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Abstract 

 

Satellite system design in most circumstances demands “distortion free” behaviour or a 

quantifiable and budgeted system approach with respect to structural distortion for on-

station pointing performance.  Due to variation in material properties through the 

spacecraft structure and payload and temperature gradients the structure will deform 

under such conditions, hence this will affect pointing vectors or the Line of Sight of 

critical payloads. As has been discovered, industrial practice at Airbus DS in particular 

approaches this problem using finite element techniques established by years of 

experience and practical tests. However this approach does not provide an accurate 

enough tool for the prediction of coupling effects between the mechanical deformation 

and the thermal loading, which would guarantee high accuracy of the thermo-elastic 

model. The finite element approach as well as experimental tests were both unable to 

simulate the deformation effect within the honeycomb core, noting that has a nonlinear 

nature of deformation and could contribute to the inaccuracy of the model output. 

Therefore in this thesis a partially-coupled analytical thermo-mechanical model has been 

developed to provide Airbus DS with a tool for the prediction of the displacement within 

a typical honeycomb panel, taking into account the coupling between the mechanical and 

thermal effects. The model predicts the displacement of the panel taking into account 

dynamic mechanical and thermal loadings and is capable of predicting the heat 

distribution along the thickness of the panel core. The work concludes with a guide for 

use of the analytical model and also with a discussion and suggestions for how Airbus 

DS could investigate other phenomena caused by parasitic vibration which could 

potentially contribute to the problem of de-pointing. 
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Introduction 

 

Satellite system design in most circumstances demands “distortion free” behaviour or a 

quantifiable and budgeted system approach with respect to structural distortion for on-

station pointing performance.  Due to variation in material properties through the 

spacecraft structure and payload and temperature gradients the structure will deform 

under such conditions hence this will affect pointing vectors or Line of Sight of critical 

payloads. Mission pointing needs demands on payloads to vary from several arc-seconds 

to sub-arc seconds of angular shift of pointing vectors, dependent upon the mission and 

science needs. 

Therefore such anomalies of distortion have to be taken into account and accommodated 

within the system design. However in reality it is generally not possible or not practical 

to implement all mission thermal loading scenarios, or not possible to implement the true 

environment and gradients that will be detected in the form of a preliminary test. Hence 

thermo-elastic behaviour prediction is normally conducted through analysis in the form 

of model development and appropriate budgeting of pointing.  

As will be demonstrated in this work, the research based evidence confirms that 

historically in Airbus DS practice, de-pointing is budgeted for analytically through a 

multi-disciplinary approach involving: 

• Thermal control /analysis specialists able to predict structural thermal 

distributions both of a static and transient nature. The thermal mathematical 

models (TMMs) are subject to correlation and validation relatively late in the 

spacecraft development life cycle via thermal balance tests conducted in specialist 

vacuum chamber facilities. 

• Structural specialists responsible for architectural management and finite element 

method (FEM) analysis take the thermal ‘maps’ from the thermal specialists, and 

predict thermal distortion and payload (angular) changes from nominal states. 

Often numerous thermal cases (mappings) are applied to the FE model to establish 

worst case scenarios for de-point. Key outputs from the FE model are normally 

angular shifts in pointing vectors at discrete payload locations or from discrete 

payload features. Calculated angular changes are then provided typically to 



   10 

mission system engineers, for further data processing or as direct input into system 

budget allocation.  

• Mission specialists for supporting definition of the mission scenario and usually 

the final de-point budget management. 

It is also known that typically the process of mapping is quite complex and requires an 

experienced engineer. Different methods exist or have been developed in house to 

perform the correspondence between mechanical and thermal nodes. In most cases the 

geometry of the thermal model is much simpler than the FEM geometry and the number 

of thermal nodes is much smaller than used for the FEM elements. The correspondence 

method should be adapted to these constraints. Correspondence methods are often nodal 

methods: temperatures are applied on FEM nodes. These methods should take into 

account the geometry differences between the mechanical and thermal models. 

 

Airbus DS follows a post-processing procedure with in-house tools to provide both 

performance results and data for physical understanding by proving the following 

information:  

• Thermal contributors, through a mapping in the thermal model of the 

temperature variations with respect to particular events (Systema tool is used),  

• Mechanical contributors from the macro-node analyses by providing a synthesis 

table or a mapping of the FEM representing the influence of the defined macro-

nodes. This is achieved due to a sequence of Nastran, Matlab and FEMAP tools.  

• Thermo-elastic performance results in the form of distortion temporal 

evolution. 

• Deformed shape animation of the complete scenario using a separate graphical 

representation software.  

Until recently, the thermo-elastic analyses have been restricted to running the FEM with 

specific thermal maps in order to check that the end-to-end predictions satisfy the thermo-

elastic requirement allocation. This was acceptable as long as the stability requirements 

were not too demanding.  

It was also found that modelling of spacecraft structure (panels, cleats, tubes) is dependent 

on the assessment of the temperature gradients through the thickness. For 2D modelling 

the temperature should be homogenous through the panel. The main risk with 2D 

modelling here is a non-representative bending by not taking into account the gradient in 
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the thickness of the panel. In case of an asymmetrical panel, 2D modelling is not 

representative. This modelling introduces an error in the computed distortions calculated, 

in comparison with the 3D modelling, for example. Modelling of equipment is normally 

performed after sensitivity analyses, which shows a significance of the thermo-elastic 

contribution of a specific piece of equipment to the stability. In this case a refinement to 

be representative of the equipment stiffness and thermal expansion can be performed. 

Modelling of interfaces (glued and bolted) is dependent of the modelling assumptions.  

 

Thermo-elastic stability predictions include a large number of hypotheses which need to 

be listed and evaluated to assess the reliability of the predictions associated with a level 

of confidence: 

• Thermal modelling,  

• Structural modelling,  

• Mission requirements definition (margins & uncertainties),  

• Correspondence of thermal and structural models,  

• Test measurement accuracy.  

Thermal uncertainties impacting on the thermo-elastic computation are not systematically 

assessed, whereas the temporal thermal variations on certain areas of the spacecraft are 

major contributors for thermo-elastic analyses. 

 

For mechanical uncertainties the analysis of the main mechanical contributors is essential 

during the design phase in order to optimise the design and to understand the mechanical 

behaviour. Once the main contributors are known, the uncertainty analysis can be 

performed to determine the impact of mechanical parameters and mechanical modelling 

choice. Therefore mechanical contributors can be impacted by: 

- Modelling parameters, 

- Uncertainty in material, 

- Uncertainty in orientation of orthotropic material, 

- Uncertainty in cleat modelling (spring stiffness), 

- Uncertainty in geometrical dimension (thickness). 

Since 2000, a number of initiatives have been run separately in different programs in 

order to improve the thermo-elastic process: to get better correspondence between the 
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mechanical and thermal models, evaluation of the main structural and thermal 

contributors, post-processing of the results by combining temperatures variations, and 

temporally deformed shape analyses.  

 

In the same way a number of technologies have been used for testing several devices and 

satellites: videogrammetry, holography and interferometry but without a consolidation of 

the findings for use on future programs. All these initiatives are available and quite a few 

of them were evaluated, based on confidential material supplied by Airbus DS, in order 

to propose a consolidated and reliable thermo-elastic methodology to be used on future 

demanding mission programs. 

 

It should also be pointed out that the thermal control system in the spacecraft aims at 

keeping all the equipment in a favourable thermal environment during all mission phases. 

The impact of major thermal contributors is usually not, or only partially, studied. 

Thermal analyses of the contributors give useful information on thermal uncertainties to 

be taken into account in the thermo-elastic analyses. This analysis should be realised by 

heat flux in these zones. These analyses will allow the determination of the thermal 

parameters impacting on the thermo-elastic analyses in order to consider the associated 

thermal uncertainties. The dissipation of the equipment is not constant during the 

spacecraft mission. Dissipation varies according to the mission phases of the spacecraft. 

The maximum thermal flux variations are found for electrical loads, specifically data 

reception, amplification, and signal transmission.  

 

Therefore considering the uncertainties in dynamic and thermal analysis, as well current 

practice in Airbus DS, there is a strong need for further research into an increase of the 

accuracy of prediction in existing multistage techniques or an alternative modelling 

approach to the existing mapping approach. Since it has been evidenced that modelling 

of a spacecraft structure is dependent on the ability of the model to predict or take into 

account the temperature gradients through the thickness, the alternative approach should 

include not only a resolution of the mapping approach but the influence of the thermal 

distribution through the thickness as well. 
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Therefore in this thesis a study has been performed into the analysis of existing 

approaches in Airbus DS practice, based on the confidential reports provided (Chapter 1), 

which shaped up the problem as driven by the industrial partner, Airbus DS. Once the 

current approaches were clear a study of environmental conditions of the spacecraft or 

satellite has been performed, based on the open literature (Chapter 1), to understand the 

thermal and mechanical loading conditions as well as the environmental conditions. In 

Chapter 1 an extensive analysis of modelling techniques has been performed to identify 

the most appropriate approach which could benefit the Airbus DS with an alternative 

higher accuracy model reducing the number of uncertainties, eliminating the need for use 

of two models and their subsequent mapping, as well as to provide an ability to 

incorporate the effect of the thermal gradient along the thickness of the satellite panel. 

This intention also resulted in deeper research into the phenomena of thermo-elasticity 

which indicated the need for a coupled or partially coupled model to address the scope of 

the alternative modelling approach (Chapter 1). Therefore in Chapter 2 a partially coupled 

thermo-mechanical analytical model was developed and applied to the case of a typical 

panel used in Airbus DS practice. A set of experimental tests have been performed and 

discussed in Chapter 3 where samples provided by Airbus DS were tested under a variety 

of thermal and mechanical loading conditions. Chapter 4 then presents the process of 

correlation of results from the analytical model developed and experimental work 

performed. Some finite element work was performed in Chapter 5 as part of a final year 

group student project to identify the ability of the FEM package to make a prediction 

similar to the one obtained using the developed analytical model. Since the solution for 

the analytical model was obtained using integration techniques in Mathematica, it was 

decided to explore the possibility of obtaining a closed form solution using the method of 

multiple scales in Chapter 6. Since the problem considered was defined by the industrial 

partner, Airbus DS, Chapter 7 is dedicated to the development of the annotated code and 

guidance for code use for engineers at Airbus DS. The conclusions section finalises the 

thesis, critically reflecting on the whole study, the analytical model developed, its 

applicability and use, its advantages and limitations, as well benefits for Airbus DS 

practice. 

Appendix G provides a copy of the published papers as a result of the work performed in 

the thesis. Appendix H consists of a draft of the paper prepared by the author of this thesis 

and students working on the final year project dedicated to the development of the FEM 

for a satellite panel. 



   14 

1. Background of the thermo-elastic problem in the industrial Airbus DS context 

 

Composite materials are increasingly being used in structural design in the practices of 

Airbus DS and other industrial partners, particularly in the aerospace industry. This is 

mainly due to their high strength and specific directional properties. This allows the 

design of structures with minimum weight and maximum strength to achieve desirable 

aeroelastic and dynamic properties. To understand the material properties their static and 

dynamic behaviour is studied, for example as free vibration analyses of representative 

composite structures. The results from free vibration analysis are generally used to 

characterise aeroelastic behaviour, dynamic response, acoustic performance, and to avoid 

possible resonance [1]. This method is commonly used for aeroelastic analysis of aircraft 

structures. 

It has been pointed out in the introduction that the problem for the this project came from 

evidence gathered up by Airbus DS based on practical tests and general observation of 

satellite behaviour, as well as from modelling outputs. Therefore a series of confidential 

reports provided by Airbus DS [2-108] were analysed as the main basis for the resolution 

of the practically observed problem. 

 

1.1 Main approach to thermo-elastic analysis  

After analysis of confidential reports provided Airbus DS it was concluded that 

thermoelastic analyses at Airbus DS is performed mainly to investigate a spacecraft’s 

stability on orbit (i.e. its relative position or pointing accuracy) and structural strength 

[109]. This analysis may focus on units, instruments or satellites. The main aim of the 

analysis in this case is to take into account thermo-elastic phenomena either by accurate 

modelling or at least by knowing the boundaries of accuracy. 

To investigate the aspects of stability in pointing the process normally involves three 

steps [109]:  

1. Thermal control /analysis.  This involves the development of the thermal 

mathematical models (TMMs) based on thermal finite difference analysis, subjected to 

correlation and validation later in the spacecraft development life cycle via thermal 

balance tests in vacuum chamber facilities. 
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2. Structural analyses. Development of finite element models (FEM) to predict 

mechanical distortion due to thermal effects. As a rule, specialists responsible for 

architectural management and FE analysis take the thermal ‘maps’ from the thermal 

specialists, and predict thermal distortion and payload (angular) changes from nominal 

states. This is performed to establish worst case scenarios for de-point. Key outputs from 

the FE model are normally angular shifts in pointing vectors at discrete payload locations 

or from discrete payload features. Calculated angular changes are then provided, typically 

to mission system engineers for further data processing. 

3. The last stage is application of the model output to the mission scenario. This is 

undertaken by Mission specialists for supporting their definition of the mission scenario 

and usually the final de-point budget management. 

Until recently, Thermo-Elastic Deformation (TED) analyses have been restricted to 

running the FEM with specific thermal maps [109,110], as described above. This has been 

done in order to check that the end-to-end predictions satisfy the TED requirement 

allocation. This was acceptable as long as the stability requirements were not too 

demanding.  

Usually the satellite thermo-elastic stability performance predictions imply a large 

number of parameters:  

- mission scenario (duration, attitude variations, internal / external thermal flux 

variations),  

- mechanical and thermal model representativeness with respect to the ‘as designed’ and 

‘as-built’ forms,  

- mechanical and thermal model correspondences and completeness. 

  

However with increasing instrument resolutions and more demanding missions (longer 

imaging periods with significant Sun aspect angle variations), thermo-elastic stability 

becomes a key contributor for future mission pointing performance [110]. Thus there is a 

strong need to improve the thermo-elastic analysis accuracy, to develop new verification 

techniques and to define an overall thermo-elastic engineering methodology to be applied 

in future projects in order to guarantee higher accuracy of the prediction, and therefore 

the expected stability. In parallel three in-orbit anomalies on an Earth observation satellite 

have confirmed that thermo-elastic predictions do not always consider all the major 
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stability contributors, and that high accuracy in the whole thermo-elastic engineering 

process is required. Precision in specification to prediction and up to testing is necessary 

to guarantee the expected stability performance of future demanding projects. 

 

Since 2000 a number of initiatives have been run separately in different programmes in 

order to improve the thermo-elastic process: to get better correspondence between the 

mechanical and thermal models, evaluation of the main structural and thermal 

contributors, post-processing of the results by combining temperatures variations, and 

temporally deformed shape analyses [109]. During these initiatives a number of devices 

and satellites have been tested using photogrammetry [111,112] videogrammetry, 

holography and interferometry, when the displacement contours resulting from thermal 

loading were correlated with the system FEM deflections under test conditions [111]. 

However this has been done without a complete consolidation of the findings [112].  

 

During these experimental procedures it has become obvious that recent image processing 

developments can lead to accurate measurements down to a few tens of microns 

resolution on large structures using videogrammetry [110]. Videogrammetry is also 

widely used because of the cost of testing in vacuum. The only possibility of affording a 

vacuum chamber test would be to have the measurement device fitted as a “passenger” 

on a thermal vacuum test on one representative spacecraft. But this would introduce the 

presence of active and passive thermal hardware, preventing a direct measurement of the 

structure’s external surface temperature. It is also difficult to guarantee a null effect of 

the test set-up on the thermal environment. Therefore the videogrammetry technology is 

applied to a small satellite (such as the Astrobus spacecraft) subjected to local conductive 

heating through test heaters. As a more advanced option videogrammetry could be used 

on a large satellite (for example, the Solar Orbiter STM in [94]) placed in a climatic 

chamber to perform the test on large size reflectors. This would provide results to validate 

the predictions for future programmes. 

 

These programmes which concentrate on thermal issues are necessary because of the 

effect of the following thermal contributors during the mission [110]:  
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•Heaters  

Electrical heaters are used to prevent excessive cooling of any part of the spacecraft and 

this cooling is defined as a specific dissipation according to the mission and the unit’s 

temperature limit. Heaters are often the solution for limiting temperature variations of the 

unit. One of the solutions envisaged for limiting thermo-elastic distortions is to add 

thermal control onto the structure to limit thermo-elastic distortion.  

•Solar flux 

The solar flux constant changes from 1423 W/m² to 1321 W/m² during a low Earth orbit. 

The variation of solar flux absorbed by the spacecraft during its mission contributes to 

the temperature variation and distortion.  

•Earth flux (or other planetary flux) and albedo 

The Earth flux and albedo flux contribute to the spacecraft temperature change during the 

orbit and also contribute to the distortion. 

•Infrared (IR) flux 

These fluxes are due to the exchange flux between spacecraft sub-assemblies and the 

radiative coupling between the spacecraft and space. The variation between solar 

exposure and eclipse contributes to generate temperature variation with IR flux. 

 

A knowledge of these fluxes is important since it defines the necessary extent of the 

thermo-elastic analyses through introducing the parameters of thermo-elastic distortions. 

In the design phase this information is crucial for thermo-elastic dimensioning and 

improvement of spacecraft stability [110]. The identification of the expected major 

thermo-elastic distortion contributors for the mechanical and the thermal sides (Bi-

metallic areas, high temperature/gradient variations, instruments/sensors 

mechanical/thermal interfaces, etc) is the first stage of the design process. It defines the 

initial conditions for both the FEM and the TMM, the areas requiring detailed modelling 

to achieve [113]: 

- accurate thermal gradients 

- accurate structural distortions 

- a direct interpolation between the mechanical and thermal models. 

 

Most of the missions described above, targeted to improve the thermo-elastic analyses 

procedure, concentrated on early testing and verification in the most accurate and cost 
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effective way. There have been a few attempts to introduce additional tools to improve 

the process of interpolation/matching of the outputs from FEM and TMM. In this work 

the principal interest and motivation lies in the improvement of the modelling side. To 

understand how the process of modelling can be improved the current practice at Airbus 

DS has been carefully reviewed. 

 

In the three-stage process defined above for the thermo-elastic stability predictions 

usually a large number of hypotheses are introduced due to uncertainties [110]: 

• Thermal modelling:  

- Obtaining material characteristics, 

- Understanding the implications of simplified modelling (2D vs 3D, interfaces),  

- Recognising the differences with respect to the “as designed and “as built” forms.  

• Structural FEM modelling:  

- Material characteristics, 

- Simplified modelling (2D vs 3D, interfaces),  

- Recognising the differences with respect to the “as designed and “as built” forms.  

• Mission requirements definition (margins & uncertainties):  

- Time frame,  

- Satellite attitude,  

- Identification of the variations in dissipation.  

• FEM / TMM correspondence,  

• Test measurement accuracy 

- In deformation and  temperature data  

 

The uncertainty analysis aims to determine the impact of mechanical parameters and 

mechanical modelling choice on the main contributor coefficients. This analysis can 

begin only when the main contributors are known [110]. 

Mechanical contributors can be impacted by: 

* Modelling parameters: 

- Uncertainty in material (Young’s modulus - E, Coefficient of thermal expansion 

- CTE), 
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- Uncertainty in the orientation of orthotropic material, 

- Uncertainty in cleat modelling (spring stiffness assumptions within cleat design), 

- Uncertainty in geometrical dimensioning (thickness, for example), 

- Uncertainty in Multi-Layer Insulation (MLI) (potential additional stiffness due to 

too much tightening of the MLI). 

* Modelling choices: 

- Use of gradient in thickness, 

- Modelling of equipment, 

- Modelling of interfaces, 

- Meshing details of major contributors areas, 

* Differences between the “as-designed” and “as built” forms. 

 

The process of assessment of the various uncertainties can be summarised in Figure 1.1. 

 

 
Figure 1.1. Thermo-elastic uncertainty assessment [110] 

 

Once the uncertainty analysis is complete, and a number of hypothesis have been 

introduced, the modelling process can be started. 

 

Modelling of the spacecraft structures [110] (panels, cleats, tubes) is dependent on the 

assessment of the temperature gradients through the thickness, whether it is linear or 

nonlinear. For 2D modelling the temperature should be homogenous through the panel. 
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However the main risk with 2D modelling is a non-representative bending since the 

variation of the thermal gradient along the thickness of the panel is not taken into account. 

This modelling introduces an error in the computed distortions, compared to results 

obtainable from 3D modelling.  

 

Modelling of equipment is performed if sensitivity analyses show a significant thermo-

elastic contribution from a specific piece of equipment to the vehicle’s stability. In this 

case the structure would have to be assessed and modelled, taking fully into account the 

equipment stiffness and thermal expansion. 

  

Modelling of interfaces (glued and bolted) is dependent on the general modelling 

assumptions that have been made, and can be included in the FEM if there is evidence of 

a significant thermal contribution. 

 

For the modelling proposed Airbus DS uses well-developed in-house tools based on the 

Nastran, Matlab and FEMAP FEM packages and TMM based on Systema software, 

following the methodology shown in Figure 1.2.  

 

 
Figure 1.2. Modelling methodology for uniting FEM and TMM, as used by Airbus DS 

[110]. 
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The aim of this complete modelling process is to provide both performance results and 

data for physical understanding by going through the following steps [110]:  

 

• Thermal contributions are defined by mapping the temperature variations in the 

thermal model with respect to particular events (using the Systema tool),  

• Mechanical contributions are obtained from the macro-nodal analyses by 

providing a synthesis table or a mapping of the FEM, representing the influence of the 

defined macro-nodes. This is achieved due to the sequential use of Nastran, Matlab and 

FEMAP tools. This macro-node discretisation is possible by combining detailed thermal 

node influences into significant physical areas.  

• Thermo-elastic performance results are presented as temporal evolutions of 

distortion, clouds of complete line of sight (LOS) distortions, tables of results synthesis 

(minima, maxima, excursion, orbital, seasonal, and ageing effects).  

• Deformed shape animation of the complete scenario. This can be completed by 

adding a visual comprehension of the thermal and mechanical contributions in order to 

understand the physical phenomena (thermal flux, coefficient of thermal expansion 

(CTE)) that generate the distortions.  

 

This means that the proposed thermo-elastic prediction methodology can be summarised 

as:  

- A direct correspondence between the mechanical (FEM) and thermal (TMM) models,  

- Evaluation of the main structural and thermal contributors, 

- Identification of the differences between the two models and the “as-designed” / “as-

built” forms,  

- Detailed post-processing by combining temperature variations and deformed shapes. 

Thermal prediction is based on the thermal parameters presented in Fig. 1.3. 
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Figure 1.3. Thermal parameters for thermal prediction [110] 

 

At the spacecraft level, the potential thermal contributions to thermo-elastic prediction 

discrepancies in panels are:  

• Temperature predictions in panels & cleats.  

• General temperature mapping.  

• The management of thermal gradients in panels (in-plane and/or through the thickness 

of the panel).  

 

For the mechanical model based on Nastran finite element modelling, a thermal expansion 

coefficient α = 10-5 m/(m K) and a 20° C reference temperature are set to the model, and 

a 100° C temperature increase is applied [114]. If changes in FEM are needed only the 

thermoelastic properties of the material data input are modified in order to ensure that 

stiffness of the model is still the same.  

 

To support the correlation process of the mechanical model and the thermal model certain 

Airbus DS in-house tools are available, including the commercially available Nastran uite 

of tools for static solution sequences and the ESATAN-TMS thermal software. The main 

aim of correlation is to obtain a valid FEM justified as ‘fit for purpose’, for use at system 

level.  
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A common workspace to perform the correspondence between thermal and mechanical 

models is within the I-DEAS tool [114]. In I-DEAS, only finite element models may be 

imported as mathematical models, so if a finite difference or finite volume model has 

been used for the thermal modelling it would then require to be transformed into a finite 

element model in order to be imported successfully.  

The classical workspace for thermal analysis is Systema. This software allows thermal 

users to export their thermal model to an I-DEAS universal format (a “.unv” file), as 

shown in Fig.4. The principle of such an exporting process is to transform the thermal 

nodes into the equivalent shell elements. This means that a thermal node may in practice 

be transformed into one or several shell finite elements. It has to be pointed out that I-

DEAS tool has now been replaced by another tool. 

 

Figure 1.4. Export of Mechanical and thermal models into I-DEAS [114]. 

 

Before implementing the correspondence process it has to be verified that the thermal 

model fits correctly with the mechanical model. Based on the reports analysed it was 

evident that generally, the thermal and mechanical models do not have the same level of 

maturity, or are not coming from exactly the same CAD model. This could cause a 

potential longer term continuity problem when a design is continuously modified. Only 

the thermal analyst can, under this system, be responsible for choosing the correct thermal 

map to be applied to the mechanical FEM. This is to guarantee that correspondence is 

established to fit the best with the thermal model, and conductive interpolation is used 

only for model parts which are for some reason not included in the thermal model. 
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Conductive interpolation results necessarily have to be checked and validated by the 

thermal analyst as well. 

 

 

1.2. Thermo-elastic analysis – Finite element techniques  

 

1.2.1. Finite element techniques used within established practice at Airbus DS 

Until recently TED analyses have been restricted to running the two detailed mechanical 

and thermal models in parallel, in order to get the required outputs into forms that can 

satisfactorily be compared to the corresponding requirements.  

This includes the satellite dynamic FEM update to be compatible with thermo-elastic 

calculations by removing all rigid elements that will prevent a realistic thermal expansion, 

and by adding the relevant materials coefficient of thermal expansion (CTE). The injected 

thermal maps come from the detailed thermal model, without there necessarily being a 

full correspondence with the FEM. This requires the use of specific FEM-to-TMM 

interpolation hypotheses [110]. 

In the development of the FEM stage it is accepted that industrial practice requires that 

the full structural model is delivered using only linear elastic elements and properties 

[115]. The need for special FEM entities to suit specific analysis applications, such as 

accommodating nonlinearities, would have to be identified and specially agreed prior to 

delivery of the FEM. 

 

In the second step, with the requirements having been defined in the first step, FEM, 

GMM and TMM modelling must be compared to the “as designed” representation in 

order to check the impact of the non-modelled elements (or perhaps the effects of 

simplified modelling) before application of thermal node temperature in the thermo-

elastic FEM [110]. In order to get exact predictions of thermo-elastic distortions it is 

important to apply the correct temperature within the FEM, and to try to get a smooth and 

realistic temperature distribution.  
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Different methods exist, or have been developed in house, to perform the correspondence 

work between the mechanical and thermal nodes. In most cases the geometry of the 

thermal model is much simpler than the FEM geometry (Fig. 1.5) and the number of 

thermal nodes is much smaller than that of the FEM elements [110]. Correspondence 

methods are often nodal methods where temperatures are applied to the FEM nodes. 

These methods should really take into account the geometry difference between the 

mechanical and thermal models. 

 

 

Figure 1.5. Example of thermal and mechanical models [110] 

 

It should be noted that the major structural contributions are defined through application 

of the unitary method. This method works on the basis of increasing the temperature by 

1°C on each thermal node in the thermo-elastic model so that it is possible to obtain the 

contribution of each area of the structure. During the design phase the thermal nodes are 

usually gathered into macro-nodes to define the major structural contributions [110]. 

 

The FEM macro-nodal analysis objective is to get a physical understanding of the local 

deformation and performance contribution under unitary temperature / gradient cases, 

which can then be easily ranked and multiplied by the expected temperature variations 
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for making quick checks [113]: 

- One homogenous load case of 1°C on each part of the model 

- Three gradient load cases of 1°C/m for each part length, width and thickness. 

 

The gradient is therefore a function of the macro-node size (0.5°C for a 0.5m long macro-

node). 

In order to get an accurate comparison of all the macro-nodes contributions to the 

vehicle’s overall stability performance, they should all have an equivalent size in order 

not to under-estimate the contribution of very small macro-nodes compared to bigger 

ones. 

 

Some mechanical nodes are not associated with TMM thermal nodes. The impact of such 

nodes has to be evaluated by using a unitary case with an increase of 1°C loading, 

compared with the impact of a 1°C increase on the entire mechanical model. For nodes 

with significant impact there are also some other options [113]: 

-To give them a mean temperature by using the temperatures of neighbouring nodes (this 

can be done within Nastran by running an interpolation job). 

‐ To use the temperature from a thermal node close to these mechanical nodes (a mapping 

process). 

‐ To modify the thermal model by adding missing thermal nodes. 

It should be emphasised that the interpolation with Nastran can only use temperature 

inputs from the thermal model. The Nastran software is not used here as a real thermal 

solver since the entire model uses an assumed (potentially incorrect) conductivity of 1 

W/m/K. The interpolated temperatures are only an arithmetic mean of the near nodal 

temperatures, weighted by the volume of the adjacent element. 

 

To consider an example of how the nodes are interpolated we can look at a commonly 

used 2 skin panel within a 2D FEM model [113]: On the panel there are often two thermal 

nodes associated with only one mechanical node (typically relating to the temperatures 
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on the upper and lower skins). To handle this type of correspondence the average of the 

two temperatures from the thermal nodes is applied in the 2D FEM. For the unitary 

method the panel mechanical nodes are associated with only one sensitivity coefficient. 

Thus this coefficient is divided by two, and the value is applied for the upper skin thermal 

node and for the lower skin thermal node. However if the gradient through the panel is 

very important a Nastran calculation has to be added to simulate the gradient through the 

2D elements, and re-meshing then takes place for the mechanical FEM in 3D to have 

each side of the FEM associated with only one thermal node. This example is of 

particular importance for the work performed in other Chapters 2-4. 

 

In some cases a detailed unitary thermoelastic analysis method [113] can be applied. 

The detailed thermoelastic analysis is a unitary case within the full thermal model. It’s 

similar to the macro-nodal method, but there are some differences: 

- The number of thermal nodes can be most important (up to 4000 thermal nodes), 

- Gradient load cases are not computed. 

For each thermal node in the thermal model, a Nastran thermoelastic subcase is computed 

(with 1°C increase). The subcase analysis provides a sensitivity matrix, with distortions 

given per °C, for each restitution grid. 

 

This detailed analysis come with its own advantage and disadvanges. 

The advantages of a detailed analysis with the sensitivity matrix are: 

‐ Only one computation of the sensitivity matrix is needed, leading to multiple reuse of 

this matrix for additional temperature load cases. 

‐ Fast computation of different distortion loading cases. 

‐ Deep analysis of the distortion behaviour, since the sensitivity matrix can be transformed 

into a macro-nodal analysis. 

 

The drawbacks are: 

‐ It’s not possible to mix this method with the interpolation method (which uses Nastran 
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to compute the distortions). 

‐ The unitary case method needs to define temperature everywhere in the FEM. 

 

In summary the FEM unitary case method allows the fast computation of distortion 

loading cases, and can provide a good understanding of the distortion behaviour. However 

it requires a full thermal mapping, and interpolation is not possible. 

 

Temperature dependency can be introduced into the model [113]. 

If temperature loading varies in a large range (from ambient down to very low 

temperatures) then the coefficients of thermal expansion (CTE) are made dependent on 

the temperature. For more accurate results a CTE table may be used, but this would lead 

to a nonlinear thermoelastic analysis. The Young’s Modulus should then also be 

temperature dependent. 

 

Coming back to the example of a 2-skin panel. For a composite material such as an 

aluminum honeycomb core and a (carbon fibre reinforced plastic) CFRP skin, the CTE 

to be used is generally that of the CFRP. A more accurate way to predict the panel CTE 

is to use the general laminate theory. 

This evaluation can be performed within Nastran by transforming the composite 

properties into an equivalent shell property with a new CTE. The analysis of the panel is 

restricted to that required for linear structures, i.e. the material is assumed to be linear, 

the couplings are rigid to prevent interpenetration (no contact processing, no sliding), and 

the strains and displacements are small. 

 

The validation process of the FEM through thermo-elastic measurements is not intended 

to replicate the mission environment in terms of the complexity of transients or stationary 

gradients [111]. The regime of loading is static and there are only two overall parameters 

to address with respect to validation of the deflection variables {x}, these are the loading 

{F} and stiffness [K]: 

{F} = [K] {x} 
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The loading, identified as {F} is a function of: 

• The thermal distribution, which is an output from the TMM (correlated 

separately).  

• The thermo-mechanical properties defined in the FEM (with correct CTE 

definition).  

 

Assuming the problem is linear the validation of the FEM stiffness matrix [K] only needs 

to be fulfilled for single scalar temperature cases K ≠ f(T). For the thermo-static loading 

‘{F}’, only the thermo-mechanical properties need validating, and this is addressed by 

cross-checking the model properties within the correlation exercise. This test provides a 

correlation input for validation of the stiffness matrix [K] definition in the model, along 

with confirmation of the thermal loading to be considered (which is simplified if 

isothermal and stable).  

 

It has been shown in [111] that for isothermal loading the global distortion was found to 

be dispersed through the Solar Orbiter structure, and hence such isothermal loading can 

fulfil the thermo-elastic correlation requirement. With moderate thermal load the 

structural deflections are measurable and these should offer a good measured deflection-

to-noise threshold. The advantage of starting the correlation from an isothermal basis is: 

• The uncertainty in temperature distribution (“applied loading”) is negligible.  

• There are no further uncertainties applying the stiffness contribution as a result of 

attempting to impart gradients. 

• If the measurements are made under a stabilised state, transient deflections or 

strains do not exist.  

 

 

1.2.2. Key thermoelastic outputs and conclusions from previous Airbus DS experiments 

Some reports describing experimental studies of thermal effects and thermo-elastic 

deformation were describing the tests performed in climatic chambers. In [116] the testing 

of SOLO STM was conducted in the Rhino climatic chamber. 

The objectives of the test was to measure a thermal cartographic image of the hardware 
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and to measure the thermo-elastic deformation caused by the thermal load with the 

purpose of verification of the FEM deflection outputs. During this test: 

- a number of 1D displacement sensors were installed; 

- a tension test was performed on a calibration panel; 

- the IR temperature relative accuracy was of + 1 °C for temperature [-20 to +100 °C]; 

- the software used for recording and post-processing was FLIR Research IR. 

- the deflections due to the thermal load were measured by photogrammetry with a High 

Speed 

- Videogrammetry System (HSVGS) using cameras in multiple locations. 

Videogrammetry absolute accuracy was < 50 ppm; 

- the data obtained was used to correlate the 3D displacement vectors of the 

videogrammetry point clouds. 

 

In this case thermo-elastic measurements may also involve deformation measurements 

using holographic camera, and temperature using thermocouples and a thermographic 

camera, as was done in [113]. 

 

The whole test set-up in [116] was built in the Rhino climatic chamber facility to perform 

the test within the temperature range of -20 to +40 °C. The chamber dimensions were 

approximately 4.8 x 3.6 x 4.0 metres. It should be pointed out that in the experiment 

performed in [117] the temperature range was extended to [-120oC to +30oC].  

 

In [111] the mechanical static test (MS), the thermal sweep test (TS) and the thermal test 

(TH) were all performed on the calibration panel. During the MS test loadings of 25, 50, 

100N were applied to the panel three times (0-Load-0) and recorded using an LVDT. If 

the panel deflections exceeded 2mm at 50N, the test was not conducted and a 40N load 

was applied instead.  
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The TS test was designed to identify the displacement data for a simply loaded calibration 

panel as well as the determination of dwell times to reach thermal stability at each test 

point. The thermal sequences were applied as described in Fig. 1.6. The data recorded 

was strain, displacement and temperature after reaching thermal stability. 

 

Figure 1.6. Calibration Panel thermal test sequence [111] 

 

For the TH test, LVDTs, strain gauges and thermo-couples in multiple locations were 

used. Thermal imaging and photogrammetry were used in the climatic chamber after a 

period of stabilisation (around 30 mins). The key parameters of the test are presented in 

Table 1 and thermal loading was as described in Fig. 1.6. 

 

Table 1.1. The chamber test conditions are described in [111] 

1 Climatic chamber environment (atm) Dry circulatory N2 atm  

2 Climatic chamber environment (pressure) Ambient pressure 

3 Climatic chamber environment (stability)  - 

4 Climatic chamber environment (temperature 

uniformity)  

1.5 0 C max. variation 

within chamber enclosed  

volume 

5 Predicted relative deflection (magnitude) over 

measurement domain. 

0.2 - 0.3mm 
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6 Max. absolute thermo-elastic deflection ≤ ±1.5mm 

7 Relative deflection measurement accuracy Determine during test. 

Target: < 25 µm  

8 Relative deflection measurement resolution Determine during test. 

Target: < 12 µm 

9 Max. chamber HOT soak temperature + 40 0 C 

10 Min. chamber COLD soak temperature - 20 0 C   

11 Max. image temperature + 55 0 C (TBC/TBD)  

12 Min. imaging temperature  - 30 0 C 

13 Imaging temperature accuracy  +/- 0.5 0 C  

14 Temperature ramp rate Not exceeding 5 (TBC) 0 C 

/min 

15 Measurement domain  - 

 

It should be pointed out that the photogrammetry acquisition (scan domain) is defined by 

the boxed region which was approximately 2.4m x 2.0m. 

 

In [118] the test was conducted in the Rhino thermal chamber as well, with a temperature 

interval from -20 to +40 degrees C, +/- 0.5°C, relative humidity 65% maximum, ambient 

pressure 760 +/-25mm of mercury. For the data acquisition, the LVDT, thermocouples 

and strain gauges were used. At the stabilised temperature, within the limits of the test 

point: 

- the thermal images were captured using the thermal imaging camera; 

- photogrammetry images of the structure were taken 

- LVDT displacements were recorded all throughout the duration of the test. 
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Aluminium honeycomb panels have been tested in [113] for the dimensions presented in 

Fig. 1.7. 

 

 

Figure 1.7. Panels and cleats tested in [113] 

 

The panels and their assemblies (Fig. 1.8) were tested with specific goals as emphasised 

in Table 1.2. 

 

Figure 1.8. Geometry of the panels tested in [113] 
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Table 1.2. Panels tested in [113] and goals of the tests. 

 

 

For mechanical simulations 2D and 3D FEM models were used. A 3D fine model 

consisted of 3D elements (8 node structural finite elements) and was used for the 

mechanical load and for the thermoelastic load. A 2D coarse model used 2D elements 

(layered shell finite elements) for panels and cleats,  and used the sandwich panel option 

for both the mechanical and thermoelastic loads. 

 

For the test in [113] the holographic camera was used for non-contact displacement 

measurements and the thermographic camera was used for temperature measurements. 
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As can be seen in Table 3, it was found that the coarse 2D model was considered to be 

better than the fine 3D model for aluminium panels. For carbon skin panels, the results 

were mixed: 2D was better with cleats C1 and C2, 3D was better with cleat C3. 

 

 

Table 1.3. Correlation of results for the panel and cleats test – out of plane displacement 

(𝜇𝑚) [113] 

 

 

In this work it was also highlighted that in the 2D model of the panel the glue between 

the skins and the core are not taken into account and the temperature profiles as in Fig. 

1.9 cannot be taken into account due to the thickness of the panels, testing set-ups and 

limitations of the FEM techniques. 

 

Figure 1.9. Temperature profile of the panel in [113] 

 

In [110] the thermo-mechanical loading initial test was proposed to be performed within 

the range of stabilised temperature [-10 °C; +50 °C]. Such stabilised isothermal loading 

offers an ideal regime for thermo-elastic FEM correlation as a baseline to start the 
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correlation activity. The drawback of this type of testing is that this case alone is not 

sufficient to claim a fully correlated FEM. This is because in the stabilised state the same 

temperature occurs on both the internal volume and the exterior, and thus no through 

sandwich panel induced gradient may occur. To evaluate this more complex case a 

scheme to induce and measure such a gradient needs to be considered.  

Specific tests to address key sensitivities of the sandwich panel and through thickness 

thermal gradient were suggested. To induce the thermal gradient (load through the skin 

and through the honeycomb) local heaters can be installed and activated within the hot 

stabilised environment. In [110] a proposal was made to repeat a stabilised soak and to 

impart thermal energy into one skin ‘alone’ of a selected payload sandwich panel. It was 

concluded that by heating and elevating locally the skin temperature, it is possible to avoid 

structural influences (unavoidable for cooling systems) and the heater attachment will not 

compromise stiffness.  

 

 

1.2.3. Composite Plate Theory versus the Finite Element Method 

Based on the analysis of the problem conducted in Chapter 1.1, it has become apparent 

that the main technique used in structural analysis by industry, particularly Airbus DS 

Ltd, is the Finite Element Method (FEM), particularly within the Nastran software 

package for prediction of the mechanical deformation of panels. 

Therefore it is important to look into the open literature, in terms of analysis and the 

comparison of the various FEM approaches and analytical techniques that are available, 

and their accuracy and efficiency. It was found that there has been a comparison 

conducted for composite plates where the FEM results were compared with available 

analytical results or those based on the Dynamic Stiffness Method [1]. 

 

The problem can also be presented in the finite element form, as done in the case of the 

FGM beam in [119]. A four noded rectangular finite element was used to discretise the 

domain. The global finite element equation for evaluating the time dependent temperature 

across the transverse plane of the beam, when the beam is exposed to heat load on one 

surface and insulated on the other surface, has the following form: 
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𝑲!"#$𝑻 + 𝑪!%&𝑻 = 𝑭' 

(1.1) 

𝑲!"#$ is a conduction matrix, 𝑪!%& is a thermal capacitance matrix and 𝑭' is a force 

vector due to the combined effects of internal heat generation, external heat flux such as 

step heat loading, shock heat loading, and moving and concentrated-line heat sources: 

)𝑲()
* * = + [𝑩]+[𝑫][𝑩]𝑑𝐴*

,!
 

)𝑪()* * = + 𝜌*--𝑐.!""[𝑵]
+[𝑵]𝑑𝐴*

,!
 

[𝑭(*] = + �̇�[𝑵]+𝑑𝐴*
,!

 

(1.2a,b,c) 

where i, j = 1,2,3,4; 𝑑𝐴* = (𝑑𝑥𝑑𝑧) - the area of the 𝑒/0 element, and [N] is the two-

dimensional Lagrangian interpolation function, [B] is the derivative of the Lagrange 

shape function; [𝑫] = <
𝑘1!"" 0
0 𝑘2!""

? is the thermal conductivity matrix, and 𝜌*-- is the 

density of the material which is considered to be independent of temperature, and 𝑐.!"" 

is the temperature dependent specific heat of the FGM beam. For solution the numerical 

time integration method of Crank-Nicolson was used. 

 

It has been stated in [1] that apart from the Finite Element Method (FEM) a more accurate 

method is available, and this is known as the Dynamic Stiffness Method (DSM). The 

DSM is appealing in dynamic analysis because unlike the FEM it provides an exact 

solution of the equation of motion of a structure once the initial assumptions on the 

displacement field have been made (e.g. the Euler-Bernoulli, Timoshenko theories for 

beams, or Kirchhoff, Mindlin or higher order theories for plates). No further 

approximation is required in the analysis and any number of natural frequencies can be 

computed using the DSM, with just a single element which, of course, is impossible in 

the FEM. The DSM can be very effectively used to study the free vibration behaviour of 

complex structures because once the dynamic stiffness (DS) matrix of a structural element 

has been developed, it can be rotated, offset and assembled in a similar way to that of the 
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FEM, to build the global dynamic stiffness matrix of the final structure. 

 

It is important to note that DS plate elements based on the classical plate theory (CPT) 

have been developed for simply supported boundary conditions, mainly due to research 

by Wittrick and Williams [120],[121] and implemented in a program called VIPASA 

[121], and then subsequently developed further into VICON [122], PASCO [123],[124], 

and VICONOPT [125],[126]. At the same time it is well recognised that for composite 

plates the effect of shear deformation can be significant even when the plate is thin 

because fibre reinforced composites in general have low shear modulii. Considering that 

the DS is based on CPT in [1] an attempt has also been made to include the effects of 

shear deformation and rotatory inertia, by using bespoke code written in a symbolic 

computation language (Mathematica). This has been achieved mathematically by 

introducing the displacement field for a plate based on the Mindlin formulation: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢3(𝑥, 𝑦, 𝑡) + 𝑧𝜙4(𝑥, 𝑦, 𝑡),			𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣3(𝑥, 𝑦, 𝑡) − 𝑧𝜙1(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤3(𝑥, 𝑦, 𝑡) 

(1.3) 

where 𝑢3, 𝑣3, 𝑤3	 are the membrane displacements along the x, y, z directions respectively 

and 𝜙1 , 𝜙4 are the bending rotations. Although a composite plate is made of many layers 

of different materials the displacement is usually assumed to be linear through the 

thickness, and the plate is considered to be an equivalent plate with equivalent properties 

(classical laminate theory [1],[127]).  

  

Then Hamilton’s principle is applied. The use of Hamilton's principle, as opposed to 

Newton's second law, has the added advantage of giving access to the natural boundary 

conditions. This is important because the connections between forces and displacements 

are essential when applying the dynamic stiffness method [1].  

𝛿 ∫ (𝑇 − 𝑈)𝑑𝑡 = 0/#
/$

                                               (1.4) 

where the kinetic energy T for the plate is given as 
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(1.5)  

where 𝜌 is the density, k is the layer reference, and 𝑁: is the number of layers of the 

composite plate. 

Similarly, the potential energy U can be written as: 

𝑈 =
1
2+ O+ 𝜎5+𝜀5𝑑𝑧𝑑𝐴

2%

2%&$

7'

589,
 

(1.6) 

where  

𝜎+ = )𝜎11	𝜎44	𝜎14	𝜎42	𝜎12	*			𝑎𝑛𝑑			𝜀+ = )𝜀11	𝜀44	𝜀14	𝜀42	𝜀12* 

(1.7) 

By substituting the geometric and constitutive equations into Eqs. (1.5) and (1.6) and 

applying Hamilton’s principle the equations of motion in free vibration with the natural 

boundary conditions are obtained: 

𝐴99𝑢,113 + 2𝐴9=𝑢,143 + 𝐴==𝑢,443 + 𝐴9=𝑣,113 + (𝐴== + 𝐴96)𝑣,143 + 𝐴6=𝑣,443 − 𝐵9=𝜙1,11 − 

−(𝐵== + 𝐵96)𝜙1,14 − 𝐵6=𝜙1,14 + 𝐵99𝜙4,11 + 2𝐵9=𝜙4,14 + 𝐵==𝜙4,44 = 𝐼3�̈�3 + 𝐼9�̈�4 

 

𝐴9=𝑢,113 + (𝐴== + 𝐴96)𝑢,143 +𝐴6=𝑢,443 + 𝐴==𝑢,113 + 2𝐴6=𝑣,143 + 𝐴66𝑣,443 − 𝐵==𝜙1,11 − 

+(𝐵== + 𝐵96)𝜙4,14 − 2𝐵6=𝜙1,14 − 𝐵66𝜙1,44 + 𝐵9=𝜙4,11 + 𝐵6=𝜙4,44 = 𝐼3�̈�3 + 𝐼9�̈�1 

 

𝑘𝐴>>𝑤,113 + 2𝑘𝐴?>𝑤,143 + 𝑘𝐴??𝑤,443 − 𝑘𝐴?>𝜙1,1 − 𝑘𝐴??𝜙1,4 + 𝑘𝐴>>𝜙4,1 + 

+	𝑘𝐴?>𝜙4,4 = 𝐼3�̈�3 
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𝐵99𝑢,113 + 2𝐵9=𝑢,143 + 𝐵==𝑢,443 + 𝐵9=𝑣,113 + (𝐵== + 𝐵96)𝑣,143 + 𝐵6=𝑣,443 − 𝐷9=𝜙1,11 − 

−(𝐷== + 𝐷96)𝜙1,14 − 𝐷6=𝜙1,44 + 𝐷99𝜙4,11 + 2𝐷9=𝜙4,14 + 𝐷==𝜙4,44 − 𝑘𝐴>>𝑤,13 − 

−𝑘𝐴?>𝑤,43 + 𝑘𝐴?>𝜙1 − 𝑘𝐴>>𝜙4 = 𝐼3�̈�3 + 𝐼6�̈�4 

 

−𝐵9=𝑢,113 − (𝐵== + 𝐵96)𝑢,143 −𝐵6=𝑢,443 − 𝐵==𝑣,113 − 2𝐵6=𝑣,143 − 𝐵66𝑣,443 + 𝐷==𝜙1,11 + 

+(𝐷== + 𝐷96)𝜙4,14 + 2𝐷6=𝜙1,14 + 𝐷66𝜙1,44 − 𝐷9=𝜙4,11 − 𝐷6=𝜙4,44 + 𝑘𝐴?>𝑤,13 + 

+𝑘𝐴??𝑤,43 − 𝑘𝐴??𝜙1 + 𝑘𝐴?>𝜙4 = −𝐼9�̈�3 + 𝐼6�̈�1 

(1.8a,b,c,d,e) 

The equations of motion (Eqs.(1.8)), taking into account the general boundary conditions, 

can be solved as a system of differential equations in Navier's or Levi's form, where: 

𝑤3(𝑥, 𝑦, 𝑡) = O 𝑊@(𝑥)𝑒(A/sin	(𝛼@𝑦)
B

@89

 

𝜙4(𝑥, 𝑦, 𝑡) = O Φ4((𝑥)𝑒
(A/sin	(𝛼@𝑦)

B

@89

 

𝜙1(𝑥, 𝑦, 𝑡) = O Φ1((𝑥)𝑒
(A/cos	(𝛼@𝑦)

B

@89

 

(1.9a,b,c) 

and where 𝜔 is at this stage an arbitrary circular frequency, and 𝛼@ = 𝑚𝜋 𝐿⁄  and 

m=1,2,…,∞. 

This (Eqs.(1.9)) is also called Levi’s solution, which asssumes that two opposite sides of 

the plate are simply supported (SS), i.e. 𝑤 = 𝜙4 = 0 at y = 0 and y = L. 

 

Particular boundary conditions can be applied to derive the frequency equation by 

eliminating the integration constants. This method, although extremely useful in studying 

a single plate, lacks generality and cannot be easily applied to complex structures that are 

often solved by approximate methods. However if there is a way to apply DSM to a 

complex structure, for example by representing it as a composition of plates, the method 



   41 

would retain the exactness of the solution. Once the dynamic stiffness matrix of an 

element is obtained, it can be offset and/or rotated and finally assembled in a global DS 

matrix of a complex structure. This global DS matrix implicitly contains all the exact 

natural frequencies of the structure which can be computed by using the Wittrick-

Williams algorithm [128]. The complete dynamic stiffness matrix of a single element 

composite plate was obtained in [1] based on first order shear deformation theory (FSDT). 

In [1] a strong advantage of the DSM over the FEM was pointed out such that unlike in 

the FEM, DS plate elements do not have point nodes but instead they have line nodes for 

each strip, so no changes in geometry along the y-direction can be modelled and the two 

sides y=0 and y=b must necessarily be simply supported. The other two sides can have 

any boundary conditions (BCs). The BCs are applied to the global dynamic stiffness 

matrix using the penalty method. This consists of adding a large stiffness to the position 

on the leading diagonal term, which corresponds to the degree of freedom of the node, 

and which needs to be constrained.  

Because of similarities between the FEM and DSM methods, DS element can be 

implemented in FEM code to increase the accuracy considerably, say for an accurate free 

vibration analysis of the structure. It should be emphasised that when analytical solutions 

are available the persistent use of numerical techniques can result in loss of accuracy and 

excessive computational costs [1].  

 

  

1.2.4. Comparison of the DSM (based on FSDT) with the FEM (based on Nastran 

results) 

In [129] the authors used the dynamic stiffness method for composite plate elements 

based on the first order shear deformation theory (FSDT), and implemented this approach 

in a program called DySAP, in order to compute the exact natural frequencies and mode 

shapes of composite structures, and to compare the results with solutions obtained in 

Nastran. For thick plates showing both bending and in-plane modes Carrera's Unified 

Formulation (CUF) was used for obtaining comparable analytical results. 

 

As can be seen in Table 1.4, 1.5, 1.6, for a composite square plate, Nastran consistently 

produces conservative estimates of the natural frequencies, and the error increases for the 
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higher natural frequencies. This can be attributed to the fact that the FEM gives an 

approximate solution for the total elastic energy. 

 

Table 1.4. First 6 dimensionless bending frequencies for a square composite plate with 

different boundary conditions (n/s – results not shown, NASTRAN mesh uses 50x50 

CQUAD4 elements). Exact results are from [130,131] ([21,22] in the table respectively).  

 

 

Table 1.5. First dimensionless bending frequencies for a simply supported square 

composite plate with different Young’s modulus ratios. Exact results are from [132] in 

[129]. FEM results by NASTRAN use 50x50 CQUAD4 elements and the DySAP results 

are mesh independent. 
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Table 1.6. First dimensionless bending frequencies for a simply supported square 

composite plate for different thickness ratios. Exact results are from [130],[133]. 

NASTRAN results are mesh 50x50 CQUAD4 elements and the DySAP results are mesh 

independent. 

 

 

It was suggested in [129] that the anomaly could be explained by the fact that CQUAD4 

finite elements in NASTRAN use reduced integration to compute the stiffness matrix of 

the element in order to avoid the shear locking problem which generally affects thin 

plates. Reduced integration is used to solve this problem by reducing the precision of the 

integration on the surface of the element which lead to a lower element stiffness. The user 

has no control over the type of integration used in CQUAD4 elements and this particular 

feature is not mentioned in NASTRAN’s user guide. Nevertheless, the reduced 

integration is the most likely cause for FEM giving a lower frequency, i.e. a lower 

stiffness. Clearly, the FEM should overestimate the stiffness, and if the element is 

subjected to shear locking, the plate will then appear to be much stiffer than it actually is. 

This reduced stiffness is what really causes a lower frequency when compared with the 

exact one. This assertion is further strengthened by observing the fact that the error is 

much higher for thicker plates (Table 1.6). Thick plates are not generally subjected to 

shear locking problems, so the reduced integration merely leads to a less accurate stiffness 

matrix and thus to higher errors. Shear locking is basically a numerical problem which 

affects thin FE plates. DySAP and the DSM are, strictly speaking, not numerical methods 

since the equations of motions are solved in strong/closed form and thus the results are 

not affected by shear locking. 

 

An example of a relatively thick square composite plate, simply supported on its four 

sides (S2-S2-S2-S2) was considered. Only the first natural frequency was found in the 

literature [130,131] and obtained by using the Navier exact approach. Thus, the DySAP 
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results were compared with those obtained by using the CUF and FEM obtained using 

NASTRAN (Table 1.7).  

 

Table 1.7. First 21 dimensionless natural frequencies for a simply supported square plate. 

Classical solutions are from [130,131], CUF is Carrera’s Unified Formulation, p, b, m 

represent in-plane, bending and in-plane m=0 mode shapes respectively. 

 

 

In this case NASTRAN is still showing inaccurate results at higher frequencies. The 

authors of [129] have also performed computational efficiency comparisons for the 

practical examples below and found some evidence of DySAP demonstrating a much 

smaller computational cost. 

 

L stringer panel was considered in [129] as presented in Fig.1.10. 

The exact results for this study were obtained by DySAP and these were compared with 

those obtained by the FEM (using NASTRAN) with 3250 square plate elements 

(CQUAD4) to investigate the first 20 natural frequencies (Table 1.8). 
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Figure 1.10. Geometry of an L stringer composite panel (in metres) [129]. 

 

Table 1.8. First 20 dimensionless natural frequencies for a simply supported composite 

plate reinforced by an L-shaped stringer. 

 

Computational time was also analysed and the main outputs are presented in Table 1.10. 

 

Table 1.10. Comparison of the relative computational times using DySap (Dynamic 

Stiffness Method) and NASTRAN. 
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An omega stringer panel was considered in Figure 1.11. 

In Table 1.11 the first 30 dimensionless natural frequencies were computed by DySAP 

and NASTRAN, using a fine structured mesh composed of 31200 square elements 

(CQUAD4). The DySAP results are mesh independent and the number of elements used 

in the analysis is not important when computing the natural frequencies. 

 

Figure 1.11. Geometry of the Omega stringer composite plate (in metres) [129]. 

 

Table 1.11. First 30 dimensionless natural frequencies for a simply supported composite 

plate reinforced by an omega-shaped stringer. 

 

 

Table 1.12. Comparison of the relative computational time using DySAP and 

NASTRAN. 
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It has been concluded in [129] that the Dynamic Stiffness Method is more accurate and 

computational efficient in free vibration analysis than the traditionally used finite element 

method. The advantage of computational time gained using DySAP would increase for 

more complex structures, which would require more finite elements for accurate 

modelling. Thus a DySAP analysis would be particularly useful in optimisation studies 

which are generally computationally intensive. However it should be remembered that 

DySAP should be used only when at least two sides of the structure are simply supported, 

and importantly when the structure can be modelled as an assembly of plates. Therefore 

it cannot universally replace the use of the finite element method. This has highlighted 

the need for multi-method software that would use the most accurate and efficient solution 

procedure which is appropriate for each particular problem, without resorting to the finite 

element method on all occasions. 

 

 

1.2.5. Accuracy and applicability to the cases, as previously considered by Airbus DS  

As has been demonstrated in Section 1.1 where a possible gap in the working practice at 

Airbus DS Ltd has been identified, there is a strong need for higher accuracy in the thermo-

elastic assessment of structures with rapidly increasing complexity. It was emphasised that 

with the development of technology even simplified tests provide highly accurate 

measurements and can be performed at an early stage to eliminate any risks/doubts and to 

highlight the areas most sensitive to the effects of thermal expansion and heat 

conduction/energy dissipation. However testing facilities still require labour and equipment 

and involve prototype costs, not to mention the time needed. Testing procedure cannot 

necessarily be used on demand, and so an effective and highly accurate tool for prediction of 

the thermo-elastic deformation of the structural elements is required.  

 

Furthermore, from the review of the testing procedures in Section 1.2.2 it has become evident 

that most programmes performing experimental measurements were only done for isothermal 

cases, and with the purpose of FEM model verification. At the same time the FEM model can 

reflect the influence of  temperature because it can be combined with the TMM, but any 

dynamic effects of the temperature applied and body temperature variation due to the energy 

dissipation are ignored. This means that from the final FEM, in terms of thermo-elastic 
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deformation, we obtain only a ‘snap-shot’ of the thermo-elastic behaviour. Looking closer 

behind the FEM interface we can describe the process as:  

1. From the TMM, which solves the heat conduction equation for the structural element, we 

obtain a single value of temperature for that particular moment of time, and for a particular 

area/structural element. 

2.  Then this single value, together with a static CTE, is included into the mechanical equation 

which calculates the displacement of the particular node.  

So the question arises as to what happens when the energy is dissipated in the area, affecting 

the neighbouring area/structural element/node? What happens at the next ‘snap-shot’, when 

the structural element, which may, for example, be as sensitive as honeycomb, has been 

deformed, losing its symmetry so that it now has a completely different pattern of heat 

conduction? One has to ask if the boundary conditions will be changes for the next step, 

giving the initial temperature?  Or will the material show changes from the orthotropic form 

to an anisotropic layout? These questions give a potential taste of where the premise of 

applying FEM modelling can lose relevance, especially when we wish to retain accuracy at 

the highest level.  

 

Of course this is not to mention the fact that during the process of merging of two models 

based on TMM and FEM we lose accuracy, specifically during: 

- the exporting of the TMM into the FEM package 

- then the interpolation of the TMM in the FEM package nodes over the FEM model nodes, 

with some nodal values being averaged due to the availability of too few or too many nodal 

assignments. 

 

Going further it has to be mentioned that a mechanical FEM model is normally based on 

linear classical theory, which means that it is based on the hypotheses of classical theory. 

This means that it is incapable of predicting any layer-wise effects within a structure as well 

as possibly missing the effects of shear, from which thermal effects might well arise in 

sensitive honeycomb-like structures.  
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As a final point on inaccuracy, it has to be mentioned that different FEM packages might 

give slightly different results, with better or worse accuracy than NASTRAN. This is due to 

the internal numerical models they use and the adopted methods of numerical integration. As 

shown in Section 1.2.4, for the case of the composite plate (without any thermal effects) the 

DSM method-based software was shown to out-perform the Nastran package, with strong 

evidence emerging that Nastran often underestimates the prediction. This is because the 

DSM, unlike the FEM, uses an exact solution of the equation of motion for a structure once 

the initial assumptions on the displacement field have been made (e.g. the use of Euler-

Bernoulli or Timoshenko theories for beams, or Kirchhoff, Mindlin or higher order theories 

for plates). DSM also includes the effects of shear deformation, which are highly important 

for composite plates, and rotatory inertia, and crucial for the successful solution of dynamic 

problems. This has been achieved for plates by introducing the displacement field based on 

the Mindlin formulation, and not by using a simple linear term within the classical Kirchhoff 

theory. 

 

All the inaccuracies pointed out are not case/structure specific. This means that an 

improvement within any of these will be an improvement to the general 

approach/methodology which can be applied to any structure, or to cases that might be 

considered by Airbus DS in their programmes described in Section 1. 

 

 

1.2.6. Software available for elastic and thermal effects in industrial practice 

There is a wide range of FEM software available with different add on tools and 

capabilities. As has become evident from the review in Section 1.1, Airbus DS has a 

preference for using Nastran for the main FEM calculations, and for their interpretation, or 

for necessary intermediate calculations, Matlab and FEMAP tools are used. It has been 

demonstrated that there are other options for the FEM type software, for example those based 

on the DSM method, which could provide additional accuracy in calculations. However the 

intention of this work is not to try to change established industrial practice but to provide an 

additional tool for verification to obtain predictions of higher accuracy.  

Nastran is written in the Fortran language. At the same time it has become ‘fashionable’ 

now to present solution codes in open access form. This is probably due to the general 
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availability of basic representations of black-box operations and sequences which can be 

easily adjusted to suit the syntaxes of any solver written in codes such as Matlab, 

Mathematica, and Maple for example. Nastran is principally intended to be the processor of 

the FEM job in hand. It does not have a graphical interface for model composition or 

meshing. There is a whole range of programs that can be used to supplement Nastran in that 

way. After processing the job the data is presented in text files, and in coded columns. There 

are manuals and guiding notes which allow the user to interpret boundary conditions, stresses, 

displacements etc for each and every node of the model.  At Airbus DS Ltd there are engineers 

and analysts who are used to dealing with the text-file data representation approach, and who 

find it the most comfortable way of dealing with the Nastran output. 

Considering all these points it seems to be most appropriate to develop a tool which can 

provide higher accuracy in the thermo-elastic analysis, but by providing text-file style or 

annotated output data. Therefore to guarantee a verification process of higher accuracy, it 

is intended: 

1. To develop a tool which has a completely different approach to the problem from its 

basic level. The model will consider the physics behind the thermo-elastic effect, as has been 

highlighted, and will not be separated into two parts, thermal and mechanical, and,  unlike in 

current practice, it will be coupled. Only by coupling together the thermal effects and 

mechanical deformations will it be possible to take into account how the thermal effects 

influence the deformation of the structure and how distortion of the structure influences the 

thermal energy dissipation. In this way we can tackle the problem of inaccuracy by starting 

from a fundamental understanding and representation. Additionally we will not need to lose 

accuracy due to data export and the inefficient process of interpolation of nodes from 

different software packages. 

2. To develop the annotated output text-file style output. Annotated data output has the 

strongest advantage of universality. If properly presented in coded tables it can be interpreted 

easily and efficiently by trained staff, or it can be exported without any loss into other 

software packages for graphical representation. This means that the development of the tool 

will target for a text-file style representation of results to make the code more accessible for 

trained staff at Airbus DS. This will guarantee the universality and accessibility of the code 

for further development. To develop the model and process the solutions Mathematica 

software was chosen. This has plain syntaxes which can easily be converted into Fortran style 

code. It is also easy to obtain the solution in a matrix/table format or to represent a function 
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as a set of data, which can be saved in an annotated output file. 

 

 

1.3. Thermo-elastic analysis – Analytical Coupled thermo-mechanical models 

As we have seen above the down side of the FEM approach adopted in industrial practice 

is in the separation of two phenomena, mechanical and thermal. Therefore the increase 

accuracy can be achieved if these to effects are coupled directly or indirectly and therefore 

the result of their dynamics is reflected in dynamics of the other one. Therefore in this 

section we will be considering existing analytical approached to the problem of prediction 

of thermo-elastic behaviour with coupling of these two effects. 

 

 

1.3.1. Thermoelasticity 

A deformation of the body is connected to a change of heat inside it, and therefore with a 

change of the temperature distribution in the body. A deformation of the body leads to 

temperature changes, and conversely, as shown in Fig.1.12. The internal energy of the 

body depends on both the temperature and the deformation.  The science which deals with 

the investigation of the above coupled processes is called thermoelasticity [134].  

 

 

Figure 1.12. Coupled interpretation within the thermoelasticity problem 
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Thermoelasticity is a branch of applied mechanics that is concerned with the effects of 

heat on the deformation and stresses in solid/elastic bodies, and vice versa [135]. Thus it 

is a combination of isothermal elasticity effects caused by mechanical forces, and those 

caused by thermal processes. 

 

Development of the field of thermoelasticity was preceded by extensive investigations in 

the theory of thermal stresses (TTS). It is often considered that the state of strain and 

stress in an elastic body due to a heating, can be expressed under the simplifying 

assumption that the influence of the deformation on the temperature field may be 

neglected [134]. 

 

In the TTS the classical heat conduction (HC) equation is usually used but this does not 

routinely contain the term representing the deformation of the body. Knowing the 

temperature distribution from the solution of the HC equation, the displacement equations 

of the theory of elasticity can be solved. 

 

At the same time classical dynamic elasticity has been developed under the assumption 

that the heat exchange between different parts of the body due to the heat conduction 

occurs very slowly, and therefore the thermal motion may be regarded as adiabatic. 

 

Thermoelasticity deals with a wide class of phenomena. It covers the general theory of 

heat conduction and the general theory of thermal stresses, and it describes the 

temperature distribution produced by deformation. Thermoelasticity also describes the 

phenomenon of thermoelastic dissipation. In addition it allows a deeper study of the 

mechanisms of deformation and the thermal processes occurring in an elastic body. 

 

Despite the fact that many modelling approaches tend to separate the mechanical and 

thermal effects, thermoelastic processes are not generally reversible: the elastic part may 

be reversed (the deformations may be recoverable through cooling), but the thermal part 

may not be reversed due to the dissipation of energy during heat transfer [135]. Apart 
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from that, thermal changes in the body cause mechanical deformation in the body, which 

in return affects these thermal changes representing the process as a two-way feedback. 

This means that the modelling techniques and representations would have to couple the 

mechanical and thermal aspects of the problem to achieve an adequate accuracy for the 

results. 

 

If we consider an elastic isotropic homogeneous body we assume that it is: 

- elastic – i.e. it is in a state such that when the forces producing the deformation are 

removed, the body returns to its initial undeformed state; 

- isotropic – therefore the elastic properties of the body are independent of direction; 

- homogeneous – meaning that it is independent of the elastic properties of the position. 

 

The constitutive equations must represent the relations between the stress tensor and the  

entropy, and the stress tensor and the temperature. It is assumed that T0 is the constant 

temperature at the initially natural state of the body.  

Due to the heating of the body surfaces it undergoes a deformation giving rise to the 

displacement u and the temperature undergoes a change 𝑇 = 𝒯 − 𝑇3, where 𝒯 is the 

absolute temperature. We assume that the temperature increase does not affect the 

material properties, and we consider a geometrically linear thermoelasticity (so the 

squares and higher products of 𝜀() can be neglected): 

𝜀() =
1
2 l𝑢(,) + 𝑢),(m 

(1.10) 

The components of strain must satisfy six compatibility relationships. 

The basic problem consists of the stress tensor 𝜎(), the entropy S, the components of the 

strain tensor 𝜀() and the temperature  𝒯.  

 

At a certain instance of time the mechanical and thermal state of the medium can be 

completely described by the distribution of the deformation 𝜀() and the temperature	𝒯. 
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Thus in an isothermal case we have processes which are elastically and thermally 

reversible. 

However if the temperature varies in time we deal with two coupled processes, the 

reversible elastic process and the irreversible thermodynamic process (due to a 

spontaneous, and hence irreversible process of heat transfer by means of heat conduction).  

 

Thermoelastic changes cannot be described by means of the classical thermodynamics 

valid for equilibrium states, so we must use the relations of the thermodynamics of 

irreversible processes. 

 

In this case we start the derivation from the first and second laws of thermodynamics. The 

first law, the law of energy conservation (the Energy balance equation) is stated as 

follows: 

𝑑
𝑑𝑡
(𝒰 +𝒦) = ℒ +

𝑑𝑄
𝑑𝑡  

(1.11) 

where 𝒰 is the internal energy, 𝒦 is the kinetic energy, ℒ is the power of the external 

forces and �̇� is the increment in time of the quantity of heat absorbed by the body. 

Following the approach of [134] and replacing the values in equation (11) this can be 

simplified to the form: 

�̇� = 𝜎)(𝜐(,) − 𝑞(,( +𝑊 

(1.12) 

where v (v=du/dt) is the vector of the displacement velocity, q is the vector of the heat 

flux, W is the quantity of heat generated in unit time and unit volume. 

If we consider rigid displacement and rotations, we can get local relations: 

�̇� = 𝜎()𝜀(̇) − 𝑞(,( +𝑊 

(1.13) 

Now we consider the local entropy balance equation: 
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𝒯�̇� = −𝑞(,( +𝑊   or     $C
$/
= −tD)

𝒯
u
,(
− D)𝒯,)

𝒯#
+ F

𝒯
 

(1.14a,b) 

where S is the entropy per unit volume and unit time. If we integrate over the volume of 

the body, the increment of the entropy in time will consist of two parts: 

- the first part is described by the surface integral constituting the increase of the entropy 

due to the heat flux through the surface (the heat exchange with the surroundings) 

- also there are the volume integrals leading to the entropy produced by the heat exchange, 

and the entropy produced by the action of the heat sources. 

In Eq.(1.14b) the first term refers to the heat exchange with the surroundings while the 

two remaining ones describe the entropy production in an elementary volume of the body. 

 

The local statement of the second law of thermodynamics of irreversible processes leads 

to the Clausius-Duhem inequality: 

− D)𝒯,)
𝒯#

≥ 0      or       $C
$/
+ tD)

𝒯
u
,(
− F

𝒯
≥ 0 

(1.15) 

This will be satisfied if: 

𝑞( = −𝜆()𝒯,( 

(1.16) 

This is the Fourier law of heat conduction for an anisotropic body. 

The inequality imposes an additional restriction on the symmetric tensor of heat 

conduction 𝝀𝒊𝒋. 

For an isotropic body we have   𝑞( = −𝜆3𝒯,( 			,			𝜆3 > 0. 

 

In a solid the heat transfer occurs by means of the heat conduction and this is generally 

understood as representing the heat transfer from places of higher temperature to places 



   56 

of lower temperature. This process is spontaneous and irreversible, and connected with 

entropy production. The equation of heat conduction (HC) can be derived from the 

entropy balance Eq.(1.14a): 

𝒯�̇� = −𝑞(,( +𝑊 

(1.17) 

Now we introduce: 

- the Fourier law of heat conduction Eq.(1.16): 

𝑞( = −𝜆3𝒯,( = −𝜆3𝑇,( 

(1.18) 

 - and the conductivity relation for entropy (derived from the concept of Helmholtz free 

energy F=U-S𝒯) 

𝑆 = 𝛾𝜀55 +
𝑐I
𝑇3
𝑇 

(1.19) 

where 𝛾 = (3𝜆 + 2𝜇)𝛼/,  𝜆	and		𝜇		are the material Lamé constants, 𝛼/ is the coefficient 

of linear volume expansion; 𝜀55 is the scalar from tensor 𝜀() and named the dilatation; 

𝑐I is the quantity  𝒯 tJC
J𝒯
u
I
 , the measure of heat generated in a unit volume of the body 

during a change of the temperature at a constant strain, and called the specific heat at 

constant strain 𝑐I = 𝜌𝑐, where c is the specific heat referred to the unit mass of the 

body. 

 

Therefore Eq.(1.17) becomes: 

𝒯 Q𝛾𝜀5̇5 +
𝑐I
𝑇3
�̇�S = 𝜆3𝑇,(( +𝑊 

(1.20) 

If we assume that in general a change of temperature  𝑇 = 𝒯 − 𝑇3 accompanying the 

deformation is small, it is then possible to linearise the Heat Conduction (HC) Eq.(1.20) 

by  𝒯 = 𝑇3: 
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𝑇,(( −
1
𝜒 �̇� − 𝜂𝜀5̇5 = −

𝑊
𝜆3

 

(1.21) 

where 𝜒 = K+
!,

 , 𝜂 = L++
K+

. 

 

Or it can be re-written in the form: 

Q∇6 −
1
𝜒
𝜕
𝜕𝑡S𝑇 − 𝜂𝜀5̇5 = −

𝑄
𝜒 

(1.22) 

where 𝑄 = 𝜒𝑊/𝜆3. 

 

It has to be noted that comparing to the HC equation derived in [136], this extended HC 

equation contains the term  𝜂𝜀5̇5 coupling the temperature increase with the rate of 

dilatation of the body. 

 

The HC equation must be complemented by the mechanical equation of motion for 

displacements: 

𝜎)(,) + 𝑋( = 𝜌�̈�( 

(1.23) 

From the Duhamel-Neumann relations: 

𝜎(( = 2𝜇𝜀() + (𝜆𝜀55 − 𝛾𝑇)𝛿() 

(1.24) 

and remembering that strain is:  

𝜀() =
1
2 l𝑢(,) + 𝑢),(m 

(1.25) 
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then the equation of motion (1.23) can be re-written as 

𝜇𝑢(,)) + (𝜆 + 𝜇)𝑢),)( + 𝑋( = 𝛾𝑇,( + 𝜌�̈�( 

(1.26) 

Eqs.(1.21) to (1.26) constitute a complete set of the differential equations of 

thermoelasticity. These equations are coupled. The equations of motion contain the 

temperature increase T besides the displacement 𝑢( whereas the HC equation contains the 

temperature T and the rate of dilatation 𝜀5̇5. 

 

A literature review of commonly used techniques for thermoelestic problems is presented 

in [135]. It was pointed out in that review that there have been a few works looking at the 

problem of displacements and stresses in laminated structures under thermal bending. 

These have assumed a linear temperature profile through the thickness direction for both 

laminated plates and multilayered composite shells, as well as for circular plates and 

cylindrical shells. In these models the assumption has been made that the temperature 

profile through the thickness is of linear and constant nature. This assumption however 

would not be valid for anisotropic structures where the thickness temperature profile is 

never linear. Therefore even if the structural model is accurate, the final solution would 

be characterised by a large error due to the incorrectly assumed profile of the temperature 

distribution along the thickness. 

 

In [137,138] it has been summarised that depending on how the displacement and/or 

stress field are presented in the normal direction, mathematical models for thermal 

analysis of composite laminates can be derived using the three dimensional theory of 

elasticity, Equivalent Single Layer Theories (ESL), Layer Wise Theories (LW) or zig–

zag theories and more recently by means of Carrera’s Unified Formulation (CUF). To 

reduce the computational cost of 3D theories and maintain acceptable accuracy, several 

solutions for the thermal problems in composites have been proposed using the equivalent 

single layer. These are the Classical Laminated Plate Theory (CLPT), First-order Shear 

Deformation Theory (FSDT) and Higher-order Shear Deformation Theory (HSDT). 

 

In [135] it has been highlighted that so far in the open literature there is only a small 
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amount of work devoted to the coupled thermo-mechanical analysis of structures, in the 

form of both thermoelastic and thermoplastic analysis. There also have been a few works 

comparing coupled and uncoupled analysis, the accuracy and efficiency of the coupled 

theory [139], and extending a higher-order zig-zag plate theory [140] for prediction of the 

fully coupled mechanical, thermal, and electric behaviour.  

 

Partially coupled models are commonly derived with neglect of the interactions of 

‘temperature effects / mechanical deformations’, assuming a priori the distribution of 

temperature along the thickness, or obtaining it from the heat conduction equation and 

then solving the mechanical equations with known temperature gradient terms. In 

contrast, fully coupled thermoelastic models take into account the interaction of 

‘temperature effects / mechanical deformations’ explicitly because of the presence of 

displacement and temperature variables in the thermal/mechanical equations.  

 

There has also been some work published on the problem of thermal shock [141] 

representing the very rapid thermal processes caused by momentary ignition and 

combustion in rocket engine chambers [135]. This thermoelasticity problem requires an 

analysis of the coupled temperature and deformation since the temperature shock induces 

very rapid movements in the structural elements, thus causing the rise of very significant 

inertial forces, giving rise to vibration. Rapidly changeable contractions and the 

expansions in oscillatory movements generate temperature changes in the material which 

is susceptible to diffusion due to heat conduction [135,142]. This means that in the case 

of the exact solution a plate can behaves as if it is less rigid [142]. 

 

Adam and Ponthot [143] have described an updated Enhanced Assumed Strain (EAS) 

finite element formalism developed to model the thermo-mechanical behavior of metals 

submitted to large strains. 
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1.3.2. Functionally Graded Materials and modelling techniques used 

Due to the thermo-elastic problems discussed in Section 1, a new generation of materials 

has begun to evolve. The main purpose of Functionally Graded Materials (FGMs) is to 

provide a resistance to the high temperatures that can be generated or accumulated in a 

structure due to environmental changes, for example in air vehicles, nuclear reactors and 

in the chemical laboratory. Therefore further development of thermo-elastic modelling 

techniques can be usefully targeted towards applications which apply FGMs.  

 

Commonly FGMs are made of a mixture with arbitrary composition of two behaviourally 

different materials (such as ceramic and metal). The volume fraction of each constituent 

material changes continuously and gradually through the entire volume of the material. 

Ceramics have high resistance to forming in the temperature field but on the other hand 

metals have a ductility property that diminishes the fragility of the ceramics. 

 

There has been a lot of development within recent years to develop both analytical and 

finite element techniques, which would provide sufficient accuracy for FGM modelling 

with minimal computational cost. At the same time the main complexity in modelling 

these materials is their thermoelastic nature due to their structural inhomogeneity. 

 

In [144] the authors demonstrated a variety of theories and solution methods available for 

the analysis of stress, vibration and buckling in FGM plates subjected to thermal loads. It 

has been pointed out that FGMs can be separated into two groups due to the continuous 

or discontinuous gradation of the material (for example it could be stepwise and layered). 

 

 

1.3.2.1. Modelling the material properties of FGMs 

Due to the nature of the FGM structure and inhomogeneity the Power Law method is 

widely used [144,145]. It is based on the linear [144] or exponential [145] principle of 

mixture, and extensively used in studies of thermal residual stresses and stability analysis 

of FGM plates.  
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In this model the material properties are differentiated along the thickness of the plate due 

to the volume fraction, variable from the lower metal rich part, to the upper ceramic rich 

layer [144,146]: 

𝐸2 = 𝐸@ + (𝐸! − 𝐸@)𝑉-. 

𝛼2 = 𝛼@ + (𝛼! − 𝛼@)𝑉-. 

𝑘2 = 𝑘@ + (𝑘! − 𝑘@)𝑉-. 

𝑉- = Q
𝑧
ℎ +

1
2S 

(1.27a,b,c,d) 

where 𝐸, 𝛼, and	𝑘 are the modulus of elasticity, thermal coefficients of expansion and 

thermal conductivity, respectively. 𝑉- represents the volume fraction of the ceramic phase 

and p is a power law index or material property gradient index. The subscripts c and m 

represent the constituents of ceramic and metal respectively.  

 

Dependent on the application, specific variations of these equations can be found in 

[144,146,147]. 

 

However if there is a material with inclusions under consideration then an approach 

known as the Mori-Tanaka scheme (MT) is more appropriate [144,148]. This method 

takes into account the effect of the elastic fields among neighbouring inclusions and its 

interactions with the constituent materials. The relationships between the effective bulk 

modulus Kz and shear modulus Gz are as follows: 

𝐾2 − 𝐾@
𝐾! − 𝐾@

=
𝑉-
&

1 + (1 −	𝑉-
&)� 𝐾! − 𝐾@

𝐾@ + 43𝐺@
�

 

𝐺2 − 𝐺@
𝐺! − 𝐺@

=
𝑉-
&

1 + (1 −	𝑉-
&) Q𝐺! − 𝐺@𝐺@ + 𝑓@

S
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𝑓@ =
𝐺@(9𝐾@ + 8𝐺@)
6(𝐾@ + 2𝐺@)

 

(1.28a,b,c) 

The effective values of Young’s Modulus of easticity 𝐸2 and Poisson’s ratio 𝜈 are 

calculated based on the effective Bulk modulus 𝐾2 and the shear modulus 𝐺2 and are 

related as: 

𝐸2 =
9𝐾2𝐺2
3𝐾2 + 𝐺2

; 			𝜈 =
3𝐾2 − 2𝐺2
2(3𝐾2 + 𝐺2)

 

(1.29a,b) 

The effective heat conductivity 𝑘2 and the coefficient of thermal expansion 𝛼2 are 

determined using the following relation: 

𝑘2 − 𝑘@
𝑘! − 𝑘@

=
𝑉-
&

1 + (1 − 𝑉-
&) t𝑘! − 𝑘@3𝑘@

u
 

(1.30a) 

 

 

1.3.2.2. Temperature Dependent Properties  

Now if we consider the fact that FGMs are characterised by their thermoelastic behaviour 

within the high temperature environment then we would need to make the material 

properties temperature dependent. This effect is studied by evaluating the material 

properties (P) of ceramics and metals depending on the environment temperature (T) 

[144-146, 149, 150]: 

𝑃 = 𝑃3 Q
𝑃M9
𝑇 + 1 + 𝑃9𝑇 + 𝑃6𝑇6 + 𝑃N𝑇NS 

(1.31) 

where P-1, P0, P1, P2, and P3, are constants that are representative of the material property 

and temperature. It should be noted that this series is truncated after O(T3). The 

temperature dependent expression can be composed of the modulus of elasticity, the 
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thermal conductivity and the thermal coefficient of expansion. Thus the material 

properties can be represented as being position (z) and temperature (T) dependent for a 

mixture of materials (c - ceramics and m - metals), typically in the form of: 

𝑃*--(𝑧, 𝑇) = 𝑃@(𝑇) + [𝑃!(𝑇) − 𝑃@(𝑇)]𝑉- 

(1.32) 

The effective property also shows an explicit dependence on the volume fraction Vf  of 

one of the materials. 

 

 

1.3.3. Partially coupled thermo-mechanical analysis 

Partially coupled thermo-mechanical models are extensively employed in the analysis of 

typical aeronautical structures, such as one-layered isotropic and multilayered composite 

plates and shells, where the temperature variation is one of the most important factors 

affecting the stress fields that in turn can cause failure of the structures [135]. These 

structures are subject to severe thermal environments, such as high temperatures, and high 

gradients and cyclic changes in temperature. Therefore the effects of high temperature 

and mechanical loading have to be carefully considered. An accurate description of local 

stress fields in the layers becomes mandatory to prevent thermally loaded structures from 

failure. 

 

Tanaka et al. [151] have proposed a new boundary element method for the analysis of 

quasi-static problems in coupled thermoelasticity. Through some mathematical 

manipulation of the Navier equation of elasticity, they showed that the heat conduction 

equation can be transformed into a simpler form, similar to the uncoupled-type equation 

with the modified thermal conductivity which in turn showed the coupling effects. This 

procedure made it possible to treat the coupled thermoelastic problem as one that is 

actually uncoupled. 

 

Partially coupled thermo-mechanical analysis is characterised by the temperature 

considered as an external load. The temperature profile must be defined a priori either by 
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assuming its linear distribution through the thickness direction or by calculating it from a 

solution of the Fourier heat conduction equation. 

 

 

1.3.3.1. Temperature Distribution along the thickness 

Since the temperature gradient along the thickness of the structure is of particular 

importance in problems described in Section 1, and as FEM approaches cannot predict it, 

it is useful to look into different ways of representation of this parameter. 

FGMs tend to have an uneven structure and when exposed to the high temperature 

environment the temperature within the material is variable as well. It is commonly 

assumed [144, 145] that the temperatures at the top (T1) and bottom (T0) surfaces are the 

same, while representing the distribution as linear within the thickness [137, 144, 145]:  

𝑇2 = 𝑇3 + (𝑇9 − 𝑇3) Q
𝑧
ℎ +

1
2S 

(1.33) 

where 𝑇2 is the temperature at any point through the plate thickness (h) along the 

coordinate direction z. 

 

If the temperature is distributed across the thickness following inverse hyperbolic shear 

theory, it can be expressed as [152]: 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇9(𝑥, 𝑦) +
𝑧
ℎ 𝑇6

(𝑥, 𝑦) +
𝑓(𝑧)
ℎ 𝑇N(𝑥, 𝑦) 

(1.34) 

where 𝑇9, 𝑇6, and	𝑇N represents the constant, linearly varying and nonlinear varying two 

dimensional temperature fields respectively. 

 

In [153] it also has been demonstrated that the temperature field  in an FGM layer within 

a sandwich doubly curved shallow shell may vary in the thickness direction, in the 

following polynomial form: 
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𝑇(𝑧) = 𝑇O + (𝑇/ − 𝑇O)𝜂!5(𝑧) 

(1.35) 

where 𝑇/	and	𝑇O are the temperature on the top and bottom surfaces of the shell, 

respectively, and 𝜂5(𝑧) is represented as a polynomial series of the 5th order. 

 

The initial conditions are often assumed to be [119]: 

𝑇(𝑥, 𝑧, 𝑡 = 0) = 𝑇B	 

(1.36) 

where 𝑇B is the free air stream temperature as defined in the model developed in [119]. 

  

If the temperature within the material is not linearly distributed or following a certain law 

then its function would need to be defined by solving the HC equation [136]: 

𝑘1
𝜕6𝑇
𝜕𝑥6 + 𝑘4

𝜕6𝑇
𝜕𝑦6 +

𝜕𝑘2
𝜕𝑧

𝜕𝑇
𝜕𝑧 + 𝑘2

𝜕6𝑇
𝜕𝑧6 + 𝑞 =

1
𝛼
𝜕𝑇
𝜕𝑡  

(1.37) 

where q is the internal heat source or heat flux. 

This can also be stated in polar coordinates, as in [148]: 

𝜕𝑞P
𝜕𝑟 +

1
𝑟
𝜕𝑞Q
𝜕𝜃 +

𝜕𝑞2
𝜕𝑧 +

𝑞P
𝑟 = 0 

  (1.38) 

where qr, qz and qΘ are the components of the heat flux vector. 

 

From Eq(1.37) the thermal equilibrium or steady state response (where the heat flux q = 

0) can be obtained setting  J+
J/
= 0 which means that the time rate of change of temperature 

is zero. The exact form of the HC equation is dependent on the required accuracy of the 

approximation and the application, i.e. the nature and existence of a heat source within 
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the environment. 

 

The HC equation can also be presented in the following simpler form [119]: 

P𝑘1!""
𝜕6𝑇
𝜕𝑥6 + 𝑘2*--

𝜕6𝑇
𝜕𝑧6T + 𝑞 = 𝜌*--𝑐&!""

𝜕𝑇
𝜕𝑡  

(1.39) 

where 𝑘1!"" and 𝑘2!"" are the temperature dependent effective thermal conductivities in 

the x and z directions respectively, and q is the internal heat generation rate per unit 

volume. 

 

It can be simplified even further in the case of FG laminated plates as given in [137, 154-

156] and for the layer-wise approach stated in [157]: 

−
𝑑
𝑑𝑍 �𝑘

𝑑𝑇
𝑑𝑍� = 0 

(1.40) 

where 𝑘(𝑧) is the thermal conductivity of a certain layer. 

This can also be stated in polar coordinates [158]: 

1
𝑟
𝜕
𝜕𝑟 Q𝐾P(𝑟)𝑟

𝜕𝑇
𝜕𝑟S = 0,			𝑟% ≤ 𝑟 ≤ 𝑟O 

(1.41) 

where a and b indicate the inner and outer radii and 𝐾P is the thermal conductivity which 

is assumed to be a function of the radial direction of the cylinder. 

 

In [144] a strong need has been highlighted for further development of 2D theories. This 

is due to the fact that the majority of 2D theoretical approaches assume the transverse 

deformation to be linear, which is not a universally valid assumption for thermal and 

thermoelastic analysis. Therefore 2D models must be developed which include higher 

order transverse displacement for higher accuracy, but ideally without a significant 

increase in computational cost. 
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1.3.3.2. Thermo-mechanical model, governing equations of motion 

After the temperature is found following the partially coupled modelling technique, the 

governing equations of motion must be derived. 

 

Of course the simplest approach is to follow the Classical (Kirchhoff) theory for the free 

vibration of an FG plate [122], which could be extended to the third order shear 

deformation [124]. In this case the thermal stresses can be presented as [145, 146, 150, 

152, 155, 159, 160, 161, 162, 163]: 

�
𝜎11+

𝜎44+

𝜏14+
� = −�

𝑄99 𝑄96 0
𝑄69 𝑄66 0
0 0 𝑄==

��
1 0
0 1
0 0

� �𝛼
(𝑧, 𝑇)
𝛼(𝑧, 𝑇)� ∆𝑇(𝑧) 

(1.42) 

where 

𝑄99 = 𝑄66 =
𝐸(𝑧, 𝑇)

1 − 𝜈6(𝑧, 𝑇) , 𝑄96 = 𝑄69 =
𝜈(𝑧, 𝑇)𝐸(𝑧, 𝑇)
1 − 𝜈6(𝑧, 𝑇) , 𝑄== =

𝐸(𝑧, 𝑇)
2[1 + 𝜈(𝑧, 𝑇)] 

(1.43) 

These would give us the strain energy from the thermal stresses:  

𝑈+ =
1
2+l𝜎11

+ 𝑑11 + 𝜎44+ 𝑑44 + 𝜏14+ 𝑑14m𝑑𝑉
R

 

(1.44) 

where  

𝑑11 = 𝑧6  P
𝜕6𝑤
𝜕𝑥6T

6

+ P
𝜕6𝑤
𝜕𝑥𝜕𝑦T

6

¡ + Q
𝜕𝑤
𝜕𝑥S

6

 

𝑑44 = 𝑧6  P
𝜕6𝑤
𝜕𝑦6T

6

+ P
𝜕6𝑤
𝜕𝑥𝜕𝑦T

6

¡ + Q
𝜕𝑤
𝜕𝑦S

6

 

𝑑14 = 𝑧6 P
𝜕6𝑤
𝜕𝑥6 +

𝜕6𝑤
𝜕𝑦6T

𝜕6𝑤
𝜕𝑥𝜕𝑦 +

𝜕𝑤
𝜕𝑥

𝜕𝑤
𝜕𝑦  

(1.45) 
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To find the solution in the form of frequency in [145] the Rayleigh–Ritz method was used 

by equating the effective strain energy Ueff and the maximum kinetic energy (Tmax). 

 

In [155] the strain energy had a more extended form due to the addition of shear terms: 

𝑈 =
1
2+ ¢𝑁11𝜀11

(3) + 𝑁44𝜀44
(3) + 𝑁14𝛾14

(3) +𝑀11𝜀11
(9) +𝑀14𝛾14

(9) + 𝑃11𝜀11
(N) + 𝑃44𝜀44

(N) +
,

 

𝑃14𝛾14
(N) + 𝑄1𝛾12

(3) + 𝑄4𝛾42
(3) + 𝑅1𝛾12

(6) + 𝑅4𝛾42
(6)¥𝑑𝐴 

(1.46) 

where 

�
𝑁11
𝑁44
𝑁14
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𝜎44
𝜏14

¡ 𝑑𝑧;		�
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𝑀44
𝑀14

� = + 𝑧  
𝜎11
𝜎44
𝜏14
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; 		�
𝑄1
𝑄4
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𝜏12
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0
6

M06

0
6

M06

𝑑𝑧;	 

 

{𝑃} = �
𝑃11
𝑃44
𝑃14

� = + 𝑧N
0/6

M0/6
 
𝜎11
𝜎44
𝜏14

¡ ; 	{𝑅} = �𝑅V𝑅W
� = + 𝑧6

0
6

M06

¦
𝜏12
𝜏42§ 𝑑𝑧 

(1.47) 

By deriving the potential and kinetic expressions the problem was solved in [155] by 

using the energy method. 

 

This approach can easily be extended to the problem of thermally conducting elastic 

plates of circular or polygonal cross-section, which requires a polar coordinate 

representation as in [164]. 

 

In [165] a unified method was considered that allows the investigation of the flutter 

problem for a moderately thick orthotropic coupled plate with general boundary 

conditions. The Mindlin plate theory and supersonic piston theory are employed to 

formulate the theoretical model. A two-dimensional Fourier series combined with 

auxiliary functions was used for the displacements of the coupled plate to find the 
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solution. In this work the temperature was uniformly distributed in the thickness direction, 

and the boundary conditions for two coupled plates were simulated in terms of three sets 

of translational distributed springs. 

The model was derived by starting with an assumption of displacement in the form 

[166]: 

𝑈((𝑥( , 𝑦( , 𝑧( , 𝑡) = 𝑢((𝑥( , 𝑦( , 𝑡) + 𝑧(𝜙1( (𝑥( , 𝑦( , 𝑡) 

𝑉((𝑥( , 𝑦( , 𝑧( , 𝑡) = 𝑣((𝑥( , 𝑦( , 𝑡) + 𝑧(𝜙4( (𝑥( , 𝑦( , 𝑡) 

𝑊((𝑥( , 𝑦( , 𝑧( , 𝑡) = 𝑤((𝑥( , 𝑦( , 𝑡) 

(1.48) 

where 𝑢( , 𝑣( 	and	𝑤( denote the displacements on the middle surface of each plate in the 

𝑥( , 𝑦( 		and		𝑧(directions, and 𝜑1( 	and	𝜑4(  denote the rotations of transverse normal with 

respect to the 𝑥( 	and	𝑦( 		axes respectively, and t is the time. 

 

Based on the linear elastic theory the strains for each plate were [166]: 

𝜀1( (𝑥( , 𝑦( , 𝑧( , 𝑡) =
𝜕𝑢((𝑥( , 𝑦( , 𝑡)

𝜕𝑥(
+ 𝑧(

𝜕𝜙1( (𝑥( , 𝑦( , 𝑡)
𝜕𝑥(

 

𝜀4( (𝑥( , 𝑦( , 𝑧( , 𝑡) =
𝜕𝑣((𝑥( , 𝑦( , 𝑡)

𝜕𝑦 + 𝑧(
𝜕𝜙4( (𝑥( , 𝑦( , 𝑡)

𝜕𝑦(
 

𝛾14( (𝑥( , 𝑦( , 𝑧( , 𝑡) =
𝜕𝑢((𝑥( , 𝑦( , 𝑡)

𝜕𝑦(
+
𝜕𝑣((𝑥( , 𝑦( , 𝑡)

𝜕𝑥(
+ 𝑧( P

𝜕𝜙1( (𝑥( , 𝑦( , 𝑡)
𝜕𝑦(

+
𝜕𝜙4( (𝑥( , 𝑦( , 𝑡)

𝜕𝑥(
T 

𝛾12( (𝑥( , 𝑦( , 𝑧( , 𝑡) = 𝜙1( (𝑥( , 𝑦( , 𝑡) +
𝜕𝑤((𝑥( , 𝑦( , 𝑡)

𝜕𝑥(
 

𝛾42( (𝑥( , 𝑦( , 𝑧( , 𝑡) = 𝜙4( (𝑥( , 𝑦( , 𝑡) +
𝜕𝑤((𝑥( , 𝑦( , 𝑡)

𝜕𝑦(
 

(1.49) 

According to the Mindlin plate theory the thermo-elastic constitutive relations for each 

plate can be presented as [149, 152, 167, 136, 163, 168]: 
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(1.50) 

where 𝛼9( , 𝛼6( 		and			𝛼96(  denote the linear thermal expansion coefficients for the ith plate; 

∆𝑇 is the temperature change and k represents the shear correction factor defined as 5/6. 

The elastic stiffness coefficients were assumed as in [166]: 

𝑄99( =
𝐸9(

1 − 𝜈96( 𝜈69(
; 		𝑄96( =

𝜈69( 𝐸9(

1 − 𝜈96( 𝜈69(
; 		𝑄66( =

𝐸6(

1 − 𝜈96( 𝜈69(
 

𝑄??( = 𝐺6N( , 𝑄>>( = 𝐺9N( ,			𝑄==( = 𝐺96( ,			(𝑖 = 1,2) 

(1.51) 

where the Poisson’s ratio and Young’s modulus are related as 𝜈96( /𝐸9( = 𝜈69( /𝐸6( . 

 

To define the strain energy from the thermal stresses, the thermal stresses and nonlinear 

strains caused by the temperature variation were expressed following [167], similar to 

[145, 149, 136]: 

´
𝜎+1(

𝜎+4(

𝜏+14(
µ = −¶

𝑄99( 𝑄96( 0
𝑄69( 𝑄66( 0
0 0 𝑄==(

· �
𝛼9(∆𝑇
𝛼6(∆𝑇
𝛼96( ∆𝑇

� 

(1.52) 

and  

𝑑11( = P
𝜕𝑢(

𝜕𝑥(
T
6

+ P
𝜕𝑣(
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6
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6

+ 𝑧(6 P
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+𝑧(6 P
𝜕𝜑4(

𝜕𝑥(
TP
𝜕𝜑4(

𝜕𝑦(
T 

(1.53) 

According to the linear theory of elasticity the strain energy of each plate was defined as 

well as the kinetic energy and the potential energy stored in the boundary springs. Then, 

just like in [149], these terms were all summed up in the use of Hamilton’s principle. The 

solution was found by introducing displacement functions for the transverse and in-plane 

vibration in the form of a two-dimensional Fourier series combined with supplementary 

terms, the latter being employed to adapt to various boundary conditions. 

 

In [119] the equations were derived for the FG beam following the von Karman theory to 

account for the nonlinear strain in the FG material. In this case the Euler-Lagrange 

equations of motion gave the temperature dependent stress and moment relations: 

−
𝜕𝑁11
𝜕𝑥 +𝑚

𝜕6𝑢3
𝜕𝑡6 − 𝐼

𝜕N𝑤3
𝜕𝑡6𝜕𝑥 − 𝑓 = 0 

−
𝜕6𝑀11

𝜕𝑥6 −
𝜕
𝜕𝑥 Q𝑁11

𝜕𝑤3
𝜕𝑥 S + 𝑚

𝜕6𝑤3
𝜕𝑡6 + 𝐼

𝜕N𝑢3
𝜕𝑡6𝜕𝑥 − 𝐼

¹ 𝜕
?𝑤3

𝜕𝑥6𝜕𝑡6 − 𝑞 = 0 

(1.54) 

where f and q are the axial and transverse load respectively. The stress resultants 𝑁11 and 

moment resultants 𝑀11 of the beam element with thermal load are related to the mid-

plane displacements (𝑢3, 𝑤3) and are defined as follows: 

𝑁11 = 𝐴11 <
𝜕𝑢3
𝜕𝑥 +

1
2Q
𝜕𝑤3
𝜕𝑥 S

6

? − 𝐵11
𝜕6𝑤3
𝜕𝑥6 − 𝑁11+  

𝑀11 = 𝐵11 <
𝜕𝑢3
𝜕𝑥 +

1
2 Q
𝜕𝑤3
𝜕𝑥 S

6

? − 𝐷11
𝜕6𝑤3
𝜕𝑥6 −𝑀11

+  

(1.55) 

where 𝐴11 , 𝐵11	and		𝐷11 are the extensional, extensional-bending, and bending stiffness 

coefficients of the beam element defined as 

(𝐴11 , 𝐵11 , 𝐷11) = + 𝑄º99(1, 𝑧, 𝑧6)𝑏𝑑𝑧
2
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(1.56) 

and 𝑁11+ = ∫ 𝑄º99𝛼*--Δ𝑇𝑑𝐴;		𝑀11
+ = ∫ 𝑄º99𝛼*--Δ𝑇𝑧𝑑𝐴,,  

The stiffness coefficient 𝑄º99 for the FGM layer is given as  𝑄º99 =
X!""(2)
9MY!""

# (2)
 

where 𝐸*-- is a temperature dependent effective Young’s modulus and 𝜈*-- is a 

temperature dependent effective Poisson’s ratio for the FGM beam, and dA=dydz. 

 

In [154,169] the authors chose to use the Reddy higher order shear deformation plate 

theory to develop the elastic part of the model, in which the transverse shear strains are 

assumed to be parabolically distributed across the plate thickness.  

 

In [157] the authors used a layer-wise theory which led to the membrane stress resultant 

and the bending stress resultants represented for the ith layer in relation to the membrane 

strain 𝜀&
(() and bending strain 𝜀O

((): 

𝑁(() =

⎩
⎨

⎧𝑁11
(()

𝑁44
(()

𝑁14
(()
⎭
⎬

⎫
= 𝐷@

(()𝜀&
(() + 𝐷!

(()𝜀O
(() − 𝑁+(() 

𝑀(() =

⎩
⎨

⎧𝑀11
(()

𝑀44
(()

𝑀14
(()
⎭
⎬

⎫
= 𝐷!

(()𝜀&
(() + 𝐷O

(()𝜀O
(() −𝑀+(() 

(1.57) 

The matrices 𝐷@
((), 𝐷Z

(()	and	𝐷O
(() are the extensional bending-extensional coupling and 

bending stiffness coefficients, respectively for the ith layer  

¢𝐷@
((), 𝐷!

((), 𝐷O
(()¥ = ∫ ¢𝑄º:@

(()¥l1, 𝑧((), 𝑧(()6m𝑑𝑧K)
K)&$

,  (l, m =1,2,6) 

(1.58) 

The thermal stress resultant and moment for the ith layer can be given as: 
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(1.59) 

where 𝛼(()	and	𝑇(𝑧) are the coefficient of thermal expansion and the temperature 

distribution along the z direction, respectively for the ith layer. 

 

 

1.3.4. Carrera’s Unified Formulation (CUF) 

In [134] the authors have considered a fully coupled thermo-mechanical model of one-

layered and multilayered isotropic and composite plates, focusing on the temperature and 

displacement as primary variables in order to evaluate them through the thickness 

direction using two-dimensional theories based on Carrera’s Unified Formulation (CUF) 

[170, 171]. It was mentioned in [138] that CUF’s zig-zag approach was first pointed out 

by Lekhnitskii (Lekhnitskii Multilayered Theory – LMT) and then Ambartsumian 

showed a similar method (AMT). In the case of multilayered plates, both equivalent single 

layer (ESL) and layer wise (LW) approaches have been developed. As explained in [135] 

Carrera’s Unified Formulation is a technique which handles a large variety of plate 

theories in a unified manner [170, 171]. According to CUF, the governing equations are 

written in terms of a few fundamental nuclei, which do not formally depend on the order 

of expansion N used in the thickness direction or on the description of variables 

(equivalent single  layer (ESL) or layer wise (LW)). The application of a two-dimensional 

method for plates permits the unknown variables to be expressed as a set of thickness 

functions that only depend on the thickness coordinate z and the correspondent variable 

which depends on the in-plane coordinates x and y. Therefore, the generic variable f 

(x,y,z), which could be, for instance, a displacement, and its variation 𝛿𝑓(𝑥, 𝑦, 𝑧) are 

written according to the following general expansions: 
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𝑓(𝑥, 𝑦, 𝑧) = 𝐹[(𝑧)𝑓[(𝑥, 𝑦), 𝛿𝑓(𝑥, 𝑦, 𝑧) = 𝐹[(𝑧)𝑓𝛿\(𝑥, 𝑦) 

(1.60) 

where 𝜏, 𝑠 = 1,… ,𝑁, (x,y) are the in-plane coordinates and z the thickness coordinate. 

The summing convention, with repeated subscripts 𝜏 and s, is assumed. The order of 

expansion N goes from first to fourth-order, and depending on the thickness functions 

used, a model can be: ESL, when the variable is assumed for the whole multilayer and a 

Taylor expansion is employed as the thickness functions F(z); LW, when the variable is 

considered to be independent in each layer and a combination of Legendre polynomials 

is used for the thickness functions F(z). In the thermo-mechanical models as proposed in 

[135], displacements can be modelled in both ESL or LW forms, and the temperature is 

always considered in the LW form. Therefore, a two-dimensional thermo-mechanical 

model is defined as ESL or LW, depending on the choice made for the displacement 

vector. 

In [135] the thermo-mechanical analysis has been separated into three branches: 

– a static analysis with imposed temperature on the external surfaces (by imposing a 

temperature at the top and bottom of the plate, the static response is given in term of 

displacements, stresses and temperature field); 

– a static analysis of structures subjected to a mechanical load, with the possibility of 

considering the temperature field effects (a mechanical load is applied and the 

temperature effect is not considered). The fully coupled thermomechanical analysis gives 

smaller displacement values than those obtained with the purely mechanical analysis. 

– a free vibration problem, with the evaluation of the temperature field effects (in 

which the fully coupled thermo-mechanical analysis permits the effect of the temperature 

field to be evaluated: noting that higher natural frequencies are obtained with respect to 

the purely mechanical analysis.) 

 

In the case of a fully coupled thermo-mechanical model the constitutive equation was 

derived using thermodynamical principles and Maxwell’s relations to show the coupling 

of mechanical and thermal fields [135]. Firstly the Gibbs free-energy function G and the 

thermomechanical enthalpy density H were derived [135]: 
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𝐺l𝜖() , 𝜃m = 𝜎()𝜖() − 𝜂𝜃 

𝐻l𝜖() , 𝜃, 𝜗(m = 𝐺l𝜖() , 𝜃m − 𝐹(𝜗() 

(1.61) 

where 𝜎() 		and		𝜖() are the stress and strain components, 𝜂 is the variation of entropy per 

unit of volume, and 𝜃 is the temperature considered with respect to the reference 

temperature 𝑇3. The function 𝐹(𝜗() is the dissipation function and it depends on the 

temperature gradient 𝜗(: 

𝐹(𝜗() =
1
2𝑘()𝜗(𝜗) − 𝜏3ℎ( 

 (1.62) 

where 𝑘() is the symmetric, positive semidefinite conductivity tensor. In the second term, 

𝜏3 is a thermal relaxation parameter and ℎ̇( is the temporal derivative of the heat flux ℎ(. 

The thermal relaxation parameter is omitted in this work.  

 

Then the thermomechanical enthalpy density H was expanded to obtain a quadratic form 

for a linear interaction: 

𝐻l𝜖() , 𝜃, 𝜗(m =
1
2𝑄()5:𝜖()𝜖5: − 𝜆()𝜖()𝜃 −

1
2𝜒𝜃

6 −
1
2𝑘()𝜗(𝜗) 

(1.63) 

where 𝑄()5: is the elastic coefficients tensor considered for an orthotrpic material in the 

reference system of the problem [172], 𝜆() are the thermo-mechanical coupling 

coefficients, 𝜒 = 𝜌𝐶] 𝑇3⁄  where 𝜌 is the material density, 𝐶] is the specific heat per unit 

mass and 𝑇3 is the reference temperature [173]. 

In addition, the constitutive equations were obtained in the form: 

𝜎() =
𝜕𝐻
𝜕𝜖()

, 𝜂 = −
𝜕𝐻
𝜕𝜃 , ℎ( = −

𝜕𝐻
𝜕𝜗(

 

(1.64) 

which were expanded into constitutive equations for the thermo-mechanical problem: 
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𝜎() = 𝑄()5:𝜖5: − 𝜆()𝜃, 𝜂 = 𝜆()𝜖() + 𝜒𝜃, ℎ( = 𝑘()𝜗) 

(1.65) 

where 𝜎() 	and	𝜖5: are (6 x 1) vectors of stresses and strain; 𝜃 is the temperature, 𝜆() is (6 

x 1) array of thermo-mechanical coupling coefficients (𝜆5 = 𝑄5𝛼5, elastic coefficients 

matrix in Hooke’s law and thermal expansion coefficients), the entropy for unit volume 

𝜂 and 𝜒 are scalar variables in each layer, ℎ( is the (3 x 1) vector of heat flux, 𝜗) is the (3 

x 1) vector of spatial gradient of temperature, and 𝑘() is the (3 x 3) matrix of conductivity 

coefficients. 

 

 

1.3.5. A Third order theory with Thermomechanical Coupling (TTC) 

In [174] a third order theory with Thermomechanical Coupling (TTC) was developed. 

This was an attempt to obtain as accurate results using a third order theory as could be 

obtained by using CUF, which is a fourth order expansion of the configuration variables. 

 

A Third order theory of shear-deformable von Karman laminated plates with 

Thermomechanical Coupling (TTC) was developed via Tonti’s modelling approach, 

encompassing the mechanical Reddy theory [175] and the classical equations of thermal 

nature [176]. Consistent with the assumed cubic variation of the displacement field along 

the thickness coordinate [153], a corresponding cubic variation is assumed also for the 

temperature field, parallel to what was previously accomplished in [177].  The work 

follows the unified scheme (Fig. 1.13) for the formulation of the thermomechanical 

problem of laminated plates, which was presented in [177]. It integrates mechanical and 

thermal aspects by identifying generalised 2D variables and governing equations also for 

the thermal aspects of the problem. The scheme virtually embeds a multitude of possible 

models, resulting from different assumptions about the plate mechanical and thermal 

assumptions [178]. The structure the model was derived for was a laminated rectangular 

plate with N layers, subjected to both mechanical lateral and thermal loadings, with the 

edges of the plate subjected to uniform stretching forces of magnitudes px and py in the x 
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and y directions, respectively. 

 

 

Fig.1.13. Unified formulation of the thermomechanical problem for a 2D nonlinear 

plate [174,177] 

 

Following the unified scheme in Fig. 1.13, the problem of the thermoelastic plate was 

decomposed into: 

{displacement 3D} = {shape} x {displacement} 

{temperature 3D} = {shape} x {temperature} 

(1.66) 
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In Eqs. (1.66) displacement and temperature variables depend only on the x and y 

coordinates of the reference plane and on time t, while the shapes govern the 

dependence on the thickness z coordinates. 

For the TTC model, in Eqs.(1.66), has the following expression [175]: 

𝑢9 = 𝑢 + 𝑧𝜙9 −
4
3ℎ6 𝑧

Nl𝜙9 +𝑤,1m, 𝑢6 = 𝑣 + 𝑧𝜙6 −
4
3ℎ6 𝑧

Nl𝜙6 +𝑤,4m, 𝑢N = 𝑤 

(1.67) 

where 𝑢9(𝑥, 𝑦, 𝑧, 𝑡), 𝑢6(𝑥, 𝑦, 𝑧, 𝑡), and		𝑢N(𝑥, 𝑦, 𝑧, 𝑡) are the components of the 3D 

displacement variable along the x,y and z directions, while u(x,y,t), v(x,y,t), w(x,y,t) are 

the displacements of a point located on the mid-plane and 𝜙9(𝑥, 𝑦, 𝑡), 𝜙6(𝑥, 𝑦, 𝑡) are the 

rotations of a transverse normal about the y- and x-axes. The latter represent the unknown 

displacements of the 2D plate model (independent of z). Eq. (1.67) relaxes the classical 

assumption on the linearity and normality of the transverse normal after the deformation 

by expanding the 3D displacement components 𝑢9	and	𝑢6 as cubic functions of the 

thickness coordinate. 

 

It was also assumed that the temperature varies according to a series truncated at the cubic 

order, consistent with assumptions (1.67): 

𝑇 = 𝑇3 + 𝑧𝑇9 + 𝑧6𝑇6 + 𝑧N𝑇N 

(1.68) 

where T(x,y,z,t) is the 3D temperature variable, while 𝑇3(𝑥, 𝑦, 𝑡), 𝑇9(𝑥, 𝑦, 𝑡), 

	𝑇6(𝑥, 𝑦, 𝑡), 𝑇N(𝑥, 𝑦, 𝑡) are the unknown components of the temperature of the 2D model. 

The components 𝑇6	and	𝑇N can be expressed in terms of 𝑇3	and	𝑇9 by imposing a variable 

combination of the following thermal boundary conditions on the upper and lower 

surfaces of the plate [175, 136]: 

𝑞N|28±0/6 = ±𝐻[𝑇B − (𝑇)±0/6]          free heat exchange          (1.69) 

J+
J2
|28±0/6 = 0			                thermal	insulation             (1.70) 

𝑇|28±0/6 = 𝑇∗(𝑥, 𝑦, 𝑡)          temperature  prescribed         (1.71) 

 



   79 

𝑞N|28±0/6 = 𝑞N∗(𝑥, 𝑦, 𝑡)            heat flow prescribed           (1.72) 

where 𝑞N is the heat flow in the z direction, H is the boundary conductance, 𝑇B is the 

constant difference between the absolute temperature of the surrounding medium and the 

reference temperature, and 𝑇∗ and 𝑞N∗ are the temperature and heat flow prescribed on the 

external surfaces, respectively. 

𝑇 = 𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧) 

(1.73) 

where 

𝑓%(𝑧) = (𝑟9 + 𝑟6𝑧 + 𝑟N𝑧6 + 𝑟?𝑧N) 

𝑓O(𝑧) = (𝑟> + 𝑟=𝑧 + 𝑟 𝑧6 + 𝑟a𝑧N) 

𝑓!(𝑧) = (𝑟b + 𝑟93𝑧 + 𝑟99𝑧6 + 𝑟96𝑧N)                              (1.74) 

and where  𝑟(  is defined by the boundary conditions imposed. 

The mechanical parameters of the model were the velocity with components defined as 

𝑢] = 𝑢,/; 		𝑣] = 𝑣,/; 		𝑤] = 𝑤,/; 		𝜙9] = 𝜙9,/; 		𝜙6] = 𝜙6,/ 

(1.75) 

where the comma denotes the derivative with respect to the following independent 

variable, and the deformation with components defined as in [175]: 

𝜀99
(3) = 𝑢,1 +

1
2𝑤,1

6 ; 			𝜀66
(3) = 𝑣,4 +

1
2𝑤,4

6  

𝜀96
(3) = 𝑢,4 + 𝑣,1 +𝑤,1𝑤,4 

(1.76) 

𝜀99
(9) = 𝜙9,1; 			𝜀66

(9) = 𝜙6,4; 			𝜀96
(9) = 𝜙9,4 + 𝜙6,1 

(1.77) 

𝜀99
(N) = −𝐶9l𝜙9,1 +𝑤,11m;		𝜀66

(N) = −𝐶9(𝜙6,4 +𝑤,44) 

𝜀96
(N) = −𝐶9(𝜙9,4 + 𝜙6,1 + 2𝑤,14) 

(1.78) 
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𝛾6
(3) = 𝜙6 +𝑤,4; 			𝛾9

(3) = 𝜙9 +𝑤,1 

𝛾6
(6) = −𝐶6l𝜙6 +𝑤,4m;			𝛾9

(6) = −𝐶6(𝜙9 +𝑤,1) 

(1.79) 

where  𝐶6 = 3𝐶9; 		𝐶9 = 4/(3ℎ6)                                                 (1.80) 

 

The latter are related to the 3D strains associated with Eq(1.67) as in [175]  

𝜀99 = 𝜀99
(3) + 𝑧𝜀99

(9) + 𝑧N𝜀99
(N); 𝜀66 = 𝜀66

(3) + 𝑧𝜀66
(9) + 𝑧N𝜀66

(N); 𝜀96 = 𝜀96
(3) + 𝑧𝜀96

(9) + 𝑧N𝜀96
(N) 

(1.81) 

 

𝜀6N = 𝛾6
(3) + 𝑧6𝛾6

(6); 		𝜀9N = 𝛾9
(3) + 𝑧6𝛾9

(6) 

(1.82) 

In Eq(1.81), 𝜀()
(3) are the von Karman nonlinear membrane strains, 𝜀()

(9) are the Kirchhoff 

linear bending strains (curvatures), 𝜀()
(N) are the Reddy higher order bending strains, 𝛾(

(3) 

are the Mindlin linear transverse shearing strains [168], and 𝛾(
(6) are the Reddy higher 

order transverse shearing strains. 

 

For a laminated plate with arbitrarily oriented plies, the thermoelastic linear constitutive 

relations for the kth orthotropic lamina in the principal material coordinates of a lamina 

are: 
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where 𝑄º()
(5) are the plane stress-reduced elastic stiffnesses, and 

 �̅�99
(5) = 𝑄º99

(5)𝛼9 +	𝑄º96
(5)𝛼6	  and   �̅�66

(5) = 𝑄º96
(5)𝛼9 +	𝑄º66

(5)𝛼6	 are the thermoelastic 

stiffnesses, with 𝛼9	and	𝛼6 coefficients of thermal expansion along the x and y directions. 

 

The model was tested through simplification of appropriate parameters to correspond to 

the problem considered. Results were compared with the CUF model and the TTC model 

showed values slightly higher due to the greater internal constraint. 

 

 

1.4. Environmental conditions and structure of the satellite panel under 

investigation 

To be able to develop an accurate model as well as perform experimental work with an 

appropriate experimental set up, a literature review has been conducted in order to study 

the main features and properties of the space environment.  

 

It has become evident that extreme conditions in the International Space Station (ISS) 

environment include exposure to extreme heat and cold cycling, ultra-vacuum, atomic 

oxygen, and high energy radiation [179]. 

 

The materials used on the exterior of spacecraft are subjected to many environmental 

threats that can degrade materials and components. These include vacuum, solar 

ultraviolet (UV) radiation, charged particle (ionising) radiation, plasma, surface charging 

and arcing, temperature extremes, thermal cycling, impacts from micrometeoroids and 

orbital debris (MMOD), and environment‑induced contamination. In terms of materials 

degradation in space, the low‑Earth orbit (LEO) environment, defined  as 200‑1,000 km 

above the Earth’s surface, is a particularly harsh environment for  most non‑metallic 

materials, because single‑oxygen atoms (atomic oxygen [AO])  are present along with all 

other environmental components [179]. Space environmental threats to spacecraft 

components vary in their dependence on the component materials, thicknesses and 

stresses. 
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As the ISS moves in and out of sunlight during its orbit around Earth, the degree to which 

a material experiences thermal cycling temperature extremes depends on its 

thermo‑optical properties (solar absorptance and thermal emittance), its view of the sun, 

its view of Earth, its view of other surfaces of the spacecraft, durations of time in sunlight 

and in shadow, its thermal mass and the influence of equipment  or components that 

produce heat [179]. As a rule the cyclic temperature variation is ‑120 °C to +120 °C, but 

high solar absorptance with low infrared emittance will contribute to greater temperature 

swings. Sixteen thermal cycles a day (the ISS orbits Earth approximately once every 92 

minutes) may lead to cracking, peeling, spalling or formation of pinholes in the coating, 

which then allows AO to attack the underlying material [179]. 

 

Materials experiments are typically performed in different orientations, in the ram, wake, 

zenith and/or nadir directions. Ram refers to the velocity vector of the vehicle and is 

subject to the greatest influence of AO. Zenith, which points into space in the opposite 

direction of Earth, has the most solar illumination. Wake and nadir are the opposing 

faces of ram and zenith, respectively. The wake direction is good for studying UV effects 

with typically an order of magnitude less AO as the ram direction, and some 

experimenters may wish to fly duplicate samples (ram‑ and wake‑facing) to differentiate 

between AO and UV effects. A nadir orientation is desired for Earth‑viewing 

experiments. 

 

The main forms of environmental heating on orbit are sunlight, sunlight reflected from 

Earth / a planet / the Moon (Albedo), and infrared (IR) energy emitted from Earth. During 

launch or in exceptionally low orbits, there is also a free molecular heating effect caused 

by friction in the rarified upper atmosphere [180]. 

 

Albedo is greater over continental regions and increases with latitude. Albedo heat flux 

reaching a spacecraft will also decrease as the spacecraft moves along its orbit and away 

from the subsolar point. It must be pointed out that the Albedo factor is a reflectivity, not 

a flux. The Albedo heat load on the spacecraft will approach 0 near the terminator (the 

dividing line between the sunlit and dark sides of a planet), even if the albedo value 

(reflectivity) is 1.0 [180]. 
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The heat load is strongly dependent on the orbital location of the spacecraft. Orbital 

thermal environments may depend on the angle 𝛽 (orbit angle) – Fig.1.14 [61]. 

 

Figure 1.14. Incident flux against beta angle for a cylinder in low Earth orbit [180] 

 

As orbit altitude increases, environmental loads from Earth (IR and albedo) decrease 

rapidly (Fig. 1.15) [180]. 

 

Figure 1.15. Earth heat load vs. altitude [180] 

 

When a spacecraft reaches GEO the loads are insignificant for most thermal design 

problems. 
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The thermal environment in a 12-hour circular orbit is much like that in GEO (mainly 

used for GPS). Earth loads (IR and albedo) are not significant unless cryogenic systems 

are involved, leaving solar loads as the only environmental loads. 

 

Molniya Orbits are unusual in that they have an extreme degree of eccentricity (very 

elliptical) and a high inclination (62o). The spacecraft in such an orbit goes through a wide 

swing in thermal environments. The spacecraft will spend most of a 12-hour orbit period 

at higher altitudes and relatively little time at low altitudes, where Earth loads are 

significant [180]. Fig. 1.16 shows the position of the spacecraft in a Molniya orbit at 1 

hour intervals and a graph of Earth IR load vs time on a flat plate facing Earth [180]. 

 

Figure 1.16. Earth IR heating in Molniya orbit for a flat black plate facing Earth [180] 

 

The environment during Interplanetary Missions is characterised by a range of 

thermal environments much more severe than those encountered in Earth orbit. During 

most of these missions the only environmental heating which the spacecraft experiences 

is from direct sunlight. During a flyby, a spacecraft is exposed to IR and albedo loads 

from planets (Table 1.13). A spacecraft’s distance from the sun determines the thermal 

environment at all times except during planetary flybys. Eq(1.84) and Fig.1.17 define 

solar flux as a function of distance from the sun in AU. 
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Table 1.13. Planetary size and orbit parameters [180] 

 

 

𝑆𝑜𝑙𝑎𝑟	𝑓𝑙𝑢𝑥 =
1367.5
𝐴𝑈6 	

𝑊
𝑚6 

(1.84) 

 

 

Figure 1.17. Solar flux as a function of distance from the sun [180] 

 

As an example, Fig. 1.18 demonstrates the equilibrium temperature of an isothermal 

sphere (with absorptance and emittance of 1.0) as a function of the distance from the sun. 

At the Earth’s distance, the sphere’s temperature is 6oC, at the average orbital distance of 

Mercury, it is 174oC, and drops down to -229oC for the location of Pluto and Charon. 

During planetary flybys, planetary IR and albedo loads are added to the solar load for a 

short period of time. On most spacecraft, the thermal mass of the vehicle largely damps 

out the temperature rise of most components during flybys. However lightweight 

components may be affected by the temperature change. 
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Figure 1.18. Temperature of an isothermal sphere as a function of distance from the sun 

[180] 

 

According to [179] the Materials and Processes Technical Information System (MAPTIS- 

http://maptis.nasa.gov/) has been created for registering all prospective experimenters to 

accumulate information for designers and materials engineers, particularly the Materials 

Selection Database. This is a useful reference to consult before building hardware so that 

safety, structural, pressure vessel and line, fracture‑critical and contamination 

requirements are met. The database holds 50 years of analysed results of tests conducted 

on metallic and nonmetallic materials. 

 

According to [113] the annual cycle in solar flux due to Earth’s orbit is from 1293 W/m2 

to 1388 W/m2 with a frequency spike at 0.0317 𝜇𝐻𝑧. The quarterly cycle of solar 

illumination is dependent on the sunshield design (rectangular or circular wraparound, or 

full length extended flat shields). Examples of external heat flux on surfaces over a 90 

day cycle on a wraparound shield are given in Fig. 1.19. 
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Figure 1.19. External heat flux on surfaces over 90 day cycle on wraparound shield 

[113] 

 

It was pointed out in [113] that internal disturbances can introduce shifts in frequency 

around 12𝜇𝐻𝑧 or even higher. There have been a few design principles suggested in [113] 

to minimise these frequency disturbances.  

 

 

1.4.1. Key strategies learnt from laboratory simulation of the thermal environment 

The experiment performed in [181] was one of the most comprehensive works found in 

the open literature with sufficient level of detail of the experimental set-up. It was 

intended to investigate thermal behaviour of a sandwich plate/panel deployable as an 

integral part of a satellite in a space environment using ground thermal-vacuum test.  

 

Heat sink, solar radiation, infrared radiation of the Earth, heat conduction, surface 

radiation and cavity radiation all have influences on the temperature field (Fig.1.20). This 

poses a serious challenge to techniques used for thermal testing in laboratories of the 

simulated space environment. 
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Figure 1.20. Heat transfer mechanism of thin-walled cavity structures in the space 

environment [181] 

 

The heat sink of the space, solar radiation and infrared radiation from the Earth were 

considered as the main external heat sources. The heat sink temperature of space was 4 K 

with a solar constant of I0 = 1367W/m2. 

 

In [181], as in Section 1.1, it was assumed that the solar radiation energy absorbed by the 

Earth is emitted from the Earth the form of infrared radiation. The heat flux of infrared 

radiation of the Earth decreases with the orbit altitude. The maximum heat flux of infrared 

radiation of the Earth was about 200 W/m2. 

 

Typically thermal tests simulating a space environment included three key conditions: 

- ultra-high level of vacuum (lower than 10-5 Pa),  

- a heat sink (-180oC) that can be simulated using black panels with a liquid-nitrogen 

cooling system, 

- a thermal loading that can be achieved through infrared lamps.  

 

In [181] the thermal tests under seven typical heat fluxes were conducted to characterise 
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heat transfer mechanisms and to obtain temperature fields. The basic heat transfer 

methods were  

- surface radiation,  

- cavity radiation, 

- heat conduction.  

These led to significant temperature differences and gradients occurring on the irradiated 

and shadowed parts at nighttime and daytime. 

 

It was shown that the maximum influence of heat sink temperature on infrared radiation 

was less than 8.38%, which was acceptable to simulate reasonably the space environment 

from the engineering perspective. Thirty temperature sensors were arranged in parallel on 

the top and bottom shells of the sample following five rows in the Y direction and three 

columns in the X direction. 

 

The values of heat flux were selected from 200 W/m2 to 1400 W/m2, in seven steps. The 

heat flux was accurately controlled by changing the power of the infrared lamps. As the 

heat flux was loaded onto the specimen it was measured by heat flow meters and was 

captured as a feedback within the heat flux control system. 

 

The whole cycle of activation can be described as follows: 

Firstly vacuuming was carried out. The precooled system worked when the degree of 

vacuum was lower than 10-5 Pa. The infrared lamps were lit once the heat sink 

temperature was below 93.15 K (i.e. -180oC). The heat flux load increased from 200 

W/m2 to 1400 W/m2 in seven increments of 200 W/m2. There were seven heat flux 

conditions. The steady thermal equilibrium state of the specimen under a heat flux was 

kept for more than half an hour before recording the temperature data. 

 

As a result the highest and lowest temperatures of the specimen under the heat flux of 

200 W/m2 corresponding to the thermal load at night were 217 K and 168.2 K; the highest 
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and lowest temperatures of the speciment under the heat flux of 1400 W/m2 corresponding 

to the thermal load at daytime were 339.5 K and 221.6 K. 

 

 

1.4.2. Thermal cycles in Low Earth Orbit (LEO) 

Since the work in this thesis focuses on satellite panels suitable for the conditions of low 

Earth orbit, it was decided to conduct some further literature review into these conditions 

as well. 

The study [182] considers the conditions of the International Space Station, analysing  its 

survival in low Earth orbit and the damaging effects this region can have on spacecraft. 

Extensive background is given on many key aspects of low Earth orbit that can damage 

a spacecraft, such as the outgassing caused by the vacuum of space. Outgassing is the 

release of gas from a material that will then deposit on nearby surfaces – particularly cold 

surfaces – and contaminate them, affecting their optical properties. This is one of many 

reasons that aluminium and aluminium alloys are favoured for use in a vacuum as they 

tend to have low outgassing – along with the material’s resistance to ultraviolet radiation. 

However, aluminium is eroded by atomic oxygen (AO) in LEO via oxidisation, and this 

is at its densest between altitudes of 200 and 400 km [183]. AO degradation is considered 

to be one of the most damaging mechanisms of low Earth orbit, affecting the mechanical, 

thermal and optical properties of a material [184]. 

The main conditions of LEO that are highlighted are the temperature extremes and the 

thermal cycles experienced throughout the orbit with the spacecraft completing 11-16 

thermal cycles daily with a temperature range of approximately -120°C to +120°C. 

Thermo-optical properties of the spacecraft play a factor in the temperature that it reaches. 

For instance, a material with high solar absorptance and low thermal emittance will 

experience greater temperature swings. Thermal cycles will also result in thermal fatigue 

in the spacecraft body, due to expansion under heating and contraction under cooling, 

leading to plastic deformation and phase transformation with continued cycles. 

 

In [185] thermal cycles in LEO environment were simulated to study the microhardness 

of aluminium alloys under thermal loading ranging from -140°C to +110°C. This was 

introduced to simulate thermal fatigue and study the resulting stress state and mechanical 



   91 

properties of the material. The testing resulted in cyclic plastic deformation, which was 

found to lead to crack initiation, identified using a transmission electron microscope 

(TEM). A total of 400 thermal cycles were carried out on the samples which showed an 

eventual decrease in hardness that, from 300-400 cycles, then increased with every cycle. 

Although rapid temperature changes are implied, the exact value of the rate of change of 

temperature was never stated in the study. The mechanical load was applied at intervals 

to test the microhardness of the material and was not applied in conjunction with the 

change in temperature. The study concluded that aluminium alloys exposed to extended 

thermal cycling (400 cycles) exhibited obvious softening behaviour, causing phase 

transformations that, if the cycles were to continue, would lead to crack initiation. It was 

summarised that the bulk of aerospace materials that undergo periodic heating and 

cooling are damaged to varying degrees, with thermal fatigue having a great impact on 

the mechanical properties of the materials used. 

 

Although it is difficult to recreate truly the conditions of LEO on Earth, work has been 

carried out in the past in regards to this simulation in [186]. The study focused on 

subjecting graphite/epoxy composite materials to the conditions of LEO. Not only did the 

materials undergo thermal cycling similar to that experienced in LEO imposed on the 

samples, but the environment was also in a high vacuum state while the effect of 

ultraviolet radiation was applied during heating but not during cooling. A single thermal 

cycle was judged to be from -70°C to +100°C and back to -70°C again. This was with a 

temperature change rate of 3-5°C per minute and a dwell-time at the temperature extremes 

of 15 minutes, giving an average cycle time of 100 minutes, typical of a low Earth orbital 

period. The results examined were for composites subjected to this environment for 8, 16, 

40 and 80 thermal cycles in which the transverse flexural strength and transverse tensile 

strength showed the most severe reduction with thermal cycling, with losses of 34% and 

21% respectively, after 80 thermal cycles. It was considered that mechanical properties 

suffered the greatest change due to high vacuum and thermal loading. Overall, the 

strength and stiffness of the graphite/epoxy composites was shown to decrease 

exponentially with increasing thermal cycles. 

 

Further work into the synergistic effects of high vacuum and thermal cycling was 

implemented in [187], this time on carbon fibre/epoxy composites. The experiment took 
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place in a high vacuum state of 10-5 Torr where a single thermal cycle was judged to be 

from +120°C to -175°C and back to +120°C for which it had a duration of approximately 

43 minutes. The experiment was run for 500, 1000, 1500 and 2000 cycles. Panels were 

then subjected to mechanical tests at an ambient temperature of 23°C to observe the 

mechanical properties of the samples. The results confirmed gradual damage with the 

progression of thermal cycles. This was coupled with the degradation of the fibre-matrix 

interface due to a weakened fibre-matrix bond which led to interfacial sliding. 

 

Another paper [188] that measured distortion in a structure, cycled through a temperature 

range of -70°C to +90°C, with a temperature change rate of 5oC/hour and a dwell-time of 

1 hour at the minimum and maximum. Distortion in the structure was recorded using laser 

interferometric measurement along with videogrammetry measurement for displacement 

of the external structure. Temperature sensors were installed throughout the structure to 

analyse the uniformity of the temperature distribution in the structure with the change in 

temperature. Once again, the results were corroborated against a finite element model of 

the structure. However, initially there was no load imposed on the structure, and different 

measurements were taken as well. The material was judged to remain stable after 20 

thermal cycles, showing no measurable degradation in the compression modulus or 

compression strength, with equal stiffness behaviour on the top and bottom of the 

sandwich panel. Following the thermal cycle measurements, the panel was used in a 4-

point bending test, in which compression failure occurred at the upper face sheet. 

 

 

1.4.3. Honeycomb Panels in Space Applications 

During orbit, satellite panels will experience three broad categories of loading: 

mechanical loads (such as installation stresses on the satellite or dynamic loading due to 

moving components), thermal loads (principally from solar flux, but also from internal 

components), and collisions from space debris, including meteoroids. Although loading 

during orbit is less intensive than during the launch, the extreme conditions - such as no 

shielding from UV radiation and large temperature variations, along with the long 

operational times in orbit - can have a serious degrading effect on panels [189]. 
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While this is outside of the scope of this project it is worth mentioning that the mechanical 

loading of a satellite’s life will be dominated by launch, where it experiences very large 

vibrational loads: loading due to acceleration, shocks due to stage separation, and so on. 

Therefore it is generally considered that a spacecraft that comfortably survives this stage 

is unlikely to struggle with the much smaller mechanical loads in orbit from the structural 

point of view.  

 

While mechanical loads are typically small, and impacts are rare (if dangerous), thermal 

swings are both regular and significant. While precise temperatures are dependent on the 

precise design of a satellite and would have to be determined by a finite element model 

assessing the geometry, materials, orientation, internal components, and exposure time of 

the satellite, variations between –150°C and +150°C would not be unreasonable, with 

significant variations of temperature within a body at a given point in time [190]. As such, 

understanding the thermal behaviour of satellite components is crucial to ensuring the 

longevity of the structure.  

 

Low-weight materials are crucial for space structures, due to high cost to deliver each 

unit mass into orbit. While solid metallic panels are sometimes used, sandwich panels are 

often preferred. These are constructions with thin metal faces and a lightweight core. 

Foam panels have a porous metallic foam at their core, which is brazed directly onto the 

face panels. Honeycomb panels are often preferred to foam panels as they are generally 

stronger per unit mass and are more effective when loaded in shear. It should be noted 

that honeycomb panels require inserted fasteners for installation which are typically 

added after construction, which can impact their performance. They are also sensitive to 

localised normal stresses, which can cause the thin-walled hexagons to buckle. This 

amplifies the danger posed by impacts from space debris [190]. Additionally, honeycomb 

panels are often vacuum-packed, so internal convection is minimal [191]. Typically in 

aerospace application heat dominates one side of the panel either due to internal 

components or external solar flux. This alongside the insulating properties of the epoxy, 

and internal heat transfer (driven by conduction) makes modelling heat flux through these 

panels a difficult task. However, it should be noted that widely the heat transfer 

considered to be broadly uniform, as discussed in [192]. 

The honeycomb sandwich panel is a highly innovative design employed in numerous 

high-tech, high load bearing applications across a wide range of industries including 
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aerospace, marine, rail and automotive. In recent years, honeycomb panels have become 

more and more popular in the aerospace industry due to their structural efficiency, 

demonstrating a high strength to weight ratio. For such applications it is usually desirable 

to produce components which are as light as possible, but which maintain sufficiently 

high stiffness, strength, and damage resistance. The development of honeycomb panel 

design to date has resulted in honeycomb structures exhibiting excellent mechanical 

performance with high strength to weight ratios as well as high stiffness/rigidity and 

superior energy absorption characteristics due to their unique geometrical construction.   

Honeycomb panels are comprised of 3 primary components: (a) the lightweight 

honeycomb core made up of regular and periodic arrays of hexagonal cells [193], which 

is ‘sandwiched’ between (b) two thin facing sheets using some form of (c) core-to-facing 

bonding adhesive/epoxy [193]. The outer face sheets are responsible for providing the 

flexural stiffness and panel strength, whilst the core is utilised to transmit the shearing 

action between the face sheets under external loading. The selected bonding adhesive 

must be suitable to allow the stresses from the facing sheets to be transferred to the core 

material to ensure that the mechanical properties of the configuration are fully 

utilised [193]. 

 
Figure 1.21. Honeycomb Sandwich Panel (HSP) exploded view [193] 

 

The core can be composed of different types of material, but the most frequently used one 

is hexagonal honeycomb made from sheets of aluminium foil. There are two methods for 

the manufacturing of sandwich panels – brazing and adhesive bonding – that are favoured 

for production [194]. Brazing sheets or adhesive films are placed between the faces and 

the core material (Fig.1.22). The sandwich panel is then heated in a furnace to bond the 
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structure. These methods eliminate the need to weld stiffeners to the plates and also 

simplify the connections in the main support frame reducing the need for complicated 

welding. This, in turn, saves on manufacturing costs and reduces fatigue initiation points 

due to fewer weld seams, while demonstrating good energy absorption. 

Figure 1.22. Layers of an Aluminium Hexagonal Honeycomb Panel [195] 

Despite the numerous benefits and advantages of sandwich panels these structures do 

have limitations. They are known to have poor resistance to impact loads and – 

particularly under thermal loading – there is a risk of debonding between the sandwich 

core and the outer faces. 

There are several failure modes that can occur in sandwich panels when used as strength 

members such as elasto-plastic deformation under bending, buckling in axial 

compression, core failure under lateral impact pressure, as well as delamination between 

the core and the face sheets.  

It has also been found that there are studies concentrating on the mechanical 

characteristics of these panels with the initial focus on polymeric foam cores [196], but 

now more attention has been placed on aluminium centres – whether it is foam or a 

honeycomb design. A large proportion of research dedicated to sandwich honeycombs 

focuses on the strength under different loading conditions, such as three-point bending, 

four-point bending, axial compression and lateral crushing loads, along with 

mathematical models of these sandwich structures. These tests proved that a larger cell 

height, hc, results in an increase in ultimate strength [197] (Fig.1.23). 
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Figure 1.23. Schematic of Hexagonal Honeycomb Sandwich Panel [197] 

 

A study of the strength characteristics of aluminium honeycomb panels was carried out 

in [197] both experimentally and theoretically. Three-point bending tests were carried out 

on sandwich panels to investigate the bending behaviour of the samples used. It was 

discovered that an increase in the honeycomb core thickness of the structure resulted in 

an increase in ultimate strength, which was evidenced by a delay in plastic deformation. 

The bending stiffness following the plastic buckling became more moderate with an 

increase in thickness of the honeycomb core cells, implying that effects of instability in a 

sandwich structure after collapse can be reduced with an increase in thickness of the core. 

  

In [195] a physical experiment, a finite element analysis and an analytical model of 

honeycomb sandwich panels under a typical four-point bending test were considered, 

where the honeycomb core was modelled as one solid layer of equivalent material 

properties. Experiments were carried out for both aramid fibre and aluminium honeycomb 

core sandwich panels in which the aluminium cores had densities of 55 kg/m3 and 82 

kg/m3 and the aramid fibre core had a density of 48 kg/m3. Based on the experimental 

results the study stated that an increase in the core density led to an increased stiffness of 

the sandwich structure and the aluminium-cored panels were more ductile than those with 

an aramid fibre core. 

 

Another study based around the bending behaviour of sandwich panels under four-point 

bending tests was carried in [198] but instead focused on fatigue analysis, as opposed to 

the work [195] in which the experiment was designed to cause the test sample to rupture. 

Fatigue testing was carried out on two types of honeycomb sandwich panels – initially 
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undamaged samples and those damaged by partial debonding between the sandwich panel 

components. The sandwich panels had carbon fibre faces with aluminium honeycomb 

cores of density 50 kg/m3. Tests were administered at room temperature and showed two 

different modes of failure occurring in the undamaged and damaged samples. For the 

undamaged samples, buckling occurred at the face that was in compression, while failure 

occurred in the walls of the honeycomb core for the partially debonded samples. The 

initially undamaged samples that survived the fatigue testing were then subjected to a 

static bending test that established that the fatigue load had no effect on the residual 

strength and stiffness of the samples investigated.  

 

More work into the analysis of aluminium honeycomb sandwich panels under static 

bending tests was undertaken in [196] to demonstrate that a change in honeycomb cell 

size as well as the distance between the supports would have an impact on the collapse 

mode for the experimental samples. A change in the distance between the supports can 

be shown to have an effect on whether the panel can be classified as a thin plate or thick 

plate, going by the ratio of the overall height of the panel over the length between 

supports, 0
%
, with a ratio greater than 0.1 being considered a thick plate and between 0.01 

and 0.1 as a thin plate. The thin plate collapsed in the centre of the applied load, while the 

thicker plates experienced cell collapse and shearing in the core, causing the indentation 

of the applied load to be steeper on one side compared to the other. 

 

A 2013 conference publication [199] focused on the use of the Finite Element Method to 

analyse the thermo-mechanical behaviour of a hexagonal honeycomb sandwich panel 

under cantilever bending. An equivalent honeycomb plate was employed to simplify the 

model and reduce the computing time in the solution process. The results gathered were 

considered to be accurate therefore proving a good example of cost and time reduction in 

the early stages of honeycomb sandwich panel design. 

 

A study carried in [200] analysed the bending fatigue strengths of aluminium honeycomb 

sandwich panels with samples of varying core densities. The work was carried out both 

experimentally and using a finite element approach. Experimental results showed an 

increase in the bending fatigue strength with an increase in the relative density of the core 
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structure while the finite element analysis concluded that the failure mode under cyclic 

bending was debonding between the adhesive and the face sheet. 

 

Another study [201] delved into the transverse mechanical shear behaviour and failure 

mechanism of aluminium hexagonal honeycomb cores made of Al-5056 using both 

experimental and finite element approaches. The results showed that shear deformation 

can be categorised into 4 stages: elastic deformation of cell walls, the plastic deformation 

of walls, followed by fractures in the cell walls and finally debonding of the core and the 

face sheets. In [202] a method to calculate the transverse shear modulus of honeycomb 

cores using the finite element method was presented and it was noted that the modulus 

decreased with an increase in the thickness of the core. 

 

For a specified loading condition, the approach used to maximise the performance of the 

panel design is extremely important since different structures will perform in different 

ways depending on geometrical construction and the properties of the chosen material. In 

[203] the failure load/mode of glass fibre reinforced (GFRP)-Nomex manufactured panels 

under a 3-point bending configuration was investigated, concluding that the ratio of skin 

thickness to span length, as well as the honeycomb relative density, had the most 

significant influence on the experimental results for otherwise identical panels. 

 

The choice of material for the panel construction is also crucial since it provides the 

necessary rigidity in the outer-plane direction that makes it suitable for its intended 

application. The most widely used materials for honeycomb panels include aluminium, 

polymer materials and composites such as Nomex. A key advantage of the honeycomb 

core design is that it can provide bidirectional support to the skins, whereas corrugated 

cores, for example, can provide only unidirectional support under loading. Factors 

including the core foil thickness, cell size and thickness of skin components all influence 

the compressive strength of the panel – a common loading condition in industrial 

applications.  
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1.5. Conclusions 

In this chapter the key aspects of practice at Airbus DS in the treatment of the thermo-

elastic problem have been discussed. It was shown that the Company gives preference to 

the Nastran FEM package and the Systema TMM tool in order to obtain results for 

mechanical/elastic and thermal parts of the problem separately, which later have to be 

merged through data export and interpolation techniques. Therefore this multistage 

process may potentially result in the reduction of accuracy of the thermo-elastic model 

and therefore in the quality of the final prediction of the dynamics of the system. 

 

It was also shown that there are other software packages, which do not use FEM but use 

automated tools based on exact analytical solutions, and they provide more accurate 

results, when FEM software is found to underestimate the prediction. Arising from this 

discussion the problem of accuracy was discussed in Sections 1.2.4 and 1.2.5, with 

suggestions and ways of improvement proposed there. In Section 1.3 it was highlighted 

that a physics based coupling process of the two physical effects of temperature and 

deformation is the only real way forward to achieve a significant increase in accuracy of 

the results. 

 

In this chapter, after a detailed review of the phenomenon of thermo-elasticity, it has also 

become clear that a deformation of the body is connected to a change of heat inside it and 

therefore with a change of the temperature distribution in the body. At the same time a 

deformation of the body leads to temperature changes, and conversely. The internal 

energy of the body depends on both the temperature and the deformation.  The science of 

thermoelasticity deals with the investigation of these coupled processes. If we decide to 

develop a model under the simplifying assumption that the influence of the deformation 

on the temperature field may be neglected, then we are not operating within the field of 

thermoelasticity, but within the theory of thermal stress (TTS). It has become clear that 

in an isothermal case, which was considered by Airbus DS in their experimental 

programmes, we have processes which are elastically and thermally reversible. However 

if the temperature varies in time we deal with two coupled processes, the reversible elastic 

process and the irreversible thermodynamic process (due to a spontaneous and hence 

irreversible process of heat transfer by means of heat conduction).  
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As a result of the literature search with regard to the different theories and approaches to 

tackle the problem of thermo-elastic deformation, discussed in Section 1.1, it has become 

clear that modern development of the thermo-elastic modelling is mostly focused on 

application of multilayered FGM elements. This is an advantage, because considering 

structural elements such as plates, it is possible then to consider multilayered plates 

without constraints on the variation of material properties along the thickness, even the 

temperature dependent ones. 

 

It also has been discussed that there are two main streams for the theoretical approaches, 

comprising partially coupled models and fully coupled models. From closer investigation 

it was clear that although within the partially coupled approach we still face a partial 

division of the models into the thermal part (defining the temperature or solving the HC 

equation) and the mechanical part (predicting the displacement based on the set or 

identified temperature) it can provide results as accurate as a fully coupled model at a 

reduced level of computational cost and complexity of the model.  

 

This means that partially coupled approaches are the most appropriate candidates for our 

model development. To try to reduce the computational cost it was decided to develop 

the model following the TTC approach described in [174]. This approach is a third order 

theory with Thermomechanical Coupling and demonstrated in [174] giving results as 

accurate as by using CUF, which is a fully coupled approach using a fourth order 

expansion of the configuration variables. The theory is extensive and covers a wide range 

of approaches and cases, which means that we could introduce the necessary 

simplifications of the parameters and appropriate boundary and initial conditions. 

 

Finally it was suggested that the newly developed coupled model must ideally be 

expressed in an annotated code for universality, accessibility, and further development. 

The output data could be presented graphically but the main output must be annotated 

and accompanied by a guidance for use to make the data representation easily accessible 

and usable for Airbus DS. 
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Since the problem defined by Airbus DS was concentrating on the thermo-elastic 

behaviour of the satellite the structural literature review in this chapter also provides a 

summary of the conditions the satellite panel would go through. Particular emphasis was 

given to the thermal environmental conditions, especially in LEO, which would be 

dominating as the structure undergoes extreme level of heat and cold while going through 

an orbital cycle. This thermal loading would obviously be combined with the vibration of 

the system due to equipment installed, and representing mechanical loading on the 

satellite panels. The case of impact, for example due to a collision with debris, is out of 

the scope of this work.   

 

Since the samples of satellite panels provided by Airbus DS were sandwich honeycomb 

panels the work was built around an investigation of their behaviour. Therefore the 

literature review also consists of an insight into structure, manufacturing peculiarities, as 

well as behavioural features of similar honeycomb panels which are identified in the open 

literature. 
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2. Development of the coupled analytical model for thermo-mechanical analysis 

 

Despite the fact that finite element analysis is widely used for thermo-mechanical 

analysis, it has been identified that there is an industrial requirement for a modelling 

capability that avoids the need for any major re-definition of statically and dynamically 

correlated spacecraft system level models. The modelling should provide 

‘communication’ between the mechanical and thermal aspects of the problem in order to 

predict the behaviour of the panel in time. Such a facility would provide further insight 

into areas such as the structural reliability of the system, the dynamic changes in the 

structural properties due to thermo-mechanical loadings, and potential resonances arising 

from thermal loading and structural changes within the panel.  

It is also desirable that this new and more accurate model remains conceptually 

straightforward in use and is able to accommodate different mechanical and thermal 

boundary conditions as well as dynamic mechanical and thermal loading, in order to 

simulate properly the behaviour of different structural elements. Clearly, the middle core 

of the panel will generally behave differently from the top and bottom plies, both 

mechanically and thermally. It is hypothesised that the middle core will experience 

nonlinear non-uniform deformation due to the long-lasting heating effects that it 

experiences from the top and bottom layers. This means that the model needs to 

accommodate dynamically varying thermal properties. 

Looking at the problem of a spacecraft panel undergoing cyclic loading from the 

perspective of modelling it is possible to find that the structure must combine the effects 

of thermal loading as well as mechanical disturbance. This is because from a physical 

point of view the deformation of a body is connected to a change of heat inside it, and 

therefore to a change in the temperature distribution in the body. So, a deformation of the 

body leads to temperature changes, and vice versa. The internal energy of the body 

depends on both the temperature and the deformation and so, in the case of a practical 

body, such as a spacecraft panel, this necessarily undergoes processes that are intrinsically 

coupled, and defined collectively as thermoelasticity [176]. In order to summarise, the 

Theory of Thermal Stresses (TTS) commonly applies a simplifying assumption that the 

influence of the deformation on the temperature field may be neglected [176]. In TTS the 

classical heat conduction (HC) equation is usually used but this does not routinely contain 

the term representing the deformation of the body. Knowing the temperature distribution 
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from the solution of the HC equation, the displacement equations of the theory of 

elasticity can be solved. At the same time classical dynamic elasticity has been developed 

under the assumption that the heat exchange between different parts of the body due to 

the heat conduction occurs very slowly, and therefore the thermal motion may be regarded 

as adiabatic.  

However, thermoelasticity deals with a wide class of phenomena. It covers the 

general theory of heat conduction as well as the general theory of thermal stresses, and it 

describes the temperature distribution produced by deformation. Thermoelasticity also 

describes the phenomenon of thermoelastic dissipation. As mentioned above many 

modelling approaches tend to separate the mechanical and thermal effects, but 

thermoelastic processes are not generally reversible because although the elastic part may 

be reversed - the deformations may be recoverable through cooling - the thermal part may 

not be reversed, due to the dissipation of energy during heat transfer [135].  

Apart from that, thermal changes in the body cause mechanical deformation in the 

body, which in return affects these thermal changes, representing the process as two-way 

feedback, and this mechanism is at the heart of the current work presented in this chapter. 

To do this properly requires that the modelling techniques and representations really do 

have to couple the mechanical and thermal aspects of the problem to achieve results of 

meaningful accuracy. A literature review of commonly used techniques for thermoelastic 

problems is presented in [135]. It was pointed out there that some works have looked at 

the problem of displacements and stresses in laminated structures under thermal bending. 

These have assumed a linear temperature profile through the thickness direction for both 

laminated plates and multilayered composite shells, as well as for circular plates and 

cylindrical shells. In these models the assumption has been that the temperature profile 

through the thickness is linear and constant in nature. This assumption cannot be valid for 

anisotropic structures where the thickness temperature profile is never linear. Therefore, 

even if the structural model is accurate, the final solution could be in error due to the 

incorrectly assumed profile of the temperature distribution along the thickness. In [137, 

204] it has been shown that dependent on how the displacement and/or stress field are 

presented in the normal direction, mathematical models for thermal analysis of composite 

laminates can be derived using the three-dimensional theory of elasticity, Equivalent 

Single Layer theories (ESL), Layer Wise theories (LW) or zig–zag theories, and more 

recently Carrera’s Unified Formulation (CUF) are all used. To reduce the computational 

cost of three-dimensional theories and also maintain acceptable accuracy, several 



   104 

solutions for the thermal problems in composites have been proposed using the ESLs. 

These are the Classical Laminated Plate Theory (CLPT), First-order Shear Deformation 

Theory (FSDT) and Higher-order Shear Deformation Theory (HSDT). It has been 

highlighted in [135] that the literature so far only contains a relatively small amount of 

work devoted to the coupled thermo-mechanical analysis of structures, in the form of both 

thermoelastic and thermoplastic analyses. There also have been some works comparing 

coupled and uncoupled analysis, the accuracy and efficiency of the coupled theory [139], 

and the extension of a higher-order zig-zag plate theory [205] for prediction of the fully 

coupled mechanical, thermal, and electric behaviour. Partially coupled models are 

commonly derived that neglect the interactions between temperature effects and 

mechanical deformations, and instead assume a priori the distribution of temperature 

along the thickness, or obtain it from the heat conduction equation, and then they solve 

the mechanical equations with known temperature gradient terms. In contrast, fully 

coupled thermoelastic models take into account explicitly the interaction between 

temperature effects and mechanical deformations, because of the presence of coupling 

displacement and temperature terms in the thermal and mechanical equations, 

respectively. Furthermore, if the temperature varies in time we deal with two coupled 

processes, the reversible elastic process and the irreversible thermodynamic process, due 

to a spontaneous and hence irreversible process of heat transfer by means of heat 

conduction. This means that fully coupled approaches are the most appropriate for model 

development to investigate the influence of the thermal loading on the global 

thermomechanical behaviour of the structure. 

From the foregoing discussion it can be seen that in order to consider thermoelasticity 

reasonably properly it is necessary to accept that deformation of a body leads to 

temperature changes, and conversely, and the internal energy of the body depends on both 

the temperature and the deformation.  Therefore, for increased accuracy the problem has 

to be treated as a coupled process.  

In this chapter, in order to try to reduce the computational cost, it was decided to 

implement the Third order theory with the Thermomechanical Coupling (TTC) approach 

described in [174]. This approach is a third order theory with thermomechanical coupling 

and is demonstrated in [174] to give results as accurate as those obtained from using CUF, 

which is a fully coupled approach using a fourth order expansion of the configuration 

variables. The underlying theory is extensive and covers a wide range of approaches and 
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cases, which means that we are able to introduce the necessary simplifications to 

incorporate appropriate boundary and initial conditions. 

To keep the model as tractable as possible it has been decided to develop a partially 

coupled model, and although TTC in [174,177] is indeed a partially coupled model it still 

demonstrates very high accuracy when compared with the fully coupled model using CUF 

[135, 208]. The TTC model consists of comprehensively developed mechanical and 

thermal parts which are connected through additional coupling terms, these being 

temperature and time dependent in the mechanical part, and displacement and time 

dependent in the thermal part, respectively. 

Therefore in this chapter the TTC approach described in [174] is adopted and 

developed further for application to the thermomechanical problem of the sandwich 

honeycomb panel. The model is then verified, emphasising optimal ways of finding the 

solution and performance of the model through a numerical experiment. After this the 

model has been used for simulation of a multiple scenarios of thermomechanical loading 

to investigate the effect of thermal and mechanical loading, as well as their coupling. 

Conclusions to the effects discovered are then drawn at the end of the chapter. 

 

 

2.1. A model for the mechanical behaviour of the panel 

The mechanical equations of motion are based on the Reddy plate theory [174] and 

an adaptation of this follows on directly, noting that it is assumed that deflection due to 

shear is negligble with respect to flexure between the layers, and so the basis for the model 

has been reduced to the interpretation given by [209]: 

𝑁99,1 + 𝑁96,4 = 0 

𝑁96,1 + 𝑁66,4 = 0 

𝑀99,11 + 2𝑀96,14 +𝑀66,44 + 𝑁99𝑤,11 + 2𝑁96𝑤,14 + 𝑁66𝑤,44 + 𝑞(𝑥, 𝑦, 𝑡) − 𝑝1𝑤,11

− 𝑝4𝑤,44 

= 𝜌ℎ𝑤,// + 𝛿𝑤,/ 

(2.1a,b,c) 
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where:  

 
𝑁99
𝑁66
𝑁96

¡ = ∫  
𝜎99
𝜎66
𝜎96

¡0/6
M0/6 𝑑𝑧 ;       

𝑀99
𝑀66
𝑀96

¡ = ∫ 𝑧  
𝜎99
𝜎66
𝜎96

¡0/6
M0/6 𝑑𝑧 ; 

 (2.2a,b) 

  

and where Nij are membrane forces, Mij are bending moments, px and py are forces 

applied along the x and y coordinate directions respectively, 𝛿 is a damping coefficient, 

q(x,y,t) is a transversely distributed loading, and 𝜌 and h are the density and thickness of 

the panel. By justifiably and systematically neglecting some of these parameters it is 

then possible to simplify the equations. 

 

For a laminated plate with arbitrarily oriented plies, the thermoelastic linear constitutive 

relations for the kth orthotropic lamina in the principal material coordinates of the 

lamina are 

 
𝜎99
𝜎66
𝜎96

¡ = Ì
𝑄99 𝑄96 0
𝑄96 𝑄66 0
0 0 𝑄==

Í

(5)

 
𝜀99
𝜀66
𝜀96
¡ −  

𝛽99
𝛽66
0
¡
(5)

𝑇 

(2.3) 

where 𝑄º()
(5) are the plane stress-reduced elastic stiffnesses, and 

 �̅�99
(5) = 𝑄º99

(5)𝛼9 +	𝑄º96
(5)𝛼6	  and   �̅�66

(5) = 𝑄º96
(5)𝛼9 +	𝑄º66

(5)𝛼6	 are the thermoelastic 

stiffnesses, with 𝛼9	and	𝛼6 being the coefficients of thermal expansion in the x and y 

directions. 

 

The relationships between strains and displacements are given by the following [174] 

𝜀99
(3) = 𝑢,1 +

1
2𝑤,1

6 ; 			𝜀66
(3) = 𝑣,4 +

1
2𝑤,4

6  

𝜀96
(3) = 𝑢,4 + 𝑣,1 +𝑤,1𝑤,4 

(2.4) 
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𝜀99
(N) = −𝐶9l𝑤,11m;		𝜀66

(N) = −𝐶9(𝑤,44) 

𝜀96
(N) = −𝐶9(2𝑤,14) 

 

where                                       		𝐶9 = 4/(3ℎ6)                                                            (2.5) 

 

and u(x,y,t), v(x,y,t), w(x,y,t) are the displacements of a point located on the mid-plane, 

where the comma in Eqs.(2.4) is used in the conventional way to denote the derivative 

with respect to the associated independent variables. 

The strains in Eq. (2.4) are related to the three dimensional strains in Eq. (2.6), as in [174], 

neglecting the rotations of the transverse normal around the x- and y- axes  

𝜀99 = 𝜀99
(3) + 𝑧N𝜀99

(N);   	𝜀66 = 𝜀66
(3) + 𝑧N𝜀66

(N);    𝜀96 = 𝜀96
(3) + 𝑧N𝜀96

(N) 

(2.6) 

In Eqs. (2.5)-(2.6), 𝜀()
(3) are the von Karman nonlinear membrane strains, and 𝜀()

(N) are the 

Reddy higher order bending strains. The transverse shearing strains are neglected. 

 

Following [174] we also assume that the temperature varies according to a cubic 

law, consistent with assumptions stated in Eq. (2.6) 

𝑇 = 𝑇3 + 𝑧𝑇9 + 𝑧6𝑇6 + 𝑧N𝑇N 

(2.7) 

where T(x,y,z,t) is the three dimensional temperature variable, while 𝑇3(𝑥, 𝑦, 𝑡),

𝑇9(𝑥, 𝑦, 𝑡), 	𝑇6(𝑥, 𝑦, 𝑡), 𝑇N(𝑥, 𝑦, 𝑡) are the hitherto unknown components of the 

temperature of the two dimensional model, and cover the full profile up to a cubic 

distribution, as shown in  Fig. 2.1. 
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Figure 2.1. Contribution to the overall cubic temperature profile [174] 

 

The components 𝑇6	and	𝑇N can be expressed in terms of 𝑇3	and	𝑇9 by imposing a variable 

combination of the following thermal boundary condition, in this case a +/- distribution 

of the free heat exchange on the upper and lower surfaces of the plate [208, 210], 

																												𝑞N|28±0/6 = ±𝐻[𝑇B − (𝑇)±0/6]        (for free heat exchange)                   

𝑞N|28±0/6 = 𝑞N∗(𝑥, 𝑦, 𝑡)               (for prescribed heat flow)          (2.8) 

 

where 𝑞N is the heat flow in the z direction, H is the boundary conductance, and 𝑇B 

is a constant difference between the absolute temperature of the surrounding medium 

and the reference temperature 

𝑇 = 𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧) 

(2.9) 

where 

𝑓%(𝑧) = (𝑟9 + 𝑟6𝑧 + 𝑟N𝑧6 + 𝑟?𝑧N) 

𝑓O(𝑧) = (𝑟> + 𝑟=𝑧 + 𝑟 𝑧6 + 𝑟a𝑧N) 

𝑓!(𝑧) = (𝑟b + 𝑟93𝑧 + 𝑟99𝑧6 + 𝑟96𝑧N) 

 (2.10) 

and where the  𝑟(  are defined by the imposed boundary conditions.  

For a free heat exchange thermal boundary condition the 𝑟( are introduced as 

applied in [174, 210] 
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𝑟9 = 𝑟= = 1;					𝑟N = −
4𝐻

ℎtℎ𝐻 + 4𝜆NN
(9)u

;					𝑟a = −
4(ℎ𝐻 + 2𝜆NN

(9))
ℎ6(ℎ𝐻 + 6𝜆NN

(9))
 

		𝑟99 =
4𝐻𝑇B

ℎtℎ𝐻 + 4𝜆NN
(9)u

;					𝑟6 = 𝑟? = 𝑟> = 𝑟 = 𝑟b = 𝑟93 = 𝑟96 = 0 

 

It should be pointed out that for a symmetric cross-ply laminate with heat flow 

𝑞∗(𝑥, 𝑦, 𝑡) prescribed on the upper surface and free heat exchange on the lower surface, 

the 𝑟( are defined as [174, 210]: 

𝑟9 = 𝑟= = 1;	𝑟N = −
12𝐻

ℎt5ℎ𝐻 + 24𝜆NN
(9)u

;			𝑟? = −
16𝐻

ℎ6t5ℎ𝐻 + 24𝜆NN
(9)u

;	 

				𝑟 = −
4𝐻

5ℎ𝐻 + 24𝜆NN
(9) 

 

			𝑟a = −
4t3ℎ𝐻 + 8𝜆NN

(9)u

ℎ6t5ℎ𝐻 + 24𝜆NN
(9)u

;	 		𝑟99 = −
2tℎ𝐻𝑞∗(𝑥, 𝑦, 𝑡) + 6𝜆NN

(9)(𝑞∗(𝑥, 𝑦, 𝑡) − 𝐻𝑇B)u

ℎ𝜆NN
(9)t5ℎ𝐻 + 24𝜆NN

(9)u
;		 

 

					𝑟96 =
4ℎ𝐻𝑞∗(𝑥, 𝑦, 𝑡) + 4𝜆NN

(9)(𝑞∗(𝑥, 𝑦, 𝑡) − 𝐻𝑇B)

ℎ6𝜆NN
(9)t5ℎ𝐻 + 24𝜆NN

(9)u
; 				𝑟6 = 𝑟> = 𝑟b = 𝑟93 = 0 

 

2.2. A model for the thermal behaviour of the panel 

The thermal balance equations are introduced for the case of non-stationary conduction 

and thermoelastic coupling, as in [174] 

𝑞9,1 + 𝑞6,4 + 𝑞N,2 − 𝑏,/ − 𝑎,/ + 𝐸 = 0 

(2.11) 

where the qi(x,y,z,t) represents the three-dimensional heat flow along the x,y,z directions, 

b(x,y,z,t) is the three dimensional internal energy due to non-stationary conduction, 

a(x,y,z,t) is the three dimensional interaction energy due to the thermoelastic coupling, 
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and E(x,y,z,t) is the three dimensional source energy. The two-dimensional balance 

consists of two equations obtained from Eq. (2.11), [174, 177] 

𝑞9,1
(3) + 𝑞6,4

(3) − 𝑏,/
(3) − 𝑎,/

(3) + 𝑄(3) = 0 

𝑞9,1
(9) + 𝑞6,4

(9) − 𝑏,/
(9) − 𝑎,/

(9) + 𝑄(9) = 0 

(2.12) 

where the following two-dimensional quantities are defined as 

 
𝑞9
(3)

𝑞6
(3)¡ = ∫ ¦

𝑞9
𝑞6§ 𝑑𝑧

0/6
M0/6   ;  𝑏(3) = ∫ 𝑏	𝑑𝑧0/6

M0/6   ;  𝑎(3) = ∫ 𝑎	𝑑𝑧0/6
M0/6  

 
𝑞9
(9)

𝑞6
(9)¡ = ∫ 𝑧 ¦

𝑞9
𝑞6§ 𝑑𝑧

0/6
M0/6   ;  𝑏(9) = ∫ 𝑏𝑧	𝑑𝑧0/6

M0/6   ;  𝑎(9) = ∫ 𝑎𝑧	𝑑𝑧0/6
M0/6  

𝑄(3) = ∫ 𝑞N,2𝑑𝑧
0/6
M0/6   ;  𝑄(9) = ∫ 𝑞N,2𝑧𝑑𝑧

0/6
M0/6  

(2.13) 

The source energy E(x,y,z,t) is neglected due to the absence of chemical reactions, 

nuclear fission effects or inputs due to electric currents. The heat flow definition is 

based on the Fourier law for the kth orthotropic lamina and expressed in the principal 

material coordinates of a lamina as follows 

 
𝑞9
(3)

𝑞6
(3)¡ = O+ Ì

𝜆99
(5) 𝜆96

(5)

𝜆96
(5) 𝜆66

(5)Í ��
𝑓%(𝑧) 0
0 𝑓%(𝑧)

�  
𝑔9
(3)

𝑔6
(3)¡ +

2%-$

2%

7

589

 

+ �𝑓O(𝑧) 0
0 𝑓O(𝑧)

�  
𝑔9
(9)

𝑔6
(9)¡� 𝑑𝑧 

 

 
𝑞9
(9)

𝑞6
(9)¡ = O+ Ì

𝜆99
(5) 𝜆96

(5)

𝜆96
(5) 𝜆66

(5)Í ��
𝑓%(𝑧) 0
0 𝑓%(𝑧)

�  
𝑔9
(3)

𝑔6
(3)¡ +

2%-$

2%

7

589

 

+ �𝑓O(𝑧) 0
0 𝑓O(𝑧)

�  
𝑔9
(9)

𝑔6
(9)¡� 𝑧	𝑑𝑧 

(2.14) 
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where the  𝜆()
(5)  are the thermal conductivities of the kth laminate, and 𝑔9

(3) = 𝑇3,1 , 𝑔9
(9) =

𝑇9,1 , 𝑔6
(3) = 𝑇3,4 , 𝑔6

(9) = 𝑇9,4. 

 

The internal energy for the kth lamina is defined in terms of temperature 

𝑏(5) = 𝐶(5)𝑇 = 𝜌(5)𝑐]
(5) 

(2.15) 

where 𝐶(5) is the thermal capacity of a lamina, the function of mass density is 𝜌(5)	and 

the specific heat at constant strain is given by 𝑐]
(5).  

 

The components of internal energy can then be re-written, taking into account Eqs. (2.9)-

(2.10), (2.15), as 

𝑏(3) = + 𝑏𝑑𝑧 = O+ 𝑏(5)𝑑𝑧 =
2%-$

2%

7

589

O+ 𝐶(5)[𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧)]𝑑𝑧
2%-$

2%

7

589

0/6

M0/6
 

(2.16) 

 

𝑏(9) = + 𝑏𝑑𝑧 = O+ 𝑏(5)𝑑𝑧 =
2%-$

2%

7

589

O+ 𝐶(5)[𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧)]𝑧𝑑𝑧
2%-$

2%

7

589

0/6

M0/6
 

(2.17) 

The interaction energy for the kth orthotropic lamina is expressed in terms of strain within 

the three dimensional thermoelastic theory, with the assumption that 𝜀22 = 𝜀NN = 0 

𝑎(3) = + 𝑎	𝑑𝑧
0/6

M0/6
=O+ 𝑎(5)𝑑𝑧 =

2%-$

2%

7
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= 𝑇P*-O+ ¢𝛽99
(5)t𝜀99

(3) + 𝑧𝜀99
(9) + 𝑧N𝜀99

(N)u + 𝛽66
(5)t𝜀66

(3) + 𝑧𝜀66
(9) + 𝑧N𝜀66

(N)u +
2%-$

2%

7

589

 

+𝛽96
(5)t𝜀96

(3) + 𝑧𝜀96
(9) + 𝑧N𝜀96

(N)u¥ 𝑑𝑧 
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𝑎(9) = + 𝑎𝑧	𝑑𝑧
0/6

M0/6
=O+ 𝑎(5)𝑧	𝑑𝑧 =

2%-$
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7
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= 𝑇P*-O+ ¢𝛽99
(5)t𝜀99

(3) + 𝑧𝜀99
(9) + 𝑧N𝜀99

(N)u + 𝛽66
(5)t𝜀66

(3) + 𝑧𝜀66
(9) + 𝑧N𝜀66

(N)u +
2%-$

2%

7

589

 

+𝛽96
(5)t𝜀96

(3) + 𝑧𝜀96
(9) + 𝑧N𝜀96

(N)u¥ 𝑧𝑑𝑧 

(2.18) 

 

The energy exchange rates of the out-of-plane heat flow 𝑄(3)	and 𝑄(9)	due to the 

heat flow q3 in the z direction are 

𝑄(3) = + 𝑞N,2	𝑑𝑧
0/6

M0/6

=O+ 𝜆NN
(5)𝑔N,2	𝑑𝑧

2%-$

2%

7

589

=O+ 𝜆NN
(5))(𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧)),22*𝑑𝑧
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2%

7
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𝑄(9) = + 𝑞N,2	𝑧𝑑𝑧
0/6

M0/6

=O+ 𝜆NN
(5)𝑔N,2	𝑧𝑑𝑧

2%-$
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7

589

=O+ 𝜆NN
(5))(𝑓%(𝑧)𝑇3 + 𝑓O(𝑧)𝑇9 + 𝑓!(𝑧)),22*𝑑𝑧

2%-$
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7
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(2.19) 
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A procedure for computing the solutions to the principal Eqs.(2.1) and (2.12), and 

invoking all the parameters that follow, defined with respect to specified boundary and 

initial conditions, has been specifically coded in the Mathematica programming language.  

 

Having derived the necessary components of the thermal and mechanical equations it is 

then possible to obtain the system of equations, in the following form 

𝐶9̅𝑇3(𝑡) + 𝐶6̅𝑢(𝑡) + �̅�N𝑣(𝑡) = 0 

𝐶?̅𝑇3(𝑡) + �̅�>𝑢(𝑡) − 𝐶=̅𝑣(𝑡) = 0 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + [𝐶N + 𝐶`𝑇B(𝑡)]𝑊(𝑡) + 𝐶a𝑊N(𝑡) + 𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) + 𝐶96𝑇B(𝑡) + 𝐶9N�̇�(𝑡)𝑊(𝑡) − 𝐶9?�̇�(𝑡) − 𝐶9>�̇�(𝑡) + 𝐶 = 0.         

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9a𝑇B(𝑡) + 𝐶9b�̇�(𝑡) = 0       

(2.20)                                

Since we are interested in the temperature and displacement distributions in the z-

direction for the structure when it is subjected to combined mechanical and thermal 

loading, the system can be reduced to the following three equations to find the membrane 

temperature T0(t) and bending temperature T1(t) as defined in [177, 178], then to identify 

T(t) in Eq. (2.9): 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + )𝐶N + 𝐶?𝑃1(𝑡) + 𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B(𝑡)*𝑊(𝑡) + 𝐶a𝑊N(𝑡) 

+𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) + 𝐶96𝑇B(𝑡) + 𝐶9N𝑊(𝑡)̇ 𝑊(𝑡) = 0 

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9a𝑇B(𝑡) + 𝐶9b�̇�(𝑡) = 0                       (2.21) 

 

It has to be pointed out that in reference [174] this type of equation system was solved 

analytically obtaining a general solution using features within bespoke Mathematica 

code. However, this was done by eliminating the nonlinear terms, and for static values of 

the mechanical and thermal loading, thus 

𝐶9�̈�(𝑡) + 𝐶N𝑊(𝑡) + 𝐶b𝑇9(𝑡) = 0 
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𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) = 0 

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9b�̇�(𝑡) = 0 

                                      (2.22) 

Here our overall aim has been to look for a solution for the system in its generalised form, 

as stated in full in Eq. (2.21). 

Before starting to look for an analytical solution it was decided to investigate whether the 

presence of the nonlinear terms eliminated in [174] would have a pronounced effect on 

the behaviour of the panel under consideration. Therefore, an analytical closed form 

solution (using code applying the DSolve function in Mathematica) was found for the 

simplified system (2.22), as well as a comparable numerical solution (using code applying 

NDSolve function in Mathematica) for the full system with nonlinear terms in Eq. (2.21). 

As an initial numerical example it was assumed that the panel should be subjected to a 

small constant mechanical load, arbitrarily set to 1N, and a thermal load in the form of an 

environmental soak temperature of 70oC, and without any mechanical damping. On this 

basis, substituting in the appropriate numerical data, the system of Eq. (2.21) takes the 

following form 

−0.32�̈�(𝑡) + [−2.32 ∙ 10a + 5.82 ∙ 10M99	𝑇3(𝑡)]𝑊(𝑡) − 8.23 ∙ 1096	𝑊N(𝑡) 

+13.43	𝑇9(𝑡) + 0.01 = 0 

−547.26	�̇�3(𝑡) − 34.51𝑇3(𝑡) + 13.44 − 1.22 ∙ 10`	𝑊(𝑡)̇ 𝑊(𝑡) = 0 

−0.0082	�̇�9(𝑡) − 0.012	𝑇9(𝑡) − 73.89	�̇�(𝑡) = 0                                   (2.23) 

 

This system of equations was then solved numerically using code applying the 

Mathematica NDSolve numerical integrators. 

 

In addition to this the simplified system of Eq. (2.22) can be solved analytically using 

DSolve within some suitable Mathematica code 

−0.32�̈�(𝑡) + [−2.32 ∗ 10a]𝑊(𝑡) + 13.43	𝑇9(𝑡) + 0.01 = 0 

−547.26	�̇�3(𝑡) − 34.51𝑇3(𝑡) + 13.44 = 0 
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−0.0082	�̇�9(𝑡) − 0.012	𝑇9(𝑡) − 73.89	�̇�(𝑡) = 0                      (2.24) 

 

The purely numerical solution to Eq. (2.23) for W(t) and the closed form analytical 

solution for W(t) obtained for the reduced system of Eq. (2.24) are both plotted in the time 

domain in Fig. 2.2.  

 

Figure 2.2. Deflection W(t) in metres for the panel under Q=1N, T=70o C based on 

the following solutions: (a) – numerical solution of Eqs (2.23), (b)-closed form solution 

for Eqs (2.24). Time is in seconds. 

 

The two time-domain plots of Fig. 2.2 suggest that for the data considered retaining the 

presence of the nonlinear and coupling terms provides a solution offering more detailed 

information about the behaviour of the panel, including an important internal energy 

transfer phenomenon arising from the interaction between the mechanical and thermal 

aspects of the problem, demonstrated in Fig. 2.2(a) as a transient decay in the 

displacement response.  However, the numerical solution found for the full nonlinear 

system obviously doesn’t offer any generic insight into the phenomenology of the 

problem and is restricted in use to specific data cases such as the one just discussed. Given 

that this particular numerical solution, and others too, confirm the transient nature of the 

displacement response with time, as one would fully expect, the next logical step in the 

investigation would be to obtain a proper closed form solution for the full nonlinear 

system. An immediate benefit of this would be the calculation of accurate and generalised 

responses, and greatly reduced calculation times for different geometries, loading 

conditions and different material properties for the panel. 
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Nevertheless, despite the limitations in the prediction of displacement of Eq. (2.24), it 

should be mentioned that the predicted profile of the temperature distribution along the 

thickness, as defined in Fig.2.3, is seen to be phenomenologically accurate for this 

solution and can be used without any loss of accuracy. This is shown as a comparison 

between the two solutions, for one numerical case, in Fig. 2.4. 

 

Figure 2.3. Representation of the panel for interpretation of temperature 

distribution across the thickness 

 

 

Figure 2.4. Distribution of the instantaneous thermal gradient along the thickness 

T(t) (as given in Eq.(2.9)) for the panel under: Q=1N, T=70o C, based on (a) – 

numerical solution of Eqs (2.23), (b)- closed form solutions for Eqs (2.24), both taken at 

t=0.001s. Temperatures in o C, thickness h in metres. 

 

From inspection of the system of Eq. (2.21) it is obvious that the main mathematical 

challenge in the solution of the whole system is found to be principally in the first 

equation, Eq.(2.21a), re-stated as Eq.(2.25) 
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𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + 𝐶̅(𝑡)	𝑊(𝑡) + 𝐶a𝑊N(𝑡) 

+𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

                                                      (2.25) 

where 𝐶̅(𝑡) = 𝐶N + 𝐶?𝑃1(𝑡) + 𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B(𝑡). 

 

The difficulty arises due to the simultaneous presence of the time-variant coefficient �̅�(𝑡) 

in the term W(t) and the nonlinear term 𝐶a𝑊N(𝑡). For the sake of generality we can 

represent Eq. (2.25) as 

𝐶9�̈�(𝑡) + 𝐶6𝑊(𝑡)̇ + 𝐹9(𝑡)𝑊(𝑡) + 𝐶>𝑊N(𝑡) + 𝐹6(𝑡) = 0.					                  (2.26) 

where the time variable coefficients are defined as  𝐹9(𝑡) = �̅�(𝑡) = 𝐶N + 𝐶?𝑃1(𝑡) +

𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B(𝑡)   and 𝐹6(𝑡) = 𝐶b𝑇9(𝑡) + 𝑄(𝑡). 

  

Eq.(2.26) can be readily solved to good approximation using the perturbation method of 

multiple scales, notwithstanding the fact that the principal parametric resonance condition 

emerges as a consequence of the treatment of secular terms required in order to guarantee 

the uniformity of the expansion for 𝑊(𝑡). It is also possible in principle to examine the 

non-resonant case for this solution, and both of these analyses will be discussed later in 

Chapter 6.  

 

 

2.3. Application of the derived model for a panel in the free heat exchange conditions 

The sandwich panel of 300.10-3 x 100.10-3 x 15.10-3 m is composed of two types of 

aluminium alloy (Fig. 2.5). For the outer faces of thickness 0.004 m, an Al-2024 alloy is 

used, whilst an Al-5056 alloy foil is used to form the hexagonal honeycomb core. This 

core is of depth 14.24 x10-3 m and comprises a foil of thickness 0.0254 x10-3m. The 

mechanical and thermal properties of these materials are summarised in Tables 2.1 and 

2.2, noting that the data in Table 2.1 does not contain explicit information on the thin film 



   118 

adhesive bonding of the core to the skin, and the structural coefficient of thermal 

expansion stated in Table 2.2 was extrapolated from the data made available for AL-5056 

[23-57]. 

 

 

 

 

 

 

 

 

Figure 2.5. Honeycomb sandwich panel typically used in the aerospace industry 

 

Table 2.1: Mechanical Properties of Sandwich Panel  

 Al-2024 
            Al-5056 

       3/16 Honeycomb 

Density, ρ (kg/m3) 2780               50 

Young’s Modulus, E (Pa) 73.1 x 109             669 x 106 

Shear Modulus, G (Pa) 27.5 x 109                    310 x 106 

Poisson’s Ratio, ν 

Foil thickness (m [in]) 

0.33 

 

               0.3 

         0.0254x10-3 [0.001] 
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Table 2.2: Thermal Properties of Sandwich Panel Materials 

 Al-2024 Al-5056 

Coefficient of Thermal Expansion (/°C) 

Coefficient of Thermal Expansion 

for 3/16 honeycomb (/oC) 

2.47 x 10-5 

 

 

    2.41 x 10-5 

 

2.4 x 10-6 

Thermal Conductivity @ 25°C 

(W/mK) 
149 149 

Specific Heat (J/kg°C) 875 904 

Reference Temperature (°C) 22 22 

 

For the numerical study of the solutions obtained for the system (2.21) with full nonlinear 

coupling terms, and exploiting the powerful numerical functions within NDSolve, 

different forms of loading are considered: a constant thermal load only, a dynamic thermal 

load only, a constant mechanical load only, and a combined thermo-mechanical load 

consisting of a dynamic thermal component and a constant mechanical component. To 

verify the performance of the model, and to understand the extent of the results we can 

obtain from the model, results were also generated for a very thin and a very thick sample. 

This was achieved by varying the thickness of the honeycomb core layer. 

 

The panel was considered to be simply supported and was analysed under three types 

of loading based on the thermal, mechanical, and thermo-mechanical conditions 

summarised above. The thermal loading was applied by means of imposing a difference 

between the reference temperature and the environmental temperature, in order to 

represent free heat exchange conditions.  The mechanical loading was taken as a normal 

constant force applied centrally to the top-face sheet. 

 

2.3.1 The case of thermal loading 

When elevated temperature conditions apply at the outer faces of the sandwich panel, and 

thereby represent the free heat exchange condition, these faces will heat up first of all, 
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with the heat then distributing from the outer faces inwards towards the centre of the core. 

To understand the process of the displacement emerging due to this changing thermal 

equilibrium, as well as the characteristics of the thermal gradient along the thickness, a 

constant environmental surround temperature of 100oC was initially applied with the 

ambient reference (start) temperature set to 20oC, and a solution for the system of Eq. 

(2.21) was obtained using the NDSolve function in MathematicaTM (Fig. 2.6). 

 

 

 

Figure 2.6. Displacement response in metres, shown in the time domain (t in 

seconds) when subjected solely to a thermal load defined by an environmental 

temperature of 100oC and with a core thickness of 0.01424m and total plate thickness of 

0.015m.  

 

The principal features of the displacement response is the transient over time and 

the largely symmetrical peak to peak amplitude over the time after the transient. This 

accords with practical expectations for a plate under this form of loading. In Fig. 2.7 

discrete snapshots between 0.001 s through to 5 s are given for the time history of the 

thermal gradient across the thickness of the panel, in order to understand the thermal 

changes that the panel undergoes, and the conditions under which it stabilises for the 

specific times chosen. 

 

5 10 15 20

-0.00005

0.00005

W(t) 
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(a)                                                            (b) 

 

(c)                                                                 (d) 

Figure 2.7. Time histories of the temperature distribution along the thickness of the 

panel under a thermal load due to an environmental soak temperature of 100o C. 

Temperature in oC, thickness h in metres. 

 

By fixing the time steps and observing the progression of the temperature distribution 

through the plate we see the main stages of the temperature stabilisation process that are 

described in [174]. In brief this amounts to the following. By applying heat to the plate 

through an elevated environmental soak temperature the heat distributes through the 

thickness as shown in Fig. 2.7 (a-b) with the intermediate temperature of the honeycomb 

core being very close but lower than the top and bottom skins temperature. However, after 

5s the small difference between the skin temperature and the honeycomb core flips and 

stabilises, with the core being slightly hotter by around 0.03oC. The process of the panel 

heating up in time is reflected in the behaviour of T0(t) in Fig. 2.8 where we can clearly 

see that after 5s the equilibrium temperature is reached around 101 oC and the profile 

thereafter remains constant in time. 

 

 

-0.006 -0.004 -0.002 0.002 0.004 0.006

20.6

21.1

21.6

22.1

-0.006 -0.004 -0.002 0.002 0.004 0.006

90.85

90.90

90.95

91.00

-0.006 -0.004 -0.002 0.002 0.004 0.006

101.420

101.425

101.430

101.435

101.440

101.445

-0.006 -0.004 -0.002 0.002 0.004 0.006

101.420

101.425

101.430

101.435

101.440

101.445

h h 

h h 

T 
T 

T 

T 

t=1s t=0.1s 

t=5s 
t=10s 



   122 

 

 

Figure 2.8. Time history of the distribution of the thermal component T0(t) for the 

panel under thermal load due to an environmental soak temperature of 100oC, with a 

core thickness of 0.01424m (for a total plate thickness 0.015m). Temperature in o C, 

time in seconds. 

 

It can be seen that the process of obtaining the solution for T0(t) can in itself be a useful 

tool for finding out if the temperature stabilises at a certain equilibrium, and what the 

temperature of that equilibrium might be, as well as to determine how long it takes for 

the panel to reach an equilibrium state. 

To investigate the behaviour of the panel when the environmental temperature varies 

under the prescribed dynamic condition, Eqs.(2.21) are solved for T(t) = 20 + 10t  with 

the reference temperature set to 20oC, as in the previous case. 

Initially a panel thickness of 0.015 m is considered, with the honeycomb core thickness 

of 0.01424m, and the results are given in Fig. 2.9. 
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Figure 2.9. Displacement response (in metres) in the time domain (in seconds) 

when subjected only to thermal loading of (20 + 10t) oC with core thickness 0.01424m 

and total plate thickness of 0.015m.  

 

As can be seen in Fig. 2.9 due to the dramatic increase of the environmental temperature 

being transferred to the panel, the panel starts to accumulate thermal stresses, 

characterised by the transient response, and after around 10s it starts to buckle, exhibiting 

the displacement. 

 

On analysing the history of the temperature distribution along the thickness of the panel 

over time it is evident that the sample is undergoing the same process of stabilisation in 

Figs. 2.10 (a,b) trying to reach the equilibrium state around 0.5s. However, due to the 

linearly increasing nature of the thermal  load (20 + 10t) oC, the temperature in the sample 

starts rapidly increasing, as shown in Fig. 2.10 (c,d) in response to the thermal loading. 

This can be clearly observed from the distribution of the middle plane thermal component 

T0(t) in Figure 2.11. It should also be pointed out that in the time histories in Fig. 2.10 we 

do not observe the flip from the core being cooler than the skins to the skins being slightly 

cooler than the core which took place in Fig. 2.7. This confirms that the model reflects 

the fact that the core is constantly trying to catch up with the rapidly increasing 

temperature of the environment and the skins with the time-increasing temperature (20 + 

10t) oC, and cannot reach the point of stabilisation. 
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(a)                                                                          (b) 

   

(c)                                                                          (d) 

Figure 2.10. Time history of temperature (in o C)  distribution along the thickness 

(in meters) of the panel under a thermal load of (20 + 10t) oC with a core thickness of 

0.01424m (for a total plate thickness of 0.015m). 

 

 

Figure 2.11. Time history of the thermal component T0(t) for the panel under a 

thermal load of (20 + 10t) oC with a core thickness of 0.01424m, and for a total plate 

thickness of 0.015m. Temperature in o C, and time in seconds. 
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To investigate the effect of the dynamically increasing environmental temperature on 

panels of different thickness we also consider the case of a very thin and a very thick 

panel, by decreasing and increasing the thickness of the honeycomb core, and by leaving 

the skin thicknesses the same. 

First we consider a very thin panel of thickness of 0.009m with the core thickness of 

0.00824m and the skins’ thickness remains the same. 

Fig. 2.12 shows that a thinner panel is characterised by shorter period of transient 

behaviour (under 1s), and being thinner than the panel in Fig. 2.9 it starts buckling under 

dramatically increasing heat much earlier, reaching a higher level of displacement at 100s 

(Fig.2.12b). 

 

  

(a)                                                                          (b) 

Figure 2.12. Displacement response in the time domain over 20s (a) and 100s (b) 

when subjected only to a thermal loading of (20 + 10t) oC with core thickness 

0.00824m and total plate thickness of 0.009m. Displacement in metres, time in seconds. 

 

The time histories of the temperature distribution along the thickness of the panel for the 

thinner panel are presented in Fig. 2.13. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 2.13. (a) Distribution of the thermal component T0(t) in the time domain, 

and (b) (c) (d) Time history of the temperature distribution T(t) through the thickness, 

when t =1s, t = 5s, t = 10s, for the panel under a thermal load due to the linear 

environmental temperature T(t) = 20 + 10t, with a core thickness of 0.00824m (and for 

a total plate thickness of 0.009m). Temperature in o C, thickness h in metres. 

 

The discrete time snapshots of Fig. 2.13 confirm that the temperature distribution through 

the thickness of the panel, just like the displacement, happen more rapidly due to the 

smaller thickness. It can also be observed that due to the small thickness of the panel the 

core heats up faster, being around 1oC warmer than the skins after 100s. The dynamically 

rapid heating up process reflects the linearly increasing thermal loading, as depicted by 

Fig.2.13a. 

 

When considering a thicker panel we expect a lower displacement response due to the 

thermal instability created by the dynamic thermal load condition, and this is confirmed 

in the results of Fig. 2.14. 
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(a)                                                                          (b) 

Figure 2.14. Displacement response in the time domain over 100s and 500s when 

subjected only to the thermal load due to the environmental temperature conditions 

given by (20 + 10t) oC, and for a core thickness of 0.01924m and total plate thickness of 

0.02m. Displacement in metres, time in seconds. 

 

As can be seen in Fig.2.14 the transient behaviour is taking longer, well above 20s in fact, 

and therefore the buckling of the panel due to the dynamically increasing temperature 

occurs much later, reaching a lower value at 100s. This confirms that the disturbance 

caused by the thermal loading is more pronounced for a thinner panel than for thicker 

ones. 

In Fig. 2.15 we are investigating the time history of the temperature distribution along the 

thickness of the panel as a time snapshot, as well as a general trend of the increasing 

temperature within the panel in response to the linearly increasing environmental 

temperature. 
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(c)                                                                          (d) 

Figure 2.15. (a) Distribution of the thermal component T0(t) in the time domain, 

and (b) (c) (d) Time history of the temperature distribution T(t) through the thickness, 

when t = 1s, t = 5s, t = 10s, for the panel under a thermal load due to the linear 

environmental temperature T(t) = 20 + 10t,  with a core thickness of 0.01924m (and for 

a total plate thickness of 0.02m). Temperature in o C, thickness h in metres. 

 

The discrete snapshots in time shown in Fig. 2.15 comparing to the ones for the thinner 

panel (Fig.2.13) confirm that due to the larger thickness of the panel, the panel takes 

longer to heat up all the way through the core, and therefore the middle plane of the panel 

remains cooler than the skins, never managing to catch up with the rapidly increasing 

environmental and skin temperatures. Taking longer to heat up we can also see that the 

plate reaches a lower temperature along its thickness (Fig. 2.15d) comparing to the thinner 

panel (Fig.2.13d).  The time history in Fig.2.15 (b-d), as well as the trend of the heating 

up process in time (Fig. 2.15a), reflects the linearly increasing temperature of the 

environment.  

 

2.3.2 The case of thermo-mechanical loading at constant temperature 

To study the case of thermo-mechanical loading of the panel a simple three-point bending 

test has been simulated to introduce the mechanical loading for the panel. In order to 

investigate the behaviour of the panel under the mechanical loading we first consider the 

panel subjected to 10N loading while the panel is being exposed to the thermal 

environment of 20oC. The analysis was carried out to investigate the displacement 
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distribution as well as the heating up process in time along the thickness of the panel (Fig. 

2.16). 

 

  

(a)                                                                          (b) 

  

(c)                                                                          (d) 

  

(e)                                                                          (f) 

Figure 2.16. Displacement response in the time domain when subjected to the 

mechanical load of 10 N in 20oC environment, with core thickness of 0.01424m and 

total plate thickness of 0.015m. Displacement in metres, time in seconds. 
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As can be seen in Fig.16a the offset characterising the mechanical loading of 10N is 

clearly present in the displacement distribution. We also can see that the heating-up 

process through the time snapshots (Fig. 2.16c-f) is leading to stabilisation around 20oC, 

which is what is expected and reflected in Fig. 2.16b after around 2s. 

As the next step of our investigation of the mechanical loading effect we introduce the 

dynamic mechanical loading of 10t within the same 20oC environment. The displacement 

response, as well as time history of the panel heating up process, are both presented in 

Fig.2.17. 
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(e)                                                                          (f) 

Figure 2.17. Displacement response in the time domain when subjected to the 

mechanical load of 10t in 20oC environment, with core thickness of 0.01424m and total 

plate thickness of 0.015m. Displacement in metres, time in seconds. 

 

As can be seen in Fig. 2.17a, and contrary to Fig.2.16a, the displacement response is 

characterised by the linear increase which reflects the character of the mechanical loading 

10t. The transient behaviour reflects the fact that we have two types of loading, thermal 

and mechanical, introducing a higher frequency disturbance within the panel. The time 

snapshots for the heating up process within the panel (Fig. 2.17c-f) reflect the increase of 

temperature within the panel, stabilising at around 20oC after 2s.  

In a similar manner to what has gone before in Figs 2.18 and 2.19 we are now 

investigating the behaviour of the thinner and thicker panels by reducing or increasing 

the core thickness and analysing the effect of these geometrical changes on the 

displacement behaviour, as well as the heating-up process along the thickness of the 

panel. The mechanical loading is still kept at 10t and thermal loading is represented by 

20oC. 
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(c)                                                                          (d) 

  

(e)                                                                          (f) 

Figure 2.18. Displacement response in the time domain when subjected only to the 

mechanical load of 10t N  at 20°C with core thickness of 0.00824m and total plate 

thickness of 0.009m – thinner plate. Displacement in metres and time in seconds. 
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(c)                                                                          (d) 

 

  

(e)                                                                          (f) 

Figure 2.19. Displacement response in the time domain when subjected only to the 

mechanical load of 10t N at 20°C with core thickness 0.01924m and total plate 

thickness of 0.02m – thicker plate. Displacement in metres, time in seconds. 
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thinner (Fig.2.18c-f) one, and after 10s the thicker panel reaches around 17oC 

(Fig.2.19b,f) when the thinner one is at 20oC (Fig.2.18b,f).  

 

It can be noted that results are obtained for other thermal environment values, including 

extreme ones, for correlation with experimental results and these are presented in Chapter 

4 and Appendix F. 

 

 

2.3.3 The case of thermo-mechanical loading with time variable thermal loading 

Continuing with the case of thermo-mechanical loading the physics of the separate 

dynamically-variable thermal and mechanical loading scenarios are combined into one, 

using the model discussed previously. 

For consistency with the study performed earlier in Sections 2.3.1 and 2.3.1, the combined 

effect of a time-variant mechanical and thermal loading will be represented by 10t N, and 

a dynamic thermal load initiated by the environmental temperature which obeys the linear 

law given by (20 + 10t) oC.  

Following the line of investigation adopted in the previous sections we are looking into 

displacement distribution in Fig. 2.20a, the general trend of the heating-up process of the 

panel (Fig.2.20b) and the time history of the temperature distribution along the thickness 

of the panel (Fig.2.20c-f). 
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(c)                                                                          (d) 

 

  

(e)                                                                          (f) 

Figure 2.20. Displacement response in the time domain when subjected to the 

thermal load due to the environmental linear temperature law of (20 + 10t) oC and a 

mechanical loading of 10t N with core thickness of 0.01424m and total plate thickness 

of 0.015m. Displacement in metres, time in seconds. 

 

It can be noticed from Fig.2.20a that the main distinction in the displacement behaviour 
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a linearly increased mechanical loading introduced the displacement (Fig.2.17a) there is 

a compensated response for around 5s until the mechanical loading dominates the 

response of the panel and introduces a clearer dynamically increasing displacement. The 

value of the displacement is thus increased due to the combined effects of the time-

increasing mechanical and thermal loading. 

-0.006 -0.004 -0.002 0.002 0.004 0.006

4.3

4.4

4.5

-0.006 -0.004 -0.002 0.002 0.004 0.006

24.22

24.24

24.26

24.28

24.30

24.32

24.34

-0.006 -0.004 -0.002 0.002 0.004 0.006

66.46

66.48

66.50

-0.006 -0.004 -0.002 0.002 0.004 0.006

117.17

117.18

117.19

117.20

117.21

117.22

h h 

h h 

T 
T 

T T 

t=0.1s 
t=1s 

t=5s 
t=10s 



   136 

The heating-up process within the panel corresponds to the previously observed 

response for a panel under the (20 + 10t) oC thermal loading. Mechanical loading did not 

seem to have a significant impact on the heat distribution within the panel. 

 

2.4. Application of the derived model for a panel subjected to the heat flux 

In Section 2.3 a model was derived for the free heat exchange condition and in Sections 

2.3.1-2.3.3 a variety of cases were considered for the panel being subjected to the 

environment of different temperatures, and thus exhibiting an appropriate response for 

both displacement and temperature distribution along the thickness. The study is also a 

crucial part of the correlation of the analytical model results with the experimental results 

presented later in chapter 4 for the panel tested in a climatic chamber in the free heat 

exchange setting. 

However, coming back to the initial purpose of this work, simulation of the thermo-

mechanical behaviour of a satellite and spacecraft panel while being exposed to the 

extreme environment, the free heat exchange condition is not the most accurate 

approximation of the undergoing scenario. Therefore, although the core model developed 

in Section 2.3 has been verified through experimental work presented in chapter 3, we are 

also producing a result for a more realistic scenario in a space application, when the panel 

is subjected to heat flux. 

When introducing heat flux instead of free heat exchange conditions the model has to be 

adjusted through the change of thermal coefficients 𝑟(  in Eqs (2.10) which would affect 

Eq. (2.9) and thus all the equations representing the thermal part of the model discussed 

in Section 2.2. 

   The panel under consideration remains simply supported and was subjected to a 

combination of mechanical and thermal loading represented by the time-variant heat flux 

to represent a thermal cycle in LEO.  

According to [174] the heat flow is typically represented as a dome-shaped distribution. 

Therefore the form of Eq. (2.8) defined for the heat flow prescribed will be defined as, 

𝑞N∗(𝑥, 𝑦, 𝑡) = 𝑞(𝑡)𝑠𝑖𝑛
𝜋𝑥
𝑎 𝑠𝑖𝑛

𝜋𝑦
𝑏  
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Dimensions and properties of the panel remain the same as discussed in Section 2.3. 

 

The results of the simulation for the panel exposed to the heat flux are discussed in 

comparison to the free heat exchange conditions discussed earlier to be able to analyse 

and reflect on the critical difference of the simulation and confirm the validity of the 

results obtained. 

 

In the first instance the panel is subjected to the heat flux represented by the law defined 

by 𝑞N∗(𝑥, 𝑦, 𝑡) = 40𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
 and the dynamically increasing mechanical loading 10t 

in a middle, environmental temperature of 40oC (Fig. 2.21a,b). For comparison the 

displacements for an environment at 40oC without heat flux but free heat exchange, and 

under a dynamic mechanical loading of 10t,  are also presented in Fig. 2.21c,d. 

  
(a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 2.21. Displacement in time domain over 100s and 500s when subjected to heat 

flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 40𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
 (a,b) and in the free heat exchange at 40oC (c,d) and 

a dynamically increasing mechanical loading 10t. Displacement is in metres and time is 

in seconds. 
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As can be observed a stiffer response, characterised by a lower displacement value at 

100s, was obtained for the panel subjected to the heat flux. This occurs due to the fact 

that the heat flux introduced a significant temperature increase on one side of the panel 

and hence a buckling effect which subsequently results in the snap-through after around 

40s (Fig.2.21a) after the increasing mechanical loading is high enough to dominate the 

bending behaviour. It should be also pointed out that even in free heat exchange the 

disturbance introduced by the thermal loading encourages a trace of buckling behaviour 

(Fig.2.21c). Nevertheless, from Fig.2.21b,d, it can be seen that the deflection under heat 

flux still manages to ‘catch-up’ and has almost the same value at 500s, and is quite 

likely to stabilise to the same level as in the free heat exchange case. 

The main distinction of the heat flux loading from the free heat exchange is that for heat 

flux loading one side of the panel is the exposed to intensive heat, and when in free heat 

exchange both sides of the panel are subjected to the environmental temperature. 

Therefore, results were produced for the heat distribution through the thickness of the 

panel to confirm that this effect has taken place, and shown in Fig. 2.22. 

  
(a)                                                                          (b) 

Figure 2.22. Temperature distribution along the thickness of the panel after 100s (a) 

and general trend of the temperature distribution representing the T0(t) (b) when 

subjected to heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 40𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
. Thickness h is in metres, t is in 

seconds, and T is in oC. 

 

As can be seen in Fig. 2.22 the trend of the heat distribution is not parabolic as was typical 

for free heat exchange in Section 2.3, where both skins were exposed to the same level of 

heat and thus had the same temperature readings. Under heat flux conditions we have one 
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skin exhibiting a higher temperature than the other one, and this is confirmed by the model 

in (Fig. 2.22a). We can clearly see how the heat distributes at the highest level on one 

side of the panel, then it is slightly lower in the middle plane and the lowest in the bottom 

skin (h). For easier visualisation refer to Figure 2.3 which demonstrates the thickness 

distribution along the x coordinate and the temperature level along the y coordinate. Since 

the heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 40𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
	was chosen as a dynamically increasing 

function, the general trend of the temperature distribution representing the T0(t) 

demonstrates the linear increase of the heat after around 5s. 

Since the free heat exchange analysis was performed in chapters 3 and 4 (dealing with 

the experiment and correlation, respectively) for a range of thermal environments 

including extreme cases, it was decided to consider results for 150oC (Fig. 2.23, 2.24) and 

-20oC (Fig.2.25, 2.26). 

 

(a)                                                                          (b) 

    

(c)                                                                          (d) 

Figure 2.23. Displacement distribution in the time domain over 100s and 500s when 

subjected to heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 150𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
 (a,b) and in the free heat 

exchange environment at 150oC (c,d), under dynamic mechanical loading of 10t. 

Displacement W(t) is in metres and t is in seconds. 
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It is shown in Fig. 2.23a that an extreme heat flux temperature has caused a more 

significant and long-lasting buckling effect, before the panel recovers the stiffness to 

respond to the time-dependent loading, than in Fig.2.21a and the snap-through effect has 

occurred at a later stage (Fig. 2.23b) than for 40oC (Fig. 2.21b). In terms of the level of 

deflection, we can see again a stiffer response at 100s in the heat flux case than in free 

heat exchange (Fig. 2.23 a,c) but the deflection in the heat flux case manages to ‘catch-

up’ with the level in free heat exchange, and has the same value at 500s. 

Considering the results for the heat distribution along the thickness of the panel for the 

case of heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 150𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
  a similar trend to that of Fig. 2.22 has 

taken place, as shown in Fig. 2.24. 

 

 

(a)                                                                          (b) 

Figure 2.24. Temperature distribution along the thickness of the panel after 100s (a) 

and general trend of the temperature distribution representing the T0(t) (b) when 

subjected to dynamically increasing heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = 150𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
. 

Thickness h is in metres, t is in seconds, and T is in oC 

 

It can be seen in Fig. 2.24, that under heat flux conditions the top surface of the panel is 

demonstrating a higher temperature than the other one (Fig. 2.24a) and the general heat 

distribution within the panel corresponds to the dynamic increase of the temperature due 

to the time variant heat flux (Fig. 2.24b). 
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The last case to consider in line with the experimental study in chapter 3 is characterised 

by a negative temperature of -20oC (Fig. 2.25). 

 

  
(a)                                                                          (b) 

 

(c)                                                                          (d) 

 

Figure 2.25. Displacement distribution in the time domain over 100s and 500s when 

subjected to heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = −20𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
   (a,b) and in the free heat 

exchange environment at -20oC (c,d), under a dynamic mechanical loading of 10t.  

Displacement W(t) is in metres and t is in seconds. 

 

As noted in Fig. 2.25 a,c, in the case of negative heat flux a larger value of the 

displacement is obtained for the heat flux case (Fig. 2.25a), comparing to the free heat 

exchange case (Fig. 2.25c), as the cooling effect contributes to the deflection introduced 

by the mechanical loading. This effect becomes even more pronounced with time (Fig. 

2.25b,d). 
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The temperature distribution pattern along the thickness of the panel due to the negative 

heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = −20𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
		and mechanical loading 10t is presented in 

Fig. 2.26a, and the general trend of the panel cooling down is described in Fig. 2.26b. 

 

 
 (a)                                                                          (b) 

Figure 2.26. Temperature distribution along the thickness of the panel after 100s (a) 

and general trend of the temperature distribution representing the T0(t) (b) when 

subjected to dynamically increasing heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = −20𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
. 

Thickness h is in metres, t is in seconds, and T is in oC 

 

It is clarified in Fig. 2.26a that for the negative heat flux the same trend takes place with 

one side of the panel being cooler, and cooling distributes along the thickness. In the 

general trend of the temperature distribution we can see the temperature going down in 

response to the negative heat flux 𝑞N∗(𝑥, 𝑦, 𝑡) = −20𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
  (Fig.2.26b) but at a 

slower rate than in Fig. 2.24 due to the coefficient being ‘-20t’. 

 

It can be noted that in chapter 5 a reflection on the FEM analysis of the honeycomb panels 

subjected to free heat exchange and heat flux is presented. The FEM work was performed 

under the supervision of the author of this thesis. This work confirms the outcomes found 

through using the analytical model. For the case of heat flux for a FEM model it was 

found that a positive heat flux resulted in a stiffer panel response. So, due to the thermally 

induced residual stress the bending opposed the direction of deformation, which was due 

to the preloading of the panel due to thermal strain opposing the point load. The 

nonlinearity due to possible snap-through behaviour was also detected (Fig. 2.27). 
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Figure 2.27. Snap-through effect [206] 

The extent of the snap-through using FEM was small as the panel was not fixed at both 

ends, and it was likely to be due to the combined resistance of the two frictionless 

supports and equally opposing thermal strain effects. This behaviour was found for two 

different FEM models: the 3D continuum model and the Geometrically Accurate (GA) 

thermo-mechanical model with heat flux.  

The outcomes for the case of free heat exchange are verified by the experimental work 

presented in chapter 3 for the panel tested in a climatic chamber under a variety of 

environmental temperatures. 

 

 

2.5. Conclusions 

1. A new modelling strategy for aluminium honeycomb composite panels has been 

suggested in this chapter, in which the physics of dynamic thermal and mechanical 

loadings are integrated into a conceptually straightforward partially-coupled modelling 

procedure coded in the MathematicaTM language, and which, in principle, can easily 

accommodate different boundary conditions and dynamically varying thermal properties. 

2. The full nonlinear dynamic thermomechanical model comprises three coupled 

nonlinear ordinary differential equations  has been derived. Previous work has shown that 

an analytical closed-form solution could only be obtained for the linearised equations and 

for static thermal and mechanical loads, and so a comparison has been undertaken here 

between this solution and a corresponding numerical solution for the full nonlinear model 

described here. The simplified analytical solution obtained in [174] has been found to be 
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useful for predicting the temperature profile through the thickness of panels with no 

appreciable loss of accuracy. However, for simulation of the displacement the system of 

coupled equations can be solved numerically quite quickly, and results are discussed. It 

is also suggested that an approximate closed-form analytical solution for this equation 

could be sought using a suitable asymptotic method, such as the perturbation method of 

multiple scales which is discussed in detail in chapter 6.  

3. A full set of numerical results has been obtained for a simply supported aluminium 

honeycomb composite panel as commonly used within industry, undergoing thermal, 

mechanical, and thermo-mechanical loading conditions. The thermal load mechanism is 

underpinned by free heat exchange and the mechanical loading in all cases comprises a 

normal constant force exerted centrally on the top surface of the panel. The configuration 

can be readily altered in terms of panel aspect ratio, boundary conditions, and load 

location. When the panel is subjected solely to a thermal load, applied by means of a fixed 

environmental temperature, then the nonlinear numerical solution for the displacement of 

the panel shows a transient oscillation over time at a commensurately small amplitude. 

The temperature distribution along the thickness of the panel is also calculated based on 

the coupled system Eq.(2.21) using the numerical solution detailed from calculations 

carried out in bespoke code written in Mathematica , and thermal stabilisation emerges 

over time, as one would expect. For a linearly increasing thermal load temperature, due 

to a significant increase of the environmental temperature and its transfer to the panel, it 

was found that the panel showed signs of accumulating thermal stresses characterised by 

the transient response and subsequent buckling displacement. The temperature 

distribution along the thickness of the panel reflected the trend of the rising environmental 

temperature. Core thickness is seen to affect the results with the thinner panels displaying 

a more pronounced thermo-mechanical response than thicker components, through a 

higher level of displacement and faster heating up process along the thickness of the 

panel. It was also found that for a dynamically increasing thermal loading the core 

temperature in a thicker panel was always ‘catching-up’ with the surface temperature and 

never reached the level of being warmer than the panel surface. In the case of constant 

mechanical loading, at constant environmental temperature, a noticeable dc offset in the 

displacement was observed, as would be expected. The temperature profile in this case 

shows a thermal stabilisation around the environmental temperature. The effect of the 

core thickness was also investigated for the case of dynamic mechanical loading at the 

constant environmental temperature, confirming the conclusions drawn before for the 
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purely thermal loading. In the case of both dynamically increasing mechanical and 

thermal loading a transient response was observed for around 5s until the mechanical 

loading dominated the response of the panel and introduced a clearer dynamically-

increasing displacement. In this case there was clear evidence of increased displacement 

due to the combined effects of the time-variant mechanical and thermal loading. 

4. A more realistic case of heat flow for a space application was also considered. In 

this case the model had to be adjusted to introduce appropriate thermal coefficients, 

prescribed heat flow and thermal boundary conditions. Results were obtained for 

simulations of a number of dynamically increasing heat flows. The results of the 

simulations for the panel exposed to the heat flux were discussed, in comparison with the 

free heat exchange conditions, and the main differences in displacement outputs as well 

as heat distribution through the thickness of the panel were discussed. It was evident that 

the high level of heat introduced by the heat flux on one of the surfaces of the panel was 

initiating thermal stresses in the panel resulting in the buckling effect. This behaviour 

resulted in a stiffer deflection response for positive values of heat flux. Negative values 

of heat flux resulted in increased deflection of the panel. The profile of the temperature 

distribution along the thickness of the panel for the case of heat flux, confirmed the 

increased temperature on the top surface of the panel with reducing temperature values 

towards the bottom surface of the panel. 

5. In this chapter the procedure for the composition of the principal Eqs.(2.1) and 

(2.12), and all the parameters, is defined with respect to the boundary and initial 

conditions, as well as the procedure for obtaining the solution coded in Mathematica. The 

process of composition of the mechanical equations of motion Eqs.(2.1)-(2.10) and 

equations describing thermal effects Eqs.(2.12)-(2.19) is fully automated in Mathematica 

code for an orthotropic type of material (Appendix A). The code is fully annotated to 

allow open access for any modifications, including when it is passed on to an industrial 

analyst. The code is generalised and not restricted to the values supplied, which means 

that the parameters described in the input section can be easily varied, and simulation can 

be performed for different type of materials. The code presented in Appendix B is the 

solution procedure for the equations derived in Appendix A as a coupled system of 

displacements in the x, y, z directions and temperature values T0 and T1, allowing 

identification of the temperature distribution T(x,y,z,t) along the thickness of the panel 

according to Eq (2.9).  
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3. Experimental study of the thermo-elastic behaviour of the honeycomb panel 

 

The materials used on the exterior of spacecraft are subjected to many environmental 

threats that can degrade them quite quickly, including the vacuum of space itself, solar 

ultraviolet (UV) radiation, ionising charged particle radiation, plasma, surface charging 

and arcing, temperature extremes, thermal cycling, impacts from micrometeoroids and 

orbital debris (MMOD), and environment‑induced contamination. In terms of material 

degradation in space, low‑Earth orbit (LEO), defined as the region from 200 to 1000 km 

above the Earth’s surface, is a particularly harsh environment because of the presence of 

atomic oxygen (AO) along with the other detrimental environmental components and 

effects [182]. The environmental threats of space to spacecraft components vary in their 

influence mainly due to the specific material properties of the component and its structural 

interconnections, its geometry, and the stresses that it undergoes during normal duty. All 

orbiting spacecraft move in and out of sunlight during their progress around Earth and the 

degree to which a material experiences thermal cycling temperature extremes depends on 

its thermo‑optical properties (specifically solar absorptance and thermal emittance), its 

exposure to the sun, its view of Earth and other surfaces of the spacecraft, the duration of 

time in direct sunlight and shadow, its thermal mass, and the influence of equipment or 

components that produce heat [182]. As a rule, the cyclic temperature variation is from 

‑120 °C to +120 °C, but high solar absorptance with low infrared emittance can contribute 

to even greater temperature swings [182]. The ISS orbits Earth approximately once every 

92 minutes and therefore experiences sixteen thermal cycles a day, and this can lead 

directly to cracking, peeling, spalling or the formation of pinholes in the coating, which 

then allows AO to attack the underlying material [182]. 

The main forms of environmental heating on orbit are sunlight, sunlight reflected from 

Earth, a planet, or the Moon, and infrared energy emitted directly from Earth. During 

launch or in exceptionally low orbits, there is also a free molecular heating effect caused 

by friction in the rarified upper atmosphere [180]. Therefore, the main conditions of LEO 

that may be highlighted are the severe temperature extremes and the thermal cycling 

experienced throughout the orbit, with an orbiting spacecraft typically completing from 

eleven to sixteen thermal cycles daily, all within a temperature range of approximately -

120 °C to +120 °C. The thermo-optical properties of the spacecraft itself can also play a 
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part in the temperature that it reaches. For instance, a material with high solar absorptance 

and low thermal emittance will experience greater temperature swings. 

In [181] an experiment was performed to investigate the thermal behaviour of a sandwich 

panel which was to be deployed as an integral part of a satellite in the space environment, 

by means of a ground thermal-vacuum test. It was highlighted that the heat sink, solar 

radiation, infrared radiation of the Earth, heat conduction, surface radiation and cavity 

radiation would all influence the temperature field, and the conclusion was that these 

combined effects would present a serious challenge for realistic thermal testing in the 

laboratory of the simulated space environment. The experiment was relatively 

sophisticated and satisfied the general requirements for the inclusion of three key 

conditions: ultra-high level of vacuum (lower than 10-5 Pa), a heat sink (down to -180 oC) 

achieved in this case by using black panels with a liquid-nitrogen cooling system, and 

thermal loading achieved through infrared lamps.  An interesting study carried out by 

[185] focused on the effect of thermal cycling in a simulated LEO environment on the 

microhardness of aluminium alloys, and subjected these alloys to cycles ranging from -

140 °C to +110 °C. This was in order to induce thermal fatigue and to study the resulting 

stress state and mechanical properties of the material. The testing resulted in cyclic plastic 

deformation which was found to lead to crack initiation, identified using a transmission 

electron microscope (TEM). A test totalling 400 thermal cycles was carried out on the 

samples and these showed an eventual decrease in hardness, and then from 300-400 

cycles the hardness started to increase with every cycle. Although rapid temperature 

changes were implied, the exact value of the rate of change of temperature was never 

stated in the study. The mechanical load was applied at intervals to test the microhardness 

of the material and was not applied simultaneously with the change in temperature. The 

study concluded that the bulk of aerospace materials that undergo periodic heating and 

cooling are damaged to varying degrees, with thermal fatigue having a significant impact 

on the mechanical properties of the materials used. Although it is difficult to recreate truly 

the conditions of LEO on Earth, such work has been attempted in the past by [186]. The 

study focused on subjecting graphite-epoxy composites to the conditions of LEO. Not 

only did the materials undergo thermal cycling similar to that experienced in LEO, but 

the environment was also in a high vacuum state while the effect of ultraviolet radiation 

was applied during heating but not during cooling. A single thermal cycle was judged to 

be from -70 °C to +100 °C and back to -70 °C again. This was with a rate of change of 

temperature of 3-5 °C per minute and a dwell-time at the temperature extremes of 15 
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minutes, giving an average cycle time of 100 minutes, typical of a low Earth orbital 

period. The results examined were for composites subjected to this environment for 8, 16, 

40 and 80 thermal cycles, in which the transverse flexural strength and transverse tensile 

strength showed the most severe reduction with thermal cycling, after 80 thermal cycles, 

with losses of 34 % and 21 % in each property respectively. It was considered that the 

matrix-dominated mechanical properties suffered the greatest loss, due to high vacuum 

and thermal cycling. Overall, the strength and stiffness of graphite epoxy composites was 

shown to decrease exponentially with increasing thermal cycles. Further work into the 

synergistic effects of high vacuum and thermal cycling was implemented by [187], this 

time on carbon fibre epoxy composites. The experiment took place in a high vacuum state 

of 133 *10-5 Pa, and a single thermal cycle was judged to be from +120 °C to -175 °C 

and back to +120 °C, with a duration of approximately 43 minutes. The experiment was 

run for 500, 1000, 1500 and 2000 cycles. Panels were then subjected to mechanical tests 

at an ambient temperature of 23 °C to observe the mechanical properties of the samples. 

The results confirmed the onset of gradual damage with increasing thermal cycles. This 

was coupled with the degradation of the fibre-matrix interface due to a weakened fibre-

matrix bond, which led to interfacial sliding. 

Some industrial experiments [2-4] involving the thermal loading of aluminium composite 

panels, but not using temperatures as extreme as those experienced in LEO, measured 

thermo-elastic deformation under thermal load with temperature steps from -20 °C to +40 

°C and with static loads imposed on the panel between 0 and 78 N – in steps of 19.6 N. 

The experiment was carried out in a climatic chamber with the measurements being 

corroborated by a finite element model. Measurements for the deflection and sample 

temperature of the structural model were taken at set temperatures using photogrammetry 

and infrared cameras to map a thermal cartographic image of the structural model, where 

temperatures were assumed as for black body conditions. Looking at the problem of a 

spacecraft panel undergoing cyclic loading from the perspective of modelling it is 

possible to find that the structure must combine the effects of thermal loading as well as 

mechanical disturbance. This is because from a physical point of view the deformation of 

a body is connected to the change of heat inside it, and therefore to the change of the 

temperature distribution in the body. So, a deformation of the body leads to temperature 

changes, and vice versa. The internal energy of the body depends on both the temperature 

and the deformation and so, in the case of a practical body, such as a spacecraft panel, 
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this necessarily undergoes processes that are intrinsically coupled, defined collectively as 

thermoelasticity [176].  

Apart from that, thermal changes in the body cause mechanical deformation in the body, 

which in return affects these thermal changes, involving two-way feedback. This means 

that the modelling techniques and representations really do have to couple the mechanical 

and thermal aspects of the problem to achieve results of adequate accuracy that describe 

the problem properly.  

It should also be mentioned that in recent years honeycomb panels have become more 

and more widely used within the aerospace industry [185, 195, 197, 207] due to their 

structural efficiency, and because they demonstrate a generally high strength to weight 

ratio. This type of design consists of two thin parallel face sheets – usually coated – 

attached to a core material that separates them. The core can be composed of different 

types of material, but the most frequently used one is a hexagonal honeycomb made from 

sheets of aluminium foil, as shown in Figure 3.1.  

  

Figure 3.1. A honeycomb sandwich panel as typically used in the aerospace industry 

 

Despite their many benefits sandwich panels do have a number of structural limitations. 

They are known to have poor resistance to impact loads, particularly when combined with 

thermal loading, due to the risk of debonding between the sandwich core and the outer 

faces under these conditions. 

It has been found in the literature that honeycombs with thicker core are characterised by 

higher strength [197] and an increase in the core density leads to an increased stiffness of 

the sandwich structure [195]. It was also shown experimentally in [211] that a change in 
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honeycomb cell size, as well as in the distance between the supports, has an impact on 

the collapse mode of the samples.  

In [212] a thermal effect of the inserts in the honeycomb core was demonstrated. It was 

concluded that any electronic equipment (including batteries) that might be attached to 

the honeycomb would cause dissipation of possibly excessive heat through the inserts 

causing additional thermal loading within the panel.  

Therefore, to the best of the author’s knowledge, there has not yet been an experimental 

investigation on the behaviour of an aluminium sandwich panel undergoing simultaneous 

thermal and dynamic mechanical loading to investigate coupling between the two of them 

and the response of the panel to harsh thermal environments of up to +100oC and down 

to -150 oC. Most authors consider the heat distribution within the material for mechanical 

testing performed after the thermal cycling has been completed. Thus, in this chapter we 

consider, for the first time, the thermoelastic response of a typical aluminium honeycomb 

sandwich panel when tested for load defection characteristics within an environmentally 

controlled enclosure. It should be noted that this type of structural panel is routinely used 

within spacecraft structures. 

 

 

3.1. Experimental set-up 

In order to plan an appropriate experiment a literature review was undertaken in order to 

study the basic thermal properties of the space environment that would necessarily have 

to be emulated. It became evident that the International Space Station (ISS) environment 

would include exposure to extreme thermal cycling, ultra-vacuum, atomic oxygen, and 

high energy radiation [182]. As discussed previously when an orbiter such as the ISS 

moves in and out of sunlight during its orbit around Earth the degree to which the outer 

structural materials experience thermal cycling temperature extremes depends on their 

thermo‑optical properties (solar absorptance and thermal emittance), exposure to the sun, 

their view of Earth and the other surfaces of the spacecraft, the duration of time spent in 

sunlight and shadow, the important thermal masses and the influences of nearby onboard 

equipment and components that produce heat [182]. As a rule, the cyclical temperature 

variation was taken to be ‑120 °C to +120 °C, acknowledging that high solar absorptance 

with low infrared emittance will contribute to greater temperature swings.  
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Therefore, the test was designed to simulate the extreme thermal environments 

experienced by the sandwich panel of the spacecraft due to the solar radiation. Based on 

the information in the open literature summarised at the beginning of this chapter, it was 

assumed that only solar radiation causes an extreme thermal impact on the spacecraft 

panel. Thus, the solar radiation was considered to vary, resulting in thermal loading from 

-150 oC up to 100 oC. 

The test sandwich panel of 300.10-3 x 100.10-3 x 15.10-3 m was composed of two types of 

aluminium alloy. For the outer skins of thickness 0.38.10-3 m an Al-2024 alloy was used, 

whilst an Al-5056 alloy foil was used to form the hexagonal honeycomb core. This core 

was of cross-sectional thickness 14.24.10-3 m and was made up from a foil of thickness 

0.0254.10-3 m. The mechanical and thermal properties of these materials are summarised 

in Tables 3.1 & 3.2, noting that the structural coefficient of thermal expansion stated in 

Table 3.2 was extrapolated from the data made available for AL-5056.  

 

Table 3.3. Mechanical properties of the sandwich panel  

 Al-2024 
            Al-5056 

   3/16 Honeycomb 

Density, ρ (kg/m3) 2780                     50 

Young’s Modulus, E (Pa) 73.1 x  109             669 x 106 

Shear Modulus, G (Pa) 27.5 x  109                    310 x 106 

Poisson’s Ratio, ν 

Foil thickness (m [in]) 

0.33 

 

                 0.3 

         0.0254x10-3 [0.001] 
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Table 3.4. Thermal properties of the sandwich panel materials 

 Al-2024 Al-5056 

Coefficient of Thermal Expansion (/°C) 

Coefficient of Thermal Expansion for 

3/16 honeycomb (/oC) 

2.47 x 10-5 

 

 

                 2.41 x 10-5 

 

2.4 x 10-6 

Thermal Conductivity @ 25°C (W/mK) 149 149 

Specific Heat (J/kg°C) 875 904 

Reference Temperature (°C) 22 22 

 

It has to be pointed out that the selection of properties was not a straightforward task. 

Airbus DS provided the panels, however they did not have the description of the 

properties that were needed. After a series of communications (summarised in Appendix 

E) some mechanical properties were identified. The thermal properties were held by a 

different branch of the company and we did not manage to get a response with regard to 

those. Therefore, separate research was undertaken into the properties. Airbus DS 

recommended the data set [23-60] which was used to approximate some of the properties. 

Apart from that, in [216] some mechanical data was considered as it was based on an 

assessment of impact damage to the sandwich panels similar to those used in various 

types of satellites and spacecraft. The satellite types researched included scientific, polar-

orbit meteorological and earth observation satellites as well as a cargo carrier vehicle that 

travelled to and from the International Space Station. Some commonly used materials 

within space structures, from aluminium alloys, metallic and non-metallic matrices and 

composite fillers, as well as commonly used honeycomb core materials and their 

properties were also discussed in [217]. However it should also be noted that thermal 

properties of materials are rarely stated in full and quite limited, with only approximate 

values available for the coefficients of thermal expansion and conduction for general 

metal groups. This limits its usefulness as an accurate source for thermo-mechanical 

properties. An investigation in [218] provides some insight into the mechanical properties 

of aluminium sandwich panels for a variety of materials.  In [219] and [220] some 
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information on the thermal properties for Al-2024 and Al-3003, as well as HSPs of a 

vented Ti-6Al-4V composition was found. In summary the process of attaining reliable 

and detailed material properties from papers and other sources proves to be a difficult 

task. However, an attempt has been made to replicate approximations of properties that 

are as accurate as possible for the panel under investigation. 

 

It was shown in [2-4] that typical models of the honeycomb panels do not take into 

account the fact that the temperature profiles within the thickness of the panel may vary, 

as in Figure 3.2. 

 

Figure 3.2. Temperature profile of a honeycomb panel [2-4] 

 

This was considered to be a very important point so it was decided to take thermal 

measurements not only on the top and bottom skins but from within the honeycomb layer 

as well, to record any disparity in the temperature within the honeycomb and the skins.  

The experiment was performed in an environmental testing chamber fitted to a computer 

driven Instron 8801 tensile and compressive testing machine of 100 kN capacity in the 

University of Strathclyde’s Advanced Materials Research Lab (AMRL), as shown in 

Figure 3.3.  
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Figure 3.3. Panel sample fitted within the Instron test machine’s heated environmental 

chamber, also showing the liquid nitrogen dewar required for cooling, and the nitrogen 

gas flow regulator system. 

 

The environmental test chamber offered a precisely controlled temperature range of -150 

°C to +350 °C (to within +/- 1 °C) and used an internal heater and a liquid nitrogen cooling 

system, which were both operated automatically by the environmental control software 

to provide closed-loop control of the thermal environment of the test. When the chamber 

is sealed there is no internal visibility, therefore the use of externally located displacement 

imaging equipment wasn’t possible and so strain gauges were used to register the 

displacement of the panel. High performance C series strain gauges from HBM UK (Fig. 

3.4) were used, with an operating temperature range from -269 to +250 oC, and a nominal 

terminal resistance of 120 Ohms. 
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Figure 3.4. Strain gauges selected for the experiment [221] 

 

To extract as much information as possible from the experiment a rosette configuration 

was used on the top and bottom faces, adjacent in each case to the centralised load point, 

with uni-axial gauges elsewhere, as shown in Fig. 3.5. 

 

Figure 3.5. Strain gauge rosette configuration shown on the upper face of the sample, 

and thermocouples T2, T3, and T4. 

 

In order to record the temperature data on the panel sample within the chamber, as well 

as to validate the distribution of the heat flux within the panel, thermocouples of type T 

from RS Components Ltd were selected, with an operating range of -200 oC to +350 oC, 
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and shown in Fig. 3.6.  

 

 

 

Figure 3.6. RS Components Ltd Type T thermocouple specifications [222] 

 

Six thermocouples were positioned on the top, bottom and middle layers of the panel to 

record the pattern of the temperature distribution in three dimensions, as shown in Fig. 

3.7. 

 

Figure 3.7. Thermocouple distribution on the test panel (a) on the top surface of the 

sample and (b) on the top and bottom surfaces, as a schematic. Note that gauges T1 and 

T2 are located halfway down the edge thickness of the panel. 

 

For this experiment a three-point bending (TPB) test, as shown in Fig. 3.8, was selected. 

The TPB test is one of the most frequently used methods of mechanical bending testing 

   
 

 

Thermocouples 

T3 T4 
T2 
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and in this case provided an assessment of the flexural behaviour of the panel when 

subjected to a transverse mechanical load at its midpoint. While this is the most 

representative loading scenario for the design of a satellite honeycomb panel, it is still a 

good representation of the forced excitation of vibration which can propagate in low-earth 

orbit satellites, without any undesirable residual stresses appearing in the simulation.  

The main advantage is the ease of preparation of the specimen and the subsequent testing. 

Disadvantages include the fact that the results obtained are often sensitive to specimen 

and loading geometries, along with strain rate. The data extracted from this test is usually 

used for selecting materials or panels used for parts that need to support loads without 

significantly flexing.  

Most experimental studies on honeycomb panels investigate the aspects of failure modes 

of material under high bending loading and /or in-panel compression [223]. 

 

Therefore since the TPB test is capable of providing us with all the necessary information 

about the deflection, the experiment comprised a TPB test, shown in Fig. 3.8, with the 

sample honeycomb panel simply supported in the thermal chamber, undergoing an 

incremental mechanical loading profile with line contact established between a 6 mm 

diameter circular loading bar and the upper surface of the plate, orientated such that the 

loading line was across the width of the plate, and centrally located along the length. The 

loading and unloading procedure was automated using the built-in control options 

embedded in the software of the Instron testing machine. The loading started from true 

calibrated zero and gradually increased up to 150 N, and then back to zero, and this was 

repeated at specific temperatures over the full range of environmental temperatures 

required, as follows:  -150 oC, -100 oC, -60 oC, -40 oC, -20 oC, 20 oC (ambient), 40 oC, 60 
oC, 80 oC, and 100 oC. It should be re-confirmed here that the process of cyclical loading 

and unloading, in the form of a dynamic mechanical load imposed over a range of 

different thermal environments, has not been reported in the literature to date, to the 

author’s knowledge [213]. 
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Figure 3.8. Three point bending test arrangement, looking end-on at the circular loading 

bar orientated across the width of the plate. 

 

The overall aim of the experiment, and a fundamental novelty of this work, has been to 

evaluate the nature and significance of the coupling between the mechanical and the 

thermal effects within an aluminium composite plate. In order to accomplish this 

successfully, given prior expectations from the literature, and insights gained from the 

author’s own modelling work in Chapter 2, the following research hypotheses were 

formulated, as a general basis for observation and interpretation: 

  

H1. Due to the different structural properties of the top, bottom, and middle plies of the 

sandwich panel, there may be a different distribution of temperature in the middle ply 

from that in the top and bottom layers. 

H2. Within the environmental chamber the environmental temperature is stabilised, but 

there may still be a significant disparity between the temperature recorded on the top and 

bottom skins. 

H3. The environmental temperature may have a significant quantitative effect on the 

bending performance as well as a generally qualitative effect on the deformation of the 

panel, and this may be due to possible thermoelastic coupling between the thermal and 

mechanical loading effects. 
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H4. The qualitative deformation characteristics of the panel at extreme environment 

temperatures may differ significantly from those observed at environmental temperatures 

that are closer to moderate ambient temperatures. 

 

In order to address these research questions systematically data was logged continuously 

for the applied load and the corresponding deflection at the load point, at the stabilised 

environmental temperature points, as well as local temperature data from the 

thermocouples located on the top and bottom skins and inside the honeycomb surface on 

the sides of the panel. This data set was then composed into suitable graphs for subsequent 

analysis. It should be noted that each set of deflection data was subject to a nonzero offset 

of magnitude 52.2707 mm, (stated here to four decimal places to replicate the setup 

accuracy for the Instron 8801 machine, running under the BluehillTM control software) 

although the effects to be described are all based on relative displacements, so this offset 

only needed to be subtracted to give the absolute displacements.  

The remaining sections of this chapter present the analysis and the findings that were 

deduced from this work, leading to conclusions formulated in the context of the defining 

research questions.   

 

 

3.2. Results analysis and discussion 

 

3.2.1. The effect of retention or loss of heat due to dynamic mechanical loading in 

extreme thermal environments, and the implications of this for modelling 

The full data set was initially considered from all the thermocouples (T1-T6) and with 

respect to the mechanical loading. This first investigation of the data was undertaken in 

order to start to understand the effect of any possible cooperation between the mechanical 

loading and the thermal conditions of the environment, and also to ascertain the nature of 

the temperature distribution along the panel in different areas of the panel. Thus, the data 

was represented graphically as the temperature recorded by each thermocouple within the 
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environmental temperatures (Tenv) of -150 oC, -100 oC, -60 oC, -40 oC, -20 oC, 20 oC, 40 
oC, 60 oC, 80 oC, 100 oC against the mechanical load (Q) from 0 N up to 150 N. 

Due to the constraints of space we present results from the 6 thermocouples only for two 

environmental temperatures of -20 oC and -150 oC , shown in Figures 3.9 and 3.10, 

together with summative findings from all data for all the environmental conditions 

considered. Graphical data for other environmental conditions are openly available from 

[213]. 
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Figure 3.9. Temperature distribution from thermocouples T1-T6 as a function of loading  

[0 N,150 N] at the environmental temperature of Tenv = - 20 oC. 
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Figure 3.10. Temperature distribution from thermocouples T1-T6 as a function of 

loading [0 N,150 N] at the environmental temperature of Tenv = - 150 oC. 
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As a result of the data analysis it can be seen that the same qualitative form of hysteresis 

is evident in the temperature readings from all the thermocouples T1-T6 for a specified 

environmental temperature Tenv. An initial but very important conclusion from this is that 

all the thermocouples performed consistently and responded in the same manner to the 

local conditions in the material of the panel. It was also found that the hysteresis is 

represented by an open loop at the following environmental temperatures: - 20 oC, - 40 
oC, ambient, and + 40 oC, see Figure 3.9 for the specific case of Tenv = - 20 oC. It is also 

seen that when operating closer to the ambient temperature, and if the panel then 

undergoes a cycle of loading and unloading, shown counter-clockwise on the Figure 3.9, 

then after unloading it does not return to its initial thermal state. Instead, it retains some 

heat after unloading, resulting in a gain of 1-2 oC over the initial state, which is indicative 

of an irreversible process, as mentioned in [135]. 

The hysteresis is represented by a closed loop at the following environmental 

temperatures: - 150 oC, - 100 oC, + 60 oC, + 80 oC, + 100 oC, and Figure 3.10 can be 

referred to for the specific case of Tenv = - 150 oC. This means that the panel appears not 

to retain residual heat when operating at the more extreme levels of environmental 

temperature, irrespective of whether or not this is positive or negative, and so after 

unloading at those temperatures it returns, reversibly, to the thermal condition from which 

it started. This is a novel finding detected only because of the cyclical dynamic loading 

and unloading regime that was specifically undertaken at extreme temperatures. 

It must be mentioned that there is a distinctly unstructured response within the loop at the 

specific case of Tenv = - 60oC, noting that this phenomenon occurred only at this particular 

environmental temperature and that this is probably an artefact of the specific material 

we have been considering. It is also evident that this unstructured behaviour occurs as a 

transition from the open loop hysteretic behaviour, which is found closer to the ambient 

environmental temperature, to the closed loop response which occurred at the more 

extreme environmental temperatures. The fact that we do not see a clear hysteretic loop 

for the loading process at this environmental temperature means we do not see a clear 

temperature difference for the loading and unloading processes. This means that the 

thermal response of the panel changes during loading and unloading, and so there might 

be a retention of heat within the panel, but we cannot predict from this data how much 

hotter the sample would be during the unloading process. Therefore, we cannot predict in 

this specific case the extent of the thermo-mechanical coupling, i.e. how the deformation 
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that occurred resulted in a change of the thermal properties of the panel, and some further 

research around this phenomenon should be undertaken in the near future. 

At the environmental temperature of -100 oC the behaviour is characterised by a bow-like 

double loop which becomes a more clearly defined single loop when the environment 

becomes colder still at -150 oC. It seems obvious that the environmental temperatures of 

-60 oC and -100 oC are defining points at which there is a transition from an open 

hysteretic loop to one that is closed, and from an irreversible thermodynamic process to 

one that is reversible. 

At the maximum load of 150 N it can be seen from Figure 3.9, 3.10 and in Appendix C 

that the loop ends at a single valued temperature for all the six thermocouples, and it was 

also noted that this is independent of the environmental temperature. This confirms the 

correctness of readings taken across the profile of thermocouples, and that the unloading 

phase starts from the point at which the maximum loading was reached. 

Therefore, the experimental results offer strong evidence of progress from an open 

hysteresis loop (at -40 oC, -20 oC, and ambient temperature) towards a closed loop, and 

this progresses either in the positive or negative temperature directions starting from the 

ambient environmental temperature, down to the extreme value of -150 oC and up to +100 
oC. There is evidence that the hysteresis loop is structurally closed at the extreme 

environmental temperatures (very hot [+100 oC] and very cold [-150 oC]), showing 

thermodynamic reversibility, and also clearly open, and therefore thermodynamically 

irreversible, when the environmental temperature gets closer to 0 oC. This means we can 

conclude that the loading of the panel in the extreme temperature environment does not 

cause an accumulation of any residual heat after unloading. However, during the 

processes of loading and unloading there is evidence of thermo-mechanical coupling, 

which results in the presence of extra heat internally compared with the heat available 

from the environment. However, at an environmental temperature close to the ambient 

temperature (noticed specifically at -40 oC, -20 oC, and at ambient itself) the open 

hysteretic loop confirms an accumulation of residual heat within the panel which is still 

present to a large extent even at the point of complete unloading of the deformed sample. 

This means that a correction factor has to be introduced for the thermal initial condition 

of a panel when it is close to ambient environmental temperature and when it has 

undergone a mechanical deformation, even if the loading has been completely removed, 

due to the tendency to irreversible thermodynamics at those environmental temperatures. 
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Further research into the identification of this correction factor should be undertaken in 

the near future, as a priority. 

It also has to be emphasised that the width of the hysteretic loop demonstrates the 

difference in the temperature of the sample at the position of loading and unloading, thus 

the extent of the heat that accumulates within the sample is due to the deformation, apart 

from that portion of heat that comes from the environment during the process of loading-

unloading.  

 

Table 3.3. Peak-to-peak (p-t-p) temperature range denoted by the width of the 

hysteresis loop  

Tenv -20 oC -40 oC -60 oC -100 oC -150 oC amb  +40 oC +60 oC +80 oC +100 oC 

p-t-p 2-3 oC 2-3 oC 1 oC 2-3 oC 2-3 oC 1 oC 1-2 oC 1 oC 1 oC 0.5 oC 

 

From Table 3.3 it is evident that the width of the temperature loop is the highest at an 

environmental temperature below 0 oC. This means that the loading and unloading 

process of a panel placed in an environment at a temperature below 0 oC will be 

accompanied by a temperature swing of up to 3 oC due to the thermo-mechanical 

coupling. Therefore, the thermal properties for such a panel cannot be assumed to be 

governed just by the temperature of the environment if a panel of this sort undergoes a 

form of dynamic mechanical loading, but would need to have a correction factor applied 

to cater for the thermo-mechanical coupling, thus guaranteeing a higher level of accuracy 

of the load-deflection prediction. 

 

 

3.2.2. Effect of the dynamic loading and extreme environmental temperature on the 

temperature distribution along the surfaces and through the thickness of the panel 

In order to analyse the temperature distribution at various locations of the panel it was 

decided to investigate how it differs from the temperature of the environment. Specific 

differences between the environmental temperature and the temperature feedback data 

from the individual thermocouples were evaluated. The intention was to see whether 
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certain areas of the panel would heat up faster in response to the environmental 

temperature. This difference was considered graphically with respect to the mechanical 

loading of up to 150 N and then unloading from there back to 0 N, for thermal 

environmental temperatures (Tenv) of -150 oC, -100 oC, -60 oC, -40 oC, -20 oC, 20 oC, 40 
oC, 60 oC, 80 oC, and 100 oC. 

In Figure 3.11 the results for 𝑇*#] − 𝑇( are presented for all 6 thermocouples, taken for 

the environmental temperature of - 20 oC as an example, and this was calculated together 

with summative findings from all the data for all the environmental conditions mentioned. 

Graphical data for other environmental conditions are openly available from [213]. 
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Figure 3.11. Distribution of the difference in temperature between the environmental 

temperature and the temperature recorded from the thermocouples (Tenv - Ti) versus 

mechanical loading. 

 

Referring again to Figure 3.7 we recall that thermocouples T3, T4 are placed on the top 

skin surface, T5 and T6 are placed on the lower surface of the bottom skin, and T1 and T2 

are fitted on both sides, directly onto the honeycomb material. Now from Figure 3.11 it 

is evident that when the environmental temperature is negative all the thermocouple data 

demonstrates the same hysteretic loop behaviour. From this we can conclude that the 

cooling of the sample at all six locations occurs in the same manner, at the same rate, and 

with the same level of thermo-mechanical effect during the loading and unloading 

processes. Conversely when the environmental temperature is positive the thermocouple 

data shows a difference in the feedback from all the thermocouples, especially when the 

environmental temperature is between +20 oC and +80 oC. This confirms that the sample 

plate’s heating-up process, during loading and unloading, can be faster at certain 

locations, especially when the environmental temperature is closer to ambient. Some 

distortion in the feedback from T4 and T6 is also evident, possibly because the strain 

gauges were attached to the skins very close to T4 and T6 which possibly resulted in a 

T6(oC) 

Q (kN) 
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slight increase in the width of the hysteretic loop. When the environmental temperature 

is going up to an extreme value, between +80 oC and +100 oC, all the thermocouples show 

results that demonstrate a generally flatter behaviour in the temperature loop output, with 

a peak-to-peak of around 0.5oC. This means that the difference between the 

environmental temperature and the thermocouple readings is smaller, implying that the 

temperature of the panel is closer to the environmental temperature, and has minimal 

thermal distortion due to the imposed mechanical loading and thus characterises a weaker 

thermo-mechanical coupling. 

 

 

3.2.3. Effect of extreme environmental temperature on the panel deflection response 

under the imposed dynamic mechanical loading  

This investigation shows how the extreme environmental temperature affects the panel 

deformation in response to gradual mechanical loading ramping up to 150 N and back 

down to 0 N. Data has been considered for the panel deflection (w) versus loading (Q) 

over the range of environmental temperatures, as follows, -150 oC, -100 oC, -60 oC, -40 
oC, -20 oC, 20 oC, 40 oC, 60 oC, 80 oC, and 100 oC.  

In this part of the study results are presented for an environmental temperature of -20 oC 

and also for the ambient temperature, as examples given in Figure 3.12, together with 

summative findings made available from the data for all the environmental temperatures 

under consideration. Graphical data for other environmental conditions are openly 

available from [213]. 
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Figure 3.12. Deflection versus mechanical loading for two different thermal 

environments. 
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It can be seen in Figure 3.12 that the load - deflection characteristics are consistent 

for both positive and negative environmental temperatures, meaning that the progressive 

changes in the panel deformation, this being the deflection at the load line, in response to 

the external loading on the panel has the same general trend for both hot and cool 

environmental conditions. There is no hysteretic behaviour in the load-deflection curve 

at the ambient temperature, but this characteristic then progresses into a clearer open 

hysteretic loop form as the environment gets colder or hotter, and it can be noted that in 

the case of the colder environments the width (i.e. the peak-to-peak) of the loop is wider. 

The peak-to-peak of the hysteretic loading and unloading loop is generally bigger for 

negative environmental temperatures, at around 0.1 mm, than for the positive cases, but 

does build up again to approximately 0.1 mm at an environmental temperature of +100 
oC. The fact that there is no hysteresis effect apparent at the ambient temperature 

environment means that the loading and unloading progression there is characterised by 

the same values of deflection. This is in line with findings from [181] where either an 

additional deflection took place, or a shift in vibration frequency [183] was evident, in 

response to the thermal changes, especially as the temperature was increased up to 

extreme values. This means that the deflection values for panels which have undergone 

some deformation do not come back to the initial values after removal of loading for 

hotter and especially for colder environments, and are characterised by some residual 

stress, and characterised thermodynamically by irreversibility. The extent of this residual 

stress is dependent on the environmental temperature to which the panel is exposed. Thus, 

another correction factor has to be introduced to account for the effect of the 

environmental temperature on the magnitude of the deformation of the panel. This further 

confirms the presence of thermo-mechanical coupling, especially for the colder 

environments. Therefore, in order to produce an accurate prediction of the deformation 

progression and regression during the loading and unloading processes, the 

environmental temperature should be the basis for introducing another correction factor 

for the deflection responses.  
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3.2.4 Effect of deflection on the temperature distribution along the surface and through 

the thickness of the panel in extreme environmental temperatures 

This penultimate analysis was undertaken to find out if the environmental temperature 

affects not only the deflection of the panel but also if the deflection affects the temperature 

distribution along the panel. This potentially provides a novel perspective into the general 

problem, since the combination of dynamic mechanic loading within extreme thermal 

environments has not been investigated before, to the author’s knowledge. To investigate 

this it was decided to consider how the temperature distribution in certain locations of the 

panel is affected by the induced deflection. Thus, the temperature feedback from 

thermocouples T1-T6 at different locations of the panel has been considered against 

deflection within the discrete fixed thermal environmental temperatures of -150 oC, -100 
oC, -60 oC, -40 oC, -20 oC, 20 oC, 40 oC, 60 oC, 80 oC, and 100 oC. 

Results are shown in Figure 3.13 for all 6 thermocouples at the environmental temperature 

of -20 oC as an example, again together with the summative findings made available from 

the data taken for all the environmental conditions. Graphical data for other 

environmental conditions are openly available from [213]. 
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Figure 3.13. Fluctuation of the temperature feedback data from the thermocouples T1-

T6 with respect to the increasing deflection due to a loading ramped up to 150 N and 

then back to 0 N, subjected to an environmental temperature of -20 oC. 

 

As can be noted from Figure 3.13, the readings from all the thermocouples show the same 

trend with respect to the deflection within a certain environmental temperature Tenv, 

except for the case of the ambient temperature for which T5 shows a flatter hysteretic 

loop, and T6 shows a wider loop for this thermocouple. This means that the deflection 

response from the surface of the panel appears to be the same, independent of the location 

of the thermocouples, except for the case of ambient environmental temperature. 

Although the thermal feedback is consistent for all thermocouples within a certain 

environment, there is evidence that the effect of the temperature of the environment Tenv 

is significant and changes the trend of the deflection-temperature behaviour of the panel. 

For the environment characterised by a negative temperature the peak-to-peak 

temperature variation, with respect to the deflection is around 2.5oC, and for the positive 

temperature environment the peak-to-peak decreases from 1.2oC down to 0.5oC at the 

hottest environment of +100 oC. There is also a dramatic difference in the way the thermal 

changes occur in the panel due to the deformation for different extreme environmental 

temperatures. This means the connection between the thermal properties of the panel and 

its deformation, and how they affect each other as the deformation progresses, and 
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essentially what defines the thermo-mechanical coupling, is affected by the 

environmental temperature within which the panel is immersed. There is hysteresis to be 

found in the thermal response to the deformation, and this gets more significant in the 

colder environments, which was observed earlier on as well. The thermal properties of 

the panel demonstrate this through a swing in the temperature of the panel of 2.5 oC during 

the unloading process. The patterns of open and closed hysteresis loops are the same as 

for the loading-temperature feedback from the thermocouples in section 3.3.1, closing for 

the more extreme environmental temperatures above +60 oC and below -100 oC. As in 

section 3.3.1 the hysteresis loop is closed to a single value at the maximum value of 

deflection. This confirms that there is a direct connection between loading and deflection, 

and the readings are consistent with the data presented for loading versus temperature of 

the panel. This is a good control point for verifying that the results are consistent for 

deflection and loading. 

It is interesting to note that when going into the extremely cold or hot environments 

the pattern of temperature feedback from the panel, with respect to the deflection, 

bifurcates as shown in Figure 3.14. This demonstrates how significantly the thermal 

changes in the environment can change the qualitative aspects of the coupling between 

the thermal properties and the mechanical deformation of the panel. 
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Figure 3.14. Fluctuation of the temperature feedback from the thermocouple T3 with 

respect to the increasing deflection due to loading up to 150 N and back to 0 N, within 

the environments of (a) -150 oC and (b) 100 oC. 

 

3.3. Effect of simultaneous mechanical loading and extreme environmental 

temperatures on the heating-up and cooling-down processes within the panel 

Thermocouple data at fixed loading and unloading points can be used to understand in a 

clearer way how the temperature is distributed along the whole panel, and how thermal 

conditions of certain areas of the panel are affected by the mechanical loading as well as 

the extreme environmental temperature. For this part of the study the following specific 

loading values were taken, noting that a small amount of approximation was inevitable in 

extracting this particular data: 0 N, 50 N, 100 N, 150 N, 100 N [unloading], 50 N 

[unloading] within the environmental temperatures of -150 oC, -100 oC, -60 oC, -40 oC, -

20 oC, 20 oC, 40 oC, 60 oC, 80 oC, and 100 oC. 
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Results are shown in Figure 3.15 for the environmental temperatures of -20 oC  and -150 
oC as examples, noting that summative findings are openly available for all the 

environmental conditions mentioned, from [213]. 
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Figure 3.15. Temperature feedback from the thermocouples T1-T6 with respect to the 

loading ramping up to 150 N and back to 0 N within the environments of (a) -20 oC and 

(b) -150 oC. 

 

From Figure 3.15(b) it can be noted that thermocouples T3 and T5 record the highest 

temperature readings for most cases, and for a variety of environmental temperatures, and 

T4 and T6 sense the lowest temperature readings. The exception to this seems to be at the 

environmental temperatures closest to 0 oC, i.e. +20 oC and -20 oC, for which T1 and T2 

detect the lowest temperature and at +40 oC when the highest temperature is demonstrated 

by T4 and the lowest by T5. From this data it is evident that in the environment where the 

temperature is close to the ambient the skins do heat up faster than the honeycomb core, 

however this trend disappears as the temperature moves to higher or lower extremes. As 

mentioned in section 3.3.2, the proximity of the strain gauges to the T4 and T6 

thermocouples seems to influence the response, and, as a result, those thermocouples 

sensed a lower panel skin temperature than thermocouples T3 and T5. It is possible to 

speculate from this that any reasonably significant geometrical imperfections, or 

extrusions, probably have to be accounted for when attempting to assimilate the thermal 

properties of the panel into the thermoelastic performance with full accuracy.  
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3.4. Conclusions 

As a result of the analyses subsequently conducted on the data generated by this 

experiment it has been found that there is strong evidence of the thermo-mechanical 

coupling effect when the panel is immersed in an environment at an extreme temperature, 

and is loaded mechanically.  

There are experimental precedents for the coupling of mechanical and thermal loading in 

certain structures, notably in NiTi-PU composites [184], and also for complex internal 

dissipation effects within aluminium structural elements constructed into the form of 

braced shear panels [184]. In addition, it is shown in [215] that hysteretic responses to 

mechanical loading are typically encountered in many different types of composite, in 

addition to plasticity effects due to isotropic strain hardening where post-yield hardening 

is observed. It is also pointed out in the conclusions to [215] that a mathematical model 

that properly represents the inherent hysteresis in a composite can potentially be used as 

a basis for thermo-mechanical simulations. It is interesting to note that the experimental 

results obtained in [184] explicitly confirm that for a given composition of the NiTi-PU 

composite the bending modulus and the area of the load-deflection hysteresis loops both 

decrease with increasing test temperature over the investigated range of 0 – 50 oC. It is 

the case that the phenomenology discussed in [184, 214, 215] is specific to those 

particular material compositions, and different in each study, and therefore not exactly 

the same as reported here. But it is important to note that there are parallels in terms of 

the stated thermo-mechanical dependencies with some of the key observations made in 

this chapter.    

On the basis of the experimental work reported in this chapter, there is evidence that 

thermal loading caused by the extreme environment affects the deflection value and the 

level of residual stresses, and conversely the mechanical loading affects the heat 

accumulation and distribution within the panel. The following points may be made to 

elaborate a little further on this general finding. 

 

 - The extreme temperature environment does not cause an accumulation of any residual 

heat after unloading. However, during the processes of loading and unloading there is 

evidence of thermo-mechanical coupling which results in the presence of extra heat 

internally within the structure compared to the heat available from the environment, and 
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this can result in a temperature swing of up to 3 oC. If the environmental temperature is 

close to the ambient temperature (specifically noted for the cases at -40 oC,   -20 oC, and 

ambient) then there is an accumulation of residual heat within the panel which is still 

present to a large extent even at the point of complete unloading of the deformed sample, 

indicating thermodynamic irreversibility for an environmental temperature close to the 

nominal ambient.  

- It was found that the environmental temperature effect is significant and that it changes 

the trend of the deflection - temperature behaviour of the panel. The deflection of the 

panel affects the distribution of the heat within the panel resulting in a localised 

temperature swing in the material of around 2.5 oC if deformed in a cool environment and 

up to 1.2 oC in warmer environments; 

- There was no evidence of residual stress accumulation only in the case of the panel 

operating in the ambient temperature environment. For negative environmental 

temperatures and the higher positive temperatures the deflection values for a panel which 

has already undergone some deformation did not come back to the initial values after the 

removal of the loading, and were characterised by the presence of some residual stress, 

and thermodynamic irreversibility. The extent of this residual stress is dependent on the 

environmental temperature within which the panel is immersed. For the sample 

considered here the deflection during unloading in a very cold environment could reach 

up 0.1mm lower than the corresponding value during loading. This confirms the 

damaging effect of thermal loading on the mechanical properties described in [185-187].  

- Although there was no significant thermal swing initiated by deflection within the panel 

geometry at a certain fixed environmental temperature, there is a dramatic difference in 

the way the thermal changes occur in the panel due to the deformation for different hot 

or cold environments. This means that the connection between the thermal properties of 

the panel and deformation, and how they affect each other as the deformation progresses 

- constituting the thermo-mechanical coupling within the panel, is defined by the 

temperature of the environment in which the panel is immersed. There is hysteresis to be 

found in the thermal response to the deformation, which gets more significant for the 

colder environments, and the thermal properties of the panel demonstrate this through a 

swing in the temperature of the panel of 2.5oC during the unloading process.  
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Therefore, in order to produce an accurate prediction of the deformation progression and 

regression during the loading and unloading processes, as well as the heat distribution 

along the panel geometry, it is recommended to introduce corresponding correction 

factors to account for:  

- the effect of the environmental temperature on the magnitudes of the deformation of 

the panel; 

- the initial thermal conditions of a panel which has undergone a mechanical 

deformation, even if the loading has been completely removed. The thermal properties 

for such a panel cannot necessarily be assumed to be fully controlled by the value of the 

environmental temperature if the panel also undergoes mechanical loading. 

 

This study has shown that the panel tends to cool down in a relatively uniform way in all 

three dimensions. However, the heating up process is not uniform and there is some 

localised heating resulting in certain hot-spot areas accumulating more heat than others. 

This is the case if the panel is in an environmental temperature between ambient and +80 
oC. In the more extreme thermal environment the sample heats up more evenly and 

reflects the temperature of the environment linearly, even while being mechanically 

loaded. It can be noted that in [211] where an attached battery resulted in higher heat, 

there was also evidence of increased heat around the attached strain gauges, noting that 

these are passive devices that are conducting small currents due to their connection to the 

conditioning bridge electronics. 

From the data obtained during this experimental work it is evident that in the environment 

with the temperature close to the ambient the skins do heat up faster than the honeycomb 

core, however this trend disappears as the environmental temperature moves to higher or 

lower extremes.  

An interesting observation is that when going into the more extreme hot or cold 

environments the pattern of temperature feedback from the panel, with respect to the 

deflection, bifurcates, as shown in Figure 3.14, demonstrating how significant the thermal 

changes of the environment can be for the pattern of the coupling between the thermal 

properties and the mechanical deformation of the panel. 
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4. Correlation of the results from the analytical model with the experimental data 

 

In this chapter an analytical-numerical coupled model has been derived to predict the 

effects of dynamic thermo-mechanical loading on aluminium composite panels 

specifically in the form of metallic skin sandwich structures, for the purposes of enhanced 

design of spacecraft structures where the environmental conditions comprise combined 

mechanical and thermal loading. The mechanical loading can arise as a consequence of 

localised structural dynamics, and the thermal loading is attributable principally to the 

effects of solar irradiation and eclipse during a satellite’s orbit, and together they have the 

potential to influence de-point adversely, in particular. On this basis the importance of a 

combined physics model has been highlighted for dealing with the generalised 

thermoelastic problem. The research analysis presented in this chapter has considered the 

results from the refined model described in Chapter 2 and then developed for an aerospace 

application in the form of an analytical-numerical solution for the thermoelastic problem 

in aluminium composite panels. The results obtained were correlated with the data 

obtained from the experimental work presented in Chapter 3 to verify the accuracy of the 

analytical model.  The model is explored for a panel under a range of centrally located 

static mechanical loads, in conjunction with thermal loading provided in the form of 

various controlled and elevated environmental temperature functions, all for prescribed 

physical boundary conditions to simulate the experimental tests performed in Chapter 3.  

 

The sandwich panel considered is composed of two grades of aluminium alloy. For 

the outer faces of thickness 0.38.10-3 m, an Al-2024 alloy is used, whilst an Al-5056 alloy 

foil is used to form the hexagonal honeycomb core. This core is of depth 14.24 x10-3 m 

and comprises a foil of thickness 0.0254 x10-3m. The mechanical and thermal properties 

of these materials, excluding the adhesive, are summarised in Tables 3.1 & 3.2, noting 

that the data in Table 3.1 does not contain explicit information on the thin film adhesive 

bonding of the core to the skin. It should be noted that the density of the Al-5056 core is 

much lower than that of the Al-2024 skins because it is an average figure covering the 

material itself and the volumetrically large voids within the honeycomb. This data is also 

consistent with the data used in previous chapters. 
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A numerical simulation of the analytical model is presented for the solutions obtained 

for the system (2.20) with full nonlinear coupling terms, and by exploiting the powerful 

numerical functions within NDSolve. The loading is considered as a combined thermo-

mechanical load consisting of a constant thermal component and a dynamic mechanical 

component. 

The plate-like panel under consideration is of the dimensions provided in Table 4.1. 

These properties, as well as loading conditions and boundary and initial conditions, are 

considered for verification of the performance of the model against the experimental 

results presented in Chapter 3. 

 

Table 4.1: Dimensions of Sandwich Panel Sample 

Length, a 

(x10-3 m) 

Width, b 

(x10-3 m) 

Face Thickness 

(x10-3 m) 

Honeycomb 

layer thickness 

(x10-3 m) 

  

Honeycomb     

Cell size (m) 

Foil 

Thickness 

(m) 

300 100 0.38 14.24 
0.0048  

(3/16 in) 

2.54 x10-5 m 

(0.001 in) 

 

The panel was considered to be simply supported and was analysed under dynamic 

mechanical loading increasing up to 160 N while being positioned within an 

environmental chamber exhibiting thermal loading in the form of a variety of thermal 

environments. Within the analytical model thermal loading was applied by means of 

imposing different environmental temperatures in order to represent free heat exchange 

conditions similar to those of the experiment in Chapter 3, and mechanical loading was 

taken as a dynamically increasing normal force governed by Q=q(t)=10*t to simulate a 

ramped increase up to 160N after 16s had elapsed, and this is applied centrally to the top-

face sheet. 

It should be pointed out that in the experiment an initial displacement was introduced to 

more clearly portray the gradual displacement that emerged naturally within the 

experiment, therefore in order to calculate the actual displacement from the graphs 

presented in Appendix C the initial displacement has to be deducted (see example in 

Fig.4.1). 
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Figure 4.1. Subtraction of initial displacement from the raw experimental data. 

Based on the results presented graphically in Appendix C the maximum value of the 

actual displacement is summarised in Table 4.2. These outputs from the experiment will 

be used for verification of the model discussed in this chapter. 

 

Table 4.2: Maximum actual displacement presented in Appendix C at maximum 

mechanical loading of 160N 
Temperature of 

environment (oC) 

 

100 

 

80 

 

60 

 

40 

 

20 

 

-20 

 

-40 

 

-60 

 

-100 

 

-150 

Maximum 

displacement (x10-

3 m) 

0.7 0.5 0.45 0.45 0.4 0.3 0.3 0.25 0.25 0.2 

 

4.1 Displacement distribution in response to the dynamic mechanical loading and 

variable environmental temperature 

When elevated temperature conditions apply at the outer faces of the sandwich panel, 

representing the free heat exchange condition, these faces will heat up first of all, with 

the heat then distributing from the outer faces inwards towards the centre of the core. To 

understand the process of displacement due to the heating-up process, as well as the 

Tenv = - 20 
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characteristics of the thermal gradient along the thickness, constant value of the 

environmental surround temperature of 100oC, 80oC, 60oC, 40oC and ambient as 20oC 

were applied with the ambient reference temperature set to 20oC, and a solution for the 

system of Eq. (2.20) was obtained using the NDSolve function in Mathematica and 

presented in Fig 4.2-4.6, corresponding to the temperature of the environment. 

 

 

(a)                                                                                              (b) 

Figure 4.2. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of 100oC.   

 

  

(a)                                                                                              (b) 

Figure 4.3. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of 80oC.  
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(a)                                                                                              (b) 

Figure 4.4. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of 60oC.  

 

   

(a)                                                                                              (b) 

Figure 4.5. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of 40oC.  
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(a)                                                                                              (b) 

Figure 4.6. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environment of ambient temperature.  

 

Figures 4.2-4.6 (a) demonstrate the maximum value of the displacement after 16s when 

it has reached 160N according to the loading being represented by q(t)=10*t, as 

corresponding with the experimental study in [225]. As can be seen in Figs 4.2-4.6 (a) 

there is evidence of an increasing trend in the maximum displacement value, where it is 

seen to be increasing with the elevating temperature of the environment. This confirms 

the pattern of behaviour demonstrated in Chapter 3 and is summarised in Table 4.2. It can 

be justified by the presence of a softening effect of the material within hot environments. 

This trend becomes even more evident with time, as can be observed in Figs 4.2-4.6 (b). 

In Figs. 4.2-4.6 we can also see clearly the reflection of the dynamically increasing 

mechanical loading in an almost linearly increasing behaviour of the displacement 

response. This accords with practical expectations for a plate under this form of loading, 

as well as with the results for loading up 160 N from the experiment in Chapter 3.  

The principal features of the displacement responses are the transient over time and the 

largely symmetrical peak to peak amplitudes. It is also important to note that the peak-to-

peak transient disturbance increases with the harshness of the environmental temperature, 

and this confirms the coupling between the environmental heat and the mechanical 

deformation, and the fact that harsh environments bring in a destabilising effect into the 

panel’s response when undergoing mechanical loading.  

 

5 10 15 20

-0.00004

-0.00002

0.00002

0.00004

0.00006

20 40 60 80 100

-0.00004

0.00001

0.00006

0.00011

0.00016

W(m) W(m) 

t(s) 
t(s) 



   193 

To understand the process of the displacement distribution due to the cooler or even 

extreme environmental conditions constant environmental surround temperatures of -

20oC, -40oC, -60oC, -100oC and -150oC were applied. A solution for the system of Eq. 

(2.20) was again obtained using the NDSolve function in Mathematica and presented in 

Fig 4.7-4.11 corresponding to the environmental temperature. 

 

   

(a)                                                                                              (b) 

Figure 4.7. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of   -20oC.  

 

   

(a)                                                                                              (b) 

Figure 4.8. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of   -40oC.  
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(a)                                                                                              (b) 

Figure 4.9. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of   -60oC.  

 

 

   

(a)                                                                                              (b) 

Figure 4.10. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of   -100oC.  
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(a)                                                                                              (b) 

Figure 4.11. Displacement response in the time domain when subjected to 

increasing mechanical loading (a) up to 160 N at 16s and (b) – further loading in time, 

within an environmental temperature of   -150oC.  

 

 

An analysis of the response of the panel to the same increasing mechanical loading 

q(t)=10*t but for a colder environment going down to the harsh extreme of -150oC (Figs 

4.7-4.11), confirms the trend demonstrated in Chapter 3 which is summarised in Table 

4.3. The maximum value of the displacement is reached at 16s and corresponds to 160N 

and is decreasing with decreasing environmental temperature (Figs 4.7-4.11 (a)) and this 

can again be justified by a hardening effect of the material within the colder environment. 

This trend becomes even more evident at times beyond 16s, as can be observed in Figs 

4.7-4.11 (b). This hardening effect in a colder, harsher, environment also impacts on the 

transient response. The symmetrical peak to peak amplitude response of displacement 

clearly decreases, demonstrating stiffer structural properties. However, this ‘suppression’ 

of the amplitude might be characterised by a higher frequency response. This confirms 

the coupling between environmental temperature and mechanical deformation, and the 

fact that a colder environment is still characterised by a destabilising effect into the 

panel’s response when undergoing mechanical loading.  

In Figs. 4.7-4.11 we can clearly see again the reflection of the dynamically increasing 

mechanical loading in an almost linearly increasing behaviour of the displacement 

response. 
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Table 4.3: Maximum actual displacement presented in [213] and obtained from 

analytical model at a maximum mechanical loading of 160 N 
Temperature of 

environment (oC) 

 

100 

 

80 

 

60 

 

40 

 

20 

 

-20 

 

-40 

 

-60 

 

-100 

 

-150 

Maximum 

displacement 

Experimental 

(x10-3 m) 

0.7 

 

0.5 0.45 0.45 0.4 0.3 0.3 0.25 0.25 0.2 

Maximum 

displacement 

Analytical (x10-3 

m) 

0.3 0.15 0.1 0.08 0.06 0.053 0.05 0.045 0.04 0.03 

 

It has to be pointed out that the disparity in the results from an experimental study and 

analytical model in in Table 4.3 occurs due to the possible inconsistency in material 

properties. Some properties required for the analytical model were not available for the 

sample tested in Chapter 3, therefore typical properties for Al-2024 and Al-5056 were 

assumed for some of the required material parameters. 

In order to verify the response of the model the case of a larger plate of dimensions 0.8 x 

0.8 m, otherwise with the same properties and under the same mechanical loading in an 

environment of 100oC, was considered with the results shown in Fig. 4.12. 

 

   

(a)                                                                                              (b) 

Figure 4.12. Displacement response for a larger panel 0.8x0.8 m when subjected to 

increasing mechanical loading up to 160 N within an environment of 100oC.  
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Comparing the response in Fig. 4.12 with the results presented in Fig. 4.2, the panel 

under consideration with the same thickness, but larger length and width dimensions, 

responds with a larger displacement, as expected for a large thin plate. 

 

4.2 Temperature distribution along the thickness of the panel in response to the 

dynamic mechanical loading and variable environmental temperature 

When elevated temperature conditions apply at the outer faces of the sandwich panel, 

representing the free heat exchange condition, these faces will heat up first of all, with 

the heat then distributing from the outer faces inwards towards the centre of the core. 

However, because of differences in the material of the skins and the honeycomb core, it 

is reasonable to predict a nonlinear temperature distribution along the thickness of the 

panel. This effect is very difficult to explore experimentally, especially if the panel is 

relatively thin. But the model applied in this paper allows us to predict the dynamic 

distribution of the heat along the thickness of the panel. 

To understand the process of heating up or cooling down of the panel in response to the 

high or low environmental temperature, the following values for the constant 

environmental surround temperature were taken, 100oC, 80oC, 60oC, 40oC, ambient at 

20oC and then down to -20oC, -40oC, -60oC, -100oC and -150oC in line with the 

investigation of the displacement response considered in Chapter 2 and 3. A solution for 

the system of Eq. (2.20) and Eq. (2.7) was obtained using the NDSolve function in 

MathematicaTM and presented in Fig 4.14-4.16 for environmental temperatures of 100oC, 

20oC, -150oC and in Appendix F for 80oC, 60oC, 40oC and then -20oC, -40oC, -60oC, -

100oC. 

It should be noted that the thickness of the panel in Figs 4.14-4.16 is along the X 

coordinate and the temperature readings are along the Y coordinate, as shown 

schematically in Fig 4.13.  
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Figure 4.13. Representation of the panel for interpretation of temperature distribution 

across the thickness in Figs 4.14-4.16 

t=0.1s.                                                                     t=1s 

  

(a)                                                                                              (b) 

t=5s.                                                                     t=10s 

  

(c)                                                                                              (d) 

Figure 4.14. Temperature distribution across the thickness of the panel (x coordinate) 

when the panel is under dynamic mechanical loading and in an environmental soak 

temperature of 100o C, presented for different instants in time. 
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t=0.1s.                                                                     t=1s 

     

(a)                                                                                              (b) 

t=5s                                                                     t=10s 

  

(c)                                                                                              (d)   

Figure 4.15. Temperature distribution across the thickness of the panel (x 

coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of 20o C, presented for different instants in time. 

t=0.1s                                                                     t=1s 
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t=5s                                                                     t=10s 

   

(c)                                                                                              (d) 

Figure 4.16. Temperature distribution across the thickness of the panel (x 

coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of -150o C, presented for different instants in time. 

 

By fixing the time steps and observing the progression of the temperature distribution 

through the plate we see the main stages of the temperature stabilisation process that are 

also described in [174]. In brief, this amounts to the following. By applying heat to the 

plate through an elevated environmental soak temperature the temperature distribution 

through the thickness is as shown in Fig. 4.14(a), with the temperature of the honeycomb 

core being close to the top skin temperature but slightly cooler by 1.8 oC , and after 1s 

(Fig.4.14(b)) this stabilises and settles within a small difference of 0.2oC between that of 

the skin temperature and the honeycomb core. The process of reaching the equilibrium 

temperature due to the plate heating-up progresses further with time, and after 5s an 

equilibrium temperature is reached and the profile thereafter remains constant in time 

exhibiting a small difference in temperature between the core and the skins of about 

0.03oC (Fig. 4.14(c-d). 

On analysing the history of the thermal outputs over time for other environments in Figs. 

4.15, 4.16 and in Appendix F, it is evident that the plate is undergoing a similar process 

of stabilisation, and reaches the equilibrium state with a small residual disparity in 

temperature between the skins and core.  
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From the parabolic output in Figs. 4.14 it is also obvious that at the start of the 

heating-up process (time step t = 0.1s), when the heat is only just starting to distribute 

through the thickness of the panel, the temperature in the middle is lower than in the skins. 

However, as the heating-up process progresses, the core, made of thinner honeycomb 

aluminium, tends to heat up slightly further demonstrating a higher temperature reading 

around 0.03oC than that of the skins. A similar flip in the behaviour can be observed for 

the cooling process shown in Figs.4.16, with around 0.04oC difference between the skins 

and the core temperature. These internal transformations due to the heating-up or cooling-

down process could be the key to an explanation for the transient response demonstrated 

in the displacement response which is clearly driven by the environmental temperature.  

 

 

4.3. Conclusions 

1. A new modelling strategy for aluminium honeycomb composite panels widely 

applied in aerospace structures, has been considered in this thesis. The physics of dynamic 

thermal and mechanical loadings have been integrated into a conceptually straightforward 

and partially coupled modelling procedure coded in the MathematicaTM language which 

can accommodate different boundary conditions, dynamically varying thermal properties, 

and dynamic forms of mechanical loading. 

2. In this chapter the panel presented in the experimental set up in Chapter 3 has 

been considered to verify the analytical model through comparison of the maximum 

displacement of the panel, as well as the influence of the environmental temperature on 

the magnitude of displacement induced by a dynamic mechanical loading. The same trend 

of the higher displacement response in hotter environments and the lower displacement 

response in cooler environments was found, confirming the associated predictions of the 

analytical model developed in Chapter 2. It was also found that the displacement response 

was characterised by the transient behaviour, dependent on the environmental 

temperature, confirming the coupled effects of thermal and mechanical loading.  

3. The model was also used to predict the dynamic thermal response of the material 

within the thickness of the panel, demonstrating a nonlinear temperature distribution 

profile within the thickness of the panel which is very difficult to perform experimentally. 

It was also found that during the heating up process the core remains at a lower 

temperature than the skins were at the beginning of the heating up process. However, 
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there was also evidence of heating up of the core beyond the skin temperature by a very 

small amount. Although the difference between the temperature of the core and the skins 

at the end of the transformation was very small, it still gave an indication of some 

nonlinear transformational phenomena occurring within the thickness of the panel when 

undergoing mechanical loading within the harsher environments. This of course might be 

more significant for larger or thicker panels and could be particularly significant for large 

aerospace structures exposed to harsh thermal cycles. 

4. These internal transformations due to the heating-up or cooling-down processes 

could be the key to the explanation of the transient response demonstrated in the 

displacement response as driven by the environmental temperature. It is also hypothesised 

that the frequency of the transient response might be higher due to the amplitude 

‘suppression’ in cooler environments due to the material stiffening effect, which could 

potentially introduce a parasitic resonance contributing to the problem of de-point of the 

parent satellite structure. This is still to be investigated in future research.    

5. It also should be concluded that inclusion of the coupling effect between 

mechanical and thermal phenomena is essential in the process of modelling since there is 

strong evidence of their influence on the final dynamic behaviour of the system, which 

can also potentially be significant due to the effect of resonance.       
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5. Discussion of the results from a Thermomechanical Finite Element Model for a 

Honeycomb Sandwich Panel 

 

This chapter reflects on the FEM work performed under the supervision of the author of 

this thesis. The full output of this work is presented in Appendix H as a journal paper 

being prepared for submission for publication. In this chapter the main outcomes from 

the paper which relate to this PhD project are discussed. Particular attention is paid to the 

simulation results for the heat flux thermal loading conditions, since the experimental 

work was performed for free heat exchange conditions only. 

During space operation, mechanical loading on the panels is typically small and is 

restricted to vibrational loads from either the operation of machinery on the structure 

(such as adjustable solar panels) or impacts with space debris. Therefore, we are 

continuing to concentrate on the low-level vibration for a honeycomb sandwich panel 

(HSP). From the FEM approach the simplest approach to modelling HSP behaviour is a 

simulation using the FE method to obtain a detailed 3D model. Up until as recently as 

2006 this approach would generally have been dismissed as unrealistic due to the 

computational demands but is now much more feasible [228]. Alternatively, a continuum 

model can be developed. This assumes that portions of the panel can be modelled as a 

homogenous solid with orthotropic material properties. This approach has been well 

researched and widely used due to its significant simplifications. However certain 

limitations of this approach mean that localised effects cannot be represented and the core 

does not even provide any support across the surface of the face sheet [229]. 

2D models have also been explored by several researchers notably in [230] and [229] who 

both considered a range of methods of interpreting the honeycomb core as a 2D model.   

As is evident from Chapter 1, technology for space and aircraft applications involving 

honeycomb based structures has progressed, and a need for higher precision modelling 

has become noticeably more acute. Previously it has been emphasised that modelling of 

both the effects of heat and vibration had been separated in FE models to minimise the 

computational cost. However, there is more and more evidence of coupling and important 

mutual interactions between these two phenomena. Therefore, considering the 

advancement in modern FE techniques an attempt to include the coupling effect of the 

thermo-mechanical behaviour in the FE model was undertaken in Appendix H. It was 
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also important to investigate the accuracy of different FE approaches and their 

computational cost, in comparison to the analytical model developed in Chapter 2.  

 

 

5.1 FE Models developed in [Appendix H] 

Following the approach adopted in Chapters 2-4 to investigate the effect of coupling in 

the FE model a HSP was subjected to thermo-mechanical loading under three-point 

bending.  

The methodology for the model was separated into mechanical loading (the mechanical 

model) and a combination of thermal and mechanical effects (the thermo-mechanical 

model). The mechanical model was used for verification purposes with the data presented 

in [232] and thermo-mechanical model produced novel results which are significant for 

the current work presented in this thesis. 

The HSP geometry, F1.5-T0.07-H15-L4 was chosen, following the work by Sun et al in 

[232] (Fig.5.1).  

 

Figure 5.1. Three Point Bending Geometry 

For this model the material properties from [232] were adopted for the geometry in 

ANSYS, the Young’s modulus, the Poisson ratio, and the density for the A5052 skin alloy 

and the A3003 foil used for the honeycomb core, as summarised in Table 5.1. The choice 

of the material in this work was driven by the availability of the necessary material 

properties for a FEM simulation. 
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Table 5.1. Reference Material Properties from [232] 

 

In the Static Structural analysis the core was assigned as AA3003, the skin-plates as 

AA5052, and the supports were assigned as structural steel. Bonded contacts were used 

between the honeycomb and the skin, omitting the presence of a layer of adhesive, as can 

be seen in Figure 5.2. 

 

 

Figure 5.2. Geometrically Accurate Contact Modelling [Appendix H] 

Frictionless contacts were used between the rods and the panel skins with the interface 

treatment set to “adjust to touch”. This allows the panel to slide against the supports 

during bending, simulating real world conditions. 

The mesh size was controlled with body sizing, where both skin plates (hex elements) 

and core (tetrahedral elements) were sized at 2mm. The tetrahedral mesh (Figure 5.3) was 

a trade-off to minimise the computational cost and was kept the same for all analyses to 

ensure consistent behaviour. 
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Figure 5.3. GA Tetrahedron Mesh Quality [Appendix H] 

The two bottom rods were fixed in place, while the top rod was displaced in the negative 

y-direction by 1mm to create bending (Figure 5.4). 

 

Figure 5.4. GA - Boundary Constraints [Appendix H] 

 

The motion of the panel was constrained by creating a face split on the bottom face of the 

panel and applying a displacement constraint to that split. This constrained the centreline 

of the panel to move only in the y-direction. A force reaction probe was applied to the 

displaced rod to measure the load against the displacement, so that the model could be 

validated by the test data. 

For temperature dependent analysis the data was sourced through the GRANTA Edupack 

material database considering the material with broadly the same chemical composition 
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and mechanical properties, the A3000/5000 series. The chosen materials are detailed in 

Table 5.2. 

 

Table 4: Material Selection, Temperature Dependent Data 

Edupack Material Data 

Material Properties Paper AA5052 A5052H32 Paper 

AA3003 

A3105 O 

E (GPa) 69 70-73.6 69 69-72 

Temperature dependent data?  yes  yes 

Yield (MPa) 138 152-172 94 86-95 

Temperature dependent data? no yes no no 

Thermal Conductivity W/m°C no 140-152 no 169-175 

Specific Heat Capacity J/kg°C no 963-1000 no 879-915 

CTE (microstrains/°C) no 23.7-24.9 no 23.4-24.6 

Temperature dependent data? no Yes no yes 

 

The free heat exchange conditions were simulated through varying the environmental 

temperature of a static structural analysis. This homogenous temperature distribution 

throughout the panel was a simplification of the actual temperature distribution, 

especially considering an application to space structures. However this was considered to 

be an acceptable simplification since the purposes of this analysis was to show general 

trends in mechanical response.  

In the thermo-mechanical model with heat flux applied, a more complex varying 

temperature distribution was applied to the panel, in order to emulate more closely the 

conditions of a satellite in orbit. In the steady state thermal analysis (Figure 5.5), the 

desired temperature was set, and the convection at the opposing surfaces was adjusted 

such that the required temperature gradient was created within the panel.  The supports 

were excluded from the static thermal analysis through the ‘element birth and death’ 

feature. 
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Figure 5.5. Steady State Thermal Boundary Conditions and Project Tree [Appendix H] 

Multiple load case scenarios were created under extreme temperature gradients (22°C to 

150°C as well as –150°C to 22°C) to observe correlation with results obtained from the 

application of an analytical model and also obtained experimentally in Chapters 2 and 3. 

Simulations for the panel were developed and analysed for scenarios with and without 

mechanical loading. 

 

 

5.2. Simulation results for three FE models 

To investigate the aspects of accuracy and computational cost, the panel was modelled 

by applying three different FE approaches: the 3D Geometrically Accurate Model, the 

3D Continuum Model, and the 2D Continuum Model. 

 

5.2.1. Output for 3D Geometrically Accurate Model  

Considering the manufacturing techniques used for honeycomb cores it was concluded 

that the most common procedures were to introduce double wall thickness through the 

expansion method, and this was adopted for the 3D Geometrically Accurate Model (3D 

GAM). As can be seen in Fig. 5.6 the double thickness models demonstrated a more 

accurate prediction for the panel’s behaviour. 
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Figure 5.6. Validation of GA Double Thickness Model [Appendix H] 

Thermo-mechanical behaviour for the 3D GAM was considered within the range of 200N, 

which typically occurs within the first 0.1mm of deflection.  

The first simulation for the 3D GAM was run for the free heat exchange condition 

introduced by changing the environmental temperature within the static structural 

analysis. Results for a variation of thermal environmental conditions can be observed in 

Figure 5.7. 

 

Figure 5.7. Thermomechanical Response of Varying Environmental Temperature 

(200N Range) [Appendix H] 
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As can be seen in Fig.5.7, a high temperature environment causes a decrease in the panel 

bending stiffness, whereas low temperatures increase the panel bending stiffness. The 

change in panel response at high temperatures is less varied than at lower temperatures (a 

10°C difference in temperature will create a larger deviation in panel response at high 

temperatures than at a low temperature). From -50°C to 22°C there is hardly any change 

in behaviour, then a large jump from -100°C to -50°C, and again very little change from 

-200°C to -100°C. It is apparent that the impact of temperature is notable even at these 

low load and displacement conditions. This observation is directly related to the material 

model and has been similarly observed in the experimental Three Point Bending test of 

aluminium honeycomb sandwich panels under extreme temperature conditions [225]. 

Overall, smaller deflections occur in cold conditions and larger deflections occur in hotter 

conditions, and the extent of the deviation of deflection from room temperature increases 

at temperature extremes which is in line with the experimental results presented in 

Chapter 3 and summarised in Table 4.2, as well as the analytical model results in Chapter 

4.  

 

The thermo-mechanical model with heat flux allowed the creation of a more detailed 

FEM, capable of showing the mechanical response to thermal loading and combined 

thermo-mechanical loading. This was achieved by coupling a thermal analysis to a 

mechanical analysis in ANSYS. In this case it is hypothesised that the heat would cause 

an expansion of the panel, which may change the panel response which is quite often 

assumed to be negligible. The displacement of the panel due to the applied mechanical 

force, as well as the heat flux, can be seen in Figure 5.8. 
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Figure 5.8. Force Displacement Response of GA Heat Flux Models [Appendix H] 

As can be observed in Fig.5.8, the behaviour of the panel subjected to positive and 

negative heat flux appears to be different. The negative heat flux appears to be 

inconsistent in the initial displacement. It has to be noted that similar signs of initial 

buckling with follow on snap-through were also found in the analytical model for the heat 

flux condition (Section 2.4, Chapter 2). This could be due to the panel deforming from 

the thermal strain in the same direction that the puncher displaces the panel. Obviously 

this could be the case the other way round, for positive heat flux if the puncher was 

displacing the panel in an opposite direction. In Fig.5.8 the positive heat flux results in a 

stiffer panel response, which is due to the preloading of the panel due to thermal strain 

opposing the puncher, and this is in line with the results obtained for the analytical model 

in Chapter 2.  

 

5.2.2 Simulation results for the 3D Continuum Model 

The Continuum Modelling (CM) approach simplifies the GA Model by replacing the 

honeycomb core with an equivalent, homogenous, orthotropic material, in the form of a 

solid 3D element (Fig.5.9). In the development of this model an attempt was made to 

derive a model that would be just as accurate as the GA model, but with a much lower 

computational cost. The identification of equivalent material properties is the most 

important part of the development of the continuum model and this was discussed in detail 
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in [Appendix H]. A mesh convergence study was also conducted to identify the optimal 

mesh with the purpose of computational cost saving. 

 

Figure 5.9. 3D Continuum Model Setup [Appendix H] 

The model was considered for both heat exchange ranging from -150°C to 150°C and 

heat flux in the range of ±150-22°C similar to the 3D GAM. Results for the 3D continuum 

mechanical model for the panel subjected to changes in environmental temperature and 

under mechanical loading are presented in Figure 5.10.  

 

 

Figure 5.10. Force Displacement of CM at Varying Environmental Temperature 200N 

Range [Appendix H] 

As can be noted in Fig.5.10 the temperature-dependent continuum model showed the 

same trends as the 3D GAM: higher temperature causes lower stiffness; lower 

temperature initiates higher stiffness, demonstrating a clear separation of panel behaviour 
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for changes in environmental temperature, over the 200N range. Therefore it was 

concluded that the 3D GAM results and the 3D continuum mechanical model results were 

found to be in good agreement. 

Results of the simulation for the thermal effect introduced with heat flux were similar to 

the ones for the 3D GAM approach, and are presented in Figure 5.11. 

 

Figure 5.11. Force Displacement Response of the CM Panel at Varying Heat Flux 

[Appendix H] 

As can noted in Fig. 5.11 for the positive heat flux, due to the thermally induced residual 

stress and bending opposing the direction of deformation the overall panel response is 

stiffer, which is once again in line with the results in Section 5.2.1, and the conclusions 

for the analytical model in Section 2.4, Chapter 2. For the negative temperature 

distributions the early response is similar to those of the 3D GAM approach. The positive 

heat flux models again showed the snap-through behaviour that was seen in the 3D GAM 

model, however here this behaviour was seen for all three positive heat flux scenarios, 

whereas the 3D GAM approach only showed this for the highest heat flux. This could be 

explained by the increased deformation along the length of the panel of the continuum 

model, whereas the 3D GAM model tends to show more localised deformations between 

the supports under purely mechanical loads. Therefore, it was concluded that for both 

implementations of the thermo-mechanical effects the continuum model is a valid 

simplification in terms of the prediction of general phenomena. 
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5.2.3 Simulation results for the 2D Continuum Model 

To introduce further simplifications to the model and investigate its validity at even lower 

computational cost the 2D surfaces are used for the 2D continuum model in the ANSYS 

Design Modeller. It was demonstrated in Figure 5.12 that the 2D model showed some 

disparity with the 3D continuum model while performing the simulation over only a small 

fraction of the time. Therefore significant simplifications to the model can be performed 

but only for some limited cases where a compromise in accuracy is justified and  

considerations of more advanced coupling phenomena are not essential. 

 

Figure 5.12. Force Displacement Response of 2D CM vs 3D CM vs 3D GA Model 

(Mechanical loading only) [Appendix H] 

 

 

5.3 Conclusions 

In this chapter a general reflection on modelling work related to the capability of the FEM 

simulation of the panel and coupling phenomena was presented. This work was 

performed under the supervision of the author of this thesis and resulted in a journal paper 

being prepared for publication (Appendix H). In this work three different FE models were 

developed to attempt to simulate a simplified thermo-mechanical FE model. Three 

models were analysed in terms of validity, accuracy, and computational cost. It was 

demonstrated that all three models were able to show a significant deviation of panel 
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response at the low load range typically associated with satellites, making them suitable 

for such analysis. The models also demonstrated clearly the effect of the thermal loading 

and interaction between mechanical and thermal loading in the form of larger deflection 

at higher thermal loading and stiffer response at lower temperatures, which was in line 

with the experimental results presented in Chapter 3 and Table 4.2. It was concluded that 

the 2D continuum model was the simplest model and delivered considerable 

computational savings at the cost of a lack of response under low-strain conditions, while 

the 3D continuum model offered good accuracy, generally with around 60% 

computational time saving comparing to the 3D Geometrically Accurate Model. The 3D 

models also demonstrated the effect of buckling with subsequent snap-through due to the 

initial high thermal loading because of the applied heat flux, which was consistent with 

results obtained for the analytical model in Section 2.4, Chapter 2. These are valuable 

results since the experimental work performed in Chapter 3 presented results for free heat 

exchange thermal loading only. In this way the analytical and FE models offer further, 

more detailed, predictions for the thermo-mechanical behaviour of the sandwich 

honeycomb panel. However it should be emphasised that the developed analytical model 

in Chapter 2 is still characterised by the additional capability of accurate prediction of 

nonlinear temperature distribution along the thickness of the panel, as well as prediction 

of the deflection response of the panel due to the two couped phenomena while 

undergoing simultaneous mechanical and thermal loading. 
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6. Application of the method of multiple scales for derivation of an analytical 

solution for thermo-mechanical model developed 

 

This Chapter represents further research into the model derived in Chapter 2. It 

particularly considers the system of Equations (2.20), describing the thermo-mechanical 

behaviour of the panel, and suggests an approach to finding a closed form solution for 

displacement identification.  Therefore, we return to the model derived in Section 2.2, 

Chapter 2, for which all the necessary components can be found from the thermal and 

mechanical equations: 

𝐶9̅𝑇3(𝑡) + 𝐶6̅𝑢(𝑡) + �̅�N𝑣(𝑡) = 0 

𝐶?̅𝑇3(𝑡) + �̅�>𝑢(𝑡) − 𝐶=̅𝑣(𝑡) = 0 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + [𝐶N + 𝐶`𝑇B(𝑡)]𝑊(𝑡) + 𝐶a𝑊N(𝑡) + 𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) + 𝐶96𝑇B(𝑡) + 𝐶9N�̇�(𝑡)𝑊(𝑡) − 𝐶9?�̇�(𝑡) − 𝐶9>�̇�(𝑡) + 𝐶 = 0.    

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9a𝑇B + 𝐶9b�̇�(𝑡) = 0                     

(6.1)                  

As we are interested in the temperature and displacement distribution in the z-direction 

for the structure when it is subjected to combined mechanical and thermal loading, this 

system can be reduced to the following three equations to find the displacement W(t), 

membrane temperature T0(t) and bending temperature T1(t) as defined in [177, 178], then 

to identify T(t) in Eq. (2.9): 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + )𝐶N + 𝐶?𝑃1(𝑡) + 𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B*𝑊(𝑡) + 𝐶a𝑊N(𝑡) 

+𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) + 𝐶96𝑇B(𝑡) + 𝐶9N�̇�(𝑡)𝑊(𝑡) = 0 

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9a𝑇B(𝑡) + 𝐶9b�̇�(𝑡) = 0                         (6.2) 

 

It has to be pointed out that in reference [174] this form of system of equations was solved 

analytically obtaining a general solution using features within the Mathematica code. 
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However, this was done by eliminating the nonlinear terms and for static values of the 

mechanical and thermal loading, thus, 

𝐶9�̈�(𝑡) + 𝐶N𝑊(𝑡) + 𝐶b𝑇9(𝑡) = 0 

𝐶93�̇�3(𝑡) + 𝐶99𝑇3(𝑡) = 0 

𝐶9=�̇�9(𝑡) + 𝐶9`𝑇9(𝑡) + 𝐶9b�̇�(𝑡) = 0                                   (6.3) 

 

Here our overall aim has been to look for a solution for the system in its generalised 

form, as stated in full in Eq. (6.2) for which an analytical closed form solution cannot be 

obtained using the DSolve function in Mathematica. 

The importance of retaining the presence of the nonlinear and coupling terms was 

emphasised in Section 2.2, Chapter 2, where solutions were represented graphically for 

both cases, with and without nonlinear terms. 

From inspection of the system of Eq. (6.2) it is obvious that the main mathematical 

challenge in the solution of the whole system resides principally in the first equation, Eq 

(6.2a), re-stated here as Eq. (6.4), 

 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + �̅�(𝑡)	𝑊(𝑡) + 𝐶a𝑊N(𝑡) + 𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 0 

                                                      (6.4) 

where �̅�(𝑡) = 𝐶N + 𝐶?𝑃1(𝑡) + 𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B. 

The difficulty arises due to the simultaneous presence of the time-variant coefficient �̅�(𝑡) 

in the term W(t) and the nonlinear term 𝐶a𝑊N(𝑡). For the sake of generality we can 

represent Eq. (6.4) as, 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + 𝐹9(𝑡)𝑊(𝑡) + 𝐶a𝑊N(𝑡) + 𝐹6(𝑡) = 0.					                  (6.5) 

where the time variant coefficients are defined as   

𝐹9(𝑡) = 𝐶̅(𝑡) = 𝐶N + 𝐶?𝑃1(𝑡) + 𝐶>𝑃4(𝑡) + 𝐶=𝑇3(𝑡) + 𝐶`𝑇B   and   𝐹6(𝑡) = 𝐶b𝑇9(𝑡) +

𝑄(𝑡). 
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where, Px(t) and Py(t) are forces applied along the x and y coordinate directions 

respectively, Q(t) is a time-dependent amplitude component of transversely distributed 

loading 𝑞(𝑥, 𝑦, 𝑡) = 𝑄(𝑡)𝑠𝑖𝑛 c1
D
𝑠𝑖𝑛 c4

O
,  𝑇B is a constant difference between the absolute 

temperature of the surrounding medium and the reference temperature. 

 

Since F2(t) is the right-hand side term commonly dealt with by use of a particular integral 

then we have more flexibility in its function. At the same time functions inside F1(t) are 

of crucial importance and will eventually define if it is possible to solve the Eq.(6.5) using 

the multiple scales method. 

If in-plane forces are present, then to represent a case of vibration the Px(t) and Py(t) in-

plane loading functions are typically chosen as harmonic functions. Of course, if there is 

a case of simple tension or compression, then Px(t) and Py(t) can each be assumed to be 

either an appropriate constant or a linear function. 

We will assume the most general case when Px(t) and Py(t) are harmonic functions 

representing vibration: 𝑃1(𝑡) = �̅�𝑠𝑖𝑛(𝜔𝑡) and 𝑃4(𝑡) = 𝐵º𝑐𝑜𝑠(𝜔𝑡). This means that F1(t) 

will be now re-written as, 

𝐹9(𝑡) = �̅�𝑠𝑖𝑛(𝜔𝑡) + 𝐵º𝑐𝑜𝑠(𝜔𝑡) 	+ 𝐶=𝑇3(𝑡) + 𝐶`ººº                     (6.6) 

where 𝐶`ººº = 𝐶N + 𝐶`𝑇B is a constant. 

 

In order to obtain a solution using the multiple scales method we need to know the type 

of general function for F1(t) and F2(t), and we also have two remaining functions to 

analyse, these being T1(t) and T0(t) in F1(t) and F2(t).  Since we have now accumulated 

extensive knowledge of the behaviour of these two functions for the panel we can try to 

represent them as approximations dynamic functions based on the outputs from the model 

in Chapter 2.  

In the model outputs discussed in Chapter 2 and it was found that T1(t) and T0(t) exhibit 

the following general behaviour (Figs. 6.1-6.2 - for free heat exchange and Fig. 6.3 - for 

heat flow). 
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(a)                                                                 (b) 

Figure 6.1. T0(t) – (a)  and T1(t) – (b) responses in the time domain when subjected 

to the thermal load of (20 + 10t) oC and a mechanical loading of 10t N with core 

thickness of 0.01424m and total plate thickness of 0.015m under free heat exchange 

conditions. Displacement in metres, time in seconds. 

 

In this case it was possible to decouple the two equations to find closed form 

solutions for T0(t) and T1(t): 

𝑇3(𝑡) = 10.14𝑒M6.6=/(−1.55 + 1.55𝑒6.6=/ + 𝑡𝑒6.6=/) 

𝑇9(𝑡) = 100𝑒M>`.9N/ 

(6.7) 

 

  

 

Figure 6.2. T0(t)  response in the time domain when subjected to the mechanical 

load of 10t in 20oC environment, with core thickness of 0.01424m and total plate 

thickness of 0.015m under free heat exchange conditions. Displacement in metres, time 

in seconds. 
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Here it was also possible to decouple the two equations to find closed form solutions for 

T0(t) and T1(t): 

𝑇3(𝑡) = 20.29𝑒M6.6=/(−1 + 𝑒6.6=/) 

𝑇9(𝑡) = 100𝑒M>`.9N/ 

(6.8) 

As can be seen from Figures 6.1 and 6.2 T0(t) is directly dependent on the thermal loading 

applied to the panel and if this loading is set to be (20 + 10t)oC then the T0(t) will 

eventually settle down into this state after a short period of time and can therefore be 

approximated by T0(t)=(20 + 10t) oC. A similar scenario takes place for the 20oC 

environment and T0(t) eventually settles down into T0(t)=20. This can also be justified if 

the exponents in the closed form solutions Eq.(6.7) and Eq.(6.8) are represented as Taylor 

series to the first approximation. The same approach can be applied to the solution for 

T1(t) representing the exponents to the first or second approximation of the Taylor series.  

The T0(t) and T1(t) in the case of heat flux are presented in Figs.6.3. 
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Figure 6.3. Thermal components T0(t) in (a, b) and T1(t) in (c, d) defined in 

Eq(2.21) for heat flux thermal loading 150oC in (a, c) and -20oC in (b,d) 

 

In this case if we decouple the two equations to find the closed form solutions for T0(t) 

and T1(t) for the case of 150oC loading, the solution will be presented by a relatively 

complex function: 

 

𝑇3(𝑡) = 0.033𝑒M>`.b>/(0.72𝑒9.`b/ − 2917.82𝑒>=.9=/ + 2917.09𝑒>`.b>/ − 5.25

∙ 10M9`𝑒996.N6a/ + 𝑡𝑒>`.b>/ − 2.56 ∙ 10M63𝑡𝑒996.NN/) 

𝑇9(𝑡) = 𝑒M>`.b>/(393.8𝑒9.`b/ + 5.68 ∙ 10M9?𝑒N.>`/ + 274.92𝑒>=.9=/ − 518.72 ∙ 𝑒>`.b>/

+ 6.94 ∙ 10M9a𝑒996.NN/ + 1.39 ∙ 10M9`𝑡𝑒N.>`/ − 0.18 ∙ 𝑡𝑒>`.b>/ + 3.39

∙ 10M69𝑡𝑒996.NN/) 

(6.9) 

Considering that the purpose of the analysis of the functions T0(t) and T1(t) is to identify 

cases when the equation can be solved using the multiple scales method to obtain the 

closed form solution, and the fact that Eq.(6.6) already has two harmonic functions, it was 

decided to assume that T0(t)=M2 – constant in the first approximation. This means that 

the case we will be considering will be applicable for a variety of mechanical loading but 

only for static thermal loading under free heat exchange as in Figure 6.2. 
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Since F2(t) is on the right hand side of the equation and we are less constrained in the 

choice of its functions, we will consider the most general case for 𝑇9(𝑡) = 𝑁9 + 𝑁6𝑡 +

𝑀9𝑡MN. It should be pointed out that the term 𝑀9𝑡MN was added not because of the Taylor 

series representation of the exponents involved in Eq(6.9) but due to the shape of the 

function in Figs 6.3, and in case it is possible simply to represent the function as 𝑀9𝑡MN 

instead of using Eq.(6.9). 

 

Since Q(t) is a transversely distributed loading its often represented as a linear time-

variant function 𝑄(𝑡) = �̅�𝑡. This means that for the procedure of a multiple scales 

perturbation analysis it is reasonable to assume that, 

 

𝐹6(𝑡) = 𝐶b𝑇9(𝑡) + 𝑄(𝑡) = 𝐶b𝑀9𝑡MN + 𝐶b𝑁9 + (�̅� + 𝑁6)𝑡 = 𝐶9ººº + 𝐶6ººº𝑡 + 𝐶Nººº𝑡MN 

where 𝐶9ººº = 𝐶b𝑁9, 𝐶6ººº = 𝑁6 + �̅�  and  𝐶Nººº = 𝐶b𝑀9 

and 

𝐹9(𝑡) = �̅�𝑠𝑖𝑛(𝜔𝑡) + 𝐵º𝑐𝑜𝑠(𝜔𝑡) 	+ 𝐶93 

where 𝐶93 = 𝐶N + 𝐶`𝑇B + 𝐶=𝑀6 is a constant. 

 

Thus Eq.(6.5) can be re-written as 

 

𝐶9�̈�(𝑡) + 𝐶6�̇�(𝑡) + (�̅�𝑠𝑖𝑛(𝜔𝑡) + 𝐵º𝑐𝑜𝑠(𝜔𝑡) 	+ 𝐶93)𝑊(𝑡) + 𝐶a𝑊N(𝑡)

= 𝐶9ººº + 𝐶6ººº𝑡 + 𝐶Nººº𝑡MN 

(6.10) 

Equation (6.10) is a particular case of the Mathieu-Hill equation and can be solved 

using the perturbation method of multiple scales, notwithstanding the fact that the 

principal parametric resonance condition will emerge as a consequence of the treatment 

of secular terms in order to guarantee the uniformity of the expansion for 𝑊(𝑡). It is 

also possible in principle to examine the non-resonant case for this solution.  
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6.1. Multiple Scales Perturbation Analysis 

 

6.1.1. Governing equation of motion and multiple time scaling 

An approximate analytical solution to the differential equation in 𝑊(𝑡) can be sought 

using the perturbation method of multiple scales [233, 234], on the basis that the coupling 

terms to the thermal degree of freedom can be represented by a constant and two time-

variant quantities, and regarded as inhomogeneous terms resident on the right-hand side, 

all as shown in equation (6.11), 

 

�̈�(𝑡) + 2𝛽�̇�(𝑡) + (𝜔6 + 𝐵 𝑐𝑜𝑠 𝛺𝑡 + 𝐶 𝑠𝑖𝑛 𝛺𝑡)𝑊(𝑡) + 𝐷𝑊N(𝑡) = 𝐸 + 𝐹𝑡 + 𝐺𝑡MN 

                     (6.11) 

where 2𝛽 = 𝐶6/𝐶9; 		𝜔6 =	𝐶93/𝐶9;  𝐶 = �̅�/𝐶9; 		𝐵 = 𝐵º/𝐶9; 𝐷 = 𝐶a/𝐶9; 𝐸 =

𝐶9̅/𝐶9; 		𝐹 = �̅�6/𝐶9; 𝐺 = 𝐶N̅/𝐶9. 

This is clearly a special case of the Mathieu-Hill equation, where the modulating 

excitation term is split into two phased components of amplitudes 𝐵 and 𝐶, and there is a 

cubic nonlinearity governed by constant 𝐷, together with the right-hand side function 

described above. The term 𝜔6 within the brackets multiplying 𝑊(𝑡) is a convenient way 

to introduce conventional notation representing the constant within of the bracketed terms 

so that the notion of resonance is more easily introduced later, when the secular terms are 

identified.  Note that the symbol 𝐴 is deliberately not used at this stage because it is 

reserved for the complex amplitude of the solution for 𝑊(𝑡), which appears later in 

equation (6.19). 

 

The dependent variable 𝑊(𝑡) is expressed as a power series in terms of the perturbation 

parameter 𝜖, as, 

 

𝑊(𝑡) = 𝑊3(𝑇3) + 𝜖𝑊9(𝑇9) + 𝜖6𝑊6(𝑇6) + ⋯+ 𝜖#𝑊#(𝑇#).                   (6.12)                                                 
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In line with the method of multiple scales, where 𝑇# = 𝜖𝑇#M9, each successive 

perturbation is expressed as a function of successively slower time-scales, implying that 

sufficient corrections will usually be available from a relatively small quantity of time-

scales for a wide range of physical problems. In this case the aim is to cater for the three 

specific features of the differential equation (6.11): the two modulating excitation terms 

accommodating phase, the cubic nonlinearity, and the right-hand side function. The point 

at which the series in equation (6.12) is truncated depends on the decisions yet to be made 

on the ordering of terms. In systems of this sort, where the physicality of the problem is 

very important, the ordering is established from a priori knowledge of the quantities 

within the problem. In the case of the dissipation term governed by 𝛽 there is some 

justification for considering this as reasonably light structural damping, so if we set 𝛽 →

𝜖�̅� this means that damping will only appear to the first and all higher order perturbation 

corrections. This is in line with the concept of reasonably light structural damping. 

Modulating excitation amplitudes 𝐵 and 𝐶 and the magnitude of the cubic nonlinearity 𝐷 

are under our control and in order to conform with the traditional assumptions of 

reasonably low to medium level excitation amplitudes and weak system nonlinearities it 

is once again appropriate to order those terms by setting these quantities as follows, 𝐵 →

𝜖𝐵º , 𝐶 → 𝜖�̅�, and 𝐷 → 𝜖𝐷Ü. Similar arguments may be applied, in principle, to the constant 

coefficient quantities within the right-hand side function as well.  However, it is important 

to note that the constant term 𝐸 represents a DC offset, which could be accommodated at 

the lowest order perturbation, but the term that grows linearly with time, scaled by 

coefficient 𝐹, is necessarily always secular. A classical difficulty for perturbation arises 

here because this term cannot readily be included in the solution to the lowest order 

perturbation equation because it is unbounded with time, and would therefore rule out the 

necessary oscillating generating solution. The only way to make headway with this term 

is to include it at the first order perturbation level and then attempt later to place numerical 

bounds on its growth to reduce its secularity. The term proportional to 𝑡MNdecreases 

proportional to the cube of the evolving time, so this term although non-oscillatory, does 

not pose the same fundamental problem with secularity as does the linear term 𝐹𝑡. Noting 

that it is inevitable that the term 𝐹𝑡 will eventually invalidate the uniformity of the power 

series at 𝒪(𝜖9)	even for very small 𝐹, we cautiously proceed to order these terms so that 

they start to appear from the first order perturbations, 𝐸 → 𝜖𝐸º, 𝐹 → 𝜖𝐹º, and 𝐺 → 𝜖�̅�.  
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The method of multiple scales is also built on the premise that the (total) derivatives that 

operate in the governing equation of motion can also be expressed as power series which 

are themselves in terms of partial derivatives with respect to successively slower time-

scales. It is algebraically convenient to use the D-operator notation for the partial 

derivatives, and so we can state the series for the first total time derivative as follows, 

 

$
$/
= 𝐷3 + 𝜖𝐷9 + 𝜖6𝐷6 +⋯+ 𝜖#𝐷#                               (6.13)                                                                                                        

 

On the basis of the informal ordering suggested above then the series expressed in 

equations (6.12) and (6.13) can be truncated after the first order corrections, and, after 

dropping the time arguments, we get, 

 

𝑊(𝑡) = 𝑊3(𝑇3) + 𝜖𝑊9(𝑇9) = 𝑊3 + 𝜖𝑊9                          (6.14)                                                                                   

 

$
$/
= 𝐷3 + 𝜖𝐷9                                                 

(6.15)                                                                                                                                      

 

This means that the second total time derivative $
#

$/#
  is also truncated at the same point, 

for consistency, and by following D-operator algebra this is written as, 

 

$#

$/#
= 𝐷36 + 2𝜖𝐷3𝐷9.                                         (6.16)                                                                                                                                               

 

 

6.1.2 Perturbation equations 

Equations (6.14)-(6.16) can now be substituted into equation (6.11) along with the 

ordered forms for the quantities 𝛽, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹. After retaining terms up to and 

including 𝒪(𝜖) only, this leads to the following, 
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𝜖3:														𝐷36𝑊3 + 𝜔6𝑊3 = 0 

                                                                                      (6.17)                                                                                                  

 

𝜖9:														𝐷36𝑊9 + 𝜔6𝑊9 = −2𝐷3𝐷9𝑊3 − 2�̅�𝐷3𝑊3 − 𝐵º𝑊3 𝑐𝑜𝑠 𝛺𝑡 − 

−𝐶̅𝑊3 𝑠𝑖𝑛 𝛺𝑡 − 𝐷Ü𝑊3
N + 𝐸º + 𝐹º𝑡 + �̅�𝑡MN. 

(6.18)                                                                                                                                                                             

 

The structural basis for this system of perturbation has depended on a simple physical 

scaling of the terms and leads to a homogeneous zeroth order perturbation equation (6.17) 

from which the oscillating generating solution for the remainder of the perturbation 

analysis can be directly written as, 

𝑊3 = 𝐴𝑒(A++ + �̅�𝑒M(A++ .                                             (6.19)                                                                                                                              

 

Note that the overbar on 𝐴 denotes its complex conjugate, and is not representing an 

ordered quantity when it appears above 𝐴. Complex exponentials are generally very 

useful in multiple scales perturbation schemes so it pays to re-state the modulating 

harmonic terms in the same way, as follows, 

𝑐𝑜𝑠 𝛺𝑡 = 9
6
l𝑒(e++ + 𝑒M(e++m        and         𝑠𝑖𝑛 𝛺𝑡 = 9

(6
l𝑒(e++ − 𝑒M(e++m.        (6.20, 

6.21)                             

Substituting equations (6.19 – 6.21) into equation (6.18), the first order perturbation 

equation, leads to, 

 

𝐷36𝑊9 + 𝜔6𝑊9 = −2𝐷3𝐷9)𝐴𝑒(A++ + �̅�𝑒M(A++* − 2�̅�𝐷3)𝐴𝑒(A++ + �̅�𝑒M(A++* 

																																		−𝐵º)𝐴𝑒(A++ + �̅�𝑒M(A++* 9
6
l𝑒(e++ + 𝑒M(e++m − 𝐶̅)𝐴𝑒(A++ +

�̅�𝑒M(A++* 9
(6
l𝑒(e++ −																																		 𝑒M(e++m − 𝐷Ü)𝐴𝑒(A++ + �̅�𝑒M(A++*N + 𝐸º + 𝐹º𝑡 +

�̅�𝑡MN.                                                 

(6.22) 
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Expanding equation (6.22) gives this, 

 

𝐷36𝑊9 + 𝜔6𝑊9

= −2𝐷9)𝑖𝜔𝐴𝑒(A++ − 𝑖𝜔�̅�𝑒M(A++* − 2�̅�)𝑖𝜔𝐴𝑒(A++ − 𝑖𝜔�̅�𝑒M(A++*

−
𝐵º
2 )𝐴𝑒

((Afe)++ + 𝐴𝑒((AMe)++ + �̅�𝑒((MAfe)++ + �̅�𝑒M((Afe)++*

−
𝐶̅
𝑖2 )𝐴𝑒

((Afe)++ − 𝐴𝑒((AMe)++ + �̅�𝑒((MAfe)++ − �̅�𝑒M((Afe)++*

− 𝐷Ü)𝐴N𝑒(NA++ + 3𝐴6�̅�𝑒(A++ + 3𝐴�̅�6𝑒M(A++ + �̅�N𝑒M(NA++* + 𝐸º + 𝐹º𝑡

+ �̅�𝑡MN. 

                                                              (6.23) 

 

 

6.1.3. Identification of secular terms and resonance conditions 

The convention for the next stage is to extract a common factor of the resonant term from 

the right-hand side, and to express all the right-hand side terms in fully expanded form so 

that the process of identifying secular terms is as clear as possible. Following this 

procedure we get, 

 

𝐷36𝑊9 + 𝜔6𝑊9

= 𝑒(A++ ß−𝑖2𝜔𝐷9𝐴 + 𝑖2𝜔𝐷9�̅�𝑒M(6A++ − 𝑖2�̅�𝜔𝐴 + 𝑖2�̅�𝜔�̅�𝑒M(6A++

−
𝐵º
2 𝐴𝑒

(e++ −
𝐵º
2 𝐴𝑒

M(e++ −
𝐵º
2 �̅�𝑒

((M6Afe)++ −
𝐵º
2 �̅�𝑒

M((6Afe)++

−
𝐶̅
𝑖2 𝐴𝑒

(e++ +
𝐶̅
𝑖2 𝐴𝑒

M(e++ −
𝐶̅
𝑖2 �̅�𝑒

((M6Afe)++ +
𝐶̅
𝑖2 �̅�𝑒

M((6Afe)++

− 𝐷Ü𝐴N𝑒(6A++ − 3𝐷Ü𝐴6�̅� − 3𝐷Ü𝐴�̅�6𝑒M(6A++ − 𝐷Ü�̅�N𝑒M(?A++ + 𝐸º𝑒M(A++

+ 𝐹º𝑡𝑒M(A++ + �̅�𝑡MN𝑒M(A++à. 

                                                                                                                (6.24)                                           
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We can identify secular terms from the right-hand side of equation (6.24), recalling that 

these terms are those which if left in would then invalidate the uniformity of the power 

series, so because of this possibility they have to be removed in order then to construct 

the particular integral solution for this level of perturbation. First of all, we consider terms 

which could be secular, in other words terms resonant at this level of perturbation. 

Clearly, we can immediately identify the following as unconditionally secular: 

−𝑖2𝜔𝐷9𝐴 − 𝑖2�̅�𝜔𝐴 − 3𝐷Ü𝐴6�̅�, noting that they also have their complex conjugate 

counterparts. It’s often the case that the complex conjugate secular terms do not add new 

information to the problem so the best procedure is to leave them for now and then, as 

necessary, extract them later for processing. Proceeding with the secular terms we see 

that there are other terms that are conditionally secular. The condition is that 𝛺 → 2𝜔, 

which can be expressed as 𝛺 = 2𝜔 + 𝜖𝜂 where 𝜖𝜂 is known as the detuning parameter 

and is definitionally small because of the presence of 𝜖. This form of resonance condition 

is indicative of principal parametric resonance and is to be expected within a Mathieu-

Hill type system, irrespective of whether it’s linear or nonlinear. There are no other 

oscillating terms present in the right-hand side of equation (6.24) that are potentially 

secular, so we can proceed to analyse the single case identified, for principal parametric 

resonance. The identification of this resonance condition underlines the importance of 

using the natural frequency notation within the original differential equation (6.11). 

Extracting the secular terms for this resonance condition and setting them to zero, gives 

the following,  

 

−𝑖2𝜔𝐷9𝐴 − 𝑖2�̅�𝜔𝐴 − 3𝐷Ü𝐴6�̅� −
gh

6
�̅�𝑒((M6Afe)++ − Z̅

(6
�̅�𝑒((M6Afe)++ = 0.                                               

(6.25) 

 

We note that since this stage of the analysis only involves secularity in the context of a 

resonance condition, the treatment of terms such as 𝐹𝑡 and 𝐺𝑡MN has to be deferred until 

the particular solution to 𝒪(𝜖9)	is considered.  
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6.1.4. Slow-time modulation equations and solvability conditions 

Equation (6.25) is the starting point for obtaining the slow-time modulation equations, 

which lead to the so-called solvability equations, and from which we can find numerical 

solutions to the amplitude of the response and the associated phase. After that we then 

return to equation (6.23) to find the particular integral solution to that level of 

perturbation, which can then be added to the zeroth order generating solution (Eq.(6.19)) 

to give the full solution for 𝑊(𝑡). Numerical solutions for 𝑊(𝑡) can be found because 

we can find the amplitude 𝐴 and the associated phase from the processing done with 

equation (6.25) above. 

 

Returning to equation (6.25) we introduce the amplitude and phase components of the 

complex amplitude 𝐴 as follows. We note that 𝐴 = 𝐴(𝑇9) meaning that this is a slowly 

varying quantity, 

 

𝐴(𝑇9) =
&(+$)
6
𝑒(j(+$) and the complex conjugate is given by  �̅�(𝑇9) =

&(+$)
6
𝑒M(j(+$).  We 

do this so that 𝑝 represents the actual amplitude and 𝛼 its phase. In equation (6.25) we 

require to find 𝐷9𝐴, and this evaluates as follows, noting that the prime denotes 

differentiation with respect to timescale 𝑇9 and we drop the arguments for clarity, 

 

𝐷9𝐴 =
&k
6
𝑒(j + &

6
𝑖𝛼′𝑒(j                                            (6.26) 

 

Substituting the forms for 𝐴(𝑇9) and �̅�(𝑇9) and equation (6.26) into (6.25) leads to this, 

 

−𝑖2𝜔 P
𝑝k

2 𝑒
(j +

𝑝
2 𝑖𝛼′𝑒

(jT − 𝑖2�̅�𝜔
𝑝
2 𝑒

(j − 3𝐷Ü
𝑝6

4 𝑒
(6j 𝑝

2 𝑒
M(j −

𝐵º
2
𝑝
2 𝑒

M(j𝑒((eM6A)++

−
𝐶̅
𝑖2
𝑝
2 𝑒

M(j𝑒((eM6A)++ = 0 

                                                                                                                               (6.27) 
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Introducing the resonance condition 𝛺 = 2𝜔 + 𝜖𝜂 and then multiplying through by 

𝑒M(j to tidy up gives, 

−𝑖𝜔𝑝k + 𝜔𝑝𝛼k − 𝑖�̅�𝜔𝑝 −
3
8𝐷
Ü𝑝N −

𝐵º
4 𝑝𝑒

((lm++M6j) −
𝐶̅
𝑖4 𝑝𝑒

((lm++M6j) = 0 

                           (6.28) 

 

Then we multiply through by 𝑖 to remove this from the denominator of the last term, 

getting, 

𝜔𝑝k + 𝑖𝜔𝑝𝛼k + �̅�𝜔𝑝 −
𝑖3
8 𝐷
Ü𝑝N −

𝑖𝐵º
4 𝑝𝑒

((lm++M6j) −
�̅�
4 𝑝𝑒

((lm++M6j) = 0 

                     (6.29) 

 

In order to separate the terms from this equation out into real and imaginary parts it’s 

convenient to revert back to trigonometrical forms, 

𝜔𝑝k + 𝑖𝜔𝑝𝛼k + �̅�𝜔𝑝 −
𝑖3
8 𝐷
Ü𝑝N −

𝑖𝐵º
4 𝑝

(𝑐𝑜𝑠(𝜖𝜂𝑇3 − 2𝛼) + 𝑖 𝑠𝑖𝑛(𝜖𝜂𝑇3 − 2𝛼))

−
𝐶̅
4 𝑝

(𝑐𝑜𝑠(𝜖𝜂𝑇3 − 2𝛼) + 𝑖 𝑠𝑖𝑛(𝜖𝜂𝑇3 − 2𝛼)) = 0 

 (6.30) 

Separating the terms, 

 

𝑅𝑒:						𝜔𝑝k + �̅�𝜔𝑝 +
𝐵º
4 𝑝 𝑠𝑖𝑛

(𝜖𝜂𝑇3 − 2𝛼) −
�̅�
4 𝑝 𝑐𝑜𝑠

(𝜖𝜂𝑇3 − 2𝛼) = 0 

(6.31) 

 

𝐼𝑚:						𝜔𝑝𝛼k −
3
8	𝐷
Ü𝑝N −

𝐵º
4 𝑝 𝑐𝑜𝑠

(𝜖𝜂𝑇3 − 2𝛼) −
�̅�
4 𝑝 𝑠𝑖𝑛

(𝜖𝜂𝑇3 − 2𝛼) = 0 

 



   231 

We know that by definition the slow time scale 𝑇9 is scaled such that 𝑇9 = 𝜖𝑇3 so we can 

re-write the argument of the trigonometrical functions as follows in order to make the 

system of equations (6.31) autonomous,  

𝜖𝜂𝑇3 − 2𝛼 = 𝜂𝑇9 − 2𝛼 = 𝛹                                           (6.32) 

 

It follows therefore that, 

𝜂 − 2𝛼k = 𝛹′                                                        (6.33) 

 

Therefore, the autonomous system phase is defined by 𝛹 and so because 𝑝 = 𝑝(𝑇9) and 

𝛹 = 𝛹(𝑇9), and 𝑇9	is a (very) slow time-scale, we can then say that 𝑝k~0 and 𝛹′~0, 

which means that. 

𝛼k = m
6
                                                               (6.34) 

 

The slow-time first order differential equations (6.31) can now be re-stated in the form 

of transcendental equations, 

�̅�𝜔 + gh

?
𝑠𝑖𝑛𝛹 − Z̅

?
𝑐𝑜𝑠 𝛹 = 0                                               (6.35) 

 

𝜔 m
6
− N

a
𝐷Ü𝑝6 − gh

?
𝑐𝑜𝑠 𝛹 − Z̅

?
𝑠𝑖𝑛𝛹 = 0                                         (6.36) 

 

These equations can be solved analytically quite easily if 𝐷Ü = 0, but not if 𝐷Ü ≠ 0. The 

complex conjugate secular terms do not give any new information here, and in fact return 

equations identical in structure to (6.36) and (6.37), so no further progress can be made 

to obtain analytical solutions to these equations for the case where 𝐷Ü ≠ 0.  

 

It makes practical sense to return to physical quantities in order to solve equations (6.35) 

and (6.36) numerically, and to do this we must multiple both equations by 𝜖, 
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𝜖�̅�𝜔 + lgh

?
𝑠𝑖𝑛𝛹 − lZ̅

?
𝑐𝑜𝑠 𝛹 = 0                                         (6.37)                                                       

 

𝜔 lm
6
− N

a
𝜖𝐷Ü𝑝6 − lgh

?
𝑐𝑜𝑠 𝛹 − lZ̅

?
𝑠𝑖𝑛𝛹 = 0	                                  (6.38) 

 

Finally, re-stating these solvability equations now in terms of the original physical 

quantities, gives this, 

 

𝛽𝜔 + g
?
𝑠𝑖𝑛𝛹 − Z

?
𝑐𝑜𝑠 𝛹 = 0	                                             (6.39) 

 

𝜔 (eM6A)
6

− N
a
𝐷𝑝6 − g

?
𝑐𝑜𝑠 𝛹 − Z

?
𝑠𝑖𝑛𝛹 = 0                                     (6.40) 

 

This is a pair of nonlinear transcendental algebraic equations in 𝑝 and 𝛹, which are, 

respectively, the amplitude and phase of the autonomous system. We now proceed to 

obtain numerical solutions for equations (6.39) and (6.40) using the Mathematica NSolve 

function. The excitation enters through 𝐵 and 𝐶, operating at frequency 𝛺. It should be 

noted that if the system is linearised then 𝐷Ü = 0 and there is no solution for the amplitude 

𝑝. In fact, 𝑝 will then be unbounded because the condition 𝐷Ü = 0 returns the governing 

differential equation (6.11) to a linear Mathieu-Hill equation for which there is no 

classical bounded solution. In that particular case the amplitude 𝑝 is null when 𝛺 is far 

from 2𝜔 and unbounded when 𝛺~2𝜔, which is when 𝜖𝜂 is very small.  In the nonlinear 

case here, where 𝐷Ü ≠ 0, equations (6.39) and (6.40) have to be solved numerically in 

order to determine values for 𝑝 and also for 𝛹.   

 

 

6.1.5. Particular solution 

The second stage of this analysis is to find the particular solution for the first order 

perturbation equation (equation 6.24)). It is helpful to re-state that equation here, 
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highlighting in red the terms previously defined as secular and their complex conjugates 

in blue, 

𝐷36𝑊9 + 𝜔6𝑊9 = 𝑒(A++ ¦−𝑖2𝜔𝐷9𝐴 + 𝑖2𝜔𝐷9�̅�𝑒M(6A++ − 𝑖2�̅�𝜔𝐴 + 𝑖2�̅�𝜔�̅�𝑒M(6A++ −

gh

6
𝐴𝑒(e++ − gh

6
𝐴𝑒M(e++ − gh

6
�̅�𝑒((M6Afe)++ − gh

6
�̅�𝑒M((6Afe)++ − Z̅

(6
𝐴𝑒(e++ + Z̅

(6
𝐴𝑒M(e++ −

Z̅

(6
�̅�𝑒((M6Afe)++ + Z̅

(6
�̅�𝑒M((6Afe)++ − 𝐷Ü𝐴N𝑒(6A++ − 3𝐷Ü𝐴6�̅� − 3𝐷Ü𝐴�̅�6𝑒M(6A++ −

𝐷Ü�̅�N𝑒M(?A++ + 𝐸º𝑒M(A++ + 𝐹º𝑡𝑒M(A++ + �̅�𝑡MN𝑒M(A++§.                                                                                                                                                             

(6.41) 

 

From here we can identify the remaining right-hand side terms from which a particular 

integral solution can now be obtained. This reduced form of equation (6.41) is as follows, 

 

𝐷36𝑊9 + 𝜔6𝑊9

= 𝑒(A++ ß−
𝐵º
2 𝐴𝑒

(e++ −
𝐵º
2 �̅�𝑒

M((6Afe)++ −
�̅�
𝑖2𝐴𝑒

(e++ +
�̅�
𝑖2 �̅�𝑒

M((6Afe)++

− 𝐷Ü𝐴N𝑒(6A++ − 𝐷Ü�̅�N𝑒M(?A++ + 𝐸º𝑒M(A++ + 𝐹º𝑡𝑒M(A++ + �̅�𝑡MN𝑒M(A++à. 

(6.42) 

 

We note the presence of 𝐹º𝑡𝑒M(A++ and the fact that this troublesome term must be retained 

and included within the particular solution. It’s convenient to re-absorb 𝑒(A++ back into 

the right-hand side terms by multiplying out, to get, 

 

𝐷36𝑊9 + 𝜔6𝑊9

= ß−
𝐵º
2 𝐴𝑒

((efA)++ −
𝐵º
2 �̅�𝑒

M((efA)++ −
𝐶̅
𝑖2 𝐴𝑒

((efA)++ +
�̅�
𝑖2 �̅�𝑒

M((efA)++

− 𝐷Ü𝐴N𝑒(NA++ − 𝐷Ü�̅�N𝑒M(NA++ + 𝐸º + 𝐹º𝑡 + �̅�𝑡MNà. 

(6.43) 
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The remaining tasks are to find the particular integral solution to equation (6.43), add that 

to the zeroth order perturbation solution via the perturbation series for 𝑊(𝑡) and then to 

compute numerical solutions from there. 

 

Equation (6.43) requires substitution of the solution for 𝐴 in terms of 𝑝 and 𝛼, and this 

leads to, 

 

𝐷36𝑊9 + 𝜔6𝑊9 = ¦− gh

6
&
6
𝑒(j𝑒((efA)++ − gh

6
&
6
𝑒M(j𝑒M((efA)++ − Z̅

(6
&
6
𝑒(j𝑒((efA)++ +

Z̅

(6
&
6
𝑒M(j𝑒M((efA)++ − 𝐷Ü &

a

N
𝑒(Nj𝑒(NA++ − 𝐷Ü &

a

N
𝑒M(Nj𝑒M(NA++ + 𝐸º + 𝐹º𝑡 + �̅�𝑡MN§.               

(6.44) 

 

Finally, we get the fully expanded form, 

 

𝐷36𝑊9 + 𝜔6𝑊9

= ß−
𝐵º
4 𝑝𝑒

([(efA)++fj] −
𝐵º
4 𝑝𝑒

M([(efA)++fj] −
𝐶̅
𝑖4 𝑝𝑒

([(efA)++fj]

+
�̅�
𝑖4 𝑝𝑒

M[((efA)++fj] − 𝐷Ü
𝑝
8
N
𝑒(N[A++fj] − 𝐷Ü

𝑝
8
N
𝑒M(N[A++fj] + 𝐸º + 𝐹º𝑡

+ �̅�𝑡MNà. 

                  (6.45)                                                                                                                                             

In order to get the particular integral for 𝑊9 we take a trial solution of the following form, 

 

𝑊9 = 𝑄9𝑒([(efA)++fj] + 𝑄6𝑒M([(efA)++fj] + 𝑄N𝑒(N[A++fj] + 𝑄?𝑒M(N[A++fj] + 𝑄> + 𝑄=𝑡

+ 𝑄`𝑡MN 

               (6.46)                                                                                                                                                               

where the 𝑄( are functions to be determined. 



   235 

 

The second time derivative, with respect to 𝑇3 is needed. We start with the first derivative, 

 

𝜕𝑊9

𝜕𝑇3
= 𝐷3𝑊9 = 𝑖(𝛺 + 𝜔)𝑄9𝑒([(efA)++fj] − 𝑖(𝛺 + 𝜔)𝑄6𝑒M([(efA)++fj]

+ 𝑖3𝜔𝑄N𝑒(N[A++fj] − 𝑖3𝜔𝑄?𝑒M(N[A++fj] + 𝑄= − 3𝑄`𝑡M? 

 

Then, differentiating for a second time, 

 

J#F$
J++#

= 𝐷36𝑊9 = −(𝛺 + 𝜔)6𝑄9𝑒([(efA)++fj] − (𝛺 + 𝜔)6𝑄6𝑒M([(efA)++fj] −

9𝜔6𝑄N𝑒(N[A++fj] − 9𝜔6𝑄?𝑒M(N[A++fj] + 12𝑄`𝑡M>                                                                                                                         

(6.47) 

 

We then substitute equations (6.46) and (6.47) into the left-hand side of (6.45). This 

generates the following equation, from which like terms can be extracted in order to 

construct the specific form of the particular integral. 

 

−(𝛺 + 𝜔)6𝑄9𝑒([(efA)++fj] − (𝛺 + 𝜔)6𝑄6𝑒M([(efA)++fj] − 9𝜔6𝑄N𝑒(N[A++fj] −

9𝜔6𝑄?𝑒M(N[A++fj] + 12𝑄`𝑡M> + 𝜔6)𝑄9𝑒([(efA)++fj] + 𝑄6	𝑒M([(efA)++fj] +

𝑄N𝑒(N[A++fj] + 𝑄?𝑒M(N[A++fj] + 𝑄> + 𝑄=𝑡 + 𝑄`𝑡MN* = − gh

?
𝑝𝑒([(efA)++fj] −

gh

?
𝑝𝑒M([(efA)++fj] − Z̅

(?
𝑝𝑒([(efA)++fj] + Z̅

(?
𝑝𝑒M[((efA)++fj] − 𝐷Ü &

a

N
𝑒(N[A++fj] −

𝐷Ü &
a

N
𝑒M(N[A++fj] + 𝐸º + 𝐹º𝑡 + �̅�𝑡MN       

                (6.48)                                                                                                                                                               

In order to obtain forms for the 𝑄( it’s necessary to identify like terms from both sides 

of equation (6.48) and extract them sequentially, 
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𝑄9 = −
𝐵º𝑝

4[𝜔6 − (Ω + 𝜔)6] −
𝐶̅𝑝

𝑖4[𝜔6 − (Ω + 𝜔)6] 

𝑄6 = −
𝐵º𝑝

4[𝜔6 − (Ω + 𝜔)6] +
�̅�𝑝

𝑖4[𝜔6 − (Ω + 𝜔)6] 

𝑄N = 𝑄? =
𝐷Ü𝑝N

64𝜔6 

 

We also have to consider the terms 𝑄>, 𝑄=, and 𝑄`, noting that for the first two this is 

trivial and from inspection they are merely 𝑄> = 𝐸º , and 𝑄= = 𝐹º. But in the case of 𝑄` it 

can be seen that there is one left-hand term, proportional to 𝑡M> which does not have a 

counterpart on the right-hand side. Given that for larger values of real time 𝑡 any term 

proportional to 𝑡M> will be very small, so we may well be justified in neglecting it simply 

for that reason. Making that assumption allows us to state 𝑄` = �̅�.  If this simplification 

is not acceptable then we will need to extend the series on the right-hand side of equation 

(6.11) to include a term 𝐻𝑡M>. If we do that then the trial solution in equation (6.46) has 

to be extended, like this, 

 

𝑊9 = 𝑄9𝑒([(efA)++fj] + 𝑄6 𝑒M([(efA)++fj] + 𝑄N𝑒(N[A++fj] + 𝑄?𝑒M(N[A++fj] + 𝑄> +

𝑄=𝑡 + 𝑄`𝑡MN + 𝑄a𝑡M>.                                                                                                                                                                               

(6.49) 

 

The second total time derivative then becomes, 

 

J#F$
J++#

= 𝐷36𝑊9 = −(𝛺 + 𝜔)6𝑄9𝑒([(efA)++fj] − (𝛺 + 𝜔)6𝑄6𝑒M([(efA)++fj] −

9𝜔6𝑄N𝑒(N[A++fj] − 9𝜔6𝑄?𝑒M(N[A++fj] + 12𝑄`𝑡M>+30𝑄a𝑡M`. 

               (6.50)                                                                                                                                                              

 

So now, equation (6.48) will also be similarly extended, and will include balancing terms 

proportional to 𝑡M>. But, of course, we then have a new term proportional to 𝑡M`. This is 
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clearly going to be extremely small so we can almost certainly neglect it without any 

serious problems. The difficulty with this approach is that the balancing of terms will now 

lead to an expression in which both 𝑄` and 𝑄a feature, and there is no additional equation 

relationship available with which to solve them simultaneously for independent 

calculation of 𝑄` and 𝑄a. This is shown in the next equation (6.51),  

 

−(𝛺 + 𝜔)6𝑄9𝑒([(efA)++fj] − (𝛺 + 𝜔)6𝑄6𝑒M([(efA)++fj] − 9𝜔6𝑄N𝑒(N[A++fj]

− 9𝜔6𝑄?𝑒M(N[A++fj] + 12𝑄`𝑡M> + 30𝑄a𝑡M`

+ 𝜔6)𝑄9𝑒([(efA)++fj] + 𝑄6	𝑒M([(efA)++fj] + 𝑄N𝑒(N[A++fj]

+ 𝑄?𝑒M(N[A++fj] + 𝑄> + 𝑄=𝑡 + 𝑄`𝑡MN + 𝑄a𝑡M>*

= −
𝐵º
4 𝑝𝑒

([(efA)++fj] −
𝐵º
4 𝑝𝑒

M([(efA)++fj] −
𝐶̅
𝑖4 𝑝𝑒

([(efA)++fj]

+
�̅�
𝑖4 𝑝𝑒

M[((efA)++fj] − 𝐷Ü
𝑝
8
N
𝑒(N[A++fj] − 𝐷Ü

𝑝
8
N
𝑒M(N[A++fj] + 𝐸º + 𝐹º𝑡

+ �̅�𝑡MN + 𝐻𝑡M> 

(6.51)                                                                                                                                                                             

 

Taking terms proportional to 𝑡M> gives this, 

 

12𝑄`𝑡M> + 𝜔6𝑄a𝑡M> = 𝐻𝑡M>                                        (6.52) 

 

Whilst this is algebraically correct, the fact that 𝑄` and 𝑄a can’t be recovered 

independently means that the earlier assumption must hold in which we neglected terms 

proportional to 𝑡M>, and so 𝑄` = �̅�.  

 

If we go on to substitute the expressions we now have for 𝑄9 to 𝑄` into equation (6.46) 

then we get the particular solution for the problem. After some intermediate algebra, and 

converting back from exponential to trigonometrical form, and multiplying through by 𝜖, 

we get the particular solution for 𝑊9, using the fact that 𝑇3~𝑡, 
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𝜖𝑊9 =
g&

6p(pf6A)
𝑐𝑜𝑠[(Ω + 𝜔)𝑡 + 𝛼] + Z&

6p(pf6A)
𝑠𝑖𝑛[(Ω + 𝜔)𝑡 + 𝛼] + q&

N6A#
𝑐𝑜𝑠[3(𝜔𝑡 +

𝛼)] + 𝐸 + 𝐹𝑡 + 𝐺𝑡MN.  

          (6.53)                                                                                                                                                                    

 

Note that the denominators of the coefficients of the three trigonometrical terms have 

been simplified by using 2[𝜔6 − (Ω + 𝜔)6] = −2Ω(Ω + 2𝜔). We must also note the 

presence of 𝐹𝑡 in this particular solution and the fact that this term will eventually 

dominate the solution to the first order perturbation, given enough time, and yet there was 

no clear alternative other than to order the system in this way. This highlights a difficulty 

with using a perturbation method to solve problems in which inherently secular terms 

such as 𝐹𝑡 are found. 

 

Returning to equation (6.19) to complete the full solution we now need to put this into a 

similarly useable form.  

So, we get, 

𝑊3 = 𝐴𝑒(A/ + �̅�𝑒M(A/ =
𝑝
2 𝑒

(j𝑒(A/ +
𝑝
2 𝑒

M(j𝑒(A/ = 𝑝
1
2 l𝑒

((A/fj) + 𝑒M((A/fj)m = 

= 𝑝 𝑐𝑜𝑠(𝜔𝑡 + 𝛼). 

         (6.54)                                                                                                                                                                      

Finally, the full solution to the problem, up to and including the first order perturbational 

correction, is given by, 

 

𝑊(𝑡) = 𝑊3 + 𝜖𝑊9	=	𝑝 𝑐𝑜𝑠(𝜔𝑡 + 𝛼) +
g&

6p(pf6A)
𝑐𝑜𝑠[(Ω + 𝜔)𝑡 + 𝛼] +

Z&
6p(pf6A)

𝑠𝑖𝑛[(Ω + 𝜔)𝑡 + 𝛼] + q&
N6A#

𝑐𝑜𝑠[3(𝜔𝑡 + 𝛼)] + 𝐸 + 𝐹𝑡 + 𝐺𝑡MN 

      (6.55)                                                                                                                                                                         

 

There are terms within the solution that are resonant to 𝜔, (Ω + 𝜔), and 3𝜔, as expected 

for a nonlinear Mathieu-Hill type problem, plus there is also a constant DC term, and 
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terms proportional to 𝑡 and 𝑡MN, respectively, with the penultimate term, 𝐹𝑡, presenting 

obvious difficulties.   

 

 

6.2. Solution procedure 

In order to get a numerical solution from this analysis we need first to solve equations 

(6.39) and (6.40), reproduced below for convenience, 

 

𝛽𝜔 +
𝐵
4 𝑠𝑖𝑛𝛹 −

𝐶
4 𝑐𝑜𝑠𝛹 = 0 

𝜔
(𝛺 − 2𝜔)

2 −
3
8𝐷𝑝

6 −
𝐵
4 𝑐𝑜𝑠𝛹 −

𝐶
4 𝑠𝑖𝑛𝛹 = 0 

(6.56) 

This means that we need data for 𝛽,𝜔, 𝐵, 𝐶, 𝐷,	and Ω, and the two unknowns are 𝑝 and 

Ψ. 

 

Having determined real valued solutions for 𝑝 and Ψ we can then solve for equation 

(6.55), reproduced below for convenience, to get 𝑊against time 𝑡,  

 

𝑊(𝑡) = 𝑊3 + 𝜖𝑊9=𝑝 𝑐𝑜𝑠(𝜔𝑡 + 𝛼) + g&
6p(pf6A)

𝑐𝑜𝑠[(Ω + 𝜔)𝑡 + 𝛼] +

Z&
6p(pf6A)

𝑠𝑖𝑛[(Ω + 𝜔)𝑡 + 𝛼] + q&
N6A#

𝑐𝑜𝑠[3(𝜔𝑡 + 𝛼)] + 𝐸 + 𝐹𝑡 + 𝐺𝑡MN 

 

For this we also need data for 𝐸, 𝐹,	and 𝐺.  

 

There is one other requirement for solution and that is to relate the nonautonomous phase 

angle 𝛼 to the autonomous variable Ψ.  
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The relationship between them is given in equation (6.32) and re-stated below, 

 

𝛹 = 𝜖𝜂𝑇3 − 2𝛼                                                     (6.57) 

 

This is at its simplest for those cases where 𝜖𝜂 = 0, hence Ω = 2𝜔.  

 

(a) Therefore, for the case of perfectly tuned principal parametric resonance then we 

have, 

𝛼 = −r
6

                                                              (6.58) 

(b) If the principal parametric resonance is not perfectly tuned then we are left with 

this, 

Ψ = 𝜖𝜂𝑡 − 2𝛼 = (Ω − 2𝜔)𝑡 − 2𝛼                                 (6.59)              

meaning that, 

𝛼 = −r
6
+ (pM6A)/

6
                                                   (6.60) 

noting that 𝛼 is explicitly time-variant. 

 

  

6.3. Numerical example 

As discussed at the beginning of this chapter we are concentrating on the panel behaviour 

described by Eq. (6.4) including the planar forces, as Px(t) and Py(t), summarised in 

Eq.(6.6). 

We recall that constraints were introduced for the functions F1(t) and F2(t), in the form of 

𝑇9(𝑡) = 𝑁9 + 𝑁6𝑡 + 𝑀9𝑡MN and  T0(t)=M2 – constant, at a first approximation. This 

means that the case we will be considering will be applicable for a variety of mechanical 

loadings but only for static thermal loading under free heat exchange, as shown in Figure 

6.2. 
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Therefore we consider the case of the 15x10-3 m thick panel considered in Chapters 2 and 

4 with the geometry stated in Table 4.1 and the mechanical and thermal properties 

summarised in Tables 3.1 & 3.2. 

Following the example in Chapter 4, where results were obtained for the displacement 

W(t) and compared with experimental results, the panel is undergoing a mechanical 

loading of q(t)=10*t  in a thermal environment of 20oC, under free heat exchange 

conditions. In this case the model in Eq (6.4) reduces down to  

 

0.15𝑡 + 0.45𝑇9(𝑡) + l−119447 + 1092.18𝑇3(𝑡)m𝑤(𝑡) − 1.23 ∙ 1099𝑤N(𝑡)

= 0.02𝑤kk(𝑡) 

(6.61) 

Considering the assumptions discussed earlier in this Chapter for T0(t) and T1(t), we 

introduce T0(t)=20  and 𝑇9(𝑡) = 𝑒M>`.9N6b	s ≈ 100, obtained from Eq(6.7). Therefore 

Eq.(6.61) can reduce down to 

𝑤kk(𝑡) − (2209.11)6𝑤(𝑡) + 6.13 ∙ 1096𝑤N(𝑡) = 7.74𝑡 + 227.37 

(6.62) 

This expression has the form of Eq.(6.11): 

 

�̈�(𝑡) + 2𝛽�̇�(𝑡) + (𝜔6 + 𝐵 𝑐𝑜𝑠 𝛺𝑡 + 𝐶 𝑠𝑖𝑛 𝛺𝑡)𝑊(𝑡) + 𝐷𝑊(𝑡)N = 𝐸 + 𝐹𝑡 + 𝐺𝑡MN 

 

with the coefficients set as  

𝜔 = 2209.11, 𝐵 ≈ 𝐶 ≈ 0, 𝐷 = 6.13 ∙ 1096, 𝐸 = 227.37, 𝐹 = 7.74, 𝐺 = 0               

(6.63) 

We can compare the numerical solution available from Eq.(6.63) with the solution 

obtained using the multiple scales method and given in Eq.(6.55) for which we introduce 

the following parameters: 
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Ω = 5500, 𝜔 = 2209.11, 𝛽 = 0.00000001,			𝐵 = 0.001, 𝐶 = 0.001,

𝐷 = 6.13 ∙ 1096, 𝐸 = 227.37, 𝐹 = 7.74, 𝐺 = 0 

(6.64) 

In order to obtain a multiple scales solution a negligible level of damping was introduced 

as well as a relatively high excitation frequency of  𝛺 = 5500 rad/s (equivalent to 875.35 

Hz), in order to make sure that real-valued analytical solutions can be determined. This 

is well over twice the value of the natural frequency which is 𝜔 = 2209.11 rad/s 

(equivalent to 351.59 Hz) so the system is operating beyond principal parametric 

resonance, with positive detuning. It should be noted that this resonance condition is 

relatively minor due to the low amplitude of the excitation, at 0.001 m, or 1 mm peak. 

This is entirely consistent with the sort of level of excitation amplitude that would be 

encountered in a satellite installation. 

Directly obtained numerical results obtained by integrating with the NDSolve function in 

MathematicaTM, and the corresponding closed form solution obtained using the multiple 

scales method in Eq.(6.55), are both presented in Figs. 6.4 and 6.5, respectively, over 100 

seconds. 

 

 

Figure 6.4. Displacement response in the time domain when subjected to increasing 

mechanical loading 10t within an environmental temperature of  20oC calculated by 

direct numerical integration by means of NSDolve in Mathematica 
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Figure 6.5. Displacement response in the time domain when subjected to increasing 

mechanical loading 10t within an environmental temperature of  20oC based on the 

approximate analytical solution obtained from the multiple scales procedure as given in 

Eq.(6.55) 

 

It can be seen that the principal qualitative difference between the two results is the 

relatively large positive DC offset, and consequent positive drift of this offset with time, 

in the numerical integration result, showing a peak-to-peak amplitude of ~ 0.00107 m. 

This compares directly with the approximate analytical solution from the multiple scales 

expansion which starts from a point of almost no DC offset, but with an almost identical 

peak-to-peak amplitude of ~ 0.00113 m. It can be clearly seen that in this case a DC offset 

also starts to grow over time. There are small but potentially significant differences in the 

conditions under which the two solution forms are obtained, summarised by the fact that 

the approximate analytical solution requires a very small level of dissipation and a small 

parametric excitation amplitude at a frequency well above the critical point of principal 

parametric resonance, in order to generate real valued solutions of commensurate value 

(peak-to-peak amplitude) and characteristic (a DC offset which grows with time). On that 

basis it is hard to make an absolutely meaningful comparison between the two solutions, 

as the operating conditions are different, and so a qualitatively and quantitatively reliable 

and accurate closed-form solution is not obviously available from the perturbation 

method of multiple scales for the coupled model developed in Chapter 2 in order to 

simulate the dynamic behaviour of the panel undergoing a variety of different mechanical 

and thermal loadings. 
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6.4 Conclusions 

The solution for the model developed and verified in the previous Chapters for the 

sandwich honeycomb panel was obtained using numerical integration within the 

Mathematica software. Therefore in this chapter an attempt has been made to reduce the 

main system of partially coupled equations to one governing equation, with the purpose 

of obtaining a closed form analytical solution which can be used without Mathematica 

software simply by varying parameters in the solution function. The governing equation 

was obtained successfully by introducing some limitations on applicability, and equation 

Equation (6.10) appeared to be a particular case of the Mathieu-Hill equation. Thus it was 

decided to solve it using the perturbation method of multiple scales, notwithstanding the 

fact that the principal parametric resonance condition will emerge as a consequence of 

the treatment of secular terms in order to guarantee the uniformity of the expansion for 

𝑊(𝑡). As a result the solution obtained was capable of demonstrating the general 

behaviour of the system which showed a qualitatively identical dynamic pattern. 

However, the accuracy of the amplitude of vibration was characterised by an unacceptable 

level of error. After close examination of the peculiarities of the method it was concluded 

that due to the presence of the secular terms, this method would not allow us to obtain an 

accurate analytical closed form solution which could provide representative results for 

the system’s behaviour. Therefore, the use of the Mathematica software and numerical 

integration is recommended for obtaining the most accurate results for simulating the 

dynamic behaviour of the panel when it undergoes a variety of different mechanical and 

thermal loadings. 
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7. Guidance for use of the code developed for obtaining the deflection results and 

heat distribution along the thickness of the panel 

 

This chapter is developed as a guid for Airbus DS engineers to be able to obtain the results 

for deflection of the panel considered in Chapter 2 and heat distribution along the 

thickness of the panel while being subjected to the mechanical dynamic loading as well 

as thermal loading. The model, and therefore the code, were both developed for free heat 

exchange and for heat flux conditions in Chapter 2. This code will allow the engineers to 

obtain a link missing so far in their practice and to see how the coupling of the thermo-

elastic effect can affect the results obtained separately for the mechanical and thermal 

models. With time this might potentially lead to evidence based conclusions to budget in 

additional adjustments for the effect of coupling, to guarantee a higher accuracy of the 

existing model used in Airbus DS practice. 

 

 

7.1  A guide for the use of the annotated code for obtaining the deflection results 

and heat distribution along the thickness of the panel under free heat exchange 

conditions 

As an example of the code we are considering the solution for the panel a×b of thickness 

h = 0.015 mm undergoing dynamic mechanical loading of 10t in the environment of 

150oC as discussed in Chapter 2. It should be noted that the figures below are extracts 

from the code, and those which are highlighted in pink are stages requiring input, and 

those which are highlighted in blue do not require any input as they are different stages 

of the calculation. 

The first stage of the solution is running the code in the file Stage 1 and starts with the 

input of data for the material properties, as well as the reference and absolute temperatures 

of the environment. All these parameters are identified with symbols,  as shown in Fig.7.1. 

The output parameters and their meanings are identified in this part of code as well 

(Fig.7.1). In this part of the code nothing needs to be changed. It only provides 

instructions for the symbols. The actual numerical values are set in the code below, shown 

in Fig.7.2. 
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Figure 7.1. Annotated part of the code in the Stage 1 file, explaining the definitions of 

the parameters. 

 

 

Figure 7.2. The input parameters are set to numerical values in the Stage 1 file 

 

It should be pointed out that in this solution the plain loading in the x and y directions (px 

and py) was set to zero, as we are interested primarily in the deflection of the panel as the 



   247 

largest output of deformation, and the normal loading is set in q[t] with the parameter 

L=10t representing the dynamic part of this transvers loading. 

 

Since we are considering a sandwich panel we need to consider the external layers 

(subscript Ex) and a middle ply (subscript M) having different properties. All these 

parameters (Q, lam, p, c, h) with subscripts Ex and M corresponding to the external and 

middle plies are defined in Fig.7.1. 

 

 

 

 

Figure 7.3. Input parameters are set to numerical values for the skins and the middle 

ply, in the Stage 1 file 

 

The following part of the code described in Fig.7.4 follows the methodology described in 

Chapter 2 and sets the procedure for calculation of the parameters needed for the law of 

temperature distribution (output T) described in Eq.(2.9). No addition the input 

parameters are needed in this part of this code. 
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Figure 7.4. Calculation of the law of temperature distribution for the free heat exchange 

case, in the Stage 1 file 

 

Following the Galerkin method for the displacement representation, all displacement 

outputs (normal and planar) are set in the harmonic form with the purpose of 

simplification through integration, which is a standard approach in plate theory. After that 

the strain parameters, membrane forces and bending moments are defined, following the 

procedure in Chapter 2, where Eqs.(2.2) – (2.6) are needed for derivation of the 

mechanical equations of motion. No additional input is required in this part of code 

(Fig.7.5). 
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Figure 7.5. Calculation of parameters needed for the mechanical equations of motion, 

in the Stage 1 file 
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This leads to the derivation of the mechanical equations of motion Eqs.(2.1) (Fig. 7.6). 

No additional input is required for this part of code. 

 

Figure 7.6. Derivation of the final mechanical equations of motion, in the Stage 1 file 

 

The next stage is to derive the thermal equations of motion Eqs. (2.12). Following the 

procedure described in Chapter 2, noting Eqs. (2.13)-(2.19), the code calculates all the 

necessary parameters, as can be seen in Fig.7.7. No any additional input is required in this 

part of the code. 
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Figure 7.7. Calculation of the parameters needed for the thermal equations of motion, 

in the Stage 1 file 

 

After that the final thermal equations of motion Eq.(2.12) are calculated by the code 

shown (Fig.7.8). 

 

Figure 7.8. The final thermal equations of motion, in the Stage 1 file 
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All these steps of code result in the numerical output of the law of temperature 

distribution, the Mechanical equation of motion and the thermal equations of motion, 

presented in Fig.7.9. 

 

 

 

 

Figure 7.9. Numerical Output after running the code for the law of temperature 

distribution, the mechanical equation of motion and the thermal equations of motion, in 

the Stage 1 file 

 

Now that we have derived all the necessary equations of motion, they need to be solved 

to obtain the displacement and temperature distribution along the thickness. Therefore the 

second stage of the process, the solution of the equations of motion, is performed in the 

file Stage 2. 

Since we are ignoring the planar loading and concentrating on the deflection as an output, 

the third equation of motion from the mechanical equations of motion is copied into the 

code in the Stage 2 file, together with the thermal equations of motion, as presented in 

Figure 7.10. At this stage the initial conditions for the environmental temperature 150oC 

and the displacement at the moment of time 0 are set here as well. The code is set to 

perform a numerical solution of the system of equations using the NDSolve function with 

the set initial conditions. 
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Figure 7.10. Code to perform solution of the system of mechanical and thermal 

equations of motion in the Stage 2 file 

 

The code in Fig.7.11 following the section in Fig.7.10 instructs the programme to produce 

numerical and graphical representations of the solution obtained for the displacement w(t) 

for different intervals of time ([0..20], [0..100], [0..500]), and thermal components T1(t), 

T0(t) for the law of thermal distribution T (as set in Fig.7.9). While setting the moment 

of time to t=0.1 and t=100, we are also able to obtain the final graphical representations 

for the temperature distribution along the thickness of the plate (z coordinate). 

Considering that the total thickness of the plate is h=0.015, the z variable spans from -

0.0075 to 0.0075. 

 

 

 

Figure 7.11. Code to performing the numerical and graphical representations of the 

solution in the Stage 2 file 
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The output of the code in Fig.7.11 results in the graphical representations for displacement 

w(t), and the thermal components T0(t) and T1(t), as well as the final temperature 

distribution T along the thickness of the plate for selected moments of time, as shown in 

Figure 7.12. 
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Figure 7.12. Graphical output of the solution in the Stage 2 file 

 

 

 

7.2  Guid for use of the annotated code for obtaining the deflection results and the 

heat distribution along the thickness of the panel under heat flux conditions 

As an example of the code we are still considering the solution for the panel a×b of 

thickness h = 0.015 mm undergoing dynamic mechanical loading of 10t with heat flux of 

𝑞N∗(𝑥, 𝑦, 𝑡) = 150𝑡	𝑠𝑖𝑛 c1
%
𝑠𝑖𝑛 c4

O
 , as discussed in Chapter 2.  

The code in the Stage 1 file developed for this thermal loading condition was based on 

the same methodology as in the previous section, however as mentioned in Chapter 2, 

when introducing heat flux instead of free heat exchange conditions, the model has to be 

adjusted through the change of thermal coefficients 𝑟(  in Eqs (2.10) corresponding to 

Eq.(2.8) which would affect Eq. (2.9) and thus all the equations representing the thermal 

part of the model discussed in Section 2.2. Additionally the heat flux law has to be 

introduced in the Input section (Fig.7.2). 

Therefore the Stage 1 file will consist of the code identical to the case discussed in section 

7.1, except for the part of the code responsible for the input of data (Fig.7.2) which will 

now have the heat flux law set as well (Fig. 7.13) and calculation of the law of temperature 

distribution (Fig. 7.4) will be replaced with the part of code shown in Fig.7.14. 
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Figure 7.13. Input parameters are set to numerical values in the Stage 1 file 

 

 

 

Figure 7.14. Calculation of the law of temperature distribution for the free heat 

exchange case, in the Stage 1 file 
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The rest of the code responsible for the derivation of the mechanical and thermal 

equations of motion and their parameters described in Chapter 2 and in Figures 7.1, 7.3, 

7.5-7.8 remain the same, in line with the model described in Chapter 2. 

Therefore the output from running the code will still give us the numerical output of the 

law of temperature distribution, Mechanical equation of motion and the thermal equations 

of motion as was presented in Fig.7.9 for free heat exchange case but for the heat flux 

condition it will be as shown in Fig.7.15. 

 

 

 

 

 

 

Figure 7.15. Numerical Output after running the code for the law of temperature 

distribution, the mechanical equation of motion and the thermal equations of motion, 

given in the Stage 1 file 
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As can be seen from Fig.7.15 the equations obtained are more complex than in the case 

of free heat exchange, and therefore potentially more approximation in the numerical 

solution process might take place. 

 

Now that we have derived all the necessary equations of motion they need to be solved 

to obtain the displacement and temperature distribution along the thickness, just like for 

the case of free heat exchange. Therefore the second stage of the process, the solution of 

the equations of motion, is performed in the file Stage 2 which consists of code (Fig.7.16) 

identical to that described in Figs.7.10 and 7.11, but with a different law of temperature 

distribution, mechanical equation of motion and the thermal equations of motion inserted 

from Fig.7.15. 
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Figure 7.16. Code to perform solution of the system of mechanical and thermal 

equations of motion and its graphical representation of the solution in the Stage 2 file 

 

The output of the code in Fig.7.16 results in graphical representations for displacement 

w(t), thermal components T0(t) and T1(t), as well as the final temperature distribution T 

along the thickness of the plate for selected moments of time, as shown in Figure 7.17. 
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Figure 7.17. Graphical output of the solution in the Stage 2 file 

Please note that detailed analysis of the numerical results obtained are performed in 

Chapter 2 
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7.3. Conclusions 

As intended, an annotated code has been developed in this thesis for automation of the 

model derivation and its solution. Thus this chapter represents a step-by-step description 

of the code to produce a comprehensive guide for use by Airbus DS engineers. An attempt 

was made to reduce the system of equations of motion, consisting of the mechanical and 

thermal equations of motion, down to a known type of equation, the solution of which 

could be found analytically. This was performed through the method of multiple scales 

with the intention to find a closed form solution which would mean that we would not 

need the Stage 2 file for numerical solution of the system of equations derived in the Stage 

1 file. However, even though this was done for a simpler system of equations, for the case 

of free heat exchange, the complexity of the equations did not allow the determination of 

an accurate enough closed form solution (Chapter 6). Therefore both stages of the process, 

Stage 1 – derivation of the governing equations based on the model in Chapter 2 and 

Stage 2 – numerical solution and graphical representation of the solution, still must be 

integral parts of the process. Both files (Stage 1 and Stage 2) are fully annotated, as 

described in this chapter, and therefore allow easy use for engineers at Airbus DS. If the 

Mathematica software is not available the code can easily be transferred to a different 

syntaxis software, following the instructions and explanations of what each part of the 

code represents, all described in this chapter. However it must be pointed out that the 

Mathematica software was chosen due to its powerful capability for solving numerically 

quite complex systems of equations similar to the ones obtained for both free heat 

exchange and heat flux conditions. Therefore, if in the future Airbus DS decides to 

transfer the code to a different software for future use, it should be checked that the 

software is capable of solving boundary value problems similar to those described in Figs. 

7.10 and 7.16. 
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Conclusions 

 

Airbus DS had identified a problem of parasitic deformation in their spacecraft structures 

and payloads due to the temperature gradient variations in materials characterised by 

different properties. This was therefore seen to affect the pointing vectors or the line-of-

sight of critical payloads. However, because the mission pointing needs that are 

demanded of payloads can vary from several arc-seconds down to sub-arc second angular 

shifts in their pointing vectors, such anomalies of distortion have to be taken into account, 

and therefore accommodated within the system design. 

 

Therefore the work reported in this thesis has been based on the consideration of a large 

selection of confidential reports and project proposals investigating the uncertainties in 

dynamic and thermal analyses, as well current engineering design practices in Airbus DS 

and a strong need was identified for further research into methods to improve the 

prediction accuracy in existing multistage techniques, or to propose an alternative 

modelling approach to the existing mapping approach hitherto adopted by Airbus DS. It 

was already known that the modelling of spacecraft structures depends on the ability of 

the model to predict or take into account the temperature gradients through the thickness 

of the structure, and that this capability might provide a solution to the problem of de-

pointing. On that basis it was decided that an alternative approach should include not only 

a resolution of the mapping approach but also an inclusion of the influence of the thermal 

distribution through the thickness of the structural material. 

 

Since the problem had been initiated by Airbus DS and had started with an in-depth 

analysis of confidential documentation provided by the Company the treatment of the 

thermo-elastic problem was first analysed and discussed. It was evident that the Company 

has a marked preference for the Nastran FEM package and the Systema TMM tool in 

order to obtain results separately for the elasto-mechanical and thermal parts of the 

problem, and that these results later had to be merged through data export and 

interpolation techniques. It was concluded that although this multistage process was part 

of a well-developed practice undertaken with the full involvement of expert engineers, 

this process in general has clearly had the potential to result in significantly reduced 
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accuracy of the predicted thermo-elastic dynamics due to unmodelled, but fundamentally 

important, coupling effects between the thermal and mechanical models.  

 

Since the FEM approach as traditionally preferred by Airbus DS was well developed for 

the Company’s users it was also known not to be capable of delivering the levels of 

accuracy necessary, so it was decided to perform research into other software packages, 

not necessarily based on numerical analysis through FEM but on the use of automated 

tools founded on the exact analytical solutions, since they potentially should provide more 

accurate results whereas FEM was known somewhat to underestimate the prediction. 

While considering this form of analytical approach it was proposed that a physics based 

coupling process of the two physical effects of temperature and mechanical deformation 

could be the only real way forward to achieve the required increase in the accuracy of the 

results. 

 

In order to make progress a detailed review of the phenomenon of thermo-elasticity was 

undertaken, and this concluded that a mechanical deformation of a body is connected to 

a change of heat inside it and therefore with a change of the temperature distribution 

within the body. At the same time a deformation of the body can be generated by certain 

temperature changes. So, the internal energy of the body depends on both the temperature 

and the deformation. It became clear that in an isothermal case, which had been 

considered by Airbus DS in their experimental programmes, there are processes which 

are elastically and thermally reversible. However if the temperature varies in time we 

deal with two coupled processes, the reversible elastic process and the irreversible 

thermodynamic process (due to a spontaneous and hence irreversible process of heat 

transfer by means of heat conduction).  

 

Therefore a variety of fully coupled and partially coupled models was considered and that 

investigative work concluded that although application of a partially coupled approach 

means that we could face a partial division of the models into the thermal part (defining 

the temperature or solving the HC equation) and the mechanical part (predicting the 

displacement based on the set or identified temperature) such an approach can still 

provide results as accurate as a fully coupled model, but at a well reduced level of 
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computational cost and complexity. In order to reduce the computational cost it was 

decided to develop the model following the well-developed and generalised TTC 

approach which was described in Chapter 2. This approach is a third order theory with 

thermomechanical coupling and can provide results as accurate as those obtained by using 

fully coupled models using a fourth order expansion of the configuration variables. It is 

also flexible enough to accommodate the necessary simplifications of some of the key 

parameters, to accommodation of appropriate boundary and initial conditions, as well as 

a variety of different dynamic thermal and mechanical loadings within a multilayered 

plate. 

 

Since the intention has been to provide a more accurate modelling tool for the resolution 

of the problem encountered by Airbus DS in their design practice, it was suggested that 

the newly developed coupled model must ideally be automated and expressed in an 

annotated code for universality, accessibility, and further development. The output data 

could be presented graphically but the main output should be annotated and accompanied 

by a user guide in order to make the data representation easily accessible and usable for 

practicing engineers at Airbus DS Ltd. 

 

In order to develop a full understanding of the conditions and the levels of loading which 

needed to be modelled, the literature review covered the relevant confidential material 

provided by Airbus DS as well as the open literature.  This review was undertaken with 

the purpose of identifying the conditions that the satellite panel would normally 

experience, including the thermal environmental conditions in LEO, as well as vibration 

of the system due to installed equipment, where this form of excitation is commonly 

responsible for the mechanical loading on the satellite panels. The review excluded  

impacts due to collisions with debris, as this was deemed to be out of scope of the work. 

As a way of gaining an understanding of the structure of the sandwich honeycomb panels 

typically used in aerospace practice and specifically for the satellite panel samples 

provided by Airbus DS, the literature review also included an investigation of the 

structure and the manufacturing techniques, as well as the behavioural features of similar 

honeycomb panels. 
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After the completion of the literature review a new modelling strategy for aluminium 

honeycomb composite panels was developed to account for the physics of dynamic 

thermal and mechanical loadings, and this was achieved through an implementation of 

the partially-coupled modelling procedure coded in the MathematicaTM language, 

whereby different boundary conditions and dynamically varying thermal properties could 

be easily accommodated. Contrary to the numerical examples presented for verification 

of the generalised analytical model, the full nonlinear structure of the dynamic 

thermomechanical model was maintained as far as possible. The model comprised three 

coupled nonlinear ordinary differential equations for which previous work has shown that 

an analytical closed-form solution could only be obtained for linearised forms of the 

differential equations and also only for static thermal and mechanical loads. A comparison 

of the nonlinear and linearised solutions was performed and it was found that the 

linearised equations could be useful for predicting the temperature profile through the 

thickness of panels with no appreciable loss of accuracy. However, for simulation of the 

displacement of the structure it was found that the full system of nonlinear coupled 

equations should be solved, and this has been done numerically within this thesis.  

 

In Chapter 2 a full set of numerical results was obtained for a simply supported aluminium 

honeycomb composite panel, as commonly used within the aerospace industry, and 

undergoing thermal, mechanical, and thermo-mechanical loading conditions. The thermal 

load mechanism was underpinned by free heat exchange and the mechanical loading in 

all cases comprised a normal constant force exerted centrally on the top surface of the 

panel. The configuration could readily be altered in terms of panel aspect ratio, boundary 

conditions, and load location. When the panel was subjected solely to a thermal load the 

nonlinear numerical solution for the displacement of the panel showed a transient 

oscillation over time at a commensurately small amplitude. The temperature distribution 

along the thickness of the panel was also calculated demonstrating thermal stabilisation 

over time, as one would expect. For a linearly increasing thermal load temperature, due 

to a significant increase of the environmental temperature and its transfer to the panel, it 

was found that the panel showed signs of accumulated thermal stresses characterised by 

the transient response and subsequent buckling displacement. The temperature 

distribution along the thickness of the panel reflected the trend in the rising environmental 

temperature. Core thickness was seen to affect the results with the thinner panels 

displaying a more pronounced thermo-mechanical response than thicker components, 
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through a higher level of displacement and a faster heating-up process along the thickness 

of the panel. It was also found that for a dynamically increasing thermal loading the core 

temperature in a thicker panel was always ‘catching-up’ with the surface temperature and 

would never reach a level of being warmer than the panel surface. In the case of constant 

mechanical loading at constant environmental temperature a noticeable dc offset in the 

displacement was observed, as would be expected. The temperature profile in this case 

showed a thermal stabilisation around the environmental temperature. The effect of the 

core thickness was also investigated for the case of dynamic mechanical loading at the 

constant environmental temperature, confirming the conclusions drawn before for the 

purely thermal loading. In the case of both dynamically increasing mechanical and 

thermal loading a transient response was observed for around 5s until the mechanical 

loading dominated the response of the panel and introduced a clearer dynamically-

increasing displacement. In this case there was clear evidence of increased displacement 

due to the combined effects of the time-variant mechanical and thermal loading. 

 

A more realistic case of heat flow for a space application was also considered. In this case 

the model had to be adjusted to introduce appropriate thermal coefficients, prescribed 

heat flow and thermal boundary conditions. Results were obtained for simulations of a 

number of dynamically increasing heat flows. The results of the simulations for the panel 

exposed to the heat flux were discussed, in comparison with the free heat exchange 

conditions, and the main differences in displacement outputs as well as heat distribution 

along the thickness of the panel were discussed. It was evident that the high level of heat 

introduced by the heat flux on one of the surfaces of the panel was initiating thermal 

stresses in the panel resulting in the buckling effect. This behaviour resulted in a stiffer 

deflection response for positive values of heat flux. Negative values of heat flux resulted 

in increased deflection of the panel. The profile of the temperature distribution along the 

thickness of the panel for the case of heat flux confirmed the increased temperature on 

the top surface of the panel, with reducing temperature values towards the bottom surface 

of the panel. 

 

In both cases the procedure for obtaining the governing equations and their solutions was 

coded in Mathematica representing a fully automated process. The code developed in 

Chapter 2 is fully annotated to allow open access for any modifications including when 
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passed on to an industrial analyst. The code has been generalised and is not restricted by 

the values supplied which means that the parameters described in the input section can be 

easily varied, and simulation can be performed for different type of materials.  

 

In Chapter 3 a programme of experimental work was performed and, from analysis of the 

data generated, it was found that there is strong evidence of the thermo-mechanical 

coupling effect when the panel is immersed in an environment at an extreme temperature, 

and is loaded mechanically. Evidence was also found that thermal loading caused by the 

extreme environment affects the deflection value and the level of residual stresses, and 

conversely the mechanical loading affects the heat accumulation and distribution within 

the panel. The extreme temperature environment did not cause an accumulation of any 

residual heat after unloading. However, during the processes of loading and unloading 

there was evidence of thermo-mechanical coupling which resulted in the presence of extra 

heat internally within the structure compared to the heat available from the environment, 

and it was found that this could result in a temperature swing of up to 3 oC. If the 

environmental temperature is close to the ambient temperature there is an accumulation 

of residual heat within the panel which is still present to a large extent even at the point 

of complete unloading of the deformed sample, indicating thermodynamic irreversibility 

for an environmental temperature close to the nominal ambient. It was found that the 

environmental temperature effect is significant and that it changes the trend of the 

deflection - temperature behaviour of the panel. The deflection of the panel affected the 

distribution of the heat within the panel resulting in a localised temperature swing in the 

material of around 2.5 oC if deformed in a cool environment and up to 1.2 oC in warmer 

environments. There was no evidence of residual stress accumulation only in the case of 

the panel operating in the ambient temperature environment. For negative environmental 

temperatures and the higher positive temperatures the deflection values for a panel which 

had already undergone some deformation did not come back to the initial values after the 

removal of the loading, and were characterised by the presence of some residual stress, 

and thermodynamic irreversibility. The extent of this residual stress was seen to be 

dependent on the environmental temperature within which the panel was immersed. For 

the sample considered in Chapter 3 the deflection during unloading in a very cold 

environment could reach up 0.1mm lower than the corresponding value during loading. 

This confirmed the damaging effect of thermal loading on the mechanical properties of 

the panel.  
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Although there was no significant thermal swing initiated by deflection within the panel 

geometry at a certain fixed environmental temperature, there was a dramatic difference 

in the way the thermal changes occurred in the panel due to the deformation for different 

hot or cold environments. This demonstrates the connection between the thermal 

properties of the panel and deformation, and how they affect each other as the deformation 

progresses - constituting the thermo-mechanical coupling within the panel. There was 

hysteresis found in the thermal response to the deformation, which was seen to get more 

significant for the colder environments, and the thermal properties of the panel 

demonstrated this through a swing in the temperature of the panel of 2.5oC during the 

unloading process.  

 

Therefore, in order to produce an accurate prediction of the deformation progression and 

regression during the loading and unloading processes, as well as the heat distribution 

along the panel geometry, it is recommended to introduce corresponding correction 

factors to account for:  

- the effect of the environmental temperature on the magnitudes of the deformation of 

the panel; 

- the initial thermal conditions of a panel which has undergone a mechanical 

deformation, even if the loading has been completely removed. The thermal properties 

for such a panel cannot necessarily be assumed to be fully controlled by the value of the 

environmental temperature if the panel also undergoes mechanical loading. 

 

In Chapter 3 it was also found that the panel tended to cool down in a relatively uniform 

way in all three dimensions. However, the heating up process was not uniform and there 

was some localised heating resulting in certain hot-spot areas accumulating more heat 

than others. This was the case if the panel was in an environmental temperature between 

ambient and +80 oC. In the more extreme thermal environment the sample heated up more 

evenly and reflected the temperature of the environment linearly, even while being 

mechanically loaded. From the data obtained during this experimental work it is evident 

that in the environment with the temperature close to the ambient the skins do heat up 

faster than the honeycomb core, however this trend was found to disappear as the 

environmental temperature moved to higher or lower extremes. An interesting 
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observation was that when going into the more extreme hot or cold environments the 

pattern of temperature feedback from the panel, with respect to the deflection, bifurcates, 

demonstrating how significant the thermal changes of the environment can be for the 

pattern of the coupling between the thermal properties and the mechanical deformation 

of the panel. 

 

In Chapter 4 the panel tested in the experimental set up in Chapter 3 was considered for 

verification of the analytical model through comparison of the maximum displacement of 

the panel, as well as for checking the influence of the environmental temperature on the 

magnitude of displacement induced by a dynamic mechanical loading. The same trend of 

the higher displacement response in hotter environments and lower displacement 

response in cooler environments was found, confirming the associated predictions of the 

analytical model developed in Chapter 2. It was also found that the displacement response 

was characterised by the transient behaviour, dependent on the environmental 

temperature, confirming the coupled effects of thermal and mechanical loading. The 

model was also used to predict the dynamic thermal response of the material within the 

thickness of the panel, demonstrating a nonlinear temperature distribution profile within 

the thickness of the panel, something which is very difficult to perform experimentally. 

It was also found that during the heating up process the core remained at a lower 

temperature than the skins were at the beginning of the heating up process. However, 

there was also evidence of heating up of the core beyond the skin temperature by a very 

small amount. Although the difference between the temperature of the core and the skins 

at the end of the transformation was very small, it still gave an indication of some 

nonlinear transformational phenomena occurring within the thickness of the panel when 

undergoing mechanical loading within the harsher environments. This of course might be 

more significant for larger or thicker panels and could be particularly significant for large 

aerospace structures exposed to harsh thermal cycles. These internal transformations due 

to the heating-up or cooling-down processes could be the key to the explanation of the 

transient response demonstrated in the displacement response as driven by the 

environmental temperature. It is also hypothesised that the frequency of the transient 

response might be higher due to amplitude ‘suppression’ in cooler environments due to 

the material stiffening effect, which could potentially introduce a parasitic resonance 

contributing to the problem of de-point of the parent satellite structure. This is still to be 

investigated in future research. It also should be concluded that inclusion of the coupling 
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effect between the mechanical and thermal phenomena is essential in the process of 

modelling since there is strong evidence of their influence on the final dynamic behaviour 

of the system and this can also potentially be significant due to the effect of resonance.       

Since Airbus DS use FEM extensively for their thermo-elastic analysis, the work in 

Chapter 5 was performed under the supervision of the author of this thesis and resulted 

in a journal paper being prepared for publication. In this work three different FE models 

were developed to attempt to simulate a simplified thermo-mechanical FE model. The 

three models were analysed in terms of validity, accuracy, and computational cost. It was 

demonstrated that all three models were able to show a significant deviation of panel 

response at the low load range that is typically associated with satellites, making them 

suitable for such analysis. The models also demonstrated clearly the effect of the thermal 

loading and interaction between mechanical and thermal loading in the form of larger 

deflection at higher thermal loading and stiffer response at lower temperatures, which was 

in line with the experimental results presented in Chapter 3. It was concluded that the 2D 

continuum model was the simplest model and that this delivered considerable 

computational savings at the cost of a lack of response under low-strain conditions, while 

the 3D continuum model offered higher accuracy and generally with a saving of 

computational time of around 60% comparing to the 3D Geometrically Accurate Model. 

The 3D models also demonstrated the effect of buckling with subsequent snap-through 

due to the initial high thermal loading from the applied heat flux, which was consistent 

with results obtained for the analytical model in Section 2.4, Chapter 2. These are valuable 

results since the experimental work performed in Chapter 3 presented results for free heat 

exchange thermal loading only. In this way the analytical and FE models offer further, 

more detailed, predictions for the thermo-mechanical behaviour of the sandwich 

honeycomb panel. However it should be emphasised that the analytical model developed 

in Chapter 2 is still characterised by the additional capability of accurate prediction of 

nonlinear temperature distribution along the thickness of the panel, as well as prediction 

of the deflection response of the panel due to the two coupled phenomena while 

undergoing simultaneous mechanical and thermal loading. 

The solution for the model developed and verified in the previous Chapters for the 

sandwich honeycomb panel was obtained using numerical integration within the 

MathematicaTM software. Therefore in Chapter 6 an attempt was made to reduce the main 

system of partially coupled equations to one governing equation, with the purpose of 
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obtaining a closed form analytical solution which could be used without MathematicaTM 

software simply by varying parameters in the solution function. The governing equation 

was reduced down to a particular case of the Mathieu-Hill equation and solved using the 

perturbation method of multiple scales, notwithstanding the fact that the principal 

parametric resonance condition was shown to emerge naturally as a consequence of the 

treatment of secular terms in order to guarantee the uniformity of the expansion for 

deflection. The solution obtained was capable of demonstrating the general behaviour of 

the system which showed a qualitatively identical dynamic pattern. However, the 

accuracy of the amplitude of vibration was characterised by an unacceptable level of error 

and therefore it was concluded that due to issues with the secular terms this method would 

not allow us to obtain an accurate analytical closed form solution which could provide 

representative results for the system’s behaviour. Therefore, the use of the 

MathematicaTM software and numerical integration is recommended for obtaining the 

most accurate results for simulating the dynamic behaviour of the panel when it undergoes 

a variety of different mechanical and thermal loadings. 

 

As was the aim, an annotated code was developed in this thesis for automation of the 

model derivation and its solution, and in Chapter 7 a step-by-step comprehensive 

guidance through the code was produced. This guidance is intended specifically for the 

use of Airbus DS engineers. The code requires implementation within the MathematicaTM 

software due to the complexity of the nonlinear governing equations, and consists of two 

stages described in detail in Chapter 7. It should be pointed out that the MathematicaTM 

software was chosen here due to its uniquely powerful capability for solving quite 

numerically complex systems of equations similar to those obtained for both free heat 

exchange and heat flux conditions. 

 

Therefore the intended aim of this thesis, which was to consider a variety of  thermoelastic 

modelling approaches and to develop a more accurate methodology has been achieved, 

and provides an additional tool for the engineers at Airbus DS Ltd to estimate the heat 

propagation along the thickness of the panels, as well as to predict the deformation of the 

panel due to both heat exposure and vibration from neighbouring sub-systems and 

installations. 
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As mentioned above and in Chapter 4 the displacement response was found to be 

characterised by the transient behaviour, dependent on the environmental temperature or 

thermal disturbance, confirming the coupled effects of thermal and mechanical loading. 

In this respect it is recommended the use of active damping should be considered, based 

on the careful introduction of smart materials into satellite structures, similar to 

technology suggested in [235]. A combination of piezoelectric sensors and actuators was 

successfully applied in an aluminium structure to suppress thermally induced vibration 

caused by an applied heat flux. 

 

Through the development of further expertise in the area of vibration and investigation of 

the related phenomena, it should be emphasised that in [236] evidence was given from 

the vibrational mechanics point of view which also accommodated a nonlinear approach 

to complex systems, that an effect of self-excitation takes place which was originally 

discovered for pendulums. Blekhman showed that this effect can be extended to the self-

synchronisation of mechanical vibratory systems, and non-balanced rotors, which were 

rotationally excited by asynchronous drives. The research in this thesis has demonstrated 

both theoretical and experimental observations supporting this phenomenon. 

The work discussed in [236] studied the displacement and de-pointing effects due to the 

vibrational influences from the transportation of solids along a conveyor, the separation 

of materials of different properties, the micro-displacement and wear of parts, the de-

pointing of the read-out needles of measuring devices and gyroscopic axes, and many 

other instances, having both intentional and parasitic effects. It should be noted that the 

direction of displacement can be vibration dependent and potentially could be controlled 

by changes in the frequency of vibration. 

Studies of the effect of de-pointing from a stable equilibrium position due to vibration 

have demonstrated that a key position in a system could be attracted to the direction of 

the acting vibration. In this case the vibrational de-pointing effects would principally be 

caused by vibrational forces and moments [237-240]. However this effect can also work 

in reverse and it is possible to achieve a stable equilibrium position of under vibration 

which did not exist in the rest position. 
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It was also shown that material strength can be undermined by vibration. In particular 

applied vibration may change the elastic moduli of a material, as well as its dissipative 

properties. One example of this particular effect is the well-known Indian rope trick. 

Based on wider perspective it is fair to hypothesise that the predicted effect of de-pointing 

in a satellite could be emphasised or mis-represented by inaccuracies in the model, and 

that this problem could potentially be rectified by using the model developed in this thesis. 

However, there could also be the presence of sources of vibration from neighbouring sub-

systems which could attract critical parts of the equipment such as antenna arrays, and 

that effects such as this could contribute to the de-point effect. Unintended and 

unmodelled changes in important material properties, again for example in critical 

antenna arrays or supporting parts, could also contribute to the de-point issue. Therefore 

it is highly recommended that further research is undertaken that includes the additional 

phenomena mentioned here, in parallel with the coupled thermal and mechanical 

responses considered in the modelling process in this thesis. 
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Appendix 

Appendix A 
 

Mathematica code for derivation of the Mechanical and Thermal equations for the 
coupled system 
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Appendix B 

Output from the Mathematica coded solution (Appendix B) presented in an 

annotated format 
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Appendix C.  

Open Data for the paper ‘Experimental investigation of the thermoelastic 

performance of an aerospace aluminium honeycomb composite panel’ by Olga A. 

Ganilova, Matthew P. Cartmell, and Andrew Kiley 

 

This data is presented as an open source data and published as Open Data for the paper 

‘Experimental investigation of the thermoelastic performance of an aerospace 

aluminium honeycomb composite panel’, University of Strathclyde, 2019, 

https://doi.org/10.15129/28a67ac3-0daf-4c8d-81c7-3af6a847c211 

 

It represented as a folder of 7 files and for convenience attached to this submission. 
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Appendix D 

Experimental tests procedure log 

 

a) A test plate was cut with dimensions 300 x 100 mm and this was fitted with a 
rosette gauge configuration on the top and bottom surfaces, as shown in Figure 1.  
The upper skin thickness of the plate was 0.39mm, and the lower skin thickness 
was 0.34mm. The thickness of the honeycomb core was 9.21mm. The plate was 
simply supported equidistant from each end, and the centre-to-centre distance 
between the supports was 257mm.  

b) We performed three incremental load-deflection tests from 0 to 20 N, then to 50 
N, and then to 100N, all at ambient laboratory temperature (20 deg C) and the data 
logger recorded both the displacements of the Instron loading tool and the strains 
measured by the gauges for these three load ranges.  

c) We checked for hysteresis, and found it clearly evident in all three loading cases. 
We did the tests again to check the consistency of results (confirmed). The 
maximum central (load point) deflection for the 100 N load was found to be 0.58 
mm (see Figure 2 below). The results data files are available on request. 

d) The 100 N loading test was to be repeated as follows: from ambient (20 deg C) 
up to +100 deg C, by setting the environmental chamber temperature, and holding 
it constant during the test. Then to cool back down to ambient temperature (20 
deg C) and then go down to 0, -20, -40, -60 deg C, respectively. Each fixed 
temperature test was intended to take around 5 minutes to complete before the 
temperature was changed for the next one. This was delayed due to partial 
failure of the Instron environmental chamber temperature controller. The 
decision was made to replace the defective parts so that the test could be 
performed accurately and correctly.  

e) The final test in this series was for one long-duration thermal soak test at 100 deg 
C in which the chamber was to be held at that temperature for three days, and a 
load-deflection test performed each day up to 100 N, to see if there was an 
observable thermally-driven creep effect.  
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Appendix E 

Communication on properties for the panels supplied 
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Appendix F.  

Temperature distribution along the thickness for other environments 

t=0.1s                                                                     t=1s 

  

 

t=5s                                                                     t=10s 

  

  

Figure F1. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of 80o C, presented at different instants in time. 
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t=5s                                                                     t=10s 

   

Figure F2. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of 60o C, presented at different instants in time. 
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Figure F3. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of 40o C, presented at different instants in time 
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t=0.1s                                                                     t=1s 

    

 

t=5s                                                                     t=10s 

    

 

Figure F4. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of -20o C, presented at different instants in time. 
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t=5s                                                                     t=10s 

    

 

Figure F5. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of -40o C, presented at different instants in time. 
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Figure F6. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of -60o C, presented at different instants in time. 

-0.006 -0.004 -0.002 0.002 0.004 0.006

-40.578

-40.576

-40.574

-40.572

-40.570

-40.568

-40.578

-40.576

-40.574

-40.572

-40.570

-40.568

-0.006 -0.004 -0.002 0.002 0.004 0.006

-13.2

-13.0

-12.8

-12.6

-12.4
-0.006 -0.004 -0.002 0.002 0.004 0.006

-54.62

-54.60

-54.58

-54.56

-54.54

-54.52

-54.50

-0.006 -0.004 -0.002 0.002 0.004 0.006

-60.865

-60.860

-60.855

-60.850

-0.006 -0.004 -0.002 0.002 0.004 0.006

-60.865

-60.860

-60.855

-60.850

T(oC) T(oC) 

T(oC) T(oC) 

T(oC) T(oC) 

h(m) 
h(m) 

h(m) 
h(m) 

h(m) h(m) 



   307 

 

 

t=0.1s                                                                     t=1s 

    

 

t=5s                                                                        t=10s 

 

 

Figure F7. Temperature distribution across the thickness of the panel (x 
coordinate) when the panel is under dynamic mechanical loading and in an 

environmental soak temperature of -100o C, presented at different instants in time. 
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Appendix G 

Published papers as a result of work performed for this thesis 
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The development of a dynamic coupled model for  

aluminium composite sandwich plates under thermo-elastic 
loading 

Olga A. Ganilova1[0000-0003-0203-9825], Matthew P. Cartmell1[0000-0002-3982-6315],  and Andrew Kiley2 

1Aerospace Centre of Excellence, Department of Mechanical & Aerospace  

Engineering, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK 

2Airbus Defence & Space Ltd., Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, UK 
olga.ganilova@strath.ac.uk 

Abstract. An analytical-numerical coupled model has been developed to predict the effects of dynamic 
thermomechanical loading on aluminium composite panels in the form of metallic skin sandwich 
structures, for the enhanced design of spacecraft structures where the environmental conditions 
comprise combined mechanical and thermal loading. The model is explored for a centrally located static 
mechanical load in conjunction with thermal loading in the form of controlled environmental 
temperatures, for prescribed physical boundary conditions. The physics of dynamic thermal and 
mechanical loadings have been integrated into a partially coupled modelling procedure which can easily 
accommodate different boundary conditions and dynamically varying thermal properties.  

Keywords: Sandwich Panel, Honeycomb, Thermoelastic, Thermomechanical. 

1 Introduction 

The materials used on the exterior of spacecraft are subjected to many degrading environmental threats. In 
terms of material degradation in space, low‑Earth orbit (LEO), is a particularly harsh environment because 
of the presence of atomic oxygen (AO) along with all other environmental components [1]. As a spacecraft 
moves in and out of sunlight during its orbit around Earth, the degree to which a material experiences 
thermal cycling temperature extremes depends on its thermo‑optical properties (solar absorptance and 
thermal emittance), its view of the sun, the Earth, and other surfaces of the spacecraft, time in sunlight and 
eclipse, thermal mass and equipment or components that produce heat [1]. The cyclic temperature variations 
can range from ‑120 °C to +120 °C, due to high solar absorptance with low infrared emittance, in the 
absence of spacecraft system thermal control. Sixteen thermal cycles a day, taking the case of the ISS which 
orbits Earth approximately every 92 minutes, may lead to cracking, peeling, spalling, or pinholes in the 
coating, allowing AO to attack the underlying material [1]. 
In [2] an experiment was performed to investigate the thermal behaviour of a 
sandwich panel deployable as an integral part of a satellite using a ground 
thermal-vacuum test. An interesting study carried out by [3] focused on the 
effect of thermal cycling in a simulated LEO environment on the microhardness 
of aluminium alloys, and subjected these alloys to cycles ranging from -140°C to 
+110°C, to study thermal fatigue and resulting stress state. The study 
concluded that aluminium alloys exposed to extended thermal cycling exhibited 
obvious softening behaviour, causing phase transformations leading to crack 
initiation. The principal finding was that aeronautical materials that undergo 
periodic heating and cooling can be damaged to varying degrees, with thermal 
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fatigue having a great impact on the mechanical properties of the materials 
used.  

For a spacecraft panel undergoing cyclic loading under the perspective of 
modelling it is logical to propose that the structure must combine the effects of 
thermal loading as well as mechanical disturbance. This is because from a 
physical point of view the deformation of a body is connected to a change of 
heat inside it, so to a change of the temperature distribution in the body. So, a 
deformation of the body leads to temperature changes, and conversely. The 
internal energy of the body depends on both the temperature and the 
deformation and so, in the case of a spacecraft panel, it necessarily undergoes 
processes that are intrinsically coupled, defined collectively as thermoelasticity 
[4]. Many modelling approaches tend to separate the mechanical and thermal 
effects, but thermoelastic processes are not generally reversible because 
although the elastic part may be reversed - the deformations may be 
recoverable through cooling - the thermal part may not be reversible due to the 
dissipation of energy during heat transfer [5]. So, there is a strong need to 
couple the mechanical and thermal aspects of the problem to achieve results of 
meaningful accuracy. In order to reduce the computational cost, it was decided 
to adopt the TTC approach described in [6] to an industrial application of an 
aluminium honeycomb sandwich panel. Such panels are routinely used within 
spacecraft structures, but this is also a common form of structural material 
encountered right across the aerospace industry. We consider an industrial 
case of thermodynamic loading with room temperature initial thermal conditions, 
and gradual mechanical loading, both combined together for the first time. 
Working at the micro-vibration level tackles an important spacecraft 
phenomenon because even moderate thermo-mechanical loading conditions 
generate micro-vibration, which contribute to the all-important satellite de-point 
problem, which industry is very keen to minimise as far as possible. 

2 Problem under consideration 

The sandwich panel to be considered is composed of two types of aluminium alloy. For the outer faces of 
thickness 0.4 mm, an Al-2024 alloy is used, whilst an Al-5056 alloy foil is used to form the hexagonal 
honeycomb core. This core is of depth 14.24 x10-3 m and comprises a foil of thickness 0.0254 x10-3m. It 
has been decided to develop a partially coupled model, and although TTC in [6,8] is a partially coupled 
model it still demonstrates very high accuracy when compared with the fully coupled model [5,7].  

3 A model for mechanical and thermal behaviour of the panel 

The mechanical equations of motion are based on the Reddy plate theory 
development [6] noting that it is assumed that deflection due to shear is 
negligible with respect to flexure between the layers, and so the basis for the 
model has been reduced to the interpretation given by [9], 

𝑁..,/ +𝑁.0,1 = 0 

𝑁.0,/ +𝑁00,1 = 0                                                  (1) 

𝑀..,// + 2𝑀.0,/1 +𝑀00,11 +𝑁..𝑤,// + 2𝑁.0𝑤,/1 +𝑁00𝑤,11 + 𝑞(𝑥, 𝑦, 𝑡) − 𝑝/𝑤,// − 𝑝1𝑤,11
= 𝜌ℎ𝑤,22 + 𝛿𝑤,2 
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and where Nij are membrane forces, Mij are bending moments, px and py 
are forces applied along the x and y coordinate directions respectively, 𝛿 is a 
damping coefficient, q(x,y,t) is a transversely distributed loading, and 𝜌 and h 
are the density and thickness of the panel.  

For a laminated plate with arbitrarily oriented plies, the thermoelastic linear 
constitutive relations for the kth orthotropic lamina in the principal material 
coordinates of the lamina are, 
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𝑇                    (2) 

where 𝑄º()
(5) are the plane stress-reduced elastic stiffnesses, and �̅�99

(5) = 𝑄º99
(5)𝛼9 +

	𝑄º96
(5)𝛼6	  and   �̅�66

(5) = 𝑄º96
(5)𝛼9 +	𝑄º66

(5)𝛼6	 are the thermoelastic stiffnesses, with 
𝛼9	and	𝛼6 being the coefficients of thermal expansion in the x and y directions. 
The relationships between strains and displacements are derived in detail in [6]. 

Following [6] we also assume that the temperature varies according to a 
cubic law, consistent with assumptions: 

𝑇 = 𝑇7 + 𝑧𝑇. + 𝑧0𝑇0 + 𝑧8𝑇8                                        (3) 

where T(x,y,z,t) is the three dimensional temperature variable, while 
𝑇3(𝑥, 𝑦, 𝑡), 𝑇9(𝑥, 𝑦, 𝑡), 	𝑇6(𝑥, 𝑦, 𝑡), 𝑇N(𝑥, 𝑦, 𝑡) are the hitherto unknown components 
of the temperature of the two dimensional model, and cover the full profile up to 
a cubic distribution. 

The thermal balance equations are introduced for the case of non-stationary 
conduction and thermoelastic coupling, as in [6,8], 

𝑞.,/
(7) + 𝑞0,1

(7) − 𝑏,2
(7) − 𝑎,2

(7) + 𝑄(7) = 0 

𝑞.,/
(.) + 𝑞0,1

(.) − 𝑏,2
(.) − 𝑎,2

(.) + 𝑄(.) = 0                                   (4) 

where the qi(x,y,z,t) represents the three dimensional heat flow along the 
x,y,z directions, b(x,y,z,t) is the internal energy due to non-stationary 
conduction, a(x,y,z,t) is the interaction energy due to the thermoelastic coupling, 
all defined in detail in [6,8]. 

A procedure for computing the solutions to the principal equations (1) and 
(2), and invoking all the parameters that follow, defined with respect to specified 
boundary and initial conditions, has been coded in MathematicaTM.  

Since we are interested in the temperature and displacement distribution in 
the z-direction for the structure when subjected to combined mechanical and 
thermal loading, the system can be reduced to the following equations to find 
the membrane temperature T0(t) and bending temperature T1(t) as defined in 
[8,10]: 

𝐶.�̈�(𝑡) + 𝐶0�̇�(𝑡) + D𝐶8 + 𝐶9𝑃/(𝑡) + 𝐶:𝑃1(𝑡) + 𝐶3𝑇7(𝑡) + 𝐶;𝑇<(𝑡)F𝑊(𝑡) + 𝐶=𝑊8(𝑡) + 𝐶>𝑇.(𝑡)
+ 𝑄(𝑡) = 0 

𝐶.7�̇�7(𝑡) + 𝐶..𝑇7(𝑡) + 𝐶.0𝑇<(𝑡) + 𝐶.8𝑊(𝑡)̇ 𝑊(𝑡) = 0 

𝐶.3�̇�.(𝑡) + 𝐶.;𝑇.(𝑡) + 𝐶.=𝑇<(𝑡) + 𝐶.>�̇�(𝑡) = 0                      (5) 
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In reference [6] this form of system of equations was solved analytically 
obtaining a general solution using features within the MathematicaTM code. 
However, this was done by eliminating the nonlinear terms and for static values 
of the mechanical and thermal loading, thus, 

𝐶.�̈�(𝑡) + 𝐶8𝑊(𝑡) + 𝐶>𝑇.(𝑡) = 0 

𝐶.7�̇�7(𝑡) + 𝐶..𝑇7(𝑡) = 0 

𝐶.3�̇�.(𝑡) + 𝐶.;𝑇.(𝑡) + 𝐶.>�̇�(𝑡) = 0                                  (6) 

Here our overall aim has been to look for a solution for the system in its 
generalised form, as stated in full in Eq. (5). 

Before starting to look for an analytical solution it was decided to investigate 
whether the presence of the nonlinear terms eliminated in [6] would have a 
pronounced effect on the behaviour of the panel under consideration. 
Therefore, an analytical closed form solution (using the DSolve function in 
MathematicaTM) was found for the simplified system (6), as well as a 
comparable numerical solution (using NDSolve in MathematicaTM) for the full 
system with nonlinear terms in Eq. (5). As an initial test example we assumed 
that the panel should be subjected to a small constant mechanical load, 
arbitrarily set to 1N, and a thermal load in the form of an environmental soak 
temperature of 70oC, and no mechanical damping.  

The purely numerical solution to Eq. (5) for W(t) and the closed form 
analytical solution for W(t) obtained for the reduced system of Eq. (6) are both 
plotted in the time domain in Fig. 1.  

The two time domain plots of Fig. 1 suggest that for the data considered 
retaining the nonlinear and coupling terms provides a solution offering more 
detailed information about the behaviour of the panel, including an important 
internal energy transfer phenomenon arising from the interaction between the 
mechanical and thermal aspects of the problem, demonstrated in Fig. 1(a) as a 
transient decay in the displacement response. However, the numerical solution 
found for the full nonlinear system obviously doesn’t offer any generic insight 
into the phenomenology of the problem and is restricted in use to specific data 
cases such as the one just discussed. 

 
Fig. 1. Deflection W(t) in metres for the panel under Q=1N, T=70o C based on the following solutions: (a) – numerical 
solution of Eqs (5), (b)-closed form solution for Eqs (6) 

Given that this particular numerical solution, and others too, confirm the transient nature of the 
displacement response with time, as one would fully expect, the next logical step in the investigation would 
be to obtain a proper closed form solution for the full nonlinear system. An immediate benefit of this would 
be the calculation of accurate and generalised responses, and greatly reduced calculation times for different 
geometries, loading conditions and different material properties for the panel. Nevertheless, despite the 
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limitations of Eq. (6), it should be mentioned that the predicted profile of the temperature distribution along 
the thickness was found to be phenomenologically accurate for this solution and can be used without any 
loss of accuracy.  

4 Numerical experiment 

For the numerical study of the system (5) with full nonlinear coupling terms, 
different forms of loading are considered: a constant thermal load only, a 
dynamic thermal load only, a constant mechanical load only, and a combined 
thermo-mechanical load consisting of a dynamic thermal component and a 
constant mechanical component. In this paper results are presented for a 
constant and dynamic thermal loads and a combined thermo-mechanical load. 
The plate-like sandwich panel under consideration is of the dimensions (100 x 
100) x10-3 m with variable thickness honeycomb and was considered to be 
simply supported. The thermal loading was applied by means of imposing a 
difference between the reference temperature and the environmental 
temperature, in order to represent free heat exchange conditions.  The 
mechanical loading was taken as a normal constant force applied centrally to 
the top-face sheet. 

4.1 The case of thermal loading 

When elevated temperature conditions apply at the outer faces of the 
sandwich panel, to represent the free heat exchange condition, these faces will 
heat up first of all, with the heat then distributing from the outer faces inwards 
towards the centre of the core. To understand the process of the displacement 
emerging due to this changing thermal equilibrium, as well as the characteristics 
of the thermal gradient along the thickness, a constant environmental surround 
temperature of 100°C was initially applied with the ambient reference (start) 
temperature set to 22°C, and a solution for the system of Eq. (5) was obtained 
using the NDSolve function in MathematicaTM. 

  
(a)                                             (b)       

Fig. 2. (a) Displacement response (in metres) in the time domain and (b) time history of the distribution of the thermal 
component T0(t) (in o C) when subjected solely to a thermal load defined by an environmental temperature of 100oC 
and with a core thickness of 0.01424m and total plate thickness of 0.015m.  

The principal features of the displacement response are the transient over time and the largely symmetrical 
peak to peak amplitude over the time of the transient’s decay. This accords with practical expectations for 
a plate under this form of loading. In Fig. 3 discrete snapshots between 0.001 s through to 5 s are given for 
the time history of the thermal gradient across the thickness of the panel, in order to understand the thermal 
changes that the panel undergoes, and the conditions under which it stabilises.  
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Fig. 3. Plots of the temperature (in oC) distribution through the thickness h (in metres) of the panel under a thermal load 
due to an environmental soak temperature of 100o C.  

 

By fixing the time steps and observing the progression of the temperature 
distribution through the plate we see the main stages of the temperature 
stabilising process described in [6]. By applying heat to the plate through an 
elevated environmental soak temperature the temperature distributes through 
the thickness as shown in Fig. 3(a) with the intermediate temperature of the 
honeycomb core being very close to the top skin temperature (Fig. 3(b)) and 
after 1s this stabilises and settles within the range of 1.1oC, with a small 
difference between that of the skin temperature and the honeycomb core. The 
process of equilibriating temperature is reflected in the behaviour of T0(t) in Fig. 
2(b) where we clearly see that after 5s the equilibrium temperature is reached 
and the profile thereafter remains constant in time. The process of obtaining the 
solution for T0(t) can in itself be a useful tool for finding out if the temperature 
stabilises at a certain equilibrium, and what the temperature of that equilibrium 
might be, as well as to determine how long it takes for the panel to reach an 
equilibrium state. To investigate the behaviour of the panel when the 
environmental temperature varies under the prescribed dynamic condition Eq. 
(5) are solved for T(t) = 20 + 10t with the reference temperature set to 22oC, as 
in the previous case. 
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(a)                                             (b)       

Fig. 4. (a) Displacement response (in metres) in the time domain (in seconds); (b) Time history of the thermal 
component T0(t) (in o C) for the panel under a thermal load of (20 + 10t) oC with a core thickness of 0.01424m, and for 
a total plate thickness of 0.015m. Time is in seconds. 

The same qualitative conditions prevail for the response to this form of load, 
and the transient dies out after about 1.75s. Analysing the history of the thermal 
gradient over time shows that the sample underwent the same process of 
stabilisation and reached  equilibrium after 3s, however due to the linearly 
increasing thermal  load (20 + 10t) oC,  the temperature in the sample rapidly 
increased after equilibrium. This is clear from the distribution of the middle plane 
thermal component T0(t) in Figure 4(b). 

4.2 The case of thermo-mechanical loading 

For the case of thermo-mechanical loading the physics of the separate 
thermal and mechanical loading scenarios are combined, using the model 
discussed previously. 

An initial check on the combined effect of a constant mechanical load of 1N and 
a dynamic thermal load initiated by the environmental temperature which obeys 
the linear law given by (20 + 10t) oC was carried out. This showed that the 
deformation under these conditions is virtually the same as when undergoing 
purely the linear thermal load law, but the structure experiences a generally 
greater level of principal stress than for the case of the isolated mechanical 
load. This is due to the additional compressive stress caused by the thermal 
expansion of the panel. The deformation response, thermal gradient, and 
general correspondence to the cases of purely dynamic thermal loading can all 
be observed for very thin and thick panels, with the results given in Figs. 5. 

 
(a)                                             (b)       
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(c)                                             (d)       

Fig. 5. (a),(c) Displacement response (in meters) in the time domain and (b),(d) time history of the distribution of the 
thermal component T0(t) (in o C): (a),(b) - for core thickness of 0.00824m and total plate thickness of 0.009m and (c),(d) 
- for core thickness of 0.01924m and total plate thickness of 0.02m when subjected to a thermal load of (20 + 10t) oC 
and a constant mechanical loading of 1N.  

A more pronounced dc offset occurs in the displacement response when the 
constant mechanical load is increased up to more realistic values, such as 10N 
or 100N and this phenomenon is shown very clearly in Figs. 6. 

 
(a)                                             (b)       

Fig. 6. Displacement response (in metres) in the time domain when subjected to a thermal load of (20 + 10t) oC and a 
constant mechanical load of (a) 10N and (b) 100N, with core thickness of 0.01924m and total plate thickness of 0.02m.  

5 Conclusions 

A new modelling strategy for aluminium honeycomb composite panels has been 
suggested, in which the physics of dynamic thermal and mechanical loadings 
are integrated into a partially coupled modelling procedure which can easily 
accommodate different boundary conditions and dynamically varying thermal 
properties. The nonlinear thermomechanical model comprises three coupled 
nonlinear ordinary differential equations for which an analytical closed-form 
solution can only be obtained for the linearised equations and for static thermal 
and mechanical loads, and so a comparison has been undertaken between this 
solution and a corresponding numerical solution for the full nonlinear model. 
The simplified analytical solution obtained in [6] has been found to be useful for 
predicting the temperature profile through the thickness of panels with no 
appreciable loss of accuracy. However, for simulation of displacement the 
system of coupled equations can be solved numerically, results for this are 
discussed here. An approximate closed-form analytical solution for this equation 
could be sought using an asymptotic method, such as the perturbation method 
of multiple scales. A full set of numerical results have been obtained for a 
simply supported aluminium honeycomb composite panel commonly used 
within industry, undergoing thermal, mechanical, and thermo-mechanical 
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loading conditions. The thermal load mechanism involves free heat exchange 
and the mechanical loading in all cases comprises a normal constant force 
exerted centrally on the top surface of the panel. When the panel is subjected 
solely to a thermal load, applied by means of a fixed environmental 
temperature, then the solution for the displacement of the panel shows a 
transient oscillation over time at a commensurately small amplitude. The 
thermal gradient through the thickness of the panel is also calculated based on 
the coupled system (5) using the numerical solution derived, and thermal 
stabilisation emerges over time, as one would expect. Broadly the same 
qualitative responses are observed for a linearly increasing thermal load 
temperature, but with the stabilisation showing close coupling to the rising 
environmental temperature. Core thickness affects the results, with the thinner 
panels displaying a more pronounced thermo-mechanical response than thicker 
ones. In the case of pure mechanical loading, at a constant but arbitrary low 
level initially, the panel behaves as normal theory would predict, with a small dc 
offset in the displacement once the very small transient has decayed. The 
temperature profile shows a thermal response which reduces to zero in time, 
indicating that the internal and environmental temperatures are equal. This is a 
persistent effect for different geometry and mechanical load magnitude. Finally, 
in the case of combined dynamic thermo-mechanical loading the panel is 
subjected to a linearly increasing thermal load temperature and a constant 
arbitrary mechanical load. The increasing thermal equilibrium over time and the 
dc offset in the displacement amplitude are strongly persistent features of the 
results despite different core thicknesses, with the level of the dc offset 
increasing significantly with applied mechanical load.  
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Eoin Reilly, Aaron Weidmann, Jon Richardson, Matthew Dougan, 
Neil Gordon, Dr. Olga Ganilova 

University of Strathclyde, Department of Mechanical and Aerospace Engineering, 75 
Montrose Street, Glasgow, G1 1XJ 

Abstract 

Satellites require a body that is light, and cost efficient enough to send into 
space, while also being strong and stiff enough to stand up to constant use 
without any practical repair or maintenance for the entire service life. As such, 
honeycomb sandwich panels are an obvious choice for satellites thanks to their 
high specific stiffness and strength. However, modern modelling approaches fail 
to properly model thermo-mechanical responses of these panels, leading to 
misleading results, and selection criteria for composites often rely on practical 
testing. This is an issue, as satellites experience significant temperature 
fluctuations. This report examines the limitations of mechanical-only or 
separated thermo-mechanical modelling and proposes effective methods to 
develop accurate simplified models which capture panels’ thermo-mechanical 
responses with small amounts of computational effort. A mechanical 
geometrically accurate model was validated using previous experimental data of 
Honeycomb Sandwich Panels under Three Point Bending. Then two thermo-
mechanical models were developed which were able to distinguish panel 
response for varying temperature at low load cases typical of satellite loading. 
Subsequently 3D and 2D Simplified models were developed based on an 
equivalent orthotropic homogenous core which significantly reduces 
computational time while maintaining acceptable accuracy. It was determined 
that the best-case methods presented in this report can reduce computational 
time and demonstrate distinct behaviours which cannot be captured solely by 
thermal or mechanical models.  
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1 Introduction 

Structures in space face several extreme conditions. Maintenance is rarely possible, as 
it is prohibitively difficult and expensive to send up any practical means of repairing a 
space structure. They must endure extreme temperature fluctuations, especially for 
satellites in low Earth orbit experiencing conditions such as: direct solar radiation 
without an atmosphere which means very high irradiance; and while in the shadow of 
the Earth, the heat of a structure will quickly radiate away. While precise temperatures 
are dependent on the precise design of a satellite and would have to be determined by 
a finite element model assessing the geometry, materials, orientation, internal 
components, and exposure time of the satellite, variations between –150°C and 
+150°C would not be unreasonable, with significant variations of temperature within 
an orbiting body at a given point in time [1]. Collisions with space debris can degrade a 
structure over time, but impacts are hard to foresee and will cause highly variable 
forms of damage to a structure. On top of this, it is necessary for space structures to 
be as light as possible, as rocket launches are limited by mass. As such, low-weight 
materials are crucial, making honeycomb sandwich panels (HSPs) a popular choice. 
These are constructions with thin metal faces and a lightweight core of rows of 
hexagons. HSPs are often vacuum-packed, so internal convection is minimal [2]. Heat 
dominates one side of the panel either due to internal components or external solar 
flux. This alongside the insulating properties of the epoxy present in these panels and 
conditions of internal heat transfer (driven by conduction) makes modelling heat flux 
through these panels a difficult task.  

During space operation, mechanical loading on the panels is typically small and is 
restricted to vibrational loads from either the operation of machinery on the structure 
(such as adjustable solar panels) or impacts with space debris, including 
micrometeoroids. 

The simplest means of modelling a HSP is to recreate the geometry in FEA software. 
This was dismissed as unrealistic due to computational demands as recently as 2006 
[3] but is now much more feasible [4]. 

Alternatively, a continuum model can be developed. This assumes that portions of the 
panel can be modelled as a homogenous solid with orthotropic material properties. 
The validity of the continuum approach is well documented and has been used 
extensively for many years since it offered a significant simplification. Limitations of 
this approach are evident as detail of localised effects cannot be represented and the 
core does not provide even support across the surface of the face sheet. [5] 

Additionally, 2D models have been explored by several researchers. Both [6] and [5] 
considered a range of methods of interpreting the honeycomb core as a 2D model.  
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Both papers recommended anisotropic core theory, which has three components: 
each face of the plate along with the anisotropic core. 

Investigations into thermal behaviour was conducted in [2], where a 1D analysis of heat 
transfer within a honeycomb sandwich panel was carried out. They identified two key 
conclusions: firstly, that the maximum temperature of a heated HSP can be altered by 
changing its geometry: in general, a taller core leads to a hotter front/top face, as there 
will be less radiation heat transfer from the front to back plate, while thicker honeycomb 
walls allow for more conductive heat transfer. Secondly, they found that radiation 
contributes a minority but non-negligible portion of heat transfer.  

The development of a simplified honeycomb model which accounts for radiation is taken 
further in work [7], who built off from work by Swann and Pittman from 1961. This paper 
discusses a method of incorporating the effects of radiation as an additional conductive 
term for the purposes of developing a less computationally demanding thermal model 
for honeycomb sandwich panels. The method makes various simplifying assumptions, 
such as neglecting quadratic terms in the radiation heat transfer equation and deriving 
the various view factors of surfaces within a unit cell of the core by assuming the cell is 
circular rather than hexagonal. However, the associated errors reported in the paper are 
reasonable and the computational savings of the method are impressive.  

With further development of technology for space and aircraft applications involving 
honeycomb based complex structures a need for a higher precision modelling tools is 
becoming more acute. Previously modelling of both effects of heat and vibration has 
been separated in FE models to minimise the computational cost. However, there is 
more and more evidence of interconnection and mutual interaction between these two 
phenomena. Therefore, considering the advancement in modern FE techniques an 
attempt to develop a more accurate model which accounts for both effects is presented 
in this paper. 

 

2 Model description 

1.1 To investigate the possibility of development of a couped model using FE 
required by industry [9], mechanical and thermo-mechanical loading of HSPs 
under three-point bending was considered.The methodology for the model 
was separated into mechanical loading (the mechanical model) and a 
combination of thermal and mechanical effects (the thermo-mechanical 
model).  

The HSP geometry, F1.5-T0.07-H15-L4  was chosen following the work done in 
[8]. To investigate the aspects of accuracy and computational cost, the panel 
was discretised through 3 different FE approaches: the 3D Geometrically 
Accurate Model, the 3D Continuum Model, and the 2D Continuum Model. Each 
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model was firstly subjected to mechanical loading only, through Three Point 
Bending (TPB) and the results were compared to the physical test data from [8]. 
Then thermal conditions were applied through two different methods: through 
uniform environmental temperature change in the mechanical simulation, and 
temperature gradient through the panel in a coupled thermo-mechanical 
simulation.  

Initial models were set up with a simple beam, defined by reference to the ASTM 
C-393 standard, representing the sandwich panel (Fig. 1), with results presented 
in Table 1.  

 
Figure 1: Three Point Bending Geometry 

  

Table 1: Simple Beam Comparison 

For the simulations which model the contact between supports and panels, 
displacement constraints were found to be more reliable than applied forces.  

Both face split constraint models match the numerical estimation very closely and 
behave as expected, which validates the method of assessment. The face split 
and shell beam models have one fixed and one frictionless support, which is one 
of the fundamental assumptions in the derivation of the flexural stress equations.   

The 1:1 model beam shows the typical behaviour indicative of true bending, 
however, significantly differs from the numerical estimation. This difference in 
maximum stress is due to utilising two frictionless supports and constraining the 
panels lateral movement with the centre face split, which allowed for slight inward 
movement of the beam as it is deformed by the puncher. This suggests that the 
1:1 model more accurately predicts the result of the TPB since it accounts for 
these differences. As stated in in [8] the models can be further optimised through 
adjusting friction coefficients of the contact regions. Additionally, the cylinder 
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displacement model is a more accurate representation for the GA model thanks 
to the inclusion of puncher indentation failure modes. 

2.0 2.1 Data used for 3D Geometrically Accurate Model 
A high-fidelity model of the panel described in [8] and in Figure 1 was simulated 
to replicate the results and verify the developed model. The 3D geometrically 
accurate (GA) model uses a solid geometry and mesh discretisation.  

The material properties from [8] were used to define the geometry in ANSYS. The 
paper provides the Young’s modulus, the Poisson ratio, and the density for the 
AA5052 skin alloy and the AA3003 foil used for the honeycomb core. However, 
no plasticity data was given in [8]. Given that both are aluminium alloys, a 1% 
bilinear hardening model was assumed. No ultimate stress values were given, 
and to simplify the model, damage models were ignored. Nevertheless, this 
should not be detrimental to the verification since the simulations are conducted 
with satellite use in mind, and, as such, modelling the failure behaviour of the 
panels is not necessary. 

 

 
Table 2: Reference Material Properties from [8] 

The geometry was modelled in Autodesk Inventor 2020 according to Table 3. 

Pane
l () 

Reference ID 
Skin 
thickness 
(mm) 

Foil 
thickness 
(mm) 

Core 
hight 
(mm) 

cell 
edge 
(mm) 

Panel 
length 
(mm)   

Panel 
width 
(mm) 

2 F1.5-T0.07-H15-L4 1.5 0.07 15 4 220 40 

Table 3: Reference Geometry for GA Validation [8] 

In the Static Structural analysis, the core was assigned as AA3003, the skin-
plates as AA5052, and the supports were assigned as structural steel. Bonded 
contacts were used between the honeycomb and the skin, omitting the presence 
of a layer of adhesive as can be seen in Figure 2. 
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Figure 2: Geometrically Accurate Contact Modelling 

Frictionless contacts were used between the rods and the panel skins with the 
interface treatment set to “adjust to touch”. This allows the panel to slide against 
the supports during bending, simulating real world conditions. 

The mesh size was controlled with body sizing, where both skin plates (hex 
elements) and core (tetrahedral elements) were sized at 2mm. The tetrahedral 
mesh (Figure 3) was a trade-off to minimise the computational cost and was kept 
the same for all analyses to ensure consistent behaviour. 

 

 

Figure 3: GA Tetrahedron Mesh Quality 

The two bottom rods were fixed in place, while the top rod was displaced in the 
negative y-direction by 1mm to create bending (Figure 4). 
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Figure 4: GA - Boundary Constraints 

The motion of the panel was constrained by creating a face split on the bottom 
face of the panel and applying a displacement constraint to that split. This 
constrains the centreline of the panel to move only in the y-direction. A force 
reaction probe was applied to the displaced rod to measure the load against the 
displacement, so that the model could be validated by the test data. 

For the main body analysis, the displacement was split into two steps from 0 to 
0.3mm and from 0.3 to 1mm with 25 datapoints each to ensure sufficient 
resolution in the 200N range. The solution method was program controlled and 
large deflections were turned ON. The primary analysis from FEA to test data 
was through the force displacement behaviour of the panels.  

2.2 Mechanical Model Validation  

The mechanical behaviour and force reaction response of the panel was initially 
analysed through variation of panel geometry and GA, Mixed Shell and Quarter 
models. The different FEMs were described above, and the panel geometries 
and designations are represented in Table 3. For further work, a single panel 
from Table 3 was chosen, as geometric comparison was not a goal of this 
paper. Their effective stiffnesses and buckling strengths were compared to the 
test data. The stiffness was estimated through the gradient of the trendline of 
the linear behaviour section of the force reaction curve. Whereas the buckling 
strength compared the reaction force at 1mm deflection to the maximum load of 
the test data. For the purposes of comparison, both gradient and buckling 
strength are presented as percentage changes of gradient and stress, Δm and 
Δσf. When the test data buckling strength occurred before the 1mm deflection, 
the reaction force of the FEA was taken at the equivalent deflection. While 
buckling strength was not used as the main means of verifying models (the 
assumptions made earlier meant that these results were not fully reliable), they 
were used to discriminate between otherwise comparable models. 
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2.3 Data for Thermo–Mechanical Modelling  
The primary goal of thermal integration is to showcase how temperature 
dependant behaviour can be implemented in FEMs in ANSYS. The most 
important component of the proposed FEM, which allows for temperature 
dependant analysis, is the integration of a temperature dependant material 
model. For this analysis, suitable data was sourced through the GRANTA 
Edupack material database because no temperature dependant data was 
available for either material of the mechanical model. The material selection 
approach was based on:  

• A material with broadly the same chemical composition, AA3000/5000 series 
• The mechanical properties (i.e., any data of the 3000 and 5000 series which has 

temperature dependant properties, which are as close as possible to the mechanical 
properties of the original material) 

Edupack Material Data 

Material Properties Paper 
AA5052 

A5052H32 Paper 
AA3003 

A3105 O 

E (GPa) 69 70-73.6 69 69-72 

Temperature dependant 
data? 

 yes  yes 

Yield (MPa) 138 152-172 94 86-95 

Temperature dependant 
data? 

no yes no no 

Thermal Conductivity 
W/m°C 

no 140-152 no 169-175 

Specific Heat Capacity J/kg°C no 963-1000 no 879-915 

CTE (microstrains/°C) no 23.7-24.9 no 23.4-24.6 

Temperature dependant 
data? 

no Yes no yes 

Table 4: Material Selection, Temperature Dependent Data 

The chosen materials are detailed in (Table 4). The core material, A3105 O did 
not contain temperature dependent yield data. These were approximated by 
scaling the temperature dependent data of a 3000-series aluminium alloy. 
ANSYS estimates intermediate points in the bilinear hardening model through 
linear interpolation.  (The bilinear hardening model is limited to 6 datapoints) 

The material data has temperature dependent Young’s modulus, yield strength 
and coefficient of thermal expansion. 
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2.1.1 2.4 Methodology for Mechanical Model with Environmental 
Temperature 

The first way to analyse the effect of temperature is through varying the 
environmental temperature of a static structural analysis. This homogenous 
temperature distribution throughout the panel is a significant simplification of the 
“actual” temperature distribution, especially considering an application to space 
structures. For the purposes of this analysis, this is valid because the objective 
was to show general trends in mechanical response. Many experiments 
simulating extreme temperatures are done in homogenous environments 
(Ganilova et al [9] showed that with increasing temperature the panel is more 
likely to show uniform temperature distributions). An additional benefit of 
homogeneous environments is that they eliminate the need to couple thermal and 
mechanical simulations, which will save computational time. 

The variation of environmental temperature within the static structural 
environment of ANSYS was used to create the base data sets for both GA and 
continuum models (CMs). As discussed above, the environmental temperatures 
of the static structural three-point bending simulation were varied from -150°C to 
150°C. 

2.1.2 2.5 Methodology for Thermo-mechanical Model with Heat Flux 
In the combined thermo-mechanical models, the results of a steady state thermal 
analysis were imported into a static structural analysis. The coupling of thermal 
effects to mechanical could be applied to uniform temperature distributions, to 
show the effects of thermal expansion and transient simulations. However, in this 
analysis, a more complex, varying temperature distribution was applied to the 
panel, in order to more closely emulate the conditions of a satellite in orbit. 

In the steady state thermal analysis (Figure 5), the top or bottom skin surface was 
subject to opposing temperature and convection. The desired temperature was 
set, and the convection at the opposing surface was adjusted such that the 
required temperature gradient was created within the panel.  The supports were 
excluded from the static thermal analysis through the ‘element birth and death’ 
feature. Additionally, the thermal strain effects had to be disabled for the 3 
supports in the static structural analysis. The initial temperature was set as room 
temperature, 22°C. 
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Figure 5: Steady State Thermal Boundary Conditions and Project Tree 

Multiple load case scenarios were created under extreme temperature gradients 
(22°C to 150°C as well as –150°C to 22°C). To understand the effect of the 
temperature flux, the panel was analysed with and without mechanical loading. 

 

3. Simulation Results for three FE models 
Results below are presented for 3 different models with the panel undergoing 
mechanical or thermo-mechanical loading within each of them. 

2.2 3.1 Simulation results for the Geometrically Accurate Model  

To represent loading conditions in application to space structures, the main focus 
of the analysis will be within the range of 200N, which typically occurs within the 
first 0.1mm of deflection. However, the deflection of the individual analyses was 
chosen to be 1mm to encompass the full linear region of the panel’s force-
deflection response, which is useful for validation and may provide a broader 
context to the development of the FEM. 

The panel response is presented in Figure 6 and compared with experimental 
results from [8] (denoted “test data”), with a purpose of validation. Figure 6 shows 
the mechanical response of the chosen panel, for both original material data, and 
the proposed material model with temperature dependant properties. The 
material properties listed, which are described in table 2, are referred to as 
“original data”. The proposed temperature dependant material model in Table 4 
is referred to as “edupack”.   

Different manufacturing techniques of honeycomb cores, result in shared cell 
walls of either uniform or doubled thickness (in legends denoted as “single” or 
“double”). However, for aluminium cores, the most common procedures result in 
double wall thickness through the expansion method. Since there was no mention 
of this in [8], it was assumed that the honeycomb core was oriented such that the 
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double thickness sections were aligned for maximum stiffness, in parallel with the 
axis of bending of the panel.  

 

2.2.1 3.1.1 Results for GA model for Mechanical loading only 

Figure 6 clearly shows that proposed material model is in very good agreeance 
with the original data and represents the behaviour of the honeycomb panel under 
TPB in a way which is sufficient for the purpose of this analysis. 

 

 

Figure 6: Validation of Mechanical Response of Thermal Material Model 

It can be observed that the single thickness simulations match the gradient more 
closely than the double thickness simulations, however, the double thickness 
simulations closer predict the buckling strength of the sandwich panels. This is a 
good indication that the panels in fact are using expanded aluminium core, which 
means that the double thickness models more accurately predict the panels 
behaviour. In further analysis, the double thickness will be considered for use in 
the finite element models.  
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The early panel response of the double thickness model was identified as a 
primary concern for the analysis in the application to space structures. Hence, 
an accurate finite element panel response in terms of gradient could be 
desirable. However, the overall accuracy of the panel response is poor, which 
may be primarily due to lack of information and control about the details and 
parameters of the test setup (e.g., material properties, manufacturing 
techniques, processing techniques, pre-existing imperfections, and limitations of 
the bilinear hardening model).  

 

2.2.2 3.1.2 Results for GA model for Thermo-Mechanical loading 

introduced with Environmental Temperature 

The first model for consideration of thermal effects was created by changing the 
environmental temperature within the static structural analysis. Figure 7 shows 
the variation in panel mechanical response for varying temperature. 

 

Figure 7: Thermomechanical Response of Varying Environmental Temperature 
(Up to 200N) 

As can be seen in Fig.7, a high temperature environment causes a decrease in the panel 
bending stiffness, whereas low temperatures increase the panel bending stiffness. The 
change in panel response at high temperatures is less varied than at lower temperatures 
(a 10°C difference in temperature will create a larger deviation in panel response at high 
temperatures than at a low temperature). From 22 to -50°C there is hardly any change 
in behaviour, then a large jump from -50 to -100°C, and again very little change from -
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100 to -200°C. It is apparent that the impact of temperature is notable even at these low 
load and displacement conditions. This observation is directly related to the material 
model and has been similarly observed in the experimental TPB of aluminium HSPs 
under extreme temperature conditions [9]. Overall, smaller deflections occur in cold 
conditions and larger deflections occur in hotter conditions, and the extent of the 
deviation of deflection from room temperature increases at temperature extremes. 

The model is a very simple implementation of temperature dependent behaviour and 
predicts certain variation in panel behaviour.  

The effect of temperature becomes much greater at higher loads and deflections, 
where the difference in predicted strength is up to 700N from 200°C to -200°C at 
1mm (Figure 8). The panel behaviour is a direct result of the material model. As 
the temperature increases, the Young’s modulus and yield strength decrease. 

 
Figure 8: Thermomechanical Response of Varying Environmental Temperature 

At normalised stress, the intensity of the stress distribution in the core increases 
with decreasing temperature. This is expected behaviour as the Young’s modulus 
of the material also increases with decreasing temperatures.   
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0.12028 0.11226 0.11226 0.10425 0.0882
1 

0.12028 0.11226 0.12028 0.12028 0.1202
8 

Table 5: FEA of GA onset of plastic strain at varying temperature 

Another measurable metric is the deformation at which plastic strain first occurs. 
This generally decreases as the temperature increases, while staying constant at 
decreasing temperatures. The observed behaviour shows the sensitivity of plastic 
deformation with changing temperature. This is particularly interesting in 
reference to the hysteretic behaviour, where the residual stress state resulting in 
the open loop behaviour was linked to a change in temperature distribution. The 
key distinction, however, is that the change in temperature resulted from 
mechanical loading in a uniform temperature environment. 

The environmental temperature implementation only partially fulfils the goal of 
developing a combined thermo-mechanical model as it can only identify steady 
state behaviour, which is broadly similar to the separation of thermo-mechanical 
response, which was identified as inadequate for the purposes of this work. The 
model cannot show varying temperature conditions within the panel, account for 
thermal expansion effects (which would be required to model the effect of thermal 
cycling on fatigue), nor capture the dynamic thermal response seen in the 
research of Ganilova et al. [9]. 

 

2.2.3 3.1.2 Results for GA model for Thermo-Mechanical loading introduced 
with Heat Flux 

The purpose of the thermo-mechanical model with heat flux is to create a more 
detailed FEM, capable of showing the mechanical response to thermal loading 
and combined thermo-mechanical loading. This is achieved by coupling a thermal 
analysis to a mechanical analysis in ANSYS and the details of the setup are 
described above. Considering the environmental conditions of the above section, 
heat would cause slight expansion of the panel, which may change the panel 
response (the degree of which was assumed to be negligible). An uneven heat 
distribution through the panel is considered in the analysis of this section. Figure 
10 shows the force reaction behaviour of the heat flux models during TPB. The 
Environmental temperature data is grey. The Legend shows the extent of the heat 
flux applied between the top surface “top” and bottom surface “bot”, where the 
temperature is in °C. 
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Figure 9: Force Displacement Response of GA Heat Flux Models 

As can be observed in Fig.9, both positive and negative temperature flux appear 
to behave differently, additionally the negative temperature flux appears to be 
inconsistent in the initial displacement. This could be due to the panel deforming 
from thermal strain in the same direction as the puncher is displacing the panel, 
which makes the current model setup invalid for analysis in the low displacement 
range. 

The positive heat flux results in a stiffer panel response, which is due to the 
preloading of the panel due to thermal strain opposing the puncher. The increase 
of ΔT results in distinct and distinguishable responses in the 200N range which 
means that the FEM satisfies the goal of the analysis. Interestingly, the 150°C 
panel has a sudden drop in force after an initial peak which could be explained 
through the geometric nonlinearity described in [10].  

The heat flux coupled model improves the environmental temperature model in 
that it can show the effect of uniformly changing temperature (not shown in the 
analysis) as well as temperature gradients, as shown above. It can show the 
mechanical response to any predetermined thermal condition. It may not show 
dynamic coupling behaviour where the mechanical loading is linked to a thermal 
response. However, the presented model(s) show the fundamental 
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thermomechanical responses of aluminium HSPs under TPB. Furthermore, they 
indicate significant deviation in panel response in the 200N range, subject to 
investigation for space structures. 

To represent the mechanical effect on thermal loading, a mechanical-to-thermal 
coupling, or a three-way coupling of thermal-to-mechanical-to-thermal, is 
required, which may not ultimately be practically possible. 

 

2.3 3.2 Simulation results for the 3D Continuum Model 

The Continuum Modelling approach simplifies the GA Model by replacing the 
honeycomb core with an equivalent, homogenous, orthotropic material. The 
same panel from [8] was chosen for validation of this model and simulation under 
thermo-mechanical loading. With the development of this model an attempt is 
made to derive a model which is as accurate as the GA model but with a much 
lower computational cost.  

The development of equivalent material properties is the most important part of 
the development of the continuum model and is therefore discussed in detail. The 
mechanical properties required for an orthotropic material are the Young’s 
moduli, the shear moduli and the Poisson’s ratios which vary along the three 
principal axes.  

The Material Designer tool within ANSYS 2020 R1 was used to create both the 
Mechanical and the Thermomechanical equivalent orthotropic material properties 
(Figure 10). 

 

Figure 10: Material Designer Settings 

Firstly, the material of the structure was defined as the temperature dependent A3105 
from above. The honeycomb type was selected as “expanded” and the material 
geometry of a unit cell was defined according to the specification of the chosen panel 
(panel 2). The repeat count for cells in the unit volume was set to 5 and the mesh was 
discretized through cell sizing of 2mm. These settings allowed the inclusion of both 
mechanical and thermal properties (Figure 10). The analysis was performed with 
variable material evaluation, where the orthotropic properties were calculated 
repeatedly for a changing variable (temperature). Due to the temperature-dependent 
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aluminium material properties, the resultant orthotropic material also shows 
temperature dependent behaviour. 

Engineering Constants 25°C Units  

E1 1.26E+06 Pa Thermal Expansion Coefficients Units 

E2 1.31E+06 Pa aX 1.96E-05 °C-1 

E3 (out of plane) 1.85E+09 Pa aY 1.96E-05 °C-1 

G12 7.46E+05 Pa aZ 1.96E-05 °C-1 

G23 (out of plane width) 2.67E+08 Pa Thermal Conductivity 

G31 (out of plane length) 3.92E+08 Pa K1 2.5963 W m-1 °C-1 

nu12 0.97905  K2 1.7773 W m-1 °C-1 

nu13 0.000225  K3 4.5424 W m-1 °C-1 

nu23 0.000234  Specific Heat Capacity 

Density 71.305 kg m-3 cp 896.8 J kg-1 °C-1 

Table 6: Equivalent Orthotropic Material Properties of Honeycomb Core 

A relevant observation is that both the in-plane Young’s moduli are similar in 
magnitude, but E2 with reference to panel length is larger. Similarly, both the out-
of-plane shear moduli are of the same order of magnitude and again the 
lengthwise value, G31, is greater. This difference originates from the slight 
asymmetry of the core structure and is increased by the double wall thickness. 
While the Material Designer predicts a uniform thermal expansion along all axes, 
the thermal conductivity is largest in the out-of-plane direction, which is logical 
given the core geometry. 

 

Figure 11: Comparison of Continuum and Isotropic Temperature Dependant 
Material Data 
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With a normalised stress range (in Pascals) it is apparent that the behaviour of 
the homogenised core is very similar to the isotropic material data in the out-of-
plane direction (Figure 11). The continuum material model is fundamentally 
limited because it does not include a plasticity model and is much harder to 
implement. Anisotropic plasticity may be implemented into ANSYS through the 
addition of a generalised Hill yield criterion. 

 

2.3.1 3.2.1 Results for 3D Continuum Model for Mechanical loading only 

The fundamental difference in the FEM for 3D Continuum Model is the geometry 
of the core, which is replaced by a solid 3D element, and the material model for 
the core (Figure 12). The contacts, boundary constraints, mesh method and 
analysis settings are all kept the same to provide consistency between analyses. 

 

Figure 12: 3D Continuum Model Setup 

The mechanical model’s validity was primarily assessed by considering the force 
reaction response to the GA model and the test data. Furthermore, FEA was 
considered to identify the key differences between the two FEM approaches. 
Since the CM does not provide limitations to mesh quality due to geometric 
complexity, a mesh convergence study was performed with the goal set to identify 
the most optimal mesh parameters which would not affect the accuracy of the 
solution. Here, both tetrahedral and hexagonal elements were considered at 
varying mesh sizes. 

The mechanical response of the 3D continuum model is used to validate the 
model behaviour in comparison to both the previous model and the test data. 
Additionally, the FEA of the panel is presented to explain the panel behaviour. 

With the core replaced by a homogenous material the sandwich panel behaves 
more like a beam under bending than in the GA model. This is evident because 
the deformation or curved shape of the panel extends beyond the supports at the 
plate ends. 
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Figure 13: Force Reaction of CM Panel Response and Validation 

The continuum model shows a significant deviation from the GA model and, 
despite the continuum material being developed using a double thickness unit 
cell, shows closer resemblance to the single thickness model (Figure 13). 
Surprisingly, this means that, overall, it matches the test result better than the GA 
result. Due to the lack of a plasticity model for the material, the system response 
is linear and cannot accurately predict the buckling strength of the panel. The 
continuum response deviates from the GA model and could be described through 
two separate linear gradients: initially a shallower gradient, then secondly a 
gradient which more closely matches the GA model. 

 

2.3.2 3.2.2 Mesh Convergence 
The aim of this section was to simplify the continuum model, in order to achieve 
faster solving times. Initially, the continuum model offered limited time savings 
compared to the full geometrically accurate (GA) model. However, the continuum 
model’s geometry is much simpler compared to that of the GA model, suggesting 
that larger elements could be introduced. A mesh convergence study was 
conducted to identify the most efficient mesh. A maximum acceptable error 
compared to the original continuum mesh of ±5% was selected, regardless of 
time savings, to minimise cumulative error. Both hex-dominant and tet-dominant 
mesh methods were considered, after significant time savings when using the 
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hex-dominant method were noted by one group member. However, that result 
was not replicated during this study, implying that these savings are hardware 
dependent.  

A variety of meshing approaches were used. Element size biasing around stress 
concentrations was considered but failed to provide sufficient accuracy as the 
element count was decreased. At low element counts, it was difficult to generate 
a mesh with elements properly aligned between bodies: this unsurprisingly led to 
less reliable results. 

As the element count decreased and accuracy declined, there were some models 
which offered relatively stable (but large) errors. These were not considered for 
the following analysis, but it is reasonable to consider these if either a larger error, 
or a result adjusted by a corrective factor would be acceptable. 

A selection of meshes considered are presented below. 

Mesh Name Number of Elements Simulation Time Average Error (%) 

Original 22760 33m 10s N/A 

Tet 1 13960 25m 43s -2.24 

Tet 2 5940 10m 43s 17.9 

Tet 8 8012 12m 03s 16.6 

Hex 0Q 22615 31m 35s 0.494 

Hex 1Q 22814 34m 04s 0.415 

Hex 3 12220 16m 47s 12.1 

Hex 5 12528 26m 02s 4.80 

Table 7: CM - Mesh Convergence study 

In Table 7, the average error is in comparison with the original mesh, a tetrahedral 
element mesh with 22760 elements which took 33m 10s to solve. 0Q and 1Q 
denote that the mesh followed the same instructions as the equivalent tetrahedral 
element mesh but used hex-dominant meshing instead. 

Following this study, the mesh Tet 1 was taken forward for environmental 
temperature analysis. 
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2.4 3.2.3 Results for 3D Continuum Model for Thermo-Mechanical loading 

introduced with Environmental Temperature   

Firstly, the panel was subject to changing environmental temperature within the 
static structural analysis, ranging from -150°C to 150°C. Then the thermo-
mechanical model was created through coupling of thermal and mechanical 
analyses in ANSYS. The same methodology as in Section 3.1 was used to create 
the variable temperature distribution across the CM models. Subsequently, the 
same variable temperature gradients were considered in the range of ±150-22°C 
within this analysis.  

The 3D continuum, mechanical model from Section 3.2.1 is subjected to changes 
in environmental temperature in order to assess the panel behaviour under 
thermal loading (Figure 14). Additionally, the generated results in this section are 
compared to the results of the GA model of the same loading (Section 3.1.2). 
FEA was not explicitly included as results were found to be in good agreement 
with the discussion of Section 3.1.2. 

 

 

Figure 14: Force Displacement of CM at Varying Environmental Temperature 
200N Range 

As can be seen in Fig.14 the temperature-dependent continuum model shows 
the same trends as the GA model: higher temperature equals lower stiffness; 
lower temperature equals higher stiffness. More importantly, it shows a clear 
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separation of panel behaviour for changes in environmental temperature in the 
200N range. Therefore, the continuum model would be just as suitable to 
distinguish thermomechanical behaviour as the GA model.  

Compared to the GA model, the continuum model is less stiff and shows the 
ramp up behaviour as discussed above (Figure 15). 

 

 

Figure 15: GA vs 3D CM, Force Displacement 200N Range 

As can be observed in Fig.15 the panel stiffness decreases at high temperature 
and increases at low temperatures, as observed in the GA model. Both the GA 
and the 3D CM’s high-temperature responses’ incremental stiffness decrease are 
uniform, however the difference between room temperature and 50°C is much 
larger in the GA model. At incrementally decreasing temperature, the GA model’s 
response is staggered (previously discussed above) whereas, the CM shows a 
uniform incremental response. The key observation is the lack of plasticity model 
which limits the significance on the analysis at this range. 
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2.4.1 3.2.4 Results for 3D Continuum Model for Thermo-Mechanical loading 
introduced with Heat flux 

Results of the simulation for the thermal effect introduced with heat flux, similar 
to the case in Section 3.1.3, are presented in Figure 16. 

 

 

Figure 16: Force Displacement Response of the CM Panel at Varying Heat Flux 

As can be seen in Fig.16 for the positive heat flux, due to the thermally induced 
residual stress and bending opposing the direction of deformation, the overall 
panel response is stiffer. The behaviour of the 3D continuum model is consistent 
with the GA thermo-mechanical model with heat flux. For the negative 
temperature distributions, the early response is inconsistent, as also evident in 
the GA model. Interestingly, in both models, the -150-22°C condition is 
significantly different to the other two negative temperature flux conditions.  

The positive heat flux models again show the snapping behaviour seen in the GA 
model, however here the behaviour is seen for all three positive heat flux 
scenarios, whereas the GA only showed this for the highest heat flux. This could 
be explained by the increased deformation along the length of the panel of the 
continuum models during TPB, whereas the GA model tends to show more 
localised deformations between the supports, under purely mechanical loads. 
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For both implementations of the thermo-mechanical effects, the continuum model 
is a valid simplification in terms of behaviour, but slightly inaccurate in terms of 
numerical comparison. 

3.3 Simulation results for the 2D Continuum Model 

To introduce further simplifications to the model and investigate its validity at even 
lower computational cost, the 2D surfaces are used for the 2D continuum model 
in the ANSYS Design Modeller. From the 3D continuum models a 2D surface was 
created at the centre of each of the bodies using the “mid-surface” tool. The 
dimension of these surfaces was then set to 2D in the geometry section of a Static 
Structural Analysis. For the three-point bending simulation the 2D behaviour was 
set to “Plane Stress” for all the bodies. “Plane Stress” and “Plane Strain” 
behaviour are approximations to allow 3D problems to be reduced into 2D 
problems. “Plane Stress” assumes that the normal stress in the Z axis is zero, 
which is a valid assumption for the three-point bending simulation as the sides of 
the panels are not constrained by anything. However, depending on the 
component being simulated, "Plane Strain” may be a more valid assumption. 
“Plane Strain” assumes that the normal strain in the Z axis is zero, which usually 
happens when the dimension in the Z direction is substantially larger than either 
the X or Y direction, meaning that the material is constrained on both sides. 
Following this the model was meshed using the same elements and resolution 
as the previous 3D simulations and the same contacts were applied in order to 
allow for a fair comparison. 

The same constraints and analysis settings were applied, and the force reaction 
measured to be compared to the 3D continuum model. 
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Figure 17: Force Displacement Response of 2D CM vs 3D CM vs 3D GA Model 
(Mechanical only) 

 

As can be seen in Figure 17 the 2D model shows excellent agreement with the 
3D Continuum model but solves in only a small fraction of the time. The same 
general behaviour was observed as with the 3D continuum models, with the 
panel becoming less stiff as the ambient temperature increases, which would be 
expected in reality. The same thermal behaviour occurs as in the 3D GA and 3D 
C models in that the difference between the load deflection curves is larger for 
the same ΔT at higher temperatures than at lower temperatures. The trend 
displayed here is different to both the 3D GA or 3D C models, in that the force 
required to cause further deflection increases until roughly 0.62mm when it 
suddenly decreases.  

 

4 Conclusion 

In this paper an attempt to develop a simplified themo-mechanical FE model 
was described. Three different models were analysed in terms of validity, 
accuracy and computational cost. It has been demonstrated that all three 
models were able to show significant deviation of panel response at the low 
load range typically associated with satellites, making them suitable for such 
analysis. The models also demonstrated clearly the effect of the thermal loading 
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and interaction between mechanical and thermal loading in the form of larger 
deflection at higher thermal loading and stiffer response at lower temperatures. 
The 2D continuum model was the simplest model and delivered considerable 
computational savings at the cost of a lack of response under low-strain 
conditions. The 3D continuum models offer good accuracy in these regions with 
around 60% less computational time compared to geometrically accurate 
models. Therefore, it is recommended to implement the 2D continuum method 
in the case of iterative design or for geometries which allow it, due to only small 
differences in behaviour but the large time saving. In the cases where a 2D 
method is not applicable – such as for cases with very small deflections - a 3D 
continuum model would be suitable for most purposes. These 
recommendations based on the results presented for 3 models offer modellers 
the ability to be more confident that their designs can more accurately represent 
realistic loading conditions, while allowing rapid prototyping of designs at lower 
computational cost. 

 

References 

[1]  G. F. Abdelal, “Finite element analysis for satellite structures : applications to 
their design,  manufacture & testing”, 1st ed. 2013.. ed. London: London : Springer, 
2012. 

[2]  V. Tahmasbi and S. Noori, "Thermal Analysis of Honeycomb Sandwich Panels as 
Substrate of  Ablative Heat Shield", Journal of Thermophysics and Heat Transfer, vol. 
32, pp. 1-12, 06/22  2017. 

[3]  İ. Aydincak and A. Kayran, "An Approach for the Evaluation of Effective Elastic 
Properties of  Honeycomb Cores by Finite Element Analysis of Sandwich Panels", 
Journal of Sandwich   Structures & Materials, vol. 11, no. 5, pp. 385-408, 
2009/09/01 2009. 

 [4]  M. Giglio, A. Gilioli, A. Manes , “Numerical investigation of a three point 
bending test on   sandwich panels with aluminum skins and Nomex™ 
honeycomb core”, Computational Materials  Science, vol.56, pp.69-78, April 2012 

[5]  H. Luo, G. Liu, S. Ma, and W. Liu, "Dynamic analysis of the spacecraft structure 
on orbit made up of honeycomb sandwich plates",  vol. 1, ed: IEEE, 2011, pp. 
83-87. 

[6]  A. M P, J. Pitchaimani, G. K V, and C. Reddy, "Numerical and experimental study 
on dynamic  characteristics of honeycomb core sandwich panel from equivalent 2D 
model", Sādhanā, vol. 45,  12/01 2020. 

[7]  J. Fatemi and M. H. J. Lemmen, "Effective Thermal/Mechanical Properties of 
Honeycomb Core  Panels for Hot Structure Applications", Journal of spacecraft and 
rockets, vol. 46, no. 3, pp. 514- 525, 2009. 



   386 

[8]  G. Sun, X. Huo, D. Chen, and Q. Li, "Experimental and numerical study on 
honeycomb sandwich  panels under bending and in-panel compression", Materials & 
Design, vol. 133, pp. 154-168,  2017/11/05/ 2017. 

[9]  O. A. Ganilova, M. P. Cartmell, and A. Kiley, "Experimental investigation of the 
thermoelastic  performance of an aerospace aluminium honeycomb composite panel" 
Composite   Structures, vol. 257, p. 113159, 02/01/2021. 

[10]  Geometric nonlinearity. Available: https://abaqus-    
  docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-
nlngeomnonlin.htm#simagsa-c- nlngeomnonlin__simagsa-c-gss-deflection , 
Abaqus. (2017, 13/03/2021).   

 

 


