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Abstract

One of the paramount stepping stones towards the long-term goal of undertaking hu-

man missions to Mars is the exploration of the Martian moons. In particular, Phobos

is becoming an appealing destination for future scientific missions of NASA and ESA.

Phobos is a tiny celestial body that orbits around Mars at low altitude. The unique

combination of these two characteristics yields the sphere of influence of the moon to be

very close to its surface. Therefore, orbital dynamics around Phobos are particularly

complex, because many strong perturbations are involved. The classical models of the

Keplerian two-body problem, and the circular three-body problem are not accurate

enough to describe the motion of a spacecraft in the vicinity of Phobos.

In this thesis, the description of the relative orbital dynamics in proximity of this moon

is extended to a more accurate nonlinear model. This is undertaken by the inclusion of

the perturbations due to the orbital eccentricity and the inhomogeneous gravity field

of Phobos.

Subsequently, several classes of non-Keplerian orbits are identified, using the analytical

and numerical methodologies of dynamical systems theory. These techniques exploit

the improved description of the natural dynamics, enabled by the extended model, to

provide low-cost guidance trajectories, that minimize the fuel consumption and extend

the mission range. In addition, the potential of exploiting artificial orbits with low-

thrust is investigated.

The performance and requirements of these orbits are assessed, and a number of poten-

tial mission applications near Phobos are proposed. These low-cost operations include

close-range observation, communication, passive radiation shielding, and orbital pit-

stops for human spaceflight. These results could be exploited in upcoming missions

targeting the exploration of this Martian moon. Furthermore, the new model can pro-

vide evidence to support the accretion theory of Phobos’ origin, and to explain the

formation of the craters and grooves on Phobos.

Keywords
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Chapter 1

Introduction

1.1 Scientific Interest in the Martian Moons

Phobos and Deimos are the two natural satellites of Mars, and they were discovered in

1877 by the American astronomer Asaph Hall. Since their discovery, the two moons of

Mars have become increasingly interesting astronomical objects to investigate through-

out the last century. In particular, the origin of the Martian moons is still a controver-

sial topic with no unified agreement [1, 2, 3]. The mainstream theory is based on the

common irregular shape and tiny size of both moons, that resemble two asteroids. For

this reason, Phobos and Deimos could well be native to the Main Asteroid Belt, which

were sling-shot by Jupiter and then captured by Mars [4, 5], or even be the inactive

nuclei of captured comets [6]. A second explanation follows the theory of planetesimals

widely accepted to explain the formation of most of the major bodies of the Solar Sys-

tem. In this case, the two Martian moons originated by coalescence of material in the

primordial Solar System. In particular, Phobos and Deimos could well be remnants

of the same birth cloud that created Mars, thus composed by proto-Mars material [2].

This hypothesis represents an in-situ formation, in contrast to the capture origin, and

is supported by the common orbital characteristics, such as low eccentricity, inclination

and altitude, of both moons. A last and novel theory was instead proposed recently,

which represents a second-generation in-situ formation [2, 7, 8]. This speculates that a

previous small body either broke up in orbit or impacted Mars, and the orbiting debris

or ejecta from the Red Planet created a ring of dust around Mars, that eventually built

up to create Phobos and Deimos, as the only survivors. This is known as accretion

theory, and could describe together both the current orbits and dimensions of the Mar-

tian moons. In particular the impact theory is supported by the fact that the angular

momentum of Mars is incoherent with its current mass and spin rate.

However, the solution to the puzzle of the origin of these moons is further complicated

by their mysterious composition, which has only been inferred from infrared spectral

analysis. The surface’s composition of both moons is still not completely understood

and appears also unique, if compared to the majority of similar bodies in the Solar

1



Introduction

Figure 1.1: The Martian system.

System. New research outcomes shift over the years between C, D and T types of

the Tholen spectral classification, since chemical markers of other types are detected

[4, 5, 2]. This fosters the debate between different hypotheses for the moons’ origin. In

particular, rich carbonaceous chondrite’s spectra is the most common within the Main

Asteroid Belt, and would support a capture origin, while the presence of Martian phyl-

losilicates would support an in-situ formation. The combination of these observations

with the measured gravity and size of the moons shows an uncommon low bulk density

and high porosity of these moons [2]. This suggests that the Martian moons could hide

a considerable amount of iced water, as well as having a hollow internal structure with

a significant portion of voids. The latter is highly inconsistent with an asteroid capture.

For all these reasons, the accretion theory from Mars ejecta is currently considered the

most probable hypothesis to explain the origin of Phobos. In this sense, the altitude of

Phobos is also within the Roche’s radius for deformable bodies [2, 7], while the capture

scenario is more consistent for Deimos. Hence, Phobos would be a natural Martian

“time capsule”, and it is speculated that its rocks could provide evidence of alien life

present on the Red Planet in the past [9].

A second anomaly of scientific interest is the current orbit of Phobos. Recent obser-

vations from spacecraft sent to Mars found significant discrepancies between predicted

orbit models and the current position of the moon. Such behavior remains unclear, and

could be due to a coupling between forced libration motion and inhomogeneous gravity

field [10, 11], or by relativistic effects on the navigation measurements [12].

Another related area of scientific interest is the future evolution of Phobos. The

closest moon of Mars is also astrodynamically interesting due to the low altitude of

its orbit around Mars. As a practical comparison, the height of Phobos is lower than

that required for Mars-synchronous rotation: Phobos rises from the West more than

University of Strathclyde
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Figure 1.2: Concept of the Lockheed Martin Red Rocks mission [19].

three times a day as seen from Mars’ surface near the Equator, whereas near the Poles

Phobos is never seen, since it is always under the horizon. As a result of this proximity,

its altitude is currently decreasing due to the pull of Mars [13]. Two possible scenarios

have been proposed for the evolution of Phobos. In the first case, the moon would

eventually crash into Mars. In the second case, the tidal interaction with Mars would

break it up into a planetary ring [13], once Phobos falls within the Roche’s radius for

rigid bodies.

A final anomaly of scientific interest is given by the peculiar orography of the surface

of Phobos. First of all, it is marked by several big craters. In particular, the largest

of them, named Stickney after Hall’s wife’s maiden name, is located on the face of the

moon pointing towards Mars and heavily characterizes the shape of Phobos. Second of

all, the surface of Phobos is marked by a dense texture of grooves. The origin of these

unique features is another mystery of this celestial body, and is currently speculated

to have occurred through flows of debris orbiting or ejected from Mars [14, 15, 16], as

well as rings of dust or clouds of fine-grained regolith existing on Phobos [17, 18].
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1.2 Rationales and Current Plans for Space Missions to

Phobos

Section 1.1 presented the outline of the scientific interests in undertaking a space mission

to the moons of Mars. In particular, it emerged that there is still a lack of understand-

ing of the main physical characteristics of both Phobos and Deimos. Thus, more data

needs to be acquired regarding the superficial and internal composition, the inhomoge-

neous gravity field and shape, and the actual orbit around Mars of these moons. This

information will allow scientists to solve the current enigma surrounding their origin,

which would provide insight into the Solar System’s origin itself, as well as provide an

answer to the other mysteries of Phobos and Deimos outlined in section 1.1.

In addition to purely scientific goals, the Martian moons have been proposed as at-

tractive destinations for space exploration since the early ’80s [20, 21]. The American

Viking program (1975) and Soviet Phobos-2 spacecraft (1988) were the first missions

to successfully provide images of the two moons. Starting from this period, a “PhD

mission” to Phobos and Deimos was first conceived in [21] to be an ideal candidate

for landing a spacecraft as a precursor to a robotic or crewed exploration on Mars.

Unmanned missions to the Martian moons could exploit them as stable platforms,

where instruments are placed for gravity waves astronomy, radio astronomy, astrom-

etry, and the study of asteroids and comets. Also, a Mars-pointing ground station

[22, 21] equipped with telescopes and antennas will permit multiple and fast access

for observation and communication with the Red Planet without orbital maintenance.

Manned missions to the Mars-facing side of Phobos and Deimos can then use these in-

struments to remotely control robotic scouts dispatched on Mars [22, 21] (see Fig.1.2).

Indeed, landing and take-off of equipment or crewed spacecraft is much cheaper on the

moons than on the planet itself. This represents the main advantage always presented

when promoting a space mission to the moons of Mars [23, 1]. The interplanetary

∆v to leave/arrive in the planet’s orbit is lower than leave/arrive at its surface, and

the low gravity and absence of atmosphere of such small bodies additionally lower the

impact and escape velocity1. The latter aspects increase the safety and make feasible

also the use of low-cost electromagnetic propulsion. This allows also multiple rovers

to be dispatched with the same mission cost, as well as to reduce the risks connected

to an interplanetary return trip of the samples back to Earth. All these advantages

would likely enable a human expedition to Mars sooner than if we did not undertake a

mission to Phobos first [22]. In addition, the Martian moons can also provide attrac-

tive in-situ resources that could be exploited by human missions for refueling and life

sustainability, like iced water (as recalled from section 1.1) and basic chemical elements

from rocks mining. In particular, landing on Phobos and Deimos and establishing an

1The microgravity environment of Phobos is characterized by a Keplerian escape velocity at its
mean surface of only 11m/s, which means a human being (or a rover) could auto-inject itself out of
the body with a very small force.
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Figure 1.3: Concept of the NASA roadmap for the human space exploration beyond
LEO [23].

Figure 1.4: What are the characteristic of a human mission to Phobos and Deimos?
[24]
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Figure 1.5: Concept of
the ESA Phootprint
sample-and-return
mission [26].

Figure 1.6: Concept of the NASA Phobos Surveyor
mission and its robotic hedgehogs [27].

Figure 1.7: Concept of the NASA Innovative Ad-
vanced Concepts for a Phobos sample-and-return
mission with two interplanetary CubeSats, a Solar
Sail, and a tether [28].

outpost inside a crater or a cave, would provide natural protection to massively reduce

the impact of life-threatening radiation from the cosmic rays [19]. A human detachment

in Stickney would be passively sheltered from about 90% of cosmic radiation [25].

In summary, the development of space missions to the Martian moons, as a pathway

to the scientific and human exploration of Mars, is motivated by several rationales with

economic, operational, contingency, and exploitation potential. Therefore, the Martian

moons’ exploration has become a key milestone to the long term goal of a human

mission to Mars in the current roadmap of NASA [29], see Fig.1.3 and Fig.1.4. In

particular Phobos, the inner-most and largest moon of the two, has received most

of the attention in terms of mission concepts. Phobos is a ready-made space station,

that can become the strategic cornerstone of a human colonization of Mars [30, 22].

In 2010, ESA Mars Express flew-by Phobos at only 67km altitude, and 3km/s rel-

ative speed, providing updated physical data that boosted the scientific research of

Phobos. In 2012, the famous landing of the NASA Curiosity rover has provided a plat-

form for the daily observation of Phobos, in addition to the pre-existing flotilla on the

Red Planet. Dedicated space missions to land on Phobos have been designed in the

past, but all have failed (the Soviet Phobos-1 and Phobos-2, and the Russian Phobos-

Grunt). During its Ministerial Council Meeting of November 2012 [31], ESA confirmed

post-2018 mission concepts: the Mars Robotic Exploration Programme [26, 32] would

include a mission, named Phootprint, to return back to Earth a sample from Phobos

[33, 34], see Fig.1.5. The return to Earth is a paramount ambition required by the
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Figure 1.8: Concept of the envisioned Lockheed Martin Stepping Stones program
[19].

wide scientific research on Phobos outlined in section 1.1, because it makes it possible

to analyze the internal composition of the moon in detail in an advanced laboratory

facility [35]. The related results would enable to plan the in-situ resources utilization

at Phobos. Another sample-and-return mission to this moon is currently proposed by

NASA Innovative Advanced Concepts team, that will use two CubeSats propelled by a

solar sail and joined by a tether mechanism [36, 28], see Fig.1.7. In addition Lockheed

Martin has envisioned a systematic program, named “Stepping Stones”, to plan the

technology development of the future human space exploration beyond LEO, in the

aftermath of the “Flexible Path” plan advocated by the 2009 Augustine Commission

[19]. Fig.1.8 presents these increasingly challenging building blocks, that will incremen-

tally develop and demonstrate the capabilities required for the human exploration of

the Red Planet. In this framework, the Martian moons are a logical step between NEOs

and Mars, with the advantages given by both destinations. Also the Human Spaceflight

Architecture team [37, 24, 38] and the Small Bodies Assessment group [39] of NASA

are in an advanced stage of their assessment, and have recently published viable designs

of human space mission to Phobos, see Fig.1.9-1.10. In this sense, the SETI and NASA

proposed “Phobos and Deimos & Mars Environment” (PADME) mission is competing

for the Discovery program funding [40], and it will address the scientific unknowns of

the two Martian moons in rapid time and at low-cost. At the beginning of 2013,
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Figure 1.9: Concept of the NASA strategy for a human mission to Phobos and
Deimos [24].

Figure 1.10: Concept of the NASA strategy for a human mission to Phobos [38].
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with the development of a new rover platform for the exploration of minor bodies,

consisting of robotic hedgehogs (see Fig.1.6), NASA is also taking into consideration

a mission (named Phobos Surveyor) to Phobos as a test-bed for this new technology

[41, 42, 27, 43, 44]. Phobos was also the target for the space mission design during the

2013 Caltech Space Challenge [45, 46], and of two dedicated conferences [47].

1.3 Objectives of the Research

This research takes inspiration from the increasing interest in developing future space

missions to the moons of Mars. Due to the current mission concepts outlined in section

1.2, this work focuses on Mars’ closest and largest moon Phobos. In particular, space

missions to this moon are motivated by the wide array of scientific and engineering

attractions presented in sections 1.1-1.2. The high-level objective of this work is to

identify new mission opportunities around Phobos, that could effectively be used in

planned or future space missions. Since this research belongs to the field of astrody-

namics, these opportunities are identified by the possible orbits that a spacecraft could

use to fly around Phobos. These orbits could be natural or artificial. In the latter case,

the spacecraft makes use of a primary propulsion system to yield a trajectory that is

not possible naturally2.

A spacecraft’s orbit is identified by different attributes. The first feature considered

is the shape, position, and profile over time of the orbit: the orbits of interest in this

thesis could be a stationary point, a periodic or quasi-periodic orbit, or a transfer tra-

jectory between two states. Each of these reference motions constitutes an invariant

object. The second feature is the dynamical model where the object is computed: this

is given by the reference frame and the mechanical equations of translational motion,

which constitute a dynamical system. The third feature is the method used to compute

the invariant object as a solution of the dynamical system. The fourth feature is given

by the performances of the dynamical object. For a spacecraft’s orbit, they can be very

diverse: line-of-sight and coverage of the area of a celestial body or of the sky, envi-

ronmental conditions encountered, fuel consumption of an artificial orbit and control

action required for maintaining a natural orbit. The fifth and summarizing feature is

represented by the range of applications that the orbit can provide in the framework

of a space mission to Phobos.

This thesis addresses all described features with the aim of analyzing all the possi-

ble kinds of natural orbits around Phobos. In particular, the first driver is to reduce

the propellant consumption for station-keeping in proximity of Phobos, extending the

mission lifetime by exploiting the natural dynamics. This requires the use of advanced

techniques of dynamical systems theory to compute the solutions of highly nonlin-

ear systems that represent the orbital dynamics of spacecraft in the vicinity of Phobos.

2Secondary propulsion is almost always needed to contrast the disturbances and maintain the space-
craft along the reference orbit.
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Figure 1.11: Overview of the project.

The objectives of this thesis can be summarized as follows:

• To derive an appropriate model of the relative orbital dynamics around Phobos.

• To consider all the classes of natural orbits around Phobos.

• To compute the reference signal of these natural orbits using advanced analytical

or numerical techniques of dynamical systems theory, applying these methods in

a new case.

• To investigate the potential of using low-thrust propulsion, deriving the artificial

equivalent of these orbits with a constant acceleration law.

• To derive the performances of these orbits for space missions.

• To investigate the possibility of exploiting Phobos as a passive shield from space

radiation.

• To assess the performances of these orbits against the possible requirements of

each mission segment.

• To propose possible applications of these orbits in feasible space mission scenarios

at Phobos.
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1.4 Contributions of the Thesis

The study carried out has made the following contributions.

An improved model of the relative dynamics around Phobos is derived and proposed

for the computation of orbits in the neighborhood of the moon3. The proposed model is

an extension of the classical ER3BP to include the highly-inhomogeneous gravity field

of Phobos, which is modeled through a spherical harmonics series expansion, known as

gravity harmonics. The inclusion of high-order gravity harmonics, as well as tetrahe-

dron models, has been considered in the past [48, 49] in the framework of a perturbed

R2BP for computation of orbits in the vicinity of asteroids. The third-body pertur-

bation (which in case of Phobos is due to Mars) and the eccentricity perturbation

are instead significant actions for the case of Phobos, and the relative dynamics in its

proximity cannot neglect any of these forces. The proposed dynamical model is named

Mars-Phobos ER3BP-GH, and the Phobos’ gravity harmonics are stated up to fourth

degree and order.

In the past few decades, dynamical systems tools developed for the CR3BP have

provided an in-depth understanding of the spacecraft’s motion in this model of the

orbital dynamics [50]. The Libration Point Orbits have been computed extensively,

using semi-analytical methods (such as Lindstedt-Poincaré series expansions [50, 51])

and numerical techniques (such as numerical continuation [50, 52]), for the Sun-Earth

and Earth-Moon systems, where the approximation of the natural dynamics using

the CR3BP is an accurate one. The study of the invariant motions of these sys-

tems has proved invaluable for real space missions, such as ISEE-3/ICE (1978), WIND

(1994), SOHO (1995), ACE (1997) and Genesis (2001), where they have been exploited

as energy-efficient trajectories to minimize the spacecraft’s fuel consumption during

station-keeping and orbital transfers. Following this, the concept of dynamical substi-

tute of these invariant objects was introduced in [53] to compute the equivalent of the

Libration Point Orbits in the ER3BP [54] and in slightly perturbed dynamics, for ex-

ample considering the effect of only the J2 zonal harmonic [55, 56], the solar radiation

pressure [49] and the fourth-body perturbations of the major Solar System’s bodies

[53]. In [57] a multiple shooting method is used in a high-fidelity perturbation model

to correct the classical Libration Point Orbits of the Mars-Phobos CR3BP. The result-

ing solutions are not appropriate dynamical substitutes nor their performance analysis

suitable to be optimized in the mission design loop. In this research, the dynamical

substitutes of the Libration Point Orbits are computed in an ER3BP-GH, where the

perturbation of gravity harmonics up to fourth degree and order is significant on the

CR3BP, using the methodology of numerical continuation.

In this thesis, the modeling of the relative orbital dynamics around Phobos is ex-

3The neighborhood is identified by the region of space straddle the boundary of the Hill’s sphere of
influence of Phobos. The width of this shell could be considered to be approximately one Phobos’ mean
radius. Therefore the neighborhood of Phobos is accounted to span from its inhomogeneous surface to
an altitude of about 10km over it, along every direction.
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tended to include the low-thrust continuous propulsion. To investigate the potential of

using this technology, a constant acceleration profile is considered as the orbital control

law [58]. In this research, the artificial equivalents of the Libration Point Orbits [59]

about Phobos are computed using numerical continuation of the new solutions found

previously.

The growing interest in undertaking a successful mission to Phobos has fostered in

recent years the need to probe suitable orbits about it [57]. Early analysis focused on

simple hovering station-keeping (artificial equilibrium points [60]) and exploitation of

stable Quasi-Satellite Orbits [61, 62], and these orbits have been applied in the design

of past missions. In particular, the stability analysis of artificial equilibrium points has

been conducted only in the planar CR3BP [63]. In this research, the stability analysis

of the artificial equilibrium points in the spatial CR3BP is presented, and applied in

the Mars-Phobos, the Sun-Earth, and the Earth-Moon systems. Besides, the concept

of artificial equilibria is further generalized from the synchronous case to any rotational

velocity. In particular, the case of synchronous type-III highly non-keplerian orbits of

[64] is investigated for the case of Phobos, and the fuel consumption and stability anal-

ysis of these vertical-displaced circular orbits in the R2BP and CR3BP are presented

in this thesis.

The Quasi-Satellite Orbits have recently gained attention as suitable orbits for fu-

ture space missions. In particular, these orbits are very useful for orbiting around small

planetary satellites [65], like the Martian moons. Quasi-Satellite Orbits would repre-

sent the main orbital mission segments around Phobos in the ESA Phootprint mission,

and preliminary studies have already been made [66]. The main focus is the modeling

and the subsequent stability analysis of these orbits. In particular, the mechanism of

stability of Quasi-Satellite Orbits has already been discovered using linearization in

the ER3BP [62] and perturbed R2BP [67], and simulation studies have been carried

out in high-fidelity models in terms of the relative state around Phobos [61]. In this

research the stability region of the Quasi-Satellite Orbits around Phobos is identified

by high-fidelity simulations in terms of the osculating Keplerian orbital elements of the

spacecraft around Mars.

The physical environment around Phobos is investigated. The lighting conditions for

a spacecraft in the vicinity of Phobos are analyzed with detail in a Sun-Mars-Phobos

R4BP. The surface coverage and occulting conditions of Phobos are analyzed using a

high-order shape harmonics series expansion for the moon’s surface. In this thesis, the

outcomes are used to conduct the performance analysis of the classes of orbits around

Phobos. In particular, the invariant manifolds of the natural and artificial Libration

Point Orbits are applied as landing and take-off trajectories for a spacecraft to and

from the moon’s inhomogeneous surface. This is a unique feature of the Mars-Phobos

CR3BP, because the natural trajectories, at low energy, to transfer between the spheres

of influence of the two primaries in the Sun-Earth and Earth-Moon systems fly widely

far from the bodies [68]. In addition, the Libration Point Orbits are shown to provide
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a useful station-keeping strategy for passive radiation shielding from the cosmic rays,

without landing on the moon’s surface.

In this thesis, the maintenance and operational performances of all the classes of

orbits around Phobos are assessed against the desired requirements of the orbital seg-

ments of a space mission around Phobos. Following this, possible applications are

proposed for planned and future space missions to Phobos.

The several astrodynamical mysteries of Phobos were outlined in section 1.1. In this

context, the extension of the model of the orbital dynamics to consider the gravity

harmonics of Phobos, and the computation of the natural Libration Point Orbits and

their invariant manifolds in this system, are also hypothesized to be responsible for

the natural transportation of debris and dust around Phobos. In this thesis, further

evidence is shown to support the theory of accretion for the origin of Phobos [7], and

possible explanation is addressed to explain the formation of the craters and grooves

of the moon [17, 14].

1.4.1 Publications of the Research

The computation of the dynamical substitutes of the Libration Point Orbits in an

ER3BP-GH has produced the following publications.

• M. Zamaro and J. Biggs (2014) Dynamical systems techniques for designing

Libration Point Orbits in proximity of highly-inhomogeneous planetary satel-

lites: Application to the Mars-Phobos elliptic three-body problem with addi-

tional gravity harmonics. In 10th International Conference on Mathematical

Problems in Engineering, Aerospace and Sciences, International Congress on

Nonlinear Problems in Aviation and Aeronautics (ICNPAA 2014), 2014-07-15

- 2014-07-18, Narvik. AIP Conference Proceedings, 1637, pp. 1228-1240 [http:

//dx.doi.org/10.1063/1.4904697].

• M. Zamaro and J. Biggs (2015) Natural motion around the Martian moon Phobos:

The dynamical substitutes of the libration point orbits in an elliptic three-body

problem with gravity harmonics. Celestial Mechanics and Dynamical Astronomy,

122(3): 263-302 [http://dx.doi.org/10.1007/s10569-015-9619-2].

The identification and assessment of the natural and artificial orbits around Phobos

have produced the following publications.

• M. Zamaro and J. Biggs (2014) Identification of new orbits to enable future

mission opportunities for the human exploration of the Martian moon Phobos.

In 65th International Astronautical Congress (IAC 2014), 2014-09-29 - 2014-10-

03, Toronto. [http://strathprints.strath.ac.uk/49981].

• M. Zamaro and J. Biggs (2014) Identification of new orbits to enable future

mission opportunities for the human exploration of the Martian moon Phobos.

Accepted for publication in Acta Astronautica on 04/09/2015.
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1.5 Structure of the Thesis

The thesis is organized as follows.

Chapter 2. Introduces the reader to the physical environment connected to the

orbital dynamics and constraints of a spacecraft in the vicinity of Phobos. The relative

dynamics are described in the framework of the Mars-Phobos CR3BP, and the analy-

sis of the orbital perturbation is carried out in this model. Furthermore, lighting and

occulting conditions are identified in the Phobos’ neighborhood.

Chapter 3. Following the preliminary results, a new model of the relative orbital

dynamics is derived. This is obtained extending the classical CR3BP to an ER3BP

with an inhomogeneous gravity field of the second massive body, described through a

gravity harmonics series expansion (ER3BP-GH).

Chapter 4. The Libration Point Orbits in the CR3BP are used as initial guesses in

numerical continuation schemes that allow the computation of their dynamical substi-

tutes in the new, more realistic, ER3BP-GH. The resulting natural periodic and quasi-

periodic Libration Point Orbits, and their invariant manifolds, in the Mars-Phobos

ER3BP-GH are presented, together with their related applications and performances.

Chapter 5. The inclusion of continuous thrust is considered with a constant ac-

celeration profile. This allows the derivation of artificial equilibria using solar electric

propulsion, such as artificial equilibrium points and vertical-displaced circular orbits,

and orbiting around the formers, realizing artificial Libration Point Orbits. Moreover,

the implementation of artificial Martian Formation Flying in Phobos’ orbit is investi-

gated.

Chapter 6. The dynamical modeling and the stability analysis of the Quasi-Satellite

Orbits around Phobos is carried out.

Chapter 7. Provides a summary of the different solutions focusing on their poten-

tial applications in space missions to Phobos, and it concludes the thesis suggesting

their potential usefulness in a real-world mission scenario. The thesis concludes by

addressing areas of future research.

Appendix A. Collects complementary equations of motion of the elliptic three-

body problem in alternative coordinates used in section 3.4.

Appendix B. Introduces the reader to the analytical and numerical methodologies

of dynamical systems theory to identify and compute periodic and quasi-periodic solu-

tions. These prerequisite concepts and techniques are used in chapter 4-5-6.

Appendix C. Introduces the reader to the fundamentals of Optimal Control The-

ory, and its application to the CR3BP.

Appendix D. Collects complementary graphs used in chapter 4 and section 5.4.

Appendix E. Collects complementary graphs used in chapter 6.

Appendix F. The Libration Point Orbits around Deimos are computed.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

14 Zamaro Mattia



Chapter 2

Analysis of the Orbital Dynamics

and Physical Environment

around Phobos

In this chapter the preliminary analysis of a space mission to Phobos is conducted. The

physical characteristics of Phobos and its orbit are introduced in section 2.1. Then,

the basic design aspects of the orbital mechanics and the physical environment of a

spacecraft in orbit around Phobos are presented. Section 2.2 introduces the equations

of motion of the relative orbital dynamics, section 2.3 presents the model of the CR3BP

and the main results obtained when the Mars-Phobos-spacecraft system is considered

as a special case. In this framework, a related analysis of the orbital perturbations is

conducted in section 2.4. This analysis identifies the main perturbations around the

moon, which will form the basis of an extended, more accurate, model of a spacecraft’s

motion in the vicinity of Phobos in chapter 3. The second part of this chapter is

dedicated to the analysis of the physical environment in the vicinity of Phobos: sections

2.5-2.6-2.5 present the radiation, lighting and occulting conditions.

2.1 Physical and Astrodynamical Characteristics

The immediately noticeable characteristics of Phobos are its small size (even smaller

than some asteroids) and its irregular shape. In particular in Fig.2.1-2.2 we see that

its surface is marked by a dense texture of grooves and by several big craters, where

Stickney is by far the largest crater. As illustrated in Fig.1.1, we see that Phobos has

an almost circular and equatorial orbit around Mars, with a low altitude above it. In

addition, this natural satellite rotates with a synchronous period and almost zero-tilt

with respect to its orbital motion. The combination of all these orbital characteristics

implies that Phobos is tidally-locked. This means that the attitude of the moon is fixed

with respect to the central planet, in this case Mars. As a result, the Stickney crater is

located on the side of the moon permanently pointing towards Mars. Table 2.1 presents
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Figure 2.1: Phobos. The image was taken
by Viking 1. The large crater on the right is
Stickney. Several chains of grooves are visible
[Wikipedia].

Figure 2.2: Rendering map of the craters
of Phobos. Leading side of the moon
[Google Earth].

a summary of the physical and orbital parameters of Mars and Phobos that have been

used in the analysis of the orbits undertaken in this thesis. Characteristics of the other

Martian moon Deimos are shown together by comparison, and they are very similar to

the ones of Phobos.

In accordance with the nomenclature defined at the beginning of this thesis, recall

below how four classes of reference frames (in cartesian coordinates) for a given body

are defined.

• A body-centered body-fixed frame (BCBF) has its origin in the body’s barycenter

and its attitude is fixed with respect to the body’s geometry, with vertical z-axis

aligned along the body’s spin axis, and x-axis pointing towards the body’s Prime

Meridian intersection on the equatorial plane.

• A Hill’s frame (H) has its origin in the body’s barycenter and rotates with fixed

attitude with respect to its osculating orbit around a central body, with vertical

z-axis perpendicular to the orbital plane, and radial x-axis pointing outwards

from the barycenter of the two bodies.

• A body-centered equatorial frame (BCE) is the same of the BCBF frame, apart

from the x-axis which points towards the body’s Node of reference1.

None of the reference frames defined above is inertial.

• A body-centered inertial frame (BCI) has its origin in the body’s barycenter, with

vertical z-axis aligned along the Earth’s spin axis, and x-axis pointing towards

the Earth’s vernal equinox γ.

Due to millennial movements, a frozen approximation of the orientation of Earth’s spin

axis and γ is made for a given time span, which is defined as epoch. The current inertial

1The direction of the body’s Node of reference corresponds to the cross-product between Earth’s
and body’s spin axes [70].
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Table 2.1: Physical and astrodynamical properties of Mars and its two moons Phobos
and Deimos. The full values used are retrieved from the following sources. Ephemerides:
NASA JPL at 25th July 2012 00.00CT (ICRF/J2000.0). Sun mass = 1.9891 ·1030kg. Satellites’
axial tilt is reported at date: mean values at epoch are: 1.08◦ (Phobos) and 1.77◦ (Deimos)
[69].

Property Mars Phobos Deimos

m [kg] 6.4185 · 1023 1.0659 · 1016 1.4762 · 1015

R mean sphere [m] 3.3899 · 106 11.1 · 103 6.2 · 103

R mean ellipsoid [m] - [13.1× 11.1× 9.3] · 103 [7.8× 6.0× 5.1] · 103

Axial tilt θ [◦] 25.19 0.30 0.32
Rotation sidereal T 24.62h Revolution T Revolution T

Revolution T 687d 7.65h 30.31h

Albedo cr 0.20 0.07 0.07

Orbital Elements SOEγ MEMNM MEMNM

a [AU ] 1.5237 6.2696 · 10−5 1.5682 · 10−4

e [−] 0.0934 0.0156 0.0002
i [◦] 1.8488 1.0668 1.7515
Ω [◦] 49.5258 329.2279 301.9019
ω [◦] 286.5159 253.6956 22.4286
ν [◦] 253.4836 17.1688 159.8874

axes used in astrodynamics refer to their mean position at 12UTC on 1st January 2000,

and the related epoch is known as J2000.0.

In summary, an orbit around a central body is defined with respect to its BCE frame,

whose axes are referred to the BCI at J2000.0. Thus, the motion around an orbiting

body could be defined in two ways: relative to the shape of such secondary body in its

BCBF frame, or relative to the motion of such satellite in its Hill’s frame around the

primary body. In the first case, the secondary is fixed in position and attitude, while

the primary moves and spins. In the second case, both bodies are in fixed positions,

and they generally both spin.

2.2 Relative Orbital Dynamics

The general equations of motion of the relative orbital dynamics, that will be used to

describe the different kinds of orbits presented in this thesis, are stated in Eq.2.1,

q̈ = −aA + aG + aP + aC + aD (2.1)

where q is the position of the spacecraft in the chosen coordinate frame. The first

term aA is the apparent acceleration of the general relative frame of reference, and is

presented in Eq.2.2.

aA = aA,T + ω ∧ ω ∧ q + ω̇ ∧ q + 2ω ∧ q̇ (2.2)

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

17 Zamaro Mattia



Orbital Dynamics and Physical Environment around Phobos

The total apparent acceleration is a function of the frame’s translational acceleration

aA,T and angular velocity ω with respect to an inertial reference. The rotational terms

in Eq.2.2 are known respectively as: centripetal, Euler, and Coriolis accelerations. Re-

call that in Eq.2.1, the resulting force (per unit of mass) acts opposite to the apparent

acceleration: such action is called an apparent force and does not originate from any

physical action, but only from the fact that the reference system is not inertial. There-

fore, the apparent force is the term that characterizes the equations of motion of relative

dynamics.

The second term in Eq.2.1 is the distinguishing force in orbital mechanics. aG is

the sum of the gravity accelerations of the celestial bodies of interest. From Newton’s

law of Universal Gravitation, a point-mass ⊕, with mass m⊕ and positioned in q⊕,

produces an attractive force per unit of mass

aG,⊕ = − Gm⊕
||q− q⊕||3

(q− q⊕) (2.3)

on a body positioned in q, where G is the gravitational constant. In particular, the

gravity force could be expressed as the gradient aG,⊕ = ∇uG,⊕ = uG,⊕/q of the grav-

itational potential uG,⊕ = Gm⊕/||q− q⊕||, which is conservative if the point-mass is

fixed in the reference frame. Eq.2.3 still works if ⊕ is a spherical and homogeneous

body, when used outside of its bulk. Eq.2.3 is also valid for a body of any shape and

inertial properties, because the gravity field tends to the one of a point-mass as long as

the distance from the barycenter increases, which is the usual approximation used in

orbital mechanics.

The third term aP in Eq.2.1 indicates the thrusting acceleration of the propulsion

system of the spacecraft required for artificial orbits, while for natural orbits aP = 0.

The first three terms in Eq.2.1 constitute the model of the dynamics where the refer-

ence signal of the orbit over time q(t) is solved. This is the scope of the guidance system

in the mission. This motion will be perturbed in the real world by the disturbance aD,

consisting of the forces not considered in the model, and by the perturbations on the

initial condition q0, due to the inaccuracies of the navigation system. To track the

guidance law, such perturbations need to be counteracted by the station-keeping ac-

tion aC of the orbital control system of the spacecraft. The control law can be either

planned in feedforward or performed in feedback.

2.3 Analysis of the Dynamics in the Mars-Phobos CR3BP

The study of the Mars-Phobos system is conducted with the R3BP model [50], which

is to consider the gravitational effect of the third body (the spacecraft in our case)

negligible with respect to the two massive bodies, or primaries. Throughout the thesis,

Mars is indicated as the primary body (1), and Phobos as the secondary (2). In this

section, due to the small eccentricity of the orbit of Phobos around Mars (see Table 2.1,
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which is very similar to the common Sun-Earth case), the preliminary analysis of the

dynamics of the spacecraft is carried out in the CR3BP [50], which is to approximate

the motion of the two primaries to trace two Keplerian circular orbits around their

center of mass.

2.3.1 Introduction to the CR3BP

The analysis of the CR3BP began in the eighteenth century (1747: d’Alembert, Clairaut;

1887: Poincaré; 1912: Sundman), and since then a lot of research has been undertaken

in mathematics to better understand this particular non-integrable problem. Currently,

space mission design often takes into consideration these results to exploit low-energy

trajectories that require less fuel consumption than the ones obtained through a mul-

tiple patched-conics approach [50], which is to approximate the global 3B dynamics as

the sum of multiple 2BPs inside each sphere of influence of the two primary bodies.

This has also become necessary with the widespread use of electric propulsion in mod-

ern spacecraft, since the crossing of the fictitious sphere of influence is not suitable any

longer to be approximated as instantaneous [50].

The study of the dynamical behavior in the proximity of the Lagrangian or Libration

collinear point L1 and L2 inspired the definition of Halo [71, 72] and Lissajous orbits.

The first missions to exploit these results were the well-known ISEE-3/ICE (1978),

WIND (1994), SOHO (1995) and ACE (1997). Due to their practical significance, two

particular cases of 3BPs have been studied in detail: the Sun-Earth system, which was

used to design the aforementioned missions, and the Earth-Moon system, used for the

ARTEMIS mission (2010). In particular, a lot of speculation was made at the beginning

to use these libration points to establish space hubs or gateway stations for the future

exploration of the Solar System. Nowadays, the use of dynamical system theory has

provided better understanding of the 3BP dynamics: the invariant manifolds of periodic

orbits around the collinear Libration points, or Conley-McGehee tubes [73, 74, 75, 50],

are used to derive high efficient transfer trajectories.

In this thesis, the procedures of the 3BP will be extended to the the Mars-Phobos

system, to derive low-energy orbits which could potentially be exploited by upcoming

space missions to this Martian moon.

2.3.2 The Mars-Phobos CR3BP

The CR3BP is expressed in non-dimensional units, setting the unit of mass to be the

total mass of the system, and the unit of length L to be the semi-major axis of the orbit

of the two primaries. In addition the time is set to correspond to the mean anomaly of

their orbit. The only parameter of the normalized time-invariant CR3BP is the mass

ratio µ, the normalized mass of the second body. Thus, the value of µ universally

characterizes the solution of the CR3BP.

Throughout the thesis, comparisons of parameters of all the general pairs of primaries
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Figure 2.3: Mass parameter of the 3B
couples in the Solar System. Major
moons and asteroids are considered.

Figure 2.4: Length unit of the 3B couples
in the Solar System. Semi-major axis of
the orbit relative to the primary’s mean size.
Major moons and asteroids are considered.

of the Solar System will be discussed. These parameters are computed using mean

physical values for: all the 1D cases of Sun-planet (including Pluto), all the 2D cases

of planet-satellite, and a 1D array of significant cases of Sun-asteroid. The parameter

in study will be plotted with different colored 1D functions, identified by the same

primary body. Thus, the integer abscissa represents the varying secondary body. In

particular, the order of the secondaries is generally given by the increasing distance

from the primary, apart from the first positions which are allocated with the most

significant moons or asteroids. This because the objective is to look to the general

behavior of the parameter in the existing cases of the Solar System, and if a specific

couple is relevant it will be recalled explicitly.

It is immediately apparent that two characteristics of the Mars-Phobos system differ

it from the classical cases of 3BPs studied so far in the literature. These two aspects

will be repeatedly recalled in this thesis. First of all, the mass parameter for the case

of the Mars-Phobos couple is

µ = 1.66059511088139 · 10−8

As we see in Fig.2.3, the mass parameter of the system is very small, if compared

to other cases of Sun-planet or planet-satellite couples of primaries studied in the Solar

System. However, this is also true for the case of the small planets, Deimos, and some

moons of the large outer planets, like Jupiter and Saturn. In particular, the mass

parameter of a Sun-asteroid R3BP is far lower than the Mars-Phobos µ. Second of all,

the length unit of the system is very small too, since the Mars’ mean radius R1

has the same order of magnitude as L. In particular, the altitude of Phobos’ orbit is

less than twice the radius of Mars

R1/L = 36%

This is an uncommon condition for all the general pairs of primaries of the Solar System,

as we see in Fig.2.4. In contrast to the mass parameter, this consideration does not

modify the results obtained with the normalized CR3BP, but this acts as the length
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Figure 2.5: The Three-Body Problem. At left, relative reference frame, positions of the
bodies and the equilibrium points. At right, realms of possible motion as a function of the
energy of the system [50].

and time scaling factor of the problem when computing the absolute outcomes for the

practical engineering applications in the design of a space mission to Phobos. From this

preliminary comparison of two physical parameters, it is possible to expect significant

constraints on the trajectory design, but also to consider innovative solutions that are

not usual in the other cases of 3BPs in the Solar System.

2.3.3 Equations of Motion

The motion of the spacecraft in the CR3BP is expressed in a rotating reference frame,

that will be referred to as 3B frame. This synodic frame corresponds to the Hill’s frame

of the circular orbit of the secondary, except for the origin, which is the barycenter of

the system. The configuration of the system is shown in Fig.2.5.

In the normalized 3B frame, define the vector of the relative position q of the space-

craft and its relative velocity q̇. The normalized positions of the two massive bodies

and their normalized masses are then straightforward. It is useful to define also the

distance r of the spacecraft from the two bodies.

q =
[
x
y
z

]
, q̇ =

[
ẋ
ẏ
ż

]
(2.4)

m1 = 1− µ , m2 = µ (2.5)

q1 =
[
x1
y1
z1

]
=
[−µ

0
0

]
, q2 =

[
x2
y2
z2

]
=
[

1−µ
0
0

]
(2.6)

r1 = q− q1 =
[
x+µ
y
z

]
, r2 = q− q2 =

[
x+µ−1

y
z

]
(2.7)

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

21 Zamaro Mattia



Orbital Dynamics and Physical Environment around Phobos

‖r1‖ =

√
(x+ µ)2 + y2 + z2 , ‖r2‖ =

√
(x+ µ− 1)2 + y2 + z2 (2.8)

The 3B frame in the CR3BP is not inertial, but rotates uniformly with the orbital

angular velocity of the two primaries. Therefore the equations of motion are expressed

with the relative dynamics of Eq.2.1. The frame’s normalized constant angular velocity

is

ω =
[ ωx
ωy
ωz

]
=
[

0
0
1

]
(2.9)

and the apparent acceleration is the sum of the centripetal and Coriolis terms. The

notation is simplified by defining the skew-symmetric matrix W ∈ R3×3 : W·(·) = ẑ∧(·)
and the related square matrix P = W2 (note that −P is a planar projector).

aA = ω ∧ ω ∧ q + 2ω ∧ q̇ = Pq + 2Wq̇ (2.10)

Recall that the inertial position is simply obtained re-scaling and counter-rotating

the relative position by an appropriate time-variant attitude matrix, where the angle

corresponds to the normalized time. The inertial velocity is obtained in the same way,

after adding the drag term ω ∧ q = Wq.

The gravitational force aG, and the related potential u, is the sum of the effects

of the two bodies, which are fixed in the 3B frame. An added constant term in the

potential is historically used for some mathematical manipulations [76, 50], but it does

not affect the results.

u = uG,1 + uG,2 +
1

2
m1m2 =

m1

‖r1‖
+

m2

‖r2‖
+

1

2
m1m2 (2.11)

aG = aG,1 + aG,2 = − m1

‖r1‖3
r1 −

m2

‖r2‖3
r2 = u/q (2.12)

Finally, the equations of motion can be stated in the Lagrangian state-model form,

where x is the resulting state of the vectorfield f of the dynamical system reduced to a

first-order ODE. The common expressions In, 0n, 0nxm are used to indicate respectively

an identity, square and rectangular null matrix of dimensions n and m. Eq.2.13 yields

the CR3BP highlighting the linear part, constituted by the apparent force, and the

nonlinear part constituted by the gravitational force.

x =

[
q

q̇

]
, ẋ = fCR3BP(x) = Ax +

[
03x1

u/q(q)

]
, A =

[
03 I3

−P −2W

]
(2.13)

The CR3BP defined above is a non-integrable time-invariant Hamiltonian system.

Therefore, it is possible to demonstrate in Eq.2.14-2.15 by calculating the energy in-

tegral of the system [50], that these dynamical equations have an integral of motion

called the Jacobi integral c. This can be related to the mechanical energy per unit of
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mass e of the system, which in these relative dynamics is the sum of the relative kinetic

energy, the drag kinetic energy and the gravitational potential energy. The last two

terms can be combined, to define an effective or augmented potential of the CR3BP,

providing an inertial-like description of the dynamical equations, that resembles the

two classical components of the mechanical energy. This is shown in Eq.2.16 with the

usual definition of the Lagrangian function per unit of mass.

d

dt

{
1

2
q̇T q̇ +

1

2
qTPq

}
=

d

dt
u⇒ tR − tD = u− c

2
(2.14)

e = tR − tD − u = tR(q̇)− ueff (q) = −c/2 (2.15)

l = t+ u =
1

2
q̇T q̇ + q̇TWq− 1

2
qTPq + u = tR(q̇) + tC(q̇,q) + ueff (q) (2.16)

It can be useful to describe the system with the Hamiltonian approach. The Hamil-

tonian state vector is obtained substituting the relative velocity vector with the related

position-conjugated momenta p, which corresponds to the inertial velocity (in the rel-

ative frame’s components).

p = l/q̇ = q̇ + Wq⇒

{
xH = TL

HxL

xL = TH
L xH

,TL
H =

[
I3 03

W I3

]
, TH

L =

[
I3 03

−W I3

]
(2.17)

Eq.2.17 defines the direct and inverse Legendre transformation T between Lagrangian

and Hamiltonian state vectors xL and xH, for the CR3BP. Finally, the equations of

motion and the energy of the dynamical system can be stated in the Hamiltonian form.

x =

[
q

p

]
, ẋ = fCR3BP(x) = Ax +

[
03x1

u/q(q)

]
, A =

[
−W I3

03 −W

]
(2.18)

h =
1

2
pTp− pTWq− u = e (2.19)

2.3.4 Hill’s Surfaces and Regions of Influence

The Hill’s surfaces, or zero-velocity surfaces, are the iso-surfaces in the position domain

of the Jacobi integral with null velocity. For a given initial condition x0, the related

Hill’s surface defines the boundary of the 3D position-space where the natural motion

is constrained. This means that with the given energy, regions of space outside the

surfaces are not naturally reachable. This is shown in Fig.2.5 for the planar CR3BP:

in this case, the projections of the Hill’s surfaces onto the coordinated planes are called

the Hill’s curves. Increasing the energy (which is, decreasing the Jacobi integral) the
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Figure 2.6: Hill’s surfaces in the neighborhood of Phobos for L2 energy. On the
left, x-y projection; on the right, x-z projection. Mean ellipsoid (plain line) and mean radius
approximation (dashed line) for Phobos.

white region in Fig.2.5 of accessible space grows, starting from two inner realms, one

around each massive body, and from an exterior realm around both of them. First

the two inner realms merge, meaning that natural transfers between the two massive

bodies can occur. Afterwards, the new single inner realm merges with the exterior one:

first on the secondary’s side, then on the primary’s side, and finally all the 3D space

becomes naturally accessible.

The Hill’s sphere of influence is the region around each massive body where the

dynamics are dominated by its own gravity field: placing a point at zero relative velocity

inside the SOI would result in an attraction towards the respective body. This means

that the Hill’s SOI is the maximum size of the two inner realms at low energy, before

inner transfers are enabled. In the framework of the CR3BP, the secondary’s Hill’s SOI

normalized radius is defined as

rH,2 = 3

√
µ

3
(2.20)

For Phobos, this radius is 0.17% of the distance from Mars, which is an altitude over

the moon’s mean sphere of only 5.5km. This means that the physical space that can be

used to orbit around Phobos is very close to the body at low energy, and considering

the fact that Phobos is very irregular in its shape, the maximum altitude of the

Hill’s SOI boundary is of only 3.5km, as shown in Fig.2.6 using the moon’s mean

ellipsoid. Therefore it is impossible to naturally orbit around Phobos with a

Keplerian motion due to only the gravitational attraction of the moon, because this

can occur only at energies and distances lower than the ones of the Hill’s SOI.

As µ and L decrease in the CR3BP, the SOI shrinks close to the surface of the

secondary body. Thus, the two peculiarities of the Mars-Phobos couple previously

highlighted are responsible for the reduction of the exploitable realm of attraction of

the moon. This result significantly affects the three-body dynamics in the vicinity of

the moon, and will be referred throughout this thesis as the collapsing effect of the SOI.

In particular let now compare this outcome with all the other couples of primaries of the
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Figure 2.7: Absolute altitude of the sec-
ondary’s realm of the 3B couples in the
Solar System. Major moons and asteroids
are considered. Moons between 0 and 10km
are labeled.

Figure 2.8: Relative altitude of the sec-
ondary’s realm of the 3B couples in the
Solar System. Normalization by the sec-
ondary’s mean size. Major moons and aster-
oids are considered. Moons between 0 and 1
radius are labeled.

Solar System. The Hill’s radius of the second massive body is evaluated with Eq.2.20,

and the related altitude hH of the Hill’s SOI over the secondary’s radius is derived. In

Fig.2.7 this is presented in its absolute value, and in Fig.2.8 with a relative measure,

normalizing the altitude by the secondary’s radius. Thus, two maximum thresholds are

considered: 10km for practical mission operation constraints, and 1 radius to define an

outer boundary such that, within this altitude, perturbations due to the secondary body

significantly influence the motion. Within these two absolute and relative thresholds,

in addition to Mars-Phobos, only five other couples of primaries in all the Solar System

fall inside, and therefore are characterized by the same collapsing effect. In particular,

the other Martian moon Deimos is out of these limits. They are all cases of planetary

satellites2: three moons of Saturn (Pan, Daphnis, Atlas), one of Uranus (Cordelia), and

one of Neptune (Naiad), while four inner moons of Jupiter have their Hill’s SOI inside

their bulk. Orbital dynamics in proximity of these bodies are therefore very complex:

no Keplerian solutions (where the central body is the secondary) nor classical LPOs of

the CR3BP exist because the natural motion is highly influenced by the perturbations

of the secondary body, since these moons are all highly inhomogeneous. It is worth

noting that despite the small µ yielding a small normalized radius of the SOI, the

collapsing effect is not encountered in the case of a Sun-asteroid couple because L is

too large3. For example, considering a distance of 1AU , even with a hypothetical small

bulk density of 1, 000kg/m3, using Eq.2.21 the relative altitude of the SOI of a body

orbiting around the Sun is more than 100 times its mean sphere’s radius. This means

that for a practically small Hill’s SOI (altitude of 10km), the related body at 1AU

should be smaller than 200m.

2In addition, apart to be far from a spherical shape, all of their five orbits are also synchronous,
zero-tilted, circular and equatorial - apart for Naiad which is 4◦ inclined from Neptune’s equator.

3The collapsing effect can occur in the case of binary asteroids.
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hH,2
R2

=
rH,2
R2
− 1 =

3

√
µ
3a

R2
− 1 ' 3

√
4π

9

ρ̄2

m1
a− 1 (2.21)

2.3.5 Global Orbit Structure

2.3.5.1 Equilibrium Points

The next step in the preliminary analysis of the CR3BP is the computation of the

stationary points of the effective potential function, which is to determine the five

equilibrium points of the 3B dynamics in the rotating frame, for the Mars-Phobos’ µ.

These EPs are made by three collinear points (1767: Euler) named L1, L2, and L3, along

the primaries’ conjunction direction, and by two equilateral points (1772: Lagrange)

named L4 and L5, equidistant from the two bodies. The first two EPs are close to

the secondary, L1 in inferior (also called cis) and L2 in superior (also called trans)

conjunction as seen from the primary, while L3 is in opposition. The two equilateral

EPs have elongation of 60◦ from both bodies. These five EPs are called Lagrangian

or Libration points, and can be seen in Fig.2.5. In particular, as they are stationary

points of the effective potential, the EPs are the critical points of the Hill’s surfaces.

This means that their energies are the levels that mark the evolution of the realms of

accessible motion in the CR3BP, as discussed in section 2.3.4. For example, a spacecraft

with energy higher or lower than the energy of L1 is or is not able to naturally transfer

between the two massive bodies. Therefore, the collinear couple L1−2 is very important

in mission design: their distance from the secondary is a practical indicator of its SOI’s

size.

The problem is to solve the system of equations deriving from equating to zero the

gradient of the effective potential. From the equations of motion, this means to find

the positions were the gravity force is counteracted by the centrifugal force.

ueff = u− 1

2
qTPq (2.22)

ueff/q = u/q −Pq = aG −Pq = 0 (2.23)

L4 and L5 are independent from the mass parameter, so they are derived once and

for all substituting ‖r1‖ = ‖r2‖ = 1 in Eq.2.23, after a change of variables (and for the

case z = 0 and y 6= 0), and proving that the equation is satisfied. These symmetric

points, that are the vertices of the two planar equilateral triangles with the massive

bodies at the other two vertices, are related to the Jacobi constant c = 3, which is

again universal: for upper energies, there are no more Hill’s surfaces, which is all the

3D space is accessible.

L1, L2, and L3 are instead calculated for a given µ as the solution of Eq.2.23 with

the simplification of y = z = 0. The three cases are expressed each one with an
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Table 2.2: Location of the Equilibrium Points of the Mars-Phobos CR3BP. Mean
radius approximation for the massive bodies. Position is the distance’ magnitude from Phobos’
center. Altitude of L1−2 is over Phobos’ mean radius, altitude of L3 and L4−5 is over Mars’
mean radius. The Phobos Hill’s radius is 1.7689 · 10−3L = 16.591km.

Point Position / Altitude Jacobi Constant

L1 1.7679 · 10−3L = 16.582km / 5.482km 3.0000281237 (∆c L1/L2 = 10−8)

L2 1.7700 · 10−3L = 16.601km / 5.501km 3.0000281015 (∆c L1,2/L3 = 10−5)

L3 1.9999...L / 64%L = 1.7R1 3.0000000332 (∆c L3/L4−5 = 10−8)

L4−5 L / 64%L = 1.7R1 3 (∆c L1,2/L4−5 = 10−5)

appropriate equation (called the Euler quintic equation) where the only variable s is

the most suitable positive distance from the closer of the two massive bodies.


0 < s = x2 − xL1 < 1

s = xL2 − x2 > 0

s = x1 − xL3 > 0

⇒


s5 + (µ− 3)s4 + (−2µ+ 3)s3 − µs2 + 2µs− µ = 0

s5 − (µ− 3)s4 + (−2µ+ 3)s3 − µs2 − 2µs− µ = 0

s5 + (µ+ 2)s4 + (2µ+ 1)s3 + (µ− 1)s2 + (2µ− 2)s+ µ− 1 = 0

(2.24)

These 5th order polynomial equations are solved with Newton’s method using as

initial guess the related Hill’s SOI’s radius. It is interesting to observe the limit root

of these equations as the mass parameter tends to zero (recall that the Mars-Phobos µ

is indeed very small). L1 and L2 tend to reach the secondary body’s Hill’s radius (the

first always interiorly, the second always exteriorly). Thus, the Hill’s radius of Eq.2.20

is a first-order approximation of the SOI’s size, whose actual shape given by the Hill’s

surfaces is oblate, as shown in Fig.2.6. In contrast L3 tends to the symmetric position

to the secondary body about the primary (always interiorly).

Table 2.2 summarizes the locations of the EPs for the Mars-Phobos system. It is

evident how close are L1 and L2 to Phobos: as they differ of only ±10m from the

Hill’s radius, the conclusion recalls the one made in section 2.3.4. Since the major axis

of Phobos is along the x-axis of the 3B frame, the altitude of L1−2 falls down to only

3.5km, while the minimum altitude of the SOI on the z-axis is just 1km, see Fig.2.6. As

presented in Table 2.2, the related energies are also very close to each other, and already

close to the one of the equilateral EPs. This is a physical indication of the microgravity

environment along the orbit of a small body. In this scenario, the forbidden realm could

be overcome with a suitable low-thrust propulsion system. In particular, considering

also their distance, transfers between Phobos’ SOI and the equilateral EPs could be

exploited at low-cost.

2.3.5.2 Linearized Stability Analysis

In the past few decades the LPs have been intensively studied, and all the missions

named in section 2.3.1 have dealt with trajectories in their neighborhood. Such Li-
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bration Point Orbits have started to be studied through the linearized model in the

vicinity of these stationary points. The related Jacobian matrix is the linear part of

Eq.2.13, plus the linearization of the nonlinear term evaluated at the EP, which is the

symmetric Hessian matrix Hu = u/qq of the 3B gravitational potential.

x = xEP + δx⇒ δẋ = J(xEP)δx (2.25)

J (x) = A +

[
03 03

u/qq(q) 03

]
(2.26)

u/qq(q) = −g(q)I3 + 3g1(q)r1r1
T + 3g2(q)r2r2

T ⇐


g(q) = m1

‖r1‖3
+ m2

‖r2‖3

g1(q) = m1

‖r1‖5

g2(q) = m2

‖r2‖5

(2.27)

For the case of the collinear and equilateral LPs, the Hessian matrix can be stated

in Eq.2.28, where g(s) refers to g(q) of Eq.2.27 evaluated at the LP position identified

by the solution s of the quintic equation.

u/qq(L1−2−3) = g(s)

 2 0 0

0 −1 0

0 0 −1


u/qq(L4−5) =

 −1/4 ±(1− 2µ)
√

33/4 0

±(1− 2µ)
√

33/4 5/4 0

0 0 −1


(2.28)

Now it is straightforward to calculate the eigenvalues of the linearized system in the

neighborhood of the LPs. The six eigenvalues occur in three opposite couples:

λ(L1−2−3) =


±i√g = ±iυ

±
√

(g/2− 1) +
√

9g2/4− 2g = ±λ

±
√

(g/2− 1)−
√

9g2/4− 2g = ±iν

λ(L4−5) =


±i

±
√
−1/2 +

√
1/4− 27m1m2/4

±
√
−1/2−

√
1/4− 27m1m2/4

(2.29)

For the equilateral LPs, one finds the condition for linear stability, for which all the

eigenvalues are imaginary:

m1m2 = µ (1− µ) < 1/27⇒ µ < 3.85% (2.30)

This condition is realized with the mass parameter of the Mars-Phobos system, which
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is the Mars-Phobos L4−5 are linearly dynamical stable.

For the collinear LPs, their stability character is universal for every value of µ. The

linearized system is stable in the relative out-of-plane direction, whereas on the orbital

plane the 4D phase-space solution is characterized by a center × saddle behavior, which

is unstable. In particular, the unstable eigenvalue is large enough to made the CR3BP

known as a flagship model for the chaos dynamics. This means that the motion in

the vicinity of L1−2 is strongly dependent from the initial conditions. In this sense,

a lot of mathematical effort has been undertaken in the last fifty years to study the

behavior in the region of L1−2. Generalizing, every 4th order Hamiltonian system of

the case center × saddle has two integrals of motion, one describing a hyperbola on the

plane of two eigenvectors, and one describing a circle on the plane of the remaining two

eigenvectors. In addition, Moser’s theorem proves that the behavior of the linearized

system in the neighborhood of the LPs of the CR3BP is valid also in the real nonlinear

system [77].

Translating this in the 3B dynamics, this means that two additional reference inte-

grals of motion exist in the planar region of L1−2. They define the surplus of energy

that the trajectory has with respect to the related LP, and their single values allow to

distinguish four classes of orbits in that region. The presence of the center manifold

provides a Lyapunov periodic orbit around the EP: this is an ellipse in the linearized

system, with the major axis along the y direction, and in a µ-dependent ratio with

the minor axis, whereas in the real system the orbit is distorted to a bean/tadpole

shape. Then, their is a manifold of asymptotic orbits that arrive (time-forward) or

leave (time-backward) the Lyapunov orbit. Finally, there are transit and non-transit

orbits across the Lyapunov orbit. Their name is related to the fact that they are or not

able to cross the EP’s region along the x-axis: this means that they allow to transfer or

not across the realms around both primaries. The term invariant manifold refers to the

regions of the phase-space spanned by the asymptotic orbit of a LPO. The invariant

manifolds are separatrices of motion: the trajectories at a given Jacobi integral must

be inside the tube given by the invariant manifold of the iso-energetic LPO to perform

a natural transit between the two realms, which face each other as a bottleneck through

the equilibrium point.

In summary, in this section it is proved that the boundaries of the Hill’s SOI for

Phobos at the energy of L1−2 are very close to its surface, ranging from 1km to 3.5km.

These values are too small to use Keplerian orbits in a Phobos-centered R2B dynam-

ics working assumption, but also the classical LPOs around L1−2, exploited in depth

by space mission in the Sun-Earth and Earth-Moon CR3BPs, will be highly affected

by practical (distance from Phobos’ surface) and physical (perturbations of Phobos)

constraints. The computation of the LPOs and their invariant manifolds in the Mars-

Phobos CR3BP, and their extension in a refined model of the orbital dynamics, will be

undertaken in chapter 4.
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2.3.6 Hill’s Approximation of the CR3BP

In the case of a R3BP where the two primaries’ masses are very unequal, some approx-

imations could be made. Outside the realm of influence of the secondary, the dynamics

should be analyzed as a classical R2BP around the primary. Inside the secondary’s

realm instead, the suggestion is to use an approximation of the CR3BP dynamics,

which is known as Hill’s approximation. This is motivated by the fact that, since the

Hill’s SOI’s radius decreases with the mass parameter, staying inside of this realm au-

tomatically means that the normalized distances from the secondary are numerically

small. Thus, the limit of the equations of motion of the CR3BP of Eq.2.13 for µ tending

to zero is carried out. It is worth to note that this does not mean to consider the mass

parameter to be zero. In this ultimate case, the full gravity of the secondary would be

neglected in its vicinity, downgrading the R3BP to the relative dynamics with respect

to a massless point orbiting the primary with a R2B motion (circular in this case). This

is the case of Formation Flying, rendez-vous and docking maneuvers of two spacecraft4.

Instead, the Hill’s approximation of the CR3BP leads to a linearization of the gravity

of the primary, because inside the collapsed SOI its variation tends to zero. The pro-

cedure requires to first carry out a coordinates transformation, expressing the CR3BP

in the Hill’s frame of the secondary. Also, a different and more convenient length unit

is required for this framework, which is to use the Hill’s radius of Eq.2.20, that is

commonly referred as the factor γ. Thus, the positions of interest in the Hill’s approxi-

mation of the CR3BP are practically bounded by the unit sphere. The new normalized

variables are now denoted with an upper bar in the following equations.

q =

[
x=γx̄+(1−µ)

y=γȳ
z=γz̄

]
= γq̄ +

[
1−µ

0
0

]
(2.31)

After such transformation, Eq.2.13 is taken with its limit as µ → 0, resulting in

the dynamical equations of the CR3BPH in Lagrangian (Eq.2.34) and Hamiltonian

(Eq.2.36) state-model form. In particular, µ disappears from the equations of motion,

and the CR3BPH does not depend on any parameter, therefore its normalized solution

is universal.

u/q̄ = − 1

γ3

1− µ(
2

√(
x̄+ 1

γ

)2
+ ȳ2 + z̄2

)3

(
q̄ +

[
1
γ

0
0

])
− 1

γ3

µ(
2
√
x̄2 + ȳ2 + z̄2

)3 q̄ (2.32)

lim
µ→0

u/q̄ = −q̄ +
[

3x̄
0
0

]
−
[

1
0
0

]
− 3
‖q̄‖3 q̄ = −AH1q̄−

[
1
0
0

]
− 3
‖q̄‖3 q̄ , AH1 =

 −2 0 0

0 1 0

0 0 1

 (2.33)

4In particular, the Hill’s approximation of these equations leads to their linearization.
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x =

[
q̄

˙̄q

]
, ẋ = Ax +

[
03x1

− 3
‖q̄‖3 q̄

]
, A =

[
03 I3

−P−AH1 −2W

]
=


03 I3 3 0 0

0 0 0

0 0 −1

 −2W


(2.34)

ueff = u− 1

2
q̄TPq̄ = −1

2
q̄TAH1q̄+

3

‖q̄‖
− 1

2
q̄TPq̄ =

3

‖q̄‖
− 1

2
q̄T (P + AH1) q̄ (2.35)

x =

[
q̄

p̄

]
, ẋ = Ax +

 − 1
γW

[
1−µ

0
0

]
− 3
‖q̄‖3 q̄

 , A =

[
−W I3

−AH1 −W

]
(2.36)

The CR3BPH has only two equilibrium points L1−2, in the exact normalized posi-

tions of ±1 along the x-axis, as expected since the limit of the original quintic equation

was already observed in section 2.3.5.1. Thus, the error introduced by the Hill’s ap-

proximation on the static properties inside the SOI of Phobos is only 10m, which is a

relative error of 0.1%. Also the eigenvalues of L1−2 have the same relative error, and

are still associated to a saddle × center × center manifold structure.

u/q̄q̄(L1−2) = −AH1 +

 6 0 0

0 −3 0

0 0 −3

 =

 8 0 0

0 −4 0

0 0 −4

 (2.37)

λ(L1−2) =


±i
√

4 = ±iυ
±
√

1 +
√

28 = ±λ
±
√

1−
√

28 = ±iν
(2.38)

In conclusion, the CR3BPH is a simplified version of the CR3BP with useful proper-

ties for mathematical analysis, such as symmetry and universality (it does not depend

on any parameter). It is a good approximation for computing the static properties of

the Mars-Phobos system, but the high instability in the L1−2 regions of the CR3BP is

quite sensitive also to these fine approximations when propagating the orbits in the full

dynamics. Therefore, the dynamical analysis of the invariant objects in the vicinity of

Phobos in this thesis will be conducted without making use of the Hill’s approximation.
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2.4 Orbital Perturbations

An analysis is undertaken to quantify approximately the errors that occur in the Mars-

Phobos system when it is approximated with the CR3BP of Eq.2.13. In this case, the

Keplerian circular orbit of Phobos is also approximated as equatorial.

2.4.1 Physical Perturbations

The main physical orbital perturbations are distinguished by gravitational and non-

gravitational forces.

In the first class, there is the net term that when added to the basic Newtonian point-

mass force provides the true gravity pull of a general non-spherical and non-uniform

body. In astrodynamics this term is usually modeled with a spherical harmonics series

expansion known as gravity harmonics. For a first analysis, the dominant term for both

Mars’ and Phobos’ gravity fields is considered, which is known as J2 and is related to

the oblateness of the body. As a reference, Mars’ further harmonics start from a J2,2

effect at Phobos which is the 19% of the one of J2, but then their effect decreases rapidly

with the degree and order. In contrast, Phobos’ gravity field is highly inhomogeneous,

and many additional harmonics are relevant to model it inside the SOI, starting from

a J2,2 effect which is the 84% of the one of J2 at the boundary of the SOI. Eq.2.39

provides the formula for the J2 gravity acceleration in a BCBF frame.

aJ2
G (rBCBF ) = −GM⊕R⊕

2

‖r‖5
J2,⊕

3

2


rx

(
1− 5

[
rz
‖r‖

]2
)

ry

(
1− 5

[
rz
‖r‖

]2
)

rz

(
3− 5

[
rz
‖r‖

]2
)

 (2.39)

Additionally, the effect of the gravity harmonics on the apparent rotational acceleration

of the 3B frame must also be taken into account. For J2, this turns in an increase of

the centrifugal force, because the mean motion is scaled by a factor
√

1 + 3
2 J2(R/L)2.

The second type of gravitational perturbation is the basic gravitational term of ad-

ditional bodies. In the R2BP this is known as third body perturbation, and its effect

is the sum of the gravity of the additional attractor and its apparent force, as shown

in Eq.2.40.

aTB
(
r1

2, r
1
3,m2,m3

)
= − GM23∥∥r1

2 − r1
3

∥∥3

(
r1

2 − r1
3

)
− GM3∥∥r1

3

∥∥3 r1
3 (2.40)

In the framework of the 3BP the disturbance of an additional body is referred to

as fourth body perturbation, and Eq.2.40 could be adapted using as first body the

barycenter and mass of the primaries, as second body the spacecraft, and as third

body the additional attractor. For Mars-Phobos, further attractors considered are the

Sun, Jupiter, the Earth, and Deimos. For a basic analysis, Eq.2.40 is applied pair
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Figure 2.9: Mars Global Reference Atmospheric Model. Density profile compared with
the one of the Earth [AGI].

by pair considering the perturbing body at its closest conjunction configuration with

Phobos, and assuming coplanar orbits. For the case of Deimos, due to the short time

scale and proximity of its orbit, the range between closest conjunction and farthest

opposition is considered.

In the second class, there are the pressure disturbances of the atmospheric drag and

the electromagnetic radiation. Phobos does not have an atmosphere, and the atmo-

sphere of Mars is thinner than that of the Earth as a reference (actually their density

profile is more irregular, see Fig.2.9), and the orbiting velocities around Mars are smaller

than the ones of the Earth at the same altitude, therefore the effect at Phobos’ altitude

is negligible. Instead the radiation pressure analysis could be interesting also for addi-

tional implementations (solar sails). The primary source of radiation pressure (always

considered in light here) is the one coming from the Sun (SRP), which has its major

emission in the UV field with a mean heat flux value q of 1371W/m2 at 1AU (the Solar

constant). Additional sources are obviously the other bodies, with IR major emission,

and their reflection of the Sun incoming one, which is measured by the body’s albedo

coefficient (weighted by the spherical reflection factor of view; see Table 2.1). Here

the radiation pressures of Mars (MRP) and Phobos (PRP) are considered. For Mars,

mean IR flux at its surface is considered 110W/m2, whereas mean value for Phobos is

130W/m2. The local radiation pressure definition of Eq.2.41 should be integrated onto

each illuminated surface of the spacecraft, considering its optical properties (along the

incoming spectral distribution), summarized by its specular and diffusive reflectance

coefficients5. Classical spacecraft’s values used here are: both 40% for MLI surfaces,

and both 10% for solar arrays. Also the emissivity of the spacecraft could be consid-

ered, but its effect as an orbital perturbation for a spacecraft is negligible. Finally,

5Assuming as usual the spacecraft’s surfaces to be matt, the absorbance coefficient is then uniquely
defined.
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Eq.2.42 shows the perturbing acceleration, which depends also from the area-to-mass

ratio of the spacecraft: here, a classical global value used is 0.01.

pRP
(
r�
)

=
q (r�)

clight
=

1

clight
qref

(
dref
‖r�‖

)2

(2.41)

aRP (r�) = 1
m

∫
pRP (r�)

[
(1− crs) r̂dA� + 2

(
crs

(
r̂dA� N̂dA

)
+ 1

3crd

)
N̂dA

] (
r̂dA� N̂dA

)
dA (2.42)

It is important to stress that the analysis of radiation pressure undertaken here

is considered for a conventional spacecraft, whereas large solar sails are designed to

actually use the SRP as a natural thrust source (with large area-to-mass ratio and

enhanced optical reflectivity properties). Besides, a common problem in astrodynamics

nowadays is the study of the natural motion of dust particles around Solar System’s

small bodies. In this case, the SRP becomes a relevant force per unit of mass (even

larger than what a solar sail could deliver) because the area-to-mass ratio increases as

far as the dust grain’s size decreases. This could be simply shown assuming a reliable

spherical and uniform model for a grain: the ratio between lighted area and total mass

is indeed inversely proportional to the grain’s radius.

(A/m)dust =
πr2

grain

ρgrain
4
3πr

3
grain

=
3

4ρgrainrgrain
(2.43)

Therefore, dust orbital dynamics is driven by both gravity of the Solar System’s

bodies of interest, and SRP. This coupling is referred to in the literature as the photo-

gravitational problem.

2.4.2 Modeling Perturbations

In addition to the physical forces, artificial disturbances come from the approximation

of the dynamics and the motion of the bodies in the model itself. The inclination of

Phobos’ orbit is small (about 1◦) and acts only when considering the perturbations

of other bodies, thus is not significant to be analyzed. In the Mars-Phobos CR3BP,

the effect of the eccentricity (about 1.5%) of the actual Mars-Phobos orbit must be

investigated. Following this value, a static indicator is straightforwardly derived. The

LPs in reality are not fixed in the 3B frame, but oscillate with an amplitude of 260m,

realized when Phobos’ phase is at perimars and apomars. This is definitely significant

due to the low altitude (3.5km) of L1−2 over Phobos (it is 7% of this distance), and

the already mentioned instability at these LPs.

To derive a related physical acceleration value, the procedure used is to compute

the difference between the acceleration field of the CR3BP and the one of the elliptic

model of the Mars-Phobos system. Since the ER3BP depends also on the phase of

Phobos around Mars, the maximum value of such difference along Phobos’ elliptic

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

34 Zamaro Mattia



Orbital Dynamics and Physical Environment around Phobos

orbit is considered. To derive an analytical formula of the eccentricity perturbation in

the CR3BP to be valid for a general orbit, different choices arise to define how the user

wants the trajectory to be preserved in the new dynamics. This because the orbit of

the primaries is not the same. Since the interest in this thesis is to model the motion

in close proximity of Phobos, the reference used is to maintain the same relative state

with respect to the secondary.

First of all, the equations of motion of the ER3BP are presented in Eq.2.44 in the

same 3B frame, where the distance between the two massive bodies l is not fixed

anymore but it depends on the true anomaly of Phobos around Mars. Therefore the

position of both primaries from their barycenter is variable and pulsating. In addition,

the frame rotates now with a variable angular velocity and acceleration. Thus, Eq.2.44

could be derived from Eq.2.1-2.2.

q̈ =− Gm2∥∥∥q− l(ν)
[

1−µ
0
0

]∥∥∥3

(
q− l(ν)

[
1−µ

0
0

])
− Gm1∥∥∥q− l(ν)

[−µ
0
0

]∥∥∥3

(
q− l(ν)

[−µ
0
0

])
+

− ωz(ν)2Pq− ω̇z(ν)Wq− 2ωz(ν)Wq̇

(2.44)

l(ν) =
p

1 + e cos ν
= a

1− e2

1 + e cos ν
(2.45)

ωz(ν) =

√
GM

p3
(1 + e cos ν)2 = n

(1 + e cos ν)2

(1− e2)3/2
=
vθ
l

(2.46)

ω̇z(ν) = −2
GM

p3
(1 + e cos ν)3e sin ν = −2n2 (1 + e cos ν)3

(1− e2)3 e sin ν = −2ωz
vr
l

(2.47)

In the relative motion’s approach mentioned before, to compute the eccentricity per-

turbation the ER3BP must be expressed in a coordinate system centered on Phobos,

which is Phobos’ Hill’s frame of its elliptic orbit. In this frame, Phobos is fixed whereas

Mars and the system’s barycenter pulsate. This translation follows the Keplerian mo-

tion in Eq.2.45 of Mars and Phobos orbits around the barycenter, expressed now in

the Hill’s rotating coordinates. Therefore positions and velocities are transformed from

Eq.2.44 accordingly, and a new term appears in the dynamics, since the apparent trans-

lational acceleration in Eq.2.2 of the origin is now not null.
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q̈ =− Gm2

‖r‖3
q− Gm1∥∥∥q− l(ν)

[−1
0
0

]∥∥∥3

(
q− l(ν)

[−1
0
0

])
+

− ωz(ν)2P
(
q− l(ν)

[−(1−µ)
0
0

])
− ω̇z(ν)W

(
q− l(ν)

[−(1−µ)
0
0

])
+

− 2ωz(ν)W
(
q̇− l̇(ν)

[−(1−µ)
0
0

])
−
(
−l̈(ν)

[−(1−µ)
0
0

]) (2.48)

 l̇(ν) = p e sin ν
(1+e cos ν)2ωz(ν) = an e sin ν

(1−e2)1/2

l̈(ν) = an e cos ν

(1−e2)1/2ωz(ν) = an2 (1+e cos ν)2

(1−e2)2 e cos ν = l(ν) e cos ν
1+e cos νω

2
z(ν)

(2.49)

The four added terms represent the four usual acceleration terms of the Keplerian

motion in a polar coordinate frame (radial, centripetal, transversal and Coriolis), and

their sum is therefore equal to the gravity of Mars at Phobos (which is only radial).

Eq.2.50 presents the ER3BP in the Hill’s frame of the secondary, before any normal-

ization.

q̈ =− Gm2

‖q‖3
r− Gm1∥∥∥q− l(ν)

[−1
0
0

]∥∥∥3

(
q− l(ν)

[−1
0
0

])
+

− ωz(ν)2Pq− ω̇z(ν)Wq− 2ωz(ν)Wq̇−
(
GM

l(ν)2

[−(1−µ)
0
0

]) (2.50)

The special case of the CR3BP in the Hill’s frame is retrieved assuming zero eccen-

tricity.

q̈ = −Gm2

‖q‖3
r− Gm1∥∥∥q− a [−1

0
0

]∥∥∥3

(
q− a

[−1
0
0

])
− n2Pq− 2nWq̇−

(
GM

a2

[−(1−µ)
0
0

])
(2.51)

In conclusion, the eccentricity perturbation, at a fixed true anomaly, is the difference

of the relative acceleration field between Eq.2.50 and Eq.2.51. Its opposite is the action

that an appropriate control system would demand to the actuators in order to maintain

a target trajectory expressed in the relative state from Phobos and computed in the

circular case, when the real environment corresponds instead to the elliptic case.

aECC (r, ṙ) = r̈CR3BP (r, ṙ)− r̈ER3BP (r, ṙ)

= r̈G2,G1,AROT
CR3BP (r, ṙ)− r̈G2,G1,AROT

ER3BP (r, ṙ) + r̈ATRANSLCR3BP (r)− r̈ATRANSLER3BP (r)

=
(
r̈G2,G1,AROT
CR3BP (r, ṙ)− r̈G2,G1,AROT

ER3BP (r, ṙ)
)
−
(
r̈G1
CR3BP

([
0
0
0

])
− r̈G1

ER3BP

([
0
0
0

]))
(2.52)
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Figure 2.10: Differential eccentricity per-
turbation. The maximum magnitude aP

of the eccentricity perturbation of Eq.2.52 is
shown as a ratio aP /a2 with respect to the
magnitude a2 of Phobos’ Keplerian gravity
term in the point. Phobos realm.

Figure 2.11: Differential eccentricity per-
turbation. The maximum magnitude aP

of the eccentricity perturbation of Eq.2.52 is
shown as a ratio aP /a2 (in logarithmic scale)
with respect to the magnitude a2 of Phobos’
Keplerian gravity term in the point.

The Eq.2.52 of the eccentricity perturbation has been rearranged in a different way,

separating from the two relative accelerations the related couple of apparent transla-

tional terms, associated to the relative motion of the frame’s center. This is to show

that the second couple could be calculated from the gravity of the primary at Phobos

in the two dynamics.

Fig.2.10-2.11 present the outcomes of the eccentricity perturbation in the Mars-

Phobos CR3BP for maintenance of a fixed relative position with respect to Phobos’

Hill’s frame. Analysis is undertaken in the orbital plane, since an out-of-plane compo-

nent would simply increase the planar value. In particular, Fig.2.10 focuses on Phobos’

SOI, proving that the disturbance increases with the distance from Phobos, and ac-

counts for a magnitude about the 6% of the Phobos’ gravity at the SOI’s boundary, with

the maximum effect always at perimars for points along the x-axis, and in quadrature

for points along the y-axis. This relative error is in accordance with the static value of

the L1−2 location. The relative value is also the same if compared with the Sun-Earth

scenario, where as mentioned the eccentricity is similar: it is already known that this

is enough to destabilize the motion of the LPOs without appropriate station-keeping.

The great and unexpected difference is that despite Phobos is minuscule if compared

to the Earth, due to the collapsing of the SOI, Phobos’ gravity at its SOI’s boundary

is 14 times the Earth’s gravity at its SOI’s boundary, for a value of 2.6mm/s2. There-

fore, the eccentricity perturbation of Phobos is even larger in absolute value than that

of the Earth and would require a significant amount of thrust (0.02N − 0.2N for a

100kg − 1, 000kg spacecraft) but in particular of fuel (13m/s per day) to be counter-

acted.
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2.4.3 Differential Perturbations Analysis

An important point to consider in conducting the orbital perturbations analysis is that

the objective is to model the motion in close proximity to Phobos. Therefore the aim

is to investigate the effect of the perturbations in the CR3BP affecting the relative

motion with respect to Phobos. This is the same observation made in section 2.4.2 to

derive the formula for the eccentricity perturbation. Therefore, evaluating the physi-

cal perturbations of section 2.4.1 with the given formulas is not sufficient, because all

the disturbances not due to Phobos affect the motion of the moon itself. In order to

maintain the same relative state with respect to the secondary, a full relative motion

approach must be considered. This is close to the Formation Flying dynamics, where

Phobos could be considered the “chief spacecraft” that the actual spacecraft follows

in proximity like the “deputy”. In this framework, it is well-known that the relative

dynamics of the deputy spacecraft is affected by the differential perturbations between

the chief and itself. This means that Mars’ GHs, the 4Bs disturbance, SRP, and MRP

should be considered as a difference from their same value computed at Phobos’ center

of mass. The eccentricity perturbation derived in Eq.2.52 already embeds this differ-

ence. Thus, in the framework of relative dynamics, these perturbations are all highly

lowered in proximity of the moon, where they tend to zero, and increases with the

distance from the secondary. In the case of Phobos, SRP and MRP are not signifi-

cantly altered because the orbit of Phobos itself is not significantly altered too by them

(the area-to-mass ratio of a celestial body is smaller than the one of a spacecraft). On

the contrary, the effect is significant for the Mars J2 perturbation, because Phobos’

orbit around Mars is not Keplerian, but more closely follows a classical low-altitude

J2 perturbed orbit. This could be proved just looking at the ephemerides of Phobos

for some revolutions: the mean orbital elements’ variations, or more easily the secular

variations of the osculating ones, are close to the classical predictions provided by the

central body’s oblateness effect.

A second point to consider is the reference trajectory where the disturbances must be

evaluated. Since this analysis is undertaken to derive a basic reference for the orbital

perturbations on the Mars-Phobos CR3BP, it will be applied for the simple case of fixed

relative points. Also, since the interest is in the dynamics near Phobos, due to the small

size of its SOI, all the perturbations are nearly isotropic, and the only variable for this

simple analysis is the radial distance from Phobos along the Mars-Phobos direction

(apart from the eccentricity, which has been evaluated along all three directions).

Outcomes of the differential analysis are presented in Fig.2.12-2.13, where the mag-

nitude of the perturbations aP is shown as a ratio aP /a2 with respect to the magnitude

a2 of Phobos’ Keplerian gravity term in the point, and they correspond to the graph

of the perturbations aP produced in [78]. Inside the Phobos’ SOI, all the fourth body

effects and PRP are definitely far lower than Phobos’ and Mars’ first zonal harmonics.

Mars’ J2 and the Sun’s gravity differential perturbations become significant as Phobos’

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

38 Zamaro Mattia



Orbital Dynamics and Physical Environment around Phobos

Figure 2.12: Differential perturbations
analysis. In case of double lines for the same
perturbation, plain one is for outward dis-
tance, dotted one for inward distance from
Phobos towards Mars. Final distance value
is Phobos’ altitude over Mars.

Figure 2.13: Differential perturbations
analysis inside Phobos’ sphere of influ-
ence. Vertical dotted lines indicate Phobos’
major size and Hill’s SOI’s radius.

basic gravity respectively at 20 and 300 Phobos radii, and it is remarkable to underline

that now the SRP effect overlooks the Sun’s gravity up to 200 Phobos radii (but also

the MRP does the same up to 10 Phobos radii).

In conclusion, the CR3BP does not provide an accurate approximation to describe

the Mars-Phobos system’s dynamics: the gravity harmonics and the orbital ec-

centricity of Phobos are the main orbital perturbations in proximity of the

moon. Outside its Hill’s SOI boundary the eccentricity becomes the domi-

nant term, with Mars’ J2 being the second most influential. The consideration

of the Sun’s gravity is needed only for the design of the interplanetary transfer trajec-

tory arriving and leaving the Phobos’ orbit. In chapter 3, both the gravity harmonics

and eccentricity will be incorporated into the modeling of the relative dynamics near

Phobos, to derive an improved model where computing the LPOs about the Martian

moon.

2.5 Radiation Environment

Space is an environment very different and distant from the normal perception that

people have living on the Earth’s surface. Vacuum is definitely the most peculiar

effect we associate to spacecraft and space missions. It is indeed the focal point of

the space environment, but its effects cover different physical aspects. First of all,

the resulting absence of atmosphere (at exception of other planetary environments)

produces mechanical and chemical implications, which is to be responsible for the lack

of external pressure and for the outgassing phenomenon of some materials. These

aspects involve the spacecraft’s structure and subsystems design, as well as the human

crew’s physiological and biological effects (called human factors). In particular, the
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last topic is connected with a broad range of ergonomics and internal environment

aspects. Second of all, there is a thermodynamical implication, which is that the only

heat propagation mechanism in space is the radiation. The effects are the extreme

temperature interval a spacecraft could be subject to in conditions of light/shadow,

but also to the threatful ionizing part6 of the radiation emitted by the Sun, which is

not shielded by the atmosphere and the magnetic field as it happens here on the Earth’s

surface. In particular, hazardous radiation is currently considered the most challenging

engineering aspect, the showstopper as called in [79], in designing a safe manned mission

in deep space. Thus, in this section the analysis of the radiation environment around

Phobos is conducted, to quantify the sources and levels of radiation that a crewed

spacecraft can be subjected to. This will be used in the performance analysis of the

orbits around Phobos that are computed in this thesis.

2.5.1 The Space Radiation Environment

The purpose of this section is to introduce the reader to the space radiation environment

[80, 81]. The main source of radiation in the Solar System is our “central heating plant”

the Sun. It is worth noting that everything known about its constitution and operating

principles come from long range observations. For obvious reasons, probably we will

never be able to understand its most intimate aspects with studies on the field. The

Sun’s activity is variable, and follows a 11-years cycle, where we have a maximum

and minimum of its variegated emission. This is constituted by gradual radiative

and particle production and by impulsive particle events. The first emission is the

well-known Solar electromagnetic radiation, whose spectrum could be divided into two

zones: the high wavelength rays (radio and microwaves, IR, visible and near UV)

constitute the non-ionizing part; the low wavelength rays (far UV, X and γ) constitute

the ionizing part. It is well-known that the ozone layer counteracts such low wavelength

rays and protects life on the Earth’s surface. This source is not important for crewed

spacecraft because the electromagnetic waves are easily shielded by the spacecraft’s

structure. The second gradual emission of the Sun is made of low-energy charged

particles7. They are mainly protons and electrons, and they constitute a plasma flow,

called the solar wind. The solar wind propagates until about 100AU , like a bubble in the

Milky Way, named as the Heliosphere, where our Solar System is completely included.

The interaction of the solar wind with the magnetic field of a planet produces the so-

called Magnetosphere. This is a region where the charged particles remain trapped by

6A radiation is said to be ionizing when its interaction with matter releases hazardous energy that
changes the electronic or even nuclear configuration of its atoms, which could be able to produce serious
damage in the chemical constitution of cells in organic tissues (and so also in the DNA present in their
nucleus). Non-ionizing radiation produces instead only vibration and oscillations in the atoms, which
is it increases its temperature (in case of extreme conditions, this would be tackled by the thermal
subsystem design of the spacecraft).

7In similarity with the radiative production, made by the spectrum of electromagnetic rays, a charged
particle is usually called cosmic ray.
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Table 2.3: Permissible exposure limits for radiation of astronauts. Recommended
thresholds for the Ef.D. for an entire career exposure interval [82]. The threshold indicated for
one year is 0.5Sv.

Age at exposure Male Female

25 1.5Sv 1.0Sv

35 2.5Sv 1.75Sv

45 3.2Sv 2.5Sv

55 4.0Sv 3.0Sv

the magnetic field lines8. The Earth’s Magnetosphere is made by two doughnut zones

called the Van Allen radiation belts9. The particles accumulated on the radiation

belts are threatful for a spacecraft, but since they have low-energy, in outer space

the solar wind becomes not important for crewed spacecraft because the particles are

easily shielded by the spacecraft’s structure. Despite the radiation belts are hazardous

when crossed, they provide the natural shield that protects life on the Earth’s surface,

satellites in LEO, and in particular the crew of the ISS, from outer space radiation.

Finally, the third kind of Solar emission is made of high-energy charged particles, and

they constitute the hazardous ionizing part of the Solar radiation in deep space for

the organic tissues, because they have too much energy to be completely stopped by

the spacecraft’s structure. This emission is collectively called Solar Energetic Particle

Events (SEPEs), since their particles are the products of sunspots, solar flares, and

coronal mass ejections.

In addition to the Sun, there is a second type of radiation in the Solar System: the

Galactic Cosmic Rays (GCRs). These are gradual high-energy charged particles that

originate from the interstellar space. The interaction of the GCRs with the solar wind

then originates other minor sources of cosmic rays. In particular, since the source of the

GCRs is not variable in time, but the reflecting capability of the Heliosphere depends

on the Sun’s activity, the GCRs are stronger at a minimum of the Solar cycle, and

milder at a Solar maximum.

Finally, no other direct sources of threatening radiation are present in the Solar

System, because all the other celestial bodies produce only IR electromagnetic emission.

But a spacecraft flying in proximity of any planet or minor body is also subjected to

an increased amount of solar and interstellar cosmic rays, constituted by the reflection

of the rays impacting the celestial body. This is quantified by its albedo coefficient,

which depends from the optical properties of the body’s surface or atmosphere.

8The existence of this effect was first theorized by Prof. Van Allen, and only discovered by chance
by the first US satellite (Explorer I, 1958).

9Apart from a small amount of heavy ions, the closer belt is made of protons and electrons, while
the farther belt is made only of electrons). In particular, due to the Earth’s magnetic field irregularities
at low altitudes, the inner Van Allen belt has a threatful downward spike which is the famous South
Atlantic Anomaly that LEO’s spacecraft must avoid.
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Table 2.4: SPENVIS analysis of the Mars’ orbital radiation environment. Outcomes
from eMEREM tool: Phobos’ orbital altitude, epochs from 2010 to 2030.

Dosimetry Rate
for Radiation

Ef.D. Am.D.Eq.

125µSv/h 834µSv/h
SEPEs p 3.0mSv/d 20.0mSv/h

1.1Sv/y 7.3Sv/y

90µSv/h 19µSv/h
GCRs p & α 2.2mSv/d 0.5mSv/h

0.8Sv/y 0.2Sv/y

215µSv/h 853µSv/h
Total 5.2mSv/d 20.5mSv/h

1.9Sv/y 7.5Sv/y

2.5.2 Dosimetry

This section presents how the effect of the radiation environment is quantified in re-

lation to human factors [83, 84]. Dedicated effects on electric, electromagnetic and

electronic equipment (upsets, burn-outs, latch-ups) are not considered in this analysis

of the radiation environment around Phobos, but they are essential for any spacecraft

[81]. In addition, the spacecraft’s structure is obviously a necessary shield for the crew

and the payload. This will not be considered in this thesis, because it is part of the

dedicated structural design. The objective is to quantify the natural and “gross” effect

of the space radiation that a particular orbit around Phobos is subjected to.

The hazards for a manned spacecraft come from the ionizing radiation: its effect

is to deposit its energy in the material that it impacts. The primary physical unit of

dosimetry of radiation is the Absorbed Dose (Ab.D.), which is the amount of energy

that a specific radiation deposits in 1kg of a specific material’s mass (IS unit is the

Grey, Gy). Thus, the Ab.D. depends from the radiation type and material. For human

factors, new dosimetry measures are introduced: the physical quantity is the same, but

a distinction is made, which is to consider as IS unit for these measures the Sievert,

Sv. First, the Ab.D. is weighted trough all the kinds of the impacting radiation’s com-

position: the resulting measure is called Equivalent Dose (Eq.D.). Next, the Eq.D. is

weighted trough all the kinds of tissue for a common human body’s composition: the

resulting measure is called Effective Dose (Ef.D). An alternative approach is to relate

the Eq.D. to a reference organic body (called the ICRU sphere), and the resulting mea-

sure is called Ambient Dose Equivalent (Am.D.Eq.).

Finally, to evaluate the radiation environment for a space mission, the operative

dosimetry value is compared with the estimated allowable dose amount for astronauts.

This is based on the recommendations of the National Council for Radiological Protec-

tion (NCRP) and it is currently used by both NASA and ESA. From Table 2.3 we see
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that this depends on age, gender, and length of the mission.

2.5.3 Radiation Analysis around Phobos

The purpose of this section is to compute an approximate figure for the radiation en-

vironment in Phobos’ orbit, in order to compare it with the allowable amount for a

human crew.

Since Mars’ magnetic field is very weak, no trapped particles (and related shield-

ing) constitute the radiation environment for a mission following the orbit of Phobos,

which is similar to a deep space environment at the Sun-Mars distance, constituted by

two main sources: the protons from SEPEs, and the protons and alpha particles from

GCRs [85]. The spectral distribution of the two cosmic rays is very different. GCRs

are characterized by a larger energy, instead SEPEs are important due to their higher

fluence10. GCRs, due to their origin, are isotropically distributed in the Solar System,

their activity follows an inverse Solar cycle, and their reference is the ISO 15390 model.

The reference model used for the SEPEs is the ESP-PSYCHIC. When a Solar event

occurs, these cosmic rays are constituted by both an isotropic and directional part, and

the latter depends from the dynamics of the Heliosphere.

For applications to future manned missions to Phobos’ orbital environment, an es-

timation analysis is conducted with the open-source SPENVIS program [86] and its

dedicated model for Mars MEREM. This was developed by an European research cen-

ters’ network with the ESA TEC-SEE section [87, 88, 89]. To derive an approximated

figure of the gross effect of the radiation environment (without any shielding effect of

the spacecraft structure) to human factors, the Ef.D. is considered.

Table 2.4 summarizes the gross radiation hazards for a mission in Phobos’ orbit from

2010 to 2030. The result obtained is Ef.D.= 1.9Sv/y, 1.1Sv/y from SEPEs protons

and 0.8Sv/y from GCRs protons and alpha particles. This should now be compared

with the thresholds of Table 2.3. Considering the case of a 35-year old astronaut, the

figure derived from the analysis, for a Martian orbital segment of one year without

any structural shielding, falls inside the range 1.75-2.5Sv that indicates the maximum

amount of radiation dose that such human crew could be allowed to absorb throughout

the entire mission. Thus, the development of a strong shielding strategy for crewed

missions to Phobos is required [85].

An interesting idea that has recently gained attention, is that a manned spacecraft,

during a Martian orbital mission segment, could exploit Phobos as a passive radiation

shield: staying in its shadowing wake would theoretically counteract the gross Ef.D. of

the directional part of the SEPEs, while simply remaining close to the moon will block

any incoming isotropic particles (remaining SEPEs and GCRs) as much as its bulk

covers the sky. Following this idea, in this thesis possible orbits to be used also for

passive shielding purposes about Phobos are investigated. However, some additional

10In thermodynamics, the flow is distinguished into two appropriate measures: the fluence is the
density of incoming particles on the unit area; the flux is the fluence rate over time.
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albedo effects (of the GCRs neutrons) could be significant, while covering the field of

view of the Sun has not been proved to be relevant, as the scattering effect of the

particles along the Heliosphere’s lines of field is still a current topic of research [90].

Instead, the bulk’s occultation is a well-known and suitable strategy [19].

2.6 Lighting Conditions

The purpose of this section is to identify the lighting conditions around Phobos. In par-

ticular a spacecraft requires sunlight for the electrical power generation from the solar

arrays, and the solar flux decreases with the square of the distance from the Sun. This

means that at Phobos, the intensity of the solar rays is between 1.9 (perihelion) and 2.8

(aphelion) times weaker than on Earth orbit, and larger solar arrays would be needed to

produce the same amount of power for the payload. However, the spacecraft must also

consider the thermal constraints of its subsystems. For this reason, the thermal control

subsystem is designed in function of the lighting conditions of the mission to maintain

each component within its operative temperature range. In particular, some missions

could require the spacecraft to spend a significant time in shadow. Following this, the

analysis of this section will quantify the shadowing opportunities about Phobos, that

could exploit the wake of the moon as a natural shield against the directional solar

radiation.

2.6.1 The Sun-Mars-Phobos R4BP

The derivation of the lighting condition is a purely geometrical analysis. Since the

interest is for the positions in Phobos’ neighborhood, the analysis is conducted in the

Hill’s frame of its orbit around Mars. The kinematics must now consider also the

motion of the Sun in this frame, using a restricted four-body model to evaluate the

FOV of the Sun over time for points around Phobos. Usually two simplified models

are used for the R4BP analysis, assuming that all the three massive bodies rotate in

couples of circular and co-planar orbits. It should be remarked that this approxima-

tion is not coherent, since the resulting 3B motion is not a solution of the Newton’s

equations of motion [91]. The simplified circular-co-planar models are the Concentric

Circular Model (CCM), where two smaller bodies revolve around the massive one (like

the situation of two planets in the Solar System, or two natural satellites around their

central planet), and the Bicircular Model (BCM), where one body revolves around an-

other in cascade (like the chain Sun-planet-moon). The BCM is obviously the case of

the Sun-Mars-Phobos R4BP, but here two problems arise: first, the Mars’ heliocentric

orbit is the second most elliptic among the Solar System’s planets; second, Phobos’

orbit is equatorial, which is the resulting orbital plane is inclined with respect to its

ecliptic plane by Mars’ axial tilt θM = 25.19◦. These situations are not critical because

this analysis does not require an integration of the dynamics, and the motions of Mars
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around the Sun, and of Phobos around Mars, are retained from the classical 2B dy-

namics using the ephemeris of the two bodies at the current epoch of Table 2.1.

The motion of Mars in Phobos’ Hill’s frame is trivial and was already introduced

in section 2.4.2. In order to describe the motion of the Sun around Phobos, a coordi-

nates’ transformation is introduced in Eq.2.53-2.54, between the inertial (which is the

Sun ecliptic frame at J2000.0) and the relative (which is the adimensional 3B frame)

reference frames. In these equations, v is a general position vector, and the symbols

S,P ,M identify the bodies of the general Sun-Planet-Moon chain. Thus, the four an-

gles Ω⊕, i⊕, ω⊕, ν⊕,0 are the Keplerian orbital elements of the body ⊕, as presented in

Table 2.1, with ν⊕(t) and the position r(t) between the couples calculated from the 2B

dynamics’ solution. The orbital elements of a moon are defined in the planet’s BCE,

while the parameters of a planet are expressed in the heliocentric ecliptic frame SOEγ.

Eq.2.53-2.54 make use of attitude matrices A to define the rotation between different

frames, that are generally constituted by multiple successive rotations An(α) around

the n-th coordinate’s axis by the angle α. The notation here is simplified with the

classical matrix used in the 2B dynamics, which is the chain A3(ω + ν)A1(i)A3(Ω),

expressing A as a function of the respective angles. Finally, to perform the coordi-

nates’ transformation, the orientation of a body’s spin axis must be taken into account.

For every Solar System’s planet or satellite, it is defined the right ascension αNP⊕ and

declination δNP⊕ of its North Pole [70]. From them, the North Pole’s inclination is

iNP⊕ = π
2 − δNP⊕ , and the Node of reference’s location is ΩN⊕ = π

2 + αNP⊕ ; for the

Earth, the axial tilt θE = 23.44◦ is directly the North Pole’s inclination.

vSOEγ =APEEγ
POEγ

(θE)
(
APEEγ
PEPNP

(ΩNP , iNPP )
)T(

APEPNP
PHM

(ΩM , iM , ωM , νM (t))
)T

(
v3B −

[−µ
0
0

])
+
(
ASOEγ
SHP

(ΩP , iP , ωP , νP (t))
)T [ rSP (t)

0
0

]
(2.53)

v3B =
[−µ

0
0

]
+

1

rPM (t)
APEPNP
PHM

(ΩM , iM , ωM , νM (t))APEEγ
PEPNP

(ΩNP , iNPP )(
APEEγ
POEγ

(θE)
)T (

vSOEγ −
(
ASOEγ
SHP

(ΩP , iP , ωP , νP (t))
)T [ rSP (t)

0
0

]) (2.54)

The position of the Sun in the 3B frame is obtained from Eq.2.54 along time and using

the trivial inertial position of the Sun, which is the origin of the starting frame. The

resulting Sun’s adimensionalized position vector in the 3B frame rotates clockwise with

an angular velocity equal to the difference between Phobos’ and Mars’ revolution rates

(dominated by the first), with a fixed declination in the range [−θM , θM ] according to

the seasonal phase of Mars. In particular, seasons of Phobos correspond chronologically

with the ones of Mars, so they are referred in this thesis without any distinction. For
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Figure 2.14: Eclipse models. [Vallado, Wikipedia]

simplicity, the seasons of Mars are assumed to span in between the planet’s solstices

and equinoxes, in the same way as they are named for the Northern Hemisphere of the

Earth. Also a Martian month is consider to be 1/12 of the Martian year.

2.6.2 Eclipse Modeling

The analysis of the shadowing effects in this system is undertaken using eclipse model-

ing, which is to derive the zones of light and shadow produced by a shadowing central

body ⊕ when illuminated by a radiating body �. The lighting condition is described

by a scalar light function field L�,⊕. It ranges from 0 to 1 to express the ratio of

incident light with respect to the complete light case. Intuitively, the shadow func-

tion S is the 1-complement of L. The most accurate eclipse model is the dual-cone

model of Fig.2.14, which is able to discriminate positions of complete light (L = 1),

complete shadow (L = 0, also known as umbra) inside a conic wake (the first cone),

and penumbra (L ∈ (0, 1), the second cone)11. When the positions of interest are very

close to ⊕ and when there is a great difference between the two bodies’ dimensions, the

analysis could be simplified to a cylindric model, see Fig.2.14. This because the two

cones’ generatrices are close to each other for practical analysis: the penumbra zones in

between them vanish, and the generatrices are practically horizontal so the shadowing

wake in the region is cylindrical. The resulting positions are only in complete light or

shadow.

Both the two eclipse models are axial-symmetric along the conjunction line between

radiating and shadowing body, when their shape is both approximated with their mean

sphere. Thus the light functions are expressed in the half-plane whose reference axis is

such conjunction line. Eq.2.55 presents the light function of the cylindrical model for

a generic point P . Eq.2.56-2.58 present the algorithm to compute the light function of

the conic model: first the position of interest P is queried to be inside one of the cones

11The continuation of the cone of umbra is a subset of the cone of penumbra, specifically known as
antumbra.
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of umbra and penumbra, and then the percentage of incident light is determined if the

position is in penumbra.

{
βu = π

2

β⊕(P ) = arccos
(
r̂⊕P r̂�⊕

) ⇒


β⊕ ≥ βu → L�⊕(P ) = 1

β⊕ < βu →

 sinβ⊕ ≥ R⊕

‖r⊕P‖
→ L�⊕(P ) = 1

sinβ⊕ <
R⊕

‖r⊕P‖
→ L�⊕(P ) = 0

(2.55)

βu = arccos R�−R⊕‖r�⊕‖
βp = arccos R�+R⊕

‖r�⊕‖
γV u = π

2 − βu
γV p = π

2 − βp


r⊕V u = R⊕

R�−R⊕ r�⊕

r⊕V p = − R⊕
R�+R⊕

r�⊕

r�V u = R�
R�−R⊕ r�⊕

r�V p = R�
R�+R⊕

r�⊕ βV up = π
2 + βu

2 −
βp
2∥∥∥r⊕V up∥∥∥ = R⊕

sin
(
βu
2

+
βp
2

)


β⊕(P ) = arccos
(
r̂⊕P r̂�⊕

)
βV u(P ) = arccos

(
r̂V uP r̂�V u

)
βV p(P ) = arccos

(
r̂V pP r̂�

V p

)
(2.56)



β⊕ ≥ π − βp → L�⊕(P ) = 1

β⊕ < π − βp →


βV p ≥ γV p → L�⊕(P ) = 1

βV p < γV p →


β⊕ ≥ βu → L�⊕(P ) = p

β⊕ < βu →

{
βV p ≤ π − γV u → L�⊕(P ) = p

βV p > π − γV u → L�⊕(P ) = 0

(2.57)

δ⊕(P ) = arcsin
(
r̂⊕P
)

δ�(P ) = arcsin
(
r̂�P
)

α⊕(P ) = arcsin

(
R⊕

‖r⊕P‖

)
α�(P ) = arcsin

(
R�

‖r�P‖

)


∆δ = |δ⊕ − δ�|
θ⊕ = arccos

(
α⊕2−α�2+∆δ2

2α⊕∆δ

)
θ� = arccos

(
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2α�∆δ

)

L�⊕(P ) = p⇒

 ∆δ > |α� − α⊕| → L�⊕(P ) = 1−
1
2
α�2(2θ�−sin 2θ�)+ 1

2
α⊕2(2θ⊕−sin 2θ⊕)

α�2

∆δ ≤ |α� − α⊕| → L�⊕(P ) = 1− α⊕2

α�2 (antumbra)

(2.58)

2.6.3 Sun-Mars Eclipses

The approach used is to analyze the shadowing effect of each couple of bodies. The

first case is the Sun-Mars couple. Here the interest is to determine the value of L

at the Phobos’ location. Using the dual-cone model the location of the two cones’

vertexes is approximately of 118 3B length units (always the Mars-Phobos semi-major

axis). This value is definitely large if compared to Phobos’ location. Fig.2.15 shows

the generatrices of the umbra cone (due to the ellipticity of Phobos and Mars’ orbits,

the fixed length normalization results in Mars’ and Phobos’ radii to be variable over

the Mars’ seasonal phase). The inclination of the generatrices varies over the Martian
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Figure 2.15: Sun-Mars eclipse at Phobos. Dual-cone model. Relative size of the cone with
respect to Phobos taken first from equinoctial case at left, then actual seasonal variations in
the adimensional model highlighted.

Figure 2.16: Sun-Mars eclipse at Phobos.
Cylindric model. Light function, highlight of
daily variation and number of eclipses per ter-
restrial day.

Figure 2.17: Sun-Mars eclipse at Phobos.
Cylindric model. Lighting angle, highlight of
daily variation.

Figure 2.18: Sun-Mars eclipse at Phobos.
Phobos’ eclipse times per terrestrial day.

Figure 2.19: Sun-Mars eclipse at Phobos.
Phobos’ eclipse times per Phobos’ day, high-
light of aggregated time per day and fraction
with respect to Phobos’ period.
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Figure 2.20: Sun-Phobos eclipse. Dual-
cone model. Relative size of the cone with
respect to the Phobos’ orbital distance.

Figure 2.21: Sun-Phobos eclipse. Dual-
cone model. Relative size of the cone inside
the Phobos’ neighborhood.

year from zero at the equinoxes to ±θM at the solstices. Thus, Phobos’ SOI is just

a near and small domain in the Mars’ shadowing wake. Therefore the analysis of the

Sun-Mars eclipse is undertaken with the cylindric model.

The results over a full Martian year are summarized in Fig.2.16-2.19. The simulation

starts from the epoch value indicated in Table 2.1, when Mars is close to its descending

node, and moving towards its perihelion: since Martian summer happens at aphelion,

this means that the start is during fall. The β angle of Phobos is related to the

position of Phobos with respect to Mars’ ecliptic plane, and it has a small-period

variation due to the fast revolution of Phobos, and a long-period variation due to

Mars’ revolution. Amplitude of the oscillation is larger at Mars’ equinoxes and smaller

at Mars’ solstices. The resulting light function oscillates three times a day from 1 to 0,

until the inclination of the Sun with respect to the 3B orbital plane is high enough such

that Mars’ shadow cone does not enclose Phobos any longer, see Fig.2.15. This happens

during Mars’ winter and summer, when the light function becomes 1 and Phobos is

constantly in light, without Martian eclipses. It is worth to remark that due to Mars’

high eccentricity, seasons are unequal, with the Northern hemisphere of Mars and

Phobos experiencing a summer longer than that occurring in the South. Summarizing,

Phobos’ daily value of the Sun-Mars light function during equinoxes is 88%, resulting

in a maximum eclipse time of 54min (12% of Phobos’ daytime). Summer’s total light

period is about 164 days (3 Martian months), and in the winter this is about 110 days

(2 months). Middle seasons at Phobos are both about 200 days.

2.6.4 Sun-Phobos Eclipses

The second case is the shadowing effect provided by the Sun-Phobos couple, which is the

most interesting. For this preliminary analysis, the mean spherical shape of Phobos

is considered, since the direction of the axis of the umbra cone is not significantly

affected by the real shape. Instead, the shape of the shadow wake differs from a cone
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Figure 2.22: Sun-Phobos eclipse. Dual-cone model, seasonal variation. At left, size compar-
ison assuming the Sun in perfect opposition to Mars. At right, real orientation of the cones.

as long as the distance from Phobos decreases. However, while orbiting the moon

the accumulated differences become milder due to averaging effect. Considering an

ellipsoidal approximation of Phobos’ shape, the shadow wake is thinner than the one

obtained with a mean spherical model, from the 3% during solstices to the 9% during

equinoxes.

Using the conic model, Fig.2.20-2.23 highlight the relative size of the umbra and

penumbra cones, again with their seasonal variations, orienting the Sun opposite to

Mars with respect to Phobos. The location of the two cones’ vertexes is placed at a

distance of 327 Phobos’ radii. This distance is the 39% of the Phobos’ orbital distance,

thus the conic model should be used for mission segments out of 10 times the Phobos’

SOI boundary, but the size of Phobos’ shadow is also very narrow (at Mars surface, its

maximum radius in antumbra is 3 Phobos’ radii), as we see in Fig.2.22-2.23. Therefore,

the cylindric approximation is suitable in proximity of Phobos to model the Sun-Phobos

eclipses. At the SOI’s boundary the errors are less than 1%, while at 10 Phobos’ radii

distance, the deflection of the real shadow cones is between 2% and 6% (considering

seasonal variations). Finally, at 100 Phobos’ radii distance (one tenth of Phobos’ orbital

distance) the error is between 25% and 33%.

Unlike the Sun-Mars L1, the Sun-Phobos L2 is a time-variant 3D field. The mean

integral value L̄2 along one Phobos’ revolution period, for a given distance to Phobos,

is minimum on the surface of motion where the conjunction line between the anti-Sun

and Phobos revolves, shortly becoming 1 in points out of the surface: such minimum

value rapidly increases with the distance from Phobos. This is shown in Fig.2.24: from

L̄ = 50% at the body’s surface, L̄ = 78% at the SOI’s boundary, L̄ = 83% at 2 Phobos’

radii.

2.6.5 Mars-Phobos Eclipses

The last shadowing case is the Mars-Phobos couple. Since the radiation of Mars (with-

out the albedo) is inside the IR spectra, such eclipse analysis is neglected because it
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Figure 2.23: Sun-Phobos eclipse. Dual-cone model. Light function.

Figure 2.24: Sun-Phobos eclipse at Phobos. Mean light function versus distance from
Phobos on the anti-Sun surface of motion, from Eq.2.61.
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Figure 2.25: Sun-Mars-Phobos eclipse at
Phobos. Anti-Sun location (declination in
red, right ascension in blue) and Mars shadow
function at Phobos in yellow, with local mag-
nification.

Figure 2.26: Sun-Mars-Phobos eclipse at
Phobos. Anti-Sun daily orbit in spherical
coordinates around Phobos over the Martian
year. Martian eclipses during equinoctial sea-
sons occur when the anti-Sun is on the posi-
tive side of the x-axis of the Hill’s frame.

brings little variation to the lighting conditions (from Fig.2.13, MRP flux at Phobos is

two orders of magnitude lower than SRP one). It is only worth to note that the analysis

of this case must be undertaken with the dual-cone model, because the location of the

two cones’ vertexes is 2.77 Phobos’ radii, so just outside the SOI of the moon.

2.6.6 Sun-Mars-Phobos Eclipses

The conclusion of the analysis of the lighting conditions is now obtained combining the

previous single couples into a system of three massive bodies of a R4BP, focusing the

analysis in Phobos’ neighborhood. The Sun-Mars L1 is simply a scalar value along the

Martian year, while the Sun-Phobos L2 field must now consider the real dynamics of

the Sun, which is moving in the 3B frame of reference, as discussed in section 2.6.1.

Actually the analysis considers the direction of the anti-Sun �′ because it is more

immediate to relate it with the position of the shadowing wake of Phobos. Fig.2.25

shows that the declination of the anti-Sun is periodic along one Martian year simulation,

close to Mars’ axial tilt during summer and winter. Instead the right ascension, which

is the azimuthal phase, varies with the revolution phase of Phobos. The outcome is

highlighted in Fig.2.26, that presents a complete orbit of the anti-Sun, for every season.

The cylindrical shadowing wake of Phobos revolves clockwise around its spin axis with

the period of Phobos, and varies its inclination with the season θ�′ ∈ [−θM , θM ] (when

the anti-Sun is in the Northern hemisphere, we are in winter). Besides, Phobos’ realm

is in complete shadow when a Martian eclipse occurs, which is when the anti-Sun is

close to the positive direction of the Hill’s x-axis frame, enduring from a maximum at

the equinoxes to zero during summer and winter.

The procedure used to compute the light function of the 4B model in proximity of

Phobos follows two steps. The first step is to compute the Sun-Phobos mean integral
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Figure 2.27: Sun-Mars-Phobos eclipse at Phobos. Reference frames and angles for the
analysis.
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field L̄2 over one Phobos’ revolution for different seasons. The approach taken could

be generalized in such a way. An axial-symmetric functional (the Sun-Phobos light

function) is defined in the half-plane along the two bodies’ conjunction line. This

reference plane spins around a given direction (the Phobos’ spin axis), which is generally

tilted from the two bodies’ conjunction line. For any point in a frame where the attitude

of the shadowing body (Phobos) is fixed, the aim is to find the mean integral value of

the functional, experienced at the point’s position over one revolution of the radiating

body (the Sun). In particular, the tilt angle is considered fixed during one rotation,

and the value of this parameter represents the season over the Phobos’ year. The mean

integral value of the function will be defined in the Phobos’ BCBF frame12 and Fig.2.27

provides the reference frames and variables for this analysis. In this 2D graph, the plane

corresponds to the one where the light function domain is fixed. Thus, the position of

the Sun is fixed and the direction of the anti-Sun is the reference x-axis. The second

frame in the graph is Phobos’ BCBF frame, whose vertical axis is misaligned from the

previous frame by the current anti-Sun declination δ�′ . This frame is not fixed, so let

imagine it rotates along its spin z-axis. Thus, a fixed point of the BCBF frame, with

distance r and declination φ, results in a circular path around its spin axis, that goes

out of the plane of the graph. This is visualized in the graph as the baseline spanned by

the 3D gray cone. But since the functional is axial-symmetric, the profile of the light

function that the point encounters over time could be evaluated on the plane, finding

geometrically the points13 where the light function value is the same encountered by

the rotating point. This approach avoids a 3D integration over time by doing a 2D

integration along one angular coordinate, which requires far less computational cost.

In particular if this is performed in polar coordinates, the 2D integral is uncoupled,

and the integration becomes simply 1D, and also symmetrical along the spin axis.

The general solution is presented in Eq.2.59. For convenience, γ = π
2 − δ�′ is used

in place of the anti-Sun declination, and θ = φ − δ�′ is used in place of the BCBF

declination. For a given γ (the seasonal tilt), and for every radial distance r in the

BCBF frame, each θ provides a 1D set of angles β(α)14, where α = nROT t is simply the

spin phase of Phobos. These angles β, together with r, constitute the 1D domain in

polar coordinates that represents a trajectory in the fixed reference plane of the light

function of Fig.2.27. The light function profile in these equivalent points is the same

encountered by the rotating point in (r,φ) of the BCBF frame. Thus, the cylindrical

light function is evaluated in (r,β(t)) from Eq.2.55, and the respective mean integral

value L̄ is computed. In addition, for the particular case of a cylindrical light function,

the analytical solution of the integration could be derived, and it is expressed in Eq.2.60.

In the singular cases of this formula, the light function encountered by the rotating point

is constant, so the mean value is simply the initial one.

12Recall from section 2.1 that Phobos’ attitude is approximately fixed in its Hill’s frame.
13These equivalent points are not the projection on the plane of the real trajectory.
14This is the law of the cosines for a particular spherical triangle created along the unit sphere’s

surface.
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{
cosβ = cos (γ − θ) cos γ + sin (γ − θ) sin γ cosα

L�⊕ (r, θ, δ�′) = 1
2π

∫ 2π
0 L�⊕ (r, β(θ, α)) dα

(2.59)

L�⊕ (r, θ, δ�′) =1− 1

π
|Re

arccos

cos
(

arcsin
(
R⊕
r

))
sin (γ − θ) sin γ

− 1

tan (γ − θ) tan γ




− Re

{
arccos

{
1

sin (γ − θ) sin γ
− 1

tan (γ − θ) tan γ

}}
|

(2.60)

Following Eq.2.61 provides the analytical solution for the zero-tilt equinoctial case,

which actually could be proved to be a very good approximation also for medium-small

declination angles, apart for regions very close to the surface of the shadowing body

(in particular inside the two cones obtained by the projection of the Polar Circles).

L�⊕ (r, φ) = 1− 1

π
arcsin

R⊕ cos
(

arcsin
(
r sin|φ|
R⊕

))
r cos |φ|

 (2.61)

Further averaging the daily L̄2 along the seasons of the Martian year would be then

straightforward.

Before undertaking this operation, the second step in the procedure is to extend the

Sun-Phobos daily L̄2 to take into consideration the correction due to the Sun-Mars L̄1 at

the current day previously derived in Fig.2.16, to obtain the aimed Sun-Mars-Phobos

mean 3D light field L̄12 that models a coupled 3B eclipse. This is far from an easy

operation, and in the general case the mean value of the combined light function of two

shadowing bodies is unrelated to the mean values of the two single shadowing bodies.

Fortunately, in our case, several simplifications are available: both 2B light fields are

cylindrical, their shadowing wakes have very different dimensions around Phobos, the

characteristic times of the Sun-Mars and Mars-Phobos revolution are very different,

and the rotation of Phobos is synchronous. This yields the instantaneous combined

L12 around Phobos to be the logical conjunction ∧ of the two single instantaneous

light functions, which results in their product: L12 = L1 ∧ L2 = L1L2. This allows

to compute the sought mean integral field L̄12 over one Phobos’ revolution with only

the information of the two single daily values L̄1 and L̄2, with the deal of introducing

a further variable ψ, which is the right ascension with respect to Phobos of the point

analyzed. This is described in Eq.2.62. L̄2 is axially symmetric along the spin axis,

being the same for points with same φ: they have the same profile L2(t), but shifted

along time for different ψ. Therefore the integral of the product L1L2 produces a

different L̄12, expressed by the correction term ∆t/T which is the percentage of time

in one Phobos’ revolution period T such that L1 is in shadow and L2 is in light. This

correction is function of the right ascension, and acts on the 2D Sun-Phobos mean light

field to provide a 3D Sun-Mars-Phobos mean light field. This functional is symmetric
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Figure 2.28: Sun-Mars-Phobos eclipse at
Phobos. Light function, year averaging.

Figure 2.29: Sun-Mars-Phobos eclipse at
Phobos. Light function, year averaging,
without Sun-Mars eclipse correction.

with respect to the x-z plane of the Hill’s frame, and season dependent. Eq.2.63 shows

the procedure to derive the value of this correction term, which is a crescent function

with respect to the right ascension. This confirms the physics: points along the x-axis’

positive direction (and close to the moon) experience the Sun-Mars eclipses mostly

when the Sun-Phobos eclipse already occurs, while points between Mars and Phobos

have distinct eclipses because the Sun have to be on opposite parts of the sky, and so

the correction is always the maximum, which is the value of the Sun-Mars basic mean

integral value. Values in quadrature become closer to the maximum as far as the radial

distance increases. This is presented in Eq.2.64.



cylindric : L�⊕ (r, θ, δ�′) = 1
TREV⊕

∫ TREV⊕
0 L�⊕ (r, θ, ψ, δ�′ , t) dt, ∀ψ

double− cylindric : L�⊕1⊕2 (r, θ, ψ, δ�′) = 1
TREV⊕2

∫ TREV⊕2
0 L�⊕1 (r, θ, ψ, δ�′ , t)L�⊕2 (r, θ, ψ, δ�′ , t) dt

Mars− Phobos : L�⊕1⊕2 (r, θ, ψ, δ�′) =
1

TREV⊕2

∫ TREV⊕2

0
L�⊕1 (δ�′ , t)L�⊕2 (r, θ, ψ, δ�′ , t) dt

= L�⊕2 (r, θ, δ�′)−
∆tL�⊕1=0∧L�⊕2=1

TREV⊕2

(
L�⊕1 , L�⊕2 , ψ

)
(2.62)
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Figure 2.30: Sun-Mars-Phobos eclipse at
Phobos. Light function, year averaging,
magnification inside Phobos’ SOI.

Figure 2.31: Sun-Mars-Phobos eclipse at
Phobos. Shadows days, aggregated from
light function over year.


f = 0.5− 0.5ψ/π, ψ ∈ [0, π]

α = S�⊕1 = 1− L�⊕1

β = S�⊕2 = 1− L�⊕2{
y1 = 0.5− α/2
y2 = 0.5 + α/2{
ξ1 = f − β/2
ξ2 = f + β/2

ξ1 ≥ 0→


x1 = ξ1, x2 = ξ2{
x2 ≥ y1 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2

= α− (min(x2, y2)−max(x1, y1))

x2 < y1 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2
= α

ξ1 < 0→



ξ2 ≥ 0→


x1 = ξ2, x2 = ξ1 + 1{
x2 ≥ y1 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2

= min(x2, y2)−max(x1, y1)

x2 < y1 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2
= 0

ξ2 < 0→


x1 = ξ1 + 1, x2 = ξ2 + 1{
x1 ≥ y2 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2

= α

x1 < y2 → ∆tL�⊕1=0∧L�⊕2=1/TREV⊕2
= α− (min(x2, y2)−max(x1, y1))

(2.63)


min
ψ
L̄⊕1⊕2 :

∆tL�⊕1
=0∧L�⊕2

=1

TREV⊕2

(
S�⊕1 , S�⊕2 , ψ = π

)
= min

(
S�⊕1 , 1− S�⊕2

)
max
ψ

L̄⊕1⊕2 :
∆tL�⊕1

=0∧L�⊕2
=1

TREV⊕2

(
S�⊕1 , S�⊕2 , ψ = 0

)
= max

(
0, S�⊕1 − S�⊕2

)
L�⊕1⊕2

(
r = R⊕2 , θ, ψ = π

2 , δ�′
)

= L�⊕1L�⊕2

(2.64)

In summary, the results of the combined shadowing effects could be shown onto the

x-z plane of Phobos’ Hill’s frame, presenting the extreme outcomes for the 0◦ and 180◦

cases of the right ascension. To interpret the results showed through Fig.2.28-2.40 we

should distinguish seasonal and yearly averaging. The mean light function inside the

space spanned by the rotating seasonal wake is not so different from the approximation

of Fig.2.24, apart for altitudes very close to the surface of Phobos. The seasonal tilt

inclines the shadow wake, so complete light and one cone of complete shadow appear in

the Phobos’ polar regions. The cone’s maximum altitude, encountered over the North
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Figure 2.32: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos’ surface,
year averaging. Mean Mars shadow line is
obtained as product of the two light func-
tions. Filled area shows right ascension de-
pendency, whose upper/lower border is for
points in superior/inferior conjunction posi-
tions, and central line is for points in quadra-
ture.

Figure 2.33: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos’ sur-
face, month averaging, mean Mars shadow
lines. Real right ascension-dependant areas
are highlighted. Winter solstice between 4th
and 5th month, summer solstice between 10th
and 11th month, fall equinox between 1st and
2nd month, spring equinox during 7th month.

Figure 2.34: Sun-Mars-
Phobos eclipse at Pho-
bos. Light function during
winter season (4th month).

Figure 2.35: Sun-Mars-
Phobos eclipse at Pho-
bos. Light function dur-
ing summer season (10th
month).

Figure 2.36: Sun-Mars-
Phobos eclipse at Pho-
bos. Light function during
spring season (7th month).

Pole in winter and over the South Pole in summer, using a mean ellipsoidal model for

Phobos’ shape, is of 1.4km. Instead during spring and fall, no complete shadow zones

are present, and the minimal daily L̄ at the day of equinoxes is 38% along the sub-

Mars meridian onto the surface of the moon (this without considering its orography

and morphology). Considering now the annual L̄, yearly averaging drastically increases

the lighting conditions. Due to Mars’ eccentricity, Southern regions experience more

shadow time than the upper counterpart; due to the Martian eclipses, points in-between

Mars and Phobos and close to the moon experience more shadow time per annum.

In conclusion, this analysis provides the lighting conditions for a spacecraft orbiting

Phobos. The shadowing threats or opportunities are limited, and a fixed observation

point in the 3B frame could experience relevant reduction of the FOV of the Sun for

long-period station-keeping only if it is inside the SOI and onto the equatorial plane,
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Figure 2.37: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos, year av-
eraging, right ascension dependency (black
lines are for ψ = 90◦).

Figure 2.38: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos during
spring season (7th month), right ascension de-
pendency (black lines are for ψ = 90◦).

Figure 2.39: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos during
winter season (4th month), right ascension
dependency null.

Figure 2.40: Sun-Mars-Phobos eclipse at
Phobos. Light function at Phobos during
summer season (10th month), right ascension
dependency null.
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and pointing Mars. Instead, a shorter period could provide continuous shadowing op-

portunities for points over the poles during the solstice seasons, in particular inside the

Southern polar cone during summer. For middle seasons the minimum of the light field

moves towards lower latitudes, and relevant reduction of the Sun’s FOV is obtained only

very close to the surface. Therefore during equinoctial or long observation periods, the

lighting conditions around Phobos are close to experience continuous light, up to 88%

due to the unavoidable Martian eclipses. Required shadowing exploitation could be

obtained only using orbits that track the daily anti-Sun path, such a vertical-displaced

circular orbit around the spin axis.

Finally, recall that the shadowing requirements entail a difficult trade-off with the

electrical and power subsystem of the spacecraft, due to the need of energy from the

solar arrays. However, possible ideas to explore could be to design more challeng-

ing mission architectures. For example, a formation flying configuration with a chief

manned mothership always flying mostly in shadow, and one deputy (or more), maybe

a light solar sail, able to do the opposite, and reflect the sunlight towards a solar col-

lector on the mothership. This idea, despite quite far-out, is actually helped by the

little length-scale of the Phobos’ SOI, making the relative distances shorter and so the

relative pointing requirements more easier to fulfill. However, the same objective could

be also obtained with one (or more) ground stations on Phobos acting as the aimed

reflector. Finally, another solution offered by the small length-scale of the Phobos’ SOI

is to keep the architecture single, but make it bigger, in order to have zones of the

same spacecraft with different values of the light function, to be dedicated to human

dwelling or electrical power generation. In this case, the critical subsystem becomes

the structure and configuration design of the large and flexible spacecraft.

2.7 Sky Occultation

The purpose of this section is to investigate the possible exploitation of Phobos as a

natural shield against the isotropic cosmic rays, which in section 2.5, for the case of the

Phobos’ orbital environment, they were found to be the SEPEs and GCRs. The idea

is that the fluence of the incoming radiation on a spacecraft is lowered proportionally

to the filling fraction in the sky of the apparent size of the body’s bulk, as seen by

the spacecraft’s location. In astronomy, when a body is totally or partially hidden

by the bulk of another one that passes between it and the observer, we speak about

occultations or transits. Since in this case the hidden body is the total background sky,

in this thesis this action is referred to as sky occultation.

A point-like observer sees an object with an apparent shape that corresponds to the

area that it covers on a sphere centered on the observer, and radius equal to their

distance. In 3D geometry, the area subtends the 2D solid angle Ω on the unit sphere,

whose IS unit is the steradian sr, and the total spherical surface has Ω = 4πsr. For a

generic body bounded by the surface S and placed in position r from the observer,
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Figure 2.41: Mars-Phobos eclipse around Phobos. Light function field around Phobos in
the radial-vertical plane of the Hill’s frame of Phobos’ circular orbit.

ΩS (r) =

∫∫
S
dΩ =

∫∫
S

sinϑdϑdφ =

∫ ∫ 2π,π

0,0
MS (ϑ, φ, r) sinϑdϑdφ (2.65)

M is the mask function of the body, which is a binary function of the polar and

azimuthal spherical coordinates ϑ and φ centered on the observer, whose value is 1

or 0 if the related direction from the observer intersects or not the body. Thus, the

iso-surface at the level M = 1 represents the apparent shape of the body on the unit

sphere. The ratio with 4πsr represents the filling fraction of the body with respect to

the background.

The occulting bodies in our case are Mars and Phobos, while the Sun is neglected

because is very small as seen from Phobos. The approach is similar to the one under-

taken for the lighting conditions in section 2.6, defining an occultation function field

O⊕ which represents the bulk/sky filling fraction of the occulting body ⊕.

O⊕ (r) =
Ω⊕ (r)

4π
(2.66)

This analysis is easier than the computation of the lighting conditions because in the

3B frame of the CR3BP Mars and Phobos are fixed, and their O does not depend on

time. Also for a first analysis, the mean spherical shape is used for the two bodies, of

radius R. In this case, the occulting body fills a spherical cap on the unit sphere, with

apparent angular radius α, and O is spherically-symmetric.
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Figure 2.42: Sky occultation by Mars’ bulk around Phobos. Occultation field around
Phobos in the radial-vertical plane of the Phobos’ Hill’s frame. Second plot shows the real
scaling effect of the Mars occultation field in Eq.2.68 considering the Mars-Phobos light function
of Fig.2.41.

Figure 2.43: Sky occultation by Phobos’ bulk around Phobos. Occultation field around
Phobos in the radial-vertical plane of the Phobos’ Hill’s frame.

S (ϕ,ψ) = r +R

[
cosψ cosϕ
sinψ cosϕ

sinϕ

]
⇒ αS (r) = arcsin

R

‖r‖

→ ΩS (r) = 2π (1− cosαS (r))→ OS (r) =
1− cosαS (r)

2

(2.67)

First the occultation of Mars is considered, evaluating the Mars’ occulting function

at the Phobos’ location, since the region of interest is a small domain. The result is

approximately O1 = 3.4% and it is shown in Fig.2.42, where the relative error from

this mean value at 10 Phobos’ radii is 2%. The effect of the orbital eccentricity is also

negligible, with a maximum relative error of 3%.

Second the occultation of Phobos is considered. Its occulting field depends only

from the radial distance from the body. This function starts from O2 = 50% on the

spherical surface (astronauts staying inside of a deep crater would we shielded also
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Figure 2.44: Sky occultation by Mars’ and Phobos’ bulks around Phobos. Occultation
field around Phobos in the radial-vertical plane of the Phobos’ Hill’s frame.

laterally by the mountain ridge15), and then decreases rapidly: O2 = 13% at the SOI’s

boundary, O2 = 7% at 2 Phobos’ radii, as shown in Fig.2.43.

The conclusion of the analysis of the sky occultation is obtained combining the

previous single effects. This requires to discriminate if the apparent shapes of the

two bodies’ bulks intersect, and how much they overlap. Such axially-symmetric 3D

field corresponds to the light function of the Mars-Phobos couple L1,2 that was avoided

to be computed in the previous lighting conditions analysis of section 2.6.5, but it is

needed here. In particular, recall that this light function must be computed with the

accurate dual-cone model, since due to the proximity of Mars, the shadow cone’s vertex

of Phobos is located only at 2.77 Phobos’ radii in the anti-Mars direction, therefore its

inclination inside the SOI is not negligible, as it is reported in Fig.2.41. The resulting

2B combined occultation function is

O⊕1,⊕2 (r) = O⊕1 (r) + L⊕1,⊕2 (r)O⊕2 (r) (2.68)

and it is shown is Fig.2.44.

This analysis highlighted that a significative reduction of the isotropic SEPEs and

GCRs by using the bulk of Phobos to occult part of the celestial sphere is obtained

inside the SOI of the moon. Besides, points on the Mars’ side and over the poles

experience an additional but small reduction due to the occultation of Mars. Points

and orbits that remain inside the Phobos’ SOI are therefore suitable to enhance the

radiation protection of the spacecraft by exploiting Phobos’ bulk as a passive radiation

shield.

15As mentioned in section 1.2, the Stickney crater is one of the most sheltered places in the Solar
System: Mars’ bulk and Phobos’ surface would naturally shield astronauts from up to 90% of the
cosmic rays.
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Chapter 3

Extension of the Model of the

Orbital Dynamics around Phobos

including its Inhomogeneous

Gravity Field and Orbital

Eccentricity

Following the results obtained in section 2.4, that determined the significant perturba-

tions acting on the Mars-Phobos CR3BP, this chapter extends the model of the relative

orbital dynamics around Phobos to include the main orbital perturbations. This model

will be used in chapter 4 to compute the natural LPOs in a more realistic dynamical

system describing the motion in the vicinity of Phobos. Section 3.1 describes how the

complete gravity field of a general inhomogeneous body is modeled, and in particular

presents the methodology of the gravity harmonics. In this framework, the model-

ing of the real complex shape is also addressed with the shape harmonics in section

3.2. These techniques will be used in section 3.3 to derive the orbital dynamics of the

Mars-Phobos CR3BP-GH, which takes into account the highly inhomogeneous gravity

field of the second massive body. Finally, this model is extended in section 3.4 to the

Mars-Phobos ER3BP-GH, which includes also the effect of the eccentricity of the orbit

of Phobos around Mars.

3.1 Modeling of the complete Gravity Field

When the altitude of the spacecraft’s orbit is low over the celestial body, the point-

mass approximation of the Keplerian gravity attraction of Eq.2.3 is not suitable any

longer. The real distribution of the central body’s mass must be considered to derive

the expression of the gravitational acceleration acting on the spacecraft [92, 93].
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The modeling of the external gravity field of convex bodies has been first investi-

gated by Legendre. The gravity potential expressed in the body’s BCBF frame is a

conservative field, and therefore satisfies Laplace’s equation. The general homogeneous

solution, at a given distance from the body’s barycenter, is a linear combination of nor-

mal modes in spherical coordinates. This set represents a convenient orthogonal basis

and the eigenfunctions are called spherical harmonics: they are the equivalent to the

Fourier series on the 2D sphere’s surface. Following this, define the transformation from

Cartesian to spherical coordinates as [r;ϑ;ψ] = TTSE([x; y; z]), which are described by

radial distance r, co-latitude ϑ from the body’s North Pole, and East-longitude ψ with

respect to the body’s Prime Meridian, while φ is the latitude. The related physical

basis (êr,êϑ,êψ) defines the local TSE frame.

The methodology of the spherical harmonics has been applied in the description of

the gravitational potential uG⊕ of an inhomogeneous body, as a function of the position

in the body’s BCBF frame. This field is expressed by the series expansion of spherical

harmonics, which are called gravity harmonics (GHs) [92, 93]. This is presented in

Eq.3.1, where R⊕ is a reference radius, for example the equivalent-volume radius of the

body. uG⊕(q) = uG⊕ (r, ϑ, ψ) = Gm⊕
R⊕

∞∑
n=0

(
R⊕
r

)n+1 n∑
m=0

Cmn (ψ)Pmn (cosϑ)

Cmn (ψ) = Cn,m cosmψ + Sn,m sinmψ = Jn,m cosm (ψ − λn,m)
(3.1)

{
Pn (x) = 1

2nn!
dn

dnx

(
x2 − 1

)n
Pmn (x) =

(
1− x2

)m
2 dm

dmxPn (x)
(3.2)

The double expansion of spherical harmonics is conducted with degree n and order m,

using the Legendre associated polynomials Pmn . These are functions of the co-latitude,

and are derived, using Ferrer’s formula, from the single-degree Legendre polynomials

Pn, expressed by Rodrigues’ formula. From the definition of the spherical harmonics

by separation of variables, in Eq.3.1 the Legendre polynomials are scaled with a power-

inverse function of the distance, and with a harmonic function of the longitude. The

first depends on the degree, while the latter depends on the order, and contains the two

coefficients C and S (or the related magnitude J and phase λ), which are the Stokes co-

efficients pair for each n-m spherical harmonic. They are the “physical inputs” needed

for the computation of the series expansion of GHs, and are derived with a Fourier

analysis of appropriate measurements. The series are truncated at the maximum de-

gree and order N and M of the GHs’ coefficients, given that convergence of the series

is achieved with an acceptable error for the case in study. It is worth nothing that

the analytical synthesis with the GHs is dependent on various kinds of normalization

that MUST be in accordance with the choice made to normalize the related Legendre

associated polynomials. Basically, one can find the Stokes coefficients un-normalized

(which means that they are in accordance to the classical definition of the polynomials
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provided in Eq.3.2) or normalized, that for the geodesy field’s tradition means that the

global integral on a reference sphere’s surface is set to be unity. Besides, one should also

consider an additional normalization, which arises from the evaluation of the Legendre

polynomials with a recursive algorithm, since this is far computationally cheaper than

analytically writing the expression of all the polynomials up to degree-order (N ,M)1.

The spherical harmonics consist of three distinct parts. They are inversely propor-

tional to the distance from the barycenter, with an n-power law. The m = 0 case

is characterized by only latitude-dependency, and the related harmonics are called

zonal2. The n = m case is characterized by only longitude-dependency, and the re-

lated harmonics are called sectorial. The other harmonics, dependent on both angular

coordinates, are called tesseral. The first term J0,0 = 1 provides the basic spherical

term corresponding to the Newtonian gravity potential given in section 2.2, therefore

all the other terms constitute the perturbation of the GHs. In particular, first-degree

harmonics are zero for barycentric frames, while the five second-degree Stokes coeffi-

cients are directly related to the body’s principal moments of inertia: C2,1, S2,1 and

S2,2 are each one related to one mixed moment, while C2,0 and C2,2 are related to the

principal moments. Note that this mismatch (5 coefficients, 6 moments) is given by

the principle of irresolution of the reverse gravity problem [94]. Anyway, thanks to

the trace of the inertia matrix (which is invariant), it is possible to numerically derive

all the moments from the coefficients. The potential truncated to the second-degree

is called quadrupole representation, and consists in the useful approximation of the

central body as an ellipsoid (MacCullagh’s formula).

The only requirement of this general mathematical methodology is that the field

developed in series, in this case the gravity potential, could be described by a single-

valued function in spherical coordinates of the body’s BCBF frame. This is the case

for celestial bodies with a simple shape. In contrast, complex shaped asteroids do not

satisfy this requirement and the description of their gravity field must be conducted

with numerical techniques. This requires an appropriate discrete distribution of tetra-

hedrons to model their surface and derive the related gravity field [95]. In addition,

since the gravity harmonics have been chosen because they are the fundamental basis

for the solution of the Laplace’s equation, they are valid to describe only the external

gravity field of the body. In particular, due to its definition in spherical coordinates, the

domain of application is restricted to the space outward of a reference sphere, called the

Brillouin’s sphere. Its radius is defined as the minimum distance such that the related

sphere circumscribes the body’s figure3. For the same reason spherical harmonics are

defined as eigenfunctions of Laplace’s equation, elliptical harmonics could be used to

describe a conservative field as well [96]. The related elliptical GHs are valid outside

1The total number of Legendre associated polynomials up to degree N is (N+1)(N+2)
2

.
2For historical reason, the magnitude of the zonal harmonics is defined as the negative part of their

C Stokes coefficient, while S is null.
3The reference radius used in Eq.3.1 is not related in principle to correspond to this reference sphere’s

radius.
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a reference ellipsoid that circumscribes the body, therefore they can be used to model

the exterior gravity field of oblate bodies.

3.1.1 Gravity Acceleration

The gravitational acceleration in the TSE frame is obtained through the spherical

gradient ∇TSE = [ ∂∂r ; 1
r
∂
∂ϑ ; 1

rsinϑ
∂
∂ψ ] of the gravity potential expressed with the series

of GHs of Eq.3.1.

aG,TSE =


−Gm⊕

R2
⊕

∞∑
n=0

(n+ 1)
(
R⊕
r

)n+2 n∑
m=0

[Cn,m cosmψ + Sn,m sinmψ]Pmn (cosϑ)

Gm⊕
R2
⊕

∞∑
n=0

(
R⊕
r

)n+2 n∑
m=0

[Cn,m cosmψ + Sn,m sinmψ] d
dϑP

m
n (cosϑ)

Gm⊕
R2
⊕

∞∑
n=0

(
R⊕
r

)n+2 n∑
m=0

m [−Cn,m sinmψ + Sn,m cosmψ] 1
sinϑP

m
n (cosϑ)

(3.3)

The components are then rotated in the body’s BCBF frame through the local attitude

matrix of the spherical coordinates transformation, presented in Eq.3.4.

ABCBF
TSE (q) = ABCBF

TSE (φ, ψ) = A1

(
−π

2

)
A2 (−φ) A3 (ψ) = A3 (−φ) A1

(
−π

2

)
A3 (ψ)

(3.4)

Zero-degree term constitutes the fundamental term aG,⊕ of Eq.2.3 used in orbital me-

chanics, while harmonics from n = 2 in barycentric frames are referred to as the net

gravitational perturbation ap
G.

It is evident that this classical formulation of the spherical harmonics, when used to

describe the gravitational acceleration, is singular at the Poles. However, this singu-

larity is not embedded in the series expansion definition, but is due to the expression

of the derivatives in a spherical coordinate system. Some authors have provided in the

past appropriate solutions, such as the adoption of a non-minimal coordinate system

in [97], as well as alternative methods [98]. However, in this thesis the need of polar

orbits is never encountered, so the singularity at the Poles is treated simply considering

its numerical limit at the machine tolerance.

3.1.2 Gravity Hessian

For the applications considered in the following chapters of this thesis, the Hessian

matrix of the gravity potential is required. This is obtained through the spherical

Hessian HTSE , then rotated and counter-rotated through ABCBF
TSE . The Hessian in

spherical coordinates4 is not easy to find in the literature, so it has been derived using

the Hessian definition for a general curvilinear coordinates basis, that makes use of the

metric matrix g and the Christoffels’ symbols Γ of the coordinates transformation [99]5,

4Which could be seen also as the gradient of a vector, elegantly named covariant derivative.
5The analytical expressions of Γ for the case of spherical coordinates are not completely correct in

[99].
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in this case TTSE . The general procedure is summarized in the following equations.

T represents the general coordinates’ transformation from the frame F1 to the frame

F2, defined by the set of coordinates xj and zj respectively. The metric matrix and its

dual form are defined by the Jacobian of the transformation J.

F1
(
{x}Nj=1

) T→←
T−1

F2
(
{z}Nj=1

)
⇒

{
g = JTT−1JT−1

gD = JTJTT

⇒ gj,k =
1

gDj,k
=

N∑
c=1

∂xc
∂zj

∂xc
∂zk

(3.5)

The physical basis ê is the normal basis of each frame, where each versor is associated to

one coordinate, while the natural basis is described by the Jacobian, thus is not normal.

The gradient operator of the new curvilinear metric is expressed in the original physical

basis by the following expression.

∇F2 =
N∑
j=1

êF1,xj

(
1
√
gj,j

∂

∂zj

)
(3.6)

The Hessian operator of the new metric corresponds to the above gradient, when applied

to a vector whose components are defined in the new metric. Thus, by the chain rule,

in addition to the matrix of the second derivatives, a second term shows up to take into

account the gradient of the new curvilinear basis. This is expressed by the matrices of

the Christoffels’ symbols of the transformation.

HF2 =

N,N∑
j=1,k=1

êF1,xj ê
T
F1,xk

1
√
gj,j
√
gk,k

(
∂2

∂zk∂zj
+

N∑
i=1

Γij,k
∂

∂zi

)
(3.7)

Γjr,s =
N∑
b=1

∂xb
∂zr

∂2zj
∂zs∂xb

=
N∑
b=1

−∂zj
∂xb

∂2xb
∂zs∂zr

(3.8)

These operators are now presented for the case of spherical coordinates.

gTSE =

 1 0 0

0 r2 0

0 0 r2sin2ϑ

 (3.9)
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Γr =

 0 0 0

0 r 0

0 0 rsin2ϑ


Γϑ =

 0 −1
r 0

−1
r 0 0

0 0 cosϑ sinϑ


Γψ =

 0 0 −1
r

0 0 − cotϑ

−1
r − cotϑ 0


(3.10)

HTSE =


∂2

∂r2
∂
∂r

(
1
r
∂
∂ϑ

)
∂
∂r

(
1

r sinϑ
∂
∂ψ

)
∂
∂r

(
1
r
∂
∂ϑ

)
1
r2

∂2

∂ϑ2 + 1
r
∂
∂r

1
r
∂
∂ϑ

(
1

r sinϑ
∂
∂ψ

)
∂
∂r

(
1

r sinϑ
∂
∂ψ

)
1
r
∂
∂ϑ

(
1

r sinϑ
∂
∂ψ

)
1

r2sin2ϑ
∂2

∂ψ2 + 1
r
∂
∂r + cosϑ

r2 sinϑ
∂
∂ϑ


(3.11)

Finally, the Hessian of the GHs in the TSE frame is obtained applying 3.11 to the

gravity potential of Eq.3.1.

HTSEuG,⊕ = 2Gm⊕
R3
⊕

∞∑
n=0

1
2

(
R⊕
r

)n+3 [ a b c
b d e
c e f

]


a = (n+ 1) (n+ 2)
n∑

m=0
Cmn (ψ)Pmn (cosϑ)

b = − (n+ 2)
n∑

m=0
Cmn (ψ) d

dϑP
m
n (cosϑ)

c = − (n+2)
sinϑ

n∑
m=0

d
dψC

m
n (ψ)Pmn (cosϑ)

d =
n∑

m=0
Cmn (ψ) d2

dϑ2P
m
n (cosϑ)− (n+ 1)

n∑
m=0

Cmn (ψ)Pmn (cosϑ)

e = − cosϑ
sin2ϑ

n∑
m=0

d
dψC

m
n (ψ)Pmn (cosϑ) + 1

sinϑ

n∑
m=0

d
dψC

m
n (ψ) d

dϑP
m
n (cosϑ)

f = 1
sin2ϑ

n∑
m=0

d2

dψ2C
m
n (ψ)Pmn (cosϑ)− (n+ 1)

n∑
m=0

Cmn (ψ)Pmn (cosϑ)+

+ cosϑ
sinϑ

n∑
m=0

d
dψC

m
n (ψ) d

dϑP
m
n (cosϑ)

(3.12)

3.1.3 Application to Phobos and Mars

The methodology of the GHs is the most common and easily implemented technique to

model the gravity field of the Solar System’s planets and moons for spacecraft orbits.

Table 3.2 provides the most important GHs of Mars’ gravity field, retrieved from the

high-fidelity model developed from NASA’s Mars Global Surveyor spacecraft. Also for

the case of Phobos, the GHs have proved suitable to model its gravity field. Unlike

the Earth and other bodies visited by specific space missions, gravity sensors measure-

ments from dedicated low-altitude orbiting satellites are not available, so for the case

of Phobos the GHs’ coefficients have been calculated indirectly and analytically from

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

69 Zamaro Mattia



Extension of the Model of the Orbital Dynamics

Table 3.1: Coefficients for the spherical harmonics series expansion of the Phobos’
gravity field. Stokes coefficients pairs are fully-normalized, while harmonics magnitude is
un-normalized. Source [94].

n,m Cn,m Sn,m Jn,m λn,m
2,0 -0.04698 - 0.1051 180◦

2,1 0.00136 0.00138 0.00250 45.42◦

2,2 0.02276 -0.000202 0.01469 -0.25◦

3,0 0.00293 - 0.00775 0◦

3,1 -0.00309 0.00181 0.00387 149.64◦

3,2 -0.00847 -0.000655 0.00290 -87.79◦

3,3 0.00224 -0.01392 0.00197 -26.95◦

4,0 0.00762 - 0.02286 0◦

4,1 0.00347 -0.000776 0.00337 -12.61◦

4,2 -0.00288 -0.00112 0.000691 -79.37◦

4,3 -0.0028 0.00337 0.000262 43.24◦

4,4 -0.0012 -0.000622 0.0000286 -38.15◦

Table 3.2: First coefficients for the spherical harmonics series expansion of the Mars’
gravity field. Stokes coefficients pairs are fully-normalized, while harmonics magnitude is un-
normalized. Source MGM1025.

n,m Cn,m Sn,m Jn,m λn,m
2,0 -0.0008745 - 0.0019555 180◦

2,1 9.459·10−11 -1.140·10−10 1.913·10−10 -50.32◦

2,2 -0.00008459 0.00004891 0.00006307 74.98◦

3,0 -0.00001189 - 0.00003146 180◦

4,0 0.000005123 - 0.00001537 0◦

the Phobos’ shape. This has been described with a homologue spherical harmonics

modeling, derived from spacecraft observations. The first mission to provide Phobos’

images was the Viking program [100], while recently ESA’s Mars Express provided an

improved set of images. It is important to remark that this indirect derivation of the

GHs is obtained with the assumption of uniform density6, which is a hypothesis not too

far from reality according to scientific studies on the moons of Mars [101]. In addition,

local functions are added to describe the craters of Phobos with more detail7.

In [94], Viking observations are used to provide a model of Phobos’ gravity field

where the GHs are computed numerically and stated up to degree and order 4, with the

most important terms summarized in Table 3.1. The dominant harmonic is J2, which

accounts for 10% of the basic term, and is 100 times the Earth’s relative perturbation

effect. In particular, C2,1, S2,1 and S2,2 are very small, which is the principal axes’ frame

6The most recent estimation of Phobos’ bulk density is 1.85g/cm3 [101].
7They consists of depth-to-diameter relationships of common craters.
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Figure 3.1: Phobos gravity model. Contour lines over topographic map. Magnitude
of the difference of the gravity acceleration between gravity harmonics model and Keplerian
point-mass model. The two fields are evaluated at 1km altitude over Phobos’ real surface (see
Fig.3.2). Difference expressed as percentage with respect to the local gravity magnitude of the
Keplerian model. Spherical gravity harmonics of the model of [94] up to degree and order 4,
Phobos BCBF frame. The real gravity is up to 35% higher at 1km altitude than that predicted
by a classical model.

corresponds to the BCBF frame. It is interesting to recall that such a configuration

corresponds to the stable orientation provided by the central body’s gravity-gradient

torque, in this case of Mars. The maximum inertia direction is aligned with the out-of-

plane direction of Phobos’ orbit (orbital pitch), and the minimum inertia direction is

aligned with the radial direction (orbital yaw). In [102], a semi-analytical technique is

used to compute the GHs of Phobos up to degree and order 6, using the same Viking’s

data. In [95], the tetrahedron’s methodology was introduced for the first time, and

applied to Phobos as a test-bed, using Viking’s images. The results were compared

with the GHs series expansion of [102], and the conclusion made by the author was

that the two techniques produce similar results.

From this early stage [100], the model of Phobos has been further enhanced through-

out the years. The delivery of Mars Express’ images provided the source of data to

obtain high-order shape models of Phobos [101]. In [96], the GHs of Phobos are com-

puted up to order 20 and using a reference sphere of 14km radius, from the shape

model of [101]. Furthermore, the same shape model is used to derive an elliptical har-

monics series expansion of Phobos’ gravity field, with a reference ellipsoid coincident

with Phobos’ mean sizes, and a tetrahedron model. The two series expansions are

compared at each respective reference shape, and on the topographic surface, using the

tetrahedron model’s gravity as a benchmark. Outside the reference sphere, the three

models are practically coincident, while between the reference sphere and ellipsoid, the

elliptical GHs are preferable, but the error of the spherical GHs is only 5%. Finally, at

the topographic surface of Phobos, the GHs produce large errors: up to 200% for the

spherical, and up to 100% for the elliptical, both on the Southern polar zones. However,
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Table 3.3: First coefficients for the spherical harmonics series expansion of the Pho-
bos’ shape model. Stokes coefficients pairs are fully-normalized, while harmonics magnitude
is un-normalized. The mean radius of Phobos used for the shape model is R = 10, 955.8m.
Source [101].

n,m Cn,m Sn,m Jn,m λn,m
1,0 -0.0000123 - 0.0000214 180◦

1,1 0.00000340 0.000000722 0.00000603 11.98◦

2,0 -0.0860 - 0.192 180◦

2,1 -0.00623 0.00246 0.00864 158.42◦

2,2 0.0336 0.00132 0.0217 1.13◦

3,0 0.0131 - -0.0345 0◦

3,1 0.0170 -0.00402 0.0188 -13.31◦

3,2 -0.0186 0.000237 0.00634 89.63◦

3,3 -0.00399 0.0217 0.00307 33.48◦

4,0 0.00637 - -0.0191 0◦

4,1 -0.0106 0.000363 0.0101 178.04◦

4,2 0.00416 -0.00421 0.0013 -22.66◦

4,3 0.00836 -0.00565 0.000603 -11.36◦

4,4 -0.000718 0.00333 0.0000721 25.54◦

the errors at low latitudes are smaller, about 20% for the spherical GHs, and 10% for

the elliptical GHs. These coefficients are not made available in [96].

Therefore, the spherical GHs technique was used to model the gravity field of Phobos

in this thesis. The advantage is that the GHs are analytical functions, with far less

computational cost than using a mesh of tetrahedrons, and the accuracy of the approx-

imation could be naturally tuned by the terms of the series to be considered, unlike the

tetrahedron method. It is also chosen to use the lower order GHs model of [94], while

the model of [102] is used as a more accurate benchmark reference. The error between

the two complete gravity fields at the SOI’s boundary is of the order of a few percent of

the cumulated GHs perturbation at this distance, as computed in section 3.3.6.3. The

subset of methodologies developed in this paper that use Phobos’ inhomogeneous grav-

ity field will not change, and the outcomes will just depend on the series’ coefficients.

Fig.3.1 proves the need to use a refined model to describe the gravity field of Phobos

in its proximity, by comparing the gravity provided by the gravity harmonics model of

[94] with respect to the one predicted by the classical spherical model.

3.2 Modeling of the Shape

The methodology of the series expansion of spherical harmonics could be applied to

analytically describe any other physical field. In particular, it could be interesting

to compute the real geometrical shape of Phobos. This could be applied for graphical

purposes, but in the development of this thesis the real shape of Phobos will be exploited
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Figure 3.2: Phobos shape model. Height.
Shape harmonics series expansions up to de-
gree and order 17, 3B frame.

Figure 3.3: Phobos shape model. Nor-
mal to surface. Shape harmonics series ex-
pansions up to degree and order 17, 3B frame.

analytically in performance analyses.

The shape of a body is defined by the distance of the points on its surface from a

specific point, usually its center of mass [101]. Therefore, this defines a scalar field uR in

the body’s BCBF frame. The application of Eq.3.1 for a surface is simpler because the

field is defined on a 2D domain, since the radial coordinate is constrained to actually

be the field itself r = uR(ϑ, ψ). The surface is expressed by the series expansion of

spherical harmonics, which are called shape harmonics. This is presented in Eq.3.13,

where R is the mean radius used to normalize the expression (J0,0 = 1).

uR (ϑ, ψ) = R

∞∑
n=0

n∑
m=0

Cmn (ψ)Pmn (cosϑ) (3.13)

The technique can be used under the usual requirement that the field expanded in series

is a single-valued function of the spherical coordinates of the body’s BCBF frame. For

the particular case of the shape harmonics, a body that satisfies this constraint is

called a star-like object [101]. This is a body with a globally convex surface, so without

overhangs, bubbles or very complex shapes, because once defined a center no more

than one point on the surface must lie along the radial axis. For example, peanut-like

asteroids could not be described with this method. Despite its very large craters, in

particular Stickney, Phobos does not exhibit such limits, thus a related model has been

developed throughout the years. Visual images of Phobos taken from the Viking’s

program, the first spacecraft sent to Mars’ orbit, were first used to derive the shape

harmonics coefficients in [94]. Currently, with more detailed and numerous images

collected from other missions sent to Mars (specifically NASA’s Mars Global Surveyor

and ESA’s Mars Express), an updated geodesic model has been developed recently

in [101] for the shape model of Phobos, using an accurate control points’ network.

Shape coefficients are derived in [101] up to degree and order 17 (without added local

functions), and with mean fitting error on the control points’ network of 40m. The
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Figure 3.4: Phobos shape model. Al-
titude (over the mean radius) contour
map. Shape harmonics series expansions up
to degree and order 17, Phobos BCBF frame.

Figure 3.5: Phobos shape model. Con-
tour maps of the components of the
normal to surface. Shape harmonics series
expansions up to degree and order 17, Phobos
BCBF frame.

first shape coefficients are shown in Table 3.3, and all the set of coefficients is used in

this thesis to model the surface of Phobos8,9. Fig.3.2 shows the resulting geometry of

Phobos, where the inhomogeneous shape of this moon is evident and in particular the

Stickney crater. Fig.3.4 and Fig.3.6-3.7 show the altitude maps.

The shape harmonics’ coefficients could be used for calculating global physical

measures of Phobos, like volume, inertia matrix, libration amplitude, and in particular,

the Phobos’ center of figure is displaced from its barycenter of approximately 500m

[101]. This could be used to produce a refined model for the GHs’ coefficients: this was

not done in [101], and was undertaken in [96], but without reporting the coefficients.

Therefore the GHs used in this thesis were chosen to be the available coefficients of

[94], because the numerical calculation of them from the shape harmonics lies outside

of the objectives of orbital dynamics of this research work. However, it will be proved in

section 3.3.6.2 that a satisfying convergence is achieved for the purposes of this thesis.

Regarding the visualization of Phobos’ shape in this thesis, to emphasize that a

specific model for the gravity field or the height of Phobos is used in the analysis of

the spacecraft’s orbital dynamics, the shape of the moon will be shown accordingly: in

particular, graphs could show Phobos either with its mean spherical, mean ellipsoidal

or complete shape.

Finally, the shape harmonics’ model encompasses further information in addition

to the height distribution. In particular, throughout this thesis, it will be required

to handle the surface’s normal. In parallelism with the acceleration, which is the

8The cartographic map of Phobos is taken from AGI STK.
9The Phobos’ reference frame of these coefficients is indicated in [101] to be the usual BCBF frame,

but with longitudes positive towards West. Anyway, with these specifications the shape obtained by
Eq.3.13 was incorrect, and the right image of Phobos is obtained with a rotation of the Prime Meridian
of 180◦ (pointing towards the anti-Mars subpoint) and considering longitudes positive towards East in
this new frame, which makes the frame simply equivalent to the Phobos’ Hill’s frame.
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Figure 3.6: Phobos shape model. Alti-
tude (over the mean radius) 3D orog-
raphy map (Digital Elevation Model).
Shape harmonics series expansions up to de-
gree and order 17, Phobos BCBF frame.

Figure 3.7: Phobos shape model. Al-
titude (over the mean radius) contour
lines over topographic map. Shape har-
monics series expansions up to degree and or-
der 17, Phobos BCBF frame.

gradient (in spherical coordinates) of the gravity potential developed through spherical

harmonics as shown in Eq.3.3, the components of the normal at each surface’s point

could be derived. To do that, the explicit function uR is written as an implicit field

fR on the 3D domain, in order that the iso-surface at level zero corresponds to the

body’s figure, as shown in Eq.3.15. The outward gradient, once normalized, needs to

be rotated in the Cartesian reference frame with Eq.3.4.

∇TSEuR =


∂
∂r

1
r
∂
∂ϑ

1
r

1
sinϑ

∂
∂ψ

uR =

=


0

R
∞∑
n=0

n∑
m=0

[Cn,m cosmψ + Sn,m sinmψ] d
dϑP

m
n (cosϑ)

R
∞∑
n=0

n∑
m=0

m [−Cn,m sinmψ + Sn,m cosmψ] 1
sinϑP

m
n (cosϑ)

(3.14)



r = uR (ϑ, ψ)⇒ fR (r, ϑ, ψ) = r − uR (ϑ, ψ) = 0

⇒ n̂OUT,TSE (r, ϑ, ψ) =
∇TSEfR
‖∇TSEfR‖

∇TSEfR =

 1

− 1
uR

∂
∂ϑuR

− 1
uR

1
sinϑ

∂
∂ψuR


(3.15)

Fig.3.3 and Fig.3.5 show the normals’ field and its maps. Obviously, also the Hessian of

the shape model could be derived, and it contains the information about the curvature

of the body’s surface. Again, singularities at the Poles are treated as done for the GHs.
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3.3 The Mars-Phobos CR3BP-GH

The purpose of this section is to extend the model of the CR3BP to include the per-

turbative effects of the inhomogeneous gravity field of a general celestial body. This is

modeled with the GHs methodology presented in section 3.1. The GHs series expansion

of both massive bodies is considered to derive a general form of this dynamical system,

named CR3BP-GH.

3.3.1 Attitude Relations between Orbital and Body-Fixed Frames

The inclusion of the GHs in the 3B dynamics is a delicate operation, because the

components of the gravitational acceleration are defined in the body’s BCBF frame,

as presented in section 3.1.1. Thus, the attitude matrix between the Hill’s frame of

the two massive bodies’ orbit and the body-fixed frame of each body must be de-

rived. Recall that the nomenclature used to express the frames in astrodynamics was

introduced in section 2.1, and the physical variables and notation used to define the

orientation of these reference frames were presented in section 2.6.1. The body’s BCE

frame is defined with respect to the Earth’s inertial frame by the attitude matrix

AEEγ
E⊕N⊕

(ΩN⊕ , iNP⊕). The secondary body’s Hill’s frame is defined with respect to the

primary body’s BCE frame by the attitude matrix AE1N1
H2

(Ω2, i2, ω2 + ν2(t)), where the

true anomaly is computed from the solution of Kepler’s equation. In particular, in this

section numerical outcomes are obtained solving Kepler’s equation, while to gain ana-

lytical insight the dynamics of the true anomaly is approximated to be uniform, which

is ν⊕(t) = ν0,⊕ + nREV,⊕t, where nREV,⊕ is the mean motion. This is appropriate for

Phobos, whose orbit is almost circular. On the contrary Mars’ eccentricity is signifi-

cant, but its dynamics around the Sun is far slower than Phobos’ orbital motion, thus

a constant approximation of its mean motion is suitable. The body’s BCBF frame is

defined with respect to its BCE frame by the attitude matrix A
E⊕N⊕
BCBF⊕

= A3

(
Ω
N⊕
PM⊕

)
,

where the phase of the Prime Meridian (PM) with respect to the Node of reference is

computed as Ω
N⊕
PM⊕

= Ω
N⊕
PM⊕,0

+ nROT⊕t, and nROT⊕ is the body’s spin rate. In this

sense, the PM of a celestial body is taken as the longitude of a point of significant

interest, like a crater [70]. For Mars, the PM’s reference is the Airy-0 crater, so the

corresponding angle is derived from the initial condition of 176.63◦ at the J2000 epoch

[70]. For Phobos, the PM is taken along the sub-Mars point, since the moon is tidally-

locked with Mars [69].

The resulting attitude matrices, for the primary and the secondary of the CR3BP,

can now be expressed combining the appropriate successive rotations needed.

ABCBF1
3B = AE1N1

H2

(
AE1N1
E1PM1

)T
=

= A3 (nREV2t+ ν2,0 + ω2) A1 (i2) A3

(
Ω2 − ΩN1

PM1,0
− nROT1t

) (3.16)
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ABCBF2
3B = AE1N1

H2
AEEγ
E1N1

(
AEEγ
E2N2

)T(
AE2N2
E2PM2

)T
=

=A3 (nREV2t+ ν2,0 + ω2) A1 (i2) A3 (Ω2) A1 (iNP1) ·

·A3 (ΩN1 − ΩN2) A1 (−iNP2) A3

(
−ΩN2

PM2,0
− nROT2t

) (3.17)

The attitude relationship between orbital and body-fixed frame is generally a function

of time. It is interesting to investigate what are the conditions that allow to erase the

time-dependency. The time appears twice and with opposite sign in Eq.3.16-3.17, thus

the necessary condition is that the revolution and rotation rates are synchronous and

coherent. However, these two terms appear on the extreme sides of the succession

of elementary rotations, thus a geometrical constraint must be satisfied, which is that

A1 (i2) = I3 for Eq.3.16, and the cluster collecting all the five central matrices of Eq.3.17

is reduced to a pure rotation along the third axis A3 (Ω2 − ΩN2). Focus now on the

the conditions needed for the secondary’s attitude matrix. The necessary condition

nREV2 = nROT2 is true for Phobos, while the central core of Eq.3.17 represents the

attitude matrix between the orbital and equatorial planes of the second body. The

geometrical constraint is satisfied by five particular conditions, that are collected in

Eq.3.18.

ABCBF2
3B 6= A(t)⇐


i2 = 0

iNP1 = iNP2

ΩN1 = ΩN2

∨


Ω2 = 0

i2 = iNP2 − iNP1

ΩN1 = ΩN2

∨

∨


iNP1 = 0

i2 = iNP2

Ω2 = ΩN2 − ΩN1

∨


i2 = 0

iNP1 = 0

iNP2 = 0

∨


iNP2 = 0

i2 = −iNP1

Ω2 = 0

(3.18)

The latter four mathematical conditions are rather an improbable physical occurrence,

while the first condition requires that the inclination of the moon’s orbit is null with

respect to the central body’s Equator, and that the two bodies’ spin axes are aligned

and coherent. This produces the secondary body’s equatorial plane and its orbital

plane to be coincident. As was presented in section 2.1, these physical conditions are

almost satisfied by Phobos. To derive now the actual error of this approximation, the

geometrical constraint is evaluated with the physical data and ephemerides of Mars

and Phobos [69]. The analytical expression of the second massive body’s geometrical

constraint is provided below.

ABCBF2
3B 6= A(t)⇔ sin i2 sin Ω2 sin ΩN1

N2
sin iNP2 + sin i2 cos Ω2 cos ΩN1

N2
cos iNP1 sin iNP2+

− sin i2 cos Ω2 sin iNP1 cos iNP2 + cos i2 cos ΩN1
N2

sin iNP1 sin iNP2+

+ cos i2 cos iNP1 cos iNP2 = 1

(3.19)

The arccos applied to the left-hand side of Eq.3.19 yields the tilt angle θ between the

equatorial and orbital planes of the second massive body. The related libration motion
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in latitude is shown in Fig.3.8 for both Phobos and Deimos, and the simulation spans

an epoch of interest for upcoming mission purposes to the Martian moons. It is evident

that there is a significant difference between the two moons: Phobos’ misalignment dy-

namics are considerably faster (period of 2.26 terrestrial years), while Deimos’ period

is almost 55 years, and the amplitude of the misalignment is nearly double for Deimos.

Thus, the libration in latitude oscillates between a minimum of 0.30◦ and a maximum

of 1.90◦ according to the mission’s epoch, so the tilt of Phobos could be approximated

to be fixed during a typical mission segment around Phobos. The libration in longi-

tude is instead a short-period oscillation, dominated by the misalignment due to real

eccentricity of the Mars-Phobos orbit, whose amplitude is 1.80◦ [10, 11]. In conclusion,

since this angle, that represents the error taken by approximating the attitude matrix

of Phobos to be fixed during an orbital period span, is relatively small, it could be

approximated to be null, and the attitude matrix between the orbital and body-fixed

frames of Phobos becomes time-independent,

ABCBF2
3B = A3(−Ω

R1
2

PM2
) = A3(−π) (3.20)

where the location Ω
R1

2
PM2

of Phobos’ PM (x-axis of BCBF) with respect to the Mars-

Phobos radial (x-axis of 3B) is constant and formally set to 180◦ = π rad as explained

previously. In particular, whereas the synchronous constraint is a common condition

for the planetary systems, no simplifications would have risen if the two geometrical

conditions had not been satisfied, which instead is not a very common situation in the

Solar System. This approximation could be estimated to produce a residual orbital

perturbation on the new Mars-Phobos CR3BP-GH of two orders of magnitude lower

than the one provided by the cumulated GHs’ perturbation on the CR3BP. This, to-

gether with the inaccuracy of the GHs’ coefficients addressed in section 3.1.3, is a first

estimation of the savings that will be provided by tracking the orbits computed in a

more accurate description of the natural dynamics in the vicinity of the moon.

Eq.3.21 shows the simplification of the primary’s attitude matrix for the conditions

of time-independency of the secondary’s attitude matrix. In this case Mars’ figurative

matrix is a pure rotation along the third axis too, but it is still time-dependent since the

synchronous condition between the central body’s rotation and the moon’s revolution

is a rather unique condition.

ABCBF1
3B = A3

(
u2,0 + Ω2 − ΩN1

PM1,0
+ (nREV2 − nROT1) (t− t0)

)
(3.21)

3.3.2 Apparent Effects of the Gravity Harmonics

The inclusion of the GHs is a delicate operation in the relative dynamics of the 3B

problem, also because the rotating frame is set to be aligned with the Hill’s frame of

the two massive bodies’ orbit. The inclusion of the perturbation of the GHs produces
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Figure 3.8: Misalignment angle between the equatorial and orbital planes of the
Martian moons. Mean values in dotted lines.

the orbit of the two bodies to be non-Keplerian. Thus, their position with respect to

their center of mass is different, and this affects the gravity field in the equations of

motion. In addition, the rotation of the Hill’s frame is different and not constant, and

this affects the apparent acceleration’s terms in the equations of motion. The analysis

of non-Keplerian orbits is usually conducted with Gauss’ planetary equations [103, 104],

that express the derivative of the orbital elements as a function of the perturbation. The

general solution could be seen as a composition of the mean orbital elements with time,

and by an oscillation around them, whose spectrum could present different frequencies

[103]. Thus, the mean solution is expressed by the secular derivatives of the orbital

elements, and its sum with the periodic oscillation represents the osculating orbital

elements that describe the non-Keplerian orbit over time.

The analytical solution is only available in terms of the mean orbital elements for

the conservative GHs, which are the even zonal harmonics, while the related osculating

solution is provided by semi-analytical techniques [105]. For all the other GHs, the

solution can be computed only numerically, and provided explicitly as a reference signal

in feed-forward to the dynamics of the perturbed-R3BP, that must be implemented in

a simulator. Thus, to start gaining analytical insight, the focus is placed on describing

the mean Mars-Phobos orbit under the effect of the conservative GHs, and considering

at the first step the effect of Mars-J2. The J2 perturbation produces null secular

derivatives in the orbital elements a, e, and i, while the secular derivatives of the other

three angles are given below.
˙̄ΩJ2 = −3

2J2

(
R
p

)2
n cos i

˙̄ωJ2 = 3J2

(
R
p

)2
n
(
1− 5

4sin2i
)

˙̄MJ2 = n

(
1 + 3

2J2

(
R
p

)2 (
1− 3

2sin2i
)√

1− e2

) (3.22)

In particular, Eq.3.22 could be quickly probed comparing its outcomes with the dif-

ference of the related osculating ephemerides of Phobos after a day, available on the
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JPL’s online database. The values provided by Eq.3.22 are very close to the real ones,

which indicates that Mars-J2 secular term is the most significant perturbing effect at

Phobos. Moreover, the absolute value of these derivatives is significant, which indicates

that Phobos’ orbit is highly non-Keplerian.

In the model of the CR3BP presented in section 2.3, the orbit of Phobos is ap-

proximated as circular, due to its small eccentricity. As discussed in section 3.3.1, the

inclination of Phobos is quite small too, and for this analysis its orbit could be approx-

imated to be equatorial. Thus, with these approximations the secular effects of the

Mars-J2 perturbation keep the geometry of the Mars-Phobos’ orbit to be the same as

in the CR3BP, which means that the distance of the massive bodies from their center

of mass is constant, therefore not affecting the computation of their gravity field. The

only effect acts on the apparent acceleration of the 3B frame, due to the change of

the mean motion. However, Eq.3.22 is no longer adequate to compute the new angu-

lar motion, because it is derived from Gauss’ planetary equations, which are singular

for null eccentricity and inclination. There exists a non-singular version of the Gauss’

planetary equations, which are stated in terms of the equinoctial orbital elements, and

where the angular motion is expressed with the true longitude [104]. But also this

approach is not valid for our purpose. This is because the framework of these models

is represented by the osculating orbital elements, which are only a parametrization of

the orbital dynamics. They express the instantaneous orbit if perturbations were not

present, and cannot be used at a given time to identify the global structure of the

solution like the Keplerian orbits. The case of the circular and equatorial orbit under

the effect of the central body’s oblateness is emblematic to recognize how the orbital

dynamics are described by osculating orbital elements. The osculating solution is an

equatorial ellipse, where the orbiting body is fixed at the pericenter, and the apsidal

line rotates with a constant rate. This eclectic parametrization could be avoided sim-

ply writing down the equations of a circular and uniform rotation motion, deriving the

constant angular velocity from the centripetal acceleration, that is now the sum of the

Keplerian and the J2 terms.

aCP =
Gm1−2(
r1

2

)2 +
Gm1−2(
r1

2

)2 3

2
J2(1)

(
R1

r1
2

)2

= n2r1
2 (3.23)

The new mean motion of the Hill’s frame under the central body’s oblateness is ex-

pressed by means of a correction term ∆,

n = n0

√
1 +

3

2
J2(1)

(
R1

r1
2

)2

= n0

√
1 + ∆J2(1)

(3.24)

where n0 is the basic 2B mean motion. The new angular acceleration of the Hill’s

frame increments the apparent acceleration from the case of the CR3BP. This appears

in the classical extension of the equatorial CR3BP with the central bodies’ oblateness
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[106, 107].

The approach could be extended to consider the Phobos-J2 apparent effect, as well

as all the other even zonal harmonics, like J4.

n = n0

√
1 + ∆ = n0

√
1 + ∆J2(1)

+ ∆J4(1)
+ ∆J2(2)

+ ∆J4(2)
(3.25)

∆J4(1)
=

25

8
J4(1)

(
R1

r1
2

)4

(3.26)

However, Mars-J4 and Phobos-J2 correction terms are both one thousand times smaller

than the one due to Mars-J2. Therefore, the only apparent effect of the GHs that will be

considered in the Mars-Phobos system is the correction term due to Mars’ oblateness.

In this sense, the new centrifugal acceleration n2q could be decomposed into the sum

of the original one plus the correction effect ∆J2,(1)
q. The latter could be seen as the

sum of ∆J2,(1)
q2 and ∆J2,(1)

r2 (see Eq.2.6-2.7), which is consistent with an approach of

close relative motion with respect to the secondary. But the first term is exactly equal

and opposite with the Mars-J2 gravity at Phobos. Thus, it is possible to forecast that

the total effect of the Mars’ oblateness, sum of the direct gravity perturbation and the

apparent effect, is lower than the gross J2 gravity term, as long as the spacecraft is close

to Phobos. This is coherent with the differential analysis of the orbital perturbation

undertaken in section 2.4.

3.3.3 Equations of Motion

Now that all the ingredients have been introduced and discussed separately, the Mars-

Phobos CR3BP of section 2.3.3 is extended to consider the inhomogeneous gravity fields

of the two massive bodies. They are modeled through the GHs methodology described

in section 3.1, and introduced in the equations of motion through the attitude relations

presented in section 3.3.1, together with their apparent effects addressed in section

3.3.2.

In the same way the equation of motion of the CR3BP are expressed in Eq.2.13,

the emphasis is placed on the nonlinear terms in the ODEs by defining an appropriate

vectorfield of the gravity of each massive body. This is decomposed into the classical

Keplerian vectorfield used in Eq.2.13, and the net perturbation of the GHs starting

from degree 2.

f⊕(t,x) = fG⊕(x) + fGH,⊕(t,x) =

[
03x1

aG,⊕(q)

]
+

[
03x1

aGH,⊕(t,q)

]
(3.27)

aGH,⊕(t,q) = A
BCBF⊕
3B (t)

(
A
BCBF⊕
TSE (q)

)T
∇TSEuG,⊕(q, n ≥ 2) (3.28)

The resulting equations of motion of the CR3BP-GH are defined in the 3B frame of

the two bodies’ mean circular orbit, which is now approximated also as equatorial, and
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are presented in Eq.3.29.

ẋ = fCR3BPGH(t,x) = Ax +
1

1 + ∆
(f1(t,x) + f2(x)) =

= Ax +
1

1 + ∆

(
fG,1(x) + fG,2(x)

)
+

1

1 + ∆

(
fGH,1(t,x) + fGH,2(x)

) (3.29)

The CR3BP-GH is expressed in non-dimensional units, with the same units of mass

and length of the CR3BP, but since the time is set to correspond to the phase of

Phobos around Mars, the time unit is now different to reflect the new mean motion,

where the correction term ∆ is given only by Mars-J2 as discussed in section 3.3.2. The

peculiarity of the Mars-Phobos system is that the secondary’s gravity field in Eq.3.29

is time-invariant, since its attitude matrix is approximated to be fixed as explained in

section 3.3.1. However, this Hamiltonian system is time-variant due to the fact that

Mars’ attitude matrix depends on time, and the specific energy of the system is not

an integral of motion. The energy of the CR3BP-GH could be computed in the same

way as for Eq.2.15, but expanding the gravity potential of the two bodies with the GHs

series of Eq.3.1, and then scaling them down with the correction factor.

e = tR(q̇)− ueff (q) = tR − tD −
1

1 + ∆
(uG1 + uG2) (3.30)

In the following sections, the same preliminary analysis conducted in section 2.3 for

the Mars-Phobos system is undertaken using now the model of the CR3BP-GH. The

approach is to study the effect of the most important GHs, introducing them separately

in the series expansions, and finally consider the full CR3BP-GH.

3.3.4 Effect of J2

The purpose of this section is to undertake the preliminary analysis of the Mars-

Phobos CR3BP-GH considering the dominant GH of both massive bodies, which is

J2
10. The resulting dynamical model is named CR3BP-J2, and consists of the Mars-

Phobos CR3BP-GH of Eq.3.29 with the Phobos-J2, the Mars-J2 and its apparent accel-

eration’s correction term ∆. In this section, the analytical approach will be conducted

with this complete CR3BP-J2, and the results will be discussed adding each term in

sequence.

The potential, acceleration, and Hessian, in the Cartesian coordinates of the body’s

BCBF frame, of the J2 perturbation are presented in the following equations. They

10It should be highlighted that the summarizing figure of the perturbing effect of the GHs is given
by their magnitude coefficient. However, this could depend on the normalization used, and most
importantly the perturbing acceleration is a 3D field that depends on the position. Thus, the real effect
of the spherical harmonic is given by the whole expression of the term used in the series expansion of
Eq.3.3.
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Figure 3.9: Hill’s curves in CR3BP-J2 with Phobos-J2. x-y and x-z projections at different
energies, with magnification around Northern additional EP.

are expressed in the non-dimensional units of the CR3BP-J2.

u
J2,(⊕)

G⊕
(qBCBF⊕) = −µ⊕(R⊕/L)2

‖q‖3
J2,(⊕)

1

2

(
3

[
qz
‖q‖

]2

− 1

)
(3.31)

a
J2,(⊕)

G⊕
(qBCBF⊕) = −µ⊕(R⊕/L)2

‖q‖5
J2,(⊕)

3

2


qx

(
1− 5

[
qz
‖q‖

]2
)

qy

(
1− 5

[
qz
‖q‖

]2
)

qz

(
3− 5

[
qz
‖q‖

]2
)

 (3.32)

Hu
J2,(⊕)

G⊕
(qBCBF⊕) =− µ⊕(R⊕/L)2

‖q‖7
J2,(⊕)

3

2
·

·


5

(
7

[
qz
‖q‖

]2

− 1

)[ qx
qy
qz

] [ qx
qy
qz

]T
− ‖q‖2

(
5

[
qz
‖q‖

]2

− 1

)
I3+

−10 (qz)

[
0 0 qx
0 0 qy
qx qy 2qz

]
+ 2‖q‖2

[
0 0 0
0 0 0
0 0 1

]


(3.33)

As discussed in section 3.3.3, the Martian figurative matrix in Eq.3.29 is the only

term that depends on time. However, the J2 perturbation is axially-symmetric along

the z-axis, and in section 3.3.1, thanks to the orbital characteristics of Phobos, the

Mars’ attitude matrix was derived in Eq.3.21 to be a pure rotation along the third axis.

This means that the Mars’ rotation does not couple with its J2 perturbation, and the

Mars-Phobos CR3BP-J2 is a time-invariant Hamiltonian system. The energy of the

system, derived as explained in section 3.3.3, is an integral of motion, and an extended

Jacobi integral c is defined through Eq.2.15.

3.3.4.1 Hill’s Surfaces

The existence of an integral of motion for the Mars-Phobos CR3BP-J2 allows an exten-

sion of the definition of the Hill’s surface and the SOI also in this model. The analysis

is undertaken in the same way as it was conducted in section 2.3.4 for the CR3BP,
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Figure 3.10: Hill’s curves at L2 energy. x-y and x-z projections for CR3BP and CR3BP-
J2 with only Phobos-J2, only Mars-J2, both terms, and finally complete case with the mean
motion correction. The case of only Phobos-J2 is indistinguishable from the final case. Energy
is defined for L2 relative to each different model. Ellipsoidal and mean sizes of Phobos.

computing the Hill’s curves on the coordinates’ planes. This analysis for the equato-

rial CR3BP with the massive bodies’ oblateness has already been undertaken in [107].

Initially the effect of Phobos-J2 is considered.

For the planar case, no important things show up, as reported in Fig.3.9. The ad-

ditional J2 potential is symmetric with respect to the own central body, just like the

Keplerian potential, so the Hill’s curves and their evolution on the z = 0 plane is the

same that in the original CR3BP. It should only be reported that the collinear equilib-

ria’s energy level (which is the value of the Jacobi integral such that the curves around

Phobos intersect with the ones of the Mars’ and the exterior realms) is higher, and

L1−2 are displaced farther away from Phobos. This is due to the added term in the

Phobos’ potential, that provides an increase of the moon’s mass in the orbital plane,

representing the bulge of Phobos. Therefore, this is called here the energizing effect of

the additional potential terms.

Significant differences appear in the y = 0 plane (the same happens in the y-z plane).

The Hill’s curve is no longer a circle. Fig.3.9 shows the evolution in Phobos’ realm.

The effect of J2 is paramount at low energy. The Hill’s curve starts as an eight-shaped

figure, whose lobes lie along the x-axis. The related Hill’s surface is a doughnut. As the

energy increases, the lobes increase in size, eventually intersecting in two symmetrical

positions along the z-axis, and creating two internal holes below them. As the energy

further increases, the internal holes implode and the Hill’s surface becomes the classical

ellipsoid of the CR3BP, since J2 acts like a perturbation at the SOI’s boundary.

This behavior provided by the oblateness of the massive bodies in the 3B dynamics

is universal, as described in [107] for either one or both primaries. In particular, two

symmetrical EPs are born for each body. These EPs are not exactly positioned along

the vertical axis, but are slightly displaced towards the other body. They are L6−7 for

Phobos, and L8−9 for Mars. In general, for the celestial bodies of the Solar System,

these EPs are placed inside the body’s figure [107].
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Fig.3.10 presents the Hill’s SOI of the CR3BP-J2. The increase in Mars’ potential en-

ergizes the Mars’ realm, and L1−2 are shifted away from Mars. The increased centrifugal

potential counteracts this effect, and the Hill’s curves for the complete CR3BP-J2 are

indistinguishable from the ones of the case that considers only Phobos-J2. This was

expected from the consideration made in section 3.3.2, as well as the simplified analysis

of the orbital perturbations in section 2.4. In particular, from Fig.3.10 we see that it

is impossible to orbit around Phobos at energies lower than that of L2.

3.3.4.2 Equilibrium Points

The natural EPs of the CR3BP-J2 are computed in the same way as in section 2.3.5.1

for the CR3BP, as the stationary points of the new potential function.

(1 + ∆)

 x

y

z

− (1−µ)(√
(x+µ)2+y2+z2

)3

 x+ µ

y

z

− µ(√
(x+µ−1)2+y2+z2

)3

 x+ µ− 1

y

z

+

− µ(R2/L)2(√
(x+µ−1)2+y2+z2

)5J2(2)
3
2
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(
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]2
)
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[
z√
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]2
)
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[
z√

(x+µ−1)2+y2+z2

]2
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+

− (1−µ)(R1/L)2(√
(x+µ)2+y2+z2

)5J2(1)
3
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(x+ µ)

(
1− 5

[
z√

(x+µ)2+y2+z2

]2
)

y

(
1− 5

[
z√

(x+µ)2+y2+z2

]2
)

z

(
3− 5

[
z√

(x+µ)2+y2+z2

]2
)


=

 0

0

0



(3.34)

The number of roots is now 9: the five basic equilibria, plus two additional symmetric

couples above and below the two planets [107], as presented in section 3.3.4.1. The

computation of these additional equilibria could not be expressed as the solution of a

scalar function because they are not exactly aligned along the vertical axis. For Phobos’

realm, L6−7 vertical position is equal to 66% of the related Phobos’ mean ellipsoidal

dimension, while their x-position is shifted by only 10cm. For Mars’ realm, L8−9 height

is only 0.2% of the planet’s radius. These additional equilibria created by the GHs are

not practically useful because they are inside the body’s figure, and they are reported

here only from the mathematical point of view, to match the polynomial’s degree of

the stationary condition of Eq.3.34. But it should be highlighted that they are also

physical meaningless, because as was stated in section 3.1, the spherical GHs are not

valid inside the body’s reference Brillouin’s sphere. However, in terms of the global

force field, the presence of these fictitious equilibria indicates that flying close to the
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Polar regions (for example hovering) would be cheaper than that was predicted by a

Keplerian analysis.

The focus is now placed on the basic equilibria. For the equilateral points, the shift is

due only to the Mars perturbation. The new L4−5 shift away in both planar components

with a magnitude displacement of 5m. The analysis is more important for the collinear

points L1−2. They can be computed with an extended version of Euler’s Eq.2.24, up to

a ninth degree polynomial. The following equations show the polynomials for the two

collinear cases of the CR3BP-J2, each one with the three options: Phobos-J2, Mars-J2,

both terms combined. For each option the apparent acceleration’s correction is shown.



(1 + ∆) s7 + (1 + ∆) (µ− 3)s6 + (1 + ∆) (−2µ+ 3)s5 + (−µ+ ∆ (µ− 1)) s4+

+2µs3 − µ
(

1 + 3
2(R2/L)2J2(2)

)
s2 + 3µ(R2/L)2J2(2)s− 3

2µ(R2/L)2J2(2) = 0

(1 + ∆) s7 + (1 + ∆) (µ− 5)s6 + (1 + ∆) (−4µ+ 10)s5 + (4µ− 9 + ∆ (6µ− 10)) s4+

+ (2µ+ 3 + ∆ (−4µ+ 5)) s3 +
(
−6µ+ ∆ (µ− 1) + 3

2 (1− µ) (R1/L)2J2(1)

)
s2 + 4µs− µ = 0

(1 + ∆) s9 + (1 + ∆) (µ− 5)s8 + (1 + ∆) (−4µ+ 10)s7 + (4µ− 9 + ∆ (6µ− 10)) s6+

+ (2µ+ 3 + ∆ (−4µ+ 5)) s5 +
(
−6µ+ ∆ (µ− 1)− 3

2(R2/L)2J2(2) + 3
2 (1− µ) (R1/L)2J2(1)

)
s4+

+
(

4µ+ 6µ(R2/L)2J2(2)

)
s3 −

(
µ+ 9µ(R2/L)2J2(2)

)
s2 + 6µ(R2/L)2J2(2)s− 3

2µ(R2/L)2J2(2) = 0

(3.35)

(1 + ∆) s7 − (1 + ∆) (µ− 3)s6 + (1 + ∆) (−2µ+ 3)s5 − (µ+ ∆ (µ− 1)) s4+

−2µs3 − µ
(

1 + 3
2(R2/L)2J2(2)

)
s2 − 3µ(R2/L)2J2(2)s− 3

2µ(R2/L)2J2(2) = 0

(1 + ∆) s7 − (1 + ∆) (µ− 5)s6 + (1 + ∆) (−4µ+ 10)s5 + (−6µ+ 9−∆ (6µ− 10)) s4+

+ (−6µ+ 3 + ∆ (−4µ+ 5)) s3 +
(
−6µ−∆ (µ− 1)− 3

2 (1− µ) (R1/L)2J2(1)

)
s2 − 4µs− µ = 0

(1 + ∆) s9 − (1 + ∆) (µ− 5)s8 + (1 + ∆) (−4µ+ 10)s7 + (−6µ+ 9−∆ (6µ− 10)) s6+

+ (−6µ+ 3 + ∆ (−4µ+ 5)) s5 +
(
−6µ−∆ (µ− 1)− 3

2(R2/L)2J2(2) − 3
2 (1− µ) (R1/L)2J2(1)

)
s4+

−
(

4µ+ 6µ(R2/L)2J2(2)

)
s3 −

(
µ+ 9µ(R2/L)2J2(2)

)
s2 − 6µ(R2/L)2J2(2)s− 3

2µ(R2/L)2J2(2) = 0

(3.36)

In summary: L1, starting from an altitude of 3, 480m with respect to Phobos in the

CR3BP, is now 365m farther away; L2, starting from an altitude of 3, 500m, is now

365m farther away too. The difference of these value from considering or not the

Mars’ oblateness in the CR3BP-J2 is of 3m. Therefore the Phobos-J2 perturbation

provides a displacement of more than 10% of the altitude of L1−2. This indicates how

important it is to consider the inhomogeneous gravity field of Phobos for the calculation

of the Libration points and orbits, which significantly differ from their classical solutions

computed in the CR3BP.

Regarding the stability of these equilibria, the properties remain qualitatively the

same: the collinear LPs are unstable, the equilateral LPs are stable, and the additional

couples are unstable. In particular, L6−7 exhibit a center × spiral sink × spiral source

phase portrait, with the couple of spirals having exactly opposite couples of eigenvalues.

3.3.4.3 Reduction of the Mars-Phobos CR3BP-GH

After the static 1D analysis of the perturbations in section 2.4, the analytical insight

in section 3.3.2, and the qualitative 3D result in section 3.3.4.1, it has been also nu-
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merically quantified in section 3.3.4.2 that, in the framework of the relative motion

modeling around the moon, the Mars-J2 effect is negligible inside Phobos’ SOI. The

next dominant Mars’ GHs are J2,2, which accounts for 0.1% of Mars-J2 at Phobos’ SOI,

and J3, which is even less. Therefore, the paramount result obtained by the preliminary

analysis undertaken in this section 3.3.4, that considers only the effect of the oblateness

of the two massive bodies in the CR3BP-GH, is that the complete GHs model of Mars

could be disregarded from the analysis of the relative orbital dynamics around Phobos.

From this point, the Mars-Phobos CR3BP-GH of Eq.3.29, that will be used in this

thesis, considers only the inhomogeneous gravity field of Phobos, without the

apparent effect of its GHs. This is presented in Eq.3.37.

ẋ = fCR3BPGH(x) = Ax +

[
03x1

aG1(q) + aG2(q)

]
+

 03x1

A3(−π)
(
ABCBF2
TSE (q)

)T
∇TSEuG,2(q, n ≥ 2)


= fCR3BP(x) + fGH,2(x)

(3.37)

Thus, the time-scale of this system corresponds to the original unperturbed mean mo-

tion of the Keplerian, circular and equatorial orbit of Phobos around Mars of the

CR3BP. Furthermore, this Hamiltonian system is fully autonomous in time, and the

Jacobi integral of Eq.2.15 is extended with the series expansion of Phobos’ GHs poten-

tial of Eq.3.1.

3.3.5 Effect of J2,2

Consider the Phobos’ GHs magnitude coefficients of Table 3.1. After J2, which is about

10%, the other significant terms over 1% are J4 (2%) and J2,2 (1%). J4 perturbation’s

behavior is similar to the one of J2 (since they are even zonal harmonics), but its

effect also decreases with the square of the distance if compared with J2. The first

sectorial harmonic J2,2 has the same distance relationship as J2, and is important in

characterizing the attracting body as an ellipsoid, since it is related to the inequality

of the dimensions of the body on the equatorial plane, which is commonly referred to

as the triaxiality. In Table 3.1, the J2,2 phase λ2,2 is close to zero, meaning that the

Phobos’ BCBF frame’s x-axis (and the 3B frame’s x-axis too) is also the principal axis

of minimum inertia.

The purpose of this section is to undertake the preliminary analysis of the Mars-

Phobos CR3BP-GH, considering the effect of the triaxiality. After the paramount

result obtained in section 3.3.4.3, the time-invariant dynamical model consists of the

Mars-Phobos CR3BP-GH of Eq.3.37 including the Phobos-J2,2 term, and is named

CR3BP-J2,2.

The potential, acceleration, and Hessian, in the Cartesian coordinates of the body’s

BCBF frame, of the J2,2 perturbation are presented in the following equations. They
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are expressed in the non-dimensional units of the CR3BP-J2,2.

u
J2,2,(⊕)

G⊕
(qBCBF⊕) = µ⊕(R⊕/L)2

‖q‖3 J2,2,(⊕)3
[‖q‖x−y
‖q‖

]2
cos 2

(
arctan 2 (qy, qx)− λ2,2,(⊕)

)
(3.38)
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arctan 2 (qy, qx)− λ2,2,(⊕)
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(3.39)
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 ·

· sin 2
(
arctan 2 (qy, qx)− λ2,2,(⊕)

)


(3.40)

3.3.5.1 Hill’s Surfaces

The analysis undertaken in this section is identical to the one conducted for the CR3BP-

J2 in section 3.3.4.1, but considering the effective potential with the triaxiality term of

Phobos. The related Hill’s curves on the coordinates planes show an evolution similar

to the case of the CR3BP-J2 with Phobos-J2, but with an inverted behavior between

the projections on the x-y and x-z planes. At low energies two symmetrical lobes lie

along the x-axis. As the energy increases, the lobes grow in size, eventually intersecting

in two symmetrical positions along the y-axis, and creating two internal holes below

them. As the energy further increases, the internal holes implode and the Hill’s surface

eventually becomes the classical ellipsoid of the CR3BP.

Similar to the case of Phobos-J2, the realm is energized along the x-axis, represent-
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ing the maximum dimension of Phobos. Thus, L1−2 are displaced farther away from

Phobos. Furthermore, the two additional EPs created solely by Phobos-J2,2 GH are

placed in symmetric positions along the y-axis. Again, these new equilibria L6−7 are

internal to the figure of Phobos, positioned at around the 50% of the related dimension.

All these equilibria are actually slightly displaced from the x and y-axes, since λ2,2 is

not exactly null.

3.3.5.2 Equilibrium Points

Approximating λ2,2 to be null, the additional force field of J2,2 remains central along

the x and y directions, so the collinear EPs can be computed analytically with a scalar

polynomial equation of degree 7. These two augmented Euler equations are exactly the

same of the CR3BP-J2 with Phobos’ oblateness presented in Eq.3.35-3.36, substituting

3/2J2 with 9J2,2.
(1 + ∆) s7 + (1 + ∆) (µ− 3)s6 + (1 + ∆) (−2µ+ 3)s5 + (−µ+ ∆ (µ− 1)) s4+

+2µs3 − µ
(

1 + 9(R2/L)2J2,2(2)

)
s2 + 18µ(R2/L)2J2,2(2)s− 9µ(R2/L)2J2,2(2) = 0

(1 + ∆) s7 − (1 + ∆) (µ− 3)s6 + (1 + ∆) (−2µ+ 3)s5 − (µ+ ∆ (µ− 1)) s4+

−2µs3 − µ
(

1 + 9(R2/L)2J2,2(2)

)
s2 − 18µ(R2/L)2J2,2(2)s− 9µ(R2/L)2J2,2(2) = 0

(3.41)

Therefore, the effect of J2,2 at the Phobos’ SOI’s boundary is very similar and aligned

to J2. The altitude of L1−2 in a CR3BPH-GH with a quadrupole description of Phobos’

gravity now differs by 20% of their original value in the classical CR3BP, which is very

significant. The stability properties remain unchanged.

3.3.6 The CR3BP-GH with the complete Gravity Field of Phobos

This section concludes the analysis of the first extended model of the relative orbital

dynamics around Phobos, by studying the Mars-Phobos system with the full CR3BP-

GH of Eq.3.37, that considers the complete Phobos’ GHs series expansion of Eq.3.3

with the data of Table 3.1.

3.3.6.1 Hill’s Surfaces

The study of the augmented specific potential of the time-invariant Mars-Phobos full

CR3BP-GH through the evolution of the Hill’s surface is graphically complex because

the extended model does not have any symmetry. Thus the study of the Hill’s curves

onto the coordinates planes is not sufficient. However, after the study of the simplified

versions CR3BP-J2 and CR3BP-J2,2 in section 3.3.4.1-3.3.5.1, the fundamental aspects

of the behavior of the GHs on the 3B dynamics are comprehended.

The first aspect is the energizing effect of the GHs on Phobos’ realm, which is pro-

vided by the additional terms in the augmented potential of Phobos. The consequence

is that the intersections between the realms of admissible motion around Phobos, Mars,
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Figure 3.11: Hill’s surface in CR3BP-GH for L2 energy. Projections on coordinates
planes. Phobos real shape, mean sphere (dashed line) and ellipsoid (plain line). Phobos’ GHs
model of [94].

Figure 3.12: Hill’s surface in CR3BP-GH for L2 energy. Projections on coordinates
planes. Phobos real shape, mean sphere (dashed line) and ellipsoid (plain line). Phobos’ GHs
model of [102].

and the whole 2B system, hold for the CR3BP-GH, but they occur farther away from

Phobos. They define the position of the collinear equilibria L1−2, that will be specifi-

cally addressed in section 3.3.6.2.

The second effect is the evolutionary behavior of the GHs at increasing energy. The

spherical harmonics are the basis of natural modes onto the 2D sphere’s surface. Thus

they are 3D bubbles, and their effect on the Hill’s surface is represented by a pattern of

local lobes. These are evident at low energy, since the relevance of the GHs with respect

to the spherical fundamental term is inversely proportional to the distance from the

barycenter. This starting condition could be referred to as the “birth” of the realm.

As the energy increases, the Hill’s surface grows in dimension and its lobes start to

collapse with each other. This evolution continues until there are no more lobes, nor

residual internal holes, and the realm becomes “adult”. This condition is identified by

an energy such that the Hill’s surface tends to the one of the classical CR3BP. The

points where the lobes attach to each other are additional EPs of the model. Due to

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

90 Zamaro Mattia



Extension of the Model of the Orbital Dynamics

Table 3.4: C3BP-GH basic equilibria. Displacement of the LPs of the CR3BP-GH from
their original value in the CR3BP (Table 2.2). Absolute displacement, and relative displacement
of L1−2 in brackets from Phobos’ barycenter. The second relative value in brackets is related
to the L1−2’s altitude from Phobos’ surface modeled with shape harmonics. Considering the
Mars-J2 oblateness, changes in x-component for L1−2 are of 3m, whereas no change happens
for L3. Values for L4−5 are instead calculated at first with the general model.

EP ∆x ∆y ∆z

L1 -743m (-4%,-21%) 346m (2%,10%) -195m (-1%,-6%)

L2 643m (4%,18%) 345m (2%,10%) -101m (-1%,-3%)

L3 <1m <1m 0m

L4 5m -3m 0m

L5 5m 3m 0m

Table 3.5: C3BP-GH additional equilibria. Location in the Phobos’ BCBF frame, with
related geographic coordinates and altitude from Phobos’ surface modeled with shape harmon-
ics.

EP x y z φ ψ h

L6 4,419m 472m 5,104m 48.95◦ 6.09◦ -3,091m

L7 -3,349m -1,173m 5,616m 57.71◦ 199.30◦ -2,848m

L8 2,116m -951m -5,517m -67.19◦ 335.80◦ -2,481m

L9 611m -4,766m -5,361m -48.13◦ 277.31◦ -2,028m

the fact that the perturbative effects of the GHs on the Hill’s surface are relevant at

low energies, these EPs are usually inside the central body’s figure. This is also the

case of Phobos, as will be addressed in section 3.3.6.2.

Once the last additional EP is born, the “adult” realm will then intersect the Hill’s

surfaces of the Martian and exterior realms to provide the LPs of the CR3BP-GH.

Fig.3.11-3.12 show the pattern of the Hill’s surface at the energy of L2, using the cho-

sen GHs model of [94], and the benchmark model of [102]. Note in these figures that

the Hill’s surface at the energy of the LPs around Phobos is very close to its surface.

This was already evident in the classical CR3BP, just considering a mean ellipsoid as

reference for Phobos’ shape as shown in Fig.2.6. However, the inclusion of the GHs

improves the correspondence between the two boundaries in particular in the vertical

dimension. This is evident when comparing the SOI of the two GHs models: the exte-

rior boundaries of the Hill’s curves are similar, with noticeable difference only around

the Southern polar region. In this region the higher order model tends to improve

the curvature to neatly follow the real shape of Phobos. This outcome could not be a

coincidence. The fact that the body’s shape fills entirely its SOI is considered one of

the proofs of the theory of accretion which attempts to explain the origin of Phobos,

as was introduced in section 1.1. The results obtained with this enhanced CR3BP-GH

further suggest that the transportation of mass at low energy could be responsible for
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the current shape of Phobos, in particular for the vertical dimension, where no other

way of escape at low energy is available because the gateway of the invariant manifolds

of the LPs is close to the orbital plane. An additional consideration on the range of

dimensions of these transferred materials will be presented in section 4.4.7.

3.3.6.2 Equilibrium Points

The basic five LPs in the CR3BP-GH are still calculated by solving the stationary

condition of the augmented potential function of the time-invariant model. As this

enhanced system does not have any symmetry, the computation requires one to solve

a coupled 3D system of nonlinear equations with Newton’s method, using the values

of the LPs in the original CR3BP as initial guesses. The results are presented in Table

3.4. The purpose of the analysis focuses on the collinear couple L1−2. They both have

moved away from Phobos, under the orbital plane, and forward with respect to Phobos

along the tangential coordinate of the Hill’s frame. The asymmetric displacement of

L1 and L2 from their original values in the basic CR3BP accounts for 20% of their

altitude over Phobos. This is significant because the altitude is the practical measure

for space mission’s applications, in contrast to the distance from the barycenter. This

demonstrates how inaccurate the CR3BP would be for such applications.

Fig.3.11-3.12 show the pattern of the Hill’s surface at the energy of L2. Due to the

low µ, as it was in the CR3BP, the energy difference between L1 and L2 is small in

non-dimensional units (10−7), therefore the related Hill’s surfaces at the energy of L1

and L2, apart from the small region around each EP, are practically unchanged: they

identify the boundary of the Hill’s SOI of Phobos. In this sense, also considering its

complete inhomogeneous gravity field, it is clearly impossible to orbit around Phobos

at energies lower than the one of L2. Regarding the stability properties, these remain

qualitatively unchanged.

As discussed in section 3.3.6.1, the inclusion in the dynamics of the GHs pro-

vide additional equilibria at low energy. For the spherical harmonics model used up

to fourth-degree, 4 additional EPs exist mathematically, from the solution of the sta-

tionary condition of the augmented potential. However, the employment of Newton’s

method to compute these EPs requires to provide a reliable initial guess for each of

them. To derive the initial guess, the simple and practical procedure is to compute the

iso-surfaces of the scalar field defined as the magnitude of the augmented potential’s

gradient11. This allows to visually identify “islands” where the thrust level decreases,

and where an EP, which is one of the critical points where the iso-surface at null level

collapses, is located in each of them. Using a position inside these four “islands” placed

inside Phobos’ figure, the Newton’s method converges to provide the additional EPs,

that have been reported in Table 3.5. Three EPs are close to the x-z plane, two above

the orbital plane and symmetrical with respect to Phobos’ North Pole, and one in the

11This corresponds to the propulsive acceleration required to hover in a fixed point of the 3B frame,
and the related iso-surfaces are known as equi-thrust surfaces.
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Figure 3.13: Convergence analysis of the CR3BP-GH. L1 and L2 displacement from their
original value in the CR3BP. In the graphs at the bottom, the error respect to the solution
with all the harmonics is normalized by the altitude over Phobos’ surface. Dotted lines refer to
increasing zonal harmonics degree starting from J2. Phobos’ GHs model of [94].

Southern Hemisphere; the last EP is in the South-West sector. The first two points

and the last one exhibit a center × saddle × saddle phase portrait, whereas the third

one is a classical center × center × saddle. The eigenvalues of the additional equilibria

are on average five times stiffer than the usual values of the collinear LPs. All these

additional equilibria are interior to Phobos’ figure, with the outermost located 2km

below its surface modeled with the shape harmonics. Thus, as explained in section

3.3.4.2, these additional EPs created by the GHs technique are irrelevant.

3.3.6.3 Gravity Harmonics’ Convergence Analysis on the Equilibrium Points

The properties of L1−2 are an important summarizing figure, for the orbital behavior in

proximity of the SOI’s boundary, to conduct a convergence analysis on the CR3BP-GH

as a function of the number of harmonics of the gravitational field of Phobos. This

is done by incrementally increasing the terms of the series expansion included in the

vectorfield fGH,2 of Eq.3.37.

The Phobos’ GHs models available in the literature are of low-order, in our case

the model used from [94] arrives just to degree four. Due to the highly-inhomogeneous

shape of the moon, it would be a chance if this truncated model is already sufficient
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Figure 3.14: Convergence analysis of the CR3BP-GH. L1 and L2 eigenvalues deviation
from their original value in the CR3BP. The error is plotted respect to the solution with all the
harmonics. Dotted lines refer to increasing zonal harmonics degree starting from J2. Phobos’
GHs model of [94].

Figure 3.15: Convergence analysis of the CR3BP-GH. L1 and L2 eigenvectors’ com-
ponents deviation from their original value in the CR3BP. The error is plotted respect to the
solution with all the harmonics. Dotted lines refer to increasing zonal harmonics degree starting
from J2. Phobos’ GHs model of [94].

to provide a highly satisfying convergence value, for example under 1%. Recall that

in section 3.1.3, using the benchmark model of [102], an estimation of the error of the

cumulated residual GHs’ perturbation at the SOI’s boundary was provided: in this

section this value is computed. Therefore, an initial aim of this convergence analysis

is to assess if the model of [94] is at least convergent. The second aim is to derive a

figure of the truncation error for the properties of the LPs. This convergence analysis is

undertaken in two ways. The first option is to consider the coefficients of the model of

[94], by looking at the error at degree and order 3 with respect to the property at degree

and order 4. The second option is to consider the coefficients of the benchmark model

of [102], by looking at the error at degree and order 4 with respect to the property at

degree and order 6. If the behavior is convergent, this guarantees that the figures are
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Figure 3.16: Convergence analysis of the CR3BP-GH. L1 and L2 displacement from their
original value in the CR3BP. In the graphs at the bottom, the error respect to the solution
with all the harmonics is normalized by the altitude over Phobos’ surface. Dotted lines refer to
increasing zonal harmonics degree starting from J2. Phobos’ GHs model of [102].

conservative estimations of the truncation’s error.

A first overview of the convergence analysis clearly indicates that the use of a more

refined model than the quadrupole is necessary. Regarding the altitude of the L1−2

points in Fig.3.13, the behavior is convergent, and a satisfactory solution under the 1%

relative error seems to be achieved for the CR3BP-GH of degree-order 4, except for

the z-components, whose error is limited by 2%. The errors of this static dynamics’

indicator are even less if compared with the benchmark reference in Fig.3.16. Therefore,

as reported in section 3.1.3, the error of the GHs’ model used in this thesis is a few

percent of the cumulated GHs’ perturbation at the SOI’s boundary.

Further dynamical indications are given by the eigenstructure of the LPs’ manifold.

The convergence analysis is extended to the computation of the eigenvalues and related

eigenvectors of the two collinear EPs. Regarding the eigenvalues in Fig.3.14-3.17, for

both LPs the behavior is convergent and the relative error is under 1% for every set. For

the eigenvectors in Fig.3.15-3.18, the analysis is more complex. Regarding the saddle’s

eigenvectors, which represent the direction of the invariant manifolds, the same figure

of convergence of the eigenvalues is achieved. For the eigenvectors of the two centers,

the outcome depends on the components. Identifying each center manifold as the
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Figure 3.17: Convergence analysis of the CR3BP-GH. L1 and L2 eigenvalues deviation
from their original value in the CR3BP. The error is plotted respect to the solution with all the
harmonics. Dotted lines refer to increasing zonal harmonics degree starting from J2. Phobos’
GHs model of [102].

Figure 3.18: Convergence analysis of the CR3BP-GH. L1 and L2 eigenvectors’ com-
ponents deviation from their original value in the CR3BP. The error is plotted respect to the
solution with all the harmonics. Dotted lines refer to increasing zonal harmonics degree starting
from J2. Phobos’ GHs model of [102].

state-space’s section around the LP where each family of periodic orbits develops, the

same figure of convergence is achieved for the in-section components, while the out-of-

section components are still oscillating at high amplitude, in particular over 10% for

L2. Therefore the results are accurate for the invariant manifolds and the longitudinal

behavior of an invariant motion, while a more refined model is needed for the quasi-

periodic motion around them.
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3.4 The Mars-Phobos ER3BP-GH

In section 2.4 it was found that in addition to the irregularities of the Phobos’ gravity

field, a similar level of perturbation on the CR3BP, when used to describe the relative

dynamics of a spacecraft in proximity of Phobos, is provided by the eccentricity of

the orbit of the moon around Mars. Despite the fact that the orbital eccentricity

e = 0.0156 is not particularly high, its differential modeling perturbation is significant

for the motion in proximity of Phobos. This is an indirect effect of the collapse of

the SOI’s boundary towards the moon, because the perturbation of the eccentricity

(proportional to e) is dragged towards the second massive body of the 3BP, thus the

scaling of e acts on a higher gravity.

Following this, in this section the CR3BP-GH derived in section 3.3 is further ex-

tended to include the model of the elliptic orbit of the two massive bodies. The new

elliptic model with the GHs of the secondary is named ER3BP-GH.

The equations of motion of the ER3BP have been already derived in section 2.4.2

when determining an acceleration figure for the elliptic perturbation on the CR3BP.

Thus, recall Eq.2.44 that describes the ER3BP in the 3B frame in physical units, where

the primaries’ positions along the x-axis are now variable over time with the Keple-

rian relationships of Eq.2.44-2.45-2.49, and the 3B frame rotates with the non-uniform

angular velocity and acceleration of the elliptic orbit expressed in Eq.2.46-2.47. These

relationships are all functions of the true anomaly of Phobos ν, and are all proportional

to e. After the approximations discussed throughout section 3.3, the Mars-Phobos

ER3BP-GH can be retrieved by simply expanding the gravitational potential of Pho-

bos with the GHs series expansion of Eq.3.1. This yields the equations of motion of

the ER3BP-GH in the 3B elliptic frame and in physical units.

q̈ + ω̇z(ν)Wq + 2ωz(ν)Wq̇ = aG,1 + aG,2 − ωz(ν)2Pq

= ∇
(
uG,1 (q− q1(ν)) + uG,2 (q− q2(ν))− ωz(ν)2 rTPr

2

)
(3.42)

In particular, the inertial position, velocity, and acceleration of Phobos with respect

to Mars, in the Mars-centered Hill’s frame are retrieved with the relative kinematics

equations shown below.
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r1
2 =

 l(ν)

0

0


ṙ1

2 =
(
∂
∂t + ωz(ν)W

)
r1

2 =

 l̇(ν)

ωz(ν)l(ν)

0


r̈1

2 =
(
∂
∂t + ωz(ν)W

)
ṙ1

2 =

 l̈(ν)− ωz(ν)2l(ν)

2ωz(ν)l̇(ν) + ω̇z(ν)l(ν)

0

 =


− GM
l(ν)2

0

0



(3.43)

The main difference with the inclusion of the GHs is that the elliptic perturbation

makes the dynamics of the ER3BP-GH non-autonomous in time, since all the terms

in Eq.3.42 depend on ν(t). The dynamics of the true anomaly is given by ν̇ = ωz(ν),

and could be expressed by the solution of Kepler’s equation over time. Therefore the

energy of the system is not preserved, and the system is not conservative in any frame

of reference [54].

3.4.1 Selection of the Reference Frame and Units

Despite the Mars-Phobos ER3BP-GH remains non-autonomous for any choice of ref-

erence coordinates, the expression of the equations of motion could be easier or more

suitable for analytical and numerical analyses in a particular reference frame and with

appropriate normalized units. In particular, the unit of mass is still maintained as

the Mars-Phobos total mass, so the sense of µ is kept, while the choice of the units

of length and time should be investigated12. The set of equations of motion of the

ER3BP-GH with the different combinations investigated in this section are collected

with more detail in appendix A.

Eq.3.42, in the 3B frame, is restated in the normalized units of the CR3BP of section

2.3.3, setting the Mars-Phobos semi-major axis as the length unit, and setting the mean

anomaly M of Phobos as the normalized time. For notational convenience, the gravity

potential uG,⊕(r⊕), expressed as a function of the position with respect to the body’s

barycenter, is accounted for both massive bodies in a single term uG(r1, r2), like in

Eq.2.11. Thus, this includes the Keplerian gravity of Mars, and the extended gravity

field of Phobos with the GHs.

12Throughout this section, normalized state is indicated with an upper bar. Derivation with respect
to the normalized time is indicated with an apostrophe.
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 q = aq̄

t = 1
n t̄ = 2

√
a3

GM t̄ = T
2π t̄→ t̄ = M

⇒q̄′′ − 2
(1 + e cos ν)3e sin ν

(1− e2)3 Wq̄ + 2
(1 + e cos ν)2

(1− e2)3/2
Wq̄′ =

= ∇

(
uG

(
q̄ + µ

1− e2

1 + e cos ν

[
1
0
0

]
, q̄− (1− µ)

1− e2

1 + e cos ν

[
1
0
0

])
− (1 + e cos ν)4

(1− e2)3

q̄TPq̄

2

)
(3.44)

Using the semi-latus rectum as length unit (q = pq̄) or in a related time unit (t =
2

√
p3

GM t̄) allows the elimination of the
(
1− e2

)
-terms in nonlinear (first case) and linear

(second case) terms. However these are only algebraic simplifications, not significant

for analytical purposes.

3.4.1.1 Time-Variant Time-Unit

The use of time-variant physical units could allow to gain analytical insight. For ex-

ample, instead of the constant rate of the mean anomaly used in Eq.3.44, the time

unit could be set to correspond to the true anomaly or the eccentric anomaly E of

the primaries’ orbit. The equations of motion with such variable time-units are shown

in Eq.A.1 and Eq.A.2 respectively. They also report the post-processing relations to

obtain the inertial velocities (and time).

With the eccentric anomaly, the motion is parameterized with the phase of Phobos

in elliptical coordinates (from the center of the ellipse): since the orbit is elliptic, this

is useful for describing Phobos’ coordinates, but the equations of relative motion show

no particular improvement. With the true anomaly, the motion is parameterized with

the phase of Phobos from the Mars-Phobos’ barycenter (the focus of the ellipse): this is

more geometrically-intuitive, and Eq.A.1 shows that the Coriolis and centripetal terms

are now unitary (no time-dependent coefficient). However, time-variant units introduce

a further apparent term.

3.4.1.2 Time-Variant Length-Unit

The length unit is now considered as the time-variant Mars-Phobos distance. For the

elliptic motion, this is called an isotropic pulsating frame, and the related equations

of motion are stated in Eq.3.45-A.4 with respect to the true anomaly and eccentric

anomaly respectively.
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 q = l(ν)q̄

t = 1
ωz(ν) t̄ = 2

√
p3

GM
1

(1+e cos ν)2 t̄→ t̄ = ν

⇒


q̇ = ωz(ν)l(ν)q̄′ + ωz(ν)l′(ν)q̄ = an1+e cos ν

2√1−e2
q̄′ + an e sin ν

2√1−e2
q̄

q̈ = ωz(ν)2
(
l(ν)q̄′′ + 2l(ν)′q̄′ + l′′(ν)q̄

)
+ ω̇z(ν)

(
l(ν)q̄′ + l′(ν)q̄

)
=

= an2 (1 + e cos ν)3

(1− e2)2 q̄′′ + an2 (1 + e cos ν)2e cos ν

(1− e2)2 q̄′

⇒ q̄′′ + 2Wq̄′ = ∇
(

1
1+e cos νuG

(
q̄ + µ

[
1
0
0

]
, q̄− (1− µ)

[
1
0
0

])
− 1

1+e cos ν
q̄TPq̄

2 − e cos ν
1+e cos ν

q̄T (I3+P)q̄
2

)
⇒ q̄′′ + 2Wq̄′ = ∇

(
1

1+e cos νuG

(
q̄ + µ

[
1
0
0

]
, q̄− (1− µ)

[
1
0
0

])
+ 1

1+e cos ν
q̄T q̄

2 −
q̄T (I3+P)q̄

2

)
⇒ q̄′′ + 2Wq̄′ = ∇

(
1

1+e cos νuG

(
q̄ + µ

[
1
0
0

]
, q̄− (1− µ)

[
1
0
0

])
− e cos ν

1+e cos ν
q̄T q̄

2 −
q̄TPq̄

2

)
(3.45)

With the eccentric anomaly, the Euler term is discarded. With the true anomaly, more

simplifications occur: Euler and additional apparent terms are discarded, Coriolis and

centripetal terms are unitary, and the position of the primaries is fixed. Thus, in

the planar case, only a time-scaling factor appears for the gravity terms, while in the

spatial case a further time-variant apparent force is introduced. This spurious term

is due to the fact that the pulsation is applied uniformly in all the directions, thus it

accounts for the pulsating vertical direction. Due to their geometrical usefulness, and

the fact that their expression is the simplest obtainable, the equations of motion with

the combination pulsating frame - true anomaly are the most used and famous form to

express the ER3BP in the literature. They were introduced in [108]. In addition, they

are very powerful for analytical interpretations, because the vectorfield of the planar

part corresponds to the vectorfield of the planar CR3BP with the exception of the

gravitational forces which are scaled by the only time-variant term. In particular, the

3D ER3BP fully reduces to the 3D CR3BP not for l(ν) = a, but in quadrature phases

where l(ν) = p.

It is worth to note that for some analysis, a proper averaging of the time-variant terms

could be undertaken to provide their mean integral values over one orbital period. This

would make the mean-ER3BP autonomous again, and is used for little eccentricity

effects, which unfortunately is not the case of Phobos as explained in section 2.4.

3.4.1.3 The ER3BP-GH in Phobos’ Hill’s Frame

All the dynamics showcased so far are expressed in the 3B frame, which is centered on

the 2B barycenter. However, for the case of Phobos, where the SOI’s boundary is very

close to the moon’s surface, the dynamical analysis of the close orbits must be conducted

with a relative motion approach. This was not a problem for the circular case, since the

distance moon-barycenter is fixed, and the outcomes would differ by fixed translations

in position. On the contrary, in the elliptic case the distance moon-barycenter is variable

with time, and this affects the computation of both relative position and velocity over
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time. It is the same requirement of formation flying: as the inter-satellite distance

becomes smaller, sensitivity of relative motion’s performance with absolute dynamics

greatly deteriorates with time. Therefore, in a closed relative motion perspective, the

dynamics of the ER3BP-GH should be expressed in Phobos’ Hill’s frame. This change

in origin was already performed in section 2.4.2, where the differential perturbation

of the eccentricity on the CR3BP is computed. Eq.2.50 describes the ER3BP in the

secondary’s Hill’s frame in physical units. The related Phobos-centered ER3BP-GH in

normalized units13, for the fixed combination a-M is expressed in Eq.3.46, while the

time-variant combination l-ν is presented in Eq.A.8.{
q = a (¯̄q + q̄2)

t̄ = M

⇒ q̄2 = (1− µ)

[
1−e2

1+e cos ν

0
0

]
, q̄′2 = (1− µ)

[ e sin ν
2√

1−e2
0
0

]
, q̄′′2 = (1− µ)

[
(1+e cos ν)2e cos ν

(1−e2)2

0
0

]
⇒ āA,T = ω̇z(ν)

n2 Wq̄2 + 2ωz(ν)
n Wq̄′2 + ωz(ν)2

n2 Pq̄2 + q̄′′2 = −ωz(ν)2

n2 (1− µ) 1−e2
(1+e cos ν)2

⇒¯̄q′′ − 2
(1 + e cos ν)3e sin ν

(1− e2)3 W¯̄q + 2
(1 + e cos ν)2

(1− e2)3/2
W¯̄q′ =

= ∇

(
uG

(
¯̄q +

1− e2

1 + e cos ν

[
1
0
0

]
, ¯̄q

)
− (1 + e cos ν)4

(1− e2)3

(
¯̄qTP¯̄q

2
− (1− µ)

1− e2

(1 + e cos ν)2
¯̄x

))
(3.46)

As explained in section 2.3.6, the Hill’s approximation is not considered for the Mars-

Phobos system since the nonlinear effects of the 3B perturbation of Mars are rather

relevant for the unstable orbits within the Phobos’ SOI.

3.4.2 Equations of Motion

In section 3.4.1, the ER3BP-GH is expressed in several reference frames and units. For

the close relative motion approach, the Phobos’ Hill’s frame of Eq.3.46-A.8 is manda-

tory, and this is already a difference from the classical framework of the ER3BP of

[108]. The focus is now on the choice of the reference units.

Due to the necessity of including the GHs of the moon, also the classical pulsating

unit of the ER3BP is avoided, as it produces different time-dependent scalings for each

GH at different degree, i.e. (1 + ecosν)−n. Indeed, it is not desirable to have the closer

massive body, in a BCBF frame, to still provide a non-conservative gravity field. There-

fore, the preference here is to maintain the classical fixed length unit of the semi-major

axis of the Mars-Phobos orbit.

Regarding the choice of the time unit, this is actually quite indifferent, as no par-

ticular advantages or disadvantages come out. The choice of E is not desirable for the

applications of the model. The choice of ν simplifies the integration of the dynamics, as

this depends directly on it, and inertial time and relative velocities could be retrieved

by postprocessing. The choice of M keeps the reference with the real time, and avoids

13Throughout this section, normalized relative state with respect to the secondary body is indicated
with a double upper bar.
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post-processing of the relative state, but requires to compute ν(t).

First, the case of the fixed time unit is considered. In Eq.3.47 some intermediate

variable are defined for notational convenience. This yields the generalization of the P

and W matrices, defined in section 2.3.3 in the CR3BP, for a time-variant normalized

angular velocity. In addition, new terms are introduced: Y, which corresponds to P

but with respect to the normalized angular acceleration, and a which represents the

normalized apparent translational acceleration of the frame.
a(ν) = (1− µ) (1+e cos ν)2

(1−e2)2

[
1
0
0

]
ω(ν) = (1+e cos ν)2

(1−e2)3/2

[
0
0
1

]
→W(ν) = ω(ν)∧ → P(ν) = W(ν)2

ω̇(ν) = −2 (1+e cos ν)3e sin ν

(1−e2)3

[
0
0
1

]
→ Y(ν) = ω̇(ν)∧

(3.47)

Eq.3.48 presents the ODEs with respect to the mean anomaly.

x =

[
q

q̇

]
→ ẋ = A(ν)x +

[
03x1

uG/q(q, ν) + a(ν)

]
, A(ν) =

[
03 I3

−Y(ν)−P(ν) −2W(ν)

]
(3.48)

The reader should appreciate the similarity of Eq.3.48 with the ODEs of the CR3BP of

Eq.2.13 and of the CR3BP-GH of Eq.3.37, where the linear part, given by the rotating

apparent terms, is now time-variant, and the matrix Y and vector a are added to the

system. Eq.3.49 shows the related effective potential of the non-autonomous Hamilto-

nian system, which takes into account the oscillating Keplerian gravity of the primary,

the conveniently fixed complete gravity field of the secondary (and not dependent from

the eccentricity), the oscillating centrifugal term, and the oscillating translational ap-

parent term given by the opposite of the gravity of the primary at the origin of the

Phobos’ Hill’s frame.

ueff = uG,1

(
q + 1−e2

1+e cos ν

[
1
0
0

])
+ uG,2 (q)− (1+e cos ν)4

(1−e2)3

(
qTPq

2 − (1− µ) 1−e2
(1+e cos ν)2x

)
(3.49)

In the same sense, the ODEs and effective potential with respect to the true anomaly

are derived, and are shown in Eq.A.14-A.15. Setting the time to correspond to the

true anomaly produces the normalized angular velocity to be constant, thus W and P,

representing Coriolis and centrifugal terms, in these ODEs are time-invariant. However,

an additional drag term due to the time-variant unit of time, and proportional to the

velocity, must be taken into account, as it was addressed in Eq.A.1, and is represented

by the matrix YI .

It is worth noting that in these versions of the ER3BP-GH, the gravity potential

of Phobos depends only on the relative position q in the Hill’s frame, while all the

other terms depend also on ν. It is easy to see that the models of Eq.3.48-A.14 reduces

to the circular cases of Eq.2.13-3.37 for e = 0. The offset in the frame’s origin is

accounted by the apparent translational term a. This bias should be collected in the
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term −Pq to describe the full centrifugal acceleration in the barycentric frame of the

CR3BP/CR3BP-GH.

A simple way to treat non-autonomous systems [109, 110] is described in section

B.1.2.4. It requires to include the time in the state space, adding a fake dynamics

in the vectorfield as ṫ = 1. In this way, the system in the augmented state-space

dynamics is autonomous again. This is just a trick to allow to extend the application

of analytical and numerical tools of autonomous systems to time-variant ones, since the

additional state dynamics is actually constrained. For this reason, the final choice of

setting the time to correspond to M is made for the ER3BP-GH that will be used in

this thesis. Since one phase must be appended in the state vector, using ν̇(t̄) = ωz(t̄)
n in

the augmented vectorfield, instead of the trivial ν̇(t̄) = 1, allows ν(M) to be retrieved

directly from the integration of the equations of motion instead of solving Kepler’s

equation. This choice maintains the outcomes in fixed physical units, thus avoiding

postprocessing, that would have instead been necessary in the second case.

Eq.3.50 provides the full time-invariant ODEs of the Mars-Phobos ER3BP-GH in

the Phobos’ Hill’s frame, with the fixed physical units of the CR3BP.

x =

 q

q̇

ν

→ ẋ = A(ν)x +

 03x1

uG/q(q, ν) + a(ν)

ωz(ν)

 , A(ν) =

 03 I3 03x1

−Y(ν)−P(ν) −2W(ν) 03x1

01x3 01x3 0


(3.50)

Eq.3.50 is the extended model of the relative orbital dynamics in the proximity of Pho-

bos, including the effects of the inhomogeneous gravity field and the orbital eccentricity

of the moon, that will be used in chapter 4 to compute the accurate LPOs about Pho-

bos.

It is worth to note that appending the first-order dynamics of the true anomaly re-

quires to add also a related momenta to derive the 8D Hamiltonian form of the ODEs

of Eq.3.50. This procedure is called homogeneous formalism, and is explained in [111].

3.4.3 Hill’s Surfaces

The great correspondence of terms between CR3BP and ER3BP in the 3B frame and

with the classical combination of pulsating-true anomaly normalization, as highlighted

in section 3.4.1, enables to see some properties of the first model as continuously trans-

ferred in the second [108, 54]. In particular, in Eq.3.45 the time-dependency is provided

by a scaling factor acting equally on the terms constituting the original effective po-

tential in the CR3BP, plus a vertical spurious term. This holds for the Mars-Phobos

CR3BP-GH and ER3BP-GH in the pulsating frame of Eq.3.45.

Thus, at any frozen time, the analysis of the planar dynamics in the instantaneous

elliptic problem could be conducted in the same way as it is usually done in the circular

case, just considering the current length scale. For the planar ER3BP, the instanta-

neous effective potential is proportional to the one of the planar CR3BP, thus their
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Figure 3.19: Hill’s surface in ER3BP-GH at perimars for L2 energy. Projections on
coordinates planes. Phobos real shape, mean sphere (dashed line) and ellipsoid (plain line).
Phobos’ GHs model of [102].

Figure 3.20: Hill’s surface in ER3BP-GH at apomars for L2 energy. Projections on
coordinates planes. Phobos real shape, mean sphere (dashed line) and ellipsoid (plain line).
Phobos’ GHs model of [102].

zero-velocity curves correspond with the current normalization. Therefore, in physi-

cal units, the related Hill’s surfaces move with the pulsating reference frame, and the

concept of a pulsating SOI for the massive bodies has been proposed in [112] as a

steady-state approximation. The mean value is the SOI of the CR3BP, and the mini-

mum and maximum dimensions are obtained at pericenter and apocenter respectively.

The vertical Hill’s curves are instead not equivalent, due to the presence of the spurious

term. However, this could be at first instance neglected in the spatial case, to achieve

a first analytical insight.

This approach could be extended to the Mars-Phobos ER3BP-GH. However, in the

CR3BP-GH, the length unit is used to normalize the reference radius in the GHs series

expansion of Eq.3.1, in contrast to the normalized CR3BP where the only parameter

is µ. This means that the instantaneous potential of the system is not proportionally

scaled along the massive bodies’ orbit. The normalized Hill’s surface does not corre-

spond at different phases of Phobos, and should therefore be recomputed within the
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Figure 3.21: Libration points oscillation in the Mars-Phobos ER3BP-GH. Graphical
visualization of the oscillation orbit of the libration points L1 and L2 of the Mars-Phobos
ER3BP-GH. Crosses represent the position of them at different Phobos’ phases around Mars:
pericenter (closer to Phobos), apocenter (farther from Phobos), and at mean Mars-Phobos
distance (central, indistinguishable from the two quadrature positions).

instantaneous normalized ER3BP-GH, before being scaled to physical units. This could

be simulated considering the two extreme phases of Phobos at perimars and apomars.

The frozen Phobos’ SOI at perimars and apomars is presented in Fig.3.19-3.20, while

the mean SOI is the one of the CR3BP-GH shown in Fig.3.12. The length unit of these

graphs is the instantaneous distance of Mars-Phobos, thus the figure of Phobos pul-

sates. It is evident that the Hill’s curves, at the L2 energy, at the extreme phases are

similar to the mean value of the CR3BP-GH, and the main effect is only Phobos’ ficti-

tious pulsation. Thus, also the real effect of the spurious vertical term would produce

similar results. Therefore the eccentricity effect does not seem to be a relevant factor

for the accretion theory’s validation mentioned in section 3.3.6.1.

3.4.4 Libration Points

As mentioned in section 3.4.3, the effective potentials of planar CR3BP and ER3BP

in the pulsating frame are proportional over the elliptic orbit. Therefore, their planar

critical points in the current length units are the same. The five EPs of the CR3BP

(in the CR3BP L unit), presented in section 2.3.5.1, are all EPs of the ER3BP too (in

the ER3BP pulsating L units) [108]. In the physical 3B frame they move in accordance

with the pulsating frame, and become 1D periodic orbits, because their eigenvalues in

the CR3BP (in normalized time-units) computed in Eq.2.29, are not integer numbers.

The actual velocity of the elliptic LPs in the fixed units can be computed from the

kinematics relations in Eq.3.45. Additional EPs, both in the pulsating and physical

spatial ER3BP, are not possible.

This holds for the Mars-Phobos CR3BP-GH and ER3BP-GH in the pulsating frame

of Eq.3.45. However, as mentioned in section 3.4.3, the presence of the GHs makes the

instantaneous planar dynamics not equivalent in these two normalized systems. Thus,

the LPs become elongated periodic orbits, tilted with respect to the x-axis and the x-y
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plane, which are not exactly a straight line. Since the vertical component of the LPs in

the Mars-Phobos CR3BP-GH is small with respect to their distance from the Phobos’

barycenter, as reported in Table 3.4, the effect of the spurious vertical term could be

neglected as a first analysis. Thus the instantaneous location of L1−2 is computed

with the classical stationary condition of the instantaneous effective potential, where

the reference radius for the GHs is scaled by the current Mars-Phobos distance, and

the results are scaled back to physical units. These trajectories are shown in Fig.3.21.

The periodic LPs of the Mars-Phobos ER3BP-GH oscillate around their location in

the CR3BP-GH with an amplitude of 260m, which is about 6% of their altitude. This

could be significant due to the proximity of the Phobos’ surface and the time-scale of

its orbit for practical applications.
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Chapter 4

Libration Point Orbits in the

Mars-Phobos 3BP

The purpose of this chapter is to apply the concepts and the numerical methodologies

of DST, presented in appendix B, to derive a class of natural motions of growing

interest in space missions, which are the orbits around the Libration Points. The

LPOs are invariant solutions of the classical CR3BP, that has been presented in section

2.3 for the case of the Mars-Phobos-spacecraft system. Following the results of the

analysis of the orbital perturbations in section 2.4, the classical model of the CR3BP

has been extended in chapter 3 to better describe the relative dynamics in proximity

of Phobos. This first led in section 3.3 to define the CR3BP-GH, that includes the

complete and inhomogeneous gravity field of the moon. The model is further extended

in the ER3BP-GH defined in section 3.4, that considers the real eccentricity of the

orbit of the moon. Following an iterative approach, this chapter begins in section

4.1 by computing the classical LPOs of the starting Mars-Phobos CR3BP, and then

their dynamical substitutes are computed in section 4.2 in the intermediate Mars-

Phobos CR3BP-GH, and in section 4.3 in the final Mars-Phobos ER3BP-GH. Section

4.4 concludes the chapter by addressing the feasibility, performance, and potential

applications of these orbits for use in future missions to Phobos.

4.1 LPOs in the Mars-Phobos CR3BP

The Mars-Phobos CR3BP has been introduced in section 2.3.3 and its dynamics mod-

eled as a system of ODEs in Eq.2.13. As explained in section B.1.3, the invariant so-

lutions of such dynamical system are n-tori classified by their phase-space’s dimension

in EPs, POs, nD-QPOs. Section 4.1.1 introduces the reader to the historical advances

made in the last few decades in the CR3BP. Following this, the collinear LPOs around

Phobos are derived. Section 4.1.2 focuses on the EPs, and sections 4.1.3-4.1.4 address

the computation of the POs and 2D-QPOs. Finally, section 4.1.5 presents the IMs of

these orbits.
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Figure 4.1: Orbit structure of the CR3BP. On the left, trajectories in the collinear equi-
librium region of L2. At right, invariant manifolds of the LPOs around L1 and L2 that identify
the complete orbit structure (stable manifolds in green, unstable manifolds in red). The graphs
refer to the Sun-Earth case [50], where T[A,B] identifies the tube from realm A to realm B, and
U is a Poincaré section.

4.1.1 Global Orbit Structure of the CR3BP

The CR3BP is one of the most famous and historically investigated chaotic dynamical

systems. For this reason, DST has proved essential to analyze the intimate characters

and the long-term behavior of the solutions of this system [50].

In the past few decades, the tools of DST developed for the CR3BP have provided

an in-depth understanding of the spacecraft’s motion in this model of the orbital dy-

namics. In particular, the collinear EPs, L1−2, have monopolized the interest in space

mission design. Moser’s generalization of Lyapunov’s center theorem proved that the

highly unstable region around them is characterized by four classes of orbits, as pre-

sented in Fig.4.1. They are the invariant tori of POs and QPOs around the LPs,

named LPOs [71, 72], the asymptotic orbits of these invariant motions, called the IMs

or Conley-McGehee tubes [73, 50], and the transit and non-transit orbits across the

LPs. In particular, as visible in Fig.4.1, the region of space around the LPs acts as

an energetic bottleneck [50]. This means that all the low-energy trajectories, that a

spacecraft can use to leave or enter the SOI of the second massive body, are constrained

to pass through this region.

This local orbit structure constrains the natural transitions between the two realms

interfaced by L1−2, which ultimately determines the global orbit structure of the

CR3BP. This is obtained by the use of Poincaré maps to identify invariant sets, in

combination with Symbolic Dynamics [50]. The latter allows to qualitatively analyze

the general flow of the CR3BP, as shown in Fig.4.1. This is characterized by two fami-

lies of symbols: the first (uncountable and finite) identifies the realm where the motion

currently lies; the second (countable and infinite) identifies the number of revolutions

performed within the realm. This is referred to as a Cantor set. The global orbit

structure of the CR3BP is made up of four types of orbits in the secondary’s realm,

which can be connected globally in a chain [50]. They are stable asymptotic orbits [73],

unstable asymptotic orbits [73], homoclinic/heteroclinic orbits [74, 75, 113], and non-

transit/capture/oscillating orbits [50]. A dynamical system that possesses this orbit

structure is said to be characterized by deterministic chaos, or is more usually referred
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to as “Smale Horseshoe”-like dynamics [50]. The orbit structure around the collinear

L3 is similar to the one around L1−2, whereas around the equilateral points L4 and L5

there is the addition of a so-called tadpole-like dynamics [50].

The study of the LPOs around the collinear EPs is the first step in the current ap-

proach of space mission analysis based on DST. Then, the identification of the IMs

associated to them allows the mission designer to operate with the natural global dy-

namics. The LPOs have been computed extensively for the Sun-Earth and Earth-Moon

systems, where the approximation of the natural dynamics using the CR3BP is an ac-

curate one. The study of the invariant motions of these systems has proved invaluable

for real space missions, such as ISEE-3/ICE (1978), WIND (1994), SOHO (1995), ACE

(1997), Genesis (2001), and ARTEMIS (2010), where the LPOs and their IMs have been

exploited as energy-efficient trajectories to minimize the spacecraft’s fuel consumption

during station-keeping and orbital transfers [50]. In particular, it has been speculated

to use these LPOs to establish space hubs or gateway stations for the future exploration

of the Solar System [71]. Furthermore, the exploitation of the tubes provided by the

IMs allows the design of trajectories with a prescribed itinerary, coined the Solar Sys-

tem’s “gateways” or “super-highways” [50], because they do not require any deep-space

orbital maneuver along the trajectory, and so the ∆v is less than the cost obtained from

a patched 2B approach.

4.1.2 The LPs of the Mars-Phobos CR3BP

The identification of the EPs of the CR3BP for the case of the Mars-Phobos system

constitutes the preliminary analysis of the orbital dynamics about the moon, and was

performed in section 2.3.5.1. They are computed through Newton’s method as ex-

plained in section B.3. The five planar LPs in the rotating 3B frame in the CR3BP are

presented in Table 2.2. In this chapter, the focus will be placed on the two collinear

LPs close to the second massive body, L1 in inferior (cis) and L2 in superior (trans)

conjunction, as seen from the primary. These points are very close to Phobos, at an

altitude of approximately 3.5km, using a mean ellipsoidal model for its shape. Due to

the small mass parameter of the Mars-Phobos couple, the energy difference between L1

and L2 is very small in non-dimensional units (10−8). Therefore the location of L1−2

is close to the linearized approximation expressed by the Hill’s SOI’s radius. Further-

more, the manifolds of the two LPs are almost symmetrical, and the Hill’s surfaces at

the energy of L1 and L2, apart from the small region around each EP, are practically

the same: they identify the boundary of the Hill’s SOI of the body.

The stability properties of L1−2 have been computed in section 2.3.5.2. As further

explained in sections B.3 and 4.1.1, the orbit structure around these LPs is character-

ized by a 2-parameters family of invariant 2-tori and their stable and unstable IMs.

These orbits are the focus of the next sections.
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4.1.3 The Lyapunov and Lissajous orbits of the Mars-Phobos CR3BP

The presence of two center manifolds around the LPs provides the origin of two continu-

ous families of POs, which are part of one general family of 2D-QPOs. The existence of

POs around the collinear LPs was proved in 1966 by Farquhar [71], and the first space

mission to exploit a PO around the Sun-Earth L1 point was NASA ISEE-3 (1978).

To derive these invariant motions, the analysis of the dynamics is undertaken in a

normalized referenced frame [50], introduced in the 1980 by Richardson to have better

numerical properties [114]. The normalized frame is centered on the EP of interest, and

the length unit corresponds to the distance of the EP from the secondary’s barycenter.

This distance is identified as γi, where the subscript relates to Li. This is similar to the

approach of the Hill’s approximation of section 2.3.6, but for the normalized frame of

Richardson the scaling is given by the true position of the LP computed in the nonlinear

dynamics, and not the first-order solution given by the Hill’s radius. In addition, the

frame is centered on the LP and not on the secondary’s barycenter. The transformation

of coordinates between the classical adimensional 3B frame and the normalized frame

is presented in Eq.2.31. The new normalized coordinates are expressed with an upper

tilde, and the position of the massive bodies along the normalized x-axis is reported.

q =

 x = γix̃+ (1− µ)∓ γi
y = γiỹ

z = γiz̃

 = γiq̃+

 1− µ∓ γi
0

0

⇒ {
x1 = −µ↔ x̃1 = −1∓γi

γi

x2 = 1− µ↔ x̃2 = ±1

(4.1)

From above, we see that the change of coordinates provides a constant term in x, that

will constitute a residual centrifugal term. The expression of the gravity forces with

the new coordinates is presented below.

u/q̃ =− 1

γi3
1− µ(

2

√(
x̃+ 1∓γi

γi

)2
+ ỹ2 + z̃2

)3

(
q̃ +

[
1∓γi
γi
0
0

])
+

− 1

γi3
µ(

2

√
(x̃∓ 1)2 + ỹ2 + z̃2

)3

(
q̃ +

[∓1
0
0

]) (4.2)

As discussed in section B.4, the first analytical approach for the computation of

invariant motions in conducted with linearization. This yields the linearized equations

of motion of the CR3BP in the normalized frame around the LPs in Eq.4.3.

x =

[
q̃

˙̃q

]
, ẋ = Ax , A =

[
03 I3

−P + u/q̃q̃ −2W

]
(4.3)

In particular, the linearized gravity of the primary in Eq.4.2 provides a constant term

that counteracts the aforementioned residual centrifugal term originated by the change
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of coordinates. The resulting system coincides with the linearized equations of motion

around the LPs already derived in section 2.3.5.2, apart from the different length scale.

This could be recognized by defining the Hessian matrix used in Eq.4.3 from the one for

the L1−2 case in Eq.2.28, and using s = γi. The eigenvalues of these linearized dynamics

are presented in Eq.2.29. Since in this framework the dynamics are uncoupled, υ is

the vertical natural frequency ωV , while ν and λ are respectively the planar natural

frequency ωP and the planar hyperbolic exponent λP . These quantities are linked by

the following relationship.

ω2
P = λ2

P − ω2
V + 2 (4.4)

The homogeneous solution of the mechanical system of linear ODEs of Eq.4.3 is

a combination of the normal modes associated to these six eigenvalues. Reducing

the analysis to the two central manifolds, the resulting general solution is a 2D-QPO

characterized by a planar orbital motion around the EP, defined by the amplitude

along the x-axis α and the planar frequency ωP , and an oscillation along the out-of-

plane direction, defined by the vertical amplitude β and the vertical frequency ωV .

The motion is strictly quasi-periodic because the two natural frequencies are not in

an integer ratio: for the case of the Mars-Phobos system, the ratio between the two

natural frequencies is close to be 1:1. Since the projections of these bounded trajectories

along the coordinate planes describe Bowditch/Lissajous curves, these orbits have been

named Lissajous orbits. By the orthogonality of the eigenspaces, two important extreme

cases must be considered. When β is zero, the resulting planar orbit is periodic and

is called the planar Lyapunov orbit. When α is zero, the resulting vertical periodic

oscillation is referred to as the vertical Lyapunov orbit. The two amplitudes are related

to the initial conditions, and they describe the resulting 2-parameter continuous family

of Lissajous orbits around the LPs of the CR3BP of Eq.4.5.

q̃QPO(t) =

 x̃ = −α cos (ωP t+ ϕP )

ỹ = Kα sin (ωP t+ ϕP )

z̃ = β cos (ωV t+ ϕV )

 , K =
ω2
P+2ω2

V +1
2ωP

= 2ωP
ω2
P−ω

2
V +1

, α, β,K ≥ 0

(4.5)

In particular, each couple of planar and vertical Lyapunov orbits is connected through

a continuous 1-parameter family of iso-energetic Lissajous orbits.

4.1.3.1 Computation of Lyapunov and Lissajous orbits with the Lindstedt-

Poincaré method

Eq.4.5 provides the definition of the Lissajous tori only in the linearized dynamics of

Eq.4.3, thus its validity is for small α-β. In addition, since the unstable eigenvalue

λP is considerably large, the LPOs are highly unstable. Thus, the linear range of va-

lidity is further constrained, and the linear solution becomes unreliable for practical

applications. To describe these orbits more accurately, the concepts of DST introduced
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throughout appendix B, and the semi-analytical methodologies discussed in section B.4,

have been applied to the CR3BP [50]. The methodology of the normal forms provides

good qualitative results of the evolution of the orbit structure around the LPs, but

these are not adequate for practical exploitation [51]. Accurate expressions of the Lis-

sajous orbits can be provided by high-order implementations of the lp technique [115],

presented in section B.4.1. This section shows how the lp technique can be applied to

compute the LPOs of the general CR3BP [50, 115].

The semi-analytical techniques for the reduction to the center manifold are based on

the concept that the analytical description of the dynamics is improved by considering

additional nonlinear terms. For the case of the CR3BP, these are originated by the

gravity of the two massive bodies. The lp technique is based on a power series approx-

imation. Since it is inversely proportional to the norm of the position from a reference

point r0, the Keplerian gravity potential (see section 2.2) is suitably approximated by

a series expansion of Legendre polynomials1,2 Pn.

1

‖r− r0‖
=

1

‖r0‖

∞∑
n=0

(
‖r‖
‖r0‖

)n
Pn

(
rT r0

‖r‖ ‖r0‖

)
(4.6)

For the CR3BP, the reference point for each gravity potential is the position of the

related massive body. Thus, Eq.4.6 is rewritten to describe the gravity potential of each

body (at the net of their mass) of the CR3BP as a truncated power series expansion of

the position’s components from the reference frame’s origin, introducing the coefficients

of the two gravity series Cn.

1∥∥∥r− [A0
0

]∥∥∥ =

N∑
n=0

Cn‖r‖nPn
(
x

‖r‖

)
(4.7)

Note that the product ‖r‖nPn
(

x
‖r‖

)
eliminates the denominator of Pn, thus Eq.4.7 is

a polynomial in the position’s components. The coefficients of this polynomial approx-

imation of the Keplerian gravity are known in closed-form, as they follow a recursive

law. The coefficients tend to zero to assure the convergence of the series at increasing

order.

Cn =
1

|A|

(
1

A

)n
=

(
|A|
A

)n( 1

|A|

)n+1

⇒

 C2n = 1
|A|2n+1 > 0

C2n+1 = 1
A|A|2n+1

(4.8)

Therefore, the gravity acceleration of each body, that is required in the equations of

motion, is retrieved by its definition as the gradient of the gravitational potential,

which is now applied to a polynomial. For this reason, the derivative of the Legendre

polynomial DPn is introduced.

1They were defined by Legendre for such a specific case (see section 3.1).
2Recall that the definition of the Legendre polynomial was provided for their exploitation in the

definition of the gravity harmonics in Eq.3.2.
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∇

 1∥∥∥r− [A, 0, 0]T
∥∥∥
 =

=
N∑
n=1

Cn‖r‖n−2

{[
nPn

(
x

‖r‖

)
−
(
x

‖r‖

)
DPn

(
x

‖r‖

)]
r +DPn

(
x

‖r‖

)
‖r‖

[
1
0
0

]}
=

=
N∑
n=1

Cn‖r‖n−2Bn (r)

(4.9)

In the normalized LP-centered CR3BP presented below,

x =

[
q̃

˙̃q

]
, ẋ = Ax +


1−µ
γi
∓ 1

0

0

+
1

γi3

[
03x1

u/q̃

]
, A =

[
03 I3

−P −2W

]
(4.10)

Eq.4.9-4.8 are used to approximate the gravity of the two massive bodies with normal-

ized units,

1

γi3
u/q̃ =

1

γi3
∇

 1− µ∥∥∥∥q̃− [1∓γi
γi
, 0, 0

]T∥∥∥∥
+

1

γi3
∇

 µ∥∥∥q̃− [∓1, 0, 0]T
∥∥∥
 =

=
1

γi3

N∑
n=1

cn‖r‖n−2Bn (r) =
N∑
n=1

c̄n‖r‖n−2Bn (r)

(4.11)

where the coefficients of the gravity approximation are defined by the following closed-

form expression.

cn = γi
3c̄n = (1− µ) (−1)n

γi
n+1

(1∓ γi)n+1 + µ(±1)n (4.12)

In particular, the first coefficients are presented below.
c̄1 = −1−µ

γi
± 1 + (1− µ) ∓2−γi

(1∓γi)2 ± µ−γi3
γi3

= −1−µ
γi
± 1

c̄2 = 1−µ
(1∓γi)3 + µ

γi3
= ω2

V = 1
γi3
u/z̃z̃

c̄3 = − (1− µ) γi
(1∓γi)4 ± µ

γi3

(4.13)

It is evident that, again, the linear part of the approximation allows to eliminate the

residual centrifugal term of Eq.4.10 originated by the coordinates transformation. As

the order is defined by the series expansion of the potential, the coefficients required

for a dynamics approximated up to order n arrive to c̄n+1

The second step in the lp technique is to approximate the solution itself by a power
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series expansion. With the aim of reducing it to the central manifold, the nonlinear

normal modes are going to be periodic functions. Thus, the approximation used is

the second one described in section B.4.1 (refer to Eq.B.47), and the presence of two

natural frequencies ω,ν for a 3D orbit leads to the truncated power series in terms

of the two amplitudes α,β. This requires 3 series of coefficients, a,b,c, described by

2× 2 = 4 indexes. Thus, every order n requires 3× (n+ 1)× (n+ 1) coefficients, and

the total number of coefficients grows with a power square law. In addition, the key

point of the lp technique is to enable the modification of the natural frequencies due

to the nonlinear dynamics. Therefore also ω,ν are developed in two dedicated power

series. This requires additional 2× (n+ 1) coefficients for every order. The analytical

approximation given by the solution of the lp algorithm is the Lissajous orbit provided

in Eq.4.14.

q̃QPO(t) =

 x̃(t)

ỹ(t)

z̃(t)

 =
N∑

i+j=1
αiβj

i,j∑
|k|=0,|m|=0

 aijkm cos (kωt+mνt+ kϕP +mϕV )

bijkm sin (kωt+mνt+ kϕP +mϕV )

cijkm cos (kωt+mνt+ kϕP +mϕV )




ω =
N∑

i+j=0
αiβjωij

ν =
N∑

i+j=0
αiβjνij

(4.14)

The linearized Lissajous of Eq.4.5, that uses an approximation of the gravity potential

up to order 2, is expressed by the following values of the coefficients up to order 1.

a[ 1000 0100
1010 0110
1001 0101

] =
[

0 0
1 −
− 0

]
, b[ 1000 0100

1010 0110
1001 0101

] =
[

0 0
k −
− 0

]
, c[ 1000 0100

1010 0110
1001 0101

] =
[

0 0
0 −
− 1

]
,

ω[ 00 10 01 ] = [ ωP 0 0 ] , ν[ 00 10 01 ] = [ ωV 0 0 ]

(4.15)

The input of the lp algorithm is the linear solution, characterized by the parameters

α and β, and by the related starting phases. The output of the algorithm is the set

of coefficients of the analytical serial approximation of x̃(t),ỹ(t),z̃(t) up to the chosen

order N , and the coefficients of the series of ω, and ν. However, the lp algorithm is

ultimately a generation of reliable initial conditions x(0),y(0),z(0) (and their related

velocities) on a suitable map.

The substitution of the solution of Eq.4.14 in the dynamics approximated by the series

expansion of the gravity terms of Eq.4.10-4.11, produces a series of orthogonal linear

ODEs at each order, sorted by the harmonics of indexes i,j,k,m. Each of these linear

ODEs is inhomogeneous, with null initial conditions, and the forcing term corresponds

to the residual gravitational and apparent forces constituted by the terms of lower

order of the solution. Thus, the determination of the particular integral is required to

determine the coefficients at order n. The lp technique consists in the recursive solution

of a linear system, whose expression is the following.
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[−($2
km+2c̄2+1) −2$km 0

−2$km −($2
km−c̄2+1) 0

0 0 −($2
km−c̄2)

] [
aijkm
bijkm
cijkm

]
+

[
−2(ω00+K)δ1kδ0m 0
−2(Kω00+1)δ1kδ0m 0

0 −2ν00δ0kδ1m

] [ ωi−1j
νij−1

]
=

=
{
c̄n‖r‖n−2Bn (r)

}
ijkm

+

−


−2

n−2∑
i+j=1

ωijkbijkm+νijmbijkm+
n−2∑
i+j=1

ω2
ijk

2aijkm+2ωijνijkmaijkm+ν2
ijm

2aijkm

2K
n−2∑
i+j=1

ωijkaijkm+νijmaijkm+K
n−2∑
i+j=1

ω2
ijk

2bijkm+2ωijνijkmbijkm+ν2
ijm

2bijkm

n−2∑
i+j=1

ω2
ijk

2cijkm+2ωijνijkmcijkm+ν2
ijm

2cijkm


$km = kω00 +mν00

δ1kδ0m = 1⇒ aij10 = 0

δ0kδ1m = 1⇒ cij01 = 0

(4.16)

When the linear system is rank-deficient, appropriate constraints on the coefficients

are used, as reported above. The analytical complexity of the lp method is the deter-

mination of the forcing apparent terms on the right hand-side. Eq.4.17 provides the

expression of the coefficients of the gravity term, to be used on the right hand-side of

Eq.4.16, to derive all the coefficients of the solution at order-2.

c̄3 ‖r‖B3 (r) = c̄3

[
3
2(2x̃2−ỹ2−z̃2)

−3x̃ỹ
−3x̃z̃

]
=

= c̄3

[ 3
2(2a2

1010
1
2
α2β0(cos20+cos00)−b21010α

2β0 1
2

(−cos20+cos00)−c20101α
0β2 1

2
(cos02+cos00)2)

−3a1010b1010α2β0 1
2

(sin20−sin00)

−3a1010c0101α1β1 1
2

(cos11+cos1−1)

]
{c̄3 ‖r‖B3 (r)}ijkm = c̄3

[ 3
2
a2

1010−
3
4
b21010

3
2
a1010b1010

0

]
2000

+ c̄3

[ 3
2
a2

1010+ 3
4
b21010

− 3
2
a1010b1010

0

]
2020

+

+ c̄3

[
− 3

4
c20101
0
0

]
0200

+ c̄3

[
− 3

4
c20101
0
0

]
0202

+

+ c̄3

[
0
0

− 3
2
a1010c0101

]
1111

+ c̄3

[
0
0

− 3
2
a1010c0101

]
111−1

(4.17)

Thus, the computational burden of the lp technique required to compute 2D-QPOs in

a 3D mechanical system, even with symmetries, is significant when the order required

for their approximation is high. This is necessary for the case of the chaotic CR3BP,

where even small errors of the approximation lead to solutions rapidly diverging in the

full nonlinear dynamics.

The first use of the lp technique to produce the nonlinear LPOs in the CR3BP

was made in 1980 by Richardson [114], who used an expansion up to order 3. These

Lissajous orbits rapidly diverge from their approximated solution when propagated in

the full CR3BP. However, this low-order solution already shows that the nonlinear

vertical Lyapunov orbits are no longer a simple vertical oscillation, but they exhibit a

3D eight-shaped pattern. Following the growing appeal of the LPOs showed initially

by NASA, the interest in this analytical approach paved the way in the ’80s and ’90s

to develop increasingly high-order expansions. A team of researchers in Barcelona
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Figure 4.2: Lissajous and Lyapunov orbits around Phobos in the CR3BP. Examples
of two planar (red) and vertical (green) Lyapunov orbits around each LP, and one iso-energetic
Lissajous orbit (black) of high-width around them. The displayed LPOs around L1 have higher
energy than the LPOs displayed around L2. The orbits are computed with the lp algorithm
at the maximum order of the expansions 35, and they are inside the related practical region of
convergence. Mean ellipsoidal shape of Phobos.

(Gómez, Martinez, Llibre, Masdemont, Simó, Rodŕıguez: usually referred to as the

Barcelona group) specialized in this task. They are currently able to derive Lissajous

and Lyapunov orbits in any CR3BP up to order 35 [115].

4.1.3.2 The Lyapunov and Lissajous orbits of the Mars-Phobos CR3BP

The lp technique described in section 4.1.3.1 for the computation of the LPOs has been

applied for the case of the Mars-Phobos CR3BP. This means that the coefficients of

the series expansion are determined with the related µ, and they have been computed

up to order 353. The resulting Lissajous orbits, and the related backbones of Lyapunov

orbits are analytically evaluated with Eq.4.14. Fig.4.2 shows an example of these LPOs

around both L1 and L2.

The purpose of this section is to investigate the characters of these analytical orbits,

focusing on the mathematical properties of the algorithm and the engineering aspects

for their practical applications.

4.1.3.2.1 Mathematical Features of the Algorithm

Convergence properties. In this section the efficiency of the lp technique is tested

by deriving the properties of convergence of its solutions, which represents the funda-

mental mathematical feature of the algorithm. This is conducted by taking the initial

condition of any orbit of the lp expansion, and simulating the flow in the full nonlinear

dynamics of the CR3BP. In this case, the convergence of the algorithm refers to how

much the approximated trajectory of Eq.4.14 matches the behavior in the full model

of the CR3BP.

3This data has been provided by Prof. Josep Masdemont, through a collaboration within the
AstroNet-II research network.
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Figure 4.3: lp region of convergence for L1 and L2 Lissajous orbits of the Mars-
Phobos CR3BP. Error evaluated at t = π. Order of the expansions set to 35. Initial phases
set to zero.

Figure 4.4: lp region of convergence for L1 and L2 Lissajous orbits of the Mars-
Phobos CR3BP. Boundaries for different order of the expansion at the threshold position
error of 10−6 adimensional units at t = π. Initial phases set to zero. Physical position and
mean ellipsoidal dimensions of Phobos are represented.

The figure of the error could be expressed in two alternative ways: by fixing the

propagation time and evaluating the state error between the two orbits at that instant,

or by fixing the state error and evaluating the propagation time required to produce it.

The first figure involves a direct calculation, and is chosen as the error’s measure. The

fixed propagation time is set to π (CR3BP time-units), since this is close to the natural

period (both planar and vertical) of the eigenvalues of the LPs. In addition, the error is

considered as the norm of only the position’s components of the state’s deviation from

the nominal trajectory.

This error should be computed for all the 2-parameters family of Lissajous orbits:

the related contours on the α-β plane constitute the region of convergence of the lp

algorithm [50, 51] for the LPOs of the Mars-Phobos CR3BP. However, as introduced

in section B.6.3.3.3, every n-torus is described by n phase, so is accompanied by n

indeterminancies to choose its initial condition. Thus, the choice is to take, as initial

condition, the point of Eq.4.14 with both null phases. The related region of convergence
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Figure 4.5: lp practical region of convergence for L1 and L2 Lissajous orbits of
the Mars-Phobos CR3BP. Boundaries for different order of the expansion at the threshold
position error of 10−6 adimensional units at t = π. Physical position and mean ellipsoidal
dimensions of Phobos are represented.

Figure 4.6: lp practical region of convergence for L1 Lissajous orbits of the Mars-
Phobos CR3BP. Maximizing initial planar and vertical phases.

Figure 4.7: lp region of convergence for
L1 Lissajous orbits of the Mars-Phobos
CR3BP. Comparison between the bound-
aries for initial starting phases null and for
the practical definition, for different order of
the expansion at the threshold position error
of 10−6 adimensional units at t = π.

Figure 4.8: lp region of convergence for
L1 Lissajous orbits of the Mars-Phobos
CR3BP. Error of the Jacobi integral between
initial and final condition (evaluated at t = π)
of the lp expansion (left graph positive error,
right graph negative error; logarithmic scale).
Order of the expansions set to 35. Initial
phases set to zero.
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Figure 4.9: lp region of convergence for L1 Lissajous orbits of the Mars-Phobos
CR3BP. Planar frequency, vertical frequency, and their ratio. Order of the expansions set to
35. Initial phases set to zero.

around both LP is presented in Fig.4.3 for the LPOs computed from the lp algorithm at

maximum order. The two regions are similar, and the error increases as long as the two

amplitudes increase. It is worth to note that the error along the family of PO is smaller

than the one of the related iso-energetic 2D-QPOs. This happens also along particular

directions spreading from the EP. The closest region around the EP is characterized by

a very small error (10−12) after this propagation time: this area is uniform due to the

presence of the machine error, as will be discussed shortly. Then the contours enlarge

proportionally as the amplitudes increase, until their gradient becomes steep. However,

the minimum error in this region is already very large (10−1). Thus, after describing

the behavior of the region of convergence, its information is reduced to its boundary.

This is done by fixing a threshold for the position error, and deriving the relating iso-

line. Historically, in the cases of the Sun-Earth and Earth-Moon systems, a significant

threshold is considered to be 10−6 normalized units [51]. Thus, the same is considered

for the Mars-Phobos system: due to the small length-scale’s peculiarity, this results in

a threshold of about 10m4. The boundary of the region of convergence is suitable to

be evaluated for different orders of the lp algorithm [51], as shown in Fig.4.4. Lower

orders are reliable only very close to the EP, and this is particular evident for the case

of the collinear region of the CR3BP, where the instability is high. The inclusion of

additional nonlinear terms enlarges the region of convergence, until an asymptotic limit

is reached, and incrementing the order does not provide any advantages. The reason

of this behavior is not related to any analytical behavior, but is only computational.

The machine error of current 16-digits computers, and in particular of the software

used, is about 10−16, and the accuracy of the ODEs integration is declared to be within

an error 100 times higher. Thus, when the residual nonlinear terms of the dynamics

approximated at high-order become smaller than this value, the latter becomes the

limiting factor for the convergence, which is called here a “computational stability”.

Furthermore, the unstable eigenvalue of the Mars-Phobos LPs has been computed in

Eq.2.29 to be about λ = 2.515. For the fixed propagation time chosen, the related

4By comparison, the error on the Sun-Earth system is 150km.
5Recall from section B.1.2.2 that a Lyapunov exponent greater than 1 is considered to indicate that

the system is chaotic.
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multiplier eλt is about 2,700, and this is coherent with the asymptotic minimum error

of the region of convergence discussed above.

The boundary of the region of convergence in Fig.4.4 is characterized by sharp spikes,

in particular at high orders. These peaks are resonances of the lp algorithm, due to the

coupling of the two frequencies ω and ν6, which are shown in Fig.4.9. The Barcelona

group analyzed this behavior in order to derive the rational numbers that express these

resonances, which resulted to be characterized by a high integer denominator. These

resonances are part of the algorithm, and they depend from the initial phases. For

this reason, the practical region of convergence is introduced [51], and defined by the

maximum error of the same torus throughout simulations for all the initial phases. The

resulting plot is presented in Fig.4.5, and shows that the boundary is now smoother

(see Fig.4.7 for comparison). The maximizing phases that determine this boundary are

not a deterministic function of the amplitudes, as shown in Fig.4.6.

In addition, Fig.4.10-4.11 show the practical region of convergence, and its bound-

aries at different order, also for the second case of error figure, which is the time of

permanence within a fixed position error of 10−6 adimensional units. Thus, this error

is taken equal to the previous threshold, and the related isolines at the threshold of π

in Fig.4.11 are the same as Fig.4.5. Fig.4.10 proves that the core part of the region of

convergence is characterized by a “computational” time of permanence of 3 longitudi-

nal revolutions of the Lissajous orbits. This is an important indicator, coherent with

the LPOs of the Sun-Earth and Earth-Moon system, but the major different is that

the small time-scale of Phobos yields this value to be just a ten of hours.

An alternative method to evaluate the efficiency of the lp algorithm is to compute the

error of the Jacobi integral between initial and final conditions at a fixed propagation

time of the lp solution alone, as shown in Fig.4.8. This figure does not depend on the

numerical integration, and the region of convergence is naturally characterized by an

error under the machine error.

In summary, the major limitation of the lp methodology is constituted by its con-

vergence properties. The shape and size of the widest practical regional of convergence

for Lissajous orbits around Phobos is coherent with the ones computed in the literature

around the Earth and the Moon, in terms of normalized units [51, 50]. It is also almost

rectangular, approximately measuring (α, β) ∈ [0, 0.12] × [0, 0.40]. At first instance,

due to the collapse of the Phobos’ SOI (Phobos’ mean ellipsoidal surface is located at

α = 0.21), one notes that this region covers a large area of the secondary’s realm, as a

difference from the cases of the Earth and the Moon. The region is also larger for the

POs: the boundary of the planar Lyapunov orbits is over Phobos’ intersection, while

the boundary of the vertical Lyapunov orbits is at β = 1.25. However, this first inter-

pretation is misleading, since it would suggest that the set of reliable LPOs computed

with the lp algorithm is larger than in the cases of the Sun-Earth and Earth-Moon

6Recall that the two normal frequencies are part of the nonlinear solution of the lp methodology in
Eq.4.14, and they depend from α,β.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

120 Zamaro Mattia



Libration Point Orbits

Figure 4.10: lp time of permanence inside the practical region of convergence for L1

Lissajous orbits of the Mars-Phobos CR3BP. Time expressed as number of longitudinal
revolutions of the Lissajous orbits. Threshold position error of 10−6 adimensional units.

Figure 4.11: lp time of permanence inside the practical region of convergence for L1

and L2 Lissajous orbits of the Mars-Phobos CR3BP. Boundaries for different order of
the expansion at the threshold t = π to provide the position error of 10−6 adimensional units.
Physical position and mean ellipsoidal dimensions of Phobos are represented.

systems. The gain is counteracted by the fact that the proximity to Phobos requires

further and dominant forces to be included in the dynamics, as explained in section 2.4

and chapter 3. The improvement of the Phobos’ LPOs computed in this section will

constitute the focus of the following sections 4.2 and 4.3.

Quasi-periodic motion. An important characteristic of any PO is the related period.

Fig.4.12 shows the period of the planar and vertical Lyapunov orbits, which increases

with α and β. The 2D-QPOs do not have a period, and as explained in section B.6.2,

they are reduced to a discrete dynamical system by iterated longitudinal returns to a

transversal map. In Fig.4.12 we see that the displacement of the first-return image from

the initial condition grows along the bisector’s direction of the α-β plane, since these are
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Figure 4.12: lp periodic and quasi-periodic motion for L1 Lyapunov and Lissajous
orbits of the Mars-Phobos CR3BP. On the left, first-return time to the transversal map
where the deviation of the image after one longitudinal revolution from the initial condition is
minimum. This corresponds to the period of the POs. On the right, related relative error from
the initial state (logarithmic scale). Order of the expansions set to 35. Initial phases set to
zero.

Figure 4.13: lp region of Convergence for
L1 Lissajous orbits of the Mars-Phobos
CR3BP. Period of the first transversal rev-
olution. Order of the expansions set to 35.
Initial phases set to zero.

Figure 4.14: lp quasi-periodic motion for
L1 Lissajous orbits of the Mars-Phobos
CR3BP. Relative error from the initial state
(logarithmic scale) for the Lissajous orbit of
α = 0.12, β = 0.4. Red dotted lines indicate
multiples of the period of the first transversal
revolution. Order of the expansions set to 35.
Initial phases set to zero.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

122 Zamaro Mattia



Libration Point Orbits

Figure 4.15: lp quasi-periodic motion for L1 Lissajous orbits of the Mars-Phobos
CR3BP. TQPO of the Lissajous orbits in orbital units, as multiple of the related first-return
time of Fig.4.14, and related error of the latter from an integer number (logarithmic scale),
which shows that the two numbers are not multiple. Order of the expansions set to 35. Initial
phases set to zero.

Figure 4.16: lp quasi-periodic motion for L1 Lissajous orbits of the Mars-Phobos
CR3BP. Planar frequency cycles, vertical frequency cycles and their gap cycles difference,
associated to TQPO of the Lissajous orbits. Order of the expansions set to 35. Initial phases
set to zero.

Figure 4.17: lp quasi-periodic motion for L1 Lissajous orbits of the Mars-Phobos
CR3BP. On the left, relative error at TQPO of the Lissajous orbits from the initial state
(logarithmic scale). On the right, error from an integer number of the minimum number of
frequency cycles (logarithmic scale). Order of the expansions set to 35. Initial phases set to
zero.
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the location of the widest transversal QPOs at growing longitudinal size. As explained

in section B.1.3, a characteristic feature of a 2D-QPO is the time of the first transversal

revolution. This could be derived from the ratio r of the two natural frequencies, which

are now made explicit by the lp method, and is shown in Fig.4.13. Since the invariant

curves are covered with a discrete mapping of the rotation number, it could be possible

to consider multiple laps, such that the final value is approximately close, within some

tolerance, to the initial condition. This translates in the approximation of the 2D-

QPO as a resonant PO with the smallest denominator. The related propagation time

span is referred to as TQPO. The behavior of the state trajectory deviation from the

initial configuration is shown in Fig.4.14 for a sample Lissajous orbit. We see that it is

characterized by a heart-shaped enveloping oscillation, which means that there are local

minima repeating with time. They correspond to each transversal revolution lap. This

second harmonic provides a superimposed oscillation, and the minima and its location

are rigourously not periodic in general. However, this graphical approach could be

useful to limit the time domain to look for TQPO. This value is instead derived with an

alternative approach, by finding an appropriate couple of integer numbers that fulfill

r within a tolerance. As expressed in Eq.4.18, the gap ∆N between longitudinal and

transversal revolutions, NP and NV , is incrementally increased by an integer counter,

and the related NP or NV is derived from r. If NP or NV are close to an integer, TQPO

is identified7. If instead in Eq.4.18 ∆N is fixed to be one, ceil {NV } constitutes the

period of the first transversal revolution.{
r = ωP

ωV
> 1⇒ r = TV

TP
= NP

NV
= n+1

n = n∆N+∆N
n∆N = NV +∆N

NV

r ∈ Q+ ↔ n ∈ Q+ ∧NP , NV ,∆N ∈ N+ ⇒ TQPO = NV TV = NPTP
(4.18)

Fig.4.15 shows TQPO and Fig.4.16 presents the related NP ,NV ,∆N for the Lissajous

orbits inside the lp practical region of convergence of the Mars-Phobos system. In

particular, Fig.4.17 reports the error between initial and final condition at TQPO, and

the error of the minimum NP or NV from an integer number. These errors are small

for all the region (< 10−2), and the Lissajous orbits can be practically seen as resonant

periodic orbits, but with very large periods (tenths to hundreds of orbital periods). In

addition, the distribution of this approximated period is stochastic, and is coherent

with the density of the set of rational numbers into the set of real numbers.

4.1.3.2.2 Engineering Features of the Algorithm

This section focuses on the technical aspects, for applications in space missions around

Phobos, of the LPOs derived in section 4.1.3.2 and the related lp algorithm.

Trade-off with guidance, navigation and control subsystems. The convergence proper-

ties analyzed in section 4.1.3.2.1 are addressed in terms of the boundary of the practical

7If r < 1 the two frequencies swap in the definition of longitudinal and transversal motion for the
purpose of the procedure.
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Figure 4.18: Perturbation error’s propagation inside the lp practical region of con-
vergence for L1 Lissajous orbits of the Mars-Phobos CR3BP. Fixed propagation time
t = π. Order of the expansions set to 35.

region of convergence, which is defined by a couple of values. They are the propagation

time and the threshold on the position error. These should be chosen to be coherent

with the respective measure of performance of the station-keeping control (frequency of

the impulsive maneuvers) and navigation (error on estimated state) subsystem of the

spacecraft. Furthermore, these values are dependent on the navigation capability (time

required to achieve the orbit determination) and the guidance requirement (maximum

displacement from the reference signal) of the mission. Thus, the time of permanence

of the LPOs’ reference signal, computed with the lp algorithm, must be larger than

the navigation’s processing time and smaller than the period of a maneuver. In such a

propagation time, the position error’s threshold of the lp solution must be larger than

the navigation estimation and smaller than the guidance requirement. This trade-off

is required to consider a region of convergence feasible with current technologies.

The choice of the error’s threshold is conducted by simulations. The initial condi-

tion is taken from the lp algorithm, which is the guidance planner, and the related

LPO constitutes the reference signal (or guidance law). Since the initial conditions

are taken inside the region of convergence, to be consistent with the calculation of the

propagation ratio, the reference signal is computed by the propagation of the initial

condition in the CR3BP. The initial condition is then perturbed by an initial position

error, which constitutes the navigation’s estimation error, and is propagated in the full

nonlinear dynamics, which constitute the real-world. The initial perturbation is only

in position for the purpose of this analysis, assuming that the navigation’s performance

on the estimated velocity is coherent with the estimated position, in the sense that the

first would not change significantly the trade-off. The ratio between the norms of final

and initial error after the fixed propagation time π constitutes the propagation ratio.

This is exactly the same procedure of computing the MLE, as presented in section

B.1.2.2. The procedure undertaken is to perform a MonteCarlo simulation to derive

the maximum propagation ratio. The simulations proved that the maximizing direction
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is deterministic, and is constituted by the IM of the LPO at the initial point.

The simulations are performed in the same way done in section 4.1.3.2.1. The prop-

agation ratio is derived for a sample of α-β inputs at the highest order 35, and is

further maximized over the possible starting phases: this relationship has still resulted

to be not deterministic. Afterwards, since the system is nonlinear, the entire session

is repeated changing the norm of the initial perturbation. Finally, results are summa-

rized in Fig.4.18 taking the maximum, minimum and mean propagation ratio for all

the Lissajous orbits inside the region of convergence, as a function of the initial error.

The propagation ratio is approximately constant for small deviations, where the linear

approximation of the STM is worthy. This value is large, about 1, 800, and represents

the Lyapunov multiplier of the LPOs, which is coherent with the analytical value at

L1−2 mentioned in section 4.1.3.2.1. Due to the choice of the propagation time, made to

approximate one longitudinal revolution, this value is also a good approximation of the

Floquet multiplier of the LPOs. This shows why the orbit structure of the CR3BP is

chaotic, since the LPOs have high sensitivity with respect to the initial conditions. The

propagation ratio then decreases for higher deviations, but this region is not relevant

for practical applications.

In summary, since the altitude of the LPs is only 3.5km, guidance performance for

LPOs should be limited to about 100m, which would lead to lower the threshold to

0.1m (10−8 L-units). However, interplanetary orbit determination’s best performance

is about 1m (10−7). Thus, no practical solution is possible, and the station-keeping

should be performed at higher frequency, with an interval of the maneuvers lower than

4h, which is already a small window for ground-processing. The demand of the GNC

system is very high for the Lyapunov and Lissajous orbits around Phobos, and the need

of either visual-based optical navigation or autonomous control is evident.

Trade-off with mission analysis and design. The lp algorithm, once the set of

coefficients is derived up to the chosen order, takes as input the linear amplitudes α-β

and delivers as output the reference signal of the LPO along time. From a mission anal-

ysis and design point of view, it is important to interface immediately with the physical

dimensions of the orbit8. Therefore, in this perspective, an inverse relationship of the

lp algorithm is needed: from the orbit required to satisfy some operations, α-β should

be derived to uplink the guidance law to be tracked by the spacecraft.

Characterizing each LPO by its maximum x,y,z components, these values are com-

puted in Fig.4.19 for the orbits inside the practical region of convergence (the starting

phases are not important in defining the size of the orbit). However, we would like

to invert this 3 × 2 relationship of outputs × inputs [x, y, z](α, β) into a 2 × 3 rela-

tionship [α, β](x, y, z). This is not always possible. The mismatch of the number of

inputs/outputs is not a problem, since the task can be decomposed in a planar-vertical

framework, and considering only one between x,y and use the constraint x(y). From

8Recall that α-β are in γi-units.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

126 Zamaro Mattia



Libration Point Orbits

Figure 4.19: Maximum x,y,z components and ratio y/x as a function of α,β for L1

Lissajous orbits of the Mars-Phobos CR3BP.

Figure 4.20: α,β as a function of the maximum x,y,z components for L1 Lissajous
orbits of the Mars-Phobos CR3BP. 1D approach.
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Figure 4.21: α,β as a function of the maximum x,y,z components for L1 Lissajous
orbits of the Mars-Phobos CR3BP. 2D approach. Comparison between the real inverse
data from the lp input-output algorithm and the ones obtained with a scattered triangular
interpolation.

Figure 4.22: α,β as a function of the maximum x,y,z components for L1−2 Lissajous
orbits of the Mars-Phobos CR3BP. 3D approach. The maximum components surfaces are
restricted to the practical region of convergence at t = π and threshold 10−6 adimensional units
of the Lissajous orbits that do not intersect Phobos (mean ellipsoidal dimensions).
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Fig.4.19, for Lissajous close to the planar Lyapunov, this ratio tends to K of the lin-

ear solution in Eq.4.5, which is about 3.21, whereas for Lissajous close to the vertical

Lyapunov this ratio decreases under 1. For the classical Sun-Earth and Earth-Moon

systems, y is maintained because is usually greater than x. For the Mars-Phobos sys-

tem, due to the proximity of the moon, in this analysis it is better to consider instead

x, thus using y(x).

The approach taken is to decouple Fig.4.19, plotting the 1D relation for every output-

input combination, as shown in Fig.4.20. However the task could be maintained in 2D,

using the data from Fig.4.19 and interpolating with a scattered triangular algorithm.

The map [x, z](α, β) is invertible inside the region of convergence, while outside of it

the results of the interpolation is not valid. In particular, the smooth behavior within

this region of Fig.4.19, means that it is also possible to approximate the functions

with an elliptic cone x(α, β) = (a2α2 + b2β2)1/2 and two inclined planes y(α, β) = kα,

z(α, β) = cβ. The inverse functions are a hyperbolic saddle α(x, z) = (c2x2−b2z2)1/2/ac

and two inclined planes β(x, z) = z/c, α(y, z) = y/k. This is coherent with the behav-

ior of the inner isolines obtained with the interpolation algorithm in Fig.4.21.

Eventually, the map [x, y, z](α, β) can be graphically inverted, which is to simply fill

the 3D components space with the points sampled from Fig.4.19. The 2D region of

convergence is one slice of a hyperbolic saddle in the 3D space of the max x-y-z com-

ponents of the LPO. Onto this surface’s domain, the 3D×2D numerical interpolation

is carried out, to find the isolines of α-β. This is visualized in Fig.4.22: by picking a

physical point in these two graphs, one defines the α-β values such that the lp series

expansion produces a Lissajous orbit with maximum components that correspond to

the coordinates of the chosen point.

Station-keeping consumption. The last important engineering implementation of the

LPOs derived with the lp technique is to probe the feasibility of their unstable dynamics

in terms of the station-keeping demand, required to control the spacecraft to track their

path over a long period. This acts as an additional proof of the quality of the series

expansion. This cost accounts for the cumulated perturbation of the residual nonlinear

terms of the CR3BP, which are the ones over the order used in the lp series expansion.

Thus, in addition to Fig.2.13, they constitute an additional modeling perturbation, like

the eccentricity, due to the guidance law, that spills over on the control system when

this is used to track such a reference signal.

Differently from the eccentricity, the modeling perturbation of the higher order non-

linear terms of the CR3BP is not derived analytically, because it would require to

explicitly compute the series expansion of the model and the solution. Their perturba-

tion, encountered along the reference LPO, can be retrieved numerically by designing

a controller, and evaluating its acceleration profile. Therefore, a continuous feedback

control action is considered in order to perfectly reject the nonlinear perturbations on

the tracking signal. This is coherent with the analysis of the perturbations in section
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2.4. In reality, impulsive control systems are the frequent choice for orbital station-

keeping9. The control performance is summarized by the maximum tracking error,

while the control consumption is given by the maximum thrust/acceleration level, and

by the ∆v required by the propulsion system, which is the integral of the control ac-

celeration profile.

To derive the exact value of the perturbation of the nonlinear terms, the control action

must reject it perfectly, in order to give us indirectly their measure. This is the charac-

teristic of an optimal control algorithm to design the control law. Appendix C provides

an overview of feedback optimal control theory, presenting the State-Dependent Ric-

cati Equation (SDRE) methodology used for the case of nonlinear systems. The SDRE

technique is chosen to fulfill the task to design an optimal control law that perfectly

rejects the perturbation of the higher order nonlinear terms spilled over by the lp guid-

ance law.

The state-space model of Eq.C.16 is used to design an SDRE-based control system

through the procedure of Eq.C.7 to track the Lissajous and Lyapunov orbits computed

by the lp algorithm. This requires an appropriate tuning of the weighting matrices and

the additional weighting parameters, to obtain an optimal solution in terms of low con-

trol action10 and state error. The simulations are carried out with a RKF78 propagator.

In particular, the introduction of the control raises the stiffness of the dynamics, and a

sensitivity analysis has been carried out regarding the choice of the relative tolerance of

the integrator in Fig.4.23. Convergence is reached for values starting at 10−19: however

10−18 is used for the extensive simulations session, because the computational time is

still acceptable (for 1 orbital period, which is 2 longitudinal laps of the Lissajous orbits,

the time required is less than 4s), whereas with stricter tolerances a huge increase of

the computational time is needed (10−19 requires 90s, 10−20 requires 6h, 10−22 requires

more than 10h). Thus, from Fig.4.23, the costs obtained with these simulations should

be less than 10% cheaper than the real-life continuous case.

Fig.4.24 shows the outcomes for one simulation of the SDRE-based control system

for one test case tracked Lissajous (L1, N = 35, null initial phases, α = 0.05, β = 0.10

which is at the center of the practical region of convergence) computed with the lp

algorithm, with the SDC formulation parameters α = 1, η = 0 (which means that the

simplest uncoupled pseudo-linear formulation is used for the dynamics) and the SDRE

weights: Qr = 1012, Qv = 106, R = 108. One sees that the values of maximum thrust,

position error and ∆v are definitely very low.

The procedure is extended for all the L1 Lissajous orbits of the N = 35 practical

region of convergence, at the threshold level of 10m after half orbital period. An ac-

9Impulsive control has generally worse performances of the ones of a continuous implementation,
apart from an ad-hoc choice of the frequency of the maneuvers, where the impulsive control outper-
forms the ones of the continuous control in terms of consumption, while in terms of tracking error the
continuous implementation is always superior.

10A classical interplanetary spacecraft mass of 100kg is used as reference for the definition of the
thrust profile.
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Figure 4.23: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. De-
pendence of the ∆v output from the relative tolerance (in logarithmic scale): magnification of
the low tolerance cases with the percentage error from the case at minimum tolerance. Test
over one longitudinal revolution of the Lissajous with α = 0.05, β = 0.10 with N = 35. SDRE
weights: Qr = 1012, Qv = 106, R = 108. SDC parameters: α = 1, η = 0.

curate tuning for each of these orbits is not conducted, since the focus is to derive the

first-order figure of the station-keeping performances. Therefore, the same constant

weights and parameters are kept all along the cases tested. The outcomes with the

set of α = 1, η = 0 and Qr = 1012, Qv = 106, R = 109.5 are presented in Fig.4.25.

However, a more optimal solution, shown in Fig.4.26-4.27, is obtained with the set of

α = 0.25, β = 2.5, η = 0.5 and Qr = 1012, Qv = 106, R = 104.74. The cost of ∆v is de-

creased considering an unbalanced weight of all the possible pseudo-linear forms of the

nonlinear dynamics. The amount saved is about the 10%, which proves the efficiency

of using additional DOFs for the control design, which is indeed the main advantage

provided by the SDRE technique.

The performance obtained by the SDRE is compared with the one of a basic LQR

based on the linearized dynamics around the EP, as a trade-off of the control cost with

its simplicity. Fig.4.28 presents the outcomes obtained, which has resulted to be not

particularly different from the uncoupled SDC case of SDRE-based control of Fig.4.25.

It emerged that there is an important dependence of the performance from the track-

ing time step used to evaluate the lp series expansion to provide the sampled guidance

law. Fig.4.29-4.30 show that the ∆v cost could be considerably decreased with a higher

tracking frequency, which highlights again the goodness of the algorithm inside the re-

gion of convergence. Out of it, the demand for the control system design to follow a

not natural tracking signal becomes expensive.

In summary, in this section the modern SDRE-based control has been applied in

the CR3BP. Regarding the initial aim, this was to quantify the orbital perturbation

due to the modeled tracking signal. This is provided by the plots of the maximum

thrust required, which has resulted to be quite dependent from, and decreasing with,

the tracking time step. Considering a frequency of 1,000 samples per Lissajous orbit,

which is a time step of about 13.8s, the control action is of the order of magnitude of

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

131 Zamaro Mattia



Libration Point Orbits

Figure 4.24: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. On
the right, control action required, and on the left, position error from the tracking signal.
These outcomes have been obtained with a simulation at the tight tolerance of 10−20. Test
over one orbital period of the Lissajous with α = 0.05, β = 0.10 with N = 35, tracked with
a frequency of 1,000 samples per Lissajous orbit (resulting time step of about 13.8s). SDRE
weights: Qr = 1012, Qv = 106, R = 108. SDC parameters: α = 1, η = 0.

Figure 4.25: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. Per-
formances of the SDRE-based control system: ∆v over one orbital period and one terrestrial
year, maximum position error from target and maximum thrust required. Simulation at tol-
erance of 10−18, over one period of the Lissajous orbits with N = 35 and tracked with a
frequency of 1,000 samples per Lissajous orbit (resulting time step of about 13.8s). SDRE
weights: Qr = 1012, Qv = 106, R = 109.5. SDC parameters: α = 1, η = 0.
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Figure 4.26: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. Per-
formances of the SDRE-based control system: ∆v over one orbital period and one terrestrial
year, maximum position error from target and maximum thrust required. Simulation at tol-
erance of 10−18, over one period of the Lissajous orbits with N = 35 and tracked with a
frequency of 1,000 samples per Lissajous orbit (resulting time step of about 13.8s). SDRE
weights: Qr = 1012, Qv = 106, R = 104.74. SDC parameters: α = 0.25, β = 2.5, η = 0.5.

Figure 4.27: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. Per-
formances of the SDRE-based control system: ∆v over one orbital period and one terrestrial
year, maximum position error from target and maximum thrust required. Simulation at tol-
erance of 10−18, over 10 periods of the Lissajous orbits with N = 35 and tracked with a
frequency of 1,000 samples per Lissajous orbit (resulting time step of about 13.8s). SDRE
weights: Qr = 1012, Qv = 106, R = 104.74. SDC parameters: α = 0.25, β = 2.5, η = 0.5.
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Figure 4.28: LQR station-keeping of lp tracking for L1 Lissajous orbits. Performances
of the LQR: ∆v over one orbital period and one terrestrial year, maximum position error from
target and maximum thrust required. Simulation at tolerance of 10−18, over one period of the
Lissajous orbits with N = 35 and tracked with a frequency of 1,000 samples per Lissajous orbit
(resulting time step of about 13.8s). LQR weights: Qr = 1012, Qv = 106, R = 109.5.

Figure 4.29: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. Per-
formances of the SDRE-based control system: ∆v over one orbital period, maximum position
error from target. Simulation at tolerance of 10−18, over one period of the Lissajous orbits with
N = 35 and tracked with a frequency of 500 samples per Lissajous orbit (resulting time step of
about 27.6s). SDRE weights: Qr = 1012, Qv = 106, R = 109.5. SDC parameters: α = 1, η = 0.

Figure 4.30: SDRE-based station-keeping of lp tracking for L1 Lissajous orbits. Per-
formances of the SDRE-based control system: ∆v over one orbital period, maximum position
error from target. Simulation at tolerance of 10−18, over one period of the Lissajous orbits with
N = 35 and tracked with a frequency of 10,000 samples per Lissajous orbit (resulting time step
of about 1.4s). SDRE weights: Qr = 1012, Qv = 106, R = 109.5. SDC parameters: α = 1, η = 0.
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Figure 4.31: Invariant tori in the center manifold of the collinear LPs of the CR3BP.
This picture shows the evolution of the center manifold’s orbit structure as far as the energy
increases from the one of the lp. The main families of POs are: vertical Lyapunov orbit, planar
Lyapunov orbit and Halo orbit (here the Northern one). From each of them, additional 2D-
QPOs originate: Lissajous orbits from the Lyapunov orbits, quasi-Halo orbits from the Halo
orbits. On the bottom, the iso-energetic Poincaré map taken from the section at z = 0,ż >= 0
is shown. For higher energies, the number of bifurcations increases and the structure becomes
quite complex [52].

1µN in all the practical region of convergence of the higher order lp expansion. This

is about 0.01µm/s2, 10−5 times the Phobos gravity at the collinear LP. Therefore, if

compared with the other orbital perturbations presented in Fig.2.13, this amount is

definitely lower11 and the orbits computed with the high-order lp algorithm are accu-

rate for practical exploitation in a continuous orbital controller. This would require a

∆v for their station-keeping of only 77µm/s per orbital period, which is 8.8cm/s per

terrestrial year. This is absolutely negligible with respect to the orbital perturbation

of the gravity harmonics and orbital eccentricity of Phobos, that are required to be

included in the model to derive the appropriate guidance law of the LPOs. This will

be undertaken in sections 4.2-4.3.

4.1.4 The Halo orbits of the Mars-Phobos CR3BP

The Lyapunov orbits are organized in two 1-parameter families at increasing size and

energy from the LPs. As their energy increases, they encounter bifurcations. The first

bifurcation of the planar Lyapunov family is characterized by the 1:1 resonance of the

natural frequencies (see Fig.4.9). This gives birth to two symmetrical branches (with

respect to the x-y plane) of POs: they are the Northern and Southern Halo orbits

11The amount is of the same order of magnitude of the radiation pressures.
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[50, 52]. They have been discovered by Farquhar [71], who gave them this name due to

the shape of these orbits which, in the Sun-Earth system, encircle the Earth along the

Sun’s conjunction line. The Halo orbits are actually similar to a large Lyapunov orbit

pitched along the y-axis, and softly bent in the x-z projection. However, they are no

longer symmetric with respect to the orbital plane, and the sign of the max z-dimension

identifies the two branches. Halo orbits have attracted the interest of space agencies

for several mission applications [50].

In addition to the Halo orbits, additional bifurcations appear. The second bifurcation

of the planar orbits gives birth to the two symmetrical branches (with respect to the

x-axis) of the axial orbits that represent a two-lane bridge to the first bifurcation of the

vertical orbits [52]. Further bifurcations provide multiplication of the orbits’ period [52],

and at higher energies, the structure of the possible motions becomes more complex,

see Fig.4.31.

Due to the proximity of Phobos, the bifurcations of its LPOs are placed after their

intersection with Phobos. The only bifurcated orbits that still exist are the Halo orbits.

As we see in Fig.4.9, the ancestor planar Lyapunov is placed just ahead of the boundary

of the practical region of convergence for the small-width Lissajous orbits. In this

section, the computation of the Halo orbits of the Mars-Phobos CR3BP is carried out.

4.1.4.1 Computation of Halo orbits with the Lindstedt-Poincaré method

The linear solution of the ancestor planar Lyapunov orbit of the Halo family is given

by locking the two natural frequencies,

q̃PO(t) =

 x̃ = −α cos (ωP t+ ϕP )

ỹ = Kα sin (ωP t+ ϕP )

z̃ = β cos (ωP t+ ϕV )

 ,

{
α(β)

ϕV − ϕP = ±π
2

(4.19)

which results in a constraint between the planar and vertical amplitudes to ensure that

this is a 1-parameter family, and a formal relation between the two phases to ensure that

this is a 1-torus. However this linear solution, which is a 1:1 resonant linear 2-torus, is

isolated in the linearized CR3BP around the LP of Eq.4.3. Since the bifurcation is a

nonlinear phenomena, the Halo orbits cannot be linearized, in the sense that they are

not a solution of the linearized dynamics.

The Halo orbits can only be computed with higher order approximations of the

dynamics, which is using the Lindstedt-Poincaré technique. The main procedure is

the same showed in section 4.1.3.1 for the computation of Lyapunov orbits, but with

some important modifications. The Halo orbits are the result of the combination of

both center manifolds, with equal natural frequencies. Thus, to ensure that the lp

technique computes 3D POs of both eigenfunctions, a constraint is needed to express

the frequency locking. Due to the uncoupling of the planar and vertical dynamics in

the order-1 dynamics, the vertical component of the nonlinear vectorfield is rearranged,
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to force the natural vertical frequency (at first order) to be equal to the planar.

¨̃z =
1

γi3
u/z̃ =

N∑
n=1

c̄n‖r‖n−2Bn,z (r) = −c̄2z̃ +
N∑
n=3

c̄n‖r‖n−2Bn,z (r)

⇒ ¨̃z + ω2
P z̃ = ∆z̃ +

N∑
n=3

c̄n‖r‖n−2Bn,z (r)

(4.20)

This results in the introduction of a correction term ∆, and the related constraint is

added as an additional power series that must be satisfied by the nonlinear terms of the

dynamics. This constraint implicitly represents the constraint α(β) of Eq.4.19, while

maintaining the series expansion of the solution in terms of the amplitudes of the two

eigenspaces. In particular, the parameter of the family of Halo orbits is usually taken

as β, since it is related to the vertical size. The coefficients of the lp expansion of the

orbit are now characterized by 3 indexes.

q̃PO(t) =

 x̃(t)

ỹ(t)

z̃(t)

 =
N∑

i+j=1
αiβj

i+j∑
|k|=0

 aijk cos (kωt+ kϕ)

bijk sin (kωt+ kϕ)

cijk cos (kωt+ kϕ± π/2)




ω =
N∑

i+j=0
αiβjωij

∆ = ω2
P − ω2

V =
N∑

i+j=0

αiβj∆ij =
N∑

i+j=3

αiβj∆ij + ∆2

⇒ l1α
2 + l2β

2 + ∆2 +
N∑

i+j=4

αiβj∆ij = 0

(4.21)

Due to the symmetries, the Halo orbits do not appear even at order-2, but originate at

order-3. The related lowest order lp series expansion is called the Richardson’s solution

[114]. The related α-β relationship is defined below, where the values of the variables

are taken from the Richardson’s solution with the µ of interest.

l1α
2 + l2β

2 + ∆2 = 0⇒ βmin = 0↔ αmin = 2

√
−∆2

l1
(4.22)

This allows one to analytically derive the location of the ancestor Lyapunov orbit. For

the Mars-Phobos system case, the bifurcation corresponds to the normalized planar

amplitude of α = 0.1372 for L1 and α = 0.1381 for L2, in accordance with Fig.4.9 and

the related Lissajous expansion. This means that the minimum altitude of the smallest

Halo orbits is at just 1.2km from the Phobos’ surface. The amplitudes’ constraint is

graphically presented in Fig.4.32.

Regarding the region of convergence, the previous application of the lp algorithm on

Lissajous and Lyapunov orbits of the Mars-Phobos system provided boundaries in nor-
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Figure 4.32: Halo orbits around Phobos in the CR3BP. α−β relationship for the Richard-
son expansions for computing Halo orbits around L1 and L2. Red lines indicates the theoretical
practical region of convergence (fixed propagation time π, position magnitude error threshold
10−6 adimensional units) of the lp algorithm for order 35, assuming a normalized correspon-
dence with the boundaries of the practical region of convergence of the Sun-Earth system.
Phobos mean ellipsoidal surface.

malized units basically similar to the ones of the classical Sun-Earth system (roughly

β = 0.6 [116], for the case of fixed propagation time π, at the position magnitude error

threshold of 10−6 adimensional units). Hence, it is reasonable to imply that the same

would happen for the Halo orbits too, therefore Fig.4.32 highlights also the supposed

practical region of convergence of a lp series expansion up to the maximum order avail-

able from the Barcelona group. Note that, for the aforemention coupled of thresholds,

the Richardson’s boundary does not even exist, as we imply from Fig.4.4-4.5, where

the boundary for order 5 does not reach the location of the ancestor Lyapunov orbit of

the Halo families.

The increased proximity of the Halo orbits to Phobos does not motivate the use of a

high-order semi-analytical expansion, due to the strong perturbation of the inhomoge-

neous gravity field of the moon. Thus, the Halo orbits around Phobos, in the CR3BP,

will be computed in section 4.1.4.3 with a numerical technique.

4.1.4.2 Computation of Halo orbits with Differential Corrector

To obtain the Halo orbits for their preliminary analysis in the CR3BP, without deriving

high precision expansions for them, a DC procedure is applied to the initial guess of

the Richardson solution to consider the full nonlinear dynamics of the CR3BP.

The procedure to derive POs with DC has been presented in section B.5.3.2. Thus,

with the vectorfield of the CR3BP of Eq.2.13 and the aforementioned initial guess, the

single shooting DC scheme of Eq.B.75 is suitable to be included in a NC to provide the

whole family of Northern and Southern Halo orbits. However, due to the symmetries

of the CR3BP, the DC scheme could be wisely reduced in complexity. Thus, the

Poincaré section is not the same for domain and codomain, and the objective function

should expresses the symmetry condition of the state after half period, and not the
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Figure 4.33: Halo orbits around Phobos in the CR3BP. Examples of some Northern
(black) and Southern (blue) Halo orbits around L1 and L2, computed after a single shooting
DC from the Richardson expansion, up to the first orbit that intersects the moon’s mean
ellipsoidal surface.

Figure 4.34: Halo orbits
around L1 of Phobos in
the CR3BP. Characteris-
tic curve of the period of the
Halo orbits (as number of
the CR3BP orbital periods),
for the original Richardson
expansion and after the DC.

Figure 4.35: Halo orbits around L1 of Phobos in the
CR3BP. Region of convergence of the Richardson expan-
sion and after the DC: position magnitude error (in adi-
mensional units) after a fixed propagation time (t = π),
and time of permanence (as number of Halo orbits) within
a fixed position magnitude error (10−6 adimensional units).
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Figure 4.36: Halo orbits
around L2 of Phobos in
the CR3BP. Characteris-
tic curve of the period of the
Halo orbits (as number of
the CR3BP orbital periods),
for the original Richardson
expansion and after the DC.

Figure 4.37: Halo orbits around L2 of Phobos in the
CR3BP. Region of convergence of the Richardson expan-
sion and after the DC: position magnitude error (in adi-
mensional units) after a fixed propagation time (t = π),
and time of permanence (as number of Halo orbits) within
a fixed position magnitude error (10−6 adimensional units).

invariant point’s condition of Eq.B.64. This reduction is actually necessary, because

the Richardson’s solution is not an accurate initial guess: the propagation of its initial

condition does not revolve around the LP but quickly diverges, so the DC will not

converge if used for the whole period.

This DC scheme for Halo orbits is the same used in [72]. The initial and final

surface of section to ensure symmetry is the x-z plane, g (x) = y, with ẏ of different

sign for domain and codomain. The single shooting scheme is based on the objective

function F (x, ẏ) = [ẋ; ż], and is presented in Eq.4.23. Thus, the initial condition on z

is maintained to be used as parameter of the NC. The byproduct of the DC step will

be the half period of the Halo orbit, and the square root of its monodromy matrix.

F (q0, tf ) =
[
ẋf
żf

]
= 0

tf > 0 : yf = y(q0, tf ) = 0⇒ δyf = [ Φ2,1 Φ2,5 ]tf ,q0

[
δx0
δẏ0

]
+ ẏfδtf = 0

⇒ δtf = − 1

ẏf
[ Φ2,1 Φ2,5 ]tf ,q0

[
δx0
δẏ0

]
δF =

[
Φ4,1 Φ4,5

Φ6,1 Φ6,5

]
tf ,q0

[
δx0
δẏ0

]
+
[
ẍf
z̈f

]
δtf =

=

[
Φ4,1− ẍẏΦ2,1 Φ4,5− ẍẏΦ2,5

Φ6,1− z̈ẏΦ2,1 Φ6,5− z̈ẏΦ2,5

]
tf ,q0

[
δx0
δẏ0

]
=

= F ′(q0, tf )
[
δx0
δẏ0

]
(4.23)

4.1.4.3 The Halo orbits of the Mars-Phobos CR3BP

The DC of Eq.4.23, with initial guess provided by the Richardson expansion, for the

case of the Mars-Phobos system, has resulted to converge up to a value of β around

0.85 for both L1 and L2, which is higher than the boundary of the practical region

of convergence even for the maximum order 35 of the method currently available. In

particular, this is already enough in our specific case, since smaller Halo orbits start to
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intersect Phobos’ surface: the Northern orbits intersect the Southern Hemisphere, the

Southern orbits intersect the Northern Hemisphere. This happens at β 0.7682 for L1

and 0.7687 for L2, see Fig.4.33. Fig.4.34-4.36 show the evolution of the Halo orbits’

period. The difference between the Richardson and DC outcomes is very clear.

As a difference from the semi-analytical methodology, the solution of the DC is

defined in the full dynamics, and its reliability is only computational. Fig.4.35-4.37

show the convergence of the DC solution with respect to the nonlinear simulation of

the CR3BP. After a fixed propagation time of π, the position error is correctly driven

by the machine error. For a fixed position error of 10−6 adimensional units, the time of

permanence is more than three revolutions, and in particular the evolution is opposite

with respect to the Lissajous and Lyapunov orbits’ behavior of Fig.4.11, since the time

of permanence increases with the size of the Halo orbit. This is an indication coherent

to the fact, as explained in [72], that for sufficiently low mass parameters, large Halo

orbits around the collinear LPs could be marginally stable. The maximum Floquet

stability index has resulted to decrease with β, but at the maximum β where the

moon’s intersection is achieved the value is still greater than 2, so no stable Halo orbits

exist for the Mars-Phobos CR3BP.

4.1.5 IMs of the LPOs in the Mars-Phobos CR3BP

All the families of periodic and quasi-periodic LPOs of the Mars-Phobos system are

unstable, since their Floquet stability analysis (see sections B.5.2.1-B.6.5) shows that

the linearized manifolds around them are organized in a saddle × center × center

structure12. As explained in section B.8, the presence of a saddle node implies that

the LPOs are separatrices of motion: the related eigenspace contains the so-called IMs

(or Conley-McGehee tubes [50, 73]), which are the trajectories that depart or approach

the LPOs in an infinite time of flight. As discussed in section 4.1.1, this local behavior

has paramount implications for the global orbit structure of the CR3BP. The IMs of a

LPO, at the related energy, constitute the boundary of a tube in the state-space that

separates the transit and non-transit trajectories to naturally enter or escape from the

SOI of the second massive body. This analytical result of DST has proved invaluable

to provide space mission designers with energy-efficient trajectories. They are used to

minimize the fuel consumption of spacecraft for interplanetary transfer phases [50, 73],

realizing prescribed itineraries throughout the Solar System RnBP by appropriately

patching individual R3BPs.

The computation of the IMs’ tubes has been presented for a general dynamical system

in section B.8, and for each type of invariant motion, based on the dimension of its

phase-space. Following this, this section presents the IMs of the periodic (Lyapunov

and Halo) and quasi-periodic (Lissajous) LPOs, computed in sections 4.1.3-4.1.4, of the

Mars-Phobos CR3BP. The results for all the families around both LPs are collected in

12The planar Lyapunov orbits, after the Halo’s bifurcation, is characterized by a saddle × saddle ×
center manifold.
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appendix D.1.

4.1.5.1 Computation of the IMs of the LPOs in the Mars-Phobos CR3BP

The unstable and stable IM of the families of POs and 2D-QPOs around Phobos has

been computed with the techniques tailored for each invariant objected introduced in

section B.8, for the orbits inside the respective practical region of convergence and that

do not intersect Phobos. In particular, since the Lissajous orbits have been computed

with a semi-analytical technique, the IMs are retained with the approach of the re-

duction of the 2D-QPO to a discrete dynamical system expressing the mapping of the

longitudinal motion, as mentioned in section B.8.3.

The initial condition of the IMs requires the choice of an appropriate tolerance εW .

For the CR3BP, in [117] an adimensional value of 10−6, relative to the magnitude of the

position’s displacement, is suggested for high-precision applications, but for the Sun-

Earth system also values up to 10−4 has resulted to be fairly accurate. Therefore, the

IMs are computed in this section with a tolerance of 10−5, that corresponds to about

100m. Furthermore, every tube is made by two branches, with the outside branch

exploited for transfers to and from farther mission phases, and the inside branch used

for transfer within the SOI of the secondary body. Thus, since the main interest of

this thesis is to model the orbital dynamics in the vicinity of Phobos, only the inside

branch of the IMs is computed in this section.

Due to the collapse of the SOI, the inside branch of the unstable and stable IM of

the LPOs has resulted to intersect Phobos. Thus, the globalization of the manifold is

propagated in the CR3BP up to the intersection with Phobos’ surface modeled with

its mean ellipsoidal surface, that constitutes a kind of unusual Poincaré section’s con-

straint. Eq.4.24 presents the expression for the radius and local normal (in the Phobos’

BCBF frame) of a general ellipsoid, whose principal axes are coherent with Phobos’

BCBF frame, as a function of the right ascension and declination in the BCBF frame.

x2

a2
+
y2

b2
+
z2

c2
= 1⇒



r(α, δ) = 1

/
2

√
cos2αcos2δ

a2
+

sin2αcos2δ

b2
+

sin2δ

c2
=

= b

/
2

√
1−

(
1− b2

a2

)
cos2αcos2δ −

(
1− b2

c2

)
sin2δ

n̂(α, δ) =
[

x
a2

y
b2

z
c2

]/
2

√
x2

a4 + y2

b4
+ z2

c4

(4.24)

For an m-parameter family of invariant n-tori, the number of trajectories of the tube

of IMs is organized in a (n+m)-dimensional matrix parameterized by the n phases and

the m parameters. This will be the natural parametrization of the trajectories. To

exploit the results in the mission design, the performances are reparameterized by the

topographical map of the final condition, to represent the properties of the optimal tra-

jectory available for each couple of angles of the spherical coordinates of the Phobos’
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Figure 4.38: Landing on Phobos through the Invariant Manifold of the lp L1−2 Lis-
sajous orbits. Trajectories of the inside branch of the IMs from the Lissajous and Lyapunov
orbits inside the region of convergence at the max order method. Phobos mean ellipsoidal
surface.

BCBF frame.

Unstable IMs. The globalization of the unstable IMs of the families of Lyapunov,

Halo, and Lissajous orbits have directly intersected the mean ellipsoidal surface of

Phobos for all these orbits, for both LPs. Thus, it is possible to organize the array

of trajectories by the couple of longitude and latitude of the landing site, and to filter

them by considering some of the most important performances at the touch-down. The

outcomes considered are: the time of flight, and the properties of the final velocity,

which are its total magnitude, its angle of incidence with the local horizon, and its

vertical component. Since every couple of longitude and latitude can be reached by

multiple trajectories, the results obtained will be further filtered by the case of mini-

mum incidence, which is a tangential arrival.

Regarding the analysis of the results, Fig.4.40-4.44,D.1-D.4,D.5-D.8 are related re-

spectively to the Lissajous, planar and vertical Lyapunov around L1. Fig.D.9-D.10,D.11,D.12

are related respectively to the Lissajous, planar and vertical Lyapunov around L2.

Fig.D.13-D.16,D.16-D.17 are related respectively to the Northern and Southern Halo

orbits around L1, and Fig.D.18-D.19,D.19 are related respectively to the Northern and
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Figure 4.39: Landing on Phobos through the Invariant Manifold of the L1−2 Halo
orbits. Trajectories of the inside branch of the IMs from the Northern and Southern Halo
orbits computed after a DC of the Richardson expansions. Phobos mean ellipsoidal surface.

Southern Halo orbits around L2.

Focusing on the Lissajous orbits, the global zone of possible natural landings on Pho-

bos is a dedicated range of longitudes-latitudes centered on the LP manifold’s intersec-

tion, which is slightly at East on the Equator. This zone then extends with a flat profile

along the Equator for the planar Lyapunov orbits, whereas for the vertical Lyapunov

orbits it has a C-like shape, extending to high latitudes, but also enabling landings

at distant longitudes from the LP. Regarding the performance at the touch-down, the

natural IMs enable tangential landings, with vertical velocities lower than 0.5m/s for

high values of α-β Lissajous orbits and for a broad range of landing sites. The total

magnitude of the velocity in the minimum incidence case ranges from 4− 5.5m/s. For

the cases of large planar and vertical Lyapunov orbits, being the α or β null, perfor-

mances are usually lower than the Lissajous cases. Finally, comparing the L1-L2 cases,

outcomes are mainly identical.

Focusing on the Halo orbits, the IMs of the smallest orbits are the continuation of the

ones of the widest planar Lyapunov, whose performances as mentioned above are poor.

As long as β increases, the development in the out-of-plane component becomes pre-

dominant, and the performances of their IMs become very different from the Lyapunov

and Lissajous orbits’ families. The accessible region on Phobos from each Halo orbit

has a C-shape, and the global region of landing sites spanned by an entire Halo family

results to be wider than the one of the Lissajous family. In particular, higher longitudes

and latitudes are reachable by the IMs of the Halo family, where tangential landings

are enabled directly following the widest orbits. As a result, the total magnitude of the

velocity for these landings is higher than using Lyapunov and Lissajous orbits. Due

to the symmetry of the problem, performances of the Northern and Southern Halo are
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Figure 4.40: Landing on Phobos through the Invariant Manifold of the lp L1 Lissajous
orbits. Trajectories that provide the min incidence at the touch-down, as a function of the
α and β input of the lp algorithm, for orbits inside the region of convergence at the max
order method. Performances of the trajectory: initial planar and vertical phases (miniplot
shows its absolute complement to 90/270◦) along the departing Lissajous orbit, altitude where
the integration is stopped, TOF, latitude (miniplot shows its absolute complement to 0◦) and
longitude of the landing site, and related velocity magnitude, angle of incidence, downward
vertical velocity. Phobos mean ellipsoidal surface.

the same, with the landing sites flipped in latitude, and the trajectories in the L1-L2

sides are mainly identical.

Stable IMs. The globalization of the stable IMs of the families of Lyapunov, Halo, and

Lissajous orbits is not necessary to be performed. Due to the symmetries of the prob-

lem, these trajectories are specular to the ones of the unstable manifold, with opposite

y component and integrated backward in time. Thus, all the stable IMs depart from

Phobos’ surface, and this potential take-off sites are specular to the landing sites com-

puted before with respect to the 0◦/180◦ longitude (L1/L2), while the launch velocities

are opposite. In this case, outcomes are more suitable to be filtered by the trajectory

that depart from each couple of longitude and latitude with the minimum velocity’s
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Figure 4.41: Landing on Phobos through the Invariant Manifold of the lp L1 Lissajous
orbits. Trajectories that provide the min incidence at the touch-down, as a function of the
longitude and latitude of the landing site, for orbits inside the region of convergence at the
max order method. Performances of the trajectory: initial planar and vertical phases (miniplot
shows its absolute complement to 0◦) along the departing Lissajous orbit, altitude where the
integration is stopped, TOF, α and β input of the lp algorithm, and landing velocity magnitude,
angle of incidence, downward vertical velocity. Phobos mean ellipsoidal surface.

total magnitude, that represents the escape velocity. This is reported in Fig.D.20 for

the Lissajous and Lyapunov orbits around L1, and Fig.D.21 for the Northern Halo

around L1.

In summary, the escape velocity ranges from 2.5−5m/s for the Lissajous and planar

Lyapunov orbits, which is less than half of the Keplerian ∆v computed in section 1.2.

This shows how the 3B effect of Mars is important at Phobos.

In conclusion, this analysis showed that due to shrinkage of Phobos’ SOI, all the

inside branch of the IMs of the LPOs intersects Phobos. Therefore no homoclinic nor

heteroclinic connections of the two LPs manifolds exist. This is a unique feature of

the Mars-Phobos CR3BP, because the natural trajectories, at low energy, to trans-

fer between the SOIs of the two primaries in the Sun-Earth and Earth-Moon systems
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Figure 4.42: Landing on Phobos through
the Invariant Manifold of the lp L1 Lis-
sajous orbits. Region of possible landing
sites, for orbits inside the region of conver-
gence at the max order method. Inner lines
show subregions where the 10%, 50%, 90%
levels of the cumulative distribution of the
IM simulated landed (same number of trajec-
tories from each departing orbit simulated).
Phobos mean ellipsoidal surface.

Figure 4.43: Landing on Phobos through
the Invariant Manifold of the lp L1 Lis-
sajous orbits. Trajectory that provides
the overall min incidence at the touch-down.
Phobos mean ellipsoidal surface.

Figure 4.44: Landing on Phobos through the Invariant Manifold of the lp L1 Lissajous
orbits. Direct and inverse relation between the longitude and latitude of the landing site and
the α and β input of the lp algorithm, for orbits inside the region of convergence at the max
order method. Phobos mean ellipsoidal surface.

fly widely far from the bodies. Therefore, the IMs of the LPOs around Phobos are

gateways for potential pathways, that would provide natural and efficient landing and

take-off for a spacecraft to and from the cis and trans-sides of the moon.

4.2 LPOs in the Mars-Phobos CR3BP-GH

This chapter focuses on the computation of the natural orbits in close proximity of

Phobos. Due to the collapsing effect of its SOI, these are the families of periodic and

quasi-periodic LPOs computed in section 4.1.
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In the last two decades, the orbital dynamics around highly irregular shaped bodies

have been investigated in the framework of a perturbed 2B dynamics to derive EPs

and orbits around them in proximity of asteroids [118, 119]. These orbits are defined

in the asteroid’s body-fixed frame and are not significantly influenced by the Sun’s

third-body perturbation [118, 48]. The manifold of the LPOs is instead defined in the

Sun-asteroid orbital frame and far from the asteroid, and is not significantly influenced

by the irregularities of its gravity field [49]. The two dynamical domains are therefore

decoupled in the phase-space of the asteroids’ orbital dynamics. In contrast, the relative

dynamics around a small planetary satellite like Phobos cannot neglect any of these

forces, and the CR3BP does not provide a suitable approximation to compute the LPOs

of the Mars-Phobos system. This led in section 3.3 and 3.4 to define two additional

dynamical models, the CR3BP-GH that encloses the modeling of the gravity field of the

moon with GHs, and the ER3BP-GH that considers Phobos moving in an elliptical orbit

around Mars. The idea that is presented in this section is to use the LPOs of the CR3BP

as starting solutions of a numerical continuation along the three different dynamics,

computing in sequence their dynamical substitutes in the new models. Recalling from

section B.7, the notion of dynamical substitute was introduced in [53]. As the name

suggests, a dynamical substitute is the equivalent of the classical solution of the original

dynamics in a perturbed dynamical system. The dynamical substitute is an orbit that

not only is a solution of the new dynamics, but also maintains in its phase-space the

natural and forcing frequencies of the perturbation.

This approach was introduced in [53] in the framework of the multiple shooting, where

several small and time-variant disturbances are considered to refine the reference signal

of a classical LPO in the full gravitational model of the Solar System. In this sense, in

[57] a multiple shooting method is used in a high-fidelity perturbation model to correct

the classical LPOs of the Mars-Phobos CR3BP. This produces the resulting solutions

to be only bounded for a specific time span, and they do not contain any information

of the natural frequencies of the perturbations. But in our case, the effects of the

GHs and eccentricity of Phobos are leading actions in the dynamics about the SOI of

the moon, rather than perturbation to take into account only in the last stages of the

mission design. Furthermore, the first action is stationary in the 3B frame, and the

second is periodic. With the approach of [57] the performance analysis of the orbits is

not suitable to be optimized in the preliminary mission design loop. In contrast, in the

following sections these two forces will be treated with the classical numerical tools of

DST presented in appendix B, to derive a more systematic and complete structure of

the dynamical substitutes of the LPOs around Phobos.

This section presents the methodology used and the result obtained by computing the

dynamical substitutes of the LPOs from the model of Eq.2.13 to the system described

by Eq.3.37. The procedure undertaken is differentiated by the phase-space dimension

of the invariant solutions. As the perturbation of Phobos’ GHs is time-invariant in the

3B frame, the dynamical substitutes of the invariant solutions maintain the dimension
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of their original phase-space in the CR3BP. Section 4.2.1 presents the EPs, section

4.2.2 focuses on the POs, and section 4.2.3 focuses on the 2D-QPOs. Finally, in section

4.2.4 the invariant manifolds of the dynamical substitutes are presented.

4.2.1 EPs in the Mars-Phobos CR3BP-GH

The identification of the dynamical substitutes of the LPs in the Mars-Phobos CR3BP-

GH was performed in the framework of the preliminary analysis of this system in sec-

tion 3.3.6.2. They are are computed as the roots of the vectorfield through Newton’s

method, as explained in section B.3.

The five LPs in the rotating 3B frame are presented in Table 3.4. Due to the ener-

gizing effect of the additional terms of the moon’s gravity field, introduced in section

3.3.4.1-3.3.6.1, L1−2 are displaced farther away from Phobos. The asymmetric displace-

ment from their original values in the basic CR3BP model is significant, and accounts

for 20% of their altitude over Phobos. The related stability properties are maintained

from their ancestor solutions in the classical system. Thus, the orbit structure around

these LPs in the CR3BP-GH is characterized by a 2-parameters family of invariant 2-

tori and their stable and unstable IMs. These orbits are the focus of the next sections.

4.2.2 POs in the Mars-Phobos CR3BP-GH

In this section the computation of the families of dynamical substitutes of the periodic

LPOs, with the effect of the inhomogeneous gravity field of the secondary body, is

addressed with the methodology of DST to identify invariant motions of section B.5.3.

This approach is new in the field, thanks also to the characteristics and peculiarities

that requires, and that are suitable for the case of Phobos. Some analytical works have

been done considering only the J2 effect, while the only slightly related approaches that

seem to be available in the literature are: a NC with only J2 and a special value of

J4 = −J2
2 (Vinti Problem) [55], and an analysis with J2 in the Hill’s approximation of

the CR3BP [56].

4.2.2.1 Linear Solution of the Dynamical Substitutes

The first step is conducted with an analytical approach, which is to compute the POs

of the linearized CR3BP-GH around the nonlinear solution of L1−2. The approach is

identical to the one discussed in section 4.1.3, using the state xL for L1−2 computed in

Table 3.4, and extending the Hessian matrix of the potential in Eq.4.3 with the Hessian

matrix of the GHs evaluated at the EP. The procedure to derive the Hessian matrix

in spherical coordinates was presented in section 3.1.2: the solution for the GHs series

expansion in Eq.3.12 must be rotated and counter-rotated by the combination of the

local attitude matrix of Eq.3.4 and the constant matrix of Eq.3.20.
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ẋ (t) = fCR3BPGH (x)

Hu (xL) = uG1/qq (xL) + uG2/qq (xL) + uGH2/qq (xL) = HG1 (xL) + HG2 (xL) + HGH2 (xL)

ẋ (xL) = 0→ δx = x− xL ⇒ δẋ (t) = Aδx (t) ,A =

[
03 I3

−P + Hu (xL) −2W

]
(4.25)

The analytical computation of the general 2-torus solution of the linearized CR3BP,

which is the Lissajous orbit of Eq.4.5, was derived by the homogeneous solution of a

mechanical system of uncoupled 4D+2D ODEs. For the case of the CR3BP-GH, the

3D Hessian matrix HGH2 (xL) is completely coupled, and filled in all its components.

Therefore a fully analytical expression is derived with the rigorous procedure of the

eigenvalue problem’s solution.

The first step is to compute the analytical expression of the eigenvalues of the lin-

earized state-matrix of Eq.4.25. This is addressed in section 5.2.3.2 for the case of

a general symmetrical matrix Hu. The procedure uses the scalar invariants of Hu

(Eq.5.12), and the expression of the three couples of eigenvalues is given by Eq.5.19,

which is function of the A and C coefficients previously defined in Eq.5.12. In par-

ticular, since C is complex, the expression is the same for all the couples, differing by

a rotation θ of 120◦ of the phasor C. The manifold of L1−2 is a saddle × center ×
center, so one couple is real (hyperbolic manifold) and describes the IMs of the LP for

θ = 0, and the other two are purely imaginary (elliptic manifolds). The latter are the

couples of eigenvalues to be considered to compute the linearized LPOs. The linear

substitute of the planar Lyapunov is the one whose eigenvalue in Eq.5.19 is rotated by

θ = +120◦, and the linear substitute of the vertical Lyapunov is related to the rotation

of θ = −120◦.

The second step is to compute the analytical expression of the four eigenvectors as-

sociated to the two couples of imaginary eigenvalues. Since the eigenvalues are in pair

of opposite, each couples of eigenvectors are complex conjugated. This is presented in

Eq.4.26. Recall that the derivation of the eigenvectors is underdetermined, so it requires

to fix one component. Care must be taken to choose a component not orthogonal to

the eigenspace needed. In this sense, two expressions are derived in Eq.4.26. One has

the x-component set to +1, and is used for the planar Lyapunov orbit’s substitute: the

related eigenvector has δy = 0. The other has the ż-component set to +1, and is used

for the vertical Lyapunov orbit’s substitute: the related eigenvector has δz = 0.
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θC = ±π
3 ⇒ λ (θC) ∈ I⇒ vλ : Avλ = λvλ

vλ =



+1
(Hu3,3−λ2)(Hu1,2+2λ)−Hu1,3Hu2,3

Hu2,3
2−(Hu3,3−λ2)(Hu2,2+1−λ2)

(Hu2,2+1−λ2)Hu1,3−(Hu1,2+2λ)Hu2,3

Hu2,3
2−(Hu3,3−λ2)(Hu2,2+1−λ2)

−λ

−λ(Hu3,3−λ2)(Hu1,2+2λ)−Hu1,3Hu2,3

Hu2,3
2−(Hu3,3−λ2)(Hu2,2+1−λ2)

−λ(Hu2,2+1−λ2)Hu1,3−(Hu1,2+2λ)Hu2,3

Hu2,3
2−(Hu3,3−λ2)(Hu2,2+1−λ2)



vλ =



1
λ

(Hu2,2+1−λ2)Hu1,3−(Hu1,2−2λ)Hu2,3

(Hu1,1+1−λ2)(Hu2,2+1−λ2)−(Hu1,2−2λ)(Hu1,2+2λ)

1
λ

(Hu1,1+1−λ2)Hu2,3−(Hu1,2+2λ)Hu1,3

(Hu1,1+1−λ2)(Hu2,2+1−λ2)−(Hu1,2−2λ)(Hu1,2+2λ)

− 1
λ

− (Hu2,2+1−λ2)Hu1,3−(Hu1,2−2λ)Hu2,3

(Hu1,1+1−λ2)(Hu2,2+1−λ2)−(Hu1,2−2λ)(Hu1,2+2λ)

− (Hu1,1+1−λ2)Hu2,3−(Hu1,2+2λ)Hu1,3

(Hu1,1+1−λ2)(Hu2,2+1−λ2)−(Hu1,2−2λ)(Hu1,2+2λ)

+1


⇒ v̂λ = vλ

‖vλ‖

(4.26)

For better management of the problem, the eigenvectors are normalized in an eigen-

versor. The general homogeneous solution of the linear system of Eq.4.25 is obtained

by the linear combination of the eigenversors, assembling the right-eigenversors matrix

V and its inverse13, and specifying the initial condition. However here the focus is to

obtain a solution only with the normal modes of interest, therefore the initial condition

is specified directly in the normal modes’ coordinates. This leads to trivially set a

common amplitude m0 only in the two components representing the center manifold of

interest. {
x (t) = eA(t−t0)x0 = Vλe

Λ(t−t0)V−1
λ x0 = Vλe

Λ(t−t0)m0

x (t0) = x0

(4.27)

The combination of the couple of conjugated eigenversors provides the linearized pe-

riodic LPO xPO(t) around the LP in the CR3BP-GH. The combination of the couple

of conjugated normal modes simplifies through Euler’s formula in a linear combination

of cosine and sine, whose pulsation is equal to the eigenvalue magnitude. The related

coefficients could be related to the appropriate initial condition in the state space as

shown in the previous equation: they are the combination of the related eigenversors.

13Since the LPs are isolate, the linearized state-matrix A is diagonizable.
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Figure 4.45: Periodic LPOs in the Mars-Phobos CR3BP-GH. Linear center manifold’s
POs around L1 and L2 of the Mars-Phobos CR3BP-GH. The gravity field of Phobos is con-
sidered up to 4th degree and order. The normal mode’s initial condition is set to 1% of the
normalized distance between secondary and LP. Origin at the LP of the CR3BP-GH.

Figure 4.46: Quasi-periodic orbits in the Mars-Phobos CR3BP-GH. Linear center
manifold’s 2D-QPOs around L1 of the Mars-Phobos CR3BP-GH. The gravity field of Phobos is
considered up to 4th degree and order. The normal mode’s initial condition magnitude is set to
1% of the normalized distance between secondary and LP. Origin at the LP of the CR3BP-GH.

θC = ±π
3 ⇒ λ (θC) ∈ I⇒

xPO (t) = [ v̂+λ v̂−λ ]
[
eλ(t−t0)

e−λ(t−t0)

]
m0 =

= [ Re{v̂λ}+iIm{v̂λ} Re{v̂λ}−iIm{v̂λ} ]
[
eλ(t−t0)

e−λ(t−t0)

]
m0 =

= 2m0Re {v̂λ} cos (|λ| t+ θ0)− 2m0Im {v̂λ} sin (|λ| t+ θ0) =

= ξ0 cos (|λ| t+ θ0) + η0 sin (|λ| t+ θ0)

(4.28)

This solution will be valid only for small amplitudes of the eigenvectors. Fig.4.45

shows the linear dynamical substitutes of the Lyapunov orbits around L1 and L2 of the

CR3BP-GH for a normal mode’s magnitude of 1% γi-normalized units. It is clearly

evident the great effect of the inhomogeneous gravity field of Phobos. First of all, as a

result of the new 3D-coupled linear dynamics, the substitute of the vertical Lyapunov

orbit is also an ellipse like the planar Lyapunov. Second of all, the POs are considerably

tilted, if compared to the orientation of their ancestors in the CR3BP, as a result of the

high magnitude of the GHs. Counterintuitively, this makes the substitutes of the pla-
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Figure 4.47: Periodic LPOs in the Mars-Phobos CR3BP-GH. Linear center manifold’s
POs around L1 of a CR3BP-GH. The mass ratio corresponds to the one of the Mars-Phobos
system; the GHs are considered individually one at a time, from J2 up to the 4th degree and
order: each spherical harmonic has the same phase of the related coefficient in the Phobos’
gravity model, whereas its magnitude is considered with a constant value of 10%. The normal
mode’s initial condition is set to 1% of the normalized distance between secondary and EP.
Origin at the LP.

nar Lyapunov orbits to be mostly vertical, and the substitutes of the vertical Lyapunov

orbits to be mostly planar. Thus, the structure of the center × center manifold is no

longer aligned with the coordinate axes and planes of the 3B frame. The orientation of

the centers’ manifolds is given by the couples of “relative inclination / ascending node’s

right ascension” of each family of PO. Around L1, the substitutes of the vertical Lya-

punov orbits have 46◦/278◦, while the substitutes of the planar Lyapunov orbits have

82◦/98◦. Around L2, the firsts have 26◦/43◦, the seconds have 71◦/223◦. Interestingly,

the two POs around each LP have opposite nodes, as we see also in Fig.4.45.

Combining both the normal modes of the two centers in Eq.4.27, the linear dy-

namical substitutes of the quasi-periodic Lissajous orbits around the POs are obtained

analytically. This is shown in Fig. 4.46: the two manifolds are connected through the

family of iso-energetic 2D-QPOs, in terms of the linearized Jacobi integral around the

LP.

To conclude the linear analysis, it is worth to exploit the analytical expressions de-

rived in this section to quickly study the effect of each harmonic’s degree and order.

This has not been done in depth: since each GH is defined by two coefficients, the

phase has been kept equal to the one of Phobos’ gravity model of Table 3.1. The anal-

ysis is then conducted looking to the effect of each GH independently, not cumulated:

thus, the magnitude considered is the same for each GH, equal to 10%. The outcomes

are showcased in Fig.4.47-4.48 for both L1 and L2 POs. The effect is the same and
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Figure 4.48: Periodic LPOs in the Mars-Phobos CR3BP-GH. Linear center manifold’s
POs around L2 of a CR3BP-GH. The mass ratio corresponds to the one of the Mars-Phobos
system; the GHs are considered individually one at a time, from J2 up to the 4th degree and
order: each spherical harmonic has the same phase of the related coefficient in the Phobos’
gravity model, whereas its magnitude is considered with a constant value of 10%. The normal
mode’s initial condition is set to 1% of the normalized distance between secondary and EP.
Origin at the LP.

specular between the two LPs. This analysis proves the condition of planar-vertical

decoupling of the GHs Hessian matrix of Eq.3.12. Substitutes of planar and vertical

Lyapunov orbits maintain the basic uncoupled orientation when the derivatives in the

non-diagonal terms x-z and y-z of HGH(xL) are zero. As mentioned at the beginning

of this section, between HGH and Eq.3.12 there is an attitude rotation between 3B and

TSE frames, which depends on the location of xL. The latter depends from the GH

too, and so it must be recomputed.

In summary, in Eq.3.12, the Legendre associated polynomials Pmn are null when the

EP is on the equatorial plane (or at a node of the polynomial) and (n + m) is odd,

whereas its derivatives are null when the EP is on the equatorial plane (or at a node

of the derivative) and n is even or n = m. The spherical harmonic Cmn is null in

quadrature of the n-nodes of its phasor (see Eq.3.1), whereas its derivative is null on

the n-nodes. Of course it is not possible to have both a trigonometric function and

its derivative null at the same location. The uncoupling between planar and vertical

dynamics is therefore obtained if and only if the GH only moves the EP onto the orbital

plane, and if the coupling terms with the colatitude in the spherical Hessian of Eq.3.12

are null. A general situation that satisfies all these constraints is realized by an even

zonal harmonic (symmetric oblateness) and a sectorial harmonic (longitude-dependent

field). This because both cases have null derivative of the Legendre associated poly-

nomial, therefore they don’t move the EP along the vertical axis (second component
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of Eq.3.3). The first result keeps zero the single term r-θ and the second term θ-ψ in

Eq.3.12, and the second result keeps zero also the first term θ-ψ.

4.2.2.2 Computation of the Dynamical Substitutes of the Periodic LPOs

in the Mars-Phobos CR3BP-GH

The linear solution of section 4.2.2.1 can be used only for very small amplitudes. To

increase the validity, the extension to include higher nonlinear terms of the CR3BP-GH

can be done by the use of the semi-analytical techniques exploited in the CR3BP in

section 4.1.3.1. However, the inclusion of the GHs provides a complete coupling of the

3D dynamics already in the linearized case. Thus, the burden required to develop a

high-order lp algorithm for the CR3BP-GH increases significantly.

The choice carried out is to use a numerical approach. The numerical methodology for

the computation of POs around the LPs exploits their reduction in DST to an invariant

point of a suitable iso-energetic Poincaré map, by the use of the DC scheme presented

in section B.5.3.2. The first guess of the DC can well be the linear solution of the LPOs

computed in section 4.2.2.1 with a small amplitude. Afterwards, NC is performed

as presented in section B.5.3.2.1 to generate the two families of POs developing from

the LPs of the CR3BP-GH. This would be the same approach used in section 4.1.4.2:

however in that case, the initial guess was given by the Richardson’s solution. This is

already a nonlinear solution of small-order, and it was not accurate enough to provide a

complete first-return to the Poincaré map in the full nonlinear system, so it required to

exploit the symmetry condition. The CR3BP-GH is not symmetric any longer, and the

Lyapunov orbits are also more unstable than the Halo orbits. Thus, the linear solution

would require a very tiny amplitude to allow the convergence of the DC.

Instead of using the classical procedure, the idea is to use as initial guess the LPOs

already computed in sections 4.1.3 and 4.1.4. However, using these initial guesses in

the CR3BP-GH would not allow the DC to converge, because the level of perturbation

of the GHs on the CR3BP is too high, and the situation appear similar to the previous

case. The preference to use this alternative approach is driven by the fact that here

we have available the entire families of nonlinear LPOs in a close dynamics, which

is an information much more powerful than that of a couple of two linear solutions.

Therefore, to make the DC to converge, NC must be used to move between the two

dynamics. This is the same framework explained in [116] to perform multiple-shooting

under tiny time-invariant perturbations, but this time the DC scheme will be the single-

shooting of section B.5.3.1, and so the dynamical substitute will still be a PO, whose

period corresponds to the nonlinear natural frequency of the CR3BP-GH.

4.2.2.2.1 NC between the dynamical models of the CR3BP and the CR3BP-

GH

Unlike the classical NC used so far in the thesis, in this case the continuation acts

implicitly in the dynamics, and not on an explicit characteristic of the invariant object.
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The continuation parameter is, intuitively, a scaling factor σGH , from 0 to 1, to weight

the GHs acceleration in the vectorfield.

ẋ = h (t,x, σGH) = fCR3BP (x) + σGHfGH (x)→ φh (t,x, σGH) (4.29)

The general dynamical system is now a homotopy h between the CR3BP and the

CR3BP-GH, and its flow is dependent on σGH . Recall that the sensitivity of the flow

with respect to a parameter is retrieved with the procedure explained in section B.1.2.5.

The DC will now require the propagation of the augmented 7D× 7D variational systems

to retrieve the STM.

Φ (t,x0, σGH) =
[
φh/x0

φh/σ
01x6 1

]
↔

{
Φ̇ (t,x0, σGH) =

[
H3B(x(t))+σGHHGH(x(t)) fGH(x(t))

01x6 0

]
Φ (t,x0, σGH)

Φ (0,x0, σGH) = I7

(4.30)

Recall from section 3.3.6 that the CR3BP-GH is still conservative and an appropri-

ate augmented Jacobi integral is available. In the same way as their acceleration is

introduced in the vectorfield, the potential of the GHs’ perturbation is weighted in the

general Jacobi integral of the homotopic dynamical system of Eq.4.29.

c (x, σGH) = c3B (x) + σGHcGH (x) (4.31)

This allows to define an appropriate iso-energetic constraint, to be used in the same DC

scheme of Eq.B.75. However, the Jacobi integral is not the same in different dynamics.

The most physically-related interpretation of the dynamical substitute of a LPO is

an orbit with the same energy gap with respect to the LP in the coherent dynamics.

Therefore the NC of the POs must embed also the computation of the current LP. This

hints to continue the POs from CR3BP to CR3BP-GH in a differential way, using the

relative state z with respect to the state of the current LP xL,

xL (σGH) : h (0,xL, σGH) = 0→ z = x− xL (4.32)

using a variant Poincaré map,

g(x, σGH) = y − yLP (σGH) (4.33)

and with a fixed-energy constraint with respect to the energy of the LP.

∆c(x, σGH) = c(x, σGH)− c(xLP , σGH) (4.34)

Since this NC scheme is rather different from the classical ones presented in appendix

B, the DC scheme’s step is provided explicitly in the following equations. First, one

defines some index referencing: the Poincaré section is taken along the variable y, the
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controlled-variables of the continuation are 4, swapping x with the Jacobi integral.
vM = y → iM = 2

vX = [ z ẋ ẏ ż ]→ iX = [ 3 4 5 6 ]

vσ = σ → iσ = 7

(4.35)

The objective function of the DC scheme is the following, where the time-return is fixed

by the related map to ultimately give the period of the PO. z0(σGH) : F (T, z0, σGH) =

[
c (z0 + xL, σGH)− c (xL, σGH)−∆c

{φh (T, z0 + xL, σGH)− z0 − xL}iX

]
= 0

T : g (T, z0, σGH) = {φh (T, z0 + xL, σGH)− z0 − xL}iM = 0 ∧ {z0}iM = 0

(4.36)

As usual, the section’s variable is fixed and the time-return constraint is embedded in

the derivative of the Poincaré map (see section B.5.3.2). In addition, the map depends

now also on the LP, which ultimately depends on the continuation parameter σGH .

This requires an additional constraint to be included in the derivative of the Poincaré

map14.



{δz0}iM = 0

δh (0,xL, σGH) = [ H3B(xL)+σGHHGH(xL) fGH(xL) ]
[
δxL
δσGH

]
= 06x1

→ δxL = −(H3B (xL) + σGHHGH (xL))−1fGH (xL) δσGH

δg (T, z0, σGH) = [ {Φ(T,z0+xL,σGH)−I7}iM ,x {Φ(T,z0+xL,σGH)−I7}iM ,x {h(T,z0+xL,σGH)}iM {Φ(T,z0+xL,σGH)}iM ,σ ]

[
δz0
δxL
δT

δσGH

]
= 0

→ δT = − 1

{h (T, z0 + xL, σGH)}iM
[ {Φ(T,z0+xL,σGH)−I7}iM ,x {Φ(T,z0+xL,σGH)−I7}iM ,x {Φ(T,z0+xL,σGH)}iM ,σ ]

[
δz0
δxL
δσGH

]
(4.37)

Finally, global matrix are assembled, and the DC scheme of the NC step for computing

the dynamical substitute of the periodic LPOs from CR3BP to CR3BP-GH is made by

the objective function of Eq.4.36 and its Jacobian of Eq.4.39.

g (x) = cGH (x)

f (x) = fGH (x)

G (x, σGH) = ∇xc (x, σGH) =
[

2{(f3B(x)+σGH fGH(x))T}[ ẋ ẏ ż ]
−2[ ẋ ẏ ż ]

]
X

J (x, σGH) = (H3B (x) + σGHHGH (x))

P (T, z0,xL, σGH) = {Φ (T, z0 + xL, σGH)− I7}x,x
B (T, z0,xL, σGH) = {Φ (T, z0 + xL, σGH)− I7}x,σ

(4.38)

14Recall that the Hessian at the EP is always invertible in autonomous dynamical systems with
isolated EPs.
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Figure 4.49: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile. Continuation with respect to the GHs’ magnitude from CR3BP (σ = 0) to full
CR3BP-GH (σ = 1). Continuation of planar Lyapunov orbits around L1 at increasing energy.

δH (T, z0, σGH ,xL (σGH)) =

=



{G(z0+xL,σGH)}x\vM
(g (z0 + xL)− g (xL)) +

− (G (z0 + xL, σGH)−G (xL, σGH)) J(xL, σGH)−1f (xL)



P (T, z0 + xL, σGH) +

−
{h (T, z0 + xL, σGH)}iX
{h (T, z0 + xL, σGH)}iM

·

· {P (T, z0 + xL, σGH)}iM ,:


iX,x\vM



B (T, z0 + xL, σGH) +

−P (T, z0 + xL, σGH) J(xL, σGH)−1f (xL) +

−
{h (T, z0 + xL, σGH)}iX
{h (T, z0 + xL, σGH)}iM

·

·

{
B (T, z0 + xL, σGH) +

−P (T, z0 + xL, σGH) J(xL, σGH)−1f (xL)

}
iM ,:


iX



[
{δz0}x\vM
δσGH

]

= H′ (T, z0, σGH ,xL (σGH))
[
{δz0}x\vM
δσGH

]
(4.39)

The Jacobian is 5 × 6, and will become square when using the DC in the pseudo-

arclength NC of Eq.B.39.

Analysis of the results. Throughout all this thesis, the terms small, medium, large are

intuitively related to the range of possible LPOs existing around Phobos. Hence, they

span from the small-size orbits around the LP, to the large-size orbits that intersect the

moon’s surface. Since the energy (from the LP) is used the parameterize the families
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Figure 4.50: Periodic LPOs in the Mars-Phobos CR3BP-GH. Derivative of the con-
tinuation variables’ curves profile, and continuation adaptive step profile. Continuation with
respect to the GHs’ magnitude from CR3BP (σ = 0) to full CR3BP-GH (σ = 1). Continuation
of a small-energy planar Lyapunov orbit around L1.

of POs, to summarize the results in the text, which are presented specifically in plots

and figures, the orbits are referred to be of small, medium, large-energy15. This is just

to quickly address the results as a trend within a family.

The DC scheme of Eq.4.39 is applied in a NC where σGH is increased from 0 to 1,

using as initial guess the initial condition, on the Poincaré map, of any of the Lyapunov

and Halo orbits of the CR3BP computed in section 4.1.3-4.1.4. The NC is performed

for a sampling of POs for each of these four families of the CR3BP, for both LPs. The

NC has resulted to be quite fast, using strict tolerances (10−12 for both function and

step). In particular, this choice of a continuation of the differential state with respect

to the current LP, has been proved to be 33% faster than continuing the absolute state,

since it requires less DC iterations for a given step size.

An example of the continuation curves is shown in Fig.4.49 for the planar Lyapunov

family, Fig.D.22 for the Southern Halo family, Fig.D.23 for the Northern Halo family,

and Fig.D.24 for the vertical Lyapunov family. With this continuation scheme along

the dynamics, the interest is only for the final solution, as intermediate dynamics have

not practical exploitation. It is worth noting the presence of turning points of the

continuation curve: planar Lyapunov and Northern and Southern Halo orbits of the

CR3BP are linked together under the framework of the augmented state-space [x;σGH ]

of the vectorfield h, when the continuation curve crosses more than once the σ = 0

axis. In such a case, the adaptive step control and the pseudo-arclength NC prove their

efficiency, as shown in Fig.4.50. Therefore, with this scheme, NC should be always

performed in both directions at the beginning. The NC is then stopped at the first

crossing with the σ = 1 axis, and at the first one with σ = −0.5: possible bends out of

these boundaries are not considered in this thesis.

15If another property is used to parameterize the family, the same notation applies with it. For
example, the 2-parameter families of quasi-periodic orbits require to be parameterized also by the
width of their invariant curves.
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Figure 4.51: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation with respect
to the GHs of a small-energy planar and vertical Lyapunov orbit around L1 of the CR3BP
(blue) to their dynamical substitute in the CR3BP-GH (black) belonging to the families A and
B respectively, together with the current LP.

Fig.4.51 and 4.54 show what “physically” happens: as σGH is increased from 0 to

1, the small planar and vertical Lyapunov orbits follow the corresponding LP and are

highly distorted, mostly in the second half of the continuation. The results obtained

with this new method are proved to be correct, because the final dynamical substitutes

of these small orbits at σGH = 1 correspond to the linear solutions of the CR3BP-GH of

Fig.4.45. For the discussion about the characterization of the high tilt and distortion,

produced by the strong and 3D-coupled gravity field of Phobos at the LP, see related

section 4.2.2.1. In particular, recall that substitutes of planar Lyapunov orbits are

mostly vertical, and substitutes of vertical Lyapunov are mostly planar. It is worth to

say that despite the continuation with respect to the Phobos’ GHs magnitude does not

provide physically-practical intermediate results, these plots for a specific case hint at

some general conclusions. The set of orientation of the GHs’ phasors is almost infinite

in reality, but its effect is derivable from the linear eigenspace at the EP. Furthermore,

the behavior of the orbits in Fig.4.51 and 4.54 can be a reference for the qualitative

importance of the effect in a general case, by considering σGH , used here to scale the

GHs of Phobos, to represent the ratio ap/a2(LP ) of a general CR3BP-GH.

Focus now on the continuation of the medium and large LPOs in Fig.4.52-4.53. After

the Halo bifurcation of the CR3BP, the dynamical substitutes of the planar Lyapunov

have a sudden change: they become tilted eight-shaped orbit (if seen from the y-z

plane, but actually they are open orbits). By contrast, Southern Halo have the op-

posite behavior: their dynamical substitutes from medium-size Halo are eight-shaped

orbits, while for large Halo the dynamical substitutes are similar to the ones generated

by the medium-size planar Lyapunov orbits. Northern Halo orbits are connected with

planar Lyapunov and Southern Halo just for medium-size orbits, and the dynamical
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Figure 4.52: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation with respect
to the GHs of a medium and large-energy planar Lyapunov orbit around L1 of the CR3BP (blue)
to their dynamical substitute in the CR3BP-GH (black), together with the current LP.

Figure 4.53: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation with respect
to the GHs of a large-energy vertical Lyapunov orbit and a medium-energy Northern Halo
orbit around L1 of the CR3BP (blue) to their dynamical substitute in the CR3BP-GH (black),
together with the current LP.
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Figure 4.54: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation with respect
to the GHs of a small-energy planar and vertical Lyapunov orbit around L2 of the CR3BP (blue)
to their dynamical substitute in the CR3BP-GH (black), together with the current LP.

Figure 4.55: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical summary of
the dynamical substitutes in the CR3BP-GH obtained by continuation of the sampled POs of
the families of LPOs around L1 of the CR3BP.
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substitutes of large orbits increase in size coherently. The latter behavior is exhibited

by all the dynamical substitutes of the vertical Lyapunov orbits, whose inclination de-

creases as long as their size increases.

After performing this sampling of NCs, the related dynamical substitutes are col-

lected together in Fig.4.55 for L1 (NCs of the LPOs around L2 produce similar results).

This graphical analysis is necessary because, due to the continuation curves’ folding,

the same PO in the CR3BP can generate different dynamical substitutes, with the

same energy gap with respect to the LP, in the CR3BP-GH. Therefore, it is decided to

organize the dynamical substitutes by considering their shape. This gives a new clas-

sification of the POs in the Mars-Phobos CR3BP-GH, which are grouped

in the following four families:

• Family A. POs generated from planar Lyapunov at low-energy, planar Lyapunov,

Northern Halo and Southern Halo at medium-energy, Southern Halo at high-

energy. They start like elliptic orbits mostly vertical, they end like tilted Southern

Halo.

• Family B. POs generated from vertical Lyapunov at low-energy. They start like

elliptic orbits mostly planar, they end like tilted planar Lyapunov.

• Family C. POs generated from planar Lyapunov, Northern Halo and Southern

Halo at medium-energy, Northern Halo at high-energy. They start like large

elliptic orbits mostly vertical, they end like tilted Northern Halo.

• Family D. POs generated from planar Lyapunov, and Southern Halo at medium-

energy, planar Lyapunov at high-energy. They look like tilted vertical Lyapunov

(which are the axial orbits of the CR3BP), but actually they are open orbits.

4.2.2.2.2 NC with respect to the energy in the CR3BP-GH

After obtaining the sampling of dynamical substitutes with the NC between the two

dynamics, the new families of periodic LPOs are now better investigated. To refine

the families of POs visually identified in Fig.4.55, one PO is taken for each of them as

starting solution for a continuation with respect to the differential Jacobi integral ∆c,

used as a fixed constraint in the previous scheme of Eq.4.39, in the final CR3BP-GH

for σGH = 1. This type of NC is pretty classic, and is already addressed in section

B.5.3.2.1. Thus, the DC scheme is the same of Eq.4.39, just with a different continuation

parameter. Since the latter is now explicit and limited to the iso-energetic constraint

of the initial condition, and not dependent on the flow, the related column of the

Jacobian is just filled in the first component. Furthermore, the STM is uncoupled and

there is no need to use an augmented variational system. The starting solution of the

NC is taken as the initial condition on the iso-energetic Poincaré map of the smallest-

energy dynamical substitute belonging to the chosen family. The NC is stopped for a

differential energy ∆c such that the related PO intersects Phobos. The continuation
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curves for the four families around L1 are shown in FigD.25: clearly, as a difference

from the first NC scheme, the continuation curve contains all physically meaningful

POs in the Mars-Phobos CR3BP-GH.

As mentioned in section 4.2.2.2, this approach could have been used actually directly

from the linear solution found at small-energy for the families A and B in section 4.2.2.1.

Thus the alternative procedure by-passes the first NC, and requires only this second

scheme to find a continuous curve of physically meaningful POs, on the contrary of the

combination of the two schemes. However, the alternative procedure allows to compute

the families A and B, but not C and D, which would require a bifurcation analysis.

In this sense, continuing now one sampled PO of these families, it is found that the

families C and D are actually two branches of the same global family, that is named

CD, since they are connected through an ancestor orbit at the lowest energy as we see

in Fig.4.60-4.58. This is proved by Fig.4.56. The curiosity would be to find the origin

of this ancestor orbit. The immediate idea is to do a reverse continuation with respect

to the GHs, with the same NC scheme of Eq.4.39, from σGH = 1 to the original CR3BP

for σGH = 0. But as we see in Fig.4.57, the continuation curve arrives quite close to

the original dynamics (where the solution appears similar to a Northern Halo), but

then revolves back in a closed loop. Thus, the ancestor orbit of the family CD in the

CR3BP-GH does not have a dynamical substitute in the original CR3BP at the same

energy ∆c.

The only possibility to track the origin of the ancestor orbit of the CD family is

therefore to perform a bifurcation analysis in the CR3BP-GH. The ancestor orbit could

be a bifurcation point, because its set of stability indexes suggests the presence of

an additional direct parabolic manifold. Furthermore, the determinant of the DC’s

Jacobian is null at the ancestor orbit, as shown in Fig.4.62. The approach to conduct

a bifurcation analysis is described in section B.5.3.2.1. However, a bifurcation analysis

is not performed because the profile of the stability indexes of the three families in

Fig.4.64 does not suggest that the family CD bifurcates from neither A nor B, even

with a bridge of POs at high-energy intersecting Phobos’ figure. The first singular

points of these families appear after Phobos’ intersection and are related to an inverse

parabolic manifold. Therefore it appears that the family CD is continuous but isolated

from the EP, a result strictly given by the high level of nonlinear perturbation of

the inhomogeneous gravity field of Phobos, and possible under the framework of the

augmented homotopic dynamical system h in the state-space [x;σGH ] of Eq.4.29.

In summary, the strategy of two continuation schemes in cascade allowed instead to

compute easily the family CD, where the first scheme finds a PO “seed” to feed the

second. This is a better approach, because it exploits the fact that we already have

information of the full orbit structure in a closed dynamics, the basic CR3BP.
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Figure 4.56: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile of the two branches of the family CD of POs around L1 in the CR3BP-GH.
Continuation with respect to the energy from the ancestor orbit (σ = 0) to the intersection with
Phobos’ surface (σ = 1). Magnification around the low-energy interval showing the connection
between the two branches through the ancestor orbit.

Figure 4.57: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile. Inverse continuation with respect to the GHs’ magnitude from CR3BP-GH
(σ = 0) to CR3BP (σ = 1). Continuation of the ancestor orbit of the family CD of the CR3BP-
GH around L1, showing that this orbit does not have a dynamical substitute in the original
CR3BP.
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Figure 4.58: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
of the new A (red), B (green), C (magenta), and D (cyan) families of POs around each LP in
the CR3BP-GH. The orbits are obtained by continuation with respect to the energy. Shape
harmonics series expansion for Phobos’ surface.

Figure 4.59: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization of
the families of POs around each LP in the CR3BP-GH. Projections on the coordinates planes.
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Figure 4.60: Periodic LPOs in the Mars-Phobos CR3BP-GH. On the left, behavior of
the A and B families around L1 at low energy. On the right, behavior of the C and D families
around L1 showing their actual connection through the ancestor orbit (in blue) as two branches
of a single CD family.

Figure 4.61: Periodic LPOs in the Mars-Phobos CR3BP-GH. Stability properties (the
three stability indexes, with the phase of the center’s eigenvalue) of the two branches of the
family CD of POs around L1 in the CR3BP-GH. Continuation with respect to the energy from
the ancestor orbit (σ = 0) to the intersection with Phobos’ surface (σ = 1). Magnification
around the low-energy interval showing the connection between the two branches through the
ancestor orbit.

Figure 4.62: Periodic LPOs in the Mars-Phobos CR3BP-GH. Determinant of the DC’s
Jacobian of the NC with respect to the energy in the CR3BP-GH, from the EP (σ = 0) to the
intersection with Phobos’ surface (σ = 1), for the families of POs around L1 and L2 in the
CR3BP-GH.
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Figure 4.63: Periodic LPOs in the Mars-Phobos CR3BP-GH. Characteristic curves in
the energy-period plane of the families of POs around L1 and L2 in the CR3BP-GH. Magnifica-
tion of the interval at low-energy where the families A’s characteristic curve is not monotonic.
Energy is defined as the differential Jacobi integral with respect to the LP.

Figure 4.64: Periodic LPOs in the Mars-Phobos CR3BP-GH. Characteristic curves of
the stability indexes of the two non-unit couples of eigenvalues of the monodromy matrix of the
families of POs around L1 and L2 in the CR3BP-GH, parameterized by the differential Jacobi
integral with respect to the LP.

4.2.2.3 The Periodic LPOs of the Mars-Phobos CR3BP-GH

The application of the two NC schemes presented in sections 4.2.2.2.1-4.2.2.2.2 allowed

to obtain the dynamical substitutes of the periodic LPOs in the Mars-Phobos CR3BP-

GH. These LPOs are showcased in Fig.4.58-4.59, as well as separately for each family

of each LP in Fig.D.26-D.33. They are constituted by two 1-parameter families A and

B originating from each LP, and by a detached 1-parameter family CD, made by two

branches C and D connected by a common orbit at the lowest energy.

The low-energy orbits of the families A and B are highly distorted from their ancestor

Lyapunov orbits in the CR3BP as we see in Fig.4.51 and Fig.4.60, due to the highly

inhomogeneous gravity field of Phobos. Besides, the force field at the LP is no longer

symmetric and highly tilted from the one of the classical CR3BP, and the structure of

the saddle × center × center manifold is no longer aligned with the coordinate axes
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and planes. The orientation of the centers’ manifold is reported in section 4.2.2.1.

The effect of the complex gravity field of Phobos is mostly local and is therefore

averaged for larger orbits, that resemble the shape of the LPOs of the classical CR3BP.

The shape of larger orbits of the family A is similar to the Southern Halo, B to the

planar Lyapunov, C to the Northern Halo, and D to the vertical Lyapunov. However,

the tilt is still maintained, and this represents the most significant effect of the addition

of the GHs of the second massive body. This information can be evaluated just from

the eigenspace at the LP.

In summary, the natural LPOs that exist under the gravity field of Phobos are

very different from the classical solution known in-depth under the framework of a

CR3BP approximation. Thus, considering the CR3BP-GH at the very first iteration of

the mission design is necessary to assess the performance against the possible mission

requirements (for example surface coverage and ground-track) of feasible orbits, in

terms of fuel consumption for station-keeping. This is why it became necessary to

rename the families of the LPOs of Phobos.

The properties of these new families of LPOs are presented as a function of the

family’s parameter, which is the energy, to provide their characteristic curves. Fig.4.63

presents the period of the LPOs, which is close to the natural one of the LP. The

behavior of the characteristic curve is also coherent with the one of the family of

the CR3BP that looks similar to the related larger orbits in the CR3BP-GH, but a

difference arises for the family A at low-energy, which is not monotonic. Fig.D.34

gives the information of minimum distance from Phobos. Fig.D.26-D.29 for L1, and

Fig.D.30-D.33 for L2, provide the stability indexes of the monodromy matrices for each

family of the new LPOs, which is finally summarized in Fig.4.64. This Floquet stability

analysis shows that all the orbits are unstable. In particular, the families A and C,

just like the Halo orbits, have their maximum stability index sλ that rapidly decreases

with increasing size of the orbit. The maximum stability index for the family B is less

sensitive to the size. Finally, the branch D is characterized by a saddle × saddle ×
center manifold, therefore no QPOs exist around these POs.

4.2.2.4 Convergence Analysis of the LPOs in the CR3BP-GH

The computational demand to compute the dynamical substitutes of the LPOs in the

CR3BP-GH rapidly increases when increasing the order of the GHs series. This is the

aim of the guidance subsystem, that provides a reference signal that follows the natural

dynamics, to be tracked by the spacecraft with less demand on the control subsystem.

This is one of the trade-offs of the GNC system. Hence, it is significant to investigate

the convergence of the NC procedure used to compute the dynamical substitutes of the

periodic LPOs, as a function of the degree and order of the Mars-Phobos CR3BP-GH,

as was done in section 3.3.6.3 for the LPs. One sample medium-energy orbit of the

family A has been chosen to evaluate the cost of the different truncated models.
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Figure 4.65: Periodic LPOs in the Mars-Phobos CR3BP-GH. Convergence analysis of
the different dynamical substitutes of a medium-energy planar Lyapunov orbit around L1 of
the CR3BP (blue), obtained incrementally increasing the degree and order of the harmonics
included in the partial CR3BP-GH (red for degree 2, purple for degree 3, green for degree 4,
with color darkened by increasing order, and final orbit at fourth degree and order in black).
Crosses represent the current EP.

Figure 4.66: Periodic LPOs in the Mars-Phobos CR3BP-GH. Convergence analysis
of the different dynamical substitutes in the partial CR3BP-GH of a medium-energy planar
Lyapunov orbit around L1 of the CR3BP. Percentage deviation of the initial conditions, on
the chosen Poincaré map, and period. Dotted lines refer to increasing zonal harmonics degree
starting from J2.
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Figure 4.67: Periodic LPOs in the Mars-Phobos CR3BP-GH. Convergence analysis
of the different dynamical substitutes in the partial CR3BP-GH of a medium-energy planar
Lyapunov orbit around L1 of the CR3BP. Simulation of the flow, from the initial condition of
these solutions, in the full CR3BP-GH, and computation of the resulting deviation from their
reference signal. Error of the position’s magnitude after a fixed propagation time (t = π/10),
and time of permanence (as number of periods) within a fixed error of position’s magnitude
(10m). Dotted lines refer to increasing zonal harmonics degree starting from J2.

The related ancestor orbit in the CR3BP has been used as starting solution in a bun-

dle of NCs, that provided the set of dynamical substitutes in a model with increasingly

added GHs. Fig.4.65 shows the complete set of dynamical substitutes. It is clearly

evident that the differences between the POs are still observable even at the last ad-

dition of a GH. This is further evident in Fig.4.66 where the static characteristics are

plotted, such as the components of the initial condition. The period instead is less sen-

sitive. Regarding the dynamical characteristics, Fig.4.68 shows that good convergence

is achieved for the stable and unstable eigenvalues of the monodromy matrix, but not

for the eigenvalues of the center manifold. This is confirmed also by Fig.4.69, where

the eigenvectors of the latter manifold seems to have not been achieved a satisfying

convergence. The IMs of the LPOs are instead reliable.

Compared to the case of the LPs in section 3.3.6.3, the outcome is that a worse

convergence of 5% is achieved for both static and dynamical properties of the POs, in

particular regarding the center manifold longitudinal to the PO. To have an idea of the

price to pay, the set of dynamical substitutes found at each different degree and order

have been simulated in the complete CR3BP-GH up to degree and order 4. This is

presented in Fig.4.67. Considering the data at degree and order 3, station-keeping at

a frequency of more than ten times per LPO’s period (which would be about 20min)

is required to track the reference signal within 10m.

4.2.3 2D-QPOs in the Mars-Phobos CR3BP-GH

In this section the computation of the families of dynamical substitutes of the Lissajous

orbits, with the effect of the inhomogeneous gravity field of the secondary body, is

addressed with the methodology of DST to identify invariant motions of section B.6.3.
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Figure 4.68: Periodic LPOs in the Mars-Phobos CR3BP-GH. Convergence analysis of
the different dynamical substitutes in the partial CR3BP-GH of a medium-energy planar Lya-
punov orbit around L1 of the CR3BP. Percentage deviation of the eigenvalues of the derivative
of the chosen Poincaré map. Dotted lines refer to increasing zonal harmonics degree starting
from J2.

Figure 4.69: Periodic LPOs in the Mars-Phobos CR3BP-GH. Convergence analysis of
the different dynamical substitutes in the partial CR3BP-GH of a medium-energy planar Lya-
punov orbit around L1 of the CR3BP. Percentage deviation of the eigenvectors of the derivative
of the chosen Poincaré map. Dotted lines refer to increasing zonal harmonics degree starting
from J2.

The computation of the 2D-QPO around the backbone PO is provided by semi-

analytical and numerical techniques. Since the periodic LPOs of the CR3BP-GH have

been computed numerically, this would be the approach followed also for the Lissajous

orbits around them. The numerical techniques for the computation of 2D-QPOs have

been presented in section B.6.3, and they exploit their reduction in DST to an invariant

closed curve of a suitable first-return map. Therefore, the approach is to use the

standard techniques available in the literature, and they will be applied in this section

to the periodic LPOs of the families A, B, and C computed in section 4.2.2, and for

the vectorfield of the Mars-Phobos CR3BP-GH.

4.2.3.1 Computation of the Dynamical Substitutes of the Quasi-periodic

LPOs in the Mars-Phobos CR3BP-GH

The Lissajous orbits around the periodic LPOs with central part of the CR3BP-GH are

computed with the LMS fitting methodology presented throughout section B.6.3, that
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Figure 4.70: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Invariant curve’s
projections on the Poincaré map’s coordinate planes of the linear quasi-periodic solution around
a medium-energy PO of the family A around L1 of the CR3BP-GH (at γ = 4.2 · 10−8, which is
10−3 of the maximum distance of the backbone PO from L1). Coordinates frame in normalized
units and centered on the initial condition of the PO on the chosen Poincaré map.

is based on the description of their invariant curve by Fourier analysis. In particular,

it has been chosen to follow the approach used to compute the initial condition of the

associated POs, thus the invariant curve is expressed on a Poincaré map, whose surface

of section is g(x) = y − yLP .

The choice of the number of Fourier coefficients 2NC + 1 and sample points NS , to

discretize the invariant curve, depends on its morphology. A fixed ratio of 80% between

the two has been used for all the orbits computed, and from 40 to 80 coefficients have

been required to describe the invariant object.

Regarding the choice of the invariant curve’s parametrization, in this thesis the phys-

ical parameter of [120] has been used, which is the polar anomaly ϑ between two curve’s

components. The choice of the latter ones is undertaken plotting the initial guess that

will be used by the numerical scheme, which is the linear solution around the invariant

point of the PO on the map of Eq.B.81. An example of the different projections given

by the initial guess is provided in Fig.4.70.

Finally, the procedure used is the one discussed in section B.6.3.3, and the DC

scheme used to compute a 2D-QPO with small-amplitude around the PO is presented

in Eq.B.108. An applicative example of the procedure is given in Fig.4.71 and Fig.4.73.

This is done for a sample of POs along each family of both LPs of the CR3BP-GH.

As explained in section B.6.3.3.7, the DC scheme is embedded in a NC with respect

to the width w of the invariant curve, to provide all the family of iso-energetic invari-

ant tori around the sampled PO. A related applicative example of the NC is given in

Fig.D.35-4.72. These tori are further sampled along their width to discretize the fam-

ily of continuous 2-parameter 2D-QPOs of the Mars-Phobos CR3BP-GH. For each of

them, the QPO is simulated by iterative mappings as expressed in section B.6.4, deriv-

ing its rotation number’s profile. A related example is given in Fig.4.75-4.76. Using
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Figure 4.71: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Procedure of the
DC scheme for computing a QPO around a PO of a NL dynamical system, as described in section
B.6.3.3. The invariant curve on the Poincaré map around the initial condition of the backbone
PO (q0) is described as a Fourier series expansion (qF ) function of a chosen parametrization
variable (θ, in this case the polar anomaly around the PO on a chosen couple of coordinates).
An initial guess for the Fourier coefficients is used, and a cluster of initial conditions (q0,
function of an independent set of parameters θ0) is obtained, to describe the initial curve. The
multiple initial conditions are propagated in the NL dynamics to find their first-return condition
on the Poincaré map (qf ): this cluster of points describes the first-return curve. Being the
parametrization invertible, the related set of parameters (θf ) are obtained. The Fourier series
expansion is evaluated with this new set of parametrization variables: the related cluster of
points is the projection of the first-return curve on the initial curve. The DC algorithm drives
the two curves to correspond with each other, which is to erase the error between first-return
and projected curve. When this happens, the Fourier series expansion effectively describes an
invariant curve, and therefore a QPO. The graphs show two Poincaré map coordinate planes:
the one whose coordinates provide the parametrization variable, and the one on the remaining
position coordinates x-z (y is fixed by the chosen Poincaré map definition). Case of a medium-
width QPO around a medium-energy PO of the family A around L1 of the CR3BP-GH.

Figure 4.72: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Family of in-
variant curves projected on a Poincaré map
coordinate plane. Continuation of QPOs
around a medium-energy PO of the family A
around L1 of the CR3BP-GH.

Figure 4.73: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Final itera-
tion of the DC of a large-width QPO around a
medium-energy PO of the family A around L1

of the CR3BP-GH, showing the convergence
of the first-return curve towards the projected
curve on a coordinate plane.
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Figure 4.74: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. DC of a large-
width QPO around a medium-energy PO of
the family A around L1 of the CR3BP-GH.
Time of first-return (difference with respect
to the backbone PO’s period) of the invariant
curve.

Figure 4.75: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Invariant curve’ parameter profile along
time, and related rotation number’s profile
along time. Integration up to the time (in
units of the backbone PO’s period) of the first
transversal revolution of the 2-torus.

Figure 4.76: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Trajectory integrated up to the time of
the first transversal revolution of the 2-torus.

Figure 4.77: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Surface of motion of the 2-torus.

this, the simulation is performed up to the period of the first transversal revolution.

This allows one to represent the QPO as a closed surface of motion in Fig.4.77-4.81.

An example of the family of 2-tori A and B is shown in Fig.4.82, and in Fig.4.83

for the family C. The related invariant curves are represented in Fig.D.36-D.37 for L1,

and Fig.D.38-D.38 for L2. Similarly to the CR3BP for the two Lyapunov families, the

2-tori of the families A and B of POs are connected to each other because they are

part of the same 4D center manifold originating from the EP, as shown in Fig.4.82.

Their invariant curves move from one PO to the iso-energetic PO of the other fam-
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Figure 4.78: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Surface of motion of the 2-torus parame-
terized by the transversal invariant curves of
the stroboscopic maps around the backbone
PO. Initial invariant curve displayed.

Figure 4.79: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Surface of motion of the 2-torus parame-
terized by the longitudinal invariant curves of
the initial Poincaré map around the backbone
PO. Initial invariant curve displayed.

Figure 4.80: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Surface of motion of the 2-torus param-
eterized by the transversal invariant curves
of the tangential Poincaré maps around the
backbone PO. Initial invariant curve dis-
played.

Figure 4.81: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Simulation of
a large-width QPO around a medium-energy
PO of the family A around L1 of the CR3BP-
GH. Surface of motion of the 2-torus param-
eterized by the transversal invariant curves
of the tangential Poincaré maps around the
backbone PO. Initial invariant curve and
backbone PO (with initial conditions and ve-
locity vectors) displayed.
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ily, as shown in Fig.4.82,D.36. Thus, they constitute a single family AB of 2D-QPOs,

with two branches A and B. However, as we see in Fig.D.36-D.40, it is not possible to

compute the complete 2-parameter family with a single NC from one family of POs,

because this process does not provide invariant curves with the requirements needed

by the parametrization used. The invariant curves transit from one center point to

another on the map, and the NC along the transversal families of QPOs irremediably

stops, as the DC fails to converge due to a deep twisting of the invariant curve. This

is discussed in section B.6.3.3, and it is the principal drawback of the invariant curve’s

parametrization choice of [120], and could not be avoided even by a better choice of

the Poincaré section16, due to the lack of symmetries of the CR3BP-GH as a difference

from the classical CR3BP [115, 52].

As discussed in section B.6.3.3, alternative numerical schemes have been developed

in the literature. In particular, with the aim of investigating the possible application

of an universal parametrization, a DC scheme for computing invariant curves parame-

terized by the normalized arclength, has been developed in section B.6.3.3. However,

despite the analytical part seems corrects, the DC scheme cannot be embedded in a NC

because its Jacobian is singular at each root. In conclusion, since the missing subset

of QPOs is not wide, no further implementations have been tested. This because, for

the application of the quasi-periodic LPOs around Phobos, a sampling along the width

for the post-processing is anyway needed, as said before. For this purpose, due to the

uncontrollable stopping condition of the NC, the width of the transversal families of

QPOs is normalized from 0 to 1, as a ratio with respect to its maximum value, achiev-

able by the NC. Thus, the transversal parameter of the AB family ranges from 0 to

2, where the first half is related to the branch A, and the second corresponds to the

branch B, whose parametrization is flipped from 2 to 1.

4.2.3.2 The Quasi-periodic LPOs of the Mars-Phobos CR3BP-GH

The 2D-QPOs in the Mars-Phobos CR3BP-GH have been derived with the choices of

section 4.2.3.1. A summarizing example of the related 2-parameter families AB and C,

around each LP, is showcased in Fig.4.84 and Fig.4.82-4.83.

The simulation of a sample of these 2D-QPOs, for each family, allows to display

the period of the first transversal revolution in Fig.D.41-D.44. It is evident how the

prediction of the rotation number of the linear solution is mostly appropriate for small-

width invariant curves. It is worth highlighting that the time to fill the surface of the

torus is very high (nearby 100 longitudinal revolutions) for small-energy LPOs, while

it becomes very fast for large orbits. For these 2D-QPOs, cases of resonances with high

denominator showed up, and these LPOs are actually POs with period higher than the

Phobos’ revolution.

16The plane z = zLP could have been more distant from the twist of the torus, but this has not been
proved.
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Figure 4.82: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Family of QPOs
that connects the two medium iso-energetic POs of the A and B families around L1 of the
CR3BP-GH. Related two backbones POs displayed in black.

Figure 4.83: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Family of QPOs
around a medium-energy PO of the C family around L1 of the CR3BP-GH. Related backbone
PO displayed.
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Figure 4.84: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visual-
ization of 2-tori in the CR3BP-GH of different size and width around the LPs. Summarizing
examples: three medium-size QPOs of family AB (red and green with small-width, orange with
high-width) and two high-width QPOs of family C (of small and large-size). Shape harmonics
series expansion for Phobos’ surface.

To perform the stability analysis for the QPOs, the method of [120] is modified in

section B.6.5 in order to provide a 1-1 mapping of the invariant curve in the Fourier

coefficients space. This algorithm was tested by computing the quasi-periodic LPOs

in the CR3BP-GH, as was done in section 4.2.3.1, and with the same invariant curve’s

parametrization. The application was successful and provided the same exact outcomes

(same residual errors on the NC steps) of the first method employed before. However,

it is not recommendable to use this method for the computation of the QPOs, because

the generation of its map requires the computation of the full inverse of a large-scale

left pseudo-inverse matrix with dimension 2NC + 1, requiring far more computational

time than the previous one. However it provides, as a byproduct, a monodromy-like

matrix Π for the stability analysis of the QPO. Thus this method is used afterwards,

when the solution has already been derived with the first technique, to singly compute

the map, and the related Π, for one 2D-QPO.

As discussed in section B.6.5, the eigenvalues for an invariant curve are organized

in circles on the complex plane, and the Floquet linear stability is therefore given by

their magnitude. An example of the set of eigenvalues is provided in Fig.4.85. It is

evident the effect of the spurious eigenvalues introduced in section B.6.5. The stability

properties of the families of 2D-QPOs are identical to the ones of the family of their

backbone POs, which is a saddle × center × center structure of their manifolds.

The related eigenvectors are defined in the space of the Fourier coefficients. As

discussed in section B.6.5, the problem of the spurious eigenvalues requires to identify

the most accurate, amongst all multiple eigenvectors, to represent the related manifold.

The selection is conducted with the norm-(1) defined in Eq.B.125. An example of the

selection process is presented in Fig.4.86.
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Figure 4.85: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Stability analysis.
Set of eigenvalues of the invariant curve of the Poincaré map. Case of a high-width - medium-
energy QPO of the family A around L1 of the CR3BP-GH. Each of the subfigures specifically
magnifies the area of the unstable, central and stable manifolds.

Figure 4.86: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Norm-(1) of
the set of eigenvectors of the invariant curve
of the Poincaré map. Case of a high-width -
medium-energy QPO of the family A around
L1 of the CR3BP-GH. Dotted lines mark sta-
ble, central and unstable subset of the to-
tal eigenspace, where the eigenvectors are
ordered by the related eigenvalue’s magni-
tude. Point highlighted identifies the eigen-
value with the minimum norm-(1) of the un-
stable subset, that will be used for the com-
putation of the unstable IMs.

Figure 4.87: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Norm-(HF),
in logarithmic scale, of the set of eigenvectors
of the invariant curve of the Poincaré map.
Case of a high-width - medium-energy QPO
of the family A around L1 of the CR3BP-GH.
Dotted lines mark stable, central and unsta-
ble subset of the total eigenspace, where the
eigenvectors are ordered by the related eigen-
value’s magnitude. Point highlighted identi-
fies the eigenvalue with the minimum norm-
(1) of the unstable subset, that will be used
for the computation of the unstable IMs.
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4.2.4 IMs of the LPOs in the Mars-Phobos CR3BP-GH

All the families of periodic and quasi-periodic LPOs of the Mars-Phobos CR3BP-GH

are unstable, therefore they are associated with stable and unstable IMs to reach and

depart them. The family D of POs is characterized by a saddle × saddle × center

manifold, but the second unstable Floquet multiplier is quite small (still about 2), and

so the time of flight to travel around these additional four branches of hyperbolic IMs

is significantly high. Therefore, the computation of these IMs is not considered in this

thesis.

The computation of IMs’ tubes has been addressed for a general dynamical system

in section B.8 for each type of invariant motion, based on the dimension of its phase-

space. Following this, this section presents the IMs of the periodic (families A, B,

CD) and quasi-periodic (families AB, C) LPOs, computed in sections 4.2.2-4.2.3, of the

Mars-Phobos CR3BP-GH.

4.2.4.1 Computation of the IMs of the LPOs in the Mars-Phobos CR3BP-

GH

The computation and the analysis of the stable and unstable IM of the families of POs

and 2D-QPOs, that do not intersect Phobos, run parallel to the one carried out in

section 4.1.5 for the IMs in the CR3BP. Only the computation of the inside branch is

addressed in this section, and the globalization of the manifold is propagated in the

CR3BP-GH up to the intersection with Phobos’ surface. Coherently with the consid-

eration of the inhomogeneous gravity field of the moon in the orbital dynamics, the

surface of Phobos is now modeled with the high-order shape harmonics of section 3.2,

that constitutes a kind of complex Poincaré section’s constraint. In particular, Eq.3.15

presents the formula for the normal of the surface.

Since the CR3BP-GH does not have any symmetries, the computation of the stable

IM of the LPOs must be carried out specifically, as a difference from section 4.1.5,

where the stable tube was symmetrical to the unstable IM with respect to x-z plane.

The globalization of the stable and unstable IMs has directly intersected Phobos

for all the families of LPOs, for both LPs. Therefore, as done in section 4.1.5.1, the

outcomes are presented on the topographical map of Phobos, parameterized by the

couple of longitude and latitude of the landing/take-off site. The performances at the

touch-down are then filtered by the case of minimum incidence for the unstable IM,

which is a tangential arrival, and by the case of minimum velocity’s total magnitude

for the stable IM, that represents the minimum escape velocity.

IMs of the families of POs. The computation of the IMs of the POs is done exactly

in the same way of the CR3BP, and they are showcased in Fig.4.88.

Fig.4.89-4.90 provide a sample of the analysis for the family A around L1. Fig.D.45-

D.46 provide the landing performances for L1, and Fig.D.47-D.48 provide the ones for
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Figure 4.88: Landing on Phobos through the Invariant Manifold of the L1−2 periodic
LPOs of the Mars-Phobos CR3BP-GH. Trajectories of the inside branch of the IMs from
the families A, B, CD of POs. Phobos real shape.

L2.

Fig.D.49-D.50 provide the take-off performances for L1, and Fig.D.51-D.52 provide

the ones for L2.

Due to the significant difference in the morphology of the families of LPOs, as well as

the consideration of the real inhomogeneous surface of the moon, the outcomes obtained

show considerable changes in the footprint of the IMs on Phobos, with respect to the

one obtained with the POs in the CR3BP. However, the range of touch-down perfor-

mances is still the same, and the considerations are specular to what was discussed in

section 4.1.5.1. In particular, it is still possible to arrive with very low vertical velocity,

and depart with considerable less cost than the 2B ∆v.

IMs of the families of 2D-QPOs. In contrast with what was done in section 4.1.5.1,

where the Lissajous orbits were computed with a semi-analytical approach, the numer-

ical technical developed in section B.6.5 allows to derive the IMs of the whole invariant

object. The related procedure to compute the IMs is addressed in section B.8.3. In

particular, it requires the selection of the most accurate eigenvector for each manifold,

and an example of the procedure is provided in section 4.2.3. The related eigenvec-

tor acts in the Fourier coefficients space, therefore it provides a closed curve of initial

conditions on the Poincaré map, for the globalization of the manifold. This requires

the introduction of a further threshold εC , which is set to be 10−3 of the width of the

invariant curve. An example is given in Fig.4.91. Due to the proximity of Phobos, to

not invalidate the whole tube of IMs for high-width and high-energy orbits, the IMs

are considered valid if the related starting point on the QPO will not intersect Phobos

for a longitudinal revolution of the orbit.
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Figure 4.89: Landing on Phobos through the Invariant Manifold of the L1 family A
of periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: energy
parameter of the family, initial phase along the departing orbits, TOF, and landing velocity
magnitude, angle of incidence, downward vertical velocity. Trajectory that provides the overall
min incidence at the touch-down.

Figure 4.90: Landing on Phobos through the Invariant Manifold of the L1 family A
of periodic LPOs of the Mars-Phobos CR3BP-GH. Direct and inverse relation between
the longitude and latitude of the landing site and the energy parameter of the family, for orbits
that do not intersect Phobos’ real shape.
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Figure 4.91: Landing on Phobos through the Invariant Manifold of the L1 family A
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Poincaré map’s projection on
a coordinate plane. Case of a high-width - medium-energy QPO of the family A around L1 of
the CR3BP-GH. The blue curve is the invariant curve of the QPO, and the black curve is the
related set of initial condition of the inside branch of the unstable IM (for a magnified threshold
εC =1%).

Figure 4.92: Landing on Phobos through the Invariant Manifold of the L1−2 quasi-
periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories of the inside branch of the
IMs from the families AB, C of QPOs. Phobos real shape.
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Figure 4.93: Landing on Phobos through the Invariant Manifold of the L1 family A
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the
min incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: energy and
width parameters of the family, initial longitudinal and transversal phases along the departing
orbit, altitude where the integration is stopped, TOF, and landing velocity magnitude, angle
of incidence, downward vertical velocity. Trajectory that provides the overall min incidence at
the touch-down.

Figure 4.94: Landing on Phobos through the Invariant Manifold of the L1 family A
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Direct and inverse relation
between the longitude and latitude of the landing site and the energy and width parameters of
the family, for orbits that do not intersect Phobos’ real shape.
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The IMs of the families of 2D-QPOs in the CR3BP-GH are computed with this new

approach, and they are represented in Fig.4.92.

Fig.4.93-4.94 provide a sample of the analysis for the family A around L1. Fig.D.53-

D.54 provide the landing performances for L1, and Fig.D.55-D.56 provide the ones for

L2.

Fig.D.57-D.58 provide the take-off performances for L1, and Fig.D.59-D.60 provide

the ones for L2.

The footprints of the IM’s tubes on Phobos obtained are very different from that of

the Lissajous orbits in the CR3BP. However, the range of touch-down performances

is still the same, and the considerations are specular to what was discussed in section

4.1.5.1. In particular, it is still possible to arrive practically horizontal and with verti-

cal velocities less than 0.5m/s, and depart with escape velocities smaller than 4m/s in

an extended region of sites. Furthermore, the large craters and grooves of Phobos are

inside these natural regions, and their distribution appears to follow the boundaries of

the natural IM’s footprints.

In conclusion, this analysis showed that also in the more accurate CR3BP-GH, all

the inside branch of the IMs of the new LPOs in this system intersects Phobos. This

further demonstrates that no homoclinic nor heteroclinic connections of the two LPs

manifolds exist around Phobos.

4.3 LPOs in the Mars-Phobos ER3BP-GH

Following the introduction of section 4.2, the LPOs computed in the intermediate

CR3BP-GH are used as starting solutions to derive in this section their dynamical sub-

stitute in the ER3BP-GH. This model has been derived in section 3.4, to consider the

real elliptic orbit of Phobos around Mars, and represents the more accurate dynamical

system of the relative orbital dynamics around Phobos.

This section presents the methodology used and the results obtained by comput-

ing the dynamical substitutes of the LPOs from the model of Eq.3.37 to the system

described by Eq.3.50. The ER3BP-GH is a time-variant dynamical system that can

be expressed as the sum of its conservative vectorfield (the CR3BP-GH in the Hill’s

frame) plus a forcing term (the elliptic perturbation). It is well-known that the general

solution of such ODEs consists of a homogeneous term, sum of the normal modes of

the conservative part, plus a particular solution, dependent on the kind of forcing term.

The elliptic perturbation on the CR3BP-GH, in Eq.3.50, is a function of ν, and it is

a periodic signal at the orbital frequency of the primaries: the particular solution is a

signal at the same frequency17. This means that the solutions of the elliptic dynamics

in the phase-space have one phase constrained to follow the dynamics of ν(t), which

is appended in the vectorfield and so explicitly retrievable from the integration of the

17In the normalized units of the ER3BP-GH, the forcing pulsation of the LPOs is unity.
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equations of motion of Eq.3.50.

The dynamical substitutes of the LPOs in the Mars-Phobos ER3BP-GH will be

computed with the technique of NC. The general approach used for all the LPOs is

presented in section 4.3.1. The procedure undertaken is differentiated by the phase-

space dimension of the invariant solutions. As the perturbation of Phobos’ eccentricity

is time-variant in the Phobos’ Hill’s frame, the NC of the LPOs of the CR3BP-GH incre-

ments by one their phase-space and produces dynamical substitutes in the ER3BP-GH

that oscillate around the original orbits with a forcing period 2π.

Section 4.2.1 presents the POs of the ER3BP-GH, which consist of the dynamical

substitutes of the LPs, and the resonant POs of the CR3BP-GH. Section 4.2.2 focuses

on the dynamical substitutes of the POs of the CR3BP-GH, and section 4.2.3 focuses

on the dynamical substitutes of the 2D-QPOs of the CR3BP-GH. Finally, in section

4.2.4 the invariant manifolds of these invariant motions are presented.

4.3.1 NC between the Dynamical Models of the CR3BP-GH and the

ER3BP-GH

The vectorfield of the ER3BP-GH of Eq.3.50 is a natural homotopy with respect to the

eccentricity.

ẋ = fER3BPGH (x) = h (x, e)→ φh (t,x, e) (4.40)

The time-dependency that makes the problem non-autonomous is included in all the

terms that depend on the true anomaly, which are all scaled by the eccentricity. In

particular remark that a negative eccentricity produces a system where the flow cor-

responds to the one that is produced by the eccentricity’s absolute value, but with a

shift of π of the initial condition of ν, since ν̇ = ωz(ν).

The dynamical substitutes of the invariant solution of the CR3BP-GH are derived

with a classical numerical procedure, used in-depth in the literature for computing

LPOs in the ER3BP. This is a NC between the circular and the elliptic dynamics,

similar to the one undertaken in section 4.2.2, where the continuation parameter is set

to be the eccentricity, which is implicitly defined in the flow of Eq.4.40 through the

vectorfield.

The addition of the explicit dynamics of the true anomaly in the vectorfield of Eq.3.50

is motivated in section B.1.2.4. This trick is used in time-variant dynamical systems to

retrieve the sensitivity of the flow with respect to the initial time. For this reason, the

additional components of the augmented 7 × 7 Jacobian of the vectorfield are needed,

and they are stated below.
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Furthermore, the sensitivity of the flow of Eq.4.40 with respect to the continuation

parameter is retrieved with the procedure explained in section B.1.2.5. The derivatives

of the vectorfield with respect to the eccentricity are reported below.
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(4.42)

The DC will now require the propagation of the augmented 8D× 8D variational systems

to retrieve the STM.

Φ (t,x0, e) =
[
φf/x0

φf/e
01x6 1

]
↔

Φ̇ (t,x0, e) =


03 I3 03x1 03x1

−Y(ν)−P(ν)+H(ν) −2W(ν)
−Y/ν(ν)q−P/ν(ν)q−2W/ν(ν)q̇+

+fG1/ν(ν)+a/ν(ν)

−Y/e(ν)q−P/e(ν)q−2W/e(ν)q̇+

+fG1/e(ν)+a/e(ν)

01x3 01x3 ωz/ν(ν) ωz/e(ν)
01x3 01x3 0 0

Φ (t,x0, e)

Φ (0,x0, e) = I8

(4.43)

Recall that the sensitivity of the flow with respect to the initial true anomaly can

be retrieved from the general definition of the variational equations for time-variant

systems presented in Eq.B.18, and applied to the ODEs of Eq.A.14, where the time

is set to be ν. This is shown in Eq.4.44, for a specific case where also a stroboscopic

constraint is considered.
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{
tf − t0 = ∆t

δ∆t = 0
→ δtf = δt0 ⇒

δx (t0 + ∆t+ δt0) = Φf (t0 + ∆t, t0, x0) δx (t0 + δt0) +

+ (f (t0 + ∆t, x (t0 + ∆t))− Φf (t0 + ∆t, t0, x0) f (t0, x0)) δt0 =

=
∂φf
∂x0

(t0 + ∆t, t0, x0) δx0 +
Dφf
Dt0

(t0 + ∆t, t0, x0) δt0

(4.44)

This leads to the analytical formula for the sensitivity of the flow of the ER3BP-GH

with respect to the initial true anomaly.

x (ν) =

[
q

q̇

]
→ φf/ν0

(νf , ν0,x) = −φf/x0
(νf , ν0,x) ẋ (ν0) (4.45)

As explained throughout appendix B, in time-variant dynamical systems the proce-

dures of DST are based on the reduction of the continuous dynamics to a stroboscopic

map PT . The following sections will now present the dedicated DC scheme, which is

embedded in the NC with respect of the eccentricity, for each invariant motion.

4.3.2 POs in the Mars-Phobos ER3BP-GH

Since the dynamics of the ER3BP-GH are time-variant, and the eigenvalues of the LPs

of the CR3BP-GH are different from the orbital frequency of Phobos, no physical EPs

exist in this non-pulsating system.

The identification of the dynamical substitutes of the LPs in the Mars-Phobos ER3BP-

GH was performed in the framework of the preliminary analysis of this system in section

3.4.4. Due to the forcing perturbation of the Phobos-Mars pulsating distance, they are

1D POs, elongated along the x-axis of Phobos’ Hill’s frame. These trajectories are

shown in Fig.3.21. Their maximum positions are computed as the EP of the ER3BP-

GH expressed in pulsating units of length and time, at the extreme Phobos’ phases

of perimars and apomars. The periodic LPs of the Mars-Phobos ER3BP-GH oscillate

around their location in the CR3BP-GH with an amplitude of 260m, which is about 6%

of their altitude. This could be significant due to the proximity of the Phobos’ surface

and the time-scale of its orbit for practical applications. The related stability prop-

erties are maintained from their ancestor solutions in the circular system. Thus, the

orbit structure around these LPs in the ER3BP-GH is characterized by a 2-parameters

family of invariant 3-tori and their stable and unstable IMs. These orbits are the focus

of the next sections.
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Figure 4.95: Periodic LPOs in the Mars-
Phobos ER3BP-GH. Continuation with
respect to the eccentricity from CR3BP-GH
(blue) to ER3BP-GH (black) of the syn-
chronous PO of the family D around L1, with
initial Phobos true anomaly fixed at the peri-
center. Projection on the x-y plane. Points
represent the initial conditions on the chosen
Poincaré map, and crosses represent the cur-
rent amplitudes of the oscillation of the LP.

Figure 4.96: Periodic LPOs in the Mars-
Phobos ER3BP-GH. Stability properties
(stability indexes of the three couples of
eigenvalues of the monodromy matrix, with
the phase of the center’s couple) along the NC
with respect to the eccentricity from CR3BP-
GH (σ = 0) to ER3BP-GH (σ = ePhobos) of
the synchronous PO of the family D around
L1, with initial Phobos true anomaly fixed at
the pericenter.

Figure 4.97: Periodic LPOs in the Mars-
Phobos ER3BP-GH. Continuation vari-
ables’ curves profile. Continuation with re-
spect to the eccentricity from CR3BP-GH
(σ = 0) to ER3BP-GH (σ = ePhobos) of the
synchronous PO of the family D around L1,
with initial Phobos true anomaly fixed at the
pericenter.

Figure 4.98: Periodic LPOs in the Mars-
Phobos ER3BP-GH. Graphical visualiza-
tion of the PO of the family D of the ER3BP-
GH around L1 with initial condition of the
Phobos true anomaly at the pericenter.
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Figure 4.99: Periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization of
the PO of the family D of the ER3BP-GH around L1 with initial condition of the Phobos true
anomaly at the pericenter.

Figure 4.100: Periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation with respect
to the eccentricity from CR3BP-GH (blue) to ER3BP-GH (black) of the synchronous PO of
the family D around L1, with initial Phobos true anomaly fixed at the pericenter and at the
apocenter. Projection on the x-y plane. The two orbits obtained are the same. Points represent
the initial conditions on the chosen Poincaré map, and crosses represent the current amplitudes
of the oscillation of the LP.

Figure 4.101: Periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation with respect
to the eccentricity from CR3BP-GH (blue) to ER3BP-GH (black) of the synchronous PO of
the family D around L1, with initial Phobos true anomaly fixed at the quadrature (90◦), at 45◦

and at 135◦. Projection on the x-y plane. Points represent the initial conditions on the chosen
Poincaré map, and crosses represent the current amplitudes of the oscillation of the LP.
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4.3.2.1 Resonant POs in the Mars-Phobos ER3BP-GH

Apart from the dynamical substitutes of the ancestor EPs, isolated POs in the ER3BP-

GH develop when the original PO in the circular case is resonant with ν. From Eq.B.76,

this happens when the natural frequency of the PO is in an integer ratio with the forc-

ing frequency of ν, thus the related phases are coherent and the dynamical substitute

maintains the phase-space’s dimension of the ancestor solution in the circular dynam-

ics. The principal interest is for resonances where the aforementioned integer ratio is

characterized by a low denominator.

Therefore, the characteristic curves in Fig.4.63 of the period of the POs, for the

families of the CR3BP-GH, show that the B and D families around each LP have one

PO with period π, which is the usual overresonance 2:1 of the ER3BP. However, the

synchronous POs of the families B slightly intersect Phobos, therefore the interest is

for the remaining two synchronous POs of the families D. The dynamical substitutes

of these synchronous POs in the ER3BP-GH are POs with period 2π. This gives rise

to two iso-periodic families of POs in the elliptic problem, since the circular problem is

a singular case for the definition of ν0. This means that the continuation, with respect

of the eccentricity, of resonant POs could be started in the circular dynamics assuming

any value of ν0 on the same stroboscopic map, and the resulting dynamical substitute

in the elliptic dynamics will be a different invariant motion. Thus, ν0 on a stroboscopic

map acts as a residual parameter for the family of resonant POs.

Computation of resonant POs. The computation of these POs, with the NC of

Eq.4.40, could be undertaken with the DC scheme for computing PO in a time-variant

system, which is introduced in section B.5.3.2, and presented in Eq.B.72. It makes use

of a stroboscopic map with propagation time 2π. This approach was first undertaken

in [54], to compute dynamical substitutes of POs from CR3BP to ER3BP. The single

shooting was used in [54] to compute only symmetrical dynamical substitutes, start-

ing the continuation only at pericenter or apocenter conditions, and using the classical

Poincaré section y = 0 (syzygy axis). This combination constitutes the strong condi-

tion to ensure symmetrical periodicity. Further works related to the search of POs in

the ER3BP also used NC [121, 122, 123, 124, 125, 126, 127, 128]. A significant research

was recently done in [129], where the authors computed the LPOs in the ER3BP us-

ing the semi-analytical Lindstedt-Poincaré series expansion. Considering instead other

classes of orbits, that for the Mars-Phobos system are not of practical interest or do

not even exist, the computation of these POs in the ER3BP have been undertaken

in [130, 131, 132, 133, 134, 135]. The natural motion in the ER3BP has also been

studied with the tools of Arnold’s diffusion in [136, 137], and in the framework of the

Lagrangian Coherent Structures in [138].

For the asymmetric ER3BP-GH, the numerical approach is considered to compute

the dynamical substitutes of the synchronous POs. In particular, the fundamentals of
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the classical method of [54] are used, but here not two dynamical substitutes for each

synchronous PO, but the curve of initial conditions on the stroboscopic map is required.

In particular, due to the overresonance, one half of this curve could be avoided, since

the initial conditions at ν0 correspond to the flows starting from the other half at ν0−π
after a propagation time of π.

The approach is to use the single shooting of Eq.B.72 in the NC with respect to the

eccentricity, where the sensitivity of the flow with respect to e is retrieved from the

STM of Eq.4.43. In this case, ν0 is kept fixed and chosen by the user, to compute one

dynamical substitute of the family of POs in the ER3BP-GH, as explained previously.

The Jacobian of the DC scheme has resulted to be singular at the solution. Thus, the

linear system at each step is solved using SVD, which is to approximate the smallest

singular value to be zero [139]. This makes the DC to converge at a given step, but

it penalizes the NC of the solution. However, considering also the high propagation

time18, the NC arrives to a solution at the Phobos’ eccentricity whose error on the

objective function’s norm of Eq.B.72 is 3 · 10−8 normalized units. The related posi-

tion error is in the order of cm, which is acceptable for practical applications for two

reasons. First, because navigation errors for interplanetary spacecraft are significantly

higher than this value. And second, because due to the instability of the LPOs, and

the residual modeling errors on the orbital perturbations, these LPOs eventually neces-

sitate frequent station-keeping. This action would naturally include also this tracking

signal’s error since it represents only a small fraction of the control load required. The

effect of this approximated solution could be practically evaluated in the following way.

The computational time of permanence of the LPOs was derived from Fig.4.10 to be

around 3.5 longitudinal revolutions, which are 1.75 orbital periods. The error on the

resonant POs computed in the ER3BP-GH has resulted in a reduction of the com-

putational time of permanence of their tracking signal to about 1.25 orbital periods.

Therefore the reference signal is not too far from following a natural PO, and reliable

for a whole period of the PO.

It is worth to underline that using a multiple shooting approach, in order to reduce

the effect of the propagation of the machine error on this high time span, is not a

solution, since the DC’s Jacobian remains still singular and the approximated solution

along the NC will affect also the continuity condition between subintervals.

Analysis of the results. Fig.4.95-4.99 show the NC of the pericenter orbit, and its

properties, around L1. As explained before, due to the overresonance, pericenter and

apocenter POs are the same, and this is shown in Fig.4.100. Due to the vertically-

18As a difference from the computation of POs in the CR3BP and CR3BP-GH, where a Poincaré
map was used to model the longitudinal revolution, in the ER3BP-GH the stroboscopic map is used.
The related propagation time is equal to the Phobos’ revolution, which is about the double of the
longitudinal revolution of the LPOs. Thus, in this scheme, the effect of the machine error produces
residual errors on the flow that could be estimated to be around the square of the respective error
obtained by the schemes of the circular case.
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Figure 4.102: Periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization
on the x-y plane of the POs of the family D around L1 and L2 in the ER3BP-GH. Continuation
with respect to the initial Phobos true anomaly from pericenter (σ = 0rad) to apocenter
(σ = πrad). Ancestor PO of the family D of the CR3BP-GH displayed in blue for reference.
Points represent the initial conditions on the chosen Poincaré map, and crosses represent the
amplitudes of the oscillation of the LP.

elongated character of the family D, these orbits are better seen on the orbital plane’s

projection. It is evident how the forcing perturbation produces a dynamical substitute

in the ER3BP-GH that oscillates around the ancestor PO in the CR3BP-GH case,

specularly along the x-axis. The magnitude of this oscillation is coherent with the one

of the LP, as it could be seen in Fig.4.95. In particular, the oscillation of the pericen-

ter/apocenter orbit exhibits a maximum amplitude at the sub-Mars point, with respect

to the LP, while at the sub-Phobos point the amplitude is null.

Finally, other resonant POs of the family D around L1 in the ER3BP-GH are com-

puted starting the NC at different ν0 for the initial condition of the ancestor synchronous

PO. Fig.4.101 shows the orbits with ν0 on quadrature π
2 (and 3π

2 ) and intermediate

phases π
4 ,3π

4 (and 5π
4 ,7π

4 ). The oscillation of the PO in quadrature exhibits a maximum

amplitude at the sub-Phobos point, and null at the sub-Mars point. The dynamical

substitutes at the intermediate phases oscillate also along the y-axis. The phase around

the LP and with respect to the x-axis, of the point that exhibits null oscillation’s ampli-

tude with respect to the ancestor orbit, is coherent with the rotation of Phobos around

Mars, starting at the perimars and with double frequency.

However, it is possible to compute just the pericenter PO in the ER3BP-GH,

and then perform a NC of the latter with respect to the initial true anomaly on the

stroboscopic map, at the Phobos’ eccentricity. Fig.4.102-4.104 show the results of this
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Figure 4.103: Periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization
of the POs of the family D around L1 and L2 in the ER3BP-GH.

Figure 4.104: Periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization
of the POs of the family D around L1 and L2 in the ER3BP-GH.
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Figure 4.105: Periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization
of the POs of the family B around L1 and L2 in the ER3BP-GH.

continuation, that yields the two families D of iso-periodic POs of the ER3BP-GHs

around L1 and L2. These POs are large, vertically-elongated, and inclined, similar to

eight-shaped orbits. Due to their shape, attitude and dimension, these POs provide

good coverage of the polar regions of Phobos, without flying too close to the surface of

moon.

Regarding the stability analysis of these POs, [54] provides a detailed description of

the characteristics of the manifold of POs in a non-autonomous system. The STM and

the monodromy matrix are still symplectic, therefore their eigenvalues are present in

couples of reciprocals on the complex plane. But the absence of an integral of motion

does not constrain a couple to be unity. Therefore a different manifold generates, either

a center or a saddle. The stability properties for the families of POs in the Mars-Phobos

ER3BP-GH are shown in Fig.D.61. The pericenter/apocenter orbits have a saddle ×
saddle × center manifold, whereas quadrature orbits have a saddle × saddle × saddle

manifold.

In conclusion, Fig.4.105-D.63 show the iso-periodic families of dynamical substitutes

of the synchronous POs of the families B around L1 and L2. As expected, these orbits

are not exploitable as they slightly intersect (close to a tangential condition) the real

surface of Phobos.

4.3.3 2D-QPOs in the Mars-Phobos ER3BP-GH

Tori with two phases are the dynamical substitutes of the POs of the CR3BP-GH in the

general non-resonant case. In this section, the families of 2D-QPOs in the ER3BP-GH

are derived with the numerical scheme of Eq.B.92, that computes their invariant curve

as presented in section B.6.3.
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4.3.3.1 Effect of the Eccentricity Perturbation on Tracking POs of the

CR3BP-GH

Before computing the LPOs in the elliptic problem, in this section a simple analysis

is conducted to infer what would be the effect of the eccentricity perturbation on the

LPOs computed in the circular problem. This requires one to evaluate the cost of

tracking in the ER3BP-GH the reference signal of the orbits computed by a guidance

based on the CR3BP-GH.

This is done with the formula of the eccentricity perturbation derived in Eq.2.52.

This definition was used in section 2.4 to derive a summarizing figure for the eccen-

tricity perturbation, that was applied to fixed points in the 3B frame. Eq.2.52 is now

evaluated along the reference signal of the POs computed in the CR3BP-GH, which,

as usual, is translated in the Phobos’ Hill’s frame to maintain the same relative state

of the orbit with respect to Phobos. This gives an analytical expression of the control

law required to exactly compensate the eccentricity perturbation and track these or-

bits in the ER3BP-GH. The control acceleration’s profile is then integrated along the

simulation’s time span to obtain the value of the ∆v for one orbital period.

Since the circular dynamics is a singular case for the definition of ν0, different sce-

narios come out by choosing the initial condition of the reference signal in the elliptic

problem. The degrees of freedom are two: the phase along the PO to choose the initial

state for the simulation, and the phase of Phobos to choose the starting epoch. This

could be interesting to see the effect on the choice of ν0 to start the NC with respect

to the eccentricity discussed in sections 4.3.1-4.3.2.1 to compute the LPOs.

This brief analysis is undertaken for two cases of POs. Results are presented in

Fig.4.106 for the synchronous PO of the family D around L1, and in Fig.4.107 for one

generic non-resonant PO of the family A around L1. The control acceleration has re-

sulted to be near the values expected in Fig.2.10. Therefore, the ∆v cost is significantly

high (about 5m/s per orbital period), and this further shows the importance of con-

sidering this perturbation in the dynamical model, used by the guidance subsystem,

to obtain target signals exploitable for practical applications. Finally, the plots high-

light that the effect of the choice of ν0 to trim the reference signal provides differences

in the cost, with respect to the mean value, on the same order of magnitude of the

orbital eccentricity of Phobos. Thus this difference is not significant. For the case

of the synchronous PO, the plot of the ∆v is obviously periodic, and the minimum

value is obtained starting the simulation with the spacecraft on the classical Poincaré

section y = yEP ∧ ẏ > 0 in perimars or apomars. This doubling of the possibilities

is enabled by the overresonance, as explained in section 4.3.2.1. For the case of the

general non-resonant PO, the plot is no longer periodic.
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Figure 4.106: Eccentricity perturbation on periodic LPOs of the Mars-Phobos
CR3BP-GH. Initial perturbation (in relative and absolute units) and total ∆v cost for the
station-keeping during one orbital period of the synchronous PO of the family D of the CR3BP-
GH around L1 in the ER3BP-GH, as a function of the Phobos’ initial true anomaly and the
initial longitudinal phase of the PO (φ0 = 0 on the Poincaré section y = yEP ∧ ẏ > 0).

Figure 4.107: Eccentricity perturbation on periodic LPOs of the Mars-Phobos
CR3BP-GH. Initial perturbation (in relative and absolute units) and total ∆v cost for the
station-keeping during one orbital period of a medium-energy PO of the family A of the CR3BP-
GH around L1 in the ER3BP-GH, as a function of the Phobos’ initial true anomaly and the
initial longitudinal phase of the PO (φ0 = 0 on the Poincaré section y = yEP ∧ ẏ > 0).

4.3.3.2 Computation of the Dynamical Substitutes of the Periodic LPOs

in the Mars-Phobos ER3BP-GH

The DC scheme of Eq.B.108 was used previously to compute families of 2-tori around a

PO in the CR3BP-GH, but the procedure used in section 4.2.3.1 is adapted to consider

the modifications needed for the case of a time-variant system.

The extension of the numerical methodology for the tori of autonomous systems to

the case of the non-autonomous systems, is addressed in [140], where the dynamical

substitutes in the ER3BP of the periodic LPOs of the CR3BP are computed. In this

thesis, the original method of [120] and Eq.B.108 are used to compute the 2D-QPOs

of the ER3BP-GH, extending its validity to non-autonomous cases. There are three

significant differences to be considered. First, the invariant curves are now defined on

a stroboscopic map, with the period fixed to the one of the original PO in the circular

dynamics. Second, as discussed in sections B.6.1 and B.6.3.2, the invariant curve’s

parameter is fixed to be ν on the stroboscopic map, because this is a constrained phase

by the time-variant eccentricity perturbation. This is the paramount difference of the

methodology from the case of the 2-tori of the CR3BP-GH computed in section 4.2.3.1.

In Eq.B.92, the value of the parameter at the first-return on the map is now a state’s

component. Therefore, the inverse parametrization is explicit and the value of ν after
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one longitudinal revolution is directly retrievable by integration of the equations of

motion of Eq.3.50. The third difference of the DC scheme is that the adoption of a

stroboscopic map does not lock the longitudinally phase like the Poincaré section does.

Therefore, the related phase’s indeterminancy must be tackled as explained in section

B.6.3.3.3: the choice used is to fix the mean value of the y-component of the invariant

curve to be null. The transversal phase is not undetermined because the reference for

ν is the pericenter.

It is worth to highlight that the Jacobian of the DC of Eq.B.108 massively simplifies

for the case of a time-variant system, due to the definition of T (see section B.6.3.3.1).

This yields the following simplification to be implemented in Eq.B.108.

dθf
dc

=
dθ

dx

(
φf

(
T,CF (c, θ0)

)) dφf

dx0

(
T,CF (c, θ0)

) [ ∂CF

∂c (c, θ0)
∂θ0
∂c

]
=

= T
(
φf

(
T,CF (c, θ0)

))
P
(
T,CF (c, θ0)

) [ E (θ0)

01x6(2NC+1)

]
=

=
[

01x6 Φν/ν0

(
φf

(
T,CF (c, θ0)

)) ] [ E (θ0)

01x6(2NC+1)

]
= 01x6(2NC+1)

(4.46)

NC with respect to the eccentricity. For the case of the ER3BP-GH, the stroboscopic

map defined above is characterized by an isolated invariant curve, as a difference from

the 2-tori of the CR3BP-GH that are embedded in a continuous 1-parameter family on

an iso-energetic Poincaré or stroboscopic map. Thus, the adoption of a sizing param-

eter (see section B.6.3.3.4) is not necessary, because its role is played by the specific

value of the eccentricity. The new DC scheme is embedded in the NC with respect

to the eccentricity of section 4.3.1, where the initial solution at e = 0 is the invariant

point on the chosen map of the PO itself, which is a singular case of invariant curve.

An example of the continuation of the invariant curve up to the eccentricity of Phobos

is shown in Fig.4.109.

The NC of invariant curves with respect to the eccentricity, to find the quasi-

periodic dynamical substitute of a PO, has resulted to be much faster than the NC

with respect to the GHs. A sample of the procedure is shown in Fig.4.108-D.65. The

resulting QPO is then simulated to describe the surface of motion of the full invariant

object (see section B.6.4), and this is presented in Fig.4.111-4.115 for the sample case.

In particular, the simulation starts at the perimars, and Fig.4.110 shows the related ro-

tation number’s profile along time, which corresponds to the simple discrete dynamical

system that describes ν every stroboscopic revolution. Due to the fact that the longi-

tudinal motion of the LPOs is close to the 2:1 overresonance with the orbital motion of

Phobos, it makes more sense to consider for the simulations the second-return strobo-

scopic map for the LPOs of the ER3BP-GH. Thus, Fig.4.110 and Fig.4.111-4.115 show

the rotation number’s profile and the surface of motion sampled at double frequency.
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Figure 4.108: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Procedure of
the DC scheme for computing the natural 2D-QPO substitute in the ER3BP-GH of a PO
in the CR3BP-GH. The invariant curve on the stroboscopic map around the initial condition
of the backbone PO (q0) is described as a Fourier series expansion (qF ) function of a forced
parametrization variable (ν, the Phobos true anomaly around Mars). An initial guess for the
Fourier coefficients is used (which at the very beginning of the continuation, is just the PO
itself, therefore a singular invariant circle coincident to the PO’s initial condition point), and a
cluster of initial conditions (q0, function of the independent set of parameters ν0) is obtained,
to describe the initial curve. The multiple initial conditions are propagated in the NL dynamics
to find their return condition on the stroboscopic map (qf ): this cluster of points describes
the return curve. Being the parametrization explicit, the related set of parameters (νf ) are
obtained. The Fourier series expansion is evaluated with these new set of parametrization
variables: the related cluster of points is the projection of the return curve on the initial curve.
The aim of the DC scheme is to drive the two curves to correspond with each other, which is
to erase the error between return and projected curve. When this happens, the Fourier series
expansion effectively describes an invariant curve, and therefore a 2D-QPO. The graphs show
the stroboscopic map projected on the x-y plane: at the initial iteration of the DC, at the
beginning of the NC (which is the flow in the ER3BP-GH at small eccentricity, e = 10−7, of the
point corresponding to the PO’s initial condition, for the set of ν0), and at the final solution
of the DC, at the end of the NC (eccentricity of Phobos), where the return curve converges
toward the projected curve. Continuation with respect to the eccentricity from CR3BP-GH
(σ = 0) to ER3BP-GH (σ = ePhobos) of a medium-energy PO of the family A around L1 of the
CR3BP-GH.

NC with respect to the stroboscopic period in the ER3BP-GH. The NC presented

above allows to determine a single dynamical substitute, that corresponds to the final

solution at Phobos’ eccentricity. In a similar way as it was undertaken in section 4.2.2.2

to compute the periodic LPOs in the CR3BP-GH, a combination of two NC schemes in

cascade is now considered. Once a dynamical substitute is obtained in the ER3BP-GH,

the related family can be computed using the latter as the starting solution of a NC

with respect to the stroboscopic time, obtaining all the family in the ER3BP-GH with

the eccentricity of Phobos. Thus, due to the absence of an integral of motion, and due

to the fact that QPOs do not have a period, the parameter of the family of 2D-QPOs

in the ER3BP-GH could be the period of the backbone POs, which are the ancestors

of these tori in the CR3BP-GH. However, in this analysis, the chosen parameter of

the families of QPOs in the ER3BP-GH is the differential Jacobi integral that param-
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Figure 4.109: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Continuation
with respect to the eccentricity from CR3BP-
GH of a medium-energy PO of the family
A around L1 of the CR3BP-GH (σ = 0,
blue point) to its dynamical substitute in the
ER3BP-GH (σ = ePhobos, black curve). In-
variant curve on the stroboscopic map.

Figure 4.110: Quasi-periodic LPOs in
the Mars-Phobos ER3BP-GH. Simula-
tion of a medium-energy 2D-QPO of the fam-
ily A around L1 of the ER3BP-GH. Invariant
curve’s parameter (corresponding to Phobos
true anomaly) profile along time, where the
red curve highlights the profile at the second-
return frequency, and related rotation num-
ber’s profile along time of the second-return
stroboscopic map. Integration up to the time
(in stroboscopic time unit, which is the pe-
riod of the backbone PO in the CR3BP-GH)
of the first transversal second-return revolu-
tion of the 2-torus.

Figure 4.111: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Simulation of a
medium-energy 2D-QPO of the family A around L1 of the ER3BP-GH. Trajectory integrated
up to the time of the first transversal second-return revolution of the 2-torus.
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Figure 4.112: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Simulation of
a medium-energy 2D-QPO of the family A
around L1 of the ER3BP-GH. Surface of mo-
tion of the 2-torus.

Figure 4.113: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Simulation of
a medium-energy 2D-QPO of the family A
around L1 of the ER3BP-GH. Surface of
motion of the 2-torus parameterized by the
transversal invariant curves of the strobo-
scopic maps around the backbone PO of the
CR3BP-GH. Initial invariant curve and back-
bone PO (with initial conditions) displayed.

Figure 4.114: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Simulation of
a medium-energy 2D-QPO of the family A
around L1 of the ER3BP-GH. Surface of
motion of the 2-torus parameterized by the
transversal invariant curves of the strobo-
scopic maps around the backbone PO of the
CR3BP-GH. Initial invariant curve displayed.

Figure 4.115: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Simulation of
a medium-energy 2D-QPO of the family A
around L1 of the ER3BP-GH. Surface of mo-
tion of the 2-torus parameterized by the lon-
gitudinal invariant curves of the initial stro-
boscopic map around the backbone PO of the
CR3BP-GH. Initial invariant curve displayed.
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Figure 4.116: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation with
respect to the stroboscopic time (σ = T ) from the period of a small-energy 2D-QPO (blue) to
the period of the 2D-QPO intersecting Phobos’ surface (black) of the family A around L1 in
the ER3BP-GH. Invariant curve on the stroboscopic map.

eterizes the families of their ancestors in the CR3BP-GH. An example of this second

scheme is shown in Fig.D.66-4.116.

In particular, an unexpected coupling between GHs and eccentricity has been found.

As a difference from the basic CR3BP (see Fig.4.12-4.34-4.36), in Fig.4.63 the charac-

teristic curve of the family A of POs at small-energy has a local maximum. The NC

of invariant curves with respect to the stroboscopic time of this family therefore has a

folding, as seen in Fig.D.66. But this NC scheme hides an interesting behavior, that

instead is evident undertaking the first scheme of NC, with respect to the eccentricity.

Using the latter, two POs within the region of the local maxima, that have the same

period, will eventually have the same invariant curve for a certain eccentricity. When

this value is smaller than Phobos’ eccentricity, all the original POs in the CR3BP-GH,

with period larger than the one of this couple, do not have a 1-1 dynamical substitute

QPO in the ER3BP-GH.

This is shown in Fig.4.119: a PO of the family A around L1 could not be continued

up to the eccentricity of Phobos because the Fourier coefficients revolve back in a closed

loop, symmetrical with respect to the e = 0 axis. The continuation curve for all the

0-frequency Fourier coefficients intersects the e = 0 axis twice at different locations,

while for all the other coefficients it intersects this axis at the origin. This means that

there is a second PO linked within the same continuation curve, in the augmented

state-space [x; e]. Recall from section 4.3.1 that a negative eccentricity just means a

shift of definition of the initial true anomaly’s reference, therefore negative branches of

the continuation curve are symmetrical and describe the same QPO. This peculiar be-

havior of the ER3BP-GH is graphically shown in Fig.4.120, where the related invariant

curves are plotted. They show the connection between two POs, realized by an alter-
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Figure 4.117: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visual-
ization of the families of 2D-QPOs around L1 and L2 in the ER3BP-GH.

Figure 4.118: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Simulation of a
small-energy 2D-QPO of the family A around L1 of the ER3BP-GH. Surface of motion of the
2-torus.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

204 Zamaro Mattia



Libration Point Orbits

Figure 4.119: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation
variables’ curves profile. Continuation with respect to the eccentricity from CR3BP-GH (σ = 0)
to ER3BP-GH (σ = ePhobos) of a small-energy PO of the family A around L1 of the CR3BP-
GH, showing that this orbit does not have a dynamical substitute in the ER3BP-GH at the
eccentricity of Phobos. All the Fourier coefficients apart from the ones of 0-degree return to
zero at e = 0, therefore this continuation actually links two POs (of the same family A, at the
same period, see particular in Fig.4.63) in the globalized ER3BP-GH(t, ν,x, e).

Figure 4.120: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Invariant curves
of the stroboscopic map obtained by NC with respect to the eccentricity from CR3BP-GH to
ER3BP-GH of a small-energy PO (blue) of the family A around L1, showing that this orbit
does not have a dynamical substitute 2D-QPO in the ER3BP-GH at the eccentricity of Phobos.
This continuation links the starting PO to another one (red, of same family and period, see
particular in Fig.4.63) in the globalized ER3BP-GH(t, ν,x, e).
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Figure 4.121: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visu-
alization of the families of 2D-QPOs around L1 and L2 in the ER3BP-GH. Continuation with
respect to the stroboscopic time in the ER3BP-GH. Colors are coherent with Fig.4.58.

nate shrinking of the invariant curves towards a couple of different attracting invariant

points. In summary, this behavior would have not happened for the computation of

LPOs between the classical CR3BP and ER3BP.

4.3.3.3 The 2D-QPOs of the Mars-Phobos ER3BP-GH

The dynamical substitutes of the POs in the ER3BP-GH are still organized in the same

continuous 1-parameter families A, B, and CD, but now they consist of invariant 2-tori

with one phase set to be the true anomaly of Phobos around Mars, and are showcased in

Fig.4.117 and Fig.4.121-4.122. The width of their invariant curves is coherent with the

LP oscillation’s amplitude, as visible in Fig.4.118, where the dynamical substitute of a

small-energy PO is considered. From the simulation of these QPOs, the characteristic

curves of the period of the first transversal revolution on the second-return stroboscopic

map are computed, and are reported in Fig.4.123.

Regarding the stability properties, the methodology of section B.6.5 is applied to

undertake the Floquet stability analysis of the invariant curves of the four families

of 2D-QPOs of the ER3BP-GH, around each LP. The related monodromy-like matrix

shows that the stability properties are the same of the ancestor POs in the circular

dynamics discussed in section 4.2.2.3, which is a saddle × center × center structure

of the manifolds of the families A, B, C, and a saddle × saddle × center structure

of the manifolds of the family D. An example of the set of eigenvalues is provided in

Fig.4.124, where the presence of spurious eigenvalues can be seen. The selection of the

most accurate eigenvector is conducted with the norm-(1) defined in Eq.B.125, and an

example is provided in Fig.4.125.
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Figure 4.122: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visu-
alization of the families of 2D-QPOs around L1 and L2 in the ER3BP-GH. Projections on the
coordinate planes.

Figure 4.123: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Characteristic
curves of the period of the first transversal revolution around the invariant curve on the second-
return stroboscopic map of the families of 2D-QPOs around L1 in the ER3BP-GH, parameter-
ized by the stroboscopic period. The asymptote for the families B and D at the synchronous
period T = π corresponds to the 2:1 resonant 2D-QPOs that are actually a family of POs.
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Figure 4.124: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Stability analysis.
Set of eigenvalues of the invariant curve of the stroboscopic map. Case of a medium-energy 2D-
QPO of the family A around L1 of the ER3BP-GH. Each of the subfigures specifically magnifies
the area of the unstable, central and stable manifolds.

Figure 4.125: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Norm-(1) of
the set of eigenvectors of the invariant curve
of the stroboscopic map. Case of a medium-
energy 2D-QPO of the family A around L1

of the ER3BP-GH. Dotted lines mark sta-
ble, central and unstable subset of the to-
tal eigenspace, where the eigenvectors are
ordered by the related eigenvalue’s magni-
tude. Point highlighted identifies the eigen-
value with the minimum norm-(1) of the un-
stable subset, that will be used for the com-
putation of the unstable IMs.

Figure 4.126: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Norm-(HF),
in logarithmic scale, of the set of eigenvec-
tors of the invariant curve of the stroboscopic
map. Case of a medium-energy 2D-QPO of
the family A around L1 of the ER3BP-GH.
Dotted lines mark stable, central and unsta-
ble subset of the total eigenspace, where the
eigenvectors are ordered by the related eigen-
value’s magnitude. Point highlighted identi-
fies the eigenvalue with the minimum norm-
(1) of the unstable subset, that will be used
for the computation of the unstable IMs.
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Figure 4.127: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. On the left, in-
variant curves on the stroboscopic map of the D family around L1, from a small-energy 2D-QPO
(blue) to the 2D-QPO intersecting Phobos’ surface (black). The invariant curve highlighted
in red corresponds to a 2D-QPO with the resonant stroboscopic period π. On the right, the
related profile of the curve’s parametrization variable (corresponding to Phobos true anomaly)
along iterated mappings shows that the profile at the second-return frequency (red) is flat:
as the magnification highlights, the total change of the Phobos true anomaly is just 10−7 ◦

in 100 stroboscopic periods, therefore this 2D-QPO constitutes a closed family of POs in the
ER3BP-GH, since every point along the curve is invariant.

Figure 4.128: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Graphical visu-
alization of the family of POs of the family D of the ER3BP-GH around L1. Continuation
with the DC scheme for computing the natural 2D-QPO substitute in the ER3BP-GH of the
synchronous PO in the CR3BP-GH. First graph shows the POs whose starting true anomalies
on the stroboscopic map are: at the pericenter, at 45◦, at the first quadrature, and at 135◦

(the first-return points correspond to the point on the same PO at apocenter, at 225◦, at the
second quadrature, and at 315◦). Second graph shows the PO whose starting true anomaly on
the stroboscopic map is at the pericenter. Invariant curve of the stroboscopic map highlighted.
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4.3.3.3.1 Resonant POs in the Mars-Phobos ER3BP-GH

In Fig.4.123, the characteristic curves of the period of the first transversal revolution

on the second-return stroboscopic map show how many longitudinal revolutions are

needed to achieve a full lap of the invariant curve. This number increases when the

period of the ancestor PO tends to be in an integer ratio with the orbital period.

In particular, we see that large 2D-QPOs of the families B and D in the ER3BP-

GH are close to the resonance 2:1. The asymptote identifies the synchronous POs of

the ER3BP-GH computed with the dedicated DC in section 4.3.2.1, where after two

longitudinal revolutions the spacecraft will fly back at the initial condition. Thus, the

invariant curve becomes a curve of invariant points, which is the family of iso-periodic

POs in the ER3BP-GH of Fig.4.103-4.105. The related resonant curve is shown in

Fig.4.127, together with the profile of a numerical simulation.

This algorithm for QPOs naturally embeds the resonant cases N :M : when the period

of the ancestor PO is in an integer ratio M :N with the orbital period, the invariant

curve of its dynamical substitute on a multiple-return stroboscopic map (propagation

time of N times the orbital period) has a flat rotation number profile, whose value is

zero, as shown in Fig.4.127. Therefore this method for QPOs is used to continue the two

synchronous POs in 2:1 resonance of the families D of the CR3BP-GH. This could be

done directly with the first NC scheme, continuing the synchronous PO, or retrieving

the resonant invariant curve along the family D with the second NC scheme. Both

approaches have been tested, and Fig.4.127 shows the resonant invariant curve. Both

approaches gave the same PO that was computed with the dedicated DC scheme of

section 4.3.2.1, and they suffer the same identical computational problem, as the DC’s

Jacobian is singular at the solution. Thus, the reference signal computed is affected by

an error of cm scale after one orbital period. Since this has now happened with three

different approaches so far, it could be recognized that the computation of a synchronous

PO in the elliptic dynamics is a typical numerical problem of resonances. This name

identifies the effect of small denominators that appears in the computational procedure.

However, the dedicated DC scheme for QPOs is clearly superior to the dedicated one for

POs of [54] used in section 4.3.2.1, because it provides not only one initial condition in

the ER3BP-GH, but directly a curve of invariant points that describes the iso-periodic

family of POs, as shown in Fig.4.128.

4.3.4 3D-QPOs in the Mars-Phobos ER3BP-GH

This section provides the closure of the analysis on the LPOs around Phobos in an

accurate model of the orbital dynamics. This is the computation of the dynamical

substitutes in the ER3BP-GH of the 2-parameters families AB and C of 2D-QPOs of

the CR3BP-GH. They are tori with three phases: the longitudinal phase ϕ1, the first

transversal phase θ1 = ϕ2, and the second transversal phase θ2 = ϕ3 is constrained to

be the true anomaly ν.
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x =

 q

q̇

ν

→ x3D−QPO(t) = φf (t, 0,x0,3D−QPO (θ1, θ2)) ,

∀θ1 ∈ Iθ1 = [θ1,m, θ1,M ] ,∀θ2 ∈ Iθ2 = [0, 2π] :

:

[
q0,3D−QPO (θ1,m, θ2) = q0,3D−QPO (θ1,M , θ2)

q̇0,3D−QPO (θ1,m, θ2) = q̇0,3D−QPO (θ1,M , θ2)

]
∧

[
q0,3D−QPO (θ1, 0) = q0,3D−QPO (θ1, 2π)

q̇0,3D−QPO (θ1, 0) = q̇0,3D−QPO (θ1, 2π)

]
(4.47)

The set of initial conditions for such an orbit is parameterized by two phases. Therefore,

a 3D-QPO is identified by an invariant 2-torus’ surface S on a stroboscopic map. x0,3D−QPO ∈

[
S (θ1, θ2)

θ2

]
→ PT (x0,3D−QPO) = φf (T, 0,x0,3D−QPO) ∈

[
S (θ1, θ2)

θ2

]
θ2 (x) = ν (0) = ν0,3D−QPO

,

∀θ1 ∈ Iθ1 = [θ1,m, θ1,M ] ,∀θ2 ∈ Iθ2 = [0, 2π] : S (θ1,m, θ2) = S (θ1,M , θ2) ∧ S (θ1, 0) = S (θ1, 2π)

(4.48)

4.3.4.1 Computation of the Dynamical Substitutes of the Quasi-Periodic

LPOs in the Mars-Phobos ER3BP-GH

The computation of high dimensional tori was addressed in section B.6.6. The DC

method for computing 2D-QPOs of section B.6.3 can be naturally extended to a phase-

space with higher dimension, by using a multi-dimensional Fourier series to describe

the invariant object. However, for an ER3BP this is high computationally demanding.

The practical approach for high-dimensional tori is to simply treat them as bounded

orbits. The related methodology is based on the tuning of the reference signal for its

applications in perturbed dynamics, and is presented in section B.7.

In this section, the classical multiple shooting scheme of Eq.B.133, used for com-

puting bounded orbits in perturbed dynamics, is exploited. Since the eccentricity of

Phobos represents a strong perturbation, the DC is embedded in the NC with respect

to the eccentricity of section 4.3.1, and at each intermediate dynamics it derives the

closest solution that satisfies the continuity between the subintervals where the QPO’s

trajectory is sampled for a finite propagation time. In this sense, the subintervals are

chosen as the non-uniform set of recursive return-times provided by the reduction of

the ancestor 2D-QPO in the CR3BP-GH to a discrete dynamical system along the lon-

gitudinal motion, driven by the Poincaré map used to compute its invariant curve in

section 4.2.3.1. Furthermore, the initial condition is taken at the origin of the ancestor

invariant curve’s parameter, and considering Phobos at the perimars. Finally, the time

span is chosen as the period of the first transversal revolution of the ancestor 2D-QPO

in the CR3BP-GH19.

19As discussed in section B.7, since the last subinterval is not controlled, the time span considered is
augmented by one longitudinal revolution.
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Figure 4.129: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Projection on the x-z plane
of the set of initial conditions (sampling points of the multiple shooting scheme) that represent
a part of the invariant surface of the 3-torus on a longitudinal map. Continuation with respect
to the eccentricity from CR3BP-GH (σ = 0) to ER3BP-GH (σ = ePhobos) of a large-width -
medium-energy 2D-QPO of the family A around L1, starting at the pericenter. Backbone PO
of the ancestor 2D-QPO displayed.

This approach derives a practical approximation of the 3D-QPO, with any informa-

tion of its invariant object S. Furthermore, the approach does not guarantee to find a

bounded orbit for high perturbations, which should be the case of Phobos’ eccentricity,

since the solution is not a dynamical substitute. However, the orbits obtained oscillate

around the ancestor 2D-QPOs with an amplitude similar to that of the LPs even for

a high time span set in the DC. This is presented for a range of different 3D-QPOs

in the ER3BP-GH, around their respective backbone 2D-QPO of the CR3BP-GH, in

Fig.4.129-4.135. Therefore the methodology provides trajectories that describe appro-

priate 3-tori in the defined time span. This propagation time, in terms of integer

number of longitudinal revolutions, is far longer than that of typical applications of

LPOs in mission segments. Therefore, the set of initial conditions determined at the

end of the NC (the sampling points) can be considered part of the invariant 2-torus of

the 3D-QPO,

x0,3D−QPO,s ∈

[
S (θ, ν0)

ν0

]
, 1 ≤ s ≤ (NT2 − 1) (4.49)

and the invariant object S can be reconstructed in a discrete way with the set of initial

conditions. This could be done within the same DC scheme, choosing a large time span,
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Figure 4.130: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Simulation of a large-width
- medium-energy 3D-QPO of the family A around L1 of the ER3BP-GH. Trajectory integrated
up to the time of the first transversal revolution of the backbone 2D-QPO in the CR3BP-GH
(blue).

Figure 4.131: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Simulation of a medium-
width - medium-energy 3D-QPO of the family A around L1 of the ER3BP-GH. Trajectory
integrated up to the time of the first transversal revolution of the backbone 2D-QPO in the
CR3BP-GH (blue).

or using a shorter time but different DC schemes that start at different true anomalies.

The reconstruction of the invariant 2-torus’ surface is shown up to the period of the

first transversal revolution of the backbone 2D-QPO in Fig.D.69 and Fig.D.70-D.72.

In particular, the invariant 2-torus could be represented by its projection on a suitable

surface of section, filling a bounded profile around the ancestor invariant curve, with a

width corresponding to the oscillation’s amplitude of the LPs.

The related period of the first transversal revolution (at double frequency) of the

locked phase is retrieved by extrapolation. An example of the profile along time is

presented in Fig.D.68.

4.3.4.2 The 3D-QPOs of the Mars-Phobos ER3BP-GH

A sampling of the 2D-QPOs of the CR3BP-GH has been continued with the methodol-

ogy presented in section 4.3.4.1. The resulting dynamical substitutes in the ER3BP-GH

are invariant 3-tori organized in the same continuous 2-parameter families AB and C,

with one phase set to be the true anomaly of Phobos around Mars. They oscillate
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Figure 4.132: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Simulation of a small-width
- medium-energy 3D-QPO of the family A around L1 of the ER3BP-GH. Trajectory integrated
up to the time of the first transversal revolution of the backbone 2D-QPO in the CR3BP-GH
(blue).

Figure 4.133: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Simulation of a large-width
- small-energy 3D-QPO of the family A around L1 of the ER3BP-GH. Trajectory integrated
up to the time of the first transversal revolution of the backbone 2D-QPO in the CR3BP-GH
(blue).

around their respective ancestor solutions with an amplitude similar to the one of the

LPs. Fig.4.136-4.138 showcase some samples of the families of 3D-QPOs in the ER3BP-

GH. This completes the manifold of LPOs in the most accurate model of the natural

dynamics around the Martian moon Phobos.

From the simulation of these QPOs, the characteristic graphs of the period of the

first transversal revolution are computed, and are reported in Fig.D.73-D.76 for each

family, where the two parameters are taken as the ones that parameterize the backbone

2D-QPOs in the circular dynamics.

Regarding the stability properties, the Lyapunov stability analysis is undertaken

from the STM of the reference signal within each subinterval, as explained in section

B.6.5.
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Figure 4.134: 3-tori LPOs in the Mars-
Phobos ER3BP-GH. Simulation of a
small-width - small-energy 3D-QPO of the
family B around L1 of the ER3BP-GH. Tra-
jectory integrated up to the time of the first
transversal revolution of the backbone 2D-
QPO in the CR3BP-GH (blue).

Figure 4.135: 3-tori LPOs in the Mars-
Phobos ER3BP-GH. Simulation of a large-
width - small-energy 3D-QPO of the family
B around L1 of the ER3BP-GH. Trajectory
integrated up to the time of the first transver-
sal revolution of the backbone 2D-QPO in the
CR3BP-GH (blue).

Figure 4.136: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Family of 3D-QPOs that
connects the two medium iso-energetic 2D-QPOs of the families A and B around L1 of the
ER3BP-GH. Related two backbones 2D-QPOs displayed in black. Trajectory integrated up to
the period of the first transversal revolution of the backbone 2D-QPO in the CR3BP-GH.
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Figure 4.137: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Family of 3D-QPOs around
a medium-energy 2D-QPO of the family C around L1 of the ER3BP-GH. Related backbone
2D-QPO displayed in black. Trajectory integrated up to the period of the first transversal
revolution of the backbone 2D-QPO in the CR3BP-GH.

Figure 4.138: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Graphical visualization of
3-tori in the ER3BP-GH of different size and width around the LPs. Summarizing examples:
three medium-size 3D-QPOs of the family AB (red and green with small-width, orange with
high-width) and two high-width 3D-QPOs of the family C (of small and large-size). Trajectory
integrated up to the period of the first transversal revolution of the backbone 2D-QPO in the
CR3BP-GH.
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4.3.5 IMs of the LPOs in the Mars-Phobos ER3BP-GH

Also in the most accurate model of the orbital dynamics in proximity of Phobos, all

the families of periodic and quasi-periodic LPOs have resulted to be characterized by

a dominant saddle manifold, which provides the stable and unstable IMs to reach and

depart them.

The computation of the IMs’ tubes has been addressed for a general dynamical system

in section B.8 for each type of invariant motion, based on the dimension of its phase-

space. Following this, this section presents the IMs of the resonant POs (family D),

2D-QPOs (families A, B, CD) and 3D-QPOs (families AB, C), computed in sections

4.3.2,4.3.3,4.3.4, of the LPOs of the Mars-Phobos ER3BP-GH.

4.3.5.1 Computation of the IMs of the LPOs in the Mars-Phobos ER3BP-

GH

Due to the addition of a forcing term in the dynamics, the natural LPOs oscillate

around their backbone in the CR3BP-GH. Therefore, the mean performances of their

IMs would be equal to the ones of their ancestor orbits computed in section 4.2.4.1,

but the computation of the IMs shall require the procedure dedicated for a torus of one

larger dimension. The separate computation of the stable and unstable IM is carried

out for the LPOs that do not intersect Phobos. Only the computation of the inside

branch is addressed in this section, and the globalization of the manifold is propagated

in the ER3BP-GH up to the intersection with Phobos’ surface, which is modeled with

the high-order shape harmonics of section 3.2.

The globalization of the stable and unstable IMs has directly intersected Phobos for

all the families of LPOs, for both LPs. Therefore, as done in sections 4.1.5.1-4.2.4.1,

the outcomes are presented on the topographical map of Phobos, parameterized by the

couple of longitude and latitude of the landing/take-off site. The performances at the

touch-down are then filtered by the case of minimum incidence for the unstable IM,

which is a tangential arrival, and by the case of minimum velocity’s total magnitude

for the stable IM, that represents the escape velocity.

IMs of the families of resonant POs. The computation of the IMs of the two families

D of iso-periodic POs is done exactly in the same way undertaken for their ancestor

POs in the CR3BP-GH (Eq.B.137-B.138), just with the inclusion of the true anomaly

in the monodromy matrix. The related eigenvalue is +1.

The IMs of the families of resonant POs in the ER3BP-GH are showcased in Fig.4.139.

Fig.4.140 provide a sample of the analysis for the family around L1. Fig.D.77 pro-

vides the landing performances for L1, and Fig.D.78 provides the ones for L2.

Fig.D.79 provides the take-off performances for L1, and Fig.D.80 provides the ones

for L2.

Due to the limited difference in the position and shape of the POs of each iso-periodic
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Figure 4.139: Landing on Phobos through the Invariant Manifolds of the L1−2 reso-
nant periodic LPOs of the ER3BP-GH. Trajectories of the inside branch of the IMs from
the family D of resonant POs. Phobos real shape.

Figure 4.140: Landing on Phobos through the Invariant Manifolds of the L1 resonant
periodic LPOs of the ER3BP-GH. Trajectory that provides the min incidence at the touch-
down, as a function of the initial Phobos true anomaly on the stroboscopic map, for orbits that
do not intersect Phobos’ real shape. Performances of the trajectories (velocity magnitude, angle
of incidence, downward vertical velocity at the landing site), and trajectory that provides the
overall min incidence at the touch-down.
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Figure 4.141: Landing on Phobos through the Invariant Manifold of the L1 family
A of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Stroboscopic map in the x-y-z
space. Case of a medium-energy 2D-QPO of the family A around L1 of the ER3BP-GH. The
blue curve is the invariant curve of the 2D-QPO, and the black curve is the related set of initial
condition of the inside branch of the unstable IM (for a magnified threshold εC =10% of the
width of the 2D-QPO, which is γiePhobos).

family, the region of related landing or take-off site is quite narrow. However low angles

of incidence are provided by them, whereas the escape velocities are medium-low. In

this sense, in Fig.4.140, we see how the additional phase provided by the initial true

anomaly on the stroboscopic map provides some margin to fine tune these performances.

IMs of the families of 2D-QPOs. The computation of the IMs of the 2D-QPOs is

undertaken using the same procedure for the 2D-QPOs in the CR3BP-GH, where the

numerical technique developed in section B.6.5 allows to derive the IMs of the whole

invariant object. The related procedure to compute the IMs is addressed in section

B.8.3. In particular, it requires the selection of the most accurate eigenvector for each

manifold, and an example of the procedure is given in section 4.3.3. The related eigen-

vector provides a closed curve of initial conditions on the stroboscopic map, for the

globalization of the manifold. An example is given in Fig.4.141. Since the invariant

curve is parameterized by the true anomaly, the eigenvectors act only on the position

and velocity coordinates to give the curve of the initial conditions at the same true

anomaly, for the globalization of the manifold for each stroboscopic location. Due to

the proximity of Phobos, to not invalidate the whole tube of IMs for high-energy orbits,

the IMs are considered valid for slices of longitudinal revolutions that do not intersect

Phobos’s real shape.

The IMs of the families of 2D-QPOs in the ER3BP-GH are represented in Fig.4.142.

Fig.4.143-4.144 provide a sample of the analysis for the family A around L1. Fig.D.81-

D.82 provide the landing performances for L1, and Fig.D.83-D.84 provide the ones for

L2.

Fig.D.85-D.86 provide the take-off performances for L1, and Fig.D.87-D.88 provide

the ones for L2.
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Figure 4.142: Landing on Phobos through the Invariant Manifold of the L1−2 2D-
QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories of the inside branch of the
IMs from the families A, B, CD of 2D-QPOs. Phobos real shape.

Figure 4.143: Landing on Phobos through the Invariant Manifold of the L1 family A
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site, for
orbits that do not intersect Phobos’ real shape. Performances of the trajectory: stroboscopic
period parameter of the family, initial and final true anomaly, initial longitudinal and transversal
phases along the departing orbits, TOF, and landing velocity magnitude, angle of incidence,
downward vertical velocity. Trajectory that provides the overall min incidence at the touch-
down.
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Figure 4.144: Landing on Phobos through the Invariant Manifold of the L1 family
A of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Direct and inverse relation
between the longitude and latitude of the landing site and the stroboscopic period parameter
of the family, for orbits that do not intersect Phobos’ real shape.

The footprints of the IMs on Phobos are similar to the ones obtained with the fami-

lies of POs in the CR3BP-GH, but the performances at the touch-down and launch are

further optimized in the elliptic problem with the additional phase of Phobos required

to identify the LPOs’ initial condition.

IMs of the families of 3D-QPOs. In section 4.2.4.1, the IMs of the whole invariant

object associated to the QPOs were computed from the monodromy-like matrix, pro-

vided by the numerical technique developed in section B.6.5. However, the dynamical

substitutes of these LPOs in the ER3BP-GH have been approximated in section 4.3.4

with a time-limited reference signal. Therefore, the computation of the IMs of these

3D-QPOs in the ER3BP-GH is undertaken using the same procedure for the Lissajous

orbits in the CR3BP in section 4.1.5, which is to calculate the manifold at each sample

point from the STM associated to the related longitudinal subinterval of the reference

signal (see section B.8.3). An example of the set of initial conditions (that include

the true anomaly) is provided in Fig.4.145-4.146. Due to the proximity of Phobos, to

not invalidate the whole tube of IMs for high-width and high-energy orbits, the IMs

are considered for slices of longitudinal revolutions that do not intersect Phobos’s real

shape.

The IMs of the families of 3D-QPOs in the ER3BP-GH are computed with this ap-

proach, and they are represented in Fig.4.147.

Fig.4.148-4.149 provide a sample of the analysis for the family A around L1. Fig.D.89-

D.90 provide the landing performances for L1, and Fig.D.91-D.92 provide the ones for

L2.

Fig.D.93-D.94 provide the take-off performances for L1, and Fig.D.95-D.96 provide

the ones for L2.

The footprints of the IMs on Phobos are similar to the ones obtained with the families

of 2D-QPOs in the CR3BP-GH, but the performances at the touch-down and launch
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Figure 4.145: Landing on Phobos
through the Invariant Manifold of the
L1 family A of 3-tori LPOs of the Mars-
Phobos ER3BP-GH. Set of initial con-
ditions that represent a part of the invari-
ant surface of the 3D-QPO on a longitudinal
map. Case of a small-width - medium-energy
3D-QPO of the family A around L1 of the
ER3BP-GH. The blue curve is the reduced
3D-QPO, and the black curve is the related
set of initial condition of the inside branch of
the unstable IM (for a threshold of 10−5 adi-
mensional units). Integration up to the pe-
riod of the first transversal revolution of the
backbone 2D-QPO in the CR3BP-GH.

Figure 4.146: Landing on Phobos
through the Invariant Manifold of the
L1 family A of 3-tori LPOs of the Mars-
Phobos ER3BP-GH. Set of initial con-
ditions that represent a part of the invari-
ant surface of the 3D-QPO on a longitudinal
map. Case of a large-width - medium-energy
3D-QPO of the family A around L1 of the
ER3BP-GH. The blue curve is the reduced
3D-QPO, and the black curve is the related
set of initial condition of the inside branch of
the unstable IM (for a threshold of 10−5 adi-
mensional units). Integration up to the pe-
riod of the first transversal revolution of the
backbone 2D-QPO in the CR3BP-GH.

Figure 4.147: Landing on Phobos through the Invariant Manifold of the L1−2 3-tori
LPOs of the Mars-Phobos ER3BP-GH. Trajectories of the inside branch of the IMs from
the families AB, C of 3D-QPOs. Phobos real shape.
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Figure 4.148: Landing on Phobos through the Invariant Manifold of the L1 family
A of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: energy
and width parameters of the family, initial and final true anomaly, initial longitudinal and
transversal phases along the departing orbits, altitude where the integration is stopped, TOF,
and landing velocity magnitude, angle of incidence, downward vertical velocity. Trajectory that
provides the overall min incidence at the touch-down.

Figure 4.149: Landing on Phobos through the Invariant Manifold of the L1 family A
of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Direct and inverse relation between the
longitude and latitude of the landing site and the energy and width parameters of the family,
for orbits that do not intersect Phobos’ real shape.
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are further optimized in the elliptic problem with the additional phase of Phobos that

enlarges the phase-space of the LPOs. In particular, it is possible to arrive practically

horizontal and with vertical velocities less than 0.5m/s, and depart with escape veloc-

ities smaller than 4m/s in an extended region of sites. Furthermore, the large craters

and grooves of Phobos are inside these natural regions, and their distribution appears

to follow the boundaries of these natural footprints. In particular, despite the large

bulge of Phobos on the cis and trans-side, the Stickney crater is still reachable by the

IMs.

In conclusion, this analysis shows that also in the more accurate ER3BP-GH, with

Phobos’ eccentricity and GHs up to fourth degree and order, all the inside branch of

the IMs of the new families of LPOs in this system intersects Phobos. Therefore, no

homoclinic nor heteroclinic connections of the two LPs manifolds exist at all around

Phobos. The IMs of the most accurate LPOs around Phobos are proposed to provide

natural and efficient landing and take-off pathways for a spacecraft to and from the

cis and trans-sides of the moon. This application will be discussed in detail in section

4.4.6.

4.4 Application of the LPOs around Phobos

The dynamical substitutes of the LPOs and their IMs have been computed in sections

4.2-4.3 in the more accurate models of the orbital dynamics in proximity of Phobos,

the CR3BP-GH and the ER3BP-GH respectively.

In this section the performances of these orbits are evaluated. These characteristics

are probed with respect to a number of potential applications that can be required in

the design of a space mission to Phobos.

4.4.1 Lighting Conditions

The analysis of the lighting conditions is essential for any spacecraft, since it requires

sunlight for the electrical power generation from the solar arrays. The methodologies

for the assessment of the lighting conditions, and in particular the characteristics of

the environment in the vicinity of Phobos, have been presented in section 2.6. In

particular, recall that the lighting conditions are expressed through a light function field

L, and the Sun rotates in the Phobos’ Hill’s frame clockwise, with an angular velocity

approximately equal to Phobos’ revolution rate, and a fixed declination according to

the season of Mars, as expressed in Fig.2.26.

The general analysis of the lighting conditions was undertaken in section 2.6 to

evaluate the instantaneous field of view of the Sun for a point around Phobos. The

analysis is now conducted for the periodic LPOs of the CR3BP-GH. The choice to use

the POs in the circular case is done to retain the essential information with a simplified
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Figure 4.150: LPOs lighting conditions. Light function of the families of POs around L1

and L2 of the CR3BP-GH (parameterized by the differential Jacobi integral with respect to the
LP), averaged over 10 PO periods, at the days of equinoxes (lower cluster) and solstices (upper
cluster). Filled area spans values for different starting phases of the Sun (thick line is for mean
values), where families’ colors are coherent with Fig.4.58.

Figure 4.151: LPOs lighting conditions. Light function of the families of POs around L1

and L2 of the CR3BP-GH (parameterized by the differential Jacobi integral with respect to
the LP), averaged over 10 PO periods and over the starting phases of the Sun, at the days of
equinoxes (lower cluster, dashed lines for summer, dotted lines for winter) and solstices (upper
cluster in plain lines).

approach. The POs of the CR3BP-GH provide the backbone of both the QPOs in the

same dynamical model, and the QPOs in the ER3BP-GH. Therefore their performances

are the mean value of the performances of all the respective families of LPOs in the

most accurate model.

The outcomes are presented in Fig.4.150-4.151, and they consider the mean spherical

shape of Phobos. Due to the additional phase of the Sun, the light function of the LPO

is defined by averaging its value over 10 revolutions of the trajectory, and the results will

depend on the initial condition of the Sun around Phobos. Medium-small LPOs within

the families are similar to close-range hovering points on the two L1−2-sides of the moon

and the dependence of the Sun phase is mild (less than 5%). Such LPOs of the families

A and B are more exposed to light during the solstices than the equinoxes. At the

equinoxes, all large orbits of the families A, B, and C experience more lighting time on

the L1-side, while the ones of A and C on the L2-side experience more shadowing time

than their medium-size orbits. Instead both families D experience more lighting time.
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Figure 4.152: LPOs surface coverage. Boundaries the regions of full geometrical coverage on
Phobos’ surface of the largest orbits of the families of POs around L1 and L2 of the CR3BP-GH.
Families’ colors are coherent with Fig.4.58.

Figure 4.153: LPOs surface coverage. On the left, colored areas fill the regions of full
geometrical coverage on Phobos’ surface of the largest orbits of the families of POs around L1

and L2 of the CR3BP-GH. Families’ colors are coherent with Fig.4.58. On the right, surface
coverage of the synchronous POs of the family D around L1 and L2 of the ER3BP-GH.

At the solstices, more shadowing/ligthing is obtained by the family A/C in summer,

and by C/A in winter, while the families B and D are not altered by the type of solstice.

The light time of large LPOs, if used for short operations, can be tuned accordingly to

the Sun phase along Phobos, with the families B and D allowing to increase/decrease

the mean light function up to 15%.

4.4.2 Surface Coverage

One of the most important requirements for any mission is the region of the surface

that the instruments can point while the spacecraft moves along the chosen orbit. This

could refer to visual-instruments, for observation, or radio-instruments, for commu-

nication. Fig.4.152-4.153 collect the regions of full geometrical coverage for the larger

LPOs of every family of POs in the CR3BP-GH around both LPs. Thus, these outcomes

consider no technical constraints and data of the instruments, such as the minimum

elevation angle on the ground, and the maximum angles of view that define the field

of view of the instrument around its beam’s boresight. In particular, observation of

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

226 Zamaro Mattia



Libration Point Orbits

Figure 4.154: LPOs occulting conditions. Occultation mask function by the Phobos’s bulk
at L1 of the CR3BP-GH.

celestial objects is usually conducted strictly with nadir-pointing20, and it requires also

the point observed to be in light. The outcomes are obtained using the high-order

shape harmonics model for Phobos’ surface.

The family B provides the least surface coverage of all the families, allowing to point

only at the regions on the cis and trans-side of the moon, and covering respectively 28%

and 31% of the whole surface during a full orbit. The large POs of the family D, which

are vertically-elongated and inclined, allow to cover both Poles and also a significant

region on the leading and trailing-side of the moon, resulting in a 45%/43% coverage

ratio. The families A (47%/44%) and C (39%/39%) cover the South and North polar

sides respectively, and most importantly the leading and trailing-sides. Fig.4.153 shows

that the union of the areas provided by all the families covers the whole surface. In

particular, a combination of a large D orbit and an A or C orbit on the other side, as

well as one A and one C on each side, could fill most of the map.

Finally, Fig.4.153 shows the surface coverage of the D families of POs of the ER3BP-

GH. This case is very interesting because the orbits are synchronous, and the combined

surface coverage is 73% missing only two sectors on the leading and trailing-sides. A

constellation, using a minimum of one spacecraft on each side, would enable a station-

ary communications bridge between most of the opposite sides of the moon (cis/trans,

North/South, part of lead/trail) where different human crews or rovers could be dis-

placed, as well as repeated access times to equatorial and middle latitude sites on Mars.

4.4.3 Radiation Shielding

The radiation environment in orbit of Phobos was assessed in section 2.5. Recall that

the levels of radiation are close to the allowable thresholds, thus the hazard of the cosmic

rays is currently considered the showstopper in designing a safe manned mission in deep

20In this case, the surface coverage reduces simply to the ground-track of the orbit, and the swath is
usually small since the field of the camera is narrow.
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Figure 4.155: LPOs occulting conditions. Sky occultation function by the Phobos’ bulk
of the families of POs around L1 and L2 of the CR3BP-GH (parameterized by the differential
Jacobi integral with respect to the LP), averaged over 1 PO period. Families’ colors are coherent
with Fig.4.58. Additional occultation by Mars’ bulk will be 3.4% on the L1-side.

space [79]. This section considers the proposed concept mentioned in section 2.7. This

is the possibility that a manned spacecraft, during a Mars orbital mission segment,

could exploit Phobos as a natural and passive shield against the isotropic cosmic rays.

This is accounted by the occultation of the celestial sky by the bulk of Phobos. The

methodologies for the assessment of the occulting conditions, and in particular the

characteristics of the environment in the vicinity of Phobos, have been presented in

section 2.7. In particular, recall that the occulting conditions are expressed through an

occultation function field O.

The general analysis of the occulting conditions was undertaken in section 2.7 to

evaluate these properties for a point around Phobos, and considering the mean sphere

of Phobos. To model the occultation of Phobos’ bulk with the accurate high-order

shape harmonics model, the general definition of the solid angle of Eq.2.65 is needed,

and the subsequent definition of the mask function M of the real Phobos’ surface seen

from a general point. This is highly-computational demanding, and the procedure used

is the following. For the point considered, a 2D input matrix of the two spherical

coordinates’ angles is set up. For each input, corresponding to a ray irradiated from

the observer, some waypoints are derived with a uniform step along this direction, and

each of them is tested to be inside or outside the Phobos’ surface modeled by the shape

harmonics. In accordance to the ray intersecting or not intersecting Phobos, the mask

function value on the related cell of the 2D input matrix is 1 or 0 respectively. At the

end of the procedure, for the point considered, the mask function is integrated over the

2D input domain as in Eq.2.65, and the value of the occultation function is derived. An

example of the mask function for L1 is presented in Fig.4.154, whose resulting Phobos’s

bulk/sky ratio is about 14.5% (for L2 it is about 13%). The analysis is now conducted

for the periodic LPOs of the CR3BP-GH, where the occultation function is averaged

for one period of the PO.

The outcomes are presented in Fig.4.155. Recall that Mars provides a constant
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occultation of 3.4%, but this is scaled through the Mars-Phobos light function field, as

displayed in Fig.2.42. Therefore, the combined occultation is a few percent greater for

LPOs on the L1-side of the moon, than on the L2-side. The major effect is indeed given

by Phobos’ bulk, and due to their proximity to Phobos, the sky occultation produced

by the natural LPOs is significant. Fig.4.155 shows that larger LPOs around both

L1−2 can provide passive radiation shielding from over 20% of the incoming

isotropic cosmic rays. Clearly, if the mission would enable the crew also to land,

the reduction could be far higher, more then 50% if inside a crater and close to its

deep ridge. Using Mars’ bulk, to provide the same shielding factor of the natural LPOs

around Phobos, would require a low Martian orbit’s altitude under 850km, while LPOs

around Deimos are too distant from the body (13.7km) to provide relevant natural

shielding.

4.4.4 Sensitivity Analysis and Tracking Performance of the LPOs

The POs of the family D in the ER3BP-GH are chosen to conduct a first-order sen-

sitivity analysis to assess the effect of the uncertainties of the modeling parameters,

navigation sensors, and the physical perturbations in tracking the reference signal of

the orbit computed. The initial condition of this reference trajectory is propagated in

the perturbed dynamics, and the error of the resulting flow from the reference signal is

computed. Two metrics are used to assess the tracking performance: the position error

from the guidance law after a prescribed propagation time, and the time of permanence

such that the flow freely tracks the reference signal within a prescribed position error.

Thus, two thresholds are introduced. The prescribed propagation time is set to be one

tenth of the Mars-Phobos (and the PO itself) orbital period, as this is close to the

reference value of 44min required for a transponder’s signal’s round-trip at the farthest

Earth-Mars distance. The prescribed position error is set to be 10m, as this is close to

the value of 10−6 L units commonly used for the Sun-Earth and Earth-Moon systems

[50].

Fig.4.156 presents the analysis for several parameters, normalized in abscissa by the

sensitivity number S. For semi-major axis a, mass parameter µ, eccentricity e, GHs’

coefficients, and initial condition x0 of relative position and velocity, S weights these

uncertainties with respect to the related reference value of the ER3BP-GH. For the

other actions, 1rad is used for the initial true anomaly ν0, the mean motion (equal to

1/time unit) for the angular velocity ω of the BCBF frame, 1/(time unit)2 for its an-

gular acceleration ω̇, 1.80◦ as the maximum misalignment θ between BCBF and Hill’s

frames, the Phobos gravity at the SOI’s boundary for the magnitude of a harmonic per-

turbing acceleration aP at the orbital frequency. Furthermore, the GHs model of [102]

is used as a benchmark representing a more realistic dynamical model of the spacecraft

around Phobos, to relate the sensitivity of the other perturbations. This test indicates

that station-keeping is required at least every 17min for the POs around L1. In this
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Figure 4.156: Sensitivity and performance analysis of the LPOs in the Mars-Phobos
ER3BP-GH. The first figure shows the propagation time where the spacecraft remains within
the prescribed position error of 10m from the reference signal of one PO of the D family around
L1 in the ER3BP-GH, when propagated in a perturbed dynamical model where the modeling
parameters, navigation inaccuracies, and physical forces in the legend are weighted by the
sensitivity factor S. The blue cross represents the benchmark dynamics. The horizontal dotted
line is the reference of the PO period. The second figure shows the related equivalent perturbing
acceleration (normalized by the Phobos gravity at L1) that produces the same final response
as a constant input in a forced undamped unstable 1D oscillator. The second ordinate axis
represents the associated ∆v consumption over one period.

sense, not including the GHs would have required maintenance actions at least every

4min, while not including the eccentricity would have required station-keeping at least

every 7min. The savings on the duty cycle are 76% and 58% respectively, which high-

light the importance of including these forces in the dynamical model to design orbits

around Phobos.

The second conclusion arises from the comparison of the sensitivity of the pertur-

bations. Recall that in section 3.1.3 and 3.3.1 respectively, it was estimated that in

the dynamical model used the residual perturbations of both the benchmark dynam-

ics and the frame’s libration motion account for a few percent of the cumulated GHs

perturbation at the SOI, which itself is of the order of 10−1 of the Keplerian gravity

(see Fig.2.13). This first estimation is now confirmed for the LPOs computed in the

ER3BP-GH, as the results of the benchmark and the maximum tilt in the first graph

of Fig.4.156 fall within the ones of an additional relative perturbing acceleration aP

between 10−3-10−2, and an inaccuracy of µ of the same range. Inaccuracies of the

semi-major axis and the relative non-dimensional state are similar, and very sensitive

(inaccuracies over 6 · 10−4 produce initial errors larger than the 10m threshold), while

inaccuracies of the true anomaly and rotational rates of the frame are allowed to be

higher. Summarizing, the first graph of Fig.4.156 provides the maximum inaccuracies:

if the parameters are acquired within these inaccuracies, station-keeping at the fre-

quency of the time threshold chosen will maintain the spacecraft within the deadband

defined by the position threshold required. Relative inaccuracies larger than

3 · 10−4 for a,

9 · 10−4 for µ,
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3 · 10−2 for e,

9 · 10−3 for GHs’ coefficients,

2 · 10−4 for x0,

9 · 10−2 for ν0,

3 · 10−3 for ω,

5 · 10−3 for ω̇,

6 · 10−1 for θ,

8 · 10−4 for aP ,

require the control load every 44min to be increased, or the guidance performance of

10m to be relaxed. In particular, the value for ω is larger than the perturbation on

the mean motion of the Hill’s frame introduced by Mars J2 (see correction term ∆ in

section 3.3.2), which is 2 · 10−4. Therefore, this further confirms that this term could

be disregarded from the model of the dynamics, as explained in section 3.3.4.3, also

from the point of the view of the station-keeping cost.

It is now possible to plot these actions deriving an associated figure of perturbing

acceleration, in order to universally compare the sensitivity effects with the preliminary

orbital perturbations analysis in Fig.2.13. This is done with an equivalent model that

considers only the unstable normal mode, which is responsible for the drift of the per-

turbed trajectory from the reference signal. In the 1D linear ODE ẍ − ω2
0x = aP , the

state x represents the magnitude of the position error from the reference signal, and

the natural pulsation ω0 is taken as the maximum unstable Floquet exponent of the

PO (2.26 of the mean motion). The system is forced by the constant acceleration aP ,

and the analytical solution is available. Thus, the equivalent constant acceleration that

produces the same final response of the numerical simulation is computed for every

perturbing action, and is presented in the second graph of Fig.4.156, in terms of the

same ratio aP /a2 used in Fig.2.13. The two cases (response at prescribed propagation

time and at prescribed position error) have produced a similar output, so the graph

refers to the first one. For a linear approximation comparison, related ∆v consumptions

over one period are indicated in parallel.

In conclusion, the LPO computed in the proposed ER3BP-GH would require 0.5m/s

per period to be tracked in the more accurate GHs and maximum-misaligned model,

that constitute the main residual perturbations assuming the remaining model param-

eters and navigation variables are acquired within the following relative and absolute

inaccuracies:

5 · 10−4 for a (5km),

4 · 10−3 for µ (103m3/s2 for Phobos’ GM and 9 · 1010m3/s2 for Mars’ GM),

10−1 for e (2 · 10−3),

4 · 10−2 for GHs’ coefficients,

4 · 10−4 for x0 (6m for relative position and 2 · 10−3m/s for relative velocity),

3 · 10−1 for ν0 (20◦),

10−2 for ω (2 · 10−6rad/s),
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Figure 4.157: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. The first
and second orbit considered for the feasibility analysis on the station-keeping of the LPOs of
the Mars-Phobos ER3BP-GH. The PO of the family D around L1 starting at the perimars; the
3-torus of medium-size and medium-width of the family A around L1.

2 · 10−2 for ω̇ (10−9rad/s2),

3 · 10−3 for aP (8 · 10−6m/s2).

This represents a considerable saving from the 11m/s and 3.2m/s per period if, respec-

tively, the GHs and eccentricity are not included in the dynamical model.

4.4.5 Station-keeping and GNC Requirements

The preliminary analysis, conducted in section 4.4.4, on the requirements of the GNC

subsystem for the station-keeping of the LPOs computed in this thesis, is now extended

in a more detailed study. This analysis consists of an assessment of the practical feasi-

bility of the LPOs21. The operations and characteristics of the ESA mission Phootprint

will be used as references.

The analysis is conducted in a way similar to what was done in [57], where the LPOs

around Phobos have been computed with a multiple shooting of the classical LPOs in

the CR3BP, and considering a high-fidelity dynamical model (GHs up to degree and

order 3, SRP, further attractors). The point is not the accuracy of the model, because

the final differential correction will provide a guidance law whose error on aP is much

less than the error on x0 (see section 4.4.4). Thus, downstream the computation of

the accurate guidance signals (from ground or from board), the drivers for the station-

keeping of any interplanetary spacecraft are the estimation error of the state spilt-over

by the navigation (after filtering of the measurements from the sensors), and the real-

ization error of the actuators to provide the required control action.

21This research was conducted during an internship in Airbus Defence & Space, Stevenage.
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4.4.5.1 Objective

In [57], the station-keeping of the LPOs around Phobos is considered to be undertaken

with a regular schedule of classical impulsive maneuvers. In this reference the cost is

computed as ∆v/day, as a function of the navigation’s inaccuracy of the position, and

the frequency of the maneuvers. A single LPO around L1 is considered. The inaccu-

racy of the velocity is kept fixed to 1mm/s. The inaccuracy of the ∆v is kept fixed to

0.5mm/s. Due to the use of multiple shooting directly from the classical CR3BP, this

orbit represents a bounded trajectory, with the reference of a vertical Lyapunov orbit.

The procedure of the work done in [57] is maintained. Two LPOs of the ER3BP-GH,

both around L1, will be tested: the first orbit is the PO of the family D starting at

the perimars; the second orbit is the 3-torus of medium-size and medium-width of the

family A. These orbits are visible in Fig.4.157. It is also considered a cut-off value for

the ∆v, equal to the inaccuracy of the velocity.

The reference [57] lacks of several details for the reproducibility of the results. Never-

theless, the orbits and the models themselves are not the same, thus it is not important

to exactly reproduce the same results. In particular, the reference does not provide

indication on how the inaccuracies are considered to carry on the simulations (single

deterministic or multiple Monte-Carlo simulation, fixed or random errors’ direction,

fixed or stochastic inaccuracy, 1σ or 3σ definition of errors and results). In addition,

the reference does not indicates what is the algorithm used to derive the impulsive

control law, and does not provide its performances in terms of the state error from the

target signal to be compared.

4.4.5.2 The Target Point Technique

Theory. The classical methodology for the SK of LPOs is the Target Point algorithm

[141]. It is an optimal control technique (see section C.1) with impulsive control action

∆v. It consists in the minimization of the cost functional made up of the control action

and a discrete set of errors evaluated at NTP target points.

J =
1

2
∆vTR∆v +

1

2

NTP∑
i=1

∆x(ti)
TQi∆x(ti) =

=
1

2
∆vTR∆v +

1

2

NTP∑
i=1

∆q(ti)
TQr

i∆q(ti) + ∆q̇(ti)
TQv

i ∆q̇(ti)

(4.50)

The solution is obtained in closed-form exploiting the linearization of the dynamics

around the reference orbit xT , which is by using its STM through its variational equa-

tions.

∆x(t) = x(t)− xT (t) =

[
∆q(t)

∆q̇(t)

]
= Φ(t, t0)∆x(t0) =

[
Φr,r(t, t0) Φr,v(t, t0)

Φv,r(t, t0) Φv,v(t, t0)

][
∆q(t0)

∆q̇(t0)

]
(4.51)
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Figure 4.158: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target
Point control. Error on initial condition. State error tracking performance (uncontrolled motion
in dotted lines) and control action. Orbit-1.

The control action ∆v is considered to be implemented at the initial condition. This is

not restrictive: it just means that the trajectory is divided in the intervals fixed by the

choice of the maneuvers’ frequency, and the algorithm is used to derive separately one

by one ∆v, using the STM of the related interval. The target points could be considered

at any time within the interval: the classical choice is to define them uniformly. Hence,

the initial state deviation from the guidance law, as seen by the controller, is given by

the deviation of the estimated position q and velocity q̇, plus the explicit maneuver to

be computed. This is the ∆x(t0) that should now be used in Eq.4.51, to minimize the

cost functional of Eq.4.50.

∆x(t0) =

[
∆q(t0)

∆q̇(t0) + ∆v

]
(4.52)

The control law is the classical feedback implementation, which is proportional to the

error from the target. It is worth to remark that this error is initially due to the

navigation, which will feed the controller continuously over the simulation, as well as

with the realization error of the actuators.

∆v = −
{

R +
NTP∑
i=1

Φr,v(ti, t0)TQr
iΦ

r,v(ti, t0) + Φv,v(ti, t0)TQv
i Φv,v(ti, t0)

}−1

·

·

NTP∑
i=1

[
Φr,v(ti, t0)TQr

iΦ
r,r(ti, t0) + Φv,v(ti, t0)TQv

i Φv,r(ti, t0)

Φr,v(ti, t0)TQr
iΦ

r,v(ti, t0) + Φv,v(ti, t0)TQv
i Φv,v(ti, t0)

]T [
∆q(t0)

∆q̇(t0)

] =

= −

R +
NTP∑
i=1

[
Φr,v(ti, t0)

Φv,v(ti, t0)

]T [
Qr
i 03x3

03x3 Qv
i

][
Φr,v(ti, t0)

Φv,v(ti, t0)

]
−1

·

·

NTP∑
i=1

[
Φr,v(ti, t0)

Φv,v(ti, t0)

]T [
Qr
i 03x3

03x3 Qv
i

]
Φ(ti, t0)

[
∆q(t0)

∆q̇(t0)

]
(4.53)
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Figure 4.159: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Tar-
get Point control. Error on state estimation (along unstable manifold). State error tracking
performance and control action. Orbit-1.

Table 4.1: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Deterministic analysis. Performance: ∆v/day, state error from target. Orbits 1 and
2.

\Frequency SK 
O.Sh 1h 1.5h 2h 

Inaccuracy Position\ 
0.0755 m/s 0.133 m/s 0.198m/s 0.313 m/s 

O.l m 2.89m 10.3 m 19.9 m 54.0m 
1.87 mm/s 4.81 mm/s 11.5mm/s 28.5 mm/s 
0.117 m/s 0.219m/s 0.346 m/s 0.494 m/s 

1m 4.31m 12.4m 29.6 m 83.5 m 
2.83 mm/s 7.88 mm/s 18.3 mm/s 41.7 mm/s 
0.540m/s 1.10 m/s 1.84m/s 1.99 m/s 

10m 20.4m 60.8m 152m 360m 
12.9mm/s 42.6mm/s 110 mm/s 208 mm/s 
4.83 m/s 10.3 m/s 17.7 m/s 

lOOm 183m 587m 1.73 km N/A 
116mm/s 415 mm/s 1.22 m/s 

\Frequency SK 
O.Sh lh 1.5h 2h 

Inaccuracy Position\ 
0.0870 m/s 0.195 m/s 0.400 m/s 0.692 m/s 

O.lm 2.89m 8.78m 25.2 m 86.8m 
1.52 mm/s 5.45 mm/s 18.8 mm/s 52.9 mm/s 
0.141 m/s 0.321 m/s 0.686 m/s 1.15 m/s 

lm 4.39m 13.8m 42.7 m 146m 
2.39mm/s 9.02 mm/s 31.6 mm/s 77.8 mm/s 
0.686m/s 1.61 m/s 3.72 m/s 4.78 m/s 

10m 20.lm 68.7m 239m 779m 
ll.Gmm/s 45.8mm/s 170 mm/s 582 mm/s 
6.23 m/s 16.0 m/s 

lOOm 182m 678m N/A N/A 
105 mm/s 465 mm/s 

Table 4.2: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target
Point control. Worst-case analysis: deterministic analysis, apart from the first column, whose
inaccuracies’ direction is random. Performance: ∆v/day, state error from target. Orbits 1 and
2.

\Frequency SK 
O.Sh 1h 1.5h 2h 

Inaccuracy Position\ 
0.133 m/s 0.133 m/s 0.198m/s 0.313 m/s 

0.1m 2.87 m 10.3m 19.9m 54.0m 
3.06 mm/s 4.81 mm/s 11.5mm/s 28.5mm/s 
0.143 m/s 0.219 m/s 0.346m/s 0.494m/s 

1m 3.43 m 12.4m 29.6m 83.5m 
3.54 mm/s 7.88 mm/s 18.3 mm/s 41.7 mm/s 
0.881 m/s 1.10 m/s 1.84 m/s 1.99m/s 

10m 19.2 m 60.8m 152m 360m 
17.7 mm/s 42.6mm/s 110mm/s 208mm/s 
9.84 m/s 10.3 m/s 17.7 m/s 

100m 236m 587m 1.73 km N/A 
277mm/s 415 mm/s 1.22 m/s 

\ Frequency SK 
0.5h 1h 1.5h 2h 

Inaccuracy Position \ 

0.132 m/s 0.195 m/s 0.400 m/s 0.692 m/s 
0.1m 2.88 m 8.78 m 25.2m 86.8m 

2.90 mm/s 5.45 mm/s 18.8 mm/s 52.9 mm/s 
0.175 m/s 0.321 m/s 0.686 m/s 1.15 m/s 

1m 4.21 m 13.8m 42.7 m 146 m 
4.35 mm/s 9.02 mm/s 31.6 mm/s 77.8 mm/s 
0.941 m/s 1.61 m/s 3.72 m/s 

10m 20.4 m 68.7m 239m N/A 
21.6 mm/s 45.8 mm/s 170 mm/s 

10.2 m/s 16.0 m/s 
100m 224m 678m N/A N/A 

266 mm/s 465 mm/s 
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Application. Eq.4.53 is implemented in a controller. First, the algorithm is tested

with the classical response to a deviation in the initial condition, assuming the state

estimation and actuator realization are perfect. This example is provided in Fig.4.158,

where the error and control action converge impulsively to zero. It is evident also what

would have been the uncontrolled drift of the state.

The set of simulations are carried out for each of the two orbits, with the combination

of the inaccuracies introduced in section 4.4.5.1. Due to the lack of information of the

reference, as discussed in section 4.4.5.1, the first choice, also to tune the gain matrices,

is to consider a deterministic analysis. DST helps in such an analysis, because it is

already known that the LPOs have an unstable manifold. Thus, the direction of the

navigation and actuator error is considered to be along the inside branch of the local

unstable manifold of the reference orbit. This should give the worst-case scenario of the

station-keeping. Regarding the magnitude of the errors, for a deterministic analysis,

this is considered to be fixed to the inaccuracies provided. In reality, since the direction

of the IMs is 6D, the ratio between position and velocity magnitude is constrained, but

the two inaccuracies are considered independent. Thus, it is not actually guaranteed

that the results are really the worst-case, nevertheless they should not be too far from

it. An example of the deterministic analysis is provided in Fig.4.159, where now the

error and control action are stationary. Table 4.1 provides the results of this analysis

for the two orbits.

The values are of the same order of magnitude of the analysis undertaken by the

JPL in [57]. In particular, the consumptions are smaller, but we do not know their

error performances nor all the other features of their analysis, in particular the control

algorithm and the type of analysis. The consumptions are for most of the cases less

than 1m/s/day, thus the Phobos’ LPOs are feasible from the control point of view.

Large inaccuracies and SK intervals are not feasible choices, and the spacecraft will

crash into the moon. Some additional considerations are provided below.

• The number of target points has resulted to be not significant: it must be NTP >

1, but with NTP = 2 the better performance achieved, and this is the case that

will be used in this section.

• It is not possible to go down from 0.07m/s/day and 2m error due to the other

fixed inaccuracies used.

• The difference between the two orbits is coherent with the stability indicators:

the respective Floquet multipliers are 1,200 and 2,100.

• The control is obtained using sub-optimal weighting matrices varied by the SK-

frequency (interval TSK): R = (0.01m/s)−2 · diag{[1, 1, 1]}, Qr
i = (2m)−2 ·

(TSK/30min)−4 · diag{[4, 1, 1]}, Qv
i = (0.01m/s)−2 · diag{[1, 1, 1]}. The cost

could be probably improved by a margin of 10%.
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Table 4.3: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. ∆v/day of
the analysis of [57].

\ Frequency SK 0.5h 1h 1.5h 2h 
Inaccuracy Position \ 

O.lm 0.22 0.17 0.29 0.73 
1m 0.25 0.22 0.35 1.0 

10m 1.3 1.0 1.9 N/A 
100m 13.8 9.8 N/A N/A 

• The consumption is calculated as the norm of the maneuver, not with separate

3-axes contributions (∆v will be larger up to 1.7 times).

• Within feasible SK performances, ∆v of single maneuver ranges in [1−500]mm/s.

Thus, with Phootprint mass of 2, 000kg, the required impulse interval ranges

in [0.1 − 50]s with 20N thrust (which is the Phootprint AOCS value), and

[2s− 17min] with 1N . Thus, with a feasible and not particularly large thruster,

impulsive approximation of the control action is perfectly feasible within the ma-

neuvering interval.

However, repeating the analysis with random direction of the errors, the case at

smallest SK-interval is now the worst-case scenario. Thus, Table 4.2 provides the

resulting worst-case scenario for the two LPOs, just updating the first column of Table

4.1.

Table 4.3 provides the consumptions of the JPL analysis. It seems that the relative

ratios inside each table are very similar. Thus the scaling between this analysis and

the JPL results is about 1.7. It could be that near the same absolute values can be

obtained in a stochastic analysis and interpreting the inaccuracies 1σ, or by considering

the total consumption as the sum of separate 3-axes contributions.

4.4.5.3 The Floquet Mode Technique

Theory. An alternative station-keeping methodology for the LPOs is given by the

Floquet Mode algorithm [142]. The technique is based on the analytical assist of DST.

Since, in the linearized dynamics around the LPO, the spacecraft will drift rapidly

as a result of an error along the unstable IM, the control action can be designed to

specifically counteract this error with an impulse in velocity.

In the same way undertaken for the first control algorithm, the control action ∆v

is considered to be implemented at the initial condition of each of the intervals fixed

by the choice of the maneuvers’ frequency, and the algorithm exploits the STM of the

related interval. The technique requires the computation of the eigenvectors of the

STM at the point, on the reference LPO, isochronic with the spacecraft.

Φ(T, 0) = VDU,V:,k = êk,Dk,k = eλkT ,U = V−1 (4.54)

eF,k(0 ≤ t < T ) = Φ(t, 0)êk → êF,k(t),VF(t),UF(t) (4.55)
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Figure 4.160: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Floquet
mode control. Error on initial condition. State error tracking performance with single maneuver
at beginning. Orbit-1.

Figure 4.161: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Floquet
mode control. Error on initial condition. State error tracking performance and control action.
Orbit-1.

The procedure in Eq.4.54-4.55 is the same used in sections B.8.2-B.8.3, computing the

manifolds at the starting point and transporting its direction through the variational

equations. The resulting direction of the local manifold is represented here by the

eigenversor êF , which is called Floquet mode. From the set of eigenspaces W k, the set

of orthogonal projectors is derived, where each vector π is associated to an eigenspace.

UF(t)VF(t) = I→ Π(t) = UF(t)T ,Π:,k(t) = πk(t) (4.56)

The state error is now expressed in the local frame of Floquet modes, whose components

are collected in the vector α.

∆x(t) = VF(t)α(t)→ α(t) = UF(t)∆x(t) (4.57)

The objective of the technique is to produce a maneuver such that the unstable com-

ponent of the state error is impulsively set to zero. This requires to use the projector
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Figure 4.162: Station-keeping of the
LPOs in the Mars-Phobos ER3BP-GH.
Floquet mode control. Error on initial con-
dition and state impulse at half simulation.
State error tracking performance and control
action. Orbit-1.

Figure 4.163: Station-keeping of the
LPOs in the Mars-Phobos ER3BP-GH.
Floquet mode control. Error on initial con-
dition and small state impulses throughout
simulation. This plot shows the state compo-
nent (in normalized units) along the unstable
manifold. Orbit-1.

k = u of the unstable IM W u22.

πu(t)T

(
∆x(t) +

[
03x1

∆v(t)

])
= αu(t) + πu,4:6(t)T∆v(t) = 0 (4.58)

Eq.4.58 is simple, but is underdetermined. To find ∆v, the classical mathematical

solution with minimum norm is also the one physically wanted, because it gives the

cheaper maneuver to achieve the objective.

 πu,4:6(t)T∆v(t) = −αu(t)

min
∆v(t)

‖∆v(t)‖ ⇒∆v(t) = −πu,4:6(t)
[
πu,4:6(t)Tπu,4:6(t)

]−1
αu(t)

(4.59)

Therefore, the resulting feedback control law in Eq.4.59 is simple and analytic, with no

gain matrices to tune.

Application. Eq.4.59 is implemented in a controller. First, the algorithm is tested

with the classical response to a deviation in the initial condition, assuming the state

estimation and actuator realization are perfect. This example is provided in Fig.4.160,

and the behavior appears promising. As a difference from the target point technique’s

22The procedure works also for more than one manifold’ components of α to be erased. The first orbit
considered in this section has two unstable manifolds. However, the second one is slightly unstable:
the Floquet multiplier is only 1.6 over one orbital period. Thus the departure along this manifold,
for the simulation’s time span, is not significant if compared to the principal unstable manifold. The
control law has been implemented also to counteract this second direction: outcomes did not change
significantly, thus the classical 1-direction control law has been used also for the first orbit to produce
the results shown in this section.
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Figure 4.164: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Flo-
quet mode control. Error on state estimation (along unstable manifold). State error tracking
performance, control action, and state component along the unstable manifold. Orbit-1.

test case of Fig.4.158, where a sequence of convergently maneuvers are needed to drive

the error to zero, here just the first maneuver allows the spacecraft to oscillate around

the reference LPO for more than 4h. After this time the residual error, that is always

present for the inaccuracy of the control system, accumulates too much, so a maneuver

must be executed. But this is a small amount, as it shown in Fig.4.161 where only the

first ∆v is relevant.

However the problems are made evident in Fig.4.162, where a fictitious second im-

pulse on the state is inserted at half simulation. The spacecraft is still perfectly stabi-

lized by the low-cost control law, but the oscillation’s amplitude increases. The control

law is implemented correctly, as it is shown in Fig.4.163, that presents the profile of

the unstable component of the error in the Floquet coordinates α. In this simulation

multiple fictitious impulses are inserted with a tight frequency, acting along the unsta-

ble IM. This component grows exponentially within each SK-interval, but is erased by

the maneuvers computed with the algorithm.

The set of simulations are then carried out for each of the two orbits considering the

navigation and actuator errors, like in section 4.4.5.2. Fig.4.164 shows an example of

the completely deterministic analysis, where the inaccuracies are fixed in magnitude

and direction (along the inside branch of the local unstable IM). Fig.4.165 shows an
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Figure 4.165: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Floquet
mode control. Error on state estimation (random direction). State error tracking performance,
control action, and state component along the unstable manifold. Orbit-1.

Table 4.4: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Floquet
mode control. Deterministic analysis. Performance: ∆v/day, state error from target. Orbits 1
and 2.

\ Frequency SK 
O.Sh 1h 1.5h 2h 

Inaccuracy Position\ 
0.0622m/s 0.0872m/s 0.152m/s 0.253m/s 

0.1m 70.9m 118m 227m 59 3m 
29.3mm/s 49.5mm/s 94.2mm/s 235mm/s 

0.0903m/s 0.146m/s 0.255m/s 0.422m/s 
1m 136m 194m 331m 971m 

56.6mm/s 78.7mm/s 136mm/s 380mm/s 
0.421m/s 0.685m/s 1.08m/s 

10m 635m 1.05km 1.49km NA 
254mm/s 398mm/s 631mm/s 
4.81m/s 

100m 4.27km NA NA NA 
1.79m/s 

\ Frequency SK 
O.Sh lh l.Sh 2h 

Inaccuracy Position\ 
0.0837m/s O.lSSm/s 0.297m/s 0.554m/s 

O.lm 25.2m 47.3m 84.3m 218m 
10.7mm/s 21.2mm/s 44.6mm/s 106mm/s 
0.139m/s 0.260m/s 0.495m/s 0.841m/s 

lm 38.3m 71.4m 141m 325m 
16.1mm/s 31.5mm/s 71.4mm/s 167mm/s 
0.686m/s 1.23m/s 1.85m/s 2.18m/s 

10m 172m 330m 685m 1.21km 
79.1mm/s 163mm/s 333mm/s 637mm/s 

5.14m/s 7.38m/s 
lOOm 1.49km 2.85km NA NA 

726111111/~ 1.51nr/s 
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Figure 4.166: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Floquet
mode control. Unstable component from system in [143]. The drift is evident. On the right,
periodical maneuvers are performed to stop it.

Table 4.5: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Deterministic analysis. Performance: ∆v/day, state error from target. Orbit 1.

\ Inaccuracy Velocity 
0.1mm/s 1mm/s 10mm/s 100mm/s 

Other \ 
Frequency SK lh 0.144 m/s 0.219 m/s 0.977 m/s 8.71 m/s 
Inaccuracy Position lm 8.75 m 12.4m 54.5 m 513m 
Inaccuracy l!.v O.Smm/s 5.41 mm/s 7.88 mm/s 34.1 mm/s 312 mm/s 

Table 4.6: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Deterministic analysis. Performance: ∆v/day, state error from target. Orbit 1.

\ Inaccuracy t;.v 
O.OSmm/s O.Smm/s Smm/s SOmm/s 

Other\ 
Frequency SK lh 0.184 m/s 0.219 m/s 0.613 m/s 4.15 m/s 
Inaccuracy Position lm 10.5 m 12.4 m 57.6 m 351m 
lnacc. Velocity lmm/s 6.64 mm/s 7.88 mm/s 37.5 mm/s 173 mm/s 

example of the case where the inaccuracies’ direction is random. The completely de-

terministic analysis has resulted now to be always the worst-case. Table 4.4 provides

the results of the worst-case for the two orbits with the Floquet mode technique.

In comparison with Table 4.2, this technique requires less fuel consumption, relax-

ing the SK frequency. But this control law is designed to counteract departures only

along the unstable direction of the orbit’s manifold. The drawback of this approach is

that every error introduced by the navigation on the other components of the orbit’s

manifold is never counteracted. It produces the resulting trajectory to become a quasi-

periodic motion that jumps onto different orbits of the same family of the reference

orbit. This drift accumulates every time a maneuver is executed (as a maneuver is

necessary to counteract the departure on the unstable direction for a long time span).

Therefore the error from the target orbit is far larger than the one obtained with the

first control law, in particular for the low SK interval cases. The strength of the Flo-

quet mode technique is that it allows to give analytical insight on the control of the

instability of the LPOs, reducing the control’s consumption and load. But it cannot

be used as a stand-alone control law for a high time span, and periodically correction

maneuvers must be undertaken to insert the spacecraft back to the stable manifold of

the reference orbit, as it shown in the plot of Fig.4.166, which has been taken from the
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Table 4.7: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Stochastic analysis. Mean performance: ∆v/day, state error from target. Further row
indicates 3x-standard deviation of the performance (percentage with respect to mean perfor-
mance above). Orbits 1 and 2.

\ Frequency SK 
O.Sh l h l.Sh 2h 

Othe r \ 
0.15& m/s 0.116 m/s 0 .163 m/s 0.436 m/ s 

5.90m 14.5 m 41.1m 259m 

Inaccuracy Position lm 5.52 mm/s 9.34 mm/s 23.3 mm/s 106 mm/s 
lnacc. Velocity lmm/s 0.235 m/s 0.167 m/s 0 .233 m/s 0.635 m/s 
Inaccu racy 11v O.Smm/s 0.024,5 m/s {16%) 0.058,4 m/s {51%) 0.091,2 m/s {56%) 0.664 m/s {152%) 
Threshold t:.v lmm/s 2.47 m (42%) 8.40 m {58%) 39.3 m (96%) 551 m (213%) 

1.93 mm/s {35%) 5.79 mm/s {62%) 25.7 mm/s {110%) 211 mm/s {199%) 
0.034,8 m/s {15%) 0.084,4 m/s {50%) 0.136 m/s {58%) 0.973 m/s {153%) 

\ Frequency SK 
O.Sh 1h 1.5h 2h 

Other\ 
0.162 m/ s 0.119 m/ s 0.236 m/s 0.517 m/ s 

6.46m 14.5m 49.5 m 187m 
Inaccuracy Position l m 5.91 mm/ s 10.1 mm/s 35.9 mm/ s 106 mm/s 
lnacc. Velocity lmm/s 0.238 m/ s 0.158 m/ s 0.312 m/s 0.694 m/s 
Inaccuracy D.v O.Smm/s 0.041,9 m/ s (26%) 0.035,9 m/ s (30%) 0.086,9 m/ s (37%) 0.195 m/ s (38%) 
Threshold tJ.v lmm/s 6.17 m (95%) 15.8 m (110%) 64.2 m (130%) 167m (89%) 

5.00 mm/s (85%) 12.2 mm/ s (121%) 48.8 mm/ s (136%) 107 mm/ s (101%) 
0.058,0 m/ s (24%) 0.043,7 m/ s (28%) 0.117 m/s (37%) 0.292 m/ s (42%) 

Table 4.8: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Stochastic analysis. Max performance: ∆v/day, state error from target. Orbits 1 and
2.

-
\Freq uency SK 

O.Sh 1h 1.5h 2h 
Other\ 

Inaccuracy Position lm 0.170 rn/s 0.139 rn/s 0.210 rn/ s 0.913 rn/s 
lnacc. Velocity l mm/s 7.81 rn 20.1 rn 61.1 rn 607 rn 
Inaccuracy dv O.Smm/s 6.59 rnrn/s 13.5 rnrn/ s 39.4 rnrn/s 0.239 rnrn/ s 
Threshold ilv l mm/s 0.250 rn/s 0.199 rn/s 0.301 rn/ s 1.33 rn/ s 

-
\ Frequency SK 

O.Sh 1h 1.5h 2h 
Other \ 

Inaccuracy Position l m 0.183 m/s 0.140 m/s 0.279 m/s 0.676 m/s 
lnacc. Velocity lmm/s 11.2 m 27.3m 91.9 m 272m 
Inaccuracy D.v O.Smm/s 9.79 mm/s 20.3 mm/s 68.9 mm/s 169 mm/s 
Threshold D.v lmm/s 0.264 m/s 0.184 m/s 0.373 m/s 0.940m/s 

technique’s authors in [143].

Due to the low time-scale of the LPOs of Phobos, this second technique, even if pos-

sible and valid for particular and single SK maneuvers, is not suitable for exploitation

in the further sensitivity investigation on the GNC requirements for the LPOs. The

consumptions are of the same order of magnitude of the first technique, but even if

they are lower, correction maneuvers would augment the cost to be further similar to

the consumptions of the first technique.

4.4.5.4 Further Sensitivity Investigation

The Target Point technique is used to conduct further analyses from the one of the

JPL on the feasibility of the LPOs with respect to the GNC performances. The first

orbit is considered with a deterministic analysis. Table 4.5 shows the dependency on

the inaccuracy of the velocity for a single central case of the previous tables, where

the cut-off is now considered when ∆v is less than twice the related inaccuracy. Table

4.6 shows the dependency on the inaccuracy of the ∆v for a single central case of the

previous tables, where the cut-off is considered as above.

This analysis probes the sensitivity of the SK from these two inaccuracies with respect

to the one from the inaccuracy of the relative position. The results indicate that the

sensitivity is the same for a ratio roughly of 1m : 1mm/s for both cases. This is useful

to quickly know, from a set of inaccuracies on position, velocity, and ∆v, which one is

the driver for the SK performances. Regarding the effect of the ∆v cut-off, this has

been tested but it is of minor importance. If the cut-off is much more larger than the

inaccuracy of the velocity and ∆v, the practical result is the same that lowering the

SK-frequency, since a maneuver will be missed.

Finally, a brief stochastic analysis is undertaken. With the same conditions and
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control law of Table 4.2, where the errors are always considered with random direction,

their magnitude is now varied and computed from the related inaccuracies interpreted

as 1σ. The simulations have been only repeated 9 times for a 2 days span to average

the outcomes. The mean performances are presented in the first row of Table 4.7.

The second row reports the 3x-standard deviations, and its percentage with respect to

the mean value above. The fourth row within a cell expresses the ∆v evaluated from

separate 3-axes contributions. The maximum values are provided in Table 4.8. As

expected, either considering the inaccuracies as 3σ and taking the output’s maximum

value in a stochastic analysis, or considering the separate 3-axis contribution, furthers

moves the results of the consumption towards the ones of the JPL. Recall that the

results depend also on the type of reference orbit, and the first one is probably more

stable than the one used in the JPL paper, while the second could be similar. The row

of the max values with 3-axis contribution in Table 4.8 is the nearest to the respective

row of the JPL values in Table 4.3. In particular it is worth to emphasize that now the

consumption is not linear with the SK-frequency, but has a minimum for 1h. This is a

common result and in particular is coherent with the JPL.

It is worth to underline the growth of the performances’ uncertainty with respect

to the SK intervals for only the first orbit, maybe due to the low number of samples.

However, for both orbits the uncertainty is more sensible for the max position-velocity

than for the consumption.

4.4.5.5 Trade-off with Navigation

A survey has been conducted on the best performance of the deep-space navigation

technologies. This is first to assess the precision of the state estimation (to check if

is coherent with the inaccuracies used in this station-keeping analysis), and second to

consider if there is a trade-off with the time required to obtain such estimation with

the best precisions (to check also the coherency of the SK frequency used in this SK

analysis). These performances must be considered downstream the filtering process.

Ground-based radiofrequency navigation is probably avoided for such close-range and

fast-speed LPOs, because it is not precise for close relative motion and must consider

also the Earth-Mars round-trip light-time (medium 24min, max 42min). Thus, only

the bottom-right corners of the tables would be feasible for this type of navigation, but

this zone is expensive, very imprecise and even unsafe for some orbits.

Therefore, optical navigation for the relative motion, and probably fully autonomous,

is required for Phobos’ LPOs. The techniques used are line-of-sight observations to

determine the Phobos’ barycenter at large distances, and landmarks navigation with

NPAL camera23 for approach and landing. The latter should be the necessary since

Phobos’ figure at the LPOs’ altitude is far from a sphere. Optical measures are then

combined with the altimeter (which is very precise, with errors less than 1m).

23The required camera in [144] has 25◦ × 25◦ FOV, 1024× 1024 pixels, CCD.
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Unfortunately specific information on optical navigation performances is not avail-

able with detail in the literature. Furthermore, such close relative motion is not usual,

and space missions to asteroids and comets have different time-scales. The current

Astrium documentation on Phootprint [144] has not considered LPOs, thus navigation

sizing has not been probed for them. An indication could be given by the errors on the

landing sequence’s initial condition, which is about 5m and 15mm/s (1σ). But these

values rely on ground-based navigation, thus performance are poor and time required

high: 2.5h are speculated to be required by ESOC for final orbit determination to start

the descent from hovering, but this has not been confirmed.

A study in JPL [145] investigated the performance of various filtering techniques

for autonomous optical landmarks navigation. And they are tested for close relative

motion (20km) around a small-body (Eros). The only mismatch is that the analysis is

carried out with a large-view camera (35◦ × 35◦, 512 × 512 pixels, CCD), thus results

could be at least 10 times worse. The performances achieved are mean accuracies of

200m (max 1km) in relative position and 50mm/s (max 500mm/s) in relative velocity.

Another paper from JPL [146] suggests AutoNav would provide accuracies of 3m and

20mm/s. Regarding the time, translational state’s estimation is provided at incompa-

rable rate with respect to orbital times (1Hz), and the simulation of JPL around Eros

is conducted with an update of the image every 17min.

A study in GMV [147] assessed GNC requirements for QSOs and hovering around

Phobos. They can have precisions of 5m and 5mm/s with ground-based navigation.

The impact of operational delay is assessed, but no indication is given due to the fact

this is not a constraint for QSOs. Finally GMV assessed the capability of landmark op-

tical navigation, and provides the geometrical estimation precision in terms of altitude

and camera’s FOV (1024×1024 pixels, CCD). For the LPOs’ altitude, less than 30m are

feasible with any wide camera, and to improve ground-based performance FOV< 10◦

is required, reaching errors of < 1m for FOV= 2◦.

In conclusion, with an appropriate camera and current filtering techniques, au-

tonomous optical navigation should provide precisions between [1-20]m and [0.5-5]mm/s

(1σ), with maneuver frequency at least every 30min. Radiofrequency navigation could

achieve the same worse performances, but with time required of 3h.

4.4.5.6 Conclusions

The feasibility of the Phobos’ LPOs probed in this analysis should therefore be con-

strained to two cases.

• 1st case (orange): autonomous optical navigation: the outcomes of the station-

keeping at the center-left side of the tables24.

24Obviously also the right side is achievable, but it will be just indicated as inappropriate since no
sensor’s constraints on the time update have been risen. However, relaxation of the time could be
required to allow the spacecraft to perform particular operations, for example telecommunications: if
the antennas are not steerable, the spacecraft must rotate to provide the required pointing, and this

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

245 Zamaro Mattia



Libration Point Orbits

Table 4.9: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target Point
control. Conclusion after trade-off with navigation subsystem for the LPOs around Phobos.
Values to be considered as order of magnitude.

\ Frequency SK 
O.Sh lh l.Sh >2h,<3h 

ln~""'Jracy ,, Av\ 

O.lm-O.lmm/s-O.lmm/s NAvailab NAavailab NAvailab NAvailab 

0.2 mts 
lm-lmm/s-lmm/s Sm NAappropr NAvailab NAvailab 

5 
,, 

lm/s 2 m/s 
>5 m/s 
BOOm 

10m-10mm/s-10mm/s 20m Nappropr 200m 
800mm/s 

20 mm/s 200 mm/s 
or~ 

100m-100mm/s-100m/s NAvailab Navailab Unsafe Unsafe 

• 2nd case (green): ground-based radiofrequency navigation: the bottom-right cor-

ner of the tables, which seems unfeasible for more unstable orbits (like the second

orbit): if used, it requires accuracies of 10m/10mm/s and frequencies shorter

than 2h ground-processing (which is at net of the light-time).

The trade-off with the navigation is therefore the driver of the feasibility study of the

LPOs around Phobos, and this is summarized in Table 4.10. This could have already

been hinted from the simple trade-off analysis in section 4.1.3.2.2.

Therefore Phobos’ LPOs require either:

• 1st case: autonomous navigation (∆v= [0.2− 1]m/s/day)

• 2nd case: optical measures to help the ground-processing to improve performance

above (∆v= [2− 5]m/s/day).

The advantages from the current observation scenario planned for Phootprint [144],

which is a sequence of fly-by and hovering, are:

• the observation capabilities (low altitude, long time) over the sub-Mars and anti-

Mars faces of Phobos (where landing site seems currently constrained for the

mission’s mass budget)

• the fuel consumption savings.

However, the 1st case is not allowed by ESA policy25, and requirement for the Phoot-

print mission is that no autonomous absolute navigation shall be allowed. Absolute

navigation refers to the estimation of the relative state of the spacecraft with respect

to Phobos. Absolute navigation sensors (which is, a narrow and precise nadir-pointing

NPAL camera) could be used (and should be necessary) but they must be processed

on-ground. However, autonomous relative navigation is allowed. Relative navigation

refers to the estimation of the relative state of the spacecraft with respect to a previous

absolute measure. In particular, from Astrium documentation, UFS3 filtering allows

would stop the acquisition of the image with a fixed camera.
25This policy is due to the failure of the autonomous absolute navigation in the Hayabusa mission.
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Table 4.10: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Target
Point control. Deterministic analysis. Performance: ∆v/day, state error from target. Orbits 1
and 2.

\ Frequency SK 
1.5h 2h 2.5h 3h 

Inaccuracy pos-vel-ll.v\ 

2.53 m/ s 3.70 m/s 
5m-10mm/ s-1. 7% 220m 626 m N/A N/A 

133 mm/s 321 mm/ s 
3.57 m/ s 5.28 m/s 

10m-10mm/s-1.7% 293m 784m N/A N/A 
189 mm/s 387 mm/ s 

\ Frequency SK 
1.5h 2h 2.5h 3h 

Inaccuracy pos-vel-t.v\ 
7.14 m/ s 

5m-10mm/ s-1. 7% 425m N/A N/A N/A 
308 mm/s 

11.3 m/ s 
10m-10mm/s-1.7% 675 m N/A N/A N/A 

493 mm/s 

Table 4.11: Station-keeping of the LPOs in the Mars-Phobos ER3BP-GH. Lyapunov
multipliers of the two orbits.

\ Frequency SK 
l h 1.5h 2h 2.5h 3h 

orbit\ 
1 6.5 l b 4 L. lUI L. / 4 

2 8.4 24 70 204 592 

to reduce integration of velocity errors to be only 5%. Ground absolute navigation

provides estimation errors (1σ) of 5m and 15mm/s (for Rosetta in 8h, for Phootprint

it is supposed to be provided in 2.5h). Thus, this would augment the position error

of 3m every 1h. However, also autonomous relative navigation cannot be used for the

purpose of controlling the LPOs, because the spacecraft still needs an absolute mea-

sure from ground. This again cannot be determined by propagation from ground, if the

spacecraft autonomously controls itself in the same corresponding time window. Thus,

the 2nd case can only be conducted totally on-ground.

Finally, the approach of the feasibility study has been conducted in parallel to JPL

analysis, with fixed inaccuracies (deterministic or stochastic) for estimated state and

∆v. But the latter is probably not worthy to be considered in such sense. Error of

∆v depends on thrusters realization, which is indicated in Astrium documentation to

be 5% as 3σ, thus 1.7% following the approach used so far. Now, the ∆v of the single

maneuver depends from the SK frequency. With the fixed inaccuracy of ∆v used, the

center of the tables is mostly coherent with the mentioned relative inaccuracy of ∆v,

with the upper left conservative. The problem is in the right and lower part, where

∆v inaccuracy is constrained. This should be probed again and this is done focusing

on the part of interest, which is the 2nd case of the trade-off with the navigation. For

this purpose, deterministic analysis is used (recall this is the worst-case scenario) to

compare results of Table 4.126.

The outcomes are presented in Table 4.10. The error of ∆v worsens the performances

and the limit of the minimum ground response time moves further left. The first orbit

can be realized with 2h, but in an extended time simulation this seems to be guaranteed

only for 1− 1.5 days. The 1.5h frequency case is safe for both orbits whatever the time

span is.

In conclusion, the situation is now critical for the feasibility of Phobos’ LPOs:

26The relation with the stochastic output can be hinted by a ratio comparing the past analyses in
Table 4.7-4.8.
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• 1st case: not allowed by ESA

• 2nd case: time required for ground processing (and light travel) is the major

driver and looks not possible.

Indeed, the Floquet multiplier of the two orbits analyzed is respectively 1,200 and 2,100,

which is a Floquet exponent of 2.26 and 2.61. The related Lyapunov multipliers of the

guidance real error during the maneuver interval are shown in Table 4.11. Considering

that the navigation error from ground could be optimistically 5 − 10m (1σ), and the

realization error of the control system would make the total real error double, just from

this latter table it really seems unfeasible using ground-in-the-loop if this requires more

than 2h (more stable LPOs) or 1.5h (more unstable LPOs), because the spacecraft in

the worst-case would drift of more than 3km (3σ) on an orbit whose min altitude is

less than 3.5km.

In conclusion, the LPOs around Phobos are:

• not generally feasible from ground, unless using the more stable and distant from

Phobos, however the required time response from ground would be at a level

never done before.

• feasible with autonomous GNC with state-of-the-art optical navigation, but not

allowed by ESA, however a mission landing on Phobos necessary needs the final

stages of the descent to be performed autonomously.

4.4.6 Natural Landing and Take-off

The IMs of the LPOs in the Mars-Phobos ER3BP-GH have been computed in sec-

tion 4.3.5. The IMs are usually exploited as the natural low-energy transfers between

different bodies, exploiting the nB dynamics. Since the LPOs are close to the moon,

all the inside branch of their IMs intersect Phobos. This is a unique feature of the

Mars-Phobos 3BP, because the natural trajectories, at low energy, to transfer between

the SOIs of the two primaries in the Sun-Earth and Earth-Moon systems fly widely far

from the bodies. In [68], a selection of the smallest planar Lyapunov orbits whose IMs

naturally intersect the smallest primary of the Sun-Earth and Earth-Moon systems, and

provide whole-coverage along the body’s orbital equator, has been undertaken. These

orbits are very large and so require high energy relative to the one of L1−2, and the

analysis undertaken is 2D. The same approach could be extended considering impulsive

propulsion to modify the IMs at the starting point at the LP [68] or along a smaller

orbit, as well as including low-thrust continuous propulsion to modify directly the LPO.

Instead in this unique case, a spacecraft could land or take-off from Phobos using the

gateway of small-energy LPOs and with no need of thrust. This section summarizes

the possibility offered by the IMs of the ER3BP-GH to provide natural landing and

take-off trajectories to and from the 3D surface of Phobos, modeled with the high-order

shape harmonics model. Examples of these tubes are shown in Fig.4.167.
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Figure 4.167: IMs of the LPOs in the Mars-Phobos ER3BP-GH. On the left, inside
branch of the tube of unstable IMs from the families of 3-tori LPOs. On the right, inside
branch of the tube of stable IMs from the families D of 2-tori LPOs.

4.4.6.1 Landing on Phobos

The landing problem. The landing phase of a space mission is usually identified with

the name EDL, which stands for Entry-Descent-Landing. The outline of a general EDL

segment is made up of the following phases.

• 0: initial orbit.

• 1: de-orbiting trajectory: in case phase 0 is not an open orbit captured toward

the body, there will be a maneuver to produce such impacting orbit.

• 2: descent: trajectory that it is not anymore an orbital dynamics problem (the

gravity field becomes mainly vertical) which is now dealt by the GNC subsystem:

atmospheric drag and heating are major design drivers, landing site starts to be

targeted.

• 3 effective landing: very last moments related to the touch-down and the related

systems’ deployment.

In particular, the examples of the traditional descent phase are presented below.

• ballistic descent strategy. For an unmanned spacecraft. The flight-path angle

could be also steep for a completely uncontrolled phase 2.

• gliding descent strategy. For a manned spacecraft, where the flight-path angle is

kept flat.

• skipping descent strategy. There is close-loop control of the spacecraft during

phase 2, whose objective is to slow down the descent and therefore increment the

range of possible landing sites.

The complete EDL schedule is used for the problem of the effective entry in a celes-

tial body with atmosphere. For a minor body, the transition from phase 1 to phase 2
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Figure 4.168: IMs of the LPOs in the Mars-Phobos ER3BP-GH. On the left, outer
boundaries of the region of the possible landing sites through the IM of all the families of tori
around both LPs. On the right, outer boundaries of the region of the possible take-off sites
through the IM of all the families of tori around both LPs. Families’ colors are coherent with
Fig.4.58, with red associated to the global family AB.

is smoother and faster, because phase 2 is not driven by atmospheric actions. Thus,

despite the closed-loop control of the GNC would be activated, phase 1 and 2 can be

treated together still as an orbital mechanics problem that targets the aimed arrival

site. The forced motion will incrementally increase its duty cycle as long as the alti-

tude decreases, to assure the spacecraft is controlled in a funnel-like space around the

reference landing profile.

For the case of Phobos, in this thesis the IMs are proposed as natural de-orbiting

trajectories that evolve from the LPOs (that represent phase 0), since they are the

asymptotic separatrices of their center manifold. Since the perturbation of the GHs

grows exponentially as the proximity to Phobos increases, the globalization of the man-

ifolds, using a low-order series expansion, produces a not very accurate approximation

in the last stages of the descent and landing (and first stages of the take-off). This is a

common problem for any lander, where the final maneuvers are mostly managed by the

GNC subsystem to satisfy the performances required. Results in this section should

therefore be considered as an estimation of these performances at the touch-down and

launch, more refined than the CR3BP, to lower the load on the GNC subsystem in

the real scenario. Therefore, the IM final condition is considered as an input to the

final descent undertaken by the GNC subsystem. In other terms, the trajectory of the

natural IMs could well be a convenient starting guess for an optimal control software

that computes the profile of the forced motion.

Performances of the IMs of Phobos. The inside branch of the unstable IM of the

family D of 2-tori, and of the families AB and C of 3-tori of the ER3BP-GH, has been

computed in section 4.3.5.1 up to the intersection with Phobos’ surface modeled with

the high-order shape harmonics model.

The region of possible landing topographical sites enabled by all the families of LPOs

is provided in Fig.4.168. This area is restricted to the collinear-faced sites on Phobos,

due to the collapsing effect of the SOI. In particular, large tori within the families AB
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Figure 4.169: IMs of the LPOs in the Mars-Phobos ER3BP-GH. Performances of the
trajectories that provide the minimum incidence at the touch-down from all the families of tori
around both LPs, as a function of the longitude and latitude of the landing site on Phobos
surface modeled through shape harmonics series expansion: landing velocity magnitude, angle
of incidence, downward vertical velocity.

and C can extend the region in both longitude and latitude, while the POs and the

QPOs of the branch D are more restricted. Also the region of the big crater Stickney

is accessible with both stable and unstable IMs of large QPOs of the families AB and

C.

The selection of the optimal landing trajectory, for a given landing site, could be

driven by several considerations. Apart from arrival site and time of flight, the perfor-

mances are given by the velocity at the touch-down: total magnitude, angle of incidence

and vertical component. The desired trajectory would minimize the longitudinal con-

trol as well as yield a soft landing.

Minimizing the incidence (tangential landing) and the vertical component has the

same effect, as presented in Fig.4.169-4.170. Minimizing the vertical component is use-

ful for minimizing the impact on the ground. The GNC will then be required to brake

the spacecraft horizontally to verticalize the final stages of the descent, starting from

a small vertical velocity and so facilitating the shock absorbtion at touch-down. In

particular an indicative figure for the shock force could be derived from the law of con-

servation of momentum, considering a time interval for the impulse of 0.1s (inversely

proportional to the rigidity of the absorbtion structure). Therefore, numerically the

shock force in terrestrial g is approximately equal to the vertical velocity in m/s. Thus,

it is possible to land naturally with a tangential path, which is arrive with vertical ve-

locities even less than 0.1m/s. The total velocity instead ranges in 3− 8m/s.

Instead, minimizing the velocity magnitude provides the outcomes of Fig.4.171. An

extended area is reachable with a total velocity of 3 − 5m/s, with incidence 30 − 60◦,

and vertical component 2− 3m/s.

Finally, a classical landing would aim to arrive perpendicular to the local slope. This

should also be required by the autonomous navigation tracking of the landing site.

Thus, maximizing the incidence provides the outcomes of Fig.4.172. An extended area

is reachable with incidence of 60−90◦, total velocity 3.5−5m/s, and vertical 3−5m/s.
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Figure 4.170: IMs of the LPOs in the Mars-Phobos ER3BP-GH. Performances of the
trajectories that provide the minimum vertical velocity at the touch-down from all the families
of tori around both LPs, as a function of the longitude and latitude of the landing site on Phobos
surface modeled through shape harmonics series expansion: landing velocity magnitude, angle
of incidence, downward vertical velocity.

Figure 4.171: IMs of the LPOs in the Mars-Phobos ER3BP-GH. Performances of the
trajectories that provide the minimum velocity magnitude at the touch-down from all the
families of tori around both LPs, as a function of the longitude and latitude of the landing
site on Phobos surface modeled through shape harmonics series expansion: landing velocity
magnitude, angle of incidence, downward vertical velocity.

Figure 4.172: IMs of the LPOs in the Mars-Phobos ER3BP-GH. Performances of the
trajectories that provide the maximum incidence at the touch-down from all the families of tori
around both LPs, as a function of the longitude and latitude of the landing site on Phobos
surface modeled through shape harmonics series expansion: landing velocity magnitude, angle
of incidence, downward vertical velocity.

4.4.6.2 Take-off from Phobos

The inside branch of the stable IM of the family D of 2-tori, and of the families AB

and C of 3-tori of the ER3BP-GH, has been computed in section 4.3.5.1 up to the

intersection with Phobos’ surface modeled with the high-order shape harmonics model.

The region of possible take-off topographical sites enabled by all the families of LPOs

is provided in Fig.4.168. The considerations are specular to what has been said for the

landing in section 4.4.6.1.
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Figure 4.173: IMs of the LPOs in the Mars-Phobos ER3BP-GH. Performances of the
trajectories that provide the minimum velocity magnitude at the launch from all the families of
tori around both LPs, as a function of the longitude and latitude of the departure site on Phobos
surface modeled through shape harmonics series expansion: landing velocity magnitude, angle
of incidence, upward vertical velocity.

The selection of the optimal take-off trajectory, for a given departure site, is simpler

than the landing. The driver is to minimize the escape velocity (total magnitude). The

results are provided in Fig.4.173. An extended area allows to depart with an escape

velocity between 3.5− 5m/s.

In conclusion, the IMs of the LPOs of Phobos provide highly efficient natural

trajectories that are able to land tangentially, facilitating a soft controlled

touch-down, and depart with a very small escape velocity, less than 30%

of the 2B ∆v value, for an extended region of topographical collinear-faced

sites on Phobos. These trajectories have the potential to be exploited for future

sample-and-return missions to this moon, where free-fall is required to avoid contami-

nation of the sample’s soil by the exhaust plume of the thrusters or rockets’ nozzle.

4.4.7 Extension of the LPOs and IMs to Model Natural Impacts on

the Surface and the Dust Dynamics around Phobos

The LPOs and IMs presented in this chapter have been applied to model the motion

of a spacecraft about Phobos. According to the analysis of the orbital perturbations in

section 2.4, SRP is not significant if the spacecraft does not use solar sails. SRP becomes

important also in the well-known photo-gravitational 3BP for the orbital dynamics

of dust grains around the secondary body, because the perturbation aP is inversely

proportional to the grain radius, as was discussed about Eq.2.43. This is very important

for an asteroid, where the SRP could be higher than the Sun 3B perturbation, and affect

even a spacecraft. The ratio aP /a� with the full Solar gravity magnitude a� is known

as the lightness number λ. An analysis on the order of magnitude of the physical

characteristics leads to an interesting outcome for the Mars-Phobos system.

The objective here is to study the transition from a classical CR3BP to a photo-

gravitational CR3BP. This means to identify the conditions that make the SRP a

significant force in the modeling of the dynamics around a body of the Solar System.

The transition between the two models is weighted referring λ to the second massive
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body gravity, which is aP /a2. The dust grain is modeled as a sphere as in Eq.2.43, with

common physical values27. Thus λ, for a given couple of primaries in the Solar System,

is now a function of the grain radius and the distance from the secondary. Assuming

a threshold λ = 1% to identify when the SRP becomes relevant enough to be included

in the modeling of the dynamics, the transition grain radius is computed as a function

of the distance from the secondary r2. This is summarized in Eq.4.60.

rgrain =

3
4ρgrain

1
clight

q�,ref

(
dref
‖r�‖

)2 [
(1− crs) + 2

(
crs + 1

3crd
)]

λrefa2 (r2)
(4.60)

This radius does not change order of magnitude inside the SOI of Phobos, due to

its small altitude over the body. Its value is quite low: 20µm at the Hill’s radius, and

9µm on the mean surface28. As a difference, if Phobos had been an asteroid orbiting

the Sun at the Sun-Mars distance, its gravity field at the LPs would have been 10,000

times lower, so the equivalent dust grain radius that requires the transition to a photo-

gravitational problem has risen to 20cm.

Therefore, the LPOs and IMs of the ER3BP-GH obtained in this chapter, that

do not consider the SRP, in addition to common spacecraft, also provide a good

approximation for the natural motion of dust grains down to 10−5m scale.

This is definitely a broad range considering the common distribution of minor bodies’

regolith (m − 0.01nm). So for Phobos, only very small dust grains require the photo-

gravitational model to be used. This means that the IMs of the ER3BP-GH could be

the trajectories followed by a large dimensional range of meteoroids that have impacted

Phobos, as well as clusters of regolith that left its surface29. In this sense, Fig.4.168

highlights that the medium-small craters are densely accumulated on the two collinear

sides where the IMs of the LPOs impact or leave the moon, and their boundaries link

neatly together all the larger craters, in particular Stickney and the craters on the

Northern sub-Mars sector. With the help of the map in Fig.1 of [15], it is immedi-

ately noticeable that most of the characteristic grooves of Phobos run parallel to the

boundary of the regions of landing and take-off sites computed. In particular, recall

that only the IMs of the practical LPOs that do not intersect Phobos were considered

in this chapter, but larger orbits (which refer to higher energy transferred material)

provide additional impact trajectories themselves. Their footprint will correspond to

the pattern of the remaining grooves, since they both develop farther concentrically on

the L1 and L2-sides of the moon.

The study of the transition between CR3BP and photo-gravitational CR3BP

through Eq.4.60 is extended for all the major couples of primaries of the Solar Sys-

tem. The transition grain radius is reported in Fig.4.174, and is evaluated at the

27Specular and diffusive reflectance coefficients both set to 5%, and density to 3, 000kg/m3.
28For Deimos, these values are respectively 0.25mm and 20µm.
29A study of the impacts provided by the transit trajectories in the Earth-Moon system is undertaken

in [148].
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Figure 4.174: Transition from CR3BP to photo-gravitational CR3BP of the 3B cou-
ples in the Solar System. Equivalent dust grain radius to obtain a lightness number of 1%
relative to the second massive body’s gravity reference. Plain lines correspond to a reference at
the related Hill’s radius, dotted lines correspond to a reference at the secondary body’s mean
radius. Major moon and asteroids are considered.

extreme boundaries of each secondary’s SOI, which is at its Hill’s radius and at its

mean radius30. Asteroids, planets and small moons of the outer planets have the high-

est values of the dust radius at the Hill’s sphere boundary, because the size of the

SOI is large: dust around L1−2 of these systems in the range of m − mm must be

modeled with a photo-gravitational problem. In contrast, the transition grain radius

massively decreases at decreasing distance from the secondary, and only around small

bodies the dust grains can compete with the body gravity and float in space. The

difference between the two extreme locations reduces when the SOI is comparable with

the secondary body’s dimension, which are the few peculiar cases that have already

been highlighted in section 2.3.4. In this sense, it is remarkable that the two Martian

moons have the highest values of transition grain radius on the mean surface among

the bodies considered in all the Solar System. This means that Phobos and Deimos

could experience rings of dust clouds of micrometer scale around them [17] and some

authors theorize that dust dynamics on the surface is responsible for the origin of the

grooves of Phobos [14, 15, 18]. Following this, it is possible to propose the idea that the

footprint of IMs and large LPOs could have originated in the past the craters and the

grooves of Phobos, and that current dust clouds of grain dimension over 20µm could

correspond to the LPOs presented in this thesis.

30For secondary bodies with an atmosphere, the transition grain radius at the surface is not valid
due to the effect of the drag perturbation.
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Chapter 5

Artificial Orbits with Low-Thrust

in the Mars-Phobos 3BP

This chapter investigates the opportunity provided by the inclusion of a propulsive

acceleration in the analysis of the orbital dynamics of a spacecraft around Phobos.

This additional acceleration term in Eq.2.1 is considered to be continuous and with

low-thrust. Thus, it is usually provided by a solar electric propulsion system (SEP).

The related orbits are referred to as artificial, because they are not possible naturally.

The inclusion of low-thrust is first analyzed in this chapter with the case of a con-

stant acceleration profile. This allows to derive artificial equilibria, such as artificial

equilibrium points and vertical-displaced circular orbits, that will be presented respec-

tively in section 5.2 and section 5.3. Furthermore, the possibility of hovering around

the artificial equilibria is considered in section 5.4, by realizing artificial Libration Point

Orbits. In conclusion, the case of artificial Martian Formation Flying with respect to

Phobos is discussed in section 5.5.

5.1 Rationale of Low-Thrust Artificial Orbits around Pho-

bos

The two peculiarities of the Mars-Phobos system introduced in section 2.3.2 lead to

an important perspective, that will be recurrently used in this and in the following

chapter. As a result of the combination of Phobos’ low gravity and the collapse of its

SOI, the gravity pull of Phobos is still small ([1mm/s2-50µm/s2]) at the distances used

in common interplanetary spacecraft operations ([10-100]km altitude). This could be

inferred also from the analysis of the orbital perturbations of section 2.4. Thus, in

the inertial frame centered on Mars and out of Phobos’ SOI, the natural trajectories

are similar to slightly perturbed Keplerian orbits around Mars, close to Phobos’ orbit.

Original Keplerian orbits would be exactly tracked artificially by compensation of Pho-

bos’ gravity, which could be feasible with a low-thrust propulsion system even for large

spacecraft. The reduction to a Keplerian perspective, in the framework of the relative
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motion, implies that the mission design at such distances could be undertaken using

the same approach of Formation Flying (FF). This means that the osculating orbit of

the secondary body of the R3BP (in our case Phobos) could be considered as a chief

spacecraft orbiting the primary (in our case Mars), that the third body, which is the

deputy spacecraft in FF (but in our case is the only spacecraft), follows in proximity.

The analysis of artificial trajectories is undertaken adding the propulsive acceleration

aP of Eq.2.1 to the equation of the relative dynamics around Phobos. In particular, the

propulsive acceleration for an artificially maintained orbit requires to be continuous in

time. Thus, to use an artificial orbit for an extended range of time, without consum-

ing a lot of propellant, low-thrust is required. Recall that the SEP Hall/ion thrusters

operate roughly in the medium range of 0.01mN -0.1N , new generation FEEP and col-

loid thrusters provide low-thrust down to 1µN scale, and electrothermal propulsion

(resistojets and arcjets) supplies the higher ranges up to 1N . Over this value, classi-

cal chemical propulsion is required, which could make use of cold gas, liquid, or solid

propellant. It is worth to recall that, to derive the type of thruster or rocket, the level

of propulsive acceleration required by the artificial orbit must be scaled accordingly to

the mass of the spacecraft. In this sense, the range to be considered lies from 100kg for

a medium-size interplanetary satellite, to 100 times larger for a big manned module.

5.2 Hovering Points around Phobos

A simple trajectory for a mission around Phobos is provided by maintaining a fixed

position with respect to its BCBF frame, which is referred to as body-fixed hovering.

With the FF perspective, hovering around Phobos is analogous to a Trailing/Leading

configuration [149].

5.2.1 Equations of Motion

The analysis of the body-fixed1 hovering is undertaken by adding a constant aP to the

equations of motion of the Mars-Phobos CR3BP of Eq.2.13, which will be referred to

as CR3BP-CA, ẋ = fCR3BP−CA(x) = fCR3BP(x) + fCA = Ax +

[
03x1

∇u(q)

]
+

[
03x1

aP

]
aP = |aP| n̂aP

(5.1)

where n̂aP represents the fixed direction of the thrust applied. Recall that to provide

a constant acceleration, the thrust required would slightly decrease along the time by

the effect of the spacecraft’s fuel consumption. However, for SEP and small thrusters,

the specific impulse is 10 times greater than the one of chemical propulsion, so the

1Recall from section 3.3.1 that Phobos’ BCBF frame and 3B frame are approximated to be aligned
with each other.
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propellant burned is just a tiny amount even for very long time spans.

The CR3BP-CA is a conservative dynamical system. It is characterized by a new

effective potential, which is the one of the CR3BP of Eq.2.15 augmented by the linear

potential of the constant acceleration vectorfield fCA (where CCA represents a free-

defined constant). {
ueff,CR3BP−CA = ueff,CR3BP + uCA

uCA(q) = |aP|qT n̂aP + CCA
(5.2)

5.2.2 Artificial Equilibrium Points around Phobos

The aim of hovering at a point is to counteract the natural acceleration of the CR3BP,

sum of apparent and gravity acceleration of primary and secondary (see Eq.2.1).

aP = aA − aG (5.3)

A hovering point can be viewed as an artificial equilibrium point (AEP) of the aug-

mented potential of the CR3BP-CA of Eq.5.2, and it is computed from the related

stationary condition [150, 151].

ueff,CR3BP−CA/q = ∇u−Pq + aP = 0 (5.4)

Thus, the addition of the thrust displaces the natural LPs, and their artificial dynamical

substitutes in the CR3BP-CA are AEPs. To investigate the capability of the propulsion

system, the direction of the thrust is not important, so the approach is to solve the

underdetermined magnitude constraint of Eq.5.4.{
‖∇u−Pq‖ = ‖aP‖
n̂aP(q) = ∇u−Pq

‖∇u−Pq‖
(5.5)

This leads to compute a set of infinite AEPs, which are the iso-surfaces of the first of

Eq.5.5 at the level ‖aP‖ of the propulsion system. The direction required to push is

found explicitly a posteriori with the second of Eq.5.5. The set of AEPs lies around

each natural LP of the CR3BP, as it is displayed in Fig.5.1, that focuses on the L1

planar region for a low thrust level. Fig.5.1 shows also the direction of the thrust re-

quired: note that to displace the LP along the y (and z) axis, the spacecraft should

push coherently along the same direction, while the direction of the thrust is opposite

from the displacement’s direction of the LP along the x-axis. Fig.5.2 shows the pattern

of AEPs for a 100 times upper thrust level. The set of AEPs is an ellipse with the

major axis along the y direction, whereas for heavy propulsion systems the pattern is

distorted to a bean/tadpole shape. For AEPs displaced in the out-of-plane direction,

x-z evolution is similar to the x-y projection.

In summary, the procedure to find the hovering points corresponds to the compu-

tation of the iso-surfaces of the propulsive acceleration, which are called equi-thrust
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Figure 5.1: AEPs around Phobos. Iso-line
for the propulsive acceleration magnitude of
10µm/s2 around L1. The arrows show the
direction of the thrust required. The semi-
major axes of the 3D iso-surface are: 23m-
64m-48m.

Figure 5.2: AEPs around Phobos. Iso-line
for the propulsive acceleration magnitude of
1mm/s2 around L1−2. Phobos mean sphere.

Figure 5.3: AEPs around Phobos. Iso-
surfaces slices of propulsive acceleration mag-
nitude (logarithmic scale) around L1. Phobos
mean sphere.

Figure 5.4: AEPs around Phobos. Iso-
surfaces slices of propulsive acceleration mag-
nitude (logarithmic scale). Phobos mean
sphere.

surfaces. This is summarized in Fig.5.3-5.4 for the case of Phobos, which is represented

with its mean spherical shape. As the magnitude of the propulsion grows, AEPs are

farther displaced away from the five natural equilibrium points of the CR3BP. Despite

their proximity to Phobos, the thrust level required to establish an AEP displacing

L1−2 is very demanding: 1mm/s2 is required for 1km along x. Instead, displacing the

equilateral LPs L4−5 is very economic and effective: in Fig.5.4, they are clearly visible

the two isthmuses arriving close to Phobos along the y-axis, still with very small values

of thrust (1mm/s2). These two isthmuses finally connect with the tadpoles around

L1−2, establishing a ring-like equi-thrust surface around Phobos, that lies on the or-

bital plane. This ring will eventually enclose Phobos, thus establishing AEPs over polar

regions requires high-thrust levels (5mm/s2).
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5.2.3 Stability of the AEPs

The next step in the hovering analysis is to look for the stability of the AEPs [150, 151].

The procedure is to analyze the linearized system of Eq.5.1 for each AEP, thus for every

position around Phobos. This leads to infinite CR3BP-CA, where the constant aP is

different to satisfy Eq.5.3. But since this term is constant for each case, the Jacobian of

the vectorfield fCA is null, and the infinite number of linearized CR3BP-CA share the

same structure of the linearized CR3BP of Eq.2.26. In particular, the 3D Hessian matrix

Hu = u/qq of the gravity potential is the same of Eq.2.27. The only difference is that

the latter must be now evaluated at the current AEP. The linearized stability analysis

requires to compute the eigenvalues of the 6D linearized state-matrix of Eq.2.26, and

for AEPs not aligned along the coordinate axes, the 3D Hessian matrix of the potential

Hu(qAEP ) is no longer diagonal, but full and symmetrical.

The computation of the eigenvalues of the linearized CR3BP in all the position

domain is undertaken first for the planar case, and then for the spatial case. Section

5.2.3.3 discusses the validity of these results in a nonlinear stability analysis.

5.2.3.1 Planar case

The analysis of the stability of the hovering positions is first conducted on the orbital

plane of the Mars-Phobos system, which is where all the natural EPs lie. For the 6D

× 6D Jacobian of Eq.2.26 with a general symmetrical Hessian Hu, evaluated for a

point on the orbital plane, the characteristics polynomial of the linearized system is

the following,

(
λ2 + g(q)

) (
λ4 +

(
2− Tr{Hu}x−y

)
λ2 + det {P−Hu}x−y

)
= 0 (5.6)

where the subscript x-y is used to indicate that only the 2× 2 block of the x-y compo-

nents of the related matrix must be taken into account, and g(q) is the same of Eq.2.27.

The first couple of eigenvalues λ2 = −g(q) is related to the linear stability along the

out-of-plane direction for AEPs on the orbital plane, in the same way it holds for the

natural LPs of Eq.2.29. This couple is stable for all the planar domain, and this is im-

portant to check because otherwise any further analysis would have been meaningless.

The expression for the other two couples of eigenvalues is the following.

λ2 =

(
1

2
Tr{Hu}x−y − 1

)
±

√(
1

2
Tr{Hu}x−y − 1

)2

− det {P−Hu}x−y < 0 (5.7)

To assure that the two couples of planar eigenvalues are both imaginary, three con-

straints must be satisfied.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

260 Zamaro Mattia



Artificial Orbits with Low-Thrust

Figure 5.5: AEPs around Phobos. Stability region in the orbital plane of the Mars-Phobos
CR3BP. L1−2 displayed. Phobos mean sphere.


1
2Tr{Hu}x−y − 1 ≤ 0⇒ 2− g(q) ≥ 0(

1
2Tr{Hu}x−y − 1

)2
− det {P−Hu}x−y ≥ 0⇒

(
1
2g(q)− 1

)2 − det {P−Hu}x−y ≥ 0√(
1
2Tr{Hu}x−y − 1

)2
− det {P−Hu}x−y <

∣∣∣12Tr{Hu}x−y − 1
∣∣∣⇒ det {P−Hu}x−y > 0

(5.8)

By changing the variables from x and y to the couple of distance range from the two

massive bodies of Eq.2.7, one obtains a set of three equations suitable to be computed

with polar coordinates centered on the second massive body (see Eq.5.10).

2|r1|3|r2|3 −m1|r2|3 −m2|r1|3 ≥ 0
9
4m1

2|r2|6 + 9
4m2

2|r1|6 − 2m1|r1|3|r2|6 − 2m2|r1|6|r2|3 + 9
2m1m2|r1|3|r2|3+

−9m1m2 |r1| |r2| ye2 ≥ 0

|r1|6|r2|6 − 2m1
2|r2|6 − 2m2

2|r1|6 +m1|r1|3|r2|6 +m2|r1|6|r2|3+

−4m1m2|r1|3|r2|3 + 9m1m2 |r1| |r2| ye2 > 0

(5.9){
|r1|2 = |r2|2 + 2 |r2| cosϑ+ 1

ye = |r2| sinϑ
(5.10)

The stability region is the intersection of the regions bounded by these curves. The

planar stability region in the orbital plane of the Mars-Phobos system is a thin corona

extending along the Mars-Phobos orbital distance, that comprises the equilateral LPs

and cuts off the three collinear LPs. In proximity of the secondary body, the inner

stability region boundary is distorted to represent a three-leaf clover. The two curves

representing the root and the central petal are related to the third equation of Eq.5.9,

the curve of the flower head is related to the first equation, and the curves of the other

two petals are related to the second equation. The graph is presented in Fig.5.5, and

corresponds with the result obtained in a previous study of the AEPs in the Mars-

Phobos CR3BP [60].
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Figure 5.6: Stability re-
gion of AEPs in the
orbital plane of the
CR3BP, for µ = 10−6.

Figure 5.7: Stability re-
gion of AEPs in the or-
bital plane of the Sun-
Earth system.

Figure 5.8: Stability region
of AEPs in the orbital
plane of the Earth-Moon
system.

5.2.3.1.1 Applications

If we compare the stability region with the equi-thrust curves of Fig.5.4 on the orbital

plane, it can be seen that the planar stability boundary is not too far from Phobos,

starting from 25km (in the petal-head connection border, requiring 1.9mm/s2), 71km

(on the tip of the top and down leaves, 0.4mm/s2) or 81km (along the x-axis, 12mm/s2)

and arriving to 400km (along the x-axis, where the outer boundary lies).

Therefore six attractive positions for medium distance observation of Phobos are

identified: four minimum-distance AEPs, and two minimum-control AEPs. It is re-

markable that these positions are all obtained by the displacement of the equilateral

LPs, and are affordable by current light electric thrusters. Farther trailing/leading

orbits around Mars provide attractive cheap, stable, in-light fixed positions with re-

spect to Phobos at long distances from the moon. All the AEPs available with a

low-thrust level are not stable near the collinear LPs, and AEPs closer to Phobos, used

to maximize the shadowing time and the sky occultation ratio, or perform short dedi-

cated operations, are feasible only with heavy or multiple thrusters, and must take into

consideration in the model also the complete inhomogeneous gravity of Phobos: this

increases the precision, frequency and computational load of the GNC subsystem.

5.2.3.1.2 Relation to other CR3BPs

As a reference, Fig.5.6-5.8 show also the planar stability region evolution for increasing

value of the mass parameter. The first graph shows the region for the value µ = 10−6,

which is significant because for higher values the region of stability loses the three-leaf

clover’s pattern. The following graphs show the orbital plane’s stability region for two

important cases: the Sun-Earth system and the Earth-Moon system. In the first case,

the top and down leaves collapse to the outer curve and the stability region is now made

by three detached domains2. In the second case, the detachment is far more evident.

These are the same results obtained in [63].

2This refers to the space in proximity of the second body, whereas globally the domains are now
two: a big C-shaped opened thin foil, and a smaller one rotated on the opposite side.
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5.2.3.2 3D case

In this section the procedure to derive the stability region of the AEPs in any CR3BP

is extended to the spatial case, extending the analysis of the planar case undertaken in

[63].

The 3D Hessian matrix of the potential Hu is now fully filled in all its components.

However, due to the fact that it is symmetric, and the resulting 6D linear state-matrix

still maintains a sparse structure, it is possible to derive a condensed analytical expres-

sion of the three couples of opposite eigenvalues in terms of the three scalar invariants

of the Hessian matrix I1, I2, and I3. It is worth to note that the procedure presented

in this section could be applied to derive the stability region of any mechanical sys-

tem that describes a relative dynamics in an uniformly rotating frame, and driven by

position-dependent forces. The characteristic polynomial of the 6D linear state-matrix

is the following.

λ6 + (−I1 + 2)λ4 + (I2 + I1 + 1−Hu3,3)λ2 +
(
−I3 − I2 +Hu1,1Hu2,2 −H2

u1,2 −Hu3,3

)
= 0

(5.11)

One introduces some coefficients to simplify the notation. They are derived from the

scalar invariants: A, B and D are strictly real scalars by definition, instead C could be

complex. 
A = I1−2

3

B =
I2+I1+1−Hu3,3

3 −A2

C =
3
√

2
√
D2 +B3 +D

D =
I3+I2−Hu1,1Hu2,2+H2

u1,2+Hu3,3

2 − 3AB2 −
A3

2 = C6−B3

2C3

(5.12)

The characteristic polynomial is now expressed in the following way.

λ6 − 3Aλ4 + 3
(
B +A2

)
λ2 − 2

(
D + 3

AB

2
+
A3

2

)
= 0 (5.13)

Mathematical manipulations make possible to eventually simplify the above expression.

The new form of the characteristic polynomial is constituted by two factors of second

and fourth degree, and the latter shows again a bi-quadratic structure.

(
λ2 −

(
A− B

C + C
)) (

λ4 − 2
(
A+ B

2C −
C
2

)
λ2 +

(
A2 + B2

C2 + C2 + AB
C −AC +B

))
= 0

(5.14)

This implies that the expression of the eigenvalues of the CR3BP-CA is analytically

defined.
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λ =



±
√
A− B

C + C

±

√(
A+ B

2C −
C
2

)
−
√(

A+ B
2C −

C
2

)2 − (A2 + B2

C2 + C2 + AB
C −AC +B

)
±

√(
A+ B

2C −
C
2

)
+

√(
A+ B

2C −
C
2

)2 − (A2 + B2

C2 + C2 + AB
C −AC +B

)
(5.15)

The inner square root of the last two couples of eigenvalues of Eq.5.15 can be further

simplified, giving an imaginary term to the expressions.

λ =


±
√
A− B

C + C

±
√(

A+ B
2C −

C
2

)
−
√

3
2

(
B
C + C

)
i

±
√(

A+ B
2C −

C
2

)
+
√

3
2

(
B
C + C

)
i

(5.16)

Recall that A, B, and D are strictly real scalars. The linear Lyapunov marginal stability

for the AEP requires all the eigenvalues to be purely imaginary, which is their squares

to be real and negative. From Eq.5.16, C MUST be a complex number, with real and

imaginary part both not null, to assure that the three squares are real and satisfy this

first necessary condition for stability. With the notation used to represent phasors,

Eq.5.16 could be rewritten in a convenient symmetrical form in the complex field, as

presented in Eq.5.17.

λ =


±
√
A+ B

C e
πi + Ce0i

±
√
A+ B

C e
− 1

3
πi + Ce−

2
3
πi

±
√
A+ B

C e
1
3
πi + Ce

2
3
πi

(5.17)

Using the phasor’s notation also for C, which is C = |C|eθC , it is straightforward

to impose the first necessary condition for stability, which is that each of the three

arguments’ imaginary parts shall be null. This happens for different pairs of opposite

phases for each eigenvalue, but also for one shared and simple relationship between B

and C. This is the necessary condition for real eigenvalues.

λ2 ∈ R⇒


θC = 0 ∨ θC = π ∨B = −|C|2

θC = 2
3π ∨ θC = −1

3π ∨B = −|C|2

θC = −2
3π ∨ θC = 1

3π ∨B = −|C|2
(5.18)

Using this necessary condition, Eq.5.17 could be rewritten in a compact way where the

six solutions derive from the same definitions of C as a cubic root of Eq.5.12.

λ = ±
√
A+ 2 |C| cos (θC + θ), θ = 0,±2π/3 (5.19)
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The stability constraint consists of one simple inequality, which considers the algebraic

root of C with maximum real part (there is at least one that is strictly positive-definite).

The 3D stability region of the hovering points in the CR3BP is described by the fol-

lowing two constraints. {
B = −|C|2

A+ 2maxRe {C} < 0
(5.20)

For the Mars-Phobos CR3BP, the 3D stability region of the hovering points in Fig.5.9

is made by three realms: one central ring, and two symmetric halves of hyperbolic

coronas placed at very high out-of-plane altitudes. More interesting, as presented in

Fig.5.10-5.11, the inner surface of the ring is distorted in proximity to the second

massive body to a kind of double nose, leaving outside the body’s SOI. The footprint

on the orbital plane of these surfaces corresponds to the boundaries of the planar

stability region computed in section 5.2.3.1.

5.2.3.2.1 Hill’s approximation of the CR3BP

The 3D stability analysis of the hovering is undertaken also with the Hill’s approx-

imation of the CR3BP introduced in section 2.3.6. The system of equations for the

planar stability is presented in Eq.5.21, while for the 3D case the procedure requires

the Hessian in Eq.5.22. 
|q̄|3 − 3 ≥ 0
1
4 |q̄|

6 + 15
2 |q̄|

3 − 27 |q̄| ȳ2 + 81
4 ≥ 0

−9|q̄|3 + 27 |q̄| ȳ2 − 18 > 0

(5.21)

Hu(q̄) = −AH1 −
3

‖q̄‖3
I3 +

9

‖q̄‖5
q̄q̄T (5.22)

Fig.5.12-5.13 highlight the great difference in the stability region, which shows that

the Hill’s approximation is definitely not worthy for the analysis of the medium-large

distance hovering points.

5.2.3.2.2 Applications

The 3D stability analysis probed that it is possible to have also stable AEPs above the

poles of Phobos. However, their distances are much greater then the ones of the planar

case, ranging from 250km to 1400km. Therefore, considering also the high-thrust

required to hover at these positions found in section 5.2.2, no significant positions

for applications to mission segments around Phobos are identified. Thus, the major

information for the stability of the hovering around Phobos is provided by the planar

stability analysis of section 5.2.3.1.

5.2.3.2.3 Relation to other CR3BPs

As a reference, the 3D stability region in proximity of the secondary’s realm is computed
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Figure 5.9: AEPs around Phobos. 3D
stability region in the Mars-Phobos CR3BP.
Global view of the boundaries.

Figure 5.10: AEPs around Phobos. 3D
stability region in the Mars-Phobos CR3BP.
Inner boundary near Phobos.

Figure 5.11: AEPs around Phobos. 3D stability region in the Mars-Phobos CR3BP. One
half of the lower hemisphere of the inner boundary near Phobos, represented with its mean
sphere.
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Figure 5.12: AEPs around Phobos. 3D
Stability region in the Mars-Phobos Hill’s ap-
proximation of the CR3BP.

Figure 5.13: AEPs around Phobos. Sta-
bility region in the orbital plane of the Mars-
Phobos Hill’s approximation of the CR3BP.
Red line represents the boundary of the pla-
nar stability region of the CR3BP. L1−2 dis-
played. Phobos mean sphere.

Figure 5.14: Stability region of AEPs of
the Sun-Earth system.

Figure 5.15: Stability region of AEPs of
the Earth-Moon system.

also for the cases of the Sun-Earth and Earth-Moon systems. While for the planar case

the topology of the two systems is basically the same as found in section 5.2.3.1.2, their

3D shapes show a basic difference. For low values of the mass parameter (Sun-Earth

case), the collapse of the outer surface towards the inner one is not complete, which

is the central ring is still one-piece as shown in Fig.5.14. It was only its projection on

the orbital plane that is detached as seen in Fig.5.7. At high values of µ (Earth-Moon

case), the detachment is fully complete also in the 3D space as shown in Fig.5.15, and

this means that no stable AEPs exist perpendicularly to the Moon.

5.2.3.3 Nonlinear Analysis

The procedure presented in sections 5.2.3.1-5.2.3.2 provides the linearized stability re-

gion, which for the case of marginal stability encountered by the AEPs does not assure

stability in the original CR3BP-CA.
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Figure 5.16: AEPs around Phobos. NL stability region of the Mars-Phobos CR3BP. Pro-
jections on the coordinate planes, of the resonance surfaces that identify NL instability. For
the x-z and y-z projections, due to the symmetry, each half-plane shows the contours for one
of the two reciprocal ratios N : M and M : N . Linear stability region’s boundaries plotted in
black line.

The case of marginally stable EPs in nonlinear systems has already been studied in

the past [152, 153, 154], and requires to extend the analysis to higher order terms, and

to apply the two conditions of the Arnold’s stability theorem (KAM theory):

the non-resonance condition and the reversibility condition. This has been done to

demonstrate the nonlinear behavior around the stable equilateral EPs of the CR3BP

[152, 153, 154]. Recall from section 2.3.5.1 that their position in the normalized CR3BP

is fixed, therefore this analysis was conducted to probe their nonlinear stability through

different values of µ. The results obtained show that the linearized stability describes

also the nonlinear behavior apart from single cases of µ that do not satisfy the planar
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Figure 5.17: AEPs around Phobos. Real and imaginary parts of the eigenvalues of the
Mars-Phobos CR3BP-CA on the coordinate planes.
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non-resonance condition. Thus, these cases constitute a zero-measure set (single points

in the 1D set of possible values of µ).

For the case of the CR3BP-CA and the related AEPs, the scenario changes because µ

is fixed, and the EPs vary (2D or 3D), but the approach remains the same and consists

of the evaluation of the two constraints mentioned before. The first is to check the reso-

nance conditions between the eigenvalues of the linearized system at the AEP of Eq.5.1

[63]. The second is to expand the Hamiltonian of the system to higher order terms

(up to the 4th) to check the reversibility condition, by using a suitable canonical set of

variables, which is the Birkhhoff normal form [63, 150]. This procedure is presented in

[63], but the outcomes are only inferred to effectively behave in the same way of the

aforementioned classical case of L4−5 in the µ-dependent CR3BP. The result is that all

the linearly-derived marginally stable AEPs are also nonlinear stable apart from those

lying on two families of curves (in the planar case) or surfaces (in the 3D case) where

the planar couple of eigenvalues are in 2:1 and 3:1 resonance. In particular, in [63] such

results are only inferred by comparison with the equilateral EPs and not tested, while

the 1:1 resonance and the resonances 4:1, 5:1, and 3:2, which are related also to the

vertical dynamics, and the reversibility condition, are not checked at all.

However the summarizing point is that the AEPs of the linearized stability region are

also stable in the full nonlinear dynamics apart from singular cases that lie on co-1D

domains of the stability region, where resonance effects are present.

Fig.5.16 presents the families of curves that satisfy the resonance conditions of the

eigenvalues of the AEPs3 on the orbital plane of the Mars-Phobos system. They can

be compared with the curves displayed for a similar case of CR3BP-CA in [63], which

is for µ = 1.1 · 10−9 of the Jupiter-Amalthea system. Fig.5.16 extends these curves

also to their homologue surfaces’ projections on the other 3D coordinate planes. The

analysis of the planar case could be undertaken straightforward because the dynamics

are decoupled. It is interesting to note in Fig.5.17, how the resonance ratio of the two

planar eigenvalues (stable/unstable) moves along three directions from 0 to 1:1, from

the right leaf to the outer boundary, and from the inner boundary to the top/down

leaves. This is because the unstable eigenvalue correspondingly goes from 1 to purely

imaginary4.

The stability analysis undertaken so far has been conducted with the classical an-

alytical approach. However, a straightforward implementation is to test the linearized

stability region of the AEPs in the Mars-Phobos system, by running a set of simula-

tions in the real nonlinear system. The approach is the same used in section 4.1.3.2.2

for LPOs, which is to derive the propagation ratio of a displacement error in the ini-

tial condition after a fixed propagation time. Each hovering point in the associated

CR3BP-CA is perturbed in position by 1m along all the directions. If the resulting

3Only the part of the curves in the linearized stable regions are to be considered.
4The unstable region inside the top/down leaves is characterized by a planar manifold made by a

couple of spirals.
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Figure 5.18: AEPs around Phobos. NL
simulations of AEPs on the orbital plane of
the Mars-Phobos CR3BP. Max displacement
(logarithmic scale) after 10 orbital periods
with initial position error of 1m. Phobos
mean sphere.

Figure 5.19: AEPs around Phobos. NL
simulations of AEPs on the orbital plane of
the Mars-Phobos CR3BP. Max displacement
after 10 orbital periods with initial position
error of 1m. Linear stability region’s bound-
ary is reported in red line. Phobos mean
sphere.

Figure 5.20: AEPs around Phobos. NL simulations of AEPs of the Mars-Phobos CR3BP.
Max displacement after 10 orbital periods with initial position error of 1m. Phobos mean
sphere.

motion, for every case, is bounded around the reference position, the AEP is stable,

and the maximum ratio gives the normalized amplitude of this oscillation. This is a

physical measure to quantify the nonlinear stability, in contrast to the linearized case

where the stability region is plotted from the satisfaction of disequalities.

Unstable AEPs obviously diverge immediately, so their is no stable boundary, and

the final value of the simulation is meaningless. Stable AEPs oscillate periodically, and

that has been demonstrated for a long simulation time. After this behavior is proved,

a shorter final time has been taken to run the set of all simulations, which is for 10

orbital periods.

Results are presented in Fig.5.18-5.20 for the planar and 3D cases. The divergence

ratio at the boundary of the linear stability region is roughly of 200. Here the gradient

is sharp, because inside the boundaries the solution is periodic, outside is divergent.

The amplitude ratio of stable hovering points, close to the clover’s boundaries, is about

30.
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Figure 5.21: AEPs around Phobos. Equi-
thrust surfaces for the CR3BP (logarithmic
scale). x-z projection. Phobos mean ellip-
soid.

Figure 5.22: AEPs around Phobos. Equi-
thrust surfaces for the CR3BP (logarithmic
scale). x-y projection. Phobos mean ellip-
soid.

Figure 5.23: AEPs around Phobos. Equi-
thrust surfaces for the CR3BP-GH (logarith-
mic scale). x-z projection. Phobos mean el-
lipsoid.

Figure 5.24: AEPs around Phobos. Equi-
thrust surfaces for the CR3BP-GH (logarith-
mic scale). x-y projection. Phobos mean el-
lipsoid.

5.2.4 AEPs in More Accurate Models of the Mars-Phobos Orbital

Dynamics

The computation of body-fixed hovering points is a trivial task since it requires only to

compute the level of thrust required to compensate all the apparent and physical forces

that constitute the relative acceleration in Eq.2.1. The analysis has been undertaken

in the Mars-Phobos CR3BP. The consideration of a more accurate description of the

dynamics depends from the distance from Phobos, which is now no longer limited to

the tiny SOI. Thus, the selection of the additional forces to be considered requires the

perusal of Fig.2.12-2.13. However, due to the fact that all the forces must be compen-

sated, the additional perturbations do not change the results significantly.

In particular, the most destabilizing effect is Mars-J2 at great distances from Pho-

bos, which needs to be appropriately counteracted. The greatest perturbation is the
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Figure 5.25: AEPs around Phobos. Stability region on the orbital plane of the Mars-Phobos
CR3BP-GH. Red line represents the boundary of the CR3BP. Phobos mean ellipsoid.

eccentricity, already outside of the SOI. In this case, direct compensation5 is inappro-

priate, because expensive, and a trailing/leading configuration can be achieved with an

appropriate synchronous Keplerian orbit around Mars: the resulting relative motion is

an oscillation and not a body-fixed hovering point. However, at such distances the field

of view of Phobos would not be significantly influenced by this motion.

For close distances, the relevant perturbation is given by the GHs of Phobos. Their

effect is negligible on the stability of the AEPs, because the boundaries of the stability

region lie far from Phobos, as visible in Fig.5.25. However, the highly-inhomogeneous

gravity field of Phobos is necessary to be compensated for close-range hovering. The

equi-thrust surface in the Mars-Phobos CR3BP-GH of Fig.5.23-5.24 show that, with

respect to the CR3BP of Fig.5.21-5.22, savings seem to occur hovering in the South-

ern Hemisphere, and in proximity of the two additional internal EPs of the Northern

Hemisphere (see section 3.3.6.2).

5When using the classical form of the ER3BP in Eq.3.45, the addition of a constant acceleration in
the pulsating frame would physically become a variable acceleration profile in the physical-units frame,
by scaling of a term l(ν)ω2 = |aG(ν)|(1 + ecosν), where aG is the instantaneous gravity between the
two massive bodies. On the contrary, a physically constant acceleration is scaled by the inverse of
the previous term in the classical ER3BP. Finally, if the aim would be to reproduce the same effect
of a constant acceleration in the CR3BP, the physical acceleration shall have a profile proportional to
|aG(ν)|.
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5.3 Vertical-Displaced Circular Orbits around Phobos

The AEPs computed in section 5.2 are a fixed solution in the rotating frame of the

CR3BP. It is possible to further generalize the concept, which is to model the dynamics

in a generic uniformly rotating frame, and find the related AEPs. In our case, this new

rotating frame is called R, and is centered on Phobos. The related constant angular

velocity of the frame ωR is defined with respect to Phobos’ BCBF frame. Hence, in

the usual 3B and Phobos’ Hill’s frame, this artificial solution results in a circular orbit,

with chosen period and height, around a reference axis of Phobos.

This section focuses on a particular set of these AEPs, where the reference axis of the

R frame is Phobos’ vertical axis (z-axis of 3B, Hill’s, and BCBF frame). The resulting

trajectory is a Vertical-Displaced Circular Orbit (VDCO), as represented in Fig.5.26.

Furthermore, ωR is fixed to be opposite to the Phobos’ revolution n. The reason for

such a choice is to realize an inertial-fixed hovering, in a time frame6 that a mission

segment around Phobos could make use of continuous thrust. An orbit that revolves

around Phobos provides the spacecraft with an extended ground-track for observation

of its surface at different longitudes. Furthermore, recall from Fig.2.26 that the orbit

of the Sun around Phobos is a retrograde VDCO with the period of Phobos’ revolution

too, where the height of the orbit varies through the Martian seasons in a range of

declinations [−θM , θM ]. Therefore, an inertial-hovering realizes a Sun-Synchronous

(SS) seasonal orbit, whose β-angle performance (expressing the mean time in light) is

set by the choice of the initial phase along the VDCO with respect to the Sun. In

particular, for continuous shadowing (β = 0) the spacecraft tracks the position of the

anti-Sun (whose declination and phase are opposite to the ones of the Sun) moving

clockwise around Phobos: as introduced in section 2.5, such a configuration would

allow the spacecraft to be shielded from the directional part of the SEPEs7.

5.3.1 VDCOs in the Phobos R2BP

The approach followed in this section is to start from the 2B dynamics around Phobos,

described not in the usual inertial frame of the central body like in the Keplerian

problem, but in the rotating frame R. These dynamics are named R2BP-R.

5.3.1.1 Equations of Motion

The equations of motion of the generic R2BP-R, for a generic rotation’s pole OR and

time-variant angular velocity ωR, with respect to the reference frame, named I, centered

6It it not an exact inertial-hovering, because the center of Phobos’ revolution, which is the Mars-
Phobos’ barycenter, rotates around the Sun too. However, due to the large difference between the two
characteristic times, the motion defined in such sense, for the time span of tens of Phobos’ revolutions,
is with good approximation inertially-fixed.

7For this objective, the spacecraft would need not to be exactly in phase with the Sun, but to
take into account the travel time of the cosmic ray from the Sun to Mars, as well as the dynamics of
Heliosphere, whose lines of field are not radial.
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Figure 5.26: Vertical-Displaced Circular Orbits. Reference model for the description of
the dynamics.

on the central body, are expressed in Eq.5.23. The direction of ωR is given by its

spherical coordinates αR, φR, and the initial phase of the spacecraft in the R frame is

θR,0.



a = − GM

‖q+AI
RqO‖3

(
q + AI

RqO
)
− ωR ∧ ωR ∧ q− ω̇R ∧ q− 2ωR ∧ q̇

ωR = ωR

 cosαR cosφR

sinαR cosφR

sinφR


AI
R = A3(

∫ t
0 ωRdt+ θR,0)A2(π2 − φR)A3(αR)

(5.23)

In particular, any offset of the rotation’s pole position qO perpendicular to the angular

velocity produces a time-variant term. This section focuses on SS-VDCOs, therefore the

above dynamics is simplified with the choices discussed in section 5.3, and an example

is represented in Fig.5.26. This yields the ODEs of the R2BP-R associated to a general

VDCO, where W and P are defined like in section 2.3.3 but now with respect to the

constant ωR. For a SS-VDCO, ωR = −n = −
√

GM1−2

a3
2

, and W and P are opposite to

the ones of the CR3BP.
x =

[
q

q̇

]
, ẋ = Ax +

[
03x1

− GM
‖q‖3 q

]
, A =

[
03 I3

−PR −2WR

]
ωR = ωRẑ

AI
R = A3(ωRt+ θR,0)

(5.24)
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Figure 5.27: 2B SS-VDCOs around Phobos. Value of ω0,2 as a function of RR in n units.

Figure 5.28: 2B SS-VDCOs around Phobos. Propulsive acceleration’s magnitude in the
x-z and R-δ planes of the SS-R frame.

The model is axially symmetric around the vertical axis, therefore the analysis is re-

duced to a 2D mechanical system, defined either in the positive x-z plane of the R

frame, or in the polar counterpart R-δ.

q =
[
Rx
0
Rz

]
= RR

[
cos δR

0
sin δR

]
(5.25)

5.3.1.2 SS-VDCOs around Phobos

The SS-VDCOs are AEPs of the model of Eq.5.24 maintained by a constant acceleration

in the R frame’s components from Eq.5.3. To simplify the notation, define the distant-

dependent quantity ω0,ID, where ID is referred to the central body (Phobos ID=2 to
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Figure 5.29: 2B SS-VDCOs around Phobos. Propulsive acceleration’s yaw angle in the x-z
and R-δ planes of the SS-R frame.

Figure 5.30: 2B SS-VDCOs around Phobos. Ratio λ between the control and gravity
acceleration’s magnitudes in the x-z and R-δ planes of the SS-R frame.

Figure 5.31: 2B SS-VDCOs around Phobos. Referring to Fig.5.28, this curve identifies, for
every vertical height, the minimum control AEP in the x-z and R-δ planes of the SS-R frame.
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Figure 5.32: 2B SS-VDCOs around Phobos. Propulsive acceleration’s level and ∆v (for
one VDCO period), for every vertical height, of the minimum control AEPs in the x-z and R-δ
planes of the SS-R frame.

remain coherent with the 3BP), and this quantity is plotted in Fig.5.27.

aP =

(
PR +

GM2

‖qAEP ‖3

)
qAEP =

[
(ω2

0,2−ω2
R)Rx

0
ω2

0,2Rz

]
(5.26)

In case of complete shadowing applications, the declination of the AEP must be equal

to the seasonal anti-Sun declination, therefore the domain of interest is 0 ≤ δ ≤ θM ,

or 0 ≤ z ≤ xtanθM . The propulsive acceleration’s magnitude and direction, which is

defined by the yaw angle δa (as represented in Fig.5.26), are the following.
‖aP‖ = 2

√(
ω2

0,2 − ω2
R

)2
R2
x + ω4

0,2R
2
z

δa = arcsin

(
ω2

0,2Rz
‖aP‖

) (5.27)

In [64], a broad analysis of the various classes of displaced circular orbits was under-

taken looking to solar sailing applications. All the possible VDCOs lie in a [Rx, Rz, ωR] =

R+
0

3
domain, or [RR, δR, ωR] = R+

0
2 × [0, π/2] domain. In [64], the following classifica-

tion is used for VDCOs:

• Type I: ωR = ω0,ID(Rx, Rz). Every AEP in the x-z plane defines a VDCO with

a different angular velocity, which is a different R frame. If Rz = 0 the resulting

equatorial orbits are Keplerian (no control action required).

• Type II: ωR = ω0,ID(Rx, Rz = 0). Every AEP with the same Rx component in the

x-z plane defines VDCOs with the same angular velocity, which are associated to

the same R frame. These orbits are synchronous with Keplerian equatorial orbits

with radius Rx.

• Type III: ωR is a free parameter. Every AEP point in the x-z plane defines a

VDCO with the same angular velocity, so the R frame is unique.
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The SS-VDCOs that are considered in this section belong to the type III orbits of [64],

which have fixed period, synchronous with the Sun around Phobos. The VDCOs are

usually highly non-Keplerian orbits: in our case aP is not given by a solar sail, but

from a propulsive system and so requires propellant’s consumption.

The procedure is the same followed in section 5.2 for the hovering, computing the

consumption and the linear Lyapunov stability region. From Eq.5.27, the equi-thrust

curves are presented in Fig.5.28, while the yaw angle is plotted in Fig.5.29. In particular,

Fig.5.30 shows the ratio between control and natural gravity acceleration: this number

is called λ in [64], and used to rate if the VDCO is considered lowly or highly non-

Keplerian. It is evident in Fig.5.28 the presence of one natural equilibrium point, that

corresponds to the Keplerian equatorial and circular orbit with a SS period. This is

achieved at the distance of R̃ = 2.16 Phobos radii (mean altitude of 11.8km), and no

other local minima of the thrust level are present.

Focusing on possible shadowing exploitations throughout the Martian year, it is

worth to evaluate the minimum of the propulsive acceleration’s magnitude for a seasonal

height. This could be done analytically looking for the minimum of Eq.5.27 with respect

to RR. This is obtained for the following value.

RR|min‖aP‖ (δR) = 3

√
GM

ω2
R

3

√√√√ 4

cos2δR

1

1 + 2

√
1 + 8

cos2δR

(5.28)

The related curve that describes the minimum control SS-VDCOs in the R frame is

plotted in Fig.5.31, starting from the natural EP. Fig.5.32 provides the control action’s

level and consumption along this curve: the zero minimum is achieved at the natural

EP and asymptotically for a pole-sitter hovering at infinite distance from Phobos. The

reader can see that the intermediate values are very demanding.

However, shadowing is provided not only by strictly pointing towards the anti-Sun,

but remaining just inside the eclipse wake: using a mean ellipsoidal model for Phobos’

shape, a SS equatorial circular orbit with radius less than 2.04 Phobos mean radii

provides continuous shadow for all the Martian year.

5.3.1.3 Stability Analysis

The linear stability analysis of the SS-VDCOs in the Phobos R2BP-R is undertaken

similarly to that described in the hovering case of section 5.2.3. Since the control action

is constant, the structure of the linearized R2BP-R is unique for every SS-VDCO, where

the Hessian of the Phobos’ gravity in the R frame’s coordinates is expressed in Eq.5.29

and should be evaluated for every AEP.

uG,2/qq(qAEP ) = −ω2
0,2

 1− 3cos2δR 0 −3 cos δR sin δR

0 1 0

−3 cos δR sin δR 0 1− 3sin2δR

 (5.29)
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Figure 5.33: 2B SS-VDCOs around Phobos. Linearized stability region of the AEPs in the
x-z and R-δ planes of the SS-R frame. Magnification of the inner section.

The computation of the eigenvalues of the linearized 4D state-matrix can be undertaken

with the general 6D procedure illustrated in section 5.2.3.2. In particular, the planar

case, in this axially symmetric framework, reduces to the 1D x-axis of the R frame. The

planar stability region can be derived analytically. The eigenvalues are the following,

λ(RR, δR = 0) =


±iω0,2

± 2
√
GM2

2

√
1
2

1
R3
R
− 1

R̃3
R

+ 2

√
9
2

1
R6
R
− 2 1

R3
R

1
R̃3
R

± 2
√
GM2

2

√
1
2

1
R3
R
− 1

R̃3
R

− 2

√
9
2

1
R6
R
− 2 1

R3
R

1
R̃3
R

(5.30)

and the stability region is presented in Eq.5.31, where the distances are normalized

with respect to the previously mentioned Keplerian SS-VDCO’s radius R̃R.

λ2(RR, δR = 0) < 0⇔ R̃R < RR <
3
√

9

2
R̃R (5.31)

Equatorial SS-VDCOs outermost the Keplerian solution, and up to 2.24 Phobos radii

(12.8km of mean altitude), are linearly stable in the 2B dynamics.

Fig.5.33 highlights the linear stability region of the 3D case in the axially symmetric

plane of the R frame. The three realms of the linear stability region are similar to the

ones of the 3D stability region for AEPs of the CR3BP-CA in Fig.5.9, swapping the

Mars-Phobos barycenter and Phobos with Phobos and the Keplerian equilibria, and

without the distortion of a second massive body like in Fig.5.10. The inner section in

Fig.5.33 is very narrow and reaches declinations up to 20◦, but is also close to the overall

minimum control area of Fig.5.28. The second section is useful for higher heights, but

requires large distances from Phobos: it asymptotically tends to a declination around

35.26◦, where the thrust required is very high, as the reader can see in Fig.5.28.
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5.3.2 SS-VDCOs in the Mars-Phobos CR3BP

This section looks to the solution of VDCOs around Phobos in the framework of the

CR3BP, which is under the influence also of the Mars’ gravity. The relative dynamics

are still described in the rotating frame R centered on Phobos, which rotates with

constant ωR = −n along the z-axis of the 3B and Hill’s frame. These dynamics are

named CR3BP-R.

5.3.2.1 Equations of Motion

The equations of motion of the Mars-Phobos CR3BP-R are obtained from the Phobos

R2BP-R of Eq.5.24 adding the time-variant gravity of Mars, and its apparent transla-

tional acceleration on the R frame’s origin. These terms have already been introduced

when describing the dynamics of the CR3BP in Phobos’ Hill’s frame in Eq.2.51. The

differences are two. First of all, these two terms must be expressed in the R frame’s

components. The reference frame I, used in the framework of the R2BP-R in section

5.3.1, becomes now the Phobos’ Hill’s frame H. Thus, the attitude matrix between R

and I frames is retrieved from Eq.5.23, and the time-variant position of Mars in the R

frame is provided below.{
q1,3B = −ax̂
AH
R = A3 (ωRt+ θ0)

⇒ q1,R =

[
−a cos(ωRt+θ0)
a sin(ωRt+θ0)

0

]
(5.32)

The sum of Mars’ gravity and apparent effect represents the so-called Mars 3B pertur-

bation. This is the term, upon expression in the R frame’s components, to be added in

the Phobos R2BP-R of Eq.5.24, and is presented below.
a3B,R = − GM1

‖q−q1,R‖3 (q− q1,R)− G(M1+M2)
a3 (1− µ) q1,R = −ω2

0,1 (q− q1,R)− ω̄2
0,1q1,R

lim
q→0

a3B,H = −GM1
a3 AH1qH ⇒ a3B,R ' −GM1

a3 AH
RAH1

(
AH
R

)T
q = −ω̄2

0,1AH1−Rq

AH1−R =

[
1−3cos2(ωRt) 3 cos(ωRt) sin(ωRt) 0

3 cos(ωRt) sin(ωRt) 1−3sin2(ωRt) 0
0 0 1

]
(5.33)

The second equation represents the Hill’s linearized approximation, already presented

in Eq.2.33 in the Hill’s frame components, which is now expressed in the R frame’s

components. The relative error of the linearized approximation up to 10 Phobos radii

is of 10−4. This expression could be useful for a first-order analytical insight into the

computation of the SS-VDCOs that will be undertaken in this section. In this sense,

the initial phase of the VDCO θ0 is now taken as zero, since the time-variant analysis

will refer to a full revolution of the VDCO.

The second difference is the correction of the angular velocity in the apparent rota-

tional acceleration’s terms of Eq.2.2, because ωR is now defined with respect to the H

frame, which is not inertial but rotates with angular velocity +n. As expected from
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Figure 5.34: 3B SS-VDCOs around Phobos. Propulsive acceleration magnitude’s profile
over time, for some AEPs (RR = 1.09, 1.72, 2.71, 6.31R2 from left to right, δR = 0, 8.1, 53.1◦

from the bottom to the top).

section 5.3, in the framework of the 3B dynamics ωR = 08, and for a short-term analy-

sis with respect to the Martian year, the R frame is approximately inertial and its AEPs

represent an inertial hovering, dragged along the Mars-Phobos orbit.

The equations of motion of the Mars-Phobos CR3BP-R, in a short-term SS rotat-

ing frame, are expressed in Eq.5.34. The second set of ODEs represents the Hill’s

approximation.
x =

[
q

q̇

]
, ẋ = Ax +

[
03x1

− GM
‖q‖3 q

]
+

[
03x1

−ω2
0,1 (q− q1,R)− ω̄2

0,1q1,R

]
, A =

[
03 I3

03 03

]

x =

[
q

q̇

]
, ẋ = Ax , A =

[
03 I3

−ω2
0,2I3 − ω̄2

0,1AH1−R+ 03

]
(5.34)

The system is no longer axially symmetric due to the Mars’ offset, but the VDCOs

are periodic, so the analysis could still be conducted in the positive x-z plane of the R

frame, or in the polar counterpart R-δ.

5.3.2.2 SS-VDCOs around Phobos

The SS-VDCOs are AEPs of the model of Eq.5.34 maintained by a time-variant ac-

celeration in the R frame’s components from Eq.5.3. The propulsive acceleration is a

feedforward profile over time in all the three directions, thus requires the yaw and pitch

angles δa-αa.

8To be precise, the Sun-Mars revolution rate disregarded from this analysis is 2,000 times smaller
than the Mars-Phobos revolution rate n.
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Figure 5.35: 3B SS-VDCOs around Phobos. Propulsive acceleration’s magnitude in the
x-z and R-δ planes of the SS-R frame, for phases of 0, 25.2, 57.6, 90◦.

Figure 5.36: 3B SS-VDCOs around Phobos. Propulsive acceleration’s yaw angle in the x-z
and R-δ planes of the SS-R frame, for phases of 0, 25.2, 57.6, 90◦.

Figure 5.37: 3B SS-VDCOs around Phobos. Propulsive acceleration’s pitch angle in the
x-z and R-δ planes of the SS-R frame, for phases of 0, 25.2, 57.6, 90◦ (angle is opposite every
quarter).
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Figure 5.38: 3B SS-VDCOs around Phobos. Ratio λ between the control and gravity accel-
eration’s magnitudes (on the left with respect of Phobos gravity, on the right with respect to the
mean Mars 3B perturbation) in the R-δ plane of the SS-R frame, for phases of 0, 25.2, 57.6, 90◦.

Figure 5.39: 3B SS-VDCOs around Phobos. ∆v (for one VDCO period) of the AEPs in
the x-z and R-δ planes of the SS-R frame.


aP = ω2

0,2qAEP + ω2
0,1 (qAEP − q1,R) + ω̄2

0,1q1,R

aP =
(
ω2

0,2I3 + ω̄2
0,1AH1−R

)
qAEP =


[
ω2

0,2 −
(
3cos2 (ωRt)− 1

)
ω̄2

0,1

]
Rx

9 cos (ωRt) sin (ωRt) ω̄
2
0,1Rx(

ω2
0,2 + ω̄2

0,1

)
Rz


(5.35)

The required propulsive acceleration is periodic, with half the period of the Phobos’

revolution. The constant terms are due to counteract Phobos’ gravity, while the peri-

odic terms have null tangential component both in conjunction and quadrature phases

of the spacecraft as seen from Mars, and the maximum effect is in the intermedi-

ate phases. Their radial component oscillates along a non-null mean value, and the

amplitude is maximum in conjunction, minimum in quadrature, and null at phases

±54.74◦,±125.26◦.

Eq.5.35 is now evaluated to derive the consumption of the inertial hovering in the

CR3BP. Fig.5.34 presents the thrust magnitude’s profile for a few SS-VDCOs. It is
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Figure 5.40: 3B SS-VDCOs around Phobos. Linear stability analysis: Floquet exponents
of the AEPs in the x-z and R-δ planes of the SS-R frame.

evident that there is a transition in the profile with increasing distance from Phobos.

Fig.5.35-5.37 present the values of the propulsive acceleration’s magnitude and angles

for a few Phobos phases, and Fig.5.38 plots the value of the λ ratio, defined both with

respect to Phobos gravity and Mars 3B perturbation. When the spacecraft is in inferior

conjunction (phase 0), as seen from Mars, there is an instantaneous natural EP close to

the previous SS Keplerian orbit in the R2BP, now located at 1.71 Phobos radii. Recall

that in the CR3BP-R there is no more an apparent rotational acceleration, thus the

Phobos’ gravity cannot be counteracted by a centrifugal force9, like in the R2BP-R,

but its role is played by the Mars 3B perturbation. At phase 0 the two actions are

opposite, and this explains the existence of the instantaneous equilibria on the orbital

plane. However, at increasing phases a thrust in the y-component (and so a pitch an-

gle) is required, and no instantaneous natural EPs are available. This is deducible from

the linearized form in Eq.5.35. In summary, inertial hovering in the CR3BP cannot be

provided naturally, and the focus is to look to minimum control SS-VDCOs in these

Mars-Phobos 3B dynamics.

In summary, the maximum level of the propulsive acceleration profile determines the

thruster’s choice. From Fig.5.35, the maximum thrust level for a 100kg spacecraft at

small-medium distances from Phobos would be less than 1N , so the maintenance of a

SS-VDCO around Phobos for a larger spacecraft requires rockets. Fig.5.39 shows the

∆v consumption over one period of the inertial hovering at Phobos. The minimum cost

still happens in a region close to 2 Phobos radii, up to the maximum Sun’s declination

at the solstices, but this is large (∆v= 50m/s) making the demand for the propulsion

system very high for more than one Phobos period. In comparison to the R2BP dy-

namics in Fig.5.32, the costs of the SS-VDCOs in the CR3BP have meanly grown of

about 5-10 times.

9The neglected centrifugal force of the Sun-Mars orbit is too small to counteract Phobos gravity.
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Figure 5.41: 3B SS-VDCOs around Phobos. Linear stability analysis: Floquet multipliers
(cut-off at 10 for greater values) of the AEPs in the x-z and R-δ planes of the SS-R frame.

5.3.2.3 Stability Analysis

The linear stability analysis of the SS-VDCOs in the Mars-Phobos CR3BP-R can be

undertaken like in the body-fixed hovering case, with the general procedure illustrated

in section 5.2.3.2. The difference with respect to the body-fixed hovering is that the

3D stiffness submatrix, of the 6D linearized state-matrix, does not have the matrix P,

and the trace of this matrix ω2
0,2 +ω2

0,1 will be always positive. This means that the set

of eigenvalues will always be unstable. This has been proved with the classical Floquet

linear stability analysis for periodic orbits in dynamical systems illustrated in section

B.5.1.1, by computing the eigenvalues of the monodromy matrix of the SS-VDCOs.

Fig.5.40 shows the Floquet exponents, that can be compared with the eigenvalues of

the body-fixed hovering positions, and Fig.5.41 shows the Floquet multipliers of the

inertial hovering positions. All the close-range SS-VDCOs are highly unstable, and

this is a structural property of all the orbits in proximity of the secondary’s SOI in

the chaotic dynamics of the CR3BP. Their instability lowers at increasing size of the

SS-VDCOs, but recall that the consumption in Fig.5.35 massively increases with the

distance from Phobos, since the 2B-like dynamics is not valid out of its SOI.

5.3.3 Applications

Following the idea of exploiting the shadow of Phobos to protect a spacecraft from

the directional solar radiation during the station-keeping at the Mars-Phobos orbital

distance, this section has analyzed the most simple orbits around Phobos to track the

anti-Sun motion, which are the SS-VDCOs. In particular, these orbits turn out to be a

classical inertial hovering. This analysis is complementary to the one of section 5.2, and

concludes the analysis of this classical spacecraft configuration for the case of Phobos

in this thesis.

Inertial hovering is usually exploited to enable occultation-free communications with

the Earth, and in this case also provides advantages in terms of surface coverage of
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Phobos. However, the first aim is not valid any longer for any planetary satellite. In

addition, for the case of Phobos, due to the strong influence of the Mars 3B perturba-

tion, the SS-VDCOs require significant fuel consumption, which is infeasible over one

period (∆v> 50m/s).

As a comparison, the natural SS equatorial and circular orbit around Mars is located

at 461 Mars radii, out of its SOI, and is therefore unworthy for missions to Mars. In-

stead the cost of artificially maintain the Keplerian SS circular orbit around Deimos,

which is located at 5 mean radii (24.0km of mean altitude), has resulted to be of 16m/s

per period, and it requires 10 times lighter thrusters than for Phobos.

5.4 Artificial Libration Point Orbits around Phobos

The body-fixed hovering points investigated in section 5.2 are the dynamical substi-

tutes of the LPs of the Mars-Phobos CR3BP in the CR3BP-CA defined in Eq.5.1 (and

the CR3BP-GH-CA analyzed in section 5.2.4). Therefore, in a way analogous to the

natural dynamics, artificial LPOs (ALPOs) exist around these AEPs with the same

propulsion level [59].

The natural LPOs of the ER3BP-GH around Phobos, computed in section 4.3, are

investigated in this section in the framework of the addition of a constant acceleration,

and focusing on the artificial LPOs around the displaced L1−2. Recall from chapter

4, where the dynamical substitutes of classical LPOs have been computed first in the

CR3BP-GH and then in ER3BP-GH, that the effects of the GHs and the eccentricity

act in a different way. The first is responsible for the change in position, shape and

orientation of the LPOs, and the second causes the motion to oscillate around them.

For the same reason explained in section 4.4, where the performances of the dynamical

substitutes of the LPOs are presented, in this section to undertake an immediate anal-

ysis of the advantages and opportunities provided by the low-thrust propulsion, only

the periodic ALPOs are derived as dynamical substitutes of the families of periodic

LPOs of the CR3BP-GH.

The dynamical substitutes are computed numerically by the NC technique (see sec-

tion B.2.2) as presented in section 5.4.1. Section 5.4.2 presents the periodic ALPOs

of the Mars-Phobos CR3BP-GH, and section 5.4.4 provides the related artificial IMs

(AIMs).

5.4.1 Numerical Continuation with respect to the Propulsive Accel-

eration’s Level

The CR3BP-CA has been presented in Eq.5.1 to derive the related AEPs for a fixed

propulsive acceleration aP, by adding the constant vectorfield fCA to the equations

of motion of the CR3BP. The same procedure is required to derive the ODEs of the

Mars-Phobos CR3BP-GH-CA, used in section 5.2.4 to derive the related AEPs. The
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Figure 5.42: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Continuation
with respect to the constant acceleration magnitude (m/s2) with direction +x̂ of a medium
energy PO of the family A around L1 of the CR3BP-GH. Crosses represent the current EP.
Phobos real shape.

vectorfield of the CR3BP-GH-CA is a natural homotopic dynamical system, parame-

terized by the propulsion level. Thus, quite intuitively, the dynamical substitutes of the

solutions of the CR3BP-GH are computed by NC schemes where the continuation pa-

rameter σCA is set to be the propulsive acceleration’s constant magnitude10. This NC

provides an entire family of dynamical substitutes physically worthy, parameterized by

the propulsion level, for each invariant motion in the CR3BP-GH. The direction of the

thrust is fixed for a given homotopic CR3BP-GH-CA, and for this reason one defines

a constant vectorfield fn = [03x1; n̂aP ].

ẋ = h (t,x, σCA) = fCR3BP−GH (x) + fCA = fCR3BP−GH (x) +σCAfn → φh (t,x, σCA)

(5.36)

The definitions of the related augmented variational dynamical system and STM are

the following.

Φ (t,x0, σCA) =

[
φh/x0

φh/σ

01x6 1

]
↔

 Φ̇ (t,x0, σCA) =

[
H3BGH (x(t)) fn

01x6 0

]
Φ (t,x0, σCA)

Φ (0,x0, σCA) = I7

(5.37)

The effect of the Phobos’ GHs in the 3B dynamics is stationary as discussed in section

3.3, and the potential uCA of the constant propulsive acceleration is presented in Eq.5.2.

These yield the augmented Jacobi integral of the conservative CR3BP-GH-CA below.

cCR3BP−GH−CA (x, σCA) = cCR3BP−GH (x) + cCA (x, σCA) =

= cCR3BP−GH (x) + σCA2qT n̂aP

(5.38)

10Recall that σCA is defined in normalized units.
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5.4.2 Periodic Libration Point Orbits through Body-Fixed Hovering

in the Mars-Phobos CR3BP-GH

In this section the NC of the invariant solutions between CR3BP-GH and CR3BP-GH-

CA is undertaken increasing the constant acceleration’s magnitude. The procedure

maintains the phase-space’s dimension of the solutions. The NC is undertaken with

the same differential approach used for computing the dynamical substitutes of the

POs from CR3BP to CR3BP-GH in section 4.2.2.2.1. This means that the differential

initial condition with respect to the current AEP is continued on the variant Poincaré

map g(x, σCA) = y − yLP (σCA) = 0, and the dynamical substitutes are defined as

the orbits with the same augmented Jacobi integral’s gap with respect to the hover-

ing point in different dynamics. The DC scheme is exactly the same from Eq.4.35 to

Eq.4.39, just using the new homotopic dynamics of Eq.5.36, the STM from Eq.5.37,

and the Jacobi integral of Eq.5.38 to compute the matrices of Eq.4.38. In particular,

now g (x) = 2qT n̂aP , f = fn, and J (x) = H3B (x) + HGH (x), to yield the DC scheme

of Eq.4.39.

The difference with respect to the continuation in section 4.2.2.2.1 is that the di-

mension of the parameters of the problem is now higher, since it depends also on the

orientation of the thrust vector. Therefore, in this section the analysis is undertaken

with six NCs, computing the ALPOs with thrust directions along all coordinated axes

±x̂, ±ŷ, and ±ẑ.

After obtaining a dynamical substitute in the CR3BP-GH-CA, the related family

of periodic LPOs at the same propulsive level and direction, can be refined through a

second NC in cascade, where the continuation parameter is taken as the Jacobi integral

of Eq.5.38, used as fixed constraint in the first scheme, as explained in section 4.2.2.2.2.

Analysis of the results. The NC of the periodic LPOs with respect to the propulsive

acceleration’s magnitude, from the dynamical model of the CR3BP-GH to the one of

the CR3BP-GH-CA, has resulted to be fast up to medium-small propulsion levels, as

we see in Fig.5.43-5.44. For high-thrust, the NC becomes slow due to the presence

of strong nonlinear effects (turning points of the continuation curve) that require to

decrease the integration step.

Fig.5.42 shows an example of the NC with respect to the propulsive acceleration’s

magnitude of a medium-energy PO of the family A around L1. The NC is conducted

up to high-thrust directed along the +x-axis. Fig.5.43-5.46 show the related profile of

the NC and the properties of the curve of ALPOs. Fig.5.47-5.48 show the artificial

dynamical substitutes of the small-energy periodic LPOs of the families A and B along

all the coordinate axes’ directions.

Fig.5.49-5.51 show the resulting families of POs in the Mars-Phobos CR3BP-GH-

CA, along all the thrusting coordinate directions. Due to the high dimension of the

problem, a precise nomenclature of the families of LPOs at different thrust level has not
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Figure 5.43: Periodic artificial LPOs in
the Mars-Phobos CR3BP-GH. Contin-
uation variables’ curves profile. Continua-
tion with respect to the constant acceleration
magnitude with direction +x̂ from CR3BP-
GH (σ = 0) to 0.01m/s2. Continuation of a
medium energy PO of the family A around
L1 of the CR3BP-GH.

Figure 5.44: Periodic artificial LPOs in
the Mars-Phobos CR3BP-GH. Contin-
uation adaptive step’s profile. Continua-
tion with respect to the constant acceleration
magnitude with direction +x̂ from CR3BP-
GH (σ = 0) to 0.01m/s2. Continuation of a
medium energy PO of the family A around
L1 of the CR3BP-GH.

Figure 5.45: Periodic artificial LPOs in
the Mars-Phobos CR3BP-GH. Profile of
the period. Continuation with respect to
the constant acceleration magnitude with di-
rection +x̂ from CR3BP-GH (σ = 0) to
0.01m/s2. Continuation of a medium energy
PO of the family A around L1 of the CR3BP-
GH.

Figure 5.46: Periodic artificial LPOs in
the Mars-Phobos CR3BP-GH. Profile of
the stability properties (stability indexes of
the three couples of eigenvalues of the mon-
odromy matrix, with the phase of the cen-
ter’s couple). Continuation with respect to
the constant acceleration magnitude with di-
rection +x̂ from CR3BP-GH (σ = 0) to
0.01m/s2. Continuation of a medium energy
PO of the family A around L1 of the CR3BP-
GH.
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Figure 5.47: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Continuation
with respect to the constant acceleration magnitude (m/s2) along all coordinate axes directions,
of a small energy PO of the family A around L1 of the CR3BP-GH. Crosses represent the current
EP. Phobos real shape.

Figure 5.48: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Continuation
with respect to the constant acceleration magnitude (m/s2) along all coordinate axes directions,
of a small energy PO of the family B around L1 of the CR3BP-GH. Crosses represent the current
EP. Phobos real shape.

been addressed. In this sense, the analysis of the families of ALPOs is the following.

• Thrusting away from Phobos moves the LPOs closer to the moon, without great

changes in the shape and orientation of larger orbits even with high thrust, apart

from the larger POs of the family D that become more vertically aligned.

• On the contrary, thrusting towards Phobos moves the orbits farther from the

moon, and as the thrust level increases the effect of the GHs rapidly decreases

and the LPOs tend to become similar to the families of the classical CR3BP.

The effect of the thrust along the other two coordinate axes is more complicated: the

manifold moves accordingly to the thrust direction, with the displacement of the arti-

ficial LP moving in accordance to the equi-thrust surfaces computed before in Fig.5.4.

• Thrust in tangential direction maintains the shape of families B and C, while the

families D are similar to vertical Lyapunov orbits, and the families A are highly

distorted.

• High thrust in the vertical direction greatly modifies the manifold, since only two

families of POs are now present, because the bifurcation is moved at high-energy
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Figure 5.49: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Summary of
the POs (brown) obtained by displacement of the four families of POs around each LP of
the CR3BP-GH (blue) with constant acceleration (m/s2) along all coordinate axes directions.
Phobos real shape.

Figure 5.50: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Summary of
the POs (brown) obtained by displacement of the four families of POs around each LP of
the CR3BP-GH (blue) with constant acceleration (m/s2) along all coordinate axes directions.
Phobos real shape.
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Figure 5.51: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Summary of
the POs (brown) obtained by displacement of the four families of POs around each LP of the
CR3BP-GH (blue) with constant acceleration (1m/s2) along all coordinate axes directions (on
the left directions ±x̂, in the center directions ±ŷ, on the right directions ±ẑ). Phobos real
shape.

Figure 5.52: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Characteristic
curves of the period of the four families of POs around L1 in the CR3BP-GH-CA, parameter-
ized by the differential Jacobi integral with respect to the current LP. Constant acceleration
magnitude (m/s2) along all coordinate axes directions (on left directions ±x̂, in the center
directions ±ŷ, on the right directions ±ẑ).

Figure 5.53: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Stability prop-
erties (stability indexes of the two non-unit couples of eigenvalues of the monodromy matrix)
of the four families of POs around L1 in the CR3BP-GH-CA, parameterized by the differential
Jacobi integral with respect to the current LP. Constant acceleration magnitude (m/s2) along
all coordinate axes directions (on left directions ±x̂, in the center directions ±ŷ, on the right
directions ±ẑ).
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Figure 5.54: Periodic artificial LPOs in the Mars-Phobos CR3BP-GH. Example of
one natural medium-size periodic LPO of the family A around L2 modified by different levels
of constant acceleration magnitude along the direction −x̂: period and stability properties
(stability indexes of the two non-unit couples of eigenvalues of the monodromy matrix).

levels. The first family is similar to the Halo orbits (Southern for +ẑ), and the

LPOs of the second family are distorted and perfectly lie on the y-z plane, as we

see in Fig.5.49-5.51.

5.4.3 Applications

The addition of a constant acceleration around Phobos has revealed some interesting

mission opportunities.

Fig.5.52 provides the characteristics curves of the period of the ALPOs. As visible

also from Fig.5.45 and Fig.5.54, the NC at a fixed differential energy makes the pe-

riod of the POs to be very sensitive to the NC. In particular, since the dimension of

the manifold of the LPOs is constrained due to the proximity of Phobos, the range

of periods of the natural LPOs is limited (see Fig.4.63), and the addition of constant

low-thrust allows cheap artificial LPOs to be obtained with period equal to the 2:1 or-

bital overresonance of Phobos around Mars. This means that they remain periodic also

in the elliptical real scenario, which could be an advantage for designing the insertion

maneuvers between the mission segments interfacing with such ALPOs.

Fig.5.53 provides the characteristics curves of the stability properties of the ALPOs.

Thrusting away from Phobos makes all the POs more unstable, while thrusting towards

Phobos lowers the max Floquet stability index11. Thrust in the tangential direction

makes the dynamical substitutes of the families A and C more stable, and the ones

of the families B and D more unstable. Vertical thrust makes the families A and B

respectively more stable and unstable, while the family C is more stable with a negative

displacement, and both stability indexes of the families D are lowered. In particular

this family eventually retains a central part.

11The second stability index of the family D becomes more unstable.
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Figure 5.55: Landing on Phobos through the Invariant Manifold of the family A
of periodic artificial LPOs around L1 of the Mars-Phobos CR3BP-GH. On the left,
trajectories of the inside branch of the unstable IMs of a medium energy PO of the family A
around L1 of the CR3BP-GH-CA, modified by different levels of constant acceleration mag-
nitude (m/s2) along +x̂ (propagation time of 2 PO periods). On the right, trajectories of
the inside branch of the POs of the family A around L1 of the CR3BP-GH-CA, at a constant
acceleration magnitude of 1mm/s2 along +ẑ. Phobos real shape.

Therefore, with the addition of this simple thrust profile, despite the LPOs remain

unstable, it is remarkable to underline that the Floquet stability index could be mas-

sively lowered with the thrust required to displace the LP far from Phobos. This has

a great impact on the frequency demand for the GNC subsystem, reducing the duty

cycle up to the 25% for ALPOs displaced at an altitude over 60km from Phobos along

the Mars-Phobos radial direction. In particular in Fig.5.54, the trans-Phobos ALPOs

over the 70km altitude boundary of the Lyapunov stability region of the AEPs (the

tip of the right leaf of Fig.5.5) become Floquet stable, while stable ALPOs along the

y-axis are obtained displacing the equilateral LPs.

Finally, displacing LPOs away from the natural SOI, in addition to reducing insta-

bility, it has other important advantages. Indeed, all the problems of the dynamical

modeling of the relative motion in proximity of this moon are related to the collapse of

the realm of attraction of Phobos, therefore the manifold of LPOs is already too close

in comparison to common interplanetary spacecraft operations. Therefore, pushing in-

ward Phobos with a simple constant propulsion profile artificially enlarges the Phobos’

SOI, and there is a great advantage not only for mission operations constraints and

lighting condition requirements, but in particular for the computational load of track-

ing these orbits: the effect of Phobos’ gravity field quickly lowers with the distance,

so the convergence of the solution of the LPOs (and so its reliability) will be obtained

with a far lower order of the truncated GHs model to be used in the NC.
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Figure 5.56: Landing/Take-Off to/from Phobos through the Invariant Manifold of
the L1 family A of periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Region
of possible landing/take-off sites, for orbits that do not intersect Phobos’ real shape, through the
IM of the family A of POs around L1 of the CR3BP-GH-CA. Constant acceleration magnitude
of 1mm/s2 along all coordinate axes directions (green line for CR3BP-GH, cyan for directions
±x̂, red for directions ±ŷ, yellow for directions ±ẑ). Phobos real shape.

Figure 5.57: Landing/Take-Off to/from Phobos through the Invariant Manifold of
the L1−2 families of periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Region
of possible landing/take-off sites, for orbits that do not intersect Phobos’ real shape, through
the IM of all the families of POs around L1−2 of the CR3BP-GH-CA. Constant acceleration
magnitude of 1mm/s2 along all coordinate axes directions (green line for CR3BP-GH, cyan for
directions ±x̂, red for directions ±ŷ, yellow for directions ±ẑ). Phobos real shape.

5.4.4 Invariant Manifolds of the Periodic Libration Point Orbits of

the Mars-Phobos CR3BP-GH with Constant Acceleration

The IMs of the artificial periodic LPOs have been computed in this section with the

procedure explained in section B.8.2. These trajectories require the same constant ac-

celeration maintained by the propulsion system to leave and approach the ALPO.

The analysis of the AIMs has revealed that this simple control law, directed along

an appropriate fixed direction, allows to enlarge the region of landing and take-off sites

to cover all the longitude range. This is realized mostly with thrust along ±ŷ, but also

inward Phobos. Also the limit of the latitudes can be raised with thrust along ±ẑ,

to become closer to the polar zones, that could be enclosed when considering also the
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Figure 5.58: Heteroclinic connections around Phobos through the Invariant Manifold
of the L1−2 families of periodic artificial LPOs of the Mars-Phobos CR3BP-GH.
Trajectories from the POs of the family A around L1 (red) and trajectories to the POs of
the family A around L2 (green) of the CR3BP-GH-CA, at constant acceleration magnitude of
1mm/s2 along −ŷ, up to their intersection with Phobos or with the Poincaré section x = 1−µ.
Particular of the final conditions on the Poincaré section. Phobos real shape.

Figure 5.59: Heteroclinic connections around Phobos through the Invariant Manifold
of the L1−2 families of periodic artificial LPOs of the Mars-Phobos CR3BP-GH.
Trajectories from the POs of the family A around L1 (red) and trajectories to the POs of
the family C around L2 (green) of the CR3BP-GH-CA, at constant acceleration magnitude of
1mm/s2 along −ŷ, up to their intersection with Phobos or with the Poincaré section x = 1−µ.
Particular of the final conditions on the Poincaré section. Phobos real shape.
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families of artificial QPOs. This is presented in Fig.5.55-5.57, and Fig.D.97-D.100.

The displacement of the LPOs away from Phobos (families B and D, only with high-

thrust) and along the tangential axis (families C and D, only with high-thrust) enables

artificial heteroclinic connections between two manifolds that were not possible with the

natural dynamics. These trajectories could be exploited for fast orbital displacements

around the two sides of Phobos for close-range mission segments. However, Fig.5.58-

5.59 display just an example, and the identification of possible heteroclinic connections,

that requires to tune the matching of the interfacing condition of two stable and unsta-

ble manifolds, of two orbits at same energy, of families around two different LPs, has

not been undertaken. In particular, this could be obtained further artificially, which is

by introducing also an impulsive maneuver to match slightly different velocities on a

suitable Poincaré map.

5.5 Martian Formation Flying to Orbit around Phobos

Following the perspective introduced in section 5.1 of flying in formation with Phobos,

in section 5.2 the most simple trajectory was analyzed, which is a fixed hovering in the

orbital and figurative frame of Phobos. In this section, the analysis of more refined

trajectories is conducted, which is the use of the classical relative orbits of FF missions.

The artificial realization of these guidance laws requires the continuous compensation

of Phobos’ gravity, thus either high distances or short time windows are required for

these orbits to limit the fuel consumption. Throughout this section, the model used to

compute the reference signal of the relative state with respect to Phobos’ Hill’s frame,

could be directly stated as a Martian 2B FF (see section 6.1.1), assuming the presence

at minimum of a thrust profile that counteracts the 3B gravity of Phobos.

The orbits analyzed in this section are in a crossover between the artificial orbits that

characterize all this chapter, and the natural dynamical substitutes of 2B FF in the

3B dynamics, the Quasi-Satellite orbits, that will be presented in the next dedicated

chapter 6. In particular, this section will refer to some of the topics of natural FF that

are presented in more detail in chapter 6. Furthermore, the analysis of the artificial

FF orbits undertaken in this chapter is related to their possible implementation in the

ESA mission Phootprint, in place of the QSOs12. A detailed outline of the phases and

constraints of this mission is reported in section 6.4.1.

5.5.1 Artificial J2-invariant FF around Phobos

In the pre-phase A assessment study in [144] of Phootprint, the mission analysis is

conducted. For the operative and observation phase, the artificial FF around Phobos

is probed. This requires the continuous compensation of Phobos’ gravity. The thrust

required by the liquid propulsion system is deemed feasible with the current spacecraft

12This research was conducted during an internship in Airbus Defence & Space, Stevenage.
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mass, and the inevitable problem is the cumulated time for the ∆v.

The artificial guidance laws investigated, for the relative orbits in Phobos’ Hill’s and

BCBF frame, are the Keplerian epicycles13. These periodic orbits are introduced in

detail in section 6.1.1.1, and an example is provided in Fig.6.1. The required operative

orbit for Phootprint shall provide global observation, with nadir-pointing, of Phobos

to characterize at least the 50% of its surface (with a goal of 100%), with a resolution

of meters and a local Solar elevation angle between [30◦-60◦], and within a limit of 200

days.

The second problem is the fact that these Keplerian relative orbits are tidally-locked

with Phobos’ BCBF frame, as it is explained in section 6.1.1.1, and so would be their

ground-track on the moon’s surface. This is the same situation of geosynchronous or-

bits. Hence, orbital maneuvers must be performed to change the formation periodically.

This is a second cost in the ∆v budget in addition to the first, already high due to Pho-

bos’ compensation. Therefore, these artificial solutions, which are analytically simple

since they are periodic guidance signals, have been disregarded, in favor of realizing the

operative orbit with a Quasi-Satellite orbit. This class of orbits is analyzed in chap-

ter 6: their motion is quasi-periodic and complicated to be described analytically, but

they have the advantage to be natural, mostly stable, and to provide a fast complete

coverage of Phobos’ surface.

However, the conclusion drawn lacks of a consideration: from the analysis of the

orbital perturbations conducted in section 2.4, Mars J2 is another player at large dis-

tances from Phobos. The differential J2 perturbation is a famous destabilizing effect

for FF. But there are particular solutions: the J2-invariant formations [155], which are

presented in section 6.3.2. These naturally perturbed quasi-periodic orbits have the

property of maintaining the Keplerian epicycle, but they have an additional natural

frequency. This is a precession on the orbital plane, which makes the epicycle to nat-

urally rotate. Hence, they work exactly like a Quasi-Satellite orbit, enabling a global

coverage of the moon’s surface. In particular, they are highly inclined, allowing ob-

servations of high latitudes of Phobos, up to 75◦ on the cis/trans-side, and 60◦ on the

leading/trailing-side. However, section 6.3.2 explains that the solution of these orbits is

obtained at first-order. Thus, J2-invariant formations eventually will drift away along

the transversal direction θ for high propagation time, and for a high J2 [155].

An example of the J2-invariant formations around Phobos, which will require the

implicit compensation of the moon’s gravity, is provided in Fig.6.13. The formation ro-

tates but it will take 1,305 periods = 417 days to complete a full precession revolution.

This is too long both for the mission’s time constraint and for the implicit ∆v due to

Phobos’ gravity.

13Please note that in this section, formations will be referred with the 1:2 size of their nominal
epicycle on the orbital plane.
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5.5.2 Artificial-J2 J2-invariant FF around Phobos

In section 5.5.1, the precession rate of the artificial J2-invariant FF, under the natural

oblateness of Mars, is equal to the secular derivative of ω, and is linear with the J2

magnitude. The idea pursued in this section is that, since the natural J2 effect is an

analytically known thrust profile that makes an epicycle’s line of nodes to rotate, to

increase the precession rate we can just artificially amplify its effect. This will be a

second thrust and related ∆v cost to add to the compensation of Phobos’ gravity. The

point is that even if there is a second ∆v, the decrease of the time required for the full

coverage, provided by this idea, will lower the first ∆v. These new reference orbits are

named artificial-J2 J2-invariant FF. Their computation is immediate, since they are the

same of section 5.5.1 in the dynamics where Mars J2 is a free parameter. The objective

of this section is to quantify the new thrust required, and to evaluate the observation

capabilities of these solutions.

5.5.2.1 Model of the Dynamics, Guidance, and Control

In this section, the thrust required to reproduce a relative motion of the artificial-J2

dynamics, in the natural Mars-J2 dynamics, is derived. The nomenclature used in this

section is the following. ρ is the relative position in Phobos’ Hill’s frame, which is used

to define the orbit, while x is the absolute position (thus for the spacecraft is a function

of ρ). The angular velocity of the Hill’s frame is ω. The Mars Newtonian gravity is aG,

the Mars J2 gravity is aJ2 , and the Phobos gravity is ag. The apparent acceleration is

aA, and the propulsive acceleration is t. The subscripts refer to Phobos (P), spacecraft

(S), and target (T).

Eq.5.39 provides the equations of motion of the relative orbital dynamics with J2 in

Phobos’ Hill’s frame14. The relative motion comes from the apparent acceleration and

the differential terms.

ρ̈ = −aA(ω, ω̇, ρ, ρ̇)+
(
aGS (ρ, xP )− aGP (xP )

)
+
(
aJ2
S (ρ, xP )− aJ2

P (xP )
)

+ag(ρ)+t (5.39)

In our case, Phobos’ gravity is always compensated, so t = −ag in these dynamics.

Now we need a target model with an amplified K × J2.

ρ̈ = −aA(ω, ω̇, ρ, ρ̇) +
(
aGS (ρ, xP )− aGP (xP )

)
+
(
aKJ2
S (ρ, xP )− aKJ2

P (xP )
)

(5.40)

In this model, the J2-invariant solution is the target solution ρT . The aim is to maintain

the same relative motion in the real dynamics. To make ρT a solution in the real

dynamics with 1×J2, there is the need to provide an additional thrust (recall we already

have to account for a t = −ag).
14Recall from section 3.3.2 that the Hill’s frame is not Keplerian but osculating with J2.
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ρ̈T = −aA(ω, ω̇, ρT , ρ̇T )+
(
aGS (ρT , xP )− aGP (xP )

)
+
(
aJ2
S (ρT , xP )− aJ2

P (xP )
)

+ag(ρT )+t

(5.41)

The thrust will be the difference between the acceleration in target and real dynamics,

evaluated for the target solution.

t =− ag(ρT )+

+
[
−aA(ωT , ω̇T , ρT , ρ̇T ) + aA(ω, ω̇, ρT , ρ̇T )

]
+

+
[(
aGS (ρT , xP,T )− aGP (xP,T )

)
−
(
aGS (ρT , xP )− aGP (xP )

)]
+

+
[(
aKJ2
S (ρT , xP,T )− aKJ2

P (xP,T )
)
−
(
aJ2
S (ρT , xP )− aJ2

P (xP )
)] (5.42)

Thus, in the analytical thrust profile of Eq.5.42 there are residual differential terms

not only for J2, but also for Mars’ gravity and apparent acceleration, because in the

two models Phobos moves in different orbits, xP 6= xP,T , and also for its Hill’s frame

rotation (ω 6= ωT ). To gain more insight, the thrust definition is rearranged, changing

the last term and introducing the “physical” (K−1) differential J2 effect that we want

to provide. The other three terms are “modeling” perturbations of the reference signal.

t =− ag(ρT ) + (K − 1)
(
aJ2
S (ρT , xP )− aJ2

P (xP )
)

+

+
[
−aA(ωT , ω̇T , ρT , ρ̇T ) + aA(ω, ω̇, ρT , ρ̇T )

]
+

+
[(
aGS (ρT , xP,T )− aGP (xP,T )

)
−
(
aGS (ρT , xP )− aGP (xP )

)]
+

+
[(
aKJ2
S (ρT , xP,T )− aKJ2

P (xP,T )
)
−K

(
aJ2
S (ρT , xP )− aJ2

P (xP )
)] (5.43)

5.5.2.2 Reference Orbit

The first step is to validate the target solution, which is a J2-invariant formation around

Phobos with amplified J2. A sample orbit used throughout this section is a 50x100km

formation with 10× J2. This is visible in Fig.5.60.

The nadir-pointing geometrical observation capabilities are presented in Fig.5.61. In

this section, Phobos is always considered with its mean sphere. The sample orbit is

able to cover Phobos’ surface in a reasonable time of 131 periods = 41 days. High

latitudes are obtained as mentioned previously, and with different ranges. The vertical

dimension of the formation is roughly 3.6 times the minimum dimension, thus the range

at high latitudes is higher than the limit of 150km suggested for the observation phase

in [144].

Compared with the solution shown previously in Fig.6.13 at 1×J2, a problem seems

to arise. The nonlinear effects neglected in the algorithm to compute the J2-invariant
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Figure 5.60: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos. The simulation covers 131 periods to achieve one precession revolu-
tion of the relative line of nodes. On the top, full orbit and sampled orbit with frequency 1:10.
Black circles identify the relative ascending node. Starting/final epicycle in blue/cyan. Phobos
mean sphere in green. On the bottom, projections on the coordinate planes, and discrete profile
of the right ascension of the relative ascending node of the orbit.

Figure 5.61: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos, simulated for 1 precession revolution. On the left, ground-track
(nadir points) on mean spherical Phobos (right ascension considered as longitude, declination
considered as latitude) for the full orbit, sampled 1:10 orbit. On the right, range distance
envelope.
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Figure 5.62: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos, simulated for 1 precession revolution. On the left, propulsive accel-
eration profile. The thrust components are expressed in Phobos 1×J2-osculating Hill’s frame:
r blue, θ green, h red. The first five thrust windows are related to each of the terms of the
Eq.5.43, and the last window shows their resultant. On the right, cumulated ∆v over time in
orbital periods.

formation15 start to be evident with 10×J2 and 131 periods. The final epicycle has a

drift of 20km along −θ. This affects slightly range and maximum latitude of the nadir

on the leading/trailing sides in opposite ways, as visible in Fig.5.60-5.61.

5.5.2.3 Control Consumption

The thrust required to maintain the sample formation is evaluated with the analytical

formula of Eq.5.43. Then, this is integrated to yield the ∆v consumption over one full

precession revolution. The results are represented in Fig.5.62.

The conclusions derived are two. First of all, the “modeling” thrust terms are diver-

gent, in particular the one of the Mars’ gravity, but also the one of the apparent term,

while the amplitude of the K×J2 term is far lower. This divergence is explained by the

fact that the target derived is drifting away as explained previously in section 5.5.2.2.

However, this does not affect the derivation of the major conclusion looked for at this

stage. The “physical” (K − 1) × J2 term and the “modeling” Mars’ gravity term are

of the same order of magnitude of Phobos’ gravity, and they definitely do not offer a

lucky compensation between each other16. Thus the cost of maintaining the artificial

10xJ2-invariant sample formation is roughly 2-3 times the cost of compensating only

Phobos’ gravity. The latter is 215m/s for our simulation of 41 days (5.3m/s/day) and

for a Phootprint mass of 2, 000kg requires maximum 0.7N with the natural continuous

profile in feedforward. If we neglect the evident amplification of the cumulated ∆v

profile due to the target’s drift, taking the double of the middle period’s value, this

15The algorithm is presented in section 6.3.2. In particular, in this section the NL system of Eq.6.10
is solved with all the terms, and not like in the approximated version of Eq.6.9.

16It is worth to note that the r-θ components of Mars and apparent forces do well compensate each
other. The major component remains the vertical component of the differential Mars’ gravity between
the two models.
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Figure 5.63: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos, simulated for 1 precession revolution. Start at local noon, mid-
summer. On the top, elevation and azimuth angles of the nadir point. The following graphs
represent the related surface coverage, which is represented by a sample of nadir points, whose
color is discriminated in the legend by the illumination conditions. The three graphs in the
center, starting from the left, are related to the first half of the orbit, the second half, and the
full orbit. The following graphs on the bottom are related to the full orbit sampled 1:10, with
the related range envelope. The final graph is the cumulated area, that represents the surface
coverage, for observation under the illumination constraints, of the orbit, by discretization with
boxes of 10◦-10◦.

provides an estimation without drift of 652m/s in 41 days, and a maximum thrust lower

than 1.5N . The cost is greater than the one that should be required by a sequence of

QSOs17, and the Phootprint mass budget is already close to an acceptable limit [144].

5.5.2.4 Applications

The ground-track capabilities of the sample formation have been highlighted in Fig.5.61,

and they are greatly satisfying: nadir points cover 97% of the surface in just 41 days.

However, as mentioned in section 5.5.1, for Phootprint there is a technical requirement

given by ESA that actually drives the observation phase: the observation is viable only

if the local elevation angle ε is between +30◦ and +60◦18.

Thus the lighting conditions on the surface must be considered, and this analysis has

17In [144], the analysis of the QSOs suggests a sequence of 7 maneuvers of 1̃0-20m/s, for a total of
60-80m/s. A more detailed analysis provides a figure of 18− 40m/s for > 55 days.

18This technical constraint can be considered as a Phobos’ constrained eclipse.
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Figure 5.64: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos, simulated for 1 precession revolution. Start at local dawn, mid-
summer. On the top, elevation and azimuth angles of the nadir point. Following graphs, from
left to right, represent the surface coverage of the full orbit, the first half, and the second half.
The final graph is the cumulated area, that represents the surface coverage, for observation
under the illumination constraints, of the orbit, by discretization with boxes of 10◦-10◦.

Figure 5.65: Artificial-J2 J2-invariant FF around Phobos. 10×J2-invariant 50x100km
formation around Phobos, simulated for 1 precession revolution. Start at local dawn, and,
on the left, at fall equinox and, on the right, at winter solstice. On the top, elevation angle
of the nadir point. On the bottom, surface coverage for observation under the illumination
constraints, of the orbit, by discretization with boxes of 10◦-10◦.
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already been conducted in section 2.6. In particular, recall that the Sun, as represented

in Fig.2.26, follows a VDCO around Phobos’ BCBF frame, with the period of Phobos

revolution and the height depending on the Martian season. Thus, there are two phases

to consider: the initial heliocentric anomaly of Mars, and the initial angle of the Sun

in Phobos’ Hill’s frame. But this is actually a post-processing analysis, because the

kinematics of the Sun do not significantly affect the orbital dynamics around Phobos

(see Fig.2.13). The target orbit remains the same, and the two phases are varied to

evaluate the lighting conditions encountered by the ground-track of the orbit during the

simulation. In particular, the objectives are to calculate the local elevation angle of the

nadir points of Fig.5.61, which measures if a Phobos’ eclipse occurs, and to calculate

if a Martian eclipse occurs. In this analysis, Phobos is approximated with its mean

sphere.

The first attempt is to set the start of target orbit, where Phobos is at perimars and

the spacecraft is on the cis-side, to be at local noon. Furthermore, the season is taken

at a Solar longitude19 of 145◦. Thus, this is middle summer approaching fall equinox.

In [144] an interval 145◦-175◦ is specified for the QSO phase.

Fig.5.63 shows that the nadir points are in daylight for exactly half of the orbit

simulated, so this 10 × J2 enhanced precession is nearly resonant with the Sun. Since

we are still in summer, high latitudes are observable at high range. The illumination

conditions are satisfied for 65% of the surface, reduced to 61% for the Martian eclipses

(in particular they happen when the spacecraft is over the Stickney crater). This fig-

ure of coverage is derived considering a homogeneous discretization of the surface in

longitude-latitude with boxes of 10◦-10◦. In this sense, the FOV of the instruments

(Narrow Angle Camera) in [144] is designed to be a 16◦ square at 100km. Thus the

swath span from the nadir point is 8◦. Therefore, for the sample formation, 10◦ is con-

servative for high latitudes, where the swath becomes > 12◦, and optimistic for lower

latitudes, where the swath becomes > 4◦.

From these results, the consideration is to wisely change the Solar phase. Starting at

local dawn would maximize the coverage in the time window chosen, because the obser-

vation is enabled during all the single precession revolution. This is shown in Fig.5.64.

Now the sample orbit covers 79% of the surface with the illumination constraints. The

Martian eclipses always affect the cis-side observability during equinoctial seasons. A

second swath on Stickney helps to increase its observability.

Another simulation is ran at the fall equinox and the winter solstice, whose results are

represented in Fig.5.65. Starting at fall enhances the Southern observability, covering

81% of the surface with the illumination constraints, and Stickney is fully observable.

Starting at winter allows to get rid of the Martian eclipses, and covers practically the

South pole, but the global coverage is reduced to 72%. However this could be achieved

also with a shorter period, like half a precession revolution, lowering the consumption.

19The Solar longitude’s reference is 0◦ at the spring equinox.
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Figure 5.66: Artificial-J2 J2-invariant hybrid FF around Phobos. Hybrid 10×J2-
invariant 50x100km formation around Phobos with rθ compensation. The simulation covers
103 periods to achieve one precession revolution of the relative line of nodes. On the top, full
orbit and sampled orbit with frequency 1:10. Black circles identify the relative ascending node.
Starting/final epicycle in blue/cyan. Phobos mean sphere in green. On the bottom, projections
on the coordinate planes, and discrete profile of the right ascension of the relative ascending
node of the orbit.

5.5.2.5 Hybrid Realization

In [144] the analysis of the FF by compensation of Phobos’ gravity is conducted in the

linearized Clohessy-Wiltshire model. It is suggested that since the instability for 3D

QSOs, in the 3B dynamics, develops in the transversal dynamics (see section 6.3.3),

the compensation of Phobos’ gravity could be reduced only to such direction of the

Phobos’ Hill’s frame. The resulting orbit could be named either hybrid-artificial QSO

or hybrid-artificial FF, since it is a crossover between the artificial FF investigated in

this section, and the natural QSOs addressed in chapter 6.

This hint makes sense and has been tested with the sample 10×J2-invariant forma-

tion. However after half precession revolution, this hybrid-artificial QSO drifts away.

The reason could be again due to the nonlinear terms, since the hint is based on the

linearized FF. All the other combinations of partial compensation have been tested

(which are: r,h,rθ,rh,θh) but none of them worked alone. In addition, also all the six

permutations have been tested considering the components in the spacecraft’s Hill’s

frame. It happened that actually compensating rθ in this reference frame (so just not
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Figure 5.67: Artificial-J2 J2-invariant hybrid FF around Phobos. Hybrid 10×J2-
invariant 50x100km formation around Phobos with rθ compensation. On the top, propulsive
acceleration profile and cumulated ∆v over time in orbital periods. On the bottom, simulation
for 1 precession revolution, with start at local dawn, mid-summer. Related elevation angle of
the nadir point, and surface coverage for observation under the illumination constraints, of the
orbit, by discretization with boxes of 10◦-10◦.

compensating the vertical component h) still provides a classical J2-invariant motion.

The artificial-J2 J2-invariant (rθ)-hybrid realization of the sample formation is shown

in Fig.5.66. In particular, the θ-drift due to the nonlinear terms is now erased, and the

epicycle oscillates in the Phobos’ Hill’s frame θ-direction with an amplitude of 10km,

just like a QSO. Second of all, the inclusion of a partial component of Phobos’ gravity in

the equations of motion of Eq.5.3920 naturally speeds up the precession of the epicycle,

just like the QSOs. Hence, a shorter period, by 21%, is now required by the sample

formation to achieve a full precession lap.

From the consumption point of view, this solution offers a slightly cheaper cost since

one component of Phobos’ gravity is not compensated. As visible in Fig.5.67, despite

the θ-drift is erased, the leftover θ-oscillation is still responsible for an increase of the

“modeling” thrust terms. The main advantage is the reduced period. With the same

consideration made in section 5.5.2.3, it could be estimated that without this oscillation

20The component to be considered in Eq.5.39 is the projection on the three components r,θ,h of
Phobos’ Hill’s frame, of the Phobos’ gravity acting on the spacecraft along the vertical component h
of the spacecraft’s Hill’s frame.
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Table 5.1: Artificial-J2 J2-invariant FF around Phobos. Consumption and surface cov-
erage for observation under the illuminations constraints, for artificial-(K × J2) J2-invariant
formations of different size, simulated for 1 precession revolution, and start at local dawn, in
summer.

K × J2\ QSO 25x50km 50x100km 100x200km

5 1649m/s 1304m/s 1375m/s
83% 81% 77%

10 830m/s 652m/s 925m/s
80% 79% 78%

100 308m/s 472m/s 833m/s
34% 35% 31%

the ∆v for one revolution would be 500m/s.

From the observability point of view, Fig.5.67 proves that the smaller period does

not allow to achieve the same coverage of the previous fully artificial formation. How-

ever, the reduction is mild: the orbit covers 77% of the surface with the illumination

constraints, and Stickney.

5.5.2.6 Extension to other Configurations

Finally, from the sample 10×J2-invariant formation, the test matrix is slightly enlarged.

The cases considered are simply: an amplification K of 5, 10, 100 for J2, and a nominal

epicycle of 25x50, 50x100, 100x200. Actually the epicycle with the J2-invariant algo-

rithm of Eq.6.10 is selected by the ∆i, which is 0.5◦, 1.0◦, 1.5◦: this produces a smaller

epicycle for 100×J2. This leads to eight additional cases, all analyzed without taking

into account the hybrid option mentioned in section 5.5.2.5. For the observability anal-

ysis, the start is at local dawn, and mid-summer. Simulations are conducted for a single

precession revolution. Table 5.1 summarizes the consumption and observation features.

Increasing/lowering J2 lowers/increases the precession’s period, but also increases/lowers

the “modeling” terms and the “physical” J2 term of the required thrust in Eq.5.43. The

first effect dominates the second in terms of consumption, but highly decreases the ob-

servation’s capability since the spacecraft quickly loses the reference of the Sun above

its track, and the swath of the wider ground-track is not thick enough to cover this

loss. Hence, the optimum of this observability/consumption trade-off is for middle am-

plification of J2.

Increasing/lowering the size of the formation lowers/increases the Phobos’ gravity

compensation, but increases/lowers all the other terms in Eq.5.43. The two effects can-

cel each other out both in terms of consumption and observation. Hence, the optimum

of this trade-off is for middle-size formations for small-middle amplification of J2, while

for a higher J2 smaller formations are favorable.

Summarizing, the trade-off for the artificial FF around Phobos is very difficult and
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is particularly constrained by the observability conditions required by the instruments’

guidelines and ESA requirements. With the results provided in Table 5.1, a 20×J2-

invariant formation 40x80km was additionally tested. It requires 418m/s in 21 days to

achieve a coverage of 77%. Considering the hybrid implementation, the value lowers to

367m/s (with thrust less than 2N) in 16 days to achieve a coverage of 78%.

The results obtained with the small matrix of sample cases are enough to draw a

summarizing conclusion of the investigation of the idea presented at the beginning of

this section 5.5.2. The natural J2-invariant FF has an interesting geometry for ap-

plication in the observation of Phobos, but it is too slow to perform a full precession

revolution, thus the cost for the compensation of Phobos’ gravity surges. The artificial

J2 amplification with an analytical profile over time has been tested in this section. The

major constraint is given by the local observation requirements, that, like for a QSO,

increase the time required to obtain a satisfying surface coverage. To achieve that in

an acceptable time, a summarizing cost figure lies on the order of 600m/s, which for

this preliminary analysis should be considered with a margin of ±50%. Optimization is

possible, in particular regarding the acceptable coverage amount and the appropriate

choice of the epoch on the area of interest. Different seasons do not offer a great differ-

ence in total coverage, but observation close to solstices is necessary for a hemisphere’s

high latitudes. Instead, specific longitudes on low latitudes require the time of Phobos’

day to be tuned. Considering a hybrid implementation, an optimum could exist in the

order of 300m/s for small epicycles and medium-large amplification of J2.

It is worth noting that interplanetary orbits with continuous thrust, even if low, are

not appreciated for the risk associated with their maintenance. In particular, with the

mass of Phootprint, the thrust level of these orbits would be also over the maximum

limit for SEP. And these orbits, due to their high relative inclination, are also unstable

as will be discussed in section 6.3.3.

In conclusion, the orbits analyzed in this section are not recommended for practical

applications, due to the availability at lower cost of the QSOs. The only idea given by

this analysis, that could be evaluated in the future, is that artificial amplification of J2

has been considered with the J2 analytical definition to speed up the precession of the

epicycle. This is easy to implement, but it probably produces a waste of propellant: in

fact, only the secular effect of J2 is of interest, and could be used in place of multiple

maneuvers in a QSO.
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Chapter 6

Quasi-Satellite Orbits around

Phobos

Starting from section 2.3.2, the collapse of the SOI of Phobos has become the driver

that constrains the design of the orbits in the proximity of the moon. As a result of

this unique condition, both the classical R2BP and CR3BP do not provide an accurate

approximation to describe the spacecraft’s dynamics in the vicinity of Phobos. However,

this situation enables also new solutions and perspectives. The contraction of the

SOI indirectly drags the manifold of distant orbits much closer to the second massive

body than they would be in classical systems studied with the model of the CR3BP.

This chapter focuses on the last class of natural orbits that can be used in future

missions to Phobos. Section 6.1 introduces the new framework of the dynamics under

the perspective of a Martian Formation Flying in Phobos’ orbit, and presents the orbits

analyzed in this chapter, the Quasi-Satellite Orbits1. The QSOs around Phobos are

computed in section 6.2, and their stability analysis is conducted in section 6.3. Finally,

section 6.4 presents applications for this class of orbits in the framework of a proposed

mission to Phobos.

6.1 Formation Flying

As the distance of the spacecraft to the second massive body decreases, the differential

gravity of the primary in the Hill’s frame decreases significantly relative to the sec-

ondary’s Keplerian gravity. In this case, the dynamics can be simplified to a R2BP

around the second massive body2. This holds in the reverse sense, and the gravity of the

secondary’s rapidly decreases outside of its SOI with respect to the differential gravity

of the primary. In this case, the relative dynamics around the secondary is expressed

by a R2BP around the primary in the Hill’s frame. This coincides with the framework

used in Formation Flying (FF), where the osculating orbit of the secondary body, in

1This research was conducted during an internship in Thales Alenia Space, Toulouse.
2Eventually including additional perturbations due to the second massive body.
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our case Phobos, could be considered as a chief spacecraft orbiting Mars, that the third

body, which is the actual spacecraft, follows in proximity. This section presents the

extension of the Formation Flying’s dynamics and their natural orbits to the case of a

3B dynamics, when the reference point is not a spacecraft but a massive body.

6.1.1 Formation Flying Dynamics

FF is a classical case of relative orbital dynamics. In particular, the first FF mission

Landsat7 was launched quite recently in 1999, but the interest in such a type of mission

configuration has exponentially grown from then, because it enables mission objectives

that would be not achievable with the practical size limitation of a single spacecraft, in

particular for laser interferometric observations. Nevertheless, FF missions have only

flown in Earth orbit. Therefore, the case of Keplerian FF, where the orbital dynamics

is given by the R2BP, represents the main field where the research on FF is applied to

[149].

The model of the Keplerian FF describes the orbital dynamics of the deputy space-

craft in the Hill’s frame of the chief spacecraft. Thus, since the reference frame is

the same, the equations of motion of the Keplerian FF correspond to the ones of the

ER3BP of Eq.2.50 and ER3BP-GH of Eq.3.50, by erasing the gravity of the second

massive body, and by considering µ = 0 for the expression of the primary’s gravity

in Eq.2.5 and its location with respect to the barycenter in Eq.2.6. In particular, the

classical form found in the literature uses physical units, and highlights the primary’s

gravity terms and the apparent translational acceleration of the frame of Eq.2.50-3.50

in an explicit differential term of the primary’s gravity between deputy and chief [149].

The invariant solutions of these dynamics are the well-known Keplerian orbits. How-

ever, their relative dynamics require the rotation through the time-variant attitude

matrix A(Ω, i, ω, ν(t)) (see section 2.6.1), where ν should be solved through Kepler’s

equation. This operation yields a long analytical expression to express the position of

the deputy spacecraft in the Hill’s frame of the chief spacecraft.

Simplified analyses are required. The Clohessy-Wiltshire equations consider a circu-

lar orbit for the chief, thus they correspond to Eq.2.51 without the secondary, which is

the CR3BP centered on the latter. This simplification yields an autonomous system.

The addition of the usual Hill’s linearization of Eq.2.35 provides the Hill’s equations,

which correspond to Eq.2.34 without the secondary3. This further simplification yields

a linear time-invariant dynamical system.

The linearized Keplerian FF equations of motion provide different analytical solu-

tions, in terms of different kinds of state parametrizations. A collection of these solu-

tions is given in [156]. In particular, since the FF motion is the “difference” between

two Keplerian orbits, its general solution will depend on two phases. The relative orbit

will be periodic if and only if the two orbits of the chief and the deputy are synchronous

3Eq.A.11-A.12 are the TV Hill’s equation in time or true anomaly, which are the linearization of
the Keplerian FF dynamics in a general elliptical orbit.
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Figure 6.1: Epicycle in the Hill’s frame of the primary body. 3D and planar view of the
epicycle around the secondary body (represented as the point at the origin).

Figure 6.2: Epicycle in the inertial frame. 3D and planar view of the epicycle around the
secondary body (represented as the point at the origin).

(1:1 resonance). From Kepler’s laws, this implies that the two semi-major axes are the

same.

6.1.1.1 Epicycle

A classical periodic solution of the linear Keplerian FF is the epicycle. Its general

analytical expression is provided in [149]. The epicycle for the case of chief’s slightly

eccentric orbits (as is the case of Phobos) is a retrograde elliptical orbit centered on

the chief. This results in an artificial satellite of the secondary body, but due only to

the gravity attraction of the primary4, as visible in Fig.6.1.

The epicycle is usually described by the difference of the orbital elements (OEs) of the

deputy with respect to the ones of the chief. The shape of the epicycle on the orbital

plane is an ellipse too, whose maximum and minimum axes are in a fixed ratio 2:1.

The maximum axis lies always along the tangential Hill’s θ-axis of the chief orbit. The

amplitude of the orbit’s planar axes is proportional to a difference in eccentricity. A

4A natural example of epicycle is provided by the Near Earth Objects, which are asteroids orbiting
the Sun at the Earth’s distance, and could be seen as distant satellites of the Earth.
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Figure 6.3: 2D QSO in the Hill’s frame of the primary body. On the left, the QSO
around the secondary body (represented as the Phobos’ mean sphere at the origin). On the
right, distance from Phobos along the θ-axis, with the normalized units indicated (1 unit of
distance corresponds to the original Keplerian epicycle’s max θ-component). The plot in black
is obtained with a ER3BP, and is indistinguishable from the plot in blue, which is obtained with
an equivalent CR3BP (where the chief orbit is circular with radius equal to the semi-major axis,
and the difference in the orbital elements between deputy and chief is maintained consistently).

difference in inclination, or right ascension of ascent node, inclines the epicycle, and the

relative motion is 3D. However, on the orbital plane the projection of the 3D epicycle

remains a 2:1 ellipse. In particular, in the linearized dynamics of FF, the 3D motion

allows to realize a 3D circular epicycle: this configuration is called cartwheel formation.

As mentioned in section 6.1.1, the difference in semi-major axis between the two inertial

orbits is zero: a small error provokes a secular departure of the relative motion along

the Hill’s θ-axis.

Recall that such an ellipse is defined in the rotating Hill’s frame. The third body

NEVER rotates around the chief in the inertial frame, centered on the chief. This

is shown in Fig.6.2 where the third body remains at one side. Due to the spinning

rotation of the secondary body, that for the case of Phobos is synchronous with the

Hill’s frame rotation, the third body rotates in the BCBF frame of the secondary in 1:1

resonance. This is not always the case, and the relative orbit in the BCBF frame will

be a quasi-periodic rotation around the chief, if the BCBF frame spins faster than its

revolution, or a quasi-periodic hovering, if the spin rate is lower.

6.1.2 Quasi-Satellite Orbit

The QSO is the motion of the epicycle when the chief is not a spacecraft but a second

massive body. Thus the QSO is the solution of the 3B dynamics, either the CR3BP

of Eq.2.51, or the ER3BP of Eq.2.50. In a precise way, the QSO is the dynamical

substitute of the epicycle in the R3BP.

The addition of the gravity field of the chief provides the dynamical substitutes with

two additional natural frequencies. Thus a 3D QSOs in the ER3BP is a torus with

three phases. A QSO can be decomposed in a sequence of epicycles along subintervals

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

314 Zamaro Mattia



Quasi-Satellite Orbits

Figure 6.4: 3D QSO in the Hill’s frame of the primary body. 3D and planar view of the
sub-epicycles of the QSO around the secondary body (represented as the Phobos’ mean sphere
at the origin). The length scale of the three axes is not uniform to show the 3D behavior of
the QSO’s precession rotation of the relative line of nodes. This is highlighted introducing the
intersection with the orbital plane in light grey. The planar view allows to see also the typical
oscillation along the Hill’s θ-axis, which is preserved in the 3D motion.

coincident with the chief’s orbital revolutions. A QSO is a QPO characterized by

an oscillation of the whole epicycle along the y-axis of the 3B frame, as shown in

Fig.6.3. This tangential oscillation can be described by an amplitude and a period.

In addition, 3D sub-epicycles experience a secular precession of their relative line-of-

nodes, as presented in Fig.6.4. The shape and size of the planar projection of the

sub-epicycles remain the same. The period of this precession rotation grows as far as

the size of the sub-epicycles increases, until their relative line-of-nodes becomes fixed in

the Hill’s frame. This asymptotic behavior at great distances is the 1:1 resonance, since

the gravity of the chief becomes negligible: larger QSOs tend to a Keplerian epicycle.

The QSOs constitute a family of QPOs coined by various names in the literature:

Quasi-Satellite, Quasi-Synchronous, Distant Satellite, Distant Retrograde orbits. They

were first investigated long time ago by no other than Hill. In particular, planar QSOs

are the quasi-periodic solution around the Strömgren’s f class5 of periodic orbits of

Hill’s approximation of the planar CR3BP, as indicated in the seminal papers of Hénon

[157, 158]. QSOs are more generally considered as one of three kinds of co-orbital

configurations in a CR3BP with 1:1 resonance6 together with Tadpole and Horseshoe

orbits: in [67] it is shown that unstable QSOs evolve from and to Horseshoe orbits,

which are linked together.

6.2 QSOs around Phobos

As explained in section 6.1, the QSOs are QPOs around the primary body that fall

outside the SOI of the second massive body of a 3BP. The peculiar case of a small

5According to Matukuma’s classification, this is named the a class.
6This is the motion of the Near Earth Objects and the Trojan asteroids.
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planetary satellite like Phobos is therefore suitable for the exploitation of these orbits

because of the collapse of its SOI, which indirectly drags the manifold of these orbits

closer to the body. In this section the computation of the QSOs around Phobos is

undertaken.

6.2.1 Equations of Motion

The QSOs are solutions of the 3B dynamics, and are studied in the framework of a

CR3BP since the seminal work of [157, 158]. However this approach requires approxi-

mations to be made, first of all the reduction to a circular orbit for the secondary body.

Additional simplifications usually taken are the linearization and the planar analysis.

The analysis of the QSOs around Phobos in this section is conducted with the ap-

proach of a long-range Martian FF. The starting model is given by the Keplerian

dynamics around Mars, parameterized by the classical Keplerian orbital elements, for

both Phobos and the spacecraft, thus without any of the aforementioned simplifications.

These 2B dynamics are then improved to a perturbed 2B model, named P-R2BP. The

equations of motion of the P-R2BP in terms of the Keplerian OEs are the Gauss’

Planetary Equations [104], as presented in Eq.6.1.
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 (6.1)

The trajectory of the OEs in the R2BP is stationary, apart from M which is linear

with the time. In the P-R2BP, the forcing term aP is introduced, and represents

the perturbing acceleration. Using the OEs as state variables is convenient when the

perturbation is mild, because it keeps the reference with a Keplerian-like description of

the dynamics. In addition, Gauss’ equations are convenient because they are expressed

with respect to the chief’s Hill’s frame’s components of aP, which is the same frame

where the relative orbital dynamics of FF is expressed.

Since Phobos’ orbit is nearly circular and equatorial, it is advised to use an alternative

form of the P-R2BP. This is because the Gauss’ planetary equations are singular in case

of null eccentricity or inclination. In this situation, the equinoctial OEs are used: the

transformation between the two state’s sets is provided below.
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The equinoctial Gauss’ planetary equations are expressed in Eq.6.3.



ȧ
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(6.3)

To compute the QSOs around Phobos, the ER3BP is retained using as forcing action

the 3B gravity perturbation of Phobos in the osculating Hill’s frame centered on the

moon. By postprocessing, Eq.6.2 is used to retrieve the trajectory in Keplerian OEs,

which leads to the inertial state of the spacecraft around Mars. Assuming Phobos to

follow its mean Keplerian orbit, the inertial state is trivially known a priori. Thus,

the relative kinematics of section 3.4 are used to compute the relative trajectory of the

spacecraft with respect to Phobos in its Hill’s frame.

The P-R2BP is suitable to include additional orbital perturbations. From the analysis

of perturbations conducted in section 2.4, for the range of QSOs’ distance from Phobos,

the major effects are due to the eccentricity (already embedded in the model of Eq.6.3)

and the Mars J2 GH. In particular, as a difference from the R3BP, in the P-R2BP the

orbital perturbations not due to Phobos are no longer expressed in differential terms

but directly in absolute terms, because the state of the dynamical model is inertial. The

differential action on the relative motion appears by computing a priori the osculating
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Figure 6.5: QSOs around Phobos. Phobos orbit circular and equatorial, without Mars J2.
∆e = 0.01, ∆i = 0. Orbit and plots in black line of the relative distance’s magnitude, radial and
transversal component. The plots coincide with the blue lines that are related to the CR3BP.
Dotted lines indicate the reference distance of Phobos’ mean radius.

motion7 of Phobos and the angular velocity of its Hill’s frame, with a dedicated P-R2BP

under the effect of the same perturbation. Thus, Eq.6.3 is now required to propagate

both the absolute state of the spacecraft and Phobos, since the osculating motion of

the latter is no longer known analytically a priori.

In this sense, recall that when defining an initial condition using mean OEs for the

spacecraft and Phobos, and starting with true anomalies in accordance with the 2B

dynamics, it produces different orbits. The same orbit is obtained with osculating OEs

in accordance to the perturbation, but their analytical expression is only available for

particular cases, like J2 [105]. However, such an analytical expression is not available

for the 3B perturbation. The effect of the choice of the initial true anomaly on the

QSOs will be addressed in the next section.

6.2.2 The QSOs around Phobos

The QSOs around Phobos are simulated with the ODEs of Eq.6.3 and using the

ephemerides of Phobos from Table 2.1. The initial condition is taken from the an-

7With the terminology of control theory, this is a feedforward signal for the dynamics of the space-
craft.
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Figure 6.6: QSOs around Phobos. Phobos orbit circular and equatorial, without Mars J2.
∆e = 0.01, ∆i = 0. Orbital elements.

Figure 6.7: QSOs around Phobos. Phobos orbit circular and equatorial, without Mars J2.
∆e = 0.01, ∆i = 0. Secular derivative of the orbital elements, taken every orbital period. The
last two graphs correspond to the mean motion, respectively considered as the derivative of the
mean anomaly and the mean longitude, where the dotted line is the reference of the original
2B value.
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Figure 6.8: QSOs around Phobos. Phobos Keplerian orbit, without Mars J2. ∆e = 0.01,
∆i = 0.005rad. Orbit after 30 and 120 orbital periods, with projections on the coordinate
planes. Plots in black line of the relative distance’s magnitude, radial, transversal and vertical
component. The plots overlap with the blue lines that are related to the equivalent CR3BP.
Dotted lines indicate the reference distance of Phobos’ mean radius.
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Figure 6.9: QSOs around Phobos. Phobos Keplerian orbit, without Mars J2. ∆e = 0.01,
∆i = 0.005rad. Orbital elements.

Figure 6.10: QSOs around Phobos. Phobos Keplerian orbit, without Mars J2. ∆e = 0.01,
∆i = 0.005rad. Secular derivative of the orbital elements, taken every orbital period. The last
two graphs correspond to the mean motion, respectively considered as the derivative of the
mean anomaly and the mean longitude, where the dotted line is the reference of the original
2B value.
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Figure 6.11: Epicycle instability. This im-
age is taken from [61], to show the evolution of
the epicycle, with and without Phobos grav-
ity, in a high-fidelity simulator with all the
differential perturbations.

Figure 6.12: Epicycle instability. This
image shows the evolution of the epicycle
without Phobos gravity, when the differential
Mars J2 perturbation is introduced in the rel-
ative P-R2BP, where the osculating orbit of
Phobos is the chief reference.

cestor epicycle, considering both Phobos and the spacecraft at perimars. The epicycle

is defined by a difference in eccentricity and inclination. Thus, the QSOs around Pho-

bos are suitable to be parameterized by the couple ∆e-∆i of its mean ancestor epicycle.

This gives also an indication of the r,θ,h-amplitudes of the spacecraft from Phobos, still

in the 2B reference. The actual minimum and maximum amplitudes are retrieved a

posteriori.

The first step is to compute a reference 2D QSO in the CR3BP, which is ∆e 6= 0.

This is visible in Fig.6.5, while Fig.6.6-6.7 provide the orbital elements evolution and

their secular derivatives. This configuration produces the θ-oscillation of the epicycle,

as discussed in section 6.1.2. In particular, such behavior is characterized by the only

not null secular derivative, which is the one of the argument of pericenter. The inclu-

sion of the eccentricity in Fig.E.1-E.3 for a 2D QSO in the ER3BP does not change

significantly the effects, as well as the inclusion of the inclination. Finally, the case of a

3D QSO in the complete Keplerian Phobos’ orbit is provided in Fig.6.8-6.10, which is

∆i 6= 0. This configuration enables the precession rotation of the epicycle, as discussed

in section 6.1.2. In terms of Keplerian OEs, the 3D QSO has short-period (rotation

around Phobos along the epicycle) and medium-period (tangential motion of the epicy-

cle) oscillations for semi-major axis, eccentricity and argument of pericenter, while the

inclination and right ascension experience a long-period oscillation (precession of the

epicycle). In particular, the argument of pericenter seems to be the one affecting mostly

the mean motion evaluated as the secular derivative of M over one M -period, whereas

the secular derivative of l over one l-period remains a perfect sinusoid along the original

2B value.

As mentioned in section 6.2.1, the Mars J2 action should be considered in the P-R2BP
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to model the QSOs around Phobos. Differential perturbations in FF always destabilize

the relative motion, since they introduce secular derivatives in the OEs. This is shown

in Fig.6.11. For the case of a 3BP, the gravity of the secondary is responsible to stabi-

lize the motion, by means of the θ-oscillation.

The addition of Mars’ J2 perturbation, without Phobos gravity, is highlighted in

Fig.6.12, where the epicycle departs along the Hill’s θ-axis. The QSOs are now investi-

gated with the same schedule done before, including eccentricity, inclination of Phobos,

and ∆e, ∆i. The outcomes are reported in Fig.E.4-E.15, and they are similar to the

previous ones. The differential Mars J2 adds a shorter-amplitude and shorter-period

oscillation to the 3D QSO, which is now a 4-torus. This has no great effects on the

secular derivatives and mostly acts in shifting the l-derivative mean motion. Therefore,

at the distances of a typical observation segment, the stability effect of Phobos’ gravity

dominates the dynamics of the QSOs.

Finally, recall from section 6.2.1 that the absence of an analytical expression of the

3B perturbation does not give knowledge of the dynamics of the natural phases. In

this sense, it is worth to report that starting with the spacecraft in perimars and infe-

rior conjunction, and starting in Mars-Phobos quadrature and phase in accordance on

the same epicycle, it produces very different QSOs with the latter having a far lower

amplitude of the θ-axis oscillation.

6.3 Stability Analysis

The QSOs around Phobos have been computed in section 6.2 by numerical simulation

in the P-R2BP, using the initial condition of the original epicycle in the R2BP. The

description of the initial condition by OEs can be immediately related to a previous

mission segment, where the spacecraft follows an orbit around Mars. The use of the

initial condition of the original epicycle is possible because the QSOs are stable orbits,

as an effect of the θ-oscillation produced by the gravity pull of the second massive body.

However, these simulations do not provide any analytical description of the motion, nor

any numerical representation of the invariant object. The use of the methods of DST of

section B.6.6 would be highly computational demanding, since the 3D QSOs are 3-tori,

eventually 4-tori when Mars’ oblateness is considered too. In particular, the latter is

the major source of instability of the relative motion around Phobos, as seen in section

6.2.2.

From the computation of the sample of QSOs in section 6.2.2, it was clearly inferred

that Phobos stabilizing effect is predominant with respect to the instability brought by

the differential Mars J2 perturbation. The point is to find the range of QSOs’ distances

where Phobos’ gravity effects are predominant, without making the spacecraft to fall

towards the moon. In this section, the stability analysis of the QSOs around Phobos

is addressed.
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6.3.1 Semi-analytical Approach

To compare the effects of the two disturbances, Phobos 3B perturbation and differ-

ential Mars J2 perturbation, the first approach is to follow a classical semi-analytical

procedure used in the framework of the P-R2BP. This is the computation of the secular

derivatives of the OEs by the effect of the related perturbation in the Gauss’ planetary

equations of Eq.6.3. This will also help to characterize the two motions of the QSO,

the θ-oscillation and the 3D precession rotation.

Such a procedure is already available for J2. It consists in the analytical computation

of the mean integral value ū of the potential uaP of the perturbation aP, by means of

the mean OEs. This is shown below for the case of J2.

uJ2 = −GM
‖r‖ J2

(
R
‖r‖

)2
1
2

(
3cos2ϑ− 1

)
= − GMR2J2

2a3(1−e2)3 (1 + e cos ν)3 (3sin2 (ω + ν) sin2i− 1
)

ūJ2 =
1

2π

∫ 2π

0
uJ2dM =

1

2π

∫ 2π

0
uJ2n

‖r‖2

h
dν =

= − 1

2π

n2R2J2

2(1− e2)3/2

∫ 2π

0
(1 + e cos ν)

(
3sin2 (ω + ν) sin2i− 1

)
dν =

=
n2R2J2

4(1− e2)3/2

(
2− 3sin2i

)
(6.4)

The Gauss’ planetary equations of Eq.6.1 can be written in terms of the forcing action

expressed through the gradient of its potential with respect to the OEs. This is called

the Lagrange’s form of the planetary equations [104], which is dOE
dt

(
du
aP

dOE

)
. Thus, by

using the derivatives of the mean integral value of Eq.6.4, it yields analytically the

secular derivatives of the OEs, which are dOE
dt . For the case of J2, in a mean orbit with

not null eccentricity and inclination, the only not null secular derivatives are the ones

of Ω, ω, and M . These secular derivatives were already presented in Eq.3.22.

The aim is to undertake the same procedure for the 3B perturbation of Phobos. The

rationale will then be to combine the secular motions due to the two perturbations,

to describe the QSO at the first-order approximation, assuming also that the coupling

effects are negligible.

dOE

dt

∣∣∣∣
J2+3B

=
dOE

dt

∣∣∣∣
J2

+
dOE

dt

∣∣∣∣
3B

+
dOE

dt

∣∣∣∣
J2−3B,coupl

≈ dOE

dt

∣∣∣∣
J2

+
dOE

dt

∣∣∣∣
3B

(6.5)

The effect of the 3B perturbation is made by the direct and the apparent term, as

shown in the first of Eq.6.6, where the indexes 1,2,3 are now assigned in the framework

of the P-R2BP8, and they refer respectively to the primary (Mars), the spacecraft,

and the secondary (Phobos). The ratio of the two terms corresponds to the square of

the two distances magnitude used in Eq.6.6. For distances up to 100km from Phobos,

the apparent term is 10−4 times the direct one. Thus, the 3B perturbation for this

procedure is reduced to only the direct gravity of the moon. This yields the integral

8The indexes 2 and 3 are swapped with respect to the R3BP.
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required to express the mean integral value of the 3B perturbation in a P-R2BP, where

to simplify the notation, from now on Phobos and the spacecraft are referred to as the

chief (c) and the deputy (d) reference.
u3B = −GM23

‖r3
2‖
− GM3

‖r1
3‖

(r1
2)
T

r1
3

‖r1
3‖

2 ≈ −GM3

‖r3
2‖

ū3B = 1
2π

∫ 2π
0 u3BdMd = 1

2π

∫ 2π
0 −

GMc

‖rcd‖
(1−e2c)

3/2

(1+ed cos νd)2dνd

(6.6)

The integral in Eq.6.6 requires the expression of the relative distance between the

spacecraft and Phobos. This is presented in Eq.6.7, and requires the use of the atti-

tude matrices between the Hill’s frame of chief and deputy with respect to the inertial

reference.

rcd,Hc = AI
Hc

(
AI
Hd

)T
r1
d,Hd
− r1

c,Hc =

=



{
cosud [sin Ωd (cosuc sin Ωc + sinuc cos ic cos Ωc) + cos Ωd (cosuc cos Ωc − sinuc cos ic sin Ωc)] +

− sinud (cosud [sin Ωd (cosuc cos Ωc − sinuc cos ic sin Ωc)− cos Ωd (cosuc sin Ωc + sinuc cos ic cos Ωc)]− sinuc sin ic sinud)

}
{

− cosud [sin Ωd (sinuc sin Ωc − cosuc cos ic cos Ωc) + cos Ωd (sinuc cos Ωc + cosuc cos ic sin Ωc)] +

+ sinud (cosud [sin Ωd (sinuc cos Ωc + cosuc cos ic sin Ωc)− cos Ωd (sinuc sin Ωc − cosuc cos ic cos Ωc)] + cosuc sin ic sinud)

}
{sinud (cos ic sinud − sin ic cos Ωc cos Ωd cosud)− cosud sin ic (cos Ωc sin Ωd − sin Ωc cos Ωd)}

 ·

·
ad
(
1− e2

d

)
1 + ed cos νd

−
ac
(
1− e2

c

)
1 + ec cos νc

[
1
0
0

]
(6.7)

As anticipated in section 6.1, the attitude matrices are time-variant and Eq.6.7 becomes

very tedious. Furthermore, the magnitude of Eq.6.7 is required, and this shall go to

the denominator of the function inside the integral of Eq.6.6. Therefore, no analytical

expression is possible.

A second possibility is to linearize from the beginning the ODEs of the relative

R2BP, without the perturbation. The solution of the relative orbit is presented in [156]

in terms of the difference of OEs between deputy and chief. For Phobos, the case of

a circular non-equatorial orbit is considered. This requires to use as OEs a, i, Ω, the

argument of true latitude λ, and the equinoctial parameters S and C9. The solution of

the linearized Keplerian FF is presented in Eq.6.8, as a function of the initial or current

difference of osculating OEs.

9C and S are the same of P1 and P2 defined in Eq.6.2, when considering only the argument of
pericenter ω and not the longitude of pericenter u.
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Figure 6.13: J2-invariant FF around Pho-
bos. Relative orbit without Phobos gravity.
3D and planar views. Propagation time of
200 orbital periods (about 2 months): first
orbit in blue line, last orbit in red line.

Figure 6.14: J2-invariant FF around Pho-
bos. Relative orbit with Phobos gravity.
Same initial condition of Fig.6.13.

ū3B = 1
2π

∫ 2π
0 u3Bdλd = 1

2π

∫ 2π
0 −

GMc

‖rcd‖
dλd

rcd,Hc (t, λ,OE0) =
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2ac∆C0 sinλ− 2ac∆S0 cosλ+ ac∆λ0 − ac cos ic∆Ω0 − 3
2nc∆a0 (t− t0)

ac∆i0 sinλ− ac sin ic∆Ω0 cosλ

 =

=

 1 −ac cosλ −ac sinλ 0 0 0
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2nc (t− t0) 2ac sinλ −2ac cosλ −ac cos ic 0 ac

0 0 0 −ac sin ic cosλ ac sinλ 0
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rcd,Hc (OE(t)) =

 ∆a− ac∆C cosλ− ac∆S sinλ

2ac∆C sinλ− 2ac∆S cosλ+ ac∆λ− ac cos ic∆Ω
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∆a

∆C

∆S

∆Ω

∆i

∆λ


(6.8)

However, the problem leads to the same conclusion of the first approach. The magnitude

of the orbit of Eq.6.8 shall go to the denominator of the function inside the updated

integral of the first of Eq.6.8. The latter is not solvable analytically.

In summary, the problem of the secular description of the 3B perturbation has already

been considered in the past, and it could not be expressed in a closed-form, but it

requires to be undertaken numerically.
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6.3.2 Combined Semi-analytical-Numerical Approach

Following the result of section 6.3.1, the approach in this section is to consider the

well-known analytical secular solution of the relative motion with oblateness, and then

add the gravity of Phobos numerically.

The differential J2 perturbation is always destabilizing, apart from peculiar configu-

rations that disable the departure of the epicycle. These no-drift solutions are known

as J2-invariant FF [155, 156]. The procedure to derive such orbits consists in the lin-

earization of the secular derivatives due to J2 in Eq.3.22, with respect to the difference

of the remaining mean OEs. This yields three equations to be matched to zero, forcing

the secular derivatives of the OEs to be the same for both spacecraft. This is presented

in Eq.6.9, where a common simplification is made, which is to neglige the derivative

of the J2 effect with respect to ∆a0,M , since these terms are too large in comparison

to the others in each constraint of Eq.6.9. The derivatives neglected are proportional

to the ratio between Keplerian and J2 gravity, thus this assumption is worthy for the

cases of Earth and Mars.

dOE

dt

∣∣∣∣
J2

= 0⇒


¯̇Ω = 0

¯̇ω = 0
¯̇M = 0

⇒

⇒


4ec

1−e2c
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4ec
1−e2c

(
1− 5cos2ic

)
∆e0,M + 5 sin 2ic∆i0,M = 0

∆a0,M + 3ac

(
R
pc

)2
J2

ec
2
√

1−e2c

(
1− 3cos2ic

)
∆e0,M + 3

2ac

(
R
pc

)2
J2

2
√

1− e2
c sin 2ic∆i0,M = 0

(6.9)

The system of Eq.6.9 is homogeneous, therefore the solution is classically obtained

erasing only the secular derivative of Ω and λ = ω +M , and one between a difference

of mean eccentricity or inclination becomes a free parameter. This yields a family of

J2-invariant orbits. This solution is reported in Eq.6.10.

dOE

dt

∣∣∣∣
J2

= 0⇒

{
¯̇Ω = 0
¯̇
λ = ¯̇ω + ¯̇M = 0

⇒

⇒

 ∆e0,M = 1−e2c
4ec

tan ic∆i0,M

∆a0,M = −1
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(
R
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)2
J2 tan ic

[(
1 + 3

2
2
√

1− e2
c

)
+ cos2ic

(
5 + 21

2
2
√

1− e2
c

)]
∆i0,M

(6.10)

The resulting solution is made up of the mean ∆a and ∆e, as a function of the mean ∆i

and the remaining OEs. This couple of six mean OEs are transformed in osculating OEs.

This transformation is known analytically for the case of J2 [105]. The resulting couple

of six osculating OEs is the set of initial conditions of Phobos and the spacecraft for the

J2-R2BP of Eq.6.3. Recall that Phobos gravity is still not considered yet. An example

of J2-invariant FF with Phobos is reported in Fig.6.13. As a difference from Fig.6.12

the epicycle does not drift any longer along the θ-axis. In fact, its planar projection is

fixed. However, a J2-invariant FF is not a fixed PO like the original epicycle, but only a
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2-torus. This is the only possible reduction of the phase-space of the invariant relative

solutions due to the introduction of J2. This result is understandable from the fact that

Eq.6.10 does not solve Eq.6.9, but only a wise combination of its constraints. A J2-

invariant FF is a 3D 2D-QPO, whose additional natural phase describes the precession

of the relative line of nodes. For the case of a Phobos, as a difference from a FF between

two spacecraft, the J2-invariant FF is actually a better solution than an epicycle. This

is because the Hill’s frame of the orbit is fixed with respect to Phobos’ BCBF frame.

Thus, the precession enables to avoid the 1:1 resonance of a PO, providing global

observation of the surface of the moon.

The second step is to introduce Phobos gravity numerically, in the P-R2BP with the

initial condition of the J2-invariant FF. The idea was that, since Phobos has a stabilizing

effect, the domain of ∆OEs derived for stable relative orbits would be enlarged. This

has resulted to be a wrong prediction, as visible in the example of Fig.6.14. No original

J2-invariant FF is stable in the ER3BP, and the QSO departs along the Hill’s θ-axis.

This behavior is related to the fact that, for the case of Phobos, the J2-invariant FF

provided by Eq.6.10 requires a difference in inclination higher than the difference in

eccentricity (∆i/∆e = 3.4), so the resulting relative orbit is highly inclined10. This will

be addressed in the following section.

6.3.3 Numerical Approach

The dynamical analysis of the QSOs requires the derivation of the secular derivatives of

the 3B perturbation in the P-R2BP, in a similar way to the case of J2. But the solution

of the mean integral value of the 3B perturbation could not be undertaken analytically.

The integral of Eq.6.6 is solved numerically in [67], and used to address the physical

interpretation of the stability analysis of the QSOs. These results were applied to the

case of the asteroid’s orbits, which are QSOs around other planets. In particular, the

integral of Eq.6.6 is required also to derive the secular motion of the precession of the

3D QSOs. By describing the secular mean longitude between the second massive body

and the spacecraft, the stability conditions of the QSOs found in [67] are two.

• Any 2D QSO large enough that the oscillation amplitude of the epicycle does not

make it fall towards the secondary body (minimum distance of the epicycle) is

always stable.

• For any 3D QSO the secular precession will rotate the epicycle with the relative

line-of-nodes towards the Hill’s r-axis (relative nodes in conjunction with the two

central bodies). Such attitude becomes unstable as far as the inclination of the

QSO increases, therefore the QSO leaves the body neighborhood and becomes a

Horseshoe orbit. This 3D stability condition of the QSOs requires the difference

in inclination (in radians) to be smaller than the difference in eccentricity.

10Each J2-invariant formation around Phobos has max declination of 75◦ on the cis/trans-side, and
60◦ on the leading/trailing-side.
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The second condition is coherent with the results of section 6.3.2. The condition of the

J2-invariant FF is the opposite, thus the Phobos gravity will make the resulting QSO

unstable every time the precession rotates the sub-epicycle in such an attitude. This

mechanism is clearly visible in Fig.6.14.

In addition, a linear Floquet stability analysis of the QSOs, that fulfil the above

stability conditions, in the CR3BP has highlighted the high stability of them [61].

Thus, for the range of distance from Phobos, the constraints of the 3B effect of [67] are

the drivers of the stability analysis of the QSOs in the Mars-Phobos system.

In [62], a different approach is considered and consists in the linearized dynamical

analysis, in the ER3BP, of the epicycles of the R2BP. Furthermore, the analysis is

applied to the Mars-Phobos case. First of all, the linearized description of the QSOs is

coherent with the nonlinear simulations, describing both the θ-oscillation and precession

rotation, in particular their periods. In addition, there is a relationship that bounds

the mean motion of the sub-epicycles with the mean motion of the secondary body

around the primary: the natural period of the sub-epicycles increases for decreasing

distance from the second massive body, as expected from section 6.1.2. Second of all,

the linearized stability conditions are consistent with the physical interpretation given

by [67], and also more precise. They are the following.

• The expression of the minimum distance, above which the planar QSO is stable,

is provided. For Phobos, this is 29.4km (∆e = 0.00315).

• The 3D stability condition, that bounds the admissible difference in inclination to

the difference in eccentricity below which the inclined QSO is stable, is ∆i/∆e <

96%.

Similar numerical outcomes were obtained for the stability analysis of QSOs around

Jupiter’s moon Europa [65].

In particular, it appears that the minimum distance corresponds to a peculiar con-

dition presented by Hénon in [158] on the stability of the planar QPOs around the

f family of POs of the Hill’s approximation of the planar CR3BP11. As far as the

dimension of the QPOs increases, the stability is influenced by the 1:3 and 1:4 reso-

nances with the families of multiple-revolution direct satellite orbits, where the QPO

motion is disabled. Thus, these intersections, visualized in [158] through a Poincaré

map y = 0, are stability conditions. In [158], a summarizing graph shows the range of

the initial conditions, on the velocity components, that provide a quasi-periodic motion

as a function of the initial x position on the Poincaré section. The last intersection, at

the resonance 1:4, is encountered by an epicycle of minimum distance equal to 1.2 3
√
µ of

the orbital semi-major axis. After that, the QPO remains bounded even at infinite dis-

tance (within the Hill’s approximation). This value for the Mars-Phobos system leads

11In [157], five classes of periodic solutions (for the case of a single revolution around the secondary
body), have been obtained: they are the LPOs, the retrograde satellite orbits, the direct satellite orbits
and their specular couples of asymmetric bifurcated orbits.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

329 Zamaro Mattia



Quasi-Satellite Orbits

Figure 6.15: Linear stability region of
QSOs around Phobos. Initial conditions
on osculating OEs around Mars for the space-
craft and Phobos: positive differences in ec-
centricity and inclination.

Figure 6.16: Nonlinear stability region
of QSOs around Phobos. High-fidelity
1 year simulations, defined by initial condi-
tions on osculating OEs around Mars for the
spacecraft and Phobos: positive differences in
eccentricity and inclination, starting at peri-
mars epoch.

to a distance of 28.7km, which is so close to the value obtained above in the linearized

ER3BP. Thus, the QSOs are the natural invariant motions around the Strömgren’s f

class of orbits of the 3BP, after the 1:4 resonance.

In addition, [158] found a significantly different sensitivity of the stability of the QPO

between the two velocity components, with the radial one (with respect to the primary)

being far less critical at pericenter and apocenter. Regarding the sensitivity at different

phases, a set of simulations is carried out considering the other most interesting points,

which are the two quadrature positions. The outcomes have resulted to be the same,

with the range of radial velocity smaller than the one of the tangential velocity. The

reason could be because an increase in tangential velocity increases the semi-major

axis. As explained in section 6.1.1, the semi-major axis is the critical parameter for a

FF, because it is directly related to the mean motion of the two spacecraft, thus deter-

mines whether the relative motion will be invariant or rapidly drifting away along the

θ-axis. This means that the accuracy required by the GNC subsystem for the insertion

maneuver to the QSO is less critical in Mars-Phobos and Phobos-spacecraft common

quadrature configurations, where the epicycle has only radial velocity on the orbital

plane and the amplitude of the tangential oscillation is the smallest using mean OEs.

6.3.4 Simulations

After the procedure undertaken throughout section 6.3 to investigate the stability anal-

ysis of the QSOs, it emerged that Phobos’ perturbation is not analytically able to be

approximated in terms of OEs. Moreover it is not able to be passively combined with

Mars J2 secular motion, because it has a different natural frequency and also a domi-

nating effect, which is expensive to counteract actively for a long period, as investigated
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Figure 6.17: QSO around Phobos. Exam-
ple of a 3D stable QSO in the Phobos Hill’s
frame for 1 year propagation.

Figure 6.18: QSO around Phobos. Ex-
ample of a 3D stable QSO in the Phobos
Hill’s frame for 1 year propagation. Dis-
tance’s magnitude from Phobos.

in section 5.5. However, this compensation is not an efficient choice because the Pho-

bos’ gravity mostly has a stabilizing effect, and the linear stability requirements of

section 6.3.3 are a reliable approximation of the range of stable QSOs in the perturbed

dynamics.

Therefore, the linearized stability analysis of the QSOs is already provided in the

literature, in particular for the case of Phobos. In this section, the nonlinear stability

of the QSOs around Phobos is probed with numerical simulations. In [61], the sta-

bility has been tested scanning the state-space in relative position and velocity with

a high-fidelity simulator. In this chapter, the stability analysis of the QSOs has been

undertaken in the framework of the relative P-R2BP, which is suited to interface with a

previous orbital segment around Mars. Thus, the approach followed is to use the linear

stability region of [62] as a first guess in order to limit the boundary of the state-space

in terms of osculating OEs where conduct the nonlinear simulations. The linearized

stability region of the QSOs around Phobos is a trapezoid in the plane ∆e-∆i, as shown

in Fig.6.15. In particular, the minimum distance is smaller than the minimum altitude

required by observation missions, which is considered to be 20km (∆e = 0.00355),

while the required maximum altitude, which is considered to be 60km (∆e = 0.00750),

is definitely inside the range of distances such that Phobos gravity is still predominant

with respect to the differential Mars J2 perturbation. In addition, the boundary of

the maximum inclination at these distances provides a vertical amplitude of the QSOs

much higher than Phobos’ vertical size (∆i = 0.001rad = 0.06◦), therefore 3D QSOs

close to this boundary are unlikely to be used in a typical mission to Phobos. This

practical range of QSOs is inside the linear stability region.

These range of distances, together with the limit of inclinations provided by the lin-

ear stability region in Fig.6.15, is used to simulate the QSOs. This has been undertaken

with the STK software, considering the default ephemerides of Phobos, starting at 10

April 2013 08:35:30UTCG (perimars), and the additional perturbations of the Mars
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GHs up to 15th degree/order, the Phobos GHs up to 4th degree/order, the Sun and

SRP perturbations. The set of initial conditions is limited to positive ∆e-∆i, while all

the other initial conditions’ differences in osculating OEs at the perimars are null. The

QSOs are simulated up to one year of propagation time. A QSO is considered stable

when it does not drift away by the end of the simulation. This is very reliable and

not too much restricting because the strong nonlinearity of the 3B dynamics change

drastically the motion when crossing the stability region’s boundaries (as proved with

the AEPs in section 5.2). Furthermore, the time allocated to a single QSO segment in

a typical mission should be lower: ESA Phootprint will use a QSO from 6 to 9 months.

An example of a stable QSO is provided in Fig.6.17. The resulting true-life stability

region boundary is presented in Fig.6.16. The observations are the followings.

• The minimum distance requirement is significantly higher than the linear one.

• In the smallest stable range of ∆e, the 3D stability boundary is smaller than the

linear one.

• For higher eccentricity, such boundary asymptotically reaches the linear one.

Furthermore, the starting ∆e of the epicycle does not define trivially the minimum dis-

tance from Phobos of the QSO for the smallest range of eccentricities, as visible from

Fig.6.18: the planar QSO at minimum stable ∆e has a minimum altitude of 25km. Re-

garding the dependence of the stability region from initial phase of Phobos, the second

part of [62] is devoted to nonlinear stability simulations using Fast Lyapunov Indica-

tors, where the dependence on the initial true anomaly is conducted. The outcomes

shows that results at perimars and apomars are similar, whereas a quadrature phase

has a smaller linear stability region. This counteracts what it is stated and suggested

in [61], where the sensibility to initial conditions on the velocity is favorable along the

Hill’s θ-axis.

It is worth noting that despite the range of interest, for exploitation in missions to

Phobos, of ∆e-∆i in the nonlinear stability region is not compromised from their stable

range in the linear approximation, the key point becomes the accuracy of the control

system to insert precisely the spacecraft in the chosen QSO.

6.4 Applications

The stability of this class of orbits, combined with the collapse of the SOI and the

synchronous rotation, makes the QSOs attractive solutions to orbit Phobos. In this

section the main features of the QSOs are investigated, in the framework of their

exploitation in the proposed sample-and-return ESA mission Phootprint.
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6.4.1 Reference Guidelines for ESA Phootprint

At the time this research was carried out, preliminary studies of the Mars Moon Sample

and Return were undertaken by CDF at ESTEC (MAGs [66]), and the renamed mission

Phootprint was entering in Phase 0/A. The mission outline has a significant heritage

of the two previous Russian missions to Phobos discussed in section 1.2, which is:

• the Earth/Mars transfer (around 2024)

• an observation orbit, which is a Trailing FF, for measuring the moon’s state

(orbital elements) and parameters (gravity parameter and inhomogeneous gravity

field)

• the operative orbit around Phobos, which is a QSO, used to observe the surface

thoroughly and identify the landing site where obtaining a sample of the soil

• landing

• sampling

• take-off

• return back to Earth.

Regarding the preliminary guidelines in [66], the Earth-Mars transfer is designed to

bring the spacecraft in a Mars orbit, which is then changed to reach Phobos’ inclina-

tion and altitude. This is the observation orbit required for measuring Phobos’ state

evolution (position and velocity) and mass parameters: this is necessary because Pho-

bos is a very small body flying very close to Mars, therefore its gravity field and orbital

elements should be validated (recall that the orbit of Phobos is not Keplerian, in par-

ticular due to Mars’ oblateness) prior to the approaching segments. This observation

orbit is a trailing configuration with a distance of 500km from Phobos.

Once the measurements are taken, the spacecraft is inserted in a closer observation

orbit around Phobos. This is realized with a QSO, that will be used for a very long time

(6-9 months), and required to remain stable during the solar conjunctions that would

black out the communications to the Earth for approximately 1 month. The mission

does not use SEP, and requires the spacecraft to maximize the lighting conditions.

Preliminary studies were also undertaken for the previous Russian missions, and in

particular [159] focuses on the QSO determination. Regarding Phootprint, research

studies at ESOC have been conducted in [61, 160, 78]. A preliminary study of orbits

around Phobos, including QSOs, has been conducted by JPL in [57].

6.4.2 Time of Coverage

From a sample of QSOs simulated in section 6.3.4, the period of the secular precession

for 3D QSOs is computed. This natural motion of the 3B dynamics is useful for ob-

servation purposes because it allows to overcome the 1:1 resonance of the sub-epicycles
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Figure 6.19: Surface coverage of the 3D
QSOs around Phobos. Period of preces-
sion of the relative line-of-nodes that indi-
cates the minimum time for a complete Pho-
bos’ surface coverage of the QSOs. Linearized
solution as a function of ∆e and outcomes
from the NL simulations with different values
of ∆i.

Figure 6.20: Lighting conditions of the
QSOs around Phobos. Example of the
lighting conditions for a Keplerian epicycle
at 50-110km distance range, remaining in the
Mars and Phobos shadowing wakes for 34%
of the time.

and provide a complete coverage of the surface of Phobos. Every 360◦ that this motion

is completed, the sub-epicycles has swathed the r-h and θ-h planes around Phobos, as

we see in Fig.E.12 and Fig.6.17.

Fig.6.19 presents this time for the QSOs of the stability region, and compare it with

the linearized solution from [62]. The latter is a function of ∆e3, and has resulted to be

close to the results of the nonlinear simulations for the 3D QSOs near to the stability

boundary ∆i(∆e) in Fig.6.16 and for high eccentricities. In contrast, the linearization is

not accurate for smaller QSOs. In summary, the QSO is not resonant with Phobos, and

all the range of stable 3D QSOs of interest provide a fast coverage of the moon, which

is the main objective of this mission segment in Phootprint. Obviously to verify if the

complete coverage of Phobos’ surface is possible, and subsequently derive the required

∆i of the 3D QSO, the knowledge of the technical data (FOV, elevation from ground)

of the optical instruments to be used in the mission is required. These requirements

have been considered in section 5.5.2.

6.4.3 Lighting Conditions

The analysis undertaken in this section provided a region of QSOs that are naturally

stable with a high-fidelity perturbed model, potentially for a whole long-period mission

scenario. Their distances from Phobos are suitable for observation, and the exploitation

of the natural precession motion provides a fast complete coverage of the surface of the

moon. Considering the results of the analysis of the lighting conditions around Phobos

conducted in section 2.6, such a fast precession, combined with the exploitation of these

orbits for long periods, allows a spacecraft to remain mostly in light.
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Figure 6.21: Maneuver for change of eccentricity. ∆v relative gain by performing the
maneuver at the apocenter versus at the pericenter.

Figure 6.22: Phasing maneuver. On the left, comparison of the adimensional ∆v for a
single lap phasing (∆ν = 0.1rad) at pericenter/apocenter in leading/trailing configuration, and
related ω-phasing. On the right, ∆v relative gain by performing the ω-phasing versus the
cheapest ν-phasing (single lap, trailing, at the pericenter) for different ∆ν. Magnification of
the break-even front.

In contrast, QSOs can be controlled to maintain a 1:1 resonance with Phobos’ BCBF

frame: this would provide constant lighting conditions, ranging from continuous light

(during solstices) to continuous shadow (during equinoxes), controlling the β-angle

thermal condition desired, by fine tuning the initial phase of the spacecraft along the

epicycle with respect to the VDCO of the Sun around Phobos (see Fig.2.26). An

example in Fig.6.20 shows that a planar epicycle in the middle of the stability region,

during an equinoctial season, could remain in shadow from the field of view of the Sun

for the 34% of the time.

6.4.4 Insertion Maneuver

Another important measure of the trade-off that could be used in the mission design, to

select the optimal QSO inside the stable domain, is the ∆v of the insertion maneuver.

This is undertaken in this section by considering a previous mission segment realized by
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Figure 6.23: Insertion maneuver to QSO
around Phobos. ∆v [m/s] cost for ∆e.

Figure 6.24: Insertion maneuver to QSO
around Phobos. ∆v [m/s] cost for ∆i.

Figure 6.25: Insertion maneuver to QSO
around Phobos. ∆v [m/s] cost for ∆ν, 1
lap phasing from trailing configuration.

Figure 6.26: Insertion maneuver to QSO
around Phobos. ∆v [m/s] cost for ∆ν, 10
laps phasing from trailing configuration.

Figure 6.27: Insertion maneuver to QSO around Phobos. ∆v [m/s] total cost with 1 lap
phasing from 500km-trailing configuration.
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a Martian trailing orbit, which is a body-fixed hovering point analyzed in section 5.2.

The range of phases considered is ∆ν = [0◦,−6◦] from Phobos, that corresponds to a

distance 0-1000km. Since the starting OEs are the same of Phobos, apart from ν, the

differences of eccentricity and inclination of the QSO with respect to the trailing orbit

are directly the ones with respect to Phobos, used to express the stability region. The

difference in anomaly/longitude with respect to the trailing orbit is the same between

the latter and Phobos. In this section the ∆v budget is computed to provide, with the

cheapest strategy of impulsive maneuvers, the initial conditions of the QSO ∆e, ∆i,

and to erase the initial phasing ∆ν.

The impulsive maneuvers required to achieve these single differences are analyzed

separately. The subscripts indicate whether the maneuver is performed at the pericenter

(P) or apocenter (A), the initial (1) and final orbit (2), the transfer orbit (T) between

the two impulses, the leading (a) or trailing (d) phasing configuration. The superscripts

indicate the condition before (-) and after (+) the burn.

• Change of eccentricity: a double impulse at pericenter/apocenter, keeping con-

stant the semi-major axis.

∆v∆e,P/A =
∣∣v+

1 − v
−
1
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+
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2
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√
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(6.11)

• Change of inclination: a single impulse performed at the ascending/descending

node, which does not change Ω.


∆v∆i,∆Ω,ν = ∆vθ = 2vθ sin α

2{
cosα = cos i1 cos i2 + sin i1 sin i2 cos ∆Ω
sin(ω1+ν)

sin i2
= sin(ω2+ν)

sin i1

⇒


∆v∆i = 2 2

√
GM
p (1 + e cosω) sin ∆i

2

α = ∆i

∆Ω = 0

u1 = u2 = 0

(6.12)

• Change of true anomaly: a two impulses phasing.

∆v∆ν,P/A,N,a/d =
N∑
i

2
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−
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(6.13)
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A preliminary sensitivity analysis on the free parameters of these maneuvers provides

the following indications.

• The eccentricity maneuver is cheaper at the pericenter for increasing the eccen-

tricity (see Fig.6.21), which is the case considered in the computation of the

stability region of the QSOs.

• The inclination maneuver is minimum on the orbital plane, but the cost also

decreases with the distance from the central body. For the case of Phobos, the

ascending node is at ν = 106◦, and the inclination and eccentricity of the orbit

are small. Therefore, it should be preferable to perform this maneuver still at the

ascending node. With this choice, the maneuver is cheaper with high eccentricity:

the minimum is for e = −cos(νΩ) = 0.27.

• The phasing maneuver is always cheaper at the pericenter, for high eccentricity,

in the leading configuration (see Fig.6.22). However, the demand for the mis-

sion outline is a trailing configuration, and the difference between the two cases

is negligible (about 2%). In addition, the cost could be lowered quite linearly

performing multiple laps.

• Note that for elliptic orbits, the phasing could be achieved also keeping the same

anomaly, but changing the line of apses, which is a change of the argument of

pericenter ω. 
∆v∆ω,∆ν = ∆vr = 2 2

√
GM
p e

∣∣sin ∆ω
2

∣∣
∆ν = ∆ω

ν− =

{
∆ω
2 , ν− ≥ ∆ω

∆ω
2 + π , ν− < ∆ω

(6.14)

The advantage of this maneuver is that the relative position’s direction is fixed in

the Hill’s frame, in case of Keplerian motion. However, this alternative phasing

strategy is usually far more expensive than the usual phasing in anomaly, apart

from very small eccentricities: for the case of Phobos, this happens for e < 0.081,

comparing it with the case of single lap phasing in anomaly (see Fig.6.22).

In conclusion, since the last two maneuvers are cheaper for high eccentricity, the best

sequence of maneuvers chosen is:

• eccentricity maneuver at the perimars;

• inclination maneuver at the ascending node;

• anomaly phasing at the perimars.

The outcomes of the ∆v cost are provided separately, for the range of difference of

eccentricity and inclination inside the stability region. The first maneuver is presented

in Fig.6.23, and clearly is independent from the second. The second maneuver is
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presented in Fig.6.24, and is dominated by the ∆i. Finally, the anomaly phasing is

considered for the single lap case in Fig.6.25, but its cost is easy to be controlled,

to lower the total ∆v budget, by adding more laps, as presented in Fig.6.26. This

is appealing also for the fact that the Phobos’ orbit around Mars has a short period

(7h39min). Recall that also a single phasing in ω is possible and cheaper that the

single phasing in ν at the eccentricity of Phobos. The cost of the phasing maneuver is

approximately independent from the inclination, therefore it is plotted has a function

of eccentricity and anomaly. The latter has been transformed in the mean distance

spacecraft-Phobos.

In conclusion, Fig.6.27 provides the total cost for the insertion maneuver to the QSOs

inside the high-fidelity stability region. Since ∆e and ∆i are small the cost range for

their related maneuvers is moderate (5-7.5m/s and 0-8m/s), and so it is the cost of

the phasing (0-20m/s), which could be lowered for distant body-fixed AEPs linearly,

by performing multiple laps. The drawback is the accuracy of the GNC subsystem to

insert precisely the spacecraft in this small range of initial conditions.
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Chapter 7

Conclusions

This chapter concludes the thesis by summarizing the results of the analyses undertaken

to address the objectives set in section 1.3.

7.1 Outcomes of the Research

This thesis has analyzed several kinds of orbits around the Martian moon Phobos, each

one defined and investigated in the light of the characterization features introduced in

section 1.3. The design of a future space mission to Phobos requires multiple objectives

and constraints to be satisfied. In this sense, the outcomes of the analysis carried out

in this thesis are collected in Table 7.1, where each orbit has a number of potential

applications and their performance can be assessed against the requirements of each

mission segment. For this task, the analysis of the physical and orbital environment

around Phobos conducted in chapter 2 is indispensable.

Trailing/Leading orbits around Mars are the most simple orbits to observe Pho-

bos, and they have been analyzed in section 5.2. The orbits that start from 25km

distance from Phobos are attractive configurations for body-fixed hovering, because

they are cheap and affordable by SEP even for heavy human modules, they are stable

to perturbations, and they are mostly in full light. They are the best orbits to start

to approach Phobos’ SOI, however their ground-track on the moon is stationary and

constrained. Other distant configurations or close-range AEPs require either high-

thrust or high station-keeping cost for hovering in Phobos’ BCBF frame over long-time:

they can be used only for short and dedicated operations of small unmanned spacecraft.

The preliminary analysis of the orbital dynamics around Phobos conducted in section

2.3 pointed the attention to the collapse of the realm of attraction of the moon

towards its surface. As a result of this situation, natural Keplerian orbits with re-

spect to Phobos are infeasible to orbit around the moon. Section 5.3 investigated the

artificial realization of these orbits, and focusing on the case of hovering in the inertial

frame around Phobos, which would provide a spacecraft stationary lighting conditions

during a Martian season. Due to the pull of Mars these SS-VDCOs require continuous
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propulsion, and they are too expensive even for few revolutions, and also unstable.

The collapse of the Phobos’ SOI allows to use Keplerian orbits with respect to Mars

to orbit around its moon at feasible distance. The realization of classical relative orbits

by artificially flying in formation with Phobos has been investigated in section 5.5.

The level of thrust required to compensate Phobos’ gravity is affordable by SEP, but

these orbits are resonant with the Phobos’ BCBF frame, thus they require an additional

schedule of frequent maneuvers to provide a full coverage for observation of the surface

of the moon. Chapter 6 focused on the natural equivalents of these orbits under the

effect of the gravity of Phobos, which are the QSOs. These orbits are the best solution

for a precursor unmanned mission to Phobos. They are both natural orbits with no

need of propulsion, and stable up to very long time with no need of station-keeping, and

so they can be used as parking orbits with distance starting from 25km from Phobos.

In particular, closer 3D QSOs provide a fast complete coverage to map the surface of

Phobos and identify the landing site, and they are mostly in light. 2D QSOs during

equinoctial seasons are suitable to be controlled to provide nearly Sun-synchronous or-

bits around Phobos, enabling constant and adjustable lighting conditions: in particular,

lighting condition scheduling could be important for a first-generation manned space-

craft while orbiting Mars. The long-time stability of the QSOs around Phobos could be

exploited as an orbital repository to send, in advance, unmanned propulsion modules,

fuel stockpiles, and provisions, to remain parked in a secure low altitude Martian orbit

without orbital maintenance costs and with short-period phasing maneuvers to dock the

modules. To allow the first human expeditions to visit Mars and return to the Earth,

the spacecraft could make scheduled pit-stops at this orbital garage on Phobos’ orbit.

A final class of interesting orbits to consider to fly in proximity of Phobos are the

invariant motions around the collinear LPs, L1 and L2, of the Mars-Phobos system.

In this sense, the analysis of the natural dynamics inside Phobos’ realm of attraction

has resulted to be the main focus of this thesis. In the first part of chapter 4, the

classical families of periodic and quasi-periodic LPOs in the basic CR3BP have

been computed for the case of the Mars-Phobos system. This has been undertaken by

using well-known methodologies of dynamical systems theory, that are presented in ap-

pendix B. The LPOs are well-known exploitable solutions for orbiting about the smaller

primary and they provide energy-efficient trajectories for interplanetary transfers of

spacecraft through their IMs. However they are highly unstable, and station-keeping is

required. For the Mars-Phobos system, the small SOI makes the altitude of the LPs to

be very close to Phobos’ irregular surface. In this situation, section 2.4 proved that the

basic dynamical approximation provided by the CR3BP falls short, and in particular

two differential orbital perturbations become relevant in describing the natural relative

motion around this moon. They are shown to be its highly inhomogeneous gravity field

and its orbital eccentricity.

For this reason, in chapter 3 an improved system of the relative dynamics in proximity

of Phobos, named ER3BP-GH, has been derived, upgrading the Mars-Phobos ER3BP

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

342 Zamaro Mattia



Conclusions

with the real gravity field of the moon, modeled with a gravity harmonics series expan-

sion. The second part of chapter 4 is devoted to the computation of the dynamical

substitutes of the LPOs in these enhanced dynamics, through numerical contin-

uation techniques that maintain the phase-space of the perturbations. In particular,

whereas the time-dependent eccentricity effect has already been studied throughout

the years, no deep analysis has been undertaken to consider the additional GHs of the

secondary body in the computation of the dynamical substitutes of the LPOs. The

Mars-Phobos-spacecraft system is particulary suitable for two reasons: firstly because

their perturbation is significant due to the collapse of the collinear region, and then

because the additional physical and orbital characteristics make this system so unique

to preserve the time-invariance of the Hamiltonian model. In this sense, the effect of

the gravity harmonics produces families of periodic and quasi-periodic orbits highly dis-

torted and tilted from the classical case.

These natural motions have revealed some potential opportunities for future missions

to Phobos. The LPOs are very close to the moon’s surface, therefore they are similar to

close-range points but with an extended ground-track and range of lighting conditions,

and the Phobos’ bulk occultation of the sky could provide relevant passive shielding

from the cosmic rays radiation. Despite their instability, the LPOs are natural motion

and so will require no propulsion and low station-keeping cost to provide: close-range

observation of Phobos, mission segments to directly interface with landing and take-off

phases, proximity parking orbits for mothership modules to remotely command lighter

probes deployed on the surface, and communication bridges to manage robotic scouts

on Mars and Phobos. However, they require the high accuracy of an optical naviga-

tion subsystem, and high load on the guidance subsystem, whose reference signal must

be computed with advanced analytical and numerical techniques of dynamical systems

theory that need the acquisition of a high-fidelity gravity field of the moon. In this sense,

the accuracies required for the modeling parameters of the ER3BP-GH have been as-

sessed against the GNC requirements, to track a spacecraft along the reference signal

of the new orbits computed in the improved dynamical model. A preliminary estima-

tion proved that such LPOs considerably lower the control load and enhance

the fuel savings between one and two orders of magnitude with respect to

tracking the classical LPOs of the CR3BP, enabling feasible station-keeping

by exploiting the natural dynamics around Phobos. Another useful application

is to exploit the IMs of these new LPOs as landing or take-off gateways to and from

the surface of Phobos. In this thesis it was demonstrated that there exist natural tra-

jectories for a specific range of longitude-latitude sites able to facilitate a soft controlled

landing, and depart with very low escape velocity injections, less than the 2B ∆v value.

The optimization of these performances to select the best trajectory at a given location

on Phobos will be paramount for sample-and-return missions (where soil contamina-

tion avoidance is necessary) as well as first manned explorations of this moon.

Finally, the addition of a simple propulsive law, to obtain artificial LPOs with
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Figure 7.1: Mission scenario at Phobos. From the left to the right. The starting mission
segment is a trailing orbit of the spacecraft in Phobos orbit. A phasing maneuver inserts the
spacecraft into a Quasi-Satellite orbit around Phobos. The spacecraft then moves along the
outward tube of the stable invariant manifold associated to the targeted Libration point orbit.
The lander is deployed along the inward tube of the unstable invariant manifold, braking with a
retro-maneuver in the last segment of the descent, to touch-down on the chosen site on Phobos,
while the mothership remotely controls it on the Libration point orbit.

constant acceleration, has been investigated in section 5.4. This implementation

offers some advantages when using these LPOs for short-phases: the surface coverage

and landing/take-off targeting could be extended to the whole surface of Phobos, the

instability of the orbits could be lowered, and the computation of the orbits themselves

could be simplified to maintain them periodic also in the true elliptic dynamics, and to

lower the accuracy of the model of the gravity field of the moon to be taken into account.

In particular, artificial heteroclinic connections would now exist for fast orbital fly-bys

around two opposite sides of Phobos.

7.2 Proposed Mission Scenario at Phobos

In summary, an outline for a potential future space mission to Phobos is proposed and

presented in Fig.7.1.

• The starting mission segment is a trailing orbit around Mars, with a phasing of

0.4-1.2◦ from Phobos. This preliminary orbit is used to track the real position of

Phobos and to acquire its gravity parameter.

• A phasing maneuver is carried out to reach a QSO at an intermediate distance

from Phobos. This operative orbit is used to measure the real gravity field and

to map the surface of the moon.

• The spacecraft moves along the tube of the artificial invariant manifolds displaced

away from the moon with a constant acceleration along the x-axis. This solution

allows the guidance signal, required to track the LPOs and its invariant manifold,

to be less affected in its numerical computation by the GHs perturbations. This

trajectory can be used to move the spacecraft to a closer LPO for a dedicated
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close-range operation, or to directly reach with a probe the desired landing site

on Phobos.

• In the case of a sample-and-return mission, the spacecraft moves in reverse choos-

ing the trajectory inside the tube of the IMs that provides the minimum escape

velocity from its landing site. This is used to reach a mothership that has been

parked on a closer LPO or in the starting QSO, to remotely command the smaller

probe.

7.3 Future Work

Based on the results of this research, presented in section 7.1, the contributions of this

thesis are addressed in section 1.4. Moreover, the following extensions of the work are

recommended.

The dynamical substitutes of the LPOs have been computed in an improved model

of the relative orbital dynamics around Phobos. The Phobos’ GHs and orbital eccen-

tricity significantly affect the position and morphology of these orbits, thus they must

be considered in the preliminary mission design to account for the natural ground-track

and distance envelope provided by the natural LPOs. Station-keeping is then necessary

to maintain these invariant motions, and the inclusion of these strong actions is invalu-

able to lower the demand of the control system. The impact on such guidance laws

by additional physical perturbations, modeling inaccuracies, navigation and control er-

rors, have been considered and assessed. In particular, the navigation and the fidelity

of the gravity model of Phobos are the main drivers to make these orbits feasible in

the real-world.

Due to the two peculiarities of the Mars-Phobos couple introduced in section 2.3.2,

the LPOs of Phobos require autonomous absolute navigation, and subsequently au-

tonomous control. Vision-based navigation and estimation algorithms have emerged in

the last decade, and this technological capability should be further assessed and flight-

proven in readiness. The case of the anticipated missions to Phobos is an appealing

opportunity to foster such complementary research.

The inhomogeneous gravity field of Phobos, considered in the analytical model for

the computation of the LPOs, has been described with the classical methodology of

the spherical GHs. In particular, only a low-order model was freely available at the

start of this research. The convergence of the solution of the LPOs with respect to the

order of the truncated series is critical due to the instability of these orbits. The first

suggestion for future work is to derive a higher order model with the most up-to-date

data on Phobos’ shape, provided by the recent spacecraft sent to Mars’ orbit. With

this model, the same algorithms presented in this thesis could be applied to derive more

accurate dynamical substitutes, and compared with the ones identified in this thesis.

However, a specific geodesic analysis of Phobos’ gravity has been carried out in [96],
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using high-order spherical GHs, elliptical GHs, tetrahedrons. The first technique is

deemed accurate for a distance from Phobos’ barycenter greater than 14km, but pro-

vides significant errors on the surface of the moon. In this thesis, it has resulted that

the effect of the GHs is to provide high distorsion and tilt on the smallest LPOs around

the LPs, while the shape of larger orbits remains similar to their ancestor solutions in

the classical CR3BP, and their tilt remains consistent with the orientation showed at

the LP. This behavior becomes clear if one considers that, even if larger orbits require

the spacecraft to fly for a considerable time closer to Phobos, where the GHs’ effect is

greater1, than in the case of a smaller orbit, the effect of the high-order GHs is local.

Hence, on a large orbit, the resulting average of the perturbation is less significant than

its effect on a smaller orbit, where the disturbance is more stationary. The LPs are lo-

cated outermost the 14km threshold, thus small LPOs are successfully described with

spherical GHs according to [96], and their reliability depends only on the truncated

order. Subsequently, the orientation of the large LPOs should be coherent with the

modeling error at the LP, while their global shape should be poorly affected by the

local error of the GHs in proximity of Phobos’ surface. These predictions, estimated

from the results obtained in this thesis, are the objectives of a research proposal based

on the computation of the LPOs in an ER3BP where the gravity field of Phobos is

described with a high-order model of tetrahedrons.

The IMs of the natural LPOs have been proposed as trajectories to land or take-off

to and from Phobos, which is an unique opportunity in the Solar System. However,

control assistance would be essential to meet all the requirements of a precise and safe

landing. Hence, the natural solution of the IMs could represent a reliable initial guess

in an optimizer, used in a research task whose objective is to design the maneuver to

land on Phobos for a specific mission.

In this thesis, low-thrust implementation has been considered with simple control

laws, such as a constant acceleration or the compensation of time-variant profile of

the differential gravity forces. This is undertaken to investigate the potential of using

such propulsion technologies. More sophisticated profiles or motion planners should

be probed, based on all the classes of orbits existing in the natural dynamics around

Phobos that have been studied in this thesis.

In this thesis, QSOs around Phobos have been briefly investigated. Following the

deep qualitative knowledge of these orbits in the literature, in particular their stability,

in contrast to the complex analytical description of these invariant motions, the QSOs

have been probed with simulations. Since these orbits represent the best solution to

naturally orbit around Phobos, analytical and numerical computation of the QSOs in

this system should be required in the following years to efficiently boost the mission

design of the anticipated missions to this Martian moon.

1Note that for this reason, large LPOs are highly improbable to be used as operative orbits, for the
risk of collision during the innermost section. They can be used only in closed-loop descent maneuvers,
thus the counteraction of the perturbations is already accounted since the motion is forced.
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In conclusion, the research undertaken in this thesis, whose focus is to model the

motion of a spacecraft about Phobos, led to a suitable description also of the natural

motion of meteoroids and dust grains down to the 10µm scale. Three extensions of

research are proposed. First, the new natural dynamics upgraded with the inhomo-

geneous gravity field of Phobos provide further evidence to support the formation of

Phobos by Mars’ ejecta accretion. Second, the natural LPOs and IMs could support

the evidence for the formation of the craters and grooves distribution on the moon.

Furthermore, they can also model the dynamics of the clouds of dust thought to exist

near Phobos.
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Appendix A

Equations of Motion of the

ER3BP in different Reference

Frames and Units

A.1 Time-Variant Time-Unit

Instead of the constant rate of the mean anomaly used in Eq.3.44, the time unit could

be set to correspond to the true anomaly or the eccentric anomaly E of the primaries’

orbit. The equations of motion with such variable1 time-units are shown in Eq.A.1

and Eq.A.2 respectively. They also report the post-processing relations to obtain the

inertial velocities (and time). q = aq̄

t = 1
ωz(ν) t̄ = 2

√
p3

GM
1

(1+e cos ν)2 t̄→ t̄ = ν → d2

dt2
= ωz(ν)2 d2

dt̄2
+ ω̇z(ν) ddt̄

⇒

 q̇ = an (1+e cos ν)2

(1−e2)3/2 q̄′

q̈ = an2 (1+e cos ν)4

(1−e2)3 q̄′′ − 2an2 (1+e cos ν)3e sin ν

(1−e2)3 q̄′

⇒q̄′′ − 2
e sin ν

1 + e cos ν
q̄′ − 2

e sin ν

1 + e cos ν
Wq̄ + 2Wq̄′ =

= ∇

( (
1− e2

)3
(1 + e cos ν)4uG

(
q̄ + µ

1− e2

1 + e cos ν

[
1
0
0

]
, q̄− (1− µ)

1− e2

1 + e cos ν

[
1
0
0

])
− q̄TPq̄

2

)
(A.1){

q = aq̄

t = 1
n

1−e2
1+e cos ν t̄→ t̄ = E

⇒

{
d
dν =

2√1−e2
1+e cos ν

d
dE = 1−e cosE

2√1−e2
d
dE

d2

dν2 = (1−e cosE)2

1−e2
d2

dE2 + (1−e cosE)e sinE
1−e2

d
dE

⇒q̄′′ − e sinE

1− e cosE
q̄′ − 2

2
√

1− e2e sinE

(1− e cosE)2 Wq̄ + 2
2
√

1− e2

1− e cosE
Wq̄′ =

= ∇
(

(1− e cosE)2uG

(
q̄ + µ (1− e cosE)

[
1
0
0

]
, q̄− (1− µ) (1− e cosE)

[
1
0
0
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− 1− e2

(1− e cosE)2

q̄TPq̄

2

)
(A.2)

1Throughout this section, normalized state is indicated with an upper bar. Derivation with respect
to the normalized time is indicated with an apostrophe.
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{
cos ν = cosE−e

1−e cosE

sin ν =
2√1−e2 sinE
1−e cosE

∧

{
cosE = cos ν−e

1+e cos ν

sinE =
2√1−e2 sin ν
1+e cos ν

(A.3)

A.2 Time-Variant Length-Unit

The length unit is now considered as the time-variant Mars-Phobos distance. For the

elliptic motion, this is called an isotropic pulsating frame, and the related equations

of motion are stated in Eq.3.45-A.4 with respect to the true anomaly and eccentric

anomaly respectively.

{
q = l(ν)q̄

t = 1
n

1−e2
1+e cos ν t̄→ t̄ = E

⇒
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(A.4)

Eq.A.5-A.6 report the expression of the ER3BP for the combinations a-M and l-

ν in Hamiltonian form. In particular, Hamiltonian function and derivatives are fully

intended in the related units used. For a Hamiltonian approach to the ER3BP see

[161].{
q = aq̄

t = 1
n t̄→ t̄ = M

⇒
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n Wq̄
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fe(ν) = 1

1+e cos ν →
ωz(ν)
n = 1

(1−e2)3/2
1

fe(ν)2

fe
′(ν) = e sin ν

(1+e cos ν)2 → ω̇z(ν)

ωz(ν)2 = ωz ′(ν)
ωz(ν) = −2fe

′(ν)
fe(ν)

fe
′′(ν) = 2 e2sin2ν

(1+e cos ν)3 + e cos ν
(1+e cos ν)2

(A.7)

A.3 The ER3BP in Phobos’ Hill’s Frame

Eq.2.50 describes the ER3BP in the secondary’s Hill’s frame in physical units. The

related Phobos-centered ER3BP in normalized units2, for the fixed combination a-M

is expressed in Eq.3.46, while the time-variant combination l-ν is presented in Eq.A.8.

{
q = l(ν) (¯̄q + q̄2)

t̄ = ν

⇒ q̄2 = (1− µ)
[

1
0
0

]
, q̄′2 =

[
0
0
0

]
, q̄′′2 =

[
0
0
0

]
⇒ āA,T = 2Wq̄′2 + 1

1+e cos νPq̄2 + 1
l(ν)ωz(ν)2 q̄′′2 = − (1− µ) 1

1+e cos ν

⇒ ¯̄q′′ + 2W¯̄q′ = ∇
(

1
1+e cos νuG

(
¯̄q +

[
1
0
0

]
, ¯̄q
)
− 1

1+e cos ν
¯̄qTP¯̄q

2 − e cos ν
1+e cos ν

¯̄qT (I3+P)¯̄q
2 + (1− µ) 1

1+e cos ν
¯̄x
)

⇒ ¯̄q′′ + 2W¯̄q′ = ∇
(

1
1+e cos νuG

(
¯̄q +

[
1
0
0

]
, ¯̄q
)

+ 1
1+e cos ν

¯̄qT ¯̄q
2 −

¯̄qT (I3+P)¯̄q
2 + (1− µ) 1

1+e cos ν
¯̄x
)

⇒ ¯̄q′′ + 2W¯̄q′ = ∇
(

1
1+e cos νuG

(
¯̄q +

[
1
0
0

]
, ¯̄q
)
− e cos ν

1+e cos ν
¯̄qT ¯̄q

2 −
¯̄qTP¯̄q

2 + (1− µ) 1
1+e cos ν

¯̄x
)

(A.8)

Related Hamiltonian forms are presented in Eq.A.9-A.10.{
q = a (¯̄q + q̄2)

t̄ = M

⇒

 p̄ = ¯̄q′ + ωz(ν)
n W¯̄q + (1− µ) 1

2√1−e2

[
e sin ν

1+e cos ν
0

]
h̄ = 1

2 p̄T p̄− ωz(ν)
n p̄TW¯̄q− (1− µ) 1

2√1−e2
p̄T
[

e sin ν
1+e cos ν

0

]
− uG

(
¯̄q + 1−e2

1+e cos ν

[
1
0
0

]
, ¯̄q
)

⇒


q̄′ = p̄− ωz(ν)

n W¯̄q− (1− µ) 1
2√1−e2

[
e sin ν

1+e cos ν
0

]
p̄′ = −ωz(ν)

n Wp̄ +∇uG
(
¯̄q + 1−e2

1+e cos ν

[
1
0
0

]
, ¯̄q
)

h̄′ = − ω̇z(ν)
n2 p̄TW¯̄q− (1− µ) (1+e cos ν)2

(1−e2)2 p̄T
[ e cos ν
−e sin ν

0

]
(A.9){

q = l(ν) (¯̄q + q̄2)

t̄ = ν

⇒


p̄ = ¯̄q′ +

(
W + fe

′(ν)
fe(ν) I3

)
¯̄q + (1− µ)

[
fe
′(ν)

fe(ν)

1
0

]
h̄ = 1

2 p̄T p̄− p̄T
(
W + fe

′(ν)
fe(ν) I3

)
¯̄q− (1− µ) p̄T

[
fe
′(ν)

fe(ν)

1
0

]
− fe(ν)uG

(
¯̄q +

(
1− e2

)
fe(ν)

[
1
0
0

]
, ¯̄q
)

⇒



¯̄q′ = p̄−
(
W + fe

′(ν)
fe(ν) I3

)
¯̄q− (1− µ)

[
fe
′(ν)

fe(ν)

1
0

]
p̄′ = −

(
W − fe

′(ν)
fe(ν) I3

)
p̄ + fe(ν)∇uG

(
¯̄q +

(
1− e2

)
fe(ν)

[
1
0
0

]
, ¯̄q
)

h̄′ = −p̄T
(
fe
′′(ν)

fe(ν) −
fe
′(ν)2

fe(ν)2

)
¯̄q− (1− µ) p̄T

[
fe
′′(ν)

fe(ν)
− fe

′(ν)2

fe(ν)2

0
0

]
− fe′(ν)uG

(
¯̄q +

(
1− e2

)
fe(ν)

[
1
0
0

]
, ¯̄q
)

(A.10)

Finally, Hill’s approximation of the ER3BP could be applied for the two combination

2Throughout this section, normalized relative state with respect to the secondary body is indicated
with a double upper bar.
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cases, as shown in Eq.A.11-A.12.{
q = a (¯̄q + q̄2)

t̄ = M

⇒ lim
µ→0
∇

(
uG1

(
¯̄q +

1− e2

1 + e cos ν

[
1
0
0

])
− (1 + e cos ν)4

(1− e2)3

(
¯̄qTP¯̄q

2
− (1− µ)

1− e2

(1 + e cos ν)2
¯̄x

))
=

= ∇

(
−(1 + e cos ν)3

(1− e2)3

¯̄qT ((1 + e cos ν) P + AH1) ¯̄q

2

)
⇒ ¯̄q′′ − 2 (1+e cos ν)3e sin ν

(1−e2)3 W¯̄q + 2 (1+e cos ν)2

(1−e2)3/2 W¯̄q′ = ∇
(
− (1+e cos ν)3

(1−e2)3

¯̄qT ((1+e cos ν)P+AH1)¯̄q
2 + uG2 (¯̄q)

)
(A.11){

q = l(ν) (¯̄q + q̄2)

t̄ = ν

⇒ lim
µ→0
∇


1

1 + e cos ν
uG1

(
¯̄q +

[
1
0
0

])
− 1

1 + e cos ν

¯̄qTP¯̄q

2
+

− e cos ν

1 + e cos ν

¯̄qT (I3 + P) ¯̄q

2
+ (1− µ)

1

1 + e cos ν
¯̄x

 =

= ∇

(
− 1

1 + e cos ν

¯̄qT (P + AH1) ¯̄q

2
− e cos ν

1 + e cos ν

¯̄qT (I3 + P) ¯̄q

2

)
⇒ ¯̄q′′ + 2W¯̄q′ = ∇

(
− 1

1+e cos ν

¯̄qT (P+AH1)¯̄q
2 − e cos ν

1+e cos ν

¯̄qT (I3+P)¯̄q
2 + 1

1+e cos νuG2 (¯̄q)
)

⇒ ¯̄q′′ + 2W¯̄q′ = ∇
(

1
1+e cos ν

¯̄qT (I3−AH1)¯̄q
2 − ¯̄qT (I3+P)¯̄q

2 + 1
1+e cos νuG2 (¯̄q)

)
⇒ ¯̄q′′ + 2W¯̄q′ = ∇

(
− 1

1+e cos ν

¯̄qT (e cos νI3+AH1)¯̄q
2 − ¯̄qTP¯̄q

2 + 1
1+e cos νuG2 (¯̄q)

)
(A.12)

A.4 Equations of Motion

First, the case of the fixed time unit is considered. Eq.3.48 presents the ODEs of the

Mars-Phobos ER3BP-GH in Phobos’ Hill’s frame, with the length unit set to be the

semi-major axis, and with respect to the mean anomaly.

In the same sense, the ODEs and effective potential with respect to the true anomaly

are derived, and are shown in Eq.A.14-A.15.

a(ν) = (1− µ) 1−e2
(1+e cos ν)2

[
1
0
0

]
ω =

[
0
0
1

]
→W = ω∧ → P = W2

ω̇(ν) = −2 e sin ν
1+e cos ν

[
0
0
1

]
→ YI(ν) = −2 e sin ν

1+e cos ν I3, Y(ν) = ω̇(ν)∧

wf (ν) =
(1−e2)

3

(1+e cos ν)4

(A.13)

x =

[
q

q̇

]
→ ẋ = A(ν)x +

[
03x1

wf (ν)uG/q(q, ν) + a(ν)

]
, A(ν) =

[
03 I3

−Y(ν)−P −2W −YI(ν)

]
(A.14)

ueff =
(1−e2)

3

(1+e cos ν)4uG,1

(
q + 1−e2

1+e cos ν

[
1
0
0

])
+

(1−e2)
3

(1+e cos ν)4uG,2 (q)−
(

qTPq
2 − (1− µ) 1−e2

(1+e cos ν)2x
)

(A.15)
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Appendix B

Methods of Dynamical Systems

Theory to compute Invariant

Objects and their Invariant

Manifolds

This thesis investigates the equilibrium, periodic and quasi-periodic solutions of the

Mars-Phobos-spacecraft system for their use as potential station-keeping orbits around

the moon in future missions. This chapter is a review of the methodologies required

in the thesis to compute these invariant motions, that will be presented for the case of

a general dynamical system. Section B.1 introduces the reader to the concepts of the

theory of dynamical systems that are used in this thesis, and section B.2 recalls the

numerical techniques to solve nonlinear parametric equations. Following this, the solu-

tions of a general dynamical system are computed with the methodologies of dynamical

systems theory. Section B.3 focuses on the equilibrium points. Section B.4 presents

the analytical and semi-analytical techniques to compute invariant objects, while the

numerical methodologies to compute them are illustrated in sections B.5-B.6-B.7, that

focus respectively from periodic orbits to high-dimensional forced quasi-periodic orbits.

Finally, the computation of the invariant manifolds of these solutions is addressed in

section B.8.

B.1 Fundamentals of Dynamical Systems

In the broad mathematical field of deterministic processes, consider in Eq.B.1 a general-

defined nonlinear and time-variant (NL and TV) continuous-time dynamical system.

This is a system of first-order ordinary differential equations (ODEs) with respect to

the time t, described by the state vector x ∈ Rn, its initial condition x0 at t0, and its
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time-derivative f called a vectorfield1.{
ẋ(t) = f(t, x)

x(t0) = x0

⇔ φf (t, t0, x0) : x(t0)→ x(t) (B.1)

The solution of this system is the trajectory x(t) in the state-space with respect to time.

In other words, each continuous dynamical system is linked to a 1-1 map2 called flow φ

that associates the initial state to the trajectory at a prescribed point in time. Thus, the

trajectory (or orbit3) is the flow map of the vectorfield for a specific initial condition.

The resulting integral solution of the dynamical system is reported in Eq.B.2, where

we see that the differential relationships between x and ẋ are the same between f and

φ. {
x(t) = φf (t, t0, x0) = x0 +

∫ t
t0
fdt

ẋ(t) = φ̇f = f(t, x)
⇔

{
dx = ẋdt

dφf = fdt
⇔

{
dx = dφf

dẋ = df
(B.2)

B.1.1 Particular cases

B.1.1.1 Autonomous Dynamical Systems

In the case of time-invariant (TI) dynamical systems, the vectorfield does not depend

explicitly on the time, therefore the flow depends only on the propagation time span

∆t = t− t0. {
ẋ(t) = f(x)

x(0) = x0

⇔ φf (∆t, x0) : x(0)→ x(∆t) (B.3)

B.1.1.2 Mechanical Systems

The information provided in this section is valid for any general deterministic and

continuous dynamical system. However this thesis focuses on orbital dynamics: the

equations of motion of a mechanical system, where q is the position in the chosen ref-

erence frame, are ruled by a system of n second-order ODEs q̈(t) = d(t,q, q̇). Thus,

the dynamics are brought to a 2n system of first-order ODEs to derive a related vector-

field in compliance to Eq.B.1. In particular, Lagrangian and Hamiltonian4 descriptions

could be used to express the additional n state’s components, as done in Eq.2.13 and

Eq.2.18 for the case of the CR3BP. The dynamical models presented in chapter 3 are

1The vectorfield is time-continuous and Lipschitz in x.
2A general-defined map is indicated as P : x→ P (x). In particular, a general-defined discrete-time

dynamical system is described by an order-1 recurrence equation, which is a map P : xk+1 = P (k, xk),
with initial condition x0 at k = 0.

3In mathematical terms: the trajectory is the graph of the flow along time, and the orbit is the
image of the flow along time.

4A Hamiltonian system is completely described by a scalar function, the Hamiltonian, which could
be either TI or TV. In the first case, the Hamiltonian is an integral of motion preserved by the vectorfield
through its flow. For physical TI dynamical systems, the Hamiltonian corresponds to the energy of the
system. For mechanical systems, the Hamiltonian corresponds to the inertial mechanical energy, made
up of kinetic and potential terms, as presented in Eq.2.15.
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all stated in the Lagrangian form, which will be solely used in the analysis undertaken

in this section and in chapters 4-5-6.

Note that the same physical problem could be described by dynamical systems with

different vectorfields, by expressing the dynamics in different reference frames, state

variables, or time. This is useful sometimes to simplify the equations of motion.

B.1.2 Sensitivity of Dynamical Systems

Two important quantities that are frequently used in this thesis are now defined. A

represents the pointwise derivative of the vectorfield with respect to the state, usually

called the Jacobian of the dynamical system, which also represents its pointwise lin-

earized state-matrix. Φ represents the pointwise derivative of the flow map with respect

to the initial state, which is the state transition matrix (STM).
∂f
∂x

∣∣∣
t,x

= Af (t, x)

∂φf
∂x0

∣∣∣
t,t0

= Φf (t, t0)
(B.4)

With these first-order derivatives (generally n×n matrices), the variational form of the

vectorfield and its associated flow map can be expressed.{
δf = Afδx

δφf = Φfδx0

(B.5)

Using Eq.B.2, the above relations lead to the variational equations for the dynami-

cal system and its associated solution. They express a linear sensitivity of the time-

derivative with respect to the state, and of the trajectory with respect to the initial

conditions.

δẋ = Afδx⇔ δx = Φfδx0 (B.6)

We see that in the linearized environment the two sensitivities can be straightforward

related.

δẋ = AfΦfδx0 ⇔ δẋ = Φ̇fδx0 (B.7)

This leads in Eq.B.8 to a dynamical relationship between the two quantities defined in

Eq.B.4. The STM components obey to a specific TV dynamical system (called in this

thesis the variational system) where the state-matrix is constituted by the components

of the pointwise state-matrix of the original dynamical system. The initial conditions of

the variational system are easily obtained in Eq.B.8 evaluating the STM at the initial

time: the relation between the state and the initial state is trivially an identity.{
Φ̇f (t, t0) = Af (t, x)Φf (t, t0)

δx(t0) = Φf (t0, t0)δx0 → Φf (t0, t0) = I
(B.8)
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In summary, for the starting general dynamical system of Eq.B.1, the pointwise lin-

earization along the trajectory is associated with the variational system of Eq.B.8. The

solution of this system is the STM, and represents a measure of the sensitivity of the

trajectory of the dynamical system from the initial condition δx(t) = Φf (t, t0)δx0. This

approximation holds for little variations from the reference trajectory. It is important

to underline the pointwise character of the variational dynamical system: to be solved,

the elements of its TV state-matrix must be defined, but they depend on the Jacobian

of the system evaluated along the trajectory. This means that if, as usual, the ana-

lytical form of the solution is not available, the variational system of ODEs must be

numerically integrated alongside the principal system of ODEs. For a n-dimensional

state, this leads to solve a n+ n2 system of ODEs.

B.1.2.1 Sensitivity and Stability of Linear Systems

For a linear TI dynamical system, the variational equations of Eq.B.6 and the varia-

tional system of Eq.B.8 express the exact sensitivity. In this situation, the pointwise

state-matrix A is constant, whereas the STM has the simple matrix-exponential form

presented in Eq.B.95. Thus, the STM is constituted by n decaying/growing terms

along time, represented by exponential functions of the spectrum of eigenvalues λ of A,

linearly combined through its eigenvectors v6.

ẋ(t) = Ax(t)→ x(∆t) = φ(∆t, x0) = eA∆tx0 → Φ(∆t) = eA∆t = VAe
ΛA∆tV −1

A (B.9)

This analytical expression of the behavior around the flow of linear systems allows the

determination of the stability of the trajectory. The most common notion of stability

is due to Lyapunov, who provided the following classification7 based on the spectrum

of A.

• Asymptotically stable, if all the eigenvalues have real part strictly negative (the

system is dissipative).

• Unstable, if at least one eigenvalue has real part strictly positive (the system is

unstable).

• Marginally/neutrally stable, if all the eigenvalues have real part negative or null,

at least one of them has null real part, and all the eigenvalues with null real part

are complete8 (the system is conservative).

5Eq.B.9 refers to a diagonalizable matrix A. If A is defective, the matrix-exponential should be
evaluated with a series expansion.

6As usual, the eigenvalues λ = eig {A} are assembled in the diagonal matrix Λ, and the correspond-
ing right eigenvectors are sorted in the columns of the matrix V .

7This classification is tailored for a continuous dynamical system, where the linearized stability
properties are defined by the sign of the real part of the eigenvalues of the Jacobian of its vectorfield,
whereas for a discrete dynamical system the same stability properties refer to the magnitude of the
eigenvalues of the Jacobian of its map, and are defined by comparing this value with respect to 1.

8If the eigenvalues are not complete, A is defective.
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The associated phase portraits of the orbit are:

• An attractor: a sink node or inward spiral.

• A repellor: a source node or outward spiral if the remaining eigenvalues have real

part positive too, or a real or complex hyperbolic saddle node if the remaining

set has at least one eigenvalue with negative real part.

• A neutral point: an isolated node (which represents a limit invariant object, such

as a fixed point, a limit cycle, or generally a limit torus) or center. In addition,

the multiplicity of the eigenvalue with null real part indicates the phase-space

dimension of this invariant solution, as will be explained in section B.1.3.

B.1.2.2 Sensitivity and Stability of Nonlinear Systems

For a NL dynamical system, the linearized variational equations are still useful to

describe the behavior of the real dynamics. This approximation fails as long as the

perturbation δx0 becomes too large, or the time span grows.

In parallelism with the linear behavior, Lyapunov proposed a direct method for the

analysis of the dynamical properties of a general dynamical system. This uses the

spectrum of the STM within the propagation interval, whose elements µ = eig {Φ}
are called Lyapunov multipliers. The set of Lyapunov exponents λ is derived from the

STM with the relation of the linear case of Eq.B.9.

ẋ(t) = f(t, x)→ λ(t, t0, x0) =
1

t− t0
ln (eig {Φf (t, t0)}) =

1

t− t0
lnµ(t, t0, x0) (B.10)

Thus the Lyapunov exponents are associated to a specific trajectory, as a difference

from the linear case, where the spectrum is a structural property for the system. Fur-

thermore, the resulting spectrum of λ is a function of the initial conditions and the

propagation time. Therefore, a summarizing figure is given considering the behavior at

the infinite-horizon of the spectrum. Since the components of the STM grow exponen-

tially with the time, the solution of the eigenvalue problem for a long simulation span

is impracticable. Thus, the maximum Lyapunov exponent (MLE) of the orbit x(t) is

computed directly from the divergence ratio between perturbed and reference orbit.

ẋ(t) = f(t, x)→MLE(t0, x0) = lim
t→∞

1

t− t0
ln
||δx(t)||
||δx0||

(B.11)

To neglect the dependence of the MLE from the direction of δx0, the Euclidian norm of

the right Cauchy-Green tensor ΦTΦ is considered for a finite-time span. The Lyapunov

exponents, associated to the eigenvalues in Eq.B.12, are called finite-time Lyapunov

exponents (FTLEs) [138].
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ẋ(t) = f(t, x)→ FTLE(t, t0, ||x0||) = eig

{
1

t− t0
ln
(

Φf (t, t0)TΦf (t, t0)
) 1

2

}
=

= ln

(
eig

{(
Φf (t, t0)TΦf (t, t0)

) 1
2(t−t0)

})
(B.12)

Like for the linear case, the set of the Lyapunov exponents (or directly the multipli-

ers) could be used to determine the stability of the trajectory. The extension of the

Lyapunov stability to the NL systems provides the following classification, based on

the spectrum of Lyapunov exponents.

• Asymptotically stable, if all the exponents have real part strictly negative.

• Unstable, if at least one exponent has real part strictly positive.

• If the linearized system is marginally stable, additional analysis on higher deriva-

tives must be undertaken to describe the region of stability in the original NL

system.

The stability rules show that for NL dynamical systems, the focus is on the maximum

real part of the spectrum of Lyapunov exponents. This explains the use of the maximum

FTLE as the Fast Lyapunov Indicator (FLI) of the orbit.

• A negative FLI indicates asymptotic stability of the trajectory (attracting object).

• A positive FLI indicates instability of the trajectory (repelling object).

• A null FLI indicates possible marginal/neutral stability of the trajectory in the

proximity of the trajectory (neutral object).

In particular, the Lyapunov exponents are used as a measure of chaoticity of the dy-

namical system. It is commonly accepted that, when the FLI is greater than 1, the

region around the unstable orbit is defined to be chaotic. This means that even mini-

mum perturbed trajectories are highly divergent from the reference orbits.

This analysis is paramount also for the structural stability analysis of the dynamical

system, which is to define whether its stability properties (the Lyapunov exponents)

change as a function of some parameters of the vectorfield. When there is a sudden

qualitative change, the term bifurcation is used.

B.1.2.3 Propagation Time

From Eq.B.2, the linear sensitivity of the flow with respect to the propagation time is

given by the vectorfield itself.

∂φf
∂t

∣∣∣∣
t,t0

= f (t, x (t)) (B.13)
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B.1.2.4 Non-Autonomous Dynamical Systems

The general TV case corresponds to a dynamical system where a forcing action, ex-

plicitly dependent on time, is embedded in the vectorfield. This situation is usually

treated in dynamical systems theory with the mathematical trick of appending the

time in the state vector [109, 110], and so the vectorfield is augmented by the trivial

dynamics of the time with respect to itself ṫ = 1. This allows to retrieve the sensitivity

of the original flow with respect to the initial time from the additional column of the

(n+ 1)× (n+ 1) STM, which is now the solution of the augmented variational system.

f (t, x)→

{
y (t) =

[
x(t)
t

]
ẏ (t) = d (t, y) =

[
f(t,x)

1

] ⇔


Φd (t, t0) =

 Φf (t, t0)
∂φf
∂t0

∣∣∣
t,t0

0 1


Φ̇d (t, t0) =

 Af (t, x) ∂f
∂t

∣∣∣
t,x

0 0

Φd (t, t0)

(B.14)

Due to the structure of the augmented variational system, the sensitivity of the flow

with respect to the initial time in non-conservative systems can be analytically retrieved

in an alternative way, without augmenting the ODEs. This could be derived expanding

the variational equations of Eq.B.6 to consider also the final time variation along the

flow, whose sensitivity is given by Eq.B.13.

δφf (tf + δtf , t0, x0 + δx0) = Φf (tf , t0, x0) δx0 + f (tf , φf (tf , t0, x0)) δtf (B.15)

Eq.B.15 is rearranged to isolate the variation only with respect to the initial state, and

evaluated at the initial and final time.
δx (tf ) = δφf (tf , t0, x0 + δx0) = Φf (tf , t0, x0) δx0 =

= δφf (tf + δtf , t0, x0 + δx0)− f (tf , φf (tf , t0, x0)) δtf

δx (t0) = δφf (t0, t0, x0 + δx0) = δx0 =

= δφf (t0 + δt0, t0, x0 + δx0)− f (t0, φf (t0, t0, x0)) δt0
(B.16)

To simplify the notation, the variations of the flow, with respect to the initial conditions,

is written as a function of only the final time.{
δx (tf + δtf ) = δφf (tf + δtf , t0, x0 + δx0)

δx (t0 + δt0) = δφf (t0 + δt0, t0, x0 + δx0)
(B.17)

The two conditions in Eq.B.16 can be combined to yield the explicit formula for the

derivative of the flow with respect to the initial time, which corresponds to the last

column of the augmented STM of Eq.B.14. Eq.B.18 is the most general form of the

variational equations of the flow map of a TV dynamical system: in the linearized

dynamics along the reference orbit, it bounds the final state condition to the initial
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state condition when the initial time changes.

δx (tf + δtf ) = Φf (tf , t0, x0) δx (t0 + δt0)− Φf (tf , t0, x0) f (t0, x0) δt0 + f (tf , x (tf )) δtf =

=
∂φf
∂x0

∣∣∣∣
tf ,t0,x0

δx (t0 + δt0) +
∂φf
∂t0

∣∣∣∣
tf ,t0,x0

δt0 +
∂φf
∂t

∣∣∣∣
tf ,t0,x0

δtf

(B.18)

This procedure is also shown in [162], when used to conduct a numerical approach to

compute LPOs in the ER3BP similar to the two-levels differential corrector used for

the Lissajous orbits in [163].

B.1.2.5 Parametric Dynamical Systems

The strategy presented in section B.1.2.4 is also widely used to compute the linear

sensitivity of the flow with respect to a parameter σ of the dynamical system. In

this case the parameter itself is appended in the state vector and the vectorfield is

augmented by its fake dynamics σ̇ = 0, with the additional column of the related STM

providing the sensitivity.

f (t, x, σ)→

{
y (t) =

[
x(t)
σ

]
ẏ (t) = d (t, y) =

[
f(t,x,σ)

0

] ⇔


Φd (t, t0) =

 Φf (t, t0, σ)
∂φf
∂σ

∣∣∣
t,t0,σ

0 1


Φ̇d (t, t0) =

 Af (t, x, σ) ∂f
∂σ

∣∣∣
t,x,σ

0 0

Φd (t, t0)

(B.19)

B.1.3 Solution of Dynamical Systems

The trajectory along a finite-time span, as any other function, could be developed

in a Fourier synthesis along a continuous frequency spectrum of harmonic functions.

This allows classical solutions, such as equilibrium points (EPs) and periodic orbits

(POs), to be characterized by a singular harmonic spectrum at zero or one frequency.

Quasi-periodic orbits (QPOs) are their extension to a general discrete spectrum, from

one frequency up to potentially infinite terms to reach the general solution synthesis

transition from Fourier series to inverse Fourier transform. For this reason, EPs, POs,

and QPOs constitute the invariant solutions of a dynamical system, because they are

preserved by the vectorfield for any time span. The identification of these orbits is the

most important step in the analysis of the dynamics.

The invariant motions can be expressed as dependent on a discrete number of phases

ϕ, rather than time, each one with the appropriate harmonic frequency ω. Mathemat-

ically speaking [164], an invariant object is a n-torus, where n is the dimension of the

phase-space (n = 0 for EPs, n = 1 for POs, and n ≥ 2 for nD-QPOs). This is expressed

by Eq.B.20, where the n-torus’ flow ν of a vectorfield u is stated in the phase-space, and

the ODEs with respect to the phases assume a form known as the invariance equation.
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{
ẋ(t) = f(t, x)

xQPO(t) = φf (t, t0, x0,QPO)
→

{
∂x
∂ϕω = u(ϕ, x)

xQPO(ϕ) = νu(ϕ,ϕ0, x0,QPO)
, ϕ = ϕ0 + ω (t− t0) ∈ Rn

(B.20)

kTω 6= 0, ∀k ∈ Zn0 (B.21)

The condition given by Eq.B.21 represents the non-resonance constraint of the frequency-

space, which is just a case that lowers the torus’ phase-space dimension.

Thus, for a torus described in the phase-space domain, original flow maps on time

must be stated in the coordinate phases. This is straightforward because each phase

is associated with a harmonic, thus its dynamics is driven by a constant frequency.

Each phase shift of the flow map after a given time interval is called rotation number

ρ. With the condition of Eq.B.21, the sum of harmonics at different and not resonant

pulsations will never be periodic, therefore the propagation of a (n ≥ 2)-torus is usually

done by iterated flow mappings, realizing a time-discrete dynamical system, where each

phase increases by the respective rotation number. Since the phases are periodic, the

QPO can be seen along these multiple-time axes as a motion along multiple circles,

where each phase runs with different angular velocities9. Therefore they perform each

revolution at different periods T . Usually one phase is fixed by the map iteration, and

this is called the longitudinal motion, while all the other phases describe the transver-

sal motion. For them, the periods of the first transversal revolution are defined as

the number of map’s iterations NT needed by the related transversal phase to perform

at least one loop. This is summarized in Eq.B.22 for an iterated flow map PT1 with

constant propagation time set to the period of the first phase. Note that these are not

real periods, since the QPO is not resonant, they are just related to the first crossing

of the 2π span. If two frequencies are resonant, this number of iterations will fit their

ratio r (which is rational, when Eq.B.21 is not satisfied), and the dimension of the torus

lowers to consider only the related phase with lowest synchronous pulsation.



T :Ti = Pτi (x0,QPO) =
2π

ωi
→ ρ = ωT1 =

 2π{
2π ωiω1

}n
i=2

 =

[
2π

{2πri}ni=2

]

→ PT1(x0,QPO) = νu(ϕ0 + ρ,ϕ0, x0,QPO) = νu

([
ϕ0,1

{ϕ0,i + 2πri}ni=2

]
,

[
ϕ0,1

{ϕ0,i}ni=2

]
, x0,QPO

)
ρ = [{ρi}ni=1] ∧ ρ0 = 0→ ρi,k = mod {ρi, (−π, π]} = const

⇒ NTi :

∣∣∣∣∣∣
NTi∑
k=1

ρi,k

∣∣∣∣∣∣ = NTi |ρi| ≥ 2π ⇒ Ti ≤
NTi∑
k=1

T1 = NTiT1

(B.22)

9It is like not having a single reference time, but different asynchronous clocks.
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B.1.3.1 Non-Autonomous Dynamical Systems

The case of TV dynamical systems is characterized by forced phases ϕ̃, where their

dynamics are constrained: their frequencies ω̃ correspond to the spectrum of the forcing

action. This turns out to be an advantage [164], because their solutions are explicitly

retrievable from integration of the related equations of motion ˙̃ϕ = ω̃. Eq.B.23 provides

the generalization of the expression for the orbit of a n-torus of Eq.B.20 to take into

account also constrained phases. This is done appending their forced dynamics in the

vectorfield as discussed in section B.1.2.4.

x =

[
x

ϕ̃

]
∧ϕ =

[
ϕ

ϕ̃

]
= ϕ0 +

∫
ωdt =

[
ϕ0

ϕ̃0

]
+

[
ωt∫
ω̃dt

]
, ϕ ∈ Rn−C , ϕ̃ ∈ RC

→



{
ẋ(ϕ(t)) = u(ϕ(t),x)

˙̃ϕ = ω̃{
xQPO(ϕ(t)) = νu(ϕ(t),ϕ0, x0,QPO)

ϕ̃QPO(t) = ϕ̃0,QPO +
∫
ω̃dt

⇒



{
∂x
∂ϕω = u(ϕ,x)
∂ϕ̃
∂ϕω = ω̃{
xQPO(ϕ) = νu(ϕ,ϕ0, x0,QPO)

ϕ̃QPO(ϕ) = ϕ̃

(B.23)

B.1.4 Dynamical Systems Theory

When applied in mathematical problems and engineering applications, every physical

law is represented by a system of differential (or recursive) equations, which are solved

and investigated with analytical or numerical techniques. This is also the case of New-

tonian mechanics, and in particular for the orbital mechanics of a particles system.

When a global analytical solution is not available for the problem under study, numer-

ical methods must be employed. However, considering that the dynamical model is

always an approximation of the real perturbed dynamics (see Eq.2.1), mathematical

analysis could still be used to qualitative understand the global dynamics of the flow,

which is its main property for the long-term behavior. This is indicated as the global

structure of the system of dynamical equations. Its investigation is one of the subjects

of applied mathematics, and is called Dynamical Systems Theory (DST). DST found

immediate application to nonlinear systems, which are usually characterized by chaotic

dynamics: the case of the CR3BP was a paramount milestone [50].

The theorems and tools of DST are presented throughout this chapter, and are ap-

plied in chapters 4-5-6 of the thesis to compute the invariant motions in the models of

the Mars-Phobos system derived in chapter 3.

B.2 Solution of Nonlinear Equations

The purpose of this section is to present the classical methodology for the solution of

the systems of nonlinear algebraic equations. These techniques are used throughout

this thesis, and constitute the basis of the numerical methods of DST used to compute

invariant motions, that will be discussed in sections B.3, B.5, B.6, and B.7.
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B.2.1 Newton’s Method

The computation of the zero x0 of a general NL system of equations F (x) = 0 is done

with the well-known Newton’s method [50]. This consists in the application of the

variational equation of the function F

δF = AF (x)δx (B.24)

in the neighborhood of the sought solution Ux0 , thus using an initial guess x0,0 for x0.

Newton’s method assumes a linearized approximation of the function in Ux0 , which

allows to derive the root. In particular, Newton’s method requires the knowledge of

the Jacobian A of the function F .

x0,0 ∈ Ux0 : F (x0) = 0⇒ x0 = x0,0 −AF (x0,0)−1F (x0,0) (B.25)

Therefore, Eq.B.25 is exactly true only if the analyzed function is linear. However, the

variational form is still powerful for a general NL function, because it guarantees the

convergence of the solution when applied iteratively x0,j → x0, evaluating F and AF

at the intermediate root x0,j .

x0,0 ∈ Ux0 : F (x0) = 0⇒

⇒ x0 = lim
j→∞

x0,j = lim
j→∞

{
x0,j−1 −AF (x0,j−1)−1F (x0,j−1)

}
:

{
||F (x0,j)|| < εF

||x0,j − x0,j−1|| < εx

(B.26)

In Eq.B.26, εF and εx represent the chosen tolerance on function and step respectively.

To achieve the convergence of the procedure, it is worth to remark the satisfaction of

one requirement, which is that the initial guess must be close enough to the unknown

zero. This is to assure that the local slope of the NL function attracts towards the

aimed zero, and not another root or any critical point. When this requirement is sat-

isfied, the convergence to the zero is quadratic, unless the aimed solution is a critical

point, which lowers the order of convergence to be linear with the iteration step.

In particular, Newton’s method is still the best powerful tool at the basis of the meth-

ods used to solve the optimization problems, which is the minimization/maximization

of a general NL functional V (x). Since in this case the sought solution is a station-

ary point of the functional, the problem translates in the computation of the zero of

the functional’s derivative. Thus Newton’s method is applied using the gradient V ′(x)

in place of F (x), and using the Hessian V ′′(x) in place of AF (x) in Eq.B.26. The

optimizers based on this approach are called gradient methods. They are massively

used for local optimization, when the initial guess is close to the minima/maxima of

interest. The determination of a suitable initial guess in large scale or multi-objective

problems (multiple parameters constituting x) is far more difficult, and is called global
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Figure B.1: Numerical continuation.
Sketch of some different continuation curves
of the root x0 of a function dependent from a
parameter σ [165].

Figure B.2: Numerical continuation. Bi-
furcation of the continuation curve in two
branches [165].

optimization: genetic algorithms are used for this task.

B.2.2 Numerical Continuation

The basic idea of the numerical continuation (NC) technique is given by considering

two slightly different functions F (x) and G(x) on a set Ux. It is immediate to assemble

a transformation from F to G through an added parameter σ that acts in a linear

combination’s fashion, weighting the two functions from 0 to 1.

x ∈ Ux : F (x) ≈ G(x)⇒

{
H(x, σ) = (1− σ)F (x) + σG(x) = H(y)

y = [ xσ ]
↔

{
H(x, 0) = F (x)

H(x, 1) = G(x)

(B.27)

The resulting function H, dependent now also on the parameter (σ is named the con-

tinuation parameter), is called a convex homotopy. Another trivial way to introduce

the global function H is using σ to directly weight a perturbation function D on F :

this is called a general homotopy.

G(x) = F (x) +D(x)⇒ H(y) = H(x, σ) = F (x) + σD(x) (B.28)

Now suppose that F is an “easy” function to be solved analytically or numerically, or

generally a function where a root x0 is available. A Newton’s method could use it as a

first guess to numerically compute the root of H for σ small. This is shown in Eq.B.29,

where ⊕/� represents the Jacobian of ⊕ with the partial derivatives with respect to �.

x0 ∈ Ux : F (x0) = 0→ y0(σ) =
[
x0(σ)
σ

]
: H(y0(0)) = 0⇒

⇒


y0(σ) ∈ Uy0(σ+∆σ) : H (y0(σ + ∆σ)) = 0

δH = ((1− (σ + ∆σ))AF + (σ + ∆σ)AG) δx = (AF + (σ + ∆σ)AD) δx

= H/x (x0(σ), σ + ∆σ) δx

(B.29)

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

363 Zamaro Mattia



Methods of Dynamical Systems Theory

The motivation is to find a root of G, when Newton’s method would not converge

using as initial guess the root of F , because the level of perturbation between the two

functions is too high. Therefore intuitively, we can increment the parameter slowly,

solving Newton’s methods by iteratively using, as an initial guess, the solution found

at the previous step, until the solution for the desired value of the parameter is obtained.

x0(σ) : H(y0(σ)) = 0⇒

⇒ y0(σ) = lim
σk→σ

y0(σk) :


σk = σk−1 + ∆σk

y0(σk−1) ∈ Uy0(σk) : H (y0(σk)) = 0

δH = ((1− σk)AF + σkAG) δx = (AF + σkAD) δx

= H/x (x0(σk−1), σk) δx

(B.30)

Eq.B.30 is in fact the NC method, which is the adaptation of Newton’s method of

section B.2.1 to compute the solutions of a parametric system of NL algebraic equations.

In this case, it can be interesting not only to calculate the final solution (the root at

the final function G), but to find its value as a function of the parameter weighting

the perturbation. The global solution is therefore a curve of roots x0(σ) (see Fig.B.1).

The NC could be stated as an iterated Newton’s method along the discretized solution

curve, 
C(y) =

[
H(y)

S(y)

]
= 0

δC =

[
H/x H/σ

S/x S/σ

][
δx

δσ

]
= AC(y)δy

(B.31)

and Eq.B.31 shows the general step appending σ and adding the function S. The choice

of S completes the Newton’s method scheme treating the continuation parameter as

part of a global fictitious vector of variables y, and defines the type of NC. In this sense,

when the NL effects of the added terms are high, different implementations are needed

to efficiently continue the solution, and this will be addressed now.

B.2.2.1 Components of a Numerical Continuation Code

The NC is characterized by four ingredients to be implemented in a computational

code.

B.2.2.1.1 Objective function

The first ingredient is given by the function H(y) = H(x, σ) used in the Newton’s

method scheme of Eq.B.31.

B.2.2.1.2 Predictor for the initial guess

The second ingredient regards the initial guess used throughout the iteration steps.

Using the solution computed at the previous step was the first idea, but an improvement
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of the Newton’s method step’s convergence is given by better estimating the solution

at the future step. This allows the solution curve to be integrated with a larger step’s

size. This is done with a dedicated Predictor-Corrector algorithm: the corrector is the

first ingredient of the NC, the predictor is an interpolation algorithm of the solution

curve up to the previous step, that extrapolates a value for the current step trough a

step-dependent direction vector v.

y0(σk) = y0(σk−1) + vy(σk−1) = yP0

(
{x0(σi)}k−1

i=0 , {∆σi}
k
i=1

)
: H (y0(σi)) = 0, ∀0 ≤ i ≤ k − 1

(B.32)

In case the predictor is absent, as stated above we use the previous solution. This is a

predictor of order-0 where v only updates the continuation parameter.

y0(σk) =
[
x0(σk−1)

σk

]
: H(y0(σk−1)) = 0 (B.33)

Usually, a solution of order-1, that uses the finite differences up to the first derivative

to approximate the curve, is sufficient to improve the corrector’s convergence. Higher

order extrapolations are not necessary, unless the case in study suggests a particular

curve’s evolution.

yP0 = y0(σk−1) + vy(σk−1) = y0(σk−1) + ∆y0,k−1 = 2y0(σk−1)− y0(σk−2) (B.34)

The best value of the vector v is the actual derivative of the curve at the current

location, instead of approximating it by finite differences. By definition, if we see the

curve as an isoline of the global function H in the augmented space defined by y, the

tangent space of the curve is the kernel’s direction of the linearized H(y). Regarding

the direction’s way, assuming that the continuation step is not large, it should be

maintained consistency with the previous step, as indicated in Eq.B.35. Therefore, the

computation of the kernel is the best predictor, and it requires the expression of the

derivative of the global function with respect to the continuation parameter H/σ.

vy(σk−1) ∈ ker {[H/x(y0(σk−1)) H/σ(y0(σk−1)) ]} ∧ vy(σk−1)T vy(σk−2) > 0 (B.35)

B.2.2.1.3 Continuation curve’s parametrization

The third ingredient is the parametrization of the continuation curve, and is the most

important because it drives the choice of the function S in the general definition of

the NC in Eq.B.31. Using the continuation parameter was the first idea, because it

physically relates the solution x with the perturbation level σ: indeed x(σ) is called

the natural parametrization of the continuation curve. In this case, we fix every time

a value of the continuation parameter and we find the solution for exactly that value:

this is expressed by the following choice of the step function S of the NC.
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C(y) =

[
H(y)

σ − σT

]
= 0

δC =

[
H/x H/σ

0 1

][
δx

δσ

]
= AC(y)δy

(B.36)

Thus, this augmented Newton’s method is just fictitious, because S is uncoupled, and

the Newton’s method solves a correction only on the solution variables δx. Referring to

Fig.B.1, the Newton’s method corrects the predicted solution, at a value of σ, moving

vertically to find the point on the curve at this fixed σ. But when the nonlinear effects

are high, as it can be seen in the same figure, the continuation curve folds10. In this

case, with the natural parametrization, when the predictor moves the initial guess

ahead of the σ where the turning point is located, the Newton’s method of Eq.B.36 will

irremediably fail, because there is any solution moving vertically (in the neighborhood

of the initial guess). Smaller steps would just reach the vertical asymptote slower. The

solution is obtained considering the continuation curve in the global space of y, and

parameterizing the curve with its arclength s. This parametrization is called pseudo-

arclength because the NC step γ of the arclength s is evaluated by finite differences.

y0(s) =
[
x0(s)
σ(s)

]
(B.37)

ds = γ =
2
√
dx0

2 + dσ2 (B.38)

Therefore S is the constraint required to maintain the arclength’s step in the predicted

direction. Eq.B.39 summarizes the Newton’s method scheme’s step of the pseudo-

arclength NC, which was introduced by Keller [166, 165, 167].
C(y) =

[
H(y)

v̂Ty ∆y − γ

]
= 0

δC =

[
H/x H/σ
vxT

‖vy‖
vσ
‖vy‖

][
δx

δσ

]
= AC(y)δy

, ∆y = y(σk)− y(σk−1) (B.39)

This NC enables corrections in both solution δx and parameter δσ, so the Newton’s

method can move from the initial guess along any direction in the global x-σ plane,

overcoming any possible turning point. Recall that this NC, as well as the predictor

through the kernel of Eq.B.35, requires the partial derivative with respect to the con-

tinuation parameter H/σ.

Using the pseudo-arclength NC, there is no control on the continuation parameter’s

value, therefore the stopping condition of the NC must be added in the code [116]. This

is realized with a linear approximation of the predicted x when the predicted value of

the parameter overcomes the target value. Following this, the Newton’s method at the

10It could be even possible that, for strong perturbations, the continuation curve never arrives to the
desired final σ.
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desired final step is performed with the natural parametrization’s scheme of Eq.B.36.

σP > σT ⇒ γk =
σT−σk−1
vσ(sk−1)

‖vy(sk−1)‖
⇒ yP0 = y0(sk−1) + γkv̂y(sk−1) =

[
x0(sk−1) + γk

vx(sk−1)
‖vy(sk−1)‖

σT

]
(B.40)

B.2.2.1.4 Integration step

The fourth and last ingredient is the strategy for the variable step control. Using a

constant step, whether it is for the natural or the arclength parametrization, not only

slows down the NC but could also halt it when the curve has narrow bends (which is

there is a high slope at least in one component of x). The step size is made explicit in

the predicted direction vector v,

yP0 =
[
xP0
σP

]
= y0(sk−1) + vy(sk−1) = y0(sk−1) + γkv̂y(sk−1) (B.41)

and an adaptive algorithm is required to update the value of γ along the NC. This

algorithm is based on the convergence properties of the Newton’s method performed at

the last step of the NC. Ideally, one wants to keep constant the number of iterations n

of each Newton’s method along all the NC, therefore a simple proportional control law

is the following [116].

γk = γk−1
ndes
nk−1

(B.42)

The choice of the desired number of iterations is delicate. A low number of Newton’s

method iterations provides high accuracy and fidelity of the NC, but it results in small

steps and so long computation time to finish the NC. On the opposite, a high number

of Newton’s method iterations would provide larger steps and so speed up the NC, but

this increases the possibility that the predicted solution would fall outside of the radius

of attraction of the solution, and the Newton’s method will not converge.

Additional step’s updating laws have been used in the literature, for example based

on the determinant of the Newton’s method matrix [168, 165].

B.2.2.2 Implementation

The NC will be intensively used in chapter 4 in different algorithms. All of these

schemes use a backbone code for the continuation. First, an initial guess must be

available, usually a linear solution or one of order-0 obtained from a simpler problem.

Then, the NC starts with a very tiny value of the continuation parameter (less than

10−6 with respect to the desired final value). The NC is a while-loop controlled by the

stopping condition, and is constituted by:

• the predictor algorithm to provide the initial guess along the NC’s steps,

• the Newton’s method algorithm for each step,
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• the computation of the kernel (in case the predictor is based on it),

• the saving of the data structure with possible intermediate post-processing.

The Newton’s method algorithm is constituted by:

• the scaling of the direction vector of the predictor with the current step size,

• a selection between pseudo-arclength and natural scheme (always used at the

final step) provides the core of the Newton’s method, where at each iteration the

evaluation of H(x, σ), its derivatives, and the solution of the linear system are

performed.

The Newton’s method is incorporated in an inner while-loop that controls the variable

step: if the Newton’s method performances are satisfying (numbers of iterations, needed

to converge to the required function and step tolerances, less than a maximum number,

like 10) the loop ends and the new step size is evaluated from Eq.B.42; if instead the

convergence is not been reached, the loop restarts decimating the step size.

Since the nonlinear effects of the perturbations treated in this thesis are significant,

to overcome possible turning points in the continuation curve the NC is implemented

with the pseudo-arclength algorithm of section B.2.2.1.3. To enhance the convergence

of the Newton’s method and speed up the continuation, a predictor is used, and is

given either by the kernel of the linearized H or by its first-order finite differences. For

the last ingredient, the adaptive step strategy based on the control of the number of

Newton’s method iterations, presented in section B.2.2.1.4, is used.

B.2.2.3 Bifurcations

The NC, apart from turning points, could encounter non-regular solutions. These are

points on the continuation curve that have singular Newton’s method matrix, so its

kernel has dimension greater than 1. This means that there are multiple directions

where proceed with the continuation, like a crossroad. This situation is a bifurcation of

the solution, which means that the continuation curve breaks in two (or more) branches,

like in Fig.B.2. This situation is paramount in the analysis of parametric systems.

Identification of bifurcations is a major issue for the application of NC [168, 167, 165],

since if not carefully treated the continuation could be captured in any of the region of

attraction of one of the branches. The selection of the branch of interest is important

and not usually trivial, since it depends from the case in study.

B.3 Computation of Equilibrium Points

The first step in the determination of the invariant solutions of a dynamical system is to

identify equilibria, from which proceed to find periodic orbits and quasi-periodic orbits.
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Definition. EPs are 0-tori identified as fixed flows, roots of the vectorfield such that

xEP (t) = xEP ⇔ f(t, xEP ) = 0, ∀t (B.43)

In particular, for the case of a TI mechanical system, since the velocity components

of the state vector are zero, EPs are directly the stationary points of the potential

function of the system.

Computation. Therefore, the computation of the EPs of a NL dynamical system is

performed using Newton’s method, as described in section B.2.1, where the function F

is taken as the vectorfield [116]. In particular, the Jacobian used in Newton’s method

corresponds to the linear state-matrix Af defined in Eq.B.4, at the point of the current

iteration. In case of a TI mechanical system, this corresponds to the Hessian matrix of

the potential.

Stability and manifolds. The EPs are fundamental solutions of a dynamical system:

in the usual case where Af (xEP ) is full-rank, the EP is isolated. Once identified, the

study of the linear behavior around the EPs is very important in DST. In section

B.1.2.1, the behavior around the general flow of a linear system was addressed. The

information is entirely provided by Af (xEP ): its spectrum of eigenvalues defines the

Lyapunov stability property of the EP.

The extension of this procedure to provide the linearized behavior in a NL dynam-

ical system was presented in section B.1.2.2. In particular, for mechanical systems,

eigenvalues are present in couples with the same absolute value, therefore the possible

linearized manifolds around an EP can have the phase portrait of: saddle (unstable),

center (marginally/neutrally stable, which could be singular if the EP is not isolated),

spiral (asymptotically stable or unstable).

For TI linear dynamical systems, the Lyapunov’s center theorem demonstrates that

for every center around an EP, there is a continuous 1-parameter family of POs, pa-

rameterized by the energy [50]. Moser’s theorem proved that this result is valid also

for nonlinear systems [77, 169]. Therefore, in autonomous dynamical systems, POs are

not isolated but organized in families, and they develop with growing energy from an

EP.

The identification of the EPs and the dynamical analysis of the orbit structure in

their neighborhood is a basic operation, and is performed in section 2.3.5 in the CR3BP,

for the preliminary analysis of the Mars-Phobos system, where the EPs are the five pla-

nar LPs. Furthermore, the analysis is undertaken in section 3.3.6.2 for the improved

model of the CR3BP-GH.
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B.4 Analytical and Semi-analytical Techniques for Solu-

tion of Nonlinear Differential Equations

The purpose of this section is to provide an overview of the most used strategies to

develop closed-form approximated solutions for nonlinear ODEs.

The most simple but still useful approach to approximate a nonlinear problem is by

linearization. This because every infinitesimal application is intrinsically linear, and

its closed-form solution, even if valid in this framework, still holds qualitative meaning

and practical properties in the real nonlinear scenario. In the case of a NL dynamical

system of Eq.B.1, the linearization of the vectorfield is undertaken around a given

flow. Thus, the new state of the linearized dynamics is the variation δx(t) from the

trajectory x(t). This leads exactly to the variational equations of Eq.B.6, whose TV

state-matrix is the Jacobian of the vectorfield, and whose solution is given by the STM

of the trajectory in Eq.B.9. At the start of the analysis of a dynamical system, the first

solutions to be computed are the EPs, as presented in section B.3. Thus, in TI systems,

the linear dynamics around them is fully described by a TI state-matrix, the analytical

solution is given by Eq.B.9, and the linear behavior is represented by the associated

manifolds, as explained in section B.1.2.1. They describe the global orbit structure

around the EP, thus they approximate the local behavior in the original nonlinear

system, after Moser’s theorem [50]. This information is paramount to identify the

existence of families of invariant motions (elliptic manifold), such as POs and QPOs,

which are provided by the normal modes of the imaginary eigenvalues of Af (xEP ). The

eigenspace of the spectrum with non-null real part (hyperbolic manifold) identifies the

invariant manifolds of the EPs.

Once the invariant motions and manifolds have been identified, their linear solution

could be improved with a straightforward analytical approach, which is to include

additional terms of the Taylor series’ approximation of the nonlinear terms in the

dynamics. Several methodologies are used in this sense. Scientists baffle by playing a

little with the absence of a borderline in the terminology, that defines a mathematical

method to be analytical, semi-analytical, semi-numerical, and numerical. In substance,

as stated before, these techniques requires an analytical approximation, which could be

pushed from low to high order. As long as the order increases, the computational load

(high dimensions for the solution’s expression, CPU’s time and storage of the huge set

of coefficients) requires numerical capabilities, such as the use of symbolic manipulators

and parallel computers.

The focus of these methodologies is the computation of the invariant motions around

an equilibria, thus they are globally indicated as techniques for the reduction to the

central manifold [50].

An example of the lower order cases consists in the method of the normal forms

[169]. The method requires to approximate the Hamiltonian of the system by a series

expansion, erasing the hyperbolic part. This approach has been applied in the CR3BP
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in [51] and is useful for qualitative investigation of the center manifold.

An example of the upper order methodology is the differential algebra [170], also

called jet transport. The approach requires to approximate the nonlinear terms of

the dynamics with very high-order Taylor series. The point of this work is that the

entire computer programming is re-written in polynomial algebra. Once this is done,

any general dynamical system can be solved by polynomial approximation. Care must

be taken to check that the dynamical analysis is undertaken inside the domain of

convergence of the series. In particular, this methodology is useful for parametric

analyses.

Finally, the basis of the most used technique to compute invariant objects in NL

dynamical systems is presented below with more detail. This methodology has been

used in the framework of the CR3BP and applied in preliminary space missions’ design

up to high-order [115, 51].

B.4.1 The Lindstedt-Poincaré Method

The lp technique has been applied in several fields, from low to high order. Despite

the technique is dependent on the NL problem under study, and different choices are

available to implement it, the main points required by the technique are few and sys-

tematic. The aim of this section is to provide a general summary of the basis of the

methodology [50].

The lp technique starts with the decomposition of the full dynamics11 in a domi-

nant linear part plus additional nonlinear terms (where ε represents some parameters

of the nonlinear dynamics). In Eq.B.44 the case of a first-order TI ODE is taken as a

reference12. {
ẋ+ ax+ fNL(x, ε) = 0 , ε, α→ 0

x(0) = α
(B.44)

The lp technique is based on an approximation by power series expansions [50]. Thus,

the nonlinear dynamics should be conducted to an appropriate form to apply the

method: the nonlinear part is fully determined by a power series in terms of x, with

coefficients ε.

fNL(x, ε) =

N∑
n=2

εnx
n (B.45)

Following this, the solution x itself is approximated by a power series expansion, in

terms of either ε or α: but this time the coefficients xn(t) are unknown. Alternatively

the coefficients can be expressed to represent directly the solution wanted, which are the

normal modes of the center manifold, and the unknown terms reduce to TI coefficients

cn,r [51, 50].

11Remember that the dynamics is expressed in a frame centered on the EP.
12The spectrum of a must have an elliptic part for the existence of invariant motions.
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x(t) =

N∑
n=0

εnxn(t) = x0(t) +

N∑
n=1

εnxn(t) (B.46)

x(t) =
N∑
n=0

αn
n∑
|r|=0

cn,re

∑
m
ir(ωmt+φm)

= x0(t) +
N∑
n=1

αn
n∑
|r|=0

cn,re

∑
m
ir(ωmt+φm)

(B.47)

In both cases, the first-order terms of the solution are known as they are the linear

homogeneous solution. Thus, the initial condition is accounted by the linear part of

the solution, while the remaining coefficients will be the solution with homogeneous

initial conditions but dependent on the nonlinear dynamics, like a forcing term.

x0(t) = xL(t)↔

{
ẋ0 + ax0 = 0

x0(0) = x(0) = x0 → xn≥1(0) = 0
(B.48)

Substituting back the approximated solution in the dynamical equations, the result

of the solution’s series in terms of ε or α is a system of N × n recursive differential

equations (n being the dimension of the original dynamical system, N being the order

of nonlinear terms considered in the expansion) to be satisfied. We see that each term

xn is the solution of a non-homogeneous ODE, where the forcing term is constituted

by solution’s terms of lower order.

ẋn + axn = −fNL(
{
εjxj

}
j<n

, ε)

= −fNL

αj
j∑
|r|=0

cj,re

∑
m
ir(ωmt+φm)


j<n

, ε

 (B.49)

The power series in the right-hand side will recursively bring forward the original linear

solution. This constitutes a resonant forcing term, and all the non-homogeneous ODEs

have a particular integral with a term proportional to t. Thus, each solution’s term for

n ≥ 1 will be made up of periodic and secular terms.

xn(t) = f(t, a, ε, α, xj<n/cj<n,r) + g(t, a, ε, α, xj<n/cj<n,r)t (B.50)

To obtain an invariant motion, the aim is to erase all these secular terms. This

is obtained with the key point of the lp methodology. It assumes that the nonlinear

dynamics changes the natural frequencies of the linear system. Thus, a change of the

time variable is introduced, again described by a power series expansion, similar to the

one of the solution.

τ = ν(ε)t→ d

dt
= ν(ε)

d

dτ
(B.51)

ν−1(ε) =
N∑
n=0

εnυn = 1 +
N∑
n=1

εnυn (B.52)
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For the second choice of the solution’s series, where the natural frequencies of the center

manifold were explicit, these are modified directly and the time kept original, where

the first-order term is the frequency in the linear system.

ωm(α) =
N∑
n=0

αnωm,n = ωm,0 +
N∑
n=1

αnωm,n (B.53)

Repeating the procedure, now the secular terms of the analytical solution are functions

of the additional time/frequency series’ coefficients. It is worth to note that now the

left-hand size of the n-recursive ODE contains also lower order terms, residuals from the

linear part of the dynamics, that should be shifted on the right-hand side as additional

forcing terms.

x′ + ν−1 (ax+ fNL(x, ε)) = 0

x′ + ωm (ax+ fNL(x, ε)) = 0
(B.54)

ẋn + axn = −fNL(
{
εjxj

}
j<n

, ε)−
{
εjυjaxj

}
j<n

= −fNL

αj
j∑
|r|=0

cj,re

∑
m
ir(ωmt+φm)


j<n

, ε

− {αjωm,jaxj}j<n (B.55)

Therefore, the additional coefficients are chosen to erase the secular terms and make

the solution a torus for the approximated dynamics up to order N .

xn(t) = f(t, a, ε, α, xj<n/cj<n,r, υj<n/ωm,j<n) + g(t, a, ε, α, xj<n/cj<n,r, υj<n/ωm,j<n)t

→ υj/ωm,j : gn = 0

(B.56)

The lp method involves successive adjustments of frequencies to avoid secular terms

and allows one to obtain approximate invariant solutions [50]. It considers the reality

that in nonlinear systems also the frequencies are dependent from the initial conditions,

and change accordingly to the size of the orbit.

The lp technique and the semi-analytical methods are very powerful generators of

initial conditions for highly NL systems. However their performances depend on two

conditions: a high enough order of the series, and good stability properties of the

manifold around the EP. In particular, if the second requirement is not satisfied by the

dynamical system, it is possible that even very high-order expansions do not have a

very extended region of convergence [50, 51], whose boundary represents the size, from

the EP, of the tori computed by the method, that is reliable also in the full nonlinear

dynamics. Sometimes, when the instability of the EP’s manifold is very high, even

the machine error is a limiting factor in the numerical simulation of the full nonlinear

dynamics. This means that even improving the order of the series not only increases

the computation effort, but also does not provide any gain in terms of computational

performance of the solution simulated in the full dynamics. In these cases, numerical
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methodologies must be applied to provide reliable solutions for practical applications,

where low-order analytical solutions are used as starting guesses [50]. Such techniques

will be the focus of the next sections.

B.5 Numerical Techniques for Computation of Periodic

Orbits

A paramount property of any dynamical system is the existence of POs. This section

presents to the reader the notions of DST used to define a PO and its properties.

Following this, the section shows how these concepts are applied to numerically compute

these invariant motions.

B.5.1 Definition

A periodic orbit for the general dynamical system of Eq.B.1 is the 1-torus defined in

Eq.B.57.

xPO(t0 + T ) = xPO(t0) , ∀t0 →

{
xPO(t) = φf (t, t0, x0,PO)

M = Φf (T + t0, t0)
(B.57)

T is the associated period, as the minimum time interval within the solution repeats

exactly. In addition, the STM evaluated after one revolution is called the monodromy

matrix M of the PO.

B.5.1.1 Linearized Behavior, Stability, and Floquet Theory

The monodromy matrix has important features in the analysis of POs. These charac-

ters represent the Floquet theory [50].

The monodromy matrix represents the linear behavior after one revolution of the

PO. The Floquet theorem states that the STM of a PO is composed by the product

of a T -periodic matrix, representing the linearized behavior around the PO within the

period, and an exponential matrix, representing the linear variation after an integer

number of revolutions [50]. Thus, the STM after an integer N number of periods is

simply the N -power of the monodromy matrix: this means that the linear sensitivity

of the initial conditions propagates with a power law each revolution. This is a discrete

TI and linear dynamical system, where M is the state matrix.

The Floquet theory is the analogue of the linearized Lyapunov approach to NL sys-

tem, but is tailored to a periodic flow. Thanks to the Floquet theorem, the analysis of

the linearized behavior is decoupled in iterated mappings for every full revolution, and

periodic relationships along the internal motion within a period. Thus, the stability

properties of the PO are formulated in the framework of the discrete dynamical sys-

tems (see sections B.1.2.1-B.1.2.1) and are completely determined by the monodromy
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matrix. The eigenvalues of the monodromy matrix are called the Floquet multipliers

λM , and in parallelism with the linearized Lyapunov exponents for a general flow, the

Floquet exponents are defined in the same fashion for the case of a PO.

For the case of Hamiltonian systems, the STM and the monodromy matrix are sym-

plectic. Therefore the Floquet multipliers show up always with their inverse and con-

jugate counterparts (with the same multiplicity), and the determinant of M is unit.

Following this, the stability properties of the POs of 2n-dimensional Hamiltonian sys-

tems are represented by the n Floquet stability indexes sλ, which are the sum of the

related couple of Floquet multipliers. Thus, for the aforementioned character, this

brings to the following definition.

sλ = λM +
1

λM
(B.58)

The Floquet stability indexes are actually a measure proportional to the instability of

the PO. This brings to express the linear and linearized Lyapunov stability classification

of sections B.1.2.1-B.1.2.2 in terms of the spectrum of Floquet indexes. The related

phase portraits are the following.

• sλ ∈ R, |sλ| > 2 : hyperbolic manifold (a saddle, constituting a couple of attract-

ing and repelling objects).

• sλ ∈ R, |sλ| ≤ 2 : elliptic manifold (a center, constituting one or two neutral

objects).

• sλ ∈ C\R : complex hyperbolic manifold (two opposite spirals, constituting a

couple of attracting and repelling objects).

Thus, the hyperbolic manifolds are unstable and their eigenspace identifies the invariant

manifolds of the PO, while the elliptic manifold is stable and its eigenspace provides

a continuous 1-parameter family of invariant 2-tori developing at growing size around

the PO, as an extension of Lyapunov’s center theorem to POs, and also TV systems.

In particular, if sλ = ±2, the center is singular. This is a parabolic manifold, that

provides a second continuous 1-parameter family of POs, and the PO under study is

at the crossroad of the four branches. This situation is a bifurcation, because the two

intersecting families swap one of their phase portraits through the “customs’ gate” of

the parabolic manifold. This is particularly important when the trade involves a saddle

and a center. The inverse parabolic manifold, which is sλ = −2, provides the second

family of POs to have double the period of the first family (this is called a bifurcation

by period-multiplication).

If the Hamiltonian system is also conservative, the existence of one integral of motion

(the energy) constrains a couple of the Floquet spectrum to be unit, which is a direct

parabolic manifold (sλ = +2). The related eigenvectors are one directed along the

vectorfield (parallel to the flow’s manifold), and the other directed along the gradient
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of the energy. Since they are not coincident, the second eigenspace identifies another

manifold of POs, as discussed above. This is indeed the proof of Lyapunov’s center

theorem, and the Moser’s generalization, presented in section B.3 to highlight that, in

TI dynamical systems, POs are organized in continuous families parameterized by the

energy. The POs are the periodic normal modes of the linearized system, as discussed

in section B.4. In particular, the energy is directly proportional to the amplitude of

these eigenfunctions, thus the energy is tout-court equivalent to the size of the orbit in

the neighborhood of the equilibria.

B.5.2 Approach of Dynamical Systems Theory

The approach used in DST for the definition of a PO is to reduce the original continuous

dynamical system to an appropriate map function of the same state, P : x → P (x)

[50, 116]. In case of TV dynamical systems, the flow map for a propagation time equal

to the period of the PO is used, which is called stroboscopic map PT .

PT (x) = φf (T + t0, t0, x) (B.59)

For TI dynamical systems, the approach is due to Poincaré, and consists of the following

procedure [50, 116].

• First, define a surface of section (or event) of the state-space Γ, called Poincaré

section, which represents a co-1D hypersurface of the state domain (not parallel

to the flow). Thus, the Poincaré section is defined by an appropriate constraint

g(x) = 0, enclosing also the crossing direction of the surface. Usually the section’s

constraint consists in fixing one state’s component vM , of index iM , such that

g(x) = vM − v̄M = xiM − x̄iM = 0. Remember that the focus is on a subdomain

U around an EP of the autonomous system.

Γ =
{
x ∈ U : g(x) = 0 ∧ (f(t, x) ∧∇g(x)) = 0 ∧ f(t, x)T∇g(x)><0

}
(B.60)

• Then, define a time-return map Pτ,Γ, that gives the minimum time when the flow,

starting from Γ, returns to the surface itself.

Pτ,Γ(x) = {min t ≥ t0 : φf (t, t0, x) ∈ Γ, x ∈ U} (B.61)

• Finally, a second map, named the first-return map (also called the Poincaré map)

Pφ(τ),Γ, associates to the initial state on Γ the final state at the first return.

Pφf (τ),Γ(x) = φf (Pτ,Γ(x), t0, x) (B.62)
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Therefore, a PO is identified as the equilibrium fixed point of a stroboscopic map (for

TV systems)

PT (x0,PO) = x0,PO (B.63)

or of a first-return map (for TI systems, where the time-return map gives the period of

the PO).

x0,PO ∈ Γ→ Pτ,Γ(x0,PO) = T + t0 → Pφf (τ),Γ(x0,PO) = x0,PO (B.64)

In particular, this strategy could already provide a graphical method to look for POs.

A subset of the state-space could be taken as initial conditions of the aforementioned

maps, thus propagated in time. The images are plotted to visually identify the existence

of an invariant point (TV systems), or a family of invariant points (TI systems). In

case of autonomous systems, these graphs are shortly called a Poincaré map tout-

court. Of course, this approach is qualitative and mostly applicable for low-dimensional

dynamical systems.

B.5.2.1 Linearized Behavior and Stability of a Poincaré Map

With the approach of DST, the stability analysis of the POs is undertaken in the

framework of the discrete dynamical system of the iterated stroboscopic or Poincaré

map. For TV systems, no differences are born with respect to the continuous case:

the derivative of the stroboscopic map is the STM after one revolution, which is the

monodromy matrix. For TI systems, the derivative of the first-return map is a material

derivative13, since the flow depends also on the time-return map [52, 116]. This is

presented in Eq.B.65: the total derivative is composed by the STM (the monodromy

matrix), the vectorfield (see section B.1.2.3), and the derivative of the time-return map.

The latter is obtainable from the differential identity expressing that the directional

derivative of the Poincaré section’s constraint is null onto the section itself.

D
DxPφf (τ),Γ =

∂φf
∂x0

+
∂φf
∂Pτ,Γ

∂
∂xPτ,Γ = Φf (Pτ,Γ, t0) + f(Pτ,Γ, Pφf (τ),Γ) ∂

∂xPτ,Γ

∇Γg = 0→ ∂g

∂Pφf (τ),Γ

D

Dx
Pφf (τ),Γ = ∇g(Pφf (τ),Γ)

D

Dx
Pφf (τ),Γ = 0→

→ ∂

∂x
Pτ,Γ = −

[
∇g(Pφf (τ),Γ)f(Pτ,Γ, Pφf (τ),Γ)

]−1
∇g(Pφf (τ),Γ)Φf (Pτ,Γ, t0)

(B.65)

t : g (x (t)) = {x}iM − {xPO}iM = 0⇒ δt (δx)⇒

δxf =

(
I−

f (Pτ,Γ(x0), φf )∇g (φf )

∇g (φf ) f (Pτ,Γ(x0), φf )

)
Φ (Pτ,Γ(x0)) δx0 =

= (I−Ψg (Pτ,Γ(x0), φf (Pτ,Γ(x0),x0))) Φ (Pτ,Γ(x0)) δx0 =
dPg
dx0

(Pτ,Γ(x0),x0) δx0

(B.66)

13A material derivative is also called substantial derivative, or Lagrangian derivative, or total deriva-
tive.
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The resulting total derivative is shown in Eq.B.66, where the classical Poincaré section’s

constraint consists of the single state’s component vM , of index iM . However the

constraint is also valid on the initial condition.

x :g (t,x) = {x0}iM − {xPO}iM = 0⇒ {δx}iM
(
{δx}iX\iM

)
⇒

⇒ δx (x) =

(
I−
{I}:,iM {I}iM ,:

1

)
δx (x) = (I−ΨgM (x)) δx (x)

(B.67)

Therefore, the appropriate derivative of the Poincaré map is the following.

dPφf (τ),Γ

dx0
(Pτ,Γ(x0),x0) = (I−Ψg (Pτ,Γ(x0), φf (Pτ,Γ(x0),x0))) Φ (Pτ,Γ(x0)) (I−ΨgM (x0))

P0 = {I}:,x\vM ⇒
{δxf}x\vM = P0

T (I−Ψg (Pτ,Γ(x0), φf )) Φ (Pτ,Γ(x0)) (I−ΨgM (x0)) P0{δx0}x\vM =

=

{
dPφf (τ),Γ

dx0
(Pτ,Γ(x0),x0)

}
x\vM ,x\vM

{δx0}x\vM
(B.68)

The result is simply the original monodromy matrix of the PO removed from the

eigenspace of its flow’s manifold. Thus, the relevant stability properties are coincident

with the starting monodromy matrix. In [171, 172], a linear stability parameter is in-

troduced and corresponds to half of the trace of the total derivative matrix.

The same procedure of Eq.B.66 can be undertaken by further constraining the

Poincaré section to also be at fixed energy c(x) = c̄. Also, the constraint locks an-

other state’s component vE , of index iE .

x : gE (x) = c (x)− c̄ = 0⇒ {δx}iE
(
{δx}iX\iE

)
⇒

δx (x) =

(
I6 −

{I6}:,iE∇gE (x)

{∇gE (x)}iE

)
δx (x) =

= (I6 −ΨgE (x)) δx (x) =
dPφf (τ),Γ,E

dx0
(Pτ,Γ(x0),x0) δx0

(B.69)



dPφf (τ),Γ,E

dx0
(Pτ,Γ(x0),x0) =

= (I6 −Ψg (tfPτ,Γ(x0), φf (tfPτ,Γ(x0),x0))) Φ (tfPτ,Γ(x0),x0) (I6 −ΨgM (x0)−ΨgE (x0))

P0 = {I6}:,x\[ vM vE ] ⇒
{δxf}x\[ vM vE ] =

= P0
T (I6 −Ψg (tfPτ,Γ(x0), φf )) Φ (tfPτ,Γ(x0),x0) (I6 −ΨgM (x0)−ΨgE (x0)) P0{δx0}x\[ vM vE ] =

=

{
dPφf (τ),Γ,E

dx0
(Pτ,Γ(x0),x0)

}
x\[ vM vE ],x\[ vM vE ]

{δx0}x\[ vM vE ]

(B.70)

The resulting total derivative in Eq.B.70 is removed also from the eigenspace of the

PO’s family. The resulting map Pφf (τ),Γ,E is called iso-energetic Poincaré map, and

contains isolated POs, which are called limit cycles.
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B.5.3 Numerical Computation

A trivial case of POs is when the TV dynamical system is forced by a periodic action.

In this case, POs are simply the particular solutions of the ODEs. In some Hamiltonian

systems, it could be possible to perform a change of state’s components, to express the

vectorfield in a frame synchronous and isotropic with the forcing action. If the result-

ing potential of the system is simply scaled by a time-dependent term, the transformed

system has EPs, that can be computed as discussed in section B.3. These instantaneous

EPs move synchronously with the forced frame in the original dynamics.

The Lyapunov center’s theorem (and the Moser’s generalization) is the analytical

backbone for the identification of families of POs in a conservative dynamical system.

Therefore the computation of POs starts from the identification of the EPs and then

different methodologies could be exploited. In section B.4, the analytical and semi-

analytical methodologies to compute invariant motions were addressed. To overcome

their limitations for practical applications, they are coupled with numerical techniques,

where low-order analytical solutions are used as starting guesses. The numerical tech-

niques used in DST are based on the differential corrector, that will be introduced

below.

B.5.3.1 Differential Corrector

When the objective function F (x) of the Newton’s method is not fully algebraic, but

contains the solution x(t) of a NL dynamical system f(t, x), we speak about differential

corrector (DC) [173]. The DC is the numerical technique most widely used in DST [50].

A DC scheme is essentially a Newton’s method used to fine tune the initial condition

x0 to obtain an accurate orbit x(t) = φ(t, t0, x0) that satisfies the objective function

F (x0) = 0.

There are several examples for the exploitation of a DC, which is essential because

the analytical solution of a NL dynamical system is usually not available. It could

be required to compute a desired trajectory that passes through a point at a specific

time14, or a set of them at prescribed times. Usually the DC is exploited when we want

to find an orbit x(t) that preserves some qualities of (or is simply close to) a reference

trajectory x̄(t), where the latter is the solution of a close dynamical system f̄(t, x).

This second dynamical system is either an approximated model of the real perturbed

dynamics (see section 2.2) or a simpler model to compute a solution (like the linearized

dynamics).

For the application of Newton’s method in Eq.B.26, the derivative of the objective

function around the trajectory is needed. This involves the derivative of the flow of the

dynamical system with respect to the initial condition. Thus, any DC scheme requires

the computation of the STM defined in section B.1. This means that at every iteration,

14When the time t is not fixed, but is implicitly defined by G(t, x(t)) = 0, we call this condition an
event. This is a constraint to be appended in the augmented objective function [ FG ] = 0.
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the DC scheme consists in the numerical integration of the dynamical system of Eq.B.1

and its associated variational system of Eq.B.8.

For this reason the DC is often called shooting method, and referred to as single

shooting for the case when only one trajectory is propagated at each iteration, and

the objective function refers to a condition at a single time/event. When instead the

objective function collects conditions at different times, or when the time span required

for a single final condition is too large15, the DC is called multiple shooting. In this case,

the trajectory is divided in N smaller subintervals, requiring N independent trajectories

to be propagated and increasing the order of the linear system (which now is multiplied

N times) at each iteration of Newton’s method. This technique was initially used for

the numerical solution of boundary-value problems [173].

In summary, the DC is a numerical technique used in DST for the solution of NL-

TV dynamical systems. It requires a suitable initial guess for the trajectory, which

is usually provided by low-order analytical or semi-analytical methods applied to the

system in study [50]. This alliance matches the advantages of both approaches and

provides reliable solutions with acceptable computational effort. In particular, when

the dynamical model is only an approximation of the real dynamics, even a high-order

semi-analytical solution must undergo a differential correction afterwards, for practical

applications [116].

B.5.3.2 Computation of Periodic Orbits with Differential Corrector

The DC can be applied for the computation of a PO of a dynamical system, by using

the definition of the PO as an invariant point of a stroboscopic map (TV systems) or

of a Poincaré map (TI systems). This is a basic single shooting implementation where

the point to be determined represents the initial condition of the PO [116, 52].

F (x0) = P(·)(x0)− x0 = 0 (B.71)

The first guess of the DC could be retrieved as the initial condition of a small-size PO

in the linear or low-order approximation of the dynamics.

The Jacobian of the objective function requires the derivative of the map expressed

in section B.5.2.1. For TV system, the initial time t0 is usually kept fixed, and the

DC’s scheme is the following, where define P (T, t0,x0) =
∂xf
∂x0

(T + t0, t0,x0) − I =

Φf (T + t0, t0,x0)− I.{
F (t0,x0) = φf (T + t0, t0,x0)− x0 = 0

δF (t0,x0) = [ P(T,t0,x0) ] [ δx0 ]
(B.72)

15Recall that the DC and the STM are based on a linearized approximation of the dynamics around
the reference orbit. In particular the Newton’s method iteration requires the solution of the linear
system of Eq.B.26, and the STM for unstable orbits and long propagation time becomes ill-conditioned.
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Alternatively, one state’s component vM , of index iM , could be kept fixed. The re-

lated column in the derivative’s matrix of Eq.B.72 is taken out and a new column is

filled with the sensitivity of the flow with respect to the initial time Pt (T, t0,x0) =
∂xf
∂t0

(T + t0, t0,x0) of Eq.B.14, which now must be corrected at each iteration as a δt0

inserted in the variations’ vector. F (t0,x0) = {φf (T + t0, t0,x0)− x0}iX\iM = 0

δF (t0,x0) = [ {P(T,t0,x0)}:,iX\iM Pt(T,t0,x0) ]
[
{δx0}iX\iM

δt0

] (B.73)

For TI systems, the Poincaré map requires the satisfaction of the section’s constraint

on the initial and return condition, g(x0) = 0 and g(Pφf (τ),Γ(x0)) = 0. Considering as

usual the constraint on the single state’s component vM , of index iM , the first condition

was used in Eq.B.67, and the second in Eq.B.66, to define the total derivative of the

Poincaré map in Eq.B.68, which bounds the correction of the propagation time to

satisfy the Poincaré return event: δT (δt0, δx0). Define from Eq.B.68 P (Pτ,Γ(x0),x0) ={
dPφf (τ),Γ

dx0
(Pτ,Γ(x0),x0)− I

}
x\vM ,x\vM

, to consider only the coordinates of interest. In

conclusion, the DC’s scheme is the following.{
F (t0,x0) = {φf (Pτ,Γ(x0),x0)− x0}iX\iM = 0

δF (x0) = [ P(Pτ,Γ(x0),x0) ] [ {δx0}iX\iM ]
(B.74)

However this DC scheme is not useful because the derivative matrix is singular at the

solution. Indeed, the STM would eventually converge to the monodromy matrix of

the PO, which carries the unit eigenvalue of the manifold of the PO’s family, while

the eigenspace of the other unit eigenvalue is taken out by the total derivative of

the Poincaré map in Eq.B.66-B.68. To make the solution isolated, the iso-energetic

Poincaré map of Eq.B.69 is needed, whose derivative is provided in Eq.B.70. From

that, one defines P (Pτ,Γ(x0),x0) =

{
dPφf (τ),Γ,E

dx0
(Pτ,Γ(x0),x0)− I

}
x\[ vM vE ],x\[ vM vE ]

.

In conclusion, the DC’s scheme is the following.{
F (t0,x0) = {φf (Pτ,Γ(x0),x0)− x0}x\[ vM vE ] = 0

δF (x0) = [ P(Pτ,Γ(x0),x0) ] [ {δx0}x\[ vM vE ] ]
(B.75)

Alternatively, one component of the objective function could have been replaced by the

iso-energetic constraint gE(x) = 0 itself, keeping the same dimension of the variations’

vector. Other constraints could have been possible though, to bound some properties of

the initial guess to be maintained in the final solution (this should be in accordance to

the nature of the problem analyzed). Finally, sometime the existence of symmetries in

the problem allows to change the objective function, considering the flow at a previous

symmetrical event [50]: this is necessary to reduce the propagation of the single shoot-

ing, lowering the unstable departure of the perturbed flow, which ultimately allows to

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

381 Zamaro Mattia



Methods of Dynamical Systems Theory

use initial guesses at lower order.

As a byproduct of the DC, the propagation time and the STM at the final convergent

iteration of the DC will provide T and M of the PO.

B.5.3.2.1 Computation of Families of Periodic Orbits with Numerical Con-

tinuation

In conclusion, as discussed in section B.5.1.1, for autonomous dynamical systems the

POs are organized in continuous families of one parameter. This is usually the energy

of the orbit, but could also be taken as the period or a representative amplitude for the

size, such as one state’s component. Once one small-energy PO is identified with the

DC of Eq.B.75, its initial condition provides the starting point of a NC, whose proce-

dure is presented in section B.2.2. The technique iterates the DC scheme of Eq.B.74

to compute the curve of initial conditions on the Poincaré section, providing the whole

family of POs [52]. The continuation parameter σ is chosen as one of the possible

parameters p of the family mentioned early. The objective function of the NC is the

one of the DC scheme of Eq.B.75, where one component of F (x0) is replaced by the

parameter’s constraint p− σ = 0.

The NC is integrated to reach the PO of interest, for example the one of a par-

ticular size. It is worth to note that out of the neighborhood of the EP, the NC of

large-amplitude POs usually encounters nonlinear effects, such as turning points of the

continuation curve, which means that the size of the orbit could now decrease/increase

for increasing/decreasing energy. In particular, as mentioned in section B.2.2.3, the

NC could encounter bifurcations, that represent the birth of another family of POs.

As discussed in section B.5.1.1, the bifurcation is a parabolic manifold, due to the fact

that the PO at the crossroad of the four branches has one Floquet index sλ = ±2.

Thus, for the case of POs, the stability indexes identify the bifurcations during NC

[52]. This is a paramount result of DST, because the couple of parabolic eigenvectors

of the monodromy matrix provide the tangent space of the two continuation curves,

and so they are used to select which branch the NC is driven through.

B.6 Numerical Techniques for Computation of Quasi-Periodic

Orbits

This section presents to the reader the notions of DST used to define a 2D-QPO and

its properties. Following this, the section shows how these concepts are applied to

numerically compute these invariant motions.

B.6.1 Definition

For the general dynamical system of Eq.B.1, Eq.B.20 provides the most general way to

mathematically define a nD-QPO, which is the sum of a discrete number n of harmonics,
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by expressing the flow as n-torus, function of the n phases. After section B.5 presented

the methodology of DST used to identify POs, this section will now focus on the next

step for the analysis of the invariant motions of a dynamical system, which is the

identification of 2D-QPOs.

A 2-D QPO is the 2-torus defined in Eq.B.76.

xQPO(t) = φf (t, t0, x0,QPO)→ xQPO(ϕ1, ϕ2) = νu(ϕ1, ϕ2, ϕ1,0, ϕ2,0, x0,QPO)

ϕ1 = ϕ1,0 + ω1 (t− t0) , ϕ2 = ϕ2,0 + ω2 (t− t0)
ω2
ω1

/∈ Z
(B.76)

As discussed in section B.1.3, the flow of a torus is usually decomposed in longitudinal

and transversal motion, choosing a reference longitudinal phase ϕ1. The stroboscopic

map of the transversal phase ϕ2 for a stroboscopic time equal to the longitudinal revo-

lution T1 = 2π
ω1

easily provides the fixed rotation number ρ = 2π ω2
ω1

, which indicates how

many longitudinal revolutions NT1 = ceil
{

2π
ρ

}
are needed to perform a full transversal

revolution [164].

The expression of the toroidal flow was updated in Eq.B.23 to consider the forced

phases in the general case of TV systems. Thus, for a 2D-QPO in a TV system, the

transversal phase is naturally taken as the forced phase ϕ̃2. As discussed in section

B.1.3.1, the constrained phases are actually computed by the explicit integration of the

equations of motion. On the opposite, for a n-torus in a TI system, the n phases are

all equivalent to be chosen as the longitudinal phase. Their pulsation ω is a natural

frequency of the solution, thus their dynamics is implicit in the equations of motion

[164].

Following this approach, the 2-torus of Eq.B.76 can expressed as a function of time,

by reducing its flow, as well as the related linearized behavior and Floquet stability, to

the longitudinal motion.

xQPO(t) = φf (t, t0, x0,QPO (ϕ2)) , ∀ϕ2 ∈ [0, 2π) (B.77)

This requires that the initial condition of the 2D-QPO is parameterized by the starting

phase along the transversal motion. However, the parameterized flow of Eq.B.77 is

not an invariant motion, because NT1 is not an integer. This produces the bounded

trajectory to become a surface of motion, that fills for infinite time the surface of a

torus in the state-space (since the trajectory is parameterized by two phases). The

filling is not continuous in the transversal phase, since the rotation number evolution

is a discrete dynamical system given by an iterated mapping. Following this, the

linearized behavior of a 2D-QPO is usually analyzed in subintervals, representing a

single longitudinal revolution, and the stability analysis is conducted with the related

bundles of STMs.
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B.6.2 Approach of Dynamical Systems Theory

The definition of a 2D-QPO in DST follows the approach used for POs in section

B.5.2, which is to reduce the original continuous dynamical system to a map [116,

52]. In particular, this is a stroboscopic map for TV systems, or either a Poincaré

or stroboscopic map for TI systems [140]. The Poincaré section and the stroboscopic

period are chosen to lock one phase, which is the longitudinal phase ϕ1 of Eq.B.76.

Thus for a stroboscopic map, the stroboscopic period is T1, and the map produces fixed

rotation numbers shifts of the transversal phase, as discussed in section B.6.1. For a

Poincaré map, the time-return map of Eq.B.61 is variable, thus the rotation number

ρ2 depends on the initial transversal phase ϕ2, but apart from this, the procedure is

basically the same of Eq.B.22.

tf = Pτ,Γ (x0,QPO)→ ρ (x0,QPO) = ωtf = Pρ(τ),Γ(x0,QPO)

→ Pφf (τ),Γ(x0,QPO) = νu
(
ϕ0 + Pρ(τ),Γ(x0,QPO),ϕ0, x0,QPO

)
ρ = [{ρi}ni=1] ∧ ρ0 = 0→ ρi,k = mod

{
Pρ(τ),Γ

(
xQPO

(
ϕ0 +

k−1∑
m=1

ρi,m

))
, (−π, π]

}

⇒ NTi :

∣∣∣∣∣∣
NTi∑
k=1

ρi,k

∣∣∣∣∣∣ ≥ 2π ⇒ Ti =

NTi∑
k=1

Pτ,Γ

(
xQPO

(
ϕ0 +

k−1∑
m=1

ρi,m

))
(B.78)

The chosen map is now applied to the decomposed 2D-QPO of Eq.B.77, where the

initial conditions are parameterized by the transversal phase. This results to be a

mapping from one closed curve to another. Generalize the curve of initial conditions

x0,QPO (ϕ2) on the chosen map to a curve C(θ), where the curvilinear coordinate is

θ ∈ Iθ = [θm, θM ) : C (θm) = C (θM ). Therefore, a 2D-QPO is identified as the

invariant curve of a stroboscopic map

x0,QPO ∈ C (θ)⇔ PT (x0,QPO) = φf (T + t0, t0, x0,QPO) ∈ C (θ) , ∀θ ∈ Iθ (B.79)

or of a first-return map (for TI systems, where the time-return map provides the rota-

tion number from Eq.B.78).

x0,QPO ∈ C (θ) ∈ Γ⇔ Pφf (τ),Γ(x0,QPO) = φf (Pτ,Γ(x0,QPO), t0, x0,QPO) ∈ C (θ) , ∀θ ∈ Iθ

(B.80)

The selection of the Poincaré section is subjected to the same constraint of the case of

a PO in section B.5.2, which is that the flow, in this case of the full invariant curve,

must not be tangent to the surface of section.

Therefore, the invariant condition of the torus’ motion is expressed in terms not

of a point, but of a curve, which is a continuous object, and the whole 2D-QPO has

been reduced in DST to a discrete dynamical system, and not a single map like for

the case of a PO. Following this, the linearized behavior of a 2D-QPO is analyzed on

the subintervals sampled by the chosen map, and so is reduced within each step of
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the discrete dynamical system that represents the 2-torus, and the stability analysis is

conducted with the related bundles of STMs [116].

The invariant curve’s condition of Eq.B.79-B.80 could be probed by analyzing the

linear solution around a PO, and focusing on the elliptic manifold. As discussed in

sections B.5.1.1 and B.5.2.1, if this is present, the PO’s monodromy matrix (or the

derivative of the Poincaré map used to compute the initial condition of the PO) has a

couple of conjugated eigenvalues on the unit complex circle. If we define a curve C(θ)

by a linear combination of their eigenvectors with a circle of radius γ, centered around

the invariant point identified by the initial condition of the PO,

x0,PO,∃ ± λDP(·)
Dx0

(x0)
= eiρ ∈ C⇒ C (θ) = x0,PO + γ (Re {v̂λ} cos θ − Im {v̂λ} sin θ)

(B.81)

and compute its image though the linearized flow map around the PO, which is given

by the variational equations of Eq.B.6 using the monodromy matrix,
M (Re {v̂λ}+ iIm {v̂λ}) = (cos ρ+ i sin ρ) (Re {v̂λ}+ iIm {v̂λ}) =

= (cos ρRe {v̂λ} − sin ρIm {v̂λ}) + i (sin ρRe {v̂λ}+ cos ρIm {v̂λ})
M (Re {v̂λ} − iIm {v̂λ}) = (cos ρ− i sin ρ) (Re {v̂λ} − iIm {v̂λ}) =

= (cos ρRe {v̂λ} − sin ρIm {v̂λ})− i (sin ρRe {v̂λ}+ cos ρIm {v̂λ})

⇒

{
MRe {v̂λ} = cos ρRe {v̂λ} − sin ρIm {v̂λ}
M Im {v̂λ} = sin ρRe {v̂λ}+ cos ρIm {v̂λ}

(B.82)

M (C (θ)− x0,PO) = γ ((cos θ cos ρ− sin θ sin ρ) Re {v̂λ} − (cos θ sin ρ+ sin θ cos ρ) Im {v̂λ}) =

= γ (Re {v̂λ} cos (θ + ρ)− Im {v̂λ} sin (θ + ρ)) = C (θ + ρ)− x0,PO

⇒ P(·) (C (θ)) ' x0,PO +M (C (θ)− x0,PO) = C (θ + ρ) , ∀θ ∈ Iθ
(B.83)

we see that any variation in the initial conditions, that belongs to this curve, produces a

variation in the final condition that still belongs to the curve itself [52]. The image has

shifted along the invariant curve, and the shift of the curve’s parameter is the rotation

number. Indeed the invariant curve represents the solution of a discrete dynamical

system, and is not filled continuously. We see that in this linearized dynamics, the

rotation number is fixed along the invariant curve, and corresponds to the elliptic

eigenvalue’s phase. It is also independent from the invariant curve’s size γ, which is

not a radius but just a width’s reference. Thus, Eq.B.81 represents a continuous 1-

parameter family of invariant curves that develops around a PO, which represents the

backbone of the 2-torus. This is indeed the proof of the extension of Lyapunov’s center

theorem, and the related Moser’s generalization, to POs in TV dynamical systems, that

was presented in section B.5.1.1, where the family’s parameter could now be naturally

stated as the invariant curve’s width. Thus, the 2D-QPOs are the periodic normal

modes of the linearized system around the PO, and their invariant curves are the

periodic normal modes of the chosen map.

For the case of TI dynamical systems, since the elliptic eigenspace used to define the
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linearized invariant curve of Eq.B.81 is orthogonal to the parabolic eigenspace where

the energy varies, the paramount result is that the continuous 1-parameter family of

invariant curves is iso-energetic with the PO. Thus, the family is uniquely identified on

the iso-energetic Poincaré map of the PO of Eq.B.69. Furthermore, POs are part of

the center manifold of an EP, and so in autonomous dynamical systems 2D-QPOs are

organized in continuous 2-parameter families developing from an EP with two center

manifolds, and are the combination of the normal modes of their related eigenspaces,

as discussed in section B.4.

In the case of any NL dynamical system, the rotation number is not fixed along

the invariant curve any longer. Thus the profile along the invariant curve must be

determined to completely characterize the dynamics of the full 2-torus. Recall from

section B.6.1 that for TV systems, the invariant curve parameter is the constrained

phase, thus the rotation number profile is explicit from the dynamics of the forcing

action. On the contrary, in TI dynamical systems, the invariant curve’s parameter could

be taken as any appropriate variable, because the torus’ frequencies are all natural.

Therefore, the rotation number profile is implicit, and it must be retrieved by the

mapping of the invariant curve’s equation C(θ).

Furthermore, for any NL dynamical system, the rotation number profile is also not

maintained along the family of invariant curves. Thus, also the period of the first

transversal revolution (see Eq.B.22 and Eq.B.78), obtained from the rotation number

profile, is also not maintained. Due to its relevant dynamical meaning, such variable

(or similarly the associated mean rotation number of the invariant curve) could be used

as parameter of the 1-parameter family of invariant curves around a PO, in place of

the width [52].

Finally, it is worth to remember that using the graphical approach mentioned in

section B.5.2, the family of invariant curves can be visually identified on a Poincaré

map for low-order dynamical systems.

B.6.3 Numerical Computation

The analytical and semi-analytical techniques for the computation of QPOs are par-

allel to the ones for computing POs, since the reduction to the center manifold could

be naturally extended to more than one eigenspace (see section B.4.1) [51, 50]. To

overcome their limitations for practical applications, they are coupled with numerical

techniques, where low-order analytical solutions are used as starting guesses. Follow-

ing the extension of Lyapunov center’s theorem (and the Moser’s generalization), the

numerical computation of 2D-QPOs starts from the identification of the POs with an

elliptic manifold, and then different methodologies could be exploited. These schemes

are based on the DC presented in section B.5.3.1, that will be combined with NC.

The first kind of numerical technique to compute 2-tori in NL dynamical systems

such as the CR3BP was used in [163]. The 2D-QPO is reduced to the discrete dynami-
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cal system, and the method is a two-levels DC of a trajectory limited on a defined time

span. Therefore this method does not provide any insights of the invariant curve, nor

identify the full 2-torus.

In the last two decades, the concepts of DST introduced in section B.6.2 have been

applied to fully identify a 2-torus, by the related invariance condition of Eq.B.79-B.80.

Different numerical schemes have been developed, but they are all based on a common

approach, which is the Fourier analysis.

Fourier analysis. Recall that, for a scalar and P -periodic function f(x) of the scalar

variable x, its Fourier approximation fF is a truncated series of harmonics

fF (x) =
N∑

n=−N
cne

i 2π
P
nx = a0

2 +
N∑
n=1

an cos
(

2π
P nx

)
+ bn sin

(
2π
P nx

)
= a0

2 +
N∑
n=1

An cos
(

2π
P nx− θn

)
(B.84)

where the Fourier coefficients (a0, an, bn in the real form, and cn in the complex form,

truncated at degree N) are retrieved by the discrete Fourier transform.{
an = 2

P

∫ x0+P
x0

f(x) cos
(

2π
P nx

)
dx = a−n

bn = 2
P

∫ x0+P
x0

f(x) sin
(

2π
P nx

)
dx = −b−n

↔

{
An = 2

√
a2
n + b2n

θn = atan2 (bn, an)

↔ cn =
1

P

∫ x0+P

x0

f(x)e−i
2π
P
nxdx =

1

2
(an − ibn)

(B.85)

B.6.3.1 Invariant Curve Description

The common approach of the numerical techniques for computing 2D-QPOs is the

approximation of the invariant curve by a truncated Fourier series CF , at degree NC ,

function of the chosen invariant curve’s parameter θ (generally of period P ),

CF (c, θ)− xPO =
a0

2
+

NC∑
n=1

an cos (nθ) + bn sin (nθ) =

= [ a0 {an bn }
NC
n=1 ]

[
1
2{

cos(nθ)
sin(nθ)

}NC
n=1

]
= Ce (θ) =

=


. . .

. . .

01x(2NC+1) e(θ)T 01x(2NC+1)

. . .
. . .




...[ a0{ an
bn

}NC
n=1

]
...

 = E (θ) c

(B.86)

where the Fourier coefficients a0, an, bn are included in the global vector of coefficients

c, and they are 2NC + 1 for each coordinate variable. In Eq.B.86 the real form of the

Fourier series’ coefficients is used, but the truncated approximation could be well used

also with the complex form [140]. However, the real form simplifies the algebra and

also avoids possible computational problems (related to the machine error) that would

arise when using complex numbers.
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Remember from section B.6.2 that the invariant curve could be defined in either a

stroboscopic or a Poincaré iso-energetic map. In the second case, appropriate for TI

systems, the coordinate variables of the curve needed to be considered are two less with

respect to the total state’s dimension. Thus, the components vM and vE , of index iM

and iE , are not included in the discrete approximation of Eq.B.86 for both CF and c,

due to the related constraints g(x) and gE(x) on the map (see Eq.B.66,B.67,B.69).

B.6.3.2 Invariant Curve’s Parameter

As discussed in section B.6.2, for the case of TV systems, the curve’s parameter is taken

as the constrained phase, due to the fact the its dynamics and the resultant rotation

number’s profile along the invariant curve is explicit [140]. Instead for any TI system,

the curve parametrization could be absolutely general. This selection could result

delicate for two reasons, and is one of the main difference among the range of numerical

techniques used in the literature to compute 2D-QPOs. The first reason is that, for

the numerical algorithm that will be discussed shortly, the curve parametrization must

be invertible. The second reason will be better considered in the proceedings of this

section, and it involves the convergence and burden of the DC scheme.

A first idea is to use as parameter of CF (c, θ) the same general transversal phase ϕ2

used till now to define the 2-torus in Eq.B.76, which is a general variable but without

any meaning, and also implicit, since the transversal frequency of the torus is natural

[52]. The problem is that without any explicit definition for ϕ2, there is no availability

of the required inverse law θ(x) : x = CF (c, θ), ∀x ∈ CF (c, θ). The inverse relationship

is required in the numerical algorithm that will be presented shortly to compute the

rotation number, whose profile ρ(ϕ2) is implicit. Thus, if this parametrization is chosen,

the rotation number’s profile must be considered as an additional unknown. This brings

to use another Fourier series ρF (c, ϕ2) to approximate it, enlarging the global vector

of coefficients c to include also the ones of these series [52].

Another simple approach is used in [120], which is to consider a physical meaning for

the curve’s parameter. This is taken as the polar coordinate ϑ between two coordinates

of the stroboscopic or iso-energetic Poincaré surface of section. Eq.B.87 provides the

trivial definition of ϑ, which constitutes the inverse parametrization of the invariant

curve. 
vC = [ vC1 vC2 ]→ iC = [ iC1 iC2 ]

ϑ (x) = atan2
(
{x− xPO}iC1

, {x− xPO}iC2

){
{x}iC1

= xPO + r (x) cosϑ

{x}iC2
= xPO + r (x) sinϑ

↔ ∀θ,∃!ϑ (C (θ)) (B.87)

The two parameter’s section’s coordinates are vC1 and vC2 , with indexes iC1 and iC2 ,

and the parameter’s section’s center is naturally taken as the PO’s invariant point on

the chosen map, since it is the backbone of the 2D-QPO. However, the choice of the
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section’s coordinates and center is not free, because they must ensure the invertibility of

the parametrization along the curve, which is C must be a function of ϑ. In particular,

this approach does not allow the computation of tori whose invariant curve is complex,

such as a concave invariant curve, or an invariant curve with intersections [120]. In

addition, the choice of the section’s coordinates is also related to the burden of the

algorithm. The projection of C onto the planes of the possible section’s coordinates

could be of any shape. Thus, the two coordinates for the polar parametrization must

ensure the projection onto the related plane to be the more circular as possible. This

allows the resulting function CF (c, ϑ), with respect to the chosen ϑ, to have the lowest

gradients as possible, and so less harmonics (lower NC , lower dimension of the unknown

c) are required to approximate the invariant curve with Eq.B.86. Unfortunately, this

is not known at the beginning, since C is unknown. However, the linear solution of

Eq.B.81 could help to give some indication for small-width tori.

In particular, with this curve parametrization, in Eq.B.87 we recognize that the two

section’s coordinates along the curve are defined by the polar coordinates r-ϑ. But

ϑ is the independent variable, so the two curve’s components are only function of

r. Therefore, the physical meaning of this parametrization allows to further decrease

of one component the dimension of the unknown curve, using a single Fourier series

for rF (ϑ) = {CF (c, ϑ)}r [120]. In summary, the approximation of Eq.B.86 could be

extended only to the relevant components [r,vX ]. vX consists of the remaining state’s

components after the exclusion of vC1 ,vC2 , and vM ,vE in case an iso-energetic Poincaré

map is considered. This is a net reduction of 1 or 3 components in the dimension of

the unknown c, which will be retrieved by postprocessing.

{
CF (c, ϑ)− xPO

}
[r,vX ]

=
a0

2
+

NC∑
n=1

an cos (nϑ) + bn sin (nϑ) =

=
[
{ a0 {an bn }

NC
n=1 }[r,vX ]

]{ 1
2{

cos(nϑ)
sin(nϑ)

}NC
n=1

}
[r,vX ]

 = Ce (ϑ) =

=




. . .
. . .

. . .
. . .

. . .
. . . 01x(2NC+1) e(ϑ)T 01x(2NC+1)

. . .

. . .
. . .

. . .
. . .

. . .


[r,vX ]


[{

a0{
an
bn

}NC
n=1

}
[r,vX ]

]
= E (ϑ) c

(B.88)

Finally, other options for the curve parametrization can be used. A possible interest-

ing choice is the universal parametrization of a curve, where the parameter is taken as

the normalized arclength. This would make possible to describe any invariant curve by

Fourier series, with the lowest number of Fourier coefficients, and also avoid to include

the Fourier series of the rotation number profile in the algorithm. This option was

suggested in [120] backreferencing a research work that did so in [174]. Unfortunately,

the latter is based on the computation of invariant curves on a 2D map with the same,
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now trivial, polar parametrization, and just at the conclusions the paper states that

“complex cases” would require the normalized arclength. The paper concludes stating

that despite the universality of the approach, the authors do not advise its use, due to

the complexity of the numerical resolution of the DC scheme. This parametrization is

now derived in this thesis, and the related DC scheme will be presented in the appro-

priate section. This scheme will be tested in chapter 4 for the computation of LPOs.

The parametrization of the Fourier series through the normalized arclength of the

invariant closed curve should be defined in the following way, where the arclength s is

normalized to l using the closed curve length LC .

{
CF (c, l)− xp.o.

}
vX

= E (l) c =




. . .
. . .

. . .
. . .

. . .
. . . 01x(2NC+1) e(l,1)T 01x(2NC+1)

. . .

. . .
. . .

. . .
. . .

. . .


vX

[{c}vX]

ds = 2

√∑
vX

d {CF (c, s)− xp.o.}2vX ⇒

{
LC =

∮
C ds

l =
∫ s
0 ds

LC

,

l ∈ Il = [0, 1] : CF (c, 0) = CF (c, 1)

(B.89)

Thus the curve’s parameter now ranges from 0 to 1, so the Fourier series approximation

of Eq.B.86 use P = 1, and this is made explicit from seek of clearness in Eq.B.89. Now

the invertible law must be derived, which is the definition of l(x) from a general point

x. The idea is to define the parameter l that provides the closest point to x on the

curve C(l). From this we can understand the true potentiality of this parametrization

because it measures the total distance of the error from a curve, and does not perform a

projection on a subspace like the section’s plane where the polar anomaly ϑ is defined.

Of course if the point lies on the curve, the distance point-curve is zero.

l (x) :
∥∥CF (c, l)− x

∥∥ = 0↔ x ∈ C (l) (B.90)

This hints at the use of the above distance curve-point to derive the invertible law, where

the curve is expressed with the Fourier series of Eq.B.89. This is done introducing the

function D, which is actually the half square of the distance, because the properties are

the same than using the distance, and this function will simplify the algebra. Therefore,

the problem is the minimization of the functional D, which is to find the zero of the

function FD, the derivative of D. Thus, the invertible law is not explicit, but requires

a Newton’s solver.
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∀x, D (l, c,x) = 1
2

∥∥CF (c, l)− x
∥∥2

= 1
2

∑
vX

(
e(l, 1)T {c}vX + {xp.o.}vX − {x}vX

)2

→ FD (l, c,x) = ∂D
∂l (l, c,x) =

∑
vX

(
e(l, 1)T {c}vX + {xp.o.}vX − {x}vX

)
e′(l, 1)T {c}vX

l (x) : D (l, c,x) = min
y∈[0,1]

{D (y, c,x)} ⇒

⇒



l (x) : FD (l, c,x) = e′(l, 1)T
((∑

vX

{c}vX
{
cT
}
vX

)
e (l, 1)−

∑
vX

{c}vX
(
{x}vX − {xp.o.}vX

))
= 0

δFD =
∂FD
∂l

(l, c,x) δl =
∂2D

∂l2
(l, c,x) δl =

=


e′′(l, 1)T

((∑
vX

{c}vX
{
cT
}
vX

)
e (l, 1)−

∑
vX

{c}vX
(
{x}vX − {xp.o.}vX

))
+

+ e′(l, 1)T
(∑

vX

{c}vX
{
cT
}
vX

)
e′ (l, 1)

 δl =

= FD
′ (l, c,x) δl

(B.91)

B.6.3.3 Computation of 2D-QPOs with Differential Corrector

After the definition of the invariant curve with a truncated Fourier series in section

B.6.3.1, and the selection of its parametrization in section B.6.3.2, in this section the

DC scheme to compute 2D-QPOs is presented.

B.6.3.3.1 Invariance Condition

The identification of a 2-torus has been reduced in section B.6.2 to the computation of

its invariant curve on a chosen map, defined by the invariance condition of Eq.B.79-B.80.

This is quite different from the case of a PO of section B.5.3.2, because the solution

is not a point but a continuous object. For this reason, the numerical techniques

for computing 2-tori are all based on the approximation of the invariant curve by

Fourier series, as discussed in section B.6.3.1, reducing the solution to a set of Fourier

coefficients c. These coefficients should be derived in order to satisfy the invariance

condition. Thus, the strategy is to discretize the invariant curve in NS sample points,

by a set of initial parameters θ0. In particular, this section considers as baseline the

case of the polar parametrization ϑ for the invariant curve showed in section B.6.3.2.

The algorithmic scheme is presented in Eq.B.92, for the general case of a Poincaré

or stroboscopic map P(·).
F (c) = P(·)(x0)− CF (c, ϑf ) = 0

x0 = CF (c, ϑ0)

ϑf = ϑ
(
P(·)(x0)

) , ∀ϑ0 ∈ [0, 2π) (B.92)

The procedure is the following [120].

• We have a set of initial conditions x0, evaluating the Fourier series at the initial

curve parameters.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

391 Zamaro Mattia



Methods of Dynamical Systems Theory

• For each of them, the image by the chosen map is computed. This constitutes

the set of final conditions of the map.

• As the parametrization law is invertible, we can find the set of parameters function

of the final conditions, which are going to be the final curve parameters ϑf . In the

case the implicit transversal phase ϕ2 is taken as curve’s parameter, the image of

the final curve parameter is retrieved from the approximated rotation number’s

profile: ϕ2,f = ϕ2,0 + ρF (c, ϕ2,0).

If the curve is invariant, the same Fourier series evaluated this time at the final curve

parameters must correspond to the final conditions. This represents the objective func-

tion F of the DC scheme, that will tune the set of Fourier coefficients until convergence.

This will be summarized in section B.6.3.3.6.

Regarding the initial parameters θ0, an uniform sampling is the common choice, de-

spite is not mandatory. An uniform spacing allows to control the description of the

curve just by the number of harmonics NC , whereas using a non-uniform spacing, with-

out knowing the properties of the solution, is risky because it can lower the efficacy of

the Fourier analysis.

To DC requires the derivative of the objective function. To calculate the derivatives

of the invariant curve’s condition, related matrices are derived, where P represents the

derivative of the chosen map,

P (tf ,x0) =
dP(·)

dx0
(tf , φf (tf ,x0))

→ Pr (t,x0) =
dr

dx0
(tf , φf (tf ,x0)) = [ cosϑf(tf ,x0) sinϑf(tf ,x0) ]

[
{P (t,x0)}iC ,:

]
d (ϑ) = de

dϑ (ϑ) =

[ 0{
−n sin(nϑ)
n cos(nϑ)

}NC
n=1

]

→ D (c, ϑ) = ∂CF

∂ϑ (c, ϑ) =




. . .
. . .

. . .
. . .

. . .
. . . 01x(2NC+1) d(ϑ)T 01x(2NC+1)

. . .

. . .
. . .

. . .
. . .

. . .


[r,vX ]

 c

T (x) = dϑ
dx (x)⇒ {T (ϑ)}iC =

[
− sinϑ(x)

r(x)
cosϑ(x)
r(x)

]
(B.93)

and assembled in related global matrices that consider all the sampling points.
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ϑ0 =
[
{ϑ0,s}NSs=1

]
⇒



X0 (c,ϑ0) =
[
{x0,s}NSs=1

]
=
[{
CF (c, ϑ0,s)

}NS
s=1

]
= CF (c,ϑ0) = {xp.o.}NSs=1 + EC (ϑ0) c

Xf (X0) =
[
{xf,s}NSs=1

]
=
[
{φf (tf (x0,s) ,x0,s)}NSs=1

]
ϑf (Xf ) =

[
{ϑ (xf,s)}NSs=1

]
∧ rf (Xf ) =

[
{r (xf,s)}NSs=1

]

⇒



EC (ϑ) = ∂CF

∂c (ϑ) =




...

E (ϑs)
...


NS

s=1


PC (X0) =

dXf

dX0
(X0) =




. . .
. . .

. . .
. . .

. . .
. . . 06 P(tf (x0,s),x0,s) 06

. . .

. . .
. . .

. . .
. . .

. . .


NS

s=1



PC
r (X0) =

drf
dX0

(X0) =




. . .
. . .

. . .
. . .

. . .
. . . 01x6 Pr(tf (x0,s),x0,s) 01x6

. . .

. . .
. . .

. . .
. . .

. . .


NS

s=1


DC (c,ϑ) = ∂CF

∂ϑ (c,ϑ) =




. . .
. . .

. . .
. . .

. . .
. . . 06x1 D(c,ϑs) 06x1

. . .
. . .

. . .
. . .

. . .
. . .


NS

s=1


TC (X) = dϑ

dX (X) =




. . .
. . .

. . .
. . .

. . .
. . . 01x6 T(ϑs) 01x6

. . .
. . .

. . .
. . .

. . .
. . .


NS

s=1


(B.94)

It is worth noting the presence of the matrices T, expressing the derivatives of the

curve’s parameter, in this case the polar anomaly. In the case the implicit transversal

phase ϕ2 is taken as the curve’s parameter, this will require the derivatives of the

approximated rotation number’s profile, as introduced previously, that will introduce

further matrices of partial derivatives. In the case of the universal parametrization of

Eq.B.89, the procedure requires to derive the derivatives of the solution of a Newton’s

method of Eq.B.91: they are expressed in Eq.B.95-B.96.
∂FD
∂x (l, c) = −

[{
e′(l, 1)T {c}vX

}
vX

]
= −(E′ (l) c)T = −

(
∂CF

∂l (l, c)
)T

∂FD
∂c (l, c,x) =

[{{
cT
}
vX

(
e′ (l, 1) e(l, 1)T + e (l, 1) e′(, 1l)T

)}
vX

]
−
[{

e′(l, 1)T {x}vX
}

vX

]
(B.95)

lf = l (φf (tf , 0,x0)) : FD (lf , c, φf (tf , 0,x0)) = 0

δFD = ∂FD
∂l (l, c,x) δl

δlf =−
(
∂FD
∂l

(lf , c, φf (tf , 0,x0))

)−1∂FD
∂x

(lf , c) δφf +

−
(
∂FD
∂l

(lf , c, φf (tf , 0,x0))

)−1∂FD
∂c

(l, c, φf (tf , 0,x0)) δc

(B.96)
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The related global matrices that consider all the sampling points of this DC scheme

are showed below, where Φl,Φx,Φc are the required matrices of partial derivatives in

place of only T.

l0 =
[
{l0,s}NSs=1

]
⇒ X0 (c, l0) =

[
{x0,s}NSs=1

]
=
[{
CF (c, l0,s)

}NS
s=1

]
= CF (c, l0)

⇒ Xf (X0)→ lf (Xf )

⇒ EC (l) ,PC (X0) ,DC (c, l)

Φl (l, c,X) = ∂FD
∂l (l, c,X) =




. . .
. . .

. . .
. . .

. . .
. . . 0

∂FD
∂l

(ls,c,xs) 0
. . .

. . .
. . .

. . .
. . .

. . .


NS

s=1



Φx (l, c) = ∂FD
∂x (l, c) =




. . .
. . .

. . .
. . .

. . .
. . . 0

∂FD
∂x

(ls,c) 0
. . .

. . .
. . .

. . .
. . .

. . .


NS

s=1


Φc (l, c,X) = ∂FD

∂c (l, c,X) =




...
∂FD
∂c

(ls,c,xs)

...


NS

s=1


(B.97)

Finally, recall that in the case of TV systems, the invariant curve’s parameter on the

stroboscopic map is set to be the constrained phase, which is appended in the state

vector with the trick presented in section B.1.2.4. Thus, in this case, the matrix T

is trivially a sparse matrix with a 1 in the component corresponding to the appended

variable in the state vector.

B.6.3.3.2 Initial Guess

The DC requires a first guess for the Fourier coefficients. To compute a small-width

2D-QPOs around a PO, the linearized invariant curve of Eq.B.81 could be used. It is

important to remark that Eq.B.81 is parameterized by the circle’s anomaly for the lin-

ear combination of the eigenvectors. Thus this is by far not the curve’s parameter that

one wants to use16, unless in the case of using the implicit transversal phase. Therefore,

the linear solution must be reparameterized before proceeding.

To not lose precision on the initial guess, the numerical reparametrization requires

one to evaluate Eq.B.81 with a higher sampling than the chosen NS (100 times). Then,

the respective values of the wanted parameters are derived: they would not come out

sorted from θm to θM , so they must be rearranged. Now that the sampling is defined

with respect to the correct parameter, it is non-uniform though: an interpolation must

be performed (this is why the oversampling was required) to obtain the NS initial con-

ditions with respect to the correct parametrization.

The linear solution is fed to the DC through its Fourier coefficients. The uniform

sampling of the initial guess is needed to use the discrete Fourier transform of Eq.B.85.

16This is a misleading error in [120].
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It must be underlined that this is the only occasion when a Fourier transform is per-

formed in all the DC scheme: afterwards, the algorithm requires only the Fourier series

evaluations of Eq.B.84. Of course, Eq.B.85 is implemented with classical FFT algo-

rithm, which provides the complex form of the Fourier coefficients up to the NS/2

harmonic17. Real form is then derived with Eq.B.85, and coefficients up to the NC

harmonic are taken as the initial guess of the DC scheme.

B.6.3.3.3 Indeterminancies of the Torus

An invariant solution, which is a n-torus, is described by n phases, thus it implicitly

has N indeterminancies [52].

Using a Poincaré map to reduce the invariant curve locks the initial condition of the

longitudinal phase. If a stroboscopic map is used, an additional constraint is needed

in the DC scheme, which is to lock one curve’s component to have its 0-frequency

Fourier coefficient null [52]. This means we are mocking a Poincaré condition on only

the related mean value.

For the constraint on the initial condition of any transversal phase (considering as

usual the single case of a 2D-QPO), the procedure is more complicated. Using the polar

parametrization of the invariant curve naturally locks ϑ0, because that is defined by

the chosen axis of vC1 . For the other parameterizations, a mere mathematical choice is

to find the component of the initial guessed curve, whose couple of 1-frequency Fourier

coefficients has the maximum norm. Following this, one should impose to be null the

coefficient of this couple with the smallest absolute value [52].

B.6.3.3.4 Sizing Parameter of the Invariant Curve

In section B.5.1.1 and in Eq.B.81 it is shown that if a PO constitutes the backbone of a

2D-QPO, the related invariant curve is embedded in a continuous 1-parameter families

of growing size from the invariant point of the PO. This is a very common situation,

excluded only by the majority of dynamical systems forced by non-periodic actions,

where the QPOs are isolated (they are called limit tori).

If an invariant curve is not isolated, an additional constraint is needed for the DC

scheme, to compute a single 2D-QPO within the family. As mentioned above, the

natural choice for the parameter of a family of QPOs is the size of the invariant curve.

A simple idea to express this size would be to use an upper value of the curve along

one coordinate, but this is not straightforward to implement analytically in the DC’s

derivative. A better choice is the area of the invariant curve projected onto a coordinate

plane. This is coherent with the polar anomaly parametrization, and should be used in

that case [120]. In particular, this is straightforward in Fourier analysis, because the

area of any closed curve in polar coordinates is a function of the radius, whose Fourier

coefficients constitute the set of variables of the DC scheme. The area A of any closed

curve in polar coordinates is the following.

17It should be recognized that this is the condition of the Nyquist-Shannon sampling theorem.
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AC =

∮
C
dxiC1dxiC2 =

1

2

∫ 2π

0
r(ϑ)2dϑ (B.98)

Recalling the discrete version of the Parseval’s theorem for two functions developed in

Fourier series,

1

P

∫ P

0
f(x)g(x)∗dx =

N∑
n=−N

cf,nc
∗
g,n

=
1

4
(af,0ag,0) +

1

2

N∑
n=1

(af,nag,n + bf,nbg,n) + i (af,nbg,n − bf,nag,n)

(B.99)

for the particular case of the square of a function developed in Fourier series Eq.B.99

becomes the Parseval’s identity.

1

P

∫ P

0
f(x)2dx =

N∑
n=−N

|cf,n|2 =
1

4
a2
f,0 +

1

2

N∑
n=1

(
a2
f,n + b2f,n

)
=

1

4
A2
f,0 +

1

2

N∑
n=1

A2
f,n

(B.100)

Therefore, applying Eq.B.100, Eq.B.98 becomes a convenient function of the Fourier

coefficients of the radius of the closed curve.

AC (c) =
π

2

(
1

2
a2

0 +

NC∑
n=1

(
a2
n + b2n

))
r

=
π

2

[{ 1
2
a0{

an
bn

}NC
n=1

}
r

]T [{
a0{

an
bn

}NC
n=1

}
r

]
= A (c) c

{A (c)}r =
π

2

[{ 1
2
a0{

an
bn

}NC
n=1

}
r

]T
⇒ wC (c) = 2

√
AC (c)

(B.101)

To maintain the same units of the state x, in Eq.B.101 the square root of the approxi-

mated area is defined as the width w of the invariant curve, to represent the parameter

of the family of 2D-QPOs. Therefore, the constraint to be added in the objective func-

tion of the DC scheme is trivially to fix a target value for the width. This is presented

in Eq.B.102, together with the derivative of this constraint.{
wC (c)− wTC = 0

W (c) = dwC
dc (c) = 1

2
1
wC

dAC
dc (c) = 1

2
1
wC

A (c)⇒ {W (c)}r = 1
2

1
wC
{A (c)}r

(B.102)

For the case of the universal parametrization of Eq.B.89, the natural choice is to use

as sizing parameter of the family of 2D-QPOs the total arclength L of the invariant

curve. This is computed by finite differences over the current sampling. Eq.B.103-B.104

present its definition and its derivatives with forward finite differences, Eq.B.105-B.106

with central finite differences.
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LC (X0 (c, l0)) =
NS−1∑
s=1

∆Ls (X0 (c, l0)) + ∆LNS (X0 (c, l0))

∆Ls (X0 (c, l0)) = 2

√∑
vX

∆s2
vX ,s

(X0 (c, l0)) = 2

√∑
vX

{x0,s+1 (c)− x0,s (c)}2vX

∆LNS (c, l0) = 2

√∑
vX

∆s2
vX ,NS

(X0 (c, l0)) = 2

√∑
vX

{x0,1 (c)− x0,NS (c)}2vX
(B.103)

LC (X0 (c, l0))− LTC = 0

S (X0) = dLC
dX (X0 (c, l0)) =

[
{ss (X0 (c, l0))}NSs=1

]
⇒ ss (X0 (c, l0)) =

[
{ξvX ,s (X0 (c, l0))}vX

]
⇒ ξvX ,s (X0 (c, l0)) =

∆svX,s−1(X0(c,l0))

∆Ls−1(X0(c,l0)) −
∆svX,s(X0(c,l0))

∆Ls(X0(c,l0))

ξvX ,1 (X0 (c, l0)) =
∆svX,NS (X0(c,l0))

∆LNS (X0(c,l0)) −
∆svX,1(X0(c,l0))

∆L1(X0(c,l0))

(B.104)

LC (X0 (c, l0)) = ∆L1 (X0 (c, l0)) +
NS−1∑
s=2

∆Ls (X0 (c, l0)) + ∆LNS (X0 (c, l0))

∆Ls (X0 (c, l0)) = 2

√∑
vX

∆s2
vX ,s

(X0 (c, l0)) = 2

√∑
vX

{
x0,s+1(c)−x0,s−1(c)

2

}2

vX

∆L1 (X0 (c, l0)) = 2

√∑
vX

∆s2
vX ,1

(X0 (c, l0)) = 2

√∑
vX

{
x0,2(c)−x0,NS

(c)

2

}2

vX

∆LNS (X0 (c, l0)) = 2

√∑
vX

∆s2
vX ,NS

(X0 (c, l0)) = 2

√∑
vX

{
x0,1(c)−x0,NS−1(c)

2

}2

vX

(B.105)

LC (X0 (c, l0))− LTC = 0

S (X0) = dLC
dX (X0 (c, l0)) =

[
{ss (X0 (c, l0))}NSs=1

]
⇒ ss (X0 (c, l0)) =

[
{ξvX ,s (X0 (c, l0))}vX

]
ξvX ,s (X0 (c, l0)) =

∆svX,s−1(X0(c,l0))

2∆Ls−1(X0(c,l0)) −
∆svX,s+1(X0(c,l0))

2∆Ls+1(X0(c,l0))

ξvX ,1 (X0 (c, l0)) =
∆svX,NS (X0(c,l0))

2∆LNS (X0(c,l0)) −
∆svX,2(X0(c,l0))

2∆L2(X0(c,l0))

ξvX ,NS (X0 (c, l0)) =
∆svX,NS−1(X0(c,l0))

2∆LNS−1(X0(c,l0)) −
∆svX,1(X0(c,l0))

2∆L1(X0(c,l0))

(B.106)

Finally, in the case the implicit transversal phase ϕ2 is taken as the curve’s parameter,

no natural choices arise for the selection of the sizing parameter. However, in section

B.6.2 it was noted that for a general NL dynamical system, the rotation number is not

fixed along the invariant curve, and its profile is not maintained along the family, so the

mean rotation number along the invariant curve can be taken as the curve’s parameter

in this case [52].

B.6.3.3.5 Note on Iso-energetic Poincaré Map

In case of an iso-energetic Poincaré map, the iso-energetic constraint gE(x) = cPO

can be taken out from the map, whose derivative returns the one of Eq.B.68, and the

Fourier coefficients must be derived for an additional state’s component. In this case,

as done in [120], the iso-energetic constraint should be added in the objective function

of the DC scheme. The related partial derivatives and global matrices are derived for

the inclusion in the Jacobian.
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c (x0 (c, ϑ0))− cPO = 0⇒ C (X) =
[
{c (xs)}NSs=1

]
g (x) = dc

dx (x) =
[

2{f(x)T}[ ẋ ẏ ż ]
−2[ ẋ ẏ ż ]

]
⇒ G (X) = dC

dX (X) =




. . .
. . .

. . .
. . .

. . .
. . . 01x6 g(xs) 01x6

. . .
. . .

. . .
. . .

. . .
. . .


NS

s=1


(B.107)

B.6.3.3.6 Differential Corrector Scheme

Following the concepts introduced throughout section B.6.3, the DC for the compu-

tation of 2D-QPOs could be synthesized in a NS-multiple shooting scheme, whose

objective function and Jacobian are expressed in Eq.B.108.



F
(
c, wTC ,ϑ0

)
=

[ [
{Xf (X0(c,ϑ0))}[ r x\[ vM vC ] ]

]
−
[
{CF (c,ϑf(Xf (X0(c,ϑ0))))}[ r x\[ vM vC ] ]

]
wC(c)−wTC

]

=

[ [
{0}NS

s=1,[ r x\[ vM vC ] ]

]
0

]
δF
(
c, wTC ,ϑ0

)
=

=


dXf

dX0
(X0 (c,ϑ0))

∂CF

∂c
(ϑ0)− ∂CF

∂c
(ϑf (Xf (X0 (c,ϑ0)))) +

− ∂CF

∂ϑ
(c,ϑf (Xf (X0 (c,ϑ0))))

dϑ

dX
(Xf (X0 (c,ϑ0)))

dXf

dX0
(X0 (c,ϑ0))

∂CF

∂c
(ϑ0)

[
{0}NSs=1

]

dwC
dc

(c) −1


[
δc
δwTC

]
=

=


{
PC (X0)

}
[ r x\[ vM vC ] ],x\[ vM ]

{
EC (ϑ0)

}
x\[ vM ],:

−
{
EC (ϑf )

}
[ r x\[ vM vC ] ],:

+

−
{
DC (c,ϑf )

}
[ r x\[ vM vC ] ],:

{
TC (Xf )

}
:,x\vM

{
PC (X0)

}
x\vM ,x\[ vM ]

{
EC (ϑ0)

}
x\[ vM ],:

[
{0}NSs=1

]
W(c) −1

[ δc
δwTC

]
=

= F ′
(
c, wTC ,ϑ0

) [ δc
δwTC

]
(B.108)

Furthermore, the scheme is a LMS fitting, that drives the image of the curve to coincide

with the initial curve, by fine tuning its Fourier coefficients, and evaluating the error at

sample locations. For this reason, the number of samples MUST be greater than the

number of Fourier coefficients for each component18. Therefore, just like a polynomial

regression, the linear system of Eq.B.108 is overdetermined and is solved with the left

pseudo-inverse of the Jacobian matrix, that minimizes the norm of the residual.{
Ax = b+ r,A ∈ RN×M , N > M

min
x

{
1
2r
T r
} ⇒ x =

(
ATA

)−1
AT b = ALPSIb (B.109)

Regarding the tolerances of the Newton’s method, with respect to the values used for

the DC of the POs, they should be increased to account for the global multiple shooting

dimension, therefore they are scaled by a factor 2
√
NS .

Note that in the presence of highly NL systems, which is the case of QPOs with a

high Floquet multiplier, as well as to increase the reliability of the initial conditions for

practical applications, the convergence of the multiple shooting scheme could be com-

promised. In this cases, one full revolution of the longitudinal phase is too long. The

18This paramount information is not given, as well as the definition of a LMS implementation, in
[120].
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solution implemented in [120] is to take multiple sections and related intermaps along

the longitudinal motion, and so compute in the same DC scheme multiple invariant

curves.

Eq.B.108 shows the DC scheme for the baseline case of the polar anomaly parametriza-

tion. In the case the implicit transversal phase ϕ2 is taken as the curve’s parameter, the

appropriate changes on the derivatives of the rotation number’s profile, the increased

Fourier coefficients required for its approximation, and the appropriate sizing parame-

ter must be considered. For the case of the universal parametrization of Eq.B.89, the

related DC scheme is shown in Eq.B.110.



F
(
c, LTC , l0

)
=

[ [
{Xf (X0(c,l0))}[ r x\[ vM vC ] ]

]
−
[
{CF (c,lf(Xf (X0(c,l0))))}[ r x\[ vM vC ] ]

]
LC(X0(c,l0))−LTC

]
=

[ [
{0}NS

s=1,[ r x\[ vM vC ] ]

]
0

]
δF
(
c, LTC , l0

)
=

=



dXf

dX0
(X0 (c, l0))

∂CF

∂c
(l0)− ∂CF

∂c
(lf (Xf (X0 (c, l0)))) +

− ∂CF

∂l
(c, lf (Xf (X0 (c, l0))))

(
∂FD

∂l
(lf (Xf (X0 (c, l0))) , c,Xf (X0 (c, l0)))

)−1

·

· ∂FD

∂X
(lf (Xf (X0 (c, l0))) , c)

dXf

dX0
(X0 (c, l0))

∂CF

∂c
(l0) +

− ∂CF

∂l
(c, lf (Xf (X0 (c, l0))))

(
∂FD

∂l
(lf (Xf (X0 (c, l0))) , c,Xf (X0 (c, l0)))

)−1

·

· ∂FD

∂c
(lf (Xf (X0 (c, l0))) , c,Xf (X0 (c, l0)))

[
{0}NSs=1

]

dLC
dX

(X0(c,l0)) ∂C
F

∂c
(l0) −1



[
δc
δLTC

]
=

=



{
PC (X0)

}
[ r x\[ vM vC ] ],x\[ vM ]

{
EC (l0)

}
x\[ vM ],:

−
{
EC (lf )

}
[ r x\[ vM vC ] ],:

+

−
{
DC (c, lf )

}
[ r x\[ vM vC ] ],:

Φl(lf , c,Xf )−1{Φx (lf , c,)}:,x\vM ·

·
{
PC (X0)

}
x\vM ,x\[ vM ]

{
EC (l0)

}
x\[ vM ],:

+

−
{
DC (c, lf )

}
[ r x\[ vM vC ] ],:

Φl(lf , c,Xf )−1Φc (lf , c,Xf )

[
{0}NSs=1

]

{S(c)}x\vM {EC(l0)}
x\vM ,:

−1


[
δc
δLTC

]
=

= F ′
(
c, LTC , l0

) [ δc
δLTC

]
(B.110)

Recalling that any references are available in the literature for this universal scheme,

the analytical part seems correct, but the DC is not convergent. Analysis shows that

this happens because the Jacobian becomes singular at the root. Eq.B.111 shows that

the images of the initial conditions are a solution of the Fourier series at the return

parameters. With this equivalence the partial derivatives simplify, and in particular

∂FD/∂φf becomes opposite to the local tangent of the curve. This produces a cascade

of simplifications in the DC matrix which becomes an orthogonal projector with respect

to the curve, and orthogonal projectors are singular matrices.
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φf (tf , 0,x0) = CF (c, lf )

⇒



D (lf , c, φf (tf , 0,x0)) = 0

FD (lf , c, φf (tf , 0,x0)) = 0

∂FD
∂l (lf , c, φf (tf , 0,x0)) =

∑
vX

(
e′(l, 1)T {c}vX

)2
=
∥∥∥∂CF∂l (c, lf )

∥∥∥2

∂FD
∂x (lf , c) = −

(
∂CF

∂l (c, lf )
)T

∂FD
∂c (lf , c, φf (tf , 0,x0)) =

[{
e(lf , 1)Te′(lf , 1)T {c}vX

}
vX

]
=
(
∂CF

∂l (c, lf )
)T

E (lf )

⇒


∂CF

∂l (c, lf )
(
−∂FD

∂l (lf , c, φf (tf ,x0))
)−1

∂FD
∂x (lf , c) = P

// ∂C
F

∂l (c,lf)
∂CF

∂l (c, lf )
(
−∂FD

∂l (lf , c, φf (tf ,x0))
)−1

∂FD
∂c (lf , c, φf (tf ,x0)) = −P

// ∂C
F

∂l (c,lf)
E (lf )

⇒ dF (c)
dc = dφf

dx0
(tf ,x0) ∂C

F

∂c (l0)− ∂CF

∂c (lf ) +

−∂CF

∂l (c, lf )
(
−∂FD

∂l (lf , c, φf (tf ,x0))
)−1

∂FD
∂x (lf , c) dφfdx0

(tf ,x0) ∂C
F

∂c (c, lf ) +

−∂CF

∂l (c, lf )
(
−∂FD

∂l (lf , c, φf (tf ,x0))
)−1

∂FD
∂c (lf , c, φf (tf ,x0)) =

=

(
I−P

// ∂C
F

∂l (c,lf)

)(
dφf
dx0

(tf ,x0) ∂C
F

∂c (l0)− ∂CF

∂c (lf )
)

= P⊥ ∂CF
∂l (c,lf)

(Φf (tf ,x0) E (l0)−E (lf ))

(B.111)

There are some numerical treatments for this situation. They consist in either erasing

the smallest singular values [139], or using the Levenberg-Marquardt algorithm. These

choices fully work, but they penalize the DC scheme’s solution when embedded in a

NC, as will be discussed in section B.6.3.3.7. Therefore no solution has been found to

this problem.

B.6.3.3.7 Computation of Families of 2D-QPOs with Numerical Continu-

ation

In conclusion, as discussed in section B.6.3.3.4, in the usual case that the invariant

curves are organized in a continuous 1-parameter family on the chosen map, the sizing

parameter has been introduced to lock the computation of the DC scheme of Eq.B.108

to one small-width invariant curve around the backbone PO, assuming that the initial

guess was taken as the linearized solution. Once such small-width 2D-QPO is com-

puted, the Fourier coefficients of its invariant curve provide the starting point of a NC.

The technique iterates the DC scheme to compute the family of invariant curves on the

chosen map [52]. The continuation parameter σ is chosen as the target value of the

possible sizing parameters of the family mentioned in section B.6.3.3.4. The objective

function of the NC is already the one of the DC scheme of Eq.B.108, with the continu-

ation’s constraint acting on the last component of F (c, σ,ϑ0). Again, the continuation

is solved in the LMS sense.

The NC is integrated until the 2D-QPO of interest, for example the one of a par-

ticular size. Note that out of the neighborhood of the PO, the NC of large-amplitude

invariant curves usually encounters nonlinear effects, such as turning points and bifur-

cations of the continuation curve. In particular, the NC when a Poincaré map is used

for the reduction of the QPO, in highly NL systems eventually produces large bendings
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and twists in the torus’ surface, and the Poincaré section becomes parallel to the flow

in some points of the invariant curve. This would make the NC to fail: the remedy

used in [52] is to have variable Poincaré maps during the NC. In addition, the initial

choice of the curve’s parameter shows its practical weaknesses in highly NL systems.

Simple methods like the polar anomaly parametrization certainly fail in such condi-

tions, because large invariant curves would locally shrink, give birth to concavities, and

most importantly not be centered any longer on the PO. If such large-width tori are

required, more robust parameterizations and algorithms must be used: unfortunately

not the universal parametrization, but definitely the methodology with the implicit

transversal phase and the inclusion of the rotation number’s profile in the solution. A

general paper regarding the continuation of invariant tori is [175].

B.6.4 Simulation

Once the Fourier coefficients are computed with the methodology of section B.6.3, and

the related invariant curve is retrieved, it is possible to simulate the 2D-QPO. This is

done with the approach of DST of section B.6.2, where the torus’ flow is reduced to

a discrete dynamical system, by numerically integrating through iterative mappings.

The invariant curve is treated as a set of initial conditions on the chosen map. But

for unstable QPOs the machine error does not allow simulations of a single initial

condition for an extended time span. However, the convergence of the DC guarantees

that the first-return flow of these points lies on the same curve, within the tolerance

error’s threshold. Thus, the initial conditions within the discrete dynamical system

are retrieved interpolating the intermediate initial condition along the invariant curve,

using the inverse law of the curve parametrization.

Since the orbit is a QPO, we will fill the invariant curve following the discrete steps

of the rotation’s number profile, which now can be plotted along time. Thus, the image

will never come back to the first initial condition, unless in the case of resonances with

high-denominator from Eq.B.21, condition that actually is easily encountered.

Therefore, the simulation of the 2D-QPO produces a bounded trajectory, with the

final time span of user’s free-choice. A physical and graphical request could be to arrive

at the period of the first transversal revolution of the invariant curve, in order to fill the

surface of a 2-torus (however this is graphically affected when the rotation number is

large, as well as at the occurrence of a resonance). This time is not explicitly available

and is computed within the simulation of the QPO, plotting the rotation number’s

profile along time. This is an important information as it could be used as parameter

of the family of QPOs as mentioned in section B.6.3.3.4. In conclusion the 2D-QPO

is represented as a surface of motion, and this graphical torus could be parameterized

by multiple transversal or longitudinal invariant curves along the backbone PO. They

can be located at stroboscopic subintervals or Poincaré subsections. In particular, an

interesting section’s constraint for such objective is the perpendicularity of the backbone
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PO’s flow: g(x) = q̇TPO (q− qPO)).

B.6.5 Linearized Behavior and Stability Analysis

As a difference from the definition of a PO in DST, the reduction of a 2D-QPO to

a discrete dynamical system does not provide any global stability information of the

invariant object. In particular the numerical computation does not provide a linearized

description of the manifold associated to the whole torus. This because the invariance

condition is formulated in the state-space, while the invariant curve is described by

Fourier coefficients. This means that the linearized behavior and the related mani-

folds must be decomposed along the sampled longitudinal revolutions of the 2D-QPOs,

considering the STM along each of these subintervals [116], since there is not a single

monodromy matrix like for the PO.

An idea to have more global insight of the linearized behavior around a 2-torus is to

implement a numerical method for the determination of the invariant curve in a way

that resembles the invariance condition of POs, and so reducing the 2D-QPO to a single

map, not a discrete dynamical system. This is similar to [176, 177, 140], where the ro-

tation number’s profile is used: however in this thesis a different approach is used, that

does not make use of this requirement. The idea lies in the fact that the continuous

invariant curve is approximated with a truncated Fourier series expansion. One should

now think to the starting curve as globally defined by this set of coefficients, not by

a set of sampled points. The global image of the curve is another curve: this second

curve could be defined as well by another set of Fourier coefficients cf . Thus this is a

map from a set of Fourier coefficients to another, at the same truncated degree.

P(·),θ (c0) = cf ∈ Rn(2NC+1) : CF
(
cf , θ

(
P(·)

(
CF (c0, θs)

)))
= P(·)

(
CF (c0, θs)

)
,

∀θs ∈ [θm, θM ) ,
[
{θs}NSs=1

]
= θ

(B.112)

If the curve is invariant under the chosen map P(·), the initial Fourier coefficients c0

are a fixed point of the map. P(·),θ.

P(·)
(
CF (c, θ)

)
= CF (c, θ) , ∀θ ⇔

{
P(·),θ (c) = c

Π = D
DcP(·),θ (c)

(B.113)

Thus the map of Eq.B.112 must be implemented. The first part of the algorithm is

exactly the same of the methods of section B.6.3, which is to perform multiple shooting

of the sampling of initial conditions along the starting curve CF (c0, θ), and derive the

related set of final conditions. But now the set of final conditions is used to compute

the Fourier coefficients of the final curve CF (cf , θ). This requires to use the discrete

Fourier transform.
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{
P(·),θ (c)

}
vX ,n

=

=

 2
P

∫ θ(P(·)(CF (c,θM )))
θ(P(·)(CF (c,θm)))

{
P(·)

(
CF (c, θ)

)}
vX

(θf ) cos
(

2π
P nθf

)
dθf

2
P

∫ θ(P(·)(CF (c,θM )))
θ(P(·)(CF (c,θm)))

{
P(·)

(
CF (c, θ)

)}
vX

(θf ) sin
(

2π
P nθf

)
dθf

 (B.114)

Unfortunately FFT requires an uniform sampling of the data (the flows) over the in-

dependent variable (the return parameters). Despite the initial set of parameters is

uniform because that is the independent variable, the set of the return parameters is

not uniform any longer because the rotation number’s profile is not flat for a NL system.

Therefore it is not possible to exploit the orthogonality conditions of cosine and sine to

solve numerically the above integrals with an appropriate quadrature sum. In case of

non-uniform sampling, discrete Fourier transform is solved in the LMS sense. This is

shown in the following equation, for a general vector of NS sampled data x19 described

by truncated Fourier series collected in the vector e, with parameter ϑ of period P .

x (θ) = e(θ, P )T c⇒


θ =

[
{θs}NSs=1

]
x =

[
{x (θs)}NSs=1

]
M (θ) =

[{
e(θs, P )T

}NS
s=1

] ⇒

⇒

 x = M (θ) c

c =
(
M(θ)TM (θ)

)−1
M(θ)Tx = V (θ) x =

[
{v (θs)}NSs=1

]
x

(B.115)

The multiplication by the left pseudo-inverse matrix V of M is analytically written

down in its components, to define the mapping of Eq.B.112. This is reported in

Eq.B.116, assembling a global matrix for each state’s component (M is the same for

every state’s component).

19Attention: this is a vector of NS samples of one state’s component, not the state vector for one
sample.
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[{
φf

(
tf (θ0,s) , C

F (c, θ0,s)
)
− xp.o.

}NS
s=1,vX

]
= EC

({
θ
(
φf

(
tf (θ0,s) , C

F (c, θ0,s)
))}NS

s=1

)
c→

→
[{
φf

(
tf (θ0,s) , C

F (c, θ0,s)
)
− xp.o.

}NS
s=1,vX

]
= M

({
θ
(
φf

(
tf (θ0,s) , C

F (c, θ0,s)
))}NS

s=1

)
{c}vX

P(·),θ0
(c) =




···



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0(2NC+1)x1 v(θ(φf(tf (θ0,s),CF (c,θ0,s)))) 0(2NC+1)x1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


vX

...



NS

s=1


·

·
[{
φf

(
tf (θ0,s) , C

F (c, θ0,s)
)
− xp.o.

}NS
s=1,vX

]
=

= VC (θf (Xf (X0 (c,θ0)))) Xf (X0 (c,θ0))

(B.116)

The DC scheme in Eq.B.117 is very simple, just like the case of a PO. In particular the

Jacobian includes a square monodromy-like matrix Π that acts in the Fourier coefficients

space.{
F (c,θ0) = P(·),θ0

(c)− c = 0

δF (c,θ0) =
[
D
DcP(·),θ0

(c)− I6(2NC+1)

]
δc =

[
Π− I6(2NC+1)

]
δc = ∂F

∂c (c,θ0) δc

(B.117)

The DC scheme is simple but the complexity has been transferred to the implementation

of the map itself, because the same LMS fitting is embedded inside it. Indeed the burden

is due to the computation of the monodromy matrix, which will require the derivative

of a large-scale left pseudo-inverse matrix V.

Π =


∂P(·),θ0

∂φf

(
θ
(
φf

(
tf (θ0) , CF (c,θ0)

)))
+

+
∂P(·),θ0

∂θ

(
θ
(
φf

(
tf (θ0) , CF (c,θ0)

))
, φf

(
tf (θ0) , CF (c,θ0)

)) dθ
dx

(
φf

(
tf (θ0) , CF (c,θ0)

))
 ·

· dφfdx0

(
tf (θ0) , CF (c,θ0)

)
∂CF

∂c (θ0) =

=


∂P(·),θ0

∂Xf
(θf (Xf (X0 (c,θ0)))) +

+
∂P(·),θ0

∂θ
(θf (Xf (X0 (c,θ0))) ,Xf (X0 (c,θ0)))

dθ

dX
(Xf (X0 (c,θ0)))

 dXf

dX0
(X0 (c,θ0)) ∂C

F

∂c (θ0)

(B.118)

The definition of V contains the inverse of a ATA matrix inside, where A is the rectan-

gular M. We will need its derivative with respect to a parameter, as it is A(x). First

one derives the general rule for the derivative of the inverse of a matrix (where the

scalar case is proofed).

A(x)A−1(x) = I→ A−1(x)′ = −A−1(x)A(x)′A−1(x) (B.119)
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Now we can exploit it in the chain rule for the case ATA.

d
dx

((
A(x)TA(x)

)−1
A(x)T

)
= d

dx

((
A(x)TA(x)

)−1
)

A(x)T +
(
A(x)TA(x)

)−1
dA(x)T

dx =

= −
(
A(x)TA(x)

)−1 (
d
dx

(
A(x)TA(x)

))(
A(x)TA(x)

)−1
A(x)T +

(
A(x)TA(x)

)−1
dA(x)T

dx =

= −
(
A(x)TA(x)

)−1
dA(x)T

dx A(x)
(
A(x)TA(x)

)−1
A(x)T+

−
(
A(x)TA(x)

)−1
A(x)T dA(x)

dx

(
A(x)TA(x)

)−1
A(x)T +

(
A(x)TA(x)

)−1
dA(x)T

dx

(B.120)

The derivatives required in Eq.B.118 are the following: the first is immediate, the

second requires an algorithm to be performed for every coordinate variable. They both

require the complete left pseudo-inverse V, and so this approach requires to invert a

large-scale matrix MTM with dimension (2NC + 1)× (2NC + 1).

∂P(·),θ0
∂Xf

(θf ) = VC (θf )

∂P(·),θ0
∂θ (θf ,Xf ) = WC (θf ,Xf ) =

∂(VC(θ)Xf)
∂θ (θf ) =




...{
··· ys

(
θf ,{Xf}vX

)
···
}NS
s=1

...


vX


(B.121)

ys

(
θf , {Xf}vX

)
= ∂V(θ)

∂θs
(θf ) {Xf}vX

{M′ (θ)}s : {{M′ (θ)}s}s,: = e′(θs, P )T

K (θ) = M(θ)TM (θ)
∂V(θ)
∂θs

(θ) = −K−1 (θ)
((
{M′ (θ)}s

TM (θ) + M(θ)T {M′ (θ)}s
)

K−1 (θ) M(θ)T − {M′ (θ)}s
T
)

(B.122)

In conclusion the monodromy matrix is the following.

Π = VC (θf ) PC (X0) EC (θ0) + WC (θf ,Xf ) TC (Xf ) PC (X0) EC (θ0) (B.123)

This numerical method to compute an invariant curve requires far more computa-

tional time than the ones of section B.6.3, due to the aforementioned computation of

the full inverse of a large-scale matrix (which is the solution of 2NC + 1 different lin-

ear systems). However it provides as byproduct a monodromy matrix for the stability

analysis of the invariant curve, avoiding so an approximation of the manifolds from a

decomposition in several STMs.

The square monodromy matrix has dimension proportional to the number of Fourier

coefficients. This is a result of the truncation, and provides a large number of eigenfunc-

tions, as a difference from the physical state-space in the case of a continuous dynamical

system.

Π ∈ R(NX(2NC+1))×(NX(2NC+1)) ⇒
{

(λΠ, v̂Π,λ)i
}NX(2NC+1)

i=1
, λΠ ∈ C, v̂Π,λ ∈ CNX(2NC+1)

(B.124)

For a map, the eigenvalues for an invariant curve are organized in circles on the complex

plane [176, 177]. Since they are related to a map, the Floquet linear stability is given

by their magnitude. The number of circles corresponds to the physical manifolds, thus
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is equal to the state’s dimension. The multiplication of the same information to a large

number of values is an outcome of using the Fourier series. In reality, the eigenset is

made by continuous complex circle entities, like the invariant curve is a single continu-

ous entity in the state’s components. Thus, the multiplication of the same information

is actually a downsizing due to the discretization. In particular, if the truncation of the

series if poor, there could be additional low-density filled circles, so a number of circles

higher than expected. This is of course a poor implementation, similar to the aliasing

effect described by the Nyquist-Shannon sampling theorem’s condition, that folds back

the missed harmonics on the discrete spectrum.

However, the organization in circles is usually not perfect. This result is called the

problem of the spurious eigenvalues, and it is due only to computational problems, as

explained in [178, 176, 177]. Large-scale matrices, when solved with the power method

algorithms, produce inaccuracies. This has a major impact in the selection of which,

amongst the multiple eigenvectors, one should use to represent the single information

of each physical manifold.

In summary, the answer is to choose as representative eigenvector the more accurate

computed from the power method. As explained in [176], some special norms are used

to evaluate the inaccuracy of the multiple eigenvectors. In particular, the concept is to

penalize the eigenmodes with high frequencies.

The suggested norm-(p) of a vector, characterized by an indexing map k of its compo-

nents, is expressed in Eq.B.125, where the indexing map is the frequency of the Fourier

series expansion which sorts the components of the Fourier coefficients space.

v =
[
{vi}Ni=1

]
∈ CN , k(i) ∈ Z, p ∈ N→ ‖v‖(p) =

N∑
i=1

|vi| |k(i)|p (B.125)

c =

[{
a0{

an
bn

}NC
n=1

}
[r,vX ]

]
=
[
{{cvX ,n}}

NC
n=0,vX

]
→ k(cvX ,n) = n (B.126)

Also another norm-(HF) could be used, but this is more exploited as a fast post-

processing index of the inaccuracy error.

v =
[
{vi}Ni=1

]
∈ CN , k(i) ∈ Z→ ‖v‖(HF ) =

N∑
i=1

|k(i)|>NHF

|vi| (B.127)

In conclusion, the norm-(1) is suggested as reliable measure of accuracy. It is com-

puted for all the eigenvectors, and the eigenversor of the eigenset of interest with the

least norm-(1) is chosen to represent the manifold. Now the eigenversor acts in the

Fourier coefficients space. Therefore it produces a closed curve that represents the

linear approximation of the manifold of the continuous invariant curve of reference.
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B.6.6 Extension to High-Dimensional Tori

This whole section B.6 focused on the lower dimensional case of QPOs, which are 2-

tori. Now it is briefly addressed the general case of a nD-QPO of Eq.B.20 and Eq.B.23,

focusing on the numerical techniques, since the analytical and semi-analytical method-

ologies can simply consider the reduction to additional center manifolds [51, 50], further

extending the Lyapunov’s center theorem and the Moser’s generalization (see section

B.4.1).

The approach of DST does not change, and the nD-QPO is reduced to a discrete

dynamical system defined by an appropriate map. As mentioned in section B.6.2, this

provides a decomposition of the flow in a single longitudinal motion, and a transver-

sal motion provided in the general case by the remaining n − 1 phases ϕ2:n. This is

xnD−QPO(t) = φf (t, t0,x0,nD−QPO (ϕ2, ..., ϕn)). Thus, the initial conditions on the map

are parameterized by all the transversal phases. This means that in DST the determi-

nation of a n-torus, which is a nD surface of motion, is reduced to the identification of

the invariant closed (n− 1)-torus S of a map P(·).

x0,QPO ∈ S (θ1, ..., θn−1)→ P(·)(x0,QPO) ∈ S (θ1, ..., θn−1) ,

∀θi ∈ Iθi = [θi,m, θi,M ] : ∀θj ∈ Iθj , j 6= i, S (θj , ..., θi,m, ..., θj) = S (θj , ..., θi,M , ..., θj)

(B.128)

The computation of such invariant object can be undertaken with the same numerical

techniques introduced in section B.6.3, which are naturally extendable to higher phase-

space dimensions by the use of the general nD Fourier series [140], here reported for

the 2D case.

fF (x1, x2) =

N2∑
n2=−N2

N1∑
n1=−N1

cn1,n2e
i 2π
P1
n1x1e

i 2π
P2
n2x2

=
a0,0

2
+

N2∑
n2=1

N1∑
n1=1

an1,n2 cos

(
2π

P1
n1x1 +

2π

P2
n2x2

)
+ bn1,n2 sin

(
2π

P1
n1x1 +

2π

P2
n2x2

)

=
a0,0

2
+

N2∑
n2=1

N1∑
n1=1

An1,n2 cos

(
2π

P1
n1x1 +

2π

P2
n2x2 − θn1,n2

)
(B.129)

The resulting numerical approximation of the invariant 2-torus of a 3-torus’ longitudinal

mapping, around a PO, is shown below.
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{
SF (c, θ1, θ2)− xPO

}
X

=
a0,0

2
+

NC2∑
n2=1

NC1∑
n1=1

an1,n2 cos

(
2π

P1
n1θ1 + n2θ2

)
+ bn1,n2 sin

(
2π

P1
n1θ1 + n2θ2

)
=

=
[{

a0,0 {an1,n2 bn1,n2 }
NC1,NC2
n1=1,n2=1

}
X

] 


1
2 cos

(
2π
P1
n1θ1+n2θ2

)
sin
(

2π
P1
n1θ1+n2θ2

)

NC1,NC2

n1=1,n2=1


[r,vX ]

 = Ce (θ1, θ2)

=




. . .
. . .

. . .
. . .

. . .
. . . 01x(4NC1NC2+1) e(θ1,θ2)T 01x(4NC1NC2+1)

. . .

. . .
. . .

. . .
. . .

. . .


X


[{

a0,0{
an1,n2
bn1,n2

}NC1,NC2

n1=1,n2=1

}
X

]
= E (θ1, θ2) c

(B.130)

However, the problem becomes merely computational, similar to require a high-order

expansion for a semi-analytical technique in highly NL systems. In this case, the di-

mension of the problem rises considerably, and the number of Fourier coefficients, which

was already dim{x}× (NC +1), grows exponentially with the phase-space dimension of

the invariant object. This is particular significant in terms of the solution of the linear

system of the Newton’s method, which will require numerical techniques for large-scale

problems. This will penalize the solution when the DC scheme, as usual, is embedded

in a NC. Apparently in the literature the computation of such dynamical objects is not

common. The practical approach for high-dimensional tori is to simply treat them as

bounded orbits. This will be the aim of the next section B.7.

B.7 Computation of Orbits for application in Perturbed

Dynamics

As discussed in section B.6.6, high-dimensional tori in multi-state NL systems are

quite cumbersome to be fully defined by an invariant closed object. Moreover, having

more than one transversal phase means that the flow fills a volume of motion, and the

motion practically appears in mechanical systems as a bounded trajectory in space.

Some authors refer to them as chaotic motions, in the sense that the practical utility

of these orbits is reduced to their permanence in a particular region for a specific time

span, with a known amplitude of motion. The initial conditions must be accurately

tuned for this trajectory in the time window required, but there is no interest in the

knowledge of the full range of initial conditions on a map. The example is the case when

a simpler invariant object, like an EP, a PO, and a 2D-QPO, is fully determined in a

dynamical model, to study and optimize their performance that will be assessed against

the engineering requirements. But the dynamical model is only an approximation of

the real-world dynamics (see Eq.2.1), so it is not worthwhile to increase the complexity

of the solution when its performances will be similar to its reference backbone, while

the same effect will be eventually provided by the perturbations.

The perturbations are neglected in the dynamical system because they are small

forces compared to the leading actions of the dynamics, whose modeling could be
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also affected by inaccuracies in the knowledge of their parameters, which introduces a

stochastic analysis of their effects. In addition, they can also behave stochasticly in

time. However, when a perturbation is deterministic, it is usually time-dependent. This

is a forcing action, and as mentioned in section B.1.3.1, in relation to its harmonics

content, it will increase the phase-space of the solution by a number of constrained

phases, thus leading to a torus around a backbone orbit. Therefore, as discussed

above, the case of high-dimensional tori is practically reduced to the necessary task

of the determination of the bounded trajectory around a reference orbit in a realistic,

perturbed, dynamics [53].

The aim is to find an accurate reference signal x(t), for the required time span T ,

in the dynamical system enlarged by the TV disturbances. This reference signal is

also expected to be close to the original reference orbit, selected and computed in the

unperturbed model. The numerical procedure is a multiple shooting scheme [116].

The original orbit is sampled in NT subintervals, that could well be non-uniform (for

example the 2D-QPO reduced to a discrete dynamical system). The time subintervals

will remain fixed. The solution is obtained finding an orbit in the perturbed dynamics

that satisfies the continuity between these subintervals, and using the original orbit as

initial guess. This is summarized below,

T =
[
{t}NT+1

s=1

]
→

→ x(T) =
[
{x0,s}NT+1

s=1

]
= X0 ⇒

⇒ x(t) : x(ts+1) = φf (ts+1, ts,x0,s) = x0,s+1 ,

∀1 ≤ s ≤ (NT − 1)

(B.131)

and global matrices are defined to bring the continuity conditions of Eq.B.131 in the

objective function of the DC scheme of Eq.B.133.
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Xf =

[
{xf,s}NT+1

s=1

]
=
[
{φf (ts+1, ts,x0,s)}NT+1

s=1

]{
P (tf , t0,x0) = dφf

dx0
(tf , φf (tf , t0,x0)) = {Φ (tf , t0,x0)}x,x

Be (tf , t0,x0) = dφf
de (tf , φf (tf , t0,x0)) = {Φ (tf ,x0)}x,e

⇒

⇒



PC (T,X0) =
dXf

dX0
(T,X0) =




. . .
. . .

. . .
. . .

. . .
. . . 07x7 P(ts+1,ts,x0,s) 07x7

. . .
. . .

. . .
. . .

. . .
. . .


NT−1

s=1


BC
e (T,X0) =

dXf

de (T,X0) =




...
Be(ts+1,ts,x0,s)

...


NT−1

s=1


IC = dX0

dX0
(T,X0) =




. . .
. . .

. . .
. . .

. . .
. . . 07 07 I7

. . .
. . .

. . .
. . .

. . .
. . .


NT−1

s=1


(B.132)



F (X0,T, NT , e) =
[[
{xf,s}NT−1

s=1

]
−
[
{x0,s}NTs=2

]]
=
[
{07x1}NT−1

s=1

]
δF (X0,T, NT , e) =

=


dXf

dX0

(
{t0,s}NTs=2 , {t0,s}

NT−1
s=1 , {x0,s}NT−1

s=1

)
+

− dX0

dX0

(
{t0,s}NTs=2 , {t0,s}

NT
s=2 , {x0,s}NTs=2

) dXf
de

(
{t0,s}

NT
s=2,{t0,s}

NT−1
s=1 ,{x0,s}

NT−1
s=1

)
[ {δX0}

NT−1
s=1
δe

]
=

= [ PC(T,X0)−IC BC
e (T,X0) ]

[
{δX0}

NT−1
s=1
δe

]
= F ′ (X0,T, NT , e)

[
{δX0}

NT−1
s=1
δe

]
(B.133)

In the above DC scheme, the vectorfield f is now associated to the perturbed dynamical

system. Furthermore, the parameter e is introduced (there could be more than one if

necessary), to weight the perturbations between the new and the original dynamics

[53]. This means that the real-world vectorfield should be written as a homotopy

f(t,x, e) between the two models: recall that the sensitivity of the flow with respect

to a parameter of the dynamics, required in Eq.B.133, is computed with the procedure

explained in section B.1.2.5. This could be necessary if the level of perturbation is

too high to allow the DC scheme, without e, to converge. In this case, the multiple

shooting of Eq.B.133 is embedded in a NC where the continuation parameter is e. The

bounded solution obtained is called a dynamical substitute of the original one in the

new dynamics [53, 179].

The DC is used to satisfy only the continuity of the state between the subintervals.

Therefore for NT + 1 sampling points, only the first NT are the controlling points

to be tuned by the DC of Eq.B.133. This means that only the continuity conditions

of the inner NT − 1 states are included in the objective function of Eq.B.133. The

last NT -th subinterval is uncontrolled and the flow drifts away from the original orbit

in unstable systems20. Therefore, the resulting linear system of the DC is n times

20This is not a problem, as the time span is free of choice by the user, and could be simply enlarged.
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underdetermined, n being the dimension of the state. If the rank of the Jacobian is

not deeply compromised, multiple solutions are available. The dynamical substitute is

chosen as the one that minimizes some scaled Euclidian norm, thus the system is solved

with the related right pseudo-inverse matrix of the Jacobian.{
Ax = b, A ∈ RN×M , N < M

min
x

{
1
2x

TWx
}
,W = CTC > 0

⇒ x = W−1AT
(
AW−1AT

)−1
b = C−1

(
AC−1

)
RPSI

b

(B.134)

If the sampling points are considered to be of the same importance, the classical flat-

weighted Euclidian norm is used, and the dynamical substitute is indeed the closest

flow to the original orbit in the real-world dynamics [116]. This is the reference signal

to be used for practical applications.

Note that if the level of perturbations is too high, the NC would converge but there is

no guarantee that the dynamical substitute is close, in the mere practical sense, to the

aimed orbit any longer, since a long continuation will drift away the solution. This hap-

pens because the DC scheme looks only to satisfy the continuity of the subintervals,

and the closeness of the whole orbit is only minimized by the right pseudo-inverse’s

algorithm. Thus, this multiple shooting is useful at the last stage to fine tune the

reference orbit for practical applications. The method is not recommended to simplify

the analysis of relevant TV perturbations, that should actually be included as lead-

ing actions in the TV dynamical system, to identify appropriate invariant motions of

Eq.B.23.

B.8 Computation of Invariant Manifolds

An object is named invariant with respect to a transformation, when it remains un-

changed to such operation. This is the case of the invariant motions of a dynamical

system presented in section B.1.3, which are n-tori. They describe a closed set of states,

whose flow remains inside the set for any propagation time. The DC schemes used in

DST apply their invariance condition on a map to identify the reduced invariant object

used for their definition.

The linearized behavior around the invariant object is described by the STM, as

discussed in sections B.3, B.5.1.1, B.6.1, and in particular, the behavior around the

reduced invariant object is described by a monodromy matrix, as discussed in sections

B.5.2.1, B.6.5. It is well-known that in linear algebra, the eigenvectors span an invari-

ant set with respect to the application. Thus the eigenspaces of the monodromy matrix

constitute the invariant manifolds associated to the invariant object, in the linearized

approximation [50].

These manifolds have been classified in section B.5.1.1 in parabolic, elliptic, and hy-

perbolic. The parabolic manifold spans the flow of the n-torus itself, and the family

of n-tori where it is embedded. The elliptic manifold spans the families of (n+ 1)-tori
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around it. Finally the hyperbolic manifold spans the trajectories to reach it or depart

from it. In particular, the real hyperbolic manifolds are the asymptotic trajectories

to reach and depart the n-torus, because the time required to approach or escape the

invariant object is infinity [50]. In contrast, the complex hyperbolic manifolds are trav-

eled in a finite time, because they are damped. With an abuse of notation, the real

hyperbolic manifolds associated to an invariant object are referred to as simply the

invariant manifolds (IMs) [73, 50]. Thus, for the phase portrait of a saddle, there are

two kinds of IMs W : the IM to reach the orbit (s) and the one to leave it (u), and

each of them has two branches. W s is the linear span of the stable eigenvectors along

the orbit, W u is the linear span of the unstable eigenvectors along the orbits. The two

branches are simply distinct by the sign of the versor (±).

The linear eigenspace is only a local approximation of the IMs. To derive the com-

plete tube of asymptotic trajectories in the nonlinear system, for each of the branches

available, the numerical procedure is known as the globalization of the manifold [116].

It consists in using the linear IMs in proximity of the invariant object as initial con-

dition, to integrate the flow in the nonlinear dynamics. Care must be taken to select

the magnitude of the displacement of the initial condition along the eigenvector [117].

This should be small enough to make the linearized approximation of the manifold

around the orbit worthy. But it must not be too small, because the real hyperbolic

manifolds are asymptotic trajectories. When the initial condition, chosen along the IM,

approaches the reference orbit, the time required to approach or escape such an orbit

grows21. The integration is backward in time for the stable branches, and forward in

time for the unstable branches. The globalization is usually stopped for all the flows at

an appropriate Poincaré section for a dedicated exploitation22. For example different

trajectories can be patched to realize prescribed itineraries in the full state domain

of the nonlinear dynamical system [50], exploiting the existence of different isolated

families of n-tori. These are called heteroclinic connections [75]. Alternatively, a stable

and an unstable manifold of the same invariant object, or of the same family, can be

connected through a common point at large distance from the orbits. This is possible

because the eigenspaces are orthogonal only in the linear approximation. These are

called homoclinic connections [74]. In particular, the patching can be perfect, or de-

fecting in some state’s components23. In the second case, to realize the connection, a

control action must be performed. This is for example the case of a mechanical system,

where the paramount condition is to have the same position, while the velocity can be

adjusted with a maneuver. Patching trajectories in high-dimensional systems is usu-

21When practical applications are needed, the chosen trajectory of the IM is computed with an
accurate simulation, deriving the location of the point where a very light perturbation is performed to
insert or escape the orbit. The key point is that indeed this action is energetically not demanding: the
IMs are called energy-efficient transfer trajectories.

22It is worth to note that since the invariant object has closure, its image under a Poincaré map is
always closed too. If a TI energy exists for the system in study, points inside/outside the Poincaré map
are at lower/higher energy than the energy of the invariant motion of reference.

23One component is always fixed by the Poincaré section’s constraint.
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ally complicated, and the presence of integrals of motion allows to lower the analysis.

A sequence of different connections and intermediate flows along invariant objects, is

called a dynamical chain [50].

Finally, note that apart from the numerical technique presented in this section, the

analytical and semi-analytical methodologies discussed in section B.4 to compute invari-

ant motions can be extended in the same way to consider the reduction to hyperbolic

manifolds instead of the centers [170].

B.8.1 Computation of Invariant Manifolds of Equilibrium Points

In the trivial case of an equilibria, as discussed in section B.3, the IMs are the eigenspace

spanned by the saddle eigenvectors of the linearized state-matrix A at its location.{
W u± = span± {v̂A,maxλA(xEP )}
W s± = span± {v̂A,minλA(xEP )}

, ∀t0 (B.135)

Thus the globalization of the manifold is applied to four points to derive the four

asymptotic trajectories. 
xWu/s±(t) = φf (t, t0, x0,Wu/s±)

x0,Wu/s± = xEP + εWW
u/s±(x0)

W u/s±(x0) = ±v̂A,u/s(xEP )

(B.136)

As discussed in section B.8, εW represents the threshold to trigger the initial condition

of the IM. For a mechanical system, the threshold is expressed in term of the norm of

the resulting displacement in only the position’s components [117].

B.8.2 Computation of Invariant Manifolds of Periodic Orbits

As discussed in section B.5.1.1, the IMs of a PO are the eigenspace spanned by the

hyperbolic eigenvectors of the monodromy matrix M . Recall that the monodromy

matrix is defined on the map where the PO is reduced to an invariant point. The

stability property is unique for the whole PO, but the related eigenvectors span the

IMs only at that location, just like the case of an EP.{
W u± = span± (v̂M,maxλM (xPO(t)))

W s± = span± (v̂M,minλM (xPO(t)))
, ∀t ∈ [t0, T + t0) (B.137)

The procedure can be well iterated for a sampling of points along the PO, but this

means solving multiple eigenvalue problems, and is not smart. Due to the linearized

approximation, the IMs for the whole PO are retrieved by using the variational equation

of Eq.B.6, thus transporting the initial condition for the IM on the chosen map through

all the longitudinal phases with the local STM. Be aware that this would simply produce

the same single IM, so the displacement must be considered in its direction, and the
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threshold εW must be applied consistently [116]. Now the globalization of the manifold

is applied to all the sampled points along the PO, to derive the tube of each of the four

asymptotic branches.

xWu/s±(t) = φf (t, t0,W , x0,Wu/s±(t0,W ))

x0,Wu/s±(t0,W ) = x0(t0,W ) + εWW
u/s±(x0(t0,W ))

x0(t0,W ) = xPO(t0,W ) = φf (t0,W , t0, xPO(t0))

W u/s±(x0(t0,W )) = ±v̂M,u/s(x(t0,W )) = Φf (t0,W , t0)W u/s±(xPO(t0)) =

= ±Φf (t0,W , t0) v̂M,u/s(xPO(t0))

,

∀t0,W ∈ [t0, T + t0)

(B.138)

B.8.3 Computation of Invariant Manifolds of Quasi-Periodic Orbits

As discussed in section B.6.1, the analysis of a general n-tori is reduced to a discrete

dynamical system along the related longitudinal motion, thus the linearized behavior

is described by means of the STMs among these subintervals. The related IMs can

be computed exactly as for the case of a PO, by applying Eq.B.137-B.138 in each

subinterval, and considering the appropriate STM in place of M [116].

However, for the case of a 2D-QPO, section B.6.5 presented an implementation of

the classical numerical techniques for the computation of an invariant curve, that uses

a mapping in the Fourier coefficients space. This approach provides a monodromy-like

matrix Π. The related hyperbolic eigenspace gives the IMs of the invariant curve in

the Fourier coefficients space, thus provides a curve on the chosen map for each branch

[140]. In particular, in section B.6.1 the selection of the most accurate eigenvector

for each manifold was undertaken to tackle the problem of the spurious eigenvalues,

which makes use of the norm-(1) defined in Eq.B.125. Thus the IMs associated to the

invariant curve are the following.
W u± = span± (v̂Π,maxλΠ

(x(t))) : ‖v̂Π,maxλΠ
(x(t))‖(1) = min

|λΠ|>ελ

{
‖v̂Π,λΠ

(x(t))‖(1)

}
W s± = span± (v̂Π,minλΠ

(x(t))) : ‖v̂Π,minλΠ
(x(t))‖(1) = min

|λΠ|<ε−1
λ

{
‖v̂Π,λΠ

(x(t))‖(1)

} ,

∀t ∈ [0, tf (θ))

(B.139)

The fact that the eigenvectors act in the Fourier coefficients space requires to introduce a

further threshold εC to preliminary displace the whole curve of initial conditions on the

chosen map. However, all the initial conditions will be scaled downstream appropriately

to the required εW . After this, the globalization of the manifold is performed similarly

to the case of a PO, as well as the case of a general QPO, decomposing the procedure in

the set of longitudinal motions parameterized by the transversal phase θ. The difference

is that with this procedure the starting IM on the map is globally defined, because it is
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the hyperbolic curve associated to the invariant object and computed as a whole, and

is not taken from the sample of points derived independently from a bundle of STMs.

The result is the filled tube of the four asymptotic branches.

xWu/s±(t) = φf (t, t0,W , x0,Wu/s±(t0,W ))

x0,Wu/s±(t0,W ) = x0(t0,W ) + εWW
u/s±(x0(t0,W ), θ)

x0(t0,W ) = xQPO(t0,W ) = φf (t0,W , t0, x0,QPO(θ))

W u/s±(x0(t0,W ), θ) = Φf (t0,W , t0(θ))W u/s±(x0(t0), θ)

W u/s±(x0(t0), θ) = CF
(
c + εC v̂Π,u/s(x0(t0), θ), θ

)
− CF (c, θ)

,

∀t0,W ∈ [t0(θ), tf (θ)) , ∀θ ∈ Iθ

(B.140)
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Appendix C

Time-Continuous Optimal

Control in the CR3BP

C.1 Fundamentals of Optimal Control

Optimal Control Theory is a methodology first developed by the work of Pontryagin

[180] and Bellman [181, 182]. Classical linear optimal control is a design technique for

linear systems describable in the well-known analytical form provided below,{
ẋ = Ax + Bu

z = Cx + Du
(C.1)

where the ODEs represent the system dynamics of state x under the effect of the control

actions u, while the algebraic equation defines the performance outputs z, and all the

matrices are constant. In order to control the system dynamics, a simple control law

could be a proportional feedback with respect to the state error, between the target

state and the real state.

u = Ke = K (xT − x) (C.2)

Linear optimal control is undertaken by the definition of a cost quadratic functional J ,

that takes care of all the project requirements [180]. Here, the case of infinite-horizon

(IH, tfin =∞) control is taken, which is to drive the system to zero state error. The aim

is so to find the controller gain matrix solution K that minimizes the cost functional.

The solution depends on the state and control weight matrices Q and R (and in case of

coupling between x and u in the definition of z, also N), that are independent variables

chosen by the designer in order to achieve, with the prescribed control law, the best

performances’ compromise among the project requirements.

J =
1

2

∫ ∞
0

[
x

u

]T [
Q N

NT R

][
x

u

]
dt (C.3)
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From the variational principle, which is the minimization of the cost functional under

the system dynamics and control law constraints, a Hamiltonian system between state

and co-state is expressed by the reduced matrices Ā,R̄,Q̄.
Ā = A−BR−1NT

Q̄ = Q−NR−1NT

R̄ = BR−1BT

(C.4)

The minimization brings to two necessary conditions: one is the definition of the wanted

gain matrix as a function of the so-called sensitivity matrix P ,

K = R−1
(
N + BTP

)
(C.5)

and the other is named the Hamilton-Jacobi-Bellman equation (HJB) and provides the

solution for P through a differential Riccati equation. This equation, strictly nonlinear,

can be solved with various numerical methods: due to IH assumption, the dynamical

part is removed and the NL Riccati equation is only algebraic (ARE).

Ṗ + ĀTP + PĀ−PR̄P + Q̄ = 0 (C.6)

The above analytical procedure allows to derive the optimal Linear Quadratic Regulator

(LQR) of the linear system dynamics, that would reject the perturbations. Unfortu-

nately, for a NL system like the CR3BP this is not guaranteed. The problem of NL

control techniques is that an unified analytical theory cannot be provided. A number of

NL control techniques for state-model systems have been developed so far, and are very

sensitive to the case in study, and could not warrant the optimality of the solution. For

example, the simplest approach for our task is to use an LQR based on the linearized

system dynamics around an EP, which is a PID controller whose gains must be tuned

appropriately.

C.2 State-Dependent Riccati Equation control

In the second half of the ’90s [183, 184], a new nonlinear control methodology, based

on a systematic procedure and so applicable to all NL systems was presented. This

technique is known as SDRE, because the control gain matrix is obtained from the

solution of the State-Dependent Riccati Equation. This equation has the same exact

structure obtained from the LQR, but the matrices are treated as state dependent.

The procedure consists of transforming the NL system dynamics (with control affinity)

in an identical pseudo-linear form. This parametrization is called State-Dependent

Coefficient (SDC) form. So the SDC system, at a given state, can be controlled with

an Algebraic Riccati Equation solution, to give the gain matrix K, in order to optimize

the associate state-control energetic cost functional, where the weight matrices Q-R
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can also be expressed in an SDC form.

ẋ = A(x)x + B(x)u

J = 1
2

∫∞
0

[
x

u

]T [
Q(x) N(x)

NT (x) R(x)

][
x

u

]
dt

K(x) = R−1(x)
(
N(x) + BT (x)P(x)

)
Ṗ(x) + ĀT (x)P(x) + P(x)Ā(x)−P(x)R̄(x)P(x) + Q̄(x) = 0

(C.7)

Advantages of SDRE technique are evident: this is a systematic methodology, close

to the well-known linear optimal regulator’s procedures, and so it could be applied to

every NL system, and also the SDC form provides new opportunities to improve the

control system performances. On the other hand, the procedure does still not provide

an analytical solution, and the numerical solution could be proved to be sub-optimal

and asymptotically stable only close to the origin. However, NL SDRE-based control,

in fact, has been successfully used in a various number of engineering fields so far:

spacecraft control, autonomous pilots for missiles and aircrafts, process control, robots,

biomedical devices (artificial pancreas), Maglev trains.

The main feature of the SDRE technique is rewriting in a SDC form the system

dynamics. The SDC form of the matrices has the main effect of introducing additional

terms in the HJB equation. This part tends to zero as the state does too, and so

its contribution in the full HJB is usually smaller than the remaining part, which is

still the classical HJB of the LQR. Thus, the approach is to neglect it, as a necessary

condition for optimality. The HJB reduces to only the SDRE, that is solved at each

time step to give the pointwise stabilizing control action along the state trajectory. It

can be proved that this is always verified for the single-order NL system, but not in

the multi-order case. The reason is the multiplicity of SDC parametrizations, which is

an intrinsic peculiarity of the multiple-state NL systems. The resulting SDRE-based

control is so sub-optimal, in the sense that using for the solution only the SDRE,

the resulting controlled state trajectories tend to optimal ones in proximity of the

equilibrium state. To prove the existence of infinite SDC parameterizations for multiple-

order nonlinear systems, it is sufficient to show that two different SDC forms exist for

the same vectorfield: infinite cases are derived from a simple linear combination of the

two, constituting a parameterized hyperplane as shown below.

A1(x)x = A2(x)x⇒ A1−2(x, α1−2) = α1−2A1(x) + (1− α1−2) A2(x) (C.8)

The additional parameter α can also be state-dependent, realizing an indexed family of

hyperplanes. Generalizing to the existence of k different independent SDC forms, the

global hyperplane can be stated with k − 1 additional parameters. In conclusion, the

existence of multiple pseudo-linear SDC forms for the same NL system is intrinsically

related to the impossibility to find an unique analytical solution of the complete HJB

equation. But the real strength of the SDRE technique is to turn the previous analytical
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brake in own favor, because the vectorfield in the SDC form results to be parameterized

by a set of additional degrees of freedom. This allows to enhance the capability of the

control remaining in the framework of the SDRE formulation, improving the optimality

or other classical properties of the system (controllability, observability), in order to

overcome practical problems. The second source of improved control design through

the SDRE application derives from the possibility of using state-dependent weight

matrices, realizing the same concepts of gain-scheduling intrinsically within the optimal

controller algorithm. The third source of enhancement comes from the easy way to treat

additional state-constraints through SDRE methodology intrinsically in the optimal

control formulation.

The highest demand for the SDRE-based control is indeed the computational cost

for the pointwise solution of the SDRE itself. The best way would be to do that

continuously at each time step, but that can be wasteful and so various techniques have

been implemented to enable an SDRE solution’s timing [149, 185, 186], either on-line

and off-line. The computational cost of the SDRE methodology on high-order systems

is pricey among common nonlinear techniques, and that was the major obstacle to its

diffusion. With the information technology development of the ’00s, SDRE technique

has widespread emerged for the applied control design in all the engineering branches.

C.3 Application of SDRE control to track LPOs in the

CR3BP

The nonlinearities in the CR3BP of Eq.2.13 come from the two bodies’ gravity terms.

Eq.C.7 shows how the basic 2B gravity acceleration can be arranged in a pseudo-linear

form1.

aG = −GM
‖r‖3

r = − GM

(x2 + y2 + z2)3/2

[
x
y
z

]
= −GM
‖r‖3

I3

[
x
y
z

]
= AG,SDRE (r)

[
x
y
z

]
(C.9)

However, the above is the simplest, but not unique, SDC form. When generally this

happens, despite the diagonal pseudo-linear form is easier, it is recommended to try

to enable cross-dependencies of the state, which is to find some mathematical manip-

ulations to fill up all the terms of the SDC state matrix. For the 2B gravity, this is

carried out by dividing and multiplying by the square of the distance magnitude. The

additional x2,y2,z2 at the numerator can be shuffled with the state vector components

x,y,z to provide up to seven different pseudo-linear forms, as shown in Eq.C.10. These

seven SDC forms are weighted in the vectorfield through the introduction of a set of

additional parameters α. The resulting SDC state-matrix, when multiplied by the posi-

tion vector, provides the exact expression of the 2B gravity acceleration vector, without

any approximation and for any value of the additional parameters. These parameters

1It is worth to underline the difference between SDC and linearization: the pseudo-linear state
matrix is not the Hessian of the Keplerian gravity potential.
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are additional DOFs, which allow to weight the formulation of the dynamics itself in

order to obtain the solution most tailored to our aims.



aG = − GM

(x2 + y2 + z2)3/2

[
x
y
z

]
= −GM
‖r‖5

(
‖r‖2I3

[
x
y
z

])
=

= −GM
‖r‖5

{
αi,jr

2
j δi,j

}
i,j

[
x
y
z

]
− GM

‖r‖5
{(1− αi,j) rirj}i,j

[
x
y
z

]
= AG,SDRE(r,α)

[
x
y
z

]
AG,SDRE(r,α) = −GM

‖r‖5

[
x2+α12y2+α13z2 (1−α12)xy (1−α13)xz

(1−α21)xy α21x2+y2+α23z2 (1−α23)yz

(1−α31)xz (1−α32)yz α31x2+α32y2+z2

]
(C.10)

The gravity of each body is now expressed in the CR3BP framework. The only

difference is that the barycenter of the central body is not at the origin of the frame, but

there is an offset along the x-axis component, of distance a. With the same procedure,

the SDC form turns out with a bias term.

aG = −GM
‖r‖3

r = − GM(
(x+ a)2 + y2 + z2

)3/2

[
x+a
y
z

]
=

=

− GM

‖r‖5

[
(x+a)2+α12y2+α13z2 (1−α12)(x+a)y (1−α13)(x+a)z

(1−α21)(x+a)y α21(x+a)2+y2+α23z2 (1−α23)yz

(1−α31)(x+a)z (1−α32)yz α31(x+a)2+α32y2+z2

] [
x
y
z

]
+

− GM

‖r‖5

[
(x+a)2+α12y2+α13z2

(1−α21)(x+a)y
(1−α31)(x+a)z

]
a

(C.11)

This happens frequently with NL systems. A common technique to treat biases, as

suggested by [183, 184], is to add an artificial stable state s in the SDC formulation, so

include the biases inside the SDC state-matrix. This is shown in Eq.C.12 and requires

three things. The simple, artificial, and uncoupled dynamics of s are determined by an

eigenvalue, whose value must be chosen to be far more slower than the natural ones

of the system. The s state is fictitious and so its value will always be set to one. For

the two previous reasons, the additional state is not controllable: this is not a problem

in the optimal control formulation because the state weight matrix must be at least

semi-positive defined. This means that optimal control works also with uncontrollable

but already stable dynamics. {
ṡ = −λss , λs > 0

s = 1⇒ Qss = 0
(C.12)

[
(x+a)2+α12y2+α13z2

(1−α21)(x+a)y
(1−α31)(x+a)z

]
a =

[
(1−η1)a[(x+a)2+α12y2+α13z2]

(1−η2)(1−α21)a(x+a)y
(1−η3)(1−α31)a(x+a)z

]
+

+

[
η1a(x+2a) η1α12ay η1α13az

η2β12(1−α21)ay η2(1−α21)[(1−β12)ax+a2] 0

η3β13(1−α31)az 0 η3(1−α31)[(1−β13)ax+a2]

] [
x
y
z

]
+
[
η1a3

0
0

] (C.13)
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In addition, two other sets of parameters have been introduced in Eq.C.13 to weight

an acceptable number of pseudo-linear forms to fill up the SDC state matrix. There

are two β parameters that come out within the bias terms, and three η parameters to

weight the bias itself. Therefore, with three sets of 11 weighting parameters, the SDC

form of the CR3BP is made by 84 different pseudo-linear forms for each of the two

gravity terms. The resulting SDC state matrix is reported in Eq.C.14 for one general

body of mass parameter GM and x-axis’ offset of a, in Eq.C.15 for the pseudo-linear

complete CR3BP’s gravity term definition, and in Eq.C.16 within the resulting SDC

form of the CR3BP that is going to be used for the SDRE-based controller.



aG = − GM

((x+a)2+y2+z2)
3/2

[
x+a
y
z

]
= AG,SDRE(r,α,β,η)

[
x
y
z
s

]
AG,SDRE(r,α,β,η) = −GM

‖r‖5

[
a b c d
e f g h
i j k l

]


a = (x+ a)2 + η1a (x+ 2a) + α12y
2 + α13z

2

b = [(1− α12)x+ (1− (1− η1)α12) a] y

c = [(1− α13)x+ (1− (1− η1)α13) a] z

d = η1a
3 + (1− η1) a

[
(x+ a)2 + α12y

2 + α13z
2
]

e = (1− α21) [x+ (1 + η2β12) a] y

f = α21x
2 + [(2− η2 (1− β12))α21 + η2 (1− β12)] ax+ y2 + α23z

2 + (η2 + (1− η2)α21) a2

g = (1− α23) yz

h = (1− η2) (1− α21) a (x+ a) y

i = (1− α31) [x+ (1 + η3β13) a] z

j = (1− α32) yz

k = α31x
2 + [(2− η3 (1− β13))α31 + η3 (1− β13)] ax+ α32y

2 + z2 + (η3 + (1− η3)α31) a2

l = (1− η3) (1− α31) a (x+ a) z

(C.14)

aG,3BP = − 1− µ(
(x+ µ)2 + y2 + z2

)3/2

[
x+µ
y
z

]
− µ(

(x+ µ− 1)2 + y2 + z2
)3/2

[
x+µ−1

y
z

]
=

= AG1,SDRE(q,α1,β1,η1, GM = 1− µ, a = µ) [ q
s1 ] +

+ AG2,SDRE(q,α2,β2,η2, GM = µ, a = µ− 1) [ q
s2 ] =

=
[
{AG1,SDRE}1:3,1:3

+{AG2,SDRE}1:3,1:3
{AG1,SDRE}1:3,4

{AG2,SDRE}1:3,4

]
=

= AG3BP,SDRE(q,α1,β1,η1,α2,β2,η2)
[

q
s1
s2

]
(C.15)

x =


q

q̇

s1

s2

 , ẋ = AxL + Bu , B = I3 ,

A =

[ 03 I3 03x2

−P+{AG3BP,SDRE(q,α1,β1,η1,α2,β2,η2)}
1:3,1:3

−2W {AG3BP,SDRE(q,α1,β1,η1,α2,β2,η2)}
1:3,4:5

03x2 03x2 −λsI2

]
(C.16)
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One can prove that the original basic diagonal structure of EqC.10 is obtainable with

α = 1 (∀β), η = 0. Usually, the suggestion is to use balanced value of the weighting

parameters, which is 0.5. Also the suggestion is to choose values inside the [0, 1] inter-

val, in order to avoid “negative” weighting of the formulation. In section 4.1.3.2.2, the

square eigenvalue of the two additional stable states is set to be 0.001, which is accept-

ably slower than the eigenvalues of the natural system of Eq.2.29. Smaller values do

not improve the results, on the contrary make the matrices to become ill-conditioned.
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Appendix D

Libration Point Orbits and

Invariant Manifolds of the

Mars-Phobos 3BP

D.1 Invariant Manifolds of the LPOs of the Mars-Phobos

CR3BP

Figure D.1: Landing on Phobos through the Invariant Manifold of the lp L1 Planar
Lyapunov orbits. Trajectories that provide the min incidence at the touch-down, as a function
of the α input of the lp algorithm or the longitude of the landing site, for orbits inside the region
of convergence at the max order method. Performances of the trajectory: landing velocity
magnitude, angle of incidence, downward vertical velocity. Phobos mean ellipsoidal surface.
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Figure D.2: Landing on Phobos through
the Invariant Manifold of the lp L1 Pla-
nar Lyapunov orbits. Region of possible
landing sites, for orbits inside the region of
convergence at the max order method. Pho-
bos mean ellipsoidal surface.

Figure D.3: Landing on Phobos through
the Invariant Manifold of the lp L1 Pla-
nar Lyapunov orbits. Trajectory that pro-
vides the overall min incidence at the touch-
down. Phobos mean elipsoidal surface.

Figure D.4: Landing on Phobos through the Invariant Manifold of the lp L1 Planar
Lyapunov orbits. Direct and inverse relation between the longitude and latitude of the landing
site and the α and β input of the lp algorithm, for orbits inside the region of convergence at
the max order method. Phobos mean ellipsoidal surface.

Figure D.5: Landing on Phobos through the Invariant Manifold of the lp L1 Verti-
cal Lyapunov orbits. Trajectories that provide the min incidence at the touch-down, as a
function of the β input of the lp algorithm or the longitude and latitude of the landing site, for
orbits inside the region of convergence at the max order method. Performances of the trajec-
tory: landing velocity magnitude, angle of incidence, downward vertical velocity. Phobos mean
ellipsoidal surface.
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Figure D.6: Landing on Phobos through
the Invariant Manifold of the lp L1 Ver-
tical Lyapunov orbits. Region of possible
landing sites, for orbits inside the region of
convergence at the max order method. Pho-
bos mean ellipsoidal surface.

Figure D.7: Landing on Phobos through
the Invariant Manifold of the lp L1 Ver-
tical Lyapunov orbits. Trajectory that
provides the overall min incidence at the
touch-down. Phobos mean ellipsoidal surface.

Figure D.8: Landing on Phobos through the Invariant Manifold of the lp L1 Vertical
Lyapunov orbits. Direct and inverse relation between the longitude and latitude of the landing
site and the α and β input of the lp algorithm, for orbits inside the region of convergence at
the max order method. Phobos mean ellipsoidal surface.
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Figure D.9: Landing on Phobos through the Invariant Manifold of the lp L2 Lissajous
orbits. Trajectories that provide the min incidence at the touch-down, as a function of the α
and β input of the lp algorithm or the longitude and latitude of the landing site, for orbits inside
the region of convergence at the max order method. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos mean ellipsoidal
surface.

Figure D.10: Landing on Phobos through the Invariant Manifold of the lp L2 Lis-
sajous orbits. Direct and inverse relation between the longitude and latitude of the landing
site and the α and β input of the lp algorithm, for orbits inside the region of convergence at
the max order method. Phobos mean ellipsoidal surface.
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Figure D.11: Landing on Phobos through the Invariant Manifold of the lp L2 Planar
Lyapunov orbits. Trajectories that provide the min incidence at the touch-down, as a function
of the α input of the lp algorithm or the longitude of the landing site, for orbits inside the region
of convergence at the max order method. Performances of the trajectory: landing velocity
magnitude, angle of incidence, downward vertical velocity. Phobos mean ellipsoidal surface.

Figure D.12: Landing on Phobos through the Invariant Manifold of the lp L2 Ver-
tical Lyapunov orbits. Trajectories that provide the min incidence at the touch-down, as a
function of the β input of the lp algorithm or the longitude and latitude of the landing site, for
orbits inside the region of convergence at the max order method. Performances of the trajec-
tory: landing velocity magnitude, angle of incidence, downward vertical velocity. Phobos mean
ellipsoidal surface.
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Figure D.13: Landing on Phobos through the Invariant Manifold of the L1 Northern
Halo orbits. Trajectories that provide the min incidence at the touch-down, as a function of the
β input of the lp algorithm, for DC orbits that do not intersect Phobos mean ellipsoidal surface.
Performances of the trajectory: initial planar phase along the departing Halo orbit, TOF,
latitude and longitude of the landing site, and related velocity magnitude, angle of incidence,
downward vertical velocity. Phobos mean ellipsoidal surface.
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Figure D.14: Landing on Phobos through the Invariant Manifold of the L1 Northern
Halo orbits. Trajectories that provide the min incidence at the touch-down, as a function of
the longitude and latitude of the landing site, for DC orbits that do not intersect Phobos mean
ellipsoidal surface. Performances of the trajectory: initial planar phase along the departing Halo
orbit, TOF, β input of the lp algorithm, and landing velocity magnitude, angle of incidence,
downward vertical velocity. Trajectory that provides the overall min incidence at the touch-
down. Phobos mean ellipsoidal surface.

Figure D.15: Landing on Phobos through the Invariant Manifold of the L1 Northern
Halo orbits. Direct and inverse relation between the longitude and latitude of the landing site
and the β input of the lp algorithm, for DC orbits that do not intersect Phobos mean ellipsoidal
surface. Phobos mean ellipsoidal surface.
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Figure D.16: Landing on Phobos through the Invariant Manifold of the L1 Northern
and Southern Halo orbits. Region of possible landing sites, for DC orbits that do not
intersect Phobos mean ellipsoidal surface. Inner lines show subregions where the 10%, 50%, 90%
levels of the cumulative distribution of the IM simulated landed (same number of trajectories
from each departing orbit simulated). Phobos mean ellipsoidal surface.

Figure D.17: Landing on Phobos through the Invariant Manifold of the L1 Southern
Halo orbits. Direct and inverse relation between the longitude and latitude of the landing site
and the β input of the lp algorithm, for DC orbits that do not intersect Phobos mean ellipsoidal
surface. Phobos mean ellipsoidal surface.
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Figure D.18: Landing on Phobos through the Invariant Manifold of the lp L2 North-
ern Halo orbits. Trajectories that provide the min incidence at the touch-down, as a function
of the β input of the lp algorithm or the longitude and latitude of the landing site, for DC orbits
that do not intersect Phobos mean ellipsoidal surface. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos mean ellipsoidal
surface.

Figure D.19: Landing on Phobos through the Invariant Manifold of the L2 Northern
and Southern Halo orbits. Region of possible landing sites, for DC orbits that do not
intersect Phobos mean ellipsoidal surface. Inner lines show subregions where the 10%, 50%, 90%
levels of the cumulative distribution of the IM simulated landed (same number of trajectories
from each departing orbit simulated). Phobos mean ellipsoidal surface.
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Figure D.20: Landing on Phobos through the Invariant Manifold of the lp L1 Lis-
sajous and Planar and Vertical Lyapunov orbits. Trajectories that provide the min
velocity total magnitude at the touch-down, as a function of the longitude and latitude of the
landing site, for orbits inside the region of convergence at the max order method. Performances
of the trajectory: landing velocity magnitude, angle of incidence, downward vertical velocity.
Phobos mean ellipsoidal surface.

Figure D.21: Landing on Phobos through the Invariant Manifold of the L1 Northern
Halo orbits. Trajectories that provide the min velocity total magnitude at the touch-down, as
a function of the longitude and latitude of the landing site, for DC orbits that do not intersect
Phobos mean ellipsoidal surface. Performances of the trajectory: landing velocity magnitude,
angle of incidence, downward vertical velocity. Phobos mean ellipsoidal surface.
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D.2 LPOs of the Mars-Phobos CR3BP-GH

Figure D.22: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile. Continuation with respect to the GHs’ magnitude from CR3BP (σ = 0) to full
CR3BP-GH (σ = 1). Continuation of Southern Halo orbits around L1 at increasing energy.

Figure D.23: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile. Continuation with respect to the GHs’ magnitude from CR3BP (σ = 0) to full
CR3BP-GH (σ = 1). Continuation of Northern Halo orbits around L1 at increasing energy.

Figure D.24: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile. Continuation with respect to the GHs’ magnitude from CR3BP (σ = 0) to full
CR3BP-GH (σ = 1). Continuation of vertical Lyapunov orbits around L1 at increasing energy.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

433 Zamaro Mattia



LPOs and IMs of the Mars-Phobos 3BP

Figure D.25: Periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation variables’
curves profile for each family of POs around L1 in the CR3BP-GH. Continuation with respect
to the energy from L1 (σ = 0) to the intersection with Phobos’ surface (σ = 1).
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Figure D.26: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family A of POs around L1 in the CR3BP-GH. Continuation with respect to the energy
from L1 (σ = 0) to the intersection with Phobos’ surface (σ = 1).

Figure D.27: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family B of POs around L1 in the CR3BP-GH. Continuation with respect to the energy
from L1 (σ = 0) to the intersection with Phobos’ surface (σ = 1).

Figure D.28: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family C of POs around L1 in the CR3BP-GH. Continuation with respect to the energy
from L1 (σ = 0) to the intersection with Phobos’ surface (σ = 1).
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Figure D.29: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family D of POs around L1 in the CR3BP-GH. Continuation with respect to the energy
from L1 (σ = 0) to the intersection with Phobos’ surface (σ = 1).

Figure D.30: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family A of POs around L2 in the CR3BP-GH. Continuation with respect to the energy
from L2 (σ = 0) to the intersection with Phobos’ surface (σ = 1).

Figure D.31: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family B of POs around L2 in the CR3BP-GH. Continuation with respect to the energy
from L2 (σ = 0) to the intersection with Phobos’ surface (σ = 1).
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Figure D.32: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family C of POs around L2 in the CR3BP-GH. Continuation with respect to the energy
from L2 (σ = 0) to the intersection with Phobos’ surface (σ = 1).

Figure D.33: Periodic LPOs in the Mars-Phobos CR3BP-GH. Graphical visualization
and stability properties (the three stability indexes, with the phase of the center’s eigenvalue)
of the family D of POs around L2 in the CR3BP-GH. Continuation with respect to the energy
from L2 (σ = 0) to the intersection with Phobos’ surface (σ = 1).
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Figure D.34: Periodic LPOs in the Mars-Phobos CR3BP-GH. Characteristic curves of
the families of POs around L1 and L2 in the CR3BP-GH, highlighting the position where the
PO has the extreme distances from Phobos (the two branches showed for each family represent
one the maximum and one the minimum distance). First picture identifies the family each
curve belongs to, second picture shows the parametrization of the family’s curve by the energy,
defined as the differential Jacobi integral with respect to the LP.

Figure D.35: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Continuation vari-
ables’ curves profile, for the three curve’s coordinates and the radial distance of the remaining
two (case of polar anomaly parametrization). Continuation of QPOs around a medium-energy
PO of the family A around L1 of the CR3BP-GH, with respect to the area of the invariant
curve on the plane that defines the parametrization of the invariant curve.
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Figure D.36: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Family of in-
variant curves projected on a Poincaré map
coordinate plane, connecting the two medium
iso-energetic POs of the A and B families
around L1 of the CR3BP-GH.

Figure D.37: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Family of in-
variant curves projected on a Poincaré map
coordinate plane, around a medium-energy
PO of the C family around L1 of the CR3BP-
GH.

Figure D.38: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Family of in-
variant curves projected on a Poincaré map
coordinate plane, connecting the two medium
iso-energetic POs of the A and B families
around L2 of the CR3BP-GH.

Figure D.39: Quasi-periodic LPOs in the
Mars-Phobos CR3BP-GH. Family of in-
variant curves projected on a Poincaré map
coordinate plane, around a medium-energy
PO of the C family around L2 of the CR3BP-
GH.
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Figure D.40: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Projections on
the coordinate planes of the invariant curve of the larger-width QPO around each of the two
medium iso-energetic POs of the A and B family around L1 of the CR3BP-GH, obtained by
NC and using the polar anomaly parametrization.

Figure D.41: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Period of the
first transversal revolution of the 2-tori of the family AB around L1 and L2 of the CR3BP-
GH. Values from the nonlinear and linear analysis, and related percentage error. The QPOs
are parameterized by the CR3BP-GH’s differential Jacobi integral and the width around the
backbone PO, and they are normalized by their maximum values. The normalization of the
width is conducted separately for the two A and B branches, then joined together reversing the
parametrization of the B family, which is now defined in the interval from 2 to 1.
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Figure D.42: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Period of the first
transversal revolution of the 2-tori of the family A around L1 and L2 of the CR3BP-GH. Values
from the nonlinear and linear analysis, and related percentage error.

Figure D.43: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Period of the first
transversal revolution of the 2-tori of the family B around L1 and L2 of the CR3BP-GH. Values
from the nonlinear and linear analysis, and related percentage error.

Figure D.44: Quasi-periodic LPOs in the Mars-Phobos CR3BP-GH. Period of the first
transversal revolution of the 2-tori of the family C around L1 and L2 of the CR3BP-GH. Values
from the nonlinear and linear analysis, and related percentage error.
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D.3 Invariant Manifolds of the LPOs of the Mars-Phobos

CR3BP-GH

Figure D.45: Landing on Phobos through the Invariant Manifold of the L1 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible landing sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.46: Landing on Phobos through the Invariant Manifold of the L1 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.47: Landing on Phobos through the Invariant Manifold of the L2 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible landing sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.48: Landing on Phobos through the Invariant Manifold of the L2 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.49: Take-off from Phobos through the Invariant Manifold of the L1 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible departure sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.50: Take-off from Phobos through the Invariant Manifold of the L1 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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Figure D.51: Take-off from Phobos through the Invariant Manifold of the L2 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible departure sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.52: Take-off from Phobos through the Invariant Manifold of the L2 families
of periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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Figure D.53: Landing on Phobos through the Invariant Manifold of the L1 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible landing
sites, for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the
10%, 50%, 90% levels of the cumulative distribution of the IM simulated landed (same number
of trajectories from each departing orbit simulated). Phobos real shape.

Figure D.54: Landing on Phobos through the Invariant Manifold of the L1 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the
min incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.55: Landing on Phobos through the Invariant Manifold of the L2 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible landing
sites, for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the
10%, 50%, 90% levels of the cumulative distribution of the IM simulated landed (same number
of trajectories from each departing orbit simulated). Phobos real shape.

Figure D.56: Landing on Phobos through the Invariant Manifold of the L2 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the
min incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.57: Take-off from Phobos through the Invariant Manifold of the L1 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible departure
sites, for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where
the 10%, 50%, 90% levels of the cumulative distribution of the IM simulated departed (same
number of trajectories from each departing orbit simulated). Phobos real shape.

Figure D.58: Take-off from Phobos through the Invariant Manifold of the L1 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the
min velocity total magnitude at the launch, as a function of the longitude and latitude of
the departure site, for orbits that do not intersect Phobos’ real shape. Performances of the
trajectory: departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos
real shape.
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Figure D.59: Take-off from Phobos through the Invariant Manifold of the L2 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Region of possible departure
sites, for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where
the 10%, 50%, 90% levels of the cumulative distribution of the IM simulated departed (same
number of trajectories from each departing orbit simulated). Phobos real shape.

Figure D.60: Take-off from Phobos through the Invariant Manifold of the L2 families
of quasi-periodic LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide the
min velocity total magnitude at the launch, as a function of the longitude and latitude of
the departure site, for orbits that do not intersect Phobos’ real shape. Performances of the
trajectory: departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos
real shape.
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D.4 LPOs of the Mars-Phobos ER3BP-GH

Figure D.61: Periodic LPOs in the Mars-Phobos ER3BP-GH. Stability properties (sta-
bility indexes of the three couples of eigenvalues, plus the additional anomaly’s eigenvalue, of
the monodromy matrix, with the phase of the complex couple) of the POs of the family D
around L1 and L2 in the ER3BP-GH. Continuation with respect to the initial Phobos true
anomaly from pericenter (σ = 0rad) to apocenter (σ = πrad).

Figure D.62: Periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation variables’
curves profile. Continuation with respect to the initial Phobos true anomaly from pericenter
(σ = 0rad) to apocenter (σ = πrad) of the PO of the family D around L1 and L2 in the
ER3BP-GH.
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Figure D.63: Periodic LPOs in the Mars-Phobos ER3BP-GH. Stability properties (sta-
bility indexes of the three couples of eigenvalues, plus the additional anomaly’s eigenvalue, of
the monodromy matrix, with the phase of the complex couple) of the POs of the family B
around L1 and L2 in the ER3BP-GH. Continuation with respect to the initial Phobos true
anomaly from pericenter (σ = 0rad) to apocenter (σ = πrad).

Figure D.64: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Continuation
variables’ curves profile. Continuation with
respect to the eccentricity from CR3BP-GH
(σ = 0) to ER3BP-GH (σ = ePhobos) of a
medium-energy PO of the family A around
L1 of the CR3BP-GH.

Figure D.65: Quasi-periodic LPOs in the
Mars-Phobos ER3BP-GH. Continuation
with respect to the eccentricity from CR3BP-
GH to ER3BP-GH of a medium-energy PO of
the family A around L1 of the CR3BP-GH.
Rotation number’s profile of the true anomaly
(difference with respect to 180◦).
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Figure D.66: Quasi-periodic LPOs in the Mars-Phobos ER3BP-GH. Continuation vari-
ables curves’ profile. Continuation with respect to the stroboscopic time (σ = T ) from the
period of a small-energy 2D-QPO to the period of the 2D-QPO intersecting Phobos’ surface of
the family A around L1 in the ER3BP-GH.

Figure D.67: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Continuation variables’
curves profile: upper graphs are the coordinates and true anomaly of the first initial condi-
tion, lower graphs are the coordinates and true anomaly of all the set of sampling points of
the multiple shooting scheme. Continuation with respect to the eccentricity from CR3BP-GH
(σ = 0) to ER3BP-GH (σ = ePhobos) of a large-width - medium-energy 2D-QPO of the family
A around L1, starting at the pericenter.
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Figure D.68: 3-tori LPOs in the Mars-
Phobos ER3BP-GH. Simulation of a large-
width - medium-energy 3D-QPO of the family
A around L1 of the ER3BP-GH. Phobos true
anomaly’s profile, where the red curve high-
lights the profile at the double-frequency, and
related rotation number’s profile along time at
double-frequency. Integration up to the period
of the first transversal revolution of the back-
bone 2D-QPO in the CR3BP-GH.

Figure D.69: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Simulation of a large-width -
medium-energy 3D-QPO of the family A around L1 of the ER3BP-GH. Graphical visualization
of the set of initial conditions that represent a part of the invariant surface on a longitudinal
map. The first graph shows the two boundaries, that represent the set of the initial conditions
(sampling points of the multiple shooting scheme) collected at double-frequency. Invariant
curve of the backbone 2D-QPO displayed. The second graph shows also the surface on the
x-y-z plane filled within the two boundaries. The third graph shows the projection on the x-z
plane. Integration up to the period of the first transversal revolution of the backbone 2D-QPO
in the CR3BP-GH.
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Figure D.70: 3-tori LPOs
in the Mars-Phobos
ER3BP-GH. Simulation
of a large-width - small-
energy 3D-QPO of the
family A around L1 of
the ER3BP-GH. Graphical
visualization of the set
of initial conditions that
represent a part of the
invariant surface on a longi-
tudinal map. Area on the
x-z plane filled within the
two boundaries, that rep-
resent the set of the initial
conditions (sampling points
of the multiple shooting
scheme) collected at double-
frequency. Invariant curve
of the backbone 2D-QPO
displayed. Integration up
to the period of the first
transversal revolution of the
backbone 2D-QPO in the
CR3BP-GH.

Figure D.71: 3-tori LPOs
in the Mars-Phobos
ER3BP-GH. Simulation
of a large-width - small-
energy 3D-QPO of the
family B around L1 of
the ER3BP-GH. Graphical
visualization of the set
of initial conditions that
represent a part of the
invariant surface on a longi-
tudinal map. Area on the
x-z plane filled within the
two boundaries, that rep-
resent the set of the initial
conditions (sampling points
of the multiple shooting
scheme) collected at double-
frequency. Invariant curve
of the backbone 2D-QPO
displayed. Integration up
to the period of the first
transversal revolution of the
backbone 2D-QPO in the
CR3BP-GH.

Figure D.72: 3-tori LPOs
in the Mars-Phobos
ER3BP-GH. Simulation
of a large-width - small-
energy 3D-QPO of the
family C around L1 of
the ER3BP-GH. Graphical
visualization of the set
of initial conditions that
represent a part of the
invariant surface on a longi-
tudinal map. Area on the
x-z plane filled within the
two boundaries, that rep-
resent the set of the initial
conditions (sampling points
of the multiple shooting
scheme) collected at double-
frequency. Invariant curve
of the backbone 2D-QPO
displayed. Integration up
to the period of the first
transversal revolution of the
backbone 2D-QPO in the
CR3BP-GH.

Figure D.73: 3D-Tori in the Mars-Phobos ER3BP-GH. Period of the first revolution of
the third and second phases (see Eq.4.48) of the 3-tori of the AB family around L1 and L2

of the ER3BP-GH. The second graph is taken from the backbone 2D-QPO in the CR3BP-GH
(Fig.D.41). The third graph is the ratio between the periods of the two transversal phases. The
3D-QPOs are parameterized in the same way as their backbone 2D-QPO in the CR3BP-GH.
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Figure D.74: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Period of the first revolution
of the third and second phases (see Eq.4.48) of the 3-tori of the A family around L1 and L2

of the ER3BP-GH. The second graph is taken from the backbone 2D-QPO in the CR3BP-GH
(Fig.D.42). The third graph is the ratio between the periods of the two transversal phases. The
3D-QPOs are parameterized in the same way as their backbone 2D-QPO in the CR3BP-GH.

Figure D.75: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Period of the first revolution
of the third and second phases (see Eq.4.48) of the 3-tori of the B family around L1 and L2

of the ER3BP-GH. The second graph is taken from the backbone 2D-QPO in the CR3BP-GH
(Fig.D.43). The third graph is the ratio between the periods of the two transversal phases. The
3D-QPOs are parameterized in the same way as their backbone 2D-QPO in the CR3BP-GH.

Figure D.76: 3-tori LPOs in the Mars-Phobos ER3BP-GH. Period of the first revolution
of the third and second phases (see Eq.4.48) of the 3-tori of the C family around L1 and L2

of the ER3BP-GH. The second graph is taken from the backbone 2D-QPO in the CR3BP-GH
(Fig.D.44). The third graph is the ratio between the periods of the two transversal phases. The
3D-QPOs are parameterized in the same way as their backbone 2D-QPO in the CR3BP-GH.
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D.5 Invariant Manifolds of the LPOs of the Mars-Phobos

ER3BP-GH

Figure D.77: Landing on Phobos through the Invariant Manifolds of the L1 resonant
periodic LPOs of the ER3BP-GH. Region of possible landing sites, for orbits that do not
intersect Phobos’ real shape. Trajectories that provide the min incidence at the touch-down,
as a function of the longitude and latitude of the landing site. Performances of the trajectory:
landing velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.

Figure D.78: Landing on Phobos through the Invariant Manifolds of the L2 resonant
periodic LPOs of the ER3BP-GH. Region of possible landing sites, for orbits that do not
intersect Phobos’ real shape. Trajectories that provide the min incidence at the touch-down,
as a function of the longitude and latitude of the landing site. Performances of the trajectory:
landing velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.79: Take-off from Phobos through the Invariant Manifolds of the L1 reso-
nant periodic LPOs of the ER3BP-GH. Region of possible departure sites, for orbits that
do not intersect Phobos’ real shape. Trajectories that provide the min velocity total magnitude
at the launch, as a function of the longitude and latitude of the departure site. Performances of
the trajectory: landing velocity magnitude, angle of incidence, upward vertical velocity. Phobos
real shape.

Figure D.80: Take-off from Phobos through the Invariant Manifolds of the L2 reso-
nant periodic LPOs of the ER3BP-GH. Region of possible departure sites, for orbits that
do not intersect Phobos’ real shape. Trajectories that provide the min velocity total magnitude
at the launch, as a function of the longitude and latitude of the departure site. Performances of
the trajectory: landing velocity magnitude, angle of incidence, upward vertical velocity. Phobos
real shape.
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Figure D.81: Landing on Phobos through the Invariant Manifold of the L1 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Region of possible landing sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.82: Landing on Phobos through the Invariant Manifold of the L1 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.83: Landing on Phobos through the Invariant Manifold of the L2 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Region of possible landing sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.84: Landing on Phobos through the Invariant Manifold of the L2 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
incidence at the touch-down, as a function of the longitude and latitude of the landing site,
for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: landing
velocity magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.85: Take-off from Phobos through the Invariant Manifold of the L1 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Region of possible departure sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.86: Take-off from Phobos through the Invariant Manifold of the L1 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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Figure D.87: Take-off from Phobos through the Invariant Manifold of the L2 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Region of possible departure sites,
for orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.88: Take-off from Phobos through the Invariant Manifold of the L2 families
of 2D-QPOs LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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Figure D.89: Landing on Phobos through the Invariant Manifold of the L1 families
of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Region of possible landing sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.90: Landing on Phobos through the Invariant Manifold of the L1 families of
3-tori LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min incidence
at the touch-down, as a function of the longitude and latitude of the landing site, for orbits
that do not intersect Phobos’ real shape. Performances of the trajectory: landing velocity
magnitude, angle of incidence, downward vertical velocity. Phobos real shape.
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Figure D.91: Landing on Phobos through the Invariant Manifold of the L2 families
of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Region of possible landing sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated landed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.92: Landing on Phobos through the Invariant Manifold of the L2 families of
3-tori LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min incidence
at the touch-down, as a function of the longitude and latitude of the landing site, for orbits
that do not intersect Phobos’ real shape. Performances of the trajectory: landing velocity
magnitude, angle of incidence, downward vertical velocity. Phobos real shape.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

463 Zamaro Mattia



LPOs and IMs of the Mars-Phobos 3BP

Figure D.93: Take-off from Phobos through the Invariant Manifold of the L1 families
of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Region of possible departure sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.94: Take-off from Phobos through the Invariant Manifold of the L1 fami-
lies of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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Figure D.95: Take-off from Phobos through the Invariant Manifold of the L2 families
of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Region of possible departure sites, for
orbits that do not intersect Phobos’ real shape. Inner lines show subregions where the 10%,
50%, 90% levels of the cumulative distribution of the IM simulated departed (same number of
trajectories from each departing orbit simulated). Phobos real shape.

Figure D.96: Take-off from Phobos through the Invariant Manifold of the L2 fami-
lies of 3-tori LPOs of the Mars-Phobos ER3BP-GH. Trajectories that provide the min
velocity total magnitude at the launch, as a function of the longitude and latitude of the depar-
ture site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory:
departure velocity magnitude, angle of incidence, upward vertical velocity. Phobos real shape.
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D.6 Invariant Manifolds of the ALPOs of the Mars-Phobos

CR3BP-GH

Figure D.97: Landing on Phobos through the Invariant Manifold of the family A of
L1 periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide
the min incidence at the touch-down, as a function of the longitude and latitude of the landing
site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: land-
ing velocity magnitude, angle of incidence, downward vertical velocity. Constant acceleration
magnitude of 1mm/s2 along all coordinate axes directions (on the left/right directions +/−,
on the top directions ±x̂, in the center directions ±ŷ, on the bottom directions ±ẑ). Phobos
real shape.
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Figure D.98: Take-Off from Phobos through the Invariant Manifold of the L1 family
A of periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Trajectories that pro-
vide the min velocity total magnitude at the launch, as a function of the longitude and latitude
of the departure site, for orbits that do not intersect Phobos’ real shape. Performances of the
trajectory: departure velocity magnitude, angle of incidence, upward vertical velocity. Con-
stant acceleration magnitude of 1mm/s2 along all coordinate axes directions (on the left/right
directions +/−, on the top directions ±x̂, in the center directions ±ŷ, on the bottom directions
±ẑ). Phobos real shape.
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Figure D.99: Landing on Phobos through the Invariant Manifold of the family A of
L2 periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Trajectories that provide
the min incidence at the touch-down, as a function of the longitude and latitude of the landing
site, for orbits that do not intersect Phobos’ real shape. Performances of the trajectory: land-
ing velocity magnitude, angle of incidence, downward vertical velocity. Constant acceleration
magnitude of 1mm/s2 along all coordinate axes directions (on the left/right directions +/−,
on the top directions ±x̂, in the center directions ±ŷ, on the bottom directions ±ẑ). Phobos
real shape.
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Figure D.100: Take-Off from Phobos through the Invariant Manifold of the L2 family
A of periodic artificial LPOs of the Mars-Phobos CR3BP-GH. Trajectories that pro-
vide the min velocity total magnitude at the launch, as a function of the longitude and latitude
of the departure site, for orbits that do not intersect Phobos’ real shape. Performances of the
trajectory: departure velocity magnitude, angle of incidence, upward vertical velocity. Con-
stant acceleration magnitude of 1mm/s2 along all coordinate axes directions (on the left/right
directions +/−, on the top directions ±x̂, in the center directions ±ŷ, on the bottom directions
±ẑ). Phobos real shape.
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Appendix E

Quasi-Satellite Orbits of the

Mars-Phobos 3BP

Figure E.1: QSOs around Phobos. Phobos orbit equatorial, without Mars J2. ∆e = 0.01,
∆i = 0. Orbit and plots in black line of the relative distance’s magnitude, radial and transversal
component. The plots overlap with the blue lines that are related to the equivalent CR3BP.
Dotted lines indicate the reference distance of Phobos’ mean radius.
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Figure E.2: QSOs around Phobos. Phobos orbit equatorial, without Mars J2. ∆e = 0.01,
∆i = 0. Orbital elements.

Figure E.3: QSOs around Phobos. Phobos orbit equatorial, without Mars J2. ∆e = 0.01,
∆i = 0. Secular derivative of the orbital elements, taken every orbital period. The last two
graphs correspond to the mean motion, respectively considered as the derivative of the mean
anomaly and the mean longitude, where the dotted line is the reference of the original 2B value.
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Figure E.4: QSOs around Phobos. Phobos orbit circular and equatorial, with Mars J2.
∆e = 0.01, ∆i = 0. Orbit and plots in black line of the relative distance’s magnitude, radial
and transversal component. The plots do not overlap with the blue lines that are related to the
mean CR3BP. Dotted lines indicate the reference distance of Phobos’ mean radius.

Figure E.5: QSOs around Phobos. Phobos orbit circular and equatorial, with Mars J2.
∆e = 0.01, ∆i = 0. Orbital elements.
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Figure E.6: QSOs around Phobos. Phobos orbit circular and equatorial, with Mars J2.
∆e = 0.01, ∆i = 0. Secular derivative of the orbital elements, taken every orbital period. The
last two graphs correspond to the mean motion, respectively considered as the derivative of the
mean anomaly and the mean longitude, where the dotted line is the reference of the original
2B value.

Figure E.7: QSOs around Phobos. Phobos orbit circular and equatorial, with Mars J2.
∆e = 0.01, ∆i = 0. Difference between the spacecraft and Phobos’ secular derivatives of the
orbital elements, taken every orbital period. The last two graphs correspond to the difference
of the mean motions, respectively considered as the derivative of the mean anomaly and the
mean longitude, where the dotted line is the reference of the original 2B value.
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Figure E.8: QSOs around Phobos. Phobos orbit equatorial, with Mars J2. ∆e = 0.01,
∆i = 0. Orbit and plots in black line of the relative distance’s magnitude, radial and transversal
component. The plots do not overlap with the blue lines that are related to the equivalent mean
CR3BP. Dotted lines indicate the reference distance of Phobos’ mean radius.

Figure E.9: QSOs around Phobos. Phobos orbit equatorial, with Mars J2. ∆e = 0.01,
∆i = 0. Orbital elements.
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Figure E.10: QSOs around Phobos. Phobos orbit equatorial, with Mars J2. ∆e = 0.01,
∆i = 0. Secular derivative of the orbital elements, taken every orbital period. The last two
graphs correspond to the mean motion, respectively considered as the derivative of the mean
anomaly and the mean longitude, where the dotted line is the reference of the original 2B value.

Figure E.11: QSOs around Phobos. Phobos orbit equatorial, with Mars J2. ∆e = 0.01,
∆i = 0. Difference between the spacecraft and Phobos’ secular derivatives of the orbital
elements, taken every orbital period. The last two graphs correspond to the difference of the
mean motions, respectively considered as the derivative of the mean anomaly and the mean
longitude, where the dotted line is the reference of the original 2B value.
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Figure E.12: QSOs around Phobos. Phobos real orbit, with Mars J2. ∆e = 0.01,
∆i = 0.005rad. Orbit after 30 and 120 orbital periods, with projections on the coordinate
planes. Plots in black line of the relative distance’s magnitude, radial, transversal and vertical
component. The plots do not overlap with the blue lines that are related to the equivalent
mean CR3BP. Dotted lines indicate the reference distance of Phobos’ mean radius.
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Figure E.13: QSOs around Phobos. Phobos real orbit, with Mars J2. ∆e = 0.01, ∆i =
0.005rad. Orbital elements.

Figure E.14: QSOs around Phobos. Phobos real orbit, with Mars J2. ∆e = 0.01, ∆i =
0.005rad. Secular derivative of the orbital elements, taken every orbital period. The last two
graphs correspond to the mean motion, respectively considered as the derivative of the mean
anomaly and the mean longitude, where the dotted line is the reference of the original 2B value.
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Figure E.15: QSOs around Phobos. Phobos real orbit, with Mars J2. ∆e = 0.01, ∆i =
0.005rad. Difference between the spacecraft and Phobos’ secular derivatives of the orbital
elements, taken every orbital period. The last two graphs correspond to the difference of the
mean motions, respectively considered as the derivative of the mean anomaly and the mean
longitude, where the dotted line is the reference of the original 2B value.
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Appendix F

Libration Point Orbits around

Deimos

In this chapter a preliminary analysis of the orbital dynamics around the Martian moon

Deimos is conducted, using the same approach followed in this thesis for Phobos.

The physical and orbital characteristics of Deimos are collected in Table 2.1. It is

evident that Deimos has half the size and double the distance from Mars with respect

to Phobos. This significantly differentiates the SOI of the two moons for practical ap-

plications. The Hill’s SOI of Deimos has radius 21.471km and its maximum altitude

over Deimos’ surface (mean ellipsoid) is 13.671km. Recall that the maximum width of

the shell between the Hill’s SOI and Phobos’ surface is instead of only 3.5km. Hence,

the volume of the region of influence of Deimos, where a spacecraft can fly, is signif-

icantly larger than the case of Phobos, and this space is more distant in average from

the surface of the body, which is also smaller.

The following step is to evaluate the orbital perturbations in the vicinity of Deimos.

The gravity field of Deimos is described in [187] with a GHs series expansions up to

degree and order four, and this reference provides also the shape harmonics to model

the surface of the moon up to degree and order six. In particular, J2 is the dominant

GH, and its value is approximately the same than the one of Phobos. One notes that

the eccentricity of Deimos is only 1% of the one of Phobos. The results are presented

in Fig.F.1, with the same approach described in section 2.4 (a2 now refers to the mag-

nitude of Deimos’ Keplerian gravity). As said above, since the Deimos’ SOI spans

a range of altitudes much larger than the case of Phobos, the relative weight of the

perturbation of the inhomogeneous gravity field of Deimos over the main forces of the

CR3BP is only the 20% of what happens with Phobos. The effect of the eccentricity

of the Mars-Deimos’ orbit is also less significant, consistently with the ratio of the two

eccentricity values. Compared with the case of Phobos, there is a significant decrease

also on the Mars’ J2 differential perturbation, and a slight increase (as a relative ra-

tio aP /a2) in the Sun’s 4B effect and SRP, consistently with the larger extension of

the SOI. However, these effects remain still small perturbations of the relative motion.
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Figure F.1: Differential perturbations analysis inside Deimos’ sphere of influence.
Vertical dotted lines indicate Deimos’ major size and Hill’s SOI’s radius.

Thus, the main result of this preliminary analysis is that, as a paramount difference

from the case of Phobos, the CR3BP is a reliable model for the preliminary

analysis of the relative orbital dynamics around Deimos.

Regarding the exploitation of the natural LPOs around Deimos, only the effect of

the Deimos’ gravity harmonics should be probed to be considered or not in the model

of the dynamics. In particular, Deimos is tidally locked like Phobos, thus the model

of the CR3BP-GH of Eq.3.37 can be used also for this moon. From the first-order

20% figure, of the difference between the relative weight of the GHs in the two cases

estimated before, it could be forecasted that the LPOs of the CR3BP would not be

significantly influenced.

The LPs in the Mars-Deimos CR3BP are positioned at an altitude over Deimos

of 13.664km (L1) and 13.678km (L2). The LPs in the CR3BP-GH with the GHs of

Deimos are positioned at an altitude of 13.911km (L1) and 13.956km (L2), and they

are displaced in the y-z components by [−23m,−25m] (L1) and [−20m,−42m] (L2).

Thus, the position of the two LPs in the more accurate dynamics is displaced for a

total of 246m (L1) and 279m (L2), and this is consistent with the first-order forecast.

To probe the effect of the GHs on the LPOs, it is straightforward to do that by

computing the behavior of small LPOs. Their linear solution is computed like in sec-

tion 4.2.2.1, and is shown in Fig.F.2. The effect of the inhomogeneous gravity field

of Deimos is difficult to be appreciated, because it produces only a very small tilt if

compared with the case of Phobos in Fig.4.45, where the LPOs are also highly distorted

and so completely different families develop. Thus, the GHs of Deimos do not change

the families of the LPOs, that remain the classical families of the CR3BP : planar

and vertical Lyapunov, Northern and Southern Halo, right and left axials. Moreover,

the eccentricity effect introduces an oscillation on the LPOs of only 4m. This is not

significant because is of the same order of magnitude (more likely inferior) than the

estimation error of the navigation system.

Finally, the periodic LPOs around Deimos can be computed with the classical method-
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Figure F.2: Periodic LPOs in the Mars-Deimos CR3BP-GH. Linear center manifold’s
POs around L1 and L2 of the Mars-Deimos CR3BP-GH. The normal mode’s initial condition
is set to 1% of the normalized distance between secondary and LP. Origin at the LP of the
CR3BP-GH.

Figure F.3: Periodic LPOs in the Mars-Deimos CR3BP-GH. Graphical visualization
of the planar Lyapunov (red), vertical Lyapunov (green), Northern Halo (cyan), Southern
Halo (magenta), and right axial (yellow) families of POs around L1 in the CR3BP-GH. Shape
harmonics series expansion for Deimos’ surface.

ologies tailored for the CR3BP. Nevertheless, in this chapter the model of the CR3BP-

GH is used to compute the LPOs, following the techniques developed in this thesis for

the case of Phobos (see section 4.2.2). In particular, the numerical approach is chosen,

focusing on the LPOs around L1. Due to the smaller µ with respect to the one of

Phobos, the two collinear manifolds are approximately symmetric. The linear solutions

of Fig.F.2, that represent the planar and vertical Lyapunov orbits at small-energy, are

used as starting guesses for a NC with respect to the energy. It is worth to note that
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Figure F.4: Periodic LPOs in the Mars-Deimos CR3BP-GH. Graphical visualization
of the planar Lyapunov (red), vertical Lyapunov (green), Northern Halo (cyan), Southern
Halo (magenta), and right axial (yellow) families of POs around L1 in the CR3BP-GH. Shape
harmonics series expansion for Deimos’ surface.

a smaller µ anticipates the bifurcations, that tend to develop closer to the LP (in nor-

malized units). The CR3BP-GH is not symmetric, therefore the bifurcation diagram

of the families of LPOs does not correspond to the classical scheme of the CR3BP.
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Figure F.5: Periodic LPOs in the Mars-Deimos CR3BP-GH. Examples of stable Halo
orbits: two Northern Halo and three Southern Halo around L1 in the CR3BP-GH.

Figure F.6: Periodic LPOs in the Mars-Deimos CR3BP-GH. Characteristic curves of
the three stability indexes of the families of Northern (on the left) and Southern (on the right)
Halo orbits around L1 in the CR3BP-GH, parameterized by the differential Jacobi integral with
respect to the LP. Focus on the region of stable orbits, where the stability indexes are in [−2, 2].

However, the effect of the GHs on the morphology of the orbits is not significant as

proved before, so there is no need to rename the families of LPOs like in the case of

Phobos. Fig.F.3 provides a sample of the periodic LPOs around L1: a medium and

large planar Lyapunov (red), a medium and large vertical Lyapunov (green), a small

Northern Halo (cyan), a large Southern Halo (magenta), a medium right axial (yellow).

Fig.F.3-F.4 provide a summary of all the families. One notes that large vertical Lya-

punov and large Halo orbits can provide a ground-track over the poles. In particular,

due to the fact that the ancestor Lyapunov of the Halo branches has moved closer to

the LP, and the altitude of the SOI over Deimos’ surface is much larger than it happens
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for Phobos, a paramount result is obtained: large Halo orbits around Deimos are

marginally stable. This is proved in Fig.F.6, where the Floquet stability indexes

are represented. These stable Halo orbits are visualized in Fig.F.5. The range of this

subset is constrained with respect to the whole family: for the Northern Halo orbit

its spans orbits in a range of 738m, for the Southern Halo orbits 1, 614km. Moreover,

these large stable orbits are close to Deimos, and the largest stable Halo orbits of the

Southern branch intersect Deimos’ surface.

The inside branch of the invariant manifolds of the large LPOs will intersect Deimos’

surface, and can be used for natural landing and take-off, like in the case of Phobos

(see section 4.4.6). In contrast, the largest volume available inside the SOI of Deimos

should allow the existence of homoclinic and heteroclinic connections between the two

LPs, revolving around the moon.

In conclusion, Deimos’ orbital dynamics are far more classic than Phobos, and mis-

sion planning could be undertaken with the classical CR3BP.
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[53] G. Gómez, J. J. Masdemont, and J. M. Mondelo. The dynamical substitutes of

the libration points for simplified Solar System models. In Libration Point Orbits

and Applications, Aiguablava, June 10-14 2002.

[54] R. Broucke. Stability of periodic orbits in the elliptic restricted three-body prob-

lem. AIAA Journal, 7(6):1003–1009, 1969.

[55] M. Lara. On numerical continuation of families of periodic orbits in a parametric

potential. Mechanics Research Communications, 23(3):291–298, 1996.

[56] M. Lara. Three-body dynamics around the smaller primary: Application to

the design of science orbits. Journal of Aerospace Engineering, Sciences and

Applications, 2(1):53–65, 2010.

[57] M. S. Wallace, J. S. Parker, N. J. Strange, and D. Grebow. Orbital operations

for Phobos and Deimos exploration. In AIAA-AAS Astrodynamics Specialist

Conference, Minneapolis, August 13-16 2012.

[58] M. Ceccaroni and J. Biggs. Low thrust propulsion in a coplanar circular restricted

four-body problem. Celestial Mechanics and Dynamical Astronomy, 112(2):191–

219, 2012.

University of Strathclyde
PhD in Mechanical and Aerospace Engineering

489 Zamaro Mattia



Bibliography

[59] M. Morimoto, H. Yamakawa, and K. Uesugi. Periodic orbits with low thrust

propulsion in the restricted three-body problem. Journal of Guidance, Control,

and Dynamics, 29(5):1131–1139, 2006.

[60] C. Bombardelli. Stable artificial equilibrium points in the Mars-Phobos system.

In 1st IAA-AAS Conference on Dynamics and Control of Space Systems, Porto,

March 19-21 2012.

[61] P. J. S. Gil and J. Schwartz. Simulations of Quasi-Satellite orbits around Phobos.

Journal of Guidance, Control and Dynamics, 33(3):901–914, 2010.

[62] F. da Silva Pais Cabral. On the stability of Quasi-Satellite orbits in the elliptic

restricted three-body problem. Master’s thesis, Universidade Técnica de Lisboa,
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