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Abstract 

The flow over a topography or a step is a fundamental problem in fluid dynamics with 

relevance to many fields and circumstances. In the present analysis direct numerical 

simulation (DNS) is initially used to examine the properties of the thermofluid-

dynamic field in two-dimensional channels with a heated obstruction located on the 

bottom. The involved dynamics include forced flow driven by injection of cold fluid 

and the buoyancy convection of thermal origin, which naturally emerges in these 

channels as a result of the prevailing temperature gradients. The sensitivity of these 

systems to thermal buoyancy for each considered rate of fluid injection (measured 

through the related Richardson number, Ri) is explored by varying parametrically the 

corresponding Rayleigh number (Ra) over a large interval of orders of magnitude (up 

to the onset of chaos). Different orientations of the step with respect to the forced 

flow are assumed (Forward-Facing and Backward-Facing Steps) and two alternate 

paradigms are considered for the bottom of the considered channel, namely an 

adiabatic or kept-at-constant temperature (hot) boundary. Through this conceptual 

framework and using a peculiar analysis hierarchy where selected effects are 

intentionally switched on or off depending on the targeted regime, a kaleidoscope of 

situations is revealed in the (Ri, Ra) space, which differ in terms of flow patterning 

behaviour, thermal plume generation phenomena, intensity of heat exchange at the 

walls and bifurcation scenario. Comparison of forward facing and backward facing 

step configurations indicates that, besides the differences, these two systems display 

interesting analogies. These are further explored by removing the constraint of two-

dimensionality and allowing the flow to develop along the spanwise direction. To 

reduce the scale of the three-dimensional problem to a level where it is affordable, 

however, this study is developed in the framework of a large eddy simulation (LES) 

approach. The results of the three-dimensional simulations are used to clarify some 

still poorly known aspects, i.e., the dynamics in proximity to the point where the 

abrupt change in the channel cross-sectional area occurs and the effect of problem 

dimensionality on the flow behaviour at different length scales . 
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Nomenclature 

 
Latin Symbols 

A  Domain aspect ratio 

d  Transverse channel size                                 

ds                     Vertical step size 

g  Gravity acceleration 

q                      Wavenumber 

𝑖𝑔                     Unit vector along gravity 

l  Horizontal step extension                  

L  Overall horizontal extension 

M                     Mach number 

p  Pressure 

Pr  Prandtl number 

PrT                  Turbulent Prandtl number 

Nu                   Nusselt number 

Gr                   Grashof number 

Ra  Rayleigh number 

Racr                          Critical Rayleigh number 

Re  Reynolds number 

Ri  Richardson number 

t  Time 

T  Temperature 

u  Velocity component along x 

v  Velocity component along y 

w                     Velocity component along z 

cp                     Heat capacity at constant pressure 

cv                     Heat capacity at constant volume 

U  Inflow (horizontal) velocity 

V  Fluid velocity (vector) 

x  Horizontal coordinate 

x1                    Reattachment length 

x2                    Secondary roll leading edge 

x3                    Secondary trailing edge 

y  Vertical coordinate 

z  Spanwise coordinate 

𝑘𝑠𝑔𝑠                 Subgrid-scale kinetic energy 

�̅�                     Strain rate tensor 

Lz                     Domain length along spanwise 

                        direction 

f                       Non-dimensional frequency 

                      Mesh size 

ij
                        Hydrostatic stress tensor 

Greek Symbols 

α            Thermal diffusivity 

𝛼𝑇                   Turbulent thermal diffusivity  

  Thermal expansion coefficient 

𝜈  Kinematic viscosity 

ω                     Angular frequency of oscillation 

𝜈𝑇                    Turbulent kinematic viscosity 

λ                      thermal conductivity 

  Kolmogorov length 

𝜌                      density 

                      dynamic viscosity 

𝜏                      Stress tensor 

𝜏𝑖𝑗                    Subgrid-scale stress tensor 

T             Temperature difference 

Acronyms  

A                     Aspect ratio 

ER  Expansion ratio (d/ds) 

LR  Length ratio (L/ l) 

2D                   Two-dimensional 

3D                   Three-dimensional 

RB                   Rayleigh-Bénard 

BCs                 Boundary conditions 

OBC                Open boundary condition 

PBC                 Periodic boundary conditions 

CFD                Computational Fluid Dynamics 

FFS                 Forward Facing Step 

BFS                 Backward Facing Step 

PTV                Particle Tracking Velocimetry 

LSA                Linear Stability Analysis 

OLR               Oscillatory Longitudinal Rolls 

SLR                Stationary Longitudinal Rolls 

DNS                Direct Numerical Simulation 

LES                 Large Eddy Simulation 

RANS             Reynolds Average Navier Stokes  

FFT                 Fast Fourier Transform                

PISO               Pressure Implicit Split Operator 

AMG              Algebraic Multigrid scheme 

PBiCG            Preconditioned Bi-Conjugate Gradient 

DILU              Diagnol Incomplete Lower Upper 

GAMG           Generalized Geometric-Algebraic 

                       Multi-Grid 



                                                                                                                     

 

 

Contents 

I    Physical and mathematical framework     1 

 

1    Introduction     2 

      1.1     Literature review…………………………………………………………….     3 

                1.1.1    Forward-Facing Step………………………………………………...     4 

                1.1.2    Backward-Facing Step……………………………………………….     6 

                1.1.3    Hybrid convection in ducts with a step……………………………...     8 

                1.1.4    Thermo-gravitational convection……………………………………   10 

                            1.1.4.1    Rayleigh-Bénard Convection……………………………...   11 

                            1.1.4.2    The Hadley Flow…………………………………………..   14 

 

2    Physical and Mathematical Model 

 

  22 

      2.1     Introduction………………………………………………………………….   22 

                2.1.1    Continuity……………………………………………………………   22 

                2.1.2    Energy equation……………………………………………………...   22 

                2.1.3    Momentum conservation (the Navier-Stokes equations)……………   23 

      2.2     The Boussinesq approximation……………………………………………...   24 

      2.3     Non-dimensional numbers and equations…………………………………...   25 

                2.3.1    Buoyancy convection non-dimensional numbers……………….   25 

                2.3.2    Forced convection non-dimensional numbers……………………….   26 

                2.3.3    Non-dimensional set of equations…………………………………...   26 

 

3    Geometrical configurations and boundary conditions 

 

  28 

      3.1     Obstructed Compact cavity   28 

                3.1.1    The geometry………………………………………………………...   28 

                3.1.2    Boundary conditions…………………………………………………   29 

      3.2     Elongated Cavity with forward-facing step………………………………….   30 

                3.2.1    The geometry………………………………………………………...   30 

                3.2.2    Boundary conditions…………………………………………………   31 

      3.3     Elongated Cavity with backward-facing step………………………………..   32 

                3.3.1    The geometry………………………………………………………...   32 

                3.3.2    Boundary conditions…………………………………………………   33 

      3.4     Three-dimensional channels with a step……………………………………..   34 

                3.4.1    The geometry………………………………………………………...   34 

                3.4.2    Boundary conditions…………………………………………………   35 

  



                                                                                                                     

 

 

4    Numerical Methods, Mesh Selection and Validation Study   37 

      4.1    The Projection Method……………………………………………………….   37 

      4.2    Validation Study……………………………………………………………...   38 

      4.3    Mesh Resolution and Kolmogorov length scale……………………………...   45 

      4.4    Elongated Channel with FFS…………………………………………………   47 

      4.5    Elongated Cavity with BFS…………………………………………………..   48 

      4.6    Three-dimensional cases and the Large-Eddy-Simulation approach………..   49 

               4.6.1    Mesh selection for LES of Three-Dimensional Channel with a step...   54 

  

  

II   Results   56 

 

5    Thermogravitational and hybrid convection in an obstructed compact 

      cavity    

 

 

  57 

      5.1    Closed Cavity………………………………………………………………...   57 

               5.1.1    Patterning behaviour for the cavity with adiabatic floor……………..   60 

               5.1.2    Patterning behaviour for the cavity with isothermal (hot) floor……...   62 

               5.1.3    Heat Exchange and related trends……………………………………   64 

               5.1.4    The progression towards Chaos………………………………………   65 

      5.2    Cavity with coaxial inflow and outflow sections…………………………….   70 

      5.3    Cavity with misaligned inflow and outflow sections………………………...   78 

      5.4    Conclusions…………………………………………………………………..   86 

 

6    Flow topology and bifurcations of buoyancy and mixed convection in an 

      elongated domain with a forward-facing step 

 

  87 

      6.1    Pure buoyancy case…………………………………………………………..   87 

      6.2    Mixed convection for Ri=100 and Ri=30…………………………………….   94 

      6.3    Mixed convection for Ri=1………………………………………………….. 101 

      6.4    Discussion……………………………………………………………………. 105 

               6.4.1    Influence of the Richardson number on the bifurcation scenario……. 106 

               6.4.2    Heat Exchange……………………………………………………….. 111 

      6.5    Conclusions………………………………………………………………….. 114 

 

7.   Hybrid Forced-buoyancy convection in a channel with a backward-facing 

      Step 

 

 

116 

      7.1    Dominant Forced convection RiO(1)………………………………………. 116 

      7.2    Mixed convection for Ri=7.5………………………………………………... 123 

      7.3    Mixed convection for RiO(10)……………………………………………... 129 

      7.4    Discussion……………………………………………………………………. 136 

               7.4.1    Critical conditions and Disturbances………………………………… 136 



                                                                                                                     

 

 

               7.4.2    Comparison with the Forward-Facing Step………………………….. 141 

      7.5    Conclusions………………………………………………………………….. 143 

 

8.   Large eddy simulation of three-dimensional hybrid forced-buoyancy 

      convection in channels with an abrupt section variation 

 

145 

      8.1    Comparison of LES with DNS………………………………………………. 146 

      8.2    Three-dimensional Mixed Convection for Ri=100 (FFS)…………………… 151 

      8.3    Three-dimensional Mixed Convection for Ri=25 (BFS)…………………….. 156 

      8.4    Discussion……………………………………………………………………. 165 

      8.5    Conclusions………………………………………………………………….. 174 

 

9.   Conclusion                                                                                                                      

 

176 

 

References 

 

180 

 

 

 

 

 

 

 



                                                                                                                     

1 

 

 

 

 

 

 

 

 

Part I 

 

Physical and mathematical 

framework 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                     

2 

 

Chapter 1 

 

Introduction 

 

In a variety of practical and industrial processes, fluids evolve under the effect of an imposed 

pressure difference in channels or ducts with variable geometry. These channels often exhibit 

abrupt changes in their cross-sectional area or undergo sudden expansions or compressions. In 

such a context, ducts with a forward facing step (FFS) or a backward facing step (BFS) have 

therefore enjoyed widespread attention as archetypal systems for the analysis of many problems 

with practical or technological relevance.  

Inherently multidisciplinary, these fundamental fluid-dynamic subjects really stand at the 

interface between different technological fields, which include (but are not limited to) 

mechanical, civil and aeronautical engineering (e.g., the interaction of gas currents with vehicles, 

buildings and airfoils at a large angle of attack, Skinner and Behtash, 2017), thermal engineering 

(combustors, condensers, industrial heat exchangers, Papazian et al. 2020; Brottier and Bennacer 

2020; Souissi et al. 2020), and many other strictly related applications (e.g., the cooling of 

nuclear reactors, power plants and various types of electronic equipment, Sun and Jaluria, 2011). 

Other relevant examples can be found in chemical plants or food-processing industries. Related 

hydraulic circuits are often featured by sudden changes in the cross-sectional area and/or other 

kinds of obstructions mounted in a direction perpendicular to the prevailing current (e.g., ribs 

and baffles, which prevent the flow from developing a regular path). These concepts also apply 

to the very general area of fluid machinery where flow separation typically leads to an increase 

in the frictional shear stress (thereby causing significant energy losses, Hattori and Nagano, 

2010). This subject also displays notable kinships with other important engineering challenges 

such as the determination of the pressure and shear stress distribution over ground vehicles (Dai 

et al. 2020; Redchyts et al., 2020) or the production of wind energy (Sherry et al. 2010).  

For all these reasons, the general problem relating to the topology and nature (steady, oscillatory 

or turbulent) of flows over and around wall-mounted obstacles (or in the presence of geometrical 

contractions or orifices) has long attracted the interest of researchers.  

Although problems involving fluids flowing over steps can support a multifaceted spectrum of 

different research initiatives and are omnipresent in technical and engineering applications, 

however, as implicitly made evident by the focused review of literature reported in the following 

sections of this chapter, a significant lack of information seems to still exist with regard to 

conditions for which forced flow and thermal (buoyancy) convection compete in determining the 

patterning behaviour and the evolutionary progress of these systems towards chaos.  

For these reasons, this thesis mostly revolves around “hybrid convection”, i.e., the flow induced 

by the combination of forced flow and gravitational convection induced by the presence of 

temperature gradients. In line with past efforts, the domains considered in this study are 

essentially the canonical FFS and BFS configurations. Unlike earlier analyses, however, here 
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much emphasis is put on the conditions in which the thermal flow component is dominant and/or 

forced flow and buoyancy convection have a comparable magnitude.  

The thesis is articulated as follows. While Chapter 1 is essentially used to introduce the problem 

and provide the reader with a rich review of the existing literature on these subjects, Chapter 2 is 

concerned with the definition of a relevant physical-mathematical models and presents the 

related governing equations and non-dimensional numbers. Chapter 3 is devoted to a 

presentation of the considered geometrical configurations and the associated boundary 

conditions, whereas numerical methods, mesh selection and validation are the main subject of 

Chapter 4.  

Geometrical systems with an increasing degree of complexity are examined as the discussion 

progresses, i.e., a two-dimensional (2D) compact cavity with aligned and misaligned inlet and 

outlet (Chapter 5), a 2D extended channel with a FFS (Chapter 6), a (yet 2D) elongated channel 

with a BFS (Chapter 7). All the numerical simulations presented in these chapters have been 

produced in the frame of a Direct Numerical Simulation (DNS) approach. Chapter 8 is finally 

dedicated to fully three-dimensional (3D) simulations, which are conducted using a turbulence 

model to overcome the otherwise prohibitive grid densities required by DNS . 

As explained above, the present chapter further provides a comprehensive overview of the 

existing literature highlighting the work of those researchers who studied fluid flow inside 

systems with FFS and BFS. Furthermore, a through overview of thermo-gravitational 

convection, its types and different modes of instability is also provided. 

 

1.1 Literature Review: 

As explained in the introduction, piping systems often possess varied geometrical features such 

as a sudden expansion or contraction of the area or small ribs and turbulators might be present 

(perpendicular to the direction of flow). These complex geometrical features prevent the fluid 

from travelling along a straight path and play a significant role in making it unsteady or turbulent 

through the formation of recirculation regions and various vortices (Molochnikov et al., 2019). 

The same behaviour can also be noticed across different fluid machinery where the presence of 

these ribs causes flow separation and reattachment which promotes frictional shear stress 

resulting in considerable amount of energy losses (Hattori and Nagano, 2010). The fluid 

separation which occurs as a result of such complex geometrical features has also enjoyed a 

significant degree of attention from engineers and researchers. For instance, Zhang et al. (2017) 

studied the impact of putting pantograph (component of a high-speed train) at different locations 

on the performance of trains and Largeau and Moriniere (2007) examined different undesired 

environmental effects produced by separated flow around aerodynamic bodies such as sound 

generation and structure vibrations.  

A configuration that has attracted much attention is the forward-facing step (FFS). The 

simplified geometry makes it an attractive choice for the analysis of different kind of flow 

patterns which emerge when the flow comes in contact with blunt obstacle. Investigations along 

these lines are, for instance, those by Hillier and Cherry (1981), Han et al. (1994), Stüer et al., 
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(1999), Abdalla et al. (2009), Sherry et al., (2010), Zh and Fu (2017) and Graziani et al., (2017). 

Additionally, the mirror image configuration, i.e., the BFS has also been investigated by different 

researchers. Existing studies suggest that the flow over a forward-facing step produces more 

involved dynamics owing to the presence of obstacle in the downstream direction (Kiya and 

Sasaki, 1983; Cherry et al., 1984). These two simple geometries can also be differentiated on the 

basis of disconnected vortex regions which are formed before or after the step. In the case of 

BFS, only one separated flow region is observed just after the step in the expanded portion of the 

channel. However, for the forward-facing step, the flow has the tendency to become more 

chaotic owing to the presence of two disconnected regions located in upstream and downstream 

portions of the channel. The separating region downstream is usually formed due to fluid coming 

in contact with perpendicularly mounted obstacle. This region is characterized by its ability to 

generate an increased amount of vorticity leading to instability through the formation of a bubble 

(Wilhelm et al., 2003). As a result, the recirculating region formed in the downstream direction is 

responsible for rendering the flow unsteady and produce complex situations (Abu-Mulaweh et 

al., 1993; Smith and Walton, 1998; Abu-Mulaweh, 2003; Moosavi and Nasaab, 2008). 

Some studies performed by the researchers also suggest that the transition of flow from a steady 

state to oscillatory and turbulent regimes can play an important role especially in scenarios where 

significant number of chemical species or heat transport is present (Seban, 1966; Nassab et al., 

2009; Oztop et al., 2012; Kherbeet et al. 2016 ; Xie and Xi, 2017). 

Additional details for the FFS and the BFS are reported in Sects. 1.1.1 and 1.1.2 respectively. 

The literature described therein essentially concerns cases where only forced flow was 

considered and even if temperature differences were present, they were unable to create 

significant buoyancy convection or the contribution brought in by this form of convection was 

neglected (numerical studies).    

 

1.1.1 Forward Facing Step: 

Forward-facing step has long attracted the interest of researchers serving as a workhorse to 

support the investigation of patterning behaviour which emerges due to interaction of fluid with 

an obstacle (see, e.g., Antonia and Luxton, 1971; Counihan et al., 1974; Moss et al., 1980). 

Kumar and Naidu (1993) proposed a stream function-vorticity formulation for the solution of 

two dimensional Navier-Stokes equations for laminar flow in a cavity with forward-facing step. 

The same method was then employed by Han et al. (1994) using a second order finite difference 

scheme to examine the behaviour of the flow past a forward-facing step. The results indicated the 

formation of a recirculation zone near the corner of the step causing flow separation. 

Stüer et al. (1999) examined the separation after the encounter of fluid with FFS under a laminar 

flow regime with the help of hydrogen bubble technique to achieve visualisation. Furthermore, 

PTV method was utilised to assess the 3-D flow field in Eulerian form closer to the step. The 

analysis illustrated that the laminar separation assumes the shape of a 3-D bubble which shows a 

quasi-periodic behaviour. The fluid is entrained inside the bubble and then it is released in the 
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form of longitudinal vortices. Most of the vorticity was observed to be largely aligned with the 

span-wise direction. 

 

 

 
 

Figure 1.1: Sketch of the Forward Facing Step (FFS) configuration.   

 

Some other related problems,  for instance the behaviour of a turbulent flow over a double and 

triple FFS have also been investigated by some researchers. For the research related to double 

FFS, the reader may consider Oztop (2006) who analysed numerically the turbulent forced 

convection over double FFS. He studied the impact of different parameters such as step heights 

and lengths as well as Reynolds number on heat transfer and fluid flow and illustrated that the 

second step play a crucial role in controlling both. In another research by Oztop et al., (2012), it 

was observed that varying the obstacle/step height leads to the formation of an increased number 

of eddies in the downstream direction which consequently enhances the flow circulation and heat 

transfer. Furthermore, it also increases the value of the Nusselt number which means a 

substantial amount of heat exchange takes place between the incoming fluid and solid walls of 

the cavity. Taher and Adam et al. (2010) considered a triple FFS geometry and found flow 

separation to be more significant for high values of Reynolds number and step height. In 

addition, turbulent kinetic energy and dissipation rate was also found to increase for higher 

values of step height ratios and Reynolds number. Vorticity was also found to be affected by the 

presence of consecutive steps and increase in Reynolds number. 

Another important research which focussed on the investigation of the recirculation zone 

appearing in the downstream direction of a FFS submerged in a turbulent boundary layer was 

conducted by Sherry et al. (2010). The author analysed the dimensions of recirculation region 

and reattachment length for different values of Reynolds number (dependant on step height and 

fluid velocity) in the range 1400<Reh<19000. The results indicated that an increase in the length 

of reattachment region occurs with an increase in Reynolds number for a given channel vertical 



                                                                                                                     

6 

 

extension ratio. Interestingly, two regimes were identified in this analysis depending on the value 

of Reynolds number. The reattachment length was highly influenced by Reynolds number in the 

first regime which occurred for approximately Re<8500. On the contrary, the reattachment 

length was slightly affected in the second regime which appeared for Re>8500. A possible 

explanation for the existence of these two regimes was assumed to be a shift in behaviour of the 

recirculation regions formed in upstream and downstream direction of the step as well as 

transition in shear layer straight after separation. 

 

1.1.2 Backward Facing Step: 

This configuration has attracted the attention of researchers due to the complex hydrodynamic 

effects that it generates. These are enabled as the so-called expansion ratio (ratio of the hydraulic 

diameter of the duct d and the thickness of the step) and the Reynolds number are varied in the 

space of parameters. The study conducted by Armaly et al., (1983) could be considered as a 

milestone as it set up the basis for many later studies. The author performed a thorough analysis 

of these aspects considering isothermal air and different values of Reynolds number in the range 

70 < Re < 8000, where Reynolds number was based on the total transversal extension or 

hydraulic diameter of the duct). 

The research performed in recent years has led to several two-dimensional (2D) and three-

dimensional (3D) numerical simulations. The results gathered have played a major role in 

placing the problem in a precise theoretical context by highlighting (both qualitatively and 

quantitatively) the relationship between the aforementioned controlling parameters and the 

emergence of spatially localized features. These commonly appear as stretched recirculations at 

fixed position, simply known as “bubbles”; most researchers have conveniently specified these 

through the definition of ‘characteristic’ points in the flow (generally indicated as xi where the 

subscript “i” takes a different value depending on the considered topological flow feature and its 

position in the domain). These points represent the boundary among ‘regions’ which exhibits a 

distinct fluid-dynamic behaviour: a separated shear layer (originating from the corner of the 

step), a portion of recirculating fluid under the shear layer, a sub-domain where flow 

reattachment occurs, and an attached/recovery area (the interested reader being referred to Chen 

et al., 2018 and all references therein for additional details). As shown in Fig. 1.2, the point 

where the flow reattachment occurs is generally specified by x1 (reattachment length). 

Additionally, a secondary bubble (situated on the top wall between x2 and x3) and a tertiary 

recirculation (located on the bottom wall between x4 and x5) are formed owing to an increase in 

Reynolds number for a fixed expansion ratio ER (see, e.g., Erturk, 2008). 
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Figure 1.2: Sketch of the Backward Facing Step (BFS) configuration.   

 

Analysis of the literature reveals general agreement about the finding that the reattachment 

length can be decreased with an increase in ER (expansion ratio i.e., the ratio of the duct 

diameter and step thickness) for small or moderate values of Re, whereas having a higher value 

of Reynolds number in principle would result in displacement of x1 in the downstream direction. 

Such aspects have been the focus of research because of the undesirable presence of flow 

separation in several engineering application as it produces a pressure drop (and generates 

energy loses which must be overcome through extra pumping power). 

The other area of interest i.e., the emergence of unsteadiness has been examined thoroughly 

essentially in the frame of linear stability analyses (LSA) or numerical solution of the original 

unsteady non-linear governing equations. For the research with LSA-based efforts, the reader is 

directed towards Fortin et al. (1997), who analysed the stability of the 2D steady incompressible 

flow over the BFS with ER=2 until a Reynolds number of 1600. No Hopf bifurcations (i.e., pair 

of eigenvalues crossing the imaginary axes) was found in such a range. Along the same line (for 

ER=2), Barkley et al. (2002) found that the flow remains linearly stable to two-dimensional 

perturbations up to Re=1500. More recently, the study of Xie and Xi (2017) based on the 

solution of the governing equations in their complete (yet 2D, but unsteady and non-linear) form 

has revealed the formation of localized oscillation downstream of the reattachment point for 

ER=2 and Re=1400 which can be further seen in the shear layer for a higher value of Reynolds 

number i.e., Re=2000. 

The references mentioned above are just a few examples of the relevant work on this subject 

which is now enormous. It was not possible to mention all the related work in this section. For a 

more exhaustive review, the reader may refer to the studies of Biswas et al. (2004), Kherbeet et 

al. (2016) and Chen et al. (2018), which provide a synthetic account of all such attempts.  

As mentioned before, Armaly et al. (1983) was the first to perform a comprehensive 

experimental analysis ( complemented by a numerical study) for ER2, which was instrumental 
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in revealing that, for Reynolds numbers not exceeding 400, the flow retains a strong two-

dimensional behaviour on the plane of symmetry. Interestingly, for a value of Reynolds number 

greater than 400, an inconsistency was observed in the primary recirculation length between the 

results obtained experimentally and the numerical predictions. These findings were later 

validated by Kim and Moin (1985) who found that the value of Re required to cause a departure 

of 2D numerical simulations from experiments was approximately 600. It can be seen from the 

above-mentioned reviews, however, even beyond this limit there is still some value associated 

with numerical studies conducted under the constraint of two-dimensionality as they serve as 

useful benchmarks and test-beds for the later assessment of fully three-dimensional effects. 

Furthermore, they can provide meaningful information about the typical sequence of bifurcations 

which characterize systems of such a kind. Although, beyond a given value of the Reynolds 

number, 2D investigations must obviously be regarded as an oversimplification of reality, 2D 

and 3D scenarios still share notable similarities as witnessed by relevant arguments provided by 

several researchers (see, e.g., Biswas et al., 2004; Erturk, 2008). 

Other studies have focused on oscillatory flow and the effects produced by them such as the 

fluctuations which ultimately results in the enhancement of the Nusselt number. Although, the 

majority of them have considered the one-way coupled configuration, that is, the situation in 

which the velocity field is not influenced directly by the temperature (valid in the limit as the 

Richardson number, defined as the ratio of the Rayleigh and the square of the Reynolds number 

is very small or tends to zero; for the case of air and ER=2, the interested reader may consider 

Iwai et al., 2000 for Re=125; Kanna, and Das, 2006 for Re=800; Rouizi et al., 2010 for Re up to 

800; Xu et al., 2017 for Re up to 1200 and Xie and Xi, 2017 for Re up to 2000).  

In such a context, it is also worth recalling that Vogel and Eaton (1985) had shown 

experimentally that if the flow becomes turbulent, the classical Reynolds analogy (stating that 

the heat transfer at the wall is proportional to wall shear) does not hold for the mean flow but 

more for the fluctuating values, especially in the recirculation zone (i.e., x<x1). A description of 

related numerical studies can be found in Keating et al. (2004) and in the masterful review by 

Avancha and Pletcher (2002). Such research efforts can be considered crucial as they increased 

awareness in the scientific community regarding the use of specific turbulence models in 

comparison to others which are not considered suitable to deal adequately with turbulent 

separating and reattaching flows in the presence of heat transfer. 

 

1.1.3 Hybrid convection in ducts with a step 

As a critical analysis of the literature described above would immediately indicate, despite many 

valuable efforts, a significant lack of information still seems to exist for what concerns the 

interplay of thermal buoyancy effects and forced convection in these systems. Most of existing 

investigations have addressed situations in which fluid motion was isothermal or, although heat 

transfer was considered (between the fluid and walls delimiting the channel), perturbations of 

buoyant nature were not taken into account. The only exceptions seem to be Abu-Mulaweh et al. 

(1993) and Abu-Mulaweh (2003) for the FFS and Barbosa-Saldaña et al. (2005) and Khanafer et 
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al. (2008) for the BFS, where some emphasis was put on buoyancy effects and the related ability 

to generate thermal plumes and affect accordingly the overall flow. These are briefly reviewed 

here. 

Abu-Mulaweh et al., (1993) specifically investigated experimentally the configuration of 

horizontal FFS which was further complemented by another meaningful research by Abu-

Mulaweh (2003). These investigations were performed for different ranges of the relevant 

control parameters i.e., the so-called Reynolds number and Grashof number. The authors varied 

the Reynolds number and Grashof numbers (based on the step height) in the intervals, 

O(102)ReO(103) and O(103)GrO(104). It was found that an increase in thickness of the step 

causes the spatial extension of the recirculation region to grow whereas it leads to a decrease in 

the rate of heat transfer from the heated downstream wall. Interestingly, both quantities were 

found to increase with an increase in inlet velocity. Further observations revealed that in certain 

situation, no upper circulation area is detected, however in other scenarios disturbances 

responsible for shift from laminar state to turbulent flow emerges in this particular region. 

To the best of our understanding, the studies mentioned before are the only ones which have 

examined the interplay of buoyancy and forced convection inside a FFS configuration. Some 

additional partially related information can possibly be collected from the already existing 

numerical studies highlighting common instabilities of gravity-driven and hybrid 

thermocapillary-thermogravitational convection in crucibles having various shapes primarily 

used for the production of semiconductor or opto-electronic materials (see , for instance, Lappa, 

2017; Lappa, 2019; Khatra et al., 2019) or other researches which focused on building heating 

and ventilation or electronic devices cooling (Yarin, 2009; Sun and Jaluria, 2011; 

Venkatasubbaiah and Jaluria, 2012; Morsli et al., 2018; Kachi et al., 2019). 

Following the observations by Guo et al. (1996) on the ability of thermal effects to cause non-

trivial modifications in the patterning behaviour of the velocity field, some numerical 

investigations have also become available where the general problem represented by mixed 

forced-buoyancy convection in the BFS configuration was treated for finite values of the 

Richardson number. Exemplars pertaining to this line of inquiry are the works by Barbosa-

Saldana et al. (2005) and Khanafer et al. (2008), who investigated the BFS with ER=2 through 

numerical solution of the 3D and 2D governing equations, respectively. Although obtained in 

restricted sub-regions of the space of parameters (Reynolds number Re fixed to 200 and RiO(1) 

in the 3D study by Saldana et al., 2005, and O(10-1)RiO(10) with Rayleigh number Ra fixed to 

5680 in the 2D analysis by Khanafer et al., 2008), these numerical results definitely confirmed 

that the features of the mixed convective flow are significantly different from that of forced 

convective flow. 

As yet indicated by available studies, another drawback concerns the dimensionality of such 

systems, which in most cases was limited to two dimensions only to avoid the otherwise 

prohibitive computational times required for the numerical investigation of three-dimensional 

(3D) flows (especially when relatively high values of the related non-dimensional governing 

parameters, i.e., the Reynolds and Rayleigh numbers, are considered).   
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Efforts based on 3D DNS (direct numerical simulation) are relatively rare and sparse. Relevant 

examples for the case of isothermal flow are Wilhelm et al., (2003) and Le et al. (1997) for the 

FFS and the BFS, respectively; similarly, for 3D DNS with heat transfer but no buoyancy the 

reader may consider Barbosa-Saldaña and Anand (2007) and Xu et al (2017), respectively. In 

these analyses, not to increase excessively the density of the required mesh (known to grow with 

the values of the characteristic non-dimensional parameters), circumstances for which the flow is 

laminar were examined.  

Attempts based on turbulence models, where the characteristic parameters can take much higher 

values are just the beginning. Initial efforts along these lines have essentially shown that 

conventional turbulence modelling methods, such as the Reynolds Averaged Navier–Stokes 

(RANS) approach are generally inadequate in predicting the effects of turbulent separating and 

reattaching flows with heat transfer, whereas large eddy simulation (LES) seems to capture 

properly such dynamics. However, only a limited number of LES works have appeared where 

the BFS with heat transfer was considered (see, e.g., Avancha and Pletcher, 2002; Labbe et al., 

2002; Keating et al., 2004)  and even fewer articles have been devoted to the equivalent FFS 

(Rao and Lynch, 2021). 

To the best of our knowledge, no work exists where 3D LES simulations of mixed flow on the 

FFS or BFS have been performed (the computations by Schumm et al., 2016 for the BFS were 

limited to a 2D configuration). Therefore, in the present thesis, an attempt has also been made to 

bridge this gap through the implementation and application of a relevant LES strategy to the 

general 3D case in which the flow is non-isothermal and with a significant level of buoyancy 

which would be discussed in Chapter 8. 

Given the lack of results about buoyancy convection in systems with a step, the remainder of this 

chapter is used to recall the main properties of purely gravitational (buoyancy) flow for some 

simple (canonical) geometries and fundamental situations. Part of this information will prove 

useful later for the interpretation of some of the results obtained in the following chapters. 

 

1.1.4 Thermo-gravitational convection: 

Thermal or buoyancy convection is an important process occurring in a variety of natural and 

industrial processes. Thermal convection can be further divided into two types depending upon 

the relative direction of the gravitational field and the prevailing temperature gradient. If the 

system is being heated from below, then the direction of temperature gradient is parallel to the 

gravitational force, giving rise to Rayleigh-Bénard convection. However, if the gradient of 

temperature is perpendicular to gravity, then a different type of convection takes place, known as 

Hadley convection. Although both these convection processes are similar in nature, they display 

different behaviours when the Rayleigh number is increased, which provides an explanation for 

the above-mentioned distinction. 

The study of Rayleigh-Bénard convection was founded by two scientists, Lord Rayleigh (1916) 

who conducted theoretical studies and Henri Bénard (1900, 1901), who focussed on 

experimental observations, thus giving their names to this phenomenon. Rayleigh-Bénard 
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convection has been the focal point of many studies in the past century due to its conceptual and 

practical applications. The variety of complex patterns, bifurcations and chaotic behaviour 

(Gollub and Benson, 1980) this type of convection showcases provides a possible justification 

for the attention it has received. Busse and co-workers (Busse, 1978; Clever and Busse, 1974; 

Busse and Clever, 1979) defined the so-called Busse Balloon, i.e., the region of stability 

delimited by all the expected secondary instabilities occurring in Rayleigh-Bénard convection. 

The other type of thermal convection which is Hadley convection was named after George 

Hadley (1735) who put forward it as an atmospheric circulation mechanism. This type of 

convection is relevant to several industrial manufacturing processes and is relevant to the cooling 

of nuclear reactors (Hurle, 1972; Carruthers, 1977; Thevenard et al. 1991). Hadley flow can also 

undergo different types of perturbing mechanisms (e.g., Lappa, 2007).  

 

1.1.4.1 Rayleigh-Bénard Convection 

Rayleigh-Benard convection is a classical problem in the field of fluid dynamics. This 

phenomenon contributed to the foundation of the stability theory in hydrodynamics (Drazin and 

Reid, 1981) and enjoyed a significant level of interest from the researchers due to its practical 

implications and complex spatio-temporal patterns (Getling, 1998). From the research 

perspective, the geometry which is widely used to study the effects of this type of convection is 

the infinite two-dimensional layer. This idealised geometry is considered suitable to study all the 

complex patterns and bifurcations that are induced in the system from a theoretical angle. From a 

real-world perspective, an infinite layer can be experimentally mimicked by keeping the 

horizontal extension of the fluid layer large enough in comparison with the vertical depth. The 

configuration is shown in Figure 1.3. 

 

 

Figure 1.3: Rayleigh-Bénard geometry with infinite horizontal layer 

 

The system undergoing this convection usually shows a steady behaviour for relatively small 

values of Rayleigh numbers. However, at higher values of Ra, instability occurs and bifurcations 

take place that make the flow behaviour much more complex. The aim of the following section is 

to provide some additional fundamental information about these behaviours. 
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Initial instability-Pitchfork bifurcation 

A quiescent or steady state is an inevitable solution for very small values of Rayleigh numbers. 

However, the situation completely changes if an increase is introduced in this parameter, 

initiating an instability mechanism which leads to the formation of steady and parallel convective 

rolls. Rayleigh (1916) proposed an analytical solution with regards to critical Rayleigh number 

considering stress-free boundaries. The solution was based on a quantity known as wavenumber: 

 

( )
32 2

2

( )
cr

q n
Ra

q

+
=  

 

(1.1) 

 

In terms of no-slip boundary condition, a value of Racr= 1707 was first put forward by Jeffreys 

(1926, 1928). The results acquired for both stress-free and no-slip walls are visually represented 

in Figure 1.4. 

 

 

Figure 1.4: Marginal stability curves formed for Rayleigh-Bénard convection in the 

configuration with infinite horizontal layer for stress free and zero velocity (no slip) on solid 

walls. 

The solution demonstrates that the linearised problem considered above yields eigenvalues 

which are real (Pellew and Southwell, 1940) which also indicates the fact that the initial mode of 

instability is always stationary, i.e., leading to a steady state. 
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Secondary modes of instability: the Busse balloon 

As already discussed before, in the case of RB convection, convective disturbances usually 

emerge in the form of parallel convective rolls formed in the horizontal direction. These rolls are 

formed for relatively lower value of Rayleigh number; however, a further increase in Ra renders 

the flow more unstable giving rise to a plethora of complex patterns. Such secondary instabilities 

were first addressed by Busse and his co-workers (Schluter et al., 1965; Clever and Busse, 1974; 

Busse, 1978; Busse and Clever, 1979). Their research initially focussed on two dimensional ideal 

straight rolls which were described by means of a Galerkin expansion. Furthermore, they used a 

method known as Toroidal-Poloidal Decomposition to represent the solution in slightly 

supercritical conditions (see Lappa, 2009). They identified three parameters which have the 

tendency to affect the initial stable state of RB convection namely wavenumber q, Prandtl 

number (Pr) and Rayleigh number (Ra).  

Thus, a region of stability was defined by them which was given the name Busse balloon (Busse, 

1978) as shown in Figure. 1.5. The flow is initially stable inside the boundaries of the so-called 

Busse balloon, however as soon as the boundary is crossed; a variety of secondary modes of 

instability disturbs the initially parallel rolls. An overview of different kinds of possible 

secondary modes is provided in Fig. 1.5 which clearly shows that the evolution from an initial 

stable state to a secondary one depends on the Rayleigh, Prandtl and wavenumber. It is important 

to highlight that certain secondary modes are universal, regardless of the role played by RB 

convection in generating a pattern. Such modes in practice depend on the symmetries of formed 

rolls, for instance, the eckhaus instability and zig-zag instability which remains invariant through 

translation and rotation respectively or cross-roll instability which emerge owing to the reduced 

strength of convection in the vicinity of marginal curve. However, RB convection has a marked 

influence on the generation of other kind of secondary modes such as bimodal instability. There 

are variety of secondary modes which occur; however, a comprehensive explanation is not 

possible as it is beyond the scope of present work (see Lappa, 2009 for a more clear and detailed 

description). 
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Figure 1.5: Three-dimensional diagram of Busse Balloon from Busse (1978) representing 

Prandtl number, Rayleigh number and wavenumber along x, y and z directions respectively. The 

two-dimensional secondary modes remain stable inside the boundaries represented by solid 

curves. The abbreviations mentioned outside the Busse Balloon highlight the following 

secondary instabilities: ECK for Eckhaus instability, SV for skewed varicose instability, CR for 

cross roll instability, OS for oscillatory instability with travelling waves, ZZ for zig-zag 

instability, KN for knot instability and OB for oscillatory blob instability. 

 

Impact of sideward walls 

The effects of lateral or side walls on the behaviour of the flow can be significant. The condition 

of infinite layer adopted for the configuration used in RB convection can be satisfied in the 

laboratory only if the depth of cavity is much smaller that its length. It is observed that the walls 

have a remarkable impact on the pattern originating in the system if this condition is not satisfied 

(Pellew and Southwell, 1940 and Zierep, 1963) . Davis (1967) further studied the effect of lateral 

walls on the convective mechanism occurring in a rectangular box by utilising the technique of 

linear stability calculation. Another important study pointing out the effect of lateral wall was 

conducted by Cross et al. (1980) which showed that the presence of finite sidewalls disrupts the 

amount of wave vectors entering the system. 

 

1.1.4.2 The Hadley Flow 

Hadley flow has also been investigated significantly in the past just as Rayleigh-Bénard 

convection. The difference between these mechanisms simply lies in the respective directions of 

gravity and temperature gradient. However, rotating the direction of temperature by 90 (Hadley 

flow) is enough to introduce substantial changes in the behaviour of the flow. Even though these 

processes share a common physical origin, however difference in terms of dynamics of the flow 
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makes it essential to consider Hadley flow as a separate branch of thermo-gravitational 

convection. 

Following the same approach used for the RB problem, here an infinite layer is considered 

(having adiabatic horizontal boundaries). The ability of this model to provide an exact solution 

makes it a desirable choice. However, it is worth mentioning that the quiescent state no longer 

provides a solution of the dimensionless equations (mass, momentum and energy). No Critical 

Rayleigh number must be exceeded to produce flow as it always occurs regardless of the 

magnitude of Ra. Unlike Rayleigh-Bénard convection that is typically produced as a set of 

parallel rolls in an infinite layer, the Hadley flow gives rise to a single roll stretched in the 

horizontal direction. The geometry of the system is shown in Fig. 1.6. 

 

 

 
 

Figure 1.6: Hadley Flow geometry with infinite layer 

 

The Hadley flow (in the form of to a single roll stretched in the horizontal direction) can be 

subjected to a variety of perturbing mechanisms which highly depend on the value of Prandtl 

number. The general mode of perturbations which exist at low Pr (<1) corresponds to transverse 

rolls (2D hydrodynamic mode) and longitudinal rolls (steady or oscillatory). For a situation 

where the Prandtl number of the fluids is high i.e.,Pr>1, another form of instability occurs known 

as Rayleigh mode. A rich spectrum of patterns is produced due to different kinds of instabilities 

dependant on the value of the Prandtl number. Hence, these instabilities are discussed here in 

two different section according to the value of the Prandtl number 

 

Instability modes in Low Prandtl fluids (Pr<1) 

The transverse and longitudinal disturbances which emerge in the low Prandtl fluids were 

described by Hart (1972, 1983). He investigated the influence of such disturbances on the 

behaviour and nature of flow. Furthermore, Gill (1974) concentrated on the sensitivity of the 

Hadley flow to longitudinal disturbances. Both these disturbances are represented in Fig. 1.7. 

The roll axis in 2D hydrodynamic mode (transverse mode) is at an angle of 90 (perpendicular) to 

the temperature gradient. However, in the case of longitudinal rolls, both the rolls axis and 

temperature gradient are parallel.  
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Both Hart (1972, 1983) and Gill (1974) verified that the perturbations occurring in the transverse 

mode are a direct consequence of a shear instability i.e., they are hydrodynamic in nature. On the 

contrary, the instability induced by longitudinal rolls occurs due to marked increase in the 

thermal effects as a result of dynamic coupling among gravitational and inertial forces. 

 
  (a) 2D hydrodynamic (or transverse) mode                              (b) Longitudinal rolls 

 

Figure 1.7: Fundamental shapes of modes in Hadley Flow 

 

 

The longitudinal rolls are also known as helical wave mode or oscillatory longitudinal rolls 

(OLR) due to the formation of a helical trajectory when they merge with the basic Hadley flow.  

 Kuo and Korpela (1988) identified that mean shear stress or hydrodynamic instability 

contributes to the formation of transverse rolls for Pr≤0.03. Moreover, Prandtl number in the 

range 0.033<Pr< 0.2 gives rise to oscillating longitudinal rolls (OLR) whereas stationary 

longitudinal rolls (SLR) are formed at Pr ≥ 0.2. The plots reported in Figure 1.8a and 1.8b 

represents the critical Grashof number and wave number for these different disturbances. 
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                                         (a)                                                                  (b) 

Figure 1.8: Plots of results produced by Kuo and Korpela (1988) after performing linear stability 

analysis for the Hadley flow: a) Critical Grashof number as a function of Pr b) Critical 

wavenumber as a function of Pr. The formula for Grashof number is Gr= gβTγd4/ν2, where γ 

represents the imposed temperature gradient along horizontal direction and d specifies the depth. 

 

 

Instability modes in High Prandtl liquids (Pr>1) 

The previous subsection highlighted various instability modes that exist in the case of Pr<O(1). 

They are the 2D transverse mode and 3D longitudinal rolls (stationary or oscillatory). These 

perturbations exist in a certain range of the Prandtl number. However, as mentioned before, these 

disturbances are possible only for low values of Prandtl number. 

For this purpose, Gershuni et al. (1992) performed linear stability analysis and introduced a third 

mode of instability known as the ‘Rayleigh mode’ for Pr>O(1). This mode is due to the presence 

of unstable density variations (stratification) in the vicinity of upper and lower horizontal walls 

when these behave as conducting boundaries. Such stratified regions were found to favour the 

growth and occurrence of the Rayleigh-Bénard instability giving rise to longitudinal rolls of 

steady nature (whose axis are parallel with the temperature gradient). However, a further 

increase in Rayleigh number results in the formation of transverse rolls of 2D oscillatory 

nature(whose axis is at 90 with the temperature gradient). All the possible modes of instabilities 

which emerge for different values of Prandtl number are summarised in Fig. 1.9. 
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Figure 1.9: Minimal Grashof number as a function of Prandtl number by Gershuni et al. (1992). 

The 3D Rayleigh mode represented by solid line highlights the instability mode with even 

pattern whereas the dashed line represents the 2D Rayleigh mode which illustrates the instability 

modes with odd pattern. The formula for Grashof number is Gr= gβTγd4/ν2, where γ represents 

the imposed temperature gradient along horizontal direction and d specifies the depth. 

 

It is clearly evident from Fig. 1.9 that for value of Pr> 0.44, Rayleigh mode is the major source 

of instability even for larger values of Pr. This perturbation mechanism is not possible without 

the presence of unstable stratification zones, for instance, the case considered by Kuo and 

Korpela (1988) having horizontal insulated boundaries. It is worth mentioning that Rayleigh 

mode is a steady mode as the flow becomes stable when the Prandtl number approaches to unity 

or higher value. The 3D Rayleigh mode has the ability to exist in both odd and even arrangement 

as illustrated in Fig.1.10. 

  
                        (a)                                                                        (b) 

Figure 1.10: 3D Rayleigh mode showing even and odd pattern (Note that the direction of 

temperature gradient is along x-axis) 

 

Y                                                                       Y 

 

                                                    g                                                                         g 

                               Z                                                                        Z 

 

 



                                                                                                                     

19 

 

Instability modes for Pr1 in the presence of vertical sidewalls 

This subsection is finally used to describe a specific instability mode that is very relevant to the 

problem considered in the present thesis, i.e., the travelling waves that can be produced in 

differentially heated cavities supporting the Hadley flow in the presence of solid lateral 

boundaries (i.e., wall parallel to the direction of gravity; the information reported in the previous 

subsection was about the Hadley flow in infinite layers). 

It is an established fact that for Hadley flow prevalent in compact cavities with Pr1, an increase 

in Ra results in a shift in behaviour from steady state to permanent 2D oscillatory states. Over 

the years, numerous researchers have performed numerical analysis on this subject. For instance, 

Le Quéré and Penot (1987) and Henkes and Hoogendoorn (1990) conducted numerical studies 

on cavities having horizontal walls that were kept adiabatic and filled with air. Bucchignani 

(2009) considered a square cavity, Yahata (1999) performed numerical simulation for the case of 

cavities with different aspect ratio A ranging from 1/10 to 1 whereas Auteri and Parolini (2002) 

considered an aspect ratio A=1/8. In some situations, the flow even demonstrated a turbulent 

behaviour (for instance, Paolucci and Chenoweth, 1989; Paolucci, 1990; Janssen  and Henkes, 

1995; Xin and Le Quéré, 1995; Farhangnia et al., 1996; Yahata, 1997; Le Quéréand Behnia, 

1998; Mayne et al., 2000). It was clarified that such flow instabilities have no relationship with 

the archetypal instability mechanisms described in the previous section for infinite layers. 

Rather, different interpretations were provided for this type of instability (described in the 

remainder of this section). 

 

 

a) 

HotCold
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b) 

Figs. 1.11: Regions with stable thermal stratification, horizontal intrusion thermal layers and 

vertical thermal boundary layers in a cavity with A=1 (Pr=0.71 and Ra=1x107; adiabatic 

horizontal walls): (a) Temperature distribution; (b) Velocity field (numerical simulation, M. 

Lappa, 2009). 

 

An increase in Rayleigh leads to a shift in the behaviour of the flow i.e. a transition occurs from 

a diffusive regime to a boundary layer regime. Consequently, the temperature drop and vorticity 

production are observed to be concentrated in thin boundary layers alongside the sidewalls, while 

a stagnant region is formed in the central portion of the cavity, as show in Fig. 1.11. In such 

situation, the flow at the centre takes place only by means of entrainment of mass from the 

vertical boundary layers. This process generally results in a stable core region with a cross-

stream thermal stratification.  

Delgado-Buscalioni (2001a) demonstrated that while the core flow is stable, flow instabilities 

can develop inside the boundary layers adjacent to the lateral walls. Based on these arguments, 

there is consensus in the literature that the oscillatory instabilities (observed by many researchers 

in the past) in cavities of finite extent for PrO(1) (such as air, water and silicone oils) should be 

attributed to the existence of such boundary layers.  

Some important information along these lines related to the boundary layer instabilities of 

thermal convection is available in the theoretical study performed by Gill and Davey (1969) and 

Daniels and Patterson (1997 and 2001). A plethora of numerical analysis are also available for 

the studies involving finite cavities (as mentioned above), whose main outcomes are reported 

comprehensively in the following: 

Ravi et al. (1994) originally performed numerical analysis to study the characteristics of high-Ra 

convection and considered a simple geometry (square cavity) and Pr=0.71 (air). Initially, the 

investigations were performed for steady conditions , however further studies for high values of 

Ra indicated the presence of a recirculating pocket near the corners, downstream of the vertical 

walls with a flow separation and reattachment occurring near the horizontal walls in proximity of 

this recirculation. Furthermore, a substantial thickening of the boundary layer was also observed 

HotCold
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in proximity to these pockets, as shown in Fig. 1.11b. Later studies  (Paolucci and Chenoweth 

(1989), Le Quéré and Behnia (1998), Tian and Karayiannis (2000)) could show that fluid 

instabilities originate in the vicinity of the abovementioned pocket. A slight increase in Rayleigh 

results in a second (shear-driven) instability making the boundary layer itself unstable. These 

instabilities appear in the form of waves growing along the vertical boundary layers (Xin and Le 

Quéré (1995)). These authors conduced numerical simulations on a tall geometry (vertical 

cavity) with A=1/4 and Pr=0.71 (air) considering three different values of the Rayleigh number 

(Ra=6.4x108, 2x109 and 1010). The results demonstrated the influence of travelling waves 

(propagating downstream in the boundary layers) on the solution rendering it time-dependent.  
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Chapter 2 

Physical and Mathematical Model 

2.1 Introduction 

A review of the existing literature on forced convection in forward-facing step (FFS) and 

backward facing step (BFS) geometries has been provided in the previous chapter together with a 

description of the limited results existing for hybrid flows in these systems. Some fundamental 

information has also been provided for purely buoyancy convection produced by vertical or 

horizontal temperature gradients.  

The objective of the present chapter is to introduce the various partial differential equations 

which govern all these convection phenomena. These include the continuity, momentum and 

energy equations.   

 

2.1.1 Continuity Equation 

The continuity equation can be regarded as mathematical formulation of the mass conservation 

principle. It reads: 

( ) 0V
t





+ =    

 

 
(2.1) 

 

As in the present study, situations are considered where the concerned fluid satisfies the 

incompressibility constraint (corresponding to values of the Mach number M0.3, Cengel et al., 

2008)  hence, the equation can be simplified as: 

 

0V  =  

 

(2.2) 

It clearly illustrates that the divergence of vector (velocity) should be zero in any part of the 

domain. From another viewpoint it means that velocity field must be solenoidal, i.e., no sources 

or sinks of mass can exist. 

2.1.2 Energy equation 

Energy equation is another crucial equation governing the considered dynamics. Mathematically, 

it can be expressed as follows: 

( ) ( )v

p

c

t

T
Vc T T





+  =    

 

(2.3) 



                                                                                                                     

23 

 

As the investigation performed in the present thesis involves fluids which hold incompressibility 

constraint and possess non-variable thermophysical properties, this equation can also be 

simplified ( see Sect. 2.4.3 where the corresponding non-dimensional form is provided). 

2.1.3 Momentum equation (the Navier-Stokes equations) 

Just like continuity and energy equation, the momentum equation is a balance equation. For the 

general case of a compressible fluid, it can be cast in its final form as follows: 

 

( )T

p
t

V
V V g


 


+  = − +  +  

 

(2.4) 

 

As incompressible fluids are considered, it can be simplified as follows: 

 

( )V p
t
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  
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+   = − +  +  
 

(2.5) 

 

Equation 2.5 contains a stress tensor which has to be further expanded in order to obtain the final 

form of the momentum equation. According to Stokes law in the framework of Newtonian fluid 

model: 

 

( )( )
TV V =  +              (2.6) 

 

After inserting the equation for stress tensor 2.6 in 2.4, the final form for compressible fluid 

becomes: 

( ) ( )( ( )
T T

p
t

V
V V V V g


 


+  = − +  + +   

 

(2.7) 

For a fluid with constant density and viscosity realising that 0
T

V = ,equation 2.7 becomes: 

( ) 2
V p

t

V
V V g


  


 +  = − +  +  

 

(2.8) 

 

Thus equations 2.7 and 2.8 are Navier-Stokes equation in compressible and incompressible form 

respectively which alongside with continuity equations (2.1 or 2.2) and the energy equations 

(2.3) must be regarded as the set of equations governing the considered dynamics. 
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2.2 The Boussinesq approximation 

The main focus of the present thesis is hybrid convection which involves both thermal 

convection and forced convection. The former depends on the term g present at the right-hand 

side of the momentum equation, which therefore requires further attention in terms of 

mathematical modelling. 

Buoyancy is the main driving force behind natural convection. In simple words this means that 

as a rise in temperature results in a decrease in density, heated fluid becomes less dense and rises 

whereas colder fluid tends to fall due to its relatively higher density. This implies that variations 

in density are the root cause of thermal or natural convection and that some attention must be 

paid to this aspect from a mathematical point of view if one is using the assumption of 

incompressible fluid. This poses a question here: how  to consider the buoyancy forces if the 

equations governing the process of convection satisfy the incompressibility constraint?  This is 

possible and can be done by adopting the so-called Boussinesq approximation which is 

commonly used in thermal convection (buoyancy driven flows). This implies that density is 

neglected in all terms unless it appears in the last term (RHS of equation 2.8) where it is 

multiplied with acceleration due to gravity (ρg). According to the Boussinesq model, in the last 

term of 2.8 the density is assumed to undergo a linear variation with temperature: 

 

( )( )0 0
1 T T   − −  (2.9) 

 

Here 
0

  represents the density which exists at the reference temperature
0

T .The parameter T 

appearing in this expression is the well-known fluid thermal expansion coefficient; it accounts 

for the variations of fluid density induced by thermal effects in the framework of the linear 

relationship represented by eq. 2.9. The Boussinesq approximation is known to be valid when the 

product of ΔT is less than one. 

The next step involves considering equation 2.9 as well as the pressure deprived of the 

hydrostatic component
0

( )p p gH= + .Inserting 2.9 and pressure into 2.8, the momentum 

equation yields the following equation:  

( ) ( )2

0 0
( ( )V p g

t

V
V V T T


 


  +  = − +  − −  

 

(2.10) 

 

In the remaining section of this chapter, every time the pressure term comes up it would exclude 

the hydrostatic term; hence for simplicity  the superscript is omitted. All the simulations 

performed in this thesis rely on the Boussinesq approximation. 
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2.3 Non-dimensional numbers and equations 

The present section presents the non-dimensional characteristic numbers associated with the 

different kinds of convection mechanisms investigated thoroughly in this study, namely, 

buoyancy convection and forced convection (their combination giving rise to hybrid convection) 

Afterwards, the mass, momentum, and energy (Navier Stokes) equations are presented in their 

non-dimensional form. 

2.3.1 Buoyancy convection non-dimensional numbers 

The first dimensionless number is Prandtl number. It only depends on the nature of the fluid 

under consideration and can be expressed as follows: 

Pr =



 

 

(2.11) 

 

Where 𝜈 is the kinematic viscosity also known as momentum diffusivity and α is the thermal 

diffusivity respectively. Among other things, from a physical point of view, the Prandtl number 

accounts for the relative thickness between the velocity and thermal boundary layers. A small 

value of Pr indicates that heat diffuses at a faster rate in comparison with the velocity which 

leads to the formation of much thicker thermal boundary layer than its counterpart. The values of 

Pr number exist in various ranges for instance it can be as low as O (10-2) for different substances 

such as liquid metals and semi-conductor melts or take values in the range between 100 and 

40,000 for engine oil. In the case of gases, the Prandtl number is close to 1 which indicates that 

the rates of dissipation of momentum and heat are similar. 

After this,  another dimensionless parameter can be introduced known as Rayleigh number 

which can be defined as: 

 
3

g Td
Ra =






 

 

(2.12) 

 

In the above-mentioned equation, 𝛽 is the thermal expansion coefficient, Δ𝑇 is the temperature 

difference that exists in the system and d represents the reference length. The Rayleigh number 

accounts for the strength of buoyancy convection. It can also be written as the product of 

Grashof number and Prandtl number as follows: 

Ra= Gr Pr  (2.13) 

 

Where 
3

2
Gr =

g Td




. The flow is usually laminar for relatively small values of the Rayleigh 

number whereas a high Ra can make the flow turbulent. 



                                                                                                                     

26 

 

2.3.2 Forced convection non-dimensional numbers: 

The typical non-dimensional number related to forced convection is the Reynolds number 

which in this thesis relates directly to the velocity with which the fluid is injected inside the 

channel. On the basis of its classical definition, it simply reads: 

forced

Re =
U d


 

 

(2.14) 

 

The Reynolds number can be seen as the ratio between forces of inertial and viscous nature. It 

also provides an indication regarding the nature of flow and flow patterns for instance a low 

value of Reynolds number implies that the flow is laminar (high strength of viscous forces). 

However, a higher value of Reynolds number may imply that the flow is turbulent and chaotic 

(higher strength of inertial forces). 

It is important to highlight that both Reynolds and Rayleigh numbers can be merged together to 

form another important parameter commonly known as Richardson number. The final form is 

as follows: 

 

2 2Pr Re

T

forced

g Td Ra
Ri

U

 
= =  

 

(2.15) 

 

This additional parameter has been extensively used in the past to classify the dynamics of 

hybrid (thermal & forced) convection into different flow regimes, for instance the commonly 

known  ‘near and far field’ models (Dunn et al., 1975; Lee and Chu. 2003). It can also be used to 

characterize the instabilities related to thermal plume formation and evolution (Vincent and 

Yuen, 1999; Hier Majumder et al., 2004). As a result of the intrinsic ability of this parameter to 

determine the relative significance of thermal (buoyancy) and forced convection it can be 

regarded as an influential and vital parameter for both convective mechanisms. It is worth 

mentioning that a higher value of Ri indicates that buoyancy is dominant whereas a value less 

than unity may indicate a situation with dominant forced convection (these two limit cases i.e., 

pure buoyancy convection and forced convection are restored in the limit when the value of Ri 

reaches infinity and zero, respectively). 

 

2.3.3 Non-dimensional set of equations 

 

The continuity (equation 2.2), energy (equation 2.3) and momentum (equation 2.4) can be 

converted into their non-dimensional form by referring velocity and pressure to proper scales. 

For this purpose,𝛼 𝑑⁄  is used as a velocity scale, 𝜌𝛼2 𝑑2⁄  is used as pressure scale (where 𝜌 is the 

fluid density) and 𝑑2 𝛼⁄  is used as a reference quantity for time scale, where d is a reference 

length (the vertical extension or diameter of the channel in the present thesis)). This leads to the 

following non-dimensional form of these equations: 
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0V =  

 

(2.16) 

2 Pr g

V
p VV V RaT i

t




  = − − + −  
 

(2.17) 

 

The term  𝑖𝑔 appearing in equation 2.17 is a unit vector whose direction is towards the direction 

of gravity. In terms of energy equation, defining the non-dimensional temperature as the ratio 

among the local temperature subtracted from a reference temperature and the imposed Δ𝑇, leads 

to a non-dimensional form of energy equation which can be cast in compact form as follows: 

 

2T
VT T

t




  + =  
 

(2.18) 
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Chapter 3 

Geometrical configurations and boundary conditions 

In the previous chapter, an overview has been given regarding different partial differential 

equations which represent the backbone of any numerical strategy for the investigation of the 

different convection mechanisms being considered in this thesis. It was evident from the 

discussion that such equations are of great importance as they can consistently describe the 

motion of the fluid. Furthermore, important non-dimensional parameters associated with 

buoyancy and forced convection were defined.  

 This section  presents the different geometrical configurations used in the present study and their 

boundary conditions. The physical domains considered are a compact cavity with an obstruction 

located in its bottom-right corner, a 2D elongated cavity or channel with forward-facing step, a 

2D channel with backward-facing step and analogous 3D configurations. Each physical domain 

has its own set of boundary conditions with tuneable geometrical effects such as the domain 

aspect ratio and the position of the inlet and outlet sections. 

 

3.1 Obstructed Compact cavity 

 

3.1.1 The geometry 

 

The abovementioned obstructed cavity is shown in Fig. 3.1. It consists of a square two-

dimensional cavity (aspect ratio A=width/height=1) having a square shaped (hot) obstruction 

embedded at the bottom. The cavity is also equipped with two small orifices on either side which 

serve as inflow and outflow sections. The sketch provides more precise information in terms of 

the location of the orifices: while the outflow section is located at mid-height between the 

horizontal hot surface of the obstacle and the top wall of the cavity, the position of the inflow 

section can change as shown in Fig. 3.1 (the fluid is introduced through the section close to the 

bottom ‘or’ that close to the top so that it can follow different trajectories). 
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Figure 3.1: Sketch of the considered geometry and related kinematic and thermal boundary 

conditions.  

 

For this case, in addition to hybrid flow, purely buoyant flow is also considered (i.e., no inflow 

and outflow). In this case, the fluid injection velocity Uforced is set to zero. 

From a thermal point of view, the sidewalls are kept adiabatic for all the cases being investigated 

whereas the floor (y=0) takes a dual role as it is assumed either adiabatic or at constant 

temperature (namely, set at the same temperature Thot of the obstruction). On the contrary, a 

separate concept is applied on the top wall, which is kept cold (Tcold) and isothermal for pure 

buoyancy convection (Uforced =0) or adiabatic in the case of hybrid convection (Uforced0). In the 

case of hybrid convection, the cooling role of the top wall (ceiling) is performed by the fluid 

forced inside the cavity (the velocity and temperature in this scenario are set to Uforced and Tcold, 

respectively). 

 

3.1.2 Boundary conditions 

 

The non-dimensional thermal boundary conditions (BCs) for the considered problems can be 

summarized as follows: 

 

Side walls (x=0 or x =1): T/x=0   (3.1) 

   

Step walls (x=1/2, 0y1/2 and y=1/2, 1/2x1) T=1     (3.2) 

   

Floor (y=0, 0x1/2), T/y=0 (adiabatic)      (3.3a) 

or T=1 (isothermal)                                                                                                                      (3.3b) 

   

Top wall (y=1, 0x1) T=0 (isothermal, Re=0) or T/y=0 (adiabatic, Re0)   (3.4) 
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The Nusselt number associated with the vertical and horizontal walls of the step can be defined 

accordingly as follows: 

1/2

0

2vert

step

T
Nu dy

x




= −   and 

1

1/2

2horiz

step

T
Nu dx

y




=         (3.5)  

From a kinematic point of view, all the walls in the geometry are regarded as no-slip surfaces, 

which indicates that the two velocity components along x and y (u,v) directions are formally set 

to zero. For the cases with Re0, additional conditions are required at the inflow and outflow 

section (assumed to have a non-dimensional vertical extension l=0.1). For the inflow section  the 

boundary condition can be simply set as: 

Inflow (x=0, 0.2y0.3 or 0.7y0.8): u= Uforced, v=0, T=0       (3.6)  

The BCs for the outflow section are more complex and require additional reasoning or 

explanations. In order to impose proper conditions on open boundaries, increased care and 

attention is required to make certain that no spurious oscillations are produced, which would 

disturb the physical consistency of the entire velocity (and temperature) field and generate 

numerical instabilities. As a result of already existing research on the subject, a relevant 

approach can be adopted known as the “open boundary condition” (OBC) framework (Hattori et 

al. 2013; Dong et al. 2014). Such involved spatio-temporal conditions are represented in 

mathematical form through the so-called “prognostic equation”: 

Outflow (x=1, 0.7y0.8):  0
u u

D
t x

 
+ =

 
, 0

v v
D

t x

 
+ =

 
, 0

T T
D

t x

 
+ =

 
   (3.7) 

namely, a transport equation where D is a constant assumed to be equal to the averaged velocity 

perpendicular to the boundary ˆD V n=  . This modus operandi has been proven to provide 

reasonable algorithm stability and guarantee the physical consistency of the solution by 

preventing the propagation of non-physical fluctuations of pressure and/or temperature in the 

upstream direction. According to literature it is always valid regardless of the value of Reynolds 

number but in the limit as the Reynolds number tends to zero this should be replaced with a 

condition where the derivative of the quantity along the direction perpendicular to the boundary 

is set to zero. Related numerical results are presented in Chapter 5. 

 

3.2 Elongated Cavity with forward-facing step 

 

3.2.1 The geometry 

 

This second geometry is represented in its physical form in Fig. 3.2. The configuration comprises 

of a rectangular two-dimensional channel having a transverse size d and total length L=10d. The 
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entire channel is equally divided into two parts having same extension in horizontal direction. 

This is done by an abrupt change in the available cross-section area which is achieved by 

inserting a forward-facing step having thickness equal to half of the channel height, i.e., d/2 

 

 

 

Figure 3.2: Sketch of the considered FFS geometry and related kinematic and thermal boundary 

conditions.  

The floor (bottom wall) and ceiling (top wall) are solid. For all the cases where the value of 

Reynolds number is non-zero, the temperature is set as zero gradient for top wall i.e., adiabatic 

behaviour. However, for the case of pure buoyancy convection, the top wall is considered 

isothermal (at temperature Tcold) with the parameters such as Reynolds number set to Re=0 

(Uforced =0). Additionally, for pure buoyancy convection the inflow and outflow sections located 

on left and right are substituted by solid adiabatic walls. This situation of pure thermal 

convection is considered for the sake of completeness and to understand better the role 

potentially played by buoyancy convection in the hybrid flow case.. For Re0, the fluid 

introduced inside the extended cavity is assumed to have initial temperature Tcold. 

A separate discussion is required to explain the boundary conditions applied on the floor and the 

step boundary (which consist of a small vertical segment and the horizontal wall which extends 

from its corner in the downstream direction). The floor (y=0) is either heated at constant 

temperature (set at the temperature Thot) or kept adiabatic (zero gradient). On the other hand, the 

entire boundary of the step is always kept at temperature Thot irrespective of all the different 

thermal boundary conditions assumed for the ceiling and floor (top and bottom wall.  

 

3.2.2 Boundary conditions 

 

By specifying with A, the ratio L/d, the non-dimensional thermal boundary conditions for the 

FFS domain can be outlined as follows: 

V=0 on all solid walls          (3.8) 
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Step walls (x=A/2, 0y1/2 and y=1/2, A/2xA) T=1     (3.9) 

Floor (y=0, 0xA/2), T/y=0 (adiabatic)                   (3.10a)       

or T=1 (isothermal)           (3.10b) 

Top wall (y=1, 0xA) T=0 (isothermal, Re=0) or T/y=0 (adiabatic, Re0)   (3.11) 

A separate discussion is needed for the lateral boundaries located at x=0 and x=A. These 

boundaries are considered solid and adiabatic if no forced flow is considered, whereas, for Re0 

the left and right boundaries are assumed to be inflow and outflow sections, respectively. 

Therefore:  

For Re=0, T/x=0 at x=0 and x=A        (3.12) 

For Re0, x=0 (inflow, 0y1), T=0 and u= Uforced      (3.13) 

x=A (outflow, 0.5y1):  0
u u

D
t x

 
+ =

 
, 0

v v
D

t x

 
+ =

 
, 0

T T
D

t x

 
+ =

 
   (3.14) 

Moreover, the Nusselt for the vertical and horizontal walls of the step is defined here as: 

 
1/2

0
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step

T
Nu dy

x




= −   and 

1

/2

2horiz

step

A

T
Nu dx

A y




=                                                               (3.15) 

Related numerical results are presented in Chapter 6. 

 

3.3 Elongated Cavity with backward-facing step 

 

3.3.1 The geometry 

 

Figure 3.3: Sketch of the Backward Facing Step (BFS) configuration.   
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As anticipated in the introduction, the geometry with the BFS can be seen as the mirror image of 

that with the FFS (see Fig. 3.3). It simply consists of a two-dimensional duct with a sudden 

expansion in the cross-sectional area in the direction perpendicular to the (horizontal) flow. The 

(vertical) step size and the transverse channel size after the expansion are denoted by ds and d, 

respectively (accordingly, the aforementioned expansion ratio can be defined as ER= d / ds). 

Similarly, a length ratio can be introduced as LR = L/ls (where L is the overall horizontal 

extension of the considered duct while ls indicates the horizontal position of the section where 

the variation in size occurs). Another relevant geometrical parameter is represented by the 

physical domain aspect ratio, namely A=L/d.  

 

3.3.2 Boundary conditions 

 

The non-dimensional boundary conditions for the BFS configuration considered in the present 

work can be summarized as follows: 

 

V=0 on all solid walls                                                                                                             (3.16) 

                            

x=0 (inflow, ER-1y1), T=0 (cold fluid) and u= Uforced                                                 (3.17) 

                       

x=A (outflow, 0y1):  0
u u

D
t x

 
+ =

 
, 0

v v
D

t x

 
+ =

 
, 0

T T
D

t x

 
+ =

 
              (3.18) 

 

The following additional thermal boundary conditions apply to the boundary delimiting the fluid 

from below. 

Step walls y=ER-1, 0xA/LR, T/y=0  (adiabatic) 

and x=A/LR, 0y ER-1, T/x=0 (adiabatic)       (3.19a)  

or T=1 for both walls (isothermal case)       (3.19b) 

 

Floor (y=0, A/2xA), T/y=0 (adiabatic)        (3.20a) 

or T=1 (isothermal)           (3.20b) 

 

Top wall (y=1, 0xA) T/y=0 (adiabatic)                      (3.21) 

Related numerical results are presented in Chapter 7. 
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3.4 Three-dimensional channels with a step 

 

3.4.1 The geometry 

 

The 3D geometries considered in this thesis are shown in Fig. 3.4.  

 

a) 

 

b) 

 

Figure 3.4: Considered channels with a sudden variation in the cross-sectional area: a) Forward-

facing step (FFS), b) Backward-facing step (BFS). 
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Both are characterized by an inflow section and an outflow section located at x=0 and x=Ax, 

respectively, where Ax is the ratio of the overall length Lx of the domain in the horizontal 

direction to its total vertical extension d. The other boundaries are solid walls. Other 

characteristic geometrical parameters are Az = Lz/d and the ratio of d and the step height s 

(ER=d/s fixed to 2 in the present work, while in line with the corresponding 2D configurations, 

the value considered for the domain aspect ratio is Ax =10 with the step being located halfway 

between the inflow and outflow sections). The fluid (Pr=1) is injected into the domain at a 

temperature Tcold, while the entire bottom boundary or the horizontal and vertical sides of the 

step only are kept at a larger temperature Thot and the entire top boundary is considered thermally 

insulated. Periodic boundary conditions are assumed to hold along the boundaries delimiting the 

system in the spanwise direction, i.e., at z=0 and  z= Lz, with Az =1. 

 

3.4.2 Boundary conditions 

 

x=0 (inflow), T=0 (cold fluid) and u= PrRe  (3.22) 

 

The other required conditions read 

 

u=v=w=0 on all solid walls  (3.23) 

 

(having indicated with u, v and w, the velocity components along  x, y and z, respectively) and 

 

x=Ax (outflow):  0
V V

D
t x

 
+ =

 
, 0

T T
D

t x

 
+ =

 
 (3.24) 

                

As mentioned before equation (3.38) is the so-called “prognostic’ equation, by which the 

occurrence of unphysical oscillations of the thermofluid-dynamic variables at the outlet can be 

prevented. 

The following additional thermal boundary conditions are considered for the boundary 

delimiting the fluid from below and from above. 

Top wall (y=1) T/y=0 (adiabatic) (3.25) 

 

Step vertical side  (x=Ax/2), T=1 (isothermal) (3.26) 

 

Step horizontal side (y=ER-1):  

FFS (Ax/2xAx), T=1 (isothermal)   (3.27) 

BFS (0xAx/2), T=1 (isothermal)  (3.28) 
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Channel floor (y=0) 

 

FFS (0xAx/2) , T/y=0  (adiabatic)  (3.29) 

or T=1 (isothermal (3.30) 

 

BFS (Ax/2xAx), T/y=0  (adiabatic) (3.31) 

or T=1 (isothermal)   (3.32) 

 

Moreover, periodic boundary conditions (PBC) have been set at z=0 and z=Az for both 

temperature and velocity. This means that the “wavelength” along the z direction (assumed to be 

virtually infinite through the use of PBC) is fixed to 1. Although fixing this periodic wavelength  

might have an impact on the fluid-dynamic disturbances, a periodic extension in the spanwise 

direction comparable to the vertical extension of the system should be considered a physically 

relevant one (future work might be dedicated to assess the influence of the extension set for the z 

direction). Related numerical results are presented in Chapter 8. 
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Chapter 4: Numerical methods, Mesh Selection and Validation 

Study: 

This chapter is dedicated to the numerical methods that have been used to solve the governing 

equations. For all the systems described in Chapter 3, the PISO (Pressure Implicit Split Operator) 

method originally elaborated by Issa (1986) has been utilized to solve the non-dimensional 

equations reported in Chapter 2 and the associated set of boundary conditions (summarized in 

Chapter 3). Towards the end,  OpenFoam has been used as it contains the PISO techniques in the 

form of a native solver. Further details about the underlying approach are illustrated in the 

following. 

4.1 The Projection Method 

From a purely theoretical point of view, it is worth recalling briefly that the PISO technique is 

based on the well-known Hodge decomposition theorem (Ladyzhenskaya, 1969) according to 

which any type of vector field can be expressed in the form of a divergence free contribution and 

curl free part i.e., the gradient of a scalar potential. This theorem is of great significance in the 

context of CFD algorithms for incompressible flows as it constitutes the required pre-requisite to 

split the computation of the velocity field into different parts (corresponding to distinct algorithm 

steps) while rendering it ‘fixed’ (i.e., making sure that the final field satisfies the original balance 

equations for mass and momentum). More specifically, this approach stands at the root of many 

methods (for instance, Harlow and Welch, 1965; Chorin, 1968; Temam, 1969; Lappa, 1997; 

Armfield and Street, 1999, 2002; Lee et al. 2001) commonly known as projection or fractional-

step techniques. As an element common to all these variants, in the first stage of evaluation, the 

velocity is determined from a simplified version of the momentum equation from which the 

pressure gradient p has been excluded. Although unphysical, this ‘intermediate’ velocity has 

the same vorticity the effective velocity would have (the curl of the gradient of pressure being 

zero). By denoting the intermediate velocity with V*, the related equation simply reduces to 

 
*

2Pr Pr g

V
VV V RaTi

t




 = − +  +                                                                                           (4.1) 

 

The asterisk used as superscript is representative of the fact that although intermediate velocity is 

physically accurate with regard to vorticity, nevertheless it fails to fulfil the requirement relating 

to the incompressible nature of the flow (i.e., divergence of the flow velocity must be zero). 

From a practical standpoint, the solenoidal behaviour of the flow is recovered in a second step, 

where the velocity is ‘corrected’ using the previously disregarded gradient of pressure. This is 

formally implemented through a linear relationship as indicated below: 

 

V= V*-p                                                                                                                               (4.2) 
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where  is a constant. Inserting this equation into the continuity equation, formally yields the last 

computational stage needed to close the problem from a numerical point of view, i.e., a separate 

equations for the pressure: 

  

 *2 1
p V

t
 = 


                                                                                                                                    (4.3) 

 

The use of OpenFoam provides the opportunity to solve these equations by employing a 

collocated grid method where the centre of the cells serves as a place for defining the primitive 

variables (V and p), while a specific interpolation scheme is used to reconstruct the velocity on 

the cell faces in order to guarantee accurate coupling of these quantities. 

 It is important to highlight the following.  A second order central difference scheme has been 

used to discretize the convective and diffusive terms which appear in both momentum and 

energy equations. A Preconditioned Bi-Conjugate Gradient (PBiCG) having an incomplete 

Lower Upper(DILU) preconditioner in the predictor step has been availed for the purpose of 

treating the resulting system of algebraic equations. Finally, the solution of the Poisson (elliptic) 

equation (4.3) has been obtained in the framework of a Generalized Geometric-Algebraic Multi-

Grid (GAMG) strategy. 

 

4.2 Validation Study: 

 

In order to demonstrate the reliability of the algorithm described in Sect. 4.1 and its ability to 

address the problem set in the previous three chapters, a comparison has been made with 

available benchmarks and test cases. In particular, such a process has been articulated into four 

distinct stages of verification. Initially, two different archetypal settings have been considered, 

namely steady RB and Hadley convection in a square cavity (related validation results being 

summarized in Tables 4.1 and 4.2, respectively).  

 

Table 4.1: A=1, Rayleigh-Bénard convection in a square cavity with adiabatic sidewalls, Ra=105, 

Pr=0.71. Comparison with Table 2 of Ouertatani et al. (2008), uniform mesh 128x128. Velocity 

scaled with u0=sqrt(gβTHΔT). The authors used an in-house code based on projection method. 

 

Quantity Present Ouertatani et al. (2008) 

Umax 0.3443 0.3442 

Vmax 0.3754 0.3756 

Nuh 3.9204 3.9097 
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Table 4.2: Hadley flow, Ra=106, Pr=0.71, square cavity with adiabatic top and bottom wall, 

uniform mesh 100x100 (Legend: |ψ|max - Maximum absolute value of the stream function, vmax - 

Max vertical velocity component on a horizontal mid-plane, xmax - Position of vmax, umax - Max 

horizontal component on a vertical mid-plane, ymax - Position of umax. Nuhot - Average Nusselt 

number on the hot boundary. Numax,hot - Maximum Nusselt number on the hot boundary, yNu,max - 

Position of Numax,hot, Numin,hot - Minimum Nusselt number on the hot boundary, yNu,min - Position 

of Numin,hot). The author used an in-house code based on finite difference method to solve the 

stream function vorticity formulation of the equations. 

 

 

Parameter Present De Vahl Davis and Jones 

(1983) 

|ψ|max 16.919 16.750 

vmax 216.09 219.36 

xmax 0.0368 0.0379 

umax 64.97 64.63 

ymax 0.848 0.850 

Nuhot 8.913 8.817 

Numax,hot 18.193 17.925 

yNu,max 0.0368 0.0378 

Numin,hot 0.970 0.989 

yNu,min 1 1 

 

As a second stage of validation, the ability of the present numerical approach to capture properly 

the transition from steady to oscillatory flow has been assessed (the outcomes of this dedicated 

study being summarized in Figs. 4.1 and Table 4.3). This type of instability corresponds to the 

so-called “Hopf bifurcation” for which, using the typical terminology of the linear stability 

analysis (LSA), an eigenvalue of the Jacobian matrix (in general a complex conjugate pair of 

eigenvalues) of the governing equations crosses the imaginary axis (i.e., the real part of the 

eigenvalue becomes positive with a corresponding value of imaginary part that is not 

zero(Mizushima and Adachi, 1997). For such a comparison,  a case of classical buoyancy 

convection in a cavity heated from below and cooled from above with conducting solid sidewall 

has been considered. As shown by Mizushima and Adachi (1997)for Pr=7, this apparently 

innocuous system can take many and complicated routes to attain equilibrium or chaotic states, 

which involve (but are not limited to) textural transitions and ‘multistability’. The latter concerns 

the ability of the flow to evolve along distinct branches of solutions, which exist in parallel in the 

space of parameters and stem from different initial conditions (coexisting ‘attractors’). In 

particular,  the specific dynamics occurring in the interval 47000<Ra<50000, have been 
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considered, where, according to Mizushima and Adachi (1997)(see Figs. 6 and 8 in their paper), 

the flow undergoes a subcritical Hopf bifurcations along a branch of evolution that originates 

from the point Ra49600. Such a bifurcation is properly captured by the present solver as 

witnessed by the temperature and velocity fields in Figs. 4.1 (showing the ‘diagonal mode’ of 

convection emerging as a result of the bifurcation) and the data (frequency of oscillation) in 

Table 4.3.  

a) b) 

 

Figure 4.1: Snapshots of streamlines(a) and temperature distribution (b) for Rayleigh-Bénard 

convection in a square cavity with conducting sidewalls (Pr=7, Ra=48000, time-periodic state, 

see Table 4.3 for the related frequency). 

 

Table 4.3: Non-dimensional frequency f defined as fDim L2/ where fDim is the dimensional 

frequency of the oscillation (Newtonian fluid, Pr=7, Rayleigh-Bénard convection in a square 

cavity with conducting sidewalls, uniform mesh: 10000 nodes, Hopf bifurcation, comparison 

with the results produced using linear stability analysis (LSA) by Mizushima and Adachi (1997). 
 

Data source F 

Mizushima and Adachi (1997) 16.31  

Present solver 16.19 

 

As a third level of validation, some of the cases specifically considered in the present work (the 

FFS problem) have been also simulated (for different representative values of Ra and Ri) using 

different computational platforms, i.e., a commercial software (ANSYS Fluent) and the same 

code that Lappa (2019) used to analyse the dynamics of thermal plumes in cross flow. Both rely 

on 2nd order upwind schemes (standard central differences being employed for the diffusive 

terms only). However, the software developed by Lappa (2019) is completely explicit in time, 
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whereas ANSYS Fluent is based on an implicit approach. Moreover, in order to accelerate 

convergence, it takes advantage of a classical Algebraic Multigrid scheme (AMG) with standard 

parameters, i.e., the so-called Gauss-Seidel smoother (Hutchinson and Raithby, 1986). Although 

OpenFoam (Sect. 4.1) and these alternate computational platforms rely on quite different 

numerical implementations, as witnessed by Table 4.4, the values obtained for the Nusselt 

number and the (non-dimensional) angular frequency of oscillation () are in good agreement 

(the maximum percentage difference in the worst case being 5%). 

 

Table 4.4: Properties of Hybrid Forced-buoyancy flow in the FFS configuration for various 

representative conditions. Comparisons of results obtained with different computational 

platforms ( is the non-dimensional angular frequency; for unsteady regimes the time-averaged 

value of the Nusselt number is considered)  

 

 

 

Ri Ra Floor Regime Parameter Parameter 

 106 Adiabatic Quasi-

periodic 
Present 

horiz

stepNu : 9.86 

Code by (Lappa, 2019)
horiz

stepNu :  9.98 

vert

stepNu  17.52  
vert

stepNu 17.94 

 106 Hot Periodic 
Present 

horiz

stepNu : 10.83  

Code by (Lappa, 2019)
horiz

stepNu :  10.80 

vert

stepNu  3.01  
vert

stepNu 3.1 

100 105 Adiabatic Steady 
Present 

horiz

stepNu : 3.23  

ANSYS Fluent
horiz

stepNu : 3.19 

Code by (Lappa, 2019)
horiz

stepNu :  3.30  

vert

stepNu  10.64  
vert

stepNu 10.52  
vert

stepNu  10.66 

1 107 Adiabatic Unsteady with 

dominant 

frequency 

Present 
horiz

stepNu : 39.07  

Code by (Lappa, 2019)
horiz

stepNu :  40.12 

vert

stepNu  45.41  
vert

stepNu 45.11 

1 107 Hot Unsteady with 

dominant 

frequency 

Present 
horiz

stepNu : 38.10  

Code by (Lappa, 2019)
horiz

stepNu :  39.50 

vert

stepNu  16.58  
vert

stepNu 16.25 

30 107 Adiabatic Periodic Present : 6280  

Code by (Lappa, 2019):  6543 

 

1 107 Adiabatic Unsteady with 

dominant 

frequency 

Present : 3.58 104 

Code by (Lappa, 2019): 3.77 104 

 

1 107 Hot Unsteady with 

dominant 

frequency 

Present : 3.38 104 

Code by (Lappa, 2019): 3.2 104 
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As a natural extension of the specific approach illustrated above, a final level of validation has 

been implemented through consideration of BFS specific (representative) cases. Following 

Khanafer et al. (2008), for such a task  the horizontal and vertical side of the step have been 

assumed adiabatic, i.e., eq. (3.19a) and the floor at a fixed temperature, i.e., eq. (3.20b). The 

geometrical parameters have been fixed to A=20, ER=2, LR=4 (i.e., the step being located at 

x=A/4).  

Again, two different software (the OpenFOAM method described in Sect. 4.1 and the 

independent solver developed by Lappa, 2019) have been used to get the required extra layer of 

validation. The outcomes of such focused assessment are summarized in Tables 4.5 and 4.6 

where it can be seen that the differences between the results obtained with two completely 

independent computational platforms lie below 3%.  

 

Table 4.5:Nondimensional position of characteristic points for Pr=0.71, A=20, ER=2, LR=4, 

Ra=5680 and different values of the Reynolds number (Mesh 1000x100, the coordinate in 

brackets indicates the corresponding value obtained with the independent solver developed by 

Lappa, 2019; refer to Figure 3.3 for the meaning of x1, x2 and x3). 

 

 

Reynolds Number x1 (reattachment 

length) 

x2 (secondary roll 

leading edge)   

x3 (secondary roll 

trailing edge) 

200 2.53 (2.53) - - 

350 3.76 (3.78) - - 

500 4.64 (4.68) 4.04 (4.08) 6.42 (6.46) 

700 5.38 (5.36) 4.53 (4.55) 8.74 (8.80) 
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Figure 4.2: Streamlines for Pr=0.71, A=20, ER=2, LR=4 and Ra=5680 as a function of Re for 

adiabatic step and hot floor: a) Re=200, b) Re=350, c) Re=500, d) Re=700. 

 

Table 4.6: Nondimensional position of characteristic points for Pr=0.71, A=20, ER=2, LR=4,  

Re=200 and different values of Rayleigh number (Mesh 1000x100, the value in brackets 

indicates the corresponding roll length obtained with the independent solver developed by 

Lappa, 2019). 
 

Rayleigh Number x1 (reattachment 

length) 

5680 2.53 (2.53) 

22720 2.74 (2.82) 

45440 3.02 (3.06) 

68160 3.31 (3.39) 

90880 3.59 (3.64) 
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Figure 4.3: Streamlines for Pr=0.71, A=20, ER=2, LR=4 and Re=200 as a function of Ra for 

adiabatic step and hot floor: a) Ra=5680, b) Ra=45440, c) Ra=90880. 

 

Apart from lending additional reliability to the present approach, however, these tables also serve 

as an analysis of the combined influence of Ra and Re on the position of x1 in steady conditions.  

Along these lines, Fig. 4.2 shows that, in agreement with the trends reported by Khanafer et al. 

(2008), an increase in Re at fixed Ra obviously makes the recirculation zone along the heated 

surface larger (the current leaving the step being more energetic). Notably, an increase in Ra (at 

fixed Re) has the same effect, i.e., the reattachment point moves in the downstream direction (see 

Fig. 4.3). In this case, the root cause must be sought in the buoyancy force, which tends to 

strengthen the primary roll, thereby increasing its horizontal extension. Interestingly, while x1 

shows a quadratic dependence on the Reynolds number (Fig. 4.4a), its relationship with Ra is 

essentially linear (Fig. 4.4b).  
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a) b) 
 

Figure 4.4: Position of characteristic points (refer to Figure 3.3) as a function of Re and Ra for 

adiabatic step and hot floor: a) Ra=5680; b) Re=200.  

 

4.3 Mesh resolution and Kolmogorov length scale 

In the present thesis, the following ranges have been considered for the Rayleigh number, the 

Reynolds number (based on the injection velocity Uforced) and the corresponding Richardson 

number: 

 

O(103)Ra O(108), O(10)ReO(104) 

Pr=1, O(10-1)RiO(102) 

 

with the only exception of the 3D geometries for which the analysis has been limited to the 

turbulent state obtained for Ra=107 and Ri=O(102) ( this specific point will be discussed in Sect. 

4.6.1). 

Given these ranges, the choice of an adequate mesh when the problem is approached in the 

framework of DNS (Direct Numerical Simulation) is not as straightforward as one would 

imagine. In general, two requirements must be satisfied in order to make the simulations reliable.  

First of all, a parametric investigation must be carried out to make sure that the solution does not 

depend on the considered grid. This implies testing the percentage variation experienced by some 

representative fluid-dynamic quantities when the density of the mesh is increased. If simulations 

are carried out for values of the characteristic numbers (e.g., Ra) spanning several orders of 

magnitude, this refinement study must be conducted for each order of magnitude considered or, 

as an alternative, the mesh which makes the solution grid-independent obtained for the highest 

considered value of Ra must be used for all the cases (this modus operandi being the most 

expensive in terms of computational cost or efficiency).  
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As a second requirement, if the considered flow is in turbulent conditions, the size of the mesh 

must be comparable (or equal) to the so-called Kolmogorov length scale (), i.e., the smallest 

flow scale present in the considered problem.   

Estimates about this quantity can be found in the literature for different circumstances. For 

forced flow, it can conveniently be evaluated (Pope, 2000) as: 

3/4

Re Re −  (4.4) 

 

This correlation should obviously be used when Ri<O(1) (Coceal et al. 2006), whereas, in the 

opposite limiting condition in which thermal convection is the most important convective 

mechanism (namely, Ri>O(1)) alternate estimates should be used. These, in turn, can change 

depending on the relative direction of the prevailing temperature gradient and gravity. Indeed, 

the progression of thermal convection towards turbulence and its spatial and temporal features 

can be markedly different according to whether convection originates from a heated horizontal or 

vertical wall.  

In the former case, following Kerr (1996) and De et al. (2017): 

 
0.32

|| 1.3Ra Ra −=  (4.5) 

 

while for what concerns the other situation with prevailing horizontal gradients of temperature, a 

quantitative measure of such a length scale can be found in the works by Paolucci (1990) and 

Farhangnia et al. (1996): 

 
3/8

16Pr
Ra

Ra
 ⊥

 
=  

 
 

(4.6) 

 

When circumstances where multiple mechanisms of convection coexist are the main subject of 

the analysis as in the present case, the smallest possible value of  should be considered (see, 

e.g., Lappa and Gradinscak (2018) i.e. 

 

 Re ||min , ,Ra Ra   ⊥=  (4.7) 

 

For the aforementioned conditions examined in the present thesis (O(103)RaO(108), 

O(10)ReO(104)), it is easy to verify that the smallest possible scale always corresponds to eq. 

(4.5). This equation has therefore been used to determine the size of the mesh in the most 

demanding conditions (i.e., Ra107 for which turbulent states have been found). For smaller 

values of Ra, the grid density has been decided on the basis of a case-by-case preliminary mesh 

refinement assessment, as further discussed in the following sections. 

 



                                                                                                                     

47 

 

4.4 Elongated Channel with FFS: 

 

The data about the grids used for the compact cavity are directly provided in Chapter 5. Some 

results representatives of the grid refinement study for the channel with the FFS considered in 

this thesis are summarized in Tables 4.7 and 4.8 (these are just selective examples, as mentioned 

before, a mesh refinement study has been conducted for each considered value of Ra). 

 

Table 4.7: Non-dimensional frequency f for different mesh sizes for the case of hybrid 

forced/buoyancy convection (Ri=100) with adiabatic bottom wall and Ra=4.7x105. 

 

Mesh Size f 

1500x150 1.200 x103 

1600x160 1.214 x103 

1700x170 1.218 x103 

 

Table 4.8: Non-dimensional frequency for different mesh sizes for the case of hybrid 

forced/buoyancy convection (Ri=30), with hot bottom wall and Ra=3x105. 

 

Mesh Size f 

1600x160 6.983 x102 

1700x170 6.912 x102 

1800x180 6.924 x102 

 

In these examples, it can be seen that for the case with Ri=100, adiabatic bottom wall and 

Ra=4.7x105, for an increase of 200 points along the horizontal direction, the corresponding 

percentage variation in the frequency of oscillation lies below 2% (which explains why a mesh 

1500x150 has been selected).  The same concept applies to the case with Ri=30, hot bottom wall 

and Ra=3x105 for which the percentage variation is even smaller (1%). 

As explained before, a more sophisticated strategy, however, has been implemented for larger 

values of Ra to ensure that the turbulent properties of the flow (eventually emerging in this range 

of the control parameter) are properly captured. 

For such cases,  the needed resolution has been estimated on the basis of the concept of 

Kolmogorov length scale () already explained in Sect. 4.3. It can also be seen as the length scale 

that bounds from below the process of energy transfer from large scales to smaller scales which 

is typical of turbulent flow (Kolmogorov, 1941ab; Kraichnan, 1974). 

For turbulent states, mesh convergence has been judged on the basis of the frequency spectrum 

(by verifying that the (-5/3) scaling trend predicted by the Kolmogorov law is independent from 

the mesh in terms of velocity amplitude and related frequency distribution, see Sect. 6.4 for the 

related plots). Using the set of criteria described in the present section, the required numerical 
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resolution has been determined for each considered case (the needed number of points ranging 

from a minimum of 400x40 to a maximum of 2000x200 depending on the considered value of 

the Rayleigh number). 

  

4.5 Elongated Cavity with BFS: 

 

Following the same approach implemented for the FFS, the mesh density has been increased 

parametrically up to make the percentage variation experienced by the aforementioned 

representative quantities smaller than a given threshold (2%, see, e.g., Tables 4.9 and 4.10).  

Table 4.9:Non-dimensional frequency for different mesh sizes for the case of hybrid 

forced/buoyancy convection (Pr=1, Ri=7.5, Ra=3x106, A=10, ER=LR=2) with adiabatic floor. 

 

Mesh Size f 

1500x150 1.305 x103 

1600x160 1.308 x103 

1700x170 1.310 x103 

 

Table 4.10:Non-dimensional frequency for different mesh sizes for the case of hybrid 

forced/buoyancy convection (Pr=1, Ri=7.5, Ra=3x106, A=10, ER=LR=2), with hot floor. 

 

Mesh Size f 

1800x180 1.085 x103 

1900x190 1.078 x103 

2000x200 1.066 x103 

 

A different approach has been implemented for conditions where the flow is no longer laminar 

(Ra107) and therefore focusing on a well-defined quantity is no longer possible. For these cases, 

the assessment has been conducted referring again to well-known properties of turbulence, which 

can be considered general and somehow ‘universal’, i.e., the scaling trend of the frequency 

spectrum (Kraichnan, 1974). Assuming the so-called Kolmogorov length scale (, known to be 

dependent on the Rayleigh and Reynolds number as indicated, e.g., in Sect. 4.3 as the typical 
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mesh size,  it has been verified that the (-5/3) scaling trend predicted by Kolmogorov (1941ab) is 

independent from the mesh in terms of velocity amplitude and related frequency distribution. 

Using this set of criteria, the required number of points has been found to range between a 

minimum of 400 and a maximum of 2800 in the horizontal direction (and a minimum of 40 and a 

maximum of 300 in the vertical direction) depending on the considered conditions.   

 

4.6 Three-dimensional cases and the Large-Eddy-Simulation approach 

 

The arguments and related details provided in the earlier sections represent the basis of the so-

called Direct Numerical Simulation (DNS) approach, that is, the case where these equations are 

directly discretized and solved to determine the velocity and temperature fields. 

However, this method is not always a viable approach. When the flow becomes turbulent, 

fulfilling the requirement about a mesh having the same size of the Kolmogorov length can lead 

to an overall number of grid points that is not compatible with available computational resources 

in the general 3D case. For this reason, in the present thesis, the 3D configurations have been 

treated using a Large-Eddy-Simulation (LES) approach, that is a turbulence model by which the 

requirement in terms of grid points can be relaxed.    

The physical foundation of the entire class of existing LES methods are linked to the theory that 

Kolmogorov (1941abc, 1942) elaborated approximately 80 years go. Stripped to its basics, this 

theory relies on the two-fold idea that 1) turbulence typically develops a hierarchy of scales 

through which the energy flows from larger scales towards smaller scales, and 2) since it can be 

expected that the motion of fluid on the small scales has small time scales, these motions are 

statistically independent of the relatively slow dynamics occurring on the large scale. The most 

remarkable implication of the latter realization is that the behaviours on small scales should 

depend only on the rate at which the fluid is supplied with energy by the large-scale flow and on 

the kinematic viscosity; in turn, this allows the postulation of the existence of an ‘‘inertial” 

wavenumber region, i.e. an interval of length scales where local equilibrium is attained, i.e. the 

energy injected in the flow per unit time is balanced precisely by the amount of energy dissipated 

per unit time and the flux of the cascading quantity across any scale is a function only of 

dynamic variables on that scale, until kinetic energy is finally completely dissipated by friction 

on the smallest possible length scale developed by the considered flow (the so-called 

Kolmogorov length). This behaviour is reflected mathematically by the well-known -5/3 scaling 

law that many real flows have proven to display in their FFT spectrum in the range of high 

frequencies (equivalent to a k-5/3 scaling law in terms of related wavenumbers). Most remarkably, 

from a physical point of view, this indicates that, under a certain length scale, turbulence takes a 

universal (repetitive) behaviour in space, i.e. it becomes homogeneous, isotropic (direction 

independent) and self-similar (if a portion of the pattern is enlarged, the pattern displays the same 

properties). 

These physical and mathematical considerations represent the sought aforementioned foundation 

of the LES approach. As the behaviour of turbulence on those scales is universal and obeys 
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precise mathematical laws, it can be “modeled”, thereby alleviating the user from the burden of 

capturing those behaviours through a numerical resolution comparable with the Kolmogorov 

length scale (i.e., by means of very dense grids).    

Put simply, the hallmark of LES is that small-scale motion (smaller than the so-called “filter 

width”) is implicitly removed from the numerical simulation and determined as a function of 

local flow conditions. Typically, this is achieved through the introduction of the concept of eddy 

viscosity (T), i.e. in order to filter out all the scales under a certain limit (namely the scale of the 

mesh effectively used for the numerical simulation), the kinematic viscosity  of the considered 

fluid must be enriched with an additional term that accounts for the frictional effects occurring 

on the numerically neglected scales (generally called “unresolved” scales to distinguish them 

from the flow “resolved”, i.e. the velocity determined numerically). As one may expect, this 

additional term (typically referred to as the subgrid-scale viscosity) depends (grows with) the 

size of the effectively used mesh, which may be regarded as the essence of the so-called 

Smagorinsky (1963)model.   

For turbulence in non-isothermal fluids (with buoyancy), however, besides kinetic energy, 

turbulent thermal energy, whose density scales with the square of the local temperature 

fluctuations, must also be regarded as a relevant aspect of the problem. In analogy with the 

arguments elaborated before for the kinetic energy, this additional form of energy can be thought 

of (see, e.g., the arguments elaborated by Kraichnan, 1974) as being injected at a large length 

scale, namely the vertical distance over which a temperature difference is maintained and 

dissipated at small length scales by the thermal diffusivity. 

Although Bolgiano (1959) and Obukhov (1959) could show that in a stably stratified fluid, the 

kinetic energy spectrum can become E(k) k−11/5 if the thermal flux largely exceeds the kinetic 

energy flux, however, Kumar et al. (2014) and Bhattacharjee (2015) have confirmed that for a 

convectively unstable configuration like that considered in the present study, Kolmogorov 

arguments for the scaling of the energy spectrum are still applicable (i.e. E(k) k−5/3). This is the 

required principle allowing to treat the cascading behaviour of thermal energy in a fashion 

similar to that used for the turbulent kinetic energy, that is, through the introduction of a 

turbulent thermal diffusivity T to be added to that of the fluid () (Wong and Lilly, 1994). This 

parameter can be related to the turbulent viscosity T, through a simple constant scaling factor, 

i.e., the so-called turbulent Prandtl number PrT (defined as T/T in analogy with the classical 

fluid Prandtl number Pr = /). 

As a result, the original set of governing equations for mass, momentum and energy can be 

turned into an equivalent set of space-averaged equations and their solution can capture a large 

interval of scales, which range from the smallest physically relevant scale when the filter width 

tends to zero (the space-averaged equations tend to original flow equations) to the ‘mean’ large-

scale turbulent flow when a very large filter width is assumed. Different variants of this approach 

exist and have been used with various degrees of success in the literature. In the original 

Smagorinsky algebraic model (also known as 0-equation model), the parameter T depends only 

on the size of the mesh and the local value of the resolved strain rate, i.e. 
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2
2 2T ijD =            (4.8) 

 

where ijD is the resolved strain rate (in dimensional form)  
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                                                                                                                       (4.9) 

         

and sC =  ,  is the mesh size and is a constant value in the model that must be specified prior 

to a simulation. Although this approach has led to valuable results (Lappa, 2019), more 

sophisticated versions have been introduced over the years to fix some drawbacks of the original 

implementation. Here,  the present work relies on the so-called one-equation model that 

Yoshizawa and Horiuti (1985) introduced to improve the local balance assumption between the 

subgrid-scale energy production and dissipation adopted in the 0-equation version.   

With this model, the subgrid-scale kinetic energy is defined as  

 

1 1
( )

2 2sgs kk k k k k
k u u u u= = −

         (4.10)
 

 

and 𝑇 is computed as 

 

sgskT
C k=                                                                                                                                                  (4.11) 

 

 

Accordingly, the subgrid scale stress tensor reads 
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2
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3
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The subgrid-scale kinetic energy required for the determination of T is computed resorting to 

the aforementioned hypothesis of local equilibrium, that is, the balance between the subgrid scale 

energy production and dissipation, which in mathematical form can be casted in compact form as   

 
1.5

: 0sgs
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k
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                                                                                                                                        (4.13)
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where the operator “:” is a double inner product of two second-rank tensors (i.e., the summation 

of the nine products of the corresponding tensor components of the two tensors) and C is a 

second constant required by the model. Taking into account eq. (4.12), eq. (4.13) can be further 

rearranged as  
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For which the solutions can be simply obtained as  
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In the case of incompressible flow, this reduces to  
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where 2 : .D DD =  

Therefore, by substitution of eq. (4.17) into eq. (4.15) one gets 
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And by further substituting eq. (4.18) into eq. (4.10), the turbulent viscosity finally reads: 
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Notably, by comparing it with eq. (4.8) at the basis of the algebraic Smagorinsky model, it 

follows that   
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This value has finally to be corrected to fix the otherwise un-physical behavior by which the 

subgrid-scale viscosity would not become zero on solid walls (where standard viscous effects are 

dominant and tend to damp turbulence effects). The assumption of a constant T in these regions 

(where D  is relatively high) would overestimate the subgrid-scale stresses and might prevent 

flow transition to turbulence ( this important concept will be further discussed in Chapter 8). 

Here  the discussion is limited to  highlight that the issue can be fixed in a relatively simple way 

by using the damping function originally proposed by van Driest (1956), namely 
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where y+=yu/ is the distance from the wall in wall coordinates (see, e.g., Moghadam et al., 

2021), by which the correct asymptotic behavior is recovered.  

This approach finally leads to a space-averaged version of the balance equations for mass, 

momentum and energy, which are formally similar to the original equations, the only difference 

being represented by the presence of an additional coefficient, namely, the turbulent kinematic 

viscosity and thermal diffusivity in front of the diffusive term appearing in the momentum and 

energy equations, respectively. Again, using as reference quantities, d, /d, 2/d2, d2/ and T 

for the geometrical coordinates, velocity (V), pressure (p), time (t) and temperature (T), 

respectively, the non-dimensional form such of equations simply reads  
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0= V                                                                                                                           (4.22) 
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where * /T T  =  and * /T T  = , ig is the unit vector along the direction of gravity 

 

4.6.1 Mesh selection for LES of Three-Dimensional Channel with a step 

 

The selection of a relevant mesh for the application of the LES approach is not as straightforward 

as one would imagine (Celik et al., 2006). The empirical criteria valid for inertially-driven, i.e. 

forced, flows (see, e.g., Goergiadis et al.,2010; Choi and Moin, 2012 and references therein) are 

not directly applicable to circumstances in which thermals (thermal plumes of buoyant origin) 

contribute significantly to the development of turbulence (Farhangnia et al.,1996). For natural or 

mixed convection, special care must be provided to satisfy the fundamental (crucial) requirement 

at the basis of the LES philosophy, that is, the size of the mesh is located within the inertial 

range of space scales.  

This apparently innocuous argument implies that a meaningful strategy must be found to 

evaluate a priori the upper and lower boundaries of the inertial range in the overall interval of 

space scales relevant to the considered problem.  In this regard, it is worth recalling that some 

useful correlations exist by which the scale delimiting this interval from below (that is, the 

aforementioned Kolmogorov length scale, , i.e., the length scale at which the cascading energy 

is finally dissipated) can be estimated.  As explained before, this quantity typically depends on 

the considered values of the characteristic numbers, which measure the relative importance of the 

forces that induce fluid motion with respect to those which hinder it. In the present case, these 

are the Reynolds number, which measures the relative importance of inertial and viscous forces, 

and the Rayleigh number, which measures the relative importance of buoyant effects with 

respect to the counteracting influence of viscosity and thermal diffusion. In the presence of 

concurrent driving forces (inertia and buoyancy in the present case), the most restrictive 

condition should be considered, i.e., the one for which the smallest possible value of the 

Kolmogorov length is obtained. For what concerns the dominant inertia-driven flows and 

thermal convection i.e., RB convection and Hadley flow, the equations for the Kolmogorov 

length scale are already highlighted in Sect. 4.3 (eq. 4.4, 4.5, 4.6 respectively). 

As 3D situations have been considered in which Ri>O(1) (see Chapter 8), and values of Pr and 

Ra for which 
||Ra Ra ⊥  , eq. (4.5) should therefore be considered as the effective Kolmogorov 

length controlling law, giving for Ra=107, 7.5x10-3. Any mesh with size x larger than this 
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might be located in the inertial range of scales, which sets a first bullet for the proper definition 

of the mesh size. A mesh with too large size, however, might be located beyond the upper 

boundary of the inertial range, which indicates that estimates of the Kolmogorov length alone are 

not enough to close the problem (an upper boundary of the inertial range is also needed). 

Still assuming (in line with the considerations above on the Kolmogorov length scale) the 

heating from below situation as the turbulence controlling condition, the extension Linertial of the 

inertial range might be estimated using the relevant information provided by De et al. (2017), 

where the following relationships were provided 

 
0.1962.22inertialL Ra−=  in the bulk        (4.25a) 

 
0.181.01inertialL Ra−=  in proximity to the heated wall      (4.25b) 

 

which give for Ra=107, Linertial=9.4x10-2 and Linertial=5.5x10-2, thereby constraining the required 

(non-dimensional) mesh size in the range 7.5x10-35.5x10-2. 

In order to verify the consistency of such approach,  a comparison has been made between the 

frequency spectrum obtained through DNS with that produced by the LES approach in 

equivalent conditions for some representative cases. As illustrated in Sect. 8.1, 8.2 and 8.3 by 

virtue of this modus operandi, it has been verified that LES can properly reproduce the system 

dynamics over a wide interval of frequencies, until a “cutoff” frequency is reached that 

corresponds to the flow wavenumber beyond which the flow is no longer resolved numerically as 

the effect of turbulence are implicitly taken into account via the model described in Sect. 4.6.  
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Chapter 5 
 

Thermogravitational and hybrid convection in an obstructed 

compact cavity 
 

 

As anticipated in the introduction, before considering horizontally extended channels the 

response of the compact system sketched in Fig. 3.1 has been initially explored with respect to 

different kinematic and thermal degrees of freedom (namely, the injection of cold fluid into the 

cavity at different heights and different possible thermal behaviours of the top and bottom walls).  

At this stage, it is worth highlighting that an important aspect of these systems relates to the 

development of thermal plumes. Indeed, over the range of values of the Rayleigh number 

considered in the present work, plumes pertaining to different regimes can be formed and 

influence with their properties the overall flow dynamics. Precise information along these lines 

can be found in the study by Hier Majumder et al. (2004), who categorized thermal plumes on 

the basis of the related amount of vorticity and the gradient of temperature associated with their 

stem and cap. These features greatly depend on the considered fluid (Prandtl number) and the 

Rayleigh number. In particular, for the value of the Prandtl number assumed in the present thesis 

(Pr=1), plumes evolve from the so-called DV (Diffusive–Viscous) regime into the IVND 

(Inviscid–Nondiffusive) regime as soon as the Rayleigh number exceeds Ra106 (Lappa, 2009).  

Given these premises, in the following, first those cases are discussed for which the cavity has no 

inflow and outflow sections (Sect. 5.1) where the dynamics are expected to be entirely driven by 

the buoyancy effects and thermal plumes; then, those situations are considered where significant 

forced flow can cause alterations in the flow topology and related evolution towards chaos 

(Sects. 5.2 and 5.3).    

 

5.1 Closed cavity 

 

As already explained in Sect. 4.2.1 for each fundamental case a mesh refinement study was 

carried out to identify the minimum grid required to make the solution mesh-independent. As 

expected, this resulted in the need to increase the number of points with the considered value of 

the Rayleigh number. Related information is summarized in Tables 5.1 and 5.2, where  for each 

case (in an ordered fashion) the following information has been reported: the value of Ra, the 

corresponding density of the mesh for which  the solution was found to be grid-independent, the 

nondimensional (total) heat flux through the horizontal and vertical walls of the step (the hot 

obstruction) and, finally, the nature of the observed regime. 
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Table 5.1: Cases examined for the case of pure buoyancy convection with adiabatic bottom wall 

 

Ra Mesh Size horiz

stepNu  
vert

stepNu  Regime 

103 40x40    1.21997         2.42394             Steady 

104 40x40        2.24234         2.03534            Steady 

105 80x80         3.6756            6.0646            Steady 

106 100x100 4.17 (average) 11.7 (average)    Single-frequency    

107 270x270 5.74 (average) 20.3 (average)    Single-frequency 

108 500×500 11.53 (average) 32.2 (average) Weakly Turbulent 

   

Following the approach described in Sect. 3.1.2, in particular,  two aspects are considered, 

namely, the hierarchy of convective and thermal structures which are produced within the cavity 

as the Ra number increases, and the differences in terms of patterning behaviour that are 

developed when the thermal boundary condition at the bottom floor is changed (floor being 

assumed to be adiabatic or kept at constant temperature as formalized by eqs. (3.3a) and (3.3b), 

respectively).   

 

  
 (a) 
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(b) 

  
                                                                                                                                              (c) 

    
                                                                                                                                              (d) 

Figure 5.1: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

pure buoyancy convection and cavity with adiabatic bottom wall: a) Ra=104, b) Ra=105, c) 

Ra=106, d) Ra=107. 

 

 

 

 

 

 



                                                                                                                     

60 

 

5.1.1 Patterning Behaviour for the cavity with adiabatic floor 

 

Most conveniently, first  the cases with adiabatic floor are discussed for different values of the 

Rayleigh number and then examine the differences produced by an increase in the buoyancy 

effect due to a change in the thermal boundary condition. 

As quantitatively substantiated by Figures 5.1-5.3, a growth of the (non-dimensional) velocity 

can be noticed for all cases as Ra becomes higher. Very interesting modifications, however, can 

also be spotted in terms of structure of the flow (i.e., morphology and extension of the rolls or 

vortices) established inside the cavity and related temporal behaviour (i.e., evolution in time). 

Along these lines,  it is appropriate to begin from the simple remark that the velocity magnitude 

pattern within the cavity is very similar for Ra=1x103 (not shown)and Ra=1x104 (Fig. 5.1(a)). 

Indeed, for both values of the Rayleigh number the flow is steady and one main oval-shaped 

vertical velocity roll is formed. This roll develops in the lower third of the cavity (between the 

left sidewall and the vertical side of the step) and extends vertically into the upper section of the 

fluid domain. The highest velocity area is located on the right-hand side of the roll near the top 

left corner of the obstruction (the step). As evident in Fig. 5.1(a), the highest temperature occurs 

in the region surrounding the step (where, as expected, a relatively thick thermal boundary layer 

is established) and the temperature then gradually decreases towards the floor, the left-hand side 

wall and the ceiling of the cavity.   

Interestingly, for Ra=1x105  (Fig. 5.1(b)) the complexity of the velocity field increases as two 

oval-shaped convection rolls having a comparable magnitude can be seen at the same time. The 

flow is still steady and one roll is confined in the upper portion of the domain (it is located above 

the step), while the other originates from the lower third of the cavity. It can also be noticed that 

for this value of Ra, the temperature changes occurring in proximity to the step become much 

more pronounced. A thin thermal (hot) boundary layer, clearly recognizable, develops along the 

horizontal heated wall of the obstruction and along its vertical heated wall (the two sides of the 

step). A thermal (cold) boundary layer is also formed close to the top (cooled) wall. Moreover, a 

mushroom like shape plume appears in the cavity originating from the left corner of the step and 

protruding towards the left top corner (plume oriented along a diagonal direction). 

For Ra=1x106 (Fig. 5.1(c)), the boundary layers become even more pronounced (which is in 

agreement with known scaling laws, see, e.g., (Napolitano, 1982; Lappa, 2011). Similarly, the 

stem of the plume is narrower than in the previous situation. Moreover, it can be seen that a 

secondary plume originates from the main plume cap. 

The most striking difference with respect to the previous cases, however, is the nature of the flow, 

which becomes time-dependent. A related frequency spectrum analysis (performed using the 

signal of a ‘numerical probe’) can be seen in Fig. 5.2. From this it could be infered that this is a 

time-periodic case in which all the frequencies are multiples of a fundamental one. 
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Figure 5.2: Frequency Spectrum (distribution of velocity amplitude for Ra=1x106, closed cavity 

with adiabatic floor, signal probe located at x=0.25 and y=0.75). 

 

If the Rayleigh number is increased to Ra=1x107 (Fig. 5.1(d)), the pattern is relatively similar to 

that already seen for Ra=1x106. However, a very narrow stemmed, almost horizontal plume 

extends from the top left-hand corner of the object to the left-hand wall. Below the stem of the 

plume the fluid occupying the lower section of the cavity has a relatively high temperature (that 

decreases gradually towards the left hand while still remaining relatively high). This indicates 

that the peculiar circulation pattern established inside the fluid domain for this value of the 

Rayleigh number tends to create a heat island in its entire lower half. The heat released in the 

fluid by the vertical heated wall of the step cannot be transferred to the upper part of the cavity 

and tends to accumulate in the lower part causing an increase in the local temperature. The 

situation is clearly different in the upper domain where the heat released in the fluid by the 

horizontal heated wall can convectively be transferred to the top (cold) wall where it is extracted 

from the cavity. The frequency spectrum for this case (not shown), however, confirms that the 

flow is still time-periodic (the reader being referred to Sect. 5.1.4 for a discussion of the case  

Ra =1x108). 

The values of the Nusselt number corresponding to all these situations can be found in Table 5.1  

(where it is shown that the intensity of heat exchange between the surface of the step and the 

fluid increases as the Rayleigh number becomes higher). Interestingly, the set of values reported 

there also indicates that the mechanism of the Hadley type described in Sect. 1.1.4.2 (being 

operative near the vertical side of the step) is much more efficient in transporting heat than that 

due to a heating-from-below condition at work along the horizontal side of the step (this finding 

being in line with other studies where square cavities with a heated plate built in vertically or 

horizontally or with a finned heated plate were considered, see, e.g., Oztop et al. (2004); 
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Saravanana et al. (2008); Saravanan and Sivaraj (2015); Nadjib et al. (2018);   this concept will 

be further discussed in Sect. 5.1.3).  

 

5.1.2 Patterning Behaviour for the cavity with isothermal (hot) floor 

 

Having completed a sketch of the different situations which are established inside the cavity with 

the step for the case with adiabatic bottom wall,  the other fundamental situation is now 

examined where the bottom wall is kept at constant temperature (heated wall, see Table 5.2). 

Most of these cases are summarized in Fig. 5.3.  

For Ra1x104, the flow field descriptions already given for the adiabatic cases are more or less 

applicable to the hot floor cases. Appreciable differences, however, can be identified in the 

temperature field. In the hot floor case (see the right frames of Fig. 5.3), a relatively high 

temperature region is established where the floor of the cavity meets the vertical side of the step. 

In practice, a continuous hot boundary layer develops along all the heated surfaces. It consists of 

two horizontal branches and one vertical branch. A cold boundary layer can also be seen at the 

ceiling of the cavity. Increasing the Rayleigh number to Ra=1x105 (Fig. 5.3(b)) leads to a 

decrease in the thickness of the temperature boundary layers at the ceiling and the floor of the 

cavity and at the side and top of the step. Moreover, for this value of Ra (Fig. 5.3(b)) a 

recognizable plume begins to form at the top left-hand corner of the step (protruding towards the 

top left-hand corner of the cavity). 

 

Table 5.2: Cases examined for the case of pure buoyancy convection with hot bottom wall. 

 

             Ra      Mesh Size 
horiz

stepNu  
vert

stepNu  Regime 

103 40x40        1        2.41656 Steady 

104 40x40        1.279432        2.0596  Steady 

105 80x80         3.12286        5.49028 Steady 

106 150x150         4.2792         9.72496 Steady 

107 270x270         6.05596           15.14134 Steady 

108 500x500 12.25 (average) 25.53 (average)  Weakly Turbulent 

 

Though these patterns, with the exception of the additional branch of thermal boundary layer 

formed along the bottom wall, may be considered relatively similar to those already described 

for the other boundary condition, however, distinguishing features can be highlighted for 

Ra=1x106  in terms of structure of the flow field (Fig. 5.3(c)). Two almost symmetrical counter-

rotating circular shaped rolls develop in the upper half of the cavity. At the same time, two other 
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circular shaped velocity rolls develop in the lower half of the cavity. A very complex multi-

cellular flow emerges with the maximum velocity magnitude being attained where the rolls meet 

in the upper half of the cavity.  

 

    
(a) 

    
(b) 

    
(c) 
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(d) 

Figure 5.3: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

pure buoyancy convection and cavity with hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) 

Ra=107. 

 

Apart from the notable departure from the corresponding situation shown in Fig. 5.1(c) in terms 

of flow structure, other remarkable modifications concern the temperature field. The thermal 

plume, which in the case of adiabatic bottom was displaying an essentially horizontal direction 

(Fig. 5.1(c)), appears now with a main direction rotated by 90 degrees, i.e., it has an almost 

vertical structure (Fig. 5.3(c)). Moreover, the flow is steady (it was time-dependent for the case 

with adiabatic bottom).  

When the Rayleigh number is increased to Ra=1x107 (Fig. 5.3(d)), most surprisingly, the flow is 

still steady. Four velocity rolls are developed like those seen for Ra=1x106.  

For all these cases, interestingly, a second rising hot plume is established along the left wall of 

the cavity (not present when the bottom wall is adiabatic).  

 

5.1.3 Heat Exchange and related trends 

 

Notably, direct comparison of the information reported in Tables 5.1 and 5.2 can be used to get 

interesting insights into the impact exerted by the different thermal boundary condition assumed 

for the bottom floor on the emerging dynamics. Indeed, it can be seen that the mechanisms of 

heat exchange being operative along the sides of the step sensitively depends on the type of 

bottom floor. The magnitude of heat exchange along the vertical side of the obstruction tends to 

decrease when the bottom floor is heated, which is a relatively counter-intuitive finding.  

In practice, an explanation for this trend can be elaborated in its simplest form on the basis of the 

argument that the magnitude of heat removal largely depends on the specific structure of the 

velocity field, and that this structure is more favourable to heat exchange when the bottom floor 

is adiabatic (as in this case a significant amount of fluid can be transported towards the upper 

side of the step due to the existence of a single roll occupying the entire lower half of the cavity).  

In such a context, it is also worth highlighting that 
vert

stepNu  for the cavity with the adiabatic floor 

(Table 5.1) follows almost exactly the scaling law for the classical Hadley flow in an 



                                                                                                                     

65 

 

unobstructed square cavity, i.e. Nu0.13xRa0.31 (see, e.g., Yu et al. 2007; Corvaro and Paroncini 

2007), which is in line with the considerations elaborated above about the presence of a single 

roll on the left of the vertical hot side of the step (resembling the classical Hadley flow which 

would be established in a classical square cavity with no step inside). As reported in Table 5.2, 
vert

stepNu  takes slightly smaller values when the hot floor is considered (with respect to the 

adiabatic case) for relatively high values of Ra, which  can be ascribed to the aforementioned 

presence of a secondary roll developing in the lower half of the cavity (able to cause a decrease 

in the amount of fluid being transported upwards along the vertical face of the step).   

Another outcome of the focused comparison of Table 5.1 and 5.2 is the realization that regardless 

of the thermal condition implemented for the bottom floor, 
horiz

stepNu  is always smaller than 
vert

stepNu . 

This trend is relatively counterintuitive if one considers that in the light of existing studies for the 

pure Rayleigh-Bénard flow (see, e.g., Stevens et al. 2010), the Nusselt number should take 

values much higher than those reported in these tables and display a  Ra scaling with 

2/7<<1/3).  

The key to understanding these results lies in considering that the region located above the step 

(though it is heated form below and cooled from above) does not behave as a pure RB system. 

This is clearly witnessed by the lack of small scale thermal plumes, which one would expect for 

RaO(106). Even for Ra=107 no small scale plumes can be seen in the present case, see Figs. 5.3.  

By contrast, for pure RB flow and high values of Ra, the flow is known to display the pervasive 

presence of small-scale plumes, continuously produced at the heated or cooled boundaries, which 

can later detach from such boundaries and have a two-fold remarkable effect: 1) contribute to 

increase the Nusselt number at the walls (see, e.g., Stevens et al. 2010), 2) support the overall 

erratic dynamics in the bulk of the fluid (see, e.g., Lappa, 2011). As shown by the present results, 

such a mechanism is suppressed in the presence of an extended (hot) vertical surface in favour of 

large scale plumes originating from such surface or related hot corners.   

 

5.1.4 The progression towards Chaos 

 

Another (separated) discussion is needed for the values of the Rayleigh number required to 

produce a transition from the steady solution to a time-periodic (single frequency) state for the 

two fundamental situations corresponding adiabatic and isothermal bottom wall. 

According to the results for the adiabatic floor case obtained by parametrically varying the 

Rayleigh number (Table 5.1, Sect. 5.1.1), a Hopf bifurcation i.e., transition from stationary to 

oscillatory conditions should obviously take place somewhere in the range between Ra= 105 and 

Ra= 106.  

 Dedicated simulations were performed to identify precisely such a value and it was found to be 

Racritical6.1x105.  

For the hot floor case (Sect. 5.1.2, Table 5.2), as the reader might have already realized at this 

stage, the transition is delayed to higher values of Ra (between Ra= 107 and Ra= 108, which is 
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yet a relatively counter-intuitive fact if one considers that the flow should be more energetic in 

these conditions given the additional source of buoyancy represented by the portion of bottom 

wall kept at constant (hot) temperature) It was found for this case that Racritical1.1x107. 

An interpretation of such counter-intuitive findings is not as straightforward as one would 

assume. A relevant explanation, however, can yet be rooted in the different nature and behaviour 

of buoyancy flow according to the direction of the prevailing temperature gradient that generates 

it and the nature of the disturbances responsible for the first Hopf bifurcation, i.e., the transition 

from steady state to oscillatory flow.  

These flows can be very different in terms of structure and undergo a completely different 

hierarchy of bifurcations. As an example, while the critical Rayleigh number for the transition to 

oscillatory flow of classical RB convection (Sect. 1.1.4.1) in a square cavity heated from below, 

cooled from above and with vertical adiabatic walls is O(105) in the case of air (Goldhirsch et al. 

1989; Bouabdallah et al. 2016), the corresponding value for the case in which the cavity is 

rotated by 90 (differentially heated vertical walls and adiabatic horizontal boundaries) is O(108) 

(Paolucci and Chenoweth, 1989; Le Quéré and Behnia, 1998). As also shown by other authors 

for the companion case of inclined systems (see, e.g., Lappa and Gradinscak, 2018, when vertical 

and horizontal temperature gradients are present at the same time as in the present case), the 

above-mentioned two types of convection (Hadley & RB) can interact in a relatively complex 

way and cause flow stabilization or destabilization depending on the prevailing effect.  

In the light of all these arguments, further insights into the scenario revealed by the present 

numerical simulations are yielded in this section on the basis of a direct analysis of the flow 

disturbances (these disturbances have been obtained by subtracting the time-averaged velocity 

field to the instantaneous velocity). 

 

    
 

Figure 5.4: Four snapshots of velocity disturbances evenly spaced in time for the cavity with 

adiabatic floor, Ra=1x106. 

 

Notably, in Fig. 5.4 it can be seen that for the adiabatic floor case, disturbances behave as a 

spiralling wave travelling in the clockwise direction along the boundary including the left side of 

the step, the bottom, floor and the entire left sidewall of the cavity. Following a cyclic process, a 

velocity peak originates in proximity to the corner of the step, it is then transferred to the lower 

roll that transports it from the left side of the step to the left side of the cavity. The disturbance 
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then rises along the left wall until it reaches the left top corner where it is damped (giving rise to 

a new cycle). 

As already reported in Sect 5.1.1, increasing the Rayleigh number to 107 does not substantially 

modify this mechanism. For Ra=1x108, however, a notable change in the temporal behaviour 

occurs. This is shown in Fig. 5.5. For this value of Ra, a heat island located in the lower half of 

the cavity is still a characteristic of the temperature pattern (Fig. 5.5(a)). However, as witnessed 

by Fig. 5.5(b), the frequency spectrum becomes much more complex (e.g., with respect to that 

seen in Fig. 5.2). It now displays a continuous interval of frequencies.  

 

                    a) 

 

 

 

b) 

 

Figure 5.5: Pure buoyancy convection in the cavity with adiabatic bottom wall, Ra=1x108: (a) 

snapshot of velocity field (left) and temperature distribution (right), (b) frequency spectrum 

related to the velocity signal measured by a numerical probe located at x=0.25 and y=0.75 (the 

red line indicates the Kolmogorov scaling law). 

 



                                                                                                                     

68 

 

Interestingly, it can also be seen that the frequency spectrum (frequency and related amplitude 

plotted using logarithmic scales for the axes) aligns to a good approximation with a ω−5/3 law in a 

certain range of frequencies (from O(103) to O(105), the reader being referred to the solid red line 

in Fig. 5.5(b)). 

The key to understand these results lies in considering the well-accepted idea that, under certain 

length scales, fluid flow starts to behave following a universal (repetitive) behaviour. This 

physical intuition, originally elaborated by Kolmogorov (1941a,b,c), is nowadays known as the 

inertial turbulence theory; the related interval where the energy spectrum aligns with a -5/3 law 

is the so-called inertial range of space scales (where turbulence is homogeneous and isotropic 

(De et al. 2017, Kraichnan, 1974). 

 

 
 

Figure 5.6: Snapshot of the velocity disturbances for the cavity with the hot floor, Ra=1.15x107. 

 

The bifurcation scenario dramatically changes when the configuration with the hot bottom is 

considered. As shown in Fig. 5.6 for slightly supercritical conditions (Ra slightly larger than 

Racritical1.1x107), the disturbances do not behave as a wave; rather they tend to be localized in 

the stem and cap of the vertical hot plume originating from the corner of the step and in the 

inclined descending plume of cold fluid (corresponding to the line of contact between the two 

rolls located in the lower part of the domain). While for the adiabatic-floor case (Fig. 5.4) a 

kinship may be identified with the typical disturbances known to affect the classical Hadley flow 

in unobstructed cavities (generally taking the form of waves travelling along the solid boundary, 

see, e.g., (Le Quéré and Behnia, 1998, see also the arguments provided in Sect. 1.1.4.2), this case 

should be regarded as a realization of the typical instabilities that can affect plumes in the IVND 

regime (Pera and Gebhart, 1971; Desrayaud and Lauriat, 1993; Cortese and Balachandar, 1993; 

Vincent and Yuen, 1999; Majumder et al. 2004). These instabilities are generally induced by the 

horizontal shear in the bulk of the fluid (which can take relatively high values for the conditions 

considered in the present work, especially in proximity to the stem of the plumes originating 

from the corner of the step).  
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Put simply, Fig. 5.6 reveals that the mechanism for the transition from steady to time-dependent 

conditions can sensitively depend on the type of thermal conditions considered for the bottom 

floor. Indeed, the main cause of the bifurcation is transferred from the boundary-layer 

mechanism seen in Fig. 5.4 for the adiabatic floor to the thermal-plume driven one for the 

situation with the isothermal hot floor.  

As a concluding remark for this section,  it is important to highlight that also for this boundary 

condition, the frequency spectrum can be made more involved on increasing further Ra (as 

illustrated in Fig. 5.7). 

As the reader will realize by inspecting this figure, some differences can be noticed with respect 

to Fig. 5.5 (owing to the different mechanisms responsible for the excitation of oscillatory flow, 

the spectrum is more energetic). Nevertheless, the amplitudes still align to a good approximation 

with the aforementioned Kolmogorov law over a limited range of frequencies, representative of 

the universal behaviour taken by turbulence on the small scales (Lappa and Gradinscak, 2018). 

 

                        
a) 

 

 

 

 



                                                                                                                     

70 

 

b) 

 

Figure 5.7: Pure buoyancy convection in the cavity with hot bottom wall, Ra=1x108: (a) 

snapshot of velocity field (left) and temperature distribution (right), (b) frequency spectrum 

related to the velocity signal measured by a numerical probe located at x=0.25 and y=0.75 (the 

red line indicates the Kolmogorov scaling law). 

 

5.2 Cavity with coaxial inflow and outflow sections 

 

The foregoing discussion has deliberately been limited to illustrating the dynamics for pure 

buoyancy convection. The present section continues this inquiry by probing the additional role 

played by forced convection (due to cold fluid being injected through an inflow section located 

on the left sidewall). Our specific aim in this regard is to assess the changes experienced by 

convection, its route to chaos and related patterning scenario in the presence of forced flow over 

the same range of values of the Rayleigh number considered in the preceding section for a fixed 

value of the Richardson number (corresponding to buoyant and forced flow having a comparable 

strength or intensity), i.e., Ri=1. For the purpose of quantifying these effects, the same two 

alternate configurations already examined in Sect. 5.1 are considered, i.e., the case in which the 

bottom wall of the cavity is adiabatic or kept at a fixed temperature.  Several interesting effects 

can be spotted accordingly in term of the behaviour of the flow and temperature distribution. For 

consistency with the approach already undertaken in Sect. 5.1, first  the numerical simulations 

conducted for the adiabatic floor are described and afterwards   the second case is discussed 
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(a) 

            
(b) 

          
(c) 
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(d) 

Figure 5.8: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

hybrid forced/buoyancy convection (Ri=1), coaxial inflow and outflow sections and cavity with 

adiabatic bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 

Table 5.3: Cases examined for hybrid forced/buoyancy convection (Ri=1), coaxial inflow and 

outflow sections and cavity with adiabatic bottom wall. 

 

Ra Mesh Size 
horiz

stepNu  
vert

stepNu  Regime 

104 40x40 2.69812 4.88732 Steady 

105 80x80 2.08836 7.02482 Steady 

106 120x120 2.1104 13.18764 Steady 

107 270x270 16.7 (average) 34.2 (average) Moderately 

Turbulent 

 

Following a logical process, with systems of increasing complexity being described as the 

discussion progresses,  the analysis begins from the simplest case, namely, that shown in Fig. 

5.8(a) (Ra=1x104). One velocity roll, mainly of buoyancy nature is formed in the lower portion 

of the cavity (oriented in the counter-clockwise sense in the figure). It can also be seen that the 

stream (jet) of cold fluid entering through the inlet spreads itself in the vertical direction and 

forms a nozzle-like structure in the upper part of the cavity (Fig. 5.8(a)). This structure is 

maintained up to the outlet. In proximity to the inflow section, a secondary (minor) roll develops 

between this current and the aforementioned main roll of buoyancy nature. The fluid attains its 

highest velocity at the inlet and the outlet. Moreover, relatively high temperature regions are 

located in proximity to the vertical and horizontal wall of the step. The flow is steady. 

For Ra=1x105 (Fig. 5.8(b)), the velocity field is more complex. An increase in Ra and Re at fixed 

Ri obviously causes a rise of the magnitude of velocity. Interestingly, two main rolls exist in this 

situation. The first roll (square shaped) has a larger extension and it is located in the bottom 

portion of the cavity (yet  it could be argued it is essentially of buoyancy nature as the fluid rises 
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along the heated wall of the step). The second roll, relatively smaller, is located just above the 

mid-plane of the cavity and it is slightly elongated in the horizontal direction. It can be noticed 

that the ‘nozzle-like’ streamline structure that was formed for Ra=1x104 is disturbed in this case 

owing to the formation of this roll (which tends to alter the flow directed form left to right and to 

prevent it from spreading freely in the vertical direction). The fluid enters from inlet with a high 

velocity, it continues to travel straight and then starts to spread after it has passed the middle 

portion of the cavity. In Fig. 5.8(b) it is also evident that the heat is accumulated entirely in the 

lower portion of the cavity due to the amount of heat laterally released from the hot step and the 

scarce mixing occurring between the fluid located in the upper and lower portions of the cavity. 

This develops a heat island in the entire lower half of the cavity. This island partially protrudes 

into the upper portion of the cavity near the inflow section owing to the presence of the 

aforementioned second roll. Moreover, a relatively thick horizontal thermal boundary layer is 

formed above the hot step. The flow is steady. 

Continuing with the description of the modifications induced by an increase in Ra, for Ra=1x106 

(Fig. 5.8(c)) the temperature distribution is very similar to the previous situation with a heat 

island still present in the entire lower half. In this case the horizontal return flow parallel to the 

main jet (warm fluid moving from left to right along the top surface of the step) also contributes 

to this effect. The flow is still steady.  

On increasing the Rayleigh number to Ra=1x107 (Fig. 5.8(d)), however, a marked change is 

produced, i.e., the emergence of three equally sized velocity rolls. The first one is formed in the 

lower portion of the cavity as a result of buoyancy (fluid rising along the vertical wall of the 

step). Another one forms close to the ceiling in the upper portion of the cavity due to the 

combined effect of buoyancy and fluid flowing from the inflow section towards the outflow 

section. Remarkably, it causes a disruption in the straight movement of the fluid entering from 

the inlet. Notable changes can also be spotted in the case of temperature field (Fig. 5.8(d)). The 

heat island occupying the lower half in the previous cases disappears and only a hot thin 

boundary layer can be spotted along the vertical wall and a thicker one along the horizontal wall 

of the step. The flow is relatively turbulent in this case as shown by the frequency spectrum in 

Fig. 5.9. Interestingly, it aligns with the Kolmogorov law over a range more extended (from 

O(103) to O(106)) than that seen for the corresponding configuration with no inflow and outflow 

sections (which explains why it is referred to as ‘moderately turbulent’ in Table 5.3).  
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Figure 5.9: Hybrid convection in the cavity with adiabatic bottom wall, Ra=1x107: (a) frequency 

spectrum related to the velocity signal measured by a numerical probe located at x=0.25 and 

y=0.75 (the red line indicates the Kolmogorov scaling law). 

 

Following up on the previous point about the suppression of the heat island effect, such change 

can be ascribed to the topological bifurcation displayed by the stream of cold fluid entering the 

cavity from the left. As shown in Fig. 5.8(d), owing to the presence of a new vortex (located just 

under the inflow section and driven by the joint effects of forced and buoyancy convection) such 

a stream breaks into two branches before reaching the step and the lower stream is routed into 

the lower domain, thereby strongly contributing to mitigate the temperature in that area. 

Moreover, it can be seen that, since the main horizontal jet originating from the inlet is distorted 

and impinges on the top surface of the obstruction, the aforementioned ‘return flow’ transporting 

heat from the entire top surface of the step directly into the left region is suppressed.  

Notably, another way to somehow interpret all these results is to take a look at Table 5.3 and 

focus on the behaviour of the Nusselt number. The most striking variation indeed occurs for 

Ra=1x107, for which a notable change can be seen in the relative importance of 
horiz

stepNu  and 

vert

stepNu  (
horiz

stepNu  = 15% and 50% of
vert

stepNu  for Ra=106, and Ra=107, respectively). In particular, the 

parameter 
horiz

stepNu jumps from a value 2 for Ra=106 to 17 for Ra=1x107. 

An interpretation for this fascinating trend can easily be elaborated considering again the flow 

topological arguments provided above. A close look at Fig. 5.8(d), indeed reveals that what sets 

this specific value of the Rayleigh number apart from the other cases considered earlier is the 

fact that, after being split into two main branches (the lower one being funnelled into the lower 

domain as explained before), the upper branch of cold fluid originating from the inflow section 

directly hits the top surface of the step thereby strongly contributing to the heat exchange there. 
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Cross comparison of Table 5.3 with Table 5.1 is also instructive as it shows (as expected) that 

replacing a top wall steadily maintained at a cold temperature with a limited amount of cold fluid 

being injected into the cavity per unit time at Ri1, makes the heat removal process from the step 

horizontal wall less efficient for moderate values of Ra (obviously this observation only applies 

to the specific flow rate considered in the present work, additional studies being required in the 

future to parametrically investigate the effect of the non-dimensional size of the inflow and 

outflow sections).   

  Now the other case is examined in which the floor is kept at a constant temperature (Table 5.4). 

For Ra=1x104 (Fig. 5.10(a)) the flow pattern is almost the same already seen before with a slight 

difference in the structure of the rolls. It can be noticed in the velocity field that the size of the 

velocity roll close to the bottom is relatively smaller with respect to the case with adiabatic floor 

and it is unable to take a square like shape. To justify this behaviour, it is convenient to start from 

the simple remark that the buoyant effect due to heating from below now directly contributes to 

the secondary roll located in proximity to the inflow section. As a result, it tends to become 

larger and expand into the lower region of the cavity. 

 

Table 5.4: Cases examined for hybrid forced/buoyancy convection (Ri=1), coaxial inflow and 

outflow sections and cavity with hot bottom wall. 

 

Ra Mesh Size horiz

stepNu  
vert

stepNu  Regime 

104 40x40        2.13828       4.96214 Steady 

105 80x80        1.289478       7.0278 Steady 

106  120x120        1.040622       13.22984 Steady 

107  270x270        13.5 (average)       38.9 (average) Moderately 

Turbulent 

 

 

       
(a) 
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(b) 

     
(c) 

 
(d) 

Figure 5.10: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

hybrid forced/buoyancy convection (Ri=1), coaxial inflow and outflow sections and cavity with 

hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 

For Ra=1x105 and Ra=1x106 (Fig. 5.10(b) and (c)) no significant differences can be highlighted 

in terms of the flow and temperature patterns as they are roughly the same as for the adiabatic 

floor case.  

Once again, a significant departure, however, can be seen when Ra=1x107 is considered (Fig. 

5.10(d)). Though in this case, the heat released by the top surface of the step can reach the left 
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region, the temperature in the lower portion is mitigated by the cold fluid entering the cavity. 

Indeed, part of this fluid is directly injected in the lower half due to the presence of a small eddy 

located in proximity to the inflow section (just under the main jet). Fluid motion is still 

moderately chaotic as witnessed by the time-velocity plot in Fig. 5.11.  

 

 
 

Figure 5.11: Hybrid convection in the cavity with hot bottom wall, Ra=1x107: (a) frequency 

spectrum related to the velocity signal measured by a numerical probe located at x=0.25 and 

y=0.75 (the red line indicates the Kolmogorov scaling law). 

 

In order to clarify the evolution of these systems when the control parameter is increased, a 

calculation has been performed to precisely evaluate the critical values of the Rayleigh number 

for the transition from steady to time-periodic (single-frequency) flow.   It was found to be 

Racritical1.2x106 for both cavities with adiabatic and hot bottom wall, respectively. 

The related disturbances are reported in Fig. 5.12. This figure is instructive as it shows that 

thermal boundary layers or plumes are no longer at the root of the instability mechanism. As a 

comparison of Fig. 5.12a and 5.12b with Figs. 5.4 and 5.6 would immediately reveal, 

disturbances are now located essentially in the right portion of the cavity and there is strong 

evidence for their essentially vertical-shear-driven nature (the interested reader being also 

referred to the similar studies recently carried out by Ali and Dey (2017) and Hemchandra et al. 

(2018).  
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a)     b) 

 

Figure 5.12: Snapshot of velocity disturbances for the case of hybrid forced/buoyancy 

convection (Ri=1), coaxial inflow and outflow sections: a) cavity with adiabatic floor, 

Ra1.25x106; b) cavity with hot floor, Ra=1.25x106  

 

5.3 Cavity with misaligned inflow and outflow sections 

 

Table 5.5: Cases examined for hybrid forced/buoyancy convection (Ri=1), misaligned inflow 

and outflow sections and cavity with adiabatic bottom wall. 

 

Ra Mesh Size 
horiz

stepNu  
vert

stepNu  Regime 

1x104 40x40     6.93572  3.5079 Steady 

1x105 80x80     12.09462  4.70892 Steady 

1x106  120x120     21.0776  9.35676 Steady 

1x107  270x270     40.3 (average)

  

31.6 (average) Weakly 

Turbulent 

 

After discussing in the previous section, the dynamics of hybrid forced-buoyancy convection as a 

result of cold fluid injection through an inflow section located on top of the left sidewall,  the 

final  case is addressed  for which the inflow section is positioned relatively close to the floor. 

The relative height of the outflow section is not varied with respect to the previous analysis, i.e., 

it is located along the right wall in the upper part of the cavity (above the step at a certain 

distance from its horizontal surface).  

Though this problem may be regarded as formally equivalent to that treated earlier, and the 

implemented change may appear as a minor variation, its effects can be dramatic, as further 

discussed in the remainder of this section (Figs. 5.13-5.16).  
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(a) 

 
(b) 

 
 (c) 
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(d) 

Figure 5.13: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

hybrid forced/buoyancy convection (Ri=1), misaligned inflow and outflow sections and cavity 

with adiabatic bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 

Since comparison of the emerging patterns for adiabatic and hot floor also provides important 

clues regarding the nature of the observed convective structures,  the same approach is adopted 

based on a description of the former case followed by comparison with the latter (the impact of 

such a change on the patterning behaviour and evolution towards chaos is summarized in Figs. 

5.13 and 5.15 for the case with adiabatic and isothermal (hot) floor, respectively). 

As evident in Fig. 5.13(a), for Ra=1x104 and adiabatic bottom wall a small velocity roll (close to 

the floor) is formed in the lower portion of the cavity. The cold fluid enters the inlet with a 

relatively high velocity and continues to travel straight. It then deflected upward due to 

continuity effects (fluid must obviously turn around the step in order to reach the outflow 

section). In this process it is reinforced by buoyancy effects (which tend to propel the relatively 

warm fluid located in proximity to the vertical wall of the step upwards). It can be seen that the 

streamlines are relatively regular and give rise to a balloon like structure stretched in the vertical 

direction, which occupies most of the upper portion of the cavity. Thermal boundary layers are 

established close to the vertical and horizontal walls of the step, whereas the rest of the cavity is 

at a moderate temperature. The flow is steady. 

Interestingly, for Ra=1x105 (Fig. 5.13(b)) the fluid entering the cavity through the inlet does not 

spread itself completely in the vertical direction. Indeed, the velocity field does no longer display 

a vertically stretched balloon like structure. Rather, while some of the fluid is forced out through 

the outflow section, a certain portion of it is reflected inwards and moves close to the adiabatic 

ceiling towards the left sidewall giving rise to an extended vortex. The fluid attains its highest 

velocity values at the inlet, close to the corner of the step and at the outlet.  

For Ra=1x106 (Fig. 5.13(c)) no substantial changes can be seen in the structure of the velocity 

field with respect to Ra=1x105. Rather, what distinguishes this specific behaviour from the other 

ones discussed earlier is the increase in the magnitude of flow velocity and strength and vertical 

size of the roll located just above the step. This increase is indeed responsible for the emergence 
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of the characteristic curl-like shape taken by the thermal plume, which originates from the corner 

of the step and extends to the right. The flow is steady. 

The roll located above the step is further strengthened when the case with Ra=1x107 is 

considered (Fig. 5.13(d)). 

More importantly, as evident in Fig. 5.13(d), in this case the cold fluid entering the cavity from 

the left follows a slightly different path. While in the earlier situations, it was flowing along a 

parabolic route bringing it directly from the inflow section to the outflow one, it now rises 

continuously until it hits the ceiling (this leading to the formation of a vertically extended 

thermal plume originating from the corner of the step as evident in the figure). Only after it has 

collided with the ceiling, this jet can then move again downward and be absorbed by the outflow 

section. Like the cases treated in Sect. 5.2, the flow is relatively turbulent (see Fig. 5.14); some 

localized small eddies develop frequently along the vertical heated wall of the step as witnessed 

by the presence of small plumes originating from this wall in a direction perpendicular to it 

(towards the left). Nevertheless, direct comparison with the equivalent case with aligned inflow 

and outflow sections reveals that in the present case the inertial range is less extended (shifted to 

the right of 104,  this observation will be analysed later). 

 

 

 
 

Figure 5.14: Hybrid convection in the cavity with adiabatic bottom wall, Ra=1x107: (a) 

frequency spectrum related to the velocity signal measured by a numerical probe located at 

x=0.25 and y=0.75 (the red line indicates the Kolmogorov scaling law). 
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Comparison of Table 5.5 with Table 5.3 also reveals that the relative importance of 
horiz

stepNu  and 

vert

stepNu  is reverted for the present case (
horiz

stepNu  is larger than 
vert

stepNu  when the inflow and outflow 

sections are not horizontally aligned, whereas the vice versa holds for coaxial sections). An 

analysis of the flow topology is still useful in this regard. Indeed, the notable increase of 
horiz

stepNu  

can be ascribed to the specific path taken by the streamlines originating from the inflow section, 

which always force (regardless of the value of Ra) relatively colder fluid to lick the corner and 

the horizontal hot side of the step.  

In the remainder of this section, the situation with the hot bottom is finally discussed (Fig. 5.15). 

For Ra=1x104 (Fig. 5.15(a)) the flow pattern is more or less the same as for adiabatic floor case. 

A very thick hot boundary layer can be seen covering the floor. For Ra=1x105 (Fig. 5.15(b)) the 

flow pattern is roughly the same as for the adiabatic floor case too (Fig. 5.13(b)). The flow is still 

steady. 

 

  
(a) 

 
(b) 
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(c) 

 

 
(d) 

Figure 5.15: Snapshots of velocity field (left) and temperature distribution (right) for the case of 

hybrid forced/buoyancy convection (Ri=1), misaligned inflow and outflow sections and cavity 

with hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 

Table 5.6: Cases examined for hybrid forced/buoyancy convection (Ri=1), misaligned inflow 

and outflow sections and cavity with hot bottom wall. 

 

Ra Mesh Size 
horiz

stepNu  
vert

stepNu  Regime 

1x104 40x40     4.79508   3.2581 Steady 

1x105 80x80     10.93178   4.53742 Steady 

1x106  120x120     19.7574   9.15618 Steady 

1x107  270x270     31.9 (average) 

  

33.2 (average) Weakly 

Turbulent 

 

 

For Ra=1x106 (Fig. 5.15(c)) three velocity rolls can be distinguished. The regular movement of 

the cold fluid entering the inlet and following a parabolic trajectory until it meets the outflow 

section is not disturbed in this case (like in the adiabatic floor case). A swirl can yet be seen in 
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the temperature distribution just above the step (compare Figs. 5.15c and 5.13c) . The flow is 

steady. 

For Ra=1x107 (Fig. 5.15(d)) the behaviour is similar to that found for the adiabatic floor case and 

the same value of Ra. Like the corresponding circumstances with adiabatic floor, the flow is 

weakly turbulent (Fig. 5.16) and characterized by the presence of small eddies located along the 

horizontal and vertical walls of the step. However, in this case small eddies are also formed 

along the bottom heated floor (compare Figs. 5.15d and 5.13d).   

 

 

 

 

Figure 5.16: Hybrid convection in the cavity with hot bottom wall, Ra=1x107: frequency 

spectrum related to the velocity signal measured by a numerical probe located at x=0.25 and 

y=0.75 (the red line indicates the Kolmogorov scaling law). 

Since a steady behaviour has been found for Ra<106 for both types of thermal conditions 

assumed for the floor, further analysis was carried out to determine the value of Racritical for 

which the flow becomes time-periodic. According to our simulations, such values are 

Racritical3.8x106 and Racritical3.2x106, for the cavity with adiabatic and isothermal (hot) floor, 

respectively, which indicate that in these cases an increase in buoyancy has a slightly 

destabilizing influence.          
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a)    b) 

 

Figure 5.17: Snapshot of velocity disturbances for the case of hybrid forced/buoyancy 

convection (Ri=1), misaligned inflow and outflow sections: a) cavity with adiabatic floor, 

Ra=3.8x106; b) cavity with hot floor, Ra=3.2x106.  

 

The small difference in the critical value of the Rayleigh number is in line with the behaviour of 

the disturbances, which as shown in Fig. 5.17 display a relatively similar configuration for both 

cases. In particular, they exhibit a similar magnitude and are concentrated along the main path 

taken by the cold fluid (entering the cavity from the left) to reach the outflow section. Among 

other things, this figure is also useful as it reveals that the instability is still of a shear-driven 

nature. Apart from the region located above the step, disturbances are also significant in the left 

lower portion of the cavity where their presence can directly be ascribed to the strong horizontal 

shear stress that is attained there as a result of the curvature of the main current. This can be seen 

as an important distinguishing mark with respect to the perturbation patterns seen in Figs. 5.12 

where disturbances were more concentrated in the portion of the domain located just above the 

step (where vertical shear stresses are high). 

Comparison with the configuration with horizontally aligned inflow and outflow sections also 

leads to the conclusion that a decrease in the height (distance from the floor) of the inflow 

section can have a stabilizing influence on the flow (the Racritical for misaligned sections being 

approximately three times that needed to induce time-dependent flow in the situation with 

coaxial sections, which also explains why in the present case the inertial range is shifted to the 

right in both Figs. 5.14 and 5.16).  

Further insights into the thermal behaviour can finally be gained by comparing the values of 
horiz

stepNu  in Tables 5.5 and 5.6. The non-negligible shrinkage in the values of 
horiz

stepNu for the case 

with hot floor and moderate values of Ra, can be ascribed to the effect that such boundary exerts 

on the cold fluid entering from the left side (causing a quick rise in the temperature of such fluid 

thereby mitigating its ability to extract heat from the top surface of the step).   
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5.4 Conclusions 

 

The main conclusions of the present chapter can be summarized as follows: 

 

• Multicellular configurations are produced with number of rolls changing according to the 

value of the Rayleigh number.  

• For relatively high values of Ra, these multicellular systems are driven by the 

development of spatially extended thermal plumes in the system, which tend to originate 

from the corner of the obstruction and assume different inclination according to the 

considered condition (switching from an almost horizontal or slightly inclined 

configuration for the case with adiabatic bottom to an almost vertical state when the 

bottom is kept at a fixed hot temperature).  

• For these cases, heat islands can be produced in some circumstances. The tendency of 

these to be located in the lower part of the domain for pure buoyancy must be ascribed to 

the insufficient mixing between the upper and lower fluid regions that is established 

when the flow pattern takes a specific topological configuration (at relatively high values 

of Ra).  

• Replacement of the adiabatic bottom with an isothermal wall, leads to a stabilization of 

the flow field. This is due to the non-trivial coupling established in the pure buoyancy 

case between the flow of Hadley type (which develops from the vertical side of the 

obstruction) and that of RB nature, driven by horizontal hot boundaries.  

• The other patterns emerging for the unit value of the Richardson number correspond to 

different possible realizations of the route that cold fluid can take to reach the outlet. A 

more precise interpretation can be elaborated as follows: These possible multiple paths 

follow naturally from the relative position of the inlet with respect to the floor and the 

rich variety of possible interactions that can be established between the cold fluid injected 

in the cavity and the buoyancy flow of thermal nature originating from the hot surfaces. 

The latter can support or oppose to the transport of fluid from the inflow to the outflow 

section depending on the considered circumstances. 

• Changing the position of the inflow section can also have remarkable effects on such 

dynamics. Heat islands that, for the case of inflow section horizontally aligned with the 

outflow section, are formed in the lower portion of the domain (as in the pure buoyancy 

case), disappear when the inflow section is close to the bottom wall.  

• A change in the position of the inflow section also affects in an appreciable way the route 

towards time-dependence and chaos and how this, in turn, is influenced by the nature of 

the bottom wall (being it adiabatic or isothermal). While, in general, for hybrid 

convection, a switch from the adiabatic to the isothermal boundary condition causes a 

stabilization of the flow, the effective change experienced by the critical Rayleigh 

number strongly depends on the location of the inflow section.  
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Chapter 6 

 

Flow topology and bifurcations of buoyancy and mixed 

convection in an elongated domain with a forward-facing 

step 

 
The layout of this section is as follows. Each sub-section represents a self-contained discussion 

of  the patterning behaviour for a fixed value of the Richardson number. In particular, Sect. 6.1 is 

concerned with the results for pure buoyancy convection (formally corresponding to Ri→); 

Sect. 6.2 describes the outcomes of the simulations for circumstances where, though forced 

convection is present (finite values of Ri), buoyancy still plays a dominant role (Ri=100 and 

Ri=30); Sect. 6.3 examines small-Ri behaviour (representing the idealized situation in which 

forced flow and buoyancy convection have a comparable magnitude). The value of the Prandtl 

number has been fixed to Pr=1. A critical comparison of the different situations, leading to 

general conclusions on the overall bifurcation and heat transfer scenarios, is finally elaborated in 

Section 6.4.  

 

6.1 Pure buoyancy case 

 

Following the same approach implemented in Chapter 5, the first section contains material that 

provides a foundation for the rest. Being entirely focused on pure buoyancy convection, it 

immediately supplies the reader with a clear account of the considered interval of values of the 

Rayleigh number and the typical convective modes that this type of flow can produce in such a 

range of Ra (for the two variants of thermal boundary conditions at the bottom wall defined by 

eq. (3.10)). Related results are summarized in Figs. 6.1-6.4. As further elaborated in Sect. 6.4, 

these dynamics can be used as a basis to disentangle the role played by buoyancy effects in more 

complex situations where the Richardson number takes finite values.  

 

 

 
 



                                                                                                                     

88 

 

a) 

 

 
 

b) 

 

 
 

c) 
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d) 

 

Figure 6.1: Snapshots of velocity field and temperature distribution for the case of pure 

buoyancy convection and cavity with adiabatic bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) 

Ra=107.  

 

Following a logical approach,  initially the simplest possible case is examined that is the situation 

with Ra=104 and bottom wall (0<x<A/2) with adiabatic conditions. As evident in the velocity 

distribution (see the top view reported in Fig. 6.1a), a strong circulation is created in the left part 

of the domain (the region characterized by larger cross-sectional area). As also revealed by the 

inclined thermal plume originating from the corner of the step, this circulation of the Hadley type 

(Sect. 1.1.4.2) is essentially driven by the vertical heated sidewall of the step. Less evident in this 

figure is the presence of small rolls formed in the shallow region constrained between the top 

rigid boundary and the top surface of the step. Unlike the other larger vortex (occupying the 

region x<A/2), these (nine) rolls may be regarded as the manifestation of the almost pure 

Rayleigh-Bénard convection (Sect. 1.1.4.1), which emerges as a result of the prevailing vertical 

temperature gradient established for x>A/2. These rolls are weak as witnessed by the presence of 

an almost undisturbed thermal boundary layer, which is relatively thicker in comparison to the 

one formed on the vertical wall. The Hadley flow being developed in the left part of the domain 

(x<A/2) is dominant in terms of strength. Despite the inherent complexity of the overall 

convective configuration (which features two coexisting modes of convection), the two 

convective mechanisms exist in an almost independent way and the overall flow is steady. 

For Ra=1x105 (Fig. 6.1b), the Hadley flow and RB convection have comparable strength. An 

interesting change can also be spotted in the number of small rolls located above the step, which 

increases from nine to eleven. A big transverse roll (Hadley flow) is still steadily located in the 

entire left portion of the cavity. The maximum velocity magnitude is attained just before the 

section where a discontinuity in the cross-sectional area occurs, i.e., along the vertical heated 

wall of the step (xA/2). In terms of temperature distribution, well-defined thermal plumes are 
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formed for x>A/2 whereas for x<A/2 the fluid is relatively cold and undisturbed. As time passes 

the plume lobes remain distinct and are not significant deformed. A hot thin boundary layer is 

formed on the vertical wall of the step. The flow is still steady. 

If the Rayleigh number is further increased (Ra=1x106 in Fig. 6.1c), interestingly, there is a 

decrease in the number of flow features visible in the right portion of the cavity. The number of 

velocity rolls formed in this case comes back to nine (same as for Ra=1x104). As revealed by Fig. 

6.1c, this effect is the result of the coalescence of the first roll of RB nature with the larger 

circulation of the Hadley type developing in the left part of the domain. Notably, in such 

conditions each plume has a thin, sharp stem with a well-defined cap and lobes that are 

significantly deformed by vortex structures, which means that the plumes established in the 

cavity for Ra=1x106 pertain to the IVND regime (the so-called Inviscid-Non diffusive Regime 

according to the classification originally elaborated by Hier Majumder et al. 2004). This regime 

takes place for high Rayleigh number (Ra > O(106) and Prandtl number near 1. Most remarkably, 

for such conditions the flow is unsteady (quasi-periodic) as shown in Fig. 6.2. 

 

 

 

Figure 6.2: Velocity (horizontal component) signal for Ra=106 and adiabatic bottom measured 

by a numerical probe located at (0.25, 0.75).  
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Finally, for Ra=1x107 (Fig. 6.1d), a further decrease in the number of RB rolls occurs due to 

enhancement of the aforementioned coalescence process (by which the RB rolls are absorbed by 

the elongated circulation occupying the left region). The most evident change, however, concerns 

the region with large cross-sectional area. The initially unicellular (Hadley) roll established there 

is broken into distinct vortices, which travel continuously from left to the right (their average 

number in time being three). This phenomenon is produced by a wave travelling towards the left 

along the top boundary of the duct (clearly visible in the temperature distribution). More 

precisely, it manifests itself through the periodic shooting of ‘packets’ of hot fluid in the cold 

fluid located in the left region of the cavity. Such disturbances originate from the head of the 

plume formed close to the corner of the step (xA/2) and travel towards the left, i.e. in the 

downstream direction (in other words, the wave uses the leftward-directed branch of the Hadley 

cell as a substrate for propagation (This phenomenon, which is typical of the Hadley flow for 

Pr1 in cavities subjected to horizontal temperature gradients will be discussed later, the reader 

being also referred to the information provided in Sect. 1.1.4.2) 

 

 
 

 

Figure 6.3: Frequency spectrum for Ra=107 and adiabatic bottom. The red straight line indicates 

the (-5/3) scaling trend predicted by the Kolmogorov law.   
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In such conditions the flow is moderately turbulent as witnessed by the frequency spectrum 

shown in Fig. 6.3 (see also Table 6.1). In agreement with the expected behaviour of turbulence 

on small length scales i.e., the so-called self-similarity property of turbulence (Kolmogorov 

1941a,b; Kraichnan, 1974; Hutchinson and Raithby, 1986)  the spectrum aligns with a ω-5/3 law 

in a certain range of (high) frequencies. 

After discussing the different situations for the cavity with a hot step and adiabatic bottom wall, 

it is also worth examining the other configuration (differing in regard to the thermal boundary 

condition used for the bottom wall, kept at constant temperature, see Fig. 6.4).   

 

 
 

a) 

 

 
 

b) 
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c) 

 

 

 

d) 

 

Figure 6.4: Snapshots of velocity field and temperature distribution for the case of pure 

buoyancy convection and cavity with hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) 

Ra=107. 

 

 As qualitatively illustrated by Fig. 6.4a, for Ra=1x104 again nine weak small velocity rolls can 

be seen in the shallow region above the step (as for the adiabatic-floor case). However, five 

medium-sized velocity rolls are now present in the left half portion of the cavity. They are clearly 

rolls of RB nature (Sect. 1.1.4.1) as indirectly demonstrated by the simultaneous development of 

evenly spaced thermal plumes. The different distortions undergone by the temperature field in 

the left and right regions of the cavity qualitatively substantiate the realization that convection 

produced for x<A/2 is much stronger than that of the same nature emerging for x>A/2. This trend 
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can be immediately explained simply taking into account the cubic dependence of this form of 

convection on the vertical extension of the considered layer of fluid (d/2 for x>A/2 

corresponding to an effective value of the Rayleigh number Raeff=Ra/8). The flow is steady in 

both sides of the cavity. 

On increasing Ra to 105, thermal plumes become a pervasive feature of the temperature pattern 

(Fig. 6.4b). All plumes have a vertical stem with the exception of that originating from the step 

corner, which is inclined to the left. The number of small (right region) and large (left region) 

rolls increases from nine to twelve and from five to six, respectively, which indicates that (as 

expected) the Rayleigh number has a significant influence on the wavenumber. The most 

remarkable change, however, concerns the spatio-temporal behaviour of the flow, which 

becomes unsteady.  

This finding indicates that transition to time-dependent flow can be obtained with a smaller value 

of the Rayleigh number when the configuration with the heated bottom is considered (Ra had to 

be increased to Ra=106 to observe similar phenomena for the adiabatic wall case; these aspects 

will be further explored in Sect. 6.4 where detailed information about the hierarchy of 

bifurcations will be provided). 

For  Ra=1x106 (Fig. 6.4c), there is a decrease in the number of rolls (from twelve to eleven) in 

the right portion of the cavity (the same process was observed for the adiabatic floor case). A 

similar trend is effective for the rolls located in the left region (their number being reduced from 

six to four). The shrinkage in the number of rolls essentially results from roll coalescence 

phenomena. 

When the Rayleigh number is finally increased to Ra=1x107 (Fig. 6.4d), no change occurs in 

terms of patterning behaviour. However, the flow becomes weakly turbulent (see Table 6.2) and  

the less chaotic nature of the flow (with respect to the equivalent case with the adiabatic floor) 

can be ascribed to the lack of a wave-propagation mechanism such as that visible in Fig. 6.1d 

(requiring the presence of horizontal currents of the Hadley type, Sect. 1.1.4.2). 

 

6.2 Mixed convection for Ri=100 and Ri=30 

 

Now the case where the buoyancy flow, naturally produced by the heated surfaces embedded in 

the physical domain, interacts with cold fluid being injected from the left is considered (which 

leads to a typical problem of mixed forced-buoyancy convection, Figs. 6.5-6.7).  

On the basis of the same approach undertaken in Sect. 6.1, snapshots of the thermo-fluid-

dynamic fields for increasing values of the Rayleigh number and Ri=100 are orderly collected in 

Figs. 6.5 and 6.6 for the two aforementioned archetypal situations with adiabatic and hot bottom 

wall, respectively.    

The simplest situation is that presented in Fig. 6.5a for Ra=1x104. It is shown that the cold fluid 

entering through the inlet continues to travel straight with a moderate velocity until it comes in 

contact with the hot obstruction (the step). The hot step causes the velocity to increase due to the 

contraction of the cross-sectional area and the incompressibility constraint. Moreover, a thick hot 
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boundary layer develops along the entire length of the horizontal and vertical walls of the step. 

The increasing thickness of the thermal boundary layer in the downstream direction is obviously 

a consequence of the heat being released by the hot surface of the step in the region x>A/2.  

The next figure of the sequence (Fig. 6.5b) simply illustrates that if the Rayleigh number is 

increased by one order of magnitude (Ra=1x105 and Re grows accordingly due to the 

Ri=const=100 condition, i.e., Re31.6), the thickness of the boundary layer becomes smaller. 

This can obviously be ascribed to the larger amount of cold fluid being injected in the system per 

unit time as a consequence of the increase in the Reynolds number. The flow remains steady as it 

was for Ra=104.  

 

 

 
 

a) 

 

 
 

b) 
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c) 

 

 
 

d) 

 

 

Figure 6.5: Snapshots of velocity field and temperature distribution for the case of hybrid 

forced/buoyancy convection (Ri=100) and cavity with adiabatic bottom wall: a) Ra=104, b) 

Ra=105, c) Ra=106, d) Ra=107. 

 

A notable change, however, starts to affect the dynamics for Ra=1x106 (Fig. 6.5c). A Hopf 

bifurcation takes place and the flow evolves accordingly from a steady regime to a time 

dependent one. Some sinusoidal distortions can be seen in the topological development of the 

main current located above the step. These disturbances seem to be directly correlated to the 

thermal features appearing in the temperature distribution. Where the concavity of the stream 

centreline is towards the bottom (velocity field), a thermal plume is visible in the temperature 

field and, vice versa (concavity towards the top corresponds to plume absence). These convective 
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and thermal localized phenomena appear at a certain distance from the leading edge, i.e. the 

corner of step (approximately a non-dimensional distance 5 times the height of the fluid located 

above the step, i.e. l  5/2). The number N of visible convective distortions is on average equal to 

3. These plumes do not hold a fixed position, rather they continuously travel in the downstream 

direction. However, it is important to remark that the fluid has not yet entered the turbulent phase 

(the flow being still in a quasi-periodic condition, not shown). 

A further increase in the order of magnitude of the Rayleigh number (Ra=1x107, Re316, Fig. 

6.5d) causes (as expected) transition to a more chaotic state. The thermal boundary layer 

becomes very thin. The distortions affecting the main stream above the step are no longer regular 

and evenly distributed in space (this being reflected by an equivalent behaviour of the thermal 

plumes). The increase in Ra at fixed Ri has also another notable consequence. Plumes are 

produced at a much smaller distance from the leading edge (l  2). Moreover, their extension in 

the vertical direction is generally smaller than that seen for Ra=1x106, which can be interpreted 

taking into account the dual influence of a simultaneous increase of Ra and Re. In such a context, 

indeed, it is worth recalling that in standard RB convection, plume caps are known to become 

progressively smaller as the Rayleigh number becomes higher (Lappa, 2011, see also Sect. 

1.1.4.1). Superimposed on this is the effect of the Reynolds number. As this parameter (the 

inflow velocity) grows, plumes have less time to develop in the vertical direction before they are 

transported towards the outflow section and leave the domain through it (the reader being also 

referred to Lappa (2019) for some equivalent considerations elaborated in the case of thermal 

plumes interacting with a free cross flow).  

  

   

 

     a) 
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       b) 

 

  

 

         c) 
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        d) 

 

Figure 6.6: Snapshots of velocity field and temperature distribution for the case of hybrid 

forced/buoyancy convection (Ri=100) and hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) 

Ra=107. 

 

Figure 6.6 shows the equivalent dynamics when the condition of adiabatic floor is replaced with 

that of wall at constant temperature. 

In line with what one would expect on the basis of simple physical arguments (see Fig. 6.6a), 

“heat island” effects can be produced in the region located above the step (as a result of the 

increased amount of heat being transferred for x<A/2 from the solid boundary to the fluid). A 

significant change also becomes effective in the left portion of the cavity. A roll, adjacent the top 

wall and stretched in the horizontal direction, is created just after the inflow section. Owing to 

this convective effect, the fluid entering the system from the left is deflected towards the bottom 

and its velocity greatly increases (the maximum velocity being comparable to that obtained in the 

region of fluid located above the step). The cold fluid takes a downward route and travels very 

close to the floor for a while (x<A/2). As soon it reaches the hot step (xA/2) it is forced to rise, 

spreads itself in the right half portion of the domain and then continues to travel undisturbed in 

the downstream direction. For Ra=1x105 (Fig. 6.6(b)), no significant differences can be 

highlighted with regard to the flow topology and structure. In terms of temperature distribution, 

however, a mitigation of the above-mentioned heat island effect can be noticed (due to the 

increased amount of cold fluid being injected in the cavity per unit time).  

The complexity of the velocity field starts to grow as soon as the Rayleigh is set to the value 

Ra=1x106 (Fig. 6.6c). The flow becomes time-dependent. As it is evident from the temperature 

distribution, thermal plumes now originate directly from the surface of the hot floor (x<A/2) and 

travel to the right. When a plume of such a series meets the hot vertical surface of the step, it 

merges with the related (vertical) thermal boundary layer producing a disturbance (a bulge in 

the thickness of the boundary layer) directed upwards. This disturbance is then transferred to the 

horizontal branch of boundary layer (developing from the leading edge of the step in the same 

direction of the prevailing flow, i.e., from left to right). Accordingly, a train of traveling plumes 

can be recognized above the entire horizontal surface of the step, which formally behaves as a 

wave propagating in the downstream direction.  

The final increase in the Rayleigh number to Ra=1x107 (Fig. 6.6(d)), makes the velocity field 

more involved. Again, plumes originating from the extended surface of floor (x<A/2) and step 

(x>A/2) can be seen. The plumes have thin, sharp stem with well-defined cap and lobes that are 
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considerably deformed by vortex structures. As the reader will immediately realize by inspecting 

Fig. 6.7b, the velocity frequency spectrum is moderately turbulent and relatively similar to that 

obtained for the configuration with adiabatic bottom (Fig. 6.7a). Both align with the Kolmogorov 

law for  in the range between 4x103 and 105.  

 

a b) 

 

Figure 6.7: Frequency spectrum for Ri=100 and Ra=107: a) adiabatic bottom, b) Hot bottom. 

The dashed line indicates the corresponding trend for the pure buoyancy case (Ri→) and the 

red line refers to the Kolmogorov law. 

 

Comparison with the corresponding trend obtained in the pure buoyancy case (see the dashed 

line), indicates that the overall spectrum is shifted to the right, i.e., that for Ri=100 the energy 

tends to reside on smaller temporal scales (which indirectly confirms that new instability 

mechanisms are enabled with respect to the situation with pure buoyancy convection considered 

in Sect. 6.1). 

the snapshots of temperature and velocity fields are not shown for Ri=30 as they are qualitatively 

similar to those for Ri=100. However, precise information about the dependence of heat transfer 

on the problem parameters (as quantitatively substantiated through the Nusselt number vs Ra and 

Ri) is reported in the form of dedicated tables (the Reader being referred again to Tables 6.1 and 

6.2).  
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a) b) 

 

Figure 6.8: Velocity (horizontal component) signals for Ri =30 and Ra=107 provided by probes 

located in the region with reduced cross-sectional area (x>A/2): a) adiabatic floor case (probe 

point (9.5, 0.6)), b) hot floor case (probe point (5.5, 0.7)). 

 

For this specific value of the Richardson number (Ri=30),  here only the behaviour of the 

velocity signals for Ra=107 is considered. Insights into the role played by the thermal boundary 

conditions for this condition can immediately be gathered from Fig. 6.9. Indeed, as a fleeting 

glimpse into the right and left panels of this figure would immediately reveal, the signal for the 

adiabatic case displays a much more contained amplitude and a simpler frequency spectrum; this 

apparently innocuous observation should be regarded as an important clue for a notable 

difference in the related hierarchy of bifurcations ( clarified further in Sect. 6.4.1).  

Figures 6.8a and 6.8b are instructive also for another reason. They clearly illustrate that every 

time a thermal plume passes through a given observation point (the probe location indicated in 

the figure caption) a peak is produced in the corresponding horizontal component of the velocity. 

Such an increase can obviously be ascribed to the additional ‘blocking’ effect produced by the 

vertical eruptions of hot fluid (formally behaving as an additional obstruction in the flow forcing 

it to increase locally its horizontal velocity in order to conserve the volumetric flow rate).  

 

6.3 Mixed convection for Ri=1 

This section is devoted to the situation where forced and buoyancy convection have comparable 

strength, i.e., Ri=1. Since the numerical results for Ra=104 and 105 simply show regular and 

laminar (steady) flow, for the sake of conciseness,  they are not described in detail here (the 

reader being referred once again to Tables 6.1 and 6.2 for some related quantitative details). 

Interestingly, as revealed by Fig. 6.9a, though for Ra=106 and adiabatic floor no thermal plumes 

can be identified, some “corrugation” pops up in the shape of both the kinematic and thermal 

boundary layers developing along the top wall of the step (x>A/2). A further increase in the 
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Rayleigh number to Ra=1x107 (Fig. 6.9b) results in a slightly more complex velocity field. A 

horizontally stretched recirculation zone can be clearly observed on the surface of top wall of the 

step just after its leading edge.  

 

 

 
 

a) 

 

 
 

b) 

 

Figure 6.9: Snapshots of velocity field and temperature distribution for the case of hybrid 

forced/buoyancy convection (Ri=1) and cavity with adiabatic bottom wall a) Ra=106, b) Ra=107. 

A bubble of recirculating flow originating from the leading edge (the step corner) can be seen in 

all cases. 
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Though its horizontal extension changes slightly in time, this zone always originates from the 

corner. However, it is not the only recirculation region located on the top boundary of the step. 

Notably, for x>A/2 the kinematic boundary layer separates and reattaches continuously and, in 

light of the earlier results for larger values of the Richardson number, it can be  argued  that  an  

explanation  for  this intermittent behaviour should be sought in the temperature field. Plumes are 

located at those specific points where the flow is seen to be rising. Plume formation forces the 

fluid to rise and as result to separate from the horizontal wall of the hot step. However, the flow 

re-attaches quickly (the small space that is left behind on the surface can be viewed as a bump). 

Put simply, the plumes formed in this case do not have enough time to extend in the vertical 

direction as the imposed horizontal flow continuously bends them. Interestingly, as evident in 

Fig. 6.9b, while plumes are transported by the dominant flow in the downstream direction, they 

can give rise to some fascinating spiral-like configurations. 

 

 

 
 

a) 
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b) 

 

Figure 6.10: Snapshots of velocity field and temperature distribution for the case of hybrid 

forced/buoyancy convection (Ri=1) and cavity with hot bottom wall: a) Ra=106, b) Ra=107. A 

bubble of recirculating flow originating from the leading edge (the step corner) can be seen in all 

cases. 

 

Figure 6.10 refers to the other case in which the floor is kept at a constant temperature. The most 

striking change with respect to the situations with larger values of the Richardson number (see 

again Fig. 6.6) essentially concerns the pre-step area, i.e., x<A/2. Remarkably, for Ri=1 no 

bulges or corrugation of the thermal boundary layer can be detected in the left part of the domain 

even if the largest possible value of the Rayleigh number is considered (Ra=107 in Fig. 6.10b), 

which means that there the boundary layer is essentially stable from a fluid-dynamic point of 

view.  

 

 
a)                                                                      b) 

Figure 6.11: Velocity signals for Ri =1 and Ra=107 provided by a probe located in the region 

with reduced cross-sectional area (7.5, 0.75): a) adiabatic floor case (3.58x104), b) hot floor 

case (3.38x104).  

 

The velocity plot for Ra=107 (Fig. 6.11) however shows that the flow is highly unsteady in the 

region located above the step, where the complex interplay between thermal plumes responsible 

for vertical fluid motion and the horizontal forced flow results again in a series of “bubbles” 

(localized regions of vorticity) more or less uniformly spaced along the boundary (which travel 
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continuously in the downstream direction; the behaviour being similar to that observed for the 

adiabatic floor case). 

Since a bubble of recirculating flow steadily attached to (originating from) the leading edge of 

the step can be seen in all cases,  it can be concluded that hydrodynamic effects play a much 

important role for relatively small (unit) values of the Richardson number (more specifically, the 

primary source of disturbances, which  for larger values of Ri is represented by the relatively 

strong thermal plume stemming from the step corner is gradually transferred to a strongly 

unsteady bubble of hydrodynamic nature located in the same area;  this concept will be 

elaborated further in Sect. 6.4). 

As already discussed to a certain extent before, however, bubbles are also present along the 

entire extension of the top surface of the step. On the basis of the present framework, relying on 

direct comparison of the statistics of the temporally evolving velocity field with the 

corresponding temperature field,  it can be argued that these localized eddies should be simply 

seen as the limiting condition attained by thermal plumes folding in on themselves due to the 

fluid coming from the left. As shown by both Fig. 6.9b and 6.10b, regardless of the specific 

thermal condition used for the floor of the duct, their appearance in space is relatively ordered 

(flow eruptions being created at periodic intervals), this observation being also supported by the 

regularity of the corresponding velocity fluctuations measured in a fixed point (Fig. 6.11).  

 

6.4. Discussion 

 

In this section some general arguments are elaborated to interpret the trends displayed by the 

considered system. In particular, such a discussion is supported by the precise determination of 

the conditions for the onset of the first Hopf bifurcation (namely, the critical Rayleigh number to 

be exceeded to produce oscillatory flow for different values of Ri). These data are intentionally 

used alongside the structure of the related fluid-dynamic “disturbances” to get additional insights 

into the mechanisms that govern the onset of unsteadiness and the ensuing evolution towards 

chaos.  It is important to remark that, given the nature of the numerical strategy used in the 

present study (relying on the direct solution of the balance equations for mass, momentum and 

energy in their complete, time-dependent and non-linear form, as illustrated in Chapter 2), the 

transition Ra has been determined by means of numerical experiments (by increasing it until the 

flow becomes oscillatory and then increasing/decreasing it in a certain neighbour of the 

previously found value). The final value has been determined through extrapolation to zero of 

the amplitude of oscillations. Moreover, the spatial structure of the fluid-dynamic disturbances 

responsible for the transition from steady to oscillatory flow has been determined ‘a posteriori’, 

i.e., by subtracting the time-averaged thermofluid-dynamic field to the instantaneous one for 

conditions located slightly above the transition point (i.e., Ra slightly larger than Racr).  

Towards the end to elaborate an exhaustive picture of the overall thermofluid-dynamic scenario, 

a discussion is elaborated for the quantitative data obtained for the heat exchange taking place 

between the fluid and the wall of the heated step (i.e., its vertical and horizontal boundaries) for 
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the different situations examined in Sect. 6.1,6.2 and 6.3. For the convenience of the Reader, all 

this information is organized in the form of synthetic tables and ‘maps’ where the critical 

conditions and the Nusselt number are reported as function of Ra and Ri.  

 

6.4.1 Influence of the Richardson number on the bifurcation scenario 

 

The bifurcation scenario for the system with adiabatic floor is presented in Fig. 6.12. Snapshots 

of the related disturbances have been collected in Fig. 6.13.  

 

 

 

Figure 6.12: Bifurcation scenario for the adiabatic floor case. 

  

On the basis of the numerical results shown in Figs. 6.1, it could have already been concluded 

that for pure buoyancy with the adiabatic floor the transition from stationary to oscillatory 

conditions occurs somewhere between Ra = 105 and Ra = 106. By means of an extensive 

parametric investigation conducted by refining iteratively the value of the Rayleigh number in 

this interval,  the value of the Ra required for the Hopf bifurcation could be determined as 

Racr6.2x105 (see the line corresponding to Ri→ in Fig. 6.12). 

A snapshot of the related disturbances (obtained by subtracting the time-averaged velocity field 

from the instantaneous one) is shown in Fig. 6.13a. This figure is instrumental in showing that 

the perturbations behave essentially as a wave traveling to the left region of the domain (using 

the upper branch of the Hadley circulation as a substrate for propagation, see Sect. 1.1.4.2). This 

wave apparently originates from the rolls of RB nature (Sect. 1.1.4.1)  located above the step, in 

proximity to the corner (A/2<x<3A/4). Accordingly,   it could be argued that the main source of 

the instability is located just above the step, in the area where the coalescence between the main 

Hadley circulation and the first roll of the RB series occurs. This observation, in turn, indicates 

that the transition process is essentially driven by a competition of the RB and Hadley 
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mechanisms in a very localized region. The existence of a wave travelling towards the left 

(visible in the left part of the cavity) should therefore be seen as a secondary effect induced by 

such a process. Put simply, the interplay of RB and Hadley flow in proximity to the corner is the 

main oscillatory mechanism that produces a local ‘forcing’ able to excite a shear-driven wave 

travelling in the left part of the cavity (where the Hadley flow is dominant). Dynamics of such a 

kind have been extensively observed in purely Hadley flow problems (buoyancy convection in 

rectangular containers heated from the side, Le Quéré and Behnia, 1998) where the forcing 

needed for the excitation the wave is generally provided by boundary layer instabilities or similar 

phenomena (Ferialdi et al. 2020, Gelfgat, 2020). 

 

 

a) 

 

b) 

 

c) 
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d) 

 

Figure 6.13: Snapshot of the velocity disturbances for the cavity with the adiabatic floor (first 

Hopf bifurcation): a) Ri→, Ra6.6x105, b) Ri=100, Ra4.3x105, c) Ri=30, Ra4x106, d) Ri=1, 

Ra1x106.  

 

For Ri=100, (Fig. 6.12, second line from the top) the value of the critical Rayleigh number 

decreases appreciably with respect to that obtained in the limit as Ri→. Remarkable changes 

can also be seen in the mechanism underpinning the instability (as revealed by Fig. 6.13b). The 

disturbances still manifest themselves in the form of a wave. The location and sense of 

propagation of this wave, however, are completely different. It is now located in the right part of 

the domain (the region x>A/2 with reduced cross-sectional extension). Moreover, the 

disturbances travel in the downstream direction with respect to the forced flow, i.e., from left to 

right (it was in the opposite sense for Ri→). 

The key to understanding this behaviour lies in considering the competition between convection 

of the RB type and forced flow. While the former tends to create localized eruptions of hot fluid 

directed upwards (thermal plumes), the latter tends to displace fluid in the horizontal direction. 

The instability is essentially a result of the interplay of these two concurrent convective 

mechanisms along the entire top surface of the step.   

A further decrease in the Richardson number (Ri=30), make obviously the contribution brought 

in by forced convection more important. This is indeed reflected by the morphology of 

disturbances. As a fleeting glimpse into Fig. 6.13c would confirm, -shaped disturbances 

essentially develop inside the thermal and kinematic boundary layers (which for Pr=1 have 

obviously comparable thickness). The required value of the Rayleigh number undergoes a 

significant increase, and a justification for this behaviour can be rooted directly in the nature of 

the disturbances per se (which, unlike those shown in Fig. 6.13b, are now forced to grow inside 

the boundary layer). 

Figure 6.13d is extremely useful as it reveals that the main mechanism responsible for the 

development of unsteady flow is transferred from that associated with the propagation and 

growth of disturbances in the boundary layer for Ri=30, to a different process where disturbances 

are essentially produced inside the recirculating bubble of limited extension, which originates 

from the leading edge for Ri=1.  

As a concluding remark for this analysis,  it is important  to highlight that the continuous switch 

from one instability mechanism to another as the Richardson number is varied should be 

regarded as a relevant justification for the scattered appearance of the critical points in Fig. 6.12. 
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The distribution of critical parameters for the companion configuration with the hot floor is 

illustrated in Fig. 6.14.  

 

 
Figure 6.14: Bifurcation scenario for the hot floor case. 

 

This figure and the companion sequence of fluid-dynamic disturbance snapshots collected in Fig. 

6.15 indicate that interpreting the role played in such dynamics by the thermal conditions 

adopted for the floor (x<A/2) is not as straightforward as one would imagine.   

As implicitly evident in Fig. 6.14, the instability scenario dramatically changes. As already 

indicated by the preliminary analysis (Sect. 6.1) conducted by progressively increasing the order 

of magnitude of the Rayleigh number, the transition to oscillatory flow for pure buoyancy flow 

(Ri→) takes place earlier for the hot floor in comparison to the adiabatic case (for a smaller Ra, 

i.e., Racrx104, determined using the same approach discussed before, see the line of Fig. 

6.14 corresponding to Ri→). A striking difference can be spotted when the spatial structure of 

the related disturbances is considered (Fig. 6.15a). Fluid-dynamic perturbations keep on 

originating from the corner of the step as a result of the significant amount of vertical shear 

produced by the inclined thermal plume located there (as shown in Fig. 6.4 this plume is always 

inclined to the left). In this case, however, no wave traveling to the left is generated owing to the 

lack of a horizontal current of the Hadley type which can support it (Sect. 1.1.4.2). 

An explanation for the decrease in the value of the critical Rayleigh number with respect to the 

equivalent configuration with the adiabatic floor can be elaborated in its simplest form on the 

basis of the argument that the system is entirely dominated (over its entire horizontal extension) 

by pure RB convection (Sect. 1.1.4.1). This leads to a significant increase in the strength of the 

main thermal plume originating from the corner of the step and in the ensuing associated shear 

stress responsible for the onset of the oscillatory instability (Pera and Gebhart, 1971; Desrayaud 

and Lauriat, 1993; Cortese and Balachandar, 1993; Vincent and Yuen, 1999).   
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As revealed by Fig. 6.15b (Ri=100), if a forced flow is superimposed on thermal convection, the 

disturbances generated by the corner plume (which changes its inclination in order to align with 

the forced flow) are transported in the downstream direction, thereby exciting a response that 

develops in the form of weak rolls superimposed on the horizontal current (it can be seen that the 

amplitude of this disturbance is amplified as it travels towards the outlet).   

Interestingly, as quantitatively substantiated by the data reported in Fig. 6.14, a decrease in Ri 

has in general a beneficial effect in terms of critical Rayleigh number, i.e., Racr becomes higher 

(the trend is monotonic). In other words, the presence of forced flow has a stabilizing influence 

on the overall dynamics, which requires a proper interpretation too.  

The reader could be led to a heuristic realization of the related underlying cause-and-effect 

relationship by simply considering that, as already explained to a certain extent in the previous 

text, the instability of mixed forced-buoyancy convection is essentially driven by the competition 

of these two different mechanisms of convection. The tendency of hot fluid to rise vertically and 

the effect of the imposed horizontal flow that acts to bend it to the right (eventually causing the 

reattachment of the boundary layer) is the main mechanism leading to the unsteady production of 

vorticity in the form of “bubbles” which travel in the downstream direction. A decrease in Ri, i.e. 

an increase in the relative importance of forced flow with respect to thermal buoyancy, must 

necessarily correspond to higher values of the Rayleigh number needed to excite the competition 

of buoyant and forced flow in the duct.  

 

a) 

 

b) 
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 c) 

 

d) 

 

Figure 6.15: Snapshot of the velocity disturbances for the cavity with the hot floor, (first Hopf 

bifurcation): a) Ri→, Ra7.89x104, b) Ri=100, Ra1.5x105, c) Ri=30, Ra3x105, d) Ri=1, 

Ra1x106.  

 

As witnessed by Fig. 6.15c, as Ri is decreased from 100 to 30, there is a small variation in the 

required value of the Rayleigh number and disturbances still take their energy from the main 

plume that originates from the leading edge. Comparison with the equivalent case with the 

adiabatic floor (Fig. 6.13c), indicates that the much higher value of Racr in that case is due to the 

lack of the strong thermal plume located at xA/2 (among other things, this observation also 

provides a justification for the different level of complexity displayed by the signals in the left 

and right panels of Fig. 6.8; the more complex spectrum for the hot floor case is obviously due to 

the two orders of magnitude of distance between Ra=107 and the Racr). 

For Ri=1, the corner plume finally collapses in a region of recirculating flow attached to the 

leading edge, thereby making the main instability mechanism for the hot floor case equivalent to 

that already discussed for the adiabatic floor configuration (as also indirectly confirmed by the 

fact that the critical Rayleigh number is essentially the same). Another way to think about this 

behaviour is to consider that for such circumstances the dynamics produced by buoyancy 

convection in the pre-step area (x<A/2) have an almost negligible influence on the mechanisms 

supporting the instability (which further confirms our interpretation about the more important 

role played by hydrodynamic disturbances in this case).   

 

6.4.2 Heat Exchange 

 

With the only exception of the purely diffusive state, in general, for the adiabatic floor 

configuration  
vert

stepNu >
horiz

stepNu  (Table 6.1). This result is not unexpected. For the case of pure 



                                                                                                                     

112 

 

buoyancy convection, a simple rationale for this behaviour can be elaborated taking into account 

the relative importance (or magnitude) of the buoyancy forces at work in the left (x<A/2) and 

right (x>A/2) regions of the physical domain. As the intensity of this force is known to scale with 

L3 where L is the effective depth of the considered region, this fundamental dependence is the 

key ingredient needed to formulate a justification for the different magnitude of the Nusselt 

number related to the two sides of the step. Under a slightly different perspective, the same 

concept could be re-introduced basing it directly on the ‘effective’ Rayleigh number experienced 

by the fluid in the two sides of the cavity (that affecting the fluid located in the region x>A/2 

being eight times smaller than that effective for x<A/2). Put simply, as the vertical side “feels” 

the strong convective cell of the Hadley type established in the left portion of the domain, the 

intensity of heat exchange along this wall is obviously higher (while the horizontal side is only 

subjected to the weak rolls of the RB type emerging there). 

A similar argument holds when finite values of the Richardson number are considered (even 

though this case calls for a complementary explanation). For such a situation, for a given value 

of the Rayleigh number the velocity of fluid rising along the vertical side of the step is even 

higher than that produced for pure buoyancy convection. Such an increase in velocity obviously 

follows from the presence of two concurrent mechanisms driving the fluid along the vertical wall, 

namely, the buoyancy effect (which forces fluid to rise) and the additional upward velocity 

produced by the imposed flow (which forces fluid to turn around the step). Therefore, the reason 

for the even larger difference between  
vert

stepNu  and
horiz

stepNu when the values Ri = 30 and Ri =100 is 

considered resides in the presence of these two aiding (reciprocally reinforcing) effects.   

 

Table 6.1: Nusselt number as a function Ra and Ri for the adiabatic floor case. 

 

Ra Ri 
horiz

stepNu  
vert

stepNu  Regime 

0 N/A 2.0417 1.6731 Purely Diffusive 

104  2.0077 4.6240 Steady 

105 - 5.6375 9.4742 Steady 

106 - 9.8594 (average) 17.5227 (average) Quasi-periodic 

107 - 16.5836 (average) 30.9278 (average) Moderately 

Turbulent 

104 100  1.2987 5.6315 Steady 

105 -  3.2347 10.6367   Steady 

106 -  6.3597(average) 19.7056 (average) Multi-frequency 

spectrum 

107 - 16.5881(average) 35.8678(average) Moderately 

Turbulent 
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104 30 2.2856 5.8999 Steady 

105 - 4.1605 10.8647 Steady 

106 -  6.1746 (average) 20.0669(average) Steady 

107 - 13.1961 (average) 36.3426 (average) Time-periodic 

104 1  5.1047 9.2652 Steady 

105 - 7.6590 15.6639 Steady 

106 -  12.7710 (average) 26.4171 (average) Quasi-Periodic 

107 - 39.07695 (average) 45.4150 (average) Unsteady with 

dominant frequency  

 

 Table 6.2:  Nusselt number as a function Ra and Ri for the hot floor case. 

 

Ra Ri 
horiz

stepNu  
vert

stepNu  Regime 

0 N/A 2.0329 0.8782 Purely Diffusive 

104  2.0113 0.9457 Steady 

105 - 5.6299 1.6408 Periodic 

106 - 10.8293 (average) 3.0102 (average) Periodic 

107 - 18.6177 (average) 8.0191 (average) Weakly Turbulent 

104 100  0.2390 0.3284  Steady 

105 -  1.4868 2.0256 Steady 

106 -  5.5144 (average) 7.1233 (average) Multifrequency 

107 - 14.2736 (average) 19.5536 (average) Moderately 

Turbulent 

104 30  1.0157  0.9922 Steady 

105 -  2.6784  2.7333 Steady 

106 -  6.1050 (average) 8.2020 (average) Multifrequency 

107 - 16.1624 (average) 24.7982 (average) Moderately 

Turbulent 

104 1 3.6248 2.5971 Steady 

105 -  5.4746 4.8390 Steady 

106 - 10.2654 (average) 8.9180 (average) Quasi-Periodic 

107 -  38.1026 (average) 16.5762 (average) Unsteady with 

dominant frequency  
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The data for the companion case with hot floor are quantitatively presented in Table 6.2. Careful 

comparison with Table 6.1 reveals a significant lowering of 
vert

stepNu , which requires a proper 

justification.  

In particular, a straightforward interpretation can be sought directly in the temperature 

distribution. In this regard, coming back to the results shown in Figs. 6.4, 6.6 and 6.10 is 

extremely useful; once again, these figures clearly show the presence of well-defined thermal 

(hot) boundary layers developing along the (hot) horizontal floor of the duct. To emphasize 

further the significance of this observation, one should keep in mind that, unlike the 

configuration with the adiabatic bottom (where all the fluid transported towards the step is cold), 

for these cases, fluid that has already acquired a significant amount of heat tends to be entrained 

into the boundary layer developing along the vertical step wall. The reduced temperature 

difference between the incoming fluid and the temperature of the step itself can obviously be 

regarded as the main factor contributing to the generalized observable shrinkage in the values of 
vert

stepNu . 

 

6.4.3 Critical comparison with compact cavity: 

 

After clarifying the patterning behaviour and the related disturbances emerging for different 

values of Ra and Ri, in this section a comparison is made between the compact cavity case 

treated in Chapter 5 and the elongated channel considered in the present chapter. For the 

comparison, the value of Ri=1 is considered for which the forced convection and buoyancy 

convection have similar strength. 

It is important to recall that for the compact cavity case with aligned inflow and outflow section, 

the value of the critical parameter for both adiabatic and hot floor was determined as 

Racritical1.2x106 whereas for an elongated channel with FFS the value of the critical parameter is 

Racritical4.7x105. The difference in the values of critical Rayleigh number can be attributed to the 

difference in the location of fluid dynamic disturbances and intensity. The disturbances in both 

cases have a significant hydrodynamic component due to the strong forced convection present 

inside the domain. For the case with elongated channel, disturbances of hydrodynamic 

oscillatory nature tend to develop inside the localised recirculating bubble originating from the 

step corner. By contrast, for the compact cavity case with aligned inlet and outlet, such a 

recirculation bubble is not formed near the corner of the step and a suitable justification for this 

can be found in the inability of the flow to directly strike the hot step. A recirculation bubble is 

typically observed when the flow comes in direct contact with an obstacle, however this 

behaviour is not observed due to the position of the inlet not being aligned with the step. 

Consequently, for both adiabatic and isothermal floor case, the disturbances instead of being 

localised near the step corner are seen to occupy the almost entire upper right portion of the 

compact cavity demonstrating a strong vertical shear driven nature. The hydrodynamic 

disturbances present inside elongated channel are stronger due to the much more abrupt variation 
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undergone by the flow in terms of curvature, which explains why the related critical value if 

smaller.  

The understanding could be further increased by making a comparison between the elongated 

channel and compact cavity with misaligned inlet and outlet. The value of the Racrfor misaligned 

inflow and outflow case was determined as Racritical3.8x106 and Racritical3.2x106, for the cavity 

with adiabatic and hot floor, respectively. Again, it can be observed that these values are still 

higher as compared to Racr values for elongated channel with FFS and it is worth examining the 

disturbances again. The disturbances for the misaligned inflow and outflow section (Fig. 5.17) 

are of shear driven nature essentially located above the step and left lower portion of the cavity. 

The role of buoyancy in inducing additional disturbances is very limited for the adiabatic and hot 

floor case which is a major difference in comparison to the elongated channel with FFS where 

the combined role of thermal and hydrodynamic effects was observed. This difference could be 

attributed to decrease horizontal extension in the compact cavity case which for the elongated 

channel serves as a breeding ground for the emergence of hot vertical convective structure 

(thermal plumes).  

It is important to highlight that the quicker onset of oscillatory flow for the elongated channel 

also occurs due to the presence of relatively strong hydrodynamic perturbations which originates 

as a result of increased injection of cold fluid inside the domain. Such hydrodynamic effects are 

weaker inside the compact cavity where a small amount of fluid enters the domain through a 

small inlet (having a non-dimensional vertical extension d=0.1).   

 

 

6.5. Conclusions 

 

The main conclusions of the present chapter can be summarized as follows: 

• When the floor of the region preceding the step is adiabatic a change from the condition 

Ri= to finite Ri causes a dramatic variation in the system oscillatory response and 

related patterning behaviour. While for pure buoyancy the Hopf bifurcation must be 

ascribed to an instability of the leftward directed current of the Hadley type originating 

from the step corner, for finite Ri=100, it manifests in the form of plumes that 

periodically nucleate at a certain distance (in the downstream direction) from the step 

corner and travel to the right.   

• An increase in Ra at fixed Ri (yet for the thermally insulated floor) has a very interesting 

effect. Plumes are produced at a much smaller distance from the leading edge. Moreover, 

their extension in the vertical direction becomes progressively smaller, which can be 

interpreted taking into account the dual influence of a simultaneous increase of Ra and Re 

(the former contributing to make plume caps smaller, the latter reducing the available 

time for their stem to grow before they leave the domain through the outflow section). 

• Regardless of the considered thermal condition for the floor preceding the step, when 

turbulent conditions are attained the overall frequency spectrum is shifted to the right 
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with respect to the case of pure buoyancy, i.e. for Ri=100 the energy tends to reside on 

smaller temporal scales (which indicates that new instability mechanisms are enabled 

with respect to the situation with pure buoyancy convection). 

• A decrease in Ri (Ri=30), forces the disturbances to develop inside the thermal and 

kinematic boundary layers (which for Pr=1 have the same thickness). 

• When the Richardson number is finally reduced to 1, the primary source of disturbances, 

which for larger values of Ri is represented by the relatively strong thermal plume 

originating from the step corner is gradually transferred to a strongly unsteady bubble 

located in the same area; hydrodynamic effects play a much important role in these cases; 

the kinematic boundary layer along the upper surface of the step separates and reattaches 

continuously (due to plumes being continuously formed and the imposed horizontal flow 

that quickly bends them). 

• Another outcome of the focused comparison of the fundamental situations with adiabatic 

and bottom floors is that the dynamics of the boundary layer established along the 

vertical side of the step can play a crucial role in determining the heat exchange in this 

region.  

• For the adiabatic floor case, the vigorous upward fluid motion is responsible for the 

higher values taken by the Nusselt number along the vertical wall (with respect to the 

corresponding value for the horizontal side of the step).  

• When the bottom wall of the duct is kept at fixed hot temperature, the additional heat 

entrained into the vertical boundary layer is the main reason for which 
vert

stepNu  undergoes 

an appreciable decrease. 
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Chapter 7 

 

Hybrid Forced-buoyancy convection in a channel with a 

backward-facing step 

 
As evident from the title, in this chapter attention is paid to the BFS configuration. Prior to 

expanding on the results, for the convenience of the reader, the initial part of this chapter is used 

to provide some initial arguments which may help him/her to digest better some of the peculiar 

dynamics and related concepts presented in the following.  

Along these lines, a start is made from the relatively simple remark that, given their intrinsic 

nature, thermally driven convective flows generally tend to emerge in the form of vertical 

currents potentially producing ‘blockage’ in the considered duct (in contrast to the diametrically 

opposite effect induced by the expansion in the available cross-sectional area). In addition to the 

hydrodynamic instabilities, known to affect the shear layer originating from the corner of the 

step and impinging on the bottom wall at x=x1, the instabilities of the thermal boundary layer 

along heated surfaces can also become a relevant aspect of the problem.  

By analysing situations where the forced transport of fluid in such a configuration closely 

interacts with natural convective phenomena of thermal origin,  the aim is to reveal a variety of 

possible situations in which thermally driven effects support or counteract the emergence of flow 

instabilities. Towards this end, in particular,  a deductive process is followed by which the 

Richardson number is progressively increased (the limiting situation Ri→0, being representative 

of the case with forced flow only). As a first relevant example along this analysis hierarchy, the 

cases Ri<1 and Ri=7.5 are considered (Sects. 7.1 and 7.2, respectively).  

 

7.1. Dominant Forced convection RiO(1) 

 

Before starting to deal with the hybrid forced/buoyant flow, Fig. 7.1 provides an instructive short 

excursus on the case of forced flow (no buoyancy).  This is intentionally used to bridge the gap 

with the earlier literature and recall the main properties of the simplified configuration with no 

thermal effects (a pre-requisite for the interpretation of more complex dynamics where buoyancy 

plays a significant role). The related sequence of figures (Figs. 7.1a-7.1d) merely shows that, as 

anticipated in the introduction, for a fixed expansion ratio, the location of the reattachment point 

is shifted in the downstream direction as the Reynolds number is increased. This figure also 

provides a glimpse of the more complex dynamics that are enabled when Re exceeds a given 

threshold (the first Hopf bifurcation occurring for Recr2090 according to the present 

simulations).   
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a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 7.1: Forced convection for increasing values of Re (Ra=0): a) Re=100, b) Re=1000, c) 

Re=2090, d) Re=2500. 

 

In the remainder of this section the focus is shifted to the scenario where, although, thermal 

effects are present (Ri0), forced flow is much stronger than buoyancy convection i.e. Ri =0.25. 

For simplicity, first  the configuration with adiabatic floor is examined, i.e. the case where the 
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main flow is discharged into an ambient with larger cross-sectional area (x>A/2) where no 

thermal convection is being produced (see Fig. 7.2). Increasing values of the Rayleigh number 

are considered for fixed Ri. 

 

 

 
 

 

a) 

 

 
 

 

b) 
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c) 

 

 

 
 

 

d) 

 

 

 
 

 

e) 

 

Figure 7.2: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of dominant forced convection (Ri=0.25), and cavity with adiabatic floor: a) Ra=104; b) Ra=105; 

c) Ra=106; d) Ra=107; e) Ra=108. 
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The velocity distribution for Ra=104 and Re=200 (Re(Ra/RiPr)1/2 ) confirms the presence of a 

roll near the vertical step boundary (Fig. 7.2a). The horizontal size of this roll grows as Ra and 

Re are increased to 105 and 632, and 106 and 2000, respectively (Fig. 7.2b and Fig. 7.2c). 

Inspection of the associated temperature distributions does not reveal unexpected features. 

Thermal boundary layers develop along the heated surfaces (with thickness decreasing as the 

characteristic numbers grow while keeping Ri fixed to 0.25). An additional “free” layer of warm 

fluid originates from the step trailing edge (the corner) and marks the boundary between the 

primary roll and the overlying jet of cold fluid directed from left to right.  

In agreement with the results for the purely forced convection, the flow undergoes a transition 

from a steady state to a time dependent for a value of the Reynolds number close to 2000 (a 

clearly time-dependent solution can be seen Fig. 7.2d for Ra=107, Re=6324, although some signs 

of such a transition can already be detected in Fig. 7.2c in proximity to the outlet). Several 

velocity rolls are formed in this case, one next to the vertical step (associated with flow 

separation) and others along the ceiling. Furthermore, the kinematic boundary layer separates 

and reattaches at two more points along the floor. 

This behaviour is also indirectly revealed by the temperature field which shows the presence of 

thermal plumes at those particular points. The fluid rises and separates as a result of plume 

formation, anyhow the reattachment quickly occurs afterwards. A similar effect was already 

observed in previous studies described in Chapter 6 dealing with mixed convection in the FFS.  

The flow becomes even more chaotic (moderately turbulent) for Ra=108 (Fig. 7.2e). Thermal 

plumes are still formed, but they are strongly bended by the cross flow which forces them to 

adopt a spiral like configuration.  

 

 

 
 

 

a) 

 

 

 



                                                                                                                     

122 
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c) 
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e) 

 

Figure 7.3: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of dominant forced convection (Ri=0.25), and cavity with hot floor: a) Ra=104; b) Ra=105; c) 

Ra=106; d) Ra=107; e) Ra=108. 

 

Figure 7.3 represents the case with the floor (bottom boundary for x>A/2) heated at constant 

temperature. For Ra=104 and 105 the differences with respect to the dynamics already discussed 

for the adiabatic floor configuration are relatively limited, and they simply affect the temperature 

field (where an increase in the average temperature in the portion of the channel with larger 

cross-sectional area can be noticed). Nevertheless, it can be seen that when Ra=106, the flow 

undergoes a well-defined oscillatory behaviour (not present in the equivalent adiabatic case for 

Re=2000, compare Fig. 7.2c). As evident in Fig. 7.3c, thermal plumes are generated 

continuously along the hot boundary and assume a configuration where they are almost equally 

spaced along the horizontal direction (as a thermal plume leaves the system through the outflow, 

a new plume is generated just after the step so that on average the number of plumes present in 

the system is constant (N=3). This train of plumes traveling in the downstream direction causes a 

regular sinusoidal distortion of the main jet of cold fluid directed from left to right. 

For Ra=107 and Ra=108 (see Figs. 7.3d and 7.3e, respectively), the behaviour becomes more 

complex, with the space separating the plumes and their average number not being constant. 

Moreover, a decrease in their vertical size and an increase in their number can be noticed.  

Some additional insights into the role played by buoyancy in such relatively chaotic dynamics 

can be gathered from the frequency spectrum obtained using the signal of a virtual probe located 

at a fixed (representative) position (placed at a certain downstream distance from the step, i.e. 

x=9, y=0.25, see Fig. 7.4). This indicates that the spectrum aligns with the k-5/3 law predicted by 

Kolmogorov for the so-called inertial frequency range (corresponding to the interval of 

wavenumbers where energy cascades at a constant rate, until it is dissipated due to viscous 

effects on the so-called Kolmogorov length scale). A similar correspondence has also been 

observed in other somehow related problems for instance, standard Rayleigh-Bénard convection 

(De et al. 2017), the FFS system in Chapter 6 or the case of a wind current interacting with a 
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distribution of hot blocks (Lappa, 2019). In the present case, comparison of the frequency spectra 

for the cases with adiabatic and hot floor reveals that the differences are almost negligible (note 

the peak-to-peak almost perfect correspondence) and quite an obvious interpretation for this 

behaviour can be directly rooted in the nature of the considered flow, which for Ri<1 may still be 

regarded as an essentially forced flow (the contribution of buoyancy being marginal).  

 

 

 

Figure 7.4: Frequency spectrum for Ri=0.25 and Ra=107 (Legend: black - adiabatic floor, red - 

hot floor, magenta – reference Kolmogorov law). 

 

7.2 Mixed convection for Ri=7.5 

 

If the Richardson number is increased to 7.5 (Fig. 7.5 for the adiabatic floor case), for the 

smallest value of the Rayleigh number considered, namely, Ra=104, the flow is still steady and 

follows a straight path after entering the channel through the inlet (Fig. 7.5a). In agreement with 

the general arguments provided in the introduction for Ri<1, a small roll is formed along the 

bottom wall just after the abscissa where the expansion occurs (i.e., in proximity to the hot 

vertical step wall). Moreover, as expected, the fluid leaves the outlet (x=A) with a lower velocity 

as compared to the velocity at the inlet (as a result of mass conservation, the velocity decreases 

as the cross-sectional area becomes larger). Interestingly, the temperature distribution shows the 

existence of a relatively warm area in the entire right portion of the domain. The heat is released 

from the surface of the horizontal wall for x<A/2 and spreads to the part of the channel with 

larger cross-sectional area. As for a fixed Ra, a larger value of Ri corresponds to a smaller value 

of the Reynolds number, the increase in the average temperature for x>A/2 with respect to that 

visible in the equivalent Fig. 7.2 for smaller Ri, must obviously be ascribed to the reduced flow 

rate of cold fluid.  
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d) 

 

 
 

e) 

 

Figure 7.5: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of hybrid forced/buoyancy convection (Ri=7.5) and cavity with adiabatic floor: a) Ra=104; b) 

Ra=105; c) Ra=106; d) Ra=107; e) Ra=108. 

 

On increasing the Rayleigh number to Ra=105 (Re being 115 for Ri=7.5, see Fig. 7.5b), yet in 

qualitative agreement with known behaviours for the isothermal scenario and smaller values of 

Ri, the size of the localized vortex formed after the step becomes larger. In particular, for such a 

case the reattachment takes place just before the outlet. The ‘heat island’ effect spotted for 

Ra=104, becomes less dramatic due to the increased flow rate (higher Re) of cold fluid being 

injected in the system from the left. 

As expected, if the Rayleigh number is increased by another order of magnitude (i.e., Ra=106, 

Fig. 7.5c) and, accordingly, the Reynolds number Re(Ra/RiPr)1/2 becomes 365, the reattachment 

point is no longer located inside the domain. As a result, the cold fluid being injected in the 

channel from the left takes a straight route until it leaves the outlet with almost the same velocity 

at inlet. In terms of temperature distribution, well-defined (thin) thermal boundary layers become 
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visible along the hot solid surfaces. A thin layer of hot fluid is also released from the corner 

(trailing edge) of the step. This layer separates two regions of colder fluid, one located above it 

and the other underneath.  

Most interestingly, an instability develops along this thin region of warm fluid if (yet keeping Ri 

fixed to 7.5), Ra is raised to 107 (and, accordingly, Re becomes 1154, Fig. 7.5d). The instability 

manifests itself in the form of undulations affecting the shape of the main jet of cold fluid 

leaving the step (entering the region with larger cross-sectional area). As a result of this 

oscillatory behaviour, the thin layer of hot fluid originating from the trailing edge of the step is 

broken into different packets of warm fluid. Nevertheless, no significant mixing occurs between 

the regions of fluid in the upper (y>1/2) and lower (y<1/2) portions of the domain. 

For Ra=108, the level of vorticity present in the fluid increases significantly and the thin hot layer 

is finally mixed with the surrounding fluid at a certain distance from the step owing to the 

formation of vortices being pervasive throughout the vertical extension of the channel, Fig. 7.5e). 
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Figure 7.6: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of hybrid forced/buoyancy convection (Ri=7.5) and hot floor: a) Ra=104; b) Ra=105; c) Ra=106; 

d) Ra=107; e) Ra=108. 

 

The companion situation in which the floor of the channel (y=0, x>A/2) is hot, and therefore it 

can contribute to the generation of convection, is illustrated in Fig. 7.6.  

Direct comparison of Fig. 7.6a with the equivalent 7.5a, clearly indicates that, as expected, the 

heat island effect is enhanced if additional heat is injected into the system for x>A/2 (from 

below). 

For Ra=105, again the dynamics are relatively similar. The heat island starts to reduce in terms of 

intensity; however, this effect is not as rapid as for the adiabatic floor case. 

The departure from the configuration with adiabatic floor, however, becomes dramatic as soon as 

the next figure of the sequence is considered (Fig. 7.6c where Ra=106 and Re365). In these 

circumstances, the buoyancy effect in the right part of the channel (x>A/2) becomes so strong 

that it can cause the onset of (vertical) thermal plumes. For this value of the Rayleigh number, 

these convective features are so extended in the vertical direction that a kind of “blockage’ is 

produced, with the jet of cold fluid directed from left to right being heavily bended and forced to 

create a strong vortex just before a visible large plume. By virtue of such a competition, the flow 

becomes strongly oscillatory.   

The complexity generated in the velocity field further grows when the Rayleigh is again 

increased by an order of a magnitude i.e., Ra=107 (Fig. 7.6d). Quite surprisingly, however, in this 

case, the blockage effects discussed before is mitigated as the vertical currents of warm fluid 

originating from the hot floor have a smaller size (owing to the increase in the Rayleigh number, 

which leads to larger wavenumbers). Finally, for Ra=1x108 (Fig. 7.6e) the plumes become very 

small, and accordingly, the number of rolls produced by their interaction with the main 

horizontal stream of cold fluid increases. These rolls deeply influence the motion of fluid in the 

right side of the cavity as witnessed by the spiral like localized pattern visible in the distribution 

of temperature. 
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Figure 7.7: Frequency spectrum for Ri=7.5 and Ra=107 (Legend: black - adiabatic floor, red - 

hot floor). 

 

Analysis of the frequency spectra for a fixed value of Ra (following the same approach 

undertaken in Sect. 7.1 for Ri=0.25, probe position x=9, y=0.25) is still instrumental in revealing 

the role of buoyancy forces, which in this case can be considered less marginal (see Fig. 7.7). 

This is clearly witnessed by the notable differences in the two spectra in the range of small 

frequencies (angular frequency O(103)), which may be regarded as a clue for the different 

hierarchy of bifurcations characterizing the two systems with adiabatic or hot floor  (this 

interesting concept will be discussed again in Sect. 7.4.1). The two spectra superpose almost 

perfectly in the range of high frequencies, which indirectly confirms that the behaviour of 

turbulence becomes universal on the small spatial scales as soon as ‘memory’ of the dynamics 

developing on larger scales is lost as theorized by Kolmogorov (1941ab).  

 

7.3 Mixed convection for RiO(10) 

 

Following a logical approach where the effects of thermal buoyancy are progressively enhanced 

in comparison to forced convection, in this section, the value of the Richardson number is 

significantly increased (RiO(10)).  
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Figure 7.8: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of hybrid forced/buoyancy convection (Ri=100), and cavity with adiabatic floor: a) Ra=104; b) 

Ra=105; c) Ra=106; d) Ra=107; e) Ra=108. 

 

 

Once again, the two typical scenarios where the floor is either kept adiabatic or isothermal are 

considered in order to get relevant insights into the effects of thermal buoyancy.  
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The first situation is depicted in Fig. 7.8. In particular, as qualitatively substantiated by Fig. 7.8a, 

for Ra=104 and Re=10 (Fig. 7.8a), the velocity field shows that flow is highly laminar ( the cold 

fluid enters the inlet and continues to travel straight without any disruption). Obviously, the heat 

island effect is greatly enhanced in these conditions. The examination of Fig. 7.8b confirms that 

this phenomenon can be mitigated by an increase in Re at fixed Ri (Ra=105, Re=31.6). 

A very interesting change occurs for Ra=106 (Re=100, Fig. 7.8c). For the first time (with respect 

to all the dynamics discussed in the earlier sections), an instability develops along the thermal 

boundary layer already in the left portion of the channel (i.e., in the region of reduced cross-

sectional area, x<A/2). This is made visible by the presence of a sequence of thermal plumes 

traveling in the downstream direction along the top boundary of the step and the ensuing 

distortions induced in the jet of cold fluid. The plumes (and related sinusoidal perturbations 

visible in the velocity field) are evenly spaced in the horizontal direction.    

In these circumstances, the heat island effects inside the channel are weakened due to the 

increased injection (volumetric flow rate) of cold fluid from the left. The flow makes a shift from 

a steady regime to a time dependent one indicating that a Hopf bifurcation has taken place. 

The next figure of the sequence (Fig. 7.8d) confirms that the complexity of the flow keeps 

increasing with Ra and Re. In particular, as the reader will realize by inspecting both Figs. 7.8d 

and 7.8e, phenomena of flow separation and reattachment can be identified directly in the left 

portion of the channel, i.e., before the fluid enters the region of larger cross-sectional area. As a 

result of the disturbances developing (and growing) inside the thermal boundary layer for x<A/2, 

a well-defined jet can no longer be recognized for x>A/2. In this region the flow is characterized 

by a chain of large vortices (having extension comparable to the vertical size of the channel) that 

spread from left to right continuously.    

On increasing Ra, thermal boundary layers have become much thinner and a bending effect is 

observed in the shape of plumes for x<A/2. A rise in their number can also be observed. The 

increased volume of fluid injection per unit time results in entire channel being at moderate 

temperature. 
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Figure 7.9: Snapshots of velocity field (top) and temperature distribution (bottom) for the case 

of hybrid forced/buoyancy convection (Ri=100 and cavity with hot floor: a) Ra=104; b) Ra=105; 

c) Ra=106; d) Ra=107; e) Ra=108. 

 

Figure 7.9 illustrates the series of flow patterns which are produced when the condition of 

adiabatic floor is finally switched to that of isothermal (hot) floor. 

For Ra=104 (Fig. 7.9a), no considerable modifications can be detected in the velocity and 

temperature distribution when a comparison is made with the equivalent adiabatic floor case. 

However, for Ra=105 (Re=31.6, Fig. 7.9b), the flow changes from a steady regime to a time 

dependent state, which must obviously be ascribed to the dynamics enabled in the region x>A/2 

(given the absence of visible disturbances developing in the system for x<A/2). Two velocity 

rolls are formed in this circumstance in comparison to one formed in the adiabatic floor situation. 

As it is evident from the temperature distribution “heat island” effects are still very evident 

inside the domain. 

As soon as the Rayleigh is increased to Ra=106 (Fig. 7.9c), the flow topology starts showing 

distinguishable signs of growing complexity, among them, a remarkable increase in the number 

of velocity rolls for x>A/2. The presence of these vortices near the vertical wall of step, ceiling 

and close to the floor near the outlet forces the fluid to adopt a “snake” like pattern until it leaves 
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the domain. The hot horizontal step wall and floor represent the breeding ground feeding the 

thermal plumes which travel from left to right behaving like a wave of hot air. 

As expected, a subsequent rise in the value of Rayleigh number (Figs. 7.9d and 7.9e) generates a 

turbulent behaviour in the flow. The chaotic nature of the flow is witnessed by the number of 

rolls and the shape of thermal plumes in the region of larger cross-sectional area. The latter are 

no longer all inclined to the right. Moreover, the increased strength of buoyancy favours the 

development of plumes at a very fast rate. These have very distinct features and display thin 

sharp stems alongside sharp cap and lobes which are consistently deformed by vortex structures. 

For the sake of brevity, the patterning behaviour for Ri=25 is not described in detail; the results 

indicate that the temperature and velocity fields for increasing values of Rayleigh number are 

relatively similar to those reported for Ri=100. However, taking a look at the related frequency 

spectra and comparing them with the equivalent ones for Ri=100 (Fig. 7.10) is instructive. 

Indeed, as the reader will realize by inspecting Figs. 7.10a and 7.10b, as Ri exceeds a value  10, 

the differences in the spectra for adiabatic and hot floor are no longer limited to the region of 

small frequencies. A clear departure can also be seen in the range where the spectrum roughly 

aligns with the theoretical predictions by Kolmogorov. In general, a more energetic distribution 

of amplitudes can be seen when the hot floor case is considered, and the key to understanding 

this trend lies in considering that the presence of the hot floor obviously causes a surge in the rate 

of plume generation (increased number of thermal plumes passing through a probe point per unit 

time obviously implies a shift of the related fixed amplitude signal to a higher frequency).   

   

a) b) 

 

Fig. 7.10: Frequency spectrum for Ra=107 (Legend: black - adiabatic floor, red - hot floor, probe 

position x=9, y=0.25): a) Ri=25; b) Ri=100. 
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7.4 Discussion 

 

This section is dedicated to a critical discussion of the results on the basis of arguments related to 

the transition to time-dependence and ensuing evolution towards chaos. In this regard, the 

analysis is directly based on the examination of the structure of the disturbances that are 

produced as a consequence of the first bifurcation of the flow from steady state to oscillatory 

behaviour, i.e., the first Hopf bifurcation. The related “critical” conditions have been determined 

in the present work through an iterative procedure where, while keeping the Richardson number 

fixed, Ra and Re are increased/decreased in order to determine the corresponding values (Ra, Re) 

for which the flow becomes oscillatory as precisely as possible (the critical value being finally 

determined through quadratic extrapolation of the amplitude of the maximum oscillatory velocity 

to zero, see Table 7.1).  

The associated disturbances (being ideally equal to zero in the critical conditions) are also 

provided in the present section (for values of Ra and Re, slightly larger than the critical ones). 

Following the same approach already implemented in Chapter 6 for FFS, in practice such 

perturbations have been obtained by subtracting a time-averaged velocity field (computed over 

one period of the oscillations) to the instantaneous field provided by the solution of the non-

linear governing equations described in Chapter 2.       

 

7.4.1 Critical conditions and Disturbances   

 

Table 7.1. Values of Critical parameters (Racr, Recr) for the BFS with adiabatic and hot floor. 

 

 Adiabatic floor (Racr, Recr) Hot Floor (Racr, Recr) 

Ri=0.25 1.22x106, 2209 5.15x105, 1435 

Ri=7.5 2.56x106, 584 1x105, 115 

Ri=25 6.35x105, 159 6.5x104, 51 

Ri=100 3.03x105, 55 6.1x104, 25 

 

For consistency with Sect. 7.1,7.2 and 7.3,  the discussion is implemented starting from the with 

adiabatic floor, the associated disturbances being collected in Fig. 7.11. The simplest case is 

obviously represented by the condition Ri=0.25 for which the critical conditions (Recr2210) are 

almost identical to those determined for purely forced flow (let us recall that for Ri=0, 

Recr2090). The proximity of the critical values clearly indicates that the role of buoyancy can be 

considered almost negligible in this case. As shown in Fig. 7.11a, the disturbances develop just 

after the abscissa where the sudden change in the cross-sectional area occurs. These 

perturbations can be considered of hydrodynamic nature, i.e., they are induced by the vertical 

shear present in the separated shear layer (originating from the corner of the step and reattaching 

at a certain distance from it).  

As the Richardson number becomes larger than 1, however, a notable change in the disturbance 

patterning behaviour can be noticed (Fig. 7.11b for Ri=7.5). The perturbations are now 
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essentially located in the portion of fluid located under the layer of relatively warm fluid 

originating from the step trailing edge. Fluid-dynamic disturbances are generated close to the 

vertical wall of the step in the form of weak rolls and their amplitude grows as the rolls are 

spread in the downstream direction. As this layer is still characterized by significant vertical 

shear, the instability still has a hydrodynamic component. The decrease in the value of the 

critical Reynolds number, however, witnesses the role played by thermal buoyancy in this 

process. The shear layer, indeed, is affected by a destabilizing vertical temperature gradient with 

respect to the fluid located in the upper part of the channel.  

The aiding role of hydrodynamic and thermal (buoyant) effects is reflected in the significant 

lowering of both the critical Ra and Re for Ri=25 (Fig. 7.11c). These are reduced from (2.56x106, 

584) to (6.35x105, 159), respectively. In this case, buoyancy is able to produce modes of 

convection, which also significantly affect the upper part of the channel. These develop in the 

form of a wave (very evident for x>A/2, as qualitatively substantiated by Fig. 7.11c). Most 

notably, the wave originates in the left part of the channel, i.e., just above the hot surface of the 

step (x<A/2), before the separated shear layer is generated, which indicates that the instability 

has a significant buoyant component. When Ri is increased to 100, the most dangerous 

disturbances (i.e., those responsible for the primary bifurcation to time-dependent flow) are 

produced in the region with larger cross-sectional area. However, the location where they attain 

their maximum amplitude is progressively shifted to the left (in the upstream direction) as Ra is 

increased beyond Racr (Fig. 7.11d), which may be regarded once again as a clear signature of the 

buoyant effect.      

 

 

a) 

 

b) 
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Figure 7.11: Snapshots of the velocity disturbances for the cavity with the adiabatic floor (first 

Hopf bifurcation), a) Ri=0.25, Ra1.3x106, b) Ri=7.5, Ra3x106, c) Ri=25, Ra7x105, d) Ri=100, 

Ra5x105. 

 

 

 

a) 
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b) 

 

c) 

 

d) 

 

Figure 7.12: Snapshots of the velocity disturbances for the cavity with the hot floor (first Hopf 

bifurcation), a) Ri=0.25, Ra5.7x105, b) Ri=7.5, Ra1.1x105, c) Ri=25, Ra7x104, d) Ri=100, 

Ra7x105. 

 

The role of gravitational effects may be obviously expected to become increasingly more 

important when the configuration with hot floor is considered (Fig. 7.12, Table 7.1). Comparison 

of the second and third columns of Table 7.1, indeed, leads to the realization that replacement of 

the adiabatic condition with a (destabilizing) hot wall systematically induces a decrease in the 

critical values for the onset of oscillatory flow (in some cases by one order of magnitude for the 

needed value of Ra). Such changes are reflected by significant modifications in the structure of 

the disturbances.   

For Ri=0.25, these are initially localized in the small roll formed in proximity to the vertical side 

of the hot step. The significant role of buoyancy is witnessed by the aforementioned notable 
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lowering of the required value of the critical Reynolds number, which shifts from the value 

almost identical to that needed for isothermal flow found in the adiabatic floor case (2210) to 

1435 (a significant shrinkage can also be spotted in the corresponding value of the Rayleigh 

number). 

For Ri>1, the shear layer of warm fluid originating from the trailing edge of the step (its corner) 

and protruding into the right part of the channel (acting as a kind of watershed between the 

regions y<1/2 and y>1/2) is no longer a feature of the flow. In these cases (see Figs. 7.12b and 

7.12c for Ri=7.5 and 25, respectively), the disturbances are essentially connected to the thermal 

plumes which stem directly from the thermal boundary layer developing along the hot floor of 

the channel. Such disturbances are transported in the downstream direction as a result of forced 

flow and become much more pronounced close to the outlet region. The same property also 

applies to the case Ri=100 (not shown).  

Simulations conducted for larger values of Ra have led to the conclusion that, in general, for 

Ri>O(1), an increase in Ra at fixed Ri causes a displacement of the region where disturbances are 

produced and amplified in the upstream direction (in an area located in proximity to the step 

corner, Fig. 7.12d).  

 

 

a) b) 

 

Figure 7.13: Frequency spectra for Ra=107 (Legend: black - Ri=0.25, blue - Ri=7.5, red - Ri=25, 

green - Ri=100, magenta – reference Kolmogorov law): a) adiabatic floor, b) hot floor. 

 

Along these lines, additional insights can be directly gathered from Fig, 7.13, where the 

frequency spectra obtained for a fixed value of the Rayleigh number (Ra=107) have been 

collected for increasing values of Ri. The dichotomy considered for the thermal boundary 

condition at the bottom wall is once again reflected by the two separate plots shown in Figs. 

7.13a and 7.13b, respectively. Transcending the differences induced by the different nature of the 
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floor, some general and meaningful conclusions can be drawn. Both plots indeed witness the 

hybrid (thermal-hydrodynamic) nature of the instabilities affecting the flow for finite values of 

the Richardson number. On decreasing Ri (increasing Re at fixed Ra), the spectra become more 

energetic due to the hydrodynamic contribution brought in by the forced flow (the branches are 

shifted upwards in the vertical direction). Under a slightly different perspective, the role of 

buoyancy forces might be recognized observing that the differences between the spectra for 

adiabatic and hot floor tend to be enhanced as Ri is increased at fixed Ra (as Ri becomes higher, 

Re is decreased accordingly and the role of most dangerous disturbances is progressively 

transferred from the hydrodynamic ones to those of a purely thermal nature).   

 

7.4.2 Comparison with the Forward-Facing Step   

 

Having completed a sketch of the disturbances patterning behaviour and an assessment of the 

trends of the critical parameters in relation to the role played by thermal buoyancy, the remainder 

of this section is finally devoted to a meaningful comparison with the companion case 

represented by the channel with a Forward-Facing Step (FFS, for which the interplay of 

hydrodynamic and buoyant effects has been investigated in Chapter 6.     

For the purely hydrodynamic case (no thermal or buoyancy effects), consensus exists in the 

literature that the typical outcomes of the flow-step interaction are more complex when the 

decrease of the cross-sectional area occurs in the downstream direction (i.e., for the FFS case). 

Indeed, whilst for the BFS, only one region of separated flow is induced downstream of the 

geometrical expansion (the reader being referred again to the introduction and to the examples in 

Fig. 7.1), with the forward-facing step, vorticity can be produced at several stations (both 

upstream and downstream from the step, see, e.g., Kiya and Sasaki (1983); Cherry et al. (1984); 

Largeau and Moriniere (2007). These localized regions of recirculating fluid can induce 

unsteadiness and other complex phenomena.  

The problem where buoyancy enters the FFS dynamics causing a departure from the classical 

hydrodynamic scenario has been tackled in the aforementioned numerical study in Chapter 6 

where configurations mirror symmetric with respect to those assumed in the present work were 

examined (bottom wall of the region with larger cross-sectional area being either adiabatic or 

kept at the same temperature of the vertical and horizontal boundaries of the step). Equivalent 

conditions were also considered there in terms of values of the Rayleigh number (Rayleigh 

number based on the vertical extension of the region of larger cross-sectional area spanning the 

range from 104 to 108). It is also worth noticing that the values of the Richardson number based 

on the velocity at the inflow were 4 times the corresponding values assumed in Sect. 7.1, 7.2 and 

7.3 (i.e., RiFFS=4RiBFS), which implies the volumetric flow rates of cold fluid injected in the 

channel were identical to those considered in the present work for any given value of the 

Rayleigh number. 

For the convenience of the reader, the main outcomes of that study are reported in Table 7.2. 
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Table 7.2. Values of Critical parameters (Racr, Recr) for the FFS with adiabatic and hot floor. 

 

RiFFS Adiabatic floor (Racr, Recr) Hot Floor (Racr, Recr) 

Ri=4x0.25=1.0 4.7x105, 685.6 4.7x105, 685.6 

Ri=4x7.5=30 3x106, 316.2 2.5x105, 91.3 

Ri=4x25=100 4.2x105, 64.8 1.39x105, 37.3 

 

It can be seen immediately that for the FFS configuration with adiabatic floor the critical 

parameter (for the first Hopf bifurcation) displays a non-monotonic dependence on the 

Richardson number. According to investigations performed in Chapter 6,  this trend could be 

ascribed to a change in the nature of the fluid-dynamic disturbances, which evolve from a purely 

hydrodynamic oscillatory mode of convection (developing in the localized bubble originating 

from the step corner) for RiFFS =1 to perturbations of hybrid buoyant-hydrodynamic nature in the 

region of reduced cross-sectional area for RiFFS >O(1) (in the form of disturbances growing 

continuously inside the thermal and kinematic boundary layer for RiFFS =30, or manifesting 

directly as thermal plumes extended over the entire vertical and horizontal extension of that 

region for RiFFS =100).  

As the reader will easily realize through cross comparison of Tables 7.1 and 7.2 (adiabatic floor 

cases), the behaviour for the BFS is much more regular, and the key to understanding such 

results lies in considering that in the present case, rather than a ‘switch’ from an instability 

mechanism to another, thermal effects play the role of ‘aiding factors’ in enabling instability 

mechanisms. More precisely, buoyancy contributes to make the shear layer of hot fluid that 

originates from the trailing edge of the step more unstable with respect to the situation where the 

only source of disturbances is represented by vertical shear (among other things, this is clearly 

witnessed by the decreasing value of the critical Reynolds number of increasing Ra). On the 

basis of these argument, one may therefore conclude that the statement about the increased 

complexity of the FFS problem with respect to the BFS one might be extended to the situation 

where thermal buoyancy is present. 

A further understanding of these concepts may be gained through examination of the cases with 

hot floor. As qualitatively illustrated in the third column of Tables 7.1 and 7.2, the differences 

between the BFS and the FFS become less striking in this case (an increase in Ri leading to a 

monotonic decrease in the value of the critical parameter regardless of the orientation of the step); 

once again, an explanation/justification for this trend can be elaborated in its simplest form on 

the basis of the realization that in both cases the instability of the hybrid forced-buoyancy 

convection is supported by both types of convection. The competition between the forced flow 

tending to displace parcels of cold fluid to the right and natural convection forcing parcels of hot 

(cold) fluid to move vertically upwards (downwards) is the main process responsible for the 

onset of oscillations.  

Obviously, the details of the effective instability mechanisms enabled in the framework of such 

interplay of concurrent effects also depend sensitively on the forward or backward facing 

arrangement of the step. Indeed, the orientation of the step causes a rupture of the symmetry of 
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the considered system with respect to vertical planes (Lappa, 2017). Under a slightly different 

perspective, the reader may be led to a more heuristic realization of this argument by considering 

that, being a shear flow with variable shear along the horizontal direction, the forced convection 

in a channel with a step obviously breaks the in-plane isotropy which would be typical of a layer 

of fluid uniformly heated from below.  

As reported in Chapter 6 for the FFS with hot floor, disturbances responsible for the onset of 

oscillatory flow are essentially generated by the plume originating from the corner of the step 

(that is reinforced by the hot fluid rising along the vertical side of the step thereby leading to an 

increase in the shear). These (shear driven) disturbances are transported in the downstream 

direction in the region of reduced cross-sectional area (x>A/2 for the FFS), thereby exciting a 

response that develops in the form of weak buoyant rolls (superimposed on the horizontal current 

in this region). For the BFS, as illustrated in Sect 7.1, 7.2 and 7.3 the scenario is quite different. 

Disturbances emerge directly in the form of thermal plumes in the region of larger cross-

sectional area (yet x>A/2 for the BFS). As a result of the vertically extended configuration of 

these plumes, however, mechanisms based on the hydrodynamic (or mixed 

buoyant/hydrodynamic) instability of the warm layer of fluid released from the trailing edge of 

the step are essentially no longer relevant (most of the destabilizing effects being introduced by 

buoyancy).    

 

 

7.5 Conclusions 

 

In order to fill a gap in the literature about the role played by thermal buoyancy in problems of 

(incompressible) flow expansion in channels with a backward facing step (BFS), a suite of 

numerical simulations have been performed varying the parameters that account for strength of 

forced flow and thermal (natural) convection. To compare the simulations on an equal footing 

for different hydrodynamic conditions, fixed values of the Rayleigh number have been 

considered (allowed to span five orders of magnitude for any selected value of the Richardson 

number). In order to discern specific mechanisms depending on thermal effects, the Richardson 

number has been progressively increased from 0 (purely forced flow) to 102 (dominant buoyancy 

convection) and the ensuing numerical problem has been solved for two companion boundary 

conditions, namely, adiabatic or isothermal wall at the bottom of the portion of the domain with 

larger cross-sectional area (the ‘floor’).  

This specific modus operandi has been complemented with a focused investigation aimed to 

determine the critical conditions for which the considered system undergoes a transition from a 

steady state to a time-dependent one. It has been found that, in general, buoyancy convection of 

thermal nature reinforces the hydrodynamic mechanisms responsible for the onset of oscillatory 

flow in the purely forced (isothermal) flow case. This is witnessed by the lowering of the related 

value of the (critical) Reynolds number for fixed values of the Richardson number. As expected, 

this process is mediated by the specific thermal boundary conditions assumed for the floor. 
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When it is adiabatic, both the vertical shear in the separated layer originating from the corner of 

the step and the destabilizing temperature difference established between this layer and the 

surrounding fluid support the onset of fluid-dynamic disturbances. If the floor is kept at the same 

temperature of the step, the role of buoyancy becomes much more important; the instability of 

the aforementioned layer is taken over by a process where thermal plumes nucleate directly at 

the bottom of the channel and become pervasive throughout its vertical extension. 

Analysis of the chaotic frequency spectra for different values of the Richardson number has 

confirmed the hybrid nature of disturbances affecting the flow even at larger values of the 

Rayleigh number. In fact, the progressive displacement of the spectrum towards higher 

amplitudes as the Richardson number is decreased (while keeping fixed the Rayleigh number) 

provides indirect evidence for the role played by hydrodynamic perturbations. Vice versa, 

correlation of the spectra obtained for fixed Ra for growing values of Ri and different thermal 

boundary condition at the bottom wall reveals the increasingly more important influence that 

buoyancy effects can exert on the flow in these circumstances. 

Purely geometrical effects do also play a role in all these dynamics. Meaningful comparison with 

the equivalent phenomena known to affect the companion configuration (FFS) has led to the 

conclusion that the differences between these two systems essentially stem from the facing 

orientation of the step, which causes a rupture of the symmetry of the channel with respect to the 

direction of the flow. In the isothermal case (no buoyancy), the reduced complexity of the BFS 

depends on its inability to induce vorticity and related shear effects both upstream and 

downstream of the step leading edge. In the non-isothermal case with adiabatic floor, the 

scenario for the BFS is yet less complex, as the role of buoyancy is limited to inducing additional 

disturbances in the separated shear layer with respect to those potentially produced by a purely 

hydrodynamic shear-driven mechanism (for the FFS, more complex dynamics are enabled due 

the disjoint influence of hydrodynamic and thermal effects). For the hot floor case, the flow 

instability in both BFS and FFS systems are essentially driven by buoyancy, which explains why 

the trend of the critical parameter is monotonic for both paradigms (some existing differences are 

due to the facing orientation of the step and the related forced flow, which break the in-plane 

isotropy which would be typical of a layer of fluid uniformly heated from below). 
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Chapter 8 

 

Large eddy simulation of three-dimensional hybrid forced-

buoyancy convection in channels with an abrupt section 

variation 

 
In this chapter  three-dimensional FFS and BFS configurations are finally considered. As already 

explained in Chapter 4, the problem is tackled in the frame of a LES approach to reduce the 

otherwise prohibitive number of required gird points.  

Given the still heavy computational weight of these simulations, attention is restricted to a single 

value of the Rayleigh number, i.e. Ra=107, in line with the arguments provided in Sect. 4.6.1. 

Moreover, in order to have the same mass flow rate for the FFS and the BFS, the Richardson 

number is set to 100 and 25, respectively (the Richardson number, defined through eq. (2.15) 

being based on Uforced, i.e. the constant velocity of the fluid at the inflow section) . 

At this stage,  it is important to recall that the LES approach has been successfully applied to 

pure thermal convection (Eidson, 1985; Wong and Lilly, 1994; Kimmel and Domaradzki, 2000; 

Yan, 2007), circumstances involving various kinds of jets in cross flow (Li and Ma, 2003) flows 

(without buoyancy) in ducts with “turbulators” (Ciofalo and Collins, 1992; Murataa and 

Mochizuki, 2000; Labbé, 2002; Cui et al., 2003; Lohász et al., 2006) and forced flows in ducts 

with buoyancy effects (Cabot, 1993; Durrani et al., 2015; Duan and He, 2017; DeLeon and 

Senocak, 2017).  

Although the ranges of values of PrT and Cs commonly used are 0.4PrT1 (Edison, 1985; 

Kimmel and Domaradzki, 2000) and 0.065Cs0.2 (Li and Ma, 2003), or 0.0265Ck0.119 

(assuming C=1.048), general consensus exist that universally valid values for these parameters 

do not exist and that a proper choice of them should be based on careful comparison with 

experiments or with the outcomes of dedicated DNS. It is essential to remark that this specific 

aspect becomes even more critical for the present work, where conditions for which the flow has 

just entered the turbulent regime are considered and for which, therefore, the values traditionally 

used in the literature may not work properly.  

Towards the end to determine reliable values for such parameters, a preliminary set of 

simulations has been conducted comparing the outcomes of the LES model with DNS 

simulations. 

Given the aforementioned prohibitive cost of 3D DNS simulations and taking advantage of the 

isotropic (universal) nature of turbulence on small scales (described in Sect. 4.6), in particular, 

this initial study has been conducted in the framework of two-dimensional (2D) simulations, as 

illustrated in detail in Sect. 8.1. 
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Table 8.1: Non-dimensional values of main frequency for DNS and LES cases (Two-

dimensional numerical simulation, Ra=107). The location of the probes for the FFS case are 

x=7.9, y=0.65 (adiabatic floor) and x=4.8, y=0.5 (hot floor).The location of the probes for the 

BFS case with both adiabatic and hot floor are x=9, y=0.25. 

 

Configuration DNS LES 

Adiabatic floor, Ri=100 (FFS) 20817.6 17478 

Hot floor, Ri=100 (FFS) 12900 10370 

Adiabatic floor, Ri=25 (BFS) 8760.4 7759 

Hot floor, Ri=25 (BFS) 10960 8798.8 

 

 

8.1 Comparison of LES with DNS 

 

In the light of the criteria shown in Sect. 4.6.1, a mesh size of 740x120 has been used for all the 

2D LES simulations with Ra=107 (such a choice corresponding to x=1.35x10-2, y=8.3x10-3), 

whereas for the corresponding DNS the mesh size has been based on the Kolmogorov length 

scale, i.e. eq. (4.5) (which implies x=y=7.5x10-3). The values of Ck and turbulent Prandtl 

number have been changed continuously to understand which ideal set of values can reproduce 

the DNS results with an acceptable agreement.  

Initially, such an iterative procedure has been implemented for the FFS with adiabatic floor. By 

virtue of extensive parametric analysis, the best set of values for both constants Ck and PrT have 

been found to be PrT=0.9 and Ck=10-3. As the reader will realize by inspecting Fig. 8.1, the 

velocity and temperature fields, display almost the same dynamics observed for the DNS case 

(see Fig. 6.5d in Chapter 6, where a mesh with the size of the Kolmogorov length scale was 

used). The results are indeed consistent in terms of number of plumes present in the domain at a 

given instant and related velocity of propagation in the downstream direction. This has also been 

confirmed through analysis of the main frequency of the signal measured by a probe located at a 

fixed position in the flow. These values are reported in the first row of Table 8.1. 

 

 

a) 
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b) 

 

Figure 8.1: Snapshots of velocity field (a) and temperature distribution (b) for the FFS (Ri=100) 

with adiabatic floor (LES, Ck=1x10-3 and PrT=0.9). 

 

 

a)    b) 

 

Figure 8.2: Frequency spectrum for the FFS (Ri=100) with adiabatic floor (probe position x=7.9, 

y=0.65): a) DNS, b) LES. 

 

As an additional check, the entire frequency spectrum has been plotted for both cases. As 

qualitatively and quantitatively substantiated by Fig. 8.2, both the spectra for LES and DNS 

follow the Kolmogorov law in a wide interval of frequencies. As expected, some differences can 

only be spotted for   O(105), which is consistent with the principles of the LES strategy (the 

spatiotemporal behaviour on very small scales or high frequencies being implicitly taken into 

account via the subgrid viscosity rather than being captured directly by the numerical simulation).  

 

 

a) 
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b) 

 

Figure 8.3: Snapshots of velocity field (a) and temperature distribution (b) for the FFS (Ri=100) 

with hot floor (LES, Ck=2x10-3 and PrT=0.9). 

 

In order to determine the sensitivity of the constant Ck to the extent of buoyancy effects present 

in the domain, the same parametric analysis has been repeated considering the equivalent 

configuration in which the entire bottom wall of the channel is hot. This additional set of 

simulations has revealed that the agreement between LES (Fig. 8.3) and DNS still holds provided 

the value of Ck is slightly increased (Ck=2x10-3 and PrT=0.9), as witnessed by Table 8.1 (second 

row) and Fig. 8.4.  

 

a)  b) 

 

Figure 8.4: Frequency spectrum for the FFS (Ri=100) with hot floor (probe position x=4.8, 

y=0.5): a) DNS, b) LES. 

 

For the sake of completeness, Fig. 8.5 provides some additional instructive information, namely, 

the ratio of the main frequencies determined by means of DNS and LES, as a function of the 

constant Ck. It can be seen that as the optimal aforementioned value is exceeded, a further 

increase in this parameter causes a mitigation of the dominant flow frequency until a completely 

steady state is attained for Ck=0.1.  
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Figure 8.5: LES/DNS ratio of main flow frequency (FFS with hot floor, the spline is used to 

guide the eye).  

 

This may be regarded as a clear example of a well-known shortcoming of the LES approach, i.e. 

its tendency to induce flow re-laminarization due to excessive dissipation occurring on the small 

scales if the value of the constant appearing in the expression of the subgrid viscosity is not 

properly tuned. The Smagorinsky model is known to often over-predict subgrid-scale dissipation 

and modify the true energy cascade. Just to cite a few examples, Montazerin et al. (2015) found 

the Smagorinsky coefficient for squirrel-cage fans to be considerably less than its classical value 

Cs=0.166 (corresponding to Ck=0.094); similarly, Bartosiewicz and Duponcheel (2019) observed 

that even a value as small as Cs=0.027 (equivalent to Ck8x10-3) can cause flow re-

laminarization in some regions of the fluid domain. This problem becomes even more critical if 

conditions for which the flow has just entered the turbulent regime are considered. Relevant 

information about this specific point can be found in the earlier studies mentioned in Chapter 6 

and Chapter 7 where the evolution of hybrid convection for both FFS and BFS systems was 

tracked as a function of the Rayleigh number from steady states up to fully developed turbulence. 

For the values of Ri considered in the present work, chaos was observed for Ra107  as a 

realization of the complex unsteady behavior of thermal plumes sparked by earlier flow Hopf 

bifurcations. In turn, these were found to be the outcome of the complex interplay of inertial and 

buoyancy effects (see Chapter 6 and Chapter 7).  

As indicated by the present study, the choice of the Smagorinsky constant becomes a particularly 

delicate aspect in problems where initial transition to time-periodic flow and later to turbulence 

(on further increasing the governing parameters) is supported by the aiding influence of fluid-

dynamic disturbances of shear-driven and buoyant nature. Too high values of this constant may 
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cause an unphysical alteration of the velocity of propagation of waves in the fluid domain 

(slowing down the trains of thermal plumes traveling in horizontal direction) and even prevent 

completely the flow from developing the required hierarchy of bifurcations that leads to chaotic 

behavior. 

 

a) 

 

b) 

 

Figure 8.6: Snapshots of velocity field (a) and temperature distribution (b) for the BFS (Ri=25) 

with adiabatic floor (LES, Ck=2x10-3 and PrT=0.9). 

 

To demonstrate the validity of this conceptual architecture (and the related modus operandi), the 

procedure implemented for the FFS has been duplicated to determine the equivalent optimal 

parameters of Ck and PrT for the BFS configuration. The outcomes of the related simulations 

(summarized in Figs. 8.6-8.7 and 8.8, and in Table 8.1 for the cases with adiabatic and hot floor, 

respectively) essentially confirm that Ck=2x10-3 and PrT=0.9 would still be relevant choices. 

 

a) b) 

Figure 8.7: Frequency spectrum for the BFS (Ri=25) with adiabatic floor (probe position x=9, 

y=0.25): a) DNS, b) LES. 
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a) 

 

b) 

 

Figure 8.8: Snapshots of velocity field (a) and temperature distribution (b) for the BFS (Ri=25) 

with hot floor (LES, Ck=2x10-3 and PrT=0.9). 

 

 

8.2 Three-dimensional Mixed Convection for Ri=100 (FFS) 

 

After determining the optimal values of the LES parameters by which good agreement is 

obtained between DNS and LES (the latter having been conducted, as explained before, with a 

coarser mesh such that its size is in located within the inertial range), dedicated 3D simulations 

have been performed. In the light of the earlier results provided by the 2D simulations (Sect 8.1), 

a mesh with 740x120x60 points has been used (corresponding to a total of more than 5 million 

computational nodes, with x=1.35x10-2, y=8.3x10-3 and z=1.66x10-2). Obviously, these 

simulations have been executed with the specific intent to clarify the role potentially played in 

the considered problem by the third spatial direction. A detailed description of the corresponding 

dynamics in 2D can be found in Chapter 6 and, for the sake of brevity, it is not duplicated here. 

Rather,  it should be recalled that the flow is characterized by the onset of thermal plumes in the 

region above the step and their propagation in the downstream direction. In particular, while for 

Ra=106, their spacing is regular and plumes appear at a distance l from the leading edge (i.e. the 

corner of the step) that is approximately 5 times the height of the step i.e. l  5/2, for Ra=107, 

plumes are produced at a much smaller distance from the leading edge (l  2). Moreover, plumes 

are no longer evenly distributed in space and display relatively chaotic dynamics (see Chapter 6).  

As a fleeting glimpse into Fig. 8.9 would confirm, most of these characteristics are retained in 

the 3D case, i.e. a region free of plume can still be identified above the step (with extension l  2) 

and plumes display quite an irregular behavior in the remaining space. The most striking 

difference is represented by the morphology of the plumes, which now nucleate in the form of 

rising ‘columns’ of fluid distributed along the spanwise direction, actually marking a transition 

from an initially 2D behaviour to a fully 3D scenario as a distance l  2 from the step leading 
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edge is exceeded. In particular 3 distinct plumes can be seen along z in proximity to the corner 

(Fig. 8.9); as time passes and plumes are transported by the imposed forced flow, however, 

coalescence phenomena are enabled. As a result of plume merging, the number of plumes in the 

spanwise direction (i.e. the flow wavenumber along z) is reduced, while their transversal size and 

vertical extension grow continuously until these convective structures leave the system through 

the outlet.   

 

 

            a) 

b) 

                     c) 

                    d) 

 

Figure 8.9: Snapshots of the three-dimensional  iso surfaces of temperature coloured according 

to the velocity magnitude for the FFS (Ri=100) with adiabatic floor. The snapshots are at  

a) t=0.04843, b) t=0.04885, c) t=0.04926, d) t=0.04972. 

. 

 

If the adiabatic floor is replaced with a hot boundary (at the same temperature of the step), the 

scenario becomes even more complex (Fig. 8.10). The plume nucleation region is transferred 

from the top surface of the step to the heated floor.  When plumes initially traveling along the 

floor meet the hot vertical surface of the step, they interact with the related (vertical) thermal 

boundary layer producing well-defined convective features. Most surprisingly, plumes are able 
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to retain their identity (in the sense that, despite the interaction with the vertical thermal 

boundary layer, 3 distinct plumes originating from the floor of the channel can still be identified 

in proximity to the vertical side of the step). The caps of these plumes (being reinforced by the 

fluid rising due to continuity as a result of the reduction in the available cross-sectional area) 

extend well-beyond the vertical extension of the step and, as such, are able to interfere directly 

with the flow developing after the step. Every time that the cap of one of these plumes impinges 

on the top surface of the step, a new plume is created along this boundary. Accordingly, no 

buffer (plume-free) region exists in this case.  

 

 

 

 

 

 
Figure 8.10: Snapshots of the three-dimensional  iso surfaces of temperature coloured according 

to the velocity magnitude for the FFS (Ri=100) with hot floor. The snapshots are at a) t=0.04219, 

b) t=0.04286, c) t=0.04350, d) t=0.04416, e) t=0.04483. 

 

Additional insights into this scenario can be gathered from the signals provided by 

thermocouples (numerical probes) located just before and after the step (at a non-dimensional 

distance 0.25 from the step position and from the bottom boundary, in the horizontal and vertical 
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directions, respectively, and evenly space along the spanwise direction yet at a relative distance 

0.25 from one another). 

 

a) 

b) 

 

Figure 8.11: Temperature signals measured by three probes evenly spaced along the spanwise 

direction (z=0.25, 0.5 and 0.75) located before and after the step for the FFS case (Ri=100) with 

hot floor: a) x= 4.75, y=0.25 (before the step), b) x=5.25, y=0.75 (after the step, the presence of 

peaks in one signal seems to exclude the possibility to have peaks with comparable amplitude in 

the other signals). 

 

Interestingly, (see Fig. 8.11) while before the step, peaks of similar magnitude are present in all 

the signals (with peak overlap at certain times, which indicates plume coexistence along the 

spanwise direction), after the step, significant peaks can be seen in one signal at a time. As an 

example, while for t< 0.049, significant peaks can only be detected in the blue signal, for t>0.049 

this role is transferred to the red signal. This apparently innocuous observation has important 

implications in terms of flow structure and plume evolution. Indeed, it indicates that the 

wavenumber undergoes a strong decrease across the step. Before the step, “more” plumes (up to 

“three” along the spanwise extension Az of the domain) can be present at the same time along the 

streamwise direction (at a fixed station x), whereas beyond the step, only a plume with relatively 
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extended horizontal cross-diameter is allowed. This can be alternately located in proximity to the 

z=Az boundary (blue signal), or at zAz/2 (red signal). 

As a concluding remark for this section, it is worth mentioning that comparison of the 2D and 3D 

frequency spectra for both the FFS with adiabatic and hot floor (not shown for the sake of 

brevity) has led to the conclusion that, despite some differences in the low-frequency range (the 

spectrum in this interval being more energetic in the 3D case due to the smaller size and larger 

number of plumes in this case), the amplitude distributions are almost identical in the inertial 

range (where they align with the Kolmogorov law). This indicates that the mechanisms driving 

the cascading behavior of energy for the FFS do not depend significantly on the dimensionality 

of the problem. 

 

8.3 Three-dimensional Mixed Convection for Ri=25 (BFS) 

Having completed a sketch of the 3D dynamics for the FFS case,  attention is now turned to 

interpreting the equivalent results for the BFS configuration. Following the same approach 

undertaken in the earlier sections, an incremental understanding of the considered phenomena is 

achieved through the stepwise consideration, first, of the simpler configuration with adiabatic 

floor, and, then of the more complex scenario where the floor is kept at the same temperature of 

the step.  
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Figure 8.12: Snapshots of the three-dimensional  iso surfaces of temperature coloured according 

to the velocity magnitude for the BFS (Ri=25) with adiabatic floor. The snapshots are at  

a) t=0.03242, b) t=0.03313, c) t=0.03401, d) t=0.03459, e) t=0.03514, f) 0.03574. 

 

 

 

a) 
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 b) 

 

Figure 8.13: Temperature signals measured by three probes evenly spaced along the spanwise 

direction (z=0.25, 0.5 and 0.75) located before and after the step for the BFS case (Ri=25) with 

adiabatic floor: a) x= 4.75, y=0.75 (before the step), b) x= 5.25, y=0.25 (after the step).  

 

As evident in Fig. 8.12, for the BFS with adiabatic floor, a 3D instability develops along the 

thermal boundary layer in the left portion of the channel (i.e. in the region of reduced cross-

sectional area, x< Ax/2). This is revealed by the presence of bulges or sinusoidal distortions in 

the isosurfaces of velocity, which finally evolve in thermal plumes apparently originating from 

the step trailing edge (the corner). While initially the flow separates and reattaches several times 

producing bulges that display a weak modulation along the spanwise direction (3 peaks along z), 

it is only in correspondence of the corners that well-defined (distinct) rising currents with 

horizontally extended caps are produced.   

These observations are complemented by Fig. 8.13 where the probe signals have been reported 

considering again stations located before and after the step. It shows that in the present case the 

peaks are not mutually exclusive. Unlike the behavior seen in Fig. 8.11b, peaks occur 

approximately at the same times in Fig. 8.13a, which indicates plumes can exist in parallel along 

the spanwise direction (as also evident in Fig. 8.12).  

However, while a synchronous plume behavior can be seen just before the step, a well-defined 

correlation can no longer be identified after it. Moreover, both the signal amplitude and 

frequency undergo a significant decrease, which indicates that just after the section x=Ax/2 the 

degree of unsteadiness is largely reduced in the lower half of the domain (the probes being 

located at x= 5.25, y=0.25).   

 

a) 
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b) 

 

Figure 8.14: Snapshots of velocity field (a) and temperature distribution (b) for the BFS (Ri=25) 

with adiabatic floor (plane z=0). 

 

As a final look at Fig. 8.14 would indicate, a weak recirculation region is created in that area 

(with the fluid moving from right to left along the floor of the channel). Vice versa a relatively 

strong horizontal jet can still be seen in the upper half of the channel. However, owing to the 

vigorous plumes originating from the step (the corner) and the vortices which are periodically 

released from their caps, such a jet undergoes a significant modulation in time, especially for 

Ax/2<x<3Ax/4. Strong mixing occurs in that interval as a result of the presence of the 

aforementioned vortices, which travel continuously in the downstream direction (Fig. 8.14). 

Along these lines, the next figure of the sequence (Fig. 8.15) illustrates that mixing is effective 

not only in xy planes. The flow has a significant velocity component along the spanwise 

direction too, as witnessed by the presence of several visible vortices in planes perpendicular to x. 

Only for x3Ax/4 the almost perfect parabolic profile of horizontal velocity that is typical of the 

planar Poiseuille flow is re-established (Fig. 8.14a) and mixing effects become relatively weak 

(Fig. 8.16a). Figs. 8.14b and 8.16b shed some additional light on this behavior, by showing that 

the temperature distribution becomes essentially uniform over 90% of the entire vertical 

extension of the channel, with the 10% residual cold fluid being located under the warm fluid 

(stable thermal stratification).  

 

a)     b) 

Figure 8.15: Snapshots of velocity and temperature fields in the yz plane for x=5Ax/8=6.25.  
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a)     b) 

 

Figure 8.16: Snapshots of streamlines and temperature in the yz plane for x=3Ax/4=7.5. 

Comparison with Fig. 8.15 indicates that the magnitude of velocity is significantly (one order of 

magnitude) smaller and the distribution of temperature becomes much more uniform.   

 

Comparison with the equivalent 2D flow (Fig. 8.6) is instrumental in showing that when the flow 

is prevented from developing a velocity component in the spanwise direction, the horizontal 

current entering the region with increased cross-section area (the aforementioned jet) can survive 

for a longer time before losing its identity. The key to understanding this behavior lies in 

considering that in 2D no vorticity like that shown in Fig. 8.15a and 8.16a can be produced, 

thereby allowing the fluid leaving the step to use the available kinetic energy to spread along the 

x direction.   

If the adiabatic floor is replaced with a thermally heated boundary (yet at the same temperature 

of the step), as anticipated, the complexity of the problem increases (Fig. 8.17). A “sea” of 

thermal plumes develops on the floor of the channel for x>Ax/2. However, plumes still manifest 

along the top boundary of the step as a result of the aforementioned disturbance propagating 

along (growing inside) the thermal boundary layer located there. 

Unlike the situation examined for the BFS with adiabatic floor, in this case, the behavior in 

proximity to the corner does not depend only on what happens in the region with reduced cross-

sectional area (i.e. for x<Ax/2). Just after the step a localized clockwise oriented vortex is created 

in the lower half of the domain as a consequence of the tendency of the separated main flow to 

reattach to the bottom. Comparison of Figs 8.14a and 8.18a, indicates that in this case the vortex 

is relatively strong. Accordingly, a current is established along the floor, by which thermal 

plumes are transported in the upstream direction (i.e. towards the step). Owing to this current, 

heat is funneled into the vertical boundary layer developing along the vertical wall of the step 

and this contributes to strengthen the plumes there (the effect being similar to that already 

described for the FFS case with hot floor).  

Due to this mechanism two different regions of plume growth can be identified for x> Ax/2, one 

in which the vertical extension of the plumes decreases along x (from the step position towards 
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the reattachment line), and a second region where plume size grows in the downstream direction 

(from the reattachment line towards the outflow section). Put differently, two counter-

propagating waves or trains of plumes affect the region with increased cross-sectional area at the 

same time. These originate from the line where the flow leaving the step hits the floor, and for 

each of them, plume growth is caused by the additional heat being injected inside plumes from 

below as time passes and the concurrent plume merging phenomena (the latter cause the 

coalescence of plumes initially located at different positions along the spanwise direction).    

       
     

 

 

 

 
 

 



                                                                                                                     

162 

 

 
Figure 8.17: Snapshots of the three-dimensional  iso surfaces of temperature coloured according 

to the velocity magnitude for the BFS (Ri=25) with hot floor. The snapshots are at  

a) t=0.02999, b) t=0.03072, c) t=0.03145, d) t=0.03235, e) t=0.03290. 

 

 

 

 

a) 

 

b) 

 

Figure 8.18: Snapshots of velocity field (a) and temperature distribution (b) for the BFS (Ri=25) 

with hot bottom wall (plane z=0).   
 

Correlation of Fig. 8.18 with the equivalent 2D results (Fig. 8.8) is also instructive. It 

qualitatively substantiates the realization that the 3D flow is more chaotic, as also confirmed by 

the more uniform (due to mixing) distribution of temperature established in the domain for 

x>Ax/2 and y>1/2. Unlike the BFS with adiabatic floor, the highest values of velocity for x>Ax/2 

can be found in the lower half of the channel as a consequence of the train of thermal plumes 

developing there, whereas extended regions can be seen in the upper half of the domain where 

the fluid moves in opposite direction (which explains the different inclination taken by the 

plumes for y>1/2). This may be regarded as an important distinguishing mark with respect to the 
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equivalent 2D simulations (Fig. 8.8) where this effect is not present (plumes displaying a 

constant inclination to the right over the entire channel vertical extension).  

Again, the distribution of velocity and temperature in the plane yz can be used to demonstrate the 

increased level of complexity taken by the 3D flow in terms of flow structure and temperature 

distribution (Figs. 8.19 and 8.20).  

 

a)     b) 

Figure 8.19: Snapshots of velocity and temperature fields in the yz plane for x=5Ax/8=6.25.  

 

a)     b) 

 

Figure 8.20: Snapshots of streamlines and temperature in the yz plane for x=3Ax/4=7.5. 

Comparison with Fig. 8.19 indicates that the magnitude of velocity does not change significantly.   
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a) 

b) 

 

Figure 8.21: Temperature signals measured by three probes evenly spaced along the spanwise 

direction (z=0.25, 0.5 and 0.75) located before and after the step for the BFS case (Ri=25) with 

hot floor: a) x= 4.75, y=0.75 (before the step), b) x= 5.25, y=0.25 (after the step).  

 

A final characterization of the observed dynamics in proximity to the step can be gained by 

considering once again the probe signals (Fig. 8.21). While the temperature signals display a 

synchronous behavior just before the step (denoting a quasi-2D scenario, Fig. 8.21a), a well-

defined correlation can no longer be identified after the step (Fig. 8.21b), which (in agreement 

with the information reported in Fig. 8.19) indicates that the flow gains 3D behaviour as soon as 

the fluid enters the region of increased cross-sectional area.   

For the sake of completeness, Fig. 8.22 illustrates the frequency spectra for the cases with 

adiabatic and hot floor, respectively. It is evident that both align with the -5/3 law put forward by 

Kolmogorov. However, a difference can be spotted in terms of energy content. The frequency 

spectrum for the hot floor case (Fig. 8.22b) displays a richer content in the high-frequency range, 

and this is due to the presence of an increased number of thermal plumes (put simply, the higher 

number of plumes passing through the location of probe results in a continuous addition of high 

frequency components to the spectrum). 
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a) b) 

 

Figure 8.22: Frequency spectrum for the BFS (Ri=25) (color legend: black-3D results, red-2D 

results, blue-Kolmogorov scaling, probe position x=9, y=0.25): a) adiabatic floor, b) hot floor. 

 

Vice versa, for the adiabatic floor case, this trend is reversed, with the 2D flow being more 

energetic for 103 (Fig. 8.22a). A proper justification for this counter-intuitive behavior can be 

elaborated in its simplest form on the basis of the argument that in the 3D case the almost perfect 

parabolic profile of horizontal velocity that is typical of the planar Poiseuille flow is re-

established at a certain horizontal distance from the step, whereas this does not happen in 2D 

(compare again Figs. 8.6 and 8.14); to elucidate further the significance of this observation, one 

should keep in mind that the flow partial re-laminarization for x>3Ax/4 is essentially a result of 

the uniform temperature distribution produced beyond this station by the strong mixing effects 

experienced by the fluid in the preceding portion of the channel, i.e. for x<3Ax/4 (the less 

energetic nature of the spectrum at high frequencies for x >3Ax/4 in the 3D case can be directly 

rooted into this specific behavior, i.e. the absence of buoyancy effects). 

 

8.4 Discussion  

 

Following up on the last argument provided in the earlier section, this section is finally used as 

an opportunity to discuss critically the main outcomes of the present 3D investigation in relation 

to what is already known for the companion problem with no buoyancy (i.e. the cases with 

purely forced flow). As already discussed to a certain extent in the introduction, only a few 

studies have appeared where the problem was tackled in the framework of a 3D numerical 

approach. Taking into account the main findings of these investigations, here emphasis is put on 

analogies and differences with respect to the hybrid flow configurations treated in Sects. 8.2 and 

8.3.  

In line with those sections, the discussion progresses through the examination of both the FFS 

and the BFS. As a fleeting glimpse into the existing literature for the forced flow case would 
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immediately reveal, indeed, these two paradigms do not have a linear historical trajectory, in the 

sense that they have always simultaneously been used over the years to get insights into the 

behavior of flows with sudden contractions or expansions. The most evident realization of this 

modus operandi is the discovery that, regardless of the orientation of the step, these forced flows 

are always characterized by some degree of separation and ensuing generation of vorticity and 

eventually flow instabilities. 

In particular, for the isothermal FFS, regardless of the dimensionality of the problem (be it 2D or 

3D), the flow separates and reattaches in two different regions. More precisely, one recirculation 

zone is created upstream of the step adjacent to the bottom wall, while the second recirculation 

(typically in the form of a small bubble stretched in the horizontal direction) nucleates adjacent 

to the stepped wall downstream of the step edge. It is known that the related dynamics are 

governed by the Reynolds number. On increasing this parameter, the size of these recirculation 

zones generally grows. Moreover, the point of where flow separation occurs ahead of the step 

tends to migrate in the upstream direction.  

Available 3D numerical studies for this problem are due to Wilhelm et al. (2003), Barbosa-

Saldaña and Anand (2007) and Scheit et al. (2013) (a similar information about the BFS will be 

provided later in this section). Towards the end to gain better insight into the three-

dimensionality that is typically observed in the aforementioned separation regions before the step, 

Wilhelm et al. (2003) conducted high-resolution simulations in the framework of a mixed 

spectral/spectral-element method. Moreover, a linear stability study of the flow at the step was 

also performed. Assuming a value of the Reynolds number 330 and periodic boundary conditions 

along the spanwise direction, it was found that the difference between the two-dimensional field 

and the averaged three-dimensional field is marginal, making clear that the 3D break-up of the 

separation region at the step is only a weak perturbation to the two-dimensional base flow (the 

amplitude of the spanwise velocity component being small in comparison to the maxima of the 

streamwise and normal velocities at the step). Nevertheless, for a larger value of the Reynolds 

number (Re=8x103), Scheit et al. (2013) found the departure from 2D flow to become more 

evident. By plotting the isosurfaces of the fluctuating pressure, they could reveal spanwise-

elongated structures close to the edge of the step. These were observed to grow in streamwise 

extent downstream of the step and finally pair with each other.   

Our work adds another piece to the puzzle by showing that buoyancy can significantly contribute 

to determine the dominant dynamics both before and after the step. As already shown in Sect. 8.2, 

although the Reynolds number is relatively high (Re3160), if the Richardson number is of 

O(102) (i.e. buoyancy effects are sufficiently strong, Ra=107 in our case), the tendency of fluid to 

rise along the vertical (hot) side of the step can suppress the recirculation which would 

otherwise be established there (Figs. 8.1 and 8.3).  

This effect, however, should not be misread as implying a tendency of the flow to retain a two-

dimensional behaviour. As already discussed in Sect. 8.2, although, it can annihilate the 

recirculation ahead of the step, buoyancy can cause significant 3D effects. A good impression of 
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these can be achieved by presenting the flow streamlines for both cases with adiabatic and hot 

floor (Figs. 8.23).  

 

a) 

b) 

 

Figure 8.23: 3D streamlines (snapshots) for the FFS (Ri=100, Ra=107): a) adiabatic floor, 

b) hot floor.  

 

The significance of these additional figures resides in their ability to make evident that the flow 

separates and reattaches several times along the top horizontal surface of the step. Although a 

phenomenological similarity might be established with the findings reported for a larger value of 

the Reynolds number by Scheit et al (2013), it is worth pointing out that these phenomena should 

not be regarded as an outcome of purely hydrodynamic effects. In the present case, thermal 

plumes (Figs. 8.9 and 8.10) do play a significant role in causing the flow evolution. Separation 

essentially occurs as a result of the interaction of the horizontal flow with the vertical currents 

established in the stem of the plumes. Owing to the peculiar distribution of plumes along the z 

axis, separation and attachment occur at different positions in the spanwise direction for different 

streamlines. This is also qualitatively and quantitatively substantiated by the figures showing the 

distribution of the derivative of the horizontal component of velocity with respect to the vertical 
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coordinate evaluated along the solid wall delimiting the fluid domain from below. The regions 

where this derivative takes a value 0 obviously represent the loci of points where the flow has 

just undergone separation.   

 

a) 

b) 

 

Figure 8.24: FFS (Ri=100, Ra=107, adiabatic floor): a) distribution of u/y at y=0.5, b) T at 

y=0.65.  

 

For the FFS with adiabatic floor (Fig. 8.24), comparison of the distribution of u/y along the 

solid top boundary of the step and the temperature taken at a station y just outside the thermal 

boundary layer is instrumental in showing that a close correspondence exists between the loci of 

points where thermal plumes are located and flow separation occurs. Such a figure is useful as it 

also clearly reveals the quiet zone located between the edge of the step and the station where 

plumes start to nucleate.  

 

a) 
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b) 

 

Figure 8.25: FFS (Ri=100, Ra=107, hot floor): a) distribution of u/y at y=0.5, b) T at y=0.65. 

 

a) 

 

   b) 

 

 

Figure 8.26: FFS (Ri=100, Ra=107, hot floor): a) distribution of u/y at y=0 for x<5, b) T at 

y=0.15 for x<5. 

 

Moving on to the case with hot floor (Figs. 8.25 and 8.26), spanwise-elongated structures close 

to the edge of the step similar to those originally observed in the purely forced flow case by 

Scheit et al. (2013) can be recognized (Fig. 8.25a). As the fluid moves there in the upstream 

direction (as indicated by the negative sign of the shear rate in Fig. 8.25a), this indicates that a 

small bubble adjacent to the stepped wall downstream of the step edge can be created in this case. 

However, the strict connection between plumes and flow separation still holds. In particular, Fig. 
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8.26 demonstrates that the flow separation occurring before the step must be ascribed essentially 

to the nucleation and growth of thermals in that area.  

All these arguments logically pave the way to the remainder of this section, where attention is 

paid to the companion BFS configuration (for which the dynamics are appreciable more 

complex). As the reader might expect at this stage, following the same approach already 

undertaken for the FFS, the discussion begins again from a survey of the general dynamics 

known for the purely forced flow (and a short description of the related available 3D results).  

In analogy with the FFS, forced BFS flow is known to separate as a result of the abrupt variation 

in the cross-sectional area and other related hydrodynamic effects. A single recirculation 

(between the step trailing edge and the reattachment point along the channel floor) is produced 

for relatively small values of the Reynolds number. However, if the Reynolds number is 

increased, recirculations of higher order can appear along the ceiling (secondary and tertiary 

rolls, etc. ). Consensus exists in the literature that the reattachment length associated with the 

primary roll can be reduced with an increase in ER (for small or moderate values of Re), while 

making the Reynolds number higher can have a two-fold effect, i.e. a displacement of this point 

in the downstream direction and the onset of time-dependence. As an example, the formation and 

detachment from the step of large-scale vortices was found to be the primary cause of the 

periodic movement of the reattachment location in the two-dimensional study by Friedrich and 

Arnal (1990); these authors observed that the free-shear layer emanating from the step had a 

vertical motion causing the reattachment location to oscillate. 

Three-dimensional studies of relevance to the subject include those by Le et al. (1997) and Xu et 

al. (2017). In particular, the analysis by Le et al. (1997) for ER=1.20 and Re=2500 is extremely 

instructive as a comprehensive characterization of the dynamics of separation and reattachment 

was provided there for the case with no buoyancy. Most interestingly, it was observed that the 

large-scale roll-up of the shear layer extending to the reattachment region is produced by many 

small, high-intensity counter-rotating vortices originating from the step (trailing) edge. As a 

result of existing spanwise phase shifts in the nucleation time of these vortices, the temporal 

trace of the reattachment locations on the floor of the channel can display a saw-tooth shape (see 

Fig. 3 in their work). A simple rationale for this behavior was elaborated as follows: “the shear 

layer rolls up forming a large-scale structure behind the step, as the large-scale structure grows, 

the reattachment locations travel downstream; the reattachment length then suddenly decreases 

indicating a detachment of the turbulent large-scale structure from the step” (this evolution was 

also tracked in terms of pressure fluctuations given the known correspondence of low pressure 

regions with the centers of coherent vortices). 

Later, Xu et al. (2017) have shed some additional light on these behaviours by showing that the 

vortexes shed constantly and periodically in the downstream direction as a result of the Kelvin–

Helmholtz instability occurring in the shear layer of the primary recirculation zone can give rise 

to repeated separation phenomena along the remaining extension of the channel (see Fig. 14 in 

their work for ER=2 and Re=1000).  
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a) 

 

b) 

 

Figure 8.27: 3D streamlines (snapshots) for the FFS (Ri=25, Ra=107): a) adiabatic floor, 

b) hot floor. 

 

When buoyancy enters the dynamics (Fig. 8.27), however, a significant departure from the 

known scenario for purely forced flow takes place. For the BFS with either adiabatic or hot floor 

(Figs. 8.28 and 8.29, respectively), alternating separation and reattachment phenomena start to 

affect the flow directly in the region of reduced cross-sectional area, i.e. above the step. This is 

evident in the distribution of u/y, where bands of alternating colors can clearly be recognized. 

The almost straight nature of these bands is consistent with what has been reported in Sect. 8.3, 

where some emphasis has been put on the initially two-dimensional nature of this phenomenon.     
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a) 

 

 

b) 

 

Figure 8.28: BFS (Ri=25, Ra=107, adiabatic floor): a) distribution of u/y at y=0.5, b) T at 

y=0.65.  

 

a) 

 

b) 

 

Figure 8.29: BFS (Ri=25, Ra=107, hot floor): a) distribution of u/y at y=0.5, b) T at y=0.65.  
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Cross comparison of Figs. 8.28 and 8.29, however, indicates that, a notable difference exists, i.e. 

the 3D nature of the flow in proximity to the step is much more marked in the case with hot floor. 

The root cause for this dissimilarity (yet ascribable to the presence of plumes) has already been 

clarified in Sect. 8.3. Here  the discussion is limited to emphasise that along the hot floor (Fig. 

8.30) a well-defined correlation can still be defined between the regions where separation occurs 

(u/y0) and those where thermals are located. In proximity to the step, the existence of a 

recirculation along the bottom floor is witnessed by the opposite sign of u/y in Fig. 8.30a; 

downstream of this region, separation essentially occurs in regions which are stretched along the 

x direction. As qualitatively substantiated by Fig. 8.30b, these yet correspond to thermal plumes. 

These are also visible in the spanwise cut through the flow at x=3Ax/4=7.5 provided in Fig. 

8.20b and in the 3D view of Fig. 8.17 and assume this specific flattened (sail-like) shape owing 

to their interaction with the horizontal ‘wind’. 

On the basis of these arguments, one may therefore conclude that the convoluted structure of the 

flow (visible in Fig. 8.27b) is primarily a consequence of the eruptive phenomena originating 

from the thermal boundary layer at the bottom as a result of buoyancy effects, rather than a 

manifestation of a Kelvin–Helmholtz instability like that reported by Xu et al. (2017).    

 

a) 

 

b) 

 

Figure 8.30: BFS (Ri=25, Ra=107, hot floor): a) distribution of u/y at y=0 for x>5, b) T at 

y=0.15 for x>5. 
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8.5 Conclusions  

 

The present study builds on two earlier chapters of this thesis where these problems have been 

tackled in the framework of DNS and under the limiting assumption of 2D flow (required to 

make the otherwise intractable scale of these problems compatible with available computational 

resources). 

Here the constraint of two-dimensionality has been removed in order to reduce the gap between 

physical reality (where disturbances in the spanwise direction may represent a relevant aspect of 

the problem) and the virtual environment represented by CFD. 

In order to reduce once again the scale of the problem to a level where it is affordable, the 

analysis has been developed using a LES strategy by which notable computational savings can 

be obtained. This approach has been used to model the behavior of the flow in 3D situations for 

which no data are available in the literature (values of the Richardson number of O(102) and a 

value of the Rayleigh number for which the flow has just entered the turbulent regime). Two-

dimensional simulations have been used to tune some of (otherwise undetermined) constants 

appearing in the LES model through comparison of high-resolution DNS and LES simulations 

(this modus operandi reflecting well-defined theory whose foundations were laid by Kolmogorov 

approximately 80 years ago that turbulence becomes isotropic on small scales, i.e. independent 

from the considered space direction). 

Critical comparison of 2D and 3D results has been instrumental in showing that when the flow is 

allowed to develop along the third direction, appreciable differences emerge. These are not 

limited to the flow macroscopic scale (where energy is injected into the system), but in some 

circumstances can also have an impact on the cascading energy phenomena developing inside 

the inertial range of scales. While for the FFS the differences essentially affect the structure of 

plumes, for the BFS they are more substantial as they imply the generation of a significant 

macroscopic component of vorticity along the main flow direction and the displacement of the 

portion of the spectrum corresponding to the inertial regime towards higher or smaller 

amplitudes (depending on the thermal boundary condition considered for the channel floor).  

From a macrophysical (coarse-grained) point of view, interestingly, the sudden variation in the 

channel cross-sectional area can be associated with an abrupt change in the flow characteristic 

wavenumber in the spanwise direction (FFS case) and/or the step corner can behave as a locus of 

accumulation of thermal plumes and generation of both transverse and longitudinal vorticity 

(BFS case). From a fine-grained (micromechanical) standpoint, for the BFS with adiabatic floor, 

the strong mixing induced in the fluid after the step can cause temperature homogenization 

and/or stable stratification at a certain distance from it with ensuing suppression of buoyancy 

convective effects and flow re-laminarization. Vice versa for the BFS with hot floor, the 

intrinsically small-scale nature of 3D plumes can cause an enhancement of the high-frequency 

components present in the inertial range.    

Meaningful comparison with the earlier literature, synergistically exploiting some definitions and 

concepts elaborated for the cases where only hydrodynamic effects play a role, has led to the 
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conclusion that, for the considered set of parameters, separation of horizontal flow essentially 

occurs as a result of its interaction with the vertical currents associated with thermal plumes. 

Depending on the mutual interference between flow with significant vertical shear (the forced 

flow) and currents featuring intense horizontal shear (the plumes), many complexities and a rich 

variety of flow phenomena can take place, which are otherwise prevented if the presence of 

buoyancy is neglected.  

Another of the main conclusion of the present study is that the widespread practice of using 

values of the Smagorinsky constant located in theoretically determined intervals (which have 

proven to work in some circumstances) should be deeply re-thought. Mixed forced-buoyant 

flows can display a peculiar hierarchy of bifurcations before entering the turbulent state where 

both disturbance of hydrodynamic (shear-driven) and thermal (buoyant) nature can play a 

substantial role. Over-predictions or over-estimation of the Smagorinsky constant may result in 

suppression of some of these mechanisms therefore leading to resolved states that do not 

reproduce properly reality (or DNS results) as they lack some of the related physical behaviours.    
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Chapter 9 

 

Conclusion 

 
To fill a gap in the existing literature and provide useful information for the 

interpretation/optimisation of several technological processes, hybrid (mixed) forced-buoyancy 

convection in different geometrical domains displaying an abrupt variation in the cross-sectional 

area has been investigated. Relatively compact or horizontally extended systems where the flow 

undergoes a sudden expansion or contraction have been examined. These archetypal systems 

were heated from below to facilitate the production of fluid motion of buoyancy nature driven by 

the interaction of the cold fluid (injected into the channel) with the heated solid boundaries. 

Initially, as explained in Chapter 5 a compact cavity with a square obstruction located in its 

bottom-right corner was considered and the relative importance of the above-mentioned 

mechanisms was examined by considering different values of the Rayleigh number (spanning 

several order of magnitude). Also, a further degree of freedom was added by using a specific 

analysis hierarchy where selected effects were included or not depending on the targeted regime. 

First attention was paid to the situation where pure thermo-gravitational convection emerges due 

to the presence of vertical and horizontal heated surfaces (the hot sides of the obstruction). 

Afterwards, the focus shifted towards the hybrid regime where buoyancy convection was 

modulated by currents of forced flow (cold fluid) injected into the cavity at different heights for 

values of the Richardson number ≅ 1. 

It was found that, on increasing the value of Rayleigh number, the multicellular nature of the 

problem is enhanced (the number of rolls grows) as a result of the thermal plumes originating 

from the corner of the step. These hot vertical structures take a different inclination depending on 

the considered condition, for instance horizontal or inclined structure for adiabatic bottom and 

almost a 90° vertical structure for isothermal bottom. Most importantly, the formation of heat 

islands can occur  in certain cases (mostly located in the lower portion of the domain for pure 

buoyancy case and hybrid convection case with aligned inflow and outflow sections). However, 

these can be suppressed if the position of inflow section is properly changed. 

In Chapter 6, the treatment was extended to an elongated duct with a forward-facing step 

subjected to a horizontal pressure gradient and a vertical temperature difference. Investigations 

were performed yet for the pure buoyancy case (closed domain) and mixed convection case 

(channel) in order to gain additional insights from cross-comparison of these situations.  

It has been shown that on increasing the Rayleigh number (while keeping fixed the Richardson 

number), the distance between the point where thermal plumes starts to be produced and the step 

corner becomes smaller. Moreover, their vertical extension tends to be reduced, which can be 

ascribed to the dual influence of a simultaneous increase of Ra and Re (the former contributing 

to make plume caps smaller, the latter reducing the available time for their stem to grow before 

they leave the domain through the outflow section). Most interestingly, when the flow becomes 
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turbulent, for Ri=100 the energy tends to reside on relatively small temporal scales (which 

demonstrates that new instability mechanisms are enabled with respect to the situation where 

only buoyancy convection is present). A decrease in Ri (Ri=30), forces these disturbances to 

grow inside the thermal and kinematic boundary layers. When the Richardson number is finally 

reduced to 1, the primary source of disturbances, which for larger values of Ri is represented by 

the relatively strong thermal plume originating from the step corner is gradually transferred to a 

mechanisms of hydrodynamic nature, i.e., a strongly unsteady bubble located in proximity to the 

step corner. The continuous switch from one instability mechanism to another as the Richardson 

number is varied for the configuration with adiabatic floor should be regarded as a relevant 

justification for the scattered appearance of the critical points. When the floor is isothermal (hot) 

a decrease in Ri has in general a beneficial effect in terms of critical Rayleigh number, i.e., Racr 

becomes higher (the trend is monotonic). In other words, the presence of forced flow has a 

stabilizing influence on the overall dynamics and this happens because an increase in the relative 

importance of forced flow with respect to thermal buoyancy, must necessarily correspond to 

higher values of the Rayleigh number needed to excite the competition of buoyant and forced 

flow in the duct.  

Chapter 7 integrated and expanded the information provided in Chapter 6 i.e., unsteady  hybrid 

forced buoyancy convection in a duct with forward-facing step by addressing the mirror 

configuration where the fluid flowing in a channel undergoes a sudden expansion (i.e., a channel 

with a backward facing step). The interplay of forced and buoyancy convection was investigated 

numerically to understand any similarities and differences with the equivalent forward-facing 

step configuration.  

It has been found for the BFS, in general, buoyancy convection reinforces the hydrodynamic 

mechanisms responsible for the onset of oscillatory flow in the purely forced (isothermal) flow 

case. This results in a shrinkage of the critical Reynolds number similar to that observed for the 

FFS with the hot floor. For the BFS, however, this process is influenced by the specific thermal 

boundary conditions assumed for the floor. When it is adiabatic, both the vertical shear in the 

separated layer originating from the corner of the step and the destabilizing temperature 

difference established between this layer and the surrounding fluid support the onset of fluid-

dynamic disturbances. If the floor is kept at the same temperature of the step, the role of 

buoyancy becomes much more important; the instability of the aforementioned layer is taken 

over by a process where thermal plumes nucleate directly at the bottom of the channel and 

become pervasive throughout its vertical extension. This interpretation still holds for the 

turbulent regime. The progressive displacement of the spectrum towards higher amplitudes as the 

Richardson number is decreased (while keeping fixed the Rayleigh number) provides indirect 

evidence for the role played by hydrodynamic perturbations. Vice versa, correlation of the 

spectra obtained for fixed Ra for growing values of Ri and different thermal boundary condition 

at the bottom wall reveals the increasingly more important influence that buoyancy effects can 

exert on the flow in these circumstances. 
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Meaningful comparison with the equivalent phenomena known to affect the companion 

configuration (FFS) has led to the conclusion that the differences between these two systems 

essentially stem from the facing orientation of the step, which causes a rupture of the symmetry 

of the channel with respect to the direction of the flow. In the isothermal case (no buoyancy), the 

reduced complexity of the BFS depends on its inability to induce vorticity and related shear 

effects both upstream and downstream of the step leading edge. In the non-isothermal case with 

adiabatic floor, the scenario for the BFS is yet less complex, as the role of buoyancy is limited to 

inducing additional disturbances in the separated shear layer with respect to those potentially 

produced by a purely hydrodynamic shear-driven mechanism (for the FFS, more complex 

dynamics are enabled due the disjoint influence of hydrodynamic and thermal effects). For the 

hot floor case, the flow instability in both BFS and FFS systems are essentially driven by 

buoyancy, which explains why the trend of the critical parameter is monotonic for both 

paradigms (some existing differences are due to the facing orientation of the step and the related 

forced flow, which break the in-plane isotropy which would be typical of a layer of fluid 

uniformly heated from below). 

Building on the results presented in the two earlier chapters, Chapter 8 has been dedicated to 

extending the analysis by taking into account the effect of the third dimension, i.e., by allowing 

the convective disturbances to develop also along the spanwise direction Yet, FFS and BFS 

systems have been considered allowing the floor to be either adiabatic or isothermal (hot). 

However, given the computational weight of 3D simulations (5 million computational nodes), 

the study was performed for the turbulent regime only [Ri=O(102) and Ra=O(107)] in the 

framework of the large eddy simulation (LES) approach.  

Interestingly, it has been shown that the theoretically determined intervals of the Smagorinsky 

constant available in the literature do not hold when hybrid convection is considered in channels 

with a step. Mixed forced-buoyant flows can display a peculiar hierarchy of bifurcations before 

entering the turbulent state where both disturbance of hydrodynamic (shear-driven) and thermal 

(buoyant) nature can play a substantial role. Over-predictions or over-estimation of the 

Smagorinsky constant may result in suppression of some of these mechanisms therefore leading 

to resolved states that do not reproduce properly reality (or DNS results) as they lack some of the 

related physical behaviors.    

Comparison between 2D and 3D results helped to highlight the differences that emerge as a 

result of the additional spatial degree of freedom represented by the third direction. For the FFS 

case, the difference was spotted in terms of the number and structure of thermal plumes whereas 

for BFS an enhanced role of step corner was observed, this acting as a source of transverse and 

longitudinal vorticity as well as a breeding ground for the accumulation of thermal plumes. Some 

additional insightful differences were also discovered for the BFS case where the flow for the 2D 

adiabatic floor case was found to be more energetic in comparison with the 3D case (temperature 

homogenization in 3D leading to the suppression of buoyancy effects causing flow 

relaminarization). However, an opposite effect was detected for the BFS case where the large 
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number of small 3D convective structures (thermal plumes) can lead to more energetic flow due 

to the addition of high frequency components to the spectrum. 

In the light of all these observations and related arguments, it can be concluded that the evolution 

of these systems from initially steady states towards chaos (i.e. the related hierarchy of 

bifurcations) depends on delicate interplay of purely hydrodynamic and buoyant-in-nature 

disturbances. In turn, this interplay sensitively depends on the orientation of the step with respect 

to the forced flow (obviously, the problem is not invariant with respect to a reflection with 

respect to the section where the step is located) and on the ability of the floor to contribute (or 

not) to the production of thermal buoyancy. Although, allowing the disturbances to develop in 

the spanwise direction can produce a localized departure from the corresponding 2D simulations 

in some circumstances, according to the present results, 2D simulations can capture most of the 

physics of these systems.    

These results have been produced under the optimistic hope that in the future they will help fluid 

physicists, engineers and professionals working in all the fields highlighted in the introduction to 

interpret the steady, unsteady and chaotic flow behaviors in channels with variable cross section 

in the presence of temperature gradients or thermal inhomogeneities. 

Finally, any researcher wishing to perform analysis on mixed forced-buoyant flows in 

framework of large eddy simulation (LES) approach is advised to consider the values determined 

in this thesis keeping in mind that the over-prediction and over-estimation of the Smagorinsky 

constants may lead to a departure from the equivalent results which would be produced by DNS. 
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Appendix A 

File structure of cases in OpenFOAM 

The present Appendix will highlight different directories present inside an OpenFOAM case and 

the files present inside those directories which are needed to run different simulation cases. The 

three important directories or folders which are required to run an OpenFOAM case are zero 

directory, constant directory and system directory. These directories contain essential files which 

have to be filled with important information related to flow and geometry for developing the 

simulation. The following sections will provide information on such directories and the various 

files that are present inside them. 

A.1 Zero directory 

The zero folder contains files which are used to set up boundary conditions for different cases. In 

the present thesis, the two key properties which have influenced the results are velocity and 

temperature. The zero directory contain both of these files which have been used to apply 

appropriate boundary conditions. 

A.1.1 Velocity 

The velocity could be considered as one of the key properties in simulations that have been run 

in the framework of this thesis. In OpenFOAM, the velocity is present in the form of a text file 

which contains value of the velocity at inlet and the boundary condition applied on different 

surfaces of the domain. As already mentioned in Chapter 3, for the cases with pure buoyancy 

convection no inlet and outlet were present on the surfaces. Hence a no slip (V=0) boundary 

condition was applied on the solid walls. For the cases with hybrid convection, an inlet and outlet 

were introduced and the value of the injection velocity (Uforced) was continuously changed 

depending on the value of Richardson number. A velocity file for an elongated channel with FFS 

for a value of Ri=100 and Ra=1x107 is shown in Fig. A1. It highlights three main parts, 

dimensions, internal field and boundary conditions. The dimension part underlines the physical 

dimensions based on international system of units which are [kg m s K mol Amp Candela]. 

However, it can be seen in Fig. A1, the velocity file only requires the units of velocity which is 

m/s.  The internal field parameter is used to set up values in cell volumes of the mesh. It is set up 

as uniform which means the value is constant throughout the entire domain. Finally, for the 

boundary condition part, different boundary conditions were set up for different parts of the 

channel. The following three BCs were used. 

 

noSlip  In this BC, the velocity is fixed to zero at the walls. It can be seen in Fig. A1, that a no 

slip boundary condition is applied at the floor, ceiling, building (horizontal and vertical step 

wall) and fixed walls. 
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fixedValue  In this BC, a fixed value is supplied at the inlet which is selected by the user. This 

BC is applied at the inlet as the value of inlet velocity will vary depending on the case being 

simulated. According to Fig. A1, a value of 0.03162 is fixed at the inlet in x direction whereas 

velocity is zero along y and z. 

 

inletOutlet  This boundary condition is meant for providing a general outflow condition where a 

value of inflow is specified in the case of return flow. It can be seen in Fig. A1; velocity is set to 

zero in all direction for the case of return flow. 

 

empty   An empty BC is used for cases with reduced dimensions such as 1-D and 2-D domains. 

It is applied to those surfaces with a normal aligning with geometric directions that fails to 

account for solution directions. 

 

 

 
 

Figure A1: Snapshot of velocity text file which shows how the BCs are set up for the case of 

hybrid forced/buoyancy convection (Ri=100 and Ra=107) and hot bottom wall. 
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A.1.2 Temperature 

The temperature file again highlights the three main parts which are dimensions, internal field 

and boundary conditions (Fig. A2). It is illustrated in Fig. A2, the temperature file only requires 

the units of temperature which is K. The parameter internal field is selected as uniform with a 

300 value in all the directions. Finally, following boundary conditions were used: 

 

fixedValue: floor and building were assigned the role of hot surfaces by fixing the temperature 

to 310 and fluid entering from inlet was rendered cold by fixing the temperature to 300. This was 

done in order to create a temperature gradient inside the domain promoting buoyancy 

convection. 

 

zeroGradient   A zero gradient boundary condition was applied on the ceiling and fixedWalls 

which mean T/y=0 or zero heat flux. It is worth recalling that ceiling was considered cold (by 

assigning a value of T=300) for pure buoyancy cases. 

 

 
 

Figure A2: Snapshot of temperature text file which shows how the BCs are set up for the case of 

hybrid forced/buoyancy convection (Ri=100 and Ra=107) and hot bottom wall. 
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A.2 Constant directory 

This directory contains various folders with essential information regarding the simulation such 

as material properties in addition to physics and chemistry of the simulation. For the cases 

considered in this thesis, the constant folder contains only two text files which are transport 

properties and turbulence properties. 

A.2.1 Transport properties 

 

This file contains information regarding the properties of the fluid. As already mentioned in 

Chapter 3, the fluid considered in this case is air which is a Newtonian fluid. Fig. A3 

demonstrates that data entries must contain the name of the property as a keyword followed by 

dimensions and then value of that particular property. The first property is kinematic viscosity 

(ν) with a value of 1x10-5 m2/s. After that comes the thermal expansion coefficient (β) whose 

value is varied to account for the changes in the value of Rayleigh number. For Ra=1x107, 

thermal expansion coefficient has a value of 1x10-2 followed by reference temperature with a 

value T=300 and Prandtl number which is 1 for the fluid considered in this thesis. The dimension 

part indicates that Prandtl number is a non-dimensional number. 

 

 
Figure A3: Snapshot of transport properties file which highlights the values of different 

quantities for the case of hybrid forced/buoyancy convection (Ri=100 and Ra=107) with hot 

bottom wall. 
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A.2.2  Turbulence properties: 

This files contains information regarding the turbulence model which have been used for a 

particular case. This file contains a keyword simulationType that specifies the type of turbulence 

model that could be used. It could be either: 

Laminar It indicates no turbulence model is used. 

RAS   Indicates the use of Reynolds-averaged stress (RAS) modelling. 

LES Indicates the use of large-eddy simulation (LES) or detached-eddy simulation (DES). 

 

No turbulence model has been used for the 2D cases run using DNS. For the 3D cases, 

simulations were run in the framework of LES approach to save the computational time. The 

entries that are needed in the LES subdictionary are listed as follows: 

 

LESModel  Name of LES model 

Delta  Name of delta  model 

<LESModel>Coeffs  Dictionary of coefficients for the respective LESModel 

<delta>Coeffs  Dictionary of coefficients for each delta model 

 

Fig. A4 indicates how to set up a LES dictionary. The LESModel selected for incompressible 

flow was SmaorinskyLilly. Turbulence and printCoeffs were turned on. Delta was selected as 

VanDriest to apply the Van Driest damping function near the wall region. Afterwards the 

coefficients for Smagorinsky Lilly model were defined using the keyword entry 

SmagorinskyLillyCoeffs. The values of constants specified for the elongated channel case with 

FFS (Ri=100 and Ra=1x107) were Ck=1x10-3, Ce=1.048 (default value), beta=1x10-2 and 

g=9.81(negative sign indicates the downward direction of gravity along y-axis). In the end values 

were specified for the Van Driest coefficients. Constants such as kappa, Aplus and Cdelta are 

optional entries with default values. 
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Figure A4: Snapshot of turbulence properties file which highlights different keyword, respective 

data entries and values of constants for the case of hybrid forced/buoyancy convection (Ri=100 

and Ra=107) with hot bottom wall. 

 

A.3 System directory 

 

The system directory contains important files which are needed for setting up the parameters 

which specifies the procedure of the solution. The four important text files are blockMeshDict, 

controlDict, fvSchemes and fvSolution. These files play a key role in the running and 

development of the simulation. 

 

A.3.1 BlockMeshDict 

 

OpenFOAM contains a mesh generation utility known as blockMesh which generates parametric 

meshes with grading and curved edges. The desired mesh is produced from a dictionary file with 

the name blockMeshDict present inside the system folder. The blockMesh utility creates the 

mesh by reading this dictionary and writes down the mesh data to points, cells, faces and 

boundary files present inside the same system folder. In principle, blockMesh decomposes the 

geometrical configuration into a different set of 3D hexahedral blocks which could be one or 
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more. Edges of the blocks are either composed of straight lines, arc or splines. Fig. A5 shows 

different keywords in blockMeshDict file which can be described as follows: 

 

Keywords Description 

convertToMeters It indicates a scaling factor for the coordinates of the vertices 

Vertices List specifying the vertex coordinates 

Block A list which contains the vertex labels and mesh size in ordered manner 

Patches Specifies the list of patches 

mergePatchPairs Indicates the list of patches needed to be merged 

 

It can be seen in Fig. A5, the vertices are specified for the elongated channel with FFS. After 

that, the keyword of block is present containing three different entries which can be defined as 

follows: 

 

Vertex numbering This is the first entry which specifies the shape of the block. It can be 

seen in Fig. A5 that the shape is hex as the blocks always show a 

hexahedral geometry. After the shape identifier entry the vertex number 

for that particular block are written in an orderly manner. 

Number of cells The second entry defines the mesh size i.e. the number of cells present 

in x, y and z direction for a particular block 

Cell expansion ratios The final entry indicates the cell expansion ratio in each direction of the 

block. It enables the user to refine the mesh in particular direction. Fig. 

A5 indicates a keyword of simpleGrading which highlights a uniform 

expansion in x, y and z direction with 3 expansion ratios for instance 

simpleGrading (1 2 3). 

 

Finally, the boundary of the mesh is specified through the use of a keyword boundary. The 

boundary is further broken into different regions or patches which are given a name by the user. 

The names specified here for the patches acts as an identifier which helps to set up boundary 

conditions in the velocity and temperature files present inside zero directory. Further information 

on the patch is provided by a sub-dictionary with 

• type:  As shown in Fig. A5 the patch type for an elongated channel case with FFS is wall 

for the regions building (vertical and horizontal step wall), floor and ceiling whereas for 

the inlet and outlet the patch type is a generic patch. 

• faces: As shown in Fig. A5, afterwards the keyword faces is used to specify block faces 

that makes up different patches/regions. 
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Figure A5: Snapshot of blockMeshDict file which provides information about the mesh created 

to run the simulation for the case of hybrid forced/buoyancy convection in elongated channel 

(Ri=100 and Ra=107) and hot bottom wall. 

 

A.3.2 ControlDict 

The OpenFOAM solver starts the simulation by creating a database. The controlDict dictionary 

plays an important role in this regard as contains input parameters which are considered essential 

for the creation of a database. The keyword entries mentioned inside a controlDict file are 

illustrated in Fig. A6. The entries inside a controlDict file forms the part of time control and data 

writing process. 

A.3.2.1  Time control 

 

As shown in Fig. A6 the first keyword is application for which the name of solver is specified 

i.e. buoyantBoussinesqPimpleFoam. Afterwards, the following keyword entries are used: 

 

startFrom       It is meant to control the start time of the simulation. 

 • latestTime: It is used to initiate the simulation from the latest time step. 

startTime       It indicates the start time for the simulation. 

stopAt       It is meant for controlling the end time of simulation. 

 • endTime: This keyword entry indicates the stoppage time. 

endTime       Simulation’s end time which in this case is 195 (Fig. A6). 

deltaT       Specifies the time step of the simulation. Set to 0.2 in Fig. A6 

  

 

 



                                                                                                                     

190 

 

A.3.2.2 Data writing 

 

After deltaT data writing keyword entries which are explained as follows: 

 

writeControl It controls the timing at which output is written to the file. 

 • timestep: It used to write data after every writeInterval time steps. 

• runTime: It is used to write data after every writeInterval seconds 

of simulated time. 

writeInterval Indicates a scalar value after which the data is written. As shown in Fig. 

A6 it is set up as 3000. 

purgeWrite Indicates an integer which is used to specify a limit on the amount of time 

directories that are generated by overwriting time directories in a cyclic 

manner. In Fig. A6 the purgeWrite is set to 0 (default) which means 

purging is disabled. 

writeFormat  Indicates the format of data files 

• ascii: In Fig. A6, it can be seen that the default ascii format is 

selected which is written to writePrecision significant figures. 

• binary: Indicates the binary format. 

writePrecision Specifies an integer value which is used in relation to keyword 

writeFormat mentioned above. In Fig. A6 a default value of 6 is set up.  

writeCompression Specifies whether the generated files are compressed when written. It can 

be set as on/off. Fig. A6 indicates it is set up as off. 

timeFormat Specifies the format in which the time directories are names. There are 

three format which are as follows: 

• fixed: ±m.dddddd where the keyword timePrecision indicates the 

numbers of ds. 

• Scientific: ±m.dddddde± xx where the keyword timePrecision 

specifies the numbers of ds. 

• general (default): Makes use of scientific format if the exponent is 

less than -4 or greater than or equal to the integer indicated by the 

keyword entry timePrecision. 

timePrecision Indicates the value of the integer that is used in relation with timeFormat 

mentioned above. It is set up as 6 (default value) as shown in Fig. A6. 

runTimeModifiable This keyword indicates whether the user wants the controlDict dictionary 

to be re-read during a simulation just when the time step begins. It is set 

up as true as shown in Fig. A6 which enables the user to alter the 

parameters during a simulation.  

adjustTimeStep This keyword entry enables the user to adjust the time step during the 

simulation  according to the value of maxCo. 

maxCo Indicates the maximum value of Courant number. It is set up as 1. 
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Figure A6: Snapshot of controlDict file which provides information about the main simulation 

properties for the case of hybrid forced/buoyancy convection in elongated channel (Ri=100 and 

Ra=107) and hot bottom wall. 
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A.3.4 fvSchemes 

 

The systems directory contains the fvSchemes file which is used to set up numerical schemes for 

different terms which appears in equations mentioned in Chapter 2 such as derivatives which are 

computed during a simulation. This section provides information on how  to set up numerical 

schemes in the fvSchemes dictionary. The terms appearing in the equations that should be 

designated a numerical scheme range from derivatives such as gradient ∇ to interpolations of 

values from one set of points to another. OpenFOAM provides user the freedom of choice which 

starts from the freedom to choose a discretisation practice which is usually a standard Gaussian 

finite volume integration. This method sums the values on control volume i.e., cell faces which 

are interpolated from cell centres. The different terms which require a numerical scheme are 

subdivided inside the fvSchemes dictionary  into the following categories: 

 

• gradSchemes: used for gradient ∇ 

• divSchemes: used for divergence ∇ • 

• timeScheme: used for first and second time derivatives such as ∂/∂t, ∂2/∂2t 

• laplacianScheme: used for Laplacian ∇2 

• interpolationSchemes: used for the purpose of interpolating values from cell to face 

• snGradSchemes: used for component of gradient normal to a cell face. 

 

It can be seen in Fig. A7 different keywords are used which highlights the name of a Schemes 

sub-dictionary containing terms of particular type such as gradSchemes includes all the gradient 

derivative terms present inside equations mentioned in Chapter 3 such as grad (p) denotes ∇p. A 

default entry is used inside the gradSchemes sub-dictionary (Fig. A7) which essentially means 

that a same scheme will be used for each gradient term appearing in equations such as ∇p and 

∇U. 

 

A.3.4.1 Gradient schemes 

 

In OpenFOAM the default discretisation scheme that is most commonly used for gradient terms 

is: 

 

default Gauss linear; 

 

The purpose of the Gauss entry is to indicate a finite volume discretisation of Gaussian 

integration needing a scheme that interpolates the values from cell centres to face centres. Hence, 

for that reason, a linear interpolation or central differencing scheme is used which is specified 

using the linear entry (Fig. A7). 
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A.3.4.2 Divergence schemes 

The sub-dictionary which includes all the divergence terms is specified by the keyword entry 

divSchemes which are usually written as ∇ • . . .  and excludes Laplacian terms. It includes terms 

which are advective in nature for instance ∇ • (Uk), where the advective flux is provided by 

velocity U. Moreover, it also includes diffusive terms such as ∇ • ν(∇U) T. The non-advective 

terms are usually written as div(U) however, the advective terms are specified using the keyword 

identifier of the form div (phi,…). The term phi indicates volumetric flux of velocity on the cell 

faces for incompressible flow such as div (phi, U) indicates the advection of velocity, div (phi, 

T) indicates advection of temperature. All the schemes make use of Gauss integration through 

the flux phi and interpolation of the advective field to the cell faces is achieved by means of a 

numerical scheme. Here the schemes used for advection of velocity and temperature will be 

highlighted as they are the most important terms. As shown in Fig. A7 a 

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme which is a 

second order central difference scheme was used for these terms. 

A.3.4.3 Laplacian schemes 

The sub-dictionary that contains the Laplacian terms is written as LaplacianSchemes (Fig. A7). 

An example of Laplacian term is ∇ • (ν∇U) which is the diffusion term in momentum equation. 

The Gauss scheme is used for discretisation which requires a combination of interpolation 

scheme for the diffusion coefficient i.e., kinematic viscosity (ν) and a surface normal gradient 

scheme i.e., ∇U. Hence the following scheme was used  

default Gauss linear corrected; 

 

Where corrected is a central-difference snGrad scheme with non-orthogonal correction.       
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Figure A7: Snapshot of fvSchemes file which provides information about different numerical 

schemes set up for the case of hybrid forced/buoyancy convection in elongated channel (Ri=100 

and Ra=107) and hot bottom wall. 

 

A.3.5 fvSolution 

 

This fvSolution dictionary contains information about the solvers, the tolerances and algorithms 

of the simulation. It further contains sub-dictionaries at the end that includes solvers and 

relaxationFactors. As shown in Fig. A8, the first sub-dictionary is solvers which indicates each 

linear solver that is used for each discretised equation. The term linear-solver is different to an 

application solver which is buoyantBoussinesqPimpleFoam in the present thesis. It can be 

defined as a technique of number crunching to solve a matrix equation. All the entries inside the 

solvers begins with a keyword that is set up as the variable solved in a particular equation. The 

variable keyword further relates to a sub-dictionary which specifies the solver type and various 

parameters used by solver such as tolerance, relTol and preconditioner. The Fig. A8 shows for 
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the pressure, GAMG is used a solver which is used to obtain the solution of Poisson equation 

(4.3). The solver tolerance represents the residual level which should be small enough for the 

solution to be considered accurate, hence for that reason it is set up as 1x10-6. The term relative 

tolerance which is specified by a keyword relTol limits the relative improvement from initial to 

final solution and set up as 0.1 as illustrated in Fig. A8. A smoother needs to be specified for the 

solvers that use a smoother so a GaussSeidel smoother was used for every case. After specifying 

the smoother, the user has the option to specify the number of sweeps and the following optional 

entries have been used as represented in Fig. A8. 

 

• nPreSweeps: Indicates the number of sweeps as the algorithm coarsens. Set to a default 

value of 0. 

• nPostSweeps: Indicates the highest number of sweeps as the algorithm coarsens. Set to a 

default value of 2. 

 

The agglomeration process of the cell is achieved through the use of a keyword agglomerator. 

The default faceAreaPair method is used (Fig. A8). Additional optional entries are also used to 

control the agglomeration which are as follows: 

 

• cacheAgglomeration: It is a switch which indicates the caching of agglomeration 

process. Set to default true. 

• mergeLevels: It is used to control the speed of coarsening or refinement process. Set to 2 

as the mesh is quite simple. 

 

For the variables U (velocity) and T (temperature) a Preconditioned Bi-Conjugate Gradient 

(PBiCG) was used as a linear solver where an incomplete Lower Upper (DILU) preconditioner 

was used in the predictor step (Fig. A8). The fvSolution file contains a second sub-dictionary 

known as relaxationFactors meant to control under-relaxation, a method employed for improving 

the stability of computation. An under-relaxation factor α = 1 was specified which guarantees 

matrix diagonal equality. 
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Figure A8: Snapshot of fvSolution file which provides information about linear solvers, 

tolerance and algorithms set up for the case of hybrid forced/buoyancy convection in elongated 

channel (Ri=100 and Ra=107) and hot bottom wall. 
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