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Abstract

Matthew JOHNSON

Investigations in Matterwave Interferometry for Inertial
Sensing

The sensing of rotation is a keystone in navigation without external aid.
Without relying on satellite navigation, for instance, it is possible to navigate
by knowing one’s velocity and rotation rate and then integrating over time.
Such “dead reckoning” inertial navigation methods are hampered by errors in
the sensing of these quantities, which are amplified by the integration process,
leading to wildly inaccurate measurements of position in a matter of minutes
even in some of the best commercial units. There is interest in pursuing rota-
tion sensing from the position of quantum technology - where atomic Sagnac
interferometers promise unprecedented sensitivities to rotation.

In this thesis we detail a variety of investigations supporting future imple-
mentation of atomic interferometry as a quantum technology. We detail the
construction of a new vacuum chamber for generating Bose-Einstein conden-
sates (BECs) of rubidium-87, with a primary focus on a 2D+ magneto optical
trap. This 2D+ geometry allows for a high flux of atoms, important in reduc-
ing dead time in interferometers. We then present a Sagnac interferometer
configuration with a BEC in freefall under gravity. Calibration of the system
under freefall is discussed, in particular the calibration of the beam power as
a function of the drop time, and the asymmetry in the interferometer output
with respect to the angle to gravity. We finally present a study in high numer-
ical aperture Fresnel zone plates (high NA FZPs) for generating optical ring
traps. The high NA requirement allows for diffraction-limited roughness in
the trapping potential, as well as the possibility to map local intensity changes
at the FZP to the focal plane. We also present this method as a candidate for
generating dark ring traps using blue-detuned light.
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Chapter 1

Introduction: Interferometry

In this introduction we will discuss the underlying principle of the atom inter-
ferometer, and why it is a candidate for investment as a quantum technology.
First we will describe the principles for useful interferometry and in particular
how it can be orientated for rotation sensing via the Sagnac effect. The in-
herit advantages of using an atomic system versus current optical devices will
be discussed, and from this we will outline why interferometry with Bose-
Einstein condensates should be pursued. Lastly we motivate the work done
in this thesis on interferometry for rotation sensing: a preliminary study in a
freefall interferometer, and further work on guided interferometry.

1.1 Rotation sensing as a Quantum Technology

It is oft said that we stand amidst the “second quantum revolution”. Einstein,
Bohr, Schrödinger and their contemporaries described a quantum world at the
turn of the 20th century, and at the turn of the 21st we now see technology that
relies on such principles being used almost everyday - from the MRI scanner
to the atomic clock [1]. Another part of this second wave of interest in quan-
tum mechanics is in the technology surrounding quantum superposition and
entanglement, enabling the sectors in quantum information processing, com-
munication and measurement [2].

The term quantum technology describes a multitude of techniques and sys-
tems developed with some utilisation of the quantum world, promising im-
proved performance over their classical counterparts [3]. This includes atomic
clocks [4] and other metrology devices [5, 6] to cryptographic key distribution
[2] and even the dating of arctic ice [7].

The branch of quantum metrology concerns the science of measurement
utilising methods of a quantum nature. Primarily in this case it is the act of
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quantum superposition that is used, where an object may assume multiple dis-
tinct states simultaneously. The nature of this superposition and the method
of preparation can lead to the measurement of many useful quantities. The
superposition of atomic energy states leads to precise measurements in fre-
quency, which form the basis for atomic clocks, and a superposition in space
constituting an atom interferometer permits the ultra-precise measurement of
acceleration. These technologies are not all equal in their commercial viability
however; whilst atomic frequency standards are used worldwide as bench-
marks in timekeeping, atomic inteferometers are not as technologically ready,
despite enjoying a 30 year history in research [2]. Atom interferometers are
powerful measurement devices however, with some distinct advantages over
classical interferometers using light or mechanical vibration. As such there is
considerable effort in taking these experiments out of the lab and deploying
them into real-world applications [8].

Rotation sensing is one such application where quantum technology could
fill a gap. Knowing how far one has rotated is a key element in inertial navi-
gation, or “dead reckoning”, where one must navigate without external aid,
relying instead on recalling by how much one has travelled and in which
direction. In use today, inertial measurement units (IMUs) are found in the
aviation, defence and space industries. One cannot directly measure position
and angle using an IMU - the measured acceleration and rotation rate must
be integrated in order to ascribe position and angle. Therefore any errors in
measurement are compounded by the integration - an error of acceleration on
order 1× 10−5 m s−2 results in a drift of position by 100 m in one hour. Atomic
sensors offer an avenue to produce much more accurate sensors.

We present two investigations in this vein to aid in generating a quan-
tum rotation sensor. First is an interferometer configuration based on a Bose-
Einstein condensate (BEC) falling freely under gravity, and secondly a compu-
tational study of Fresnel Zone plates for generating ring traps in the near-field.

1.2 Interferometry and the Sagnac Interferometer

By an interferometer, we are describing a device that measures some quantity
via an interference effect. Interference is a property of superposing waves, as
seen in water, light, electrons, atoms, and in molecules. Each source of waves
brings about its own particular nuances to interferometric sensing.



Chapter 1. Introduction: Interferometry 3

From as early as Fresnel and Young the interference of light waves has been
used in fundamental discoveries in physics [9, 10]. The work of de Broglie
and early quantum theorists then showed that matter can also be described in
wave-like terms, leading to the theorems and work surrounding wave-particle
duality [11]. The crux of this is the matter-wave or de Broglie wavelength,

λdb =
h
p

, (1.1)

the relationship between a particle’s wavelength, λdb and its momentum, p,
by Planck’s constant, h. The interference of matter waves has been shown for
single electrons [12] with Young’s-slits experiment demonstrating the quan-
tum nature of matter. Interference has also been shown for neutrons [13],
atoms [14], molecules [15] and recently for a large polypeptide [16].

To observe an interference useful for measuring external sources of phase,
the wave must be split, allowed to travel in order to probe its surroundings,
and then brought back together again and recombined. Geometrically, bring-
ing the wave back together again requires some form of reflection. To use
the analogy in optics, we require therefore atomic equivalents of a beamsplitter
and some kind of mirror. One such interferometer configuration is the Mach-
Zehnder interferometer, as shown in figure 1.1. An optical beam is split be-
tween two paths by a beam-splitting cube. These are then reflected before
being brought together and recombined.

With a source of waves and a method to split and recombine them we have
an interferometer. Interferometry is a powerful technique used to measure
many different things in fine detail. The LIGO consortium famously use an
optical interferometer with 4 km long arms to detect gravitational waves, rel-
ative distortions of space on the order of 1 part in 1 × 1021 [17], for which the
2017 Nobel prize in physics was won [18]. We are interested in the measure-
ment of rotations, which generates a phase in an interferometer via the Sagnac
effect.

1.2.1 Sagnac effect

Georges Sagnac published his account of the effect that rotation has on the
output of a ring-shaped interferometer as early as 1913 [19, 20] where he was
interested in theories of the ether [21]. Predictions that the earth’s rotation
would bias such a device require extremely large area interferometers, which
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FIGURE 1.1: An optical Mach-Zehnder interferometer which is
able to pick up a phase between the two detectors as the appara-
tus rotates, known as the Sagnac effect. As the apparatus rotates,
the clockwise and anti-clockwise paths become unequal in length
due to the finite speed of light. The difference in lengths is pro-
portional to the rotation rate.

in the early 20th century were difficult to design. It took the invention of the
laser to make such devices stable and large enough to make measurements at
such a scale [19, 22].

Light is split and sent in counter-propagating directions around a loop, akin
to that in figure 1.1. If one considers the finite speed of light, c, then it is simple
to see why a phase difference is generated in a rotating loop. Light travelling
around a loop in the direction of the rotation will have an effectively longer
path to travel than that of light travelling in the counter-rotating direction. This
difference in time to detector means that there will be a difference in phase, ϕ,
between the two.

This argument can be extended to massive particles as well. Consider a
loop of length L, which for simplicity we shall consider a ring, L = 2πR, where
R is the radius. A particle with velocity, v, will travel a complete revolution
distance L = vt in a time, t. If the ring rotates with a rate Ω then time taken to
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traverse the loop can be expressed as

t± =
2πR ± RΩt±

v
, (1.2)

where t± denotes the traversal time for the co- and counter- rotating terms
respectively. The time difference can be reduced to the expression,

∆t = t− − t+ =
4πR2Ω

v2 − (ΩR)2 ≈ 4πR2Ω
v2 , (1.3)

where we have used the approximation that Ωr ≪ v. The difference in phase,
ϕ, is given by ∆ϕ = v

λ0
∆t, where λ0 is the particle wavelength, hence,

∆ϕ =
4πR2Ω

λ0v
. (1.4)

This expression is specific to ring-type geometries, but the Sagnac effect applies
to any looped interferometer by the relationship

∆ϕ =
2E
h̄c

A⃗ · Ω⃗, (1.5)

where the energy of the particle, E, is included and the phase is the projection
of the axis of rotation onto the loop area. Indeed this generalisation from h̄ω to
particle energy applies to wave-like particles too. The energy of massive parti-
cles varies with E = mc2, where m denotes the particle mass and c the speed
of light. Heavy atoms, compared to lighter nucleons or electrons, are therefore
advantageous to use, due to this scaling. The Sagnac effect with massive par-
ticles was first shown for electron pairs in 1965 [23], neutrons in 1979 [24] and
for atoms in 1991 by Riehle et al [25].

1.2.2 Optical rotation sensing

Modern optical sensors for rotation include the Laser-Ring Gyroscope and the
Fibre-Ring Gyroscopes. The laser-ring gyro is an active optical device, where
the laser source itself is modulated according to the rotation, and the fibre-ring
gyroscope is a passive device, using laser light to generate an interferomet-
ric geometry. Reviews of these sensors can be found at the following refer-
ences [26–29].
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The laser-ring gyro makes use of a ring-shaped laser cavity, of which the
rotation rate affects a change in the cavity length, resulting in a frequency dif-
ference in the clockwise and anticlockwise rotating modes [26]. This difference
is measurable as a beat note, an effective heterodyne measurement between the
mode frequencies. As we now measure the path length difference via this beat
note, the output is scaled by ω/L compared to measuring path length alone.
Such devices have a small footprint and are routinely used in the aviation in-
dustry as well as in scientific endeavours [30]. They however suffer from the
“lock-in” effect where the gyroscope can become insensitive to small rotations
(on the order degree per hour, °/h) due to backscatter in the cavity [29].

A Fibre-ring optical gyroscope (FOG) is a Mach-Zehnder interferometer
constructed with a long loop of optical fibre, where two laser modes from a sin-
gle source counter-propagate through the fibre. This bundle of fibre can have
an extremely long path length when wound appropriately, bringing the effec-
tive interferometer area up to several km2, whilst remaining relatively com-
pact.

Both devices run into issues with temperature fluctuations, from the drift
of the laser frequency to the change in the length of the fibre. It is this bias
drift that limits some of the best optical gyroscopes commercially available.
This is to say that over time a gyroscope at rest will drift from its original zero-
point. This is especially harmful for navigation using inertial measurement
units (IMUs) that rely on a suite of gyroscopes and accelerometers in order
to accurately relay space and angle coordinates [27]. Navigation is achieved
by integrating the sensor readings, hence any errors and uncertainty in the
measurement are amplified. It is therefore of interest to generate sensors that
are resilient to these kinds of long-term drifts. Atomic sensors are one such
solution.

1.2.3 Atomic rotation sensing

To generate an atom interferometer we must generate an atomic analogue to
optical beamsplitters, since a key aspect of any interferometery is the splitting
of waves. Atom-optic beamsplitters are made from the coherent manipulation
of either external (i.e. momentum) [31, 32] or internal (i.e. electronic) [33] states
of an atom. We go into more detail about the splitting of the atomic ensemble
in chapter 3. The nature of the atomic ensemble being split must also be consid-
ered [5]. Whilst thermal atomic ensembles (such as atoms in a mageto-optical
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trap) are relatively quick to generate, their thermal velocity distribution makes
it difficult to address the entire population with a single process - there are still
significant number of atoms that are not addressed and must be “blown away”
with a resonant pulse. BECs offer an advantage in that the whole ensemble can
be addressed, and coherent beamsplitting can be made very efficient [34, 35].

The motivation for atomic rotation sensing is found by considering the en-
ergy of the particle. In equation 1.5 if we compare the phase shifts for atomic
and optical sensors (∆ϕatom and ∆ϕω respectively) given the same interferom-
eter area and rotation rate we see,

∆ϕatom

∆ϕω
=

mc2

h̄ω
=

λωc
λdbv

≈ 1 × 1010, (1.6)

based on cold atoms v.s. near infrared light. Of distinction here is that for pho-
tonic based systems the speed of light is a constant factor in the scalability,
whereas for atomic systems we can affect both the de Broglie wavlength and
the atomic velocity (by cooling). Atomic devices therefore have the possibil-
ity to out-perform optical devices, offering higher sensitivities. This particular
comparison is a little unfair, however, as mile long atomic systems are some-
what unfeasible whilst routinely made in FOGs. Another consideration to
make is the scaling with the number of particles, where typical laser beams can
produce 1 × 1014 photons s−1 compared with 1 × 107 atoms s−1 made by typ-
ical atom traps. With Bose-Einstein condensates this number decreases even
further, with condensates of 1 × 105 atoms produced in around 1 s in setups
arranged for speed [36, 37].

Interferometers based on atomic beams remain the most sensitive atomic
Sagnac interfereometers to date. Gustavsen et al. [38] report a short term sen-
sitivity of 6 × 10−10 rad s−1/

√
Hz [39] using a beam of ≈ 1 × 1011 s−1 Caesium

atoms. The apparatus is over 3 m long however, and each Raman beamsplitter
is separated in space, requiring its own optics. The overall interferometer area
is 22 mm2, with the arms maximally separated by 24 µm. Fountain interferom-
eters are more compact and allow the pulses to share the same optics, remov-
ing uncertainties associated with differences between the separate beam align-
ments. The use of cold atom clouds also increases the sensitivity of the instru-
ment, as we know the phase difference is inversely proportional to the atomic
velocity. Dutta et al. [40] report a sensitivity of 1 × 10−7 rad s−1/

√
Hz with a

continuously operated atomic fountain, which is able to prepare a cold atom
cloud whilst simultaneously performing interferometry, cutting dead time in
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the interferometer.
There are a class of atom interferometers in which a reflection operation

(or device) is not needed. Guided interferometers, where atoms are confined
to some looped geometry, are becoming a more attractive way of generating
large interferometer areas with a small experimental footprint [41]. There are
a number of ways to generate such a trap, including magnetic storage [42, 43],
dressed RF potentials [44, 45], time averaged dipole potentials [46–48], and
computer generated holographic patterns [49, 50].

1.3 BEC interferometer in freefall

Let us turn our attention to the configuration we wish to investigate - that is
an atom interferometer utilising a BEC. The specific geometry we are investi-
gating is where the BEC is dropped under gravity during the interferometry
sequence which will generate a Sagnac area, making it sensitive to rotations.
BEC interferometry has advantages associated with the condensate’s narrow
momentum width - namely the ability to address the entire cloud with split-
ting processes, and an associated large coherence length [35, 51]. For small
drop distances relative to the distances covered by fountains and beam ex-
periments, we predict this scheme will be competitive with them in terms of
sensitivity.

1.3.1 Description of Apparatus

The BEC interferometer in freefall is configured in the following way, detailed
in chapter 3. A BEC is generated and held in an optical dipole trap. The BEC
is then released and simultaneously split using an external-state beam splitter
based on a Kapitza-Dirac pulse. There are no longer any confining or levitating
forces and the BEC is allowed to accelerate under gravity. The split should be
perpendicular to the direction of gravity in order to maximise interferometer
area (see below and equation 1.5). The split packets then travel apart for the
symmetric interferometer time, τ, before being reversed in momentum using a
Blackmann pulse [52]. After another τ has passed the packets are recombined
using a similar beam-splitting operation. As the atomic ensemble accelerates
under gravity it will trace out a kite-shape in space, as shown in figure 1.2.

If no phase source is present then all population should then return to the
central mode, the BEC at rest. Any accelerations of the cloud during the time
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FIGURE 1.2: Space diagram of the freefall BEC interferometer
scheme, showing the position of the BEC as it falls under grav-
ity, g, during the interferometer sequence. A coherent pulse
(red) splits, reflects and recombines the BEC as it falls (solid blue
curve). The same beam, which encompasses the entire interfer-
ometry sequence, is used for all three pulsed operations. The time
between pulses, τ, is shown for reference. The dashed-line kite
shape has the same area as the blue curve. This is discussed more
in chapter 3.

the interferometer is active, such as from the Coriolis force associated with a
rotation, will result in population remaining in the split packets. What is of
note in this scheme is that the interferometer (area) scales with the cube of the
symmetric interferometer time, τ,

A f f ∝ τ3, (1.7)

which we detail in chapter 4. A 10 ms drop corresponds to an area of around
A f f = 0.23 mm2 in our scheme. Therefore, small increases in the BEC drop
time improve the sensitivity of the instrument dramatically. The smallest rota-
tion rate one can detect is given by the sensitivity of the apparatus. The sensi-
tivity in the the simple case where the phase variance is limited by shot-noise
[53, 54], is given by

δΩ =
h̄

2mA
√

N
, (1.8)
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where N denotes the total atom number involved in the interferometer, which
arises from considering noise from number fluctuations [53]. A freefall in-
terferometer with the area above producing a BEC of 1 × 105 atoms every
second results in a sensitivity of roughly 1 × 10−6 rad s−1/

√
Hz. An equiv-

alent sensitivity can be found for a (guided) ring interferometer with a ra-
dius of r0 = 270 µm, which we motivate in the following section. To date,
guided interferometry experimentally reports measured sensitivities on order
1 rad s−1/

√
Hz [55], with significant potential for improvement [56, 57].

1.3.2 Confined ring geometries

For the freefall interferometer, at its greatest point the split wavepackets are
roughly ≈ 100 µm apart. Compared to the drop distance which is over ≈
2 mm, this means the interferometer area has an aspect ratio of roughly 20:1.
One way therefore to increase the interferometer area in this configuration is to
increase the separation in the horizontal (perpendicular to gravity) direction.
One way to achieve this is by using higher momentum splitting (n > 1 in
equation 1.5 above). Higher momentum states are however more difficult to
excite efficiently, which is covered in greater detail in chapter 3. More efficient
pulses, or pulse schemes may address this issue [58–60].

Guided interferometry is another attractive option. A method of generat-
ing optical potentials useful for guiding cold atoms we are looking into is the
phase-only Fresnel zone plate (FZP). Based on the Fresnel lens of alternating
zones one can shape light into arbitrary patterns. We wish to generate ring
traps via this method, the details of which can be found in chapter 5, building
on work done previously by Henderson et al. found at reference [61]. Rings
with radii on the order of 100 µm have been produced [62], with possible scal-
ing up to mm. We also have the possibility to generate and use dark-field traps,
where atoms are stored in intensity minima. The combination of these effects
can increase our sensitivity by orders of magnitude.

1.4 Outline of Thesis

This thesis is broken into three separate parts. Part I describes a new apparatus
we built to motivate a new quantum technology. Here we describe the building
blocks required to create a Bose-Einstein condensate from vacuum to atom
trap. Part II deals with freefall interferometry and the changes that have been
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made to the apparatus common to previous work in the group to adapt to this
scheme [63, 64]. Part III then goes on to motivate the hybrid near-field Fresnel
zone plate, expanding on work by Henderson et al. [61, 62] to generate a new
generation of plates for future experiments.

Part I contains work done by the author in conjunction with V. Henderson
[65], part II uses apparatus constructed by A. Dinkelacker [66], B. Robertson
[63] and A. Mackellar [64] with further improvements and adaptions by the
author, and part III consists of new work by the author based on previous
work by V. Henderson [65].

Publications featuring the author during their time at Strathclyde Univer-
sity can be found at the following references: [62, 67].
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Part I

Apparatus
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Chapter 2

Vacuum apparatus and
magneto-optic trap

The creation of a Bose-Einstein condensate (BEC) is not a simple process. To
achieve BEC, atoms must be cold and dense enough for their de Broglie matter-
wave component to overlap [68–71]. We must push particles to some of the
coldest temperatures it is humanly possible to achieve. To achieve this we turn
to the realm where light and matter interact, trading energy quanta in such a
way that the system is biased toward energy loss. When one method runs out
of effectiveness, we can then change the way we hold, cool, or compress the
ensemble as best suits our circumstance. The apparatus to produce such a state
is also non-trivial; no simple fridge will suffice.

In this chapter we will cover some of the experimental necessities to pro-
duce a BEC of 87Rb . Firstly, we shall describe the relevant forces for cooling
and trapping of neutral atoms into a magneto-optical trap (MOT). A MOT pro-
vides the starting point for many cold-atom experiments, such as those involv-
ing the production of a BEC. We then cover the construction and optimisation
of our vacuum chamber with a 2D+ MOT, a high flux atomic funnel which is
key in speeding up BEC generation. Finally, we outline the path we take to
achieve condensation, as has been routinely achieved in our group for many
years now. For clarity, the vacuum chamber described here with the 2D+ cham-
ber was newly constructed during the course of this PhD and is not the same
chamber as is described in section 2.4 and in the following chapters, whose
construction and characterisation has been fully described previously in the
work of Dinkelacker [66], Robertson [63] and Mackellar [64].
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2.1 Light-matter interaction forces

To achieve BEC, atomic physicists require the ability to cool and trap atoms.
The way atoms interact with fields, namely with light and magnetism, pro-
vides us with a foundation to accomplish this. The cooling and trapping of
neutral atoms is a well established and discussed topic, with many good texts
on the subject [70–74]. Below we will discuss basic necessities to understand
some of the detail further in this text.

2.1.1 Atomic Scatter

The first of two main forces we will deal with is that from atomic scatter. Atoms
in a monochromatic light field with frequency ω will scatter by spontaneous
emission with a rate, Γsc given by,

Γsc =
Γ
2

I/Isat

1 + I
Isat

+ 4∆2

Γ2

, (2.1)

where we define Γ as the natural linewidth and ∆ as the detuning from the
transition wavelength, ω0, such that ∆ = ω − ω0. Here we denote the beam
intensity I and the saturation intensity Isat, which are defined by the relation-
ship with ΩR the resonant Rabi frequency [74],

I
Isat

= 2
(

ΩR

Γ

)2

. (2.2)

The relation in equation 2.1 has a Lorentzian lineshape when plotted
against ∆, reaching a peak when ∆ = 0. Scattering from spontaneous emis-
sion / absorption carries an associated change in momentum from the photon
recoil of h̄k, hence the force on an atom can be expressed as force = change in
momentum × rate of photon scatter events, i.e:

Fscatt = h̄kΓsc = h̄k
Γ
2

I/Isat

1 + I
Isat

+ 4∆2

Γ2

, (2.3)

where the wavenumber, k = 2π/λ, is associated with the wavelength of the in-
cident (photon) field, λ, and h̄ is the reduced plank constant. The trick in order
to make this force relevant to cooling an atom is to make it velocity selective.
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Consider an atom in motion, with velocity, v⃗, travelling in the opposite di-
rection of the beam propagation with the wavevector, k⃗. If the beam is resonant
(∆ = 0) then the atom will continually experience an acceleration opposite to
its initial direction of propagation, even eventually reversing the direction of
the velocity. We wish to diminish the effect of the force as the atom slows
down, hence we need to make the force velocity dependent. Consider now
the Doppler effect, the frequency of a wave is shifted by ω′ = ω − k⃗ · v⃗ for the
atom. The detuning, as defined above, can then be expressed in the frame of
the atom as;

∆′ = ∆ − k⃗ · v⃗, (2.4)

where this k⃗ · v⃗ means that atoms experience a stronger force when they have
a velocity that Doppler shifts the frequency of the beam toward resonance,
i.e. ∆ = k⃗ · v⃗. The force weakens as the atomic velocity is decreased towards
0. Introducing a second, counter propagating beam with a similar detuning
can then slow atoms toward v = 0. Six beams, one for each direction in 3D
space, used to slow atoms in this way is referred to as optical molasses, where
the slowing force originals from light-interaction only.

From this simple presentation of the scattering force it may seem that one
may be able to stop an atom in place using this technique, but the truth is not
as simple. The force is derived from incoherent scatter, which relies on the ab-
sorption and re-emission of a photon, and it is this spontaneous emission that
limits us in the Doppler case. The Doppler Limit is the theoretical minimum
temperature achievable, TD = h̄Γ

2kB
[74–76]. However, sub-Doppler tempera-

tures are experimentally achievable with techniques such as Sisyphus cooling
[76, 77] and Grey molasses [67, 78, 79].

This orientation does not trap the atoms, as there is no spatial confinement
and atoms will eventually diffuse from the beams. We must consider addi-
tional effects in order to successfully trap cold atoms in space.

2.1.2 Magneto-Optical effects for trapping

To successfully trap atoms we must consider the light-induced scattering force
along with the Zeeman effect, whereby in the presence of a weak magnetic
field, the degeneracy on the atomic hyperfine levels is lifted and the energy of
the magnetic/Zeeman sub-levels, mF, are shifted by a quantity [74],

Eze = µBgF|B⃗|mF, (2.5)
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where the Bohr magneton and the Landé g-factor are represented by µB and gF

respectively. Introducing a spatial variation (or gradient) in the magnetic field
would therefore create a gradient in the energy landscape. The net result of this
is that we can make the detuning from the atomic transition spatially depen-
dent now. We generate a strong linear gradient with a set of coils with currents
running counter to each other - i.e. a quadrupole magnet in anti-Helmholtz
configuration, such as in figure 2.1. In essence, as atoms move from the centre
of the quadrupole where the net field is zero, we can shift the energy of the
atom up to make it more resonant with a (red-detuned) beam.

FIGURE 2.1: Illustration of the 3D MOT scheme in the x-z plane.
a) Crossed beams at the centre of a quadrupole magnet in an anti-
Helmholtz configuration. Running counter currents between the
coils generates the magnetic field 0 at the centre. The triangles
denote the polarisation of the beam in that direction. The orien-
tation of the λ/4 waveplates between the two axes must be or-
thogonal, as the magnetic flux changes direction between the coil
axis (z) and the perpendicular (x). b) Magnitude of the magnetic
field as a function of distance from the centre of the coils.

We still need to circumvent the problem of what direction the force takes
with respect to space. With unpolarised light all mF levels are equally ex-
cited, but with polarised light selection rules force us to consider a family of
mF → m′

F transitions. Circularly polarised light, that is light polarised so that
the E-field vector precesses around the quantisation axis (set by the B-field),
will promote ∆mF = ±1 transitions, known as the sigma transitions, σ+ and
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σ−. Consecutive σ+ (σ−) transitions will pump atoms into the stretched state
- that is into the highest (lowest) mF state available. This state is also the one
most affected by the magnetic field and hence experiences the largest energy
shift, as seen in equation 2.5. If this stretched state then meets the resonance
condition on account of both the spatial (magnetic) and velocity (Doppler)
shifts in detuning then the atom will undergo a scatter. In essence, the de-
scription (in one dimension) of the detuning can be extended to include the
spatial dependence on magnetic field:,

∆′ = ∆ − k⃗ · v⃗ +
gFmFµB

h̄
dB
d⃗r

r⃗, (2.6)

where we have assumed the field is linear around the quadrupole centre at
r = 0, where |B| = 0. This assumption allows us to take the gradient of the
B-field multiplied by the distance from the trap centre (at r⃗ = 0). From this,
we can see that the magnetic gradient provides a spatially dependent force
required for trapping the atoms.

The configuration is therefore to have magnetic gradient, with the σ+ (σ−)
light propagating against the side where the field is positive (negative)1. Ex-
tending to three dimensions (with beam pairs along each axis usually) this is
known as the magneto-optical trap (MOT). The interplay between the field
zero and the beam propagation direction will be important in section 2.3.3
where we examine a peculiarity with respect to beam polarisation.

With coil pairs in an anti-Helmholtz configuration, a fact to remember is
that along the coil axis the direction of the field is opposite to that in the ra-
dial, hence the polarisation of the beams between these will be orthogonal.
For instance, if a Helmholtz coil pair is separated in z then the angle of the
λ/4 waveplates of the beams in this axis are set at 90° from those in the x-y
axis. This ensures the correct circular polarisation is used for each axis. This is
shown in figure 2.1. Also, if one is to reverse the direction of the current in the
magnetic coils then the opposite of a trap is generated - atoms are ejected from
the trap centre. These two facts are useful to consider when aligning a MOT
for the first time. If the polarisations are set correctly, then it may be prudent
to invert the coil current.

Purely magnetic trapping is possible, as a gradient in the potential is evi-
dent. Two things become evident in practical considerations. The sign of the

1This is in the laboratory frame. The relative direction of travel in respect to the quantisation
field is what makes the transitions σ+ or σ− [74].
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mF state becomes important, as it prefaces the gradient of the B field, meaning
that atoms either become “high-field seeking” or “low-field seeking”; attracted
to or repulsed by strong magnetic field amplitude. In either case, atoms will
need to be pumped into the same (stretched) state otherwise a large fraction of
the population will go un-trapped. Magnetic gradients on order Tesla per me-
ter (T/m) are required to trap atoms at room temperature. As a consequence
magnetic trapping for neutral alkali atoms usually takes place once the atoms
are already cooled.

In essence, appropriate magnetic fields in combination with a pair of
counter-propagating circular-polarised (cooling) laser beams which are de-
tuned to the red of the atomic transition create position-dependent laser scat-
tering rates which enable magneto-optical trapping. A touchstone of atomic
physics, many parts come together to generate an effective MOT. Recently,
work towards reducing the experimental size, weight and power (beams,
mirrors, etc) has been done with the grating MOT [80–83]; a single-beam,
grating-based device for trapping and cooling of atoms, using the diffracted
orders to generate the necessary beam-geometries.

2.1.3 Dipole Potential

An atom interacting with a field is influenced by its intensity landscape as well.
This is to say that a strongly focused beam can be used to hold atoms through
a separate mechanism to the one described above. Named the dipole force, it is a
key element in experimental cold-atom physics [84]. Where the scattering rate
in equation 2.1 is concerned with spontaneous emission, the dipole force arises
from the in-phase dispersive component of the induced atomic dipole moment
[85].

Analogous to the Zeeman shift described in section 2.1.2, the AC Stark ef-
fect is a light-induced energy shift of the atomic levels. This intensity depen-
dent energy shift generates a potential. In the rotating wave approximation
(where |∆| ≪ ω0) the dipole potential, Udip, is described by the equation [74,
85],

Udip(⃗r) =
h̄Γ2

8Isat

I (⃗r)
∆

, (2.7)

where we see that potential depth is proportional to intensity, and inversely
proportional to detuning. Given that force is the gradient of potential we see
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that:
Fdip = −∇Udip ∝

dI (⃗r)
d⃗r

, (2.8)

where spatial gradients in the intensity landscape give rise to the dipole force.
Note that the sign of the detuning in equation 2.7 will change the direction of
the force; red detuned beams (i.e. ω < ω0, ∆ is negative) draw atoms to regions
of high intensity, and blue (ω > ω0, ∆ is positive) push them away. We divide
these into two classes of dipole traps; red (attractive) and blue (repulsive).

Note that the scattering rate, equation 2.1, depends on I/∆2 compared to
the I/∆ in the dipole potential case. At larger values of detuning, therefore,
the dipole force plays a more dominant role. Indeed, when concerned with
generation of the BEC, we cannot rely on the scatter force around temperatures
where recoil is on a similar order of magnitude, as this will lead to losses from
our trap.

Also note that 87Rb has two lines, the D1 and D2 at 795 nm and 780 nm re-
spectively. A more complete version of Udip includes contributions from both
lines [85]. More comprehensive reviews of the theory and implementation of
the dipole force can be found at references [68, 69, 84, 85]. We revisit dipole
traps in chapter 6, with respect to the novel generation in the near field.

2.2 Vacuum chamber for Bose-Einstein Condensate

production

Essential to any cold-atom experiment is the vacuum chamber, or more specif-
ically, having a low background pressure. Atomic experiments are done in
vacuum in order to minimise collisions with background gasses. This be-
comes especially important when one is considering generating BECs, as in
order to guarantee a long BEC lifetime it must be created in UHV, or in ultra-
high vacuum. UHV is generally defined as a background pressure below
1× 10−9 mbar [86]. BEC experiments generally require lower pressures, nearer
1 × 10−11 mbar as the BEC lifetime scales inversely with the background pres-
sure [87].

On the other hand, MOTs are usually loaded from a background vapour
of the atomic species used. The pressure of this background vapour for alkali
atoms is on order of 1 × 10−7 mbar. It is therefore pertinent to separate where
the BEC is formed from where the MOT is loaded. A dual chamber system
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achieves this, with a source MOT in a “high pressure” reservoir feeding a “low
pressure” chamber where the BEC is eventually formed. The pressure differ-
ence is maintained by a differential pumping tube (DPT), which is effectively
a long pipe with a small aperture through which we can funnel atoms.

This flux of atoms is provided by a 2D MOT, a conventional MOT along two
axes, but left unconstrained along the third [88]. Atoms here are cooled and
trapped along two dimensions and are thus funnelled into an atomic beam of
sorts. This beam can then be directed along the DPT and into the awaiting 3D
MOT in the low pressure chamber. A higher flux of atoms can be achieved by
adding an additional beam along the axial direction - what is conventionally
known as a 2D plus (2D+) MOT [89]. We construct and evaluate the perfor-
mance of this in section 2.3.

The following sections will describe the new chamber apparatus, with a
particular focus on the 2D+ MOT.

2.2.1 Vacuum Apparatus

The dual chamber apparatus is comprised in the following way, of which a 3D
render of can be found in figure 2.2. Two glass cells (100 × 30 × 30 mm3) are
connected to a central stainless steel block which has a partition in the centre,
separating the two. On the high pressure (2D, right of figure) side a 220 L s−1

(Agilent Starcell) Ion Pump and four rubidium dispensers (SAES Getters) are
attached. The low pressure (left of figure) has a 45 L s−1 (Gamma Vacuum
Diode) Ion pump and a non-evaporative getter (NEG, SAES Getters Capaci-
TORR D400-2). For ease of pumping the system with a Turbo-Pump each side
is fitted with a valve (MDC Vacuum MAV-150-V). The distance from the exit
of the 2D+ MOT to the centre of the 3D MOT is roughly 370 mm.

Specific characterisations of our bakeout procedure, including temperature
and pressure monitoring can be found in Ref. [65]. The parts were degreased
(soak in MICRO90 solution) and ultrasonic cleaned (20 min at 41 °C in acetone
followed by the same in isopropanol). The chamber was then baked for two
weeks above 200 °C before being finally sealed at around 4.6 × 10−11 mbar on
the low pressure side, and less than 1 × 10−9 mbar on the high pressure side.

The differential pumping tube (DPT) is fitted inside the main vacuum body
and separates the two chambers. The DPT extends into the 2D chamber such
that the aperture lines up with the end of the glass cell. The DPT is staggered,
i.e. tapers open in segments, with a 2 mm diameter opening, expanding to
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FIGURE 2.2: Render of vacuum apparatus, including the two
chambers, separated by the differential pumping tube (DPT - in-
set bottom right). At the tip of the DPT a protected gold mirror
is attached to provide a reflective surface for the 2D+ MOT. The
two pumps attached are also labelled, in addition to the NEG.
The blue and yellow highlighted parts make up the 3D printed
watertight enclosure for the high current coils.

5.85 mm then 7.2 mm in diameter. The overall length of the DPT is 158.98 mm.
This shape accounts for the drop due to gravity as well as the (thermal) angular
spread of atoms through the tube, minimising collisions with the tube walls
whilst maintaining a narrow atomic “beam”. The DPT is able to maintain ratio
of pressures between the two chambers of of 2.1 × 103.

Highlighted in blue and yellow in figure 2.2 are the 3D printed enclosure
for the high current quadrupole coil pair for magnetic trapping. The coils are
made using 1.85 mm enamelled copper wire wound 17 × 17 turns across. The
coil pair has a resistance of 1.34 Ω, which will require water cooling in order
to run currents >20 A through in order to generate magnetic gradients of ≈
200 G/cm for trapping. The enclosure is 3D printed from sintered nylon (SLS
Nylon PA2000, printed by 3DAlchemy). The coils sit on 1 mm copper feet,
and have thin copper prongs on the inside face of the coil in order to maximise
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water exposure and heat dissipation. This is illustrated in figure 2.3 The 10 mm
inner diameter nozzles (hose barb) for water ingress/egress form part of the
printed structure. Since the coils are submerged inside the enclosure we trail
the wire out the nozzle, following the flow of water to a T-junction in the hose.
Here, the wire is then fed through a thermocouple compression fitting (RS 839-
9496), which acts as a watertight seal, allowing us to connect the coils directly
to a power supply. The coil wire is enamelled, which acts as a barrier such that
we avoid making the compression fitting live, bypassing a large resistive load.
In previous designs we have soldered the current carrying wire to a metal hose
fitting, making it live, in order to deliver current.

FIGURE 2.3: Illustration (not to scale) of the coil, copper feet and
prong inside the 3D printed coil enclosure. There are three feet,
1 mm in height, and three prongs fitted inside each coil enclosure.
These help dissipate heat from the sides of the coil that do not
have contact with the cooling water.

2.2.2 Dispensers

We use Rubidium alkali-metal dispensers as an atomic source. Four dispensers
(SAES AMD) are arranged in a circle, connected at the end of a copper feed-
through on the underside of the vacuum chamber. Dispensers generally con-
sist of a small bar of alkali-metal compound that when heated sufficiently will
sublime atomic alkali from its surface. The heat is delivered by resistive heat-
ing from passing a current through the ceramic compound. Dispensers have a
finite lifetime, hence we install 4 to future-proof for this.

The background vapour pressure in the 2D MOT chamber is directly mea-
sured by sending a probe beam through a non-trapping region of the 2D MOT
and scanning the frequency to measure the full 87Rb D2 line Doppler spectrum.
We use a probe beam with an intensity of 0.46 mW cm−2 or roughly 0.3Isat.
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From a fit of the Doppler spectrum we can estimate the background pressure
using the Elecsus program [90, 91]. The program fits the Doppler spectrum to
an equivalent temperature, and from this temperature we can make a lower-
bound estimate of the vapour pressure [92–94].

In figure 2.4 we plot the fully optimised 2D MOT (including polarisation
considerations below) loading rate as a function of the dispenser current, along
with the corresponding vapour pressure. We operate at a vapour pressure
slightly lower than where the maximum flux occurs (corresponding to dis-
penser current of 6.8 A) to ensure the 3D MOT does not completely saturate
within 1 s when recording our polarisation results below in section 2.3.3.
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FIGURE 2.4: The number of atoms loaded in 1 s in the 3D MOT
(black squares) as a function of different currents through the dis-
pensers. The vapour pressure (blue circles) is directly measured
with a 0.3 Isat probe beam, whose frequency is scanned to pro-
duce Doppler spectroscopic peaks. These peaks are then anal-
ysed by the Elecsus program to convert into a pressure[90]. Flux
improves until a pressure of approximately 1× 10−7 mbar, where
background collisions begin to degrade performance.

Note an experimental oversight where the activation current (roughly 5 A)
is higher than the manufacturers specification, which we attribute to signifi-
cant heat dissipation through the copper feedthroughs used. Consequent de-
signs have noted this and the group now uses nickel or molybdenum based
feedthroughs for dispensers, where activation is now observed closer to 4 A.
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2.2.3 2D magneto-optical trap design

Here we will generally describe the 2D MOT apparatus, found on the high-
pressure side of the dual chamber. Performance of the 2D+ MOT can be found
in section 2.3.

Our 2D MOT is a segmented design based on reference [95], a diagram of
which can be found in figure 2.5. The multiple segmented design occupies
a smaller physical volume on the optical table, not needing the large expan-
sion optics necessary for elliptical MOT beams common in 2D MOTs. In the
elliptical design, the wings of the Gaussian beam mean the MOT confinement
is weaker near the entrance of the differential pumping tube and thus has a
greater angular spread. In the segment design you generate multiple smaller
MOT segments which then feed into each other to produce the atomic beam.
You can then physically bring the last MOT region closer to the DPT, allow-
ing more atoms to propagate through the DPT aperture, increasing the atomic
flux.

Our laser system for both 3D and 2D MOTs consists of two 780 nm home-
built ECDLs, operating with an output power of approximately 50 mW - the
details and construction of these can be found at references [63, 65]. Our
cooling laser is 12 MHz (≈ 2Γ) red detuned from the D2 cooling transition
(5S1/2, F = 2 → 5P3/2, F = 3) and the is repumper locked to the 5S1/2, F =

1 → 5P3/2, F = 2 transition. Both cooling and repump beams are coupled into
a polarisation maintaining fused fibre splitter (Laser2000 CP-PS-P-1x2-780 se-
ries) which that splits the coupled input power equally between multiple out-
put fibres. See section 2.2.5 for more details on the fibre splitters. Each output
is then collimated and expanded to a 1/e2 waist of 9.3 mm.

Light then enters our compact ’distribution block’ that divides the light
equally between three ’MOT regions’. The block consists of a series of half
(λ/2) waveplates and polarising beam splitters (PBS) housed in a custom built
aluminium mount (see top of figure 2.5). The separation between each region
is set by the thickness of the λ/2 waveplate mount at 8 mm. The waveplates
are adjusted by rotating inside the mount, and secured using a locking screw.
Light from the reflected ports of each PBS passes through quarter waveplates,
setting the polarisation to circular for trapping in the 2D MOT chamber. Indi-
vidual polarisation and intensity can be set for each cube, used to correct for
small discrepancies in the fibre splitter output. Each beam is retro-reflected by
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FIGURE 2.5: View of the 2D+ apparatus in the x, z plane, where
gravity is in the −z direction. Beams in the veritcal (z) axis are
omitted for clarity, but are identical to those shown (in y). The
central chamber is 30 mm × 30 mm × 150 mm in size, and all op-
tics are inch in diameter. The MOT regions are each separated by
8 mm, the last of which ends at the tip of the gold mirror that is
secured to the end of the differential pumping tube. A 3.13 mm
1/e2 waist beam, retro-reflected from the gold mirror in vacuum
and a dielectric d-shaped mirror outside the chamber, forms the
plus beam along the centre of the cell. An aperture was used
to limit the beam width to fit inside the differential tube with
no retro-reflection, forming the 1 mm waist push beam. Figure
adapted from [65].

a mirror with a λ/4 plate glued to the front of it to ensure the correct handed-
ness of sigma polarisation is incident on the atoms upon reflection.

A set of rectangular coils produce the quadrupole field for trapping, sepa-
rated along the z axis (out of page in figure 2.5). The coils measure 100 x 45 mm,
centred around the glass cell window. The modelled magnetic field is plotted
in figure 2.6, alongside an outline of the glass cell and MOT beams. A set of
1.1 G A−1 shim coils in the y and z axes allow the atomic beam to be moved in
the transverse plane.

The whole design takes up no more than 20 cm2 on the optical table and
the use of optical fibres to transport the light allows for changes to the laser
system, without disturbing the 2D MOT alignment. See section 2.2.5 for more
details on our fibre usage.
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FIGURE 2.6: Contour and vector plot of the magnitude (|B|) and
direction (arrows) of the field of the 2D+ MOT in the x-y plane
(at z = 0). The glass cell boundary is denoted by the solid line,
and the coils by the dotted line. The red circles show locations of
the MOT cooling beams, each with a 1/e2 waist of 9.3 mm .

2.2.4 The 2D+ MOT

The 2D MOT’s primary function is to funnel atoms through the DPT aperture.
There is a small cone of angles of which atoms from the 2D MOT will pass
through to the 3D MOT. In order to increase the yield of atoms that cross the
distance a push beam is used [96–98]. The push beam is a small, off-resonant
beam that pushes atoms along via radiation pressure [99], and is considered
most effective tuned to resonance. Some atoms with velocities in the −x direc-
tion (see figure 2.5), can be reversed in the presence of the push beam [100].

The 2D+ MOT is an extension of this idea, in which an additional ’plus’
beam is added along the non-trapped axis of the 2D MOT [89, 101, 102]. Whilst
the push beam is only as wide as the DPT aperture, the plus beam is much
wider than this, reflecting off the mirror which forms the front of the DPT.
This now retro-reflected beam forms a rudimentary cooling beam, but with
a hole in the centre along the 2D MOT axis (x). There is still pushing at the
centre of the plus beam, where there is no counter-propagating beam, so that
atoms that fall into the centre of the plus beam are propelled downstream. We
expect atoms to be cooled via optical molasses along this axis since there is
generally no magnetic field here, but this is not strictly true as we discuss in
section 2.3.3. Orginally shown by Dieckman et al. [89], the 2D+ improves flux
by narrowing the axial velocity distribution of atoms reaching the 3D MOT,
increasing capture.

Our push/plus beam is derived from the same cooling laser as described in
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section 2.2.3, but has an independent frequency detuning control and is cou-
pled into its own fibre (Thorlabs PCM series). The fibre output is collimated
and expanded to a waist of 3.13 mm to form the plus beam. The beam has a
peak intensity of 2.1 mW cm−2. This beam is retro reflected by means of a gold
mirror situated in vacuum (Edmund Optics 47-114) and a dielectric pickoff
mirror (Thorlabs BBD05-E03), as shown in figure 2.5. The edge of these mir-
rors and the end of the last MOT segment are as close as possible to maximise
the first MOT segment overlap in the chamber (left most circle in figure 2.6).

2.2.5 Note on the usage of fibre splitters

It is common in most experiments of this ilk to distribute light using PBS
cubes in free space. We opted to instead use fibre optics to distribute the light
amongst both our 2D and 3D MOT systems, requiring the use of fibre splitters
in-lieu of PBS cubes for portioning off light. The fibre splitters here are fused
fibre couplers - where two fibres are “fused” together by removing the cladding
and intertwining the cores. At the fusion point, intensity is transferred be-
tween fibre cores as the evanescent part of the wave outside one core leaks
into the other. The length of the fusion junction determines the efficiency of
the light transfer. Junctions can combine light if both fibres have light coupled
into them, or split if only coupled into the one. Multiple splits can be achieved
by chaining fusions points together, but typically performance diminishes with
additional fusion points. Any unused fibre ends are terminated - usually by
crushing the fibre end in order to reduce back-scatter.

Trapping and cooling of atoms in MOTs is sensitive to changes/fluctuations
in the light polarisation. Therefore, it is necessary to use polarisation main-
taining (PM) fibres for this application. PM fibres have a “fast” and “slow”
axis corresponding to the two birefringent axes the fibre has been constructed
with. The input light must have its polarisation axis match with one of these
axes in order to maintain its polarisation along the length of the fibre. The po-
larisation extinction ratio (PER) is a useful quantifier of this, which is defined
as the ratio of the power in the aligned (i.e. linear) polarisation to the total
power, reported in decibels (dB).

Typical fibres (e.g. Thorlabs PCM) have a reported PER of 20 dB. PM fused
fibre couplers are the same, but the fusion point limits our ability to control the
PER with careful alignment, as it is set in construction. It is therefore impossi-
ble to optimise each output independently without affecting the other outputs.
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However, using a Schäfter+Kirchhoff polarimeter (SK010PA-NIR - see section
2.3.2), we could efficiently make a good compromise in beam-fibre polarisation
alignment thanks to the device. We first aligned the input fibre polarisation,
then checked all the outputs in turn, optimising each until the lowest toler-
able value was found. In practice we did not have to change the alignment
much for the output fibres. We report these values alongside the manufacturer
specifications in table 2.1.

Output #. Quoted PER Measured PER
1:2 #1 21.5 25.5
1:2 #2 18.5 25.5
1:3 #1 21.7 22.0
1:3 #2 20.2 24.9
1:3 #3 22.1 19.2

TABLE 2.1: Polarisation extinction ratio (linear:rest) of the fused
fibre couplers used in the calibration of the 2D and 2D+ MOTs.
The measured value is the final PER in use after optimisation.

2.3 Performance of the 2D+ MOT

We used a 3D MOT load to characterise the performance of the 2D+ MOT.
The 3D MOT was made 370 mm downstream in the secondary chamber, as in
figure 2.2. The 3D MOT is loaded for 1 second and the number of atoms, N,
arriving in the 3D MOT is counted via fluorescence imaging with a photodiode
(Thorlabs DET36A/M). The detected fluorescence signal over time describes
the 3D MOT loading curve with flux, R, from the 2D MOT [82]

N(t) = Rτtrap

(
1 − exp−t/τtrap

)
, (2.9)

where τtrap is the trap lifetime (s) and R the flux arriving from the 2D+ MOT
(atoms s−1). When t ≪ τtrap then the linear term dominates and we equate R
with the slope of the loading curve.

The trapping and cooling beams for the 3D MOT are formed from another
fibre splitter, this time with one input and three outputs. Both fibre-splitters
are roughly 50% power-efficient. Around 80 mW is incident on the 3D fibre,
corresponding to roughly 14 mW at each of the fibre outputs. Each output is
then collimated and expanded to a 1/e2 waist of 19 mm and retro-reflected to
form the six beams required for trapping. A magnetic field gradient of 16.8
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G cm−1 for the 3D MOT was generated with a separate set of coils. For the
performance analysis in this chapter, the full 3D coil (and former) as shown in
figure 2.2 had not been implemented yet. Instead, for initial testing we used
an 80 turn, r = 30 mm, 60 mm separation “test-coil” which we ran at 3.5 A to
provide the required field gradient.

2.3.1 Performance and analysis

The 2D MOT parameters (beam power, alignment, etc) are optimised by ob-
serving the 1 s loading time into the 3D MOT without the plus beam on. Load-
ing for this amount of time allows us to directly measure R, corresponding to
the number of atoms in the trap after a 1 s load, N1s.

We note the two parameters with the greatest effect on flux are the 2D beam
power and the background vapour pressure (see figure 2.4). Our total power
is limited to 60 mW over the whole 2D system and 80 mW over the 3D. We
suggest that additional power in the 2D MOT will increase the flux further, as
we see R increases linearly with beam power, with no sign of plateauing. In
the future, this could be confirmed with access to more laser power than was
currently available. As it stands we can load > 5 × 109 atoms in 15 s of flux at
a rate of R = 1.6 × 108 s−1. We measure the temperature of the cloud in the 3D
MOT to be 500 µK via time of flight flourescence images [103, 104]. However,
optimisation for lower MOT temperatures was not under-taken with the test
coil arrangment. We envisage an optical molasses stage after trapping atoms
will cool sufficiently in order to be then transferred into a magnetic trap like
we have done previously - see references [63, 64] and section 2.4.

2.3.2 Push/Plus comparison

When measuring the 1 s load time with the push/plus beam activated we see
an immediate increase in 3D MOT size corresponding to an increase of flux
of around an order of magnitude when compared to loading solely with the
2D MOT. The waveplate immediately after the push/plus beam telescope in
figure 2.5 adjusts the polarisation of the push/plus beam, and was used to
observe the effect of the push/plus beam polarisation on the 2D+ MOT flux.
In theory, since there is no magnetic field gradient along this direction (in x, see
figure 2.6) then the system should be invariant to the polarisation of the beam.
For atoms to accelerate efficiently, linear polarisation should be chosen in order
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that atoms are pushed without becoming optically pumped. We consider the
push beam to be the central core of the plus beam that does not undergo retro-
reflection. An aperture before the waveplate allows us to switch between the
push and plus beams without changing beam intensity.

The polarisation of the beam exiting the fibre is linearly polarised. Polarisa-
tion is measured with a Schäfter+Kirchhoff polarimeter (SK010PA-NIR), which
displays the orientation of polarisation as a point on the Poincaré sphere2,
along with the linear PER - the ratio of linear polarisation to all other polar-
isations. With a λ/2 waveplate the orientation of linear polarisation is rotated
in the (transverse) plane of the beam. A rotation of the waveplate by θ cor-
responds to a rotation of the polarisation by 2θ, hence θ = 45◦ will change
vertical linear (V) into horizontal linear (H). The effect of the push/plus beam
polarisation angle on atom number is plotted in figure 2.7. The top graph, con-
tains data pertaining to the push and plus beam over a waveplate rotation of
180°. A zoom in on the feature at 90° is shown on the bottom graph, corre-
sponding to the shaded area. A difference in flux of a factor of two between
V and H polarisation is shown for the plus beam (black circles, figure 2.7 top),
where the change between the two is linear (figure 2.7 bottom). For the sole
push beam (blue crosses, 2.7 top) there is no noticeable change in flux with
waveplate rotation.

The variation of flux with the plus beam is not expected, as naïvely one
would expect the orientation of linear polarisation to not have an impact. One
consideration was the two mirrors involved in the retro-reflection. Upon re-
flection a phase difference between the V and H polarisation components ac-
crues (π for metallic mirrors and variable for dielectrics) and hence the re-
flected beam might not have the identical polarisation if it was not purely V or
H to begin with. Measuring the return (plus) beam polarisation we find that
pure V or H linear polarisation returns as such. At rotations +(−)10◦ from
horizontal, the return beam polarisation is fully circular left (right). The linear
change in flux from V to H (figure 2.7 b) suggests this little circularity in the
return beam plays little to no role in the performance of the plus beam.

With a quarter waveplate (λ/4) exchanged for the λ/2 a different effect
is observed. In figure 2.8 we plot the loaded atom number after 1 s against
waveplate angle, along with the linear PER. A high PER here means a high
degree of linear polarisation, where 0 dB PER corresponds to fully circular

2The Poincaré sphere displays polarisation as a point on a sphere where the poles corre-
spond to fully horizontal and vertical polarisation.
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FIGURE 2.7: Number of atoms in the 3D MOT after 1 s of load-
ing as a function of waveplate angle, corresponding to a linear
polarisation rotation. The black circles denote the retro-reflected
plus beam and the blue crosses the apertured push beam. (Top)
Push beam performance is observably unaffected by polarisation,
whilst the plus beam sees a factor of two increase in flux chang-
ing from H to V polarisation, corresponding to a 45◦ rotation.
(Bottom) Number of atoms loaded in 1 s with the plus beam over
the region denoted by the grey shaded area, showing the linear
change between V (dotted line) and H (dashed line) polarisation.



Chapter 2. Vacuum apparatus and magneto-optic trap 32

polarisation. The output from the fibre is linear at its output, so rotating a
quarter waveplate changes it between fully linear and fully circular with a
45◦ rotation. The load rate shows a higher sensitivity to the PER of the push
beam, as shown in figure 2.8 a). At the point where the beam is most linear,
the 1 s load peaks at 4.0 × 107 atoms. By making the beam less linear, the flux
decreases. the handedness of the circular polarisation, denoted in figure 2.8
as 160° for right-handed and 240° for left-handed, also effects the load rate by
about 25%.

In figure 2.8 b), the effect of load rate on plus beam polarisation linearity is
plotted (blue circles) as well as the PER of the input (or upstream) and retro-
reflected beam. A higher maximum atom number was obtained using the plus
beam, as compared to the push, with a N1s = 4.4 × 107. This occurs where
the two beams are slightly, and roughly equally elliptical. The handedness of
the beams at this angle is circular right - which has already been established to
perform better than circular left where the worst performance is also recorded
(at 260◦). The best performance was observed for (vertical) linear polarisation,
as we expected given the reasons we introduced in section 2.2.4.

2.3.3 Plus beam polarisation effect mechanism

The common simple picture in magneto-optical trapping sees the magnetic
field aligned with the direction of the atom’s velocity, so that the polarisation
is always perpendicular to the magnetic field. In these cases the force from a
single beam is given by

FMOT ∝
Ibeam/Isat

1 + Itot
Isat

+ 4
Γ2

(
∆ + k⃗.⃗v + mF

µBgF
h̄ |B|

)2 , (2.10)

where Ibeam and Itot denote the total beam and MOT optical intensities, k⃗
the wavevector and v⃗ the velcoity of the atom, mF the Zeeman sublevel and gF

the Landé g factor. The principle of the MOT relies on this force having a null
in the centre in both position (trapping) and velocity (cooling) [105]. Velocity
selectivity is achieved via detuning (i.e. ∆ ± k⃗.⃗v) but trapping requires circular
polarisation to play a part, allowing directional sensitivity [105, 106]. Here,
however, the polarisation is always orthogonal and selection rules permit the
excitation of sigma (σ) transitions only, where ∆mF = ±1, for magnetic fields
transverse to the polarisation.
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FIGURE 2.8: Number of atoms in the 3D MOT after 1 s of loading
as a function of waveplate angle for a λ/4 waveplate, changing
from linear to circular polarisation, as denoted by the PER (lines,
right axis). Load rate for the push beam (top, red circles) and
plus beam (bottom, blue circles) are plotted with corresponding
PER (Blue lines) of the original (dashed) and reflected (dotted)
beams. For the push beam, highest flux occurs where the beam
has a high degree of linear polarisation. The plus beam show
more complicated effects, peaking where the beams have similar
right-handed circularity. Both cases do not perform as well as in
the fully linear regime in figure 2.7.
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Our glass cell is made of standard NBK7 (Schott) glass which has a refrac-
tive index of 1.5112 for 780 nm light and is not anti reflection coated. We lose
roughly 7% optical power due to reflections on a single pass through through
the 2.5 mm cell wall. The retro-reflected MOT beams have to go through the
cell wall twice. We ignore absorpative losses to due the quarter waveplate and
dielectric mirror as they are anti-reflection coated (Thorlabs B coating). This
total loss of 14% beam power is quite significant and weakens the confinement
strength along the return direction (in positive y and negative z of figure 2.5).
The location of the force null then changes, due to this imbalance, to a location
where the magnetic field is not zero in the transverse direction.

With a transverse magnetic field component, the angle of the polarisation of
the plus/push beam becomes important. We are now able to align the laser E
field with that of the magnetic field, exciting π transitions (∆mF = 0). One con-
sequence of this change is that the Clebsch-Gordon coefficients are drastically
different for σ and π transitions, where σ transitions in favourable conditions
can cycle much faster than π. The saturation intensity is also less for σ [107].
As a consequence more ’pushing’ can be done with a σ polarised beam. Thus
aligning the polarisation vector with the magnetic field lowers the flux.

When the beam is V polarised, it must therefore be perpendicular to the
local B field, and when H polarised it is parallel. The direction of the field
may even be ’sensed’ by the ratio of load rates with circular right vs circular
left polarisation in the λ/4 scheme: more right suggesting the field is in the
−z direction, which we expect given the retro-mirrors lie on this side of the
chamber. The λ/4 plus case must be analysed with more care, as the return
beam plays an impact, as its handedness is inverted upon retro-reflection.

2.4 Route to BEC - in brief

Bose-Einstein condensation as a phenomenon is achieved as bosonic parti-
cles reach a critical temperature and density where the ground state becomes
macroscopically occupied. Here the single-particle wavefunctions overlap
significantly enough for the ensemble to described using only a single wave-
function. The Nobel Prize in 2001 was won for the experimental realisation
of this elusive state of matter, jointly between Cornell and Wieman [108] and
Ketterle [109]. More comprehensive descriptions of the state and its properties
can be found at the following references [68, 69, 71, 74, 110, 111].
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A BEC is formed by the atoms’ wavelength growing to a certain size that
they begin to overlap significantly. Condensation is therefore the point at
which the atomic separation approaches the de Broglie wavelength, λdb. The
atomic wavelength is related to the atomic temperature, T, by the following,

λdb =
h̄√

2πmkBT
, (2.11)

where kB is the Boltzmann constant and m the atomic mass. A more intuitive
quantity by which to measure the degree of overlap is the phase space density,
PSD,

PSD = nλ3
db, (2.12)

which is a dimensionless quantity which combines the de Broglie wavelength
with the number density, n. The critical value of PSD for condensation changes
with the shape of the trapping potential, but for a 3D harmonic trap, such
as that found in a focussed Gaussian beam trap, this is around PSD = 1.2
[112]. From equation 2.12 it is evident therefore to produce a BEC we should
minimise temperature and maximise density.

The MOT is only one such constituent part of the machine typically used
to produce BEC. The 2D/3D setup, as described with the caveats in section
2.2, is generally used for experiments that require rapid cycle times and a low
vacuum pressure. At the MOT, the PSD is roughly ≈ 1 × 10−8, so we must
cool and compress the ensemble further to reach degeneracy. Cooling is done
by evaporative cooling, and compression is done by loading the atoms into
tighter traps - gradually such that losses due to poor mode matching between
traps are minimal.

We shall briefly detail the route taken by our previous experimental appa-
ratus, which we will eventually construct the freefall BEC interferometer in.
More specific detail of the apparatus construction is covered in the theses of
Mackellar [64], Robertson [63] and Dinkelaker [66]. Our approach is a mag-
netic/optical hybrid [63, 113]. From the 3D MOT, loading into a magnetic trap
which we then use to transport the cloud across the chamber, during which
we begin performing radio-frequency (RF) evaporation [68]. We have roughly
7× 108 atoms with a PSD of ≈ 4× 10−6, before RF evaporation in the magnetic
trap, and 7 × 107 atoms with a PSD of ≈ 1.5 × 10−3 after. The magnetic trap
is then lowered into a crossed-dipole trap, in which the trap depth is reduced
and the cloud evaporated to degeneracy. The entire process takes around 10
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seconds to perform; including 3 s of RF evaporation and 5.6 s of dipole evapo-
ration. In total, one experimental cycle time is approximately 40 s long, when
we include the 30 s of MOT loading. This time will be significantly reduced
with the adoption of the 2D+ MOT described above in section 2.2. There are
multiple ways one might additionally speed this up for other experiments, as
production of BEC can be made very fast in chip-trap setups [114, 115], for
example.

This particular system we are using has been operated and iterated upon
for nearly a decade, showing a clear robustness in operation, despite running
out of rubidium twice. All experimental controls of note are configurable and
automated via LabVIEW, including our pulse parameters for interferometry (see
chapter 3), as it had been configured for use in magnetic gradiometery [116].
Introducing additional devices, such as our peizoelectric stack in chapter 4 is
as simple as daisy-chaining the device into the trigger pulse-train, with timing
offsets we know and can control and account for. From day-to-day operation
our biggest maintenance issue is our fibre-alignment, as the majority of our
preparatory optics are delivered to the chamber via fibre-couplers. The use of
fibres allows for changes to be made to the preparatry optics without affecting
alignment on the chamber, at the price of fibre-injection losses (although with
careful mode-matching these losses can be made minimal [117]).

The hybrid quadrupole magnetic trap has a maximum magnetic gradient
of 200 G/cm when supplied with 165 A current. The coils themselves are
made of hollow copper pipe, 1 mm inside diameter and 1 mm thick, such that
the cooling water is delivered directly to the coils. Over a days worth of ex-
periments (running continuously as above) the coil temperatures never reach
above 30 °C.

The crossed dipole trap is formed from a 1070 nm laser (IPG Yb fibre) which
can deliver up to 10 W of light at the cell, intensity controlled by an AOM at
the laser output. The beam is split via a polarising beam splitter, then crossed
at 128° to make a crossed dipole trap [85]. Typically the trap is loaded initially
with 3.2 W optical power/laser light and is decreased to around 220 mW by
the end of the evaporation stage. We measure the final trap frequencies to be
29.1 by 48.6 Hz in the x and z directions (via observation of sloshing-mode
oscillation [68]), at the point of formation of the BEC. Repeated measurements
at other final intensities allow us to infer a scaling of fx = 0.60 ∗ P0.46, fz =

141 ∗ P0.54 in the x and z, as a function of final power, P. This deviates slightly
from the expected fx,z ∝

√
P scaling, probably due to anharmonicity in the
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trap and gravity.
From this point onwards the experiment differs from the work mentioned

previously, in order to accommodate the interferometry in freefall. The same
MOT and hybrid trap is used to prepare a Bose-Einstein condensate, but the
interferometry setup has been modified slightly. The interferometry beam is
derived from the same source, but has been expanded in diameter (collimated,
not focussed at the atoms) and strikes the chamber from a different angle in
order to be retro-reflected. Details can be found in the following section.
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Part II

Interferometry
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Chapter 3

Preparatory optics for a BEC
Interferometer

In this chapter we consider the constituent parts of a freefall BEC interferom-
eter, namely the characterisations of the splitting pulses used, their modifica-
tions from previous [116] characterisations and how changing the geometry
affects the experiment and the phase accumulation.

We have already introduced the principle of interferometry in chapter 1. In
this chapter we discuss the technical means to create an interferometer with a
BEC, focusing on the Kapitza-Dirac method used to form matter-wave beam-
splitters for our BEC in section 3.1. We will first describe the mechanism and
formalism behind the coherent process, before detailing our pulse sequence
and performance, including the reflection.

We wish to perform a rotation measurement perpendicular to the earth’s
gravity, which is accomplished by dropping the BEC under gravity. The mod-
ifications to the apparatus required to achieve this are described in section 3.2.
As the condensate moves, however, it will also move out of the interferome-
try beam. It is then important to build up a picture of where the atom is with
respect to the beam and what local intensity the beam imparts to the atom at
that position. We describe our calibration of this in section 3.3. Finally we
introduce our calibration under gravity, allowing us to know the power each
pulse is required to be to accomplish effective splitting/recombination, along-
side a measure of asymmetry, showing our sensitivity to alignment with the
gravitational axis in section 3.4.
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3.1 Splitting pulses in Interferometry

Any atomic interferometer is dependent on a series of operations in order to
split, reflect, and re-combine the atomic wavefunction. There are many ways
to achieve this. Given our BEC with its narrow width momentum distribution,
we can choose a technique to take advantage of this and address the entire
ensemble with a splitting pulse - namely the Kapitza-Dirac pulse. We will
see with a composite, three-stage pulse it is possible to achieve momentum
transfer to the cloud with great efficiency.

3.1.1 Common Techniques: Intro

In interferometry, by comparing the relative phase between two different paths
travelled by a single wave source we probe the difference between those two
paths. To this end, one requires a mechanism by which the source can be split
coherently into the two parts. To split a classical oscillating electric field, i.e.
light, we use beam splitting devices which rely on a material change - a change
to the index of refraction. For atomic systems there are analogous beam split-
ters.

With light we consider the electric field along the whole path of the interfer-
ometer, splitting and recombining along the way, so similarly we need to put
the atomic ensemble into a superposition of path 1 and 2. Put another way,
we need a method to coherently separate and recombine the cloud somehow.
This separation is usually physically in space via a change in momentum. For
instance we may split an atomic cloud in such a way that one half will travel
upwards, whilst another will stay “stationary”, in the concerned axis. This is il-
lustrated in figure 3.1. The waves then need to be recombined in some manner.
’Reflection’ is therefore a requisite of any interferometer dealing in momen-
tum separated paths. Finally there must be another beam splitter to recombine
the packets, which then interfere by an amount related to the phase difference.
The outputs of an atom interferometer are generally the atomic populations of
the two momentum states. If no phase is accrued between the two paths, the
waves will remain in the same manner as they entered the interferometer (e.g.
at rest), but any phase change will exhibit itself as a presence in the “second”
channel. This forms a rudimentary atomic Mach-Zehnder interferometer, as
illustrated in the figure.
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FIGURE 3.1: An example of an atomic Mach-Zehner interferom-
eter. Three pulses of light (red) act to split, reflect and recom-
bine an atomic ensemble. In this particular example, common
to many modern experiments, an ensemble prepared in some
ground state, |F, 0⟩ (dashed blue line), is split by applying a res-
onant (π/2)-pulse, transferring half the population to the |F′, n⟩
state (green dashed line). The difference in the state populations
after the final pulse is related to the phase difference accrued.

This is most often implemented by two-photon Raman transitions [118,
119]. The Raman process is a resonant two-photon process, far-detuned from
the single-photon transition which has the result of minimising spontaneous
emission. Two low-lying energy states are coupled resonantly with a pair of
beams, one detuned from the other to make an effective “moving lattice”. This
lattice movement allows for the transferral of momentum - 2h̄kλ, where kλ is
the lattice photon wavenumber [14]. Splitters are then generated with π/2
pulses and reflections are similarly achieved by a π pulse. Gustavsen et al.
used this technique in their formative atomic Sagnac interferometer [38, 39],
and indeed many modern Sagnac interferometers also utilise this method of
splitting [40, 120, 121]. However inhomogeneities in the system erode the
performance of these pulses, be it magnetic, in intensity or most notably in



Chapter 3. Preparatory optics for a BEC Interferometer 42

atomic velocity [122]. It is difficult to make these pulses 100% efficient in prac-
tice, hence the tails (lighter lines) after each pulse in figure 3.1. Methods to
improve Raman pulse efficiency are an active area of research, including opti-
mised shaped pulses [123, 124].

Decreasing the average atomic velocity is another factor in improving pulse
efficiency, with sub-recoil clouds being made for use in interferometric systems
[125]. For splitting a BEC we can make use of the already narrow momentum
distribution to address the entire cloud with a tailored pulse. These pulses are
described in the next section.

3.1.2 Diffraction from a Light-Grating: Bragg and Kapitza-

Dirac Scattering

Bragg and Kaptiza-Dirac (KD) scattering are interesting processes to consider
for interferometry as they leave the internal state of the atom unchanged.
Atoms are usually multi-level, so this scattering method uses interactions that
do not allow higher-lying internal energy states to be populated.

In the Bragg / KD case, coherent scatter is achieved by diffraction from a
lattice potential in the light field. An illustration of the two cases are shown
in figure 3.2. We understand how to generate interfering potentials with light
(same frequency, polarisation and spatial overlap), and a simple retro-reflected
beam will interfere into a sinusoidally varying potential - a lattice. The process
then involves a pair of stimulated absorption and emission events.

Bragg scatter is much like its analogue in the x-ray crystallographic world.
At a specific angle of incidence of an x-ray at the crystal axis, the reflected
wavefronts from the crystal lattice constructively interfere. In a similar fash-
ion, atoms will diffract from a lattice if travelling at the Bragg angle with re-
spect to the wavenumber of the optical lattice, k. Transfer between |±2nh̄k⟩
is therefore possible, where n denotes the number of photon pairs we coher-
ently scatter [34]. This was first shown for atomic beams by Martin et al. [32,
126]. For stationary atoms a similar situation occurs when the difference in
frequency between the two beams is shifted such that the lattice moves with
corresponding velocity, nh̄k/m, to the momentum transfer. Large momentum
transfer using the Bragg technique is possible by scattering into higher n states,
but this requires prodigiously large beam powers [127].
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|+ k|- k

FIGURE 3.2: Illustration of the cases for off-resonant scatter from
a photonic grating - a standing wave of light (red regions) is
generated from a single-frequency source. a) Bragg scatter case,
where at a specific angle to the lattice normal atoms will scatter
2h̄k momentum into the symmetric momentum state. b) General
Kapitza-Dirac scattering case, where any atom (stationary with
respect to the lattice) will scatter into symmetric ± momentum
states as the grating is pulsed on. Scatter into higher |±2nh̄k⟩
states, where n is an integer, is possible with this technique.

Kapitza-Dirac scattering is the somewhat more general case [128]. Scatter
from a lattice can be achieved without the stringent need for “angle” depen-
dency, but we lose some control over the specific momentum transfer occur-
ring. The main caveat is that in KD scatter the lattice vector does not discrimi-
nate with regards to scattering forwards or back along the lattice k. Hence we
have equal populations of ± after one event. This is sketched in figure 3.3. It
is this KD pulse that we use to split our condensate, which we cover in more
detail in the next section.

3.1.3 Kapitza-Dirac pulses

Kapitza and Dirac in 1933 first suggested that an electron beam may be de-
flected by a standing wave of light [129]. To observe the effect however re-
quired the invention of the laser in order to observe a “useful” beam splitter.
Kapitza and Dirac’s theory is more general and applies to not only electrons,
but also matter waves [128]. The first observations of Kapitza-Dirac scatter of
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FIGURE 3.3: Energy-Momentum diagram of the various plane-
wave momentum states available to an atom at rest. The parabola
denotes the Energy-momentum relationship E ∝ k2, and the
various states denote the eigenstates of the 2-photon absorption
events. Given the distribution is symmetric between positive and
negative momentum states, one scatter equally populates the ±
states. Using 2 identical photons introduces a detuning, ∆ equal
to the energy of that state.

atoms by a standing wave produced by laser light were in 1986 by Gould et al.
[31]. A beam of sodium atoms passing through such a light-field was deflected
by discrete amounts of 2h̄k momentum.

This procedure follows that of [130], which includes a generalisation to
pulses outside the Raman-Nath criteria where the atom-light interaction time
is small, i.e. an effective thin-lens approximation for atoms [131]. We bring the
ansatz,

|ψ⟩ = ∑
n

Cn (t) |ϕn⟩, |ϕn⟩ = ei2nkz, (3.1)

where we define the atomic wavefunction, ψ, in terms of a series of plane
waves, ϕn, in momentum space. Here, n denotes the nth plane-wave harmonic
with 2h̄k separation, starting with n = 1. It is then a matter of putting this into
the Schrödinger equation. The Hamiltonian,

Ĥ =
h̄

2m
∂2

∂z2 + V0 cos2 (kz) , (3.2)

includes the common kinetic operator, denoted by the double derivative, and
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the potential term from the crossed-beam lattice, or standing wave, in the form
of a cosine squared. Note we are neglecting atomic interactions in this picture.
The Schrödinger equation then becomes,

ih̄ ˙|ψ⟩ = ih̄ ∑
n

Ċn|ϕn⟩ =
h̄

2m ∑
n

Cn
∂2

∂z2 |ϕn⟩+ V0 ∑
n

Cn cos2 (kz) |ϕn⟩, (3.3)

where note we have ignored the existence of (excited) internal states, as in this
configuration we should have very large detuning values such that we are far
from excitation through this channel - i.e. we presume the two photon co-
herent process dominates. The kinetic term drops out of the spatial deriva-
tives, whilst the cosine squared acts as a would-be ladder operator, given
cos2(kz) = 1

4

(
ei2kz + e−i2kz + 2

)
, changing the n-value of the harmonic as fol-

lows,

i ∑
n

Ċn|ϕn⟩ = ∑
n

En

h̄
Cn|ϕn⟩+

V0

h̄ ∑
n

Cn

4
(2|ϕn⟩+ |ϕn+1⟩+ |ϕn−1⟩) , (3.4)

where we introduce the 2n-recoil energy, En = (2nh̄k)2/2m. When we con-
sider the populations of each nth state, Pn = ⟨ϕn|ψ⟩, a series of coupled equa-
tions emerge. Multiplying through by ⟨ϕn| and removing the orthogonal terms
leaves us with, for the nth state,

Ċn = −i
[

En

h̄
Cn +

V0

4h̄
(Cn+1 + 2Cn + Cn−1)

]
. (3.5)

We solve equation 3.5 numerically and plot values of the population Pn for
87Rb in Figure 3.4 with orders up to n = 4 in order to better understand the
impact the pulses have on our momentum distributions. In this simulation
we assume all atoms start in the ground state (|0⟩), and we apply a pulse of
varying length and a height of 10.35 Er, where Er denotes the lattice 1-photon
recoil energy, Er = (h̄k)2/2m. We have omitted the higher momentum states
(n > 2), as in practice we rarely see population in momentum states above
|±4h̄k⟩ for the pulses we use (< 40 µs). In this simulation they have negligible
population. Notice that we do not see a complete “flop” like we would in a
two-level system - this is due to the effective detuning, ∆, as seen in figure 3.3.

To fulfil the Raman-Nath criteria then the interaction time must be much
smaller than the time it takes an atom to see a full oscillation within the trap -
i.e. that τ > 1/ωr, where ωr is the recoil angular frequency for the lattice beam.
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FIGURE 3.4: Numerical simulation of equation 3.5 up to n = 4 for
pulses of various length. For clarity, only the n = 0 and combined
n = ±2 modes are displayed, as other orders contribute < 1%.

In the Raman-Nath regime we effectively ignore the Kinetic energy of the par-
ticle, removing the self energy part proportional to En in equation 3.5, and are
left with the “ladder” operations. The resulting simultaneous equations have
a solution in the form of a Bessel function,

Cn(t) = (−i)ne−iV0t/2h̄ Jn(V0t/2h̄), (3.6)

and thus the population can be expressed,

Pn = |Cn|2 = J2
n(V0t/2h̄), (3.7)

as an analytic solution to equation 3.5, when the Raman-Nath criteria is sat-
isfied, where Jn denotes the nth Bessel function of the first kind [132]. The
Raman-Nath criteria, however, is only valid for short interaction times [131].
Comparing with longer pulses of higher energy, as seen in figure 3.4, we see
that this “approximation” in terms of Bessel functions is no longer valid.

It is important for us to consider pulses outside the Raman-Nath regime,
as our composite pulse scheme (detailed below in section 3.1.4), utilises much
longer pulses. In the case of our splitting beam, for example, the Raman-Nath
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criteria is roughly 1/ωr ≈ 4 µs. A single pulse is also unable to invert the
fractional population - due to the effective detuning and the presence of higher
lying momentum states that can be coupled into. We can, however, design
effective splitting pulses by using a pulse train, or a composite pulse, with
several heights and lengths.

3.1.4 Composite Pulse Description

Bragg scattering was offered as a method of obtaining 100% effective coherent
splits of atomic population [133] as with careful tuning of the atomic lattice one
can reach a resonance condition, allowing for an effective time-independence
to the interaction time length. Pulses (or atom traversal) could be done over
100s of µs. The moving lattice requires two beams with independent frequency
control to generate [32, 134, 135].

An alternate solution to achieve complete splitting is to overcome the in-
herit detuning in the KD configuration. A straight two-photon absorption is
not resonant from one momentum state to another using a stationary lattice
(where the two beams have equal frequencies), as evident in figure 3.3 where
an effective detuning ∆ will always persist. However, we can circumvent this
by utilising a composite pulse, as suggested by Wu et al. [136], which we have
implemented in references [64, 116].

The essence of the technique is to use multiple pulses. Wu et al. [136] de-
veloped the scheme of two separated pulses, which was demonstrated in the
work of Hughes et al. [58, 137] who then introduced a small amount of light
into the separation time as a means of coupling the two pulses, boosting the
fidelity of the transfer to 99.9933 % [137]. This “triple pulse” then effectively
gives us parameters to vary such that we can tune the Rabi-oscillations of the
various momentum state populations. We can make a situation where all state
populations are at the bottom of their oscillation save the one we wish to pop-
ulate. To computationally verify this we can make V0 in equation 3.5 time
dependent, V0(t), thus letting the pulse height change with the time.

As we are using a red-detuned, retro-reflected beam (see section 3.2 below),
we use the same parameters as in [137], which is shown on figure 3.5. The
first and last parts of the pulse are 6.06 recoil energy, Er in height and last,
T1 = 21.68 µs, whilst the middle has a height of 0.52 Er and lasts T2 = 36.44 µs.
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FIGURE 3.5: Our triple pulse scheme to achieve complete trans-
ferral of the |0h̄k⟩ atomic population into the symmetric |±2h̄k⟩
state. Shown are the populations, |Cn|2, of the ground |0h̄k⟩
state (red) and the (summed) symmetric states |±2h̄k⟩ (blue) and
|±4h̄k⟩ (yellow) states. Full state transferral with a single station-
ary lattice pulse is not possible, but by splitting the pulse into
three sections, we can account for this by allowing the popula-
tion to “settle” in the time between. In practice we find leaving
the light on in-between, facilitates better transferral.

3.1.5 Reflection

To reflect the atoms we need to address the transition from forward to reverse
momentum states, and vice versa. We achieve this with a Blackman pulse [52],
which has a finite envelope that goes to 0 at the wings. The Blackman shape
reportedly suppresses high frequency artifacts, when compared e.g. with a
rectangular pulse, resulting in a more efficient transfer [63, 138]. Finding the
optimum pulse is a matter of letting, V0(t), in the simulation above vary like
a Blackman pulse, changing the starting population to maximum in one of the
|±2h̄k⟩ states, and then varying pulse height and length, T, to maximise for
population transfer (+ ↔ −). We calculate a peak transfer (of ≈ 100%) for a
pulse with a height of 12.2 Er and pulse length T = 136 µs.
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3.2 Apparatus

Here we shall detail some of the practical aspects of producing the splitting
beam with pulse control detailed so far. This is described previously in the
work of Robertson [63] and Mackellar [64], but any major changes since those
works have been detailed below. This mostly pertains to the adjustment and
spatial broadening of the KD beam, as well as the new calibration for beam
power. This was done so that atoms falling under gravity would still inter-
act with the KD beam. The new KD calibration is required to allow for the
Gaussian beam’s spatial variation of power with position as well.

3.2.1 Beam path and control

Our interferometry beam now needs to be much larger than the previous
beam, which had a 47 µm focus, in order to still affect the condensate after it
has accelerated under gravity. We want to maximise the time the atoms fall,
as Sagnac phase in our freefall / kite configuration scales with ∝ t3, but to still
have enough power to perform a closing pulse. We have seen above in section
3.1.4 that our pulse needs a maximum height (for a |0⟩ → |2nh̄k⟩ operation) of
6.06 recoils.

In figure 3.6 a) we see the experimental arrangement of the interferometry
beam. The beam is prepared elsewhere on the table and fed to a periscope
to bring it to the height of the vacuum chamber, where it enters the cell from
the Horizontal with a 46° angle of incidence. Note that the faces of the cell
the beam enter and exit are perpendicular. The mirrors highlighted are used
for alignment purposes. The beam in this configuration have a 1/e2 diameter
of roughly 1.5 mm, and can deliver up to 3.5 mW of power. This power is
controlled by an AOM, whose VCO (voltage controlled oscillator) output is
gated by a mixer driven with a DC signal from a control computer. Futher
details of this circuit can be found in Ref. [63]. The voltage control can output
from 0 V to 10 V , but our AOM system saturates with an input voltage around
600 mV. Thus a 6% stepdown box (voltage divider) is placed in the signal
path. This guarantees we do not saturate the AOM with the full range of our
controller.
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V

FIGURE 3.6: a) Sketch of the KD beam path through the cell and
the angle with respect to the imaging camera. Gravity is in the −z
direction. The green / red highlighted mirrors are used for mov-
ing the angle of the beam with respect to gravity, and the retro-
reflection respectively. The orientation of the camera is included
to facilitate comparison with the full set-up in appendix A. b) The
calibration curve for the beam power, P, as a function of the ap-
plied voltage, V.



Chapter 3. Preparatory optics for a BEC Interferometer 51

3.2.2 Voltage to Power calibration

It is not trivial to apply a pulse with a specific energy. The natural language
of our computer controller is an output voltage, which translates into an am-
plitude control for the AOM. By measuring the resulting beam the AOM gen-
erates we translate this into a beam power, P. The actual effect this has on
the atoms, i.e. the energy which we report as an equivalent number of recoil
energies, Er, depends on a multitude of factors, more so now that we have
expanded and moved our beam. Day-to-day fluctuations in laser output, mis-
alignments from mirror sag, dirty windows, etc, will all change the power the
atoms see over time with use.

Figure 3.6 b) shows the voltage to beam power calibration performed. This
gave us the general shape of the curve. The power in the beam for a requested
control voltage is thus worked out by the following calibration curve;

V = S

(
A P +

√
B
S

P + (C P)2

)
, (3.8)

with the curve parameters, A, B, C, detailed in table 3.1. The scaling factor, S,
allows for a day to day calibration as the beam power fluctuates over long time
periods - the x-axis scaling we require. In practice, this is usually set around
S ≈ 0.5. It is also this term that we change to normalise the beam power as
the BEC traverses different spatial regions, thereby different intensities, of the
beam during freefall, discussed in section 3.3.

Param. Value
A 0.0285
B 0.0714
C 0.0283

TABLE 3.1: Curve parameters used in equation 3.8 to fit the volt-
age requested from the controller, V, to deliver the beam power,
P specified.

We can then achieve a calibration by varying the power in the beam and
plotting the resulting split populations of the BEC, and the compare with nu-
merical simulation, as done previously [63, 64]. We can, however, achieve a
calibration of the entire Gaussian beam by sampling the BEC split for a variety
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of drop times, corresponding to a different part of the beam, and fitting the nu-
merical simulation of equation 3.5 to it, by including beam parameters, width,
height and offset, in the equation. This is detailed in section 3.3.

3.3 Optimisation under gravity

The challenge facing the BEC freefall interferometer is the introduction of the
beam diameter into the calculation for the power of the beam. We have seen
previously (in section 3.1.4) that the split with the triple pulse can be calibrated
against simulation to distribute population fully to a symmetric momentum
distribution, given sufficient knowledge of the pulse height. This usually takes
place at the waist of a beam, mostly because the phase front curvature of the
beam is flat at this point and thus exciting varied phase across the condensate
can be avoided [139, 140].

As the BEC falls however, it will cover distances around a millimetre after
14ms. Focused beams in this regime tend to be some 100 times smaller (we
previously used a 47 µm beam [63, 64]), hence our beam needs to be larger
to accommodate this. Wider beams necessitate higher power to maintain the
same intensity, which the BEC is sensitive to. This places constraints on how
far we can drop the condensate and still have enough power to recombine the
packets fully. It is also important, much like the calibrations done previously,
to know what intensity is actually incident on the atoms, and map this to a
pulse height to make use of the calculation in 3.1.3. The problem is outlined in
figure 3.7 - where the power in the beam now has to match where in the beam
spatially the condensate is at that particular moment we apply the interferom-
etry pulse. The challenge then is to work out a map of the lattice height as a
function of drop time, and use this calibrate the interferometry pulses as the
BEC traverses the beam.

3.3.1 Calibration of freefall with time

We outline the problem in 3.8 a). The interferometry beam has a Gaussian pro-
file and as the atoms accelerate under gravity (z-axis) they will move further
away from the beam centre at z = 0, with peak intensity I0. We only control
the time of the drop, which we must associate with a position. This is done by
imaging the cloud for different drop times and measuring the position. The
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FIGURE 3.7: The problem of performing interferometry in freefall
where as the BEC falls, the local intensity of the beam that it ex-
periences changes. Knowing the location of the BEC in space is
crucial therefore to understand how much power is required to
produce the calibrated pulses discussed in section 3.1.4. An illus-
tration of the beam (arb. scale) is shown on the left, reflecting the
relative changes in local intensity from pulse to pulse. The kite-
shaped area the BEC packets outline is shown in the centre, with
the three interferometry pulses shown; split, reflect and recom-
bine, with the corresponding pulse shape shown on the right.

cloud position is calculated from a 1
2 gt2 curve, as the cloud drops due to grav-

ity.
Modelling the effect of the Gaussian on the beam power is a matter of in-

troducing the drop distance, z, into the numerical simulation seen in figure
3.4. This introduces information of the beam shape. More specifically we wish
to change the pulse height term, U0, from equation 3.5 to now vary with the
introduced distance parameter. In effect we now have

U0 = A exp
[
−2(z − z0)

2

w2

]
, (3.9)

where z0, w and A represent the Gaussian free parameters - offset, width, am-
plitude - respectively. It is important to note for the simulation that A is mea-
sured in the number of recoil energies, and not a direct measure of beam power,
rather an indication of the depth of the lattice formed in the retro-reflected in-
terferometry beam. This therefore takes into account any uncertainties we had
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FIGURE 3.8: Outline of calibration of interferometry beam with
BEC in freefall. a) By using the interferometry beam at different
times after dropping the BEC to split the cloud, we can infer the
shape of the beam. The BEC is small compared to the beam such
that at points z(0) and z(t) the local intensity is different, P vs P0
respectively, hence the pulse height the atoms see changes drasti-
cally, changing the split proportion. b) The first composite pulse
has a shape denoted by the solid (blue) line - as seen by our AOM
system as a voltage, V. At a later time the pulse will need to be
scaled up in power in order to achieve the same split, denoted
by the dashed (green) line. The curve is scaled by the ratio of
beam powers, P/P0. c) The calibration curve of the desired pulse
height, U, vs control voltage necessary to achieve such. The same
pulse energies (in recoil energy, Er) required are denoted by 1 and
2 and similarly in the shaded regions in b).

about beam overlap, differences in power (due to loss in the glass for exam-
ple) and other imperfections: it is a direct representation of the K.D. beam’s
useful power. Converting this energy into a power would more than likely
underestimate it because of these factors.
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With equation 3.5 now dependent on spatial variables all that is required
now is to include it into a fitting algorithm with the Gaussian free parameters
as fitting constants. We run this fit using Mathematica’s FindFit command.

3.3.2 Pulse height with time calibration

We apply a rectangular pulse, 20 µs in length, of which we set our computer
voltage control at a constant value, typically 0.7. This voltage-to-pulse calibra-
tion will allow us to set S in equation 3.8. This pulse in general is arbitrary,
but a low voltage, i.e. a shallow lattice, will avoid ambiguities in the fit corre-
sponding to exciting higher orders or as to generating complicated lines owing
to figure 3.4 being convolved with a Gaussian. Figure 3.9 shows an example of
one of these plots as the solid (orange) dots.
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FIGURE 3.9: Calibration curve of the interferometry beam via
measurement of the BEC split fraction as a function of the ballistic
drop distance. The BEC is dropped for various times for which a
distance is attributed. The same (20 µs, 0.7 V) square pulse is then
applied and the percentage split into the |±2h̄k⟩ is measured (or-
ange circles - standard error is on order of the marker size and has
been omitted for clarity). This is then fit to a numerical simula-
tion as detailed in 3.1.4 with the pulse height as a free parameter
(blue line). This allows us to determine the height (in recoils, Er)
and the width (in µm). The dashed lines denote the beam centre,
z0, and the 1/e2 waist, w as indicated.
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From the fit of figure 3.9 to the pulse height we infer the scaling factor to
be used in equation 3.8. For figure 3.9 the fit returned values for A = 10.9 Er,
w = 0.68 mm and z0 = 0.46 mm, which sets S at 0.40. At the beam centre
note the dip in the figure. The power in the beam is such that at z0 the beam
power is slightly over the first maxima of figure 3.4, hence moving from this
position will take us over the crest, hence why moving positive or negative of
this position looks symmetric. For reference the position of the waist is also
plotted.

The calibration therefore, to ensure the same pulse height for any drop time,
is

V(z) = S+

(
A U +

√
B

S+
U + (C U)2

)
, S+ =

P0

P(z)
S, (3.10)

where our pulse height, U informs the voltage, V in the same way it did in our
beam calibration, however its is modulated by the ratio of beam intensity in
the Gaussian, P0/P multiplying the calibrated S.

3.4 Sensitivity to gravity: measuring asymmetry

One obvious consequence of dropping the condensate is that it begins to move.
Unsurprisingly, because it is accelerating under gravity, its velocity increases
the longer it is dropped for. The splitting operation is sensitive to this velocity
as it is factored in as an initial momentum. Note in the previous derivation
of the split populations in a Kapitza-Dirac split the atoms are assumed to be
at rest. A small perturbation in velocity does not immediately bring the pulse
into the Bragg-regime - but similarly it does bring an imbalance to the ±2nh̄k
orders. This effect is simulated and compared with measurements in experi-
ment.

With longer separation between pulses, the time the BEC spends in free-fall
increases, and hence its velocity due to the downward acceleration of gravity
will also increase. If the splitting beams are perfectly perpendicular to gravity
(i.e. aligned in the horizontal, x-y plane) then such a velocity is ignored by the
geometry of the beams. However small misalignments in the splitting beam
axis means some of this velocity couples into the splitting beam, effectively
causing an asymmetric detuning in the crossed beams. In the atom frame it
is akin to seeing a moving lattice, which puts us in mind of the Bragg picture
of section 3.1.2. The treatment is fundamentally different, since the angle, and
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thus the velocity, is small. We firstly describe a theoretical treatment, arriving
at a small angle (first-order) approximation which we validate with experi-
ment. This has potential implications as a ’tiltmeter’, which we discuss at the
end of the secion.

3.4.1 Angle-dependent Kapitza-Dirac splitting

In effect, by including an initial velocity we bias the entire energy-momentum
parabola (i.e. figure 3.3) by the amount v0 = h̄k0, which is plotted in fig-
ure 3.10. The k0 here is a “virtual” wavenumber associated with the lattice
period. An initial momentum implies an initial energy, which will bias the
system somewhat up the curve. The shifts in momentum are still quantised by
the 2nh̄k values from the 2-photon transition, and hence the spacing does not
shift. The positive and negative values are, however, no longer degenerate,
and hence will have difference detuning values. This imbalance in detuning,
simply treated, will change the Rabi frequencies of each transition, so that the
same length pulse will deliver different populations.

E

k0-2 2

FIGURE 3.10: Illustration of the shifted energy levels in the mo-
mentum spectrum due to an added initial velocity to a Kapitza-
Dirac pulse scheme. Note the forward and reverse momentum
states are no longer degenerate.

One can simply take equation 3.1, in the spirit of [58], and add the small,
non-integer initial velocity to the plane wave momentum states, |2nh̄k⟩ →
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|2(n + ϵ)h̄k⟩, where we have represented it as a fraction of one 2-photon tran-
sition, ϵ = v0/2h̄k. This modifies the plane waves;

|ϕn⟩ = ei2(n+ϵ)kz. (3.11)

It is still straightforward to get to the coupled equations of 3.5, assuming the
Fourier spectrum is also changed in the same way. This spectrum shift is illus-
trated by the arrows in figure 3.10.

Let us consider the effect of adding this perturbation to first order, i.e. the
transition |0⟩ → |±2nh̄k⟩. The detuning previously for this same-two-photon
transition was ∆ = 2n2Er/h̄, where we recall the recoil energy Er = h̄k2/2m,
which we now add an initial velocity, v0. Our modified detuning is now, ∆′ =

∆ + k · v0, where we add the first order term from the Doppler shift. This will
modify the Rabi frequency, Ω′ =

√
Ω2

2 + ∆′2, thus expanding the new ∆′2,

∆′2 =

(
n2 h̄k2

m
+ k · v0

)2

= n4Er
2 + 2n2 h̄k2

m
k · v0 + (k · v0)

2, (3.12)

where we see the original detuning (first term) and two additional terms in
k · v0. The term in v0 will be identical for the transition to both the forward
and reverse final momentum states, however the central ∝ k3v0 term will dif-
fer by sign. To calculate the population of the different momentum states in
this closed system we expand the general expression for the Rabi oscillation,
P ∝ sin2(Ωτp/2), to first order;

P± ≈
(
Ω′

±
)2 τ2

p

4
+O(τ4

p), (3.13)

where τp denotes the pulse length. We can then take the difference between
forward and negative populations, A = P− − P+, which we shall refer to as
“Asymmetry”, A. Noting the sign of k⃗ · v⃗ term in equation 3.12 changes be-
tween plus and minus orders, we obtain an expression for A,

A = 4n2 h̄k2

m
k · v0

τ2
p

4

= n2 h̄k3

2m
g sin θ tdτ2

p , (3.14)

where we have replaced v0 with the velocity due to gravity, v0 = gtd/2, where
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td is the time the BEC has spent in freefall: the drop time. The beam (horizon-
tal) and gravity (vertical) axes are perpendicular, and we measure the small
angle, θ, with respect to the beam, we have used the sine term instead of the
usual cosine found in dot products. With a fixed pulse time it is easy to see
that the relationship between the drop time and the asymmetry is linear. This
gradient then could be used to find the angle between the splitting beam and
gravity, dA

dtd
∝ k̂ · ĝ. For small angles this can be further reduced to linear in

both θ and td. We will illustrate this in the next chapter.

3.4.2 Observation in Experiment

With the above, it is clear that the relationship between the perceived asymme-
try in the system, the imbalance between ± momentum packets, and the initial
velocity is linear. For the experiment of a BEC in freefall this velocity is related
to the time at which the BEC has been in freefall, td, as it accelerates under
gravity. Therefore by allowing the BEC to fall for various times and measuring
the resultant asymmetry we can verify this. Figure 3.11 shows an example of a
asymmetric split at td = 10 ms after release from the dipole trap, before apply-
ing a 10 Er , 20 µs long KD pulse and imaging the split condensate. On the left
is a line graph of each of the individual packets, normalised to the height of
the central peak, which contains roughly 4 × 104 atoms. We integrate over 40
pixels in the x direction from each of the packet centres in order to fairly com-
pare, as a horizontal cut through the packets would unfairly represent them
given the angle at which they lie. The right image shows the full image of the
split condensate, the 15% difference between the left and right packets visible
to the eye.

For imaging it is worth noting that the condensate falls out of the camera’s
view if we leave it to fall for more than 20 ms. To obtain a more accurate num-
ber of atoms in the condensate we need to let the condensate expand for nearly
50 ms before imaging and fitting with a Thomas-Fermi distribution. To facil-
itate both imaging and expansion we turn the magnetic quadrupole back on
to around 20 G/cm to accelerate atoms back into the camera view [116, 141].
After 80 ms this brings the atoms back to the centre of the camera. Since we are
only interested in the atomic population this should not impact our results.

Figure 3.12 shows three such measurements where we have changed the
vertical angle of the KD splitting beam through the atoms. This was achieved
by adjusting the two-mirror dogleg before the cell along the KD beam path
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FIGURE 3.11: (Left) Image of the imbalanced condensate split af-
ter a drop time of td = 10 ms a 20 µs, 10Er height pulse. One
px corresponds to 7 µm. (Right) The integrated line profile of
each condensate where we have integrated across 40 pixels from
each packet centre in the x direction. The (intensity) heights are
normalised to the central peak. The centre condensate contains
4 × 104 atoms.

(the green shaded area of figure 3.6 (a) ). The angle θ in the legend denotes the
angle of the beam with respect to the horizontal plane perpendicular to gravity,
and is calculated by the fitted gradient ( dA

dtd
, denoted by the dashed lines) with

equation 3.14.

3.4.3 As a measure of angle relative to Gravity

Measuring the angle with respect to gravity is a key alignment step for many
measurement devices, including atomic gravimeters [142–144] and terrestrial
gravitational wave observatories [145, 146]. The idea of an atomic or “quan-
tum” tiltmeter is not new [147, 148], but these are primarily based on interfer-
ometric measurements, utilising the phase induced by deflection from gravity
[125, 149]. Here we are measuring the tilt of our splitting beam with respect
to gravity via the imbalance in the split and not an interferometric quantity,
hence causes of spurious phase in the interferometer, such as beam flicker, is
not an issue. Still, one must be confident enough that this initial velocity is due
to the misalignment of the beam and not another source of velocity such as a
stray magnetic field gradient[63, 116], or release from the side of a harmonic
trap [68, 150].
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FIGURE 3.12: Asymmetry as a function of the drop time for var-
ious alignments of the splitting beam perpendicular to gravity.
Once split, the difference in population between the |±2h̄k⟩ mo-
mentum states is defined as the asymmetry. The values of angle
in the legend are calculated using equation 3.14. Standard error
is less than one symbols width and has been omitted.

Equation 3.14 shows that the Asymmetry and drop time are linearly related
via the drop angle, for small angles. In figure 3.13 we plot the gradients mea-
sured on fig 3.12 against the angle measured geometrically using the camera
image. As seen above in figure 3.11 the height of the packets are different for
the left and right going condensates. We find the centre of each peak by fitting
each peak with a Thomas-Fermi profile [71] and draw a line through them.
We can then compare this line with the axis of gravity, which we know from
dropping the condensate. Our camera is also at an angle to the interferometry
beam by 45 ± 1° in the horizontal (x − y) plane - as seen in figure 3.6 - which
will scale the result by 1/

√
2. With this knowledge we geometrically attribute

an angle of the beam with respect to gravity.
A fit to the data is plotted (in red) with the dashed lines representing the

first order confidence bounds. We also plot the derivative of equation 3.14 with
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FIGURE 3.13: Plot of the gradient of asymmetry vs. drop time,
dA
dt , against the beam angle with respect to gravity, as measured

geometrically using the imaging camera. The data in figure 3.12
is plotted as the (black) squares. The solid (red) line is a fit to this
data, with the (red) dashed lines showing the first order standard
deviation. Values are plotted in the legend. The (blue) dash-dot
line is the gradient of the first order calculation as in equation
3.14 for the pulse used (see text).

respect to td (in blue) for comparison. We use an uncertainty in θ of 0.1° from
our fit through the peak centres on the camera image - but this may be a gen-
erous overestimate given the few data points, and the fact the split is in 3D.
Our purpose of this calibration was to align the beam perpendicular to grav-
ity to avoid asymmetry affecting our results, as such this is more of a proof-
of-principle tiltmeter with a resolution of ≈ 1 mrad in comparison to atomic
tiltmeters with µrad resolution. The data is similar enough to our theoretical
curve, so in practice a single plot of asymmetry versus drop time could then
be input and the angle read out, but our current error in calibration rules this
out as use as a high-sensitivity tiltmeter. It is, however, a useful calibration
for techniques involving Kapitza-Dirac splitting under gravity - key for our
interferometer with a BEC in freefall as seen in chapter 4.
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Chapter 4

Using the BEC interferometer

We now have the requisite parts to form an interferometer. The purpose of this
chapter is to introduce the method we have used to trial finding a signal and
in particular rotating the table. A calculation of the phase accumulation for the
freefall interferometer is detailed in section 4.1. We must then be able to vary
the phase somehow, which in the case of pure Sagnac measurement means
moving the table at some rate. This has been achieved in other international
labs by moving the table mechanically [39, 57]. We use a piezoelectric stack to
move our table, which is floating on pneumatic air as is standard to reduce vi-
brations on the table, detailed in section 4.2. To have a better idea of what this
entails and how to attribute this to a rotation we install an optical Michelson
interferometer to co-measure the table displacement. We show early data from
our atom-interferometer during rotation and non-rotation of the experimen-
tal table, and establish a roadmap of improvements toward a distinguishable
measurement.

4.1 Calculating phase

In this section we make an estimate on the parameter space of our interferom-
eter to inform the rate at which we will need to make a measurable rotation.
This allows us to predict the strength of signal we should expect to see given a
particular rotation rate.

4.1.1 Sensitivity for the freefall BEC interferometer

The area traced by the split halves of the BEC is equivalent to that of a kite
whose area we know simply as one half of the product of its diagonals. There-
fore we need to know how far apart the packets travel before they are reversed,
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FIGURE 4.1: Lengths in the calculation of the kite-shape inter-
ferometer area. The BEC is released from the top of the shape
and accelerates towards the bottom of the page. The total area
enclosed is proportional to 4nvrgτ3, with τ the symmetric inter-
ferometer time, vr the recoil velocity and n an integer denoting
the momentum state after the BEC split. The dashed line shows
the true path traced by the atoms in time, accounting for the
parabolic trajectory under gravity. Both kites have the same area.

and by how far they are dropped, which we find with simple Newtonian me-
chanics. The packets receive 2nh̄k recoil when split initially and travel the
symmetric interferometer time, τ, apart. Here the n is an integer denoting
the momentum state the condensate is excited into, and we remember that k
is the wave-number of the incident field. More detail on the splitting mecha-
nism can be found in chapter 3. One packet will therefore travel with 2n times
the recoil velocity, vr = h̄k/m. The condensate is always falling due to gravity
during the interferometer sequence, hence is accelerated by g, the gravitational
acceleration at the earth’s surface, over the full 2τ. A diagram of this can be
found in figure 4.1. The area, A f f , is given as

A f f = 4nvrgτ3, (4.1)

where we note the τ3 dependence. The motion under gravity is parabolic, so
our kite in Figure 4.1 should look more curved because of this, as denoted by
the dashed line, making the area calculation parametric in time. However, if
one integrates the equations of motion to find the area we arrive at the same re-
sult as equation 4.1. We therefore say that the accumulated phase grows with
the cube of the symmetric interferometer time. Longer drop times achieve
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larger sensitivities, as the accumulated phase difference will increase signifi-
cantly for longer interferometer times. The phase difference, as per equation
1.5 is given by,

∆ϕ =
2 m87

h̄
A f f Ω =

8 n vr g m87

h̄
τ3 Ω, (4.2)

giving us our two experimental controls, the rotation rate and symmetric time.
In this experiment we use an n = 1 interferometer, so only the first momen-

tum eigenstate is excited. Ways to excite to higher momentum states exist [127,
151, 152], but it is difficult to achieve with Kapitza-Dirac type splitting alone1.
Rubidium-87 has a recoil velocity of vr = 5.89 mm s−1 [153], and we take grav-
ity as g = 9.8 m s−2. This gives us an interferometer area of A f f = 0.23 mm2

for a τ = 10 ms symmetric time. This area is comparable to other guided ap-
paratus, including 0.5 mm2 magnetic [57] and 0.2 mm2 optical [41] variants.
Free space interferometers, such as those operating on fountains, can achieve
areas of 11 cm2 [154], given (thermal) atoms that travel distances nearly 1 m in
length.

4.1.2 Phase map

We can now draw a map of the phase difference as a function of the two exper-
imental controls, Ω and τ. The phase difference present in a rotating interfer-
ometer is given by equation 1.5. The phase difference in a BEC interferometer
with Kaptiza-Dirac pulses exhibits itself as a difference in the fractional pop-
ulations of the atomic momentum states - in our case between |0h̄k⟩ and joint
|±2h̄k⟩. Remember the excited |±2h̄k⟩ states are degenerate, comprising a sin-
gle excited state (see figure 3.3). In theory, a closed interferometer will return
all its population back to the |0h̄k⟩ state in the absence of any perturbing fields,
but in reality the atom optic operations will add a phase themselves so some
population will be present in the |±2h̄k⟩ state. We must therefore compare
the non-rotated interferometer with a rotated one in order to discern a phase
difference which we can attribute to a rotation.

The change in phase as a function of fractional population of the (symmet-
rically populated - see section 3.4) first momentum state, |±2h̄k⟩, is given by;

∆P1 =
∣∣∣P|0h̄k⟩ − P|±2h̄k⟩

∣∣∣ = 1
2
(1 − cos (∆ϕ + ϕ0)) , (4.3)

1With composite pulses we can directly address higher momentum state transitions, but
the linewdith of such transitions greatly decreases with increasing n and hence are more vul-
nerable to timing and intensity errors.
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FIGURE 4.2: Contour map of population change, ∆P1, as a func-
tion of the two interferometer parameters; symmetric time (the
separation between pulses), τ, and the rotation rate, Ω. The
dashed line denotes the rotation rate of the table in the shaded
area of Figure 4.4

where we add an arbitrary offset phase, ϕ0, based on the additional phases
gained from the light pulses [116, 155]. We plot this absolute difference for
ϕ0 = 0 in figure 4.2. The vertical line denotes a rotation rate of 3 µrad s−1,
which is the fastest we are able to push our table (see section 4.2). At this rate,
we expect 50% of our population to shift with τ = 10 ms.

4.2 Applying an artificial rotation

We need some form of rotation to detect that we can apply deterministically
with relative ease. An obvious choice might be to mount the interferometer
apparatus on top of a rotating / floating platform, but this is unfeasible given
the optical access constraints modern atomic physics apparatus have. How-
ever, a common part of modern optics experiments may be able to help here
- the floating optical table, usually employed to decouple ground vibrations
from disturbing sensitive optics and lasers. The table floats on pneumatic legs
which damp vibrations on the table. We can rotate the table in a fashion by
giving the table a “shove” and letting the pneumatic legs absorb the shock. A
recent experiment by Moan et al [57] use a translation stage to push the table.
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In a similar fashion, piezoelectric transducers (PZTs) have been used by Gus-
tavson et al [39] to rotate their apparatus. We will also use a PZT in order to
induce a motion on the table.

4.2.1 Piezoelectric displacement of the optical table

We use a Thorlabs PK4GA7P1 Piezoelectric stack, which has large free-stroke
displacement of 100 µm when provided with a 150 V bias. “Stack” here de-
notes that the construction of the PZT consists of many smaller PZTs bonded
together to which the biasing voltage is applied simultaneously. The advan-
tage of using this is that the actuation is still quick without sacrificing blocking
(i.e. pushing) force when compared with amplified piezoelectric actuators for
instance [156], which may travel millimetre distances but are compromised by
a weaker blocking force.

Figure 4.3 shows a photograph of the apparatus, including the PZT it its
holster (inset), secured to one of the floor-contact legs of the table. A hemi-
spherical ceramic cap ensures contact between the PZT and the table at all
times throughout its motion.

We need the PZT to move fast in order to generate rotation rates that we
can observe using our interferometer. This leads us to a limitation with the
electronic driver that will control the PZT. The slew rate, SR, measured in
V s−1, gives us an indication of the speed of PZT actuation, governed by the
capacitance of the device, C, and the peak current, Ipk, the driver can provide,
SR = Ipk/C. Our PZT, due to its size and its stacked-PZT construction, has a
relatively high capacitance of 17 µF, where most PZTs quote their capacitances
in 100s of nF.

We found that common piezoelectric drivers (e.g. Thorlabs K-cube KPZ101)
cannot drive our PZT fast enough as they are limited by the peak current they
can safely generate. The K-cube for instance can provide a peak current of
Ipk = 7.5 mA, hence has a slew rate of SR = 441 V s−1. The rise time, that is the
time it will take the PZT to fully extend when a voltage is applied, tr, is found
by

tr =
CVPZT

Ipk
=

VPZT

SR
, (4.4)

which for a 150 V PZT is 350 ms, corresponding to a rotation rate of under
0.2 mrad s−1. We need to increase the current the driver can supply in order to
overcome the high capacitance. We use a PIEZODRIVE MX200 driver, which
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FIGURE 4.3: Photograph of the PZT-table apparatus, showing
the PZT in holster (inset) attached to one of the floor-contact
legs used to generate a rotation, and the Michelson interferom-
eter used to co-measure the table’s movement. One arm of the
Michelson reflects off the “Retro. Mirror” connected to the float-
ing table, and is split and recombined on a single non-polarising
beam splitter cube.
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can safely deliver a peak current of Ipk = 1 A. For a rise time of tr = 10 ms, a
peak current of 255 mA is required, which this driver can safely produce.

We now have a means of pushing our table and inducing a rotation that
we believe will be sufficient to be picked up by the BEC interferometer. We
need to verify that the PZT is moving the table at the speeds we expect it to.
We check by means of a Michelson interferometer, as detailed in the following
section.

4.2.2 Attributing a rotation rate

To directly measure the table’s motion we install a Michelson interferometer,
as seen on the laboratory floor on figure 4.3. One arm of the Michelson reflects
off a mirror attached to the floating table, whilst the rest of the apparatus rests
on the floor. Light from one of our beam dumps (for the cooling laser) is fibred
in from the table as a light source. The Michelson breadboard is mounted on
vibration-damping feet (Sorbothane®, AV4/M) to minimise disturbances from
the floor.

The optical Michelson interferometer gives us a record of the speed of the
table above the leg closest to the interferometer. As the table moves fringes
are seen on the photodetector from the interference between the Michelson
arms. One complete fringe is attributable to a distance in the “table arm” of
the Michelson of λ/2 , and the corresponding velocity is this distance divided
by the time taken for each full interferometer fringe.

To attribute this to a rotation rate we can make a simple geometric argu-
ment. Our table legs are spaced 1.65 m apart, with the sets of legs across the
smaller edge coupled together, hence we need only consider this longer edge
dimension. The rotation rate then is simply

Ω =
dt

1.65t
, (4.5)

where dt is the distance travelled during the time, t. For a rotation rate of
3 mrad s−1, with our dt = 100 µm long PZT we need t = 20 ms. The cloud will
drop roughly 2mm in this time, which is slightly outside our interferometry
beam waist.

In truth it is not as simple. The PZT does not simply “push” the table with
a constant speed as it extends, instead it must be thought more as an accelera-
tion. Figure 4.4 shows the trajectory of the table as measured by the Michelson
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interferometer. The instantaneous rotation rate is worked out as the velocity,
v = dt/t, divided by the leg length, Ω = v

1.65 ° s−1. In this figure a 20 ms
long sinusoidal ramp is applied to the PZT. The first (left) dashed line denotes
when the PZT is fully extended. Notice that the table continues to travel af-
ter the PZT has extended, and that the corresponding table speed begins to
decrease, as gravity is now slowing the table, reaching its peak height at the
second (right) dashed line. The peak speed however is reached before the PZT
fully extends. The (red) shaded region denotes where the interferometry se-
quence takes place, shown as having a total interferometer time of 20 ms.

150

0

FIGURE 4.4: The table trajectory curve as recorded on the op-
tical Michelson interferometer, showing the displacement (top)
and the projected rotation rate (bottom). Dashed vertical lines
denotes the peak of the PZT drive - as highlighted by the dot-
ted PZT voltage curve (top, red) reaching the apex of the sinu-
soid. The dash-dot line denotes where the velocity inverts and
the table begins to fall with gravity. Interferometry is performed
around the apex of the velocity/rotation curve at 35 ms, where
the shaded region denotes the time the atoms are in freefall. We
have omitted data around Ω ≈ 0 due to noise on the Michelson
output.
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4.3 Sagnac Measurement

Now we have all the parts together to perform a Sagnac measurement. The
interferometry sequence goes as such: after a BEC is generated in a crossed
dipole trap, the trap is turned off and the BEC allowed to fall under gravity;
simultaneously a KD pulse splits the BEC into two packets with |±2h̄k⟩ mo-
mentum; a time τ is allowed to pass before the packets are reflected using a
Blackmann pulse, and recombined after an additional τ time. The resulting in-
terference between the two packets is presented by the population difference
between the |0h̄k⟩ and |±2h̄k⟩ states.

Figure 4.5 shows the same measurement repeated over the course of half an
hour. Here we use a symmetric interferometer time of τ = 7.5 ms. We record
the fractional population of the |0h̄k⟩ state (i.e. the central lobe on figure 3.11
(b)). To aid in distinguishing a rotation signal from noise or experimental drift,
the table is only rotated on even numbered shots, hence we interleave rotated
with non-rotated shots. These are shown by the cross and circles on figure 4.5.
We take the mean and standard error for each set. The rotated data has a mean
population of 39 ± 3% and the non-rotated with 41 ± 3%. The two are within
standard error - so no clear distinction is seen in this particular shot.

4.3.1 Discussion

Our choice here for τ = 7.5 ms was as large as we could achieve before our
beam ran out of power to perform a closing pulse efficiently. At τ = 10 ms
the BEC drops roughly 2 mm and is well into the tail of our Gaussian inter-
ferometry beam. Our interferometer area therefore has dropped by a factor of(7.5

10

)3 ≈ 0.42.
There are sections of data (e.g. figure 4.5: 22-28 min) where the rotated

and non-rotated data are distinctly separate, although equally there are times
the two move in step (e.g. 1-10 min). There are experimental drifts here that
affect the phase of the interferometer we have not attributed; to name a few,
magnetic fields [116], laser intensity fluctuations [157] and wavefront curva-
ture [140]. Great effort has been made to minimise the effects of stray magnetic
fields and laser intensity fluctuations [63, 64]. We assume the interferometry
beam is collimated well enough that it is incident on the BEC well inside the
Rayleigh length. However, there may be some residual curvature of the beam
that affects the phase in-between the pulses, especially at the closing pulse
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FIGURE 4.5: Fractional population in the |0h̄k⟩ state after inter-
ferometry for the same interferometry sequence over 30 minutes.
The symmetric interferometer time is τ = 7.5 ms. The rotation of
the table is applied every other shot in an interleaved measure-
ment. The crosses (blue) and circles (red) denote measurements
where respectively the table rotation is (R) and is not (NR) ap-
plied. The difference in the means of each set is roughly 2% with
an uncertainly of 3%, showing no clear distinction from noise; al-
though some parts of the data show a clear distinction between
rotated to non-rotated shot. The oscillatory behaviour may be in-
dicative of sensitivity to ambient temperature.

which takes place at the edge - and therefore most curved - part of the Gaus-
sian beam. This affect would apply to both rotated and non-rotated data, but
may serve to explain some decrease in the contrast

No distinguishable measure of rotation is presented here: either the table
does not move fast enough to introduce a large enough phase shift, or the
signal contrast itself is too low. As seen in figure 4.2 for a symmetric time of
τ = 7.5 ms and rotation rate of Ω = 3 µrad s−1 then we expect a population
change of around 10%. The calulations of population in section 4.1 are all
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contingent on the signal contrast being 100%. Early measures of interferometer
pulse efficiency estimate this to be in the high 80% (via three-packet contrast
interferometry, see previous work of Mackellar [64] and Robertson [63]) but
this data suggests it may be lower than 20 %. We routinely see mean values in
fractional population difference of 2 % to 4 % in figure 4.5. Running for a longer
interferometer time will greatly increase this, owing to the phase scaling with
τ3 as in equation 4.2.

There is also a discussion surrounding mean field effects, an expansion
of the BEC owing to self-repulsion of the cloud, affecting the phase of the
BEC [158]. We are yet to see any noticeable difference in signal when releasing
the cloud immediately into interferometry, or waiting for mean-field effects to
abate before splitting. For investigations into mean-field effects using this ap-
paratus see the theses of Mackellar [64] and Halket [159]. More work needs
to be performed to determine performance and to investigate likely sources
of phase-noise and experimental instability, given the sinusoidal character of
some data in figure 4.5, indicating perhaps a temperature fluctuation with a six
minute period, given the time-scale. Alternatively, using a PZT with a greater
blocking force, rather than a long travel distance, could be more useful as it
could potentially launch the table with a greater velocity and achieve greater
rotation rates.

To push into higher values of τ we need to get around problems with our
power in the KD beam. One such solution is to start the cloud at the top of
the Gaussian and use the full diameter of the beam, which 2w = 1.36 mm
currently. The BEC travels 2 mm over the total interferometer time of 20 ms
(i.e. τ = 10 ms), hence even then the beam diameter needs to be larger than it
currently is, which also necessitates an increase in the power available in the
beam. Currently we are limited to around 4 mW of power in the KD beam at
the chamber, corresponding to a control voltage of 5 V (see figure 3.6 b) ). In
the current configuration, after 15 ms in order to apply a closing pulse (with
max pulse height of 6.06 recoil energies) we need to increase our power by a
factor of 4 - as described in section 3.3. By means of comparison our control
voltage is 1.18 V at this point. Similarly, after 20 ms our power would need to
increase by a factor of 91 - asking the control voltage to be > 5 V, exceeding
our maximum power. There is potential to gain a lot of power by removing
the fibre in the KD beam path, which has an insertion loss of around 48%, but
the purpose of said fibre was to ensure the Gaussian shape of the beam, as
the KD laser source is from an ECDL with an elliptical-shaped output [63, 65].
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Replacing the source with a higher-power output is another solution, albeit an
expensive one. In summary, with more power in our interferometry beam we
would be able to close the interferometer fully at longer drop times, leading to
an increased area, and hence an increased sensitivity to the applied rotation.

Assuming an interferometer contrast of around 20 % then we would expect
to see a signal twice the standard error by increasing τ > 9 ms. As it cur-
rently stands we would need 15 times more power to close the interferometer
efficiently after 2τ = 18 ms, or if we expanded the beam to have a waist of
w = 2 mm then we only require a 4 times increase in power. One solution
is therefore to replace KD beam laser source with a higher power laser. Al-
ternatively, we need only expand the beam along the axis of gravity, so using
cylindrical lenses may be appropriate in this case, which will reduce the real-
tive increase in power by a factor of

√
w. Another option is to use the current

laser as a seed laser and injection lock a second laser with a higher output [160],
thus preserving the spectral qualities whilst increasing power. These consid-
erations motivate future experimental changes that will hopefully bring us to
a successful measurement of rotation.
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Part III

Fresnel Zone Plate
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Chapter 5

Optical waveguides and the Fresnel
Zone Plate

The interferometer geometry described in chapter 4, that is a BEC falling under
gravity, has one major downside in that it can only measure rotations about
axes perpendicular to gravity. One therefore cannot make a 3D gyroscope, or
hope to use this geometry solely in order to construct one. In a similar vein
of wishing to minimise apparatus footprint but maximise area, we can use
confining potentials to guide our atoms in a loop in order to be sensitive to the
Sagnac effect. Using light to guide the atoms, we can make configurable traps
with careful use of optical devices.

Atom interferometry performed in guiding potentials is of particular inter-
est to us, as macroscopic geometries can be constructed with minimal appara-
tus footprint. The equivalent of a meter long drop distance in freefall could be
the size of a pea if confined within a ring geometry, for instance. Generating
such traps is no easy feat.

In this section we detail the theory behind the generation of the Fresnel
zone plate (FZP) and some experimental results. The generation and theory of
the priciple of application to atom trapping has been described in the group
before in the work of V. Henderson [61, 65]. We detail the fundamentals to
understand the FZP method of trap generation in this chapter, with particu-
lar attention to ring traps because of their applications in the measurement of
rotation. Chapter 6 contains results from simulation of a new regime of in-
terest - high numerical aperture FZPs (High NA FZP), where the trap reflects
local changes in intensity, and global changes of phase. These simulations are
performed in a “hybrid” arrangement, where an FZP and a spatial light modu-
lator (SLM) are used in conjunction to create dynamic, high NA, high accuracy
atom traps.
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5.1 Optical Waveguides

In this section we shall review some state of the art optical trap and waveguide
configurations that can be used to generate ring-traps and others.

Trapping atoms, that is to localise an atomic distribution in space, is a key
requisite to many modern cold-atom experiments. The magneto-optical trap
(MOT), as described in chapter 2, is perhaps the most widely used and can hold
> 1 × 1010 atoms at µK temperatures. Atoms stored in MOTs however are not
particularly dense, limited by radiation trapping - where scattered photons are
recaptured by the cloud before they can escape, providing an effective inter-
atom force. The strong light scattering cross section means that this trap is ill
suited for waveguide generation.

Optical dipole traps are an inspiration for a class of waveguides. Opti-
cal dipole traps are conceptually simple, as they rely on the intensity of light.
Atoms are attracted to regions of intense (a lack of) light given that the beam
is red (blue) detuned from resonance. The force is weak, so traps tend to be
shallow compared to the larger radiation pressure and magnetic traps at a
few mK in depth. Optical dipole traps can be made such that their optical
excitation rate is very low, and as such can store dense ensembles of atoms
at extremely low temperatures for relatively long times. Choice value of de-
tuning also means that losses to light scatter are low [85]. Their flexibility in
generation is what is most exciting, as exotic geometries may be produced to
investigate interesting physical problems [161].

We have already described the mechanisms by which these traps work in
section 2.1. Trapping atoms was first demonstrated for neutral atoms by Chu
et al [162] who trapped roughly 500 sodium atoms at the focus of a 10 µm
Gaussian beam, loading from a molasses cooled cloud. Miller et al. demon-
strated a much more successful dipole trap, coined the far off resonant trap
(FORT), loading atoms from a MOT at much lower temperatures [163]. The
FORT demonstrated that using a highly intense, THz red detuned beam can
be an effective trap, with negligible spontaneous emission.

5.1.1 Time-average trap generation

The field of atomtronics [56, 164, 165] requires some exotic trap shapes where
atoms are confined in potentials that bend, split, loop, have barriers, etc. These
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sorts of waveguide shapes are not easily generated with static beams1, and so
another method to generate these is required. One method is to use interfer-
ence, which we discuss in section 5.1.3. Another is to use dynamically painted
potentials, where the trapping beam is swept faster than the trapping frequen-
cies for the atom, such that the atoms feel the time-average of the potential.

Moving a beam fast enough can be done in a number of ways. Sweeping a
single focus gaussian beam using acoustic optical modulators (AOMs) is one
method, as the angle of the beam can be changed by altering the frequency of
modulation at the AOM. Two AOMs in series angled perpendicular to each
other allow for full transverse coverage [46, 47]. For more complicated pat-
tern design, it is then a matter of designing appropriate parametric curves that
when fed to the AOM controllers will reproduce the target [166]. This tech-
nique has already realised a number of patterns relevent to atomtronics [48,
167, 168]. Because the potential is an average over time there are imperfections
due to the scanning, including inducing a phase across the condensate in a
ring trap [169]. Because this technique relies on the focus of a single gaussian
beam, which only weakly traps along the beam (propagation) axis, some form
of light sheet is also usually needed [47, 170].

There is also considerable work done with adiabatic traps - those of a com-
bination of magnetic and radio frequcney radiation [171]. These are not as
flexible as the painted potentials, but can generate smooth “shell traps” [172–
174] and toroids [45, 175], for use where ring-traps are applicable, such as in
atomic interferometry and sagnac sensing [56].

5.1.2 Blue Detuned Traps

Most traps previously discussed in the literature use red-detuned guides, as
the correlation between intensity and atomic potential is intuitive and simple
to generate, as atoms are attracted to areas of highest intensity. Blue detuned
traps however make use of the repulsive nature of such light to confine atoms
in areas of darkness, but require a bit more complex engineering in order to
confine atoms completely. The process of generating such traps is a varied and
broad topic [176].

1One may suggest to just “cut” the beam into the required shape by amplitude modula-
tion, but diffraction from edges and significant power losses make this approach undesirable
compared to the other methods mentioned in this section.
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We know that the strength of the two light-matter forces, radiation pressure
(from atomic scatter) and the dipole force, can be expressed in terms of the
common laboratory parameters intensity, I, and detuning, ∆,

Fs ∝
I

∆2 , FD ∝
I
∆

, (5.1)

where it is most important to note that the dipole force depends on the sign of
the detuning directly; we cannot make a blue-detuned MOT2. To avoid scatter
the red detuned traps make use of large intensities to offset the large detuning
values. In the blue case it is slightly different. Because we now trap in areas
of low intensity, atoms with low energy, i.e. at lower temperatures, will not
experience great amounts of scatter. Therefore, the requirement that our de-
tuning be large is not as strict in the case of blue detuning, as cold atoms will
not spend most of their time inside areas of large intensity.

Any smoothly varying electric field with a zero-crossing will produce a
region of darkness which can be exploited to facilitate dark (blue-detuned)
trapping [179]. Laguerre-Gauss (LG) and Bessel beam shapes are two obvious
classes of trap as they both exhibit field nulls, but they are limited (in simple
cases) to only trapping in two planes, namely those in the transverse plane
(x,y), and require something akin to a light-sheet potential in order to achieve
3 dimensional trapping. In Lee et al. [180], four light sheets are combined
to create an inverted pyramid that forms a dark trap with gravity confining
along the last axis. The optical pipe [181] uses an LG mode to produce a hollow
beam which can be used to guide atoms or trap with the addition of a magnetic
quadrupole along the length of the pipe. Conical refraction [182] generates a
region of darkness known as the Poggendorff dark ring which is a good can-
didate for dark ring trapping [183, 184], with potential extension to 3D trap-
ping [185]. This is an example of a broader class of 3D dark traps known as
optical bottle beams, introduced by Arlt and Padgett [186]. These can be gener-
ated in a variety of different methods [187], including conical refraction [183],
the interference of multiple gaussian beams [188], holographic shaping with
an SLM [189] or a phase-plate [190, 191]. Optical ferris wheels [192] and other
dark traps based on the interference of multiple LG modes [179] that gener-
ate lattices in 2 and 3 dimensions have particular use in quantum computing
and simulation. Lastly, we can generate blue traps with our FZP technique

2Strictly this is only true for transitions of the Type-I kind. Blue-detuned MOTs using Type-
II transitions are routinely made for molecular systems[177], and recently in 87Rb [178]
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described in this chapter, but as we shall see in chapter 6, we can also generate
blue traps in a hybrid method that will allow for multiple traps to be generated
with the same FZP.

5.1.3 Fourier propagation and computational trap design

Light fields are complex in nature, that is they can be modelled with a field
amplitude and associated phase. We shall denote this in the following way;

E(x, y) = E0(x, y) exp(iϕ(x, y)) (5.2)

with field amplitude, E0 and phase ϕ. Within this work we consider a uniform
polarisation across the beam, but relaxing this constraint would be an inter-
esting avenue to pursue, especially given the effects of tight focusing in the
non-paraxial regime [193].

We wish to generate a desired “arbitrary” field at a position by controlling
the phase at another, distinct to beam shaping using amplitude modulation.
Put another way, if we want a shaped trap at z = f , then at z = 0 we want to
know what phase to apply to a beam in order for it to interfere (upon propa-
gation) into the desired trap. Changes to the phase (and amplitude) of a field
propagate in a way that is modelled well by Helmholtz propagation [194]. This
method of field propagation relies heavily on the Fourier transform and use of
the optical ’propagator’, H (z) .

We perform our Fourier transform to plane waves in 3D, (x, y, z) →
(kx, ky, kz). The field at the origin, E (z = 0) is related to the field at a dis-
tance z, E (z), by

E (z) = F−1 [H (z)F [E (0)]] = F−1
[
eikzz F [E (0)]

]
, (5.3)

where we define the propagator H (z) = eikzz and kz =
√

k2 − k2
x − k2

y. Using
this relationship we establish a relationship between the fields at two points
along a beam’s propagation. Transforming between the two is a simple com-
putational task, allowing us to understand what form the beam will need to
take a the origin in order to transform into the desired shape at the focus. The
means by which light can be moulded into this form are varied.

Methods to affect the transverse phase of light primarily work by chang-
ing the path difference of the beam at different transverse positions. Simply
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this is achieved by varying the thickness of a substrate (e.g. glass, silicon)
from location to location across the beam width. These “phase plates” are
ubiquitus in optics as a way of generating focii without losing power to ab-
sorption [195]. Absorbent plates are not without their uses; being able to make
spatial intensity inhomogeneities you can generate vortices [196] and produce
solitons [197] in the technique of “phase imprinting”.

There are also the class of dynamic phase plates, the spatial light modu-
lators, or SLMs, of which there are a wide variety[198]. Digital micro-mirror
devices (or DMDs) are one such modulator, that affect intensity by either re-
flecting or not reflecting pixels of light. They achieve this by being comprised
of many micro-sized mirrors which can be switched to change the angle of
reflection [199–201]. There are also SLMs based on nematic liquid crystals
(NCSLM). These operate in a similar principle to LCD displays, but instead
utilise pixels comprising of liquid crystals which retard light incident upon it
by a controlled amount dependent on the orientation of the axis of the crys-
tals, changing the effective index of refraction. NCSLMs can therefore achieve
a higher bit depth of phase change, with some state of the art devices allowing
some 256 phase levels. The necessity of switching via fields however means
that there is dead space around each pixel in the form of wires, etc, to power
each crystal - up to 8% of the total area in some basic models. Both types here
have pixel sizes that range from 5 µm to 10 µm in dimension. NCSLMs can be
made more light-use efficient, as switching a pixel does not require throwing
away light as is the case on a DMD. DMDs on the other hand can switch much
faster - some state of the art devices reaching several kHz, compared with the
NCSLM refresh rate of around a hundred Hz3.

For SLMs, generating arbitrary patterns by only varying the phase of the in-
cident light is challenging as the required amplitude control has to be achieved
artificially. A number of techniques exist to achieve this, of which an extensive
review can be found at Ref. [202]. One common method is to force the ampli-
tude at the input into the shape you require and adjust the phase to compen-
sate for this. One such method is the Iterative Fourier Transform Algorithm
(IFTA), where the field is propagated back and forth between the target de-
sign and the input field many times in order to refine the hologram quality.
The IFTA was first proposed by Gerchberg and Saxton [203]. This is improved

3Comparing commercially available products in the Thorlabs NCSLM series with Texas
Instruments DMD chips. SLM technology is still seeing improvement [198].
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upon by the work of Pasienski and DeMarco [49] with the mixed region ampli-
tude freedom (MRAF) algorithm. This CGH algorithm uses the IFTA method,
but designates regions of the output plane where the resulting amplitude can
be wildly different from the target, given its spatial location, usually far re-
moved from the area of interest (e.g. blank space around ring). This prioritises
beam shape over power usage, so it is perfectly suited for atomic trapping
where the quality of the trap is more important, e.g. potentials used to trap
BECs.

Interest in CGH algorithms continues, for example, with the Conjugate
minimisation routine [204, 205], and offset MRAF [206], which show robust-
ness against the generation of vortices, where GS and MRAF algorithms are
not intrinsically resilient.

5.2 Fresnel zone plates

The Fresnel Zone plate is a kind of phase plate, using the physical structure of
the plate to encode the phase information. In this way it is not a strict holo-
gram, like those discussed above in section 5.1.3, but shares the same Fourier
propagation method of generation and is discussed in similar terms.

The scientist and engineer Augustin-Jean Fresnel originally developed the
Fresnel lens in the 1860s as a means of simplifying the design of lenses for use
in lighthouses, allowing for thinner, wider lenses that focus more of the light
from the source. A typical refractive lens might be 10s of cm thick by the time
it is large enough to be useful in a lighthouse setting and impractically heavy,
but by cutting annular segments of various size and angle one can maximise
the light refracted by using thinner glass segments and prisms. Illustrations of
this can be found in figure 5.1 a) and b). This invention is said to have “saved
the lives of thousands of ships” [207].

The Fresnel zone plate is an extension of this idea. Similar focusing ability
is achieved by using alternating opaque and transmissive zones, instead rely-
ing on diffraction instead, as seen in figure 5.1 c). 50% of the light is lost in
absorption this way, however. Modulating the thickness of the glass is another
such way; in a similar fashion of the NCSLMs the path length of light through
the glass sets the amount of retardation achieved, as seen in figure 5.1. The effi-
ciency of the resultant pattern is vastly improved by increasing the bit-depth of
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a) b) d)c)

FIGURE 5.1: Examples of Fresnel lenses and zone plates, includ-
ing: a) Conventional (plano-)convex lens; b) an equivalent Fres-
nel lens; c) front facing view showing the Fresnel zones as alter-
nating black / white; d) binarised Fresnel zone plate we are de-
signing. Whilst the Fresnel lens is a continuously curved surface,
we can recreate the majority of features with purely two zones.

the FZP. FZPs are used extensively in the field of x-rays [208, 209] and optical
tweezers [210, 211].

5.2.1 Principle of the Fresnel zone plate

We briefly detail the important aspects for generating a FZP with a target in-
tensity distribution of our choosing. The process is based on the “Angular
Spectrum respresentation with propagators” methodology in Refs. [194] and
[10], and developed in [61]. This is distinct to the methods detailed above
in section 5.1.3, in which extensive computer algorithms are used to generate
arbitrary target fields given a known input, often making use of computer in-
tensive interative algorithms to generate a single hologram. Secondly, we do

not make use of the paraxial approximation kz = k − k2
x+k2

y
2k [10]. In view of

these two points, we thus make no approximations about the input beam, or
its propagation. The simulation can be seen as an “exact” model of the field
between the target and its associated FZP, which is a key aspect to discussing
the effects in chapter 6. Some limitations to the simulation exists however, as
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we do not include effects of polarisation, vector orientation of the field, and
the angle at which features propagate in the simulation plane are limited by
the pixel dimension.

The process of computationally generating an FZP is shown in Figure 5.2.
We first denote a grid of pixels, with each pixel size of around one wavelength,
which for us is λ = 1070 nm. The desired output field is then specified upon
this grid at the focal plane of the the FZP, which we tailor for the intensity;
the phase is left flat. Although this is not done for any particular reason, the
phase is not left random as large phase steps will generate vortices or wildly
diffracting features we wish to avoid. A phase profile is, however, exploited in
the hybrid double-ring trap in section 6.5.1 to generate controlled areas of zero
intensity. The field is then propagated “backwards” in space by the desired
focal length of the FZP. At this point the phase of the light will inform the shape
of our FZP, translating the phase at each point to a corresponding thickness of
glass, much like in the case of the Fresnel lens.

The nanofabrication techniques used to generate kinoforms in this way can
achieve a limited level of detail in relief, hence sloped and curved features
found on the ideal phase pattern (and Fresnel lenses) are not easily manufac-
turable4. It is sufficient to divide the slopes into steps, dividing the π phase
shift between zones. In its simplest form, and the one we consider here given
its ease of construction, the plate is “binarised” or split into rings of either 0 or
π phase shift, much like the optics discussed above. The binarised (or stepped)
phase profile is then complete as far as the kinoform generation is concerned.

For testing the simulation, we then apply our input beam (here, a Gaussian
beam) and propagate the field forwards again (by the focal distance). Compar-
isons between the original target and the FZP with propagation can then be
made. This is done in Ref. [61].

In essence, even with missing amplitude information (replacing I0 f with a
gaussian) and flattening the phase profile drastically (binarisation), the output
pattern is well suited for atom trapping. The lowest frequency components,
which are oft the most important in optical traps (i.e. harmonic confinement),
are well reproduced. More information on this can be found in Ref. [62]. These
binary FZPs with long focal distances achieve a remarkable accuracy of pat-
tern reproduction, with an RMS error around 3% in the brightest 50% of the

4This is currently under development.
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FIGURE 5.2: Principle of generating a Fresnel Zone through sim-
ulation - showing the propagation steps and the binarisation. A
target field, T is designed, then propagated backwards to the
“FZP plane” where the ideal illumination (intensity), I− f , and
phase, ϕ− f , are found. This phase is then rounded to the near-
est π, forming a binary grating, ϕ0. This phase, along with a
Gaussian illumination, is then then propagated forwards to the
target (focal) plane to produce I0, where performance is evalu-
ated against T.
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trap [61], despite not having amplitude shaping of the incident field nor direc-
tional information included in the “blazing” of the hologram, i.e. the stepping
of the phase-gradient. Allowing for some amplitude freedom and increasing
the phase depth (more phase-steps) would allow for better reproduction of the
target intensity [61].

Given the limitations in fabrication of the FZP, it is best to consider the ef-
fects of changing the input light upon the kinoform, rather than the kinoform
itself, given one of the technological attractions to the FZP is its simplicity and
cost to manufacture; we wish not to overcomplicate things. In essence, a hy-
brid system where some other method of light shaping compliments the FZP’s
focusing perfomance is of interest. We discuss these considerations in greater
length in chapter 6.

5.2.2 Experimental Performance

A FZP was manufactured (figure 5.3a) to the specifications given in Henderson
et al. [61], which we have now characterised. A full breakdown of the results
are published in reference [62]. The essence of the experimental realisation
is described below, with attention to the lessons learned from this batch of
FZPs. More comprehensive analysis can be found in chapter 6 of the thesis of
Henderson [65].

The FZPs themselves are 2 mm in diameter, where 24 of these sit with 2 mm
spacing on a 6 × 4 grid. The patterns are etched onto a piece of fused sil-
ica substrate (by HOLO/OR) by a combination of photolithography and dry
plasma etching. To test performance, the FZP was illuminated with a colli-
mated, 1 mm waist, 1070 nm wavelength beam. The light at the focal plane is
then collected by a 10× magnification lens and projected onto a CMOS camera
(Cinogy CMOS1201). An image of the ring-trap potential (intensity) is shown
in figure 5.3b, for r = 100 µm, w0 = 5 µm, f = 7 mm, alongside the residu-
als after subtracting a ring with the same parameters, to highlight the non-
contributing light.

The rings were reproduced without noticeable ellipticity, and generally
with a similar design radii. The ring width was, however, generally larger
than the design. This we attribute to the FZPs being nearly diffraction lim-
ited at the tested focal lengths. This design mismatch decreases with focal
distance, which is an important factor for our next generation FZPs discussed
in chapter 6. Light usage efficiency, that is the amount of light diffracted into
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FIGURE 5.3: Experimental realisation of a Fresnel zone plate.
a) 24 FZPs etched on sapphire, each 2 mm in diameter. b)
r = 100 µm, w = 5 µm, f = 7 mm ring trap, showing i) the inten-
sity at the focal plane, ii) residuals from fit with design. c) Exam-
ples of other holograms made, plotted with the same transverse
scale. Note the irregularities in intensity from the non-cylindrical
patterns. Figure adapted from [62]).

the target pattern versus elsewhere, averaged around 30% out of a theoreti-
cal maximum of 50% (due to the presence of a virtual focus). This would be
greatly improved by being able to blaze the zones, or by using a non-binary, i.e.
multi-level FZP manufacture technique, which we are pursuing for our next
generation of FZPs.

To characterise roughness in the trap, we quantify the error in the brightest
10% of the potential using the root-mean-square (RMS) figure-of-merit [212].
RMS error between design target and realised trap averaged between 3 to 5% -
a figure which serves as a worst case as it does not differentiate between errors
in the imaging system and the actual target, despite best efforts to minimise
these. This figure of error is compatible with atom-guiding [206, 212, 213].

We look now to generating another generation of FZPs, learning from the
performance of our FZP designs. One improvement would be the use of an
error-correction method, similar to the function of the feedback algorithm for
NCSLMs [50, 212]. We detail our “High Numerical Aperture FZP” design in
the following chapter - where local changes to the illumination of the FZP
make corresponding local changes to the trapping potential.



88

Chapter 6

High NA Fresnel Zone Plate
Simulations

We are able to make Fresnel zone plates (FZPs) with mm scale focal lengths
that are effective phase-based light manipulators, recreating target fields with
minimal error over the portion of the trapping potential we are most interested
in [62]. We have, however, neglected the importance of the incident beam,
drawing attention to the fact that illumination with a Gaussian beam, or indeed
overfilling the FZP, is not the exact field intensity that the FZP requires in order
for it to be able to exactly re-create its chosen target. Indeed, as has been shown,
targets that divert from cylindrical symmetry, or have sharp features such a
line end or 90 degree joins, do not perform well [61].

Our experimental realisation of FZP generated trapping potentials (see [62]
and section 5.2.2) led us to realise that smaller focal lengths will allow for finer
detail and thus tighter-waisted ring trap potentials. We shall refer to these as
high numerical aperture, or “High NA”, FZPs given their focusing abilities.
There is also another motivation for high NA plates: as the field propagates
there is a distance over which the potential remains ring-like in shape as it
has not diffracted sufficiently in order to interfere with other parts of the field.
This identical-looking geometry, alongside a cylindrical symmetry, allows us
to effect change to our incident beam intensity to transform into local changes
to the field at the focal plane. Simply put, we can change our “input ring” in
such a way that the same change will be reflected at the focus of the plate. This
includes both intensity and phase changes. One can therefore imagine doing
on-the-fly corrections to intensity errors from the imaging system, for example,
using the location of atoms in the ring as a sensor for the light field focused by
the FZP..

Here we present various simulations using the Fourier transform method
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detailed in section 5 for the high numerical aperture plates. In this regime
the input requirements are substantially different to those for our previous
experimental plates, as the primary goal here is to be able to affect the intensity
at the focal plane with simple changes to the input intensity at the FZP. This is
done without having to use complex non-linear intensity maps, such as those
found in CGH techniques (see section 5.1.3).

6.1 High NA FZP generation and input require-

ment.

If we want local changes in the input intensity to be reflected by corresponding
changes in the trapping potential at the focus of the FZP, then our requirements
for the input intensity need to be more stringent. Of particular importance is
the spatial distribution of intensity, i.e. its shape.

An illustration of the process is seen in figure 6.1 a), where we generate a
high NA FZP with a focal length, f , of 1 mm, a ring radius r0 = 500 µm, ring
width w0 = 5 µm. The other important aspect in this “hybrid” picture is that
the FZP is joined by some other beam-shaping device, such as an SLM. This
device is necessary in order to generate the FZP illumination, I0, required for
the target recreation at the focal plane. The details of how this can be achieved
experimentally is not important for this work, but a variety of methods to map
arbitrary phase and intensity over long distances exist - see section 5.1.3 and
references [50, 201, 202, 214]. For our simulation, we assume this input illumi-
nation is possible to create, and are more concerned with the manipulation of
I0 using an FZP.

6.1.1 Simulation details

Our simulation is performed on a 2D Cartesian grid, where we have full ac-
cess to the third axis for beam propagation . The patterns (rings) that we are
interested in however are circularly symmetric, so henceforth we will use the
conversion to cylindrical polar coordinates in the typical sense, r =

√
x2 + y2

and θ = arctan(x, y). We will also use x, y to denote the 2D transverse beam
direction, and z as the propagation, or axial, direction, along which the beam
propagates. The simulation is performed using Wolfram Mathematica with a
4 mega-pixel grid (i.e. a 2048 × 2048 pixel array).
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FIGURE 6.1: Hybrid approach to address 1:1 mapping in the
“High NA” FZP regime. a) Depiction of experimental process
- a “hybrid device” generates the required illumination, I0, with
a flat phase which is applied to the FZP (which imparts spatial
phase ϕ0). Upon propagation to the focal plane generates the
potential, I f , is generated. b) Enlarged images of the simula-
tion. Note the black/white Fresnel zones denote a change of π
in phase.

Distinct to the method previously discussed in section 5.2.2, we no longer
apply a general 1 mm Gaussian beam to all patterns when evaluating perfor-
mance (the last step on figure 5.2). The intensity we now use is the absolute
value squared of the field at the FZP plane, I0, exactly as generated at the same
time as we make the binary ϕ0 pattern. Both of these are then propagated for-
wards to the focal plane when we evaluate performance.

The target recreations by the high-NA FZP are generally faithful and well
performing in simulation. The main ill-effect of the binarisation procedure is
the generation of additional rings “ghosting” in the background, seen in figure
6.1 b). A zoomed-in cut of the same ring along the radial direction is shown
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FIGURE 6.2: Zoom in on the ring feature at r = r0 from figure 6.1,
showing the radial intensity profile of I f . The x-axis is centred
on r0 for a ring with radius r0 = 500 µm. The illumination on
the FZP is shown as the broad Gaussian (in green) and is focused
down to the profile shown (in blue). The FZP was designed with
the target profile shown in red.

in figure 6.2, centred on the ring radius r = r0, showing the biggest ghost
features, close to the ring radius. The illumination’s ring waist (e−2 intensity
radius) is around 70 µm and is focused by a factor of 14 to w0 = 5 µm at the
focal (target) plane. The height of the ghost features here are less than 10%
of the peak intensity, which sits at the ring radius. For atom trapping, this is
of little concern, as trapping is dominated by the brightest parts of the trap,
although we must keep a keen eye on these features so that they do not end
up more intense than the geometry we desire.

6.1.2 Input intensity and field overlap

The main difference (and requirement) of the high NA FZP regime compared
to “regular” long focal length FZPs is the shape of I0. In order to affect some 1:1
correspondence in intensity variation some similarity to the target geometry
is necessary in the input intensity. In the near-distance, i.e. for plates with
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high NA, the electric field does not cover enough distance in order to diffract
greatly, hence we see some similarity in the shape I0 to our target pattern.

In the example of the Gaussian ring geometry, for large propagation dis-
tances the field begins to interfere constructively in the centre of the pattern,
into a large “spike” in intensity. A wide Gaussian illumination will comple-
ment this due to cylindrical symmetry, but one can imagine that complicated,
non-circular structures will look very different, as evidenced by the poor re-
construction of linear targets in figure 5.3. This indicates proper illumination
of higher frequencies becomes more important for faithful target reproduction
of more complicated patterns.

For the ring traps, let us consider the high NA regime. Picture two Gaus-
sian spots some distance (e.g. 2r0) apart with spot size w0 (equivalent to the
ring width). These spots will expand as per Gaussian optics,

w(z) = w0

√
1 +

(
z

zR

)2

, (6.1)

where zR, the Rayleigh length, is defined in the usual way zR = πw2
0/λ. At the

point w(zol) = r0 one finds the “overlap” criterion;

zol = zR

√
r2

0

w2
0
− 1 , (6.2)

which is the point where the waists of the two spots touch. This is an overly
simplistic model, and overlap of the two spot waists begins to occur from the
wings of the gaussians well before, but allows some insight into the regime’s
theoretical size. For a “typical” high-NA ring (r0 = 500µm, w0 = 5 µm, λ =

1.07 µm) this distance is around 7.4 mm, but we observe loss of the ring-
structure at distances before this. In section 6.2 below, we establish a lower
bound on the high NA regime.

6.2 Width of the Central Fresnel Zone

One area of concern, and of interest to the performance of the high NA FZPs,
is the width of the largest, or central, zone. Set by the radius of curvature of
the electric field at z = 0 where the FZP is, the central zone is nominally the
largest zone, covering the majority of the input intensity. Away from this the



Chapter 6. High NA Fresnel Zone Plate Simulations 93

field intensity drops but the number of zones increases. There is a trade-off
between the amount of information that can be redistributed over these zones.
For local intensity mapping we want to have a lot of phase information about
the particular area of interest stored over the local intensity area - that is to say
more zones where the input intensity is highest. One example where this is not
exemplified is where the central zone is wider than the radius of the field inci-
dent upon it. This effectively pushes the higher frequency components to the
fringes of the illumination, which we know are important for traps with fewer
artefacts and ghost features. This is less important in multi-stepped (i.e. higher
bit depth) FZPs, which intrinsically add more detail in the phase information.

If we want to know over what distance the high NA regime is applicable
then the central zone is a good place to look. Too large a central zone and
effectively the zone plate does little to no focusing. This would effectively put
a lower limit to the range, with zol from equation 6.2 as the upper limit.

6.2.1 Calculating zone width as a function of propagation dis-

tance

The zone width, wzone, for the ring patterns can be approximated in the fol-
lowing way, described in the thesis of Henderson [65]. Let us design a ring
pattern at the origin with a radius, r0 and ring of 1/e2 width of w0. Given the
ring design has a Gaussian profile, taking a slice through the ring shows us
two Gaussian cross sections at ±r0. These will expand as per the usual rule for
Gaussian beams, found in equation 6.1. At a position z the ring cross sections
will then have a new width, w. For small distances, these widths do not inter-
sect and thus one begins to define the realm where intensity could potentially
be mapped 1 : 1 from input field to target field. The central zone is defined
as the portion of the beam at propagation distance z where the curvature lags
one half wavelength behind the crest of the beam (in the z-direction). We show
this in figure 6.3. Assuming that the beam is far from the Rayleigh length, we
can use Pythagoras to approximate wzone as

wzone =

√
z2 −

(
z − λ

2

)2

=

√
zλ − λ2

4
, (6.3)

and dividing the two together to express the zone width as a function of the



Chapter 6. High NA Fresnel Zone Plate Simulations 94

FIGURE 6.3: The width of the central zone (wzone) is calculated
this way. We pick some distance z = f from the focus (i.e. the
focal plane of the FZP) and find the point where the beam cur-
vature is λ/2 from the centre of the Gaussian in the propagation
direction, z. wzone is then the transverse distance from this point.
Successive zones can also be calculated this way. in 6.7 we re-
place the propagation distance f with the radius of curvature for
a Gaussian beam.

incoming beam, and implementing the given assumptions, z ≫ zR and z ≫ λ,

wzone

w
=

√
zλ − λ2

4

w0

√
1 +

(
z

zR

)2
(6.4)

≈
√

λz
w0

z
zR

=
πw0√

λz
, (6.5)

which is effectively valid for long focal length FZPs. We see that longer focal
lengths will make this value small, meaning more zones are illuminated within
the waist of the beam. Equation 6.5 may be oversimplified for FZPs which
have the ultra-short focal lengths in question for local intensity mapping and
we would like to know how quickly the assumption z ≫ zR breaks down.
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FIGURE 6.4: The ratio of the central zone to the width of a Gaus-
sian beam of the same width. We plot both the full (equation
6.4) and approximate (equation 6.5) versions. To first order (i.e.
f ≫ λ) the full shortened approximation holds. As it turns out in
section 6.2.2 the full version is incorrect, as it assumes spherical
wavefronts.

Figure 6.4 shows a plot of the full and approximation cases, equations 6.4
and 6.5 respectively, for a 1064 nm beam with a waist of w0 = 5 µm. First to
note is the vertical scale; the zone width becomes larger than the beam width
for short propagation distances. In the case of the approximation the zone
width then carries on to infinity as z → 0, whereas dropping the z ≫ zR as-
sumption we see the zone size return to nothing as the beam narrows. For a
5 µm waist ring there is a 1% difference between the two models at a propaga-
tion distance around 440 µm. We see that the full simulation here is actually
invalid when we include the radius of curvature of the field, as below in sec-
tion 6.2.2.

6.2.2 Radius Of Curvature

The above calculation assumes the beam’s radius of curvature is the same as its
propagation distance, i.e. that the beam has spherical wavefronts. The beam’s
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radius of curvature, R(z) is given in the usual way,

R(z) = z
(

1 +
(zR

z

)2
)

, (6.6)

which shows that for long propagation distances, equation 6.6 reduces to R ≈
z, and thus the spherical front approximation is appropriate. Close to the
Rayleigh length, however, this is no longer true, and at the focus the curva-
ture is effectively infinite as the wavefront is flat. Again, being careful in our
domain of small focal distances we wish to investigate if this knowledge affects
the design of our plates.

We will proceed as we did before for equation 6.3, but replace our expres-
sion for z with R(z). The zone width expression then becomes

wzone =

√
R(z)2 −

(
R(z)− λ

2

)2

=

√
zλ +

z2
Rλ

z
− λ2

4

=

√
π2w2

0
λz

+ zλ − λ2

4
, (6.7)

which is the same form as equation 6.4 but with an additional 1/z term within
the root. If we then divide through by the beam waist again we obtain

wzone

w
=

√
zλ +

z2
Rλ
z − λ2

4

w0

√
1 +

(
z

zR

)2

=

√
zλ
(

1 + z2
Rλ
z

)
− λ2

4

w0

√
1 +

(
z

zR

)2
, (6.8)
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FIGURE 6.5: Ratio of beam waist to central zone width for rings
of various width, w0, calculated with equation 6.6 which in-
cludes the Gaussian beam radius of curvature. Where the ratio
wzone/w = 1 the FZP does little to no focusing, and we can set
this as a lower bound on our high NA regime. We denote this as
zLZ in equation 6.10.

where we again neglect the λ2 term as we assume λ ≪ z, in which case we can
reduce further;

≈
√

zλ

w0

√
1 +

( zR
z
)2√

1 +
(

z
zR

)2

=

√
zλ

w0

zR

z

=
πw0√

λz
, (6.9)

where we do, in fact, return the same form as equation 6.5. The assumption
that we must be far from the Rayleigh range for this method to work, therefore,
is not necessary. For equation 6.9 to be valid we only require that length-scales
in z (i.e. the design focal length f ) and w0 be order of magnitude greater than
the wavelength. We plot this for various ring widths in figure 6.5.
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We find that the central zone is larger than the beam waist for propagation
distances less than zLZ, given by setting equation 6.9 to 1, where

zLZ =
π2w2

0
λ

, (6.10)

which for a w0 = 5 µm ring is 232 µm.
With this calculation we establish the “working area” in which we deem

our “High NA FZP” to work. We see that at extremely short focal distances
(z ≪ zLZ) the illuminating intensity is moreorless 1:1 with the target - which
is reflected in figure 6.5 as the ratio of widths wzone/w > 1 for small z. As the
focal length grows toward infinity, then further zones fall within in illuminat-
ing area. The upper limit on the regime is where the local intensity mapping
fails - usually because the intensity requirement at the FZP is no longer the
ring shape useful for these applications and instead is a high peak centred on
r = 0. Some explanations for the appearence of this have been offered for
this already, which we have discussed previously in the overlap calculation in
section 6.1.2, as well as in the work of Henderson et al. [62, 65], as light con-
structively interferes at r = 0. Breakdown occurs somewhere before f = zol

(as in equation 6.1) where individual components of the Gaussian ring begin
to add constructively in the centre region. Calculating zol for the waists in the
figure 6.5, w0 = 1, 2, 5, 10, gives zol = 1.5, 2.9, 7.3, and 14.7mm respectively.

6.3 Performance of high-NA FZPs

Having established a working area, we are now interested in the performance
of the high NA plates. We choose to measure this by the RMS error, defined

as ϵRMS =
√

1
N Σ (∆I)2, where ∆I denotes the difference in intensities from the

final ring pattern and the target ring. The target ring, T in figure 5.2, is scaled
by the final intensity so that the non-Gaussian features dominate the residuals.
We report the RMS error along a cut in the radial direction, from centre to edge
of the simulation error, as the pattern is relatively equal in error around the
azimuth. These are plotted in figure 6.6 for a 10 µm and 5 µm width ring.

The thinner ring has an error we expect for a simulated FZP of 1-2%, how-
ever the wider ring is interestingly poor in performance, with up to 5% RMS
error compared to the target. This may be in part to features aliasing from the
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FIGURE 6.6: Simulation of the performance of a r0 = 500 µm,
w0 = 5 µm and w0 = 10 µm ring for various focal lengths. a)
RMS error along the radial direction. b–c), snapshots of the rings
at focal lengths of i) 150 µm, ii) 1000 µm and iii) 3000 µm, for w0 =
5 µm and w0 = 10 µm respectively. The starred RMS values at
3000 µm exclude the central peak which obscures the Gaussian
fit and dominate the error.



Chapter 6. High NA Fresnel Zone Plate Simulations 100

grid dimension (1 px = 1 µm). Simulations with a finer grid spacing may help
discern if this is true.

The plates with longer focal lengths begin to exhibit a spike in the centre of
the ring, which can be seen in figure 6.6 b) in the centre of the rings, growing
brighter with increasing focal length, f . The starred points on figure 6.6 omit
this central peak (around 50 px from the centre) when calculating the RMS
error as they would otherwise dominate the error. This is known [61], and we
theorise it is due to non-diffracted light. The disappearance at shorter focal
lengths indicates our overlap picture may be accurate, as there has not been
enough distance for substantial mixing of the features from different locations
of the FZP. There is some difference between the two ring widths as well, as
sharper features performing better over plotted values. There is some concern
that the centre-peaking occurs quicker for thin rings than for wider ones.

6.4 Local Intensity Mapping

To demonstrate local intensity mapping, we will try simulating the applica-
tion of illuminating “spots” of varying size and shape to a FZP and observe
their evolution at the focal plane. The intention here is that illuminating local
structures of the FZP that follow the outline of the zones will illuminate the
corresponding features of the intended intensity pattern. Put another way, if
we add a feature around the ring in the input intensity, this should have the
corresponding feature at the focus. This would allow portions of the ring to
be illuminated by themselves or we could design input beams which fix resul-
tant intensity imbalances around the ring, or spots / blemishes in the pattern
simply by locating their position. This ’on-the-fly’ error correction is a power-
ful tool in our hybrid arrangement, combining the high resolution of the FZP
with the dynamic abilities of a spatial light modulator shaping the intensity
illuminating the FZP.

6.4.1 Input beam azimuthal slices

In this section we are interested in adding intensity around the ring, i.e. az-
imuthal intensity changes. We want to consider how the FZP will focus such a
feature, with particular attention to any distortions in the azimuthal direction.
We will apply a local illumination in the shape of a “ring segment”, i.e. an an-
nular section of of the ring-illumination. The simplest way to this is to “chop”
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the input intensity into a section of the full ring, apply it to the FZP and verify
performance by propagating it to the designed focal length.

We choose the ring section to have a Gaussian profile around the azimuth,
which will prevent the effects of diffraction from sharp intensity features, such
as those assocaited with a conventional “cake-wedge” slice. We show a Gaus-
sian slice propagation in figure 6.7. The focusing ability of the plate is evident,
as shown by the radial widths of the features pre and post propagation.

a) c)b)

FIGURE 6.7: a) Local intensity feature, applied to a ring trap FZP
with r0 = 500 µm (dotted line) - a small portion of the ring il-
lumination is used, localised by modulating azimuthally with a
Gaussian profile. b) The ring FZP. c) the resulting intensity distri-
bution upon propagation to the focus. Note the ring shape per-
sists and the main effect of the FZP is to cause radial compression
of the beam spot incident on the FZP.

Around the azimuth we fit a Gaussian to both the slice width and the illu-
mination width to compare. A comparison is found in figure 6.8. For a range of
propagation distances in the high NA regime these widths are essentially the
same, hence the illuminated angular range does not change over propagation
distances in the high NA regime. This we expect as the FZP does not have any
information in the azimuthal direction for the ring pattern owing to its cylin-
drical geometry. One concern could have been that the lack of confinement,
i.e. no zones, would allow the beam to freely expand in that direction, but this
seems to be minimal over the focal distances we are concerned with.

6.4.2 Radial Gaussian Spots

Out of interest we now apply small Gaussian “spots” to the FZP, with the in-
tention of highlighting the areas of the zone plate that correspond to particular
features of the output. We will do this for particular points along a radius of
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FIGURE 6.8: Intensity plotted over the azimuthal direction, with
the simulation in the background for comparison. The Gaussian
slice does not change in width, each having an angular width
of 15°, over the propagation distance, so spatial features can be
preserved in the azimuthal direction. The intensity around the
ring (azimuthally)is fitted with a Gaussian both before and after
propagation through the plate and they are found to have a ratio
of waists approximate to 1, showing that light does not spread
around the ring.

the ring, given the zones are cylindrically symmetric. We are interested here in
the correlations between the particular “frequency” components of the phase,
i.e. the particular zones, and what part of the intensity it illuminates. High NA
plates should demonstrate a pixel-to-pixel correspondence, whereas for the
longer focal length plates the intensity will either smear out, or be localised on
other parts of the plate.

Figure 6.9 shows one such radial grid of spots, for the long focal length
( f = 7 mm, left) and high NA ( f = 1 mm, right) plates, both FZPs generated
from the same target ring pattern (r0 = 500 µm, w0 = 5 µm, f = 1 mm). Sec-
tions a-k) show a 50 mm Gaussian spot used to illuminate a spot on the FZP
at 93 µm increments from the ring centre, shown in the centre column. The
dashed line on the left and right denote the position of this illuminating light
pre-propagation, as a guide to the eye. Of note in figure 6.9 a), in the long
f case the ring is visible in its entirety, whereas in the high NA case no FZP
zone is illuminated at all. In the high NA case it is evident in sections c-j) that
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light has been significantly deflected into the ring, showing how the FZP effec-
tively redirects light into the area of interest. This however illustrates the ghost
ring structure more visibly as there is a visible second focus in both cases. A
more careful examination of the particular zones or “spatial frequencies” illu-
minated might explain the position of this.

b)

a)

c)

d)

e)

f)

g)

h)

i)

j)

k)

f = 7 mm f = 1 mm

FIGURE 6.9: Two FZPs illuminated by a Gaussian laser beam
with beam waist of 50 µm waist beam at different locations along
the radial direction, showing the effect of “imperfect” illumina-
tion. The two FZPs have the same target ring pattern (r0 =
500 µm, w0 = 5 µm, f = 1 mm), but the right ( f = 1mm) plate
is an example of our high-NA regime. In the centre the position
of the illuminating intensity is shown - equivalently denoted by
the dashed lines. The long f plate (left, f = 7mm) has most of its
amplitude information stored in the centre - evident by section
a), compared to the high NA plate, where it is centred on the ring
radius, section f).
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6.5 Double Ring trap

As discussed in section 5.1.2 there is a keen interest in trapping atoms in blue
detuned beams instead of the more conventional red detuned traps. Blue traps
are favourable for trapping scenarios as atoms are attracted to intensity min-
ima where atom-light scatter is substantially lower. This scaling allows us to
use beams detuned by comparatively smaller amounts (a few nm instead of
100 nm) in the blue.

In the focal plane of the FZP, the electric field for a double ring has the
following form in the radial direction;

EDR ∝ (r − r0) exp(− (r − r0)
2

w0
), (6.11)

note the azimuthal symmetry. This is illustrated in figure 6.10 as the dotted
(orange) line, alongside an equivalent Gaussian ring profile (blue). The main
feature of this field is that the field has a zero crossing at the centre of the
Gaussian (due to the radially increasing term). This forces the intensity to also
be zero at this point - effectively splitting the ring into two. We then require a
method of introducing a zero-crossing in the field with our hybrid technique.

The obvious choice to generate a double ring FZP is to draw the target with
the required field and propagate as has been done before. However, in our
hybrid regime there is another way to achieve this. By introducing a phase
discontinuity of π at the centre of the Gaussian we can force a zero crossing
in electric field without also being forced to produce an intensity zero on the
input intensity, illustrated in figure 6.10 as the dashed (green) curve. This re-
duces the complexity of the input requirement on the hybrid device, as we
need only apply this change in phase to the input requirement for the Gaus-
sian ring (e.g. with an SLM).

Below we show both the hybrid-generated pattern and the “full” simula-
tion for comparison.

6.5.1 Hybrid (phase-slip) arrangement

To produce a double ring from a field originally intended to make a single
ring we need to apply some field to the input intensity that introduces a zero-
crossing. Looking at equation 6.11 it is apparent that this is the field of a Gaus-
sian ring, radius r0, multiplied by that of a linear gradient whose zero-crossing
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FIGURE 6.10: Real part of the input electric field at the FZP which
is then propagated forward to the focal plane. The standard
Gaussian ring (blue, solid) is shown alongside the double-ring
(orange, dotted) and phase-slip hybrid (green, dashed) fields,
which both will generate a double-ring trap, useful for blue-
detuned trapping. The corresponding intensities are illustrated
in the inset. The phase-slip case is of interest as the same FZP
that generates the Gaussian ring can be used to generate a double
ring if a hybrid system is used to apply this phase discontinuity
at the ring radius, r0.

is at the ring radius, Elin = E0(⃗r − r0). The phase associated with this gradient
manifests as a phase slip of π at the zero crossing. We can therefore generate
a double ring by adding the argument (phase) of the linear field, Elin, to the
single-ring input field in our hybrid set-up.

We generate a FZP for a r0 = 500 µm, w0 = 5 µm, f = 1000 µm Gaussian
ring trap, as in section 6.1, along with the associated intensity in the high NA
regime. We then add the argument of the field Elin. This is then propagated
forward, and the resultant field compared with the expected target. The result
of this is shown in figure 6.11, in which we see a gap opening up in the ring
pattern at r0.

Figure 6.11 shows the phase-slip field after propagation (I at z = f ), fo-
cusing on a ring segment. The blue and green lines show the intensity and
phase respectively of field cut along the horizontal. The background colour
shows the phase, whose saturation is modulated by the intensity. Of note is
the π-shift in phase between the two rings, this is Figure 6.12 shows the propa-
gation of the same FZP, cut in the radial direction, for the input intensity, a), the



Chapter 6. High NA Fresnel Zone Plate Simulations 106

10μm

π

-π

0

Φ0

FIGURE 6.11: Double Gaussian ring trap for blue-detuned trap-
ping, generated by applying a phase discontinuity to the in-
put intensity of a single ring FZP of radius r0 = 500 µm, waist
w0 = 5 µm, and focal length f = 1000 µm. The image focuses on
the ring radius, r0. The blue and green lines show the intensity
and the phase of the field respectively along the horizontal line
through the centre of the image (i.e. x = 0). The background
shows a portion of the full 2D simulation, where the false-colour
denotes the phase, the saturation of which scales with the inten-
sity of the field.
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single-ring (unperturbed) propagation, b), and with the phase-slip applied, c).

b)

c)

a) z = 0

z = f

FIGURE 6.12: Radial slice (left is R=0) of the intensity at the FZP
(z = 0), a), and at the focus, z = f for the single-ring and dou-
ble ring, b) and c) respectively. The double-ring here is generated
by applying a phase slip at the ring radius. With the phase-slip
added the ring centre becomes dark, but the noise also increases
- most likely due to the incorrect illumination of the FZP, empha-
sising the lower frequency features.

Note that the design criteria and the resulting trap characteristics of the
blue trap are not necessarily similar. We take equation 6.11 for a ring with
Gaussian width as above (5 µm, seen in figure 6.11) and square it to find the
expression for intensity. The trap frequency, ωr, scales as the square root of the
second derivative of the intensity. For single and double ring traps of equal
power and waist, the trapping frequency of the dark trap is

√
e ≈ 1.65 times

larger than that of the single ring [65].
One of the potential use cases for this method of generation is a single FZP

used to generate both red and blue ring traps. Applying the phase slip on the
hybrid device would allow the same FZP to generate both geometries without
being swapped. Experimental considerations would need to be taken into ac-
count regarding the frequency of the beams and how those are generated, but
we are confident with careful engineering this could be possible.

6.5.2 Comparison with full simulation

Here we simulate a double ring in full, as detailed in chapter 6, using the dot-
ted (orange) curve from figure 6.10. We generate a double ring in figure 6.13
using the same ring parameters as in section 6.5.1 but applied to equation 6.11.
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FIGURE 6.13: A double ring trap generated using equation 6.11
to inform the design of a specific FZP design. The design specifi-
cations are identical to those of figure 6.11. The image is centred
on the ring radius, r0. The blue and green lines show the inten-
sity and the phase of the field respectively. The false-colour back-
ground shows the phase, the saturation scaled with the intensity
of the field.

In this way we have generated a tailor made FZP for a double ring pattern.
Again we note the phase slip is π over r = r0. The phase over the rings here
is much flatter and does not have a slowly varying envelope like figure 6.11.
Ghost features are also not present; there are virtually no parasitic ring features
for this FZP design.

We measure the light usage efficiency, η, by comparing the intensity in an
area 3wring from the ring radius with the intensity found in the rest of the
simulation. The full double ring simulation above has n efficiency of η = 0.41,
whereas the phase-slip method the efficiency is η = 0.28. For comparison the
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efficiency of a single ring of the same design specification is η = 0.41, the same
as for the full simulation. Note, the best efficiency achievable with a binary
FZP is η = 0.5 due to the presence of a virtual focus [62, 194], as light equally
diverges from the FZP phase boundaries as it does converge.

6.5.3 Hybrid simulation with intensity modulation

We also can simulate a hybrid system where we have control over intensity -
where we apply both the radial intensity and phase of Elinear to the FZP. This
method is essentially similar to simulating the double ring pattern exactly, i.e.
starting with a radial electric field of the shape of equation 6.11, when the two
fields are summed together, as can be seen in figure 6.14. The phase profile
looks more like the full simulation of 6.13, with flat phases across the widths
of the individual rings and a lack of noticeable ghost features around the ring
radii. The light usage efficiency of this method is η = 0.40, an increase of 70%
on the phase-slip method. This supports our theory that the ghost features are
formed by incorrect illumination of the FZP.

The full simulation and the hybrid with intensity modulation yield the
same field at the FZP - the dotted (orange) curve in figure 6.10. The hybrid
solution however means that the same FZP could be used to generate a single
and a double ring trap with careful manipulation of the trapping light fre-
quency and spatial intensity, with a single π phase step at the ring radius.
Whilst the phase slip is enough to generate the required zero-crossing, added
intensity shaping is highly beneficial to reduce errors in the final trapping po-
tential. Preference will be dependent on the nature of the hybrid generation,
as amplitude modulation inherently results in power loss versus phase-only
modulation.

One factor not investigated here is how the two methods will differ in terms
of propagation. There is discussion around 3D trapping geometries for blue
beams, such as bottle beams [215, 216], where confinement in the propagation
axis is also present. We can make some assumptions about the propagation
here - in the ’perfect’ illumination case the electric field already has the radial
intensity component added, which adds a zero in electric field to the beam be-
forehand, which propagates down into the high NA FZP as seen above, how-
ever in the hybrid approach it is uncertain how the zero in field will appear.
This emergence of the null, and more importantly how it propagates, will in-
form whether or not the trap can be useful as a 3D trap.
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FIGURE 6.14: Hybrid solution with both intensity and phase of
radial intensity applied by the hybrid device. The ring design is
identical to the previous two figures. Blue and green lines over-
laid denote the radial intensity and phase profile along the hori-
zontal.
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6.5.4 Ring Lattice

We can apply the hybrid generation method above to the azimuthal direction
in order to produce a ring lattice. These are effectively 1D lattices in a circu-
lar loop, presenting an experimental way to generate structures with periodic
boundary conditions [217]. They are of particular interest to investigations into
magnetic flux [218], and atomtronics simulations [219, 220]. Ring lattices may
be generated by interfering Laguerre-Gauss modes [192], routinely achieved
with SLMs. Here we suggest our hybrid FZP technique can be used to gener-
ate ring lattices.

In figure 6.15 we show the simulation of one such ring lattice. Much like
the double-ring above the ring lattice can be produced in several ways: a full
simulation, the phase-slip or the full-hybrid approach. The full intensity illu-
mination is shown in a), the full simulation FZP is shown in b). Both of these
will generate the ring lattice pattern, c), when a) is used to illuminate a single
ring FZP (e.g. ϕ0 in figure 6.1 b), or when b) is illuminated with a single ring
intensity (e.g. I0 in figure 6.1 b).

a) c)b)

FIGURE 6.15: Image of the ring lattice with hybrid generation. a)
The illumination intensity. b) Full simulation FZP for ring lattice.
Notice the phase-slips around the azimuth which correspond to
intensity nulls. c) intensity at the focal plane. The lattice can be
generated purely by illuminating figure 6.1 b) with the illumina-
tion, a), or akin to the phase-slip method by illuminating the FZP
here, b), with a single ring.

For the hybrid approach we can replace the linear radial term in equation
6.11 with an azimuthal sine wave. A sinusoidal winding around the azimuth
will break the ring into segments, the number of which is 2n where n is the
number of 2π windings, where the sinusoid generates zero-crossings in the
field. The associated jump in the phase is evident in the full simulation FZP
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in b). The FZP phase in b) is the product of the FZP field and sin modulation
- the full simulation - which would produce a similar pattern. This example
shows that similar to the double-ring example, where hybrid changes in the
radial direction perform as expected, hybrid changes around the azimuth also
act in the same way as if fully simulated.

6.6 Outlook

These are preliminary studies in the High NA / Hybrid regime. Physical feasi-
bility is yet to be discussed, as hybridisation requires the marriage of multiple
devices for one purpose. A SLM / FZP hybrid combination has all the prop-
erties required to generate the high NA traps. Further investigations into the
propagation in the axial direction (z) would allow us to infer if the beam could
focus strongly enough to trap axially in addition to radially. In experiment
however, we would like to see this approach used to correct for roughness and
imperfections of the resultant ring traps used for guiding matter waves, as this
would reduce heating and excitations. The essence of the technique is that we
can use the flexible spatial configuration of spatial light modulators with tai-
lored FZPs to bypass meter long focusing setups, instead using the high NA
plates to focus what could be, in principle, an input beam with roughly shaped
intensity into a diffraction limited smooth beam, with local phase steps at the
zone plate transferred into the FZP focal plane.
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Chapter 7

Summary and Outlook

7.1 Summary

We shall in turn cover each of the parts of this thesis - the apparatus, interfer-
ometry and FZP sections - in turn and give a brief summary.

7.1.1 Apparatus

In this part we described the construction and characterisation of a 2D+ MOT
for an apparatus designed to produce BEC. This was worked on between Oc-
tober 2016 and June 2018 by the author.

We first described some atomic physics concepts key to understanding the
performance of the MOT: atomic scattering of light, the dipole potential and
the magneto-optical effects for atom trapping. The vacuum apparatus itself is
a dual-chamber design in order to maintain a low background pressure at the
location the BEC will be generated. One novel aspect to this design was the use
of fused fibre-splitters to distribute light over the 2D (and test-bed 3D in retro-
reflection) MOTs. Overcoming some minor alignment issues, the fibres proved
to be sufficient for our purposes. Concerns over the retro-reflected geometry
of the 3D MOT when it comes to optical molasses has been expressed - that the
shadow of the MOT upon reflection will lead to an unbalanced cooling and
hence diminished performance - which we have been unable to verify yet.

The 2D+ MOT is characterised, achieving a flux of ≈ 1× 108 atoms s−1. We
acknowledge that the full extent of the chamber is not being used, as shown in
figure 2.6, where one beam clips the edge of the cell, and where the magnetic
field is not ideal for generating a 2D MOT. This can be circumvented with an
additional coil in the y-direction, which will extend the region of 0–field in the
centre.
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The effect of polarisation on the plus beam is an interesting consequence
of the geometry we have chosen, where we theorise the retro-reflection of
the trapping beams weakens the confinement on that side, leading to the 2D
beam having a component of the magnetic field transverse to the atomic ve-
locity. This allows for π transitions to be excited, where the polarisation vector
and the magnetic component vector are perfectly aligned. Given the Clebsch-
Gordon coefficients mean π transitions cycle slower than σ transitions, this ex-
plains why the atomic flux decreases when we use linear polarisation aligned
parallel to the magnetic field component.

7.1.2 Sagnac interferometry

In this part we described the elements necessary to construct a Sagnac interfer-
ometer using a BEC falling freely under gravity. This was worked on between
January 2019 and January 2020 by the author.

In chapter 3 we describe the necessary optics and considerations for the
BEC in freefall interferometer. The composite Kapitza-Dirac pulses used al-
low us to coherently split the condensate into |±2h̄k⟩ momentum states with
high precision. Since the BEC will fall ≈ 2 mm during interferometry, the lo-
cal intensity it feels from the Kapitza-Dirac interferometry beam will change
as it falls. We calibrate the beam with respect to this by effectively using the
split condensate as a beam profiler. Measuring the condensate split fraction as
a function of the drop time (for the same pulse length) we can then map the
intensity of the beam as a function of position.

The interferometer is sensitive to the axis of gravity. If the beam is mis-
aligned then as the atoms accelerate under gravity a component of the atomic
velocity is present in the direction of the splitting beam. This will serve to
shift the momentum eigenstate energy levels and make the |±2h̄k⟩ states no
longer degenerate. We account for this by measuring this asymmetry in a
crude “tiltmeter”. This calibration is not competitive with other quantum tilt-
meters based on interferometry, but we estimate a 1 mrad resolution.

In chapter 4 we show some preliminary results on the BEC in freefall inter-
ferometer. We show that this configuration scales as the cube of the interferom-
eter time, τ, and report values of phase difference we predict to see for various
times and rotation rates. In order to rotate the system we use a piezoelectric
stack to launch the table, which we measure with an optical Michelson inter-
ferometer. We measure the interference seen when rotating the table and when
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not, the shots interleaved together over a measurement. Taking the mean and
standard error shows no distinguishable change between the rotated and non-
rotated shots. More work is needed to ascertain if this is because the contrast
of the interferometer is too low, the table rotation rate is not high enough or if
some noise source is obscuring the measurement.

7.1.3 High NA Fresnel zone plates

In this part we described a high numerical aperture (high NA) regime for ring
traps generated by Fresnel zone plates (FZPs), which allow for local intensity
changes on the plate to be reflected at the focal plane. Work began on this
project in April 2019 by the author.

In chapter 5 we covered the basic theory behind Fourier-propagation and
computational trap design for the FZP. Experimental work has been carried out
to characterise the performance of optical dipole traps generated by a variety
of FZP patterns, resulting in an average RMS error at the bottom of the trap
relevant to storing atoms of roughly 3%.

In chapter 6 we lay the foundation for the high NA regime of FZPs. The
key difference in the way we use the FZP in this regime is the way we illumi-
nate the plate - instead of a wide Gaussian beam, we now use the illumination
required at the plate. In the case of ring trapping this means our illuminating
intensity now takes the form of a wider ring of the same mean radius as the
ring trap.

In this hybrid regime we are able to address local intensity mapping. Mak-
ing changes to the ring FZP illumination at the plate are also made at their
corresponding position at the focal plane. This technique could be used to
correct for roughness in the trap, or to make more exotic traps from the usual
ring. In one example we generate a ring lattice by azimuthally changing the
light intensity.

Since the illumination must also be generated, for example with an SLM in
a hybrid arrangement, it is advantageous to make these changes to the illumi-
nation as simple as possible. A phase-slip of π will introduce a zero-crossing
the the field, which we can exploit to generate dark ring traps - rings that
when used with blue-detuned light can be used as a dark optical trap. These
dark rings are of interest because of the inherit lack of spontaneous emission
associated with intensity and thereby correspondingly lower atomic heating.
We generate a dark ring trap in this phase-slip method and compare with a
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full dark-ring simulation, commenting on the performance. We note that the
hybrid generation is as good in terms of light-usage efficiency as the full sim-
ulation when some intensity shaping is also introduced. The merits of each
configuration will be dependent on the nature of the hybrid system.

7.2 Outlook

Sagnac interferometry continues to be a challenging subject for atomic physi-
cists. No sensor type currently has a major edge over others, and whilst many
authorities on the subject recognise the theoretical advantages that atomic ro-
tation sensing would bring about, in reality that advantage has yet to be seen.
The best sensitivity on record with free-space atomic sensors brings it in-line
with some of the best commercial fibre-ring and laser gyroscopes available,
whilst costing significantly more in price and occupying a much larger volume.
Guided interferometry has also yet to demonstrate sensitivities on the same
order of magnitude as its free-space cousins, although the groups of Sackett
(Virginia, USA) and Boshier (Los Alamos, USA) have experiments that show
promising results.

As an outlook for quantum technology, miniaturisation is another key area
to be discussed for atom interferometry. Whilst techniques exist to reduce the
volume of lasers [221], vacuum apparatus [222] and MOTs [223] the further
steps to reduce the volume of the apparatus to produce a BEC presents a chal-
lenge - particularly in the sizes of magnetic coils needed for magnetic storage,
and the high-power lasers needed to make dipole traps - essential parts to take
alkali metals down to BEC temperatures. Chip traps [224] and all optical meth-
ods [225] present ways to circumvent these issues.

For our experiment, we would like to bring all three parts of this thesis
together and implement a Fresnel trap for rotation sensing in the future. The
apparatus described in chapter 2 is being installed into the laboratory, which
will reduce dead time and increase optical access - a current barrier to testing
our FZP on cold atoms. A second batch of FZPs will be made for testing soon,
with some high-NA plates also in consideration. A full documentation of the
theory of the high-NA plates is also in progress [226].



117

Appendix A

Optical Table Layout

The following are included for reference and are the cumulative work of the
group at the Strathclyde Experimental Quantum Optics and Photonics group,
[63, 64, 66]. Blue and green lines denote λ/2 and λ/4 waveplates respectively.
Non-polarising beam splitting cubes are denoted in green.

FIGURE A.1: Optics around the vacuum chamber. Figure
adapted from page 58 of the thesis of B. Robertson [63]. The yel-
low interferometry beam denotes the new beam for this work.
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