
Towards a data analytics framework to support

prognostics & health management in nuclear

power plants

PhD Thesis

Will Aylward

ANRC

EEE

University of Strathclyde, Glasgow

May 30, 2022



This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of

the United Kingdom Copyright Acts as qualified by University of

Strathclyde Regulation 3.50. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this

thesis.

i



Abstract

The global nuclear reactor fleet is ageing but will play a vital role in low carbon

energy generation for decades to come. This thesis presents an overview of some

of the ways that these reactors are fully leveraged via effective monitoring and

management. Ultimately, a methodical framework is proposed to support the

digestion and understanding of the data they produce.

To that end, a summary of Prognostics and Health Management concepts and

techniques are first introduced and discussed, reviewing some common analytical

techniques for specific operational challenges, and discussing various approaches

that have been proposed for nuclear analytics more generally.

The Assisted Data Visualisation & Analysis for Nuclear Core Evaluation (AD-

VANCE) framework is subsequently introduced, designed to promote a method-

ical process of fully exploiting the data available to the analyst and to delineate

individual roles and responsibilities during the analysis process.

The application of this framework is then demonstrated via three case studies:

the first showing the way in which the framework was used to support the inter-

rogation and understanding of CANDU reactor fuel monitoring data. Secondly

an improved fuel defect detection process was developed, introducing some data

processing steps to an existing analysis process in order to identify any anomalous

trends faster than previously possible. Thirdly, a further dataset is introduced

and assessed under the guidance of the ADVANCE framework. It is shown that

specific insights can be derived from this power dataset, and that these insights
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Chapter 0. Abstract

can be related to the original dataset under investigation.

Finally, some ways this framework may be extended are discussed in relation

to the existing and future worldwide reactor fleet.
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Chapter 1

Introduction

In the context of a warming climate and dwindling levels of fossil fuels and energy

security, the need for a sustainable low carbon energy source has never been

higher. The world’s existing nuclear power plant fleet supplied just over 10% of

the global electricity supply in 2020 [18], but its reactors are ageing: of the more

than 400 operational reactors worldwide, more than 60% are over 30 years old

[19]. With this background and given the high capital costs of construction of

these assets, their care and proper maintenance is crucial. Any way in which

the existing installations can be more fully leveraged to maximise their huge

initial investment should be carefully considered. Advances in technology and

computing power present one opportunity to that end, and this thesis seeks to

address this opportunity.

1.1 Thesis overview

Following this introduction, Chapter 2 begins with a brief introduction to the

concepts of prognostics and health management (PHM), subsequently focusing

on the more unique requirements of the nuclear industry and the manner in which

these considerations are applied to nuclear operations. Some broad categories of
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Chapter 1. Introduction

personnel and their areas of responsibility are defined in the nuclear context

before the introduction of some category descriptions and examples of analytical

methods previously applied in the nuclear industry. There follows some discussion

of the often-overwhelming array of analysis techniques available to an analyst,

noting that a disconnect can sometimes exist between the objectives of the analyst

and those of the plant operations team. Subsequently a number of approaches

to the assessment and visualisation of data are identified from the literature and

their values and any shortcomings are highlighted.

A novel framework is proposed in Chapter 3, building upon the some of the

frameworks discussed in Chapter 2. As part of the introduction of this framework,

some data shapes and analytical goals commonly found in the nuclear domain

are discussed and this commonality is exploited to propose some recommended

visualisation methods and the data manipulation steps required to generate these.

Chapters 4, 5 and 6 describe three case studies showing the application of the

framework to some example datasets. The first case study, in Chapter 4, relates

to the defect fuel detection and identification system found in some CANDU

reactors. There is an existing analysis process in use in these reactors to sup-

port the identification of defects, and this chapter outlines the way in which the

application of the framework supports the derivation of the existing algorithm

while also identifying some previously unseen trends in the process. This case

study focuses predominantly on the early stages of the framework, relating to the

exploration and visualisation stages while the following case study in Chapter 5

describes the second half of the framework, with more attention paid to the algo-

rithm development work. Some promising improvements in the existing analytics

process are summarised as a result of this work. Finally, Chapter 6 describes the

incorporation of a supporting channel power dataset into the existing analytics

process, demonstrating that refuelling events can be identified using this dataset

alone and that these events appear to be a causal factor for the emergence of

3
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a defect, representing a promising future avenue of investigation in the defect

detection process.

The thesis concludes by demonstrating the flexibility of the framework intro-

duced in the third chapter by providing some other examples of datasets and

domains which could for which it could be adapted and discusses some potential

next steps for its extension.

1.2 Novel contributions

To the author’s knowledge, no methodical framework has yet been proposed to

guide the assessment of data originating from nuclear power plants focusing on the

reassessment and repurposing of datasets which may be available from a range of

sources. It is sometimes the case that data is collected, used and archived without

being fully leveraged by the analytics tools available, and so opportunities can

often exist to reassess archived datasets in the full context of both their own

historical records as well as associated data sets.

A key novel contribution of this thesis is therefore the presentation of a new

nuclear-targeted analytics framework which encourages a methodical approach

to the collection and comprehensive interrogation of often under-utilised data.

Given the extensive development of other, more general PHM frameworks, it is

important that any newly developed nuclear focused framework considers those

more general frameworks which have gone before it as well as the established

terminology and processes that have been previously defined.

The novel contributions following the research outlined in this thesis are there-

fore summarised below:

� A review of data analytics, fuel monitoring and anomaly detection in nuclear

reactors, identifying opportunities for research.

� The Assisted Data Visualisation & Analysis for Nuclear Core Evaluation

4
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(ADVANCE) framework for the exploration and analysis of nuclear reactor

operational data.

� A method for identifying and confirming long-term trends and suspected

faulty monitoring devices, derived from the proposed framework.

� An improved defect identification process, reselecting and manipulating the

data under the guidance of the proposed framework to reduce defect detec-

tion time.

� A novel method for the retrospective identification of channel refuelling

events from legacy data sources and a secondary dataset by implementing

the proposed framework.

� A demonstration that channel refuelling events derived from a related dataset

are correlated to defect emergence, confirming suspicions held by opera-

tional staff.

1.3 Related publications

The following publications related to the author’s research have been published

at time of writing:

� A. Young, W. Aylward, P. Murray, G. M. West, S. D. J. McArthur, and A.

Rudge, “Fuel Channel Bore Estimation for Onload Pressurised Fuel Grab

Load Trace Data”, 6th EDF Energy Nuclear Graphite Conference, 2018.

� W. Aylward, C. Wallace, G. M. West, and C. McEwan, “Improved assess-

ment of delayed neutron detector data in CANDU reactors,” in Interna-

tional Conference on Nuclear Engineering, ICONE, 2019.
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� A. Young, W. Aylward, P. Murray, G. M. West, and S. D. J. McArthur,

“Automatic anomaly detection in fuel grab load trace data using a knowledge-

based system vs. multiple deep auto-encoders”, in 11th Nuclear Plant In-

strumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT),

2019.

� W. Aylward, C. Wallace, G. M. West, and C. McEwan, “A novel assessment

of delayed neutron detector data in CANDU reactors” ASME NERS, vol.

6, no. 4, 2020.

� C. Wallace, C. McEwan, G. West, W. Aylward, and S. McArthur, “Im-

proved Online Localization of CANDU Fuel Defects Using Ancillary Data

Sources and Neural Networks”, Nuclear Technology, vol. 206, no. 5, pp.

697-705, 2020.
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Chapter 2

Background

Prognostics and Health Management (PHM) is a key area of interest in the op-

eration of any high value infrastructure asset as its life progresses, particularly

when it has exceeded the lifetime for which it was originally designed. Here, this

anticipated lifetime is referred to as the design life. Within the nuclear industry,

it is common for plant to be close to or exceeding its original design life and

it must therefore be operated conservatively within rightly stringent parameters

set by regulators. With careful management, a huge range of metrics, for ex-

ample operational efficiencies, remaining useful life and state assessment can be

evaluated, optimised and acted upon by the operational team. This chapter will

briefly describe some of the roles played by various members of this team, so these

positions are first introduced.

2.1 PHM tasks

The topic of PHM can cover a huge variety of tasks in a range of different indus-

tries. A useful recent description [20] of the key considerations required for the

implementation of a PHM system held that a successful deployment can answer

the following three questions:

7
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� Is everything operating normally?

� If not, what’s wrong?

� If there’s a problem, when do we expect the system to break?

The first question can be considered to be anomaly detection: examples in the

nuclear domain may be the detection of thermal anomalies in the coolant system,

or instrument fouling. The second can be considered diagnostics, where diagnoses

can include identifying modes of equipment failure or the reasons for degraded

sensor response times. The final question can be considered prognostics, where

estimations of remaining useful life of components can be estimated by various

methods.

2.2 PHM-related personnel

In order to contextualise the operational aims discussed in later sections, it is

useful to define in broad terms some of the relevant personnel related to op-

erations and prognostics in nuclear power plants (NPPs). Firstly, an analyst

may look back at archived data to identify areas of opportunity or potential im-

provement for future operations. Secondly, an engineer is assumed to plan short-

and medium-term events, for example fuel movements, maintenance operations or

fault diagnosis. Finally, a plant operator will be responsible for the instantaneous

performance and daily operation of the plant, ensuring the correct decisions are

made for the plant to operate within agreed limits. This is clearly not an exhaus-

tive list but there will be some overlap and extensive liaison between roles, and

these delineations will serve as a basis for discussion in the following chapters.
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2.3 Analytics in Nuclear Power Applications

Data is constantly gathered at NPPs and is generally immediately used to help

engineers and operators make key decisions regarding specific plant operations.

While operators will have a deep technical knowledge of the systems they are

managing, there can be limited re-use or statistical analysis of data once it has

served its initial purpose. As an example, mechanical load monitoring data gen-

erated during refuelling events in the UK’s Advanced Gas Reactor (AGR) fleet

primarily exists to ensure that the system operates within safe limits, ensuring

damage is not caused to the refuelling mechanism. When the fuel movement is

complete, the data is ultimately archived. The opportunity can often exist to

re-examine this type of data on a longer time scale to understand the long-term

behaviour of the underlying system.

As a result of advances in analytics which have not yet been fully leveraged

in many operational areas, there exists an opportunity to improve the decision

making process so that faults may be detected earlier, more accurately and with

fewer dedicated personnel hours. These analytical advances can also enable larger

historical datasets to be leveraged, and in combination with novel analytics this

can lead to a deeper understanding of the plant behaviour at little extra cost to

operators.

Data analytics in the nuclear industry is an area of extensive and active re-

search. Analytics techniques can be categorised into three groups: the first can be

considered model-based approaches, whereby a deep understanding of the system

allows its behaviour to be predicted by generating a simulation of the underly-

ing physical processes. For complex systems with multiple external dependencies

this approach can be difficult to implement so simplifications and assumptions

are usually made to enable the model creation. Model-based approaches benefit

from the ability to identify and predict system behaviour under conditions which
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might not have previously been seen, for example during very rare reactor faults.

The second category of techniques can be described as data-driven, whereby

previously recorded data is used to empirically derive a set of linear or non-linear

relationships between system inputs and parameters. Finally, the third category

of techniques can use elements of model-based and data-driven analytics: here

these are referred to as hybrid approaches. Examples of all of these technique

types and their application in the nuclear industry are introduced and discussed

in the following sections.

2.3.1 Model-based analytics

Model-based analytics relate to the derivation of mathematical or physics-based

models to predict the real-life behaviour of a system. Examples of these used

for prognostics and health management in the nuclear industry are relatively

rare, possibly due to the high interactivity and interdependence of the various

sub-systems involved in a nuclear reactor as well as the reliance on knowledge of

the detailed design of system components. The latter is often difficult to access,

given the ageing nature of nuclear plants worldwide in general and the often

commercially sensitive nature of plant design details.

One area of extensive physical model use is in reactor core modelling, where

it is critical to understand and predict the behaviour of power levels to precisely

control reactor output and efficiently manage fuel. Models such as VERA [21],

developed by the Consortium for Advanced Simulation of Light Water Reactors

(CASL) by the United States Department of Energy allow the simulation of

pressurised water reactors to the level of individual fuel rods. Models are also

used for numerical thermal-hydraulic simulation [22], [23] and by necessity often

extensively used in nuclear fusion research and development [24]. The numerical

code from [22] was used in [25] to derive a physical model of a plant under an

accident scenario and combined with maintenance and inspection data to support
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more robust online probabilistic safety assessment.

The National Aeronautics and Space Administration (NASA) extended the

model-based analytics approach to generate simulations of the behaviour of com-

plete vehicular systems, dubbing the concept the “digital twin”[26]. The same

approach has subsequently been adopted in other fields including manufacturing

and prognostics & health management [27]. The idea is discussed in a nuclear

application in [28], and a framework is presented for the development of a physics-

based model of a control element drive system, although it is noted that the digital

twin concept is not the main focus of this particular effort.

Elsewhere, physics models have been used in [29] whereby a simplified thermal-

hydraulic model of a heat exchanger is developed to establish the applicability

of combining measurements from multiple sensors. The authors note that the

model simplifications are necessary in order to allow the work to proceed but

that a more complex physical model may be the subject of future work.

These examples include descriptions of very specific analysis tasks, usually

focusing on a single dataset with limited discussion of the incorporation of others

which may be available. In the case of [29], an experimental setup is described

which is ideal for the acquisition of data but can differ markedly from the in-

teraction with operational plants, where the availability of information can be

limited.

Model-based approaches rely on correctly identifying and mapping the spe-

cific physical events which will lead to system failure, so the models which are

developed can be unsuitable for identifying intermittent faults, or those with an

alternate failure mechanism. In these situations, data-driven methodologies may

be of value.
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2.3.2 Data-driven analytics

The term data-driven analytics describes a broad range of individual methods.

As the name implies, the key focus is on the data itself: each particular method

does not rely on a deep understanding of the underlying mechanics or physical

characteristics of the system under consideration, although an appreciation of the

system is likely to be important when initially choosing an appropriate method.

In this section, a number of data-driven analytics methods are described, together

with some examples of where they have been applied in the nuclear industry.

Markov models are a data-driven statistical method used to predict the state

of a system by analysing an historical dataset. By generating a transition ma-

trix, representing the probability of a state change, predictions can be made for

feature identification [30], anomaly detection [31] and transient detection [32].

The approach relies on an accurate knowledge of operational conditions, and can

only model simple relationships between states. In order to incorporate more

complex interactions, more complex approaches are required which are discussed

shortly. A data mining approach to visualise and animate other sources of data

is mentioned in [31], but no development of this interesting avenue of work seems

apparent.

The Sequential Probability Ratio Test (SPRT), first proposed in [33] is a

statistical method initially developed for quality control applications whereby

sequential batch testing would be performed to identify defective products. It

has been used in the nuclear domain for the identification of elevated radiation

measurements [34], for the condition monitoring of plant sensors [35] and for

prognostics support [36]. The SPRT is a powerful approach but does depend on

the selection of suitable parameters for optimal sensitivity and as with the simple

Markov models outlined above, can suffer from a lack of useful features when

used in isolation.

The challenge of parameter selection was overcome in [37] by the use of
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Prediction Intervals in combination with an Auto-Associative Kernel Regres-

sion (AAKR) technique for signal prediction. In the context of monitoring a

NPP component during start up and shutdown, it was shown that the approach

showed promising results with low false and missed alarm rates. Auto-associative

methods generate predictions of future signals by attempting to learn the inter-

nal distribution functions from previously recorded data, and fault identification

can be carried out by comparing these predictions with actual data. The tool

that was developed sought to support the operator in making decisions but did

not focus on quantitatively assessing the likely actions of the plant operator; an

important concept and identified as the target of future research.

Auto-regressive (AR) methods also learn from previously recorded data but in

this case future values are explicitly related to earlier data recorded at a specific

offset. This can be a useful approach if a seasonal pattern exists, for example

whereby a data series regularly fluctuates on a weekly basis a AR technique

applied with a 7-day time lag can be used to generate a representative data

model with the seasonal trend removed. These methods have been used for sensor

response time analysis [38] and for identification of transients in conjunction with

neural networks, another data-driven technique [39].

The Support Vector Machine (SVM), first proposed in [40] has been a popular

approach in areas such as transient identification [41] and anomaly detection [42]

and benefits from the fact that high volumes of training data are not required for

the generation of useful models.

When applied to regression problems, the SVM is often referred to as Support

Vector Regression (SVR). Recent studies have developed a SVR based technique,

modified to incorporate Bayesian methods, to successfully predict process param-

eters within a reactor coolant pump [43], [44]. Further work on the same dataset

was advanced in [45], using a modified version of the Feature Vector Selection

method, first described in [46]. Although the results have been promising using
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these techniques, they do rely on the assumption that data is independent and

identically distributed, a quality which is not always exhibited by the temporal

data generated in NPPs as operating conditions continuously change with time.

Continuously changing operating conditions were shown to be handled by the

use of Gaussian process models in [47], whereby a Bayesian method was applied

to healthy sensor data to derive Gaussian model parameters and generate virtual

sensor readings. The same technique was later used for fault identification and

diagnosis [48].

Another way that additional features can be incorporated into the assessment

of a system is via the use of neural networks. These are a data-driven technique

commonly applied to nuclear data whereby a set of inputs are combined with

each other in order to predict an output or set of outputs. A large number of

examples are typically required for generation, or training, of a robust prediction

model which can handle complex non-linear relationships between input variables.

Foundational work using neural network techniques in the nuclear domain

can be found in [49], whereby Artificial Neural Networks are used to successfully

identify transients in both control rod ejection mechanisms and steam generator

tubes, demonstrating their ability to handle noisy time series data.

More recently, they have been used in [50] for the de-noising of reactor power

signals and ultimately for anomaly detection. A modified neural network de-

signed for time series analysis is used in [51], known as Long Short Term Memory

(LSTM) which has the ability to learn from time-sensitive relationships between

model inputs and outputs. Here a LSTM model is applied to the prediction of

water levels in pressurised water reactors.

Neural networks have demonstrated useful results using features derived from

the fast Fourier transform of ultrasonic data. Work focused on applying a neural

network model to identify concrete cracking [52]. As mentioned, the approach

does suffer from the requirement for a large amount of training data, particularly
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when a large number of input variables are involved and also doesn’t offer much

explanation for the generated results. In a nuclear context this reasoning is often

crucial, so any use of this type of tool should progress with this awareness.

Complex, multivariate data structures can also be simplified using a technique

called principal component analysis (PCA), whereby the dataset can be reduced

to a representation using its most important variables. Recent work on reactor

control systems has successfully applied various forms of PCA to fault detection

[53], prediction [54] and classification via Fisher discriminant analysis [55].

Other machine learning techniques have also been applied in maintenance and

prognostics within nuclear power contexts. [56] outlined a prognostics framework

based on an ensemble of models, [57] clustered similar assets within a large reactor

fleet to simplify maintenance activities and [58] used clusters of self-organising

maps, a type of neural network first described in [59] to enable the classification

of steam generator accident scenarios.

A number of data-driven methods have now been introduced. A drawback of

the data-driven approach is the requirement for an extensive body of historical

data, and the confidence that this data has been recorded under normal fault-

free conditions so that baseline behaviour can be defined and that appropriate

thresholds can be established. In a real-world environment, it is not always clear

that conditions are in fact fault-free so this can be a challenging requirement.

Related to this issue is the fact that the data available from nuclear plants is

generally fault-free, so the associated datasets available for analysis can often be

unbalanced. This can have implications for models which rely on fault-free data

to be reliably trained for the later detection of faulty behaviour, so understand-

ing this balance and having the ability to address it are critical considerations.

Various solutions to this issue are proposed in [60] including the use of advanced

re-sampling techniques, weighting of cost functions for optimisation and other

active learning methods.
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2.3.3 Hybrid approaches

As an alternative to producing an empirically derived model for the system or

subsystem of interest, one possible solution is to approximate the system be-

haviour indirectly using a parametric model which is informed by data collected

from operation of the system itself. These are often described as hybrid ap-

proaches, as they combine modelling with data-driven parametrisation and this

section introduces some examples.

One technique in this category is the General Path Model (GPM) framework

[61], which assumes a known parametric model which can describe the health

degradation of a component in a specific environment. Generally, a model is em-

pirically fitted using operational data before being extrapolated to an expected

failure threshold. In this way the Remaining Useful Life (RUL) of a specific com-

ponent can be estimated. Research has shown the value in combining this tech-

nique with Bayesian statistics, allowing the incorporation of information about a

component at various stages of its lifetime [62],[63]: knowledge of a component’s

general reliability, then the conditions which it has endured, and finally the esti-

mated extent of its degradation, derived from the GPM, could all be accounted

for. This framework is adopted in [64] to support probabilistic safety assessments

and in [65] to understand and predict the degrading condition of steam generator

pressure tubes. A number of parametric models were assessed which highlighted

the difficulty of choosing a suitable model, the need for extensive operational data

and the difficulty in selecting appropriately conservative thresholds for safe plant

operation. A further limitation of the GPM is that a monotonic trend is expected,

but [66] demonstrated some methods for mitigating this including the application

of Piecewise Linear Representation and Average Conditional Displacement trend

segmentation techniques. Once these transformation methods had been applied,

the GPM was successfully used and showed promise in the field of PHM.

When complex systems have difficult to measure internal states, one option
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is the deployment of particle filters which allow indirect inference of the out-

put from sensors of interest under a Bayesian framework. Particle filter-based

prognostics involves a four-stage analysis process: first, a series of particles pre-

dicting the state of a component are generated using a degradation model. Then,

measurements of that component are accounted for and the original particles are

combined with a known probability distribution to generate a series of updated

particles. A resampling step follows whereby the updated particles which are

more similar to the original data are sampled more frequently. The resampled

particles are finally incorporated into an updated model which is extended until

the failure threshold is reached. As with the GPM, these have been demonstrated

to be effective using data from steam generator tubes [67], using Paris’ law [68]

as a crack propagation model. Elsewhere, the flexibility of this approach has

been demonstrated in the field of transformer condition monitoring in combina-

tion with various data-driven machine learning techniques [69], bringing greater

prediction accuracy and allowing the incorporation of uncertainty estimates. The

same framework has been extended for the condition monitoring of power cables

in [70]. One drawback of particle filters is that predictions cannot be updated

during the prognostic period while new measurements are being awaited, which

can be problematic during extended forecasting periods. A hybrid approach is

introduced in [71] which demonstrated reduced forecasting errors by updating the

model during the prediction step.

In an attempt to address the shortcomings of both model-based and data-

driven analytics, another hybrid approach is demonstrated in [72] whereby both

approaches are used. Here, a mechanical analysis was carried out which identified

the likely failure mode and the specific contributing parameters. A regression

model based on several cycles of normal training data was then used to generate

predictions of these parameters and the residuals were tested with the Sequential

Probability Ratio Test (SPRT) to identify anomalous readings. The physical
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model causing these failures was then selected from a database and the remaining

useful life calculated. As a result, not only could the component lifetime be

predicted but the root cause of the failure could also be identified.

Knowledge-based methods are often used in conjunction with other data-

driven techniques: [73] describes a decision support tool for nuclear control room

operators which uses rule-based reasoning to diagnose system faults, but also sup-

ports operations by simultaneously providing data-driven visualisations of reactor

parameters. In a related manner, a knowledge-directed feature extraction tech-

nique is employed in [74] to identify the trends of key reactor health parameters

of interest.

2.3.4 Limitations of nuclear analytics

While neural networks and other machine learning-based numerical approaches

have been widely applied to data from a nuclear domain in academic research,

it is less clear that these methods have been widely adopted by industry. This

stagnation effect was noted in [75] in relation to the use of neural networks for fault

diagnosis, with the lack of availability of sufficient training data covering a broad

range of failure modes. As a result, data is often derived from simulation codes,

themselves subject to a degree of error and so neural network-based applications

can sometimes be seen as untrustworthy. The lack of clear evidence of industry

deployment may potentially be as a result of this, as well as the necessarily

conservative approach to nuclear operations management.

Often, published academic work can be narrow in scope, typically using a

single dataset in isolation and applying and comparing one or several statistical

techniques using performance metrics specific to the machine learning community.

A useful commentary on this topic is developed in [76], which makes a number

of observations of machine learning-based research. The huge potential of this

field is highlighted but it is noted that work is often narrowly focused on subtle
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performance enhancements such as root of mean squared error (RMSE) or the

F-score via marginal tuning of hyperparameters and can sometimes omit the

consideration of the real-world implication of these improvements. As a result,

a number of challenges are laid out to encourage research with greater emphasis

on real-world impact. These include the passing of a law or legal decision that

relies on a machine learning analysis, the saving of $100M through improved

decision making provided by a machine learning system and a 50% reduction in

cybersecurity break-ins as a result of machine learning defences. While these are

clearly large-scale ambitions and the analysis in this thesis is unlikely to have the

impact that is sought by these goals, there is certainly merit in considering the

concepts put forward here when developing nuclear data analytics and so it is

with this background in mind that the analytics in this thesis are introduced and

developed.

2.3.5 Opportunities for further research

An array of analytics methods has now been described with various individual

advantages and drawbacks discussed. Almost all of the highlighted works detail

highly focused analyses of specific datasets without an assumption of limitations

on their availability: this is an aspect which can have important impact on the

potential analyses which may be performed. Other related datasets, too, are

sometimes mentioned and an interesting data mining tool for the visualisation

and animation of other data sources is outlined in [31] but no further development

of this has been identified. The importance of plant status in identifying and

obtaining fault-free data has also been discussed. Finally, the role of the plant

personnel is not often mentioned in the outlined body of research: an important

focus of future work identified in [37].

There exists, therefore, a possible scope of work which can be overwhelming

for a team tasked with performing some new analysis in a nuclear context. It is
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proposed that there is a need for a more defined and guided analysis process, to

address some of the drawbacks as described above and the shortcomings identified

in [76] and which takes a wider view of the system while at the same time pro-

viding the transparency mandated by the industry. It is envisioned that part of

this process will include the support for the reassessment of existing data sources

to encourage their reuse or even repurposing; a topic which is expanded upon in

the following section.

2.4 Data leverage

In parallel to the continuous gathering of data at NPPs, sensing technology and

computational power continues to develop. Incorporating more sources of data

into existing analysis processes is therefore of key interest. However, the upgrade

or installation of new plant sensors can be difficult and expensive due to strict

nuclear licensing requirements. As a result, fully leveraging what data is available

is a key objective and so this section introduces some considerations and methods

of ways in which this can be achieved. Finally, repurposing archived data can

often provide new insights and some examples of this in the nuclear context are

provided at the end of this section.

2.4.1 Data fusion

Focusing on a single set of data is no doubt valuable but can sometimes miss an

opportunity to relate the primary dataset to potentially associated information

from elsewhere in the plant. This is a philosophy adopted in the “Data Fusion”

field: a well-established research area which defines the gathering of information

from multiple sources to gain confidence in a situational assessment. The ap-

proach is not new, as it formalises the natural human instinct to do just that in

an array of diverse fields such as ship navigation or weather forecasting. A formal
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framework and terms of reference are introduced in [77], including discussion of

the level of abstraction at which multi-source data can be combined. The options

here are varied and are usually situation- and system-dependent: for example,

consideration needs to be given to the architecture of the system, at what point

it is optimal to perform the data fusion process and what accuracy is desired or

achievable.

Data fusion can be carried out at three abstraction levels: either data-level

fusion, when raw data from multiple related sensors is combined; feature-level

fusion, when the outputs from previous independent analysis processes are com-

bined or decision-level fusion, when the final outputs, or decisions as a result of

several analysis processes are combined. The optionality of these architectures is

represented in Figure 2.1.

2.4.2 Data trending

As well as introducing data from other sources, there is value in placing the pri-

mary dataset in a wider historical context. Sensor systems operating in real-world

conditions (particularly in ageing plants as is typical in the nuclear industry) do

not always enjoy undisrupted operation and periods of downtime for non-critical

systems are not unusual. As well as this, plant characteristics may change over

a period of decades as materials and physical systems age. As discussed earlier,

data-driven analysis techniques rely on consistent conditions under which data

was recorded. A long-term assessment of data sources is useful to help understand

the behaviour of the system and can provide valuable insight. An example of this

can be found with the examination of channel activity data when searching for

defects within some CANDU reactors: normally, this search is performed using

data collected from time periods close to the existence of a defect. By expanding

the time period across which the data is assessed, a more complete understanding

of the behaviour of the monitoring system can be obtained by the user with the
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Figure 2.1: Data fusion architectures: a) Data-level fusion, combining raw sensor
data; b) Feature-level fusion, where feature vectors are first computed and then
combined and 3) Decision-level fusion, whereby each sensor makes its own decision
in isolation and these decisions are combined
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identification of global trends and the introduction of other factors which might

not previously have been considered.

2.4.3 Data repurposing

As mentioned in the introduction to this chapter and section, data in nuclear

power plants is often recorded and used contemporaneously before being archived

to a long-term storage location. There exists an opportunity, therefore, to re-

examine this data in the context of its historical behaviour as well as to other

information recorded alongside it. By doing so, data generated for one purpose

may prove to be useful for another and it is this approach that is discussed here.

This re-purposing of data should be considered distinct from situations where data

is solely re-analysed for the same purpose for which it was collected: to illustrate

this, some examples from a nuclear context are provided, before outlining similar

approaches in other domains. The examples from the nuclear domain are not

necessarily an exhaustive list: those that are outlined are intended to provide an

illustration of some of the innovative and alternative ways information from a

nuclear plant may be gleaned.

FGLT analysis

The concept and approach to data repurposing is neatly summarised by prior work

relating to the UK AGR fleet. In these reactors, one of the major life-limiting and

non-replaceable or repairable components are the graphite bricks which make up

the core. AGRs have a core comprising thousands of these bricks, performing both

neutron moderation and structural roles. The bricks are arranged into hundreds

of vertical channels which accommodate fuel assemblies, control rods and the up

flow of Carbon Dioxide gas, used as a coolant [12].

Over time as the graphite is exposed to fast neutron irradiation, the shape

and material properties of the graphite bricks changes [78], [79], [80] via radiolytic
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oxidation. Due to the resultant strains exerted on the bricks it is expected that a

proportion of these bricks will deform in a number of different ways. As a result,

it is important to monitor the extent of deformation in the reactor core; a task

historically carried out by extensive, labour-intensive visual inspection as well as

dimensional measurement.

These surveys are carried out during periodic planned inspections which occur

every 12 months to 3 years dependent on the age and condition of the plant. The

reactor must be switched off for these inspections to proceed, so the process is

time-consuming and costly. It only covers a limited number of channels and its

associated analysis is often on the critical path of returning the plant to normal

operation. However, research has shown [81] [82] that a secondary dataset can

support the main task of defect detection: by using that of the load experienced

by the refuelling machine hoist during fuel charging and discharging, referred to

as the fuel grab load trace (FGLT).

FGLT data is generated by monitoring a load sensor connected to the me-

chanical refuelling crane, relating this to the height of the fuel assemblies as they

are moved into and out of the reactor. The primary purpose of this sensor and

associated data set is to ensure that refuelling immediately stops in an adverse

event, for example some sort of restriction in the channel or a failure of the tie-

bar mechanism. However, it has been shown that information relating to channel

dimensions can also be derived from this data due to the fact that the fuel assem-

bly incorporates two brush sections: one section at the base, known as the lower

stabilising brush and one section towards the top, known as the upper stabilising

brush. These brushes form an interference fit with the channel walls and so there

is a relationship between the FGLT data and the channel geometry whereby any

changes in dimension of the fuel channel result in subtle variations in the shape

of the trace.

Analysis of FGLT data therefore has the potential to provide supplemental in-
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formation about the health of the graphite core in an AGR without the additional

cost of conducting a separate inspection. As well as this, any decision support

system which allows a rapid and more accurate manual analysis of the data will

allow the reactor to return to service more quickly. An archive of legacy data

is also relatively easily available for review without the requirement for signifi-

cant extra investment in plant infrastructure, to help provide additional historical

context.

Inside the fuel channels, the specific physical shapes of the brick layer inter-

faces are visible and the diameter of the length of the channel will be recorded

during detailed channel inspection. When a brick is subjected to higher shrink-

age stresses at the bore than its outer surface, an effect called “barrelling” occurs

whereby the channel diameter at the top and bottom of the bricks reduces in

comparison to the centre [83]. All of these physical shapes will be encountered

by the tight-fitting guide brushes located on the fuel assembly and hence are

identifiable by interpretation of the FGLT: for a fuel removal (discharge FGLT),

a narrower bore is a restriction in the movement of the fuel and therefore trans-

lates to an increase in apparent weight of the fuel stringer. For a fuel insertion

(charge FGLT), any restriction in movement supports some of the weight of the

fuel stringer and so corresponds to a decrease in apparent weight. As a result,

the detailed inspection data can be first used to uncover the relationship between

FGLT data and channel dimensions, which then allows a prediction of channel

geometry to be made for any channels which have not been fully inspected.

This strategy was deployed to directly predict fuel channel dimensions based

on FGLT data using a number of knowledge-based models [84]. Further refine-

ments were achieved by accounting for particular conditions within the reactor

[85], and the algorithms developed led to the generation of a representative set

of reactor health data dating back several decades.
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Control rod monitoring

Data is similarly reused in the area of control rod condition monitoring. Extensive

research has been carried out in this area, with early work [86] assessing the

relative movement of rods from a similar quadrant of the core. By drawing on deep

domain knowledge and using data related to the aggregated movement of several

rods, the historical control signals sent by the power plant management system

could be estimated. These historical signals were never recorded or archived,

so this is a good example of the generation of data which would otherwise be

unavailable. Subsequent research demonstrated the utility of the installation of

external sensors for control rod signal monitoring and interpreting this new data

using domain knowledge, as before [87]. Later, work demonstrated that analysis of

this data could be taken further with the application of machine learning methods

to enable the identification of numerous operational states and to optimise the

power plant’s condition-based predictive maintenance strategy [28]. [88] also

developed a method whereby temperature data from in-core thermocouples was

repurposed to identify faulty or failing control rod drive systems, independently

of the mechanical device usually responsible for their monitoring.

Neutron noise for core monitoring

Elsewhere, it was shown that neutron noise monitors can be used to non-intrusively

detect control rod bearing failures by indirectly measuring vibration levels [89] in

the High Flux Isotope Reactor [90]. This was beneficial due to the spatial and

environmental restrictions preventing the easy installation of vibration sensors

within the core. Neutron noise analysis was similarly carried out at the Molten

Salt Reactor Experiment at Oak Ridge National Laboratory and demonstrated

the ability to detect off-gas line blockages as well as the unwanted build-up of

Helium within the fuel salt, an important aspect of reactor control considerations.
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Other research fields

The derivation of information from data not originally recorded for that purpose is

sometimes seen in the social sciences: recent work used aircraft real-time altitude

data to generate flight departure and arrival volumes, subsequently demonstrating

that these volumes were correlated to gross domestic product (GDP) and could

thus be used to generate real time predictions of GDP [91]. Similar work has

been carried out in predicting property prices using the presence of art-related

keywords in geotagged images [92], estimating the size of crowds using social

network interactions [93] and even monitoring traffic levels via AI-based image

processing of closed-circuit television images [94].

In summary, all of these examples take some knowledge or insight of a complex

system and exploit the patterns that can be found in related datasets to supple-

ment an original data source. This is a powerful approach and is enabled by an

increase in computational power with little or no investment in extra sensors or

additional data collection.

2.5 Methodical approaches

Data fusion clearly provides demonstrable benefit to the nuclear domain, but to

date the technique has often been used on an ad-hoc, specific basis. To address

this, it is proposed to investigate the applications of various existing analytics

frameworks: their features and drawbacks will be discussed in the following sec-

tions.

2.5.1 Existing analysis frameworks

A number of PHM analytics frameworks have previously been proposed in the

literature. IEEE [1] propose a high level functional standard model, shown in

27



Chapter 2. Background

Figure 2.2, for the formal assessment of operational processes, covering electronic

systems in general.

Figure 2.2: IEEE PHM functional model [1]

The central sub-tasks appear to derive from a framework proposed several

years earlier[2] for the health management of aeronautical systems, shown in Fig-

ure 2.3, although no acknowledgement of this is made. The IEEE framework

builds further on the sub-tasks by grouping them into five overall health manage-

ment tasks.

The goal of the IEEE standard is to provide an overview of the typical strate-

gies and metrics used to evaluate industrial health management techniques, and

so is broad in scope by design. Overall, the five core health management tasks are

summarised as “Act”, “Advise”, “Analyse”, “Acquire” and “Sense” groups, with

the sub-tasks providing a little further detail on areas within those processes. The

framework is useful in that it defines a common set of terms which can be applied

across an array of diverse industrial processes, but it is naturally limited to high

level management goals and does not define any specific analytics techniques.
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Figure 2.3: Condition Monitoring Information Flow Blocks [2]

While [1] introduces high level concepts, some further detail of the practical

application of the majority of these is covered in [3], shown in Figure 2.4.

Here, a logical process-driven framework is proposed, which starts with the

remote monitoring of an asset, proceeds through pre-processing and anomaly

detection & identification steps before leading to diagnostics and prognostics

tasks. These “health assessment” actions are then followed by a number of “health

management” steps, where the information gained during the analysis steps is put

to use, either accommodating a fault by making changes using the control system

of the asset, or by changing the maintenance or operational strategy of that

asset. Consideration is given to the recursive nature of these actions, for example

to account for the fact that an altered control or maintenance action may change

the prognostics calculations in a previous step.

A hierarchical layout of PHM concepts is also outlined in [4], alongside a

system architecture specifically proposed for aeronautical systems, the latter of
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Figure 2.4: A comprehensive view of PHM [3]
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which is shown in Figure 2.5.

Figure 2.5: An aeronautical engineering based PHM framework [4]

This architecture accounts for the specificities of the monitoring situation

involved; the most obvious being consideration of the nature of in-flight data

collection and transmission. The PHM component of the architecture mirrors

closely that proposed in [3], although the recursive nature of the maintenance

actions is not as explicitly accounted for in this case. Aeronautics is also the

focus of the frameworks proposed in [5] (shown in Figure 2.6) and [95], where

prognostic information is highlighted as the primary basis for decision making

and so is placed at the heart of the decision support system.

The data processing frameworks examined thus far have implicitly assumed

a known analysis pipeline, in that the availability of data and the way that data
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Figure 2.6: A prognostics-focused PHM framework [5]

is subsequently used is taken for granted. As the availability of diverse data

sets has grown over recent years, so has the topic of data science where data

exploration and visualisation are key aspects. These exploratory steps are neatly

summarised in relation to the previous data frameworks by [6], shown in Figure

2.7, whereby exploratory analysis of cleaned data forms a feedback loop with the

data processing step and subsequently leads to the development of models and

algorithms, upon which basis reports can be generated and decisions made.

Similar to the more general processing framework shown previously is the data

visualisation pipeline proposed in [7], shown in Figure 2.8. Here, the process is

described as being performed in a loop, storing knowledge and information as it

is gained and building upon that knowledge to perform new analyses and update

models where appropriate.

As discussed in Section 2.4, data fusion is a key consideration when multiple

datasets are available whereby greater understanding or more accurate predictions
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Figure 2.7: A general data science framework [6]

Figure 2.8: Visual analytics process [7]
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of a process is attained by incorporating data from more sources. The optionality

regarding the abstraction level at which this fusion process occurs is discussed

in [8] and incorporated into the processing framework shown in Figure 2.9. The

data fusion concept is extended to identifying gas turbine engine faults in [96].

Figure 2.9: Data fusion options [8]

These PHM frameworks are naturally a keen area of research in the nuclear

industry. The United States Department of Energy base their Light Water Re-

actor sustainability program [9] around a risk-informed framework intended to

incorporate traditional operational and safety risks as well as broader financial

risks. This is outlined in Figure 2.10.

Figure 2.10: Risk-Informed PHM LWR sustainability program [9]

Other work at NPPs [10] has examined the considerations for implementing a

model-based analysis framework with the goal of improving operations, beginning

by identifying a number of disparate information streams and noting that these

need to be integrated into a common architecture before applying various analyt-

ics to identify important plant metrics, for example operational and component

status and performance. These tasks lead on to various visualisations to help sup-
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port operators with actionable insights. This framework is shown in Figure 2.11

and the same authors go on to provide potential ways in which the data fusion

aspects of this framework can be combined with the use of Bayesian Networks[97]

for the dynamic production of probabilistic risk assessments (PRAs).

Figure 2.11: Model-based data analytics [10]

In summary, there are various frameworks which appear to primarily define

either the general terminology [1], [2], a general PHM process and terminology

such as [3], a specific analysis task such as [5] or the goal-based terminology of a

general analytics process as in [6]. None of the frameworks identified so far have

defined some recommended specific steps for the analysis of nuclear core data in

general, so defining a nuclear-targeted approach will be an area of focus.
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2.5.2 A nuclear-targeted approach

A number of analysis frameworks have now been presented which capture a variety

of analysis tasks covering a broad range of detail levels. Frameworks covering

more general asset management tasks must by design contain less detail with

regard to specific analysis steps: for example, the specification of a state detection

step without then elucidating how that information is subsequently used. Clearly

it is more difficult to do this when designing a framework covering a range of

potential applications but when considering the nuclear domain in isolation, the

datasets have some common traits which can be exploited to allow a more defined

analysis pathway given the broad array of possible options.

To the author’s knowledge, no methodical framework has yet been proposed

to guide the assessment of data originating from nuclear power plants focusing

on the reassessment and repurposing of datasets which may be available from

a range of sources. It is sometimes the case that data is collected, used and

archived without being fully leveraged by the analytics tools available, and so

opportunities can often exist to reassess archived datasets in the full context of

both their own historical records as well as associated data sets. A key novel

contribution of this thesis is therefore the presentation of a nuclear-targeted an-

alytics framework which encourages a methodical approach to the collection and

comprehensive interrogation of often under-utilised data. Given the extensive

development of other more generalised PHM frameworks, it’s important that any

newly developed framework considers those which have gone before it and the

established terminology and general processes that have been previously defined.

2.5.3 Data commonalities

As discussed, datasets generated in the nuclear domain often have some common

traits and these can be leveraged to allow a more prescriptive framework. A few
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of these commonalities and their implications are now discussed.

Often, data will have a time element so a number of time-based visualisations

will be useful. Related to this, it is also quite common for data to be generated,

used once with a specific short-term goal in mind and then archived. As a result,

potentially important long-term trends may be overlooked so the examination of

system behaviour on a longer time scale is often a valuable exercise. Addition-

ally, datasets are commonly related to channels or areas of the reactor, so have

a spatial element. Finally, the intricate physical connections between plant sys-

tems also drives important relationships between datasets and to the state of the

system as a whole, so these should be considered if possible. Investigating these

relationships and examining data on a more long-term basis provides the oppor-

tunity to identify any underlying trends and how these patterns might relate to

the wider plant state and conditions.

2.5.4 Multivariate plots

Data generated in the nuclear domain almost always has a time dimension and

is very often multivariate, whether multiple instances of univariate time series

for a number of individual reactor locations or multiple measurements recorded

for a single location or plant item. This difference is highlighted in [98] which

formalised the idea of “multidimensional multivariate data” as multivariate data

which exists in a multidimensional domain. By doing so, the authors distin-

guished between independent variables, which generate an n-dimensional domain,

and dependent variables, which are measured or simulated, existing in the n-

dimensional domain as a k-variate dataset. Examples are subsequently provided

of this abstract concept using various extant nuclear datasets during the frame-

work introduction in section 3.3.7. An alternative summary of this concept was

provided in [99], whereby a data framework was proposed based on summarising

data from multiple perspectives: “where”, “when”, and “what”.
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The challenge of visualising this type of data has been widely tackled with

various strategies, with some of the most effective combining heat maps and

multi-series line graphs. A good example of this is a tool proposed in [11] for the

statistical programming package R[100], which generates simplified heat maps

representing data quantiles, simultaneously displaying statistical summaries of

multiple data axes aligned to be adjacent to the relevant series or time point.

An example of this method of visualisation is shown in Figure 2.12: this

represents arbitrary simulated data for 20 sensors with a time series length of

200. The first ten series have an error distribution of mean 0 and variance 1

while the following ten have mean 1 and variance 4, with the horizontal black

line across the plot demarcating the two sets of series. The subplot to the right

displays box and whisker plots summarising the individual time series, while the

subplot below shows a statistical summary of all time series: in this case the

mean. In this way it is intuitive to understand any global trends shared by all

individual time series, as well as identifying the characteristics of each time series

in isolation. Without the summary box and whisker plots, the comparability of

the first and second ten series would not be so clear, and without the addition of

the mean time series in the bottom subplot it would not be as visible that there

appears to be a global downward trend across all data series.

It is worth noting that the choice of colour in a heat map can have a major

impact on the clarity of presentation. The selection of colour scale should be

made with careful use of both shade and hue in reference to the nature of the

information being displayed. For clarity, shade can be defined as the brightness

of the particular colour while hue would relate to the position on the spectrum

of the colour itself. In general, a range of shades should be chosen when there

is some inherent order or rank to the values being displayed, while a range of

hues can be used to display un-ordered or unrelated data. Two or three hues can

be introduced to the shade scale of ordered data to emphasise particular change
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Figure 2.12: Multivariate time series heatmap [11]
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points, for example negative vs. positive values or other key thresholds of interest.

Additionally, the interpolation (or the point at which the colour shades and hues

change with magnitude of data quantity, and how quickly) is an important choice

and should be carefully tuned. Unfortunately, due to the inherent brightness

differences between hues, multi-hue colour maps can sometimes suffer from false

positive anomalies. Perceptually uniform colour maps [101] seek to address this

shortcoming and will be recommended for use later in Chapter 3.

A variation of the combined heat map and simple line graph plot as presented

above in Figure 2.12 can be found in [102], which extends the calendar plots

first proposed in [103]. Originally, these were designed to visualise univariate

time series and quickly understand how any patterns related to the particular

weekday the data was recorded. Extensions to this work allowed multivariate

data to be displayed, incorporating colour to the calendar view and replicating

this colour in the associated temporal line plot. This is an interesting approach

although potentially more applicable to the study of human behaviour rather

than power plant data.

Introducing a spatial element to temporal data adds non-trivial complexity.

One proposed approach to addressing this was the introduction of pencil plots

[104], whereby multi-faceted “pencil” volumes were superimposed onto a 3D map,

with height representing time and the various faces of the pencil corresponding

to individual datasets from a particular location. Drawbacks to this method are

the fact that certain datasets will inevitably be hidden from certain viewpoints,

sometimes because they are displayed on a face opposite from the direction of

view and at other times because other pencils occlude the view.

A related proposed method is that of 3D data vases [105]: these plots again

superimpose 3D cylinders onto a map, using height to denote the time axis. Here

however, the diameter of the cylinder is used to relate the quantitative information

of interest. These visualisations do still suffer from the issue of data occlusion
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which can be mitigated to some extent by the ability to move freely around the

visualisation as well as filtering out data not of interest.

Data visualisation is a broad research area, and a full review thereof is beyond

the scope of this thesis. The interested reader is directed to [106], [107] and [108]

where more details can be found on the topic, exploring fundamental aspects

across a range of specialist domains.

Despite the breadth of the topic of data visualisation and the resultant op-

tions available to the analyst when examining nuclear reactor data, there is nev-

ertheless the opportunity to prescribe or recommend specific approaches to the

data exploration. A systematic view on this diversity of methods is developed

in [109], where the various drivers of data visualisation are considered and ex-

amined, namely the characteristics of the time axis, what is being analysed and

how the data is to be represented. It is these common drivers which allow a more

prescriptive approach. In the following section, various historical methods are

summarised and discussed.

2.5.5 Reactor visualisations

Nuclear power plant and reactor designs vary widely, but their operational con-

siderations share a series of commonalities. One of the primary considerations

is that the reactor core is usually the key component of concern and very often

cannot easily be replaced or repaired, so must be monitored closely. The visuali-

sation of this monitoring data is thus important. The data itself usually relates

to channels with a particular spatial arrangement, often from three or more di-

mensions and thus the visualisations that are used across industry typically seek

to make sense of the inherent trends and patterns within these.

As a result, there are some natural and well-established approaches to rep-

resenting nuclear datasets based upon the common features just described. Re-

actors are commonly designed and displayed in multiview parallel projection,
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usually normal to the reactor face. Examples of this are shown in Figures 2.13

and 2.14.

Figure 2.13: AGR core design (excerpt) [12]

A survey of the literature finds an array of data visualisations derived from

these views, often with the use of colour or quantity labels to relate quantitative

information. This view is used in [110] to display power distribution data via

a simple heat map, while [14] use the same view to display both quantitative

information relating to graphite core inspections as well as making available the
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Figure 2.14: CANDU core design [13]

inspection history of a channel. This is further developed in Figure 2.15, whereby

the challenge of displaying the available inspection data for specific channels was

addressed. Here, the channel locations were converted to a Cartesian coordinate

system with a shallow z axis added to allow stacking of data points. This ex-

tra dimension in combination with a red to black colour scale allowed multiple

inspections to be shown on the same graphic, with older inspections denoted at

one end of the z-axis and brighter red in colour. This view was not intended to

generate analytical conclusions beyond simply the fact that inspections had been

carried out and that these were well spaced throughout the core.

More emphatic use of a 3rd dimension is made in [15] via a surface plot, onto

which a heat map is overlaid in order to visualise the accuracy of estimates of

the moderator temperature coefficient across the reactor. This is shown in Figure

2.16. The same visualisation is used by [88] to display temperature data across

the reactor core. Heat maps are again used in [111] to visualise the flow rate

of coolant gas throughout the core, here also in combination with a histogram

summarising the distribution of the data.

The heat map approach is extended in [112] to visualise higher dimensional
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Figure 2.15: AGR inspection data [14]

Figure 2.16: Representation of predicted moderator temperature coefficient ac-
curacy [15]
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data: in this case noise spectra derived from in-core detectors. Here, a dashboard

view was developed based on a core plot which applies a heat map to individual

channels. The shading is derived from some specific measurement from individual

channel spectra, for example the peak amplitude at a specific frequency but the

entire spectrum is still visible via interaction with the dashboard, encouraging

the user to generate their own visualisations. The importance of the long-term

historical behaviour of the reactor is noted by the inclusion of aggregated average

long-term coolant velocities, allowing an understanding of the way plant condi-

tions and extensive operation impact upon the behaviour of the reactor systems.

The challenge of visualising and exploring long-term multidimensional data

was also addressed in [113]. Here, a number of AGR inspection events are sum-

marised in a single view. Again, a core map is used to identify channels to

which the inspection data pertains, while long-term trends are shown for a spe-

cific metric, chosen by the system user. Any measurements which diverge from

the historical trends can thus be spotted at a glance, allowing a more detailed

investigation.

Other examples of reactor views can be found in [16], where data relating

to the spatial composition of fission products in the core are visualised. This is

very high dimensional spatio-temporal data and a challenge to display clearly:

in this case the authors reduced the data to axial and radial representations and

analysed a specific time period. Figure 2.17 shows the axial representation.

More advanced displays of data have been demonstrated as technology has

progressed. An example of a more complex visualisation is shown in [17], whereby

a rendering framework was proposed to handle the complex geometry of a nuclear

reactor and deployed to display the internal energy of a virtual reactor, shown

in Figure 2.18. Again, however, this can suffer from occlusion challenges when

visualising a large number of fuel elements so a considerable element of inter-

activity will be required in order to interrogate and draw conclusions from the
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Figure 2.17: Axial representation of reactor composition [16]

information presented.

2.6 Conclusion

A number of frameworks have been reviewed in this chapter which has demon-

strated the utility of standardising the terms used in analytics, as the IEEE

framework [1] and PHM summary [3] do, while also summarising broad analysis

tasks, as the general data science framework of [6] and the visual analytics process

in [7] do. These frameworks are primarily used to define goals and terminology

as well as explain an analysis process to a wider audience, but given the range of

potential domains they could be used in they naturally do not give much specific

guidance to the analyst when faced with an open engineering problem.

Fully leveraging the available data, obtaining insights from information sources

not originally designed to be used for that purpose as discussed in section 2.4 is

identified as an important concept. Opportunities to incorporate this approach

into a new, nuclear-targeted framework will be a key consideration.

Finally, insight from the the visualisations aspect of this review plays a key
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Figure 2.18: 3D visualisation of nuclear reactor showing spatial distribution of
internal energy [17]

part in the framework development and is discussed further in section 3.3.7. It is

proposed that the multivariate heat map identified in Figure 2.12 in combination

with suitable perceptually uniform colour map provides a useful initial under-

standing of available reactor data with other key visualisations being rapidly

derived from this. The time-based summary in the bottom subplot of Figure

2.12 ensures that subsequent time series visualisations can be quickly compared.

Subsequently the use of appropriate channel layout data to generate the same

multiview parallel projection display as shown in Figures 2.13 and 2.14 using

the same colour map provides a rapid understanding of the spatial behaviour of

the data. These visualisations will form an important basis of the framework

subsequently proposed.

It is intended that the resultant framework will support the analyst in the

rapid understanding and iterative assessment of data arising from the monitoring

of nuclear reactor cores, ensuring that all available insights are fully realised and

shared with the wider analysis team.
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A nuclear-specific framework

This chapter introduces a novel nuclear-specific methodical framework which aims

to address some of the limitations of the frameworks identified in Chapter 2. It

seeks to prompt the data analyst to make a thorough and repeatable initial in-

terrogation of any nuclear core-sourced dataset in close collaboration with other

roles and to help ensure that the data analytics process is defined and transpar-

ent for all involved. This interrogation primarily covers the gathering, assessment

and verification of available data with the ultimate aim of improving the under-

standing of asset health and enabling the adoption of new approaches to their

management. Whereas the application scope of the frameworks that were previ-

ously examined was generally broad, often incorporating a wide array of diverse

industries, here the scope remains more focussed on the nuclear domain. The

commonalities of data of this origin allow a more detailed analysis flow to be

defined, a piece of work which to the author’s knowledge has not been previously

formalised.

It is useful to relate this framework to those introduced earlier, perhaps the

most important of which is the IEEE general PHM framework [1] given its insti-

tutional recognition and potentially wide application. For convenient reference,

Figure 3.1 shows an extract of this framework which was presented earlier in
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Figure 2.2.

Figure 3.1: IEEE PHM functional model - cropped [1]

As previously discussed, the sensors installed in NPPs are generally not easily

modified, upgraded or replaced and so the new framework will not focus on the

“Sensors” step. Similarly, changing the Data Acquisition step is not a ready

choice available to an analyst, who will typically use the tools already installed,

so again this will not be a strong focus. The analyst will however have some scope

to discuss options with the operations team, so the new framework will at least

consider some aspects of this step. At the other end of the IEEE framework, it

is not a goal of this work to generate advisory warnings or operational actions

which will return the plant to a “healthy” state, as this would typically be the

responsibility of the plant operator, but the framework will contain signposts to

contextualise where these decisions should be made.
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The Data Manipulation step on the other hand can clearly be a target of

an analysis framework, as can the tasks of State Detection, Health Assessment

and Prognostic Assessment. This is where the area of focus for the framework

proposed in this thesis will be, and how it will fit with what has previously been

proposed.

3.1 Framework development

To address the gaps in the previously outlined frameworks, a new framework

was developed. This development occurred over a number of iterations, by first

considering a range of discrete analysis tasks that were required to be carried

out for a variety projects including the FGLT work described in section 2.4.3

as well as defect detection work in CANDU reactors. It was quickly realised

that many of the tasks shared common themes which could be generalised and

early iterations of the framework identified the isolation of data, generation of

visualisations, obtaining of insights and subsequent actions as key first steps.

After this first step, focus turned to the categorisation of data and the insight

that various information sources could be related to one another by inspecting

the dimensionality of the data arising from them. This led to some early frame-

work designs where multiple analysis actions such as “Reshape/Process data” or

“Trend identification” were connected to one another, allowing the analyst to

freely move between actions: but it was decided that this was not sufficiently

commanding and so a more linear process was developed. The importance of

iteration was quickly identified and some feedback loops were added. Multiple

analysis tasks were required to be updated or generalised as some new analytics

pipelines were identified, while attempting not to overly generalise the tasks so

as not to provide focused support to the analyst.

Finally, it was noted that the analysis team is often comprised of multiple staff
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within the industrial plant, and that their representation within the framework

would be useful so as to guide not just the analyst but also the wider team.

These roles were added and the framework was slightly reorganised to reflect

which stakeholders are most closely related to specific analysis tasks.

Following these iterations the Assisted Data Visualisation & Analysis for Nu-

clear Core Evaluation (ADVANCE) framework was complete, ready to be intro-

duced and described in full in the following section.

3.2 Framework introduction

The framework is shown in Figure 3.2. The right side of this figure is split into

a series of logical analysis steps: most of these are connected by solid black

arrows, representing the general iterative flow. Background colours denote the

various relevant broad roles involved in the operation of the plant, as defined in

Chapter 2. Given that the focus of the ADVANCE framework is on data analytics,

the majority of tasks are primarily overseen by the data analyst themselves,

but some tasks potentially involve engineering or operations teams. The tasks

generally portray research and development work with the dotted connector on

the bottom line leading on to implementation steps, an area more related to

industrial operations and not the primary focus of this framework.

Dashed connectors relate to the data manipulation and visualisation processes

carried out as part of visualisation and exploratory analysis, and these are shown

on the left of Figure 3.2. Detailed explanation of this aspect of the framework

follows in section 3.3.5.
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3.3 Framework detail

The framework guides the analyst and wider team through the key early stages

of the analysis process, from formalising a hypothesis to incorporating the results

of any process improvements via a series of methodical steps. Each of these are

described in more detail in the subsequent sections.

3.3.1 Hypothesis formalisation

The first step is the generation of a hypothesis related to the engineering problem

at hand. In the first instance this will typically derive from operational experience

as advised by plant personnel. Later on in the process and as the analyst gains

more information and familiarity with the data and system, further hypotheses

may be generated from analyses of the data itself.

Typical hypotheses here may take a number of forms. It may be that a certain

labour-intensive process is carried out by expert plant engineers and there is a

desire to automate the process or provide assistance to the expert. Motivations

for this may be to reduce the time taken to carry out the process in question,

or to improve the accuracy of output. In this case the hypothesis would state

that time savings were possible using a specific data analysis route. Alternatively,

engineers may have noticed a particular plant behaviour mode and be interested

to understand whether their informal observations can be confirmed and even

leveraged.

Whatever the generated hypothesis, it must be testable: that is, given the

appropriate assessment, it is possible to prove or disprove it with the available

data. This is an important feature if the later benchmarking step is to be properly

carried out. In addition to this, at the outset of any new investigation the analyst

is encouraged to build an understanding of the long-term system behaviour and

to relate this to the underlying physical reasons.
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3.3.2 Plant and engineering knowledge

It is to be noted that plant and engineering knowledge is at the heart of the

analysis process, informing many of the analysis steps. It is an area which relates

to nuclear data management: a broad topic given the array of reactor designs,

political and regulatory jurisdictions, operator approaches, installation dates and

possible life extension work, all of which will have some input into the design of

sensor choices and data management systems. The International Atomic Energy

Agency (IAEA) have focused some attention on nuclear data management [114],

identifying a number of commonalities across reactor types and noting the need to

preserve knowledge across both human generations of approximately 30 years, but

also facility lifetimes of around 60 years. As part of the work carried out by the

IAEA, a key differentiation was made between tacit and explicit knowledge, shown

in Figure 3.3. Tacit knowledge describes information held by plant personnel,

while explicit knowledge would be information which has been formally recorded

in some way.

The plant and engineering knowledge at the centre of this framework derives

from the operating and maintenance experience of plant engineers and operators

and should therefore be considered as tacit knowledge. The information from this

knowledge base flows into multiple framework steps so it is important that a clear

line of communications between analysts and other plant personnel is established

and that contact and feedback loops between the parties involved are maintained.

3.3.3 Data acquisition

In the data acquisition step, questions related to the manner of acquisition of data

are posed and assessed by the analyst. These would typically be more practical

in nature, related to the manner of data extraction, transmission, storage and

format.

54



Chapter 3. A nuclear-specific framework

Figure 3.3: IAEA-defined examples of NPP knowledge

In the context of IAEA-identified knowledge types discussed in section 3.3.2,

it is explicit knowledge which is transferred at this point. This may relate to

engineering and operating data but also includes databases and relevant codes

and models.

Explicit knowledge can be further categorised into structured or un-structured

data. Structured data typically appears in a tabular or matrix format. The actual

information itself may be categorical, numerical, ordinal or time-based. In the

nuclear context the majority of data would be expected to be time-based, with a

spatial element.

Unstructured data describes information with no inherent structure: gener-

ally, this may cover photographs, diagrams, video or natural language recordings.

This information will likely be useful to inform and explain patterns and trends

observed in the available structured data, so while a detailed analysis of this type

of data will not be fully covered in this framework it may be helpful to understand

its availability in relation to the structured data sources.
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The plant engineers will have a high level of familiarity with the systems but

with an understanding of what knowledge may exist, an analyst may use this list

to facilitate an efficient knowledge transfer process.

Formal mechanisms and general approaches for the distillation and transfer of

this information are a research topic of interest across multiple fields [115]. Recent

work in the nuclear domain has proposed a knowledge elicitation technique to

symbolically represent expert knowledge, allowing its efficient and opaque transfer

for the identification and diagnosis of faults relating to the main boiler feed pump

of UK AGRs [116].

The framework proposed here does not specify or recommend a method of

knowledge transfer but instead seeks to contextualise the task as part of the

process. Similarly, the specification of transfer and storage mechanisms is not

dictated by this framework as the appropriate choices will be guided to a large

extent by the type and size of data involved as well as institutional and governance

rules, but this is nonetheless an important consideration when undertaking any

work of this nature.

3.3.4 Data availability

Next, a long-term meta-analysis of the availability of the data is made, which

provides insight as to how the various data sources overlap, and which time

windows could prove promising for investigation.

The availability analysis requires an assessment of the timestamps associated

with the available data streams. These time stamps will be discussed in more

detail in the following section 3.3.5 where they are referred to as instances. The

instances are recommended to be used to populate a GANTT style chart, whereby

individual datasets or subsets with common timestamps are isolated to discrete

rows, or ‘tasks’ using the equivalent GANTT terminology. Each row is populated

with multiple short bars, with each bar positioned wherever a timestamp exists.
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The widths of these short bars can be controlled arbitrarily and are usually related

to the frequency of data, or the length of time for which a data instance is relevant.

For example, a fuel monitoring scan instance may be given the length of one day

as the scans typically occur at maximum once daily, whereas the existence of a

defect may be shown with a bar width corresponding to the total dwell time of

that defect. Examples of this visualisation are shown in Figures 4.2 and 6.1.

Tacit knowledge held by plant personnel and a detailed understanding of

the plant behaviour is key during this step, as the inter-relationships between

datasets are crucial considerations that will identify potential regions of interest.

Tacit plant knowledge may for example dictate that it is critical to know the

plant status when assessing a primary dataset, so understanding the availability

of the status data is important.

3.3.5 Data reduction & filtering

Before moving to the “Cleaning & validation” and “Pattern identification” frame-

work steps, the data reduction and filtering concepts should be introduced. These

are shown in more detail to the left side of Figure 3.2, and can be required to

allow the aforementioned framework steps to proceed. Here, the various typical

structures of nuclear core data together with common data processing procedures

are summarised.

Datasets generated in nuclear plants typically share a broad range of common

features and metadata. That is, one axis of the dataset often maps to a reactor

location, whether a reference to a specific channel, a region of channels or some

other locational grouping whether relating to a monitoring hall or group of chan-

nels monitored by a particular device. It is anticipated for the purposes of the

data processing steps shown on the left side of Figure 3.2 that this information

is encoded by the ‘location’ axis. The ‘features’ axis relates to parameters that

could reasonably be shared by a single channel, for example temperature, pres-
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sure, estimated power output or refuelling crane load (as with the FGLT analysis

previously described in section 2.4.3, for example). Finally, the ‘instances’ axis

would represent a time dimension, with each instance corresponding to a record-

ing at an individual point in time. This time axis may be regular or irregular;

the resolution and regularity will have implications for what initial analysis is

possible or appropriate.

As a result, data structures with up to three separate axes are catered for by

the framework introduced in this thesis, corresponding to the location to which

the data relates, the features which were included and the number of individual

instances of these recordings. This is driven by the fact that often, the analyst will

be working to understand the spatial trends across the reactor, either comparing

events in one channel with another or looking for trends and characteristics which

affect the entire core. The other common task is the search for time-based trends

and patterns to understand how an asset changes over time.

It is to be expected that not all data collected from nuclear cores has the same

shape, but that the processing steps shown to the left of Figure 3.2 are flexible

enough to be applicable for the majority of datasets. It should be noted that

the figure is divided into four rows and two columns to reflect the shape of the

data after each of the processing steps shown has been applied. Effectively what

is shown is a series of simplification steps which can only be performed in the

direction shown by the arrows. Moving horizontally across columns describes a

selection step, whereby specific instances (temporal selection, indicated by the

purple arrows) or locations (location selection, indicated by the orange arrows)

are isolated. In the case of temporal selection, it may be that particular plant

events or periods of plant conditions are of interest. In this case, a relevant sup-

porting dataset would be used to identify and isolate these periods. For location

selection, the supporting dataset may be channel layout information, or other

plant data. Moving vertically in the framework, from row to row, describes a
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reducing function: here, some mathematical operation will reduce the features to

allow further visualisation or other analysis opportunities. Some applied exam-

ples of these processes will be introduced in Chapters 4 and 6.

3.3.6 Cleaning & validation

After the data availability analysis has been carried out and now that the data

reduction & filtering concepts have been introduced, cleaning and validation of

the data itself can begin. Research finds that this is typically the most time-

demanding part of an analysis process [117] so extensive work is anticipated

during this stage. Objectives include finding missing values or outliers, under-

standing why these exist and selecting an approach for filling or removing the

gaps.

Depending on the type of data, it may for example be possible to interpolate

missing values from an existing dataset. The combination of tacit plant knowledge

with the availability visualisation method described in section 3.3.4 can be helpful

when deciding whether it may be appropriate or worthwhile in performing this

data cleaning action.

Subsequently, with these anomalies addressed, the objective of the pattern

identification task is to identify various patterns including trends, correlations

and clusters and these goals will dictate the various data manipulation steps that

are appropriate.

In order to perform the cleaning and pattern identification tasks required, the

shape and structure of the data must be considered as a number of options exist

dependent on its structure. For clarity, it should be noted that the terms ‘shape’

and ‘dimensionality’ are used interchangeably when describing data in this thesis:

the Pandas library for the Python programming language uses the term ‘shape’

extensively to describe the dimensionality of data and this terminology is adopted

here.

59



Chapter 3. A nuclear-specific framework

This is where the data reduction & filtering task becomes relevant and it is

here that useful insight can be gained from the common approaches to reactor

data visualisation identified earlier in section 2.5.5.

3.3.7 Pattern identification

Having introduced the data shape concepts as well as the manipulation steps

required, focus now turns to several key visualisations which are recommended as

part of this framework in the context of the data shapes. These are highlighted

in the blue boxes on the left side of Figure 3.2 and discussed in more detail in the

following sections. To further support the demonstration of these recommended

visualisations, Figure 3.4 is provided to illustrate some typical examples which

are referred to in each of the following sections.

Multivariate heatmaps

If the data contains information relating to multiple locations, features and in-

stances, as shown in the top level of the data manipulation steps shown in Figure

3.2, some reduction is likely to be recommended as a first step to allow the genera-

tion of the recommended visualisations. This can take the form of a mathematical

reduction of features: a mean, sum or other simple mathematical operation per-

formed on the feature axis may be appropriate, as could be a knowledge-directed

selection of features. The choice is situation-specific and will be informed by

an understanding of the underlying physical system, which may require close

co-operation with plant operators.

As an example, a power dataset may contain power estimates relating to sec-

tions in individual channels where a sum operation would return the total channel

power whereas a temperature dataset may contain individual measurements upon

which it would it be more appropriate to apply a mean operation to reflect the

temperature of a channel. The selection of a single feature may also be appropri-

60



Chapter 3. A nuclear-specific framework

Figure 3.4: Visualisation examples of typical nuclear reactor core data structures.
This figure complements the data reduction component on the left side of Figure
3.2.
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ate: this approach has been used in the knowledge-guided assessment of FGLT

data for example, in the calculation of fuel stringer dead weight. In the example

multivariate time series heat map visualisation shown in Figure 3.4, power data

is displayed: this is a smaller version of Figure 6.2, more detail on which can be

found in Chapter 6.

More advanced methods of feature simplification include principal component

analysis and other related methods such as independent component analysis.

These are not recommended at this stage due to the somewhat opaque nature of

the outputs: the component features which are produced will not usually have a

physical definition as they will be a combination of multiple parameters, and this

step is concerned with an analysis of the underlying physical behaviour of raw

data as far as possible.

Whether or not this simplification step is required, the data will now be in

a form which lends itself to the multivariate data visualisation method shown

previously in Figure 2.12 and creating this graphic is a recommended first step in

order to quickly discover any global trends or patterns which may not be visible

by simply inspecting selections of numerical data.

2D spatial representations

Secondly, it can be insightful to understand the spatial relationships inherent

in a plant dataset by generating a 2D spatial representation. A useful way to

do this is to further condense the data along the “instance” axis, again either

with an appropriate mathematical operation or via selection of a representative

time period of interest. A surface plot is possible as shown in Figure 2.16, but

experience with various datasets and visualisation options has found that an

orthogonal “core plot” with channels arranged to reflect their physical position

on the reactor face together with an appropriate colour scale provides an intuitive

and insightful overview of the data.
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As discussed in Section 2.5.4, a common shortcoming of some heatmap-type

visualisations is that different hues can be interpreted as inherently darker or

lighter, which can be problematic when representing quantitative data. Percep-

tually uniform colour maps seek to address this and are recommended for use

here. In the case studies presented in later chapters, the “fire” heatmap from the

Colorcet library [118] is recommended for the display of multivariate time series

data to support the identification of trends and anomalies.

The example 2D representation shown in Figure 3.4 demonstrates one poten-

tial output of this data manipulation: here, average channel power level is shown

after incorporating the channel layout information.

Time series representations

It is important to understand the time-based behaviour of the data via time

series plots. For this, some decisions are required regarding the data reduction

and filtering steps as there are various situation-specific options available. Initial

summary visualisations would typically endeavour to span the longest history

permitted by the available archived data, aiming to identify any long-term trends

before focussing on more targeted time periods if necessary.

The first time series plot example shown in Figure 3.4 relates to the chan-

nel activity monitoring process, with a number of channels plotted and a single

channel highlighted. The second example plots the evolution of total power out-

put from a single channel. Finally, the summary time series in the cell below

demonstrates an example of the outcome of reducing multiple locations to a sin-

gle metric: in this case, the average and standard deviation time series for two

sets of channel activity data for CANDU reactors.
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Feature plot

The feature plot of Figure 3.4 shows an example visualisation of a dataset with

multiple related features, with the locations having been filtered. In this case the

data presented is derived from the FGLT archive described in section 2.4.3, and

shows multiple multi-feature instances. Each series relates to a single channel

and refuelling event and displays the strain experienced by the refuelling crane

throughout the refuelling movement.

3D spatial representations

The framework does not specifically recommend the use of 3D spatial represen-

tations, but an example is included in Figure 3.4 to demonstrate the type of

visualisation possible using data of the form in this section. This example is a

reproduction of Figure 2.18, showing the spatial distribution of internal energy

of a reactor.

Histogram summaries

All of the data shapes in the bottom two rows of the data manipulation steps of

Figure 3.2 lend themselves to the generation of histograms which can be invaluable

to understand the underlying distribution of data and may, for example, be used

to identify important thresholds or data that might be anomalous. Depending

on the context, it can be worthwhile to generate histograms summarising every

value displayed in the multivariate heatmap. Alternatively, it may be desirable

to focus on a temporal or locational context of the available data and generate

histograms for data covering only a short time period or for a single channel or

subset of channels, or both.
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3.3.8 Pattern insight

Following the pattern identification step, the next important task is to understand

the physical reasons behind the identified behaviour, which can lead to important

insights via close co-operation with plant operational personnel. This co-working

is highlighted by the fact that the task bridges the “Analyst” and “Engineer”

areas of the background. The majority of the insight is expected to be gained

by the analyst but the bi-directional connection to the representation of plant

& engineering knowledge is a crucial feature. As a result of this step, greater

understanding of the behaviour of the operational systems may be gained as

often the available data is not assessed on a longer-term time scale if its primary

purpose has been fulfilled. While the engineer may have developed some intuition

for a particular type of behaviour over time, the formal assessments triggered by

the previous step can often provide a new understanding or reasoning behind it,

which itself can be a key source of new hypotheses for both analyst and engineer.

Following this step, it is expected that multiple iterations of this path will be

required during an analysis as further insight from the data is gained. The step

is a natural decision point: depending on the insight gained, it may be that the

hypothesis can be accepted or rejected. In this case, the analyst is returned to

the beginning of the framework to allow the regeneration of a further hypothesis.

Alternatively, there may be other data which has not yet been tested but which

has been made available to the analyst. In this case, the analyst is returned to

the data acquisition steps for another iteration of the framework. Finally, it may

be that the development or testing of an algorithm is of interest.

If the analyst is not ready to accept or reject the hypothesis, the next task to

consider is the acquisition or testing of data which has not yet been considered.

It may be that some patterns potentially appear but that further data acquisition

is likely to be useful in order to more fully understand the exhibited behaviour

or whether these patterns are common to other situations.
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3.3.9 Algorithm development

The newly acquired pattern insight may alternatively trigger the development of

new algorithms which either directly answer the original engineering question or

for the generation of new data which may unlock further insights, again returning

the user to the beginning of the process.

Algorithm development is a broad topic and given that it occurs in the context

of the insights gained in the previous framework step as well as the particular

data analysis goal there are no specifications provided here. In general, however,

NPP reactor data analysis tasks often relate to fault, defect or other anomaly de-

tection goals in which case various techniques may be of interest including SPRT,

SVM, neural networks or knowledge-driven methods. The details of these have

been discussed in Chapter 2. The development of these algorithms could include

their application to archived training data containing known defects and the op-

timisation of hyperparameters to minimise the reporting of false negatives and

positives on unseen validation and testing data. The balance of anticipated false

negatives and positives would depend on the impact to the plant owners of miss-

ing an anomaly or investigating a non-anomaly respectively and so engineering

and operations input to this step is important.

Also noted is the explicit connection to the data reduction and filtering steps

that were considered in the pattern identification and insight tasks. By explicitly

identifying this connection in the framework, the analyst is encouraged to consider

the impact of data selection on any new algorithm selected.

Following algorithm development, the user is again returned to the start of

the process: data that is generated as a result of any developed algorithms is

then managed as previous datasets with production of further visualisations with

consideration to its shape.
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3.3.10 Benchmarking

Should a promising algorithm be developed, progress can be made through the

framework to leave the research and understanding phase and begin the imple-

mentation phase. Here, any developed algorithm is to be tested and benchmarked

against existing methods, before being adopted for use in the industrial setting.

The benchmarking process varies by application, goal and data type. In gen-

eral terms, the hypothesis generated should be tested in this step, to understand

how and whether any new analysis should be adopted as part of the industrial

process. Examples and results of benchmarking tests will be discussed when

describing the applied examples of the framework in subsequent chapters.

3.3.11 Adoption

When adopting a new analytics process, there are a number of considerations to

be made which are inherently related to the operational strategy of the plant and

beyond the scope of the engineering analyst. Typically, there are implications

for the accuracy and timeliness of any decisions taken by plant operators and

the outputs suggested by new analytics tools must also consider the result of

accepting a false negative or positive.

As a result, it can be challenging to specify appropriate confidence levels or

definitive thresholds when generating predictions of defective vs. non-defective

channels. Despite this, it is vital that any new analytics processes are developed

with this consideration in mind and that ultimately the system parameters can be

adapted to suit the risk profile of the operator. A certain amount of evaluation

time will be important to allow the plant operations team to gain confidence

in the system, evaluate the consistency of its performance and to identify any

changes that need to be made to improve its acceptability, accounting for these

operational costs.
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These considerations are an integral part of the adoption step of the AD-

VANCE framework. The dotted connector in the framework illustration of Figure

3.2 indicates that the adoption task is predominantly owned by the operator as

well as being situation-specific. As such, this will not be covered in detail further

than the anticipated roles of individual framework users, with the adoption stage

only starting once the benchmarking stage has demonstrated promising early

results.

It is envisaged that new techniques and algorithms are initially used in parallel

with existing processes, perhaps being more fully relied on once a comprehensive

understanding of their performance has been completed.

3.4 Conclusion

The ADVANCE analysis framework has now been introduced, describing some

specific recommended steps for the visualisation and analysis of data originating

from nuclear reactor cores with consideration to the broad roles of analyst, engi-

neer and operator. Primarily the framework is targeted for use by the analyst,

but it is designed to be transparent enough to allow a full understanding of the

entire team as to any investigations which are ongoing.

Two factors which contribute to the possibility of the generalisation of the

analysis process in a nuclear context are the common shape of data arising from

nuclear reactors and the commonality of analysis tasks themselves. It is these

two factors which have driven the development of the framework introduced in

this chapter.

In order to demonstrate the utility of the framework, it is beneficial to present

several practical instantiations. The following chapters demonstrate the flexibil-

ity of the approach when applied across differing analytics objectives. For each

application, background to the analysis is presented, followed by a description of
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how the framework is applied. The results are shown, discussed and analysed.
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Case Study 1: CANDU fuel

monitoring

This chapter provides a brief overview of CANDU reactors and the fuel monitoring

requirements within them, followed by a case study showing the application of

the ADVANCE framework that was introduced in Chapter 3. The methodical

approach to the generation of visualisations in the case study with regard to the

shape of the data demonstrates the utility of the framework for the identification

of various long-term trends and other patterns, providing the analyst with a more

comprehensive view of the behaviour of the system in question.

The examples provided in this chapter describe the rapid identification of a

potential equipment defect as well as a greater understanding of the long-term

system behaviour.

4.1 CANDU reactors

The CANDU reactor is a variant of the pressurised water reactor (PWR). In a

PWR, the entire reactor vessel is pressurised and the individual fuel elements are

contained in a vertical cluster inside the vessel, whereas in a CANDU reactor the
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pressurised water coolant travels through multiple individual pressure tubes, each

of which contains a number of solid fuel bundles. The pressure tubes are contained

in a large vessel containing heavy water at low temperature and pressure, so the

costly requirement for a large high pressure steel vessel is eliminated. A second

advantage of this arrangement is that every fuel channel can be individually

depressurised and refuelled, without the requirement to bring the entire reactor

offline or even de-rate from full power output.

There are a number of CANDU reactor design variants operational globally:

the majority are located in Canada, but others can be found in South Korea,

India, Pakistan, China, Romania and Argentina. All share the same broad ar-

rangement as previously described, with design variations relating to channel

numbers and associated heat transfer system configurations. This case study will

draw on data from the 480-channel variant operated by Bruce Power in Tiverton,

Ontario.

4.2 CANDU fuel monitoring

There are a number of ways fuel can be monitored inside operational CANDU

reactors. This section introduces details of these as well as the overarching moti-

vations for doing so.

4.2.1 Fuel monitoring motivation

Components within CANDU reactor cores are subject to high levels of stress,

primarily from the intensity of heat created in the fission process, however the

heat fluctuation and high flow speed of the heavy water coolant are also major

contributors.

Within the CANDU reactors operated by Bruce Power, fuel is arranged in 12

or 13 bundles for each of the 480 pressure tubes. In each bundle there are 37 fuel

71



Chapter 4. Case Study 1: CANDU fuel monitoring

elements. Fuel elements comprise around 30 uranium oxide pellets within a thin

Zircalloy sheath. Ongoing exposure to fast neutrons causes embrittlement and

weakness of this sheath. Upon refuelling, the coolant is allowed to carry the new

fuel bundle into the reactor, resulting in unavoidable collisions between new and

old fuel bundles, leading to another source of materials stress [13].

As a result of the stresses the fuel is exposed to, defects in the skin of the fuel

pellets can occasionally occur. The frequency of events such as these in CANDU

reactors are some of the world’s lowest amongst water cooled reactors [119], but

for personnel protection and operational requirements it remains important that

defects are detected and removed quickly.

When a fuel defect occurs, fission by-products are able to escape into the

coolant. Some of these by-products have long half-lives and can cause long-term

contamination of the primary coolant loop, which has specific operating limits

for radiation levels [120]. Fuel bundles with multiple defects can be more difficult

to remove from the reactor if excessive deformation is allowed to progress [13],

which further incentivises the identification and location of defects at an early

stage.

4.2.2 Fuel monitoring systems

The detection and location of fuel defects in the majority of CANDU reactors is

achieved using two systems[121]. The first monitors the primary coolant for the

presence of gaseous fission products (GFP) and specific radionuclides and is used

to indicate the presence of a fuel defect somewhere within the core. The second

system is deployed periodically, and uses the emission of delayed neutrons (DNs)

to identify the channel containing defect fuel. In this case study DN recordings

are carried out at irregular intervals, around twice weekly although approximately

daily if a defect has been detected within the core by the GFP system. The data

generated by the DN system is the focus of the work presented here, but the
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information derived from the GFP system is useful when interpreting the DN

data and will be referenced later.

For each of the eight CANDU units operated by Bruce Power, the 480 channels

are monitored via two measurement halls: one at each end of the reactor and each

containing 240 sampling points. Measurement points for each of the 240 channels

are arranged in an 8×30 array in each measurement hall. A rig comprising 8

neutron detectors moves horizontally across this array, stopping for a short period

at each of the 30 sample points to simultaneously collect 8 neutron count values

[122]. The collection of delayed neutron (DN) data for all 240 channels in a single

session in a single hall is referred to as a “scan”.

If a defect occurs, fission by-products are released into the primary coolant

loop. DNs are released and detectable in monitoring halls outside the reactor,

predominantly via I-137 with half-life of 22 seconds and Br-87 with half-life of

56 seconds [120]. Inside the reactor, DNs from escaped fission products make up

only approximately 3% of total activity, however a short time after leaving the

core they account for 75% of DN activity due to the longer half-lives of these

specific fission by-products. As a result, it is possible to detect which channel

contains a fuel defect by observing relatively elevated neutron activity levels.

After the coolant has passed through the measurement hall, it is returned to

the reactor and recirculates. To minimise noise from recirculated, longer lived

fission products, the system is designed such that the coolant transport time

from fuel channel to DN detector maximises the detection of DNs from the target

isotopes I-137 and Br-87 [120].

Plant conditions also play an important role in the release of DN precursors

[121] and can delay the presence of DNs at the monitoring location, and hence

apparent activity spike, for several days or weeks until sufficient levels of fission

by-product are leached into the coolant.
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4.2.3 Current analysis

For the purposes of identifying fuel defects in the data generated from the fuel

monitoring systems installed in its CANDU reactor fleet, Bruce Power employs a

“Double Normalisation” (2xN) technique. This method has been developed as a

result of extensive operating experience and the understanding that a number of

factors affect the measured activity levels for each channel. Those more central in

the reactor, with a faster burnup rate, would be expected to have a higher inherent

activity level but every channel also has a unique connection from reactor to

monitoring hall, so there are different transit times for the fluid inside the sample

lines due to the tortuous nature of the piping which connects the monitoring halls

to the reactor. Every channel clearly also has a unique position in the array within

the monitoring hall. One side of this array is physically closer to the reactor

and the differing proximity is thought to have some impact on the measured

activity levels; a phenomenon referred to as the “north-south effect”. All of

these factors are understood to contribute to an inherent relational difference

in the activity levels of individual channels and as a result each channel has its

own typical baseline activity level. The double normalisation technique relies on

normalising data in 30-channel monitor group batches, with each group of 30

channels designed to be as representative of the range of inherent activity levels

across the reactor as possible. For each detector, count values are normalised with

respect to the average count rate for the 30 channels supervised by the detector.

This removes most effects of any settings changes and changes in background

neutron count between scans and aims to remove any inter-monitor bias, assuming

all monitors are connected to similarly active channels as intended. Secondly,

data is normalised channel-wise, so if one channel consistently produces a higher

reading than others, this bias will be removed [123].

The process for double normalisation can be mathematically described as

follows. For a scan set S, composed of activity levels [d1, d2, ..., di], a historical
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activity level average S and averages [d1, d2, ..., dn], the single (scan) normalised

dataset S ′ is given as:

S ′ =

[
d1

S
,
d2

S
, ...,

di

S

]
=

[
d′1, d

′
2, ..., d

′
i

]
(4.1)

The second normalisation step, accounting for the inherent activity levels of

individual channels, is then performed to give the double normalised data S ′′:

S ′′ =

[
d′1
d1
,
d′2
d2
, ...,

d′i
dn

]
=

[
d′′1, d

′′
2, ..., d

′′
n

]
(4.2)

Figure 4.1: A representative DN plot, with defect channel highlighted

This technique is applied to every group of channels for all 8 detectors, and

by plotting these values anomalous channels can usually be identified as their

double normalised counts will typically appear to trend higher relative to their

neighbours. Figure 4.1 shows an example of data from a group of channels, with

the highlighted data series derived from a channel containing defect fuel.

Fuel defect detection in CANDU reactors has been the focus of some previous

work. [124] summarised the current approach based on calculation and thresh-
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olding of a DN discrimination ratio, comparing count rates to background. The

employment of this technique is described at CANDU sites in New Brunswick

[125], South Korea [126], Romania [127], Pakistan [128] and India [129]. The

2xN technique [123] is a direct development of this method. Other work [130] has

focussed on improved online decision support for the GFP system using a physical

understanding of the behaviour of specific radionuclides to more quickly identify

anomalous reactor parameters and other studies have refined this progress to

account for the effect of equipment fouling on the sensitivity of the DN detec-

tors [131]. To the authors’ knowledge, no recent work has been undertaken to

specifically improve the DN time series analysis.

4.3 Application of ADVANCE framework to CANDU

fuel monitoring data

As has been introduced earlier in this chapter, the DN fuel monitoring system has

already been subject to extensive analysis and use by plant operators, so some

considerable work has already been carried out with regard to the development

of algorithms and approaches for the detection of defective fuel. For the purposes

of this case study, the initial focus will be on the raw, unprocessed data and the

way that a methodical assessment guided by this framework provides a sound

basis for the appropriate selection of suitable algorithms.

As such, it is useful to introduce the framework with an assumption that only

raw data exists to understand the timing and context of the introduction of new

algorithms and analysis techniques. Given the iterative nature of the framework’s

use, this demonstration will necessarily involve revisiting some steps as the body

of implicit knowledge is built upon and the options for analysis grow.
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4.3.1 Hypothesis formalisation

The first action when applying the framework is to define the hypothesis. In this

case it can be formalised that a fuel defect may be identifiable from channels dis-

playing anomalously high activity, using data acquired from the delayed neutron

monitoring system. The following framework stages will test this.

4.3.2 Data acquisition

The next step in the proposed framework is to understand what data is available

and the manner in which it may be transferred, stored and accessed. As men-

tioned in Chapter 3, the specification of transfer and storage mechanisms is not

dictated by this framework but these are nonetheless important considerations

which should be at the forefront of discussions with plant personnel. As detailed

in section 4.2.2, data collection in this application consists of a series of mea-

surements carried out by 8 monitors, with each collection of these measurements

referred to as a “scan”.

4.3.3 Availability analysis

Once the data was transferred and stored appropriately, a data availability vi-

sualisation was produced, an anonymised extract of which is shown in Figure

4.2.

The full data release covered all 8 units, spanning various time periods up to

30 years. In total, each reactor has between 500-800 fully labelled scan files, with

each scan file containing a single data point for each channel.

As outlined in section 3.3.4, the recommended availability analysis is a time-

based visualisation generated by indicating the existence of a data file at a partic-

ular time with a small horizontal bar, similar to the way a GANTT chart would

indicate the presence of a task. In this case, multiple short bars are stacked side
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Figure 4.2: Availability analysis extract for DN data

by side for each unit to display at a glance the temporal distribution of records.

The availability analysis visualisation for this case study is shown in Figure 4.2

where the width of each horizontal grey bar representing a scan event is set to

1 day. Defects are represented by the red bars with a transparency allowing the

identification of multiple in-core defects at any one time.

As a direct result of this visual depiction of the data, it is possible to quickly

identify time periods for which there exists regularly sampled DN data and peri-

ods for which data is missing. This method also has advantages in its scalability

and that other data sets can also be visualised in the same visualisation space.

Given that the primary engineering problem to be addressed in this case study

involves the analysis of DN data before and during fuel defect periods, these pe-

riods have also been displayed on the same axis. Due to the opacity of the defect

period representation in the visualisation, any overlapping defects can be easily

identified. With these features it is possible to rapidly understand the extent of

data coverage, which periods may be of most interest as well as where and why
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there might be gaps in the data provided.

This is an important basis for a fully informed discussion with the plant

operations team, to ensure that the most comprehensive and relevant data is

available. It also encourages a greater understanding of plant operations, as

missing or irregular data patterns may indicate external factors such as system

problems or plant outage. Again, this analysis task in the framework is linked

to the plant & engineering knowledge representation which incorporates implicit

information held by both engineer and operator.

For the initial analysis, a targeted release of DN data was released covering

periods before and during each fuel defect event. By generating the availability

visualisations, a rapid understanding of what data was available was possible and

more targeted analysis could begin.

4.3.4 Cleaning & validation and pattern identification

Following the availability analysis stage, the next part of the framework is con-

cerned with data processing and testing, to reassure the analyst that the data

is complete and within expected bounds. The “Pattern Identification” step is

closely related to this step as patterns must often be identified to establish the

validity of the data and there is some commonality in the visualisations required,

so this section will discuss both tasks. This work will again be informed by close

co-operation with plant engineers and operators as implicit knowledge relating to

the physical behaviour of the plant under various conditions is required in order

to understand whether the data appears to be in line with expectations.

As discussed in Section 3.3.7, cleaning and validation of the data is carried

out with consideration of the shape of the dataset, as the dimensionality dictates

the manner in which it can be represented so it is important to consider this

when approaching the analysis methodically. The representations shown in the

data manipulation steps of Figure 3.2 are a useful guide in this respect and will
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be referred to when manipulating the data in the following sections.

The CANDU DN data fits into the third row of the data manipulation steps of

Figure 3.2: it is comprised of several hundred scan files (referred to as “instances”

in this framework), each of which contains a single value for each channel. The

feature axis in this case is not displayed in the data representation but is implied

in the univariate nature of the data itself: in other words, it can be considered

that the number of features for this dataset is 1.

Multivariate heatmap

Given the shape of the data, a useful starting point is to generate a multivari-

ate heatmap to understand more about the system behaviour. An example is

shown in Figure 4.3 for all 240 channels (left unlabelled for reasons of commercial

sensitivity) from a single reactor and monitoring hall.

Figure 4.3: Multivariate time series heatmap for raw DN data

As this step is concerned with data cleaning and validation, the primary focus
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now is to ensure that any anomalous or unusual values are identified and excluded

if necessary, an operation closely informed by the following step of pattern identi-

fication. Using the selected colour scale, dark areas represent relatively low values

while brighter areas correspond to values that are relatively high.

It is worth noting that this visualisation shows every historical data point

from several years’ worth of archived sources in a single view, allowing a range

of insights that might not be apparent when interpreting data derived from a

narrow time range or channel selection as was previously the case. The focus

now is to understand what new information can be gleaned.

One of the immediately noticeable features of this plot are the repeated hori-

zontal colour bands, which are accentuated by the representation of each channel

in the distribution subplot on the right-hand side. The eight bands correspond to

the eight individual monitors operational in this monitoring hall and the pattern

is an expected feature: as explained in section 4.2.3, there is a range of inher-

ent channel activity levels inside the reactor and all monitors are designed to be

connected to a sample as representative of this range as possible. As such, this

visualisation provides some early feedback that the data is in line with the ex-

pectation that outer channels are less active than inner channels, although some

further spatial analysis is recommended and will be subsequently covered later.

Some clear anomalies related to all or subsets of scans from a single date

are also notable on inspection of the heatmap. The time-bound aspect of these

anomalies is indicated by the vertical nature of the multiple repeated dark lines,

each of which corresponds to a single scan event. This is complemented by the

mean time series visualisation in the lower subplot.

Also visible within the heatmap are a number of bright spots, appearing to

have no temporal pattern or being isolated to a single channel. The treatment

of this data will be shaped by attempting to understand the underlying cause.

Given that the 8 horizontal monitor groupings have been identified, it can be
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noted that these anomalies are isolated to the 6th monitor.

Finally, there are two step changes in brightness, emphasised by the mean

time series subplot at the bottom: first with a reduction in magnitude at around

25% of the length of the x-axis, and secondly with an increase at around 60%.

Time series

Until this point, information has been visualised in a chronological order assum-

ing the data has been collected with a constant time interval. This provides a

useful way of identifying anomalies without prejudice to data which is collected

at very similar time points, but clearly introducing a time aspect is important

if a comprehensive picture of the system behaviour is to be gained. Again re-

ferring to the left side of Figure 3.2, it can be seen that there are two identified

opportunities for time series plots with reference to the shape of the data. The

recommended first step is to generate simple time series of one or multiple subsets

of channel data by applying a locational selection step on the data which gener-

ated the multivariate heatmap. This was shown in the left side of Figure 3.2 as

the lower orange arrow: an excerpt from this figure is shown below in Figure 4.4.

Figure 4.4: Locational selection step for time series visualisation generation (Ex-
cerpt: Figure 3.2)

In this case it should be noted that a filter has also been applied to account
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for some of the anomalous scan events identified by the previous visualisation. In

reality the filtering operation would occur later in the framework following the

pattern insight step, but in the interests of clarity and brevity the process has

been compressed and the filtered dataset is used from this point forward.

Figure 4.5: Time series visualisation for filtered raw DN data, monitor 6

Figure 4.5 shows the time series visualisation for the raw data collected by

monitor 6, selected due to its noted occasional anomalous readings. Similar vi-

sualisations are also carried out for all other monitors although are not shown

here.

The data appears to be broadly divisible into two discrete time periods, and

that all channels share similar characteristics. At the start of each of these time

periods, the activity levels generally increase to a peak after approximately 4-6

months before decaying asymptotically to a relatively stable baseline.
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Summary time series

It is of course possible to add data for every channel in the reactor hall to a single

time series plot, but the display of several hundred data series often obfuscates

a clear conclusion. Inspection of the data shapes indicates that a summary time

series plot can be produced by applying an appropriate function along the instance

axis to reduce the data to a time series of a single metric. Before doing this, an

additional location selection step can also be applied if only a subset of channels

are of interest.

In this case the interest is in comparing the behaviour of subsets of channels

from individual monitors, so the location selection step is applied multiple times

to generate several mean activity time series with which a comparison can be

made, just as multiple channels are displayed in the time series plot. The result

is shown in Figure 4.6.

Figure 4.6: Per-monitor mean DN data, filtered

Initially apparent from this visualisation is that every monitor appears to

be following the same global trends as identified in the previous per-channel
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time series. The same peak after approximately 4-6 months is visible, as is the

asymptotic decay over the following 12-18 months. Notably, the mean activity

levels of monitors 7 and 8 appear to change relative to monitors 1-6 after the first

6 months: initially these two monitors display the highest mean activity levels

relative to their neighbours. After this point, they display the lowest. The same

visualisation was also carried out for other reactor units and monitoring halls with

similar trends apparent. Obtaining further insight into these identified patterns

will be the focus of the next framework stage, but for now the visualisation options

will continue to be discussed.

2D spatial representation

The expected spatial behaviour of the channel activity data was mentioned pre-

viously. One useful way to validate this is via the creation and inspection of a

reactor core plot as discussed in Section 2.5.5. The data was reshaped to enable

this in line with the data manipulation steps of Figure 3.2, generating the mean

activity values for all channels using the data filtered following the previously

created heatmap. Coordinate data (referred to as spatial data in the data ma-

nipulation framework) are required for every channel and, in combination with

the mean activity values, the core plot shown below in Figure 4.7 can be created.

This core plot shows that there is some correlation between the channel ac-

tivity level and its centrality within the reactor, although on the basis of this plot

the relationship does not appear to be absolute: some bright channels are found

on the periphery of the reactor, and some darker channels are found towards the

centre. In general however, the brightest clusters of channels are to be found

closer to the centre of the reactor. While it is difficult to conclusively summarise

from this plot in isolation that the data is valid and reliable, it adds to a body

of evidence that this is the case and may be regenerated later if further insight

is gained. Further assessment may follow if deemed appropriate following the
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Figure 4.7: Reactor core plot for raw DN data, filtered

pattern insight step.

4.3.5 Pattern insight

Having identified a number of patterns evident from the previously generated

visualisations, deeper insight will be gathered in the following stage of analysis,

to which attention is now drawn. This offers a natural opportunity to present the

range of visualisations and initial insights to the plant operators and engineers,

allowing an efficient and focused discussion with a team whose availability can

often be limited.

Multivariate heatmap

First the identified vertical dark stripes found in the heatmap of Figure 4.3 are

investigated. It is useful to recall the scanning mechanism as described previously

in section 4.2.2: the monitoring array stops 30 times, scanning 8 channels at each

stop. Interrogation of the raw data files associated with the low-lighted vertical

strips show unusually low values for all or an early subset of scan stops, which

86



Chapter 4. Case Study 1: CANDU fuel monitoring

means that the cause relates to all of the monitors collecting data during these

scan sessions and that it is resolved at the same time during each scan session.

This indicates an issue potentially either with the logger controller or incorrect

physical setup of the monitoring hall.

It was noted that multiple anomalies were associated with monitor 6 and so

insight is directly gained from this visualisation that this monitor appears to have

an intermittent fault. Information regarding this behaviour can be incorporated

into the plant knowledge base and may inform further analysis.

There are various options for the treatment of these anomalous data points:

inspection of the activity data of other channels covered by the same monitor

indicates that their activity levels on the same date appears to be in line with

those from previous scans. As a result, it may be appropriate to exclude a single

anomalous channel value while maintaining the other channels from that date, or

alternatively excluding all data from that scan date at the expense of the other

channels which may not have returned anomalous values. The specific course of

action is not dictated as part of this framework and should be investigated: the

important point is that anomalies such as this are identified so that an analysis

strategy can be developed and defined with a knowledge of the underlying data

which is as fully informed as possible.

With these anomalous scan events identified and removed, a related benefit

is that the available dynamic colour range now represents a narrower range of

raw data values. Dependent on the colour scale chosen and the magnitude of

the values which have been removed, the effect is that more subtle variations in

mid-range values may now be visible.

Time series visualisations

The time series plots in Figures 4.5 and 4.6 provide invaluable further evidence

of the time-based behaviour of the monitoring system. A number of common
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patterns were identified in the previous framework stage related to activity level

spikes and subsequent exponential decay. That this pattern is mirrored across

channels and monitors indicates that it is systemic and inherent to the design of

the plant, not an artefact related to this particular monitoring array or logging

system.

These patterns also coincide with the step changes in brightness visible on the

multivariate heatmap. Discussion with plant operators indicates that the time

gaps coincide with periods of reactor downtime. Various theories have been put

forward to explain the behaviour, including basic detector sensitivity changes

or the gradual filtering of a fission by-product which begins to accumulate on

resumption of operations. The behaviour also coincides with the “plutonium

peak”, the point around 40-50 full-power days (FPD) after reactor start up at

which levels of plutonium and the corresponding reactivity inside the reactor reach

a maxima[13]. After this point, plutonium production is not able to counteract

the effects of U235 depletion and fission product build-up, and reactor refuelling

operations must start. Whatever the physical reason, there is no immediate

indication that further data filtering is required.

Despite the lack of physical explanation, the visualisations produced in this

section clearly show a number of useful insights. As well as channel-to-channel

variation, there is a variance of all channel activities between instances as the

power level of the reactor and other external variables which affect all channels

simultaneously fluctuate in time. This insight demonstrates that identifying a

channel exhibiting a higher-than-normal count should attempt to normalise the

data on both location and time axes.

2D spatial representation

The core plot that was generated as part of the previous data validation step and

shown in Figure 4.7 provided some evidence that the data was valid but further
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insight directly as a result of this visualisation is limited at this stage. This may

change as a greater understanding of the core behaviour is gained from the other

visualisations and when further processing of the data is carried out.

A certain level of insight has now been gained regarding the long-term be-

haviour of the monitoring system, which is a key first step of the analysis frame-

work. The patterns identified as a result of the production of these visualisations

demonstrate the potential for development of an algorithm for the identification

of any anomalously high-activity channels. More precisely, a promising approach

would be to first account for the time-based variation to establish a baseline ac-

tivity level for each channel. At this point the inherent activity level of each

channel may be accounted for. Both of these processes should be carried out in

30-channel monitor group batches to account for the inherent mean count differ-

ences between monitors. The heatmap indicates that spurious values do occur

within the dataset and so any process should be robust to outliers, and that these

anomalies should also be removed.

4.3.6 Algorithm development

In order to achieve the aims of accounting for the inter-day and inter-channel

variation as described in the previous section, an algorithm must be developed,

and the steps outlined in fact describe the structure of the double normalisation

algorithm which is employed to identify divergent trends. Anomalous readings

may be removed by examining sets of data in batches, assessing the spread of the

numerical values and excluding those data outwith a specified threshold. As it is

a two-step process, it can be usefully described as two separate iterations within

the ADVANCE framework.

To account for the time-based variation, an algorithm was required to be

developed which would scale every channel activity level with regard to the av-

erage activity level of the monitor group to which it belongs, generating a new
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set of data in the process. This is the step represented by Equation 4.1 ear-

lier in this chapter. For the purposes of this summary, it will be referred to as

single-normalised data.

4.3.7 Framework iteration 1

Further iterations of the framework now follow. For brevity, specific steps are

not explicitly identified here, but each iteration implicitly considers each of these

items in turn.

The generation of new data triggers a return to the data acquisition step at

the beginning of the framework. In this case, the single-normalised data has

already been acquired and it also has the same dimensionality as the raw data

which has already been assessed: as a result, it is not necessary to readdress

the data acquisition or availability analysis steps at this point. The process can

thus continue to the validation and pattern identification steps where further

visualisations and exploration can be carried out in order to better understand

this single-normalised data.

As before with the raw data, the same visualisations are created. Figure

4.8 shows the multivariate heat map for the single-normalised data. The eight

horizontal bands remain visible and in fact even more pronounced, as is to be

expected with the design of the algorithm. The anomalously high values in mon-

itor 6 remain visible, although these are in fact empty spaces in the heatmap and

have effectively been ignored. Also identified in the previous section were the scan

events with unusually low activity levels for a subset of several channels recorded

simultaneously. The hypothesis was that this was related to the logger controller

or incorrect physical setup of the monitoring hall, but regardless of the expla-

nation the scan events have been removed at this stage. Several change points

affecting all channels also remain visible, but this might be better explained by

other visualisations which will be examined next.
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Figure 4.8: Multivariate time series heatmap for 1xN DN data

Figure 4.9: Time series 1xN DN data for single monitor
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Figure 4.9 shows the single normalised data for the same subset of channels as

shown in Figure 4.5 previously. The intention of the algorithm is that this data

is no longer fluctuating with time, and we can see that this is generally the case

albeit with some exceptions, notably H19. This channel appears to be separated

from the single normalised counts of its neighbours until the second plant outage,

at which point it undergoes a downward step change. The next normalisation step

relies on a stable average single normalised count, and awareness of this manner

of step change is likely to be important when attempting to identify unusually

active channels.

Figure 4.10: Per-monitor mean 1xN DN data

The summary time series for the single-normalised data is shown in Figure

4.10. The single normalisation algorithm excludes count values which lie out-

with 2 standard deviations of the monitor distribution when calculating the per-

monitor mean, using the result as the denominator of the first normalisation step.

The resultant mean of these single normalised values will therefore be unity if no

extreme values have been excluded, greater than this if values above 2 standard
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deviations have been excluded and less than this if values below 2 standard de-

viations have been excluded. The majority of the data lies within 2 standard

deviations, leading to the cluster around y = 1, but it is visible that for monitor

6 a number of anomalously high values were discarded in the calculation of the

single normalised data: as was discussed for Figure 4.9 this is likely to be caused

by H19 and this is a good example of the complementary nature of these two

visualisations.

The core plot for the single-normalised data is shown in Figure 4.11. With the

inherent assumption that similarly active channels are distributed evenly across

all monitors, as indicated by the plant knowledge base, it is expected that the

calculation of mean single normalised channel count shows the inherent activity

level of all channels relative to each other. As a result, the core plot of this data

appears to show a much stronger relationship between channel activity and the

centrality to the reactor. All of this information builds an evidence base that the

data is distributed intuitively and as expected.

Figure 4.11: Reactor core plot for 1xN DN data

This completes the second iteration of the cleaning, validation and data ma-

nipulation steps. The insight gained is useful for understanding the outcome of
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the second normalisation step of the algorithm, whereby the single normalised

data is processed once again by dividing every channel’s historical single nor-

malised activity count data by the mean count for each channel. This is the step

represented by Equation 4.2 earlier in this chapter.

This establishes a baseline to allow a comparison between channels connected

to the same monitor. Additionally, it demonstrates what may be a limitation of

this algorithm: despite the intention of the first normalisation step, the denom-

inator of the second normalisation step is not stable with respect to time. As a

result, careful selection of the time period of interest will be important.

4.3.8 Framework iteration 2

Nevertheless, the double normalised data is generated for the entire channel his-

tory and the same visualisations have been generated in a second iteration of the

framework. Figure 4.12 shows the multivariate heatmap of the double normalised

values, which underscores the insight identified above regarding the careful selec-

tion of time period from which data is generated.

Despite this limitation, the intention of the algorithm appears to have been

successful with the distribution plots to the right side of the graph showing a

stable median and distribution of 2xN values for each channel. The time-based

mean of 2xN values in the bottom subplot is also relatively stable, albeit with

the caveats noted after the previous iteration.

The exception to this is for the first 6 months of data as discussed above

for Figure 4.10. From this view, monitors 7 and 8 show some channels with

dark horizontal lines during this period. This indicates that these channels are

exhibiting lower relative activities than their neighbours compared to the majority

time period of the dataset. In contrast, a highlighted horizontal line in this

visualisation indicates a channel that is more active than usual, which is what

the algorithm is intending to detect.
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Figure 4.12: Multivariate time series heatmap for 2xN DN data

Figures 4.13 and 4.14 again essentially show an extract and summary of the

heatmap with the time axis accurately mapped. These visualisations give some

indication of the substantially different monitor behaviour in the first 6-month

period of data collection. As a result, this is likely to affect the temporal selection

step identified in the data manipulation steps highlighted in Figure 3.2. Further

assessment of the utility of this will be investigated in the following chapter.

Another assessment of the spatial distribution of the double normalised data

is shown in Figure 4.15. It appears that any spatial correlation has now been

largely removed, as is the intention of this normalisation step.

4.3.9 Benchmarking & adoption

Having developed a promising analysis process, the next stage is to progress to the

implementation phase of the framework. Here the techniques will be benchmarked

against the currently used methods and ultimately adopted where appropriate.
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Figure 4.13: Time series 2xN DN data for single monitor

Figure 4.14: Per-monitor mean 2xN DN data
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Figure 4.15: Reactor core plot for 2xN DN data

The roadmap for deployment will vary for individual plants, considering a range

of situation dependent risk and opportunity profiles.

In this situation the double normalisation technique has been adopted by the

plant operators and its effectiveness is under constant assessment. The perfor-

mance of the algorithm can be continually observed by monitoring the time taken

to successfully identify defects, as well as the false detection rate. Defects can be

confirmed as having been detected when fuel is removed from the reactor: follow-

ing every refuelling event the extracted fuel bundles are scanned and any escape

of fission by-products will immediately be identified [119]. Additionally, if all fuel

containing defects is successfully removed, the levels of fission by-product within

the core will slowly dissipate and this will be evident by inspecting the output

from the GFP monitoring system. As outlined in the framework, this is a bi-

directional process and under constant review: opportunities for its improvement

are outlined in the following chapter.
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4.4 Conclusion

This case study has sought to demonstrate the benefits of a methodical approach

to the exploration and analysis of raw data, even in a situation where an algorithm

has already been established. By considering the dimensionality of the raw data,

a number of key visualisations can be created that seek to identify longer-term

trends and patterns that can sometimes be overlooked. By generating this range

of visualisations, the analyst can view at a glance the context and source of any

specific patterns of interest from a variety of complementary views and gain a

better understanding of the system behaviour.

By methodically generating these visualisations and systematically assessing

the data in a variety of ways, the framework has successfully obtained further

insight from the plant. As well as demonstrating the value of the double nor-

malisation process, it has supported the identification of a previously obscured

long-term fault related to Monitor 6 which is not always visible when focusing

only on the short periods during which a defect is being searched for. Further

to this, the framework has generated valuable insight to the longer term and

post-outage behaviour of the installed monitoring system and the time-based

sensitivity changes of the monitors.

In the next section, it will be demonstrated how the framework can support

the exploration of improvements to the fuel defect detection process using the

double normalised data that was generated here.
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Case Study 2: Improved

detection of failed fuel in

CANDU reactors

5.1 General approach

Figure 5.1 outlines the development of this work, which is divided into two stages.

In the first stage, an initial review of a small sample of defects was undertaken

and the potential for improvement in the existing defect localisation process was

explored. The initial release of DN data referred to in Figure 5.1 covered several

units at the Bruce Power site, for time periods around specific fuel defects of

approximately one year.

The second stage of the work utilised data from a more comprehensive period

of plant operations, allowing an understanding of the impact of the incorporation

of a wider dataset and to enable the bulk historical analysis to proceed, as was

described in the previous chapter.

The double normalisation analysis process has proved successful in identifying

fuel failures inside operational reactors. The existing analysis process involves the
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Figure 5.1: General approach for the initial analysis of DN data

plotting of multiple time series line graphs using the 2xN data, identifying any

diverging trends by manual inspection. The data has high variance and occa-

sional spikes are often seen for most channels, but over time and with experience,

tacit knowledge has accumulated to give the analyst some intuition for the ap-

propriate threshold above which a channel can be deemed to likely be diverging.

When considering the example shown in Figure 4.1, the defect appears quickly

and the divergent trend is clearly identified but discussion with plant operators

reveals that often, the time taken for this divergence to become apparent varies

considerably. Part of the challenge in this respect is that the data has low and

often variable resolution: when combined with high scan-to-scan variance any

deviations from normal operation can be challenging to identify.

In this case study the framework will be applied with the aim of addressing

this limitation. Whereas in the previous case study the primary focus of the

demonstration was on the section of the framework concerned with visualising

and understanding the raw data, here there is more emphasis on the latter stages

of the framework with the introduction and testing of new algorithms.
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5.2 Stage 1: Initial data release

5.2.1 Hypothesis formalisation

As before, the first step under the guidance of this framework is the formalisation

of the hypothesis. For this phase of work, the intent is to reduce the time taken

between the date of initial detection of an in-core defect (henceforth referred

to as the GFP date, or the point at which gaseous fission products were first

detected in the primary coolant loop by the chemistry-based detection system)

to a confident identification and removal of the defect via the assessment of online

DN monitoring data (henceforth referred to as the ID date). The hypothesis is

therefore that this time delta can be reduced by introducing innovative processing

methods to the DN data. In other words, the analyst is seeking to understand

whether defects can be identified earlier than using the existing process. This will

be tested by expert inspection using a historical record of defect examples noting

the original GFP and ID dates and attempting to move the ID date backward in

time.

5.2.2 Data Acquisition

Having formalised the hypothesis, attention now turns to the acquisition of data.

For the first stage of this case study, data from a small sample of channels was

acquired with a further batch expected to be made available following a prelim-

inary analysis. The data derived from time periods and monitor groups where

the reactor was known to contain a defect, with a limited historical archive so for

this reason an availability analysis was not performed.
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5.2.3 Cleaning & validation, pattern identification & pat-

tern insight

These steps were the main subject of the first case study and will not be the

primary focus here. The relevant outcome of the pattern identification and insight

in the first case study is that channels containing defective fuel bundles can

be identified by a high and diverging double normalised delayed neutron count,

relative to the other channels in their monitor group. As such, the initial objective

is to understand the relative behaviour of channels within the same monitor

group. This time-filtered dataset is thus filtered again on the location axis. This

is represented on the left side of Figure 3.2 with a shift from the central column

to the right, where a limited number of channels are then displayed. In the case

of the DN analysis, the channels are monitored in groups of 30 and so are isolated

into these batches.

The temporal selection step isolates the instances of interest, typically carried

out with reference to a secondary dataset. In this first case study, the supporting

dataset refers to the defective fuel periods: the DN data has already been isolated

to a time window spanning approximately one year before each defect occurs

until the point at which the defect was identified. Discussion with engineers

indicated that the window start time is typically driven by the capacity of the

existing analysis platform, so there may be potential to incorporate further data

by addressing these constraints and this will be revisited later.

5.2.4 Algorithm development 1: statistical assessments

Using a small representative set of data with labelled defects, preliminary assess-

ments explored the application of alternative anomaly detection methods. The

identification of changes in time series data is referred to in the wider academic

literature as change-point detection and there is a rich field of research related
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to this. As such it is worth briefly outlining some of the key contributions to the

concept before progressing.

Change-point detection approaches often incorporate the comparison of prob-

ability distributions of a time series from some past to some present interval in

a backwards-looking approach [132]. More advanced methods have incorporated

Bayesian statistics into an online approach [133], where the probability of the

next unseen datum is evaluated and updated at every stage. Machine learning

approaches are also possible: section 2.3.2 introduced LSTMs, and these have

been successfully leveraged on NPP data to identify the origins of degraded plant

performance [134]. Some investigation into the application of these more formal

change-point detection approaches was made without positive results but they

nonetheless provide a promising avenue for future research. Instead, some of the

more general statistical methods laid out in the introduction to [132] are applied

and these are introduced below: namely assessments of the mean, variance and

cumulative accumulation of differences.

The double normalised dataset Xi,t = x1,t, x2,t, ..., x30,t, where i relates to the

location (in this case, the channel ID) and t relates to the instance, was split into

Xi,pre, the data recorded prior to defect detection and Xi,defect, the data recorded

after detection but before channel identification. The algorithm is applied to the

30-channel monitor group containing the defect channel. As mentioned earlier,

the defect detection date is the moment that a channel is identified as strongly

suspected to contain a defect on the basis of the DN data and scheduled for a

refuel at the next opportunity.

Change in Mean

One approach was to calculate the change in mean of the count rate for each chan-

nel, reasoning that on average, the count rate should increase for a channel con-

taining a defect and so the comparison of the mean of two similar sub-sequences
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before and after the GFP detection date should be robust to the presence of noise

and may help to highlight this discrepancy. Any trends in Xi,pre can be difficult

to see by human inspection and so this metric may emerge before the raw 2xN

values reached any threshold applied. For channel i = 1 to 30,

∆Xi = Xi,defect −Xi,pre (5.1)

At each time point in the defect period, the 2xN values were recalculated and

per-channel mean changes calculated. Any negative deviations are ignored on the

basis that only an increased count is expected for a channel containing a defect.

Change in Variance

Another approach quantified the variance change of each channel from the point

at which the GFP system identified an in-core fuel defect. The deviation in the

distribution of data points either side of the GFP detection date for a series could

indicate a defect for that channel. For channel i = 1 to 30,

∆var(Xi) = var(Xi,defect) − var(Xi,pre) (5.2)

Cumulative Residuals

On the basis that small differences from the mean behaviour may not be visible

due to high levels of noise, it is proposed that the cumulative effect of these

differences may be more obvious. This is a common strategy in anomaly detection

methods, employed in cumulative summation charts first by [135] which are still

used to this day.

With each new scan, the final method shown calculates an array of differences

between the counts and the average count for all channels in the window since

the GFP detection.
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ri = Xi,t −Xdefect (5.3)

The cumulative sum of these differences is then calculated for each channel i

and every timestamp t, given as

Ci,t =
t∑
1

(ri), for t = 1, 2...T (5.4)

A window starting at point of GFP detection can be analysed, with the exact

starting point adjusted to optimise detection capability.

5.2.5 Testing: stage 1

Some initial results from application of the statistical analysis techniques outlined

are now presented.

Figures 5.2 and 5.3 show the results of applying the change in mean and

change in variance calculations. The upper subplots display the 2xN data, with

the data from the defect channel highlighted as a red dashed line. The date at

which an in-core defect was detected by the GFP system is shown as the first

vertical dotted line, red in colour, with the date at which the defect channel was

identified with enough confidence to justify defuelling the channel by analysis of

the 2xN data shown as the second vertical dotted line, green in colour.

The middle subplots in Figures 5.2 and 5.3 show the changes in mean between

the pre-defect data and the post-defect data for each channel at that point in

time. For these plots, the vertical dotted lines from the upper subplots have been

retained for reference, with only the defect period shown. Again, data from the

defect channel is highlighted as a red dashed line. In both figures, the defect

channels are identifiable by this parameter multiple scans earlier than by the 2xN

data alone. For defect example 1, the defect is differentiable from the beginning

of March, which represents a substantial improvement of almost 8 weeks over the
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Figure 5.2: Calculated metrics for defect example 1

106



Chapter 5. Case Study 2: Improved detection of failed fuel in CANDU reactors

Figure 5.3: Calculated metrics for defect example 2
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current method. For defect example 2, the defect is visible from the beginning of

August, representing an improvement of around six weeks.

The lower subplots in Figures 5.2 and 5.3 show the changes in variance for

the individual double normalised count data. In these cases, the variance changes

are not an obvious early indication of a channel containing a defect, but initial

observations suggest that defect channels tend to trend amongst the highest of

their monitor group, especially as the channel identification date approaches. On

its own, the change in variance metric is not immediately useful, but it may prove

a useful predictor in combination with other features.

Figure 5.4 displays the results of the cumulative residual assessment for defect

example 1, the same defect analysed in Figure 5.2. Four subplots are presented

showing examples results of the analysis as they appear at various points in time.

It should be noted that the manner in which the calculations are carried out

does not allow a single plot (showing all time points) to be produced as in the

preceding figures; instead, figures are generated each time a scan is carried out.

The defect ID date of April 26th (referred to on the plots as D) is again shown

by the first vertical dotted line, green in colour, and snapshots are presented of

the cumulative deviations 20, 15, 10 and 5 scans prior to this date.

All available data is plotted for each snapshot, so Figure 5.2a would have been

generated on April 7th. For this defect example the defect channel is shown in

dark blue and is again distinguishable from the non-defect channels by the greater

magnitude of deviations at an earlier stage.

These early visualisations provided evidence that alternative approaches to

the current analysis process were possible. Three methods have been presented

here which show promise for identifying anomalous channels multiple scans earlier

than with existing methods.

It should be noted that the trends identified are not always consistent for

all defect examples available and the results can be sensitive to the selection of
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Figure 5.4: Cumulative deviations from mean 20, 15, 10 & 5 scans from original
defect identification point: defect example 1

pre-defect data period. Further testing on a live dataset or with more defect

examples would be required in order for the technique to be adopted within an

operational plant.

5.3 Stage 2: Full data release

The second data release comprised a more comprehensive historical archive. The

bulk historical analysis of this data was the subject of the previous chapter and

will not be covered here but incorporated the same early framework steps as

outlined in stage 1. As before, the insight that was gained can inform the newly

developed algorithms which are now discussed.
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5.3.1 Algorithm development 2

Given the greater range of data now available, the algorithm development stage

can incorporate considerations of data reduction and filtering steps as well as the

selection of appropriate algorithms.

Data reduction & filtering

A period of approximately three months is currently used to generate the 2xN

data, with this time range being driven largely by existing legacy computing sys-

tems. The framework prompts the analyst to consider the temporal selection of

data, and whereas previously these platform limitations prevented the incorpo-

ration of data from a longer period, the considerable advancement of computing

power and systems in recent years has largely alleviated the previous restrictions.

By leveraging this access to greater computing power, the temporal selection step

can be adjusted freely, and its impacts assessed. The time series visualisations

provide an ideal opportunity to demonstrate the data which has been temporally

selected: by generating a long-term summary time series for the monitoring hall,

a time period may be highlighted to demonstrate a subsequent temporal selection

step for data used to generate the main time series plot. By displaying both of

these visualisations at once, the reader is shown the origin of the derived double

normalised data that has been calculated.

Noise reduction techniques

There are various signal processing techniques for managing data with high levels

of variance. The Kalman filter is a well-established recursive statistical method

used to mitigate the effects of noise in data series, so investigation of its applica-

tion was of interest. The univariate filter can be applied on a per-channel basis,

as follows:
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KGt =
Eest,t

Eest,t + Emeas

(5.5)

ESTt = ESTt−1 +KGt(xt − ESTt−1) (5.6)

Eest,t = (1 −KGt)Eest,t−1 (5.7)

Where KGt is the Kalman gain at time t, Eest,t is the estimation error at time

t, Emeas is the inherent measurement error (learned from pre-defect data subset),

ESTt is the filtered estimate at time t and xt is the measured count value at time

t.

The inherent measurement error is not directly known; a common challenge

when applying Kalman filter variants [136]. To estimate that error, we use a

multiple of the inter-quartile range of the double normalised values recorded prior

to the defect being detected.

This method shows some promise but as is typical with the Kalman Filter

algorithm, the gain parameter reduces as more data is collected. This has the

effect of giving lower weight to any newly recorded data point. As a result,

the predictions become over-smoothed, and any emergent defect takes time to

appear by human inspection. This is a disadvantage where swift identification

of an anomalous trend is the key driver, so work to address this limitation is

ongoing.

Exponential smoothing (ES) is a processing technique in effect similar to the

univariate Kalman filter with gain parameter held constant. It is defined as

follows:

Eest,t = α× xt + (1 − α)Eest,t−1 (5.8)

Where α is the smoothing factor and controls the weighting given to the
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latest measurement compared to the previous estimate, as with the Kalman gain

described above. Typically, this parameter is chosen in the range 0.1-0.3 [137];

here we use a value of 0.15 which was found to be a good compromise between

sensitivity and noise reduction.

5.3.2 Testing: stage 2

Here the effect of extending the historical dataset used to generate the double

normalised data, and smoothing the resultant values, is demonstrated. In Figure

5.5, the upper subplot shows data from the defect period only. Again, the GFP

alarm date is shown as the first vertical dotted line while the defect identification

date is shown as the second vertical dotted line. The 2xN data for the defect

channel is shown as a dashed red line, with the 2xN data for the non-defect

channels in the background in light grey. The exponentially smoothed values for

the non-defect channel are shown on top of the 2xN values, in light green; the

same data for the defect channel is highlighted in dark green.

The lower subplot shows the summary time series: the long-term represen-

tation of the available data for the monitoring hall for that particular unit. In

this case the mean and standard deviations were calculated for the individual

monitoring halls in order to identify any monitoring sessions which may have

generated any abnormal values, or any periods of deviation from normal plant

deviation and which may lead to the need to discard some data. As a result,

the average count rate for all 240 channels for every monitoring session in each

hall are displayed separately (noting that monitoring sessions occur at different

times in the East and West halls). The standard deviation for each monitoring

session for the hall from which the defect channel is monitored is also displayed.

The light grey shaded region visualises the temporal selection step, identifying

the time period from which the 2xN values were derived.

Now, the temporal selection step is adjusted, and all available historical data
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Figure 5.5: 2xN & ES data for defect example 3, original history

is incorporated: the results are shown in Figure 5.6.

In this case, the defect channel appears above the other channels from the

same monitor group and is clearly distinguishable as an outlier by inspection of

the 2xN data at a very early stage: in this case from around the end of November.

Again, this demonstrates an improvement of approximately eight weeks over the

existing analysis process. The exponentially smoothed values are also displayed

on these figures: for this example, this filtered data is not strictly necessary to

identify the defect but does help to confirm the hypothesis strongly suggested

by the 2xN data. In some cases, exponential smoothing in combination with

history extension improves performance beyond the current approach using the

2xN technique. Figure 5.7 shows one such example which benefits from this

smoothing process.

For this third defect example, the 2xN data generated by the original analysis

window gave no indication of the location of the defect. Figure 5.7 shows the result

of extending the window to cover all available data, with that data again used to

generate exponentially smoothed predictions. In isolation, the double normalised
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Figure 5.6: 2xN & ES data for defect example 3, extended history

Figure 5.7: 2xN & ES data for defect example 4, extended history
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values do not allow for clear visual distinction of the defect-containing channel as

the signal is moving within the bounds of the variation of its neighbours. However,

by inspecting the exponentially smoothed data series, the defect channel emerges

from this noise around the beginning of January. While this technique may not

provide enough evidence to comprehensively prove the existence of a defect in that

channel, it should enable the creation of a significantly smaller set of candidate

channels for review.

5.4 Benchmarking

The benchmarking activity is primarily owned by the analyst with additional

input from the plant operations team. Here, any new analysis process is tested

alongside existing analysis tools to understand the extent of any improvements.

The defects examples shown in the case study so far tend to illustrate some

of the better performing channels using this method, so the results using the

available set of data are summarised in table 5.1. This table displays the number

of channels in which various scan reductions were observed compared to manual

inspection by a human expert. With a previous average defect location time of

41 scans for this set of defect examples, using the method proposed here it was

found that defects are potentially visually identifiable on average 4.9 scans earlier

than the existing 2xN inspection process. For this set of defect examples this

equates to 11.4 days, a reduction in defect fuel dwell time of nearly 15% which

represents a meaningful improvement.

5.5 Adoption

As discussed in the introduction to the framework in Chapter 3, the adoption

process must weigh the implications of false negatives and false positives. In this
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Table 5.1: Summary of improvements enabled by exponential smoothing ap-
proach

Scans saved # examples
0 6

1-2 7
3-4 6
5-6 5
7-8 2
9-10 2
10+ 2

case, a false negative would relate to the mistaken presumption that a channel

containing a defect was defect-free. Clearly this is undesirable. A false positive

would occur if a defect-free channel were identified as containing a defect and

scheduled for removal: in this case there are operational and financial costs asso-

ciated to the fuel movement as well as the opportunity cost of unconverted fuel

which would otherwise have stayed within the reactor. Both of these outcomes

are unwanted, but the balance of their respective costs can only be made with

the full view of the operational considerations.

The improvements that have been quantified thus far derive from feedback

obtained by plant operations teams, but future detection capability would be

expected to be tuned according to the specific use during this adoption process.

5.6 Discussion

This case study has shown the way in which the ADVANCE framework has sup-

ported the exploration and improvement of the delayed neutron-based defective

fuel detection process within CANDU reactors. By setting out a series of analysis

pathways, the analyst is supported in their investigations and prompted to gen-
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erate a comprehensive assessment of all of the available data, thereby maximising

its potential. In the context of this case study, promising improvements to the

existing process have been demonstrated with meaningful reductions in defect

detection time. Further examples and extensive testing will now be required in

order to make any adaptations to the tools that have been developed to allow

their full adoption by the plant engineers and operators. It is expected that these

tools will run in parallel to the existing processes to demonstrate their efficacy

on future defects and allowing operators to gain confidence in the system before

being more fully relied upon.
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Chapter 6

Case Study 3: Event detection &

plant status identification using

legacy data

Having investigated some alternative options in the previous chapters for the

analysis of the channel activity data by building on the existing analysis, an

opportunity to improve upon the defect location process using modelled power

data was identified. In this chapter, the analysis of this power data under the

guidance of the ADVANCE framework is summarised and discussed.

6.1 Hypothesis formalisation

Just as with any operational nuclear reactor, the physical conditions within the

pressure tubes of the CANDU reactor are extreme, making them difficult to

observe and measure. As a result, a comprehensive understanding of the key

mechanisms for fission by-product release from fuel defects is difficult to prove,

although some theories do exist.

A potential relationship between the power variations of an individual channel
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and the escape of fission products was described by plant engineers and opera-

tors. More precisely, it was noted that both fission product and channel activity

levels often fluctuated following the refuelling of a channel. This plant knowl-

edge provided context and potential new investigation routes for the subsequent

framework iteration which now follows.

Typically, multiple channels per week are refuelled in CANDU reactors and

this occurs continuously throughout power generation operations. The selection

of channels for refuelling seeks to minimise excessive power gradients across the

reactor but must also be carried out while balancing a number of other factors.

Notably, channels containing fuel with the highest burnup are prioritised and

the refuel of any channels close to recently refuelled neighbours is avoided where

possible [13].

As discussed in Chapter 4, channels in the CANDU reactors operated by Bruce

Power contain between 12 and 13 fuel bundles. A refuel event typically involves

the replacement of only a subset of these bundles unless it is suspected that the

channel contains a defect, in which case all of the bundles will be replaced.

Informed by the noted observations, the proposed hypothesis was constructed

that this dataset firstly can be used to identify refuelling events and secondly

that the emergence of a defect is more likely to occur following a refuelling event

itself. The application of the framework begins with the first assertion of this

two-part hypothesis.

To test the hypothesis, ground truth data was not initially available but a

number of other pieces of knowledge relating to the plant are: this includes an

understanding of the average channel refuelling periods as well as the expected

spatial distribution of these periods across the reactor.
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6.2 Data acquisition & availability analysis

The dataset in question represents the modelled power inside the reactor, gen-

erated by computer simulation used for system modelling and control purposes.

Figure 6.1 shows an anonymised summary of the availability of this new and

untested data, in the context of the availability of the DN data and fuel defect

existence as presented in the availability analysis figures shown previously.

In general, the power data has very good availability, with most days having

coverage and for all periods where DN data exists. This is a good indication that

subsequent investigations can proceed as intended and no extra data is likely to

be required to do so.

6.3 Cleaning, validation & pattern identification

1

With reference to the data shape, the modelled power level for every fuel bundle

inside the reactor is represented, so on examination of the data shapes presented

in Figure 3.2 the raw form of the power dataset can be positioned at the left-hand

side of the first row. Here, there are 480 channels, several hundred instances

relating to the time dimension and 12 or 13 features representing the position

within the channel.

To allow the multivariate time series visualisation to be created, some data

manipulation steps are required, and these are informed by the available plant

and engineering knowledge. Initially there is no temporal selection or filtering,

but a reducing function is required to reduce the features axis to single dimension.

A total channel power value was deemed appropriate, so these locational feature

values were summed to generate the required data shape.

As an aside and for further demonstration purposes, the chosen mathematical
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operation is situation dependent. If the dataset contained temperature values

then plant engineering knowledge would likely have informed that the appropriate

approach would be to find the average or median of the features for each location

and instance.

Now that the data has been transformed, the multivariate time series visu-

alisation can be generated and is shown in Figure 6.2. The arrangement of the

visualisation is such that the channels are collected on the y-axis in groups of

horizontal slices across the reactor face. It is worth noting that highlighted re-

gions localised to one of these groups can often be seen reflected in neighbouring

horizontal channel groups, indicating regional power fluctuations.

Also notable are the per-channel distribution summaries in the right-hand

subplot which can be seen to be symmetrically increasing and subsequently de-

creasing for each row of the reactor face.

The lower subplot shows a representation of the global trend for the entire

reactor: at the start of the dataset, the reactor power fluctuates before reaching a

relatively stable output for the majority of the time period covered. Also notable

are several periods of flat or missing data, with the largest around the central

section of the period of visualisation.

Every channel clearly has an inherent power level, and it appears that there

are no obvious anomalies as were visible with some of the DN data of previous

chapters. Individual channels appear to fluctuate as would be expected while fuel

burnup progresses, and this can be assessed in more detail with the next time

series visualisation.

The data displayed in the heatmap can be viewed in more detail by performing

a locational selection, allowing a time series plot for a single channel, or a small

group of channels if an explicit comparison is desired. In this case a single channel

is plotted, shown in Figure 6.3, to view its long-term behaviour in isolation.

There is clearly some time-based fluctuation with visible downward trends and
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Figure 6.2: Multivariate time series heatmap representation of power data

step upward changes, although the day-to-day variance is very high. Further

insight from these noted characteristics will be derived after generating all figures

of interest for this stage of the framework.

Finally, a core plot is generated to view the spatial distribution of the data;

this is shown in Figure 6.4. This clearly indicates that power is highest towards

the centre of the reactor with a universal drop in power in all radial directions,

providing further evidence that the data is valid and in line with expectations.

With the initial visualisations now produced, the analysis now moves to the

next stage of the framework, where drawing more detailed insight from the iden-

tified patterns will be the focus.

6.4 Pattern insight 1

The first visualisation is the multivariate heatmap in which some notable features

were identified. As always plant operational knowledge, which includes an under-
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Figure 6.3: Time series of power data, single channel

Figure 6.4: Core plot of mean channel power data, using entire history
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standing of the channel arrangement as well as the fuel behaviour and handling

strategy, drives the interpretation of this visualisation. The distribution summary

for each channel provides the insight that power is even distributed across the

reactor with no indication that anomalies are present. The time-based mean vi-

sualisation also shows some features of interest and can be used as a proxy for the

total reactor power output. During the early period covered by the dataset, it can

quickly be seen that the plant does not reach full power immediately and operates

for a number of periods at approximately 80-90% of maximum output. There are

then a number of periods of occasional deviations from full power output, further

emphasised by the darker vertical bands on the heatmap itself.

Further insight can be gained by examining the graphic in the context of the

data availability analysis: it can be seen that the large drop in power output

coincides with an absence of data from all sources, so this is likely to correspond

to an extended period of plant downtime.

The time series in Figure 6.3 has a number of features which can be explained

by plant knowledge. First, there are a number of downward trends, and it is

understood that these relate to the steady conversion of fuel. Second, there are

multiple upward step changes in power which are likely to be caused by refuelling

events.

To investigate, confirm and quantify any of these observations, some algorithm

development work needs to be carried out which addresses the decision point after

the pattern insight stage and moves the analysis to the algorithm development

stage of the ADVANCE framework.

6.5 Algorithm development 1

With the insight gained from the previous step, it seems apparent that under-

standing the time-based changes in the power data is of interest. A simple way to
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do so is the use of a time-based first differencing approach, whereby the changes

between every concurrent data point are calculated. This generates a set of data

which under the guidance of the framework can then be repeated for every channel

in the reactor. For the purposes of this summary, the analysis of a single channel

will be described as a model which can then be applied to all other channels.

6.6 Framework iteration 1

The result of the power data processing has the same dimensionality of the power

data, so little extra consideration is required to be made for the data acquisition

and availability assessment tasks. This shared dimensionality also means that

the same visualisations that were previously applied can again be leveraged as

required to generate a greater understanding of the dataset. In practice these

differences are plotted as a time series, below the original dataset and sharing the

time axis.

Figure 6.5: Channel power time series and single-period time-lagged differences
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Figure 6.5 shows the total power output of a single channel, above in red, as

well as the time-lagged first order differences in the time series data, below in

blue. Some large dips are identifiable in the channel power differences, but the

insight arises that there appears to be no well-defined threshold at which a power

fluctuation as a result of a refuelling event can be identified.

Further supporting evidence of the absence of a defined threshold is shown in

the histogram at Figure 6.6. While there is a mode of observations centred on a

0kW difference, the upper tail of this distribution has no clear secondary modal

peak and so the potential to further improve on this approach in order to find a

more defined threshold is to be explored.

Figure 6.6: Histogram of single-period time-lagged differences for channel power

For early exploration purposes, various thresholds were tested to understand

the implication for the prediction of refuelling events for this particular channel.

Figure 6.7 shows an update to Figure 6.5 with the addition of a 200kW threshold.

This demonstrates that refuel events derived from this data are estimated at

irregular time intervals and with an average period calculated to be 47 days. Plant
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knowledge indicates that this channel is likely to be refuelled at approximately 6

month intervals so it is likely that this approach can be improved upon.

Figure 6.7: Channel power time series and single-period time-lagged differences
with estimated refuelling events labelled

There is potential further insight on the reason for the absence of a defined

threshold when examining the time series channel power data in the upper plot

of Figure 6.5: although there are large downward deviations, the series also ap-

pears to be irregularly fluctuating. Further evidence for this observation can be

obtained by revisiting the heatmap of Figure 6.2, noting that every horizontal

slice is a colour-based representation of the power data time series plotted in 6.5.

It can be seen partially in the horizontal heatmap slices but also in the mean time

series subplot below the multivariate heatmap that the channel power across the

entire reactor is fluctuating: this may be the reason that it is difficult to identify

any refuelling events with a consistent numerical threshold.

As mentioned, a further insight gained from the pattern identification stage

of this iteration of the framework is that regions of channels typically fluctuate

in spatial groupings: this is observable by noting that bright patches, indicating
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peaks in activity, located in some monitor groupings are often also visible in

adjacent groups at the same time. The insight that this pattern is visible in the

dataset, combined with the knowledge that neighbouring channels are typically

not refuelled simultaneously informs the concept behind the development of a

new algorithm for testing the capability of refuelling event identification using

this dataset only.

The pattern insight stage prompts a decision to be made by the analyst.

Following the insight gained from the visualisations of the data resultant from the

algorithms developed up to this point, it is deemed that there is not yet enough

information to accept or reject the first part of the hypothesis that refuelling

events can be identified from the raw power data. As a result, further algorithm

development work will be required. Another iteration of the framework will then

follow in order to support the identification of any promising patterns.

6.7 Algorithm development 2

The key insight from the first framework iteration is the spatial nature of the

time-based power fluctuation and the potential to leverage this spatiality. Now,

instead of assessing only the power of the target channel for time-based changes,

information from neighbouring channels will also be considered. The fact that

channels are not usually refuelled at the same time as their neighbours can be

leveraged to calculate the deviation in power of the target channel compared

to its immediate neighbours. This may allow for any change in power of the

target channel to be identified more clearly. For clarity, channel neighbours are

defined in Figure 6.8. Various neighbour definitions were investigated as part of

the algorithm development process including the incorporation of more distant

channels or only those directly adjacent to the target channel, but the approach

described in the figure was found to return the most promising performance.
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Figure 6.8: Definition of neighbouring channels. Left subplot: central target
channel example; right subplot: peripheral target channel example

Figure 6.9 shows the results of the new algorithm for a single target channel.

The upper series, in red, shows the deviation in power between the target channel

and the mean of its neighbours as outlined in Figure 6.8. The lower series, in blue,

shows the auto-lagged single period difference of this target-neighbour compari-

son. Whereas for the previous iteration of the framework there appeared to be no

real regularity in this time series, by introducing the spatially related channels a

more identifiable pattern begins to emerge. Now, numerous step upward changes

are identifiable in the channel-neighbour differences with consistent downward

trends over time. The data series shown in blue quantifies these differences and

what appears to be a more defined threshold is immediately visible.

Again, this threshold can be more closely analysed by the generation of a

histogram using this data which is shown in Figure 6.10. This time, a much

clearer bimodal distribution is visible with a notable median for this particular

channel of 0kW and approximately 300kW.

By repeating this analysis for every channel, it is possible to identify what

appears to be a reasonable universal threshold which can be used to potentially

identify channel refuelling events. A threshold of 170kW was used to generate

predictions in Figure 6.11 and this time identified a more regular set of refu-
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Figure 6.9: Channel:neighbour power deviations and single-period time-lagged
differences

Figure 6.10: Histogram of single-period time-lagged differences for chan-
nel:neighbour power deviations
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elling event predictions with an average period of 178 days, matching expected

behaviour.

Figure 6.11: Channel:neighbour power deviations and single-period time-lagged
differences, with estimated refuelling events labelled

As a result, it appears that the first hypothesis can be addressed and that the

direct identification of refuelling events is possible from the power data. A new

set of data is thus generated, indicating whether a channel is identified as having

been refuelled for all dates for which power data is available.

6.8 Framework iteration 2

As a result of the newly generated data, the analysis proceeds to a new iteration

of the framework. The new refuelling data is acquired and stored appropriately,

before an availability analysis is performed to begin to understand how these

refuelling points are temporally distributed in relation to the other data. An

anonymised extract of the results of this analysis are shown in Figure 6.12.
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Figure 6.12: Data availability analysis including refuelling events

It should be noted that the identified refuelling events at this point are both

approximate, as they rely on the presence of power data to be performed at

each point and also unconfirmed, as the methodology defined by the algorithm

developed in the previous framework iteration is unproven. Clearly the ideal

approach to testing the veracity or reliability of this data would be to compare

it with actual historical refuelling records if these can be made available, but at

this point the assumption is made that only a limited number of datasets are

accessible. To overcome this, a number of steps can nonetheless be taken under

the guidance of the framework in order to test and gain confidence in the refuelling

data which has been generated.
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6.9 Cleaning, validation & pattern identification

2

The new dataset can once again be compared to the data shape visualisations in

Figure 3.2 and it can be seen that the information takes the form displayed on

the left-hand side of the 3rd row: each of the 480 channels is represented, with

several hundred instances available. This is a Boolean dataset, diverging from

those investigated earlier: despite this, the same visualisations can be used to

better understand the available information.

First, the multivariate heatmap can be generated: although the data has a

Boolean representation, this can be simply remapped to a numerical 0 and 1

variable type to allow the visualisation to be produced. Figure 6.13 shows the

result. Refuelling events are consistently identified for all channels of the reactor,

with the lower subplot indicating that the refuelling rate remains reasonably

constant over time . The even distribution of these identified events is a good

first indication that they are being correctly detected by the algorithm. The

summary in the right-hand subplot does not give any indication of the data

distribution due to the nature of the values, as the distribution summarises the

inter-quartile range. Given that the overwhelming proportion of the dataset is

comprised of zeroes, indicating no refuelling event, the inter-quartile range will

be zero for every channel and so this graphic is in line with expectations.

Some further manipulation of this data also allows a core plot to be created.

The reducing function in Figure 6.13 dictates a mathematical operation is applied

along the instances axis of the dataset to reshape the data from the 3rd row to the

4th and bottom row on the left-hand side, effectively generating a single metric

for every location. In this case the reducing function is the calculation of mean

time between events, or the mean refuelling period for every channel.

Figure 6.14 shows a core plot of the calculated mean refuelling periods. The
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plot shows that peripheral channels have refuelling frequencies of approximate

300-day periods while interior channels appear to be more frequently refuelled

at 120-day periods. This aligns with an understanding of reactor operations in

general and absent of a historical refuelling record demonstrates one way in which

the data can be manipulated and visualised for its verification and understanding

under the guidance of the framework.

Figure 6.14: Core plot showing mean refuelling period for all channels

The insight which has been gained in these steps gives good confidence that

refuelling events have been correctly captured. Further, a small number of refu-

elling events were made available for a limited number of channels which were able

to be successfully matched with those predicted by this approach. Therefore at

the decision point following the pattern insight stage, the analyst can accept the
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initial hypothesis subject to gaining further information should it become avail-

able. This decision prompts the analysis to return to the hypothesis formalisation

step discussed at the start of this chapter.

6.10 Pattern insight 2

In section 6.1, a two-part hypothesis was formalised and proposed: firstly, that

refuelling events were identifiable using the power data and secondly that a rela-

tionship existed between these events and the emergence of a defect. Attention

now turns to the second part of this hypothesis.

The refuelling data has already been generated and validated, subject to the

provision of any further refuelling records. The next step is to compare these

events to the initial emergence of a defect as indicated by the DN data.

An indication of a link between the two datasets can then be investigated by

calculating the time difference between the emergence of each defect and the last

refuelling movement for the relevant channel, then comparing this difference to

the channel’s average refuel period shown previously in Figure 6.14. This time lag

will be referred to here as the percentage refuelling-emergence lag. By plotting

a histogram of the percentage refuelling-emergence lag, a relationship between

these datasets can be tested. If there is no link, a uniform distribution would

be expected with every value of the percentage refuelling-emergence lag equally

likely. A refuelling-driven link would be indicated by a cluster of percentage

refuelling-emergence lag values close to 0.

This analysis was carried out for the defect examples available. A density

histogram was generated and is shown in Figure 6.15 where it can be seen that

a large proportion of the defect examples begin to emerge in the first 30% of the

typical refuel period for the relevant channel following a refuelling event.

The cumulative version of the histogram shown in Figure 6.16 further under-
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Figure 6.15: Histogram of defect emergence as proportion of mean channel refuel
period

lines this characteristic: 77.5% of all defect examples begin to emerge within 50%

of the mean refuel period, with 39.5% of all examples appearing within 20% of

the mean refuel period.

This result may be leveraged in future scenarios: for example, incorporating

the time since the last refuelling action into the predictive algorithm may pro-

vide an opportunity to improve the accuracy of any models developed for the

identification of channels containing defects.

6.11 Other algorithm development

When considering analysis of the delayed neutron activity data, in this case the

primary dataset of interest, time-based insights from secondary datasets such as

this can potentially be used to infer plant status and performance level and to

effectively filter and select from the primary dataset.

It should be noted that some work was carried out on the DN data analysis
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Figure 6.16: Cumulative histogram of defect emergence as proportion of mean
channel refuel period

following the generation of the multivariate heatmap of the power data shown

earlier in this chapter in Figure 6.2 to investigate the possibility of identifying

any plant downtime events or significant deviations from maximum power output,

subsequently filtering out DN data collected during abnormal operating condi-

tions. Unfortunately, no significant improvements were identified but this remains

an open line of enquiry brought about by the application of this framework.

6.12 Summary

This case study has shown an example of the way in which plant knowledge can

be built upon using a series of methodical steps to systematically interrogate the

available plant data. By viewing the dataset at a high level, contextualising its

availability to that of other datasets on hand and generating some key visualisa-

tions, the analyst is able to obtain a broad understanding of the underlying plant

behaviour. A number of lines of enquiry were opened and investigated to build
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on the plant & engineering knowledgebase.

Contact with plant engineering and operations teams is crucial for the under-

standing of any unexplained trends and to provide insight allowing algorithms

to be developed and tested. This information transfer is a two-way process, as

engineering and operations teams will not always view the available data in the

manner prompted by this framework so close communication is vital.
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Chapter 7

Conclusions & future work

7.1 Summary

In summary this thesis introduced the concepts of PHM and how these are applied

in the nuclear domain. The first novel contribution was therefore a review of data

analytics, fuel monitoring and anomaly detection in nuclear reactors, with some

opportunities for further work identified and examined. A range of analytical

techniques were described, and the often-focused nature of their implementation

was discussed.

By considering a widening of this focus, the concept of an analytical frame-

work to guide the analytics process was introduced and described. This is the

basis of the second novel contribution: that of the Assisted Data Visualisation &

Analysis for Nuclear Core Evaluation (ADVANCE) framework for the exploration

and analysis of nuclear reactor operational data. This framework accounted for

the various roles of the personnel involved in nuclear power operations, discussing

their responsibilities as well as recommending some key visualisation methods for

the proper understanding of data derived from a nuclear power domain. The

framework’s strong focus on the particular spatial aspect of data makes it par-

ticularly suited to this task, as the majority of the world’s nuclear reactors share
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a similar arrangement: whether CANDU, AGR or Pressurised Water Reactor

(PWR), the latter of which comprise 74% of the global reactor fleet as of 2021

[19]. That is, tens or hundreds of channels are arranged in a regular geometric

pattern, holding in place discrete bundles of solid fuel at positions throughout

all, or the majority, of channels and cooled by a liquid or gaseous coolant. Data

arises from these plants reflecting the status of a multitude of parameters, much

of which can be related to specific locations within the core and this framework

presents a useful way to begin to interrogate and understand this data, regardless

of the specific reactor type it came from.

The application of the framework was then demonstrated via the use of three

case studies: the first showed the way the framework supported the interrogation

and understanding of raw data derived from a fuel defect identification system

found in some CANDU reactors. The third novel contribution is thus a method

for identifying and confirming long-term trends and suspected faulty monitoring

devices, derived from the proposed framework. All of the relevant visualisations

recommended by the framework were implemented, gathering insights about the

long-term operation of the system and showing the manner in which the existing

analysis technique was developed.

The next novel contribution was generated by a further implementation ex-

ample of the framework. An improved defect identification process was devel-

oped, reselecting and manipulating the data under the guidance of the proposed

framework to reduce defect detection time. An additional data smoothing step

was introduced, as well as a more methodical data selection process while tak-

ing explicit consideration of the long-term trends. Some promising results were

demonstrated with defects visible several days or in some cases weeks earlier than

using the current process.

The final case study introduced a secondary power dataset and showed the way

it was interrogated and assessed under the guidance of the framework, thereby
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demonstrating the potential for a new avenue of investigation. This resulted

in the final two novel contributions: one being a method for the retrospective

identification of channel refuelling events from the related data source. Based

on the insight that spatially grouped channels would likely share a similar power

output, a neighbourhood power average was calculated with spatial deviations

from that average calculated for every channel. When the single-period time series

difference calculation was subsequently calculated for these spatial deviations, a

threshold could then be applied to pinpoint the refuelling events.

The importance of the identification of these refuelling events was then demon-

strated by the final contribution, that channel refuelling events are correlated to

defect emergence. From a set of defects which were made available, the point at

which the defect began to emerge was compared to the point at which the channel

was last refuelled, ensuring that this was not the refuelling event programmed to

remove the identified defect. This figure was calculated for every channel and

then expressed as a ratio of the refuel periodicity for that channel, given that

the slower burnup of more peripheral channels dictates a longer dwell time for

those channels. Thus, all defects could be properly compared, and this link was

demonstrated thereby confirming a suspicion arising from operational experience.

7.2 Other applications

The primary two datasets considered in the development of the framework were

the delayed neutron activity data arising from Bruce Power CANDU reactors as

well as the fuel grab load trace data from EDF Advanced Gas Reactors. The

data shape of the latter can be examined to understand the framework flexibility.

Here, the locations axis relates to the reactor channel and the instances axis

relates to the individual time-stamped records, as with the other case studies. In

this case, however, the features axis would encode the load experienced by the
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refuelling crane leaving the raw data in the shape as shown on the left side of the

top row of the left side of Figure 3.2. By performing a locational selection step

and moving to the right along this top row, a feature plot can be created.

The analyst may be interested in the load at a specific point or the average

load across a particular section: by reducing the data on the features axis, the

other visualisations from Figure 3.2 can be created as desired.

The framework was developed to be generally adaptable to the type of data

arising from nuclear reactors. Data could equally relate to control rod condition

monitoring, as the locations axis in Figure 3.2 does not necessarily need to relate

to reactor channels: in this case the control rods could be visualised, which all

have their own geometric position inside the reactor. As before, data can be

manipulated as required allowing insight to be gained and for the analysis to

proceed.

7.3 Data Types

The development of the ADVANCE framework was focused on the depiction and

assessment of online monitoring data as well as intermittent inspection data. This

flexibility in data type is described in section 3.3.5, noting that the time axis of

the data may be regular or irregular and of various resolutions. It was decided

that dictating the treatment of this data based on its characteristics would be

avoided, but it may be of interest to revisit this decision in future. For example,

the question of how best to resample or interpolate intermittently collected data

is currently left to the user, but there may be a desire to provide more guidance

on this depending on the context of the analysis, whether other data exists during

the same period, and the scope and frequency of that related data.

Further to this, there also exists the possibility that simulation data is avail-

able, derived from computer models. This presents an alternative challenge: in
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this case, data from simulation results may not be directly comparable to that

collected from direct measurement, as subtle patterns in the relationship between

two datasets may arise from some other, related, plant condition. As a result,

consideration should be made as to how this challenge can best be resolved. Sim-

ulation data does however benefit from the ability to be relatively quickly and

easily reproduced: this may present an opportunity to update the process flow of

the framework to account for this potential.

7.4 Future development

There are various other ways this framework could be built upon. These de-

velopments may be simple improvements, triggered by the identification of any

requirements for analytics of reactors in which the framework was originally de-

veloped. Additionally, its application to other current or future reactor types

may lead to further augmentations.

7.4.1 Framework extensions

The identified roles and their associated responsibilities have been intentionally

simplified but it may be appropriate to identify other personnel involved in plant

operations, for example those responsible for the IT infrastructure when consid-

ering the management of data acquisition or invoking more detail around the

definition of plant operator, given the multitude of operational tasks within the

plant. However, there is a balance to be struck between too much and too little

detail, and the intention has always been to create a framework which guides

rather than dictates the process.

Related to this potential area for improvement is the possibility of increasing

the awareness of each individual framework user regarding the roles and respon-

sibilities of those users around them. The framework is currently predominantly

145



Chapter 7. Conclusions & future work

designed to support the work analyst and each related role is implicitly outlined,

but a future version could, for example, incorporate steps to drive a greater

understanding by the plant engineering team of the analyst’s decision making

process.

The identified data structures, too, could also be augmented. It is possible

that higher dimensional data can derive from nuclear reactors, but the visualisa-

tion of this data of greater dimensionality is not straightforward for static images

without some reduction process. Incorporating the use of dynamic images, mak-

ing use of another visualisation dimension, could be worthwhile.

The case studies which have been discussed described the early stages of anal-

yses unlocked using the framework. Case study 2, discussed in Chapter 5, would

benefit from the ongoing assessment of the performance of the algorithm to un-

derstand its effectiveness in identifying future defects as they appear. This would

be most appropriate under the management of the nuclear operator, as recom-

mended by the adoption step of the framework.

Finally, case study 3, the subject of Chapter 6, demonstrated that the date of

refuel appears to be positively correlated with (and in some cases potentially the

cause of) the emergence of a defect. This behaviour could be incorporated into

future algorithms as prior knowledge or additional features within a detection

model training set to improve defect detection capabilities further.

7.4.2 Other Reactor Types

The fact that the framework is flexible as outlined in section 7.2 is relevant as most

nuclear reactors installed globally are not of the designs that were the subject of

this research. At the time of publication, 74% of the operational 390GW nuclear

reactors worldwide are pressurised (light) water reactors (PWRs), with boiling

water reactors making up a further 16%. This asymmetrical trend will continue in

the short- to medium-term as 80% of the 134GW of reactors under construction
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and planned around the world are PWRs [19].

Although they are of different designs, most of these operational and planned

reactors share the same high level physical characteristics upon which the AD-

VANCE framework depends. Most notably the reactor comprises a single high

temperature (and usually high pressure) core, the fuel arrangement is fixed and

coolant circulates throughout the core. Multiple sources of data will therefore be

generated via the continuous monitoring of the core, coolant loops and associated

infrastructure. Core-derived data including temperatures, instantaneous fission

levels and fuel burnup will all be locational in nature and so it would be expected

that the ADVANCE framework would help support a methodical analysis.

Further, next generation reactors promise even greater levels of safety and

efficiency, so it appears inevitable that the global reactor inventory shifts again

in future: the Generation IV International Forum has been coordinating inter-

national research and development on the topic for over 20 years, with several

promising reactor designs identified. Many of these reactors propose to position

the fuel in the conventional way; in a solid form and with a geometric, planned

layout within the core just as this analysis framework expects.

Given that these future reactors share many of the same broad design con-

cepts as PWRs it is likely that many of the concepts discussed in the ADVANCE

framework could be applied. Some designs deviate from this however: for exam-

ple, by using solid fuel “pebbles” and a specially-designed coolant loop to create a

fluid-like characteristic to this pebble bed [138]. Other reactors propose to use a

molten fuel salt, either contained in discrete movable fuel pins and surrounded by

molten salt coolant [139] or alternatively pumped through heat exchangers [140].

These reactors are still in the pre-construction stage so information regarding

sensor design is limited, but it is unlikely to be the case that the fuel-related

data recorded will be directly comparable to that of conventional reactors. It

is therefore of interest to understand the way in which the framework could be
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applied in these instances and how it might be extended in future. The fuel data

recorded from these latter advanced designs would not have the strong spatial

element of the fuel data generated from current generation reactors: instead,

there may be fission rate or temperature estimations collected within specific ar-

eas of the reactor. The characteristics of these measurements combined with the

physical arrangement of the reactor would drive the development of the analysis

framework.

7.4.3 Smaller reactors

At time of writing there is considerable global interest in small, modular reactors.

As a result, it is possible that multiple reactors will share the same physical site

and infrastructure, leading to the potential for multiple datasets to be recorded

simultaneously and perhaps the sharing of common external effects. Exactly how

these associations develop remains to be seen but the consideration of reactor-

level relationships as well as component-level relationships is something that may

be worth incorporating into any future iteration of the ADVANCE framework.

Regardless of the type of reactor in which it is used, it is envisioned that

this framework will support the management, visualisation and analysis of data

collected even at early stages of plant operation. There is no need to wait for

a bulk of historical data to build up, as its iterative nature accommodates and

prompts for the addition of new data as and when it is available. It is hoped that

a future analyst finds it helpful.

148



Bibliography

[1] IEEE Reliability Society, 2017. IEEE standard framework for prognostics

and health management of electronic systems.

[2] Alves, M., Bizarria, C., and Kawakami, R., 2009. “Trend analysis for prog-

nostics and health monitoring”. In Brazilian Symposium on Aerospace Eng.

& Applications, Vol. 3.

[3] Bonissone, P. P., and Eklund, N., 2010. Information fusion for PHM models

(Anomaly detection, diagnostics and prognostics).

[4] Li, R., Verhagen, W. J., and Curran, R., 2020. “A systematic methodol-

ogy for prognostic and health management system architecture definition”.

Reliability Engineering and System Safety, 193(June 2019), p. 106598.

[5] Goebel, K., and Bonissone, P., 2005. “Prognostic information fusion for

constant load systems”. In Information Fusion, p. 9.

[6] Schutt, R., and O’Neil, C., 2013. Doing data science, 1st ed. O’Reilly,

Sebastopol, CA.

[7] Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., 2010. Mastering

the information age: Solving problems with information analytics. Euro-

graphics Association, Goslar, Germany.

[8] Liu, K., Gebraeel, N. Z., and Shi, J., 2013. “A data-level fusion model for

developing composite health indices for degradation modeling and prognos-

149



Bibliography

tic analysis”. IEEE Transactions on Automation Science and Engineering,

10(3), pp. 652–664.

[9] Mandelli, D., Ma, Z., Youngblood, R., St Germain, S., Smith, C., Talbot,

P., Hess, S., Dube, D., Pope, C., Miller, J., Robbins, M., Das, D., Azarian,

M., and Coble, J. B., 2019. Plant integral risk-informed system health

program. Tech. rep., US Department of Energy.

[10] Groth, K., and Bensi, M., 2018. “Commentary on use of model-augmented

data analytics for improved operational efficiency of nuclear power plants”.

In Probabilistic Safety Assessment and Management PSAM, Vol. 14.

[11] Peng, R. D., 2008. “A method for visualizing multivariate time series data”.

Journal of Statistical Software, 25(Code Snippet 1), pp. 1–17.

[12] Steer, A., 2005. “AGR core design, operation and safety functions”. In

Management of Ageing Processes in Graphite Reactor Cores, G. B. Neigh-

bour, ed. RSC Publishing, pp. 11–18.

[13] Garland, W. J., Chaplin, R., Marleau, G., Nichita, E., Rouben, B., Popov,

N. K., Hepburn, A., Jiang, J., Waller, E., Snell, V., Lister, D. H., Cook,

W. G., Gacesa, M., Tayal, M., and Damario, D., 2014. The essential

CANDU, first ed. University Network of Excellence in Nuclear Engineering,

Hamilton, Ontario, Canada.

[14] Jahn, G. J., Mcarthur, S., Reed, J., and Towle, D., 2007. “Staged im-

plementation of an agent based Advanced Gas-cooled Reactor condition

monitoring system”. In IEEE Power Engineering Society General Meeting

2007.

[15] Demazière, C., and Pázsit, I., 2004. “Development of a method for measur-

ing the moderator temperature coefficient by noise analysis and its experi-

150



Bibliography

mental verification in Ringhals-2”. Nuclear Science and Engineering, 148,

pp. 1–29.

[16] Lee, Y., Cho, Y. J., and Lim, K., 2020. “Whole-core analyses on recriticality

of conventional high power pressurized water reactor in Korea during early

phase of severe accidents”. Annals of Nuclear Energy, 143, aug.

[17] Cao, Y., Xiao, L., Wang, H., Ai, Z., and Zhang, Z., 2016. Efficient visu-

alization of high-resolution virtual nuclear reactor. Tech. rep., Institute of

Applied Physics and Computational Mathematics CAEP Software Center

for High Performance Numerical Simulation, Beijing, China.

[18] BP, 2021. Statistical review of world energy.

[19] IAEA, 2021. Power Reactor Information System.

[20] Goebel, K., 2017. Prognostics & health management.

[21] Kochunas, B., Collins, B., Stimpson, S., Salko, R., Jabaay, D., Graham,

A., Liu, Y., Kim, K. S., Wieselquist, W., Godfrey, A., Clarno, K., Palmtag,

S., Downar, T., and Gehin, J., 2017. “VERA core simulator methodol-

ogy for Pressurized Water Reactor cycle depletion”. Nuclear Science and

Engineering, 185(1), jan, pp. 217–231.

[22] Jeong, J. J., Ha, K. S., Chung, B. D., and Lee, W. J., 1999. “Development of

a multi-dimensional thermal-hydraulic system code, MARS 1.3.1”. Annals

of Nuclear Energy, 26(18), dec, pp. 1611–1642.

[23] Hung, P. L., 2010. “Core protection calculator system: Past, present, and

future”. In International Conference on Nuclear Engineering, ASME.

[24] Artaud, J. F., Imbeaux, F., and Garcia, J., 2010. “The CRONOS suite of

codes for integrated tokamak modelling”. Nucl. Fusion, 50, p. 43001.

151



Bibliography

[25] Lee, H., Kim, T., and Heo, G., 2017. “Application of dynamic probabilistic

safety assessment approach for accident sequence precursor analysis: case

study for steam generator tube rupture”. Nuclear Engineering and Tech-

nology, 49(2), pp. 306–312.

[26] Glaessgen, E. H., and Stargel, D. S., 2012. “The Digital Twin paradigm

for future NASA and U.S. Air Force vehicles”. In Structures, Structural

Dynamics, and Materials, AIAA, p. 1812.

[27] Negri, E., Fumagalli, L., and Macchi, M., 2017. “A review of the Roles of

Digital Twin in CPS-based production systems”. Procedia Manufacturing,

11, pp. 939–948.

[28] Oluwasegun, A., and Jung, J.-C., 2020. “The application of machine learn-

ing for the prognostics and health management of control element drive

system”. Nuclear Engineering and Technology, 52(10), pp. 2262–2273.

[29] Rao, N. S., Greulich, C., Ramuhalli, P., Gurgen, A., Zhang, F., and Cetiner,

S. M., 2021. “Estimation of sensor measurement errors in reactor coolant

systems using multi-sensor fusion”. Nuclear Engineering and Design, 375,

apr, p. 111024.

[30] Stephen, B., West, G. M., Galloway, S., McArthur, S. D. J., McDonald,

J. R., and Towle, D., 2009. “The use of hidden Markov models for anomaly

detection in nuclear core condition monitoring”. IEEE Transactions on

Nuclear Science, 56(2), pp. 453–461.

[31] Srivastava, A. N., 2005. “Discovering system health anomalies using data

mining techniques”. In Joint Army Navy NASA Air Force Conference on

Propulsion.

152



Bibliography

[32] Kwon, K.-C., Kim, J.-H., and Seong, P.-H., 2002. “Hidden Markov Model-

based real-time transient identifications in nuclear power plants”. Interna-

tional Journal of Intelligent Systems, 17, pp. 791–811.

[33] Wald, A., 1945. “Sequential tests of statistical hypotheses”. Annals of

Mathematical Statistics, 2, pp. 117–186.

[34] Harrison, T. J., 2004. “The Sequential Probability Ratio Test (SPRT) in

feature extraction and expert systems in nuclear material management”.

PhD thesis, The University of Tennessee, Knoxville.

[35] Li, W., Peng, M. J., Yang, M., Xia, G. L., Wang, H., Jiang, N., and Ma,

Z. G., 2017. “Design of comprehensive diagnosis system in nuclear power

plant”. Annals of Nuclear Energy, 109, nov, pp. 92–102.

[36] Coble, J. B., and Hines, J. W., 2011. Applying the General Path Model to

estimation of remaining useful life. Tech. rep., PHM Society.

[37] Al-Dahidi, S., Baraldi, P., Di Maio, F., and Zio, E., 2014. “A novel fault

detection system taking into account uncertainties in the reconstructed sig-

nals”. Annals of Nuclear Energy(73), pp. 131–144.

[38] Hashemian, H. M., Thie, J. A., Upadhyaya, B. R., and Holbert, K. E.,

1988. “Sensor response time monitoring using noise analysis”. Progress in

Nuclear Energy, 21(C), jan, pp. 583–592.

[39] Moshkbar-Bakhshayesh, K., and Ghofrani, M. B., 2014. “Development of

a robust identifier for NPPs transients combining ARIMA model and EBP

algorithm”. IEEE Transactions on Nuclear Science, 61(4), pp. 2383–2391.

[40] Cortes, C., and Vapnik, V., 1995. “Support-vector networks”. Machine

Learning, 20, pp. 273–297.

153



Bibliography

[41] Gottlieb, C., Arzhanov, V., Gudowski, W., and Garis, N., 2006. “Feasibil-

ity study on transient identification in nuclear power plants using support

vector machines”. Nuclear Technology, 155(1), pp. 67–77.

[42] Rocco S., C. M., and Zio, E., 2007. “A support vector machine inte-

grated system for the classification of operation anomalies in nuclear com-

ponents and systems”. Reliability Engineering and System Safety, 92(5),

may, pp. 593–600.

[43] Liu, J., Seraoui, R., Vitelli, V., and Zio, E., 2013. “Nuclear power plant

components condition monitoring by probabilistic support vector machine”.

Annals of Nuclear Energy, 56, pp. 23–33.

[44] Liu, J., Vitelli, V., Zio, E., and Seraoui, R., 2015. “A novel dynamic-

weighted probabilistic Support Vector Regression-based ensemble for prog-

nostics of time series data”. IEEE Transactions on Reliability, 64(4),

pp. 1203–1213.

[45] Liu, J., and Zio, E., 2017. “Weighted-feature and cost-sensitive regres-

sion model for component continuous degradation assessment”. Reliability

Engineering and System Safety, 168(March), dec, pp. 210–217.

[46] Liu, J., and Zio, E., 2016. “Feature vector regression with efficient hyper-

parameters tuning and geometric interpretation”. Neurocomputing, 218,

pp. 411–422.

[47] Tipireddy, R., Lerchen, M., and Ramuhalli, P., 2017. “Virtual sensors

for robust on-line monitoring (OLM) and diagnostics”. In NPIC&HMIT,

pp. 719–728.

[48] Ramuhalli, P., Tipireddy, R., Lerchen, M., Shumaker, B., Coble, J. B.,

Nair, A., and Boring, S., 2017. “Robust online monitoring for calibration

assessment of transmitters and instrumentation”. In NPIC&HMIT2017.

154



Bibliography

[49] Ikonomopoulos, A., Tsoukalas, L., and Uhrig, R., 1991. “A hybrid neural

network - fuzzy logic approach to nuclear power plant transient identifica-

tion”. In AI-91: Frontiers in Innovative Computing.
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