object in the image, too many local minima would lead to over-

segmentation of the image. To resolve this Meyer [28] proposed the use of markers to 

designate locations from which floods should begin independently from the 

topographic representation. In the ideal case one marker should be placed within each 

object in the image. This would ensure the image was divided into the correct number 

and location of segments. Only errors in boundary location would then be possible and 

positioning a boundary between multiple markers is the strength of the Watershed 

Transform. This is demonstrated in Figure 3.24 which shows the separation of two 

touching grains using the Watershed Transform.  

It can be observed that, despite several local minima existing in the image, provided 

two markers exist as inputs there will also exist two regions in the segmentation. It is 

also visible that the boundary between these regions occurs at the peak of the 

topographic function f.  
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a) b) 

 
 

c) d) 

Figure 3.24: Example of a topographic surface and the catchment basins and 

watershed lines that are formed where a) original image with markers, b) plot of 

intensity values for the 1D line marked, c) is the result of the watershed transform 

shown in one dimension d) is the watershed line drawn between the grains in the 

original image 

The marker-based Watershed transform can be defined using geodesic transforms in a 

similar way as the traditional Watershed, except with the use of Rmin replaced by a pre-

defined marker set, M. First only pixels that lie within a marker are set to the lowest 

possible image value, as in Equation (3.40). For this to work correctly this value must 

be lower than any other minima in the image. 

𝑓′(𝑥) = {
ℎ𝑚𝑖𝑛, 𝑖𝑓 𝑥 ∈ 𝑀(𝑓)

𝑓(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.40) 

Then the geodesic time, influence zones and SKIZ are calculated by the same method 

as before but with respect to markers, M, as in Equations (3.41), (3.42) and (3.43). 
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𝑓′ = 𝜏𝜌−(𝑓′)[𝑀(𝑓)] 
(3.41) 

 

𝐶𝐵𝑎(𝑌) = 𝐼𝑍𝜌−(𝑓′)(𝑀) (3.42) 

𝑊𝑎(𝑌) = 𝑆𝐾𝐼𝑍𝜌−(𝑓′)(𝑀) (3.43) 

The benefit of the use of markers is illustrated in Figure 3.25 which shows the 

segmentation of a microstructure in this study using the Watershed Transform with 

and without the addition of markers. 

  

a) b) 

  

c) d) 

Figure 3.25 Illustration of segmentation using a Marker Based Watershed Transform 

where a) original image, b) segmentation using Watershed Transform, c) suitable set of 

markers and d) segmentation using the a Marker Based Watershed Transform 
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4 LITERATURE REVIEW 

The primary research goal addressed in this thesis is to improve the microstructural 

analysis of Ti-6Al-4V alloys using automated digital image processing techniques. 

Ultimately this goal is achieved by the design of a novel image processing algorithms 

that are well suited to microstructural analysis, which are then validated on a real-

world dataset. Achieving this requires an investigation of two key areas. First, existing 

analysis procedures currently used for measuring titanium microstructures are 

investigated. This enabled the identification of which features can currently be 

measured using existing techniques, how they are measured and what weakness exist 

with the current procedures. This provides an understanding of the state-of-the-art in 

microstructural analysis techniques and facilitates the identification of conceptual gaps 

in the knowledge that this thesis can address. Secondly, methods of automating image 

analysis in other applications are also investigated. The strengths and weaknesses of 

these procedures are assessed in order to identify which techniques are useful to 

incorporate into the new microstructural analysis algorithms developed. This review 

is therefore split into two sections. 

The first section focuses on existing techniques that are applied to measure the features 

of complex microstructures such as Ti-6Al-4V. Both manual, automated and semi-

automated techniques are considered in order to identify the challenges with current 

analysis methods that need to be overcome. This literature represents the baseline 

performance of microstructural analysis that the techniques proposed in thesis aim to 

better. This section is therefore critical to illustrating the contribution made by this 

work.  

The second section of this chapter studies image processing techniques applied in other 

fields that it is believed have not yet been applied to microstructural images like those 

in this study. The motivation for this is to try and identify the most appropriate, state-

of-the-art techniques that can potentially be applied to microstructural analysis. This 

review will briefly discuss a range of different methods, but the primary focus will be 
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on techniques that are applied in similar applications and applications producing 

images with similar looking content and properties. A full explanation of which 

applications are considered similar is provided in Section 4.2. As well as identifying 

the best approach for developing image processing tools for microstructural analysis, 

this section of the review also identifies knowledge gaps in the field of image 

processing which may negatively impact the applicability of existing methods to 

microstructural analysis. The novel solutions to these problems, proposed in this 

thesis, will not only facilitate the design of new and improved microstructural analysis 

techniques, but also contribute knowledge in the image processing domain. 

The specific questions to be addressed in this review are outlined in the relevant 

section. 

4.1 Analysis of microstructures 

This section studies existing techniques that are specifically designed for the analysis 

of the microstructure of materials. It aims to address several key questions: 

1. What manual methods are currently available for microstructural analysis? 

2. What weaknesses and limitations exist with manual methods which lead to 

automated solutions being seen as an attractive solution? 

3. What attempts are made in the literature to automated material analysis? 

4. What weakness and limitations exist with current automated methods? 

4.1.1 Existing Manual Methods 

For the purpose of this review manual measurement methods are defined as those 

methods where the measurement of each feature is dependent solely upon expert input 

from a materials scientist. Such techniques are very commonly used to perform 

microstructural analysis in both academic and industrial contexts. Different procedures 

can be applied depending on the type of feature to be measured, however they all 

require marking the location or boundaries of individual features. As such, the time 

required to perform these methods depends upon the number of features to be 

measured and the number and accuracy of marks necessary to measure each feature. 

As with all manual techniques, human error is always possible, with subjectivity and 

bias also possible in certain cases. Standardised methods are defined to try and limit 
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the influence of these factors. This section discusses these methods and estimates how 

significant the aforementioned problems are in microstructural analysis. Specifically, 

standards defined by the American Society for Testing and Materials (ASTM) are 

reviewed. These standards are widely recognised within industry and all academic and 

industrial research centres involved in this research use either precisely these standards 

or a bespoke procedure based on them. This section describes both the original 

standard and the variations that can be used.   

4.1.1.1 Linear Intercepts 

A set of streamlined methods for manually measuring grain size are defined in the 

ASTM E112 standard [29] which is useful for measuring grain size. The standard uses 

linear intercept methods in which the length of line segments that fit within grains are 

used to measure their size. The standard recommends creating these line segments by 

overlaying a standardised test pattern of lines on a microstructural image, as shown in 

Figure 4.1.  

 

Figure 4.1: Examples of grain size measurement using a standardised test 

pattern where blue lines indicate the standardised grain and red circles show 

where the test lines intersect with grain boundaries 
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An expert materials scientist then manually marks locations where the lines on the test 

pattern dissects the boundaries of grains, with the distance between each marked 

location on the same line recorded as a grain measurement. The E1382 standard [30] 

describes how computer software and a digitising tablet can be used to perform this 

task efficiently. Test patterns are designed so that the lines dissect grains at random 

orientations. This means that each individual measurement is not necessarily 

representative of any specific grain dimension. As a result, it is specified that minimum 

of 300 measurements are required to achieve a statistically accurate estimate of the 

mean grain size of the microstructure.  It is determined that for relatively equiaxed 

grains (<3:1 aspect ratio) a suitable estimate of grain size can be achieved using 

standardised linear or circular test patterns applied to only the longitudinal cross-

section of the specimen. For non-equiaxed grains, measurements using such a pattern 

would need to be repeated on multiple orientations of the specimen (longitudinal, 

transverse and planar) to estimate the overall grain size. The use of these standardised 

test patterns mean that the materials scientist is not given any choice over which grains 

to measure, eliminating the possibility of user bias affecting measurements. However, 

this also prevents the materials scientist from being able to select specific grains or 

dimensions to measure. As a result, measurement of shape-based properties, such as 

the volume fraction of globular alpha, or more precise properties such as platelet width, 

are not possible using standardised patterns. 

To measure properties other than mean grain size, the linear intercept procedures 

proposed in [29] can be adapted to use manually selected line segments, rather than a 

pre-determined test pattern. To do this a materials scientist would deliberately place 

line segments along the dimensions of the grain to be measured. This allows for more 

precise measurement of individual properties such as platelet width or, provided that 

the order in which these lines are placed are controlled and stored, individual 

measurements of grain size and aspect ratio. For example, the size and aspect ratio of 

individual grains could be assed using line segments placed along the length and width 

of each grain, terminating on the grain boundary, as illustrated in Figure 4.2. 
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Figure 4.2: Example of linear intercepts using specifically chosen line segments 

(yellow) drawn across major and minor axis of grains to be measured 

In this case the grain size for a single grain is estimated as the mean value of the 

segments that dissect it. The aspect ratio of the grain is the ratio of the longest to 

shortest segment that dissects that grain. Manually selecting line segments makes 

linear intercept procedures more powerful, however, creates a chance of bias effecting 

results which was not possible when using standardised patterns. In practical scenarios, 

it is likely that the materials scientist will have some expectation of which samples will 

have larger grains which could potential lead to an unfair selection of which grains to 

measure, perhaps even subconsciously. Smaller grains are also more difficult to 

measure and will often require panning and zooming to correctly place line segments 

within them. As it is normally only necessary to measure a subset of grains in the 

image, there is a possibility that, due to the materials scientist being able to select 

which grains to measure, the smaller and more time-consuming grains are more likely 

to not be measured. This is more likely to occur when measurements are required 

quickly. As well as the bias problem, the opportunity to select which dimension to 
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measure also introduces a chance of human error. In the example in Figure 4.2 the 

correct “length” and “width” of each grain is difficult to identify, meaning different 

materials scientists could measure different diameters as the length and width. As 

manually placed line segments are more likely to represent the true diameter of that 

grain than a randomly placed segment from standardised pattern, it is not expected that 

this will be problematic when measuring grain size. However, the difficulty in 

selecting the length and width could cause more significant variations when measuring 

aspect ratio, particularly when grains are not perfectly elliptical.  

The E112 standard suggests reporting measurements of grain size using the ASTM 

grain size number, G, which is based on the number of grains per square inch at 100x 

magnification. This thesis instead uses the measurement of the average diameter of a 

grain in μm as a measurement of grain size, as described in Chapter 3, as this is more 

common in academic research environments. The E112 standard quantifies the level 

of subjectivity expected when using linear intercept techniques. It states that 

measurements of the same microstructure by different users can vary by up to +/- 0.5G, 

which equates to approximately 16% in μm. This is not particularly precise and has 

implications for the development of new techniques relying on small incremental 

improvements. For example, with such high variations in measurement, an 

improvement in a technique that refined grain size to be 5% smaller would be 

challenging to detect. Therefore, measurements could misdirect research by failing to 

identify techniques that had a genuine impact on microstructural evolution. It is 

important to consider that the subjectivity in grain boundary locations in 

microstructures is not consistent, so the variations reported by this standard may be 

lower depending on microstructural complexity. The standard does not estimate 

measurement time but it was determined empirically that these methods take 

approximately 15 minutes to produce the 300 grain measurements required for 

statistically valid results [6].  Due to the 16% variation in repeatability it may be 

necessary in certain studies or processes to have multiple materials scientists repeat 

measurements in a round-robin format to validate results. This could lead to very long 

measurement times when evaluating large datasets. Measuring very fine details such 

as thin alpha platelets can potentially be even more time consuming due to the need to 

pan and zoom to mark intersections or place line segments. 
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4.1.1.2 Point Counting 

The ASTM E562 standard [31] describes techniques to measure volume fraction of 

constituents or phases of a microstructure based on point counting. A set of points are 

distributed throughout an image and the expert then specifies which points lie within 

each phase. As with the E112 standard a pre-determined set of test patterns are 

recommended to remove bias. Specifically, the circular and square grids shown in 

Figure 4.3 are suggested, although any grid layouts are acceptable provided the points 

are equally spaced. The percentage of points marked within a single phase gives the 

volume fraction of that phase. To give statistically reliable results it is often necessary 

to repeat this technique across multiple images of the same sample and average the 

result to ensure the grid does not align with the grains of a single phase by chance.  

  

a) b) 

Figure 4.3: Examples of possible grid configurations for point count tests where 

a) shows a circular test grid and b) a square test grid respectively 

Repeatability is again a concern with this method and the E562 standard estimated 

repeatability at around +/-10%. The standard includes an estimate of the time required 

to perform analysis using this technique at 15-30 minutes depending on the user’s 

experience. Crucially, it should also be considered that this standard is basically a 

sampling technique and assumes prior knowledge of the phase of each point on the 

test grid. This means this method can only work when the materials scientist can look 

at a microstructure and easily and reliably identify which constituent or phase it 

belongs to. For measuring the volume fraction of a phase in a two-phase alloy such as 

Ti-6Al-4V this would work well as there is a clear intensity difference in the image 

making the phases easily distinguishable. However, measurements of globular volume 
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fraction can be more difficult as it requires the user to estimate the aspect ratio of a 

grain, which is not always a trivial task and may require further measurements. 

4.1.1.3 Other standards 

While the E112 and E562 standards are sufficient to measure the size and volume 

fraction of grains a few other standards exist to measure specific statistical properties 

of the microstructure. For example, the E930 standard [32] describes methods to 

measure the grain size of only largest grain in the image. Measurement of this property 

is necessary in certain cases as the largest grain often corresponds to the initiation and 

propagation of cracks in the material. The standard specifically states that this method 

will only work for outlier grains far from the average grain size with a sparse 

population. The E1181 standard [33] describes methods for characterising grain size 

in microstructures where grain size does not follow a single log-normal distribution. 

In these cases, an average size of all grains may insufficiently describe the 

microstructure and lead to incorrect assumptions about material behaviour. The 

method estimates the area fraction occupied by different grain sizes and suggest the 

use of the aforementioned E112 and E930 standards to then measure each area. The 

procedure also requires the use of the aforementioned E562 standard to estimate the 

area fraction of each grain size. As such the same time and reliability concerns exist 

as with these standards. 

The E1382 standard [30] describes methods to measure grain size using semi-

automatic analysis procedures. The standard describes the use of a digitising tablet to 

efficiently implement the linear intercept procedures defined in the E112 standard. 

Additionally, it also provides a procedure to take grain area measurements by tracing 

the boundary of each grain to be measured. Although a this can extract detailed data, 

the E1382 standard does not recommend using this method in most practical situations 

due to its slow and tedious nature, particularly when it must be repeated for a large 

number of grains to obtain statistically significant results. 

4.1.1.4 Summary of manual methods 

The manual techniques described here can be used to measure a wide range of 

microstructural features. Of the key features identified in Chapter 3, only platelet 

orientation cannot be measured by these existing standards. However, these methods 
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suffer from high measurement time and poor repeatability. It should also be considered 

that the E112 and E562 standards have no overlap between them. This means that if 

grain size and volume fraction were to be measured, then the total time would be the 

cumulative time of performing both independent measurement procedures. A 

summary of the manual procedure for each microstructural feature in this study is 

provided in Table 4.1 along with an estimate of measurement time. 

Table 4.1: Manual measurement procedures for each microstructural feature 

Microstructural 

Property 

Standard Type Measurement Time 

for Experienced 

User 

(approx.) 

Grain Size (mean) E112  Standard grid mark alpha 

grain boundaries. 

8 minutes 

Grain Size (distribution) E112 Manual line segments within 

alpha grain terminating on 

grain boundary. 

15 minutes per 300 

measurements 

Volume fraction of alpha 

phase 

E562 Standard grid repeated for 

multiple views. 

15 minutes 

Volume fraction of globular 

alpha 

E562/E112 If aspect ratio is clear use 

E562 and standard grid on 

multiple views. If accurate 

measurement of aspect ratio 

is needed use E112. 

15 minutes 

Alpha platelet width E112 Manual line segments 

parallel to platelet orientation 

and terminating on platelet 

boundary. 

15 minutes per 300 

measurements 

Alpha platelet orientation NA No standardised manual 

procedure exists. 

NA 

Colony size E112 Manual or standardised lines. 

Mark/terminate line where at 

the perimeter of the colony. 

15 minutes per 300 

measurements 
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4.1.2 Existing Automated Methods 

In recent years, digital image processing techniques have been proposed to improve 

the microstructural analysis of metal alloys. A key benefit of digital image processing 

is that it allows for automated measurements, which inherently makes the task less 

labour intensive and removes opportunities for human error. The following section 

describes automated methods that are applied either to the Ti-6Al-4V alloy itself or to 

a metal alloy with a similar complex microstructure. This review is not constrained to 

fully automated procedures and will also described a range of methods that combine 

image processing tools with input from expert materials scientists to perform analysis. 

This review is, however, constrained to only studying microstructures of Ti-6Al-4V 

alloys or similar where it is clear in the literature how this could be applied to the data 

in this study. The remainder of the section is divided into sub-sections depending on 

the microstructural property being measured. Properties for which no automated 

solution is proposed have no unique sub-section in this review and are instead only 

discussed in the summary of findings in Section 4.1.2.5. 

4.1.2.1 Volume Fraction of Alpha Phase 

A simple, but relatively successful, application of image processing in microstructural 

analysis is the use of thresholding techniques to measure the volume fraction of a phase 

of material in a two-phase microstructure. This technique is used by a number of 

different authors [11], [12], [34]–[36] to specifically measure the volume fraction of 

alpha phase in the Ti-6Al-4V alloy. Thresholding techniques allow pixels in the image 

to be categorised in phases based on the intensity value of each pixel. As discussed in 

Chapter 3, one phase of material is often much darker in microscopic images than the 

other, meaning the intensity value is informative of to which phase each pixel belongs. 

The accuracy of phase separation depends on image contrast and the selection of an 

appropriate threshold. For the best accuracy the threshold should be set to a value that 

exists in between the ranges of intensity values exhibited by each phase. When the 

contrast is high, a large number of threshold values is likely to yield the same outcome. 

For low contrast images, a more precise threshold value is necessary. Different 

solutions to this problem are presented in existing literature.  Tiley et al. [12] initially 

suggest a semi-automated thresholding procedure where an expert materials scientist 

would manually select an appropriate threshold for each image based on a histogram 
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of pixel intensity values. However, the authors note that variations in intensity within 

the alpha phase can cause additional peaks to appear in the histogram which can make 

the threshold select difficult. To solve this problem, they propose using Gaussian 

filtering to remove these additional peaks and produce a much smoother histogram. 

As a result, the histogram is easy to interpret, so a suitable threshold can be identified. 

This filtering also improves phase separation in the image as the standard deviation in 

pixel intensity within in phase is reduced. Alternatively, Zhang et al. [37] propose 

using automated threshold selection methods. Specifically, Otsu’s method [38] is used 

which separates pixels into two classes such that the inter-class variance is maximised 

and the intra-class variance is minimised. Each of the methods described are used on 

Ti-6Al-4V microstructures. However, these approaches generally assume the selection 

of a global threshold, where every pixel in the image is classified by comparison with 

a single threshold value. However, challenges associated with microscopic imaging 

technologies, such as differences in lighting conditions throughout the image, or 

damage to the surface of a sample, could cause a meaningless difference in brightness 

between regions of the same images. In such cases the intensity levels present in each 

phase of material would differ depending on the location in the image. As a result, a 

single threshold value may not accurately separate the alpha and beta phase [37]. 

Several authors [36], [37] demonstrate that a solution to this can be provided by using 

adaptive thresholding techniques. These techniques operate by dividing the image into 

regions and computing a different threshold for each region independently from other 

areas of the image. As a result, phases are separated well in all images of the image 

despite differences in brightness. Figure 4.4 demonstrates the difference between 

global and adaptive thresholding for titanium micrograph of a Widmanstatten 

microstructure. When a global threshold is used, shown in Figure 4.4 b), detail is lost 

in the darkest area of the image. When an adaptive threshold is used far more detail is 

seen in this area, as shown in Figure 4.4 c). 

 



60 

   

a) b) c) 

Figure 4.4: Comparison of global and adaptive Otsu thresholding where a) 

original image, b) global threshold and c) adaptive threshold [37] and the red 

circle indicates a significantly different area 

4.1.2.2 Platelet Measurements 

The only automated methods that have been identified for measuring the width of 

alpha platelets in titanium microstructures are proposed by Collins [11] and Tiley [12]. 

Both authors present fundamentally the same technique, however, Tiley describes its 

application to measure fully lamellar microstructures and Collins describes an 

extended version that can be used on bi-modal microstructures. These authors propose 

a range of automated and semi-automated procedures for microstructural analysis that 

are implemented in the commercial Adobe Photoshop extension Fovea Pro, which are 

discussed throughout this chapter. To measure platelet width, a pre-defined grid of 

straight, parallel lines is multiplied element-wise by a binary microstructural image, 

produced by thresholding, where the alpha phase is represented by “1”’s. The result is 

a set of line segments that fit exclusively within the alpha phase. The length of these 

line segments provides a measure of the dimensions of platelets. However, no 

orientation information is available to choose a suitable direction for the grid, 

therefore, measurements of the length of each individual line segment do not 

necessarily correspond to the width of a platelet. Instead this operation is repeated with 

the grid of lines rotated through 180° at 10° increments and statistical theories are 

applied to extrapolate the true width of platelets based on the lengths of all the line 

segments produced. In lamellar structures this technique can be applied directly to the 

binary version of the microstructure, produced using the techniques in Section 4.1.2.1. 

In bi-modal microstructures it is necessary to first separate the equiaxed and lamellar 

alpha particles. In the proposed methods [11], [12], significant manual input is required 
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for this task, as no automated method to separate globular and lamellar grain shapes is 

provided. 

When estimating platelet width based on the length of line segments, the authors note 

that none of these measurements necessarily reflect the true 3D thickness of the 

platelet. In manual standards this problem is overcome by measuring the width of 

platelets using microstructural images captured from different orientations of sample. 

Collins and Tiley propose an alternative solution based on a mathematical proof 

provided by Gunderson [39] in his research analysing stereological images of 

membranes. In that work a membrane is defined as a 3-dimensional object that is finite 

in one dimension and effectively infinite in the other two. For such a structure it is 

determined that a probability distribution of the length of random line segments that 

intersected the membrane would be complex and asymptotic. However, the inverse of 

the linear intersect lengths would produce a simple triangular distribution where the 

maximum value was the inverse of the narrowest width of the object, considered by 

the authors as the true width of the membrane. Tiley and Collins [11], [12] propose 

that the distribution of lines intersecting an alpha platelet should follow a similar 

pattern as it is very thin in one dimension and far larger in the other two. Due to the 

triangular distribution the mean inverse of linear intersect lengths is 2/3 of the 

maximum value, this means that the true width can be measured by the formula in 

Equation (4.1). 

𝑡𝑟𝑢𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
1

1.5 ∗ 𝑚𝑒𝑎𝑛(
1
𝜆

)
 (4.1) 

The benefit of this approach is that it would allow the true 3D thickness to be calculated 

even if it was not visible in any of the images themselves. However, when measuring 

a structure of multiple platelets of different thickness, the mean width may be more 

informative. The proposed method would only approximate the mean width when 

platelets in the microstructure are of consistent width.  Additionally, the accuracy of 

this method depends on the underlying assumption that a platelet can be treated as 

finite in 1 dimension and infinite in the, which is not always the case in titanium 

microstructures with shorter platelets. Specifically, Collins estimates this technique 

would become inaccurate when the aspect ratio between the smallest and second 
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smallest dimensions was less than 20/1 [11]. The reason for this is that for laths with 

longer aspect ratios the majority of linear segments will be of length approximately 

equal to the width of the lath while in thicker platelets a significant number of segments 

will instead be approximate the length of the platelet. 

4.1.2.3 Equiaxed Alpha Grain Measurement  

The measurement of equiaxed alpha grains is a particularly challenging. Many 

proposed procedures require this information but are unable to automate this task and 

instead rely on manual intervention. Collins [11] proposed to measure equiaxed alpha 

grains in titanium alloys using the same procedure used for platelet width. A grid of 

parallel lines is multiplied by a binary microstructural image, with the grids rotated 

through 180° at the same 10° increments. The mean length of these gives the mean 

diameter of grains, which is reported as the grain size. This method is effectively an 

automation of methods the linear intercept procedure used in ASTM E112 [29]. 

However, the measurement of alpha grains is not fully automated as it requires that 

grain boundaries are already identified in the microstructural image. As the authors 

found no method capable of this task the image must be manually pre-processed with 

expert materials scientists required to trace complete boundaries between adjacent 

alpha grains. As described in industrial standards [30] tracing these boundaries can be 

slow and tedious compared to other manual procedures, as a result this is not a scalable 

solution.  

While the literature did not present good solutions to this problem a commercial 

software package called MIPAR showed some promising results. The development of 

this software is described in academic literature by Sosa et al. [36]. This software has 

a built-in algorithm builder allowing different algorithms to be designed within its 

interface, either by the end user or by the original software developers. While the 

effectiveness of this programming environment is not of interest to the work in this 

thesis, the software has several pre-designed algorithms, freely available online, which 

are designed for materials science purposes. Of most interest among these is an 

algorithm called “Grain Segmentation” that is designed to automate the measurement 

of globular grains in metals. While it is not advertised for Ti-6Al-4V it is described as 

being intended for general metal segmentation, making it of interest to consider in this 
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review. Grains are measured by first performing a complete segmentation of the 

microstructure. To do this an adaptive thresholding technique is applied to locate dark 

or light lines in the image, as chosen by the user, with the assumption made that these 

lines represent grain boundaries. The Watershed Transform, described in Chapter 3, is 

then used to segment alpha grains based on these detected boundaries by using the 

distance transform of the post-threshold image as the input. Validation of this method 

is not provided but experiments conducted for this study show that this works well for 

some simple microstructures, however, is highly inaccurate for more complex images, 

such as those in the Ti-6Al-4V dataset [6]. This illustrated by an experimental 

comparison in Chapter 8. The accuracy of this method depends upon a large percentage 

of the total grain boundaries being detected by the adaptive thresholding method, 

however, for many microstructures the grain boundaries do not present as a distinct 

light or dark line. Instead it is common for grain boundaries to be indicated other 

properties, which this method would not detect.  

Another segmentation based analysis technique for titanium alloys is proposed by Zhe 

et al. [35]. This method disregards any intensity information and attempts to separate 

grains by studying the shape of alpha phase regions after thresholding. The location of 

concave regions in the alpha phase are identified and marked. These marked locations 

are then paired with adjacent marked locations and new grain boundaries are drawn 

which connect these points. This method is specifically designed for separating 

touching lamellar and globular grains, although it is shown to also separate individual 

platelets in some situations. The results presented, however, suggest touching globular 

grains are not well segmented by this technique. Furthermore, the boundaries of 

individual grains and platelets in the images presented are clearer and easier to identify 

than in most of the microstructures studied in this thesis so there is more information 

for Zhe’s technique to exploit. 

Image segmentation techniques are also employed to measure gamma precipitates in 

nickel-based superalloys [40], [41]. In this microstructure the precipitates appear as a 

different intensity, as is the case with the alpha phase in titanium alloys. Region 

growing techniques are proposed to segment each precipitate by growing a region 

representing each precipitate from a seed point within it. In the simplest case, the 

adjacent pixel with the closest intensity to the region is added to that region provided 
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that the intensity of that pixel is close to the mean intensity of that region. A stopping 

parameter, indicating the maximum intensity change of pixel to be added to the region, 

must be defined to stop region growth. However, using intensity information alone in 

noisy images can be problematic so the authors introduce additional rules to control 

region growing more accurately and provide a more accurate segmentation. A 

weighting function is defined which weights pixels based on the density of pixels in 

the surrounding area that are already labelled as part of the region. The region is only 

allowed to grow to pixels that already has a significant number of pixels belonging to 

that region in its neighbouring area. This discourages non-spherical growth and 

prevents protrusions from the precipitate as the region would only grow into long thin 

shapes if the intensity was very similar. This is a feature that would be particularly 

useful in bi-modal type microstructures, where an unclear boundary between adjacent 

globular and elongated grains could cause errors. Additionally, the authors propose an 

automated method for computing a stopping parameter, controlling when the growth 

of each region should end. This is done by repeatedly applying the same method while 

incrementally increasing the stopping parameter. For each case a penalty function is 

defined as the difference in mean intensity between pixels within a region and pixels 

just outside its boundary. The stopping parameter that maximises this penalty function 

provides the optimum segmentation result. Although good results are achieved in this 

work, a crucial difference exists between the microstructures used and those studied 

in this thesis. This is that most of the precipitates considered in [40], [41] are not 

touching as grains in the microstructures in this study often are. Although the shape of 

objects is considered during region growing this is used only to prevent protrusions 

and not to identify boundaries between adjacent grains.  The proposed method is 

therefore best suiting for identifying isolated grains from the background, which, 

although challenging for precipitates in nickel alloys, is already achievable for images 

in the dataset used in this thesis. The failure to deal correctly with touching grains is 

particularly important for Ti-6Al-4V microstructures and is also a common issue in 

the image segmentation techniques described in 4.2.3. 

While the authors cited in this review recognise the need for a reliable segmentation 

technique for isolating individual alpha grains in Ti-6Al-4V alloys, no method was 

found in the literature that fully achieved this with acceptable accuracy.  
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4.1.2.4 Colony Measurements 

A fully automated method for measuring colonies was not found in this review. In the 

methods proposed by Tiley [12], image processing tools are used to aid colony 

measurement but significant manual input is still required. Random grids of lines are 

drawn on the image with the length of line that intercepts the colonies used to give an 

estimate of its size. Unlike their work measuring lath width, where thresholding was 

used to find each intercept automatically, these intercepts had to be marked manually 

when measuring colonies. This is because a colony boundary has the same intensity 

and general appearance as a boundary between the laths within the same colony, as 

illustrated in Figure 4.5. The authors note that several microstructural images of 

different surfaces of the sample must be studied when using this technique and that no 

information relating to the shape of these colonies are obtained.  

 

Figure 4.5 Example of colony and grain boundaries in a lamellar 

microstructure taken with a SEM 

4.1.2.5 Other notable techniques 

While the approach taken in this thesis is to automate the measurement of individual 

features, it is it should still be noted that image processing has also been applied to 

classify microstructures more generally. DeCost et al. [42] propose a method to 

classify microstructures into predefined classes. This is achieved by extracting features 
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from each class using the popular SIFT algorithm [43] and using this to build a 

fingerprint for each image. Fingerprints from images of each class are then used to 

train a machine learning model known as a support vector machine to automatically 

recognise microstructure class based on this fingerprint. This work was relatively 

successful (83% accurate), however, the classes of microstructure are very different 

and no information regarding the spatial correlation of features is included in the 

fingerprint. This means that while some classification of microstructural data is 

achieved in an automated way, this method will not obtain the kind of detailed 

measurements this thesis seeks to automate.  

4.1.2.6 Summary of microstructural analysis using image processing 

This literature review shows that microstructural analysis can be enhanced through the 

use of image processing techniques. However, several limitations exist with current 

methods and, as a result, not all microstructures and features can be measured reliably. 

Phase separation is currently the most successfully automated measurement, with 

several authors reporting that this can be achieved through thresholding [11], [12], 

[34]–[36]. This allows good measurements of the volume fraction of alpha phase to be 

computed very efficiently. There has also been some success in the automation of 

platelet width measurements [11], [12]. A method, which is fully automated in the case 

of lamellar microstructures [12], is proposed that measures the lengths of platelets at a 

range of orientations and uses this to extrapolate the thickness. However, this method 

is only reliable for laths of high aspect ratios and consistent thickness. This also 

measures lath thickness through an estimate of the thinnest point in the lath rather than 

the mean thickness, which is preferred. This method is, therefore, only reliable when 

all laths in the image are of a consistent thickness, hence, a more robust technique 

would be of benefit. Specifically, it is possible that more reliable measurements could 

be performed by linear segments if they are directed across the narrowest visible 

dimension of the lath rather than a random orientation, as is already possible in manual 

standards [29]. However, automatically placing such segments requires orientation 

measurements which are among the least well researched for titanium microstructures. 

Both measurements of the orientation of platelets and the size of colonies currently 

have no proposed methods to automate their analysis in Ti-6Al-4V microstructures. 

While this is understandable for orientation measurements that given orientation of 
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platelets is not known to be as critical to material properties as other factors, it is still 

valuable and can be used to inform measurements of other properties, such as colonies. 

Other features that remain challenging to measure are the alpha grain size and the 

volume fraction of globular alpha. For the complex titanium microstructures 

investigated in this study no suitable procedures for identifying individual globular 

alpha particles were identified in the literature. Several authors, who proposed 

automated techniques for other features, identify this as a problem but state that manual 

input was still required for measurements of alpha grain size or globular volume 

fraction [11], [34]. A segmentation algorithm made publicly through the MIPAR 

software environment offers the most recent attempt at segmenting globular grains in 

microstructural data [36]. However, the microstructures this is applied to in the 

demonstration material have far clearer boundaries than is expected in those of 

titanium alloys, therefore, this approach is not effective for the dataset in this study. 

This is demonstrated in Chapter 8.  

4.2 Image Processing 

In this section a review of recent digital image processing literature is conducted. The 

aim is to identify techniques that may be useful for measuring the features of 

microstructural images but have not yet been tested in this field.  

The main questions addressed in this section are, 

1. What type of image processing techniques are potentially useful for 

microstructural analysis? 

2. Are there any limitations with existing image processing techniques that must 

be addressed to allow these techniques to be used to measure microstructures? 

As it is impractical to review all image analysis literature, the review begins by 

summarising different fundamental approaches to image and identifying those which 

most merit further investigation. A review of these techniques is then conducted with 

a focus on recent and important contributions and applications to similar datasets. This 

first requires a definition of what constitutes a similar dataset. This is relatively 

challenging as similar datasets do not always come from similar applications. As the 

techniques described in this thesis are aimed at the microstructural analysis of titanium 
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alloys, it may be expected that any techniques targeting microscopy images of different 

materials would share the most similar properties. However, this is often not the case 

and similar materials can present very different microstructural data. Instead a decision 

on the similarity of datasets used in other research is made subjectively by comparing 

the types of images discussed to the images of Ti-6Al-4V microstructures used in this 

thesis. The titanium dataset used is relatively varied and includes images with both 

clusters of globular and elongated grains. Images of globular microstructures are 

characterised by often noisy images of touching roughly equiaxed objects. Images of 

lamellar microstructures are characterised by elongated structures of various 

dimensions that are often extremely thin. A similar dataset is considered as any dataset 

which exhibits either of these set of properties. Fortunately, just as the microstructural 

analysis of other materials can present quite different datasets, completely unrelated 

applications can present quite similar ones. Techniques published for analysing these 

images therefore provide useful information for the design of microstructural analysis 

methods in this work. Good examples of this are cell nuclei in medical images [44], 

which resemble globular grains, and systems of fibres [45], which resemble platelets.  

4.2.1 Different approaches to digital image analysis 

There exist many different techniques for measuring the properties of image data. In 

some cases, meaningful measurement of the image as a whole can be achieved by 

statistical analysis of pixel values [46], while in others it is necessary to identify and 

measure specific image features [47]. This thesis is concerned with the measurement 

of morphological features, which makes the latter methods of primary importance. In 

general, approaches to measure individual features can be divided into two categories’; 

those that attempt to directly measure objects in an image, and those that first segment 

the image into features of interest prior to performing measurement.  

Direct measurements of image features, without a prior segmentation, are often 

achieved using techniques that probe each point in an image with a pre-defined sub 

image. Examples of techniques that are applied to measure image features in this way 

in similar applications are mathematical morphology [48], granulometry [49], the hit-

or-miss transform [26], and certain filtering methods [50]. Each of these techniques 

can be applied directly to an image and produce a numerical output measuring some 
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property of objects in the image, although some of the techniques mentioned can also 

segment the image based on this information. Procedures already proposed for 

microstructural analysis by Tiley [12] and Collins [11] are conceptually similar to the 

direct measurement techniques discussed here as measurements are produced by 

comparing the microstructural image with a set of pre-defined images containing grids 

of lines.  Direct measurements often provide results on a per pixel or per sample basis 

so only statistical data describing the image as a whole is available, rather than 

measurements pertaining to each individual feature. Specific measurements of each 

feature normally require that the image is segmented into relevant regions of interest. 

Image segmentation produces a partitioned image where each pixel is labelled 

according to which region it belongs, allowing each object to be uniquely measured. 

A range of techniques exist for this task including, the Watershed Transform [27], 

Active Contour Models [51], clustering [52], deep learning [53] and semantic 

segmentation [54] .  

The remainder of this section is split into 2 further sections; one discussing methods 

to directly extract measurements from the image, and the other discussing techniques 

based on image segmentation. A list of all the publications discussed in this review, 

the family of technique to which they belong and the field in which they were deployed 

is provided in Table 4.2. 
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Table 4.2: List and description of image processing publications included 

Refence Approach Technique Family Application Field 

49 

Direct measurement 

Mathematical morphology 

General 

57 

58 

60 

5 

56 
Materials science 

63 

59 Remote sensing 

45 
Bespoke transforms Medical imaging 

65 

27 

Segmentation 

Watershed 

General 

72, 75, 76 

77 

78 

98 

5 Coffee beans 

73 Remote sensing 

74 Nuclear materials 

97, 98 

Medical imaging 

100 

101,102 

44 

103 

80, 81, 82 

Active Contour 

General 
51 

103 

Medical imaging 105 

106 

88 

Machine learning 

General 93, 94 

95 

89 

Materials science 90 

91 

92 (review of 300 articles) Others Medical imaging 

83 

Split-and-merge 
General 84 

87 

85 Materials science 
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4.2.2 Direct measurement of feature properties 

A variety of successful techniques have been proposed for directly measuring the size, 

shape and orientation of image features without segmenting and labelling individual 

features beforehand.  

A simple method for measuring the thickness of objects using the distance transform 

is described by Russ for the analysis microscopic images [55]. A binary image is first 

required with objects of interest in white. The transform returns, for each white pixel, 

the value of the distance between that pixel and the nearest black pixel. As the output 

of the distance transform depends on pixel location as well as image size, pixels close 

to the boundary would return values not representative of object width so must be 

discounted from measurements. To resolve this, only output values on the ridge lines 

of the distance transform, known also as the morphological skeleton, are used. As the 

distance transform inherently measures radius and not width, the value from the 

distance transform must be doubled for all measurements greater than 1. A 

measurement of exactly 1 indicates a line that is a single pixel thick, in which case the 

response of the distance transform is already be equivalent to the width. Russ describes 

this method for elongated objects with a high aspect ratio and smooth boundaries, in 

which case the ridgelines of distance transform remain mostly in the centre of the 

object. For objects that are not perfectly straight, or have lower aspect ratios, a greater 

proportion of the ridgelines are not at the objects’ centres and, therefore, measurements 

would not correspond to width. More advanced techniques are necessary for titanium 

microstructures as grains often do not have a smooth shape.  

Adhikari et al. [56] also use the skeleton when taking width measurements, in this case 

for measuring cracks in concrete for bridge inspection. However, in this case 

measurement, do not come from the distance transform but by dividing the length of 

the skeleton by the total area of the crack, determined by thresholding.  This means 

that the positioning of the skeleton is less important, but the number of additional 

branches, no representing the length of a feature, are more important. The effect this 

has on measurement accuracy is explored in Chapter 8. Adhikari’s work splits the 

skeleton into separate branches to facilitate individual measurements of each crack. If 

applicable to titanium microstructures this would allow better statistical information 

about platelets. However, this can only be applied if the measurement methodology is 
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accurate and there is not an erroneously large number of branches in the skeleton. It is 

again demonstrated in Section 8.3.3.2 that this method is not accurate for the 

microstructural images in this study. 

 
 

a) b) 

Figure 4.6: Examples of SE measurement where a) shows disk shape SE for radius measurement 

and b) linear SE for measuring orientation. In both cases black shapes are the original object, 

yellow are SE that fit comfortably thus don’t describe the feature limits, green are SE the 

extrema that fits so describes feature properties well and red are SE that do not fit 

An alternative method to measure object size is granulometry [49], [57]. This is a 

technique, first proposed by Serra [58], based on mathematical morphology, that is 

used to extract size information by probing an image with SEs of iteratively increasing 

size and recording the response. When the image is opened by a SE that is smaller than 

an object in an image, that object will still appear in the output. When the SE is larger 

than the object in the image that object will no longer appear in the output. It is, 

therefore, known that for each pixel belongs to an object of approximately the same 

size as that SE that removed it, provided the image objects and SEs are of similar 

shape. This concept is illustrated in Figure 4.6. During a granulometry, the remaining 

area after each opening is recorded and a size distribution can be calculated as the first 

derivative of this data. This method has been deployed recently by Statella et al. [59] 

to measure dust devil tracks on the surface of mars. These tracks are caused by weather 

patterns on the planet are measured from grayscale images where the tracks present as 

thin elongated objects that often overlap and are not straight. In this way these have 

some similarity to the alpha platelets in the current study, despite the difference in the 

underlying application. A granulometry is performed using disk shaped structuring 

elements, which ensures that the “size” recorded in the resulting distribution 

corresponds to the shortest dimension of the object at each pixel, i.e. the width of the 

object. In addition to obtaining a statistical description of object width, this technique 

is then used by Statella et al. to filter out objects of a separate size to study separately. 

Spikes in the size distribution indicate a significant number of grains of a particular 

size, which are likely the best sizes to filter. Morphological openings and closings can 
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then be used on the original image data to remove object not matching this size. This 

can provide some segmentation of the image but only by separating grains of different 

sizes. In titanium microstructures, grains of similar size often overlap and often even 

clustering into large groups that can appear circular but in fact consist of multiple 

grains. This technique was found experimentally to not isolate each individual grain 

which negatively effects filtering attempts and the accuracy of size measurements. For 

measuring the width of platelets, however, this approach appears very useful and is 

explored more in Section 8.3.3.2. The use of a disk-shaped structuring element means 

that measurements of other features, such as orientation is not possible using Statella’s 

implementation. 

For measuring the orientation of objects, a number of methods exist that can be directly 

applied to the data. A common approach is to find the gradient magnitude in two 

perpendicular directions and use this information to compute the orientation. Edge 

detection filters, such as Sobel and Prewitt, can be used to compute gradient orientation 

in this way [2]. However, this is typically computed over a small window. As a result, 

only local information from neighbouring pixels is used and orientation measurements 

become meaningless towards the centre of wider objects. Rivest et al. [60] proposed 

methods to compute gradient orientation using mathematical morphology. Based on 

techniques initially proposed by Beucher [5] to compute the gradient magnitude of the 

image using mathematical morphology, Rivest’s method computes this gradient twice 

using perpendicularly orientated linear SEs. As these SEs can be set to any size, larger 

areas could be studied than with the aforementioned edge detection filters. This 

increases the accuracy of orientation measurements further from object boundaries. It 

would appear possible that such methods would be applicable to elongated platelets in 

titanium microstructures. The only concern is whether or not the sampling the gradient 

in just two directions is sufficient, particularly when platelets are very thin. Altendorf 

[45] et al. use a similar concept to measure the orientation of fibres, relatively similar 

in appearance to alpha platelets from our dataset. A key difference here is that SEs at 

a greater number of different orientations are used, which theoretically makes this 

method more robust. Another difference is that, rather than use the image gradient, the 

directional distance transform is used to measure the distance between pixels in an 

object and the object boundary in multiple directions from which information about 
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the orientation and radius are calculated. The primary focus of Altendorf’s work is on 

3D images, although, it is included in this review as the potential application to 2D is 

also discussed. The ability to measure orientation and radius simultaneously is 

valuable for lamellar and bi-modal microstructures. This approach appears to have 

potential use for the analysis of thin elongated structures as measurements of both 

orientation and width can be achieved. However, potentially useful information 

regarding the shape of features is not explored, presumably as it is not relevant to the 

target application. The fibre images also have a consistently high aspect ratio, with 

these fibres showing very little deformation, which is expected to make this application 

less challenges than platelets in Ti-6Al-4V microstructures. The aforementioned 

methods do not provide a description of how the orientation information gained to 

group similarly organised objects together. 

When measuring the orientation of thin structures such as alpha platelets, an alternative 

to calculating the orientation based on a few perpendicular measurements is to use a 

wider range of orientated operators to measure the gradient in different directions and 

select the orientation of the smallest gradient as the object orientation. Measurements 

by this approach are inherently quantised by the discrete number of orientations tested. 

An example of this is steerable filters [61], which are filters designed so that they can 

be orientated in different directions. An energy function, called the “oriented energy”, 

is defined based on the output of these filters. The angle which maximises this energy 

function at each pixel is the orientation of image gradient. Soille et al. [48] use 

mathematical morphology to compute local gradient in a similar way using arbitrarily 

oriented linear SEs. A practical example of the use of this method to detect road 

orientation in satellite images has previously been presented [62]. This shows this 

method can effectively identify the orientation of elongated structures, though in a 

quite different application.  

Very recently, Borocco et al. [63] proposed similar techniques for an application more 

similar to that of this thesis, measurement of the organisation of graphene plans. Linear 

SEs, of a fixed length, at a pre-defined range of orientations are used with the 

orientation of SE that best fits within an object in the image selected as the orientation 

measurement for those pixels. A key feature of Borocco’s work is to map these 

orientation measurements to a binary orientation space. This orientation space was first 
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proposed by Chen and Hsu [64] and adds an orientation support to the traditional x 

and y axis of an image so that objects exist on different planes depending on their 

orientation. For graphene planes this allows similarly orientated plans to be grouped 

together into “stacks”. This approach has several benefits, a crucial one being an 

inherent resilience to noise. In many cases, noise in an image will cause the orientation 

measured at certain pixels to be effectively random. In a regular 2D space these noise 

corrupted measurements exist adjacent to true measurements making the correct 

measurement more difficult to identify and parallel objects more difficult to group 

together. In the orientation space, this noise spreads out across several planes, while 

true orientation values would cluster together in the same or adjacent planes. This 

makes true measurements easier to identify and reduces the influence of noise when 

grouping elongated objects. The clustering of parallel, similarly located objects in a 

3D space is also useful for grouping objects more generally, regardless of noise level. 

If orientation measurements were studied in a 2D space, and clusters existed at various 

orientations, then a histogram of orientations would be fairly flat, making it difficult 

to identify a colony [6]. Studying orientation and space in 3D makes this far easier. 

This offers what is believed to be the best approach that could be applicable to 

identifying colonies of alpha platelets. The graphene plans share some of the properties 

of titanium microstructures as they contain noise and very thin objects. However, the 

width of objects is consistent in Borocco’s data, as this is a known physical property 

of graphene plans, which is not the case for platelets in titanium microstructures. 

Additionally, the accuracy of measurements using the method in [63] requires the 

selection of a suitable parameter, the length of SE to use. In Borocco’s work selecting 

a suitable length of SE is a moderately trivial task, as a wide range of SE lengths would 

fit the objects at only one orientation. However, for the more variable size of object in 

the titanium dataset this is not the case. This technique would inevitably cause errors 

when the aspect ratio of image objects varied, and the optimal SE length would be 

challenging to select. Novel solutions to these problems would therefore be necessary 

to successfully apply similar methods to the dataset studied in this thesis. This is 

discussed more in Chapter 6 and demonstrated in Chapter 8. 

Robb et al. [65] also use the orientation space to measure the orientation of objects in 

images. Instead of using mathematical morphology the orientation space was instead 
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built using orientated Gaussian filtering techniques [66]. The anisotropic Gaussian 

filters can be applied directly to greyscale images and are less affected by noise. Rather 

than the binary approach taken by Borocco, each entry in the orientation space is based 

on the response of the filter at that location and orientation. However, this extra data 

is still insufficient to extract size and shape information. Furthermore, the size of the 

filter must be chosen based on the object radius, so the same problems with aspect 

ratio and varying sizes exist as in Borocco’s work. 

4.2.3 Segmentation 

Automated image analysis requires techniques that can identify each region of interest 

in the image. Image segmentation is the process of partitioning an image into multiple 

regions, at least one of which is normally of interest to measure, by labelling each pixel 

in the image according to the image feature it belongs to. Image segmentation can be 

used to subdivide the image the image differently depending on the type of features 

that are required to be measured. For example, in Ti-6Al-4V microstructures, 

measuring the volume fraction of alpha phase requires segmentation of the image into 

two regions, one representing each phase. If grain size measurements are required, it 

is instead necessary to segment the image into as many regions as there are grains, plus 

the background (beta phase). In one case the image is segmented into objects of a 

different class and the other the image is segmented into instances of that class. 

Performing each of these types of segmentation is a fundamentally different task and 

requires different algorithms and techniques.  In this review the primary focus is on 

the segmentation of different instances of each class, i.e. the individual grains and 

platelets. Existing literature already presents a variety of methods to segment different 

phases, defects or similar constituents of material in complex microstructures [67], 

[68] and in the case of Ti-6Al-4V microstructures some simpler methods have already 

been used successfully [11], [12], [34]. In contrast, the segmentation of individual 

grains is less well research and with existing segmentation attempts often depending 

on complete separation between each grain [69]. Automated reliable, accurate 

segmentation of touching grains has not been achieved for titanium microstructures. 

This is of great value as once a segmentation is available it is relatively easy to produce 

a variety of measurements of each labelled object in that segmentation. For example, 
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the area can be computed as the number of pixels with the corresponding label, while 

the number of objects is the number of unique labels in the segmented image. Other 

features such as object shape and the length of each dimension require slightly more 

complex calculations but these can also be computed using well established 

standardised methods [70]. For the features of interest in in Ti-6Al-4V microstructures, 

using a segmentation approach means that the precise act of taking measurements is 

trivial and that all the difficulty lies in producing an accurate initial segmentation. 

Image segmentation is widely regarded as one of the most challenging tasks in image 

analysis [2], [24]. The key issue is that the properties that indicate a feature of interest 

are different depending on the application and sometimes even the specific dataset. 

For this reason, generic segmentation approaches tend to not work well for complex 

datasets and image processing algorithms tailored to accurately segment challenging 

dataset will not necessarily work well for others. Therefore, to segment complex 

images, such as the microstructures in this study, it is normally necessary for bespoke 

techniques to be designed to achieve accurate results [24]. This has led to the 

development of a wide variety of different segmentation algorithms based on the same 

fundamental theories. Consider, for example, Figure 4.7 which shows images from 

different sources. In each case there are some features of interest that we can isolate 

from the rest of the scene, however, the properties that distinguish them in each case 

are quite different. Hence, it would not be realistic to expect a single algorithm to 

achieve meaningful results in all of these cases. 

   

a) b) c) 

Figure 4.7: Example of differences in segmentation challenges where a) is 

natural image from a conventional camera, b) is a microscopic image not from 

the current study and c) is a Ti-6Al-4V microstructural image 



78 

Due to the volume of research on image segmentation it is important to focus on 

research areas most likely to be applicable to titanium microstructures. While 

conducting this review it was found that many image segmentation methods presented 

in the fields of medicine and geology are applied to datasets sharing similar properties 

and far fewer are applied to the analysis of the microstructures. This view is supported 

by a very recent review by Dimiduk et al. [71] that found recent signal and image 

processing technologies were applied more regularly to fields such as medicine but 

less frequently to materials science. In the current review, medical images of cells are 

found to give some of the most similar images to the microstructural dataset as cells 

are often elliptical and clustered such that multiple cells can touch at a common 

boundary. This means that the images present similar segmentation challenges as 

microstructural data. Several segmentation techniques are proposed in the area of 

medical image processing that can identify subtle boundaries between touching 

objects. This is a key challenge in producing globular grain measurements which, as 

described in Section 4.1, remains unsolved in the materials science literature. 

Geological images of rocks also present similar challenges for segmentation; however, 

the images often have a visible 3-dimensional property, while in many cases the 

images of titanium microstructures studied in this thesis ostensibly appear flat, despite 

in reality being 3D. Other medical images, such as MRI scans used to identify tumours, 

have also been the subject of the successful application of digital image segmentation 

techniques. However, these are not reviewed here as the techniques employed for such 

problems are fundamentally different. This is because the key challenge is normally 

locating the precise boundary location for a single object in the presence of noise, 

rather than locating obscure boundaries between a large number of clustered objects. 

4.2.3.1 Watershed Transform 

An extremely popular method for segmenting images is the Watershed Transform, 

defined by Beucher and Lantuéjoul in their seminal work [27]. This transform takes a 

topographic function representing an image and returns a set of catchment basins, 

representing each object, and watershed lines, representing the boundaries between 

them. This is achieved by flooding the topographic function from all local minima and 

marking boundaries where these floods meet, and the area contained by these floods 

as a catchment basin. More detail on this was provided in Chapter 3. This transform is 
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extremely well suited to segmenting clusters of touching objects as it considers the 

entire topographic function, i.e. the complete image, to produce the segmentation 

rather than studying each region in turn, as is seen in some other approaches. This 

means that the properties of both regions help guide the Watershed Transform towards 

the location of the boundary between them. The additional information this provides 

is extremely useful when the presence of multiple touching objects is apparent but the 

boundary between them is unclear. The weakness of this algorithm is that it is prone 

to over-segmentation, where the image is segmented into more regions than exist in 

reality. This is because creating an accurate topographic function, where each local 

minimum represents each unique object in the image, is a difficult task. Normally the 

gradient function is used, however an excess of local minima can exist due to noise, 

which often causes the over-segmentation problem. As a result, this transform is still 

a subject of recent research, with innovation typically coming from methods aimed at 

reducing over-segmentation.  

A common approach to reducing the over-segmentation problems encountered in the 

Watershed Transform is to modify the input to the Watershed by a pre-defined set of 

markers, indicating the location of each object, illustrated in Figure 4.8.  

 

Figure 4.8: Example of a suitable set of markers 

A marker is a set of pixels sharing a common label which are, in the ideal case, 

completely contained within each single object in the image. First proposed by 

Beucher and Meyer [72], the idea is that rather than flooding the topographic function 

from all local minima to instead flood exclusively from each marker. Provided that a 
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single, unique marker is provided for each object then the over-segmentation problem 

can be eliminated as there may only exist one single region in the resulting 

segmentation for each object in the original data. The only potential error that would 

remain is the misplacing of the boundary between these objects, which is less of a 

concern than over-segmentation as accurately placing boundaries between objects is 

an inherent strength of the Watershed Transform. However, this solution has some 

shortcomings, mainly that finding an automated method of computing these markers 

is often difficult. In-fact it can be argued that marker-based segmentation methods 

simply take the difficult normally associated with the segmentation of images and 

move this difficulty to the marker computation stage. Much of the research into image 

segmentation discussed in this section will therefore cover the computation of these 

markers. 

Beucher and Meyer [5] apply a Watershed Transform using markers to segment 

images of coffee beans. These beans are normally elliptic in shape, although some 

variation can occur, and are clustered together in a similar way to grains in globular 

titanium microstructures. Only small intensity changes can be observed between 

grains, though the difference between foreground and background is clearer than in 

titanium microstructural images. To create a suitable set of markers, thresholding is 

used to create a binary representation of the image and the distance transform is then 

applied to the result. Assuming objects in the image are approximately globular in 

shape, local maxima will exist at the centre of objects. This technique appears to be 

useful for slightly overlapping objects, as a concavity in the foreground region would 

produce a local minimum at the boundary between the objects, leading to a maximum 

in each object. As the watershed transform floods from local minima, the result is 

inverted so each object is marked by a local minimum. However, noise or uneven 

boundary shapes in the binary image could cause excess local maxima to exist in the 

distance transform that do not uniquely correspond to a single object. This would also 

not separate clusters of objects when that cluster appears elliptical after binarization. 

Li et al. [73] presents an alternative Watershed Transform based segmentation 

algorithm for the segmentation of remote sensing images. Markers are computed by 

thresholding the gradient image. The threshold is computed locally using a novel 

algorithm in which the image is filtered, and a threshold is set so as to leave a certain 
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percentage of pixels in the binary image. This requires a threshold parameter to be 

chosen experimentally. Markers are then modified by two post processing steps. First 

markers below a certain size threshold are removed before edge information is then 

used to split markers.  This was achieved by setting all detected edge locations in the 

original image to “0” in the marker image. The issue with applying size constraints or 

similar criteria to modify the set of markers is that the markers are only required to fit 

within an object. Therefore, correct markers do not necessarily always match a specific 

set of properties. For example, smaller markers do not always correspond to smaller 

objects. This suggests that that putting constraints on the final segmented regions to a 

certain shape and size will be more reliable than trying to constrain markers in the 

same way, i.e. this type of application domain knowledge should be incorporated as a 

post-processing step to the initial segmentation rather than a pre-processing step. The 

addition of edge information to the intensity information, however, does appear likely 

to help extract the maximum amount of data possible from image with which to build 

markers. However, the way this is done appears problematic for the work in this thesis.  

Splitting markers by edge information only works if a complete boundary can be 

located, which is often not the case for images in the titanium dataset.  

Several techniques for computing markers using mathematical morphology are 

proposed. Willingham [74] recently proposed techniques for segmenting objects in 

uranium images using a marker-controlled Watershed Transform. The markers are 

produced by thresholding the image and then eroding the image by a SE of a particular 

size. However, the use of a fixed sized of SE meant that this could only mark objects 

where the overlap between adjacent objects is minimal and object size is relatively 

consistent.  This problem had previously been encountered and resolved, for a different 

image data, by Martinez et al. [75] who marked binary images by eroding them by 

incrementally larger SEs of similar shape to the objects in the image. Given only a 

small amount of overlap between adjacent objects the erosion would eventually 

separate the objects leaving a small region at approximately the centre of each object. 

However, when the extent of this overlap was larger in certain cases, or when object 

shape varied, a simple erosion by a single shape and size may not work, as there may 

exist no single SE for which the erosion by this SE would split all objects, without also 

filtering some out completely. Martinez proposed instead detecting false markers by 
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using morphological openings at multiple orientations to filter out elongated shapes, 

and therefore did not match the globular shape expect in the data. A directional erosion, 

perpendicular to the orientation at which the false elongated marker was detected, was 

then used to split the regions. However, there are a significant number of potential 

complications with this procedure that were not considered. These include determining 

the appropriate direction and size to test for false boundaries and then correctly 

selecting the SE to be used for the erosion intended to split markers without removing 

them. Specific selection of these parameters would have a large effect on segmentation 

accuracy. This technique is also unlikely to work if clusters of more than two touching 

grains exist. Therefore, it is highly unlikely such methods could be applied the dataset 

considered in this thesis.  

The ultimate opening provides an alternative morphological approach for computing 

sets of markers to be used for segmentation [76]–[78]. Based on the concept of 

numerical residues first introduced by Beucher [79], the ultimate opening is performed 

by repeated morphological openings by SEs of increasing size. After each opening, the 

residue, the difference between the newly eroded and previously eroded image, is 

recorded. Once the entire image is eroded, such that all data in the image is removed, 

the maximum residue at each location in the image and size of opening to produce that 

residue is computed and stored. Research by Outal et al. [76] shows that the ultimate 

opening can be used to create markers for the Watershed Transform that can accurately 

segment images of fragmented rocks. The markers are produced by taking the matrix 

of opening sizes and eroding it by a SE proportional to those opening sizes. The 

purpose of this is to make opened areas fit within individual objects and not overlap 

the boundaries.  The images used are greyscale, and the fragments of rocks are 

extremely clustered and vary in size, all of which is similar to microstructural images. 

However, while grains in microstructures are ostensibly flat (of consistent intensity), 

apart from Gaussian noise variations, there is a visible 3D property to the rock images 

with closer rock faces brighter due to reflecting more light. Experimental efforts at 

marking grains within Ti-6Al-4V microstructural images using this approach only 

provided acceptable results in simple microstructures, as described in Chapter 8. 

Marcotegui et al. [78] discussed the use of the ultimate opening on biomedical images 

of cells, which have greater similarity to microstructural images. Results are presented 
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which suggest that this technique is very effective when cells are noisy and hard to 

distinguish from the surrounding background, however, issues with overlapping cells 

are noted. This is potentially problematic when dealing with microstructural data. In 

the same article, Marcotegui extends the ultimate opening to include shape information 

through a technique called the Ultimate Attribute Opening (UAO). The UAO considers 

a greyscale image as a 3D set of stacked binary images such that if the intensity of a 

given pixel is 100 then that pixel is “1” in the first 100 stacked binary images and “0” 

afterwards. An attribute opening is then used to remove the objects from each binary 

image based on some attribute. In this case a shape constraint is defined for this task. 

The maximum residue is, therefore, produced by a region that meets this shape 

criterion rather than matches the size of a SE. This allows the UAO to identify more 

complex objects such as the façade of buildings and also shows improved results for 

images of cells. However, doing so required the analysis of 1200 cells to define the 

properties of cells accurately enough for a precise shape constraint for the UAO to be 

obtained. Microstructural images often contain around 50-70 grains per image, 

meaning a large amount of data is potentially needed to train this technique. For the 

cell images presented, circularity is used seen as the principal attribute, with the 

consistency of cell size allowing identification to be constrained to a range of 95 pixels 

in each dimension. Grains in microstructures are less consistent which would make 

such a criterion difficult to define and would likely require additional training for 

different microstructures. 

4.2.3.2 Active Contour Models 

An alternative segmentation approach is the use of Active Contour Models, which can 

be used to segment objects of various morphologies, from noisy image data, in various 

applications[80]–[82]. Conceptually, these models segment regions by defining an 

initial boundary at some image location and deforming it until it matches the boundary 

of the target object. This deformation is controlled through energy functions and 

stopping criteria. A key feature of these techniques is that both intensity and shape 

information can be combined in the energy functions. Kass et al. [51], introduced an 

effective method of deforming such a contour called snakes. In a snake the initial 

contour is given an energy function consisting of energy from two sources, an external 

energy and internal energy. The contour is deformed by considering each of these 
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energies as separate forces which will cause the contour to deform until these forces 

become balanced. The internal force is typically based on the curvature of the contour 

while the external force is based on features such as the gradient of the image. The 

stopping function should be constructed so that a significantly large gradient at the 

boundary of the object will stop the internal force from the contour. The contour would 

typically be able to deform slightly in the gaps between known boundary locations, 

but ideally the internal force should halt this deformation when it would cause an 

unexpected object shape. The intrinsic benefit of such method is the flexibility of 

different criteria that can be built into the energy function, allowing a bespoke method 

to be designed for different segmentation challenges. As with the Watershed 

Transform, issues can occur due to noise and often it is important to start the initial 

boundary as close to the true boundary as possible. This is similar to the process of 

marking objects previously discuss with the exception that 1 marker per object is not 

sufficient to guarantee accurate segmentation and instead the distance between the 

marker and the boundary also matters. Another downside to this approach is that each 

contour is deformed independently so information from adjacent objects is generally 

not used, while The Watershed Transform can exploit this information effectively.  

4.2.3.3 Split-and-Merge 

Some authors attempt to segment images using a split-and-merge methodology [83]–

[85]. The idea is to over-segment an image such that features of interest in an image 

may be split into multiple regions, but each region would contain more information 

than a single pixel. These regions are then merged based on pre-defined rules to form 

larger segments that, if performed correctly, correspond to the features of interest. In 

order for a spit-and-merge approach to be successful, the set of regions formed by the 

initial over-segmentation must between them capture all boundaries required for the 

final segmentation. This is similar to methods based on representing an image as a set 

of Superpixels [86]. Superpixels are regions formed by a segmentation of an image 

such that these regions are homogeneous, made of a single connection partition, adhere 

to object boundaries and are regular [87]. The difference for a split-and-merge 

approach is that the regularity is not important, however, the homogeneity and 

adherence to object boundaries is crucial. Any grain boundary that is not a region 

boundary cannot possibly be in the set of segmentation boundaries after merging. 
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Machairas et al. [87] show that good superpixels can be created using the Watershed 

Transform, so it is likely such segmentation algorithms will form a good starting point 

for a split-and-merge approach. This is confirmed by Krupka et al. [85] who uses this 

approach in the segmentation of grains of sedimentary rock in SEM images. An over-

segmented result is produced by the Watershed Algorithm with the boundary between 

each segmented region evaluated by the average of the gradient magnitude along that 

boundary in the direction perpendicular to that of the boundary. However, the extreme 

level of over-segmentation means that multiple different results are possible depending 

on from which region the merging process started from. This means it is then necessary 

to evaluate each possible merged region to find those that most likely fit the properties 

of a grain. This latter idea is very useful, as it allows the integration of expert 

knowledge into the system. However, evaluating so many possible merges is 

problematic. Krupka’s images contain only 1 grain, which, while complex and difficult 

to segment from the rest of the image, would give far fewer regions than the titanium 

images in this study. It would, therefore, be valuable to obtain a far more accurate 

initial segmentation before user a merging function incorporating expert knowledge. 

4.2.3.4 Machine learning 

The use of machine learning approaches has become prominent in a wide variety of 

engineering applications [71] and its popularity and usefulness makes it essential to 

consider in this review. While more traditional approaches require a skilled engineer 

to develop a hand-crafted set of rules for performing a task, machine learning 

techniques instead use software algorithms develop the analysis method. This has 

historically been achieved through the use of artificial neural networks (abbreviated to 

either ANNs or NNs) which attempt to mimic the structure of the human brain. Inputs 

are passed through a network of nodes, connected by branches that perform a function 

on the data. The nodes then pass data through other hidden layers of nodes with each 

node receiving a value that is a weighted input from the previous layer. Traditionally, 

there would be 1-3 hidden layers in this system between the input and output. 

Annotated data is used to train the network by comparing the output with the expected 

output and adjusting the weights associated with each branch in the network 

accordingly. This is repeated for a large dataset ideally until the correct output is 

reached for new data without further adjustment.  In recent years, the use of a subset 
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of machine learning technique known as deep learning has become particularly 

prominent in image processing challenges including feature recognition and 

segmentation [88]. Deep learning has many more hidden layers than previous NNs 

and, therefore, can understand the content of data, such as images, at a higher level of 

abstraction. This makes deep learning particularly useful for semantic segmentation, 

where an image is segmented into regions of different classes. In the field of materials 

science this type of class-based segmentation would mean separating phases of 

material but not necessarily separating individual grains. 

Machine learning approaches are applied to materials science by Alberquerque et al. 

[89] to segment and measure the volume fraction of pearlite and graphite in 

microstructural images of cast irons. This is similar to the phase separation task in the 

microstructures in this study and only measurements of volume fraction are reported. 

The datasets are relatively simple with a clear intensity difference distinguishing 

pearlite and graphite in most cases. This suggests that separation of alpha and beta 

phase is possible but not necessarily globular grains from platelets.  A more recent 

study by DeCost et al. [90] uses a dataset of more complex ultrahigh carbon steel 

microstructures. For these microstructures intensity alone would not distinguish 

between the different phases, and some understanding of the meaning of textural 

differences between regions is necessary. Deep learning techniques are developed and 

were found to be effective at separating cementide particles from a speroidized matrix, 

which again is similar to the phase separation task. However, the use of textural 

information suggests that this time globular grains and platelets may be separable. The 

technique was also shown to allow for measurements of more properties, such as 

particle size. However, this was only possible as each particle did not have an adjoining 

boundary with other particles in the image. Therefore, DeCost’s method would not 

appear able to separate and measure the individual grains and platelets in Ti-6Al-4V 

microstructures. While the separation of phases of material was complex in DeCost’s 

dataset, it has already been shown in Section 4.1 that simpler methods can achieve this 

in titanium microstructures and that and the key challenge lies in the segmentation of 

touching grains, which DeCost does not address. Another recent method by 

Konovalenko et al. [91] used a machine learning approach to analyse the rupture 

surface on images of titanium alloys. The network is trained to classify each pixel as 
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either an edge or a dimple, the dimple being the feature to be measured. However, as 

with other machine learning methods the success of this is dependent on the fact that 

edges pixels and non-edge pixels have some homogeneous property that allow them 

to be assigned to a different class. This does not appear to be the case for the majority 

of edge pixels in the titanium datasets when there is a large number of globular grains. 

As described in Section 3.2, pixels at the boundary between alpha grains often have 

similar intensity and variance as those within the grains.  

Other than the methods cited, however, there is little evidence of machine or deep 

learning being using for image analysis in materials science. A recent review by 

Dimiduk addresses exactly this topic [71]. They found that while approaches such as 

deep learning have been widely adopted, to great benefit, in other fields, materials 

science has relatively little published research in this area. Medical imaging is again 

better researched in this regard. Litjens et al. [92] present a review of 300 articles 

applying deep learning in this area, with most being from 2016 onwards. Image 

segmentation was the most popular application in the study with over 80 of the articles 

dedicated to this task, with pathology and microscopy images being the most popular. 

These are cases which often produce images that are similar to those found in the Ti-

6Al-4V microstructures so suggests there are opportunities to apply such methods. 

However, with so little research in applying deep learning to materials science, and 

none to a Ti-6Al-4V microstructural dataset, it would be difficult to reach the standards 

set by the years of competitive research on large datasets seen in other fields. Dimiduk 

et al. [71] hypothesises that this absence of data is a major reason for the lack of 

application of deep learning in materials science. They described the microstructural 

data available as being wide in scope and having little depth. This is because 

microstructural images have great variation, even when of the same material, yet few 

datasets are publicly available. This is particularly problematic as a key challenge that 

must be overcome when deploying machine learning approaches is the need to 

appropriately train the network to the required dataset. This process can be time 

consuming as, to be able to accurately segment images, it requires manual annotation 

of a large number of images. Suitable datasets do not yet exist for Ti-6Al-4V. Existing 

research reports different numbers of training images being required for sufficient 

training, depending on the applications and network used. For example, Ronneberger 
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et al. [93] use only 30 images for training a network for segmenting image of cells and 

still achieve reasonable results. Meanwhile, Brosch et al. [94] use 250 out of 377 

available images to train the segmentation network proposed in their work to segment 

images multiple sclerosis lesions. They also note that training with too small a dataset 

risks overfitting the network to a particular dataset. As microstructural data is 

extremely varied, it is likely that a larger dataset would be required for robust results 

than in other applications. 

The number of images required for training can be reduced by refining an already 

trained network, rather training a completely naïve network from scratch, using 

techniques known as transfer learning [95]. This was used very recently by Haberl et 

al. [53] to reduce the amount of training data required to 1/5 of the amount of data 

required when training their network from scratch. In many fields, deep learning 

researchers can use established datasets that are published as challenges for researchers 

and a high volume of research has been conducted on the specific types of images [53], 

[93], [94].  This means there are many competing networks which can be used for 

transfer learning. This is not the case in materials science and the applicability of 

knowledge transferred from networks trained to data in other fields is highly uncertain. 

Ultimately, the decision was made to not pursue machine learning or deep learning 

approaches for the work in thesis. While a clear knowledge gap exists, and great 

potential benefit is demonstrated in other fields, the limited research and availability 

of data makes applying these techniques to materials science very challenging and the 

chances of success uncertain. The primary goal of this thesis is to contribute a new 

microstructural analysis technique, that improves upon current methods. Advancing 

deep learning methods in materials science to this level may take both more than one 

project and more data than is currently available. In particular, a key goal in this project 

was to develop a method that was robust enough to analyse different and varied 

datasets and it was not feasible to gather a large set of every possible microstructure 

available. Therefore, other, more immediately promising approaches are instead 

pursued that are less likely to require re-training when applied to new data. 

Additionally, machine learning approaches by their nature obscure the analysis process 

from the user in a black box process. This would potentially make it more difficult for 

such methods to be adopted in the manufacturing industry as it would not be possible 
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to demonstrate to the source of measurements to clients, meaning they are less likely 

to trust these results. I believe that it is preferable, where possible, to have a clearly 

defined technique for performing analysis as the inner of workings of which can be 

peer-reviewed and investigated prior to deployment. Therefore, as the aims of this 

project could be met with such a conventional, clearly defined technique this approach 

was instead taken at the expensive of other options such as deep learning. However, 

as this new technology advances it is possible that deep learning methods may be able 

to achieve a greater level of accuracy and insight even than human operators, therefore, 

it is not the suggestion of this thesis that such methods be permanently ignored in this 

field. Instead the decision made is that, given the current state-of-the-art in automated 

microstructural analysis, the proposed new algorithms were a more pragmatic next 

step, with machine learning perhaps revisited once there is a wider range of research 

and datasets available for development. 

4.2.3.5 Similar work from medical imaging 

Among the most similar images found in other applications are those in the field of 

medical imaging. As image processing is applied more frequently to this area than to 

microstructural analysis, the following section is dedicated to reviewing this area for 

potentially applicable techniques. In particular images containing clustered cell nuclei 

show a strong similarity. These images typically show clear differences between 

foreground and background in the image, although foreground data is often corrupted 

by noise. The main similarity is that extreme amounts of clustering often exists 

between adjacent nuclei. This is particularly common in histopathology images, as 

shown in Figure 4.9. 

Clustering between adjacent features of interest is known to make segmentation 

difficult and this challenge also exists when segmenting the microstructural images in 

this study. The nuclei are typically globular in shape so are likely to be most applicable 

to measurements of grain size.  
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Figure 4.9: Histopathology image with similar challenges to microstructural 

data such as clustering of objects [96] 

Cheng et al. [97] present a marking function to enable images of clustered nuclei in 

medical images to be segmented using the Watershed Transform. As with previous 

work by Beucher and Meyer [5], the markers are produced by thresholding the image 

and then applying the distance transform. Ordinarily it is expected that noise will lead 

to an excess of local maxima in this transform. Cheng et al. proposes a solution to 

resolve this issue by using the h-minima transform [2]. This transform supresses all 

local minima below a given height threshold. The assumption is that local minima in 

the distance transform, produced by minor boundary deformation or noise, is likely to 

be far shallower than minima at the true centre of objects. If an appropriate threshold 

is selected, the h-minima transform will supress irrelevant minima caused by noise so 

that only the most significant minima in the distance transform remain. If the 

aforementioned assumption is correct, the remaining minima are more likely to 

correspond to the centre of objects, and not to noise. Achieving accurate results via 

this method requires the selection of a suitable threshold of minima to supress.  The 

feasibility of computing such a threshold depends on the difference in magnitude 

between minima representing markers and minima representing arbitrary noise or 

deformation. In this case this threshold was computed by running applying the h-

minima transform with incrementally increasing thresholds until markers begin to 

merge. The largest threshold value for which markers do not merge is used for the 

entire image. This appears to perform well on the cell nuclei data it was tested on, 
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though the use of a global threshold means the accuracy of this approach depends on 

cells being of a similar size.  

Jung et al. [98] also proposed a Watershed Transform, with markers based on h-

minima, for the segmentation of nuclei in cervical and breast cell images.  A 

segmentation distortion evaluation function is proposed to find an optimal h-minima 

threshold. This function fits a set of ellipses to the foreground regions to be segmented 

and grades segmentation results based on how closely segmentation results fit this 

model. This function will therefore only give a good assessment of segmentation 

accuracy when objects are elliptical, and a significant amount of the grain boundary is 

known prior to segmentation.  To produce the final result, segmentation is performed 

multiple times with markers computed by different thresholds of h-minima transform. 

Each result is then evaluated using the distortion evaluation function with the h-

minima value producing the highest output from this function taken as the optimal 

threshold. While the reported results are successful, repeated segmentation is time 

consuming. A contour parameterization method was also proposed to improve the 

accuracy of each detected nuclei boundary. The Watershed Transform will normally 

create a straight boundary between touching objects. However, in reality the nuclei 

typically do not have this boundary, and this only appears so as nuclei in fact overlap, 

which is difficult to see in a 2D image. The contour parameterisation uses known 

boundaries to fit an ellipse to give a more accurate representation of the true boundaries 

of the nuclei. While touching grains in microstructural images are also sometimes 

overlapping in this way the shape is less consistent, so it not known when grains are 

overlapping or merely touching, or if more accurate grain boundaries can be estimated 

using this approach. Due to the relatively small impact on grain size measurements 

this is likely to have, it is also unlikely that this is necessary in order to match the 

measurements produced by current manual methods. Therefore, this thesis will work 

on the assumption than on a 2D image grains should be measured as they appear from 

that perspective and not make assumptions about the 3D shape, as outlined in Chapter 

1. 

An alternative adaptive h-minima suppression technique to automatically select the 

threshold is presented by Yuan et al.  [99]. Although not for medical images it is 

included in this section due to the similarity of the underlying technique. Unlike Jung’s 
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work [98] a different threshold is computed for each local region, rather than for the 

entire image. This is useful in images where large size differences exist between 

objects, as local minima that are irrelevant in a large grain may be significant to smaller 

grains. This type of localised approach would be advantageous in microstructural 

images where it is necessary to segment grains of significantly different size. However, 

as this method is presented for the segmentation of natural images, that do not resemble 

those in the titanium dataset or the biomedical images in this section of the report, it is 

unknown how applicable such a method would be. In particular, it seems unlikely to 

work when large and small grains are adjacent, which occurs in microstructural data. 

A hybrid gradient scheme is also proposed to improve the Watershed Transform by 

improving the relevance of the topographic function to the image content. While the 

idea of modifying the basic gradient function to provide a more relevant topographic 

function to input into Watershed Transform is interesting, this article achieves this 

using colour information, which is not available in any useful form in the 

microstructural dataset studied in this thesis. Different techniques would be required 

to obtain suitable information if the topographic function was to be modified in the 

case of microstructural analysis. 

Zhang et al. [100] propose algorithms for segmenting X-ray images using the 

Watershed Transform and region merging. Markers were produced by thresholding 

the gradient image, with low gradients indicating areas likely to be within a single 

region. Equations are provided for selecting a suitable threshold value automatically. 

As large variations in pixel intensity can occur due to noise, an excess of markers is 

created, causing over-segmentation. This is resolved by using region merging to 

identify over-segmented regions and re-join regions where the mean grey value within 

adjacent regions are similar. While more sophisticated marker computation techniques 

are seen in other segmentation algorithms, the idea of merging grains based on mean 

intensity is interesting to titanium image segmentation. Noise often obscures the 

boundary between adjacent grains, however, it is not uncommon for these same grains 

to present with different mean intensities. This approach could, therefore, be useful to 

solve over-segmentation errors provided the initial segmentation found regions large 

enough for the mean intensity to be a good statistical representation of the intensity of 

its parent grain. As adjacent grains can have similar intensities it is likely that the 
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merging criteria will need to be more specific than in Zhang’s work and use additional 

information other than intensity when deciding which regions should merge. 

More recently, Konyuncu et al. [101] also proposed methods based on the Watershed 

Transform for images of clustered nuclei.  However, while previous authors achieve 

this by using image gradient as the topographic function and the maxima of the 

distance map as the markers, Konyuncu’s method reverses this paradigm. The key 

difference this makes is that each grain is marked where bright spots in the image occur 

and boundaries are placed on the location of maximum concavity between objects, not 

where the intensity change is greatest. The more popular approach is to use the 

concavities to identify different grains and intensity changes to place boundaries 

between them. Due to noise, h-minima suppression again had to be applied to the 

gradient map when computing markers. However, the authors found that, due to 

brightness differences between nuclei, some objects were only marked by specific h-

minima thresholds and not others. Crucially there was no ideal value where all nuclei 

where marked. This was the case even over a local area, as bright nuclei could exist 

next to dark ones in the dataset. Therefore, the previously discussed h-minima 

suppression methods are not as effective when markers come from the gradient map. 

To solve this problem multiple marker sets are produced by incrementally increasing 

the h-minima threshold. For each new marker set, only markers that do not intersect 

the location of any existing markers are added to the combined marker set. This allows 

new markers to be added without allowing existing markers to expand and merge 

together, potentially creating under-segmentation issues. 

The prevalence of h-minima suppression in this field is quite obvious and it seems to 

be highly effective at preventing over-segmentation. However, this does so only by 

supressing the extracted information, when using the distance transform or gradient 

function to find these markers, and thus reducing excess of markers often produced. 

The properties of microstructural images mean that neither function may be able to 

detect all the grains in the image, so such suppression on its own would not be enough 

to gain sufficient markers. It is, therefore, also necessary to also study other methods 

to extracting information. 
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Al-Kofahi et al. [44] studies the use of Laplacian of Gaussian (LoG) filters for marking 

extremely clustered cell nuclei. Laplacian filters are derivative filters used to find areas 

of rapid change.  A LoG combines this with a Gaussian filter so this change is detected 

on a smoother, less noise corrupted, the image. Although both these operations are 

formalised into a single filter in the following literature it should be noted that the 

response of the filter is a measure of the gradient magnitude of Gaussian filtered image. 

Therefore, the minima in this output can be used as a marker as previously described. 

The area over which the Gaussian filter is applied relative to the resolution of the image 

has a significant effect on the output of the LoG. This is known as the scale. In the 

work of Lindeberg et al.  [102] this scale is computed via an automated method. Al-

Kofahi instead attempts a multi-scale approach, by using different sizes of Gaussian 

filters and combining the markers produced for a range of differently filtered images. 

However, it is found that even mutli-scale approaches do not give adequate markers in 

the case of such clustered nuclei in noisy images. To resolve this a Euclidean distance 

map of a binary representation of the image is used to constrain the LoG filtered results 

so that minima from two adjacent grains cannot merge into a single marker while there 

exists a maximum in the distance map between them. This means that edge and 

Gaussian maps are combined, i.e. shape and intensity information, are combined when 

computing markers. The strong results achieved indicated the benefit of combining 

different sources of information at the marker computation stage. 

Cosatto et al. [103] use the Hough Transform to aid the identification of cells in 

histopathology images. This transform takes an image with imperfect shapes, such as 

an edge detected image where there are gaps in object boundaries and attempts to 

identify the shapes. It does so by converting the image to a feature space and assigning 

values to each pixel allowing it to “vote” on whether or not the feature being searched 

for exists or not. To identify cells, an edge map of the image is first generated before 

a Hough Transform is then used where the output for each pixel is the accumulation 

of directly opposed intensities in the edge map at multiple angles. The transformed 

image would have peaks at the centres of regions enclosed by boundaries identifiable 

on an edge map. Active contour methods, specifically Snakes, are then applied, starting 

at these peaks and stopping at low energy outlines which represent nuclei boundaries. 

Uppada et al.  [104] also uses the Hough Transform in the analysis of histopathology 
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images. However, rather than using active contour methods the Watershed Transform 

is then applied with the Hough Transform being used to generate markers, in a similar 

way as described in [103]. Both methods require suitable pre-processing to produce an 

edge detected image to which the transform can applied. It is logical that the more edge 

information that exists the more likely it is for such approaches to be successful. As 

the response of the Hough Transform is dependent on the expected shape of the object, 

it also follows that more consistently shaped objects will achieve better results. It is 

believed that the variation in the visibility of contours and shape of objects is one of 

the biggest differences between microstructural data and histopathology images. 

Therefore, such methods have a lower probability of success for the dataset in this 

thesis. 

Qi et al. [105] use active contour methods for segmenting histopathology images. 

Instead of the Hough Transform, a novel marking scheme is proposed to mark nuclei 

using a mean-shift-based single-pass voting system. For each pixel a 2D triangular 

cone shaped voting area is defined using the direction of negative gradient at that pixel 

and a predetermined radius, determined by the expected diameter of image objects.  A 

shifted Gaussian kernel is used such that its mean is the centre of the voting area and 

the kernel is orientated along the voting direction. The value returned by the voting 

system for each pixel is the convolution of the gradient and Gaussian kernel for each 

pixel in the image. The proposed technique is demonstrated to be good at dealing with 

overlapping grains in histopathology images where the main challenge when 

computing markers is not the level of clustering but that the overlapping region is 

darker due to translucent nature of the cells. However, as grains in microstructural 

images are not translucent and are potentially more clustered than some of the 

examples shown in Qi’s work, other approaches are more likely to be successful.  

Veta et al. [106] also proposed a novel marking scheme for the segmentation of 

histopathology images, using the fast radial symmetry transform. This transform 

operates along direction of positive gradient looking for locations of radial symmetry. 

To do this the gradient orientation is first computed for every pixel studied. For a 

circular neighbourhood from a given pixel, the positively affected pixels and 

negatively affect pixels in that neighbourhood, defined as the pixels pointing towards 

or away from the pixel of interest, are assigned corresponding values. The sum of these 
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values will be high in areas where the gradient points towards the affected pixel. This 

will identify bright radially symmetric regions, which can then be marked. Clearly the 

gradient within an object does not inherently point to its centre in most images, for this 

reason a Gaussian kernel is included in the algorithm which blurs the boundary of the 

object inwards to create this effect. The size of Gaussian kernel and circular 

neighbourhood studied are usually kept to the same value and are critical to the success 

of marker computation. The gradient magnitude can also be included in the calculation, 

but it was found that it is most beneficial to just use orientation values unless studying 

images where only objects of a certain contrast are of interest.  

4.3 Summary of knowledge Gaps 

This review has identified limitations in existing methods of microstructural analysis 

where new methods could provide impactful improvements. 

For many microstructural features, including the critical property of alpha grain size, 

no acceptable automated measurement procedure was found in this review. This means 

that manual methods are often used, which are inherently labour intensive and open to 

human error and subjectivity. In addition, evidence is provided indicating these 

methods are slow to implement and achieve relatively poor repeatability [29], [31]. A 

fully automated image processing technique, capable of measuring microstructural 

features to a similar level of accuracy as an expert materials scientist can achieve using 

manual methods, would solve the problem of repeatability and human error. There is 

also a good chance such methods would also be faster, with some of the existing 

applications presented achieving accurate measurements in seconds on relatively 

similar datasets. Microstructural features for which automated methods already exist 

often have problems with the robustness [11], [63], which are described in Section 4.1, 

and would not work for every microstructure in the dataset used in this study. Only the 

volume fraction of alpha phase is sufficiently, reliably measured in existing literature.  

There is great scope to add to this knowledge through the development of new image 

processing techniques. In the latter section of this review, many image analysis 

methods are presented that have successfully automated measurements of objects in 

similar data. Most of the methods presented in this section have no documented trial 

of their use on microstructural images so it is largely unknown how effective such 
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procedures could be. However, each method reviewed had some difference between 

the dataset used in its validation and the microstructural data of this study. Therefore, 

it seems likely that the direct application of these techniques will not yield ideal results, 

particularly given the variations that can exist in microstructural data. Experimental 

trials on several existing procedures [5], [44], [76], presented in Chapter 8, support 

this hypothesis. Instead the methods reviewed were used primarily to guide the 

development of the novel algorithms proposed in this thesis. 

Several of the image processing techniques described in this review demonstrate good 

results in datasets similar to the titanium image datasets used in this study. Although 

no single technique appears to be capable of measuring all features expected in 

microstructural images, measurements similar to those of some of the properties to be 

measured are obtained through separate methods. However, the difference in the data 

these techniques are applied to mean these methods are unlikely to give accurate and 

reliable results in the titanium dataset in their current form. Techniques based on image 

segmentation can measure a wide range of properties and can provide statistical data 

both per image object and per unit area. A segmentation approach is, therefore, 

preferable, however, appears to not be practical in all cases. Most of segmentation 

methods, used for segmenting individual features in images, found in this review have 

been applied to segment objects that are globular in shape. In Ti-6Al-4V alloys it is 

common for elongated grains to align in parallel clusters, which often makes their 

segmentation more challenging as any overlap between similarly orientated elongated 

objects, of the same intensity, results in only a small amount of boundary deformation 

where the two objects meet. In images with very thin features, segmentation is often 

even more challenging as the resolution is not high enough to obtain precise 

information about the shape of object boundaries. Good delineation of these 

boundaries is a key factor in many segmentation algorithms, therefore, attempts to 

segment each platelet is more likely to lead to errors than for globular grains.  

Illustrations of these challenges are shown in Figure 4.10. 
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a) b) 

Figure 4.10: Examples of properties of images of elongated structures that 

result in challenging segmentation where a) overlap between globular and 

elongated grains and corresponding boundary deformation differences and b) 

very fine platelets where resolution is challenging 

Image segmentation would, therefore, seem well suited to the analysis of globular 

alpha grains but less so for elongated platelets. Techniques for measuring the image 

directly, without segmentation, have shown success in numerous cases where 

elongated structures are to be measured. Therefore, it is likely that separate techniques 

based on these methods are more likely to successfully measure alpha platelets. 

However, in existing algorithms, it is common for these methods to only measure a 

certain property of an image feature being investigated, such as size, shape and 

orientation, rather than measuring all features. Additionally, the techniques presented 

are known to fail in certain cases and may not be robust enough for the most complex 

images. Segmentation methods generally fail when objects of similar intensity are 

touching in noisy images and direct measurements often fail when the shape and size 

of objects are not at least somewhat predictable. Overall, while many promising 

approaches have been identified, novel algorithms are required to address limitations 

of existing methods in order to obtain accurate measurements of titanium data. 

In this thesis two separate methods are proposed, one to measure globular grains 

through segmentation, in Chapter 5, and one to measure elongated platelet properties, 

in Chapter 6. The methods will primarily aim to address shortcomings in the 
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microstructural analysis process described in the former section of this review. In 

doing so, these chapters also introduce and present new image processing techniques 

to improve upon the state-of-the-art methods identified in the image processing 

literature.  
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5 SEGMENTATION OF 

GLOBULAR ALPHA GRAINS 

In this chapter, a new segmentation method is proposed to identify individual globular 

alpha grains and facilitate accurate, automated measured of grain size and volume 

fraction. Reliable automated methods to compute these properties of Ti-6Al-4V 

microstructures was not found in existing literature. We call this algorithm the 

Clustered Grain Segmentation Algorithm (CGSA) as, unlike methods found in existing 

literature, it is specifically designed to be effective at segmenting clusters of touching 

grains, based on a-priori knowledge of common properties of microstructural data. The 

technique is based upon the widely used Watershed Transform, as this is known to be 

particularly effective at segmenting touching objects. However, existing methods to 

apply this transform are likely to result in significant segmentation errors, due to a 

failure to sufficiently address over-segmentation problems in an appropriate manner 

for the titanium dataset. Over-segmentation is common in the Watershed Transform, 

and the complexities of titanium microstructural images increase the extent of this 

issue. The CGSA addresses this by using novel pre- and post- processing techniques 

to improve the segmentation accuracy of the Marker Based Watershed Transform 

(MBWT), a flowchart of the steps in this algorithm is provided in Figure 5.2. This 

includes a new marker computation technique that we call Clustered Grain Marking 

(CGM) that is well suited for identifying individual grains within clusters of adjoining 

grains. The proposed technique builds these markers based on features common to 

grains in all microstructural data encountered in this study, not just a particular type of 

image, and plays a key role in reducing over-segmentation in a robust and reliable way. 

Suitable filtering techniques for de-noising different microstructural data are also 

described. Additionally, the Hit-or-Miss Transform is introduced as an optional pre-

processing step to identify and remove artefacts caused by improper material 

preparation prior to imaging.  A new merging procedure is also presented which 
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incorporates prior knowledge of the microstructural dataset to reduce over-

segmentation errors, as well as a new splitting function to reduce errors caused by 

under-segmentation. Validation of the accuracy of the new algorithm, both for 

microstructural measurements and segmentation accuracy, is provided in Chapter 8.  

This chapter begins by first assessing the microstructural images used in this study and 

sets out the key challenges encountered when segmenting these images using the 

Watershed Transform. A general description of the new segmentation algorithm is then 

proposed with the remainder of the chapter describing each pre- and post- processing 

step that is used to improve segmentation accuracy.  

Most of the work in chapter is published in an article in the Journal of Materials and 

Design [6]. 

5.1 The segmentation challenges associated with Ti-6Al-4V 
microstructures 

Microstructural images have a series of inherent properties that make analysis difficult 

for both automated and manual techniques. The technique in this chapter segments the 

image prior to taking measurements, therefore, the accuracy of these measurements is 

dependent on the ability of the proposed methods to identify the boundaries between 

microstructural features. In two-phase microstructures, the different phases of material 

often present as light or dark regions making the boundaries between phases easy to 

delineate, as can be seen in Figure 5.1. However, the boundaries between grains of the 

same phase are typically more difficult to distinguish. This difficulty varies based on 

the microscopy technology used to capture an image of the microstructure. A Scanning 

Electron Microscope (SEM) can measure the topography and chemical characteristics 

of a sample so it can produce high contrast images. In these images, adjacent grains 

often differ in intensity even when they are of the same phase. Optical Microscopes 

(OMs) are based only on the physical appearance of grains so provide lower contrast 

images. As a result, adjacent grains of a single phase are usually the same intensity 

throughout. In some cases, a boundary between adjacent grains of the same phase can 

still be seen in optical images although this occurs less frequently than in images 

produced using a SEM. Figure 5.1 shows clusters of equiaxed alpha grains of Ti-6Al-

4V from images produced using a SEM and OM respectively. 
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a) b) 

Figure 5.1: Images from SEM and OM technologies illustrating grain 

boundary delineation and noise where a) is a cluster of alpha grains in an SEM 

images and b) is a similar cluster in an Optical image  

Studying the gradient of an image will clearly reveal the location of at least some grain 

boundaries, in both images.  From Figure 5.1 it is clear that in an SEM image, a greater 

number of boundaries between touching alpha grains may be found in this way, 

however, the trade-off for this additional intensity information is noise. As described 

in the analysis of SEM technology in Chapter 3, variations in the intensity of pixels 

within a single grain can vary greatly. Great care must therefore be taken to distinguish 

variations due to noise and variations due to grain boundaries. In a Watershed 

Transform using the gradient as the segmentation function, this noise could produce 

local minima in the function which will cause over-segmentation errors unless 

appropriate markers are used prevent this. For the same reason, techniques based on 

edge detection methods may also detect a high number of “edges” within grains where 

no grain boundary exists.  

In addition to the visible contrast changes between grains, the shape of the grain can 

also be used to locate boundaries. Grains are usually elliptical and normally do not 

feature any large concave regions. Therefore, if concavities are seen in a single phase 

of the material then this would indicate the presence of an overlap between two 

adjacent grains. These would normally by equally visible in both SEM and OM images 

as each phase has a clearly different intensity in either technology, result in clear 

boundaries between each phase. However, much like the intensity variations 

previously described, these concavities are also not always present so cannot be relied 

upon exclusively as an indicator of grain boundaries. The images in Figure 5.1 
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illustrates this point well. In Figure 5.1 b) the cluster of grains clearly has subtle 

concavities in several areas, however, in Figure 5.1 a) there is a line of touching grains 

where no concavity is visible.  

A final property to consider is that grains of the same type often fall within a similar 

size range. If the mean size of globular alpha is 5μm it is very unlikely a grain of 0.5μm 

or 50μm would exist. Objects of 0.5μm may exist in the image but these are likely to 

be meaningless artefacts or secondary alpha grains, which for this thesis we do not 

measure. This predictability in size has both benefits and disadvantages. The benefit 

is that when measuring specific grain types, the worse segmentation errors could be 

removed by only considering those within a specified deviation of the mean. However, 

the downside is that size based approaches such as granulometry are less likely to be 

able to segment these grains. 

Further difficulties can be introduced by defects in the image. Studying the 

microstructure of a material requires several preparation steps such as polishing the 

sample to remove residue and flatten the surface, and then etching it, to make grain 

boundaries more visible. Sample preparation is a non-trivial task and can cause 

scratches or other artefacts to appear in the image. While these features can be limited 

by good sample preparation methods, it is of benefit for the proposed method to be as 

robust to these variations as possible. 

It is clear from the analysis of microstructural images that there are several key 

challenges for the segmentation procedure to overcome. A significant amount of noise 

is present, particularly in SEM images, which is known to cause over-segmentation in 

the Watershed Transform. While filtering the image to reduce noise is useful, the 

extent of this is limited by the desire to preserve subtle intensity changes between 

grains, which will often be the only indicator of grain boundaries. Therefore, extracting 

a suitable set of markers with which to seed the Watershed Transform is essential to 

ensure good segmentation accuracy. As the ideal set of markers is a single marker 

within every grain in the image, the marker computation method must have the ability 

to decide approximately where each grain exists within the image. The analysis of the 

images presented makes it clear that no single image feature can reliably be used for 

this task, therefore, a combination of intensity and shape information is required to 
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find suitable markers. The difficulty of this task makes segmentation errors still likely, 

however, the relative predictability of grain size and shape will allow many of these 

errors to be resolved by post-processing steps that study the shape and size of 

segmented regions. 

5.2 Clustered Grain Segmentation Algorithm (CGSA) 

A new segmentation algorithm, termed the CGSA, is proposed which aims to improve 

the segmentation accuracy of the Watershed Transform when applied to complex 

microstructural images by using several pre- and post- processing steps. This facilitates 

accurate and reliable automated measurement of grain size and globular volume 

fraction. A key factor in the design of this algorithm is the need to achieve a high level 

of robustness. Microstructural images vary extensively based on the thermo-

mechanical history of the material, as well as the imaging methods and technology 

used to capture these images. Therefore, it is important that the algorithm designed is 

not excessively dependant on any single factor to locate grains or their boundaries and 

instead makes use of as much information in the data as possible. The proposed 

combination of pre- and post-processing steps allow the algorithm presented here to 

achieve this. The CGSA can detect subtle boundaries between touching grains, even 

in noisy images or those from less detailed optical microscopes. Two optional 

functions are included; a pre-processing function aimed at detecting artefacts 

corrupting the image data and a post-processing step aimed at fixing under-

segmentation errors. These were designed and included as they resolve specific issues 

encountered during the segmentation of some data, however, are left options as their 

performance was concluded to not be advantageous in the majority of cases. The 

experimental reasoning behind this decision is explained in Chapter 8. A flow chart of 

the main steps in the segmentation algorithm, and how they relate to each other, is 

shown in Figure 5.2.  
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Figure 5.2: Flow chart of stages in CGSA 

The algorithm requires a greyscale microstructural image as an input. Filtering 

procedures should be the first pre-processing step applied as the resulting reduction in 

noise is beneficial to subsequent steps functions. Phase separation procedures must be 

performed immediately after the Watershed Transform so that further splitting and 

merging of regions should only be applied to the alpha grains. This step should be 

ignored for single-phase microstructures. Merging procedures are used prior to the 

additional splitting function so that the splitting function operates based on the most 

accurate segmentation information possible. Finally, standardised measurement 

techniques are applied to measure the grains in the segmented image.  

5.3 Pre-Processing 

This section describes a range of pre- processing procedures aimed at preventing the 

Watershed Transform from producing segmentation errors. These methods 

particularly target over-segmentation, which is a known weakness of this transform. 

The use of filtering techniques is described, and evidence is provided as to why 

Gaussian filtering is considered the most appropriate for microstructural images. This 

includes both its effectiveness at general noise reduction and also on specific issues 

such as scratches.  An additional artefact detection procedure is also described to limit 

the impact that image defects have on the segmentation result. Finally, a novel marker 

computation approach is proposed that is applicable to microstructural images and 

helps prevent over-segmentation.  
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5.3.1 Invert SEM Images 

The techniques described in this thesis assume the convention that features of interest 

in an image are brighter than the rest of the image content. Optical images inherently 

show alpha phase as light and beta as dark so meets this criterion. However, SEM 

images show alpha phase as relatively dark regions. It is, therefore, necessary to invert 

images captured with an SEM to match this format. This is achieved by subtracting 

the intensity of each pixel from the maximum intensity allowed by the bit depth of the 

image. This is shown in Equation (5.1) where fSEM is the microstructural image 

produced by a SEM, f is the image after inversion that will use used by the algorithm 

and b is the bit depth. 

𝑓(𝑥, 𝑦) = 2𝑏 − 𝑓𝑆𝐸𝑀(𝑥, 𝑦) (5.1) 

5.3.2 Filtering Microstructural Data 

As described in Section 3.2 the microstructural images often contain a significant 

amount of noise, particularly if a Scanning Electron Microscope (SEM) is used. This 

noise creates local minima in the gradient of image, which the proposed algorithm uses 

as an input for the Watershed Transform. The use of markers alone is not sufficient to 

completely resolve the errors this would cause as it only prevents over-segmentation 

errors, by marking the locations of grains. Even with markers, noise could still cause 

errors by fooling the Watershed Transform into positioning boundaries in the wrong 

location, if noise resulted in larger variations in intensity within grains than at the 

boundaries between them. High levels of noise could also cause errors when 

computing the markers using the new CGM method proposed in Section 5.3.3, as this 

method also considers image gradient. It is, therefore, highly beneficial to filter the 

input image to reduce noise prior to performing any other step in the proposed 

segmentation algorithm. However, this must be performed carefully and in a robust 

way as true grain boundaries are often indicated by subtle intensity changes and it is 

undesirable to lose this information.  

The fundamentals of filters are described in Chapter 3. For the purposes of this section 

it is recalled that filters operate by assigning each pixel a value based on the value of 

pixels in the surrounding area, with this area determined by the size of the kernel used 
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for filtering. For a single grain in a titanium image it can be shown that the intensity 

values of pixels follow a Gaussian distribution, as in Figure 5.3. 

 

 

 

a) b) 

Figure 5.3: Illustration of noise in an SEM image where a) individual grain and 

b) histogram of orientation values 

This suggests that Gaussian filtering methods [24] would be the most effective at 

removing this noise. This is supported by other research into image analysis of Ti-6Al-

4V microstructures, which also uses this filtering method [34]. 

The influence of Gaussian filtering on the identification of grain boundaries can be 

observed through the filtered image and corresponding gradients shown in Figure 5.4. 

The effects of different kernel sizes (3x3, 5x5, 9x9) of Gaussian filter are shown by 

applying them to an image showing 3 tightly packed grains. The grains are of similar 

yet slightly different intensity, have a few thin beta phase sections between them and 

have small artefacts on the upper leftmost grain.  
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a)   

   

b) c) d) 

   

e) f) g) 

Figure 5.4: Examples of filtering of microstructural images where a) shows the 

original image, b),c) and d) show a filtered image and  e), f) and g) show the 

corresponding gradient image when filtering using a Gaussian filter of size 3x3, 

5x5, and 9x9 respectively 

As expected, the results show Gaussian filtering to be effective at reducing noise while 

preserving grain boundaries, however, the blurring effect caused by this filter is also 

visible. As filter size gets larger the boundaries become easier to distinguish in the 

gradient image. An artefact, still visible in the upper left-hand corner of the 3x3 filtered 

image, is removed by the two larger filter sizes. However, the thin layer of beta phase 
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seen in the left-hand side of the 3x3 filtered image is no longer visible in the 5x5 

filtered image. While the larger beta phase layer on the right-hand side does not 

disappear, it is clearly larger when the 9x9 filter is used. The ideal size of this filter 

should therefore be adjusted depending on the dataset to ensure the best results, as the 

data lost through distortion must be balanced against noise removal. For microscopy 

applications, SEM images contain more noise than optical ones so require a larger 

filter. For segmentation of globular grains, obscuring such thin regions due to the 

blurring effect would not have a significant impact on results. However, this would be 

unacceptable when measuring thin alpha platelets. For the Ti6Al4V microstructures in 

the titanium dataset, the best results were achieved using a 5x5 filter for SEM images 

and a 3x3 filter for optical images or images containing platelets. 

As well as reducing level of Gaussian noise in microstructural images, filtering can 

also reduce the effect of scratches on the material surface. These scratches appear on 

the image as thin lines of a different intensity than the surrounding grain. Provided 

these scratches are thin relative to the size of kernel used by the filter then the blurring 

effect is actually useful as it will remove scratches from the image. An example of this 

benefit is illustrated in Figure 5.5. This figure shows a microstructural image with a 

large number of scratches and its corresponding segmentation, with the same 

technique, before and after the application of a Gaussian filter. While the image 

appears blurry after filtering, intensity changes between larger spatial features, such as 

grains, remain visible, while intensity changes at smaller spatial features, such as 

scratches, are removed. This results in fewer over-segmentation errors. The image 

shown in this figure is not of Ti-6Al-4V, but of the Inconel 718 alloy. While a full 

investigation of this alloy was outside the scope of this project, small trials where run 

and this result is included here as this best illustrates the effect of the filtering process, 

as a higher density of scratches were present than on any titanium sample in the dataset. 

Its inclusion also provides a small insight into the general applicability of the methods 

developed in this thesis. 
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a) b) 

  

c) d) 

Figure 5.5: Influence of Gaussian filtering on scratches on images 

of a Inconel 718 alloy where a) unfiltered image, b) segmentation 

of unfiltered image, c) filtered image and d) segmentation of 

filtered image 

5.3.3 Clustered Grain Marking (CGM)  

Automatically computing a reliable set of markers for the MBWT is a difficult task. In 

some cases, semi-automatic procedures can get around this problem by allowing the 

user to manually select seed points to use as markers. However, in microstructural 

images containing hundreds of grains this is not a practical solution and an automated 

method to compute these markers is required. In the simplest case the minima of the 
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image can be used as markers. However, the images in this study contain significant 

amounts of noise, meaning it is expected that an excess of irrelevant local minima will 

exist within each object in the image. This means it is important to use markers 

computed independently from local minima in the image. The need for this set of 

markers is further illustrated in Figure 5.6 which compares the segmentation produced 

when flooding from all local minima of the gradient image with floods originating 

from a pre-defined set of markers, computed from existing methods [77].  

   

a) b) c) 

Figure 5.6: Examples of Watershed Segmentation with and without markers 

where a) is the Watershed Segmentation based on flooding from all minima, b) 

is a pre-defined set of markers(from UO [77]) and c) is the Watershed 

Segmentation result using these markers 

It can be observed that severe over-segmentation occurs when the Watershed 

Transform floods from all local minima while flooding from selected markers reduces 

this significantly. However, computing such markers are difficult and the use of an 

insufficiently accurate set of markers, as shown in Figure 5.6, will reduce over-

segmentation but still provide unacceptable results. The development of new methods 

to compute a more accurate and reliable set of markers for grains in Ti-6Al-4V 

microstructural image data is, therefore, very important. This is achieved through the 

development of the CGM technique. 

CGM is a flexible marker computation approach that combines intensity and shape 

information to provide a robust set of markers. The motivation is to be able to 

accurately mark grains in different microstructure types, produced using different 

imaging technologies, despite fluctuations in the level of detailed shape and intensity 

information available in different microstructures. This prevents issues found in over-



112 

trained segmentation techniques target features of particular microstructures types, as 

demonstrated in Chapter 8.  

   

a) b) c) 

   

d) e) f) 

Figure 5.7: Computation of markers where a) original image, b) image 

gradient, c) sparse edge detection, d) distance transform, e) local maxima with 

h-maxima suppression and f) overlay showing the final set of markers 

Figure 5.7 illustrates the effects of each step in the proposed, novel marker 

computation process. The markers are computed by first using edge detection 

techniques to locate significant variations in intensity, that are believed likely to 

indicate the boundary between grains, as in Figure 5.7 c). This is achieved by using 

known edge detection techniques, specifically the Sobel filter described in Chapter 3. 

The gradient image, shown in Figure 5.7 b), is computed by applying Sobel filters to 

the Gaussian filtered image and a pre-defined threshold, ts, is then applied to the result 

to create a binary image marking edges in image data. Shape information is then 

incorporated into the markers by applying the distance transform to the inverse of the 

edge detected result. This returns an image where the value at each pixel corresponds 

to the distance between that point and the nearest detected edge, as in Figure 5.7 d). 

This creates a topographic map of the image where local maxima correspond to regions 
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that are central between detected edges. It is believed that local maxima in the distance 

function, therefore, correspond approximately to the centres of grains, providing 

suitable markers. However, as noise occurs within grains, some local maxima that are 

likely to be caused by falsely detected edges. However, these maxima are likely to be 

smaller than those created by only true grain boundaries. Therefore, h-maxima 

suppression techniques can be used to supress the smallest maxima a limit the number 

of excess markers. The remaining local maxima are most likely representations of the 

location grain so these are extracted and used as a set of markers, as in Figure 5.7 f). 

The algorithm given below, in terms of the combination of functions used.  

 

Algorithm 1: CGM 

Input: I: greyscale image, ts: edge detection sensitivity 

Output: M: markers 

1. E=edgeDetection(I, ts) 

2. DT=distanceTransform(E) 

3. Rmax=findRegionalMaxima(DT) 

4. M=h-maximaSupression(M) 

 

Some of the techniques used in this method have been previously applied to compute 

markers but have not been combined in this way. The use of h-minima suppression has 

been popularised in research on medical image segmentation as a method of reducing 

excess markers, as described in Section 4.2.3.5. The CGM techniques proposed uses 

the inverse of this transform, h-maxima, due to the functions used to compute the 

markers, but the principal is the same. The use of the distance transform was previously 

applied by Beucher [5] to mark coffee beans, and more recently by Sosa et al. [36] 

who also aimed to mark grains in microstructures. However, both methods applied the 

distance transform to a thresholded binary image. As a result, these methods fail to 

accurately capture boundaries between grains of the same phase. The proposed 

combination of methods included in the new marker computation algorithm allows a 

robust set of markers to be built using the beneficial properties of each. Edge detection 
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provides intensity information while the distance transform provides shape 

information. The combination of the two means that the shape of even subtle 

boundaries can be considered while searching for markers, including alpha/alpha grain 

boundaries that existing methods often fail to consider. The effectiveness of this 

approach is well demonstrated by the example in Figure 5.7. The linear cluster of 

grains in the lower section of the image form a relatively smooth region of alpha phase.  

The boundary between alpha and beta phases here do not show any significant 

concavity. However, the edge detection, in Figure 5.7 c), finds the intensity change 

between each grain, indicating where segmentation should occur. Similarly, for the 

cluster of grains in the upper right-hand corner, no edge is marked between the grains, 

as shown in Figure 5.7 c). However, the distance transform in Figure 5.7 d) does place 

distinct local maxima in each due to the concavities in the boundary. The result is that 

all of the aforementioned grains are marked correctly in the final marker set in Figure 

5.7 f) despite the boundaries not sharing a common distinguishing factor.  

There are two parameters which govern the effectiveness of marker computation using 

the proposed method; the sensitivity of the initial edge detection and the level of h-

maxima suppression. It was found that a suitable level of h-maxima suppression can 

be set and used for all microstructures, as this was used only to remove the smallest 

maxima cause by noise with the larger errors prevented by the range of other pre- and 

post- processing steps in this algorithm. The sensitivity of edge detection, ts, 

determines how large a variation in intensity should be used to indicate the presence 

of a boundary. There is no global ideal sensitivity value as the intensity change 

indicating a boundary varies depending on the content, contrast and noise level of the 

image, as well as any filtering methods applied. As edge detection is the first step in 

computing markers using this method, the sensitivity of edge detection is critical as it 

directly affects the level of over- and under- segmentation. The need to empirically set 

such a crucial parameter has led to the proposed CGM technique being ruled out in 

research for segmenting images in other applications [107]. However, in 

microstructural analysis this can be quite useful as it provides an intuitive parameter 

that controls the level of segmentation. This means that an expert materials scientist, 

without any image processing experience, could calibrate the segmentation and results 

measurements to their current expectations and standard. Chapter 7 proposes a new 
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software tool that allows this to be achieved easily by observing a visualisation of the 

effect the parameter has on the final segmentation. This allows the marker computation 

scheme to be adapted to suit a wide range of datasets. Validation of this is undertaken 

in Chapter 8 for a broad range of titanium microstructures. It is also believed that this 

technique could be applied to mark objects in images from other applications. While 

it is outside the scope of this thesis to fully investigate this a brief example of CGM 

applied to other datasets is provided in Figure 5.8. 

    

a) b) c) d) 

Figure 5.8: Examples of CGM on datasets from other fields where a) image of 

muscle fibre in human tissue, b) is markers for each fibre, c) image of spherical 

particles and d) is markers of each particle [36] 

For microstructural analysis, it is also important to note that, although this sensitivity 

parameter affects the segmentation, the use of the distance transform and h-minima 

means that markers still have to adhere to certain size and shape requirements. When 

combined with the post-processing methods in Section 5.3, the resulting segmentation 

algorithm has enough rules in place that changes in edge detection sensitivity will 

normally allow only relatively small changes to made to the segmentation, rather than 

this being adjusted to achieve any arbitrary result. 

5.3.4 Artefact Detection 

This section describes methods to deal with a problem that occurs rarely in the 

microstructural data, where slightly larger, round artefacts corrupted some of the 

images in this study. An example of this is shown in Figure 5.9 a). 
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a) b) c) 

Figure 5.9: Example of artefacts in an SEM image and their effect on 

segmentation where a) original image with artefacts indicated, b) segmentation 

result with artefact corruption and c) segmentation with artefacts removed 

These artefacts are dark and circular and often, but do not always contain a white dot 

at their centre.  The intensity change at their boundary will typically be marked by the 

edge detection functions used in the marker computation algorithm, so a marker may 

be given to artefacts. This will also affect the gradient image used as the topographic 

surface of the Watershed Transform, meaning boundaries between objects are more 

likely to be placed where artefacts exist, even if a marker did not exist at the artefact. 

As the artefacts relate only to errors when producing microstructural images, and are 

not informative of the underlying microstructure, it is desirable to ignore their presence 

when performing analysis. Therefore, the two issues described above must be 

addressed. Fortunately, these artefacts are very dark, small and round relative to alpha 

grains in the same image. These properties make it possible to detect these artefacts 

and then limit their effect on segmentation. 

To do this an artefact detection and removal algorithm is proposed based on the hit-

or-miss transform [26]. First the top-hat operator is applied to remove bright spots 

from the centre of artefacts so that artefacts take the form of entirely black circles. This 

was done as bright spots only appear in some artefacts so cannot be used reliably for 

identification. The image is then inverted to keep with the convention that the objects 

to be identified are brighter than the background of the image. The Hit-or-Miss 
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transform is then used to identify small dark circles. As artefacts of different sizes 

exist, a range of different sizes of pairs of SE are used, with the artefacts detected by 

all pairs added to form a complete set of detected artefacts. The result of applying this 

to a microstructural image containing artefacts is shown in Figure 5.10. 

  

a) b) 

Figure 5.10: Example of artefact detection using the hit-or-miss transform 

where a) original image and b) shows artefacts in red 

It is clear from this result that artefacts can be detected successfully using this existing 

transform. However, removing these artefacts is a more difficult task. To remove 

artefacts from consideration during the segmentation processes, two operations are 

performed. First any marker that lies within an artefact is removed from the set of 

markers previously computed to prevent over-segmentation errors. To do this the edge 

detection result used for marker computation is modified such that any pixel in a 

location where an artefact exists does not return a positive value in the edge detection 

Second, the gradient image used for the Watershed Transform is also set to “0” for all 

locations that lie within an artefact. This prevents boundaries between two correctly 

marked grains from being placed at the location of an artefact rather than an intensity 

change. The effect of segmentation using this artefact resistant marker method is 

shown in Figure 5.9 c). While this example suggests positive results, it is also possible 

to introduce under-segmentation errors using this approach. If the artefact occurs at a 

boundary between grains, the intensity information it obscures cannot be recovered. 
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While the artefact is present segmentation lines will still exist at the boundary, but 

without it no segmentation will occurs. The likelihood of grains occurring on grain 

boundaries will determine the success of this technique. This effect can be limited by 

constraining detected artefacts not include pixels on the boundary between alpha and 

beta phase, but this cannot be done for alpha/alpha boundaries. Therefore, this stage is 

considered optional and report here as an additional function rather than a core part of 

the segmentation technique.   

5.4 Watershed Transform 

After pre-processing there exists a filtered version of the original image and set of 

markers that can be used to produce a segmentation using the Watershed Transform. 

The transform is now applied by taking the gradient of the filtered image as the 

topographic function, with this gradient then modified to include global minima only 

at locations where markers exist, as per the method of Meyer [28]. The result is a 

complete segmentation of the image with boundaries placed between marker grains at 

the location of the highest gradient between them. This is illustrated in Figure 5.11, 

which also shows a ground truth segmentation, created by a materials scientist, for 

comparison. 

 

Figure 5.11: Illustration of the inputs and outputs of the Watershed Transform  
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5.5 Post- Processing 

This section describes the post processing steps used in the CGSA. The Watershed 

Transform produces a complete segmentation of the entire image. As alpha and beta 

phases are measured separately methods of distinguishing between the two phases are 

required. As image segmentation is challenging, additional procedures are proposed to 

correct any segmentation errors based on prior knowledge of the images under study 

and their content. Region merging procedures have been applied in previous 

segmentation approaches, as described in Section 4.2.3.3, to incorporate this prior 

knowledge. An implementation of this is described here using bespoke merging 

criteria that is suitable for reducing segmentation errors in a wide variety of 

microstructures. A region splitting approach is then presented to correct any under-

segmentation errors based on the shape of the segmented grain boundaries. 

5.5.1 Phase Separation 

The Watershed Transform produces a complete segmentation of the image, including 

all phases of material. Before measurements of alpha grains can be performed, alpha 

and beta phase regions must be distinguished so that no beta phase regions are 

erroneously included in alpha grain measurements. Thresholding the original image 

provides an estimate of phase separation on a per pixel basis, as each phase normally 

is of significantly different intensity. Otsu’s method [108] can be used to automatically 

select a suitable threshold for a given image. This works well in images that are 

consistently illuminated, however, it can cause phases to be misidentified in areas 

where illumination varies. In such cases, adaptive versions of Otsu’s method can 

instead be used to accommodate this [109]. Adaptive thresholding applies a different 

threshold to each local region of the image. This prevents errors identifying phases in 

regions of the image that are lighter or darker than average in the image. However, 

dark artefacts in one region of an image are more likely to cause issues in adaptive 

thresholding techniques so these should only be used when necessary. For the purposes 

of microstructural analysis, it is often best to use global thresholding techniques for 

SEM images, where intensity variations are greater, and adaptive methods for OM 

images, where lighting inconsistencies are more common, as illustrated in Figure 5.12.  
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a) b) 

  

c) d) 

  

e) f) 

Figure 5.12: Phase separation in SEM and OM images where a) OM image, b) 

SEM image, c) and d) show the global thresholding of each image and e) and f) 

show the adaptive thresholding of each image 
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Due to noise in the images, a single grain may contain some pixels marked as alpha 

and some that are marked as beta, as can be observed in Figure 5.12 f). A threshold, 

tα, is set to determine if a segmented region belongs to the alpha or beta phase based 

on the percentage of pixels in the segmented region belonging to that phase. If set too 

low, then beta phase regions may be misidentified as alpha grains. If set too high, then 

some grains would be ignored from measurements. There may not exist any ideal tα 

where all alpha grains are identified, and all beta phase regions are discounted. For the 

analysis of titanium microstructures, it is generally best to set this threshold high for 

grain size measurements as measuring fewer grains is preferable to measuring grains 

incorrectly, as existing standards only require a subset of grains to be measured [29]. 

Indeed, in existing standards it is already normal to measure only a randomly sampled 

subset of grains in each microstructure. 

In bi-modal microstructures, course alpha platelets exist alongside approximately 

globular alpha grains. The technique proposed in this chapter is not capable of reliably 

measuring these platelets due to the over-segmentation issues shown in Figure 5.13, 

therefore, these should not be measured. 

  

a) b) 

Figure 5.13: Example of segmentation of fine platelets using the proposed 

segmentation algorithm where a) is original image containing platelets and b) 

is a segmentation which includes platelets 

A method for identifying phase differences based on grain shape is presented in 

Chapter 6 and provides the most accurate method of performing this task. Grain shape 

information is obtained using during the platelet analysis techniques in Chapter 6 
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which would allow fine platelets to be removed from further analysis. However, this 

is a more computationally expensive procedure than the segmentation algorithm 

described in the current chapter so it is not efficient to use this approach, unless also 

measuring platelets. A more efficient procedure is to perform a morphological opening 

[24] on the segmented image by a disk shaped SE of radius larger than the estimated 

maximum width of platelets, wp.  This will not extract meaningful platelet 

measurements but will filter out these platelets sufficiently accurately so that 

measurements exclusively of approximately globular alpha can be produced. While 

this is likely to cause some distortion to grain boundaries it will typically have minimal 

effect on segmentation results. The parameter wp can be set automatically according to 

the minimum grain size expected in the image. 

5.5.2 Region merging  

A post-processing procedure is proposed to reduce over-segmentation errors by 

merging adjacent regions, whose properties suggest they belong to the same feature. 

Similar approaches have been applied successfully in other image segmentation 

techniques [83]–[85].  

The proposed technique makes use of a region adjacency graph [110] to control the 

merging of regions. This is a graph, 𝐺 = (𝑉, 𝐸), where each vertex, 𝑉, is a region of 

the image and edges, 𝐸 ⊂ 𝑉𝑖 × 𝑉𝑗 , connect vertices only when the regions share a 

common boundary, as illustrated in Figure 5.14 a) with vertices in blue and edges in 

green.  
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a) b) c) 

Figure 5.14: Merging over-segmented regions using a region adjacency graph 

where a) is the region adjacency graph overlay on a segmented image, b) is the 

edges between regions belonging to the same grain and c) is the new 

segmentation 

For each edge, a weight, 𝑤𝑖𝑗 , is typically computed based on the similarity of the 

regions (vertices) it connects. When the weight of this edge exceeds a predetermined 

threshold, edges are removed from the graph such that only edges between similar 

regions remain, as shown in Figure 5.14 b). Any internal boundaries between regions 

connected by an edge are then removed and the encapsulated region is categorised as 

a single grain. The updated segmentation is shown in Figure 5.14 c). 

Determining suitable edge weights and merging thresholds is critical to the success of 

the proposed region merging method. The more accurately the properties of objects 

can be predicted in advance, the more precisely these parameters can be set and the 

more effective this technique is. In microstructural analysis, it is often difficult to 

predict grain properties and, therefore, selection of these weights and thresholds is 

difficult. As a result, 3 separate weights and thresholds are defined to enable a robust 

examination of which regions should be merged.  

Edge weights are based on; the length of boundaries, 𝐵, the mean intensity of pixels 

in the region, 𝐼, and region size, 𝑆. The first weight, 𝑤1𝑖𝑗 =
𝐵𝑐

min (𝐵𝑖,𝐵𝑗)
 , is, for two 

adjacent grains, with boundary lengths Bi and Bj, the percentage of the boundary of the 

smaller of the two grains that is a common boundary, 𝐵𝑐, with the adjacent grain. The 

second weight, 𝑤2𝑖𝑗 = 𝐼𝑖 − 𝐼𝑗,is the difference in intensity between each grain. The 
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third weight, 𝑤3𝑖𝑗 = min(𝑆𝑖, 𝑆𝑗), is the size of the smaller of the two regions. The 

mean diameter of the regions is used as the size measurement in this case, however, 

other metrics could also potentially be used.  Three distinct thresholds, 𝑇𝐵, 𝑇𝐼 , 𝑇𝑆, are 

then used to judge each of these weights and the merge test, 𝑀, is positive when 

regions should merge. This approach differs from the existing literature where the 

accepted convention is to split-or-merge such graphs based on a single edge weight 

that is calculated based on all specific properties. However, while that approach has 

good generality, combining the three weights proposed here into a single weight does 

not make sense for grain segmentation. The reason for this is that it would allow strong 

similarity in one aspect to negate dissimilarity in another, i.e. having a very similar 

intensity would lower the edge weight and allow the merging of grains with longer 

shared boundaries. This is not believed to be desirable for alpha grain segmentation 

with the preference being for a well-defined set of rules that can be easily tailored 

based on knowledge of the microstructure. This can be achieved far easier with 

separate weights and thresholds than with a combined weight. 𝑇𝐵 should be set as the 

maximum amount of boundary that is expected to be shared between grains, 𝑇𝐼 set as 

the maximum intensity difference expected between regions of the same grain and 𝑇𝑆 

set as the smallest possible grain size expected in the microstructure. Regions are set 

to merge either when one region is very small, indicating it is probably caused by an 

artefact, or when regions share both a large common boundary and a similar intensity. 

This is shown in Equation (5.2). 

𝑀 = {
1 𝑖𝑓 𝑤1𝑖𝑗 > 𝑇𝐵 , 𝑤2𝑖𝑗 > 𝑇𝐼   𝑜𝑟 𝑤3𝑖𝑗 < 𝑇𝑆

0                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
 (5.2) 

 

Defining an optimal set of thresholds for the merging procedures is difficult as it 

depends on knowledge of the images under study. In order for the methods to be 

applicable to a wide range of microstructures, this must be used sparingly by correcting 

only the most obvious errors. In cases where more specific properties of 

microstructural features are known in advance, a more extensive merging criterion 

could be used to obtain more accurate results.  
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5.5.3 Region Splitting 

In addition to the over-segmentation errors addressed so far in this chapter it is also 

possible that under-segmentation errors can occur, due to the incorrect merging of 

regions or misidentification of markers. To alleviate this, an additional splitting of the 

segmented regions, based on their shape, is proposed. This method takes the 

segmentation result, after any region merging, as an input function and splits regions 

where significant concavities exist in the boundaries of an object. This same property 

was previously used to aid the computation of the markers to use in the Watershed 

Transform. However, at that stage there was less information available as only the 

shape of boundaries that could be located using edge detection could be assessed, 

which typically does not represent the complete boundary.  By repeating a similar 

operation as a post-processing step, a more complete estimate of the boundaries, 

provided by the new segmentation algorithm, could be used to locate extra boundaries 

that are missed by Watershed Transform. The distance transform is used to study the 

shape and size of segmented regions. Regions in the centre of segmented regions will, 

therefore, have high values while regions towards the edge of the region will have 

lower values. As the distance transform returns a “0” for the existing boundaries in the 

segmentation, each region has its own separate topography. For regions with smooth 

boundaries of approximately elliptical shape then only 1 peak will exist. However, if 

there are any concavities in the boundary then multiple peaks will exist with valleys 

between these peaks representing a region where a boundary should be, as illustrated 

in Figure 5.15 c).  
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a) b) 

  

c) d) 

  

e) f) 

Figure 5.15: Use of distance transform to split already segmented regions where 

a) original segmentation, b) binary segmentation αseg, c) distance transform of 

αseg, d) inverse of distance transform, e) markers from h-maxima and f) new 

segmentation 

A fast and efficient way to split these regions is to perform a second Watershed 

Transform, this time using the distance transform of the first segmented result as the 

topographic function, rather than the original gradient image. The concept of applying 
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successive Watershed Transforms has previously been explored through the idea of 

hierarchical Watershed Transforms [111]. However, the traditional approach to this 

uses successive Watershed Transforms to reduce over-segmentation, while the 

technique proposed here aims to further segment the image based on new information 

extracted by our algorithm. Suitable markers, for the second Watershed Transform 

used in the splitting function, are computed by applying h-maxima suppression of the 

distance transform, applied to the segmented results, to identify only the most 

significant maxima to be used as markers, as in Figure 5.15. As the technique uses the 

h-minima of the distance transform clearly there will always exist an h-minima 

threshold where the segmentation result is not changed. Theoretically this means if 

this parameter is fine-tuned it could be guaranteed that this method at least does not 

make segmentation worse. However, this would not be a practical application as the 

segmentation algorithm would be less automated. Instead a single parameter is set 

empirically which is used for all microstructures.  The topographic surface to be 

segmented is further modified by setting the height of the surface to the maximum 

height of the image in all locations where a boundary exists in the initial segmentation. 

This preserves all of the initially detected boundaries so that the additional function 

can only split existing grains. The result of applying this to an incorrectly segmented 

region is shown in Figure 5.15.  

Generally, aggregated measurements are more accurate when over-segmentation and 

under-segmentation are balanced. As segmentation algorithms based on the Watershed 

Transform tend to over-segment a post-processing procedure that increases image 

segmentation may not improve results, even if it fixes genuine errors, is the type of 

error may become imbalanced. Therefore, this stage of the algorithm is considered 

optional and can be applied to the image as required by a user. This is explored in more 

detail in Section 8.2.5.1. 

5.6 Measurement 

After phase separation, each grain is represented by a single group of pixels where each 

pixel is adjacent to at least one other pixel in the group. This configuration is called a 

connected component (CC) and several techniques have been defined to measure their 

properties [112]. Measurements of the length, L, and width, W, for each grain are taken 
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by computing an ellipse that has the same normalised second central moments as the 

region. This ensures that the length and width measurements are taken perpendicular to 

each other to give the best estimate of grain size. These values are used to compute the 

mean grain size, Gm, and globular volume fraction, 𝑉𝑔, using Equations (5.3) and (5.4) 

where Ng is the number of grains measured.  

𝐺𝑚 = ∑
𝐿𝑁𝑔

+ 𝑊𝑁𝑔

2

𝑁𝑔

1

 
(5.3) 

𝑉𝐺 =

∑ {
1     𝑖𝑓  

𝐿𝑁𝑔

𝑊𝑁𝑔

> 2

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁𝑔

1

𝑁𝑔
 (5.4) 

 

5.7 Conclusions 

In this chapter a novel segmentation algorithm has been proposed and presented. The 

algorithm is designed specifically to be able to segment globular alpha grains in 

titanium microstructures, something that cannot currently be achieved successfully 

using existing approaches that have been presented in the academic literature. More 

generally, the proposed method provides a robust approach for segmenting images 

where the objects of interest are touching, clustered, not necessarily distinguishable by 

intensity or shape alone and where images are corrupted by various forms of noise. By 

combining several pre- and post- processing steps, the Marker Based Watershed 

Transform is used to achieve superior segmentation results than would normally be 

expected from this transform. This is demonstrated empirically in Chapter 8 where the 

results of applying the proposed algorithm to a variety of microstructural data, which 

present significant segmentation challenges, are shown.  

In terms of contributions, the segmentation algorithm described in this chapter 

provides a novel marker computation technique, that is crucial to preventing over-

segmentation issues. Additionally, the appropriate use of techniques such as a 
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specialised region merging procedure and the hit-or-miss transform [26] to improve 

segmentation in microstructural images is described.  

The proposed algorithm includes several parameters that can be altered. While the 

need to set parameters in segmentation algorithms can sometimes make their use more 

challenging, the number of different stages and rules in the proposed approach means 

that in most cases limited changes to these parameters need to be made. Chapter 7 

presents the implementation of the proposed algorithm within a software package. It 

is demonstrated that through this software, the parameters, rather than making this 

algorithm difficult to apply, in fact allow easy, intuitive control of segmentation 

results. In Chapter 8 a complete validation of the method presented in this chapter is 

provided. This includes comparisons with existing, state-of-the-art microstructural 

analysis tools and image processing methods which have been presented in the 

literature. 

    

a) b) c) d) 

Figure 5.16: Examples of the CGSA on datasets from other fields where a) 

image of muscle fibre in human tissue, b) segmentation of each fibre, c) image 

of spherical particles and d) segmentation of each particle [36] 

It is also believed that robustness of this algorithm will provide good generalisation to 

the segmentation of images from different applications outside of the titanium 

microstructural analysis considered here. Very recent work has cited the published 

version of the new algorithm [107], [113]–[116] on work on different datasets. While 

none of these authors applied the CGSA directly, several authors use some of steps of 

this algorithm as part of their own bespoke analysis procedures [113]–[115]. 
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Comprehensive trials of the CSGA on different datasets from other applications is 

interesting but is outside the scope of this thesis. Instead a brief demonstration of this 

algorithm applied to a few images from different fields is provided in Figure 5.16. 
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6 MORPHOLOGICAL 

ANALYSIS OF ALPHA 

PLATELETS 

 

This chapter describes techniques for analysing thin elongated structures within 

images, specifically platelets in titanium microstructures. The purpose of this is to 

provide a method to analyse microstructures that contain thin platelets that cannot be 

properly measured using segmentation techniques, such as those proposed in Chapter 

5 of this thesis.  

The fundamental approach is not to try and segment individual platelets but to extract 

information about the size and shape of image features directly. This is achieved by 

fitting a set of artificial, linear structures to the image and analysing how well each one 

fits within platelets. In the review of recent literature in Chapter 4, several promising 

procedures were identified that attempted to measure the width and orientation of 

structures in this way. However, none of these techniques provided a complete solution 

for microstructural analysis, as the proposed methods are not robust enough to deal 

with the wide variations in the size and aspect ratio of alpha platelets. One common 

reason for this weakness is that some methods measure width without considering 

orientation [11]  and others measures orientation without considering width [63]. The 

technique described in this chapter resolves such issues by measuring width and 

orientation simultaneously using the same technique, so that information about one 

property can guide measurements of the other. This simultaneous approach also allows 

shape information to be extracted from the same data. To achieve this the proposed 

method creates a set of SEs of various combinations of length and orientation which 

are used to probe the image via a morphological opening. The value of each opening 

describes how well each SE fits each structure in the image. All of the information 
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generated by this technique is stored by mapping the outputs from all SE’s onto a new 

3D orientation space called the Feature Length Orientation Space (FLOS).  While 

recent applications of the orientation space to materials analysis assign binary values 

in this space [63], the method in this chapter instead maps the largest fitting SE to each 

element in the array. As a result, variations in the orientation and location domain of 

this space allow a range information about the size, morphology and orientation of 

image features to be extracted. Finally, a separate algorithm is proposed to locate and 

measure platelet colonies using this new data. A flowchart showing the interconnected 

steps in the platelet analysis algorithm is provided in Figure 6.1. 

 

Figure 6.1: Flowchart of morphological platelet analysis techniques 

In this thesis, all orientation measurements are reported in degrees counter clockwise 

from the positive horizontal axis. 

6.1 Shape fitting using mathematical morphology 

Fundamentally the techniques described in this chapter extract information by testing 

an image against a predefined set of objects and finding at which size, and orientation 

of object that best match those in the image. A variety of techniques [60], [63] which 

attempt to extract information using this approach have been described in Chapter 3. 

These techniques exploit tools from mathematical morphology, which offer an 

effective way to measure how well these test objects fit within features of an image. 

From this point on the test objects are referred to as SEs, for consistency with existing 

literature and to avoid confusion with the objects in the image which are measured.  

Mathematical morphology is a family of techniques that includes a range of methods 
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for analysing spatial structures in images. Useful to this chapter are morphological 

techniques based on set theory which take a predefined region, known as a SE, B, and 

probe each point in an image to find locations where B fits or hits the foreground of 

the image. The SE must have a designated origin pixel but otherwise can be any 

arbitrary shape and size. The output of morphological operators is determined by the 

image content and the shape and size of B.  Therefore, a set of SEs of different sizes 

and morphologies can be used to determine the size and morphology of image content 

by applying morphological operators. In this chapter, two operators called opening, γ, 

and closing, φ, are used. A complete definition of these operations is provided in 

Chapter 3. What is important to recall here is the effect each operation has on the value 

of pixels in the output image relative to those in the input image.  

Both the opening and closing operations will return a complete image. Each pixel in 

the output image will have a value corresponding to either the maximum or minimum 

value in the neighbouring area defined by a SE with its origin at the pixel. For example, 

given a binary image, then an opening would give a value of “1” for any a pixel 

location where the SE could overlap that point and still fit entirely in the image 

foreground. This means that by performing multiple openings with different 

structuring elements it is possible to determine which bests fits the foreground at each 

pixel in the image. The application of this to measure the orientation and dimensions 

of elongated structures such as alpha platelets is described in Section 6.2 and 6.3 of 

this thesis. As the closing is the dual operator of the opening, this would act in a similar 

way except SEs are fitted to the background, such the a “0” would only appear in the 

output image for a pixel location where the SE could overlap that pixel and still fit in 

the background. In the microstructural analysis application studied in this thesis, there 

is no interest in reporting such measurement of the background region, i.e. the beta 

phase. However, this closing is useful for assessing the distance and organisation of 

adjacent alpha platelets. An application of this to identify and measure colonies of 

these platelets is given in Section 6.5. 
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6.2 Orientation measurements from fixed-length rotational 
structuring elements 

Techniques are proposed in existing literature [48], [62], [63] to measure the 

orientation of thin elongated objects in images using rotational, linear SEs. It is also 

demonstrated that this information can then be used to identify groups of parallel 

structures [63]. This approach has great potential for use in a microstructural analysis 

procedure to measure the orientation of alpha platelets and size of colonies in titanium 

microstructures. The most relevant implementation of this method is work by Borocco 

et al. [63] on measuring graphene plans. In this technique, the orientation of an object 

is measured by finding the orientation of a linear SE that fits within that object. A set 

of SE, Bθ, are defined where θ is the orientation of any given SE in the set and each 

SE is 1 pixel wide and is of length, L. To ensure Bθ fits the objects at only the correct 

orientation, L is fixed at a length greater than the expected width of all objects in the 

data but less than the expected smallest length of objects to be analysed. An illustration 

of this approach is shown in Figure 6.2. 

 

 

Figure 6.2: Example of measurement using rotational SE where a grey 

elongated object in an image is measured by 3 SE’s of a fixed length. The green 

line indicates an SE at an orientation that fits and the red line indicates SEs at 

orientations that do not fit. In this case the orientation of the green line is taken 

to be the orientation of the original object. 

The range of orientations, θ, of SEs should be between 0-180°, to account for all 

possible orientations. The step size between each orientation, Sθ, defines the maximum 
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accuracy of measurement. If Sθ=10°, then 𝜃 ∈ [10,20 … 180], with 0° ignored as this 

is equivalent to 180°. As a result, all measurements will inherently have a quantisation 

error of up to +/-5° in this example. Theoretically, any step size can be used, so the 

potential accuracy could be improved by reducing Sθ. However, reducing the step size 

increases the number of SEs to be evaluated, which in turn increases computation time. 

Longer SEs can also enable more accurate results, provided they will still fit image 

data. For example, if when L=3, it is impossible to differentiate between 40° and 50° 

in a 2D Cartesian space. This occurs as there is only enough resolution to fit the line 

in 4 locations (0°, 45°, 90° and 135°), therefore, a 40° and 50° line would both be best 

measured by the 45° SE. To determine which orientation of a SE fits each object in a 

given image, a morphological opening, γ, of the image, f, by each SE, Bθ, is computed. 

Orientation measurements are recorded in a transform of the image, E, where each 

pixel, x, is set as the orientation of Bθ which returns the highest opening value at that 

pixel, as shown in Equation (6.1). If multiple orientations give the same opening value 

only the first orientation is used. 

E(𝑥) = arg 𝑠𝑢𝑝𝜃 𝛾𝐵𝜃
f(𝑥) (6.1) 

E can be visualised using a colourmap where each colour corresponds to the pixel 

value as shown in Figure 6.3. 

  

a) b) 

Figure 6.3: Illustration of orientation measurement from rotational SE where 

each colour indicates a unique orientation 

This approach is shown to be effective at measuring the orientation values of thin 

elongated structures without the need to segment individual platelets. As 
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measurements are based on the opening, each pixel that coincides with the SE that best 

fits the object will normally be assigned the same orientation value in E. This means 

that orientation measurements within each object are relatively consistent, which is 

crucial for many material science applications, such as grouping platelets to measure 

colonies. However, the method is not robust enough for titanium microstructures. No 

shape information is obtained by this methods which means for bi-modal 

microstructures, shown in Figure 6.3, meaningless measurements are often returned 

for pixels within the globular grains. Its reliability is also largely dependent upon the 

relationship between L and the dimensions of each object to be analysed in a given 

image. In other work implementing this method, such as the measurement of graphene 

plans presented by Borocco et al. [63] this is not an issue as the width of objects is 

very consistent, however, the same is not always true for titanium alloys. This is 

illustrated in Figure 6.4 which shows measurement accuracy for different L values for 

synthetic binary images containing elongated objects. 

  

a) b) 

Figure 6.4: Example of application of existing method where a) is an image 

(1000x1000) of elongated objects of the same dimensions and b) is a graph of 

measurement accuracy for various lengths of SE 

 Accuracy is defined in this example as the percentage of pixels in the image for which 

the measured orientation is equal to the orientation at which these objects were drawn 

(90°). Extremely low accuracy is obtained when L is fixed very long or short relative 

to the length and width of the objects, as Bθ either fits at every orientation or none. An 

optimum L value exists, which in this case is where Bθ fits all objects in the image at 
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only the true orientation. Selection of this parameter might not always be trivial and 

presents an opportunity for error. 

Additionally, the optimum value of L is dependent on the dimensions of objects to be 

measured in the image. This means that when objects of different sizes exist in a single 

image, the optimum value of L to measure each object differs. This is illustrated in 

Figure 6.5 which shows two objects of different length and illustrates how no single 

value of L would provide robust measurements of both objects. 

 

  

a) b) 

Figure 6.5: Illustration of the problems with fixed SE length where a) shows a length 

that fits one object at only 1 orientation but does not fit the other and b) shows a length 

that fits one object at only 1 orientation but the other at many 

To further demonstrate this problem, measurement accuracy is again compared when 

using SEs for different values L; this time for an image containing elongated objects 

of different dimensions, as shown in Figure 6.6.  

An optimum length of SE still exists; however, this value no longer achieves ideal 

results as no single value of L will produce an SE which perfectly fits every object in 

the image. The optimum value of L is therefore the length of SE which correctly 

measures the largest area of the image. In the example shown, the maximum accuracy 

is still only around 60% even for the best L. This is a more extreme case than is 

typically found in the microstructures in this study but represents good illustration of 

the type of error that could theoretically occur. An analysis of the extent of the errors 

found on real world data using this technique is given in Chapter 8. 
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a) b) 

Figure 6.6: Example of application of existing method where a) is an image (1000x1000) of 

elongated objects of different dimensions and b) is a graph of measurement accuracy for various 

lengths of SE 

In datasets of graphene plans used by Borocco [47], where objects are of a consistent 

width, the method described in this section would work well and a suitable L is 

relatively easy to determine. However, this is not the case in images from other 

datasets, including some of the titanium microstructures investigated in this research. 

The method described in [47] also overlooks some useful data and, with some 

modifications, has the potential to extract much more. Measurements are taken of how 

well a single SE fits at each orientation for each pixel in the image. However, only the 

most probably orientation is recorded, discarding information on how well the SE fits 

at the other evaluated orientation. This information could potentially be used to 

describe the shape of objects, however, is not presented in the literature. As the output 

from the opening also depends on the size of objects there is also potential for size 

information to be obtained using this type of technique, although this information is 

limited when using SEs of the same length. The following section provides a new, 

extended version of the approach outlined in [47] which addresses these areas. 

6.3 Orientation measurements from variable length 
structuring elements 

In this section an extension to method described in [47] is proposed. The aim is to 

improve the robustness of the technique to achieve more reliable orientation 

measurements. The data produced will also allow further measurements of the size and 

shape of objects to be achieved, which is described in the subsequent sections. The 
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current section describes only the use of variable length SEs and assesses the potential 

impact on orientation measurements.  

To prevent the types of error previously described, the use of variable length SEs is 

proposed, rather than the fixed length SE used in previous techniques. It is shown that 

the extended method improves the robustness of the approach when the dimensions of 

objects in the dataset are inconsistent. Limitations and measurement errors in the 

method presented in Section 6.2 are largely due to the difficulty in selecting a suitable 

length of SE. As a solution to this problem, this work instead proposes using a set of 

SEs which vary not only in terms of orientation but also vary in length, thus avoiding 

the need to find the ideal L. That is, a set of single pixel wide linear SEs, BθL, are defined 

where L and θ denote the length and orientation of the SEs in the set. Both length, L, 

and orientation, θ, are assigned multiple values within a suitable range. θ values can be 

set according to the same rational as described in [47] and summarised in Section  6.2 

of this thesis. L values should be odd numbers with a minimum value of at least 3, so 

that all members of BθL are symmetrical lines centred around a unique origin. A 

maximum length of SE, Lmax, should ideally be set to be at a similar length to the longest 

object in the image. In practise, setting this parameter could be performed using a 

representative set of training data before the parameter, Lmax is fixed for deployment. 

Since SEs that are too long to fit any objects do not affect measurements, setting this 

higher than necessary does not affect accuracy. However, it will have an impact on 

execution time as a result of redundant computation. As with the range of orientations, 

the step size between successive SE length parameters, SL, can be set to any value. 

However, a large step size can lead to quantisation errors if this parameter is set too 

high. It is determined empirically that the most accurate results are achieved when SL=2 

so L∈[3,5…Lmax]. As in Section  6.2, the morphological opening is used to measure 

how well BθL fits objects in the image.  

To measure orientation, the assumption is made that the longest SE that fits inside an 

object should only do so at a single orientation and that this orientation is parallel to the 

object itself. This is true for elliptical shapes such as the grains and platelets measured 

in this thesis but may not be for other applications where objects are of a fundamentally 

different shape. This eliminates the requirement to select an ideal L as this is instead 

automatically computed by the software algorithm. Additionally, the proposed 
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technique also enables the orientation of different objects to be measured by different 

lengths of SE within the same image. For a binary microstructural image, this means 

the orientation of each platelet is the orientation of the longest SE that returns an 

opening value of 1 when coincident with any pixel, x, in a given image. This can be 

defined as follows:  

𝐺(𝑥) = arg 𝑠𝑢𝑝𝜃𝐿 𝐿 𝛾𝐵𝜃
𝑓(𝑥) (6.2) 

This approach ensures that every measurement is performed using the most suitable 

length of SE which addresses the limitations of the method described in [63] and 

illustrated in Figure 6.5 and Figure 6.6. The novel extension to [63]  that is proposed in 

this thesis is, therefore, more robust to changes in object size meaning it can be used to 

analyse objects of a range of sizes and orientations.  

The improvement in terms of robustness that is offered by the proposed novel extension 

to the method presented in [47] can be demonstrated by measuring the synthetic binary 

images from Figure 6.2 and Figure 6.4 using the proposed variable length SEs. The 

difference in measurement accuracy between the original and new technique, when 

SL=2, Sθ=10° and Lmax=1000, is shown in Table 1. The proposed method does not affect 

the accuracy when objects are of similar dimensions but is drastically better when 

variations occur. The improved method produces almost perfect results for the more 

challenging images, with only a minor error caused by some irregularities in object 

shape. 

Table 6.1: Comparison of measurement accuracy between original and new technique 

when applied to the synthetic image shown in Figure 6.4 and Figure 6.6. 

Image Measurement Accuracy 

Original New 

Figure 6.3 100% 100% 

Figure 6.5 57% 98% 

 

Computational complexity is, however, greater than the previous version of this 

technique, as a larger number of morphological operations are performed. 

Morphological procedures can be performed quite fast using modern hardware and 
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algorithms so the significance of this complexity in terms of execution time would 

depend on hardware and datasets. The implications for microstructural analysis are 

evaluated in Chapter 8. Ultimately, it will depend on the application and the complexity 

of the image data to be processed to ascertain whether or not this extra computation is 

required for orientation measurements. Depending on the application, it may the case 

that faster, less exhaustive but less accurate methods can still produce suitable results. 

In titanium microstructures the shape of grains and platelets changes due to thermal and 

mechanical processes, of which a large variety already exist, with more being 

developed all the time. Therefore, difference in the width and aspect ratio of grains are 

possible and have been observed in some of the data used in this project. This makes 

the robustness of the variable length SE approach necessary to ensure accurate results, 

particularly given that even this method is still beneficial when compared to manual 

approaches, as demonstrated in Chapter 8. 

Another key advantage of the approach proposed in this thesis is that it is also possible 

to accurately measure far more than just object orientation. The method returns an 

opening value for each pixel for every orientation and length combination. As the data 

inherently has 4-dimensions (x-position, y-position, orientation and length) it is 

difficult to analyse in its raw form. Instead this work proposes projecting the data onto 

a 3-dimensional orientation space we call the FLOS. Variations in the response for each 

pixel can then be studied to identify the size, morphology and orientation of image 

features. An efficient method to analyse this data using the FLOS is presented in Section 

6.4. 

6.4 The Feature Length Orientation Space (FLOS) 

The concept of an orientation space, first introduced by Chen and Hsu [64], is a 3 

dimensional representation of an image where an orientation axis is added to the 

traditional x,y positional axis. Values in this space are normally the result of applying 

some rotationally dependant filter. Previous research has shown that the opening of 

rotational SEs can provide a useful orientation space. In those methods, a simple binary 

orientation space is created for grouping parallel objects by placing a binary marker at 

the correct orientation index [63]. This section proposes a more detailed orientation 

space where each entry in the 3D array is equal to the length of the best fitting SE at 
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that location in the original image. This is illustrated in Figure 6.7 which shows how an 

elongated and globular object are represented in orientation space where dark colours 

represent higher values. 

 

 

a) b) 

Figure 6.7: Example of how objects map to the FLOS where a) original image 

and b) the corresponding orientation space where colour indicates the value at 

each location in this space (equivalent to the diameter of the object at that 

orientation) 

For a binary image, the creation of the proposed orientation space, R, can be defined 

formally as the maximum length of SE to return a “1” for each pixel and orientation 

combination, as in Equation (6.3). 

𝑅(𝑥, 𝑦, 𝜃) = 𝑚𝑎𝑥𝐿 𝐿, (𝑥, 𝑦) ∈ 𝛾𝐵𝜃𝐿
𝐼(𝑥, 𝑦) (6.3) 

For a greyscale image, the opening value returned when a SE fits depends on the grey 

values of the object and surrounding pixels. This difference between the binary and 

greyscale implementation is illustrated in Figure 6.8, which shows that for a binary 

image the output is a clear “1” or “0” while in a greyscale image the output changes 

between 2 seemingly arbitrary values. 
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a) b) 

  

c) d) 

Figure 6.8: Opening value for linear SE at θ=180° for various lengths for a) a 

binary and b) a greyscale image 

Therefore, in order to create the same orientation space, the length used should not be 

the longest to return a “1” but the longest that is above a pre-defined threshold. In 

practise the same effect can often be achieved far simpler by instead thresholding the 

original image and creating Rθ as described in Equation (6.3). An alternative orientation 

space can, however, also be created by summing the morphological opening value at 

each pixel and orientation for all lengths, as in Equation (6.4).  

R(𝑥, 𝑦, 𝜃) = ∑ 𝛾𝐵𝜃𝐿
𝐼(𝑥, 𝑦)

𝑙∈𝐿

 
(6.4) 

 

This works for either binary or greyscale images and does not require any threshold 

parameter be set. However, the values are not informative of object size meaning that 

only orientation and shape could be assessed. As thresholding microstructural data to 

obtain binary images is normally successful, the remainder of this work will use only 

the orientation space defined in Equation (6.3). 
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6.5 Measurements from the FLOS 

The FLOS contains descriptive information of the dimensions of objects at each 

location and in a range of orientations. This allows a significant amount of information 

to be extracted from this space, without the need to segment the image into the 

individual objects being measured. Consider Figure 6.9 which shows the variation in 

values in the orientation domain for a pixel that lies inside an elongated object at an 

orientation of 90°.  The maximum, minimum and shape of this curve describe the object 

that the pixel under study belongs to. The method to extract this information is given in 

the remainder of this section. 

 

 

a) b) 

Figure 6.9: Values in the orientation space for a single pixel that lies within an 

elongated object where a) image object with x,y value marked, b) R for each 

orientation domain position at that location 
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6.5.1 Object orientation 

The orientation of image objects, fθ, is equal to the orientation of the longest SE that fits 

the object. This can be identified in the orientation space by calculating the location of 

the maximum value in the orientation domain for each pixel, as in Equation (6.5).  

𝑓𝜃(𝑥, 𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑅(𝑥, 𝑦, 𝜃) (6.5) 

6.5.2 Object dimensions 

The length of an object, fL, is equivalent to the length of the longest SE to fit within that 

object at any orientation. This is indicated by the maximum value in Rθ, as in Equation 

(6.6). The width of an object, fW, is equivalent to the length of the longest SE to fit the 

object at the orientation where this length is shortest. This is indicated by the minimum 

value in Rθ, as in Equation (6.7). 

𝑓𝐿(𝑥, 𝑦) = 𝑚𝑎𝑥𝜃𝑅(𝑥, 𝑦, 𝜃)  (6.6) 

 

𝑓𝑊(𝑥, 𝑦) = 𝑚𝑖𝑛𝜃𝑅(𝑥, 𝑦, 𝜃)  (6.7) 

6.5.3 Object Shape 

Variations in the orientation space are illustrative of the shape of objects. For an 

elongated feature, such as in Figure 6.9, there is a very clear peak value in the 

orientation domain. By comparison, an equiaxed feature returns more consistent values 

for each SE, as illustrated in Figure 6.10. 
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Figure 6.10: Values in the orientation space for a single pixel that lies within a 

globular object 

This information can be used to measure the elongation of image features. The variance 

in the orientation domain, as in Equation (6.8), provides a measure of the roundness of 

image features, Rd. As the variance for larger objects will be larger for bigger objects 

of the same shape this metric is normalised by dividing the result by the maximum 

value of Rθ, for each pixel. The ratio between maximum and minimum values, as in 

Equation (6.9) approximates the aspect ratio of objects, AR, provided they are elliptical. 

Note that as this definition considers only the maximum and minimum values this is 

more prone to noise or distortion than the Rd shape descriptor. For pixels where the 

maximum of R is 0 then then these equations should be disregarded and the output 

should also be 0. This should only apply to the image background. 

𝑅𝑑(𝑥, 𝑦) =
𝜎2

𝜃(𝑅(𝑥, 𝑦, 𝜃))
𝑠𝑢𝑝𝜃 𝑅(𝑥, 𝑦, 𝜃)

⁄  
(6.8) 

 

𝐴𝑅(𝑥, 𝑦) =
sup 𝑅𝜃(𝑥, 𝑦, 𝜃)

inf 𝑅𝜃(𝑥, 𝑦, 𝜃)⁄  (6.9) 
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6.6 Analysis of microstructural images using the orientation 
space 

It is described in Section 6.5 how the orientation space can be used to extract feature 

measurements on a per pixel basis. The proposed technique is intended to measure 

features relating to elongated alpha platelets. As such, the features of interest are, 

• Platelet width 

• Platelet orientation 

• Volume fraction of globular alpha 

• Size of platelet colonies 

The remainder of this section illustrates how these measurements can be aggregated 

into overall measurements of each microstructural feature, in line with the standards 

expected in microstructural analysis. This includes a novel algorithm for isolating 

colonies of alpha platelets based on the recorded data. Only qualitative data suggesting 

the effectiveness of these techniques are given in this section. Full quantitative 

validation is provided in Chapter 8. 

6.6.1 Thresholding 

The proposed analysis techniques measure platelets by finding the orientation and 

length at which a SE fits within the alpha phase. Thresholding techniques are used to 

create binary representations of an image based on the intensity of pixels, a property 

that is significantly different between the two phases in Ti-6Al-4V microstructural 

images. This can, therefore, be used to create a binary microstructural image where 

only alpha phase pixels have the value “1”. Unlike larger alpha grains, where intensity 

variations within each phase provide valuable information regarding grain boundaries, 

intensity variations in alpha platelets are typically not useful as their fine nature makes 

it difficult to distinguish useful information from noise and distortion. Correct 

thresholding, therefore, reduces the risk of errors from these sources. It also increases 

efficiency as the morphological operations used can be performed more quickly on 

binary data.  Automated thresholding procedures, such as adaptive version Otsu’s 

method [108], have previously been used to separate the alpha and beta phases in 
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titanium microstructures. A full explanation of the best application of thresholding is 

provided in Section 5.5.1. 

6.6.2 Width of alpha platelets 

Applying the equation in Equation (6.7) to the orientation space gives a 2D image, 

fW(x,y), where the value of each pixel equals the measured with of the object that pixel 

lies within.  The result of applying this to a microstructural image from the titanium 

dataset is shown in the visualisation Figure 6.11, where warmer colours represent wider 

platelets.  

  

a) b) 

Figure 6.11: Width map produces by the new technique where a) original image 

and b) colourmap of width 

The image presented makes it easy to qualitatively asses where the widest and 

narrowest features are in the image. However, the purpose of this work is to determine 

the width of platelets in microstructures quantitatively. This is normally measured by 

the mean width of platelets in the image. This can be computed simply as the mean 

value of pixels in fW(x,y). As fW(x,y) is 0 for all pixels in the image background, only 

non-zero values should be considered when performing this calculation. 

6.6.3 Orientation Measurements 

Applying Equation (6.5) to the orientation space gives a 2D image, fθ(x,y), where the 

value of each pixel equals the measured orientation of the object that pixel lies within.  

This can be displayed as a visualisation of platelet orientation such as the colourmap 
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shown in Figure 6.12, where the colour of each pixel corresponds to the orientation of 

its parent platelet. 

 

  

a) b) 

Figure 6.12: Orientation map produced by the new technique where a) original 

image and b) colourmap of orientation 

As with the width measurements, this image makes it easy to identify qualitatively the 

most significant orientations in the image and where deviations in orientations occur. 

However, it is again necessary to compute orientation information quantitatively. In 

this case the mean value is not informative as orientation values existing in a finite 

field. Therefore, a histogram representation of how frequently each orientation occurs 

is typically most useful. As before a value of 0 degrees is uninformative as this 

represents the background of the region. Hence it is important to measure orientation 

through the range 10-180° and not 0-170°. 

6.6.4 Separation of globular alpha 

Separation of globular alpha has two purposes in microstructural analysis; determining 

globular volume fraction and ensuring that globular and elongated objects are 

measured separately. Applying Equation (6.8) or Equation (6.9) to the orientation 

space gives a 2D image, where pixel values are informative of the shape of the object 

that pixel lies within. With both methods, higher pixel values are returned for more 

elongated grains. An example of this, using Equation (6.8) is given in Figure 6.13. 
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a) b) 

Figure 6.13: Globularity map where a) original image and b) greyscale 

representation where higher intensity equates to more elongated structures 

The image itself makes it easy to identify qualitatively where the most globular grains 

exist. Quantitative measurements can be achieved by thresholding this image. The exact 

threshold, Ts, used will depend on the application and what amount of shape variation 

is allowed for a grain to be considered globular. The globular volume fraction can be 

computed as the area below the threshold as percentage of the total alpha phase area, 

found by the sum of all elements in the binary image, produced by the initial 

thresholding of the microstructural data, described in Section 6.5.1.   

𝑉𝑔 =
𝑅𝑑(𝑥, 𝑦) < 𝑇𝑠

∑ 𝐼𝑏𝑖𝑛𝑎𝑟𝑦(𝑥, 𝑦)
 (6.10) 

 

As the globularity of grains is based on the variance of measurements across all angles, 

rather than the length to width ratio, it is difficult to intuitively link the value to a 

particular shape or aspect ratio. This means the threshold between globular and 

lamellar grains, Ts, must be chosen experimentally. Although this may initially appear 

to introduce subjectivity, once a threshold has been set this can be kept constant and 

applied consistently to all grains in every microstructure so eliminates the subjectivity 

between subsequent measurements, that exists in manual approaches currently 

deployed to measure these features. This automatic segmentation of globular alpha 

from platelets is particularly useful as it enables width and orientation measurements 
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based on globular grains to be ignored. This previously required manual corrections 

[11].  

6.6.5 Colony measurements 

The technique proposed in this section measures individual platelets but cannot be 

used to directly measure colonies, as it cannot inherently distinguish colony boundaries 

from platelet boundaries. However, as colonies consist of a cluster of adjacent, parallel 

platelets, the orientation information, provided by this technique, can often be used to 

compute regions representing colonies. The aim is to mark individual platelets of the 

same orientation and then join any that are adjacent to each other into a single 

connected region representing a colony, as in Figure 6.14 a)-c). This concept was 

previously presented in [6] but measurement accuracy was inconsistent, in part due to 

inaccuracies in the initial orientation measurements which are improved using the new 

technique proposed in this chapter. There were also difficulties isolating parallel 

platelets as this was done by searching for peaks in a histogram of all orientation 

values, which would not exist if platelets had an even variety of different orientations. 

In the proposed new approach, the orientation space makes it easier to isolate parallel 

platelets as they each exist on a separate orientation plane within the multidimensional 

space. Furthermore, false orientation measurements due to noise are spread across all 

planes which reduces their impact on results. These factors allow the new approach to 

group similarly orientated platelets together more reliably. The algorithm for 

identifying colonies based on the orientation response is given below, with an 

illustration of its operation provided in Figure 6.14.  
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Algorithm 2: Group platelets into colonies 

Input: orientation response, wmax, cs 

Output: colonies 

1. Apply a threshold to the orientation response, Rθ, to create a 

binary representation where a 1 designates the 1 or more most 

probable orientations at each x, y location 

2. For each θ in the orientation space 

a. Perform a morphological closing with a linear SE 

perpendicular to θ of length w 

3. Find the largest 2D region in all planes of the orientation 

space 

4. For all regions larger than cs% of the largest colony 

a. Add in adjacent regions that are only 1 orientation 

measurement different 

5. Fill any fully enclosed holes in the region 

6. Add region to output and remove any pixels in its location 

from the original orientation space 

7. Measure regions within boundaries 

 

Two parameters are required to allow the algorithm to decide which platelets should 

be grouped together and which should not. These are, the maximum width between 

platelets to be considered adjacent, wmax, and the minimum size of a cluster of platelets 

to consider as a colony, represented as a percentage, cs, of the largest colony in the 

image. An absolute value of colony size could also be set, however, a percentage of 

the largest colony is used for two reasons. Firstly, it allows the algorithm to select a 

suitable size limit automatically based on the data it is presented so this would not need 

to be changed manually for each image. Secondly, this parameter would reflect the 

order of colony to be considered. For example, if several colonies of around 100μm 

exist then colonies of 10μm are likely to be considered as secondary order colonies 

and may not be included in measurements, while if the largest colonies where 10μm 
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then these would be first order and should be measured with colonies around 1μm and 

less more likely to be ignored. The cs parameter makes this option available to the 

materials scientist to adjust depending on their analysis requirements. 

The proposed algorithm applies a threshold to the orientation space to create a binary 

representation where for each pixel a “1” exists only on the orientation planes of the 

most probable platelet orientations. In the simplest case, the threshold can be set as the 

maximum value for each pixel. In some cases, there may be two equally likely 

candidate orientations even when the threshold is set to the maximum value for that 

pixel in orientation space. As the aim is to merge roughly parallel adjacent platelets 

onto a single colony, the pixel is marked as a “1” for both orientations in the binary 

orientation space. It is also possible to include values within a percentage of the 

maximum value. For example, for Sθ=10° a platelet at approximately 15° would return 

similar values for both 10° and 20° so it can be beneficial mark both in the binary 

orientation space. This would make the algorithm more lenient in how similarly 

orientated a platelet must be to be included in the same colony, which is particularly 

useful when platelets are not completely straight.  

Once the orientation space has been binarised, adjacent platelets are then joined by a 

morphological closing each orientation plane by a SE a single pixel wide, of length 

wmax and of orientation perpendicular to the current plane, as shown in Figure 6.14 b) 

and c). To prevent nearby colonies from merging the largest connected component 

(grouping of platelets) in any single orientation plane is then identified and isolated. 

The remainder of the algorithm is applied only to this region to produce a marker for 

that corresponding colony. Any adjacent regions from neighbouring planes are added, 

as in Figure 6.14 d). Any holes in the resulting colony are then filled, as in Figure 6.14 

e), and the pixels in this region are set to zero for all planes to prevent this colony 

merging to any adjacent colonies. All pixels within the area of the marker are set to 

zero in the orientation space and the same process is repeated with the new largest 

connected component until all colonies within cs% of the largest colony are located 

and can then be measured. The boundaries of the resulting colony regions are shown 

in Figure 6.14 f). While computing markers individually rather than simultaneously is 

less efficient, this approach was necessary to prevent the erroneous merging of 

separate colonies found when apply other techniques to our data [63].  
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a) b) 

  

c) d) 

  

e) f) 

Figure 6.14: Illustration of colony identification where a) original image, b) binary orientation 

space where θ=30°, c) closing to join platelets, d) largest region with adjacent pixels added e) 

final identified region with holes filled, f) result when the processes is repeated for all regions 
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6.7 Summary 

A new method for measuring a range of features of alpha platelets has been proposed. 

This is achieved by developing extensions to existing methods of measuring the 

orientation of thin structures in images and adding new data processing steps to also 

measure size and shape. To do this the image is probed by a set of SEs of varying 

lengths and orientations, with the morphological opening used to determine how well 

each SE fits each object. This improves the results that could be achieved by an existing 

approach where only a single length of SE is used, which was shown to limit the 

potential of a similar existing technique [47] which has been extended in this work. 

This data is then projected onto a 3-dimensional orientation space where each element 

represents the maximum length of SE that can fit at that location and orientation. It is 

shown that this new multidimensional space can be interrogated to extract 

measurements of object orientation, size and shape on a pixel by pixel basis without the 

need to segment the image. The application of the new techniques to measures features 

of martensitic microstructures is also described in this section. The effectiveness of the 

proposed method is illustrated visually in figures showing heatmaps of Ti6Al4V 

microstructures transformed by these methods. A novel algorithm for locating, 

segmenting and measuring colonies of alpha platelets comprised of martensitic 

microstructures is also proposed.  Empirical trials to validate the accuracy and 

reliability of all of the above, are provided in Chapter 8. The weakness of this new 

approach is computational efficiency, as using a range of SEs of varying lengths applied 

at different orientations increases the range of morphological operations that need to be 

performed. In practical microstructural analysis, the run time will still typically be far 

less than any manual measurement with the added benefits of improved robustness and 

repeatability. For titanium microstructures the accuracy improvement over the fixed 

length method is significant, however, in other applications it should be considered 

whether this additional computation is necessary. 
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7 A SOFTWARE TOOL FOR 

MICROSTRUCTURAL 

ANALYSIS 

The purpose of the novel image processing techniques proposed in this thesis is to 

improve the analysis of Ti-6Al-4V microstructures. However, the existence of these 

techniques alone does not guarantee any improvement in analysis in real world 

scenarios. Like many techniques of this type, proper use of the new algorithms requires 

the appropriate setting of parameters and awareness of which methods are suitable to 

each dataset. It is, therefore, critical that the techniques proposed here are made 

accessible to a material science audience who may not be familiar with image 

processing or implementing software algorithms in general. 

To facilitate this, a software package is developed that embeds implementations of the 

methods presented in both Chapters 5 and 6 such that they can be used by non-image 

processing experts. The software will ask the user to specify the microstructure type 

under study from which a significant number of the parameters can be set 

automatically based only on this information. The user will then be given the option 

to adjust or set some optional parameters, to tweak the results dependant on the 

microstructure type. The parameter names and controls are kept as intuitive as 

possible. The software will also provide visualisation to help the user understand the 

effects of parameter changes. The exact parameter tweaks are recorded so that any 

measurements performed are repeatable. 

The software tool described in this chapter is used to apply the novel algorithms 

presented in Chapters 5 and 6 during the validation of the new algorithms presented in 

Chapter 8. This helps to ensure that the results presented are relevant to real world 

microscopy applications, as parameters are set in the same way as would be the case 

if these techniques were employed either in industry or academia.  
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The contribution of this chapter is a novel interface and control mechanism to 

intuitively set parameters and apply image processing techniques to microstructural 

analysis. 

7.1 Software requirements 

The main function of the software package is to make the techniques proposed in the 

previous chapters accessible to those with little or no knowledge of image processing, 

but a good understanding of material science. It is, therefore, important that the 

software interface is written in plain English with as little image processing 

terminology used as possible. A key aim of automated methods is to reduce both 

measurement time and the amount of effort required, from a material scientist. To 

achieve this aim, the ability to batch process large datasets is important. It is also an 

aim of the new analysis techniques to be both robust and repeatable. These goals are 

often contradictory as dealing with varied datasets will regularly require parameter 

changes, but such changes introduce the possibility to achieve different measurements 

from the same datasets. To balance these objectives, the software tool designed would 

store any parameter changes alongside the output data so that if measurements were to 

be repeated, or other measurements from the same dataset were required, the same 

parameters could be re-used. This allows for repeatability within a single dataset, while 

still allowing the software to be adapted to other datasets with different properties.  

7.2 Design and use of the software tool 

The proposed software tool has a user interface designed to walk the user through the 

steps involved in performing analysis. The layout of this interface is shown in Figure 

7.1. It can be observed that on the initial run of the software only the “Load Image” 

button is available to the user. Other options are visible, so users can familiarise 

themselves with the available features, but remain disabled until such time as their use 

is appropriate. This same theory is applied throughout, as only options that are useful 

at each stage are made active. The remainder of this section demonstrates the use of 

this tool and describes the benefits of the proposed methods of implementation. The 

segmentation of images of globular microstructures produced by a SEM were chosen 

as an example to illustrate the use of the software. If any step differs for other 
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microstructure types, then this difference also is described. This avoids the need to 

display an excessive number of figures while still providing all pertinent information 

about the operation of the software. 

 

Figure 7.1: Illustration of layout of software tool 

7.2.1 Image input 

The first step is to load in the images to be measured and prepare them for processing. 

To do this the user is initially presented with a “File Selector” window, shown in 

Figure 7.2, upon pressing the “Load Images” button. From here it is possible to 

navigate to the requisite folder and select either a single, or group of images to be 

measured, using standard file explorer procedures.  It will be shown later that the 
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software will provide the option to view measurements of individual images or a 

collation of the results from all images. Therefore, when measuring multiple datasets, 

where collated data about each set is required, each dataset should be loaded and 

analysed separately. 

 

Figure 7.2: File selector for choosing digital image of microstructure to assess 

The material scientist is then prompted to select the imaging technology (SEM or OM) 

and features of interest using checkboxes. This will inform the software which 

techniques from Chapter 5 and 6 are necessary to apply. Once the image is loaded the 

user will then be prompted to locate the scalebar by drawing a line over the bar, by the 

pop-up window in Figure 7.3. This makes this message impossible to miss and also 

provides instructions to make this process as intuitive as possible. Once the “OK” 

button is pressed this window will disappear to provide the user unobscured access to 

draw in the scalebar.  

 

Figure 7.3: Pop-up window requesting user indicate the location of the scalebar 
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At this point the pan and zoom options, located in the upper left corner of the software 

window, will become available to aid this task. As it is assumed that all images in each 

batch are from the same dataset this process only needs to be completed once, each 

time the software is run. An example of the scalebar manually drawn on the first image 

loaded is shown in Figure 7.4. 

 

Figure 7.4: Software interface with scalebar drawn after pan and zoom 

The user is then prompted to enter the scale written on the scalebar, alongside the units 

used, in the pop-up window shown in Figure 7.5. This information will allow the 

software to present measurements to the material scientist in SI units of different 

scales. This also makes it possible for the software to convert units as required, as is 

described later in this chapter. 
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Figure 7.5: Pop-up window requesting the scale and units 

As well as recording the scale through the length of scalebar drawn the software will 

also crop or edit the image so as to remove the scalebar based on the location 

information provided. For example, in the SEM images shown it is known that the 

scalebar exist along the bottom of the image therefore by cropping the image to a 

height finishing 50 pixels above the scalebar can remove this bar from automated 

measurements, as shown in Figure 7.6. In OM images the scale bar is normally shown 

as an overlay in the bottom right hand corner, so the image is cropped from the top left 

corner to a point 25 pixels left and upwards from where the user has drawn the scalebar. 

 

Figure 7.6: Main window with scalebar removed 
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7.2.2 Algorithm use and parameter selection 

Once the images have been loaded into the software the “Run” button will become 

available. For the segmentation example shown in this chapter there is also an option 

to set the minimum grain size expected, as seen in Figure 7.6. By default, this is set to 

1μm as this was found empirically to give good results in most microstructures in this 

study. This value is used to parameterise the merging algorithm proposed in Section 

5.5.2. After merging it is expected that grains below this size would no longer exist, 

however, if any still do then these would be discounted from measurement. It is 

advisable to always set this at least a little above 0, as there is no microstructural image 

where a grain of only a few pixels could be reliably measured, but even a few such 

detected regions could significantly affect the average results. If platelet analysis is 

required, then there will be an option to set the step size between the orientation and 

length of SE. As such terminology would only be understood by those who were 

familiar with the operation of the technique in Chapter 6, these are termed “Orientation 

Accuracy” and “Length Accuracy”. By default, these parameters are set at the level 

recommended in Chapter 6 with Orientation Accuracy at 10° and Length Accuracy at 

2 pixels, displayed in terms of the chosen unit of length. The length of the longest SE 

to use must also be set, which will determine run time. This is controlled by a 

parameter called “Max length”.  An option also becomes available, so the user can 

adjust images that appear as particularly dark or bright. A slider is provided to make 

this as intuitive as possible. A full description of the effect of each parameter is 

provided by hovering the mouse of the title of the respective option. It should be noted 

that all of these are optional and good results will normally be achieved using the 

default values. For example, in the validation in Chapter 8 it is shown that it is not 

necessary to adjust any of these parameters from the default values to obtain excellent 

results. The software highlights this with an “Advanced” heading above the options 

mentioned.  
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a) 

 

b) 

Figure 7.7: Main window showing a) segmentation result b) platelet orientation 
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Once the “Run” button is pressed the software tool will automatically apply the most 

appropriate technique to measure the image based on the microstructure and image 

type previously selected. A visualisation of the result will then be shown in the main 

window. For globular grain analysis the software shows an overlay of the segmentation 

of the grains on top of the original, as demonstrated in Figure 7.7 a). For platelet 

analysis the software will show a colourmap of the orientation of each platelet, as 

demonstrated in Figure 7.7 b).  For bi-modal microstructures where the both types of 

analysis are requested, the segmentation result overlay is shown by default with the 

colourmap of orientation visible when pressing the “Next Image” button in the 

software. 

At this stage, for globular grain analysis, the contrast slider disappears and is replaced 

by a slider called “Sensitivity”. This parameter controls the level of segmentation by 

controlling the ts parameters from the CGSA algorithm which specified the threshold 

used by the initial edge detection algorithm when computing markers. This is referred 

to as “Sensitivity” in the software as this is more intuitive to understand and referring 

to this as a threshold would only be sensible to those who knew the inner workings of 

the algorithm. This is a key parameter as it enables the user to determine the size of 

intensity change that indicates a grain boundary. It has been determined empirically 

that, unlike most other parameters used to control the techniques presented in this 

thesis, the optimal value of sensitivity differs slightly for each dataset. No similar 

parameter exists for platelet analysis as the most accurate result is always achieved 

provided that the step sizes and width factor is left at the default value. Fortunately, 

the speed of the segmentation algorithm allows for intuitive adjustments to be made to 

the segmentation by using the sensitivity parameter and observing the output 

segmentation result. Upon release of the sensitivity slider the segmentation results will 

update showing the material scientist the new segmentation result as a function of 

varying the “Sensitivity parameter”. A loading screen will inform the user of progress 

as this may take several seconds. By panning and zooming the image using the controls 

provided, the effect of sensitivity adjustments on segmentation can be easily observed 

allowing the best setting for this parameter to be determined by a material scientist.  

This is demonstrated in Figure 7.8 which shows the difference his parameter makes, a 

few changes in grain boundary detection manually annotated with yellow arrows.  
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a) 

 

b) 

Figure 7.8: Illustration of segmentation adjustment where a) is the default 

position b) is a lower sensitivity and yellow arrow indicate locations of 

segmentation change 
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The minimum grain size parameter can also be altered post segmentation. The 

“show/hide label” button can also now be used to generate a display indicating where 

each alpha grain is in a different colour, making it easier to distinguish which grains 

are considered in the final measurement, as shown in Figure 7.9 . Controls are also 

provided to add or remove boundaries manually. This would allow segmentation errors 

to be manually corrected by an expert user in cases where extreme accuracy is required. 

Increasing the sensitivity can produce over-segmented results and which take more 

time to process, particularly at the region merging stage. However, the time taken to 

perform an accurate segmentation of the image typically does not depend on the 

aforementioned parameters and typical takes around 5-20 seconds, as will be discussed 

in Chapter 8. 

 

Figure 7.9: Illustration of labelled image 
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The technique for analysing platelets does not require an optimum parameter be found 

to achieve accurate results. Instead it is only necessary to set ws, controlled by the 

“Maximum Platelet Width” setting, to be at least equal to the widest platelet being 

analysed, with any value above this threshold achieving accurate results. However, 

this setting will affect measurement time with an optimum value, in terms of software 

efficiency, existing where the maximum platelet width is set correctly. There is value 

in setting this correctly as measurement of platelet widths where found to take 

considerably longer than grain segmentation, at around 4 minutes, as discussed in 

Chapter 8. One option available to optimise the software run-time is to process some 

data with this parameter set high, so as to be slow but accurate, and use the width 

measurements reported to choose a more efficient parameter for further analysis on 

that dataset. Alternatively, a materials scientist can use either a manual measurement 

or best guess at platelet width and then relay on the colourmap display to catch errors. 

This is illustrated in Figure 7.10 which shows how errors can be spotted from this 

visualisation. The parameter changes available for platelet analysis require the full 

algorithm to be run again to refresh results. If the user alters these settings and attempts 

to report results a pop-up window will warn that all results reported will be based on 

the previous settings. 
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a) 

 

b) 

Figure 7.10: Illustration of platelet orientation where a) shows inconsistency 

within platelets due to setting the maximum platelet width too small and b) is 

the corrected result 
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7.2.3 Reporting of results 

Once any parameter adjustments have been made, the “Report” button can be pressed 

to display measurements. A feature of the techniques described in this thesis is that the 

analysis procedures provide detailed information from which a range of properties can 

be measured. That is, the computational time required depends almost entirely in the 

initial technique so there is almost no additional computational effort between 

reporting a single property and reporting all properties measurable using that 

technique. Therefore, the report screen includes all of this data, based on the features 

on the features to measure initially selected by the user. In the case of globular alpha 

grains this means grain size and the number of grains. For platelet analysis, this means 

the mean platelet width and the primary (dominant) orientation of these platelets. In 

both cases the volume fraction of alpha phase and globular volume fraction are also 

computed. An example results window, for a bi-modal microstructure where both 

globular grains and platelets are measured, is shown in Figure 7.11. 

 

Figure 7.11: Results window 
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The on-screen controls allow the user to step through the data and distributions for 

different microstructures in the dataset, or to view the combined statistics. The 

segmentation, colourmap and labelled visualisations can also be viewed in this screen 

for reference so that the materials scientist can understand and have confidence in the 

source of the measurements. The “Save” button will then enable the exportations of 

all of this data for future reference. The option of 3 types of output are provided in a 

pop-up window (report only, detailed data and raw data) and the user can select any 

combination of data to export. The report will show only statistical data, such as grain 

size or platelet width, for the entire microstructure. The detailed data will save the 

statistics for each image individually. The raw data option will include the individual 

measurements of each feature in the image, for example the size of each grain, and 

includes the segmentation and colourmap previously shown in the interface. The report 

alone would match the amount of detail provided by existing manual methods so 

should be sufficient in most cases. However, the measurement techniques proposed in 

this thesis enables a far greater amount of information to be obtained which the detailed 

and raw data option will allow a materials scientist to exploit. 

7.2.4 Conclusions 

The software tool presented in this chapter provides a user-friendly way to make the 

image processing tools, proposed in previous chapters, available to material scientists 

for use in microstructural analysis. To achieve this, intuitive methods for selecting the 

parameters required by these techniques are proposed. The impact that the edge 

detection sensitivity parameter has on the algorithm provided initially appears like a 

weakness in the segmentation technique proposed in Chapter 5, as it was required to 

be adjusted between datasets to achieve the optimal results. However, the ease of 

manually setting this by qualitative evaluation using this software reduces the impact 

of this problem and, in fact, enables the software to be easily adjusted for a wider range 

of datasets than it would likely otherwise be capable of measuring. Although a degree 

of subjectivity is introduced by this, the parameters used are saved alongside any 

output data to ensure measurements are repeatable. It would also be possible to tune 

this parameter given some representative training data which could be used to optimise 

the edge detection threshold for a particular application. As most of the total 
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computational time is required by analysis techniques to gather data, rather than 

measuring features extracted from that data, the software is capable of outputting a 

wide range of information that would otherwise take multiple operations and analysis 

procedures to obtain by conventional methods. In Chapter 8 the use of this tool is 

explored further as part of a robust validation of the methods proposed in this thesis. 
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8 EXPERIMENTAL RESULTS 

AND VALIDATION 

This chapter validates the techniques proposed in this thesis through experimental 

trials on a dataset of Ti-6Al-4V microstructural images. Novel image processing 

techniques have been presented in this thesis that are designed to measure these 

microstructures. Chapter 5 describes new methods for measuring globular grains and 

Chapter 6 describes novel techniques for measuring platelets. As each technique aims 

to measure different features, the following chapter is split into two parts, one to assess 

each. The proposed new techniques have both been implemented in the novel software 

tool that was proposed in Chapter 7, which allows both techniques to be applied to 

microstructural analysis problems in an intuitive, user friendly way that can easily be 

adopted by materials scientists. Using the proposed novel software tool allows it to be 

tested in the process of testing and evaluating the novel techniques it contains and 

demonstrates the effectiveness of the software tool itself.  

The purpose of the techniques proposed in this thesis is to improve microstructural 

analysis, by providing an automated, repeatable and potentially faster alternative to the 

predominantly manual methods currently used. Validation of this is performed by 

measuring the properties of the microstructural data using the software tool and 

comparing the results with those produced by expert material scientists. If automated 

measurements match the measurements expert achieve with manual methods, the new 

techniques can be considered accurate. It can then be stated that the new methods are 

less labour intensive, repeatable and free from human error as these are inherent 

properties of an automated approach. The approximate time required to run these 

procedures is also assessed to determine the speed benefits of the new methods. For 

the measurement of features where an existing automated solution has already been 

identified, the proposed technique is also compared with this. 



173 

The algorithms designed in this thesis required innovations in the domain of image 

processing in order to achieve accurate measurements in titanium microstructural data. 

Segmentation of globular grains required a new algorithm with pre- and post- 

processing procedures aimed at reducing over-segmentation. Most notably a novel 

marker computation technique is proposed that performs very well when grains are 

clustered. Orientation and width measurements required an extension to existing 

methods, and new data processing techniques, to improve robustness when dealing 

with elongated structures of different sizes and aspect ratios. Therefore, in order to 

demonstrate these contributions, each section also includes a comparison with existing 

image processing procedures which were designed to measure similar features in 

image data. These procedures have not previously been applied to similar 

microstructural data, so the comparison only demonstrates the contribution in image 

processing terms and not in microstructural analysis. For the segmentation method in 

Chapter 5, a comparison is given between the accuracy of the segmentation itself and 

those produce by other techniques using known evaluation metrics. This requires a 

manually created ground truth segmentation, the creation of which is also described. 

The technique described in Chapter 6 takes measurements from an orientation space 

for which existing metrics to assess are not found in literature. Therefore, the results 

of this method are compared through raw measurements of each property. Conclusions 

are drawn about the relative accuracy of each of the techniques proposed in this thesis 

by comparing these to each other and to manually produced measurements.  

8.1 Dataset and software implementation 

The techniques proposed in this thesis are tested on a set of microstructural images of 

Ti-6Al-4V. The titanium samples were subjected to a variety of thermal and 

mechanical processes prior to capturing images of their microstructure. This produced 

microstructural variations typical of the kinds of variation expected in real world 

microscopy. All morphologies of microstructure described in Chapter 2 are 

considered, with images captured from both Scanning Electron Microscopes (SEM) 

and Optical Microscopes (OM). In total, titanium samples produced by 30 different 

experimental setups were used in the trials with 6 producing only globular 

microstructures, 18 producing bimodal microstructures and 6 producing only lamellar 
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microstructures. Bimodal microstructures are the most common microstructure type in 

the test dataset and are also the most useful for the following trials, as they show the 

widest range of measurable properties. For each sample up to 5 different images of the 

microstructure are captured, with 120 images used in the test dataset. An example of 

the different types of microstructure used are shown in Figure 8.1. As each technique 

is designed to measure particular microstructural features, and different 

microstructural images have different visible features, no single technique can be 

meaningfully tested on every image. Therefore, for each trial, only a subset of the 

available microstructural images, showing the relevant features, are used. A 

description of the type of image included in the subset used for each trail will included 

in the “Experimental Methodology” section of each trial. 

The automated image processing algorithms and software interface were implemented 

using the MATLAB programming language. The software was run in the Windows 10 

operating system on a laptop class computer with a i7-6650U 2.2Ghz processing and 

8GB of ram. The measurement times discuss in this chapter correspond to this machine 

and it is possible that faster or slower times may be achieved on different hardware. 
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a) b) 

  

c) d) 

  

e) f) 

Figure 8.1: Examples of Ti6Al4V microstructures where a) globular by SEM, b) bi-modal by SEM, 

c) lamellar by SEM, d) bi-modal by SEM where alpha grains are more elongated, e) bi-modal by 

optical where α/β laths are visible and f) bi-modal by optical where equiaxed alpha grains are more 

elongated 



176 

8.2 Segmentation and measurement of globular grains 

This section evaluates the effectiveness of the titanium grain segmentation algorithm 

proposed in Chapter 5. First, and most importantly, the accuracy of measurements is 

validated by comparison against those produced by expert material scientists using 

standardised manual methods. This will illustrate whether the aim of providing a 

reliable automated globular alpha grain measurement technique has been achieved for 

globular grains. This has not previously been achieved in the literature for this type of 

microstructure. Additional trials are then provided to examine the benefits offered by 

the proposed novel algorithm when compared to alternative techniques from image 

processing literature [5], [77] that could have been deployed instead. To do this, the 

accuracy of the segmentation is examined, rather than measurement accuracy, to 

maintain consistency with image processing literature. Finally, the optional functions 

within the segmentation algorithm are then evaluated to determine where and when 

they are best used. 

8.2.1 Experimental Methodology 

A dataset of fully globular and bi-modal microstructures is used in this experiment 

including both OM and SEM images. The images are divided according to the material 

samples they belong two. The new software tool is used to apply the CGSA, proposed 

in Chapter 5, to each image in this dataset. Measurements of the average grain size and 

globular volume fraction are reported per sample. The software allows an image to be 

produced, showing where it has detected grain boundaries. As described in Chapter 7, 

this provides feedback indicating how likely the result is to be accurate and allows the 

user to decide if any parameters need to be adjusted. For alpha grain analysis, the first 

image from each sample was used to set parameter, Es, by adjusting this parameter to 

find a suitable looking segmentation. Numerical results were not known at this stage 

and the parameter remained unchanged for all other images in that sample. The 

merging parameters Bc=0.4, Ti=10 and TG=1 were chosen by manual visual inspection 

of a few microstructures. These values reduced the effects of scratches and artefacts 

but, for generality purposes this was not refined to suit any particular microstructure 

type in this study. 

The new automated measurement approach is evaluated in two different ways.  
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First, the measurements of globular grains are assessed through comparison with 

measurements from expert material scientists using the E112 standardised 

measurement techniques, as described in Chapter 4. Measurements were performed on 

a sample by sample basis with metallurgists permitted to select the images from each 

sample they felt were most suitable to measure. These manual measurements included 

grains on the boundary of the image. Theoretically, these are only partial grains, so it 

may be in fact be beneficial to discount these from feature measurements. However, 

as these were included in the manual measurements, due to the needs of other projects, 

the software was also allowed to include these grains for consistency. Globular volume 

fraction calculations assumed any grain of aspect ratio less than 2 was globular, for 

both software and manual measurements.  To keep the comparison consistent, the 

software was set to only measure the same images selected by the metallurgist, rather 

than all images in the sample. When comparing the results, it is important to remember 

that manual measurements cannot be considered as the absolute truth, due to 

subjectivity, bias and human error. As such errors are difficult to quantify, the expected 

inter-operator variation defined in industrially recognized standards [29], [31] is used 

as an indicator of an acceptable range of measurement. For volume fraction, inter-user 

repeatability of +/- 10% is expected [31]  while grain size standards expect a variation 

of +/- 0.5G between measurement by different operators [29], which equates to +/-

16% in micrometres. As previously described, subjectivity is greater when elongated 

grains exist, so less variation would be expected in more globular microstructures. The 

difference between measurements is recorded in Table 8.1, Table 8.2 and Table 8.3. 

These results are colour coded with green indicating a close match, red indicating 

disagreement beyond what would reasonably be expected and amber indicating a 

difference in measurement that is on the limit of expected inter-operator variations. 

This experiment demonstrates that the new technique achieves the primary aim of this 

research and is capable of matching the results of an expert materials scientist in a 

shorter time and in a repeatable way.  

Second, the accuracy of segmentation is then evaluated by comparing the segmentation 

produced by the CGSA with a manually created ground truth using the F-score metric 

[117]. The aim of this later experiment is to validate the contribution made by the pre- 

and post- processing techniques applied to the Watershed Transform to image 
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segmentation, rather than to microstructural analysis. The use of F-scores facilitates a 

more precise study of segmentation accuracy than comparison of grain size 

measurements, as errors do not balance out. This is also more consistent with image 

processing literature. To provide context, results from the CGSA are compared against 

alternative Watershed Segmentation techniques with markers based on the h-minima 

transform applied to the distance transform and the Ultimate Opening (UO), as the 

literature suggests these techniques are the most suitable methods among exiting 

segmentation algorithms. Segmentation with markers based on h-minima has been 

used by Cheng [118], Jung [119] and Yang [99], among others, to segment similar 

images, such as those of clustered nuclei. Watershed Transforms with markers 

computed using the UO, has been applied to recent segmentation problems by 

Marcotegui [77], [78]. This technique is applied to segment large varieties of different 

dataset.  Although it has so far been less widely used on similar datasets as h-minima 

based methods, the UO has been applied to similar images containing cells and the key 

benefit of using both intensity and shape information. This was identified in the 

literature review identifies as a key feature for segmenting complex images, missing 

from several existing techniques, so is beneficial to include in this trial. F-scores are 

measured on a scale of 0-1 so improvements in accuracy and reliability can be easily 

observed. 

8.2.2 Ground Truth Segmentation 

To validate the accuracy of the proposed segmentation algorithms, the segmented 

image is compared to a manually created ground truth. The ground truth image in this 

case is a binary image where only alpha grains are “1” and all beta phase or grain 

boundaries are “0”. These were produced by an expert material scientist manually 

drawing in these boundaries on the perimeter of every grain in the image. This was 

done using image editing software with layer capabilities so that the boundaries were 

drawn only on a clean layer. This allowed the binary ground truth image to be created 

easily and ensure it was not corrupted by noise. A fill tool was then used to fill the area 

within hand drawn boundaries. This was done only for alpha phase grains, so that all 

beta phase regions are considered as background. An example of a ground truth image 

for a bi-modal microstructure is given in Figure 8.2. 
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a) b) 

Figure 8.2: Ground truth image where a) original image and b) manually 

created ground truth 

Several methods exist in the literature for comparing the automatically computed 

segmentation to the ground truth [117], [120]. This section uses the F-score, defined 

in Equation (8.3), as a metric of segmentation accuracy. The F-score is the weighted 

average of two other metrics called precision, defined in Equation (8.1), and re-call, 

defined Equation (8.2), meaning the score reflects both over- and under- segmentation 

errors. The popularity of this metric also means these results will be more widely 

understood and easier to compare with similar methods in published literature. The 

definitions of precision recall and F-score are given in terms of the binary classification 

descriptors true positives (tp), false positives (fp) and false negatives (fn).  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (8.1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (8.2) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
(𝛽2 + 1) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(8.3) 

 

Generally, when detecting objects, a correct identification is a tp, an identification of 

an object that does not exist is a fp and an object that is not detected is a fn. In image 
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segmentation, the detection of an object is not sufficient, as it is crucial to know 

whether or not the segmented area matches the ground truth area. Therefore, in order 

to use these metrics, it is necessary to classify each pixel as either a tp, fp or fn. A true 

positive would only exist if the pixel was not only detected but detected as alpha phase, 

but also detected as part of the correct grain. As the image is segmented into a large 

number of regions, this first requires both the ground truth and automatically computed 

segmentation to be labelled to uniquely identify each region. Each region in the ground 

truth is then matched to a region in the automated segmentation. This is done by 

finding, for each ground truth region, the segmented region with which it shares the 

largest area. Each region must be matched to only one other region. If any ground truth 

or segmented region is matched to multiple regions only the regions sharing the 

greatest number of shared pixels is kept as a match. The other regions are then matched 

to the remain regions with which they share the most pixels. This is described in 

Algorithm 3. 

An output image where each pixel, x, is labelled according to its binary classification 

is then calculated as follows; 

• Any location x where the label in the ground truth and automatic segmentation 

match are marked as a tp 

• Any location x where the ground truth image has a label, but the segmentation 

has no label is marked as a fn 

• Any location x where the segmentation has a label, but the ground truth has 

either no label or a different label is marked as a fp 

• Any location x where no label exists in either segmentation is marker as a tn 

An example of the result of this binary classification of a bi-modal microstructural 

segmentation when compared with the ground truth is shown in Figure 8.3. 
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Algorithm 3: Ground truth region matching 

Input: SGT: ground truth segmentation, SA: automatically 

computed segmentation (both with each region 

uniquely labelled) 

Output: GTP: ground truth pairs – each row is a region 

in SGT with the value in column 1 the best matching 

region in SA and column 2 the intersecting area 

Initial Pairing of Regions 

1. For i=1:max(SGT)  

2.     GTP(i,2) = 0 

3.     For j=1:max(SA)  

4.         If SGT(SGT==i)∩ SA(SA==j) > GTP(i,2) 

5.             GTP(i,1) = j 

6.             GTP(i,2) = SGT(SGT=i)∩ SA(SA=j) 

Prevent regions pairing to multiple other regions 

7. For i=1:max(SGT)  

8.    For j=1:max(SGT)  

9.        If GTP(i,1) == GTP(j,1)  

10.            If GTP(i,2) > GTP(j,2)  

11.                 GTP(j,1) = 0 

12.                 GTP(j,2) = 0 

13.            Else 

14.                   GTP(i,1) = 0 

15.                   GTP(i,2) = 0 

Re-assign regions that are no longer paired 

16. Delete successfully paired regions from SGT and 

SA.  

17. Repeat steps 1-16 until all regions are paired or 

not additional pairs are found. 
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a) b) 

 

 

c)  

Figure 8.3: Binary classification of microstructure segmentation where a) 

automated segmentation, b) ground truth and c) binary classification where 

white pixels are tp, light grey are fp, dark grey are fn and black are tn 

It is observed from this result that for bi-modal microstructures a large percentage of 

the image consists of tn. This is because the beta phase is easy to detect so in most 

cases is correctly not included in the segmentation. As the purpose of the segmentation 

algorithm is to find measurements of individual globular grains, this is not informative 

of segmentation accuracy, and its inclusion in accuracy metrics would result in a 

misleadingly high value in this case. This supports the decision to assess segmentation 

using the F-score as it does not account for tn values. The F-score can therefore be 

computed using the Equations (8.1), (8.2) and (8.3), where the tp, fn and fp values are 

a summation of how often each category appears in the binary classification image. 
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A key problem for the analysing segmentation accuracy is that ground truth is the 

opinion of a single material scientist of where grain boundaries lie. Many locations 

exist throughout microstructures where grain boundaries may or may not exist. There 

is often no clear agreement between material scientists as to the true nature of these 

hypothetical boundaries. It is, therefore, possible to record an error in such a case were 

the proposed algorithm may in fact be correct according to a different scientist’s 

assessment. An example is shown in Figure 8.4 of two different ground truths that 

could be created from the same image, each by different materials scientists. A result 

matching one ground truth completely would give errors in the other with no result 

satisfying both ground truths simultaneously.  

  

a) b) 

 

 

c)  

Figure 8.4: Example of a microstructure with two different ground truths 

generated by different materials scientists 

As a result, a segmentation that is as good as can possibly be achieved may not achieve 

the theoretically perfect F-score of 1. Another factor to consider here is that the F-

score metric punishes the algorithm for missing grains from the segmentation, i.e. 
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considering an alpha grain as part of the background. While this is of interest when 

evaluating segmentation accuracy, for microstructural measurements this would 

equate merely to the sub-sampling of grains and not necessarily cause any errors. It is 

also noteworthy that, provided that the segmentation algorithm is well balanced, in 

that the number of over- and under- segmentation errors are balanced, a small 

percentage of these may end up having minimal effects on measured results as many 

microstructural analysis procedures aim to measure the mean size of grains. Evaluation 

metrics normally do not account for this, which can lead to relatively low F-scores in 

segmentations that actually produce good measurements. For these reasons, the 

evaluation shown in this section provides a relevant comparison between segmentation 

algorithms but does not necessarily record accuracy scores that are informative of the 

accuracy of grain measurements. Conclusions about the accuracy of microstructural 

measurements using these techniques should, therefore, generally be made using the 

results experiment in Section 8.2.3, and not the analysis of segmentation accuracy in 

Section 8.2.4. 

8.2.3 Measurement accuracy 

In this section the accuracy of the microstructural measurements performed using the 

proposed segmentation technique are evaluated. The aim is to reveal how well the 

technique proposed can match the accuracy of expert material scientists. Accurate 

result in this section will validate the first reliable automated method for globular alpha 

grains in this type of microstructure and allow significant benefits to the 

microstructural analysis process. 

8.2.3.1 Grain size 

Overall, there is a good correlation in grain size measurements between existing 

manual procedures and the new automated analysis approach. For fully globular 

microstructures, grain size measurements were typically within 0.3µm for 4-5µm 

grains, as shown in Table 8.1. 
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Table 8.1: Grain Size Measurements of Fully Globular Microstructure 

Sample Grain Size (µm) Time (seconds) 

Manual Auto Difference 

1 4.72± 0.76 4.51 -0.21 19.45 

2 5.01±0.80 5.04 +0.03 17.46 

3 4.86±0.78 4.62 -0.24 19.54 

4 5.42±0.87 5.14 -0.28 18.99 

5 4.18±0.67 4.59 +0.41 20.19 

6 4.82±0.77 4.62 -0.2 16.89 

The greatest difference between measurements was 0.41µm, which is still comfortably 

within the expected inter-operator variation. This is a very positive result, particularly 

given that grains are tightly packed in these microstructures, which often makes 

automatic segmentation more difficult. For bi-modal microstructures most 

measurements also closely matched the manual results, with grain sizes of around 

10µm and disagreement between results under 0.5µm in most microstructures, shown 

in Table 8.2. However, there are several cases where results did not match as closely 

as they did for the globular microstructures. One possible reason for this is that many 

of the bi-modal microstructures in this study contained more elongated primary alpha 

than was seen in the fully globular microstructures. The boundaries of these grains are 

less clear, so subjectivity is expected to cause wider variations in these cases. 

Microstructures in samples 8 and 9 appear to have large numbers of elongated grains 

and also exhibit the largest difference between results. Despite this, no measurement 

lies significantly outside the expected inter-operator variation. Examples of the 

segmentation of different types of globular microstructure, from which these 

measurements are calculated, as shown in Figure 8.5. These images show a good 

quality of segmentation, reinforcing the high accuracy suggested by the similar grain 

size measurements. The segmentation images, particularly the OM image in Figure 8.5 

f) , also shows that beta phase regions and platelets are correctly discounted from the 

measured segmentation. 
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Table 8.2: Size and Volume Fraction Measurements of Bi-Modal Microstructures 

Sample Grain Size (µm) Time (seconds) 

Manual Auto Difference 

1 9.33 ±1.49 9.05 -0.28 3.79 

2 11.3 ±1.81 11.2 -0.1 3.45 

3 9.52 ±1.52 9.62 +0.1 2.5 

 4 8.81 ±1.41 7.55 -1.26 4.5 

5 11.4 ±1.82 10.64 -0.76 4.21 

6 10.74 ±1.72 10.5 -0.24 4.79 

7 10.06 ±1.61 9.84 -0.22 4.78 

8 11.57 ±1.85 9.58 -1.99 2.67 

9 12.04 ±1.93 9.93 -2.07 2.98 

10 8.45 ±1.35 8.04 -0.41 3.15 

11 9.45 ±1.51 9.35 -0.1 3.36 

12 9 ±1.44 9.26 +0.26 3.70 

13 11.2 ±1.79 10.1 -1.1 3.89 

14 10.25 ±1.64 9.99 -0.26 3.33 

15 10.97 ±1.76 10.89 -0.08 3.19 

16 12.97 ±2.08 12.94 -0.03 3.96 
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a) b) 

  

c) d) 

  

e) f) 

Figure 8.5: Segmentation of microstructures where a) original fully globular microstructure 

from SEM b) its segmentation, c) original bi-modal microstructure from SEM, d) its 

segmentation, e) original bi-modal microstructure from OM  showing visible platelets and f) 

its segmentation 
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The time required to produce these results is drastically reduced compared to manual 

methods. A typical bi-modal image containing approximately 150 grains, as shown in 

Figure 8.5 c), was measured by the software in 3.79 seconds while the materials 

scientists reported it took approximately 15 minutes to accurately measure the same 

image. Most manual measurements were produced as part of other research projects 

and precise measurements times for each are not available, hence this information is 

not included in the tables. The globular microstructures used in this study were 

exceptionally large, as shown in Figure 8.5 a), and a far larger number of grains are 

visible. In this case the measurement time in the software increased to up to 20.19 

seconds, as the software requires all 4000 grains in that image to be measured. Manual 

measurement times would remain at around 15 minutes, as the materials scientist could 

select to still only measure the required 300 grains. 

8.2.3.2 Volume fraction of globular alpha 

Globular volume fraction is calculated based on the same segmentation used to 

measure grain size, so can typically be computed in less than a second once grain sizes 

are already known. The automated measurements of the volume fraction of globular 

alpha initially appeared to be inaccurate, with almost all measurements falling outside 

the +/- 10% variation expected, as shown in Table 8.3. However, on closer inspection 

the discrepancy between manual and automated measurement was found to be very 

consistent, with the automated techniques always measuring globular volume fraction 

higher than the manual methods and this difference usually being approximately 10%. 

It is also observed that, subsequently, variations in volume fraction between each 

sample are approximately the same regardless of the measurement techniques being 

used, as shown in Figure 8.6. This suggests both manual and automated measurements 

give meaningful information about the microstructure but that some form of bias is 

causing measurements to disagree. A likely cause of this is the difference in how the 

length and width of grains are selected for measuring aspect ratio. The software fits an 

ellipse to the grain giving a length and width that are perpendicular to each other, with 

the width representing the widest part of the grain. In manual approaches placing the 

length and width is done subjectively, therefore, length and width may not be perfectly 

perpendicular, and the width measurement may be performed at a narrower section of 

the grain. This would result in higher aspect ratios for manual measurements and a 
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lower percentage of grains being classed as globular, as seen in the results in this 

section. 

Further experiments would be required to investigate this and determine which method 

of measurement gives the true globular volume fraction. However, for developing an 

automated tool for analysing microstructures the ability to measure the same 

differences in volume fraction between microstructures as an expert material scientist 

would measure is sufficient to show the new technique provides useful information. 

Furthermore, due to the predictable effect of bias, the software can be calibrated, by 

reducing all automated measurements performed by 10%, to give results that are 

consistent between each measurement approach. This allows measurements from 

manual and automated methods to be compared without the effect of bias. The 

software is calibrated, rather than the manual measurements, so that all measurements 

are consistent with what would be achieved by an expert material scientist. However, 

the subjective nature of manual techniques means it is not known if this is the absolute 

truth.  Further investigation is also required when applying such calibrations in 

practice, as the appropriate calibration level may differ for other datasets. With this 

calibration applied all results are within the expected inter-operator variation, showing 

the software is capable of matching the measurement of expert material scientists. 
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Table 8.3: Volume Fraction Measurements of Bi-Modal Microstructures 

Sample 

Volume Fraction of Globular Alpha (%) 

Time Manual Auto Difference Auto -10% 

Calibration 

Difference 

1 44±4.4 56 +12 46 +2 3.79 

2 70±7 80 +10 70 0 3.45 

3 62±6.2 74 +12 64 +2 2.5 

4 52±5.2 68 +16 58 +6 4.5 

5 51±5.1 64 +13 54 +3 4.21 

6 62±6.2 75 +13 65 +3 4.79 

7 64±6.4 75 +11 65 +1 4.78 

8 46±4.6 56 +10 46 0 2.67 

9 48±4.8 59 +11 49 +1 2.98 

10 47±4.7 56 +9 46 -1 3.15 

11 54±5.4 65 +10 55 +1 3.36 

12 57±5.7 69 +12 59 +2 3.70 

13 71±7.1 82 +11 72 +1 3.89 

14 67±6.7 73 +6 63 -4 3.33 

15 64±6.4 71 +7 61 -3 3.19 

16 48±4.8 60 +12 50 +2 3.96 
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Figure 8.6: Graph showing variations in manual and automatic measurements 

of globular volume fraction 

8.2.3.3 Comparison with existing commercial software 

To further demonstrate the benefits of the new approach, a comparison is performed 

between the proposed technique and an existing algorithm, freely available online for 

use within the MIPAR software developed by Sosa et al. [36], more details on which 

can be found in Section 4.1.2.3. The “Grain Segmentation 1” algorithm within this 

software was selected for comparison as, it was believed to offer the best available 

solution for automating the analysis of globular grains at the time of writing. This 

belief is based on the algorithm being advertised for general metal segmentation and 

the strong results it achieved on initially similar looking data and it should be noted 

the MIPAR team have never directly made this claim. It should also be noted that part 

of the MIPAR service is to create new “recipes” using their software which can be 

provided to MIPAR users to process their own specific images for a variety of 

applications. The comparison presented in this thesis is not with the service the MIPAR 

team could provide but with the algorithms that already exist and are available through 

their recipe store. Therefore, this comparison does not attempt to review this software 

or its ultimate capability.    
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Both the MIPAR recipe and the segmentation technique proposed in this thesis were 

tested on images from the dataset used in thesis and images from the dataset provided 

with the MIPAR software. For both techniques, the available parameters were set to 

give what the operator perceived to be the best result. It is found that the MIPAR recipe 

works best on Sosa’s microstructures and the new methods proposed in this thesis 

work best on the dataset used here. This is unsurprising since each algorithm was 

design specifically for those datasets. However, the error rate each technique achieves 

on the other dataset is significantly different, with the method proposed in this thesis 

appearing to be significantly more robust. Investigation of the algorithms and 

microstructural datasets show clear reasons for this. Some of the microstructures in 

this study are particularly complex and boundaries are less clearly visible than those 

in the microstructures the MIPAR recipe has been designed to work with. 

Segmentation results and subsequent grain measurements for such a microstructure are 

shown in Figure 8.7 and Table 8.4 respectively. Grain measurements of the MIPAR 

microstructure are given in pixels as no scale bar was present in the image. The grain 

segmentation algorithm implemented in MIPAR searches for dark pixels in the image 

which in their data indicates boundaries. However, in the dataset used in this thesis, 

dark pixels do not indicate boundaries, therefore, the software will predominantly 

detect noise, causing over-segmentation. The novel algorithm presented in Chapter 5 

searches not for dark lines but instead for regions of high intensity variations, with the 

shape of these regions then used to estimate grain locations. These features are present 

in microstructures from both datasets and results in the new approach therefore achieve 

a better result on Sosa’s microstructures than the MIPAR recipe achieves on ours. This 

suggests the segmentation procedure proposed in Chapter 5 is more generic and better 

suited to measuring different types of microstructure, particularly when boundaries are 

unclear. It should be noted that the MIPAR software package itself is designed to allow 

different algorithms to be created and added over time, including, potentially, the one 

proposed in Chapter 5. In fact, since the publication of the work in Chapter 5 [6], 

another research team has made use of the functions described by implementing them 

within MIPAR’s user interface [113]. 
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a) b) 

  

c) d) 

  

e) f) 

Figure 8.7: Segmentation comparison between the new methods and a recipe 

from MIPAR software where a) and b) are an original image from each dataset, 

c) and d) is the segmentation by the existing MIPAR recipe and e) and f) is the 

segmentation by the new method 
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Table 8.4: Comparison of measurement accuracy of the new segmentation 

technique with an algorithm from existing material analysis software 

 Manual 

Measurement 

MIPAR 

Measurement 

Measurement for 

the new technique 

 Microstructure 

from this thesis 

4.72µm 2.86µm 5.18µm 

Microstructures 

from MIPAR 

dataset  

85 pixels 88 pixels 78 pixels 

8.2.4 Analysis of segmentation accuracy 

In order to measure properties of globular alpha grains, an accurate segmentation 

technique, proposed in chapter 5, was designed to segment touching grains in noisy 

microstructural images. In this section, the benefits of the proposed method are 

demonstrated through comparison with existing image segmentation algorithms from 

other fields.   

8.2.4.1 Comparison of F-scores 

The F-scores achieved for segmentation performed by the new CGSA method, the UO 

and h-minima methods are given in Table 8.5. These results indicate that the CGSA 

achieves a higher level of accuracy overall than other methods in this test. This benefit 

is not evenly distributed, with certain microstructures seeing a greater accuracy benefit 

from the new approach than others. Most notably, the results indicate that the new 

algorithm is particularly useful for segmenting the larger clusters of grains most 

common in fully globular microstructures. 
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Table 8.5: Comparison of F-scores between the new method and existing 

techniques 

Image F-score 

New method Ultimate opening H-minima  

Bi-Modal 1 0.92 0.87 0.84 

Bi-Modal 2 0.89 0.89 0.85 

Bi-Modal 3 0.93 0.86 0.83 

Bi-Modal 4 0.91 0.89 0.88 

Bi-Modal 5 0.93 0.91 0.92 

Bi-Modal 6 0.92 0.90 0.91 

Fully Globular 1 0.85 0.65 0.64 

Fully Globular 2 0.77 0.71 0.66 

Fully Globular 3 0.86 0.67 0.66 

Fully Globular 4 0.84 0.70 0.66 

 

Bi-modal microstructures generally see reasonably accurate results from all methods 

with all achieving an F-score greater than 0.8. The new techniques are no worse than 

existing techniques in all bi-modal microstructures and better in most cases. In some 

microstructures, such as Bi-Modal 6 the existing methods are able to approximately 

match the results achieved by the new method. Meanwhile in Bi-Modal 3 the ultimate 

opening is 7% less accurate. The reasons for these differences can be explained by 

examining visualisations of the different segmentation results. Figure 8.8 shows the 

segmentation of the Bi-Modal 6 microstructure. The results show the segmentation to 

be broadly similar between the different methods with the exception of a small area of 

significant over-segmentation, marked by the yellow arrow, that exists in all but the 

new CGSA segmentation. 
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a) b) 

  

c) d) 

Figure 8.8: Segmentation of bi-modal microstructures using different 

techniques where a) is a Bi-Modal 6 image, b) segmentation using CGSA, c) 

segmentation using h-minima markers and d) segmentation using the UO 

markers 

Figure 8.9 shows an image of the Bi-Modal 3 microstructure which is more complex 

than Bi-Modal 6 in a few ways. The first is that intensity variations in Bi-Modal 3 

appear to be slightly greater, with more noise corrupting the data within the grains. 

The second difference is that the grains are slightly more clustered. While the overall 

segmentation appears OK, more errors are visible in the segmentation of Bi-modal 3 

by existing methods than in Bi-Modal 6. As the distance transform does not include 

sensitivity information it struggles the most to separate the tighter clusters of grains in 

“Bi-Modal 3”, as demonstrated by the lower F-score and visible under-segmentation 
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in Figure 8.9 d). As the ultimate opening can use intensity information it does not show 

much under-segmentation. However, it appears to be more susceptible to noise as 

demonstrated by Figure 8.9 c). The segmentation using the techniques proposed in this 

thesis, shows both fewer errors and a more balanced segmentation where no type of 

error appears clearly more common. This suggests that the novel algorithms presented 

are robust to differences between datasets.  

 

  

a) b) 

  

c) d) 

Figure 8.9: Segmentation of bi-modal microstructures using different 

techniques where a) is a Bi-Modal 3 image, b) segmentation using CGSA, c) 

segmentation using h-minima markers and d) segmentation using the UO 

markers 
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The robustness of the new algorithm is further demonstrated by the larger difference 

in F-scores observed when segmenting images of fully-globular microstructures. It is 

clear that segmentation of these microstructures is more challenging with all methods 

seeing a drop-in accuracy compared to bi-modal microstructures. However, the 

reduction in accuracy shown by the new CSGA is far less than the reduction in 

accuracy when using existing techniques. The reasons for this can be observed in 

Figure 8.10 which gives examples of one of these microstructures and their 

segmentation by each method. 

The fully globular microstructures have a far greater amount of clustering between 

grains, as shown in Figure 8.10 a), with the ground truth segmentation shown in Figure 

8.10 b). This makes segmentation more challenging than in bi-modal microstructures.  

From Figure 8.10 c), d) and e) it can be observed that the new segmentation looks more 

accurate than existing methods, in line with what was shown by the F-scores. As with 

bi-modal microstructures the method using the h-minima of the distance transform 

suffers most from the clustering of grains, due to the lack of shape information 

provided by alpha/beta grain boundaries. As a result, under-segmentation errors can 

be clearly seen though-out the image. The UO again has a higher rate of over-

segmentation errors, which is particularly visible towards the centre and lower right-

hand corner of the image. However, for these complex microstructures there also 

appears to be more visible under-segmentation that was encountered in bi-modal 

microstructures.  
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a) b) 

  

c) d) 

 

 

e)  

Figure 8.10: Segmentation of bi-modal microstructures using different techniques 

where a) original image, b) ground truth segmentation, c) segmentation by the new 

method, d) segmentation by ultimate opening and e) segmentation by h-minima 
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The cause of errors in existing methods can clearly be seen by studying the markers 

produced by each approach, shown in Figure 8.11. Markers from the h-minima of the 

distance transform method, shown in Figure 8.11 d), clearly marks fewer regions than 

the proposed new technique, shown in Figure 8.11 b). This explains the higher rate of 

under-segmentation in the h-minima based Watershed Transform when compared to 

the proposed approach. The ultimate opening, whose markers are shown in Figure 8.11 

c), has a few more markers than necessary for some grains, such as in the lower right-

hand corner, and hence more visible over-segmentation. However, in other areas it also 

still produces fewer markers than requires, and fewer than achieved the new technique. 

This issue most commonly occurs when grains are clustered such that the complete 

cluster forms a globular shape, such as in the lower middle section of the image. When 

clusters occur in this way, the granulometric functions on which ultimate openings are 

based will find a single disk-shaped SE removing the entire cluster and hence generate 

a single marker. The CGSA proposed in this thesis uses markers is based on intensity 

changes and takes an edge detection function as its initial input from which to build a 

marker. Markers are, therefore, determined by the magnitude of intensity change 

chosen to detect and shape of those detected edges only. It does not study the shape of 

the area outside of that partially enclosed set of edges. In other words, the arrangement 

of grains and shape of that cluster has no effect on the segmentation result provided 

the boundaries between them are at least partially detectable. This makes the proposed 

technique more robust, which is important in highly clustered microstructure such as 

those of the fully globular type.  This robustness is illustrated by the graph in Figure 

8.12 which shows how the F-score of segmentation varies through different datasets 

for each technique. While other methods see a significant drop for some datasets, the 

performance of the proposed approach is far more consistent and has a smaller drop in 

accuracy in these scenarios. 
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a) b) 

  

c) d) 

Figure 8.11: Markers used for segmentation in Figure 8.10 where a) original 

image, b) markers computed using CGM , c) markers computed by ultimate 

opening and d) markers computed by h-minima 
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Figure 8.12: Graph of variation in F-score by image 

8.2.5 Evaluation of optional functions 

In the technique described in Chapter 5 there are two post-processing steps in the 

algorithm that are considered as optional, the artefact detection method and the 

additional splitting function. The reason these are consider optional is that both 

methods were judged to not improve results universally across the full titanium dataset. 

This occurs as artefacts are rare, existing in only a few of the microstructures studied, 

meaning the effect of artefact detection cannot be fully evaluated. As the Watershed 

Transforms normally over-segments more than it under-segments, increasing 

segmentation through the additional splitting would normally not lead to better overall 

measurements. An issue common to both optional functions is that false positives are 

possible when using them and the number of potential errors to actually solve, are 

relatively low. This means even a few false positive from these methods could 

potentially decrease the overall accuracy of results.  This section aims to explore this 

and evaluate the extent of the benefit, or detriment, of these methods and to which 

microstructures they are best applied.  
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8.2.5.1 Additional Splitting 

The additional splitting function is evaluated by comparing the F-score for each 

segmentation result before and after this technique is applied. The results are shown in 

Table 8.6. The F-score is a useful metric for this comparison as it will inform about 

segmentation accuracy directly, rather than the overall effect on measurements. This 

means that provided more errors are fixed than created by this technique the F-score 

will be higher. If the result is already over-segmented, then microstructural 

measurements would not necessarily show this.  

Table 8.6: Comparison of F-score with and without additional splitting function 

 Without splitting With splitting Difference 

Microstructure 1 72 76 +4% 

Microstructure 2 76 81 +5% 

Microstructure 3 76 78 +2% 

Microstructure 4 91 88 -3% 

Microstructure 5 89 87 -2% 

Microstructure 6 92 92 0% 

Microstructure 7 89 87 -2% 

Microstructure 8 92 91 -1% 

Microstructure 9 90 91 +1% 

The proposed splitting function shows clear benefit in some cases; however, results 

are not consistent and it appears to cause errors for some microstructures. The reason 

for this is that this function uses boundary shape alone to add new boundaries but such 

concavities are not always indicative of true grain boundaries, meaning both true and 

false positive boundaries are possible. It is noteworthy that the benefits came in images 

that were less accurately segmented, with F-scores below 80%, while cases showing 

an F-score greater than 90% had more errors introduced by this function than resolved. 

Additionally, Section 8.2.3.1 shows that for practical implementation, grain size 

measurements tend to be slightly smaller than expected due as under-segmentation 
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errors are slightly more common. This means that additional splitting may actually 

lead to less accurate aggregated measurements, even when the change in F-score is 

positive. All of this means it is not expected that this post-processing tool will be 

beneficial in all scenarios. Instead it is advisable to only use this function in difficult 

cases where there is little intensity change to indicate boundaries and clustering is high. 

This most often occurs in OM images and can be applied by a user via functionality in 

the new software tool presented in this work. A good example of the application of 

post-segmentation splitting is shown in Figure 8.13, which shows “Microstructure 2”. 

 

a) 

 

b) 

Figure 8.13: Example where additional splitting is beneficial where a) is original 

image and b) is new segmentation 
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8.2.5.2 Artefact detection evaluation 

The artefact detection function proposed in Chapter 5 is only applicable to a few 

images in this study, as such artefacts are quite rare. It is, therefore, difficult to conduct 

a robust validation of the effectiveness of this method. For this reason, this function is 

not included by default and instead left as an optional function in the final software 

tool. It was not possible to obtain a larger dataset of images containing these artefacts, 

as the exact conditions causing them to occur is not known. Qualitative verification 

can be performed by studying the visualisation of detected artefacts shown in Figure 

8.14.  

  

a) b) 

  

c) d) 

Figure 8.14: Detection of artefacts in microstructural images where a) and b) 

are original images and c) and d) show an overlay of the artefacts marked in 

red 
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It can be observed from this results that the detected method locates artefacts in the 

microstructures well. This alone is useful as such results could be used to alert the 

users to microstructural images in a batch that are potentially corrupted by these 

artefacts. However, as described in Chapter 5, preventing these from influencing the 

segmentation result is more challenging.  

Table 8.7: Improvement in segmentation accuracy using artefact detection 

techniques 

Image F-score (%) Grain Size Error (%) 

With artefact 

removal 

Without 

artefact 

removal 

With artefact 

removal 

Without 

artefact 

removal 

Microstructure 

1 

82 81 0% 6.1% 

Microstructure 

2 

87 87 2.7% 8.6% 

 

The results shown in Table 8.7 give a mixed impression of the effectiveness of the 

proposed method of dealing with artefacts in images. When the segmentation accuracy 

is assessed using the F-score metric the artefact detection appears to have almost no 

affect. However, the difference in measured grain size between automated methods 

and the ground truth decreases slightly when artefact detection is used. The reason for 

this appears to be that artefact removal methods remove gradient information at 

artefact locations. As a result, there is a reduction in over-segmentation errors when 

artefacts are at the centre of grains, however, an increase in under-segmentation errors 

when artefacts are close to the boundaries, as genuine information may be removed. 

The consistent F-score suggests that the total area of the image being correctly 

measured has not changed but that the over-segmentation had a more significant effect 

on results. Ultimately, it will depend on the image content whether the artefact removal 

methods proposed here are suitable. 
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8.2.6 Summary of globular grain analysis 

The results presented in this section confirm that the proposed image processing 

techniques can automate the measurement of microstructural images to a similar level 

of accuracy as can be achieved using existing manual procedures. In most cases the 

difference between measurements performed using existing manual techniques and the 

new automated procedures was less than 0.5um, a particularly strong result given the 

varied dataset. Measurement of globular volume fraction is also possible, using the 

new techniques. Some calibration was required to give matching results, however, the 

same difference in globular volume fraction between microstructures was found with 

or without this. The measurement time for either feature is significantly reduced, from 

around 15 min per image to between 3 and 20 seconds depending on the image. Not 

only will this reduce the resources required for microstructural analysis, allowing 

skilled material scientists to focus on other work, but the time saving is large enough 

that it would allow larger microstructural datasets to be analysed than would have 

previously been practical to measure. The automated nature of this approach also 

means repeatability is achievable, so long as no parameters within the software are 

changed. Furthermore, the software does not sub-sample grains in the image which 

typically results in far more grains being measured than using manual approaches. This 

increases the statistical reliability of results and prevents any potential bias effecting 

which grains are included in the sample.  These benefits are critical in industry where 

material manufacturers require fast results from analysis and for results to be 

independent from the operator performing the analysis. 

Ensuring automated techniques are accurate and robust to variations in microstructure 

is challenging. The new methods for globular grain analysis have been tested on 

microstructural images produced by different imaging technologies and of multiple 

microstructure types, subjected to a variety of thermal and mechanical processes. The 

results were positive, confirming that the proposed automated techniques are capable 

of measuring a wide variety of microstructures. Comparisons between the new 

techniques and a recent automated analysis procedure further demonstrated the 

superior generalisation of the proposed method. Although tested on microstructures of 

Ti6Al4V, this generality should allow the new method to be applied to a range of 

different microstructures by changing only a few parameters.  
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The segmentation accuracy was also measured using F-score. While several reasons 

were discussed as to why this is not informative of the accuracy of grain measurements 

it provides a good demonstration of the benefits of the proposed segmentation 

algorithm when compared to other image segmentation techniques. Specifically, it is 

shown that the new method performed better when more complex microstructures 

were studied and produced more consistent segmentation results overall. The analysis 

provided reveals that the novel marker computation method is a key reason for this. It 

is likely that this method to compute markers would be of benefit in other image 

segmentation applications featuring touching objects. 

Finally, the optional post-processing functions described in Chapter 5 were assessed. 

Result were not as positive in these trials, confirming the decision not to use them by 

default in the proposed novel software tool. However, several scenarios were discussed 

and demonstrated where the proposed functions would be of benefit. Therefore, their 

inclusion in this thesis and within the proposed software module provides an additional 

tool that can be deployed when necessary as determined by an expert user. 

8.3 Measurement and analysis of platelets 

This section evaluates the effectiveness of the titanium alpha platelet measurement 

techniques proposed in Chapter 6. First, and most importantly, the accuracy of 

measurements is validated by comparison against those produced by expert material 

scientists. This will illustrate whether the aim of providing a reliable automated 

microstructural analysis technique has been achieved for alpha platelets. Additional 

trials are then provided to compare the accuracy of these measurements against those 

achieved by other automated image processing methods to demonstrate the improved 

robustness achieved by the new image processing techniques. 

8.3.1 Experimental methodology 

The validation of measurement of lamellar microstructures are performed on both 

lamellar and bi-modal microstructures, where alpha platelets are visible in the 

microstructure.  

As in Chapter 6, Sθ was set to 10°, SL was set to 2 pixels and Lmax was set to 91 pixels 

for most images as this was found empirically to give the best results. In a few 
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exceptional cases it was instead set to 191 pixels when the unusually large objects 

exist, as explained in Section 8.3.2.2. This value was always set higher than any of the 

lath widths in the dataset so ensured accurate results as each image location was probed 

with a sufficiently long SE to only fit at a single orientation. The technique was used 

to extract 4 different microstructural properties, namely: platelet orientation; platelet 

width; colony size; and volume fraction of globular alpha. However, not every 

property was measured in each microstructure as some microstructures did not contain 

colonies or globular grains. Instead a subset of suitable microstructures was selected 

to test the measurement accuracy of each of the 4 microstructural properties.  

Measurements are compared with existing microstructural analysis method in Section 

8.3.2 and with existing image processing techniques in Section 8.3.3, in order to 

evaluate the potential contributions in each field. 

For microstructural analysis, the measurements performed using the proposed 

automated techniques were validated through comparison with measurements of the 

same features performed by expert material scientists. Platelet width and colony size 

were measured using the ASTM E112 standard with manually chosen line segments 

[29], with the mean size used as a metric for comparison. Globular volume fraction 

was measured by an expert material scientist marking every pixel within all grains in 

the microstructure as either equiaxed or elongated grain and calculating the percentage 

of marked pixels that were globular. This is similar to the point counting method 

described in the E562 standard, except it is more complete so gives a more accurate 

representation to compare the automated measurement with. Precise measurements of 

the length and width are not needed for computing globular volume fraction in this 

instance as all non-platelets are considered globular. For platelet orientation 

measurements, a material scientist used a protractor to manually measure what they 

believed was the primary orientation in the microstructure. If there was a significant 

secondary orientation, then this was also measured in the same way. This metric was 

chosen for comparison as the mean value, used as a metric for size-based 

measurements, is not necessarily meaningful for properties measured over a finite 

field, such as orientation. However, knowledge of which orientations of platelets are 

most common is known to be useful as this is studied in existing research [121]. 
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As producing accurate manual measurements of microstructural features is a non-

trivial task, and can contain elements of subjectivity and human error, it is important 

to allow for some differences between automated and manual measurements. In this 

validation, automated measurements are considered to be correct if they are within the 

margin of error expected in accepted standards. For size-based measurements, the 

E112 standard expects variations of +/- 0.5G, which equates to about 16% in um. For 

volume fraction, the E563 standard expects variations within 10%. No expected 

variation for the manual orientation measurements is known.  

In the field of image processing, all of the existing procedures of interest, identified in 

the literature review, for studying elongated objects, are used in applications where the 

data consists exclusively of such objects. In Ti-6Al-4V, a bimodal type of 

microstructure is common which contains both globular and elongated objects. The 

ability to filter out globular objects, gives the new algorithm a significant advantage 

over existing techniques in these cases. Therefore, in order to provide a fair 

comparison, and indicate only benefits that to the measurement of elongated structures 

such as platelets, bi-modal microstructures in the dataset are omitted here. The 

comparison with existing image processing techniques, described in Section 8.3.3, 

therefore, does not measure all the microstructural properties validated in Section 8.3.2 

but instead only investigates properties computed directly from platelets, i.e. width and 

orientation. Different techniques from the literature are chosen for the comparison of 

width measurements than orientation measurements, as the most suitable and recent 

methods did not measure both features. The platelets in the chosen dataset are often 

not perfectly straight and vary in size and aspect ratio within each image. This makes 

this application challenging and a good test of the robustness of image analysis 

methods. In addition to the titanium images a set of artificial images are also included 

in these trials. These images contain no noise and consist of perfectly straight laths. As 

the precise properties of the artificial datasets are known, their inclusion allows the 

relationship between measurement accuracy and particular image features to be 

studied. 

The improvement in orientation measurements is shown through comparison with 

existing methods described by Borocco et al. [63], which measures orientation using 

rotational SEs. These techniques have been shown very recently, in 2017, to be 
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accurate for measuring elongated structures in microstructural images of graphene. 

The objects measured in the existing work are extremely thin, are difficult to 

distinguish due to a low image resolution, in terms of pixels per object, and are not 

always perfectly straight. For these reasons it is believed this represents the state of the 

art for orientation measurement in microstructural data. However, preliminary trials 

suggested that this approach may not robust when the width of these structures cannot 

be predicted. The experiment establishes how acceptable or otherwise this weakness 

is for titanium microstructures and the extent of the benefit offered by the new 

technique. As the platelet analysis techniques proposed in this thesis are based on 

Borocco’s work, a comparison with this is important to demonstrate the contribution 

of the method presented.  

No very recent automated measurement for widths in microstructures were identified 

with the method from Collins et al. [11] published in 2009  being the most recent 

available. This method was, in-fact, first proposed by Tiley et al. [12] a few years 

earlier and also performs measurement using rotating elements, however, has 

documented problems measuring shorter platelets [11]. Despite this it is important to 

include this as it is tested on Ti-6Al-4V microstructures in the original work. These 

authors also cite a textbook by Russ et al. [55] for general image analysis that describes 

measurements of width in microscopic images using the distance transform, that is 

also relevant to include. Due to the age of these methods two, much more recent, 

methods used for width measurements in different applications are also included. A 

recent method, published in 2016, by Statella et al. [59] is selected as it has success in 

measuring the width of elongated features using granulometric techniques. Although 

the application, dust devils on images of the Martian surface, is very different, the data 

itself is relatively similar. A different width measurement approach proposed by 

Adhikari et al.[56] is also used in the comparison. This method was used to measure 

the width of cracks in images of concrete, where images again shared similar 

properties.  

All of the aforementioned methods are described in the literature review in Chapter 4 

and were implemented for this study based on the cited journal articles. The relative 

accuracy of each method is determined by comparing the difference between the 

measurement achieved and the ground truth measurement. For the artificial images, 
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this is the width and orientation at which features were drawn and for the titanium 

images these are provided by manual measurements performed by expert material 

scientists using existing standards, as previously described. As the precise properties 

of objects in artificial images are known this allows the relationship between 

measurement accuracy and the aspect ratio to be studied to confirm the hypothesis that 

existing methods suffer when the aspect ratio is high. Where possible parameters are 

kept consistent between the methods tested. This means that the same threshold is 

applied to create the binary image used by each technique, and that orientation step 

size, Sθ, was set to 10° for both the new technique and Borocco’s method.   

8.3.2 Comparison with existing manual standards 

In this section the performance of the new technique for platelet analysis is evaluated. 

This is achieved by comparing the automatically produced measurements with those 

from existing manual procedures. Mean alpha platelet width, globular volume fraction, 

the main orientations of platelets and the size of platelet colonies are all considered 

using bi-modal and fully lamellar microstructures.  

8.3.2.1 Alpha platelet width 

The proposed method measures, for each pixel in the image, the width of the object 

that pixel resides within, as described in Section 6.6.2. The raw output of this 

measurement is a 2D image where pixel values correspond to the width, a colourmap 

of this is shown in Figure 8.15. Qualitatively this result appears accurate as fewer 

pixels of a deep blue colours appear where laths are wider and bands of consistent 

colour form across the shortest dimension of the lath. This output is useful for 

highlighting regions of the image where platelet width differed. 
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a) b)  

   

c) d)  

Figure 8.15: Results of width measurements of alpha platelets where a) 

is a microstructure with an artefact occupying an area, b) is a completely 

transformed microstructure and c) and d) show the a colourmap of the 

corresponding platelet width measurements  
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Table 8.8: Comparison of platelet width measurements between the new 

techniques and existing manual methods 

 Alpha Platelet Width (um) Measurement Time 

 Manual 
Method 

Proposed 
Method 

Difference 

1 2.19 2.58 +0.39 (18%) 3 minutes 20 seconds 

2 2.15 2.17 +0.02 (1%) 2 minutes 58 seconds 

3 2.86 2.65 -0.21 (7%) 2 minutes 59 seconds 

4 2.22 2.09 -0.13 (6%) 2 minutes 49 seconds 

5 1.93 1.73 -0.2 (10%) 3 minutes 8 seconds 

6 2.41 2.72 +0.31 (13%) 2 minutes 56 seconds 

7 2.25 2.40 +0.15 (7%) 2 minutes 58 seconds 

8 2.38 2.46 +0.08 (3%) 3 minutes 11 seconds 

Quantitative results confirm that measurements of alpha platelet width are broadly 

similar between the existing manual techniques and the proposed method, as shown in 

Table 8.8. The majority of results were within this expected range and the 

microstructure that failed was only 2% outside this limit. These errors can be explained 

by regions in the microstructure containing an artefact, potentially caused by polishing 

errors, which is observable in the bottom of Figure 8.15. A material scientist will 

usually recognise these regions and ignore them when performing measurements. 

However, some areas within this may be elongated which the proposed techniques will 

identify as a platelet and subsequently measure. This often leads to slightly larger 

measurements in these cases, as in microstructure 1 and 6, shown in Figure 8.15 a) and 

b) respectively. Several of the microstructures used in this study contain at least some 

extremely fine platelets of only a few pixels wide. It is expected that this will lead to 

larger differences in measurement than in more magnified images although no 

significant correlation between platelet width and measurement accuracy was 

observed in this study. 
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8.3.2.2 Globular Volume Fraction 

The proposed method measures, for each pixel in the image, the elongation of the 

object that pixel resides within, as described in Section 6.5.3. The raw output of this 

measurement is a 2D image where pixel values correspond to the elongation, a 

greyscale map of this, where high values equal high elongation, is shown in Figure 

8.16. Qualitatively this result appears accurate as globular grains appear significantly 

darker than laths. This output would be useful for visualising the spatial distribution 

of different grain morphologies. 

  

a) b) 

  

c) d) 

Figure 8.16: Greyscale representation of elongation of grains where higher 

intensity equates to more elongated structures and a) and b) are original images 

and c) and d) elongation maps 
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Measurements of globular volume fraction are dependent upon a threshold aspect ratio 

at which grains are considered globular. For manual measurements, an aspect ratio of 

2:1 was considered the threshold between globular and elongated grains by the 

material scientist. The same material scientist selected a Ts value of 60 experimentally 

for the automated procedure. As this threshold is applied to an elongation measurement 

that considers the radius of the grain at multiple angles there is not always as a direct 

correlation between this value and the 2:1 aspect ratio as the experimentally selected 

value also accounts for protrusions and general inconsistency in grain shape, as 

described in Chapter 6. The same threshold was used for all microstructures under 

study. The measurements generally showed good agreement between manual methods 

and the proposed approach, as shown in Figure 8.16. In almost all microstructures, the 

globular volume fraction was within 5% of the expected value. This is supported by 

the results shown in Figure 8.16 c) and d) where a clear intensity difference, indicating 

whether grains are globular and elongated, can be observed. The exception was 

microstructure 8, which is a complex microstructure imaged using an SEM. This 

microstructure contains many recrystallized grains that exist in tightly packed clusters. 

As these clusters have no beta phase between them the linear SEs used in the new 

technique can exceed the boundaries between grains causing globular grains to be 

misidentified as platelets. This issue is illustrated in Figure 8.17 where the intensity 

change between grain morphologies are more difficult to observe and erroneous linear 

artefacts appear, indicative of the fact the SE has exceeded the grain boundary. These 

types of small recrystallized grains also appear in microstructure 4, also shown in 

Figure 8.17, and 5 but do not cause as significant errors. However, while extremely 

complex the results in Figure 8.17 still support the broadly accurate measurement 

achieved as Figure 8.17 e) and f) show elongated platelets that are mostly separated 

from the surrounding globular grains. 
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a) b)  

  

 

c) d)  

  

 

e) f)  

Figure 8.17: Results of globular volume fraction separation on challenging microstructures 

where a) original image of Microstructure 4, b) original image of Microstructure 8, c) and 

d) are the corresponding elongation map where pixel intensity indicates elongation and e) 

and f) is the resulting split into globular grains and elongated platelets  
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Table 8.9: Comparison of globular volume fraction measurements between the 

new techniques and existing manual methods 

 Globular Volume Fraction (%) Time 

 Manual 
Method 

Proposed 
Method 

Difference 

1 71 75 +4 3 minutes 1 seconds 

2 74 77 +3 2 minutes 58 seconds 

3 36 34 -2 3 minutes 5 seconds 

4 24 29 +5 3 minutes 4 seconds 

5 25 28 +3 7 minutes 48 seconds 

6 34 38 +4 8 minutes 3 seconds 

7 20 19 -1 7 minutes 57 seconds 

8 36 52 +16 7 minutes 51 seconds 

 

8.3.2.3 Orientation of platelets 

The proposed method measures, for each pixel in the image, the orientation of the 

object that pixel resides within, as described in Section 6.6.3. The raw output of this 

measurement is a 2D image where pixel values correspond to the orientation, a 

colourmap of which is shown in Figure 8.18. Qualitatively this result appears accurate 

as the colours within each lath are consistent and match up with the apparent 

orientation of the lath. This output makes it easier to observe the texture of the 

microstructure.  
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a) b)  

   

c) d)  

Figure 8.18: Colourmap of a microstructure with orientation marked by colour 

where a) and b) are original microstructures and c) and d) are colourmaps 

Confirmation that the measurement of the orientation of alpha platelets is highly 

accurate using the proposed techniques, is provided by the quantitative results in Table 

8.10.  
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Table 8.10: Comparison of platelet orientation measurements between the new 

techniques and existing manual methods 

 Orientation of platelets Time 

 Manual Method Proposed Method Difference 

 Primary Secondary Primary Secondary Primary Secondary  

1 100 175 100 180 0 5 2 minutes 
57 seconds 

2 90 175 90 180 0 5 3 minutes 
4 seconds 

3 90 None 90 None 0 0 3 minutes 
3 seconds 

4 90 30 80 30 10 0 3 minutes 
1 seconds 

5 45 90 40 60 5 30 3 minutes 
5 seconds 

6 30 140 30 130 0 10 3 minutes 
1 seconds 

7 None None None None 0 0 2 minutes 
57 seconds 

8 None None None None 0 0 2 minutes 
58 seconds 

9 180 None 170 None 10 10 2 minutes 
59 seconds 

All measurements of the most common orientation of laths in the images, referred to 

as the primary orientation, were within the expected variation and more than half were 

an exact match. There were a few cases of disagreement in the second most common 

platelet orientation, referred to as the secondary orientation measurement. In 

microstructures 1 and 2 this error was small and is likely the result of either the region 

of the secondary orientation being smaller and any noise being more significant. This 

is compounded by the artefact areas in these images as shown in Figure 8.19 a). For 

microstructure 5 a significant number of platelets existed at both 90 and 60 degrees 

and there was disagreement between manual and automated methods over which was 

the most significant, resulting in a larger than expected error, as shown in Figure 8.19 

b). 



221 

  

 

a) b)  

   

c) d)  

Figure 8.19: Results of orientation measurements of alpha platelets where 

a) is a microstructure with small disagreement in secondary orientation, 

b) is a microstructure with a large disagreement in secondary orientation 

and c) and d) are the orientation colourmaps 

 

8.3.2.4 Colony size 

Measurements of colony size are dependent upon pre-determined parameters wmax and 

cs, defined in Chapter 6 as the width between parallel platelets to be considered part 

of a colony and the percentage size of the maximum colony each other colony must 

exceed to be considered a primary colony. Secondary colonies are not considered in 

this test. Setting cs=10% means the software will ignore smaller lower order colonies, 

however, unlike other techniques evaluated in this section, a single value of wmax could 

not be used for all microstructures. A method to automatically select a suitable w value 
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for each microstructure is desirable but was not determine in this study. It was expected 

that this would relate to the width of platelets, however, no clear relationship between 

measured platelet width and the most suitable wmax value, determined experimentally, 

was observed. Further work would be required to determine what other factors affect 

the best wmax value and if this parameter can be determined automatically. For the 

purpose of validating the colony measurement algorithm, a material scientist, with no 

knowledge of the manual measurement the colonies, selected a wmax value for each 

microstructure experimentally based on a display of colony boundaries, as shown in 

Figure 8.20. 

  

 

a) b)  

  

 

c) d)  

Figure 8.20: Results of colony identification where a) original image of a fully 

lamellar microstructure with triple point, b) is an bi-model microstructure 

and c) and d) are the colonies identified in each 
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Data containing visible colonies was limited in these trials and in some cases only 

partial boundaries could be seen in the images. The manual measurements used as a 

ground truth are of the visible portion of the colonies, i.e. treating all sets of parallel 

platelets as colonies even if the apparent colony terminated on the boundary of the 

image and may have in fact continued outside the field of view of the image. By 

allowing the software to also include colonies on the boundary, like for like 

measurements were produced for this comparison. It is believed that this makes the 

data in this section a fair comparison between manual and automated measurements, 

even if neither had enough initial data to measure colonies in as much detail as would 

be desirable for inferring microstructural properties. 

Table 8.11: Comparison of colony size measurements between the new techniques 

and existing manual methods 

 Mean Colony Size (um) 

 Manual Method Proposed Method Difference 

1 135 129 6 (4%) 

2 89 92 3 (3%) 

3 198 199 1 (0.5%) 

4 99 101 2 (2%) 

5 82 93 11(13%) 

6 19.48 20.61 1.13 (6%) 

7 13.20 15.41 2.21(17%) 

8 11.41 10.5 0.91(8%) 

 

This creates an element of subjective variation between measurements of each 

microstructure but provided the selected value of w is stored results are easily 

repeatable. The results in Table 8.11 show the proposed algorithm does a good job of 

grouping adjacent platelets into colonies. However, it should be noted that this is not 

the sole identifier of colonies. The boundaries of primary colonies are often indicated 
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by triple points, where three boundaries of colonies meet, as in Figure 8.20, which are 

not detected by the proposed technique. If these boundaries are relatively wide or 

colonies are misoriented then platelets will not be merged across the triple point 

boundaries and results will still be accurate provided w is set correctly. However, in 

cases where these boundaries are thin it is possible for similarly orientated adjacent 

colonies to merge across this boundary. This contributes to the discrepancy observed 

in microstructure 5.  

8.3.3 Comparison with other image processing techniques 

In order to produce accurate measurements of alpha platelets, new image processing 

techniques were proposed. In this section the benefit of the proposed approach is 

demonstrated by comparing the results achieved with those from existing published 

techniques. A key benefit of the new technique is its ability to measure multiple 

different image features. As algorithms with the same functionality were not found in 

the literature the comparison instead compares measurements of features separately.  

8.3.3.1 Orientation Measurements 

The artificial images used in this study AR1-AR3 each contain laths of equal length 

and aspect ratio, although the length and aspect ratio does vary between each image. 

Conversely, AR4 and AR5 contain a variety of lath lengths and aspect ratios within 

each image. AR1 and AR 4 are shown in Figure 8.21. This set of images was created 

to explore the effect of both different and inconsistent aspect ratios, as it is 

hypothesised earlier in this thesis that other recent techniques for measuring elongated 

structures in microstructures would give errors for inconsistent aspect ratios. 
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a) b) 

Figure 8.21: Examples of artificial images (500x500) where a) is AR1 and b) is 

AR4  

The technique proposed by Borocco et al. [63] requires a single parameter to be set, 

the length of SE used to probe the image. Selecting the length that provides the best 

results is not trivial and the best method for doing so was not addressed in the original 

work. Longer SEs are more likely to fit only at the true orientation, so each 

measurement has a higher probability of being accurate. However, longer SEs are more 

likely to not fit smaller object at all and return no measurement. For this experiment 

the SE length is selected based on the percentage of the image where the SE would fit 

at any orientation. This is the percentage of pixels in the alpha phase that return a valid 

measurement, as an SE to long the platelet at any orientation would not return any 

measurement. In Table 8.12 the measurements achieved by SE length that measures a 

maximum of 90% of the image and a minimum of 75% of the image are shown.  
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Table 8.12: Comparison of platelet orientation measurements between the new 

techniques and existing manual methods 

Image Aspect 
Ratio 

Orientation of platelets (°) 

Manual 
Method 

Fixed Length 
SE method [63] 
(min 90% of 
image 
measured) 

Fixed 
Length SE 
method [63] 
(min 75% of 
image 
measured) 

Proposed 
Method 

AR1 8 90 90 90 90 

AR2 13 90 90 90 90 

AR3 28 90 90 90 90 

AR4 Mixed 90 80 80 90 

AR5 Mixed 90 10 40 90 

Ti-1 - 100 100 100 100 

Ti-2 - 90 90 100 90 

Ti-3 - 90 80 90 90 

Ti-4 - 90 20 80 80 

Ti-5 - 40 10 40 40 

Ti-6 - 30 10 10 30 

The measurements shown in Table 8.12 show that the technique proposed in this thesis 

is robust as it provides accurate measurements for all artificial images, regardless of 

object aspect ratio, and for the titanium microstructures as previously shown in Section 

8.3.2.2. Almost all measurements of the primary orientation in both artificial and 

titanium images exactly matched the results obtained by an expert material scientist. 

The only disagreement in measurements occurs in a titanium image and is a 10° error, 

the smallest error possible using the chosen parameters. Meanwhile, the existing 

method using fixed length SEs [63] only provides accurate results in certain cases. For 

the images AR1-3 with no noise and consistent lath sizes measurements are a perfect 

match. Where the aspect ratio of laths varies, errors occur with a minimal error in AR4, 

where the variation in aspect ratio is low and a greater error in AR5 where the variation 

in aspect ratio is high. The results for the titanium images were more varied with some 
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measurements being acceptable and others being highly inaccurate. This is likely 

because some microstructures contain more consistent lath sizes than others. It is also 

interesting to note that more accurate measurements of lath orientation were achieved 

for larger SEs that measured a lower percentage of the image. This suggests that 

measuring fewer objects accurately is preferable to measuring everything less 

accurately using this method. However, the fact that 25% of laths are not included in 

these measured and several microstructures are still inaccurately measured means such 

an approach cannot be relied upon for complex images. The proposed approach not 

only provides the more accurate results but eliminates the need for this parameter 

selection and always includes every platelet in the image in the final measurements.  

Colourmap images, shown in Figure 8.22, where each colour corresponds to a unique 

orientation value, provide a useful illustration of the improvement offered by the 

proposed approach. It is shown that for long and thin laths the orientation 

measurements are similar between methods as even a SE shorter than the lath will still 

normally only fit that lath at a single orientation. For example, the predominantly thin 

laths in Figure 8.22. g) and k) show little change in measurement between techniques. 

However, the thickest laths often have incorrect values using fixed length SEs as the 

element can fit at multiple angles. This incorrect angle can be seen as bands of colour 

within a lath such as in Figure 8.22 f) and h). Meanwhile in Figure 8.22. j) and l) these 

same laths are corrected to the expected measurement. There is still evidence of pixels 

within one lath having different orientation measurements due to curvature in lath 

boundaries, however, these are typically only 1 orientation value from other pixels 

while previous methods gave a wider range of measurements for a single lath.  
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a) e) i) 

   

b) f) j) 

   

c) g) k) 

   

d) h) l) 

Figure 8.22: Colourmap of orientation measurements using different 

techniques 

Overall, these images show a very good correlation between the perceived and angle 

of the platelet measured using the proposed technique and demonstrate a significant 

benefit versus the use of fixed length SEs. 
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8.3.3.2 Width Measurements 

The artificial images used to test width measurement accuracy differ from the those 

used previously for evaluating orientation measurements. The reason for this is that, 

unlike orientation techniques [63], the alternatives for width measurements have 

known weakness for platelets below a specific, absolute aspect ratio, not variations in 

the aspect ratio. AR1-AR3 show images with elongated objects of high aspect ratio 

(above 20:1), which are expected to be measured well by existing methods. AR4 and 

AR5 show images with shorter objects, that existing authors hypothesise will not be 

accurately measured by existing techniques [11]. Examples of AR1 and AR 4 are 

shown in Figure 8.23. 

  

a) b) 

Figure 8.23: Examples of artificial images where a) is AR1 (150x100) and b) is 

AR4 (1400x1200) 

Unlike the comparison conducted to validate microstructural measurements, in Section 

8.3.2.2, the results in Table 8.13 shows measurements in pixels rather than μm.  

 

 

 

 

 

 

 



230 

Table 8.13: Comparison of platelet width measurements between the new 

techniques and existing manual methods 

 True 
Width 

Measurement 
from FLOS 

Mean 
inverse 
intercept 
[11] 

Distance 
transform 
method [55] 

Granulometry 
based method 

Skeleton 
based 
method 

AR1 3 3 3.35 3.93 4.09 3.9 

AR2 8 7 8.28 7.83 9.89 10.38 

AR3 86 85 85 86.93 89.83 90 

AR4 192 191 147 189 195 209 

AR5 303 303 183 289 302 345 

Ti-1 10.67 9.06 7.51 23.34 11.67 6.51 

Ti-2 20.87 20.67 13.39 18.71 30.61 12.41 

Ti-3 25.45 27.47 15.07 27.2 19.89 5.82 

Ti-4 20.11 21.36 10.43 14.96 21.02 8.12 

Ti-5 16.61 18.53 9.66 21.09 15.97 6.42 

Ti-6 12.85 11.35 7.4 14.69 11.12 3.99 

 

This shows the measurements using the new FLOS approach are normally within 1 or 

2 pixels of the ground truth measurement. This means that improving the accuracy of 

platelet width measurements would be difficult at this resolution of image and provides 

further assurance that this method is reliable. Mixed results were obtained by the other 

measurement techniques tested. Figure 8.24 shows a graph of the measurement errors 

from each technique as a percentage of the ground truth.  
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Figure 8.24: Comparison of measurement error from each method 

 

The proposed new technique is shown to be the most robust as it has the lowest 

maximum error and least variation in errors. The next best method is the granulometric 

methods proposed by Statella et al. [59], which is achieves similar results to our 

proposed method in most cases. This similarity is perhaps not surprising as both 

techniques produce measurement by finding the largest SE to fit at each location in the 

image. However, while the method of this thesis rotates a linear SE of different lengths 

to achieve this, Statella uses a disk shape SE which, therefore, does not need to be 

rotated. This means that Statella’s method is much faster than using the new FLOS, 

running in around 43 seconds as opposed to 3 minutes and 20 seconds for a bi-modal 

microstructural image. However, Statella’s technique is usually slightly less accurate 

than the FLOS based method and gives significant errors in two microstructures, each 

containing some form of artefact area that an expert materials scientist would elect not 

to measure. While neither method has a bespoke technique designed to identify and 

discard these artefacts, regions of this appear globular, as does noise and artefacts on 

the image. The new methods in this thesis will automatically discount some of this 

from measurement, as the FLOS contains shape information and will only include 

objects with aspect ratio above 2:1 in these measurements. Statella’s disk shaped 

granulometries do not have shape information so include measurements of every pixel 

in these regions, leading to significant errors. This suggest that Statella’s approach is 
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faster in simple cases, but less robust as it is more likely to fail when other features or 

artefacts appear in the data. 

The technique described by Collins et al. [11] provides good results for artificial 

images containing high aspect ratio objects. However, a dramatic increase in the error 

rate occurs when objects have a low aspect ratio. The mean inverse intercept methods 

[11] produce significant errors in these cases as the random line segments that are not 

orientated across the width of the platelet become significant, as shown in Figure 8.25 

a). For platelets of a high aspect ratio the diagonal lines seen in this figure are closer 

to the width than in the low aspect ratio object shown, where line segments are longer. 

As the inverse mean is used in the width calculation, this issue makes the recorded 

value significantly lower than the true width, rather than higher as would be expected. 

This trial therefore confirms that measurements based on the mean inverse intercept 

are only accurate for aspect ratios below 20:1 in line with the previous finding of 

Collins [11]. When applied to the microstructural data the error rate was also high. 

This suggests that the aspect ratio of platelets in the microstructure is not high enough 

for this method to accurately measure mean width. Measurement of the minimum 

width may still be accurate but that is not a feature investigated in this thesis.  

  

a) b) 

Figure 8.25: Illustration of errors produced by each method where a) is the end 

of an elongated object with the skeleton overlay in red and b) is a complete 

object with the intercept overlay in red 
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Methods proposed by Russ and Adhikari et al. also show an increase in measurement 

error at higher aspect ratios, although to a lesser extent. The reason for this is they both 

make use of a morphological skeleton, which is assumed to exist in the geometric 

centre of objects. While this is true for thin, straight objects it is not true for the end of 

objects as shown in Figure 8.25 b). Errors in measurement can occur due to branches 

of the skeleton reaching into the corner of platelets, which are closer to the object 

boundary than the centre, resulting in smaller measurements. This effect is largest 

when the aspect ratio is low as a greater percentage of the skeleton is part of this 

protrusion than for long objects. Protrusions, or an uneven shape of platelet would lead 

to this effect also occur in additional locations in the image, increasing the magnitude 

of the problem. These results could be improved by pruning the skeleton to remove 

these protrusions, a relatively simple task in the artificial images. However, 

deformations in grain boundaries make the skeleton in alpha platelet more complex. 

The best method for pruning such a skeleton is likely to be application specific and 

other research have require bespoke algorithms for this [63]. This was not attempted 

in this trial as such a method was not included in the cited papers. In the trials on 

titanium microstructures the older method described by Russ [55] performed 

significantly better than the new method from Aldinhikari [56] in terms of accuracy, 

while both took only a few seconds to run on each microstructure. The reason for this 

is that the former is better suited to a titanium microstructural dataset. The uneven 

nature of platelets means that often the skeleton extends away from the centre of the 

object and into these protrusions. Although each pixel in these erroneous regions does 

cause and error in Russ’s method the error from each pixel is usually small as they are 

still close to the centre. In Aldinhikari’s method, however, measurement is based on 

the overall length of the skeleton, not its placement, so even if the protrusions are short 

in length they can sum to a far more significant error. Despite being better suited, 

Russ’s methods are still only acceptably accurate for around half of the microstructures 

tested. 
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8.3.4 Computational Complexity 

The new method comes at the cost of increased computational complexity as a larger 

number of morphological operations are performed, a wide variety of SE’s used in the 

procedure. While a fixed length SE, proposed by other authors [63], requires only a 

single opening per orientation the new method requires this be multiplied by the 

number of lengths tested. The measurement time of platelets depends on the range of 

lengths and orientations of SE used. Measuring the platelets of microstructures in this 

experiment required Lmax to be set between 91 and 191 pixels for accurate 

measurements, depending on the microstructure being measured. An Lmax value of 191 

results in 95 different lengths of SE, based on the methodology in Chapter 6, which 

must each must be tested at 18 different orientations, so 1710 morphological openings 

need to be performed on the entire image. This process took 8 minutes in the MATLAB 

implementation used for this thesis, run on a i7-6650U 2.2Ghz dual core processor. 

For images with finer platelets successful measurement where achieved with Lmax=91 

which typically required just over 3 minutes of processing time.  These measurement 

times are significantly slower than other image processing techniques such as the 

segmentation approach described in Chapter 5 which could measure grain size in as 

little as 8 seconds, or the width measurements from the distance transform [56] that 

can take less than a second. However, the extensive range of SE’s used are beneficial 

to robustness and ultimately enable features to be measured that these faster procedures 

are not capable of at this time. It is critical to note that the measurements are still faster 

than would be expected using manual methods for measuring platelets, with the 

expected manual measurement time being approximately 15 minutes. Additionally, 

platelet width, orientation and volume fraction are all measured within the same time 

while manual methods would require additional time to measure each feature. If the 

materials scientist has knowledge of the material and features to be measured, this time 

could be potentially dramatically reduced by tailoring BθL to a specific set of 

requirements. For example, if you need only measure width, Lmax could be set far lower 

without affecting results as it need only exceed the width of platelets for accurate 

results. As laths are typically around 20 pixels wide then this time could likely be 

reduced to under a minute in this case. If only measuring orientation increasing SL 

would decrease the resolution of width measurements but would normally not affect 
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the orientation measurements, so the number of computations could be reduced this 

way.  

8.3.5 Summary 

Platelets are analysed by apply linear SEs of different lengths and orientation and 

mapping the results to a FLOS, as described in Chapter 6. The results shown in this 

section prove that the proposed method is effective and robust on the varied 

microstructural dataset used in this thesis. Measurements taken by the new software 

tools and algorithms show a close match with those taken by expert materials scientists 

in almost all cases. As the new, automated methods can match this standard of 

measurement, materials scientists can benefit from the less labour intensive and 

repeatable nature of software algorithms to achieve consist measurements. In addition 

to this, the results shown demonstrate that the automated measurements are 

significantly faster than manual measurements in every microstructure type and 

feature measured. The time benefit is compounded when multiple features are 

measured as this often does not require any additional processing time. Further 

confidence in the accuracy of the new techniques are provided by qualitative review 

of the colourmaps provided in this chapter. 

A quantitative comparison was performed with several published techniques [11], 

[55], [56], [59], [63]. These were based on other rotational elements, granulometries, 

the distance transform and morphological techniques, although none of these collect 

as large amount of data the new technique uses and as a result no one technique can 

measure every featured that the new technique is capable of. The results demonstrate 

that existing techniques are capable of producing accurate results for elongated objects 

of consistently high aspect ratios. However, the width measurements suffer when the 

aspect ratio of objects exceed 20:1, as discussed by other researchers and orientation 

measures suffer when aspect ratio varies, as correct parameters are not set. Crucially, 

it is shown that the microstructures in this study fall into the latter category and cannot 

be reliably measured using these existing techniques target at microstructural analysis. 

It is shown that by considering more data when calculating the properties of objects in 

the image the new data processing techniques can avoid these issues and produce 

consistently accurate results. The new technique based on variable length SEs and the 
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orientation space is, therefore, more robust than the first length or distance transform 

based approaches proposed by other researchers. This robustness comes at the cost of 

greater computational complexity, leading to measurements that takes minutes, while 

some competing methods take seconds. However, these faster methods measure only 

a single property and are not accurate for platelets of lower aspect ratio making them 

not applicable to the task and dataset presented in this thesis. It must also be considered 

that in order to provide fair comparison with existing techniques aimed at measuring 

orientation and width microstructures featuring exclusively elongated platelets were 

used. The ability to measure platelets in bi-modal microstructures is critical in real 

world microscopy and only the new methods could be directly applied to these without 

additional pre-processing of the image. 

However, there are a few challenges that must be considered when using these 

techniques and areas for improvement still exist. The proposed technique does not 

recognise partially transformed microstructural regions, so width measurements are 

sometimes taken from regions that are not platelets. There are also issues with 

microstructures containing large numbers of recrystallized alpha grains as the SE used 

to take measurements can exceed the boundary between adjacent grains and distort 

measurements of globularisation. Methods to measure colonies do not consider triple 

points and use only platelet width and orientation to identify each colony. However, 

all of the aforementioned problems are relatively uncommon and for most 

microstructures investigated the results are positive with the majority of measurements 

produced by the new techniques closely agreeing with manual measurements produced 

by expert material scientists. 
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9 SUMMARY AND FUTURE 

WORK 

The primary goal of this research was to improve the microstructural analysis of Ti-

6Al-4V through the development of a new set of image processing techniques. It is 

clear that the work presented in this thesis has achieved this aim in a significant way. 

Two separate image processing techniques have been presented which, when 

combined, can measure a wide range of microstructural features, including all of the 

features identified in the literature review as important for this type of microstructure. 

Many of these procedures could currently only be assessed through labour intensive 

manual procedures. The measurements produced by the new methods are proven to be 

consistent with what would be expected when the same measurements are performed 

by expert material scientists using existing procedures. However, the methods 

proposed in this thesis are significantly faster, are repeatable and do not require 

continuous manual interaction. The techniques in this thesis are also designed and 

tested for robustness. This means that the benefits brought by the proposed methods 

will be experienced on a large number of different microstructural datasets. This is 

demonstrated in the thesis by performing the validation of the proposed methods on a 

varied dataset containing different microstructure types. A software tool is also 

described that allows material scientists, without knowledge of image processing 

techniques or terminology, to apply these methods. This tool includes methods to 

adjust parameters in an intuitive way that can extend the range of datasets these 

methods can reliably be used to measure. All of this means that the potential benefits 

of the proposed techniques should be achievable in other industrial and academic 

research projects, rather than offering only a theoretical improvement. 

In order for the new microstructural analysis techniques to reach the level of accuracy 

and robustness required, novel contributions in image processing in the form of new 

and extended techniques have been made. The significance of contributions in this area 



238 

are demonstrated by performing separate tests where these methods are compared to 

relevant techniques from image processing literature. 

This chapter summarises and draws conclusions about each method proposed and the 

software tool, before concluding by giving a number of suggestions for possible future 

work in this area. 

9.1 Segmentation and measurement of alpha grains 

In Chapter 5, a new segmentation technique, called the CGSA, is proposed based on 

the Watershed Transform. The ultimate aim was to measure the mean grain size and 

globular volume fraction by first segmenting the image into the constituent alpha 

grains. Existing attempts to automate the analysis of these microstructural properties 

had been unsuccessful despite being identified by key authors [11] as an important 

research area. Manual methods of measuring these properties are instead relied upon 

in practice. These take approximately 15 minutes to measure a single microstructural 

sample and repeatability between different users could see errors of up to 16%, 

according to accepted standards. Techniques from other fields were identified which 

at first appear promising but fail to provide accurate segmentation results as they are 

not robust enough to cope with the varied datasets that occur during microstructural 

analysis.  

A new technique was proposed that incorporates a range of pre- and post- processing 

steps into a new segmentation algorithm that is well suited to microstructural datasets. 

It is demonstrated that measurements of mean grain size are accurate for a range of 

both globular and bi-modal microstructures.  Additionally, it is shown that the 

segmentation produced was more accurate than existing techniques from the field of 

image segmentation could achieve. Measurements of globular volume fraction are also 

accurate but required calibration that was not necessary for grain size measurements. 

The segmentation procedure is capable of performing 300 grain measurements in 

under 5 seconds and microstructures containing up to 4000 grains took around 20 

seconds. This is a dramatic improvement in measurement time versus the manual 

methods previously required which typically took 15 minutes to perform 300 grain 

measurements. By using a segmentation approach, sub-sampling is almost eliminated, 

depending on segmentation accuracy, and all grains in the microstructure are instead 
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studied. In existing manual approaches, it is sometimes necessary to manually draw 

lines across the length and width of a grain to perform measurements. This introduces 

a level of subjectivity as the grains to be measured and dimension to be considered as 

the length and width are decided by the material scientist. By sampling every grain 

and empirically selecting regions to measure this source of subjectivity can be ignored. 

It is also thought that the change in measurement time could make it possible to test a 

greater number of samples when performing experiments as the cost of performing 

analysis is reduced, although the time to produce microscopic images is still a factor. 

9.2 Analysis and measurement of elongated alpha platelets 

In Chapter 6 a technique to analyse alpha platelets is presented. The ultimate aim was 

to measure the properties of these platelets including their width, orientation, shape 

(globularity) and the size of any colonies formed by these platelets. Methods exist for 

automating the width of these platelets, however, these methods are known to be 

inaccurate for platelets that are not extremely long and thin. Methods have not 

previously been proposed for measuring the other properties in titanium 

microstructures. Techniques for measuring orientation of objects in the microstructure 

of other materials exist, however, these are shown to not be sufficiently robust to 

measure the varied platelets in titanium microstructures. Image processing techniques 

in other areas can measure width and orientation but were also found not to be robust 

for the dataset in this thesis. As a result, manual methods are often relied on for width 

and colony size measurements. These use the same standards as grain size 

measurement so take 15 minutes per 150 platelets and have repeatability errors of up 

to 16%.  

An extension to an existing technique [63], and an accompanying new data processing 

technique, are proposed to measure the width of a platelet in different orientations. 

This is achieved using a set of SEs that varied in both length and orientation. The result 

is mapped onto a 3D orientation space, called the FLOS, that allows all the 

aforementioned properties of specific platelets to be measured. An additional novel 

algorithm was proposed that allowed colonies to be identified in the image by grouping 

adjacent parallel platelets. It was shown that this method produces accurate results for 

all the features mentioned. Additionally, it is also demonstrated that measurements of 
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width and orientation are more robust than alternative image processing techniques. 

The proposed technique is not as fast as the segmentation technique provided in 

Chapter 5 and typically takes just over 3 minutes to produce results on the tested 

hardware. While improved hardware or more efficient implementation may be able to 

reduce this time, it should be noted that this time is still less than is expected by many 

of the manual analysis procedures. It would take 15 minutes to measure only platelet 

width, while all 4 properties are measured less time by the new method. Results are 

also repeatable, and subjectivity is eliminated as provided the parameters are set at 

their default setting the technique will always produce the best result it is capable of. 

The technique is, however, slower than the existing image processing techniques it is 

compared to. It is, therefore, only beneficial to use the method proposed in Chapter 6 

on complex datasets when the improved reliability it offers is required and existing 

methods are not suitable. This is the case for microstructures in this study. 

9.3 Software tool for microstructural analysis 

In Chapter 7 a new software tool is presented that incorporates the novel image 

processing procedures in the previous chapters. This is important as, in order to have 

impact in the material science domain, the techniques must be accessible and intuitive 

to users who are not image processing experts. While the results in Chapter 8 focus on 

the techniques themselves, most of the tests included were performed using this 

software tool. That fact that suitable results were obtained, therefore, confirms that the 

new software tool, in addition to the novel methods this contains, is fit for purpose. A 

particular benefit of the tool is that it allows for intuitive parameter selection, which is 

particularly vital for the proper use of the segmentation techniques from Chapter 5. 

Image segmentation is a complex task and it is often necessary for parameters to be 

changed between datasets. The proposed techniques reduce this to one significant 

parameter which can be easily and intuitively controlled in the tool using a slider with 

immediate feedback to the user on how the parameter affects the results. This slider 

adjusts a visual representation of the segmentation which indicates on an image in the 

dataset where grain boundaries are detected with the current settings. This means no 

knowledge of image processing is needed to tune the algorithm to new datasets. In a 

similar way, the size of SE with which to probe the image to measure laths can be set 
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in the software. After processing a visualisation will again allow the materials scientist 

to view the effect of the parameter change before exporting measurements. By 

allowing intuitive parameters changes, this software tool extends the potential 

applications of the proposed techniques. 

9.4 Further work 

The most promising avenues for further work is perhaps in expansions to the scope of 

the project. There are good reasons to believe that this algorithm could work very 

effectively on a range of other cases and not just Ti-6Al-4V, as well as sporadic 

evidence throughout this thesis to support that idea. More extensive trials and further 

refinement on datasets including a range of different microstructures may yield a tool 

with more wide range of uses. This also need not be limited to other microstructures 

as the literature review made clear that image data from other fields often share similar 

properties. Larger scale trials would also present the opportunity to re-visit deep 

learning methods that have had significant success in other fields in recent years. While 

the absence of good training data, and preference for a non-black box method, meant 

such methods were not included in this research there remain benefits to this approach 

that may be highly valuable in this field. For example, in recognising microstructure 

properties that are difficult to define in discrete rules or separate problems such as 

learning to predict material properties without prior image segmentation. Additionally, 

the techniques developed in this thesis could actively enhance deep learning 

approaches. For example, by using the FLOS as an input to a convolutional neural 

network this will provide feature space information regarding the object properties. 

This may avoid the issue, discussed in the literature review, where convolutional 

networks have limited receptive fields so miss out key feature information. By 

combining these approaches this may enhance the ability to detect complex feature in 

microstructures or classify and predict their properties. 

While this chapter largely concludes that the objectives of this research have been met, 

there also  remain a number of key areas in which improvements can still be made 

within the scope of the current project.  

The most significant improvement that could be made is to the speed of the method 

proposed in Chapter 6. The technique proposed is quite exhaustive, in that it performs 
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an opening on the image with a very large range of SEs. Reductions in this time would 

be of benefit. The idea of adaptively choosing which openings were necessary was 

considered but experimental results did not yield any success.  

Another possible improvement would be to develop an automated method for 

computing the sensitivity parameter used in the software tool to control the 

segmentation level. While the software tool provides a useful manual control, it does 

inject some subjectivity back into results, which the use of automated methods sought 

to remove. Histograms of pixel values are often used to determine a suitable threshold 

for binarization, so it may be possible with enough data the same could be done for 

sensitivity based on image gradient, as sensitivity in-fact controls an edge detection, 

which is a thresholding of the gradient image. Additionally, given the speed of image 

segmentation, it is also feasible that multiple segmentations could be produced with 

an algorithm designed to analyse grain size and shape to determine which 

segmentation is more likely. However, this would require a detailed and reliable 

understanding of the distribution of true grain sizes and shapes so would likely lead to 

over-training to a particular microstructure type or dataset. That type of approach 

would, therefore, not offer the robust, generalised method presented in this thesis but 

could allow refinement of the techniques in where high accuracy is required for a 

particular microstructure type. 

A comparison with different data, produced by other imaging techniques would also 

be interesting. For example, the orientation measurements obtained by this technique 

have no existing 2D analysis standard. Instead the texture of microstructures is 

normally assessed through Electron Back-scatter Diffraction (EBSD) which studies 

the 3D orientation of grains. It also can use this orientation to separate adjacent grains 

and obtain a maps of grain sizes, similar to the segmentation generated by the CGSA. 

This technology is expensive, the procedure takes hours to run and material 

preparation must be performed to an extremely high standard. This means it is not 

currently feasible to use it in many situations. By contrast, an optical microscope 

running the new software tool could be deployed cheaply and provide results faster 

and easier. Given the novel work in this thesis can produce similar measurements, it 

would be very interesting to see what difference existed in terms of measurement 

accuracy. The additional information from these other technologies would further the 
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understanding of the true grain size and make it more realistic to evaluate the accuracy 

of the new automated procedures versus manual techniques. This subject was not 

addressed in this thesis as a use generated ground truth does not allow this to be 

explored and the aim was instead to provide fast, automated methods to match existing 

results. 
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APPENDICES 

Appendix 1: Dataset 

Dataset/Sample Microscope 

type 

Globular 

features 

visible 

Elongated 

features 

visible 

Colonies 

visible 

1 SEM Yes No No 

2 SEM Yes No No 

3 SEM Yes No No 

4 SEM Yes No No 

5 SEM Yes No No 

6 SEM Yes No No 

17 Optical Yes Yes Yes 

18 Optical Yes Yes Yes 

19 Optical Yes Yes Yes 

20 SEM Yes No No 

21 SEM Yes No No 

22 SEM Yes No No 

23 SEM Yes No No 

24 SEM Yes No No 

25 Optical No Yes No 

26 Optical No Yes Yes 

27 SEM Yes Yes Yes 

28 SEM Yes Yes Yes 

29 SEM No Yes Yes 

30 SEM No Yes Yes 

31 SEM No Yes No 

32 SEM No Yes No 
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Appendix 2: Expert Measurements 

Expert measurements were taken using linear intercept techniques based on the ASTM 

112 standard as described in Section 4.1.1.1 of the thesis. These techniques were 

deployed with the aid of the ImageJ software tool. This tool enabled the user to drag 

and drop line segments onto the image as required and automatically produce 

measurements. The software also allows image scale to be extracted in a similar 

fashion. The following describes an example of the steps taken to conduct 

measurement of a microstructure. 

1. Open ImageJ and load a single microstructural image 

2.Select the straight tool from the toolbar 

 

3. Draw a line across the scalebar of the image, zooming first if required 

 

4. Select “Analyze” then “Set Scale” and enter the information from the scalebar (the 

length of the previously drawn line should automatically appear) 
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5. Make sure the “Straight” tool is selected and draw a line across the feature you wish 

to measure. For laths this is the width and for globular features this should be the major 

or minor axis. 

6. Press Ctrl+t to save the line and bring up the ROI manager. Make sure “Show All” 

is selected so that any subsequent lines are all shown on the image and prevent repeat 

measurement of the same feature. 

 

7. Drawing a line over the next feature to be measured and click “t” after each is drawn 

to add it to the saved axes. 
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8. Continue this process until a statistically valid number of measurements can be taken 

from the drawn lines. Ensure that both minor and major axis are measured for each 

globular grain or only the width for laths. Globular and lamellar features cannot be 

measured simultaneously. 

9. Click “Measure” in the ROI Manager window to measure all of the chosen axis of 

the grains. This table can then be copy and paste or exported to excel to calculate the 

mean measurement or other statistics. 
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Appendix 3: Output Report 

Outputs are saved in 2 output files. A .pdf that is effectively a screenshot of the report 

window and an excel file that contains more detailed information, as well as summary 

statistics and a copy of the same information as the .pdf. An example of this file is 

provided below. 
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