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Abstract

In this thesis, we extend the principal component analysis (PCA) to account for both

stationary and non-stationary time series data. The dimension reduction methods

we propose will employ a moving cross-covariance matrix of data, which can be up-

dated as we move in time. We show that the moving cross-covariance matrix can

extract dynamic dependence among variables of both stationary and non-stationary

series.

The first two methods we propose can be considered as a generalization of

dynamic principal component analysis (DPCA) of Ku et al. (1995) to the non-

stationary case. The first method will apply eigenanalysis on the moving cross-

covariance matrix of the extended data vector that can be formed by including

lagged series into the original data vector. The second method is different from the

first one, where we apply eigenanalysis on a quadratic-order of the moving cross-

covariance matrix of the extended data vector. In order to optimize the results of

our methods, we will propose a new criterion to determine the optimal number of

principal components to retain. Additionally, we are going to introduce the mov-

ing cross-correlation function that can be used to evaluate the correlations between

non-stationary variables. The third dimension reduction method that we introduce

will generalize the principal component analysis for time series (TS-PCA) of Chang

et al. (2018) to non-stationary series. This method seeks a linear transformation

such that the transformed series is segmented into uncorrelated subseries with lower

dimensions that can be separately analysed as they are not correlated. The latter

method will account for high-dimensional time series.
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Theoretical properties of the proposed methods show the consistency of the used

estimators. All methods prove their abilities to dimension reduction of both sta-

tionary and non-stationary series based on simulated and real data sets.
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Chapter 1

Introduction

1.1 Background

Multivariate time series analysis has many applications as it can account for inter-

relations between variables. Advanced technology nowadays allows for the collection

of multivariate natured data in a wide range of fields, such as economics, industry,

healthcare and social networks. The majority of these data has a large number of

variables. Many of the existing models, such as vector autoregressive integrated mov-

ing average (VARIMA) models, face the challenge of complexity in their structures

when applied to series with large dimensions. This complexity occurs because the

number of parameters expands enormously fast as the dimension increases, which

leads to complex and over-parametrized models. Therefore, reducing the dimension

of time series becomes critical to manage such data. The idea behind dimension re-

duction is to represent original data with a less-dimensional version that has almost

all information as the original one. Once the reduced dimensional data is produced,

further analyses can be applied to it instead of the original series.

Many approaches have been proposed in literature for dimension reduction. One

popular approach to achieving this is the use of principal component analysis (PCA)

by projecting the original data into a space with fewer dimensions. PCA is a com-

monly used technique to perform dimension reduction for static and independent

multivariate data. However, because of the dynamic nature of multivariate time

1
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series data, the classical PCA technique will not be applicable. The reason is that

classically PCA is static and therefore will not be able to capture the dynamic de-

pendence between the components (i.e. variables) of a multivariate time series.

Ku et al. (1995) introduced dynamic principal component analysis (DPCA) by

including lagged series into the analysis. As its name suggests, DPCA is an exten-

sion of the classical PCA to dynamic data (e.g., time series data). Without losing

a valuable amount of information, the results of projected components are linear

combinations of both current and lagged values of the data.

The principal component anaysis for time series (TS-PCA) of Chang et al. (2018)

extended PCA by transforming the original series into uncorrelated subseries with

lower dimensions. The resulted subseries can be separately analysed as they are

uncorrelated.

Both DPCA and TS-PCA assume stationary series, and therefore, they are not

suitable to reduce the dimensions of non-stationary series such as stock prices. Thus,

the need for a dimension reduction method that can deal directly with non-stationary

multivariate time series increases.

Many PCA-based methods were proposed in order to account for non-stationarity

such as moving window principal component analysis (MWPCA) by Lennox et al.

(2001) and Variable MWPCA by He and Yang (2008) and many others. These

methods were mostly developed for process monitoring where PCA is performed

separately on each window. By including the next time point and excluding the

oldest time point, new results are obtained based on the new window and so on.

However, valuable information would be lost by excluding a large amount of obser-

vation as the results are based on one window at a time.

Brillinger (1981) proposed another related approach where the reduction is pro-

duced based on a reconstruction criterion. The resulted dynamic components are
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linear combinations of the original series. Peña and Yohai (2016) proposed the gen-

eralized dynamic principal component analysis (GDPCA) where the original data is

reconstructed based on a loss function. This method accounts for both stationary

and non-stationary series and produces dynamic principal components that could be

non-linear combinations of the original data with nearly zero reconstruction error.

This precision is a result of using an iteration method that minimizes the reconstruc-

tion error. However, using this iteration method reduces the accuracy of performing

forecasting using GDPCA’s results.

Factor models are widely used tools to reduce the dimension of multivariate time

series where the variables of the observed series are considered as linear combinations

of some hidden factors that could be interpreted subjectively. See, for example, Peña

and Box (1987), Stock and Watson (1988, 2002), Bai and Ng (2002), Forni et al.

(2005), Peña and Poncela (2006), Pan and Yao (2008), Lam and Yao (2012) and

many others. These models are related to PCA as they are based on eigenanalysis

of the covariance matrix of the data.

Dimension reduction for time series data can also be achieved using canonical

correlation analysis proposed by Box and Tiao (1977) and scalar component analysis

by Tiao and Tsay (1989).

In this research, new dimension reduction methods will be proposed. The new

methods are general in the sense that they can be applied to a wide range of multi-

variate stationary and non-stationary time series data. Under the PCA framework,

it will be shown that using an advance matrix that can be updated as we move in

time will enable PCA to deal with non-stationary time series more effectively. The

assumptions of the introduced methods will be discussed, along with their theoret-

ical properties. Additionally, the numerical properties of the introduced methods

will be investigated based on simulated and real data sets.
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1.2 Overview of the Study

In this thesis, dimension reduction methods will be developed in order to account

for both stationary and non-stationary multivariate time series data. PCA-based

methods offer flexible frameworks for reducing the dimension of a wide range of

data. We are going to show that by implementing an advance cross-covariance ma-

trix named moving cross-covariance matrix instead of the classical cross-covariance

matrix, PCA can be extended to account for static, dynamic, stationary and non-

stationary behaviours in a time series data.

Chapter 1 includes a background and a historical review of dimension reduction

methods. In Chapter 2, a brief review of preliminary topics related to time series

data and dimension reduction will be provided.

In Chapter 3, moving dynamic principal component analysis (MDPCA) will be

proposed. This method will generalize DPCA in order to be applicable on non-

stationary time series. The main difference between DPCA and the new method

is that the former uses the classical covariance matrix and the latter uses a mov-

ing cross-covariance matrix. The method we propose is different from MWPCA

methods mentioned earlier, where our method will use all observations to calculate

one moving cross-covariance matrix that consists of static and dynamic information

of the whole series. New proposed diagnostic and optimization tools for MDPCA’

results will be provided. The theoretical properties of our estimators will be shown.

The ability of MDPCA to dimension reduction will be examined on both simulated

and real data.

Chapter 4 introduces a new method named the quadratic moving dynamic princi-

pal component analysis (QMDPCA). This dimension reduction method also extends

DPCA to reduce the dimension of non-stationary series. This method will be dif-

ferent from DPCA and MDPCA, where QMDPCA uses a quadratic form of the

moving cross-covariance matrix in its calculations. Theoretical properties of the

used estimators will be studied. By the end of this chapter, numerical evidence will
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be provided to support our method where both simulated and real data are consid-

ered.

In Chapter 5, another dimension reduction method named the generalized prin-

cipal component analysis for time series (GTS-PCA) will be revealed. This method

will extend the stationary TS-PCA of Chang et al. (2018) to non-stationary time

series. It will be shown that the results of GTS-PCA are uncorrelated subseries with

smaller dimensions that can be analysed individually. In this chapter, a full descrip-

tion of the GTS-PCA method will be given. Also, a new columns’ rearrangement tool

called the maximum moving cross-correlation method will be proposed in order to

determine the resulted uncorrelated subseries. Theoretical asymptotic properties of

the used estimators will also be shown. This chapter will include simulation studies

and real data examples in order to justify the generality of the GTS-PCA method to

reduce the dimension of both stationary and non-stationary multivariate time series.

The last chapter of this thesis is Chapter 6, where we conclude our work by

providing essential remarks, and stating possible ideas for further research.

We developed eight packages (i.e. libraries) using the statistical software R.

These packages consist of the necessary functions used to carry out the analyses

in Chapter 3, 4 and 5. The functions are publicly available under the following R

packages: GTSPCA of Alshammri (2020a), MACF of Alshammri (2020b), MCOV of Al-

shammri (2020c), MDPCA of Alshammri (2020d), MpermutMax of Alshammri (2020e),

QMDPCA of Alshammri (2020f), RCC_MDPCA of Alshammri (2020g) and RCC_QMDPCA of

Alshammri (2020h).



Chapter 2

Preliminaries

2.1 Multivariate Time Series

Multivariate time series analysis can be considered as a vital branch of multivari-

ate statistical analysis. A multivariate time series can be obtained by observing a

sequence of measurements of two or more variables of interest over equally spaced

time points (e.g. hourly, daily or monthly). Multivariate time series analysis studies

the overall and the dynamic relations among variables under study.

Let Z be a multivariate time series with m variables that are observed at T

equally spaced time points (indexed by t where 1 ≤ t ≤ T ), which can be represented

as an m× T matrix or as an m-dimensional column vector zt = (z1,t, z2,t, . . . , zm,t)
′
.

For example, consider the daily stock prices of the companies Apple and Microsoft

in US Dollar from Nov 07, 2013 to Dec 18, 2017. This data is available on Yahoo!

Finance. Let z1,t represents the daily stock price of Apple and z2,t represents daily

stock price of Microsoft. By combining these two series into a multivariate time

series, one can gain more knowledge about the behaviours of z1,t taking z2,t into

consideration, instead of studying each series separately. In other words, by using a

multivariate time series, we are able to explore the overall and the within-relation

between daily stock prices of Apple and Microsoft, where the value of one of them

could be correlated with the other. A time series plot of the multivariate time series

of the daily stock price of the two companies is shown in Figure 2.1.

6
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Figure 2.1: The daily stock prices of the companies Apple and Microsoft from

November 2013 to December 2017.

There are many ways to explore a multivariate time series data such as the daily

stock prices data above. For instance, one could describe the overall pattern of

each series. Also, it is possible to study the interaction between the variables and

investigate how the past values of one variable affect the current and future values

of itself and other variables. Furthermore, a prediction of future values of the series

can be carried out.

There are basic characters that enable us to describe a time series such as trends,

seasonality, cycles and random variations. Trends can be found when the values of

a time series increase or decrease gradually over time. This can cause the mean

of the series to be non-constant over time. Seasonality exists where a pattern is

repeated at regular intervals called seasons (e.g. weeks, quarters or years). Cycles

are patterns that are repeated at long-term periods that are not related to seasons.

Random variations are sudden changes that might not be explained in the series,

which occur randomly and do not follow an apparent pattern. By looking back at

the daily stock prices example to describe the time series of the two variables ac-

cording to their plots in Figure 2.1, we can notice that the daily stock prices of both

Apple and Microsoft increased gradually over time, which is sign for existing trends
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for both variables. Also, we do not notice any repeated patterns (i.e. seasonality or

long-term cycles) in both variables.

Furthermore, linear models can be used to predict the current values of a mul-

tivariate series based on past values (also called lagged values) of the series. The

prediction can be made using models such as vector autoregressive integrated moving

average (VARIMA) family models. These models have some regularity assumptions.

One of the main assumptions is related to the stationarity of the multivariate series

under study. The concept of stationarity will be discussed in the next topic.

2.2 Stationarity of a Multivariate Time Series

The following is an overview of the stationarity of a multivariate time series. Gener-

ally, when studying time series analysis, stationarity is a critical concept as statistical

tools used to analyse stationary time series might be not suitable for a non-stationary

time series.

A multivariate time series zt is said to be strictly stationary if the joint distribu-

tion of (zt1 , zt2 , · · · , ztk) is the same as that of (zt1+l, zt2+l, · · · , ztk+l) for arbitrary

positive integers t1, · · · , tk, k and l. This is, shifting the time origin of a strictly

stationary data will not affect the joint distribution of the data; See Reinsel (2003).

An example of a strictly stationary time series is the independent and identically

distributed Gaussian white noise process. Other types of stationarity with fewer

restrictions on the data are available and called weakly stationary time series.

A time series zt is said to be weakly stationary if its first two moments exist and

are independent of time. That is, in order for the series zt to be weakly stationary,

we need to verify the following two conditions:

1. E(zt) = µ is constant and independent of t.

2. Cov(zt, zt+l) = E[(zt−µ)(zt+l−µ)
′
] is constant and independent of t for each

l ≥ 0.
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Here E(zt) is the expectation of zt, µ is the m-dimensional mean vector of zt and

Cov(zt, zt+l) is the m × m covariance matrix between zt and its self l time-points

apart; See Reinsel (2003). An example of a weak stationarity is the white noise

process. Furthermore, it can be seen that the conditions of weakly stationarity are

implied by strict stationarity. Hence a strictly stationary series is also weakly sta-

tionary, but the opposite does not have to be true.

As described above that a weakly stationary series has appealing properties that

make the handling of this type of data easier such as constant statistical properties

(i.e. mean, covariance and correlation) over time. This is one main reason that

many approaches are developed for stationary series such as the early mentioned

VARIMA models. In the following, we are going to use the term stationary to refer

to a weakly stationary series.

Local stationarity is an important type of non-stationarity. Informally speaking,

a time series is locally stationary if its statistical properties change slowly as we move

in time; See Dahlhaus and Rao (2006). A formal definition of a locally stationary

process can be found in Vogt (2012). An interesting feature of local stationary series

is that its statistical properties can be calculated within certain width (i.e. window)

around each time point similar to stationary series.

Checking the stationarity of a multivariate time series can be done in different

ways such as investigating time series plots or using statistical tests. Plotting time

series data is a subjective way to assess the stationarity of each variable in the se-

ries, where one can spot an apparent trend or seasonality pattern that indicate a

significant change in the mean of the series or notice a change in data variation over

time which can be a sign of a non-constant covariance. If a multivariate time series

is stationary, then all its variables are stationary. If one variable of a multivariate

time series is non-stationary, then the multivariate time series is non-stationary. If

we look back again at the time series plots of variables from the daily stock prices

example in Figure 2.1, we find this series to be an example of a non-stationary mul-
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tivariate time series as each variable exhibits an apparent trend, which violates the

constant mean assumption of a stationary series.

Statistical tests can also be used to assess the stationarity of a multivariate time

series, which are more objective than using time series plots. Jentsch and Subba Rao

(2015) developed a test for checking the stationarity of a multivariate time series

based on the discrete Fourier transforms (DFT) of a multivariate time series. This

test investigates the stationarity of a multivariate time series at once instead of

checking each variable individually. It is also possible to use univariate tests such

as Dickey–Fuller test to spot non-stationary variables in a multivariate time series;

See Dickey and Fuller (1979).

It is possible to obtain a stationary series that is a linear combination of non-

stationary variables. The non-stationary variables in this case are called co-integrated

variables, and this procedure is called co-integration. In other words, co-integration

could produce stationary linear combinations of variables in the series, where these

variables are non-stationary. A popular co-integration test is Johansen’s test; See

Johansen (1995) for more details about co-integration tests. Zhang et al. (2019) pro-

posed to do co-integration analysis for dimensional reduction of a high dimensional

time series based a nonnegative definite matrix when there is co-integration relation

among components. The co-integration approach is entirely different from PCA.

However, one wonder if these two approaches can be combined in a new approach,

which can be a subject of a new research.

It is a common practice to transform a non-stationary series into a stationary

series so that the data can be analyzed using stationary models and tools. One can

take the logarithm of the data so that the transformed data (i.e. data obtained af-

ter applying the logarithm) has a reduced variance. Moreover, one can use methods

such as differencing to remove a deterministic trend or a seasonality. Differencing

can be done by taking the difference between consecutive observations in the series.

For example, for a variable zt, which is non-stationary series due to a trend, then
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5zt = zt− zt−1 can be stationary, where this is called first-order differencing. There

are cases where first differencing will not stabilize the mean of the series so that

second differencing is needed (i.e. first differencing is performed again on a first dif-

ferenced series) and so on. Differencing for seasonality can be done by differencing

between observations that are one season apart. See Tsay (2013) for further reading.

2.3 Principal Component Analysis

Principal component analysis is a widely used tool in multivariate analysis in gen-

eral. PCA can reach dimensionality reduction of the data by searching for linear

combinations of the original variables. These combinations, in turn, are supposed to

represent the original data with a smaller number of components. The idea behind

this is to return important combinations that explain most variations of the original

data and exclude those with non-important contributions.

In specific, let z be an m-dimensional random vector z = (z1, z2, . . . , zm)
′
. For

simplicity, assume z has a zero m× 1 mean vector z. This is

z =
1

n

n∑
i=1

zi = 0.

Then the m×m cross-covariance matrix of z will be

Cov(z) = Σ =
1

n
zz
′
.

Now, suppose λ1 ≥ λ2 ≥ · · · ≥ λm are the m eigenvalues, and u1, u2, · · · , um are

the corresponding eigenvectors of Σ. Methods such as spectral decomposition can

be used to obtain the eigenvalues and eigenvectors of Σ. In particular, spectral

decomposition of Σ gives

Σ = UΛU
′

where U is an m×m matrix whose columns are the eigenvectors u1, u2, · · · , um of

Σ and Λ is an m×m diagonal matrix whose diagonal entries are the corresponding

eigenvalues λ1, λ2, · · · , λm.
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PCA transforms z into a new data vector x that consists of m components

called principal components (PC), which are linear combinations of the m variables

of z. The new vector x is obtained by left multiplying z by the transpose of the

eigenvectors’ matrix U as follows

x = U
′
z.

Notice that xi (i.e. the ith component of x) where 1 ≤ i ≤ m, can be obtained as

follows

xi = u
′

iz.

Furthermore, the variance of xi is ith eigenvalue of Σ. This is

Var(xi) = λi.

Thus, the amount of variation in original data that is explained by xi is

λi
λ1 + λ2 + · · ·+ λm

.

Up to this point, x still has a dimension of m which is equivalent to the dimension

of z. Dimension reduction in PCA can be done by retaining only the first k PCs,

where k ≤ m, such that
λ1 + λ2 + · · ·+ λk
λ1 + λ2 + · · ·+ λm

' 1.

In other words, PCA is aiming to retain only the first k components of x (i.e.

x∗ = (x1, x2, · · · , xk)
′
) that explain almost all variation of the original data z. The

retained k PCs will represent z where further analyses can be carried out on them

instead of z. See Jolliffe (2002) and Tsay (2013) for further reading about PCA.

Example 2.3.1 In this example, PCA will be applied on a multivariate data set

mtcars that is available in R database. This data set compares 32 different cars

in terms of 11 features taken from a car magazine; See Henderson and Velleman

(1981). In this example, nine variables (i.e. features) from the mtcars data set

will be used with all 32 samples. Notice that the number of samples used in this

example is relatively small for data set with nine variables. In order to gain better
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results, a larger sample could be used. However, the purpose of this example is just

to show how PCA can be used to reduce the dimension of multivariate data. The

used variables are listed below along with their labels:

1- mpg: Miles per gallon (US).

2- cyl: Number of cylinders.

3- disp: Displacement (cu.in.).

4- hp: Gross horsepower.

5- drat: Rear axle ratio.

6- wt: Weight (1000 lbs).

7- qsec: 1/4 mile time.

8- gear: Number of forward gears.

9- carb: Number of carburetors.

PCA is a scale-sensitive method, where it assumes all variables to be measured

using the same scale, where important variables are those with larger variations.

When variables are measured on different scales, this can enable less-important

variables to have larger variation, which can lead to non-valid results. In order to

avoid this, one can scale (i.e. standardize) the data before applying PCA, which

is the case for mtcars data set, where each variable is measured using a different

scale. The cross-covariance matrix of the nine variables after scaling is provided

in Table 2.1, where generally moderate to strong relationships exist among all the

variables. For example, the variables fuel consumption (mpg) and the number of

cylinders (cyl) have a strong negative relationship about −0.85.

Table 2.1: The cross-correlation matrix of the nine variables in Example 2.3.1.
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Figure 2.2: Eigenvalues’ plot after applying PCA on the nine variables in Example

2.3.1.

After PCA is applied to the scaled data, the nine eigenvalues of the cross-

covariance matrix of the mtcars data (rounded to two decimals) are 5.66, 2.08,

0.50, 0.27, 0.18, 0.12, 0.11, 0.06 and 0.02. Also, a plot of the eigenvalues is provided

in Figure 2.2. It can be seen that the first PC explains 62.84% of the total variation

in the original data, where the first two PCs explain 85.97% and the first three

PCs explain 91.58% of the total variation. Thus, two or three PCs can be used to

represent the original data set. If three PCs are retained, then we conclude that

PCA reduces the dimension of the data from nine to three.

Recall that the transformed data set with reduced dimension can be obtained by

left multiplying the original data matrix by the transpose of the first three eigen-

vectors that correspond to the first three eigenvalues. Further analyses can be

performed on the transformed data set with three dimensions.

It is important to mention that PCA is static and does not account for the dy-

namic dependence in a multivariate time series data, where the values observed at

time t depend on the values from another time (e.g. t− 1). Furthermore, PCA has

assumptions such as a constant mean vector, which is not the case for non-stationary

data. In the following chapters, we will attempt to extend PCA to multivariate time
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series data that can be non-stationary.



Chapter 3

Moving Dynamic Principal

Component Analysis

In this chapter, a new dimension reduction method will be proposed. This method

will generalize DPCA of Ku et al. (1995) in order to be applicable to a wide range

of data as it accounts for the dynamic and non-stationarity of time series data.

The calculations of our new method will be based on a moving cross-covariance

function that is updated at each time point to extract accurate information from

different types of multivariate time series data. Therefore, the proposed method

will be called the moving dynamic principal component analysis (MDPCA). In the

following sections, we are going to reveal the building-structure of MDPCA along

with new proposed diagnostic and optimization tools for the results of MDPCA.

Also, the theoretical properties of the used estimators will be shown. The ability of

MDPCA to achieve dimension reduction will be examined on both simulated and

real data examples.

3.1 Methodology

Consider an m-dimensional time series zt = (z1,t, z2,t, . . . , zm,t)
′
, which is allowed to

be non-stationary. The initial step in the MDPCA method is to build an m(l + 1)-

dimensional extended data vector, denoted by yt, which consists of the series zt and

its lagged series up to a pre-specified lag l. Then the extended data vector yt is

16
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going to have the following structure

yt = (z′t, z
′
t−1, · · · z′t−l)′ = (z1,t, · · · , zm,t, z1,t−1, · · · , zm,t−1, · · · , z1,t−l, · · · , zm,t−l)′.

The rest of the analyses will be performed on yt instead of zt. Assume the series

zt is observed at T time points. Let m(l + 1) = M and T − l = N . Let Y be an

M × N extended data matrix whose columns are y1, . . . ,yN . A critical feature of

the extended data vector yt is that its cross-covariance matrix will account for the

dynamic relations that exist among the components (i.e., variables) of zt. This idea

was first introduced to PCA by Ku et al. (1995) to reduce the dimension of dynamic

data, while PCA is limited to static data.

For a stationary series, the DPCA of Ku et al. (1995) applies its analysis to the

cross-covariance matrix of yt to reduce the dimension of zt. However, for a non-

stationary time series, the results of the DPCA would not be valid as it assumes

the first two moments to be constant for all time points. Furthermore, if DPCA is

applied to a non-stationary series, it could produce correlated DPCs. This is mainly

because the cross-covariance matrix will not be able to measure the dynamic depen-

dence between the variables of non-stationary series. To address this issue, consider

the following example.

Example 3.1.1 In this example, we show the results of applying DPCA of Ku et al.

(1995) on a non-stationary series. A simulated non-stationary time series with three

variables and a sample size of 1000 is generated. Three different non-stationary

univariate models are used to generate the components of zt using the arima.sim

command in R software. Let 5 be the differencing notation, where 5xt = xt−xt−1.

Let at, bt, and ct be three independent standard normal white noises, which are the

innovation terms of the following three models, respectively, then:
z1,t = ut

z2,t = vt

z3,t = wt

(3.1)
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where (ut, vt, wt)
′

satisfies 
5ut = 0.255 ut−1 + at

5vt = −0.55 vt−1 + bt

5wt = 0.75 wt−1 + ct

(3.2)

Figure 3.1: A time series plot of the simulated series with three variables in Example

3.1.1.

Figure 3.1 is a time series plot of the simulated non-stationary time series. If

DPCA with one lag is applied to zt, then the extended data vector is going to be

yt = (z′t, z
′
t−1)

′ = (z1,t, z2,t, z3,t, z1,t−1, z2,t−1, z3,t−1)
′

A plot of the six eigenvalues is provided in Figure 3.2. Two DPCs (i.e. dynamic

principal components) explained 98.10 % of the total variation of the original series.

This might look appealing. However, by using the moving cross-correlation plot

with a window size of size 101 (will be introduced latter) to investigate the dynamic

relationship between the two DPCs further, then we can see that they are strongly

correlated, as shown in Figure 3.3. This is mainly because the DPCA assumes the

data to be stationary, so it should not be applied to non-stationary series as its

results might be misleading.
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Figure 3.2: An eigenvalues’ plot of the simulated series with three variables in

Example 3.1.1 after applying DPCA l = 1.

Figure 3.3: Moving cross-correlation plots with W = 101 of the DPCs of the simu-

lated series with three variables in Example 3.1.1 after applying DPCA with l = 1.

One solution we propose is to use moving cross-covariance matrices in the cal-

culations of DPCA. We show that these matrices will allow to capture the dynamic

relations among the components of non-stationary time series, as they are able to be

updated as we move in time. Before defining the moving cross-covariance matrix,

the following definitions are needed. We assume that yi to be locally stationary.
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Define the cross-covariance matrix of yi to be

Γi = Var(yi). (3.3)

Once zt is observed, the sample cross-covariance matrix defined over window yi with

a pre-specified size W = 2w + 1 can be calculated as follows

Γ̂i =
1

2w + 1

i+w∑
t=i−w

(yt − yi)(yt − yi)
′

(3.4)

where

yi =
1

2w + 1

i+w∑
t=i−w

yt

where w is a positive integer. The window size W is determined by the stationarity

of the data. Determining the window size will be discussed further in section 3.1.1

of this chapter. Then, the moving cross-covariance matrix of yt can be defined as

MΓ =
1

N − 2w

N−w∑
i=w+1

Γi . (3.5)

Notice that the moving cross-covariance matrix MΓ is an M×M symmetric matrix.

Based on sample data, MΓ can be estimated by substituting Γ̂i into equation (3.5)

as

M̂Γ =
1

N − 2w

N−w∑
i=w+1

Γ̂i . (3.6)

The building structure of M̂Γ allows it to measure the dynamic dependence of non-

stationary series’ components as it collects its information from the sample cross-

covariance matrices defined over the updated local windows of yt. To be specific,

the first cross-covariance matrix is calculated over the first window, then the second

cross-covariance matrix is calculated over the second window (i.e. by including the

next time point and excluding the oldest time point), and so on. Then M̂Γ uses all

these cross-covariance matrices to extract the non-stationary dynamic dependence

from yt as a whole.

Furthermore, spectral decomposition can be used to decompose the moving cross-

covariance matrix MΓ of yt as follows

MΓ = UΛU
′

(3.7)
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where U is an M ×M orthogonal matrix whose columns are the eigenvectors of

MΓ and Λ is an M ×M diagonal matrix consists of the eigenvalues of MΓ along

its diagonal. Let λj, 1 ≤ j ≤ M , be the jth eigenvalue of MΓ (i.e. λj is the

(j, j)th element of Λ), where λ1 ≥ λ2 ≥ · · · ≥ λM . Let uj be the eigenvector

corresponding the jth eigenvalue of MΓ (i.e. uj is the jth column of U). MDPCA

reduces the dimension of zt by producing M uncorrelated moving dynamic principal

components (MDPCs) and transform yt into a space with dimension k < m such

that
λ1 + · · ·+ λk
λ1 + · · ·+ λM

' 1 . (3.8)

Here, the value of k also indicates the number of MDPCs being used to reconstruct

the data. The optimal value for k is the minimum number of MDPCs that consist

of the maximum variation of the data and produce the minimum error when used

to reconstruct the original data. More details about determining the optimal choice

of k will be provided in the next section.

3.1.1 Optimizing MDPCA’s Results

In order to improve the results of MDPCA, one would choose the optimal values for

the window size W , the number of lags l to include in the extended data vector, and

the number of retained MDPCs.

Choosing a size for W is vital to enhance the results of MDPCA and extract

accurate information from the data. The size of W depends on the stationarity of

the data. For stationary series, a wide window of size W = N should be used.

Shorter window sizes are suitable for data that exhibit stronger non-stationarity.

For stationary series, we should choose the window size appropriately such that it

is not too small and not too large. If it is too small, this could lead to a non-valid

estimation of the local cross-covariance matrices. If it is too large, then the local

cross-covariance matrices will not be able to capture the dynamic dependence of

non-stationary series. Determining a size for W can be done by looking at the time

series plot and assessing the stationarity of the data. More analyses on determining

the size of W will be conducted in the simulations section of this chapter. Notice
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that MDPCA can be applied on both stationary and non-stationary series by ad-

justing the window size, as mention earlier. Therefore, DPCA is a special case of

MDPCA where W = N .

In the following, we are going to provide a procedure to determine the optimal

size for l. Additionally, a new criterion will be proposed in order to objectively

determine the number of optimal components (i.e. MDPCs) to retain.

3.1.1.1 Choosing Optimal Number of Lags

Including more lagged series can provide more dynamic information to the analysis;

however, it would also increase the dimension of yt, which makes the analysis more

complicated. Therefore, one would include only lagged series that provide more

dynamic information related to the original series in order to gain accurate results

with the lowest dimension possible for yt. In order to choose an optimal value for

l, we are going to adapt the procedure suggested by Ku et al. (1995), which can be

summarized as follows:

1. Start with l = 0.

2. Build the extended data vector yt by including l lagged series.

3. Apply MDPCA to yt and obtain all MDPCs.

4. Set j = m(l + 1) and r(l) = 0 where r is the number of relations.

5. Determine if the jth MDPC provides a linear relation. If yes, go to next step,

otherwise go to step 7.

6. Set j = j − 1 and r = r(l) + 1, then repeat step 5.

7. Calculate the number of new relations added by including one more lag, rnew(l),

by:

rnew(l) = r(l)−
l−1∑
k=0

(l − k + 1)rnew(k)
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if rnew(l) ≤ 0, go to step 9, otherwise go to next step.

8. Set l = l + 1, go to step 2.

9. Stop.

The above steps assumed the size of W to be given or already determined. The num-

ber of significant MDPCs can be determined by examining the plot of the eigenvalues

of M̂Γ. This can be done by excluding MDPCs that have small contributions per-

centages and retaining those with higher contribution percentages (i.e. consist of

most variation of the original data). Then, the number of relations r can be obtained

by subtracting the number of significant MDPCs from the total number of variables

(i.e. r = M− number of significant MDPCs).
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Figure 3.4: Eigenvalues’ plots after applying MDPCA to a series of five variables

with three static and two dynamic relations.

The following example can clarify the idea behind the above procedure. Let the

series zt consists of five variables that have some relationships among them. The

eigenvalue plot after applying MDPCA with 0, 1, 2, and 3 lags are shown in Figure

3.4. Three static relations are found when MDPCA with l = 0 is applied because

only two MDPCs are significant. Notice that by including each lag, new relations

might be detected, and the previous relations will be repeated (l+1) times. By

applying MDPCA with l = 1, eight relations are found, which are the three static

relations repeated twice and two new dynamic relations that are exposed by includ-

ing the first legged series. By using MDPCA with l = 2, 13 relations are found,

which are the three static relations repeated three times, and two dynamic relations
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repeated twice. Hence, no new relations are found, and the procedure would suggest

not including more lags as l = 1 is the optimal choice.

Notice that in the above example, if these five variables are independent and do

not have any relationship between them, then all MDPCs resulted from applying

MDPCA will be significant. Therefore, no relation will be detected in this case (i.e.

r = 0).

3.1.1.2 Retained Component Criterion (RCC)

Once W and l are already determined, and MDPCA is applied to yt, then the next

task is to choose the optimal number of MDPCs to retain, k. This can be done

by balancing between the following desires: maximizing the percentage of explained

variance, minimizing the MSE (i.e., mean of squared error) of reconstructing the

original data, and reducing the dimension of the series. The percentage of explained

variance can be measured as given in equation (3.8). The following equation calcu-

lates the MSE of reconstructed data by the first k MDPCs:

MSEk (yt , yrecon
t ) =

1

MN

M∑
j=1

N∑
t=1

(yj,t −
k∑
v=1

uj,vCv,t)
2 (3.9)

where yrecon
t is the reconstructed data by the first k MDPCs and Cv,t is the tth ob-

servation of the vth MDPC (Cv) which can be obtained by left multiplying yt by the

transpose of the first v eigenvectors of U. Notice that choosing more MDPCs might

increase the percentage of explained variance and reduce the MSE of reconstructed

data; however, it also would increase the final dimension. Therefore, our goal here

is to retain the minimum number of MDPCs that explain most of the variation and

have minimum reconstruction error. In literature, this is usually done subjectively

by balancing between the above desires. To this end, we are going to propose a

criterion that can balance between the above desires and objectively suggests the

optimal number of MDPCs to retain. This criterion will be called the Retained

Component Criterion (RCC).

In order to determine the optimal number of MDPCs, we need to measure the
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effect of adding each MDPC on the accuracy of the final results of MDPCA, where

maximum accuracy can be achieved by explaining all variations in the original data

and reducing the MSE of reconstructed data to zero. Notice, we are going to assume

that both the percentage of explained variance and the MSE of reconstructed data

to be equally important in measuring the accuracy of MDPCA’s results.

Consider the case where a time series yt with dimension M is observed. Assume

an ideal case where all M variables are independent and equally important to explain

the variability in the data. In particular, all variables consist of equally important

information and contribute equally to the variation in yt. Then after applying

MDPCA to yt, we expect that each MDPC will equally explain 1/M % of the

total variation of yt and reduce the MSE of reconstructing the data by an equal

amount of 1/M %. Therefore, each MDPC will improve the accuracy of the final

results of MDPCA by 2/M %. The reason behind assuming an ideal case and

giving the components of yt equal weights is to include an objective penalty term

in our criterion for retaining an extra MDPC in the final results. Before we move

further, consider the following definition. Let MaxMSE be the maximum MSE of

reconstructing data defined by

MaxMSE =
1

MN

M∑
j=1

N∑
t=1

(yj,t)
2. (3.10)

Notice that MaxMSE is equivalent to the MSE of reconstructing data with no MD-

PCs available and replacing elements of yrecon
t in (3.9) by zeros.

The RCC criterion of the first k MDPCs is defined as

RCCk = 2− (
k∑
j=1

λj/

M∑
j=1

λj)− ((MaxMSE−MSEk)/MaxMSE) + (2k/M) (3.11)

where λj is the jth eigenvalue of the matrix MΓ defined in (3.5), MaxMSE is de-

fined in (3.10), and MSEk is given in (3.9). The RCC criterion consists of three main

terms: the term (
∑k

j=1 λj/
∑M

j=1 λj), which represents the percentage of explained

variance by first k MDPCs, the term ((MaxMSE−MSEk)/MaxMSE), which repre-

sents the percentage of reduced MSE by the first k MDPCs, and the term (2k/M),
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which is a penalty for retaining k MDPCs. The constant “2” is included in the cal-

culation in (3.11) to retain positive values for the RCC criterion. This is a technical

reason as the constant value will not change the final decision of the RCC crite-

rion. The optimal number of MDPCs to retain is the number corresponding to the

minimum RCC value in (3.11). Furthermore, the RCC criterion can be adapted to

determine the optimal number of components in most of the PCA-based reduction

methods (e.g., classical PCA and DPCA).

For example, consider a series yt with dimension M = 8. After applying

MDPCA, if the first MDPC explains 50% of the total variation in the series yt

(i.e., (
∑k

j=1 λj/
∑M

j=1 λj) = 0.5) and reduces MaxMSE by 85% (i.e., ((MaxMSE −

MSEk)/MaxMSE) = 0.85), then the RCC criterion will have a value of 2 − 0.5 −

0.85 + 0.25 = 0.9. Now, let the second MDPC explains 40% of the total variation of

yt and reduces MaxMSE by 10%, then the RCC criterion of the first two MDPCs will

have a value of 2−(0.5+0.4)−(0.85+0.1)+(0.25+0.25) = 0.65. Hence, adding the

second component will contribute significantly to increase the accuracy of MDPCA’s

results. Additionally, if the third MDPC explains 5% of the total variation of yt and

reduces MaxMSE by 3%, then the RCC criterion of the first three MDPCs will have

a value of 2−(0.5+0.4+0.05)−(0.85+0.1+0.03)+(0.25+0.25+0.25) = 0.87, which

means that adding the third MDPC will increase the accuracy by a non-significant

amount. This can be explained as the penalty of using the third MDPC is larger

than the amount of accuracy added to MDPCA’s results. Hence, for this example,

the optimal number of retained MDPCs will be 2, as it has the lowest RCC value

of 0.65.

3.1.2 MDPCA Calculation Procedure

The following is a summary of the steps of MDPCA:

1. Create the extended data vector yt by including lagged series of the observed

series zt up to lag l.

2. Calculate the sample moving cross-covariance matrix M̂Γ based on yt, as
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defined in (3.6).

3. Calculate the eigenvalues and the corresponding eigenvectors of M̂Γ.

4. Use the RCC criterion to determine k, the optimal number of MDPCs to

retain.

5. Left multiplying yt by transpose of the first k columns of the matrix Û defined

in (3.7) produces the transformed data with reduced dimension.

3.1.3 Evaluating Dynamic Relationships among MDPCs

For stationary series, examining for significant correlations between the variables of a

multivariate time series can be done by visualizing tools such as the cross-correlation

plots, which is a generalization of the autocorrelation function plot (ACF) of Box

and Jenkins (1976) to the multivariate time series. Methods involving testing the

significance of the multiple null hypotheses exist in literature such as the multi-

variate portmanteau statistic; See Hosking (1980). However, the above mentioned

methods were developed to capture dynamic dependence of stationary series and

would not be meaningful for non-stationary series because they use the classical

cross-correlation function with a fixed mean throughout the calculations. To this

end, we need to extend some of the methods mentioned above to find correlated

components or variables of non-stationary series by using an advanced measure-

ment of correlation that can be updated as we move forward or backward in time.

Hence, we propose the use of a moving cross-correlation function. This function will

be used to check whether two non-stationary variables are correlated. It will also be

used to evaluate the relationship between MDPCs. Before we proceed further, the

following definitions are needed. Define the lag l cross-covariance matrix of yi as

Γi(l) = Cov(yi,yi−l) . (3.12)

Also, define the lag l cross-correlation matrix of yi to be

ρi(l) = Corr(yi,yi−l) = S−1i Γi(l) S−1i−l , (3.13)



3.1. Methodology 29

where l is a non-negative integer, Γi(l) is defined in (3.12) and Si is the diagonal

matrix of the standard deviations of yi. The (j, j)th element of Si is the square root

of the (j, j)th element of Γi(0) defined over yi. The above functions can be estimated

using the following formulas as follows. The sample lag l cross-covariance matrix

over window yi with a pre-specified size of W = 2w + 1 will be calculated using

Γ̂i(l) =
1

2w + 1

i+w∑
t=i−w

(yt − yi)(yt−l − yi)
′

(3.14)

where

yi =
1

2w + 1

i+w∑
t=i−w

yt .

Then, Γ̂i(l) defined in (3.14) can be used to calculate the sample lag l moving cross-

correlation matrix over the window yi, ρ̂i(l), to estimate ρi(l) as

ρ̂i(l) = Ŝ
−1
i Γ̂i(l) Ŝ

−1
i−l (3.15)

where the (j, j)th element of Ŝi is the square root of the (j, j)th element of Γ̂i(0)

defined over the same window yi. Further, define the lag l moving cross-correlation

matrix of the series yt to be

Mρ(l) =
1

N − 2 max(l, w)

N−max(l,w)∑
i=max(l,w)+1

ρi(l). (3.16)

Based on sample data, we can estimate Mρ(l) using the sample lag l moving cross-

correlation matrix as follows

M̂ρ(l) =
1

N − 2 max(l, w)

N−max(l,w)∑
i=max(l,w)+1

ρ̂i(l). (3.17)

Notice that M̂ρ(l) will be updated at each time point as we move in time to account

for non-stationary series.

Based on the above-stated definitions, both visualization and multiple hypotheses

testing methods can be developed to check for the significance of correlations be-

tween the components of either stationary or non-stationary series. For visualization,

one can plot the sample moving cross-correlation matrices with different time lags
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l = 0,±1,±2, ...,±p; where p is a positive integer taken to be p = 10 log10(N/M),

similarly to those in ACF plot. The significance of the correlation can be evaluated

by looking at the 95% confidence interval computed using ±1.96/
√
N . We demon-

strate the use of the moving cross-correlation function in the following examples.

Example 3.1.2 This example is a short simulation study to test the ability of the

moving cross-correlation plots to capture the dynamic relationship among different

variables of a multivariate time series. A window with size 101 will be used in the

calculation of the moving cross-correlation function. The results then will be com-

pared with those based on the cross-correlation function.

The simulated data in this example consists of eight variables and a sample of

size 1200, where three different non-stationary models were used to generate three

subseries of 4, 3, and 1 variable as described below. Let at, bt, and ct be three

independent standard normal white noises, which are the innovation terms of the

following three models, respectively, then:
yj,t = ut+j−1, j = 1, 2, 3 and 4

yj,t = vt+j−4, j = 5, 6 and 7

yj,t = wt, j = 8

(3.18)

where (ut, vt, wt)
′

satisfies
5ut = 0.65 ut−1 + at + 0.5at−1

5vt = bt + 0.8bt−1 − 2.2bt−2

5wt = −0.555 wt−1 − 0.55 wt−2 + 0.45 wt−3 + ct

(3.19)
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Figure 3.5: A time series plot of the simulated series with eight variables in Example

3.1.2.

A time series plot of the simulated multivariate time series is available in Figure

3.5. First, we examine the sample cross-correlation plots (i.e., using the classical

cross-correlation function) of the data; See figures 3.6, 3.7, 3.8 and 3.9. Based on

these plots, a strong dynamic relationship exists among the eight variables, which

implies that all three simulated subgroups are strongly correlated with each other.

The last result contradicts with the way that we simulated the data. Therefore,

the cross-correlation plots could lead to non-correct results when dealing with non-

stationary series.
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Figure 3.6: Sample cross-correlation plots of the simulated series with eight variables

in Example 3.1.2 - Part 1.

Figure 3.7: Sample cross-correlation plots of the simulated series with eight variables

in Example 3.1.2 - Part 2.
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Figure 3.8: Sample cross-correlation plots of the simulated series with eight vari-

ablesin Example 3.1.2 - Part 3.

Figure 3.9: Sample cross-correlation plots of the simulated series with eight variables

in Example 3.1.2 - Part 4.

The sample moving cross-correlation plots of the simulated series are provided

in figures 3.10, 3.11, 3.12, and 3.13. The moving cross-correlation function was able

to capture the correct dynamic relationship among the simulated variables in each

of the three different subgroups. The results of the two visualization methods are

summarized in Table 3.1.
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Figure 3.10: Sample moving cross-correlation plots with a window size 101 of the

simulated series with eight variables in Example 3.1.2 - part 1.

Figure 3.11: Sample moving cross-correlation plots with a window size 101 of the

simulated series with eight variables in Example 3.1.2 - part 2.
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Figure 3.12: Sample moving cross-correlation plots with a window size 101 of the

simulated series with eight variables in Example 3.1.2 - part 3.

Figure 3.13: Sample moving cross-correlation plots with a window size 101 of the

simulated series with eight variables in Example 3.1.2 - part 4.

Table 3.1: Correlated variables of the simulated data with eight variables in Example

3.1.2 based on different visualization methods
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The main reason that the results are different using the two visualization methods

above is the non-stationary nature of the data. Therefore, we can conclude that the

moving cross-correlation plots are more suitable to capture the dynamic relationship

between non-stationary series. Also, it can be shown that the above two methods

will produce similar conclusions when applied to stationary series.

3.2 Theoretical Properties

To show the reliability of the results obtained by the proposed MDPCA, we shall

prove the consistency of its estimated moving dynamic principal components (i.e.

MDPCs) based on sample data. Recall that the estimated MDPCs are generated

by left multiplying the extended data matrix Y by Û
′
, where Û is the matrix that

consists of the eigenvectors of M̂Γ in (3.6) and used to estimate U. Therefore, we

shall show that these eigenvectors are consistent. In other words, we are going to

show that Û is a consistent estimator of U. One approach to show the consistency

is by showing that D(M(Û),M(U)) → 0 as W → ∞. Here, M(U) is the linear

space spanned by U’s columns, and D(M(Û),M(U)) is the distance between the

spaces M(Û) and M(U). For ease of notation, we are going to use c, c1, c2, ... to

denote constants that their values might be different from place to place.

For c1 < c2, let B1 and B2 be any c2× (c2− c1) matrices satisfying the condition

B′iBi = I(c2−c1)×(c2−c1), where i ∈ {1, 2}. Define the distance between the B1 and

B2 to be

D(B1,B2) =
√
c2 − c1 − tr(B1B

′
1B2B

′
2). (3.20)

Notice that D(B1,B2) = 0 if and only ifM(B1) =M(B2). This measurement was

used in Pan and Yao (2008) and Chang et al. (2018).

It is important to know that the convergence of the estimator Û is implied by

the convergence of the moving cross-covariance matrix M̂Γ. This can be seen since

Û consists of the eigenvectors of M̂Γ. The fact that MΓ is calculated based on mov-

ing windows whose width depends on the stationarity of the data makes the moving
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cross-covariance function more complicated than the ordinary cross-covariance func-

tion. However, the consistency of M̂Γ still can be reached as each window in M̂Γ

is calculated as in the stationary case. Therefore, the convergence of the estimated

moving principal components MDPCs will depend on the size of W . Recall that

W ≤ N , where W = N when data is stationary, and W gets smaller as the data

becomes more non-stationary.

In what follows, the asymptotic properties of our estimator will be shown where

the dimension of the extended data vector M is fixed. The needed conditions will be

stated. We are going to follow a similar framework to those of Chang et al. (2018).

Since time series data is known to be dependent data, we are going to consider the

following measurement of dependence:

θl = sup
c

sup
A∈Fc

−∞,B∈F∞c+l

|P (A ∩B)− P (A)P (B)| (3.21)

where F c4c3 is the σ-field generated by yt for c3 ≤ t ≤ c4. The measurement of

dependence θl in (3.21) is called the mixing coefficients in the literature and θl = 0

if A and B are independent. It indicates the asymptotic independence, where two

data points which are l times apart will be independent as l → ∞. More info on

the use of the mixing coefficient can be found in Bradley (1986).

Assumption 3.1. Assume that

sup
i

max
1≤j≤M

E|yj,i − E(yj,i)|2q

to be upper bounded by a positive constant c for some constant q > 2, where yj,i is

the jth component of yi.

Assumption 3.1 requires the tail probabilities of the variables of yi to decay fast

enough such that Γ̂i converges to Γi with a fast rate. For example, let yj,i follows

unif(0, 1 +
1

i
+

1

j
), then Assumption 3.1 above is justified for yj,i.

Assumption 3.2. Assume that

∞∑
l=1

θ
1−2/q
l <∞
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for q defined in Assumption 3.1, where θl is the mixing coefficient defined in (3.21).

Assumption 3.2 above guarantees that θl goes to zero fast enough.

Theorem 3.1. Assume the dimension M is fixed. Let assumptions 3.1 and 3.2

hold. Then, there exists Û = (Û1, . . . , ÛM) such that

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(1/
√
W )

as W →∞.

In order to prove Theorem 3.1, three lemmas are needed. The following lemma

of Chang et al. (2018) will be used to establish our results.

Lemma 3.1. For a stationary series yj,t, assume for γ > 2, E(|yj,t − µj|2γ) is

uniformly bounded away from infinity for j = 1, ..., p and t ≥ 1. Assume the mixing

coefficients

θl = sup
j

sup
A∈Fj

−∞,B∈F∞j+l

(|P (A ∩B)− P (A)P (B)|)

satisfy the condition
∑∞

l=1 θ
1−2/γ
l <∞. Assume the dimension p is fixed, then

‖Σ̂y(l)− Σy(l)‖2 = Op(1/
√
T )

for all l ≤ l1, where Σy(l) is the cross-covariance matrix of the series yt and T is

its sample size.

The following lemma is based on Lemma 3.1.

Lemma 3.2. Let the assumptions 3.1 and 3.2 hold. Also, if we assume the

dimension M to be fixed, then ‖Γ̂i − Γi‖2 = Op(1/
√
W ) as W →∞, where Γi and

Γ̂i are defined in (3.3) and (3.4), respectively.

Proof of Lemma 3.2. By assuming assumptions 3.1 and 3.2, then Lemma 3.1

can be applied to each window, and we have

max
w+1≤i≤N−w

‖Γ̂i(l)− Γi(l)‖2 = Op(1/
√
W ).
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This also implies that

‖Γ̂i(l)− Γi(l)‖2 = Op(1/
√
W ).

This result holds for the lagged covariance matrices up to a specified lag l1. Thus,

this result holds when l = 0. Notice, in MDPCA we are only considering

cross-correlation with no lags (i.e. Γi = Γi(0)), then the following is true

‖Γ̂i − Γi‖2 = Op(1/
√
W ).

Therefore, we have the following lemma based on the results from Lemma 3.2.

Lemma 3.3. Assume the dimension M is fixed and under the assumptions 3.1

and 3.2, then the following holds as W →∞

‖M̂Γ−MΓ‖2 = Op(1/
√
W ),

where MΓ and M̂Γ are defined in (3.5) and (3.6), respectively.

Proof of Lemma 3.3 By assuming the dimension M to be fixed, and under

assumptions 3.1 and 3.2, we have the following result:

‖M̂Γ−MΓ‖2 = ‖ 1

N − 2w

N−w∑
i=w+1

Γ̂i −
1

N − 2w

N−w∑
i=w+1

Γi‖2

≤ max
w+1≤i≤N−w

‖N − 2w

N − 2w
Γ̂i −

N − 2w

N − 2w
Γi‖2

= Op(1/
√
W ).

The last inequality holds because from Lemma 3.2 as

max
w+1≤i≤N−w

‖Γ̂i − Γi‖2 = Op(1/
√
W ).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Assume the dimension M is fixed. Let the assumptions

3.1 and 3.2 hold. By applying the results of Theorem 8.1.10 of Golub and

Van Loan (1996) and Remark 1 of Lemma 1 in Chang et al. (2018), then

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(‖M̂Γ−MΓ‖2)

Therefore, if we apply the results from Lemma 3.3, then it holds that

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(1/
√
W )

as W →∞.
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3.3 Simulations and Real Data Examples

In this section, we are going to test the ability of the proposed method on both

real and simulated data sets. The method will be applied to different data sets with

various dimensional sizes. The following examples will focus on non-stationary data.

It can be seen that MDPCA and DPCA will produce identical results when applied

to stationary data since MDPCA uses a window of sizeW = N in the stationary case.

The following studies will justify the generality and suitability of the MDPCA to

reduce the dimensions of multivariate time series data. The performance of MDPCA

will be assessed by considering the percentage of explained variance (i.e. contribution

percentage), the MSE of reconstructed data, and the moving cross-correlation plots

of the retained MDPCs. Notice that, the moving cross-correlation function with

window W = 101 will be used to evaluate the correlation between the retained

MDPCs from MDPCA with different window sizes. Using a small window size (e.g.

W = 101) in the moving cross-correlation function enables to capture non-stationary

behaviours in the retained MDPCs that would not be captured when using larger

window sizes. All analyses are done using R software. We developed the needed

functions to produce and assess MDPCA’s results. These functions can be found

under the following R packages (i.e. libraries): MACF of Alshammri (2020b), MCOV

of Alshammri (2020c), MDPCA of Alshammri (2020d) and RCC_MDPCA of Alshammri

(2020g).

3.3.1 Simulations

In the following simulation studies, we are going to apply MDPCA with different

combinations of window and lag sizes on simulated data sets of different dimensions

and sample sizes. Each simulation will be replicated 500 times and the retained

MDPCs will be assessed. Data sets will be generated using arima.sim command in

R.

Example 3.3.1 In this example, we apply MDPCA to a non-stationary series zt

with three variables and 1000 samples generated using the models in Example 3.1.1.

This example consists of three parts. The first part compares the results of MDPCA
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when using different combinations of W and l. The second part studies the effect of

the size of T on MDPCA’s results. The third part focuses on optimizing the results

of MDPCA.

Table 3.2 is a comparison between the results of applying MDPCA with different

choices of W and l based on 500 replicas, where two MDPCs are retained. The mean

percentages of explained variance by two MDPCs were slightly higher for the cases

where one lag was used. For example, on average, two MDPCs explained 96.06%

of the variance of the data when W = 101 and l = 1 were used, compared with

93.98% when W = 101 and l = 5 were used. It can be seen that those percentages

increased by increasing the window size. For example, by using W = 301 and l = 5,

we obtained a mean percentage of explained variance of 96.10%, which is higher

than what we obtained when using W = 101 and l = 5. The mean of MSE of

reconstructed data varied from 53.16 to 67.31 for the considered choices of W and

l, where it was at its lowest when W = 301 and l = 5 were used.

Additionally, the means of the absolute value of the moving cross-correlation

with W = 101 are plotted for each case in figures 3.14 - 3.16, and the corresponding

standard deviations are reported in Table 3.3. It can be seen that significant cor-

relations existed between the two MDPCs when MDPCA with W = 301 was used.

The correlations became smaller and less significant when reducing the window size

to W = 201. The two MDPCs became uncorrelated when reducing the window

size further to W = 101. Notice that the correlations for larger lags (i.e. |l| ≥ 15)

started to cross the significant line, as shown Figure 3.14. This is caused by the

continuous one-step movement of the moving cross-correlation function and does

not imply correlated components. Also, similar moving cross-correlation plots were

observed across all 500 replicas as the standard deviations ranged between 0 to 0.12,

which is very close to zero; See Table 3.3.
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Table 3.2: A comparison between the results of MDPCA with different combinations

of W and l in Example 3.3.1.

Figure 3.14: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.1 [Left: MDPCA (W = 101, l = 1), Right:

MDPCA(W = 101, l = 5)].
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Figure 3.15: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.1 [Left: MDPCA (W = 201, l = 1), Right:

MDPCA(W = 201, l = 5)].

Figure 3.16: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.1 [Left: MDPCA (W = 301, l = 1), Right:

MDPCA(W = 301, l = 5)].
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Table 3.3: Standard deviations of the absolute value of the moving cross-correlations

between two MDPCs with different combinations of W and l in Example 3.3.1.
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Therefore, based on the above results and discussion, one can reduce the dimen-

sion of the simulated series in this example by using MDPCA with W = 101 and

l = 1. Alternatively, MDPCA with W = 101 and l = 5 can be used, which might

add more dynamic information to the analysis. However, the results of using l = 5

produced a slightly lower percentage of explained variance and a higher reconstruct-

ing error compared with those using l = 1.

A further investigation can be done to see the effect of the sample size T on

the performance of MDPCA. Recall that the above results were obtained by using

T = 1000. Based on 500 replicas, Table 3.4 summaries the results of applying MD-

PCA with W = 101 and l = 1 to the data with different sample sizes, where two

MDPCs are retained in all cases. For the mean of explained variance percentage,

similar performance was obtained by applying MDPCA to the data with different

sizes of T . For example, the highest percentage of 96.47% was obtained for the

case where T = 200, compared with the lowest percentage of 96.07% for the case

where T = 800. These percentages did not differ across the 500 replicas as they

had standard deviations that ranged between 0.01 and 0.03. For the mean of MSE

of reconstructed data, we noticed an increase in its value when increasing T . This

can be explained as a larger error is expected when reconstructing more data. For

example, the highest MSE of 49.46 was obtained when T = 800, compared with the

lowest MSE of 10.37 when T = 200.

Also, the means of the absolute value of the moving cross-correlation with

W = 101 are plotted for each sample size in figures 3.17 and 3.18, where the corre-

sponding standard deviations are reported in Table 3.5. We noticed that some sig-

nificant dynamic relationships between the two MDPCs existed when using T = 200

for |l| ≥ 10. These correlations became non-significant when increasing the sample

size to T = 400. The standard deviations also had a negative relationship with

the sample size. For example, the standard deviations ranged between 0 to 0.24

when T = 200, 0 to 0.16 when T = 400, 0 to 0.13 when T = 600 and 0 to 0.12

when T = 800. Thus, MDPCA performed well when increasing the sample size.
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Notice that the performance of MDPCA was reasonable for small sample sizes (i.e.

T = 400).

Table 3.4: A comparison between the results of MDPCA with different sizes of T in

Example 3.3.1.

Figure 3.17: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.1 [Left: T = 200, Right:

T = 400].
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Figure 3.18: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.1 [Left: T = 600, Right:

T = 800].
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Table 3.5: Standard deviations of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.1.

In the following, considering one replica of the above simulations with T = 1000,
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where MDPCA with W = 101 is used. The optimal number of lags is suggested

to be l = 1, as shown in Figure 3.19, as one static and two dynamic relations are

found. A plot of the eigenvalues is provided in Figure 3.20, where the RCC criterion

suggests to retain the first two MDPCs. These two MDPCs explain 97.39% of the

variation in the data and produce a small reconstruction error of 5.17. Furthermore,

the sample moving cross-correlation plots of the two MDPCs in Figure 3.21 indicate

uncorrelated MDPCs.

Figure 3.19: Eigenvalues’ plots after applying MDPCA with W = 101 and different

sizes of l to the simulated series with three variables in Example 3.3.1.
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Figure 3.20: Top: An eigenvalues’ plot of the simulated series with three variables

in Example 3.3.1 after applying MDPCA with W = 101 and l = 1. Bottom: RCC

plot.

Figure 3.21: Sample moving cross-correlation plots of the MDPCs of the simulated

series with three variables in Example 3.3.1 after applying MDPCA with W = 101

and l = 1.

Example 3.3.2 The following simulation study includes a non-stationary time se-

ries zt with a dimension m = 6. This study consists of three parts. The first part

compares the results of MDPCA when using different combinations of W and l. The

second part studies the effect of the size of T on MDPCA’s results. The third part
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focuses on optimizing the results of MDPCA. Six different non-stationary models

are used to generate the variables of the series zt as described below.

Let at, bt, ct, dt, et and ft be six independent standard normal white noises,

which are the innovation terms of the following six models, respectively, then:

z1,t = ut

z2,t = vt

z3,t = wt

z4,t = xt

z5,t = qt

z6,t = gt

(3.22)

where (ut, vt, wt, xt, qt, gt)
′

satisfies

5ut = 0.755 ut−1 + at + 0.9at−1

5vt = 0.65 vt−1 + bt − 1.4bt−1

5wt = −0.75 wt−1 + ct + 2.3ct−1

5xt = −0.55 xt−1 + dt + 0.55dt−1

5qt = 0.65 qt−1 + et + 1.65et−1

5gt = −0.755 gt−1 + ft − 0.8ft−1

(3.23)

Figure 3.22 is a time series plot of one randomly selected simulation. The data

showed an apparent non-stationary behaviour.

The first part of this simulation study focuses on the behaviour of MDPCA with

different combinations of W and l. Based on 500 replicas, Table 3.6 shows the results

of applying MDPCA with different sizes of W and l to the simulated series zt with

T = 1500, where three MDPCs are retained. Notice that the mean of explained

variance by the three MDPCs when using l = 1 was slightly higher compared with

those when using l = 5. For instance, on average, the three MDPCs explained

97.50% of the variation of the data when using MDPCA with W = 101 and l = 1,
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compared with 95.49% when using W = 101 and l = 5. Both cases produced a

relative standard deviation of 0.01, which indicated steady contribution percentages

in all replicas. The mean of MSE of reconstructed data ranged between 175.90 to

228.48 for the considered combinations of W and l, where it reached its lowest when

using W = 301 and l = 1, and it reached its highest when using W = 101 and l = 5.

On the other hand, the means of the absolute value of the moving cross-correlation

with W = 101 are plotted for each case in figures 3.23 - 3.25, and the corresponding

standard deviations are shown in Tables 3.7 and 3.8. The three MDPCs were un-

correlated for the cases where W = 101 was used. For the case where W = 201 was

used, the correlations got slightly larger. We noticed significant correlations when

increasing the window size to W = 301.

Figure 3.22: A time series plot of the simulated series with six variables in Example

3.3.2.
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Table 3.6: A comparison between the results of MDPCA with different combinations

of W and l in Example 3.3.2.

Figure 3.23: Plots of the mean of the absolute value of the moving cross-correlations

between three MDPCs in Example 3.3.2 [Left: MDPCA (W = 101, l = 1), Right:

MDPCA(W = 101, l = 5)].
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Figure 3.24: Plots of the mean of the absolute value of the moving cross-correlations

between three MDPCs in Example 3.3.2 [Left: MDPCA (W = 201, l = 1), Right:

MDPCA(W = 201, l = 5)].

Figure 3.25: Plots of the mean of the absolute value of the moving cross-correlations

between three MDPCs in Example 3.3.2 [Left: MDPCA (W = 301, l = 1), Right:

MDPCA(W = 301, l = 5)].
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Table 3.7: Standard deviations of the absolute value of the moving cross-correlations

between three MDPCs with different combinations of W and l in Example 3.3.2 -

Part 1.
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Table 3.8: Standard deviations of the absolute value of the moving cross-correlations

between three MDPCs with different combinations of W and l in Example 3.3.2 -

Part 2.

Therefore, the dimension of zt can be reduced by using MDPCA with W = 101

and l = 1. Alternatively, with slightly less accuracy, MDPCA with W = 101 and
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l = 5 can be used to reduce the dimension of zt, where more dynamic information

is included in the analysis.

Table 3.9: A comparison between the results of MDPCA with different sizes of T in

Example 3.3.2.

The second part of this study focuses on the effect of the sample size T on the

results of MDPCA. Based on 500 replica, Table 3.9 compares the results of applying

MDPCA with W = 101 and l = 5 to zt with different sample sizes, where three

MDPCs are retained in all cases. Notice that the means of explained variance had

similar percentages when applying MDPCA to the data with different sizes of T . For

example, the highest percentage of 95.69% was obtained for the case where T = 600,

compared with the lowest percentage of 95.53% for the case where T = 1200. Sim-

ilar percentages were obtained in all 500 replicas as they have standard deviations

of 0.01 in all cases. For the mean of MSE of reconstructed data, we noticed an

increase of the MSE when increasing T . The highest MSE of 186.99 was obtained

when T = 1200, compared with the lowest MSE of 81.15 when T = 600.

Furthermore, the means of the absolute value of the moving cross-correlation

with W = 101 are plotted for each sample size in figures 3.26 and 3.27. There were

no significant dynamic relationships between the three MDPCs on the first ±15

lags, in all cases. For lags that are larger than 15 and smaller than -15, some hardly

significant correlations existed between the MDPCs for the cases where T = 600

and 800. These correlations became less significant as we increased T . The corre-

sponding standard deviations are reported in Table 3.10, where similar values were

obtained in all cases. However, a slight improvement on the standard deviations of

the absolute value of the moving cross-correlation can be obtained when increasing
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T . For instance, the standard deviations ranged from 0 to 0.13 when T = 600, and

from 0 to 0.09 when T = 1200.

Figure 3.26: Plots of the mean of the absolute value of the moving cross-correlations

between three MDPCs with different sizes of T in Example 3.3.2 [Left: T = 600,

Right: T = 800].

Figure 3.27: Plots of the mean of the absolute value of the moving cross-correlations

between three MDPCs with different sizes of T in Example 3.3.2 [Left: T = 1000,

Right: T = 1200].
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Table 3.10: Standard deviations of the absolute value of the moving cross-

correlations between three MDPCs with different sizes of T in Example 3.3.2.

Consider one randomly selected replica with T = 1500, where MDPCA with
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W = 101 is used. The optimal number of lags is suggested to be l = 1, as shown in

Figure 3.28, where three static and three dynamic relations were found. A plot of

the eigenvalues and the RCC’s results are shown in Figure 3.29. The RCC criterion

suggested three MDPCs to be optimal. The retained MDPCs were able to explain

95.42% of the variation in the data and produced an MSE of 140.35 when used

to reconstruct the data. The sample moving cross-correlation plots of the retained

components suggest uncorrelated components; See Figure 3.30.

Figure 3.28: Eigenvalues’ plots after applying MDPCA with W = 101 and different

sizes of l to the simulated series with six variables in Example 3.3.2.
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Figure 3.29: Top: An eigenvalues’ plot of the simulated series with six variables in

Example 3.3.2 after applying MDPCA with W = 101 and l = 1. Bottom: RCC

plot.

Figure 3.30: Sample moving cross-correlation plots of the MDPCs of the simulated

series in Example 3.3.2 after MDPCA with W = 101 and l = 1 is applied.

Example 3.3.3 In this example, we apply the MDPCA on a non-stationary series

zt with ten variables. This example consists of two parts. The first part studies the

results of MDPCA when using different combinations of W and l. The second part

compares the effect of the size of T on MDPCA’s results. The series zt is generated
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using five different models, such that each model produces two correlated variables

as follows.

Let at, bt, ct, dt and et be independent standard normal white noises, which are

the innovation terms of the following five models, respectively, then:

zj,t = ut+j−1, j = 1 and 2

zj,t = vt+j−3, j = 3 and 4

zj,t = wt+j−5, j = 5 and 6

zj,t = xt+j−7, j = 7 and 8

zj,t = qt+j−9, j = 9 and 10

(3.24)

where (ut, vt, wt, xt, qt)
′

satisfies

5ut = 0.755 ut−1 + at + 0.9at−1

5vt = 0.65 vt−1 + bt − 1.4bt−1

5wt = −0.75 wt−1 + ct − 2.3ct−1

5xt = −0.55 xt−1 + dt + 0.55dt−1

5qt = 0.65 qt−1 + et + 1.65et−1

(3.25)

A time series plot of the simulated data is shown in Figure 3.31 where all variables

exhibit non-stationary behaviours.

First, we would like to see the results of MDPCA with different options of W and

l. Based on 500 replicas, Table 3.11 is a comparison between the results of MDPCA

with different sizes of W and l when applied to the simulated series zt with 1500

samples, where two MDPCs are considered. With respect to the mean percentages

of explained variance by the two MDPCs, the percentages obtained by using l = 1

were higher than those obtained by using l = 5. However, the percentages differed

by a small amount. For example, on average, two MDPCs explained 96.48% of the

variation of the data when using MDPCA with W = 101 and l = 1, compared

with 94.59% when using W = 101 and l = 5. The standard deviations of explained
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variance in all cases were 0.01, which indicate steady percentages in all replicas. For

the mean of MSE of reconstructed data, it ranged between 309.09 to 403.74. The

latter had its lowest when W = 301 and l = 1 are used, and had its highest when

W = 101 and l = 5 are used. This behaviour is similar to what we observed in the

previous examples when zt had fewer dimensions.

Figure 3.31: A time series plot of the simulated series with ten variables in Example

3.3.3.

Furthermore, the dynamic dependence between the two MDPCs was revealed

by plotting the means of the absolute value of the moving cross-correlation with

W = 101; See figures 3.32 - 3.34 and the corresponding standard deviations in Ta-

ble 3.12. There were no significant dynamic relationships between the two MDPCs

for both cases when using W = 101. However, the correlations got slightly larger

when using W = 201, and crossed the significant line when using W = 301.
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Table 3.11: A comparison between the results of MDPCA with different combina-

tions of W and l in Example 3.3.3.

Figure 3.32: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.3 [Left: MDPCA (W = 101, l = 1), Right:

MDPCA(W = 101, l = 5)].
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Figure 3.33: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.3 [Left: MDPCA (W = 201, l = 1), Right:

MDPCA(W = 201, l = 5)].

Figure 3.34: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.3 [Left: MDPCA (W = 301, l = 1), Right:

MDPCA(W = 301, l = 5)].
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Table 3.12: Standard deviations of the absolute value of the moving cross-

correlations between two MDPCs with different options of W and l in Example

3.3.3.
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Therefore, based on the above discussion, the dimension of the simulated non-

stationary series with ten variables in this example can be reduced by MDPCA with

W = 101 and l = 1 or using MDPCA with W = 101 and l = 5.

Second, we would like to see the results of MDPCA when the series zt has differ-

ent sample sizes (i.e. T = {200, 400, 600, 800}). In this part, we consider MDPCA

with W = 101 and l = 5. Based on 500 replicas, the results of applying MDPCA

on zt with different sample sizes are shown in Table 3.13, where two MDPCs are

retained. For the mean percentage of explained variance, the highest percentage

of 96.68% was obtained when T = 200, then decreased to 94.54% when T = 400,

then followed by a continues increasing to 94.61% when T = 600 and 94.67% when

T = 800. The standard deviations of the percentage of explained variance decreased

from 0.03 when T = 200 to 0.01 when T = 600, then stayed at this value for larger

sample sizes. For the mean of MSE of reconstructed data, its values had a positive

relationship with T . For example, the mean MSE was 52.68 when T = 200, then

increased to 191.59 when T = 800. Notice that the MSE values are not steady

across the 500 replicas, as their standard deviations were large (e.g. 66.27 standard

deviation when T = 400).

On the other hand, the means of the absolute value of the moving cross-correlation

with W = 101 indicated a significant dynamic relationship between the two MDPCs

when T = 200; See Figure 3.35. The correlations then decreased between the two

MDPCs when T = 400 with some minor significant cross-correlations. For the cases

where T = 600 and 800, the plots indicated uncorrelated MDPCs; See Figure 3.36.

Also, Table 3.14 shows the standard deviations of the absolute value of the moving

cross-correlation. We noticed an improvement on the standard deviations when in-

creasing the sample size of the data. For example, the standard deviations ranged

from 0 to 0.24 when T = 200, compared with 0 to 0.12 when T = 800. Notice

that by applying MDPCA to the simulated data with T = 600, we were able to

obtain similar results to those with T = 1500. Therefore, even though we increased

the dimension of zt to m = 10, MDPCA still performs well on data with moderate
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sample sizes.

Table 3.13: A comparison between the results of MDPCA with different sizes of T

in Example 3.3.3.

Figure 3.35: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.3 [Left: T = 200, Right:

T = 400].



3.3. Simulations and Real Data Examples 69

Figure 3.36: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.3 [Left: T = 600, Right:

T = 800].
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Table 3.14: Standard deviations of the absolute value of the moving cross-

correlations between two MDPCs with different sizes of T in Example 3.3.3.
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Example 3.3.4 In the following simulation study, MDPCA is applied to a non-

stationary series zt that consists of 15 variables. This study consists of two parts.

The first part compares the MDPCA’s results when using different combinations of

W and l. The second part compares the effect of the size of T on MDPCA’s results.

The data is generated using five different models, such that each model produces

three correlated variables.

Let at, bt, ct, dt and et be independent standard normal white noises, which are

the innovation terms of the following five models, respectively, then:

zj,t = ut+j−1, j = 1, 2 and 3

zj,t = vt+j−4, j = 4, 5 and 6

zj,t = wt+j−7, j = 7, 8 and 9

zj,t = xt+j−10, j = 10, 11 and 12

zj,t = qt+j−13, j = 13, 14 and 15

(3.26)

where (ut, vt, wt, xt, qt)
′

satisfies

5ut = 0.755 ut−1 + at + 0.9at−1

5vt = 0.65 vt−1 + bt − 1.4bt−1

5wt = −0.75 wt−1 + ct − 2.3ct−1

5xt = −0.55 xt−1 + dt + 0.55dt−1

5qt = 0.65 qt−1 + et + 1.65et−1

(3.27)

Based on 500 replicas, Table 3.15 shows the results of MDPCA with different

combinations of W and l applied to zt with 2000 samples, where two MDPCs are

considered. In general, the results in this example followed a similar pattern as in

the previous examples where MDPCA was applied to series with lower dimensions.

It can be seen that the mean percentages of the explained variance by the two MD-

PCs increased slightly as we increased W . For example, the mean percentage was

96.13% when using MDPCA with W = 101 and l = 1, then increased to 97.22%

when using MDPCA with W = 301 and l = 1. Also, the percentages were slightly
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lower when using more lagged data (i.e. when increasing l). For example, the mean

percentage was 96.85% when using MDPCA with W = 201 and l = 1, then de-

creased to 95.90% when using MDPCA with W = 201 and l = 5. The standard

deviation of the percentage of explained variance had a small value of 0.01 in all

cases. This indicates steady results for the explained variance in all cases. Addition-

ally, the MSE of reconstructed data had a large standard deviations, which means

that its values can be small or large depending on the data. For example, the mean

MSE was 348.56 when using MDPCA with W = 101 and l = 1, and had a standard

deviation of 230.96.

Table 3.15: A comparison between the results of MDPCA with different combina-

tions of W and l in Example 3.3.4.

Additionally, the plot of the mean of the absolute value of the moving cross-

correlation with W = 101 indicated uncorrelated MDPCs when using MDPCA with

W = 101; See Figure 3.37. However, hardly significant correlations existed between

the two components for the cases where MDPCA was used with W = 201; See

Figure 3.38. The correlations slightly increased when using MDPCA with W = 301;

See Figure 3.39. Small standard deviations of the absolute value of the moving

cross-correlation were reported in Table 3.16, where their values ranged between 0

to 0.08 in all cases.
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Figure 3.37: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.4 [Left: MDPCA (W = 101, l = 1), Right:

MDPCA(W = 101, l = 5)].

Figure 3.38: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.4 [Left: MDPCA (W = 201, l = 1), Right:

MDPCA(W = 201, l = 5)].
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Figure 3.39: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs in Example 3.3.4 [Left: MDPCA (W = 301, l = 1), Right:

MDPCA(W = 301, l = 5)].
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Table 3.16: Standard deviations of the absolute value of the moving cross-

correlations between two MDPCs with different combinations of W and l in Example

3.3.4.
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Based on the above results, we can best reduce the dimension of the simu-

lated non-stationary series with 15 variables in this example by using MDPCA with

W = 101 and l = 1 or using MDPCA with W = 101 and l = 5.

To investigate the effect of changing the sample size of zt on the MDPCA,

we applied MDPCA with W = 101 and l = 1 on zt with sample sizes T =

{200, 400, 600, 800}. The results based on 500 replicas were summarized in Table

3.17, where two MDPCs were retained. Steady results, about 96.25%, for the mean

percentage of explained variance were obtained in all cases with small standard de-

viations. For example, a mean percentage of 96.35% and a standard deviation of

0.02 were obtained when T = 200 compared with 96.22% and 0.01 when T = 800.

The mean MSE of reconstructed data and the corresponding standard deviation

increased as we increased T . For example, a mean MSE of 42.66 with a standard

deviation of 28.68 was obtained when T = 200, compared with 183.39 and 129.85

when T = 800.

Additionally, the means of the absolute value of the moving cross-correlation

with W = 101 are plotted in figures 3.40 and 3.41. It can be seen that the two

MDPCs had significant cross-correlations when T = 200. The correlations became

smaller with minor significant correlations for | l |≥ 10 when increasing the dimen-

sion to T = 400. Uncorrelated MDPCs were obtained when T = 600 and T = 800.

The standard deviations of the absolute value of the moving cross-correlation are

reported in Table 3.18, where the values could be improved by increasing the sample

size. For instance, the standard deviations ranged from 0 to 0.23 when T = 200,

compared with 0 to 0.11 when T = 800. Therefore, in this example, MDPCA per-

forms well when applied to zt with T ≥ 600. The MDPCA was able to reduce the

dimension of zt from 15 to 2.
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Table 3.17: A comparison between the results of MDPCA with different sizes of T

in Example 3.3.4.

Figure 3.40: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.4 [Left: T = 200, Right:

T = 400].
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Figure 3.41: Plots of the mean of the absolute value of the moving cross-correlations

between two MDPCs with different sizes of T in Example 3.3.4 [Left: T = 600, Right:

T = 800].
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Table 3.18: Standard deviations of the absolute value of the moving cross-

correlations between two MDPCs with different sizes of T in Example 3.3.4.
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By the end of the above simulation studies, we conclude that the proposed MD-

PCA is able to reduce the dimension of a multivariate time series by taking into ac-

count the dynamic and non-stationary behaviours of the data. Determining the win-

dow size has a significant effect on extracting accurate results from non-stationary

series. Additionally, using a window size that is larger than required could cause

MDPCA to produce correlated MDPCs. However, it can be shown that the opposite

is not true, where MDPCA can produce accurate results using a window size that

is smaller than required.

Including more lagged series in the analysis expands the dimension of the data

inputted into MDPCA. However, this could add more dynamic information to the

retained MDPCs. It was noticed that when more lagged series were included in the

analysis, MDPCA produced MDPCs with slightly lower contribution percentages

and slightly higher reconstruction error compared to those when fewer lagged series

were used.

It was also noticed that the performance of MDPCA was steady even though

we increased the dimension of tested time series. Notice that it is not sufficient to

evaluate MDPCA’s results based on the contribution percentage and the reconstruc-

tion error only. MDPCA could produce a small number of components that explain

almost all variation in the data and produce small reconstruction error when ap-

plied to non-stationary series with small sample sizes. However, due to the one-step

movement in the moving cross-covariance matrix, the retained components could

have minor, but significant, correlations for small sample sizes. These correlations

become non-significant by increasing the sample size. In the simulations above, MD-

PCA produced reasonable results on series with sample sizes T ≥ 400. Therefore, it

is essential to investigate the correlations between the retained components in order

to obtain valid results.
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3.3.2 Real Data Examples

Example 3.3.5 In this example, we apply the MDPCA to daily stock prices of ten

US companies in US Dollar from Nov 07, 2013 to Dec 18, 2017. The sample size of

the data is 1036 days. The variables in this example represent stock prices of the

following companies: Facebook (FB), Ford Motor (Ford), General Electric (GE),

General Motor (GM), The Home Depot (HD), IBM (IBM), Intel(INTC), Johnson

& Johnson (JNJ), Kroger (KR) and Lowe’s (LOW). The data is available on Yahoo!

Finance.

Figure 3.42: The daily stock prices of the ten US companies from November 2013

to December 2017 in Example 3.3.5.

A time series plot of the daily stock prices of the US companies is shown in

Figure 3.42, where all ten companies exhibited non-stationary behaviours over time.

Sample moving cross-correlation plots with W = 101 were used to show the dy-

namic relationships among the stock prices before the MDPCA was applied; See

figures 3.43, 3.44, 3.45 and 3.46. Generally, a moderated dynamic relationship ex-

isted among the ten companies. For example, the companies General Motor and

Ford Motor were strongly correlated for all time lags. Also, The Home Depot and

Kroger had a moderate dynamic relationship. Moreover, a weak relationship existed

between companies Intel and Facebook.
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Figure 3.43: Sample moving cross-correlation plots with W = 101 of the daily stock

prices of the ten US companies before MDPCA is applied in Example 3.3.5 - Part

1.

Figure 3.44: Sample moving cross-correlation plots with W = 101 of the daily stock

prices of the ten US companies before MDPCA is applied in Example 3.3.5 - Part

2.
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Figure 3.45: Sample moving cross-correlation plots with W = 101 of the daily stock

prices of the ten US companies before MDPCA is applied in Example 3.3.5 - Part

3.

Figure 3.46: Sample moving cross-correlation plots with W = 101 of the daily stock

prices of the ten US companies before MDPCA is applied in Example 3.3.5 - Part

4.

Considering the stationarity of the data, MDPCA with W = 101 was used. The

optimal number of lags was suggested to be l = 1, as shown in Figure 3.47, where six

static and four dynamic relations were found. A plot of the eigenvalues is provided

in Figure 3.48 along with the RCC criterion plot. The RCC of the first two MDPCs
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had a value of 0.53, compared with 0.49 and 0.52 for the first three and the first four

MDPCs receptively. Therefore, three MDPCs were suggested by the RCC criterion.

The three retained MDPCs explained 84.54% of the total variation in the data and

produced a reconstruction error of 292.28. The sample moving cross-correlation

plots of the three MDPCs are shown in Figure 3.49, which suggested uncorrelated

MDPCs.

Figure 3.47: Eigenvalues’ plots after applying MDPCA with W = 101 to the ten

US companies in Example 3.3.5.



3.3. Simulations and Real Data Examples 85

Figure 3.48: Top: An eigenvalues’ plot of the ten US companies in Example 3.3.5

after applying MDPCA with W = 101 and l = 1. Bottom: RCC plot.

Figure 3.49: Sample moving cross-correlation plots of the three MDPCs of the ten

US companies after MDPCA with W=101 and l=1 is applied in Example 3.3.5.

In conclusion, by applying MDPCA with W = 101 and l = 1 directly to the

non-stationary series data of the ten US stock prices, we were able to reduce its

dimension from 10 to 3.

Example 3.3.6 In this example, the MDPCA is applied to daily stock prices of 17

US companies in US Dollar from Nov 07, 2013 to Dec 18, 2017. The sample size

of the data is 1036 days. The data set in this example is obtained by adding seven
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new companies to the data in Example 3.3.5. The names of the 17 companies are

shown in table 3.19. The data is available on Yahoo! Finance.

Table 3.19: Names and labels of the 17 US companies in Example 3.3.6.

Figure 3.50: A time series plot of the daily stock prices of the 17 US companies in

Example 3.3.6- Part 1
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Figure 3.51: A time series plot of the daily stock prices of the 17 US companies in

Example 3.3.6- Part 2

The time series plots of the daily stock prices of the 17 US companies revealed

the non-stationary behaviour of the daily stock prices; See figures 3.50 and 3.51.

Figure 3.52 shows the last 36 sample moving cross-correlation plots with W = 101

of the stock prices before the transformation. The daily stock prices of the 17 compa-

nies were moderately correlated. For example, the company MetLife Insurance was

strongly correlated with Prudential Financial and weakly correlated with McKesson.

Considering the stationarity of the data, MDPCA with W = 101 could be used.

The optimal number of lags was suggested to be l = 1 as shown in Figure 3.53,

where ten static and seven dynamic relations were found. Figure 3.54 consists of

the eigenvalues’ plot along with the relative RCC criterion plot. The RCC had val-

ues of 0.508, 0.490, 0.489, 0.486 and 0.502 for the first three, four, five, six and seven

MDPCs, receptively. Thus, the optimal number of MDPCs to retain is six MDPCs,

as suggested by the RCC criterion. The six MDPCs explained 90.25% of the total

variation in the data and produced a reconstruction error of 304.55. The retained six

MDPCs were uncorrelated, as shown in the sample moving cross-correlation plots

in Figure 3.55.
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Figure 3.52: Last 36 sample moving cross-correlation plots with W = 101 of the

daily stock prices of the 17 US companies before MDPCA is applied in Example

3.3.6.

Figure 3.53: Eigenvalues’ plots after applying MDPCA with W = 101 to the 17 US

companies in Example 3.3.6.
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Figure 3.54: Top: An eigenvalues’ plot of the 17 US companies in Example 3.3.6

after applying MDPCA with W = 101 and l = 1. Bottom: RCC plot.

Figure 3.55: Sample moving cross-correlation plots of the MDPCs of the 17 US

companies in Example 3.3.6 after MDPCA with W=101 and l=1 is applied.

To conclude, the MDPCA with one lag and a window of size 101 was able to

reduce the dimension of the daily stock prices of the US companies from 17 to 6 by

accounting for the non-stationarity and the dynamic dependence in the stock prices.
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3.4 Summary and Remarks

In this chapter, we introduced MDPCA, which is a PCA-based dimension reduction

method that is used to reduce the dimension of multivariate time series by trans-

forming them into uncorrelated components. MDPCA is a generalization of DPCA

method of Ku et al. (1995) to non-stationary series. DPCA can be considered as

a special case of MDPCA when W = N . MDPCA can be used to reduce the di-

mension of both stationary and non-stationary series by accounting for the static,

dynamic and non-stationary natures of time series data.

We used three methods to assess MDPCA’s results. The moving cross-correlation

function can evaluate the dynamic relationships between the final retained MDPCs.

The MSE of reconstructed data and the percentage of explained variance are an-

other two tools to evaluate retained MDPCs where lower reconstruction errors and

higher percentages of contribution are indications of better results.

Choosing the window size for MDPCA depends on the stationarity of the data.

Smaller windows are suitable for series with stronger non-stationary behaviour, and

the opposite is true. The RCC criterion can be used to choose the optimal number

of MDPCs to retain. The RCC criterion balances between the desire of reducing the

dimension of the data and increasing the accuracy of the final results. Additionally,

the RCC criterion can be employed to determine the optimal number of components

to retain in PCA-based reduction methods.

We studied the asymptotic properties of our estimator Û, the matrix that con-

sists of the eigenvectors of the moving cross-covariance matrix of the data. Under

some regularity assumptions, we show that Û is a consistent estimator of U with

W−1/2 convergence rate.

We provided many simulation studies considering non-stationary series with dif-

ferent dimensional and sample sizes. MDPCA was able to reach dimension reduction

and performed well even for reasonably moderate sample sizes. MDPCA was also
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illustrated on real-life stock prices with different dimensions.

The performance of MDPCA was steady even though we increased the dimension

of tested time series. It was noticed that MDPCA required larger sample sizes when

applied to non-stationary series compared with stationary series. This due to the

one-step movement in the moving cross-covariance matrix, which causes the retained

MDPCs to have minor, but significant, correlations. These correlations become non-

significant by increasing the sample size.



Chapter 4

Quadratic Moving Dynamic

Principal Component Analysis

In this chapter, we are going to introduce a new dimension reduction method that

can be applied on time series that are allowed to be non-stationary. This method can

be considered as an alternative to MDPCA that we introduced previously in Chapter

3. The method we propose in this chapter will use a quadratic order of the moving

cross-covariance function that we introduced in Chapter 3. The new method will

be named quadratic moving dynamic principal component analysis (QMDPCA). In

what follows, we are going to show the building-structure of QMDPCA. We are also

going to discuss the theoretical properties of the used estimators. The performance

of QMDPCA will be tested on many simulated data sets. Additionally, our method

will be illustrated on real data sets.

4.1 Methodology

Suppose an m-dimensional time series zt = (z1,t, z2,t, . . . , zm,t)
′

that is allowed to be

non-stationary. QMDPCA is aiming to reduce the dimension of zt by considering

the dynamic relationships that exist between the variables of zt. These relationships

can be captured by including lagged values of zt into the analysis. Denote by yt

the extended data vector of zt, which consists of zt and its lags up to a specified

lag l. Hence, yt is an m(l + 1)-dimensional vector. In specific, yt has the following

92
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structure

yt = (z′t, z
′
t−1, · · · , z′t−l)′ = (z1,t, · · · , zm,t, z1,t−1, · · · , zm,t−1, · · · , z1,t−l, · · · , zm,t−l)′

In the rest of its analyses, QMDPCA is going to use the extended data vector yt to

extract the dynamic relationships of zt. Assume the series zt to be observed over T

time points. Let m(l+ 1) = M and T − l = N . Let Y be the M ×N extended data

matrix whose columns are y1, . . . ,yN .

QMDPCA seeks dimension reduction by applying eigeanalysis on a quadratic

order of the moving cross-covariance matrix. In order to state a formal definition of

the quadratic order moving cross-covariance matrix, recall the following definitions

from the previous chapter. We assume that yi to be locally stationary. The cross-

covariance matrix of yi is defined as

Γi = Var(yi). (4.1)

Once the data is observed, the sample cross-covariance matrix defined over window

yi with a pre-specified size W = 2w + 1 can be calculated as

Γ̂i =
1

2w + 1

i+w∑
t=i−w

(yt − yi)(yt − yi)
′

(4.2)

where

yi =
1

2w + 1

i+w∑
t=i−w

yt

where w is a positive integer. The matrix Γ̂i is calculated over a moving local

window yi of a pre-determined size, where i is the window’s index. The window size

is determined according to the stationarity of the data as we will discuss latter in this

section. By moving the window yi one step in time, Γ̂i can be recalculated to again

to extract the dynamic dependence from the data located on the next window, and

so on. These local matrices are used to build the moving cross-covariance matrix of

yt, which is defined to be

MΓ =
1

N − 2w

N−w∑
i=w+1

Γi . (4.3)
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Recall that the moving cross-covariance matrix MΓ is able to extract the dynamic

relationships out of both stationary and non-stationary time series, as shown in

Chapter 3. Based on observed data, the moving cross-covariance matrix of yt can

be estimated by the sample moving cross-covariance matrix M̂Γ as follows

M̂Γ =
1

N − 2w

N−w∑
i=w+1

Γ̂i . (4.4)

where Γ̂i is an estimate of Γi, as defined in (4.2).

Then, the quadratic order moving cross-covariance matrix of yt is calculated as

Q = MΓ[MΓ]′. (4.5)

Notice that Q is an M×M symmetric matrix. Additionally, Q can extract dynamic

information from both stationary and non-stationary series as we will show in the

examples’ section. Based on sample data, the sample quadratic order moving cross-

covariance matrix of yt can be calculated by

Q̂ = M̂Γ[M̂Γ]′, (4.6)

where M̂Γ is defined in (4.4).

Moreover, spectral decomposition of the quadratic moving cross-covariance ma-

trix of yt yields

Q = UΛU
′
, (4.7)

where Λ is a diagonal M ×M matrix whose diagonal entries are the eigenvalues of

Q, and U is an orthogonal M ×M matrix whose columns are the eigenvectors of Q.

Denote by λj, 1 ≤ j ≤ M , the jth eigenvalue of Q, which is the (j, j)th element of

matrix Λ in (4.7). Notice that the eigenvalues of Q are ordered in along the diagonal

such that λ1 ≥ λ2 ≥ · · · ≥ λM . Denote by uj the jth eigenvector of Q, which is the

jth column of U that correspond to λj. Then, M uncorrelated quadratic moving

dynamic principal components (QMDPCs) can be produced by left multiplying yt

by the transpose matrix of U (i.e. U′). These QMDPCs are used to represent yt.
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Let qj be the jth QMDPC, then the amount of variation in yt that is explained

by qj is given by
λj

λ1 + · · ·+ λM
. Consequently, QMDPCA reduces the dimension

of zt by retaining only the first kth QMDPCs such that

λ1 + · · ·+ λk
λ1 + · · ·+ λM

' 1 . (4.8)

These k QMDPCs represent zt with fewer dimensions (k < m) as they account for

almost all variation in zt. For instance, if the first eigenvalue of Q is large enough,

then the dimension of zt can be reduced to one by projecting yt into q1 (i.e. the

first QMDPC) as follows

q1 = u
′

1 · yt.

Furthermore, the original data can be reconstructed by

yrecon
t = u1 · q1 (4.9)

where yrecon
t is used to donate the reconstructed data after QMDPCA is applied.

Notice that the optimal value for k is the minimum number of QMDPCs that consist

of the maximum variation of the data and produced the minimum reconstruction

error. Determining the optimal choice of k will be discussed in the next section.

4.1.1 Optimizing the Results of QMDPCA

This section provides useful tools to optimize the outcomes of QMDPCA. There are

three aspects to consider in order to enhance QMDPCA’s outcomes: determining

the window size W , the number of lagged series l and the number of retained QMD-

PCs.

Choosing a size for W would affect the accuracy of QMDPCA’s results. In par-

ticular, the size of W has a major effect on the ability of MΓ in (4.3) to extract

accurate information from the data, as shown in Chapter 3. Hence, the size of W

will also affect the accuracy of Q in (4.7). As far as we know, there is no available

objective criterion to determine the optimal size for W in literature, as this could be

a subject of further research. Nevertheless, choosing the size of W can be done by



4.1. Methodology 96

using the time series plot of the data and assessing its stationarity. Shorter windows

are suitable for series with stronger non-stationarity, and wider windows are suitable

for stationary series. For example, for a stationary series, one can use QMDPCA

with one window that consists of the whole data (i.e. W = N).

In order to obtain informative results, one shall determine the optimal number of

lagged series of zt that are included to build the extended data vector yt. Generally

speaking, including more lagged series would add more dynamic information to

the analysis. However, it would also lead to more complicated calculations as the

number of QMDPCs will be increased. To this end, we are going adapt the procedure

introduced in Section 3.1 in the previous chapter to choose the number of lagged

series to include in the analysis, which can be extended to QMDPCA as follows:

1. Start with l = 0.

2. Build the extended data vector yt by including l lagged series.

3. Apply QMDPCA to yt and obtain all QMDPCs.

4. Set j = m(l + 1) and r(l) = 0, where r is the number of relations.

5. Determine if the jth component qj provides a linear relation. If yes, go to next

step, otherwise go to step 7.

6. Set j = j − 1 and r = r(l) + 1, then repeat step 5.

7. Calculate the number of new relations added by including one more lag, rnew(l),

by:

rnew(l) = r(l)−
l−1∑
k=0

(l − k + 1)rnew(k),

if rnew(l) ≤ 0, go to step 9, otherwise go to next step.

8. Set l = l + 1, go to step 2.

9. Stop.
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Notice that step 5 can be done by plotting the eigenvalues of Q̂, where the number of

relations r can be obtained by subtracting the number of significant QMDPCs from

the total number of QMDPCs. More information and examples about the usage of

the above procedure are available in Section 3.1 in Chapter 3.

Another critical step after applying QMDPCA is to determine the optimal num-

ber of QMDPCs to retain (i.e. k). This can be done by balancing between the

following desires: retaining the minimum number of QMDPCs, maximizing the

amount of variation explained by the retained QMDPCs as expressed in (4.8) and

minimizing the reconstruction error.

In order to determine the optimal number of QMDPCs objectively, we are go-

ing to use the Retained Component Criterion RCC proposed in Section 3.1 in the

previous chapter. Recall that the amount of error of reconstructing yt by the first

k QMDPCs can be calculated as follows:

MSEk (yt , yrecon
t ) =

1

MN

M∑
j=1

N∑
t=1

(yj,t −
k∑
v=1

uj,vqv,t)
2 (4.10)

where yrecon
t is the reconstructed data by the first k QMDPCs. Hence, we would like

to minimize the reconstruction error in (4.10). Then, the RCC criterion of the first

k QMDPCs can be calculated as

RCCk = 2− (
k∑
j=1

λj/
M∑
j=1

λj)− ((MaxMSE−MSEk)/MaxMSE) + (2k/M) (4.11)

where λj is the largest jth eigenvalue of the matrix Q defined in (4.5), and MSEk is

defined in (4.10). Furthermore, MaxMSE is the Maximum MSE of reconstruction

that can be calculated using

MaxMSE =
1

MN

M∑
j=1

N∑
t=1

(yj,t)
2. (4.12)

The RCC criterion can objectively balance between the above desires and therefore

suggests the optimal number of QMDPCs to retain. See Section 3.1 in Chapter 3

for more information and examples about the RCC criterion.
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4.1.2 QMDPCA Calculation Procedure

In order to reduce the dimension of an observed multivariate time series zt using

QMDPCA, the following steps are used:

1. Build the extended data vector yt by including lagged series of zt up to lag l.

2. Calculate the sample quadratic order moving cross-covariance matrix Q̂ based

on yt, as defined in (4.5).

3. Calculate the eigenvalues’ matrix Λ̂ and the corresponding eigenvectors’ matrix

Û based on Q̂ obtained in step 2.

4. Determine the optimal number of retained QMDPCs, k, by using the RCC

criterion.

5. The transformed series with reduced dimension is obtained by left multiplying

yt by the transpose of the first k columns of Û (i.e. first k eigenvectors of Q̂),

where k is determined in step (4).

4.1.3 Evaluating Dynamic Relationships

Since QMDPCA deals with time series that can be non-stationary, then the moving

cross-correlation function introduced in the previous chapter can be used to evaluate

the dynamic dependence between its components. Recall, the lag l sample moving

cross-correlation matrix of yt is defined as follows

M̂ρ(l) =
1

N − 2 max(l, w)

N−max(l,w)∑
i=max(l,w)+1

Ŝ
−1
i Γ̂i(l) Ŝ

−1
i−l , (4.13)

where Ŝi is the diagonal matrix of the standard deviations of yi, and Γ̂i(l) is the

sample lag l cross-covariance matrix defined over yi. Notice that the (j, j)th element

of Ŝi will be the square root of the (j, j)th element of Γ̂i(0). Recall that M̂ρ(l) can

be used to evaluate the relationships between the components of both stationary

and non-stationary series by adjusting the window size. More importantly, M̂ρ(l)

will be used to evaluate the relationships between the retained QMDPCs.
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4.2 Theoretical Properties

The theoretical properties of the QMDPCA method are studied here. Recall that

the estimated QMDPCs are obtained by left multiplying the extended data vector yt

by the transpose of the eigenvectors’ matrix Û of the matrix Q̂ in (4.6). Therefore,

the convergence of QMDPCs is implied by the convergence of Û. Hence, our goal

is to show that Û is a consistent estimator of U.

In order to derive the asymptotic properties of our estimator, we employ the

distance measurement defined in (3.20) in Chapter 3. Recall, for some constants

c1 < c2, let B1 and B2 be any c2 × (c2 − c1) matrices satisfying the condition

B′iBi = I(c2−c1)×(c2−c1), where i ∈ {1, 2}, then the distance between B1 and B2 is

D(B1,B2) =
√
c2 − c1 − tr(B1B

′
1B2B

′
2) .

Here, we can approach the convergence of Û by showing that D(M(Û),M(U)) →

0 as W → ∞, where M(U) is the linear space spanned by the columns of U. Fur-

thermore, an important assumption to obtain the results is the mixing assumption.

We consider the mixing coefficient defined in (3.21) in Chapter 3:

θl = sup
c

sup
A∈Fc

−∞,B∈F∞c+l

|P (A ∩B)− P (A)P (B)| .

Here, F c4c3 is the σ-field generated by yt for c3 ≤ t ≤ c4, where c3 and c4 are con-

stants. Recall that θl = 0 if A and B are independent.

In order to investigate the theoretical properties of Û further, we shall notice

that the convergence of Q̂ implies the convergence of Û as the latter consists of

the eigenvectors of Q̂. Furthermore, since Q̂ is obtained by multiplying M̂Γ by its

transpose, then the convergence of Q̂ is implied by the convergence of M̂Γ. Recall

that M̂Γ is calculated based on the cross-covariance matrices of the local windows of

yis as defined in (4.4). Hence, the convergence of M̂Γ is implied by the convergence

Γ̂i.



4.2. Theoretical Properties 100

In this section, we study the convergence of Û, assuming the dimension M is

fixed. We specify the required assumptions to obtain the convergence. We follow a

similar framework to those in Section 3.2 in the previous chapter.

Assumption 4.1. Assume that

sup
i

max
1≤j≤M

E|yj,i − E(yj,i)|2q

is upper bounded by a positive constant c for some constant q > 2, where yj,i is the

jth component of yi and E(yj,i) is its expected value.

Assumption 4.1 requires the tail probabilities of the variables of yi to decay fast

enough such that we obtain a fast convergence rate for Γ̂i.

Assumption 4.2. Assume that the mixing coefficient defined in (3.21) satisfies

the following
∞∑
l=1

θ
1−2/q
l <∞

for q that is given in Assumption 4.1.

Assumption 4.2 above indicates that θl goes to zero fast enough in order to retain a

fast rate of convergence for Γ̂i.

The following theorem states the rate of convergence of Û to U when the di-

mension M is fixed.

Theorem 4.1. Under assumptions 4.1 and 4.2, given that the dimension M is

fixed, then there exists Û = (Û1, . . . , ÛM) such that

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(1/
√
W )

as W →∞.

In order to prove Theorem 4.1, we need the following lemma, which is based on

Lemma 3.1, Lemma 3.2 and Lemma 3.3 from Chapter 3.
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Lemma 4.1. Let the assumptions 4.1 and 4.2 hold. Assume the dimension M is

fixed, then as W →∞

‖Q̂−Q‖2 = Op(1/
√
W ).

Proof of Lemma 4.1. Notice that

‖M̂Γ[M̂Γ]
′ −MΓ[MΓ]

′‖2 ≤ ‖M̂Γ−MΓ‖22 + 2‖M̂Γ−MΓ‖2‖MΓ‖2

and from Lemma 3.3, we know that

‖M̂Γ−MΓ‖2 = Op(1/
√
W ),

then it follows that

‖M̂Γ[M̂Γ]
′ −MΓ[MΓ]

′‖2 = Op(1/
√
W )

as W →∞.

Now, we are going to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Under the assumptions 4.1 and 4.2. Assume the

dimension M is fixed. By Theorem 8.1.10 of Golub and Van Loan (1996) and

Remark 1 of Lemma 1 in Chang et al. (2018), then the following holds

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(‖Q̂−Q‖2).

Then by Lemma 4.1, we have

max
1≤j≤M

D(M(Ûj),M(Uj)) = Op(1/
√
W )

as W →∞.

4.3 Simulations and Real Data Examples

In the following examples, the ability of the QMDPCA method to reduce the di-

mension of multivariate time series will be investigated on both simulated and real

data sets with various dimensions. Both stationary and non-stationary cases will
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be considered, although much of our focus will be spent on the non-stationary case.

The performance of QMDPCA will be evaluated by the percentage of explained

variation, the MSE of reconstructed data and the moving cross-correlation plots

of the retained QMDPCs. Our analyses will be performed using R software. The

necessary functions to produce and assess the results of QMDPCA can be found

under the following R packages: QMDPCA by Alshammri (2020f) and RCC_QMDPCA by

Alshammri (2020h).

4.3.1 Simulations

In the following studies, the behaviour of QMDPCA with different combinations

of window and lag sizes will be investigated on simulated data sets of various di-

mensions and sample sizes. Each simulation will be replicated 500 times. The R

command arima.sim will be used to generate the data sets.

Example 4.3.1 In this example, a stationary series zt with three variables and

1000 samples is considered. This example consists of three parts. The first part

compares the results of applying QMDPCA and DPCA with different sizes of l on

zt. The second part studies the effect of the size of T on the results of QMDPCA.

The third part focuses on optimizing the results of QMDPCA. The variables of zt

are simulated as follows. Let at, bt and ct be independent standard normal white

noises, which are the innovation terms of the following three models, respectively,

then: 
z1,t = ut

z2,t = vt

z3,t = wt

(4.14)

where (ut, vt, wt)
′

satisfies 
ut = −0.8ut−1 + at

vt = 0.25vt−1 + bt

wt = 0.65wt−1 + ct

(4.15)
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A time series plot of one simulated series is shown in Figure 4.1, where the data

exhibited a stationary behaviour. Thus, QMDPCA shall use a wide window of size

W = N .

Figure 4.1: A time series plot of the randomly selected simulated series with three

variables in Example 4.3.1.

The first part of this simulation study focuses on comparing the results of QMD-

PCA with those of DPCA of Ku et al. (1995)) using different number of lags. Based

on 500 replicas, Table 4.1 is a comparison between the results of QMDPCA and

DPCA using one and five lags, where two components are retained. In general, the

mean percentages of explained variation by two QMDPCs of QMDPCA were higher

than those explained by two DPCs of DPCA. For example, with l = 1, two QMD-

PCs explained 91.38% of the variation in the data compared with 70.57% when using

two DPCs. Additionally, with l = 5, the mean percentage of explained variation

was slightly reduced for QMDPCA and significantly reduced for DPCA. For exam-

ple, the mean percentage of explained variation decreased from 91.38% to 86.05%

for QMDPCA compared with 70.57% to 50.30% for DPCA. Additionally, the mean

MSE of reconstructed data had similar values for both QMDPCA and DPCA. Both

methods produced relatively small reconstruction errors. For example, when recon-

structing the data with two components, both methods produced a mean MSE of

0.55 when l = 1 and 0.92 when l = 5. Notice that the standard deviations of both
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the explained variation percentage and the MSE of reconstructed data for all four

cases did not exceed 0.03, which indicates similar results to be obtained across the

500 replicas for the considered four cases.

Table 4.1: A comparison between QMDPCA and DPCA with different sizes of l

applied to the simulated stationary series in Example 4.3.1.

The correlations between the retained components were revealed by plotting the

mean of the absolute values of the autocorrelation function (i.e. acf function) as the

series is stationary. As shown in figures 4.2 and 4.3, uncorrelated components were

obtained for all four cases. Also, the standard deviations of the absolute values of

the acf function are reported in Table 4.2, where the values ranged from 0 to 0.08,

which is very close to zero. Therefore, similar acf plots were obtained across the 500

replicas.
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Figure 4.2: Plots of the mean of the absolute value of the moving cross-correlations

between two components in Example 4.3.1 [Left: QMDPCA (l = 1), Right:

DPCA(l = 1)].

Figure 4.3: Plots of the mean of the absolute value of the moving cross-correlations

between two components in Example 4.3.1 [Left: QMDPCA (l = 5), Right:

DPCA(l = 5)].
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Table 4.2: Standard deviations of the absolute value of the acf function between two

components with different sizes of l in Example 4.3.1.
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Therefore, based on the above results, the dimension of the simulated stationary

series with three variables could be reduced by QMDPCA with l = 1. Alternatively,

with slightly less accuracy, QMDPCA with l = 5 can be used, where more dynamic

information could be added to the analysis. The case where the optimal number of

lagged series is used will be considered latter in this example.

The second part of this example studies the effect of the sample size T on the

results of QMDPCA. In particular, we used the three models introduced in the first

part of this example to generate series with sample sizes T = {200, 400, 600, 800}.

Based on 500 replicas, Table 4.3 is a comparison between the results of applying

QMDPCA with W = N (i.e. W = T − l) and l = 1 to the generated series, where

two QMDPCs are retained. It can be seen that the results in Table 4.3 are close to

what we observed when QMDPCA with l = 1 was applied to the simulated series

with T = 1000. In specific, the mean percentages of explained variation were above

91% with a standard deviations less than 0.04 for all cases. Also, the mean MSE of

reconstructed data had values around 0.55 with standard deviations less than 0.05

in all cases.

Table 4.3: Comparison between the results of QMDPCA with different sizes of T in

Example 4.3.1.

Moreover, the mean of the absolute value of the acf function between two QMD-

PCs of series of different sample sizes are plotted in figures 4.4 and 4.5, where the

two QMDPCs were uncorrelated in all cases. We noticed that the standard devia-

tions of the absolute value of the acf function between the considered two QMDPCs

decreased as we increased the sample size; See Table 4.4. For example, the standard

deviations ranged between 0 to 0.13 when T = 200 comparing with 0 to 0.07 when
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T = 800, where the latter is similar to what we observed when T = 1000 earlier.

Figure 4.4: Plots of the mean of the absolute value of the acf function between two

QMDPCs with different sizes of T in Example 4.3.1 [Left: T = 200, Right: T = 400].

Figure 4.5: Plots of the mean of the absolute value of the acf function between two

QMDPCs with different sizes of T in Example 4.3.1 [Left: T = 600, Right: T = 800].
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Table 4.4: Standard deviations of the absolute value of the acf function between two

QMDPCs with different sizes of T in Example 4.3.1.
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Therefore, increasing the sample size of the data improves the results of QMD-

PCA to reduce the dimension of the simulated stationary series. We notice that the

performance of QMDPCA was reasonable on series with sizes as small as T = 200.

The last part of this study includes only one randomly selected replica from the

above simulations with 1000 samples. In this part, we focus on optimizing the re-

sults of QMDPCA. Recall that the optimal window size for a stationary series is

W = N . The optimal number of lags is suggested to be l = 1 based on Figure 4.6,

where one static and two dynamic relations were found. Therefore, QMDPCA with

W = N and l = 1 is suggested to reduce the dimension of the simulated series. Fig-

ure 4.7 shows the eigenvalues’ plot and RCC plot after applying QMDPCA, where

the RCC criterion suggested two optimal QMDPCs to retain. These two compo-

nents explained 93.01% of the variation in the data and produced an MSE of 0.56

when used to reconstruct the data. The sample acf plots in Figure 4.8 indicated

uncorrelated QMDPCs. In conclusion, QMDPCA reduced the dimension of the sim-

ulated stationary series from three to two stationary components that explained a

high percentage of the variation of the data and produced a low reconstruction error.
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Figure 4.6: Eigenvalues’ plots after applying QMDPCA with W = N and different

sizes of l to the simulated series with three variables in Example 4.3.1.

Figure 4.7: Top: An eigenvalues’ plot of the simulated series with three variables

in Example 4.3.1 after applying QMDPCA with W = N and l = 1. Bottom: RCC

plot.
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Figure 4.8: Sample moving cross-correlation plots of the retained two QMDPCs of

the simulated series in Example 4.3.1.

Example 4.3.2 In this example, we test the ability of QMDPCA on a non-stationary

data set zt that consists of five variables and 1000 samples. This example consists of

four parts. The first part compares the results of applying QMDPCA and MDPCA

with different sizes of l on zt. The second part investigates the results of QMDPCA

when using different combinations of W and l. The third part investigates the effect

of the size of T on the results of QMDPCA. The fourth part focuses on optimizing

the results of QMDPCA. The series zt is generated using five different models as

described below.

Let at, bt, ct, dt and et be independent standard normal white noises, which are

the innovation terms of the following five models, respectively, then:

z1,t = ut

z2,t = vt

z3,t = wt

z4,t = xt

z5,t = qt

(4.16)
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where (ut, vt, wt, ft, qt)
′

satisfies

5ut = 0.555 ut−1 + at − 0.8at−1

5vt = −0.655 vt−1 + bt + 0.45bt−1

5wt = 0.455 wt−1 + ct + 1.6ct−1

5xt = −0.85 xt−1 + dt − 0.9dt−1

5qt = 0.855 qt−1 + et − 2.2et−1

(4.17)

A time series plot of the simulated data is shown in Figure 4.9, where the variables

exhibited apparent non-stationary behaviours.

Figure 4.9: A time series plot of the simulated non-stationary series with five vari-

ables in Example 4.3.2.

In the first part of this simulation study, we compare the results of QMDPCA

with those of MDPCA introduced in Chapter 3. Both methods use a window of size

W = 101 in order to obtain a fair comparison. Based on 500 replicas, Table 4.5 is

a comparison between the results of QMDPCA and MDPCA with l = 1 and l = 5,

where two components are retained. It can be seen that the mean percentages of ex-

plained variation by two QMDPCs were slightly higher than those explained by two

MDPCs. For example, with l = 1, two QMDPCs explained 99.98% of the variation

in the data compared with 98.22% when two MDPCs were used. When l = 5 was
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used, the mean percentages of explained variation decreased slightly to 99.95% for

QMDPCA, and to 96.44% for MDPCA. Steady results were obtained from the 500

replicas as both methods had a standard deviation of explained variation around

zero. In terms of the MSE of reconstructed data, both QMDPCA and MDPCA pro-

duced similar values. In particular, both methods produced a mean error of 85.55

with a standard deviation of 79.51 when l = 1, and 93.36 with a standard deviation

of 84.13 when l = 5. The large standard deviations of the MSE of reconstructed

data indicated different reconstruction errors for different replicas.

Table 4.5: A comparison between QMDPCA and MDPCA with W = 101 and

different sizes of l in Example 4.3.2 where two components are retained.

Additionally, the mean of the absolute value of the moving cross-correlations

with W = 101 between the retained two components of both methods are plotted

in figures 4.10 and 4.11. Notice that the retained two components were uncorre-

lated for both methods in all cases. The standard deviations of the absolute value

of the moving cross-correlations with W = 101 between the two components are

reported in Table 4.6, where their values did not exceed 0.11 in all cases. Hence,

similar results were obtained for both methods in terms of the correlation between

the retained components.
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Figure 4.10: Plots of the mean of the absolute value of the moving cross-correlations

between two components in Example 4.3.2 [Left: QMDPCA (W = 101, l = 1),

Right: MDPCA(W = 101, l = 1)].

Figure 4.11: Plots of the mean of the absolute value of the moving cross-correlations

between two components in Example 4.3.2 [Left: QMDPCA (W = 101, l = 5),

Right: MDPCA(W = 101, l = 5)].
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Table 4.6: Standard deviations of the absolute value of the moving cross-correlation

between two components with W = 101 and different sizes of l in Example 4.3.2.
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Therefore, both QMDPCA and MDPCA produced similar results when applied

to reduce the dimension of the simulated non-stationary series with five variables

in terms of reconstruction error and the dynamic relationship between the retained

components. We noticed that the QMDPCA showed a higher percentage of ex-

plained variation.

The second part of this simulation study focuses on comparing the results of

QMDPCA using different sizes of W and l. Based on 500 replicas, Table 4.7 is a

comparison between the results of applying QMDPCA with different combinations

of W and l, where two QMDPCs are retained. The mean percentages of explained

variation by two QMDPCs were about 99.9% for all cases and did not differ much

by changing the size of W or l. For example, a mean percentage of 99.98% was

obtained when using QMDPCA with W = 101 and l = 1, compared with 99.95%

when using W = 101 and l = 5. Also, a mean percentage of 99.98% was obtained

when using QMDPCA with W = 301 for both cases where l = 1 and l = 5. Also,

we noticed that these percentages did not change across the 500 replicas, as they

have zero standard deviations when rounded to two decimal points. In terms of the

mean of MSE of reconstructed data, its values varied from 73.17 to 87.35 for the

considered combinations of W and l, where it had its lowest when using W = 301

and l = 1, and it had its highest when using W = 101 and l = 5. We observed large

values for the standard deviations of the MSE of reconstructed data for all cases,

which is an indication of a non-steady reconstruction errors across the replicas. For

example, a mean MSE of 75.77 was obtained when using W = 301 and l = 5 with

a standard deviation of 62.02.
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Table 4.7: A comparison between the results of QMDPCA with different combina-

tions of W and l in Example 4.3.2.

For the mean of the absolute value of the moving cross-correlations with W = 101

between the retained QMDPCs, we noticed that the components were uncorrelated

for the cases where W = 101 was used, as plotted in figures 4.12 - 4.14. The cor-

relations became larger and significant as we increased the window size to 201 and

301. The standard deviations of the absolute value of the moving cross-correlations

with W = 101 between the two components are reported in Table 4.8, where their

values were reasonable and did not exceed 0.1 for the considered six cases.
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Figure 4.12: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.2 [Left: QMDPCA (W = 101, l = 1), Right:

QMDPCA(W = 101, l = 5)].

Figure 4.13: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.2 [Left: QMDPCA (W = 201, l = 1), Right:

QMDPCA(W = 201, l = 5)].



4.3. Simulations and Real Data Examples 120

Figure 4.14: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.2 [Left: QMDPCA (W = 301, l = 1), Right:

QMDPCA(W = 301, l = 5)].
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Table 4.8: Standard deviations of the absolute value of the moving cross-correlations

between two components with different combinations of W and l in Example 4.3.2.



4.3. Simulations and Real Data Examples 122

Therefore, changing the window size had a significant effect on the results of

QMDPCA when applied to the non-stationary series in this example. Additionally,

similar results were obtained when including one or five lagged series to the analysis,

where slightly better results were obtained when using one lag in this example.

The third part of this study focuses on the effect of the sample size T on the

results of QMDPCA. In the previous parts of this study, the five models intro-

duced at the beginning of this example were used to simulate the series zt with

1000 samples. In this part, we simulate zt using the same five models, but with

sample sizes T = {200, 400, 600, 800}, then apply QMDPCA with W = 101 and

l = 1 and compare the results. Based on 500 replicas, Table 4.9 is a comparison

between QMDPCA’s results for the above cases, where two QMDPCs are retained

in all cases. We observed a mean percentage of explained variation of 99.97% with

zero standard deviation for all different sample size. The mean and the standard

deviation of the MSE of reconstruction data increased as we increased the sample

size. For example, a mean MSE of 16.25 was obtained when T = 200 compared with

68.72 when T = 800. This can be justified as less reconstruction error is expected

for smaller number of observation, and the error increases as more data is required

to be reconstructed. The large standard deviations of the reconstruction error indi-

cate the value of the reconstruction error varies from replica to the other. A smaller

reconstruction error could be obtained by normalizing the data. Consequently, the

standard deviation of the reconstruction error would also be reduced.

By investigating the plots of the mean of the absolute value of the moving cross-

correlation between two QMDPCs with different sample sizes in figures 4.15 and

4.16, we noticed that significant correlation between the two components appeared

after the first ± 10 lags when T = 200. As we increased the sample size to 400,

600 and 800, the correlations became non-significant and acted similar to what we

observed when T = 1000 earlier. Furthermore, the standard deviations of the ab-

solute value of the moving cross-correlation between two QMDPCs are reported in

Table 4.10, where smaller values were obtained when using T ≥ 400. For example,
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the standard deviations ranged from 0 to 0.24 when T = 200, compared with 0 to

0.16 when T = 400, and 0 to 0.11 when T = 800.

Table 4.9: A comparison between the results of QMDPCA with different sizes of T

in Example 4.3.2.

Figure 4.15: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.2 [Left: T = 200,

Right: T = 400].
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Figure 4.16: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.2 [Left: T = 600,

Right: T = 800].
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Table 4.10: Standard deviations of the absolute value of the moving cross-

correlations between two QMDPCs with different sizes of T in Example 4.3.2.
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Therefore, by applying QMDPCA with W = 101 and l = 1 on the simulated

series in this example with different sample sizes, the two QMDPCs explained more

than 99% of the variation in the data. However, the value of reconstruction error

differed across simulations. Also, the two QMDPCs showed some correlation when

using small sample size and became uncorrelated when increasing the sample size.

In particular, a reasonable performance was obtained when T ≥ 400.

In the last part of this example we optimize the results of QMDPCA based on

one randomly selected replica with 1000 samples. Considering the non-stationarity

of the simulated series, as shown in Figure 4.9, then a window of size W = 101 can

be used. The optimal number of lags is suggested to be l = 1, where three static and

two dynamic relations were found according to the eigenvalues’ plots in Figure 4.17.

Thus, we apply QMDPCA with W = 101 and l = 1 to reduce the dimension of the

simulated series in this part. Figure 4.18 shows the eigenvalues’ plot and RCC plot

after QMDPCA was applied to the simulated series. The RCC value was 0.94 for

the first QMDPC, compared with 0.41 for the first two QMDPCs, 0.60 for the first

three QMDPCs, and then continued to increase afterword. Therefore, two QMDPCs

to be retained were suggested to be optimal by the RCC criterion. The retained

two components were able to explain almost all variation in the data, where the

percentage of explained variation was 99.98%. Also, the retained two components

were able to reconstruct the data with an MSE of 24.07, which relatively small value

considering the size of the data. Additionally, the sample moving cross-correlation

plots between the two retained QMDPCs indicated uncorrelated components, as

shown in Figure 4.19.
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Figure 4.17: Eigenvalues’ plots after applying QMDPCA with W = 101 and different

sizes of l to the simulated series with five variables in Example 4.3.2.

Figure 4.18: Top: An eigenvalues’ plot of the simulated series with five variables in

Example 4.3.2 after applying QMDPCA with W = 101 and l = 1. Bottom: RCC

plot.
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Figure 4.19: Sample moving cross-correlation plots of the retained two QMDPCs of

the simulated series in Example 4.3.2.

Therefore, we conclude that the QMDPCA with W = 101 and l = 1 was able to

reduce the dimension of the simulated non-stationary series from five to two. The

retained two components explained almost all variation in the data and could be

used to reconstruct the original data with a small error.

Example 4.3.3 In the following study, a non-stationary series zt with ten vari-

ables and 1500 samples. This study consists of three parts. The first part studies

the results of QMDPCA when using different combinations of W and l. The second

part investigates the effect of the size of T on the results of QMDPCA. The third

part focuses on optimizing the results of QMDPCA. The series zt is simulated us-

ing five different models, such that each model generates two correlated variables.

Let at, bt, ct, dt and et be independent standard normal white noises, which are the

innovation terms of the following five models, respectively, then:

zj,t = ut+j−1, j = 1 and 2

zj,t = vt+j−3, j = 3 and 4

zj,t = wt+j−5, j = 5 and 6

zj,t = xt+j−7, j = 7 and 8

zj,t = qt+j−9, j = 9 and 10

(4.18)
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where (ut, vt, wt, ft, qt)
′

satisfies

5ut = −0.65 ut−1 + at − 1.8at−1

5vt = 0.85 vt−1 + bt − 0.7bt−1

5wt = 0.55 wt−1 + ct + 0.9ct−1

5xt = 0.75 xt−1 + dt

5qt = −0.95 qt−1 + et

(4.19)

Figure 4.20 is a time series plot of a simulated series. It can be seen that the vari-

ables exhibited non-stationary behaviours.

Figure 4.20: A time series plot of the simulated non-stationary series with ten

variables in Example 4.3.3.

First, we compare the results of QMDPCA with different window and lag sizes

on the simulated series. Based on 500 replicas, Table 4.11 is a comparison between

the results of applying QMDPCA with different combinations of W and l, where

two QMDPCs are considered. The mean percentages of explained variation by two

QMDPCs were about 98.5% and did not differ much by changing the size of W and l.

For example, a mean percentage of 98.57% was obtained when using QMDPCA with

W = 101 and l = 1, compared with 98.44% when using W = 101 and l = 5. Also,

a mean percentage of 98.60% was obtained when using QMDPCA with W = 301
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and l = 1, compared with 98.59% when using W = 301 and l = 5. Also, we noticed

that these percentages were similar for all 500 replicas as they had small standard

deviations of 0.01 in all cases. In terms of the mean of MSE of reconstructed data,

we noticed that its value decreased as we increased the window size. In particular,

its values ranged from 325.57 to 374.66 for the considered combinations of W and l,

where it had its lowest when using W = 301 and l = 5, and it had its highest when

using W = 101 and l = 1. We observed large values for the standard deviations of

MSE of reconstructed data for all cases, which indicates non-steady reconstruction

errors across the replicas. For example, a mean MSE of 337.23 was obtained when

using W = 201 and l = 1 with a standard deviation of 313.96.

Table 4.11: A comparison between the results of QMDPCA with different combina-

tions of W and l in Example 4.3.3.

Also, the mean of the absolute value of the moving cross-correlations with

W = 101 between the retained QMDPCs are plotted in figures 4.21 - 4.23. The

plots indicate uncorrelated QMDPCs for the cases where W = 101 was used. The

correlations became significant as we increased the W to 201 and 301. The stan-

dard deviations of the absolute value of the moving cross-correlations with W = 101

between the retained components had small values as reported in Table 4.12, where

their values ranged from 0 to 0.1 in all of the considered six cases.
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Figure 4.21: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.3 [Left: QMDPCA (W = 101, l = 1), Right:

QMDPCA(W = 101, l = 5)].

Figure 4.22: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.3 [Left: QMDPCA (W = 201, l = 1), Right:

QMDPCA(W = 201, l = 5)].
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Figure 4.23: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.3 [Left: QMDPCA (W = 301, l = 1), Right:

QMDPCA(W = 301, l = 5)].
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Table 4.12: Standard deviations of the absolute value of the moving cross-

correlations between two components with different combinations of W and l in

Example 4.3.3.

Therefore, based on the above results, the dimension of the simulated non-
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stationary series in this example can be reduced by using QMDPCA with W =

101 and either l = 1 or l = 5. Using larger window sizes caused the QMDPCA to

produce correlated components.

Second, we study the effect of changing the sample size of the simulated series

with ten variables on the results of QMDPCA. Based on 500 replicas, Table 4.13 is

a comparison between the results of QMDPCA with W = 101 and l = 5 applied to

the simulated series with sample sizes T = {200, 400, 600, 800}, where two QMDPCs

are retained. Notice that slight changes in the values of the mean and standard de-

viation of the percentage of explained variation. In particular, the mean percentage

of explained variation decreased slightly as we increased T . The standard deviation

of the percentage of explained variation increased slightly as we increased T . For

example, a mean percentage of 99.03% with 0.02 standard deviation was obtained

when T = 200, compared with 98.52% and 0.01 when T = 800. Additionally, the

mean and the standard deviation of the MSE of reconstruction data increased as we

increased T . For example, a mean MSE of 41.56 with a standard deviation of 42.21

was obtained when T = 200, compared with 188.22 and 187.19 when T = 800. As

the data in this example is not normalized, the values of the reconstruction error

and its standard deviations could be reduced further by normalizing the data.

Table 4.13: A comparison between the results of QMDPCA with different sizes of

T in Example 4.3.3.

Furthermore, the plots of the mean of the absolute value of the moving cross-

correlation between the retained QMDPCs with different sample sizes are provided

in figures 4.24 and 4.25. It can be seen that some significant correlation between the

retained two components appeared after the first ± 10 lags when T = 200. These
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correlations decreased as we increased T to 400. The retained QMDPCs became

uncorrelated when increasing T to 600 and 800. Also, the standard deviations of

the absolute value of the moving cross-correlation between the retained QMDPCs

are reported in Table 4.14, where smaller values were obtained when using T ≥ 400,

which indicates steady results for different replicas. For example, the standard devi-

ations ranged from 0 to 0.24 when T = 200, compared with 0 to 0.16 when T = 400,

and 0 to 0.12 when T = 800.

Figure 4.24: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.3 [Left: T = 200,

Right: T = 400].
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Figure 4.25: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.3 [Left: T = 600,

Right: T = 800].
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Table 4.14: Standard deviations of the absolute value of the moving cross-

correlations between two QMDPCs with different sizes of T in Example 4.3.3.
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Therefore, by applying QMDPCA with W = 101 and l = 5 to the simulated

series in this example with different sample sizes, we were able to obtain high per-

formance when using large sample size (i.e. T ≥ 600). QMDPCA showed a rea-

sonable performance when applied to series with sample of sizes as small as T = 400.

In the last part of this study, we optimize the results of QMDPCA by consider-

ing only one randomly selected replica of the above simulations with 1500 samples.

A small window of size W = 101 is used considering the non-stationarity of the

simulated series; See Figure 4.20. Also, eight static and two dynamic relations were

observed by investigating the eigenvalues’ plots in Figure 4.26. Hence, l = 1 is sug-

gested to be optimal. Therefore, QMDPCA with W = 101 and l = 1 can be used

to reduce the dimension of the simulated series. After applying QMDPCA to the

data, Figure 4.27 shows the eigenvalues’ plot and RCC plot. Two QMDPCs were

suggested to be optimal with an RCC value of 0.31. The retained two QMDPCs

explained almost all variation in the data with a percentage of 99.5%, and produced

an MSE of 273.21 when they used to reconstruct the data, which is a reasonable

value considering the size of the data. The sample moving cross-correlation plots

between the two retained QMDPCs indicated uncorrelated components, as shown

in Figure 4.28.
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Figure 4.26: Eigenvalues’ plots after applying QMDPCA with W = 101 and different

sizes of l to the simulated series with ten variables in Example 4.3.3.
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Figure 4.27: Top: An eigenvalues’ plot of the simulated series with ten variables in

Example 4.3.3 after applying QMDPCA with W = 101 and l = 1. Bottom: RCC

plot.

Figure 4.28: Sample moving cross-correlation plots of the retained two QMDPCs of

the simulated series in Example 4.3.3.

Based on the above discussion, the dimension of the simulated series in this

example was reduced from 10 to 2 by using QMDPCA with W = 101 and l = 1.

The produced two QMDPCs explained almost all variation in the non-stationary

series and produced a relatively small error when used to reconstruct the data.



4.3. Simulations and Real Data Examples 141

Example 4.3.4 In this study, QMDPCA is applied to a non-stationary series zt

that consists of 15 variables. This study includes two parts. The first part investi-

gates the effect of applying QMDPCA with different combinations of W and l on

the simulated series zt. The second part studies the effect of changing the sample

size of zt on the results of QMDPCA. The series zt is generated using five different

models, such that each model produces three dependent variables as described below.

Let at, bt, ct, dt and et be independent standard normal white noises, which are

the innovation terms of the following five models, respectively, then:

zj,t = ut+j−1, j = 1, 2 and 3

zj,t = vt+j−4, j = 4, 5 and 6

zj,t = wt+j−7, j = 7, 8 and 9

zj,t = xt+j−10, j = 10, 11 and 12

zj,t = qt+j−13, j = 13, 14 and 15

(4.20)

where (ut, vt, wt, ft, qt)
′

satisfies

5ut = −0.85 ut−1 + at − 1.2at−1

5vt = 0.555 vt−1 + bt − 0.9bt−1

5wt = 0.65 wt−1 + ct + 2.2ct−1

5xt = −0.755 xt−1 + dt + 0.45dt−1

5qt = 0.85 qt−1 + et + 1.5et−1

(4.21)

A time series plot of the simulated data is provided in figures 4.29 and 4.30, where

the variables exhibited non-stationary behaviours.
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Figure 4.29: A time series plot of the simulated non-stationary series with 15 vari-

ables in Example 4.3.4 - Part 1.

Figure 4.30: A time series plot of the simulated non-stationary series with 15 vari-

ables in Example 4.3.4 - Part 2.

Based on 500 replicas, Table 4.15 is a comparison between the results of applying

QMDPCA using different combinations of W and l applied to zt with 2000 samples,

where two QMDPCs are retained. For the mean percentage of explained variation

by the retained QMDPCs, about 99.9% of the variability was explained in all cases.

This percentage did not change significantly by using different combinations of W or

l. For example, a mean percentage of 99.96% was obtained when using QMDPCA
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with W = 101 and l = 5, compared with 99.99% for all other cases. These percent-

ages did not change among the 500 replicas as they have zero standard deviations

(when rounded to two decimals). For the mean of the MSE of reconstructed data,

its values ranged from 134.93 to 158.99 for the considered combinations of W and

l, where the lowest value was obtained when using W = 301 and l = 1, and the

highest when using W = 201 and l = 5. These values are reasonable considering

the dimensions of the simulated series.

Table 4.15: A comparison between the results of QMDPCA with different combina-

tions of W and l in Example 4.3.4.

For the relationship between the retained QMDPCs, the plots of the mean of the

absolute value of the moving cross-correlation indicated uncorrelated components

for the cases where QMDPCA with W = 101 was used; See Figure 4.31. However,

barely significant correlations were observed between the two components for the

cases where W = 201 was used; See Figure 4.32. The correlations increased slightly

when using QMDPCA with W = 301 compared with those of W = 201; See Figure

4.33. The standard deviations of the absolute value of the moving cross-correlation

are reported in Table 4.16, where their values ranged between 0 to 0.07 in all cases.

The latter indicates steady relationship between the retained QMDPCs across the

500 replicas.
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Figure 4.31: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.4 [Left: QMDPCA (W = 101, l = 1), Right:

QMDPCA(W = 101, l = 5)].

Figure 4.32: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.4 [Left: QMDPCA (W = 201, l = 1), Right:

QMDPCA(W = 201, l = 5)].



4.3. Simulations and Real Data Examples 145

Figure 4.33: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs in Example 4.3.4 [Left: QMDPCA (W = 301, l = 1), Right:

QMDPCA(W = 301, l = 5)].
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Table 4.16: Standard deviations of the absolute value of the moving cross-

correlations between two QMDPCs with different combinations of W and l in Ex-

ample 4.3.4.
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Therefore, we can reduce the dimension of the simulated non-stationary series

with 15 variables in this example by using QMDPCA with W = 101 and either l = 1

or l = 5.

In order to investigate the effect of changing the sample size of zt on QMD-

PCA’s results, we apply QMDPCA with W = 101 and l = 1 on zt with sample

sizes T = {200, 400, 600, 800}. Based on 500 replicas, Table 4.17 is a summary of

the results, where two QMDPCs are selected. For all the considered sample sizes,

we obtained a mean percentage of explained variation of 99.99% with zero standard

deviations. Also, we notice that the mean MSE of reconstructed data and the cor-

responding standard deviation increased as we increased T . For example, a mean

MSE of 18.15 with a standard deviation of 11.76 were obtained when T = 200, com-

pared with 55.69 and 53.02 when T = 800. Additionally, the mean of the absolute

value of the moving cross-correlation with W = 101 are plotted in figures 4.34 and

4.35. The retained two QMDPCs had significant correlations when T = 200. These

correlations decreased with some minor, but significant, correlations for | l |≥ 10

when increasing the dimension to T = 400. Uncorrelated QMDPCs were obtained

when using T = 600 and T = 800. The standard deviations of the absolute value of

the moving cross-correlation are reported in Table 4.18, where the values improved

(i.e. decreased) by increasing T . These standard deviations ranged between 0 to

0.24 when T = 200, compared with 0 to 0.12 when T = 800. Notice that the data

in this example are not normalized, and as mentioned in the previous examples,

normalizing the data would reduce the values of the reconstruction error and its

standard deviations further.
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Table 4.17: A comparison between the results of QMDPCA with different sizes of

T in Example 4.3.4.

Figure 4.34: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.4 [Left: T = 200,

Right: T = 400].
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Figure 4.35: Plots of the mean of the absolute value of the moving cross-correlations

between two QMDPCs with different sizes of T in Example 4.3.4 [Left: T = 600,

Right: T = 800].
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Table 4.18: Standard deviations of the absolute value of the moving cross-

correlations between two QMDPCs with different sizes of T in Example 4.3.4.
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Therefore, by using QMDPCA with W = 101 and l = 1 in this example, we

were able to reduce the dimension of zt from 15 to 2. QMDPCA performed well

when applied to series with sample sizes T ≥ 600. A reasonable performance was

obtained when using sample sixes as small as T = 400.

By the end of the above simulation studies, we conclude that the proposed QMD-

PCA was able to reduce the dimension of stationary and non-stationary multivariate

time series. The proposed method showed steady performance as we increased the

dimension of the data in the simulation studies.

Determining the window size enables QMDPCA to extract accurate results from

non-stationary series. We noticed that using a window size that is larger than

required could cause QMDPCA to produce correlated QMDPCs. However, the op-

posite does not have to be true, where QMDPCA can produce accurate results using

a window size that is smaller than required.

Including more lagged series in the analysis might add more dynamic informa-

tion to the results of QMDPCA. We noticed that by including more lagged series

in the analysis, QMDPCA produced QMDPCs with a slightly lower contribution

percentage and slightly higher reconstruction error compared to those when fewer

lagged series were included.

It was noticed that QMDPCA could produce a small number of components

that explain almost all variation of the data and produce a small reconstruction

error when applied on non-stationary series with small sample sizes. However, the

retained QMDPCs might have some correlations appeared in larger time lags due to

the continuous movement in the moving cross-covariance matrix. These correlations

became non-significant when increasing the sample size. Therefore, it is not sufficient

to evaluate the retained QMDPCs based on the contribution percentage and the

reconstruction error only. It is important to investigate the relationship between

the retained components to obtain uncorrelated QMDPCs.
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4.3.2 Real Data Examples

Example 4.3.5 The data in this example consists of the daily stock prices of 10 US

companies in US Dollar observed in 1036 days from Nov 07, 2013 to Dec 18, 2017.

The variables in this example represent the stock prices of the following companies:

Boeing (BA), Bank of America (BAC), Citigroup (C), Facebook (FB), Ford (F),

General Electric (GE), General Motor(GM), The Home Depot (HD), IBM (IBM)

and Intel (INTC). The data is available at Yahoo! Finance. In the following, we are

going to apply QMDPCA to see if the dimension of the above series can be reduced.

Figure 4.36 is a time series plot of the daily stock prices of the US companies

where all ten companies exhibited non-stationary behaviours over time. A window

of W = 101 is suggested to be used in the following analysis considering the non-

stationarity of the data. The dynamic relationships among the ten companies is

revealed by the sample moving cross-correlation plots before applying QMDPCA;

See the first 36 plots in Figure 4.37. In general, a moderated dynamic relation-

ship was observed between the ten companies. For example, the companies Bank of

America and Citigroup exhibited a strong correlation in all lags. Also, Facebook and

Boeing had a moderate relationship. Moreover, a weak relationship existed between

the companies Facebook and IBM.



4.3. Simulations and Real Data Examples 153

Figure 4.36: A time series plot of the daily stock prices of the ten US companies in

Example 4.3.5

Figure 4.37: First 36 sample moving cross-correlation plots with W = 101 of the

daily stock prices of the ten US companies in Example 4.3.5 before QMDPCA is

applied.

By investigating Figure 4.38, the optimal number of lags is suggested to be l = 1,

where seven static and three dynamic relations were found. The eigenvalues and the

RCC values are plotted in Figure 4.39, where the first three QMDPCs are suggested

to be optimal with an RCC value of 0.33 (rounded to two decimals). The retained

three QMDPCs explained 98.63% of the variation of the data and produced an
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MSE of 134.26 when used to reconstruct the data. Additionally, the sample moving

cross-correlation plots of the three QMDPCs indicated uncorrelated components;

See Figure 4.40.

Figure 4.38: Eigenvalues’ plots after applying QMDPCA with W = 101 to the ten

US companies in Example 4.3.5.
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Figure 4.39: Top: An eigenvalues’ plot of the ten US companies in Example 4.3.5

after applying QMDPCA with W = 101 and l = 1. Bottom: RCC plot.

Figure 4.40: Sample moving cross-correlation plots of the three QMDPCs of the ten

US companies in Example 4.3.5 after QMDPCA with W=101 and l=1 is applied.

In conclusion, QMDPCA with W = 101 and l = 1 was able to reduce the

dimension of the US stock prices data from 10 to 3. The retained three QMDPCs

explained almost all variation in the data and were able to reconstruct back the

original data with a relatively small error.
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Example 4.3.6 The data in this example consists of daily stock prices of eighteen

US companies in US Dollar observed in 1036 days from Nov 07, 2013 to Dec 18,

2017. The eighteen variables are the ten variables in Example 4.3.5 additional to

eight new variables. The names and labels of the eighteen US companies are sum-

marized in Table 4.19. The data is available at Yahoo! Finance.

Table 4.19: Names and labels of the 18 US companies in Example 4.3.6.

The non-stationary behaviours of daily stock prices of the eighteen US compa-

nies are shown in figures 4.41 and 4.42. Thus, a window of size W = 101 is used

in the analyses. The sample moving cross-correlation plots revealed moderate rela-

tionships among the eighteen companies before applying QMDPCA; See the last 36

plots in Figure 4.43. For example, the company Walmart was strongly correlated

with Walgreens Boots Alliance and weakly correlated with Verizon.
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Figure 4.41: A time series plot of the daily stock prices of the 18 US companies in

Example 4.3.6 - Part 1.

Figure 4.42: A time series plot of the daily stock prices of the 18 US companies in

Example 4.3.6 - Part 2.



4.3. Simulations and Real Data Examples 158

Figure 4.43: Last 36 sample moving cross-correlation plots with W = 101 of the

daily stock prices of the 18 US companies in Example 4.3.6 before QMDPCA is

applied.

The optimal number of lags is suggested to be l = 1 based on Figure 4.44, where

fourteen static and four dynamic relations were observed. The eigenvalues and the

RCC values are plotted in Figure 4.45. The RCC had values of 0.425, 0.305, 0.303

and 0.322 for the first two, three, four and five QMDPCs, receptively. Therefore,

four QMDPCs were considered to be optimal to represent the data after transforma-

tion. The retained four QMDPCs explained 97.66% of the variation of the data and

produced an MSE of 408.58 when used to reconstruct the data. Also, the sample

moving cross-correlation plots of the four QMDPCs suggested uncorrelated compo-

nents, as shown in Figure 4.46.
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Figure 4.44: Eigenvalues’ plots after applying QMDPCA with W = 101 to the 18

US companies in Example 4.3.6.

Figure 4.45: Top: An eigenvalues’ plot of the 18 US companies in Example 4.3.6

after applying QMDPCA with W = 101 and l = 1. Bottom: RCC plot.
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Figure 4.46: Sample moving cross-correlation plots of the QMDPCs of the 18 US

companies in Example 4.3.6 after QMDPCA with W=101 and l=1 is applied.

To conclude, QMDPCA with W = 101 and l = 1 was able to reduce the dimen-

sion of the US daily stock prices data in this example from eighteen to four. The

retained four components explained a high percentage of the variation in the data

and were able to reconstruct the original data with a relatively small error.

4.4 Summary and Remarks

In this chapter, we extended the PCA to non-stationary time series data by present-

ing QMDPCA. This dimension reduction method is general in the sense that it can

be applied on both stationary and non-stationary time series data by adjusting the

window size to extract static and dynamic information from the data. The main

difference between MDPCA from Chapter 3 and QMDPCA is that the former is

based on eigenanalysis of the moving cross-covariance matrix of the data, where the

latter is based on eigenanalysis of the quadratic moving cross-covariance matrix of

the data.

We used three methods to evaluate the results of QMDPCA. The static and dy-

namic relationships between the final retained QMDPCs are investigated by using
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the moving cross-correlation function. We also used reconstruction error (i.e. MSE

of reconstructed data) and the percentage of contribution to evaluating the retained

QMDPCs, where lower reconstruction errors and higher percentages of contribution

are indications of better results.

In order to optimize QMDPCA’s results, we used the RCC criterion that we

introduced in Chapter 3 to determine the optimal number of retained QMDPCs.

Choosing the window size for QMDPCA depends on the stationarity of the data.

Shorter windows are suitable for series with stronger non-stationary movements, and

the opposite is true.

We studied the theoretical properties of the estimator of U, the matrix that

consists of the eigenvectors of the quadratic moving cross-covariance matrix of the

data. We showed that Û is a consistent estimator of U with a convergence rate

W−1/2 under some regularity assumptions.

Many simulations were carried out to show the numerical properties of QMDPCA

on data with different dimensions and sample sizes. QMDPCA showed consistent

performance on both stationary and non-stationary time series data. QMDPCA

was also illustrated on real data sets. It was noticed that QMDPCA could produce

QMDPCs that are correlated in larger time lags (i.e. | l |≤ 15) when applied to a

non-stationary series. These correlations appeared due to the continuous movement

in the moving cross-covariance matrix. One can overcome this problem by increas-

ing the sample size. Therefore, it is not sufficient to evaluate QMDPCA’s results

based on the contribution percentage and the reconstruction error only. It is also

important to investigate the relationship between the retained components and ob-

tain QMDPCs that are uncorrelated. Similar conclusion was reported for MDPCA

in Chapter 3, as it also uses the moving cross-covariance matrix in its calculations.

We noticed that QMDPCA and MDPCA produced similar results when applied

on non-stationary series with higher percentages of explained variation by the re-
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tained components of QMDPCA. A similar conclusion was obtained for the station-

ary case when comparing the results of QMDPCA and DPCA of Ku et al. (1995).The

reason for this because QMDPCA produces eigenvalues that have a quadratic order

(i.e. squared eigenvalues) of those produced by MDPCA and DPCA.



Chapter 5

Generalized Principal Component

Analysis for Time Series

In this chapter, a new dimension reduction tool will be proposed. The method

we propose is general in the sense that it can be applied to a wide range of both

stationary and non-stationary time series data with large dimensions. This method

can be considered as a generalization of the stationary TS-PCA of Chang et al.

(2018) to non-stationary data and, therefore, will be called the generalised principal

component analysis of time series (GTS-PCA). Similar to TS-PCA, the results of

GTS-PCA are also uncorrelated subseries (i.e. subgroups) with smaller dimensions

that can be analysed individually. In this chapter, we are going to provide a full

description of the GTS-PCA method and describe how its model is derived. Also,

a new columns’ rearrangement tool called the maximum moving cross-correlation

method will be proposed to enhance the performance of GTS-PCA. The theoretical

properties of the used estimators will be studied. The performance of the GTS-PCA

will be tested on both simulated and real data.

5.1 Methodology

Consider an m-dimensional time series zt = (z1,t, z2,t, ..., zm,t)
′

that can be non-

stationary. We are seeking a linear transformation

zt = Axt (5.1)

163
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where A is an m ×m unknown constant matrix and xt is a hidden m-dimensional

time series that is segmented into n subseries such that xt = (x1,t, x2,t, ..., xn,t)
′
,

where 1 < n ≤ m. These n subseries are uncorrelated with each other. Hence the

autocorrelation matrices of xt are block-diagonal matrices with n being the number

of blocks.

Since zt might be non-stationary, the classical cross-covariance function will not

be able to truly measure the linear dynamic dependence of zt as it uses a fixed mean

vector for the calculation across the whole series. To overcome this problem, we shall

use another function that can be updated as we move in time. Hence, we are going

to use the moving cross-covariance matrix that we introduced in Chapter 3 as it can

measure the linear dynamic dependence of both stationary and non-stationary time

series. Before we proceed further, the following definitions are needed.

We assume that zi is locally stationary. Define the lag l cross-covariance matrix

of zi as

Γz,i(l) = Cov(zi, zi−l) (5.2)

where l is a non-negative integer. Once the series zt is observed, the sample lag l

cross-covariance matrix over window zi, with a pre-specified size of 2w + 1, can be

used to estimate Γz,i(l) as follows

Γ̂z,i(l) =
1

2w + 1

i+w∑
t=i−w

(zt − zi)(zt−l − zi)
′

(5.3)

where

zi =
1

2w + 1

i+w∑
t=i−w

zt ,

and w is a positive integer. Then, the lag l moving cross-covariance matrices of zt

and xt, respectively, are defined as

MΓz(l) =
1

T − 2 max(l, w)

T−max(l,w)∑
i=max(l,w)+1

Γz,i(l) (5.4)

and

MΓx(l) =
1

T − 2 max(l, w)

T−max(l,w)∑
i=max(l,w)+1

Γx,i(l),
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where Γx,i(l) is defined for xt similarly to that for zt. The sample lag l moving

cross-covariance matrix of zt is calculated as

M̂Γz(l) =
1

T − 2 max(l, w)

T−max(l,w)∑
i=max(l,w)+1

Γ̂z,i(l) (5.5)

where M̂Γx(l) is defined for xt similarly to that for zt. When l = 0, we use the

notation MΓz and MΓx to refer to the moving cross-covariance matrix of the series

zt and xt, respectively. Notice that M̂Γ(l) extracts its information from the sample

lag l cross-covariance matrices defined over moving local windows, similar to M̂Γ

defined in (3.6). However, M̂Γ(l) defined in (5.5) is slightly different from M̂Γ. The

former uses lagged series in its calculations, where the latter does not use lags as

they are already included in the extended data vector.

We assume that the moving cross-covariance matrix between any two of the n

uncorrelated subseries xj,t and xk,t of xt is essentially the zero matrix at any time

MΓ(xj,t,xk,s) = 0 for all t, s and j 6= k. (5.6)

For identifiability, we assume without loss of generality that

MΓz = Im and MΓx = Im. (5.7)

This can be achieved by replacing zt by [M̂Γz]
−1/2 zt. The above assumption will

not affect the block structure of xt. Under the above assumptions, the constant

matrix A is orthonormal since

MΓz = A MΓx A
′
= AA

′
= Im (5.8)

and therefore, dimension reduction using GTS-PCA will lead to block-diagonal mov-

ing autocorrelation matrices of xt with n blocks. Since A is orthonormal, then

equation (5.1) can be re-written as

xt = A
′
zt. (5.9)
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For stationary time series, in order to uniquely define xt and A, Chang et al.

(2018) proposed the use of the sum of a quadratic order of the cross-correlation

matrices of zt up to a pre-specified lag l1. The result is a positive definite ma-

trix whose eigenvectors’ matrix is equivalent to A after rearranging its columns.

Once A is found, the hidden segmentations can be found as the matrix xt can be

easily calculated using equation (5.9) above. This can be extended to account for

non-stationary data based on the definitions and the assumptions we have so far as

follows. Define the quadratic order moving cross-covariance matrices of zt and xt,

respectively, as

MWz = Im +

l1∑
l=1

MΓz(l) MΓz(l)
′

(5.10)

and

MWx = Im +

l1∑
l=1

MΓx(l) MΓx(l)
′
.

Thus, we have the following results:

1. The matrices MWz and MWx will be the generalized symmetric quadratic

order of the cross-covariance matrices used in the stationary TS-PCA and they

are also positive-definite matrices.

2. The matrices MΓx(l) and MWx are block-diagonal m × m matrices consist

of n blocks.

3. It follows from equation (5.1) that

MWz = A MWx A
′
. (5.11)

Once the series zt is observed, the matrix MWz can be estimated as follows

M̂Wz = Im +

l1∑
l=1

M̂Γz(l) M̂Γz(l)
′

(5.12)

where M̂Γz(l) is defined in (5.5).

Spectral decomposition of the symmetric matrix MWx yields that

MWx = Ux Λ U
′

x
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where Ux is an orthogonal matrix whose columns are the eigenvectors of MWx and

Λ is a diagonal matrix whose diagonal elements are the eigenvalues of MWx. It

follows from equation (5.11) that

MWz A Ux = A Ux Λ (5.13)

which means that Uz ≡ A Ux is the orthogonal matrix whose columns are the

eigenvectors of MWz after rearranging its columns. Furthermore, left-multiplying

zt by the transposed matrix of Uz and noting that A is orthogonal we have

U
′

z zt = U
′

z A xt = U
′

x A
′
A xt = U

′

x xt. (5.14)

The expression in (5.14) exposes the hidden segments, which are the components of

the transformed series U
′

z zt. Here, U
′

z is the transformation matrix used to project

the original data into a new space where the transformed data is segmented into n

uncorrelated subseries with lower dimensions that sum up to m. We assume that

different blocks of the quadratic matrix MWx have different eigenvalues. In the

event where different blocks of MWx have at least one common eigenvalue, then

the prospective blocks should be merged together to form one block. Also, following

Proposition 1 in Chang et al. (2018), U
′

z zt is equivalent to A
′
zt subject to columns’

rearrangement.

Since GTS-PCA uses moving cross-covariance matrices in its calculation, then

it is crucial to choose a suitable window size to enhance the results. Recall, the

choice of the window size is case-dependent and can be determined based on the

stationarity of the data under study. The issue of choosing a suitable window size

for the moving cross-covariance matrix was discussed in Section 3.1 in Chapter 3,

and therefore it will be omitted here.

Based on the previous discussion, to reduce the dimension using GTS-PCA and

find the hidden segmentation of an observed multivariate time series zt, the following

steps can be used:

1. Replace zt in equation (5.1) by [M̂Γz]
−1/2 zt.
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2. Calculate M̂Wz defined in (5.12).

3. Calculate Ûz, the orthogonal matrix that consists of the eigenvectors of M̂Wz.

4. Calculate Û
′

z zt, which is equivalent to A
′

zt subject to columns’ rearrange-

ment.

5. Find x̂t = Â
′

zt by rearranging the columns of Û
′

z zt such that x̂t is segmented

into n uncorrelated subseries.

5.2 Columns’ Rearrangement

The main goal of this section is to find the correct columns’ rearrangement of Ûz,

which returns Â; See step 4 and 5 of the GTS-PCA procedure. This can be done

by correctly grouping the correlated components of the transformed series Û
′

z zt in

order to find its equivalent Â
′

zt. For ease of notation, denote f̂t = Û
′

z zt. The

following strategy can be used to reach our goal. Start with each component of f̂t

as a separate group. Then merge any two correlated groups into one group. Repeat

the last step until no further groups are correlated.

While a pairwise multiple hypothesis testing can be used to find correlated com-

ponents, other methods in literature are based on ratio criteria instead. These ratio

tests are favourable when the dimension of the series is large because they use less

calculation to find correlated components compared with the other methods. Chang

et al. (2018) developed the maximum cross-correlation method that can capture the

dynamic dependence of stationary series. However, this method is not suitable for

non-stationary series because it uses the classical correlation function in its calcula-

tions. To this end, we are going to use the moving cross-correlation function that was

introduced in Section 3.1 in Chapter 3 to find correlated components. Additionally,

a new ratio based method will be developed to detect the correlated components of

a large dimensional time series.
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5.2.1 The Moving Cross-Correlation Function

Recall, the moving cross-correlation function defined in (3.16) in Chapter 3 is used

to examine the dynamic dependence between the components (i.e. variables) of

both stationary and non-stationary time series. Here, this function will be mainly

used to investigate the relationships between the m components of the transformed

series f̂t in order to correctly group the correlated components and find the hidden

segmentations. Based on definition (3.16), the lag l moving cross-correlation matrix

of the series zt can be calculated as follows:

Mρz(l) =
1

T − 2 max(l, w)

T−max(l,w)∑
i=max(l,w)+1

S−1i Γz,i(l) S−1i−l (5.15)

where Γz,i(l) is defined in (5.2) and Si is the diagonal matrix of the standard devi-

ations of zi. The (j, j)th element of Si is the square root of the (j, j)th element of

Γz,i(0) defined over zi. Donate the (j, k)th element of Mρz(l) by Mρz,jk(l), which is

the leg l moving correlation between the components zj,t and zk,t−l.

Notice that the moving cross-correlation matrix has the following property

Mρz(l) = [Mρz(−l)]
′
. (5.16)

Therefore, in order to calculate and plot the moving cross-correlation between the

components of the series zt in different time lags, it is enough to calculate Mρz(l)

for positive lags (i.e. l ≥ 0), then use the property in (5.16) to calculate Mρz(l)

for negative lags (i.e. l < 0). The function in (5.15) will be used to evaluate the

relationship between the components produced by GTS-PCA. For further informa-

tion and examples about the usage of the moving cross-correlation function and its

plots, the reader is referred to Section 3.1 in Chapter 3.

For the case where the time series has a large number of variables, the moving

cross-correlation plots will not be practical as there will be m(m − 1) individual

plots to be examined for a series with dimension m. For example, if a series has a

dimension m = 10, then the number of individual plots will be 90. Hence, the use
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of multiple hypothesis testing or a ratio-based method is recommended. Therefore,

an extension of the maximum cross-correlation method of Chang et al. (2018) will

be proposed. The new method will be called the maximum moving cross-correlation

method.

5.2.2 The Maximum Moving Cross-Correlation Method

The maximum moving cross-correlation method is a ratio-based test that will be

used to test for significant correlations between the components (i.e. variables) of

both stationary and non-stationary series. In general, for an observed series zt, we

consider its jth and kth variables to be correlated if M̂ρz,jk(l), the (j, k)th element of

M̂ρz(l), is significantly different from zero over different time lags. In other words,

the two components zj,t and zk,t are correlated if we reject the hypothesis

Ho : Mρz,jk(l) = 0 for l = 0,±1,±2, ...,±p (5.17)

against

Ha : Mρz,jk(l) 6= 0 for some − p ≤ l ≤ p

where p is a positive integer.

As mentioned before, the maximum cross-correlation method is practical when

the dimension m is large as it uses only a few steps to find the correlated components.

The maximum moving cross-correlation statistics between components zj,t and zk,t

is calculated as

L̂d(j, k) = max
−p≤l≤p

|M̂ρz,jk(l)|, 1 ≤ j < k ≤ m. (5.18)

A total of d = m(m − 1)/2 values for the maximum moving cross-correlation

statistics are needed to be calculated and then reordered in decreasing order as

L̂1 ≥ L̂2 ≥ · · · ≥ L̂d.

We use the following ratio criterion to reject the hypothesis in (5.17) based on

the statistics calculated in (5.18). Consider only the correlation corresponding to
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the largest r̂ maximum statistics in (5.18) to be significantly correlated, where r̂ is

defined as

r̂ = arg max
1≤i≤hd

L̂i/L̂i+1 (5.19)

where h is a pre-specified number and 0 < h < 1. A value of h = 0.75 will be used as

recommended by Chang et al. (2018) to avoid extreme cases, where the dominator

in (5.19) is extremely close to zero (i.e. L̂i+1 ' 0). Therefore, we report that the

two components corresponding to L̂j are significantly correlated, where 1 ≤ j ≤ r.

Notice that, using h = 0.75 is one drawback of this method. A small amount of

information might be lost because of using h, especially for extreme cases where

strong correlations exist among all tested components. For these extreme cases, it

is recommended to validate the results of the maximum moving cross-covariance

method with those of the moving cross-correlation plots.

Therefore, the maximum moving cross-correlation method can be applied to find

the n correlated components of f̂t and hence correctly rearrange its columns to find

the hidden segmentation of x̂t as summarized below:

1. Calculate L̂d(j, k) for the d =
m(m− 1)

2
pairs of the components of f̂t.

2. Rearrange the values of the calculated d statistics in step 1 from largest to

smallest (i.e. L̂1 ≥ L̂2 ≥ · · · ≥ L̂d).

3. Find the value of r̂ using the criterion in (5.19).

4. Consider the pair corresponding to the statistics L̂j to be significantly corre-

lated (i.e. reject the corresponding null hypothesis), where 1 ≤ j ≤ r̂.

5. Rearrange the columns of f̂t by grouping correlated components according to

step 4. The final result of this step is the vector with the hidden segmentation,

x̂t.

These steps can be considered as sub-steps of step 5 of the GTS-PCA procedure.

Example 5.2.1 This example is a short simulation study to test the ability of

the maximum moving cross-correlation method to regroup the variables of a non-

stationary time series based on their dynamic relationships. The simulated data
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with eight variables and 1200 observations in Example 3.1.2 are used. Recall that

this series consists of 3 subseries of 4, 3 and 1 variable such that each subseries was

generated using different non-stationary model.

Figure 5.1: A time series plot of the simulated series of eight variables in Example

5.2.1.

Table 5.1: Correlated variables of the simulated data of eight variables in Example

5.2.1 based on different methods.

A time series plots of the simulated data is shown below in Figure 5.1. A window

with size 101 is used in the calculation of the moving cross-correlation function.

The outcomes of the maximum moving cross-correlation method are reported and

validated with those of moving cross-correlation method from Example 3.1.2; See

Table 5.1. Both methods were able to capture the dynamic relationship among

different simulated variables where 3 uncorrelated subseries of 4, 3 and 1 variable

are suggested.
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5.3 Theoretical Properties

For the GTS-PCA’s model in equation (5.1), we shall show that the transformation

matrix Â is a consistence estimator of A. To this end, we are going to adapt the

distance measurement defined in (3.20) in Chapter 3. Recall, for some constants

c1 < c2, let B1 and B2 be any c2 × (c2 − c1) matrices satisfying the condition

B′iBi = I(c2−c1)×(c2−c1), where i ∈ {1, 2}, then the distance between the B1 and B2

is

D(B1,B2) =
√
c2 − c1 − tr(B1B

′
1B2B

′
2) .

In particular, let W = 2w + 1 be the window size, then we shall approach the con-

sistency by showing that D(M(Â),M(A)) → 0 as W → ∞, where M(A) is the

linear space spanned by A’s columns and D(M(Â),M(A)) is the distance between

the spaces M(Â) and M(A).

The convergence of Â can be implied mainly by the convergence of M̂Γz(l), which

is used to calculate M̂Wz to finally formulate Ûz. Recall that Ûz is equivalent to

Â after appropriate arrangement of its columns. Hence, we shall assume that Ûz

has a correct columns rearrangement and therefore Ûz = Â. This assumption is

justified as the order of the columns will not affect the convergence speed. In this

section, we are going to show the consistency of our estimator when m is fixed and

when the growth rate of m depends on W . Also, we are going to use the mixing

coefficient defined in (3.21) in Chapter 3 as a measurement of dependence:

θl = sup
c

sup
A∈Fc

−∞,B∈F∞c+l

|P (A ∩B)− P (A)P (B)| .

For some constants c3 and c4, F c4c3 is the σ-field generated by zt for c3 ≤ t ≤ c4.

We are going to assume that the transformed n blocks of MWx do not share the

same eigenvalues, otherwise these blocks should be merged as one block. In other

words, denote by σ(MWx) the set of all eigenvalues of MWx, then the minimum

distance between any two eigenvalues from the different blocks λj, λk ∈ σ(MWx)

dW = min
1≤j<k≤n

|λj − λk| (5.20)
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is positive.

5.3.1 Asymptotic Results (m is fixed)

For ease of notation, assume max(l, w) = w. Next we are going to state some

regularity assumptions.

Assumption 5.1. Assume

sup
i

max
1≤j≤m

E|zj,i − E(zj,i)|2q

to be upper bounded by a positive constant M for some constant q > 2, where zj,i

is the jth component of zi.

Assumption 5.2. Assume that the mixing coefficients θl defined in (3.21) satisfies∑∞
l=1 θ

1−2/q
l <∞ for q defined in Assumption 5.1.

Assumption 5.3. Assume that different blocks of MWx do not share the same

eigenvalues. That is dW > 0, where dW is defined in (5.20).

Theorem 5.1. Under assumptions 5.1-5.3 and for a fixed dimension m, then as

W →∞, there exists Â = (Â1, Â2, ..., Ân) such that

max
1≤j≤n

D(M(Âj),M(Aj)) = Op(1/
√
W ).

In order to prove Theorem 5.1, the following lemmas are needed. The following

lemma is based on Lemma 3.1 from Chapter 3.

Lemma 5.1. Under the assumptions 5.1 and 5.2, and by assuming the dimension

m is fixed, then ‖Γ̂z,i(l)− Γz,i(l)‖2 = Op(1/
√
W ) for all l ≤ l1 as W →∞, where

Γz,i(l) and Γ̂z,i(l) are defined in (5.2) and (5.3), respectively.

Proof of Lemma 5.1. Under the assumptions 5.1 and 5.2, then by applying

Lemma 3.1 on each window we have

max
w+1≤i≤T−w

‖Γ̂z,i(l)− Γz,i(l)‖2 = Op(1/
√
W )

for all l ≤ l1. This also implied that

‖Γ̂z,i(l)− Γz,i(l)‖2 = Op(1/
√
W ).
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Lemma 5.2. Under assumptions 5.1-5.2, then

‖M̂Γz(l)−MΓz(l)‖2 = Op(1/
√
W )

for all l ≤ l1 as W →∞, where MΓz(l) and M̂Γz(l) are defined in (5.4) and (5.5),

respectively.

Proof of Lemma 5.2. From the definitions of MΓz(l) and M̂Γz(l), and by

assuming 5.1 and 5.2, hold and m is fixed, then

‖M̂Γz(l)−MΓz(l)‖2 = ‖ 1

T − 2w

T−w∑
i=w+1

Γ̂z,i(l)−
1

T − 2w

T−w∑
i=w+1

Γz,i(l)‖2

≤ max
w+1≤i≤T−w

‖T − 2w

T − 2w
Γ̂z,i(l)−

T − 2w

T − 2w
Γz,i(l)‖2

= Op(1/
√
W ).

The last inequality holds because from Lemma 5.1 as

max
w+1≤i≤T−w

‖Γ̂z,i(l)− Γz,i(l)‖2 = Op(1/
√
W ).

Lemma 5.3. Under assumptions 5.1 and 5.2, then

‖M̂Wz −MWz‖2 = Op(1/
√
W )

as W →∞.

Proof of Lemma 5.3. From Lemma 5.2 above, we know that

‖M̂Γz(l)−MΓz(l)‖2 = Op(1/
√
W )

for all l ≤ l1, and by using the definition of MWz in (5.10), then the result follows

immediately.

Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let the assumptions 5.1-5.3 hold and the dimension m is

fixed. By applying the results of Theorem 8.1.10 of Golub and Van Loan (1996),

which are stated in Lemma 1 and Remark 1 in Chang et al. (2018), then

max
1≤j≤n

D(M(Âj),M(Aj)) = Op(‖M̂Wz −MWz‖2)

Then, by using the results of Lemma 5.3 above, we have

max
1≤j≤n

D(M(Âj),M(Aj)) = Op(1/
√
W )

as W →∞.
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5.3.2 Asymptotic Results (m = o(W c))

As shown earlier, when the dimension m is fixed, the sample moving cross-covariance

matrix M̂Γz(l) defined in (5.5) is a consistent estimator withW−1/2 convergence rate.

However, for the case where m is large, and its growth rate depends on W , then

M̂Γz(l) is no longer consistent. This is because each of the sample cross-covariance

matrices used on the local windows is not consistent; See Chen et al. (2013). One so-

lution, in this case, is to use a threshold estimator; See Bickel and Levina (2008). For

GTS-PCA, the threshold estimator can be applied to the sample cross-covariance

matrix Γ̂z,i(l) in order to obtain a consistent estimator for Γz,i(l). The obtained new

matrices then can be used in the calculation of the sample moving cross-covariance

matrix.

In specific, write the sample lag l cross-covariance matrix over window zi defined

in (5.3) as Γ̂z,i(l) = (ŝ
(i)
j,k(l))1≤j,k≤m. Write the sample lag l moving cross-covariance

matrix defined in (5.5) as M̂Γz(l) = (σ̂j,k(l))1≤j,k≤m. Then, the threshold estimator

of the sample cross-covariance matrix of window zi is defined as

Tu(Γ̂z,i(l)) = (ŝ
(i)
j,k(l) II{|ŝ(i)j,k(l)| ≥ u})1≤j,k≤m. (5.21)

When the threshold level u is chosen to be u = cm2/γ W−1/2, and under some

regularity conditions for a specified constant γ and a positive constant c, then

maxj,k |ŝ(i)j,k(l) − s
(i)
j,k(l)| = Op(m

2/γ W−1/2); See Chang et al. (2018). Notice that

ŝ
(i)
j,k(l) now are the elements of the threshold estimator defined in (5.21).

The sample lag l moving cross-covariance matrix of zt defined in (5.5) can be

redefined as

M̂Γ
thre

z (l) =
1

T − 2 max(l, w)

T−max(l,w)∑
i=max(l,w)+1

Tu(Γ̂z,i(l)). (5.22)

M̂Γ
thre

z (l) in this case will be a consistent estimator of MΓz(l); See Lemma 5.5.

Also, redefine the sample quadratic order moving cross-covariance matrix of zt in

(5.10) to be

M̂W
thre

z = Im +

l1∑
l=1

M̂Γ
thre

z (l) · [M̂Γ
thre

z (l)]
′
. (5.23)
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Therefore, the calculation procedure of GTS-PCA in the case, where m = o(W c),

will remain the same with replacing M̂Wz by M̂W
thre

z , as defined in (5.23). Under

stronger versions of assumptions 5.1 and 5.2, the consistency of M̂W
thre

z will be

shown in this section.

Define the quadratic order cross-covariance matrix over window zi to be

WΓz,i = Im +

l1∑
l=1

Γz,i(l) · [Γz,i(l)]
′

(5.24)

which can be estimated by

ŴΓ
thre

z,i = Im +

l1∑
l=1

Tu(Γ̂z,i(l)) · [Tu(Γ̂z,i(l))]
′
. (5.25)

Also, let A(i) be the matrix that consists of the eigenvectors of WΓz,i defined in

(5.24), where A(i) = (a
(i)
j,k)1≤j,k≤m. In the stationary TS-PCA, A(i) is used to trans-

form an m-dimensional series into uncorrelated r subseries, where the window zi

consists of all data in the series (i.e. only one window is used as W = T ). Denote

by

B = max
1≤k≤r

(mk) (5.26)

the maximum dimension among the r different subseries transformed by A(i) after

columns’ rearrangement.

In what follows, we will show the consistency of Â based on the threshold es-

timators, as defined in (5.21), (5.22) and (5.23). In particular, we shall state the

following assumptions.

Assumption 5.4. Assume for each window zi that

max
1≤k≤m

m∑
j=1

|a(i)j,k|
δ ≤ c5 (5.27)

and

max
1≤j≤m

m∑
k=1

|a(i)j,k|
δ ≤ c6

for an arbitrary constant δ ∈ [0, 1) and {c5, c6} > 0, where c5 and c6 are allowed to

diverge away with m.
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Assumption 5.4 controls the sparsity of the matrix A(i) through δ, c5 and c6 when the

dimension m is large. Â
(i)

converges to A(i) faster when its sparsity level increases;

See Chang et al. (2018).

Assumption 5.5. Assume that as g →∞,

sup
i

max
1≤j≤m

P (|zj,i − E(zj,i)| > g) = O(g−2(γ+ε))

for constants γ > 2 and ε > 0.

Assumption 5.5 is a stronger version of Assumption 5.1, where the tail probabilities

of zi is required to decay faster than those in Assumption 5.1.

Assumption 5.6. Assume that as l→∞,

θl = O(l−γ(γ+ε)/2ε)

where θl is the mixing coefficients defined in (3.21), and the constants γ and ε are

provided in Assumption 5.5.

Assumption 5.6 requires the mixing coefficients to decay faster than those in As-

sumption 5.2. Before stating the last assumption, consider the following notations.

Let

f = Bc5c6 (5.28)

where c5, c6 are given in Assumption 5.4 and B is given in (5.26). Let

dk = min
1≤j≤n, λj 6=λk

|λj − λk| (5.29)

for 1 ≤ k ≤ n, and λj and λk are the eigenvalues of the jth and kth blocks of MWx,

respectively. Let

h = max
1≤l≤l1

‖MΓx(l)‖2 (5.30)

Assumption 5.7. Assume that dk > 0 for 1 ≤ k ≤ n, where dk is defined in (5.29).
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Theorem 5.2. Let the assumptions 5.4-5.7 hold. Then the following result holds

for m = o(W γ/4). There exists Â = (Â1, Â2, ..., Ân) such that

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(h(m4/γW−1)(1−δ)/2f + (m4/γW−1)(1−δ)f 2)

as W →∞.

We are going to prove Theorem 5.2 based on a few lemmas. Recall, the estimators

in (5.21), (5.22) and (5.23) are used instead of the ones in (5.3), (5.5) and (5.10),

respectively, where the threshold level is set to u = cm2/γ W−1/2. The following

lemma of Chang et al. (2018) is useful.

Lemma 5.4. For an m-dimensional series yt, let γ > 2 and ε > 0 be arbitrary

constants. Assume that

sup
t

max
1≤j≤m

P (|yj,t − µj| > g) = O(g−2(γ+ε))

as g →∞. Also, assume that the mixing coefficients

θl = sup
j

sup
A∈Fj

−∞,B∈F∞j+l

(|P (A ∩B)− P (A)P (B)|)

is such that θl = O(l−γ(γ+ε)/(2ε)) as l→∞. Let Assumption 5.5 holds. Then, given

that m = o(T γ/4) and u = cm2/γ T−1/2, we have

‖Tu(Σ̂y(l))− Σy(l)‖2 = Op((m
4/γT−1)(1−δ)/2f)

for all l ≤ l1, where Σy(l) is the cross-covariance matrix and T is the sample size.

Therefore we have the following lemma based on the results of Lemma 5.4 above.

Lemma 5.5 Let the assumptions 5.4-5.6 hold. Assume that m = o(W γ/4). Then

we have

‖M̂Γ
thre

z (l)−MΓz(l)‖2 = Op((m
4/γW−1)(1−δ)/2f)

for all l ≤ l1, where f is defined in (5.28).
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Proof of Lemma 5.5 Under the assumptions 5.4-5.6, if we apply Lemma 5.4 on

each window, where m = o(W γ/4), then we have

‖Tu(Γ̂z,i(l))− Γz,i(l)‖2 = Op((m
4/γW−1)(1−δ)/2f).

By following similar argument to the proof of Lemma 5.2, then the proof of this

lemma is complete.

Lemma 5.6. Let the assumptions 5.4-5.6 hold. Assume further that m = o(W γ/4).

Then it holds that

‖M̂W
thre

z −MWz‖2 = Op(h(m4/γW−1)(1−δ)/2f + (m4/γW−1)(1−δ)f 2)

where f and h are defined in (5.28) and (5.30), respectively.

Proof of Lemma 5.6. Since

‖M̂W
thre

z −MWz‖2 = ‖M̂Γ
thre

z (l) [M̂Γ
thre

z (l)]
′ −MΓz(l) MΓ

′

z(l)‖2

≤ 2‖M̂Γ
thre

z (l)−MΓz(l)‖2 ‖MΓz(l)‖2 + ‖M̂Γ
thre

z (l)−MΓz(l)‖22

≤ 2‖M̂Γ
thre

z (l)−MΓz(l)‖2 ‖MΓx(l)‖2 + ‖M̂Γ
thre

z (l)−MΓz(l)‖22.

Recall that h = max1≤l≤l1 ‖MΓx(l)‖2, then by applying the results form Lemma

5.5, we complete the proof as

‖M̂W
thre

z −MWz‖2 = Op(h(m4/γW−1)(1−δ)/2f + (m4/γW−1)(1−δ)f 2).

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Under the assumptions 5.4-5.7. Assume further that

m = o(W γ/4). Then by applying the results of Theorem 8.1.10 of Golub and

Van Loan (1996), we have

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(‖M̂W
thre

z −MWz‖2).

By Lemma 5.6, then we have

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(h(m4/γW−1)(1−δ)/2f + (m4/γW−1)(1−δ)f 2).
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5.3.3 Asymptotic Results (logm = o(W c))

In this section, we are going to study the asymptotic properties of the transformation

matrix Â in the case where the growth rate of m has an exponential relationship with

W . Recall, the sample cross-covariance matrices that are calculated over the local

windows will not be consistent when the dimension m is large. Therefore, we shall

apply a threshold estimator to Γz(l) as we are considering series with extremely

high dimensions in this section. In particular, the threshold estimator Tu(Γ̂z,i(l))

defined in (5.21) will be used, but with a different threshold level than the previously

used. Chang et al. (2018) showed that when logm = o(W c), under some regularity

assumptions, the threshold estimator of the cross-covariance matrix with a threshold

level u = c(W−1 logm)1/2 is consistent. This result can be applied to Tu(Γ̂z,i(l)) over

the local windows to calculate M̂Γ
thre

z (l) as follows.

Assumption 5.8. Assume for any g > 0 and ‖y‖2 = 1 that

sup
i
P (|y′(zi − E(zi))| > g) ≤ c7 exp(−c8gη)

where the constants c7, c8 are positive and η ∈ (0, 2].

This assumption implies that the tail probabilities of linear combinations of zi

decays exponentially.

Assumption 5.9. Assume that

θl ≤ exp(−c9lξ)

for all l ≥ 0, where ξ ∈ (0, 1] and c9 is a positive constant.

This assumption requires the mixing coefficient to decay exponentially.

Theorem 5.3. Suppose assumptions 5.4, 5.7, 5.8 and 5.9 hold. Let

logm = o(W (b/(2−b))), where b = 1/(2η−1 + ξ−1). Then there exists

Â = (Â1, Â2, ..., Ân) such that

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(fh(W−1 logm)(1−δ)/2 + f 2(W−1 logm)(1−δ))

as W →∞, where f and h are constants specified in (5.28) and (5.30), respectively.
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The following lemmas are needed to prove Theorem 5.3. Recall that we are

using the estimators in (5.21), (5.22) and (5.23) but with the threshold level u =

c(W−1 logm)1/2.

Lemma 5.7. Let assumptions 5.4, 5.8 and 5.9 hold. Let logm = o(W b/(2−b))

where b = 1/(2η−1 + ξ−1). Then

‖M̂Γ
thre

z (l)−MΓz(l)‖2 = Op(f(W−1 logm)(1−δ)/2).

Proof of Lemma 5.7. Notice that logm = o(W b/(2−b)) and u = c(W−1 logm)1/2.

Under the assumptions 5.4, 5.8 and 5.9, if we apply Lemma 5.4 on each window,

then it follows

‖Tu(Γ̂z,i(l))− Γz,i(l)‖2 = Op(f(W−1 logm)(1−δ)/2).

The rest of the proof can be obtained by following similar argument to the proof of

Lemma 5.2.

Lemma 5.8. Let assumptions 5.4, 5.8 and 5.9 hold. Then for

logm = o(W b/(2−b)), it follows

‖M̂W
thre

z −MWz‖2 = Op(fh(W−1 logm)(1−δ)/2 + f 2(W−1 logm)(1−δ))

where b = 1/(2η−1 + ξ−1), f and h are constants as provided in (5.28) and (5.30),

respectively.

Proof of Lemma 5.8. Using the results from Lemma 5.7, the proof of this lemma

can be obtained by following similar steps to the proof of Lemma 5.6.

Proof of Theorem 5.3. Under assumptions 5.4, 5.7, 5.8 and 5.9. Let

logm = o(W b/(2−b)) where b = 1/(2η−1 + ξ−1). Theorem 8.1.10 of Golub and

Van Loan (1996) yields

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(‖M̂W
thre

z −MWz‖2).

Then, by using Lemma 5.8, we complete the proof as

max
1≤k≤n

dkD(M(Âk),M(Ak)) = Op(fh(W−1 logm)(1−δ)/2 + f 2(W−1 logm)(1−δ)).
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5.4 Simulations and Real Data Examples

In the following studies, the numerical properties of GTS-PCA will be investigated.

Our method will be tested on both simulated and real data sets with various dimen-

sions and sample sizes. All analyses are carried out using R software. The necessary

functions to produce and assess the results of GTS-PCA can be found under the

following R packages: GTSPCA of Alshammri (2020a) and MpermutMax of Alshammri

(2020e).

5.4.1 Simulations

The simulations below are generated using the following steps. First, we generate

the subseries of xt separately using the arima.sim command. Then, the elements

of the transformation matrix A are generated randomly from unif(−5, 5) using the

runif command. Post multiplying xt by A will generate zt as in (5.1). GTS-PCA

with different window sizes W = {101, 201, 501} and TS-PCA (i.e. GTS-PCA with

W = T ) will be applied to simulated data. Then, the percentage of correct seg-

mentation will measure the accuracy of the results, where “correct segmentation”

refer to the case where the final transformed series is correctly rearranged into un-

correlated subseries as simulated in xt at the first step of the simulation process.

Following Remark 1 of Chang et al. (2018), the number of lags l1 to include in the

calculation of (5.12) could be small as long as the first l1 contain sufficient amount of

information on the block diagonal structure of MWx. Therefore, for demonstration

purposes, a choice of five-time lags (i.e. l1 = 5) will be used in the analyses unless

stated otherwise.

Example 5.4.1 The first simulation study includes a non-stationary time series

zt with a dimension of m = 5. Three different models are used to generate the

subgroups (i.e. subseries) of this series, which consists of 2, 2 and 1 independent

variables.

The subgroups of xt are simulated as follows. Let at, bt and ct be independent
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standard normal white noises, which are the innovation terms of the following three

models, respectively, then:
xj,t = ut+j−1, j = 1 and 2

xj,t = vt+j−3, j = 3 and 4

xj,t = wt, j = 5

(5.31)

where (ut, vt, wt)
′

satisfies
5ut = 0.755 ut−1 + at + 1.5at−1 + 0.5at−2 + 0.2at−3

5vt = −0.55 vt−1 − 0.45 vt−2 + bt − 1.2bt−1 − 2.75bt−2 + 0.5bt−3

wt = −0.9wt−1 − 0.45wt−2 + ct − 1.1ct−1 − 0.8ct−2 − 0.6ct−3 − 1.3ct−4

(5.32)

Then, we post multiply xt by A whose elements are generated randomly from

unif(−5, 5) to obtain zt, as mentioned earlier. GTS-PCA with different window

sizes is applied to the simulated series.

Table 5.2: Percentages of correct segmentation of 500 replications of the simulated

series in Example 5.4.1.
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The above simulation was replicated 500 times, and the percentage of correct

segmentations are reported in Table 5.2. It can be seen that the performance of

GTS-PCA was enhanced by increasing T . GTS-PCA with small window sizes (e.g.

W = 101 and W = 201) produced more accurate results compared with those with

larger windows (e.g. W = 501). This is mainly because of the non-stationarity of

the data. TS-PCA, on the other hand, produced the correct segmentations about

47% of the time for different sizes of T . Hence, GTS-PCA with a small window size

is more suitable to capture the hidden segmentation in this example.

GTS-PCA with W = 101 is of particular interest, as it outperformed those with

larger window sizes. It produced reasonable results for moderate sample sizes (e.g.

T ≥ 600) in this example. For instance, it produced the correct segmentations 86%

of the time when T = 1000, and 96% of the time when T = 2000.

Consider one randomly selected replica of the above simulations of zt with T =

1000. A time series plot of zt is shown in Figure 5.2. All five variables exhibited

similar non-stationary behaviours. Sample moving cross-correlation plots with W =

101 between the variables of zt before transformation are shown in Figure 5.3, where

all variables are correlated. Figure 5.4 provides moving cross-correlation plots with

W = 101 between the components of zt after transformation by GTS-PCA withW =

101. Notice that the transformed series consisted of three uncorrelated subseries,

namely {1, 3}, {2, 5} and {4}, which revealed the hidden correct segmentation of xt

with 2, 2 and 1 variable.



5.4. Simulations and Real Data Examples 186

Figure 5.2: A time series plot of the randomly selected replica in Example 5.4.1.

Figure 5.3: Sample moving cross-correlation plots with W = 101 between the com-

ponents of the randomly selected replica in Example 5.4.1 before transformation.
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Figure 5.4: Sample moving cross-correlation plots with W = 101 between the com-

ponents of the randomly selected replica in Example 5.4.1 after GTS-PCA with

W = 101 is applied.

Example 5.4.2 The simulated series in this example consists of nine variables that

are generated from three different models such that each model generates a subseries

of three correlated variables.

The three subseries of xt are simulated as follows. Let at, bt and ct be independent

standard normal white noises, which are the innovation terms of the following three

models, respectively, then:
xj,t = ut+j−1, j = 1, 2 and 3

xj,t = vt+j−4, j = 4, 5 and 6

xj,t = wt+j−7, j = 7, 8 and 9

(5.33)

where (ut, vt, wt)
′

satisfies
5ut = 0.45 ut−1 + 0.45 ut−2 + 0.15 ut−3 + at

5vt = −0.65 vt−1 − 0.45 vt−2 + 0.55 vt−3 + bt − 0.9bt−1 − 1.4bt−2 − 0.4bt−3

5wt = 0.85 wt−1 − 0.45 wt−2 + ct + 0.8ct−1 + 0.9ct−2 + 1.7ct−3

(5.34)
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The series zt then is generated as in the previous example. Based on 500 repli-

cations, Table 5.3 shows the percentage of correct segmentation of GTS-PCA with

different sizes of W and TS-PCA. It can be seen that as we increased the sample size,

GTS-PCA with W = 101 produced more accurate results compared to those with

larger window sizes (e.g. W = 201 and W = 501) and TS-PCA. For example, for zt

with T = 2000, GTS-PCA with W = 101 produced the correct segmentation 85%

of the time compared with 51%, and 7% when using W = 201 and 501, respectively.

By increasing the sample size of zt to T = 2500, the accuracy of GTS-PCA with

W = 101 increased from 85% to 91%. On the other hand, TS-PCA produced the

correct segmentations 2% to 4% of the time for different sample sizes. Therefore,

GTS-PCA with W = 101 can be used to reduce the dimension of zt in this example.

The above results show the improvement of the accuracy of capturing the hidden

segmentation of non-stationary series by using GTS-PCA compared with TS-PCA.

Table 5.3: Percentages of correct segmentation of 500 replications of the simulated

series in Example 5.4.2.

Consider one randomly selected replica of the 500 replicas where zt has a sample
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of size 1500. A time series plot of the data is shown in Figure 5.5. Sample moving

cross-correlation plots with W = 101 are provided to show the relationship between

the variables before transformation; See figures 5.6, 5.7, 5.8 and 5.9. A strong re-

lationship existed across almost all variables. Overall, if we want to regroup the

variables based on their relationships, then one group consists of all nine variables

is suggested.

Figure 5.5: A time series plot of the randomly selected replica in Example 5.4.2.

Figure 5.6: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 before transformation - part 1.



5.4. Simulations and Real Data Examples 190

Figure 5.7: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 before transformation - part 2.

Figure 5.8: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 before transformation - part 3.
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Figure 5.9: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 before transformation - part 4.

After GTS-PCA withW = 101 was applied, the maximum moving cross-correlation

method and sample moving cross-correlation plots with W = 101 suggested regroup-

ing the transformed nine series into three subgroups, where each subgroup consisted

of the following variables, respectively: {1, 6, 9}, {2, 7, 8} and {3, 4, 5}; See figures

5.10, 5.11, 5.12 and 5.13. Therefore, we conclude that GTS-PCA with W = 101

revealed the hidden correct segmentation of xt with 3, 3 and 3 variable.

Figure 5.10: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 after GTS-PCA with W = 101 is applied - part 1.
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Figure 5.11: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 after GTS-PCA with W = 101 is applied - part 2.

Figure 5.12: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 after GTS-PCA with W = 101 is applied - part 3.
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Figure 5.13: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.2 after GTS-PCA with W = 101 is applied - part 4.

Example 5.4.3 In this example, a non-stationary time series with a dimension of

m = 20 is simulated such that it consists of five uncorrelated subseries with 6, 5, 4,

3 and 2 correlated variables, respectively.

The five subseries of xt are simulated as follows. Let at, bt, ct, dt and et be in-

dependent standard normal white noises, which are the innovation terms of the

following five models, respectively, then:

xj,t = ut+j−1, j = 1, 2, 3, 4, 5 and 6

xj,t = vt+j−7, j = 7, 8, 9, 10 and 11

xj,t = wt+j−12, j = 12, 13, 14 and 15

xj,t = ft+j−16, j = 16, 17 and 18

xj,t = gt+j−19, j = 19 and 20

(5.35)
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where (ut, vt, wt, ft, gt)
′

satisfies

5ut = 0.85 ut−1 + at + 3at−1

vt = −0.9vt−1 − 0.4vt−2 + bt − bt−1 − 0.8bt−2 − 0.6bt−3 − 1.4bt−4

5wt = −0.555 wt−1 + ct − 2.1ct−1

5ft = −0.55 ft−1 − 0.45 ft−2 + dt − 1.2dt−1 − 2.75dt−2 + 0.5dt−3

5gt = 0.45 gt−1 − 0.35 gt−2 + et + 2.9et−1 − 0.8et−2 − 1.8et−3 − 1.9et−4

(5.36)

Table 5.4: Percentages of correct segmentation of 500 replications of the simulated

series in Example 5.4.3.

The series zt then is generated as in the previous example. Based on 500 repli-

cations of the above simulation, Table 5.4 summarizes the obtained percentages of

correct segmentations. The accuracy of GTS-PCA improved as the sample size is

increased, especially for small window sizes, where the GTS-PCA captured more in-

formation out of the non-stationary series. For example, GTS-PCA with W = 101

produced the correct segmentations 78% of the time when T = 3000, and 95% of
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the time when T = 4500. Furthermore, the performance of GTS-PCA decreased

as we increased W . For instance, when T = 3500, GTS-PCA with windows sizes

101, 201 and 501 produced the correct segmentations 84%, 39% and 15% of the

time, respectively. On the other hand, TS-PCA (i.e. GTS-PCA with W = T ) had a

poor performance on the simulated non-stationary series with percentages of correct

segmentations less than 3 % in all cases. Therefore, GTS-PCA with W = 101 is

suggested to reduce the dimension of the simulated series in this example.

Based on one randomly selected replica with T = 3000, a time series plot of zt

is shown in figures 5.14 and 5.15. First and last 50 sample moving cross-correlation

plots with W = 101 between the components of zt before transformation are shown

in figures 5.16, 5.17, 5.18 and 5.19. The plots suggested that strong relationships

existed among the components of zt. After applying GTS-PCA with W = 101 on

zt, the maximum moving cross-correlation method with W = 101 suggested to re-

arrange the transformed series into five uncorrelated subgroups that consist of the

following variables, respectively: {1, 2, 7, 11, 15, 20}, {3, 6, 9, 13, 18}, {4, 8, 14,

19}, {5, 12, 17} and {10, 16}, which match the hidden correct segmentations of xt.

Figure 5.14: A time series plot of the variables 1 - 10 of the randomly selected replica

in Example 5.4.3.
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Figure 5.15: A time series plot of the variables 11 - 20 of the randomly selected

replica in Example 5.4.3.

Figure 5.16: First 50 sample moving cross-correlation plotsW = 101 of the randomly

selected replica in Example 5.4.3 before transformation - part 1.
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Figure 5.17: First 50 sample moving cross-correlation plotsW = 101 of the randomly

selected replica in Example 5.4.3 before transformation - part 2.

Figure 5.18: Last 50 sample moving cross-correlation plots W = 101 of the randomly

selected replica in Example 5.4.3 before transformation - part 1.
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Figure 5.19: Last 50 sample moving cross-correlation plots W = 101 of the randomly

selected replica in Example 5.4.3 before transformation - part 2.

In conclusion, the dynamic relationships between the 20 non-stationary series

were successfully captured by GTS-PCA with W = 101 and the dimension was

successfully reduced to five uncorrelated subseries of 6, 5, 4, 3 and 2 variables.

Notice that, since we increased the dimension of the simulated series to m = 20 in

this example, larger sample sizes were needed to obtain accurate results comparing

with those in the previous examples.

Example 5.4.4 In this example, GTS-PCA is tested on a stationary data set, and

then its results are validated with those of TS-PCA. Ideally, when GTS-PCA is

applied to stationary data, then one window with a size W = T would be suggested.

This is equivalent to use TS-PCA. However, one would ask about the behaviour of

GTS-PCA when it uses a window size that is smaller than the ideal size. In this

simulation study, we are going to answer this question. We will consider almost the

worst-case scenario, where GTS-PCA with a small window size (e.g. W = 101) is

applied to a stationary data.

The data set used in this example is the one used by Chang et al. (2018) with

m = 6 and T = 1500. The simulation codes are available in the PCA4TS library

in R software. This data set consists of three subgroups of dimensions 3, 2 and 1.
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A time series plot of a randomly selected series is available in Figure 5.20. Sample

moving cross-correlation plots to show the relationships between the variables before

transformation are provided in Figure 5.21. A moderate correlation existed across

all six variables. A comparison between the results of GTS-PCA with W = 101

and TS-PCA are summarized in table 5.5. Sample moving cross-correlation plots

of the data after transformation are shown in Figure 5.22. GTS-PCA and TS-PCA

produced the same results for this data set, as they were both able to successfully

find the correct segmentations.

Figure 5.20: A time series plot of the randomly selected replica in Example 5.4.4.



5.4. Simulations and Real Data Examples 200

Figure 5.21: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.4 before transformation.

Table 5.5: Number of subseries after applying GTS-PCA and TS-PCA to the ran-

domly selected replica in Example 5.4.4.
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Figure 5.22: Sample moving cross-correlation plots with W = 101 of the randomly

selected replica in Example 5.4.4 after GTS-PCA is applied.

Moreover, by replicating the above simulation 500 times, GTS-PCA with W =

101 was able to extract the correct segmentations 97% of the time. This is the same

percentage that was reported by Chang et al. (2018) when TS-PCA was used. This

indicates that both methods have identical performance on stationary series, even

if GTS-PCA uses a window that is much smaller than the ideal size.

By the end of the above simulation studies, we conclude that GTS-PCA was able

to reduce the dimension of a multivariate time series into uncorrelated subseries with

lower dimensions. Our simulations showed that GTS-PCA performed well when

applied to series with large sample sizes.

5.4.2 Real Data Examples

Example 5.4.5 In this example, we apply GTS-PCA on a non-stationary series

that consists of the daily stock prices of six US companies in US Dollar from Nov

07, 2013 to Dec 18, 2017. The total number of observations is 1036 days. The

six companies are CVS health (CVS), Chevron (CVX), Express Scripts Holding

(ESRX), Intel (INTC), Lowe’s (LOW) and Prudential Financial (PRU). The data

was obtained from Yahoo! Finance.



5.4. Simulations and Real Data Examples 202

Figure 5.23: A time series plot of the daily stock prices of the six US companies in

Example 5.4.5.

The six companies showed non-stationary behaviours over time, according to

the time series plot in Figure 5.23. GTS-PCA with W = 101 and l1 = 5 is used

to reduce the dimension of the series. The sample moving cross-correlation plots

with W = 101 between the six companies before applying GTS-PCA is provided

in Figure 5.24. A moderated dynamic relationship existed between the six compa-

nies. For example, the company INTC had a moderate relationship with LOW. The

companies INTC and PRU had a strong relationship with CVX for negative lagged

values. Moreover, the company ESRX was weakly correlated with INTC.

After GTS-PCA was applied, the moving cross-correlation with W = 101 sug-

gested dividing the data into four subseries with three univariate subseries and one

multivariate subseries that consisted of the companies CVS, ESRX and LOW; See

Figure 5.25.
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Figure 5.24: Sample moving cross-correlation plots of the daily stock prices of the

six US companies in Example 5.4.5 before GTS-PCA is applied.

Therefore, we conclude that GTS-PCA was able to reduce the dimension of zt

from six to four uncorrelated series of dimensions 3, 1, 1 and 1. These four sub-

series can be analysed separately as they are uncorrelated statically and dynamically.

Figure 5.25: Sample moving cross-correlation plots of the daily stock prices of the

six US companies in Example 5.4.5 after the GTS-PCA is applied.

Example 5.4.6 In the following example, we apply the GTS-PCA on a non-stationary
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data set with 22 variables. The data set in this example consists of the daily stock

prices of 22 US companies in US Dollar from Nov 07, 2013 to Dec 18, 2017 by Yahoo!

Finance. The total number of observations is 1036 days. The companies’ names and

labels are listed in Table 5.6. A time series plot of the daily stock prices of the 22

Table 5.6: Names and labels of the 22 US companies in Example 5.4.6.

companies is shown in figures 5.26, 5.27 and 5.28. The non-stationary behaviour of

the variables can be clearly seen from the time series plot.

Figure 5.26: A time series plot of the daily stock prices of the 22 US companies in

Example 5.4.6 - Part 1.
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Figure 5.27: Time series plot of the daily stock prices of the 22 US companies in

Example 5.4.6 - Part 2.

Figure 5.28: Time series plot of the daily stock prices of the 22 US companies in

Example 5.4.6 - Part 3.

Figures 5.29, 5.30, 5.31 and 5.32 show only the first and last 50 sample moving

cross-correlation plots with W = 101 of the 22 companies before applying GTS-

PCA, where a moderated relationship existed between the 22 companies.
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Figure 5.29: First 50 sample moving cross-correlation plots of the daily stock prices

of the 22 US companies in Example 5.4.6 before GTS-PCA is applied - Part 1.

Figure 5.30: First 50 sample moving cross-correlation plots of the daily stock prices

of the 22 US companies in Example 5.4.6 before GTS-PCA is applied - Part 2.
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Figure 5.31: Last 50 sample moving cross-correlation plots of the daily stock prices

of the 22 US companies in Example 5.4.6 before GTS-PCA is applied - Part 1.

Figure 5.32: Last 50 sample moving cross-correlation plots of the daily stock prices

of the 22 US companies in Example 5.4.6 before GTS-PCA is applied - Part 2.

After applying GTS-PCA with W = 101 and l1 = 5 to the daily stock prices, the

maximum moving cross-correlation with W = 101 suggested to segment the data

into 15 subseries that consisted of 11 univariate subseries, three bivariate subseries

and one multivariate time series with five variables, as shown in Table 5.7. Further

analyses can be applied separately to these 15 subseries since they are uncorrelated
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statically and dynamically.

Table 5.7: Summary results of the transformed segmentation of the 22 US companies

in Example 5.4.6 after applying GTS-PCA with W = 101.

In conclusion, we were able to reduce the dimension of the non-stationary daily

stock prices of 22 US company to 15 uncorrelated subseries by using GTS-PCA with

a window size of 101 and 5 lagged series.

5.5 Summary and Remarks

In the following, we are going to summarize our work in Chapter 5 and state some

remarks. GTS-PCA is a PCA-based dimension reduction method that can reduce

the dimension of both stationary and non-stationary time series to uncorrelated sub-

series, where further analyses can be done separately on these subseries. TS-PCA

can be considered as a special case of GTS-PCA where W = T , and they produce

the same segmentation on stationary data; See Example 5.4.4.

GTS-PCA transform data by applying eigenanalysis on M̂Wz defined in 5.12.

The moving cross-correlation function that we introduced in Chapter 3 can be used

to rearrange the components of the transformed series with moderate dimensions

into subseries based on their dynamic relationship. The maximum moving cross-

correlation is a new proposed tool that is based on the moving cross-correlation

function and can be used to rearrange the components of transformed series with

higher dimensions into subseries based on their dynamic relationship.

Choosing the window size for GTS-PCA depends on the stationarity of the data.
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GTS-PCA with smaller window sizes is more suitable for data with strong non-

stationarity, and the opposite is true. Based on simulated data, we noticed that

GTS-PCA was able to produce accurate results even when it used window sizes

that are smaller than required (i.e. using a small window of size W = 101 on sta-

tionary data, where we suppose to use W = T ).

We studied the convergence of the estimator Â when the dimension m is fixed

and when m depends on the window size W for large dimensional cases. We stated

the needed assumptions to obtain the convergence rates for these cases and showed

that Â is a consistent estimator of A. For ultra higher dimensions, where m de-

pends on W , a threshold estimator of the sample cross-covariance matrix over each

window Γ̂z,i(l) should be used to preserve the convergence of Â.

Our simulations showed that GTS-PCA performs reasonably on time series with

different dimensions and sample sizes. We also tested GTS-PCA on real-life data

sets. A drawback of GTS-PCA is that the transformed uncorrelated subseries might

not exist. This might occur in some cases where all the transformed series are

correlated. A similar conclusion was reported for the stationary TS-PCA; See Chang

et al. (2018).



Chapter 6

Conclusions and Further Work

6.1 Conclusions

The goal of this thesis is to develop dimension reduction methods that can be ap-

plied to both stationary and non-stationary multivariate time series. We proposed

three different PCA-based methods to reach our goal. Each one of the proposed

methods can be considered as an extension or a generalization of an already ex-

isting dimension reduction method from the stationary to the non-stationary case.

We showed that by using the moving cross-covariance matrix of the data instead of

the classical cross-covariance matrix, we were able to account for static, dynamic,

stationary and non-stationary behaviours in a time series. An important feature of

the moving cross-covariance matrix is that it is calculated over windows or intervals

whose lengths are predetermined according to the stationarity of the series. This al-

lows the information collected by the moving cross-covariance matrix to be updated

at each time point as we move in time.

In Chapter 3, we introduced the moving dynamic principal component analysis

(MDPCA). This method is a generalization of DPCA of Ku et al. (1995) to non-

stationary time series. Dimension reduction using MDPCA can be reached by left

multiplying the extended data vector yt by the transpose of the first kth columns

of Û, where Û is the matrix that consists of the eigenvectors of the sample mov-

ing cross-covariance matrix of yt. We also developed the RCC criterion in order to

210
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determine the optimal number of retained components, k. Additionally, we intro-

duced the moving cross-correlation function that can be plotted to evaluate static

and dynamic relationships between the components of non-stationary time series

data. Thus, this function can also evaluate the relationships between the retained

components (i.e. MDPCs). The asymptotic results of the estimator of U were

discussed. We showed under some regularity assumptions that Û is a consistent

estimator of U with W−1/2 convergence rate. The performance of MDPCA was in-

vestigated by applying it to simulated and real data sets. MDPCA showed a steady

performance when applied to non-stationary series with moderate dimension sizes.

MDPCA can also be used to reduce the dimension of stationary series by adjusting

the window size to W = N , where its results are equivalent to those of DPCA. This

makes DPCA a special case of MDPCA where W = N . We also reported that the

performance of MDPCA improved as the sample size increased, where consistent

performance was obtained on data with reasonably small sample sizes.

The quadratic moving dynamic principal component analysis (QMDPCA) was

introduced in Chapter 4. This is a PCA-based method that can transfer a station-

ary and non-stationary multivariate time series into uncorrelated lower-dimensional

components (i.e. QMDPCs). The details and steps needed to transfer data using

QMDPCA were discussed in the methodology section. Dimensional reduction using

this method can be reached by left multiplying the extended data vector yt by the

transpose of the first kth columns of Û (i.e. eigenvectors that correspond to the

first kth eigenvalues of the sample quadratic order moving cross-covariance matrix

of yt). The RCC criterion introduced in Chapter 3 can be used to determine the

optimal number of retained QMDPCs, k. The relationships between the retained

components can be investigated by plotting their sample moving cross-correlation

matrix introduced in Chapter 3. The convergence of the estimator of U was studied

where, under some regularity assumptions, we showed that Û is a consistent esti-

mator of U with W−1/2 convergence rate. The numerical properties of QMDPCA

were shown on simulated and real data sets with different combinations of sample

and dimension sizes. QMDPCA showed consistent performance on both stationary
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and non-stationary series. Additionally, we reported that the accuracy of QMDPCA

could be further enhanced by increasing the sample size.

In Chapter 5, we proposed the generalized principal components analysis for time

series data (GTS-PCA). This method is a generalization of TS-PCA of Chang et al.

(2018) to non-stationary time series data. GTS-PCA can achieve dimension reduc-

tion by transforming series into uncorrelated subseries with lower dimensions. These

subseries can be analysed separately since they are not correlated. The transformed

subseries xt can be obtained by using the model xt = Â
′

zt, where Â is the matrix

that consists of all eigenvectors of the sample lag l quadratic moving cross-covariance

matrix of the original data vector zt, subject to columns’ rearrangement. For se-

ries with small to moderate dimension sizes, the correct columns’ rearrangement

can be obtained by investigating the moving cross-correlation plots of the trans-

formed series. For series with large dimensions, we suggest using the maximum

moving cross-covariance method introduced in Section 5.2 in Chapter 5 to avoid

investigating a large number of plots. Since GTS-PCA is developed to deal with

high dimensional series, the theoretical properties of this method were discussed in

three cases, where the dimension m is fixed, m = o(W c) and logm = o(W c). We

provided the convergence rates of the estimator Â in these cases. It is essential to

mention that for the cases where m depends on W , a threshold estimator of the

sample cross-covariance matrix over each window Γ̂z,i(l) should be used to preserve

the convergence of Â. Furthermore, GTS-PCA was applied to simulated and real

data sets of different sample and dimension sizes. We showed that GTS-PCA has

the ability to reduce the dimension of both stationary and non-stationary series by

adjusting its window size W . We reported that TS-PCA is a special case of GTS-

PCA where W = T . We also reported that the ability of GTS-PCA to reveal the

hidden segmentations enhanced as we increased the sample size T .

There are a few critical differences between GTS-PCA and QMDPCA. The first

difference is the way they deal with lagged series. The former applies eigenanalysis on

MWz, which is a sum of the quadratic order of the lagged moving cross-covariance
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matrices of the original data vector zt up to some predetermined lag. The latter,

on the other hand, requires to build an extended data vector yt that consists of

lagged series of zt up to some predetermined lag l, then apply eigenanalysis on

Q, the quadratic moving cross-covariance matrix of yt with no lags included. The

second difference is the total number of produced eigenvalues of the two methods.

GTS-PCA produces a total of m eigenvalues, where QMDPCA produces a total of

m(l + 1) eigenvalues. Another difference is that the two methods seek dimension

reduction differently. GTS-PCA seeks uncorrelated subseries such that the sum of

their dimensions is equal to the dimension of the original series m. QMDPCA, on the

other hand, seeks k (where k < m) uncorrelated components (i.e. QMDPCs) that

consist of the most variation of the data and produce minimum reconstruction error.

As we show, the methods we proposed can be applied to stationary and non-

stationary time series with various dimensions. As mentioned earlier, there are

cases where GTS-PCA is not able to achieve dimension reduction when the com-

ponent of the transformed data are correlated. In this case, the usage of MDPCA

and QMDPCA is recommended. Additionally, applying MDPCA and QMDPCA

on large dimensional series might produce less number of principal components to

analyse compared with those produced by GTS-PCA. For example, for a series with

ten variables, GTS-PCA could produce ten univariate principal components, in the

ideal case, where one univariate principal component would be ideal for MDPCA or

QMDPCA.

6.2 Further Work

In this section, we provide some ideas and open questions that can be solved in

further research works.

• Is possible to objectively quantify the degree of non-stationarity of time series

such that optimal window sizes are objectively determined to carry out MD-

PCA, QMDPCA and GTS-PCA?
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• How to develop a theory to show the convergence rate of the estimator of U

used in MDPCA for series with ultra-high dimensions and what are the nec-

essary assumptions needed in this case?

• How to develop a theory and state the sufficient assumptions to approach the

convergence of the estimator of U used in QMDPCA for series with ultra-high

dimensions?

• Is it possible to develop a dimension reduction method for time series such

that it combines between PCA and Co-integration?
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