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SUMMARY 

The mathematical analysis of static electromagnetic 
devices such as transformers, voltage stabilisers, etc., is 

complicated by the nonlinear, multi-valued relationship between 
flux density and field strength in the ferromagnetic core. 
Initially, vdrious methods of analysis are discussed, with 
emphasis on the importance of incorporating a means cf 

adequately representing the. influence of the magnetisation 

characteristic, and the physical structure of the core. 

The single-valued exponential series representation of 
the flux density / field strength relationship which was develop- 

ed in an earlier investigation into transient currents in trans- 
formers due to switching of the supply, is modified and 
extended to cater for the non-unique nature of the B/H 

relationship. This new representation is then incorporated 
into the mathematical models of single-phase and three-limb, 

three-phase transformers, which are utilised in the study of 

residual core conditions in these devices. 

The ways in which residual conditions are established, 

and the influence of such factors as load and primary circuit 

configuration are examined, both experimentally -, And theoretic- 

ally, and the results used in devising a simple graphical 
technique for estimating the magnitude and polarity of remanent 
flux and m. m. f. A study is also made of the effect of 

residual conditions on the transient currents which occur on 

reapplication of the supply. 

An example of the extension of the range of application 

of the transformer model is demonstrated in a brief study of 
ferroresonance in single- and three-phase systems. The 
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processes involved in the initiation of a stable resonant 

condition are considered, and a comparison of computed and 

recorded steady-state current, voltage and flax density wave- 
forms is made. 

Finally, general conclusions are drawn, and some 

suggestions are made as to how the transformer model might 

be improved, together with examples of other areas of interest 

in which the analytical techniques developed for the transform- 

er may be applied. 
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List of Principal Symbols 

A area 
B flux density 

C capacitance 
E rms e. m. f 

e instantaneous e. m. f 

H magnetic field strength 
I rms current 
i instantaneous current 
K coefficient, constant 
L length 

1 leakage inductance 

M inductance 

N turns 

p d/dt 

q instantaneous charge 
R resistance 

. t. time 

V rms voltage 

v instantaneous voltage 
X reactance 
Z impedance 

initial switching angle 
first delay angle 
second delay angle 

0 phase angle 
f lux 
f lux linkages 

)i permeability 
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Subscripts 

AqBIC primary winding quantities 

a, b, c secondary circuit quantities 
1,2,3 . ...... ;n 

n+I, n+2, n+3, m 
L- Load 

m magnetising, integer 

n integer 

P phase leakage 

xv Yý Z supply quantities (delta primary) 
Ck 
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-CHAPTER 1- 

INTRODUCTION 

The use of iron and other highly permeable materials 
is almost universal as the basic constituent of the core of 

electromagnetic machines. The magnetic properties of these 

materials can be extensively modified to suit almost any 

application, by combining them with other elements in alloys. 
There are, however, two aspects of magnetic behaviour which 

characterise these materials, in any form, and which cannot 
be completely eliminated without destroying the ferromagnetic 

properties. ' Magnetic nonlinearity and hysteresis are well- 
documented phenomena which present considerable problems in 
the analysis of electromagnetic devices incorporating ferro- 

magnetic materials. 

One means of avoiding these problems is simply to 
neglect the effects of saturation and hysteresis, and results 
produced from this type of analysis are reasonably accurate in 

many cases,. There are instances, however, where linear 
theory fails to yield reliable solutions, and it becomes necess- 
ary to make allowance for the magnetic properties of the core 
in the analysis. For example, the transient performance of 
transformers and other static electromagnetic devices is 

determined almost entirely by the magnetisation characteristic 
of the core material. Certain aspects of steady-state behaviour 

are also greatly influenced by the effects of saturation and 
hysteresis, such as in the case of ferroresonance. 

An investigation into the the effects of magnetic non- 
linearity in static electromagnetic devices was initiated in the 

Department in 1968, aimed at establishing a method of 

accurately computing the transient currents due to switching of 
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the supply. This was a direct result of the significant 
discrepancies between theory and practice, found when lhiear 

methods were used in the transient analysis of induction motors 
15 

rotating at sub- and super -synchronous speeds The initial 
1 investigation was concentrated on static devices in general, and 

single- and three-phase transformers in particular, and was 
intended as a preliminary study of magnetic nonlinearity, the 

results of which would ultimately be applied to rotating 

machines such as a. c. commutator and slip-ring motors. 
Instead, it has formed the basis of an extensive investigation 

into the more fundamental aspects of the electromagnetic 
behaviour of transformers. 

1.1 Project History. 

At the time of the start of this work in 1968, the 
techniques available for the analysis of static nonlinear electro- 
magnetic devices had not been sufficiently developed to enable 
the various quantities (current, flux, etc. ) to be calculated to 

within a reasonably consistent degree of accuracy, both in 
terms of the amplitude and shape of the waveforms. This 
latter requirement is a consequence of the methods used in 

power system protection where* it is necessary to distinguish 

between transient inrush currents, and those due to faults in 

the transformer. 

The reasons for these weaknesses in the available 
techniques of analysis were twofold; 

(i) The difficulty in taking full account of the actual 

magnetic circuit arrangement in polyphase systems, and hence 
6 

the effect this may have on the performance. 

(ii) The errors introduced by neglecting the nonlinear 

properties of the magnetisation characteristic of the core, or '- < 
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by using an inaccurate method of representation. 

A solution to the first of these problems was found by 

deriving a series of nonlinear differential and algebraic 

equations to describe the electric and magnetic circuit relation- 

ships of a general, static, electromagnetic system. Similar 

work was later published by Nakra and Barton 
2 

which served 

to reinforce the validity of this approach. 

MacFadyen 
I 

also examined in detail the various ways 

in which the magnetisation characteristic could be represented 

mathematically for use in solving the system equations. The 

existing methods using linear approximations, Fourier series, 
power series, etc. , failed to provide a convenient means of 
accurately representing the B/H curve over the complete range 
of field strength, i. e. 0, <H<c>O. The method of analysis 
also requires that the differential permeability (dB/dH) or the 
slope of the B/H characteristic be accurately represented. A 
simple, yet highly accurate method of expressing the flux 
density as a function of field strength using an exponential 

series was devised which, although neglecting the non-unique 

nature of the B/H relationship, nevertheless provided the 

means whereby transient currents in single-phase and three- 

phase transformers could be accurately computed. 

The results of this investigation showed the effects 

which inter-phase magnetic coupling can have on the transient 

performance of polyphase transformers, and the influence 

which this effect has, together with the magnetisation character- 
istic, on the shape of the transient waveforms. 

1) 
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1.2 Aims of the Present Investigation. 

Over the past five to eight years there have been 

significant advances in the field of electromagnetic analysis, 
for example references 3,4 and 5, as a result of the ever- 
increasing capability of digital computers to perform large 

amounts of arithmetic. Finite difference and finite element 
techniques can now be applied to a wide range of problems to 

produce solutions of great accuracy. In the light of these 

recent developments it is necessary to reappraise the type of 
transformer model proposed by MacFadyen, and Nakra and 
Barton, and to consider whether there are, as yet, any 
realistic alternative methods of analysis. 

The single-valued function representation of the B/H 

relationship has been shown to be adequate when considering 
cases of zero initial flux in the transformer core, and 
simultaneous switching of the supply in a polyphase system. 
However, as reference 2 indicates, the level of residual flux, 

when present, is a very important factor in determining peak 
transient current due to switching the supply. It is therefore 

considered necessary to incorporate a representation of the 

complete magnetisation characteristic in the transformer model, 

and to examine in detail the establishment of remanent core 

conditions, and the effect which these have on subsequent. 
transformer behaviour. 

The use of the transformer model need not be limited 

to the study of transients due to switching of the supply. As 

an example of the possible range of application, practical 

cases of ferroresonance in single-phase and three-phase 

systems are analysed, and results compared with laboratory 

test measurements. 
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-CHAPTER 2- 

TRANSFORMER MODEL 

In any investigation which involves the analysis of 

systems incorporating electromagnetic devices such as trans- 

formers, the first requirement is to select or devise a 

suitable method of representing mathematically the device and 

the associated external circuit (supply, load, etc. There 

are several factors which must be considered when choosing 
the method of representation, or model, to be used. These 

factors are, 

(a) The type of application., e. g. transient, steady- 

state, linear, nonlinear, etc. 

(b) The accuracy required. 

(c) The complexity of the model. 

(d) The f lexibilitY of the model for application to 

other situations. 

(e) The fidelity of the model compared with the real 

system. 

The facilities available for computational work will 

normally fix the limits on factors (b) and (c), although it may 

not be necessary to work at those limits. Factors (d) and 
(e) are often limited only by the ingenuity of the investigator. 

For the purposes of the present investigation into the 

performance of static, nonlinear electromagnetic devices, it is 

essential that the model used is valid for both steady-state and 
transient applications, and that magnetic nonlinearity and 
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hysteresis can, if necessary, be incorporated in the 

representation. 

Many of the phenomena associated with transformer 

behaviour such as ferroresonance, transient currents, residual 

conditions, etc., are very dependent on system conditions, 

and for this reason it is desirable that maximum accuracy in 

computation is achieved, commensurate with the facilities 

available. Thus the number of approximations made should be 

kept to a minimum, while not unduly increasing the complexity 

of the representation and consequently requiring large amounts 

of computer run time for relatively little output. Since it is 

envisaged that the techniques used here will be extended to 

cover other aspects of transformer behaviour, beyond the scope 

of the present investigation, the model chosen should ideally 

correspond as closely as possible to the actual device and 
incorporate maximum flexibility for further application. 

2.1 Approaches to Transformer Modellin . 
There are basically. three ways in which the problem 

of mathematical representation of electromagnetic devices may 
be tackled, 

1. Equivalent circuit methods. 

Magnetic field analysis. I 

Combined magnetic and electric circuit model.,, 

and the choice of which approach to take in any particular 
investigation can be made by considering the factors discussed 

above. 

The equivalent circuit method of transformer analysis 

is a well established technique for use in steady-state 

10 



applications, and as such is an invaluable tool. However, a 

model of this type lacks the flexibility, fidelity and accuracy 

required in the present investigation. The equivalent circuit 

of a single- phase, two winding transformer, shown in Fig. 

2.1.1 can be adapted to cater for transient as well as steady- 

state conditions by allowing M, the mutual inductance between 

the two coils, to vary as a function of the coil currents. 

This version of the equivalent circuit model, while no longer 

suitable for producing algebraic solutions to the steady-state 

performance, is nevertheless adequate in most applications 

where a complete solution is required, as long as the relation- 

ship between M and the coil currents can be accurately 
represented. 

Extending this equivalent circuit of the single-phase 
transformer to the poly-P'hase case, where each phase of the 
transformer is represented by a circuit identical to that of 
Fig. 2.1.1, does not give a sufficiently accurate representation 
of the real system since magnetic coupling between individual 

phases is not catered for except for the conditions under 
which the transformer parameters are measured. While such 
a representation can often give good results in terms of the 

peak transient current and steady: -state performance, it is 

unlikely that close correlation between computed and recorded 

waveshape will be achieved, which could be a critical factor 

in protection systems applications. 

Another factor which will be very dependent on magnetic 
linking between phases is the condition of the core following 

supply interruption, i. e. residual conditions. A transformer 

which has been energised and then disconnected from the 

supply will almost invariably have residual flux in the core. 
Since disconnection does not normally occur simultaneously in 
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all phases, inter-phase magnetic coupling can affect the 

residual flux levels in the de-energised phases during the 

disconnection procedure. It is therefore imprabable that a 

method of analysis based on an equivalent circuit model of the 

transformer would produce sufficiently accurate results for the 

purposes of the present study. 

The -second type of approach to transformer analysis, 

which relies almost completely on the direct solution of the 

magnetic field equations, will almost certainly produce the 

most accurate results and be most flexible in its application. 

This is due to the close correlation between this method of 

representation and the actual device. A full solution would in 

this case require that the problem be treated as 3-dimensional 

(e. g. reference 3), and account taken of the distribution of the 

flux in the magnetic core and in the air, or other insulating 

material, around the transformer. The steel tank which 
invariably encases large power transformers can greatly 
increase the complexity of the problem. 

As with all complex problems, there are various 

approximations which may be made to reduce the amount of 

work required to produce a solution. For example, by split- 

ting the analysis into two parts, the air flux distribution 415 

and the core flux 6, 
a degree of simplification can be achieved. 

Little error is introduced, and the problem greatly simplified 

if a 2-dimensional solution is sought 
4-7 

, and a degree of 

symmetry assumed. 

Irrespective of the number of simplifying assumptions 

made, the problem requires the use of numerical methods to 

solve the nonlinear field equations; usually finite difference or 
finite element methods are employed. Solutions of this type 
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tend to involve large amounts of computer time, and this 

factor alone virtually excludes the use of this method of 

representation for all but the most specialised of applications 

requiring the solution to a strictly limited number of situations, 

such as the examination of the leakage fields in a power 
transformer or saturation effects at corners in the core. For 

more general problems, ' such as transient analysis, which 

require a large number of calculations to be carried out, the 

complete utilisation of field analysis techniques becomes, for 

the present, an impractical proposition. 

As computer systems develop, and faster, more power- 
ful machines become available, the use of field analysis to 

solve time-varying problems involving nonlinear electromagnet- 
ic devices should become feasible. As a first step towards 
this aim, methods of representing the transformer mathematic- 
ally have been developed which incorporate aspects of both 

circuit and field theory, without becoming over-complex and 
therefore limited in their application. This type of approach., 
while making certain simplifying assumptions regarding the 

fields and fluxes in the system, takes account of the relation- 
ship between the electric circuit and magnetic circuit quantities, 

112 
and has been shown to give reasonably accurate results 
The amount of computing time required is considerably less 

than that to produce the solution to a given problem using 
4 field analysis alone, and is only slightly more than the time 

taken using equivalent circuit techniques. 

This latter method of transformer modelling therefore 

appears to offer the best compromise between the two other 

methods described above, and is the method which has been 

adopted for use in the present investigation. A short 
description of the techýique and examples of the application to 
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transformers is given below. 

2.2 General Electromagnetic System. 

MacFadyen 
1 has proposed a method of representing 

mathematically a general static electromagnetic system based 

on a physical model of the magnetic circuit. A similar 

approach has been taken by Nakra and Barton 
2 in that the 

equations describing the system are divided into two categories, 

viz., the electric circuit equations and the magnetic circuit t> 
equations. 

2.2.1 Electric circuit equations. 

The voltage equations for the coils on any limb of the 

general polyphase system shown in Fig. 2.2.1 can be written 

as, 

vn=i n* 
IR 

n+1n pi n+N n' PPj 

where, i is the component of flux linking all coils on the 

j th. limb. Thus for the case of two windings per phase, 

referring all quantities to N turns, 

VA= 'A * 'RA + 'A * PA + 11' poi 

v=iR+1 pi + N. PP aaaaa 

2.2.1 

Pi will be mainly confined to the magnetic core. The 

expression for the corresponding e. m. f., N. pP i can therefore 

be expanded in terms of the magnetisation characteristic of 
the core. Assuming uniform flux distribution over the cross- 

sectional area of the limb, then, 

= 13J. AJ 
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thus, 

N. PP N. A J-P, j 
N . 'A i* (dB i /dH PH ...... 2.2.2 

where dB /dII is the differential permeability or slope of the 

magnetisation characteristic. 

A magnetisation current for the limb, i,, is defined by, 

ii=H jo Li IN 

where LI is the mean flux path length in the limb. Substituting 

for Hi in eqn. 2.2.2, 

N. pp j ý-- j- pij 

where, Mi :-N2Aj . ýkd/L i 111) 

which has the dimensions of inductance. Eqn. 2.2.1 can now 
be written as, 

R+1p A* AA 'A+ Mj - P'j 

Va = la* na + la- P'a +m3 pi 
2.2.3 

A series of equations of this type can Pe derived for each 
limb in the system. In order to solve the equations it is 

necessary to establish further relationships since for each V 

limb in the system there is one unknown quantity more than 

the number of equations. 
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2.2.2 Magnetic circuit equations. 

The additional equations required are obtained by 

consideration of the magnetic circuit relationships. Magnetic 

flux will be present in the core and in the air between any 

two points on the core provided an m. m. f. exists between the 

points. In the general system with n-coils per phase, any 

component of flux may link with one or more coils on the 

same limb. Flux may also link with all coils on the same 

limb but fail to link with coils on other limbs. This 

component of flux, which has a path mainly in air, is defined 

as the phase-leakage flux, and the corresponding phase-leakage 
inductance is taken as being constant. For convenience, the 

phase-leakage flux associated with each limb is assumed to be 

concentrated in a single phase-leakage path, as shown in Fig. 

2.2.2, which also shows the other assumed f lux paths in the 

system. 
If I %k 

II Applying Ampere2s Magnetic Circuital Law, 

Zi. N= 
fH. 

dl 

round any closed path in the system will result in an equation 

such as, 

N. i* + NA HL+HL...... 2.2.4 
Aa 10.1 . pl* PI 

which is obtained by taking a path comprising limb I and the 

phase-leakage path for that limb, ýFig. 2.2.2). Substituting 

for H, and H 
P1 

in eqn. 2.2.4, and dividing throughout by Np 

i4 +, ia=i1+i 
P1 ...... 2.2.5 
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where iI and i 
Pi are the magnetising currents associated with 

the main flux in limb 1 and the phase-leakage flux for that 

limb respectively. 

Further equations may be derived by summing the 

fluxes at a junction, since, 

B. dS = 

then for the junction of limb I and the upper yoke, 

91 + 921 + 931 - 9pl =0 

Substituting for Q in terms of B, and differentiating with t> 
respect to time gives, 

Al*II dl* pH, +A 21: 11 d21 * PH 21 +A 31*)'d31 pH 31 -A pi-)'o- pH pl =O 

i. e. m 1*p'l + M21*P'21 + M31* pi 31 - mpl. pi P, =0.. 2.2.6 

The complete system can therefore be represented 
by a combination of simultaneous differential and algebraic 

equations of the type given in eqns. 2.2.3,2.2.5 and 2.2.6. 

Tw 
'o 

specific examples are given below which are relevent to 

the present investigation, viz., the single-phase, two winding 
transformer, and the three-phase, three-limb, two winding per 

phase transformer. 

17 



2.3 SiDgle-Phase Transformer. ' 

The voltage equations for the two winding, single- 

phase transformer, shown, in Fig. 2.3.1 are, 

i A* RA+IA. pi A+M. Pi 
2.3.1 

.a+Ia. pi a+M. pi 

where all quantities are referrcd to NI (primary) turns. The 

magnetic circuit equation is, 

'A oooooo2.3.2 

and substituting for im in eqn. 2.3.1 gives, 

vA "I 'A * "A + IA * PA + M* P(A+ 'a) 

2.3.3 

a=ia- Ra + 'a * P'a + M* P(A+ 'a) 

which are the equations for the simple equivalent circuit 

shown in Fig. 2.1.1. Allowance can be made for eddy-current 
loss by the conventional method of loading a secondary winding 

with a resistance which produces losses equal to the total 

ed dy-current effect. 
6 

2.4 Three-Phase Transformer. 

Fig. 2.4.1 shows a three-limb, three-phase trans- 

former with two windings per phase. The voltage equations 
for this system comprise three primary-circuit equations and 
three for the secondary circuit, giving a total of six. For the 

1-1 

, ý, v 
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primary circuit, 

A ý-- i A' R A. + I A'P'A + 1ý11*P'l 

B `ý i B* RB+1 B* P'B + M2* P'2 ...... 2.4. la 

R+1 pi +M c C, c C* c 3*P'3 

and for the secondary circuit, 

a+1a pi a+M I-Pil 

++M...... 2.4. lb 
b b*Rb lb* 13'b 2* P'2 

c+1c pi c+M3* P'3 

There are, in this case, nine unknown currents, i. e. 
three more than the number of equations. By summation of 
the fluxes at the junctions of each of the limbs with the 

upper yoke, a further three equations for the system can be 

derived, 

91 - 94 - 97 

92 - 95 + 97 + 98 

93--96- 98 

Substituting and differentiating as in eqn. 2.2.6, the following 

three equations are obtained, 

0M 
I'P'l M4 ' P'4 - M7 * P'7 

0m.. 2.4.2 2*9'2 M5*P'5 + M7*P'7 + M8*P'8 
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0=M 3* pi 3-M 6*P'6 -m 8*pi8 ...... 2.4.2 

These equations., however, introduce a further five 

unknowns into the system, requiring another five equations in 

order to make the solution possible. The additional equations 

can be obtained as in section 2.2.2 by applying Ampere"s Law 

around a series of closed paths, such as that comprising limb 

1, the upper yoke, limb 2,, and the lower yoke, which gives, 

I+i7-i2+i7...... 2.4.3 

Since, by symmetry, '7 (upper yoke) ý- '7 (lower yoke), the two 

yoke paths may be considered as a single unit, and eqn. 2.4.3 

re-written as, 

'A 

Similarly, 

i8 =ic+ic-iB-ib-13+ '2 

4AaI...... 2.4.4 

5iB+b2 

6c+c3 

These five algebraic equations complete the system 

of fourteen simultaneous equations required to represent the 
three-limb transformer of Fig. 2.4.1. The equations may be 

reduced by substituting for '4 to i8f rom eqn. 2.4.4 into the 

nine differential equations. ' 
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Further modifications may be necessary according to 0 
the winding configuration and type of load, if any, and also to 

take account of switching conditions. This procedure is 

described in chapter 4, together with a description of the 

method used to solve the equations. The transformer model 
derived above is also utilised in ferroresonance applications 

in chapter 5, which also contains details of the actual form 

of the equations for this case. 

2.5 Representation of the Magnetisation Characteristic. 
I 
(J'a, 

An integral part of the solution of the transformer 

equations is the value of the differential permeability, u d' for 

the transformer core sections. If the differential permeability 
is constant, i. e. there is a straight-line relationship between 

the flux density and the field strength, then the equations can 
be solved directly in terms of the rates of change of the 

currents, and the currents found by a process of numerical 
integration. 

Magnetic materials do not exhibit this type of B/H 

relationship,, although for the sake of simplicity the mutual 
inductance is often assumed to be constant. A typical 

magnetisation characteristic for- a magnetic material is shown 

in Fig. 2.5.1. which is obviously far from linear. This is 

the curve obtained when the magnetic field is slowly 
increased from zero., the material having been initially de- 

magnetised (i. e. there is no initial value of flux density). 

There are a number of ways in which this character- 

istic may be represented mathematically, apart from assuming 

linearity. The effects. of saturation can be crudely modelled 
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by the use of a second linear region as illustrated in Fig. 
2.5.1. A more sophisticated method of representation, 

-although not necessarily more accurate, -is to use some form 

of mathematical function to represent the curve. Trutt, 
Erdelyi and Hopkins 

8 
examine 

, 
and assign a 'figure of merit' 

to a number of possible functions, including hyperbolic, 

trigonometric and exponential functions, as well as power 

series. They conclude that, due to the difficulty encountered 
in satisfactorily representing the curve over its entire range 

using such functions, the curve can be best represented by a 
large number of small regions over which the characteristic 
can be taken as linear (see Fig. 2.5.2). 

MacFadyen 1 has compared a number of well-known 
methods, including Fourier series and rational-fraction 

approximation 
9, but finds that no method gives an accurate 

representation of the B/H curve over the range O<H<cvO , in 
terms of the differential p erm eability /field strength relation- 
ship as well as in B and H. Many methods, while apparently 

giving a reasonable representation of the B/H relationship, 

gave values of differential permeability which were totally 

erroneous, even to the extent of giving negative values. 
MacFadyen then presents a method of representing the magnet- 
isation 

-curve over the entire range of H by using an exponen- 
tial series of the form shown below, 

n 
-uo. H+ : ý_; K2i-l* (1 - exp(-K 2 j. H)) ... 2.5.1 

which has the general shape shown in Fig. 2.5.3. The 

coefficients of the n-terms are found by graphical means or 
by iteration. This method gives a very accurate representation 
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of the ud/11 and B/H relationships over the range of H from 

near the origin to infinity. The values of ud and D for H<0 

are obtained by using the absolute value of H in eqn. 2.5.1. 

Allowance for the region of reverse curvature near the origin 

can be made by the addition of a term to represent the curve 

of the difference between the actual characteristic and the 

curve from. eqn. 2.5.1. This difference curve can be repres- 

ented by an equation such as 
19 

B= K2n+l* exp(-K2n+2* HK 2n+3 ) oooo*2.5.2 

Alternatively, the ratio of B from eqn. 2.5.1 to the 

actual value of B for a given field strength may be plotted 

over the region near the origin, to give the curve shown in 

Fig. 2.5.4. This curve may be represented in turn by an 

equation, 

+Z c 2j-l' exp(-C 2j* H) ...... 2.5.3 
j+l 

the coefficients of which can be found using iteration techniques. 

-Representation of the Complete Magnetisation 

Characteristic. 

No matter how accurately the magnetisation curve of 
Fig. 2.5.1 can be represented by mathematical functions of 
the type described above, the complex, multi-valued nature of 
the B/H relationship has not been taken into consideration. 
The phenomenon of magnetic hysteresis was first recognised 
during the nineteenth century, and attempts to represent the 
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complete magnetisation characteristic date back to 1887 when 
Lord Rayleigh 10 

proposed a method of representing small, 
steady-staLe B/11 loops. 

Since then there have been several methods postulated - 
by various authors of representing the complex B/H relation- 
ship mathematically, particularly since the advent of digital 

computers. - For example, Potter and Schmulian suggestthe 
following equation as being suitable for representing the 

magnetisation characteristic of magnetic tape, 

B(Hý Bso sgn(ot) - (I + tanh( He-sgn(oQ. H_ tanh-1 S)) 
Hc 

where, N is a variable which is dependent on the magnetic 
history (see Fig. 2.6.1). 

sgn(o( )=I for Cc >, 0, and -1 for M<0. 

Hc major loop coercive field strength. 

BS saturated flux density. 

S=Br /B 
s 

(squareness). 

It is very unlikely, however, that the four loop 

parameters chosen, Hc, Bs, Br and Hm will be sufficient to 

achieve a reasonable degree of accuracy in the representation. 
Manly 12 

suggests the use of an additional parameter, w, which 
is 'the half-height width of the differentiated loop', i. e. the 

width in terms of H, of the ud /H curve for the major 
hysteresis loop at ud=U dmax / 2, as shown in Fig. 2.6.2. 
Results obtained for various function representations - 
hyperbolic tangent, arctangent, normal curve, etc., are 
presented, but the author concludes that 'the models fall short 
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in representing most materials of interest. I 

2.6.1 General method of representation. 

The non-unique B/H relationship for magnetic 

materials may be considered as an infinite number of single- 

valued trajectories, or curves, which are bounded in the B/H 

plane by the limit cycle or outer hyteresis loop as shown in 

Fig. 2.6.3. It is only necessary to - represent the curves for 

H increasing positively, since in general, decreasing curves 

may be obtained by rotating the corresponding increasing 

characteristic by 180 0 about the origin. Trajectories (e) and 
(f) in Fig. 2.6.3 are examples of increasing characteristics 2 
all of which originate on the boundary curve (b) and pass 
through the positive saturation point, (HSI BS). It is assumed 
that the increasing trajectories, and consequently the decreas- 
ing curves, do not intersect. 

In order to be able to represent all increasing durves, 

expressions must initially be obtained for at least two'curves 

in the plane, preferably curves (a) and (d). Any other curve 

- ratio, which can then be generated by assuming a constant 

can be evaluated knowing one point on the required trajectory 

defined by initial conditions or turning points in the B/H 01 
plane. Thus curve (c) may be -expressed as., 

Bc = (B d-a 

Greater accuracy may be achieved by obtaining 
expressions for intermediate curves such as curve (C). Thus 
if trajectories (a), (c) and (d) are explicitly defined, the 
the expressions for characteristics (e) and (f) become, 

25 



Be=Bc+ (B d-Bc). 
y. 

o *oe. 2.6.1 
X+Y 

I 
BfBa+ (Bc -Bay oeoso*2.6.2 X+Y 

The expression for Be will apply to curves which originate 

on the limit cycle at values of B> B such as curve (g) in 
Fig. 2.6.3, since in this case, 

B 
9 

BdBc 

i. e., the curve will lie above curve (d) at all points. It is 
therefore possible to represent all curves in the B/H plane 
using eqn. 2.6.1 to obtain characteristics lying above (c), and 
eqn. 2.6.2 for those below (c). 

In order to generate trajectories which originate at 
large values of H (JHI>1ý ), e. g. curves lying close to (a) in, 
Fig. 2.6.33 then it is necessary to extrapolate curves (c) and 
(d) beyond the limit cycle curve (b). The expressions for 

these curves and the boundary curve (a) must therefore be 

capable of representing magnetisation characteristics over the 

range -co<H<+oo. 

2.6.2 Bppresentation of single magnetisation curve. 

It has already been stated that there are several ways 
in which a B/H curve may be represented mathematically and 
almost any one of these methods could be modified for use in 
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the representation of the complete characteristic. Only two 

of the methods described above appear to give a reasonable I 
representation of the curve over an extensive range of H, viz, 

the exponential series and piecewis e- linear methods. The 

piecewis e- linear method of representation, while easily modified 
to give the correct shape required for the complete character- 

istic, suffers from the drawbacks of requiring a large amount 

of computer storage, and being less accurate in representing 

the ud/H relationship than the exponential series. 

The exponential series is less easily modified to give 
the required overall shape, but is potentially a more accurate 

and more easily handled method. A complete B/H curve will 

have a shape similar to that shown in Fig. 2.6.4. If the 

point of maximum slope, (H 
0 9B 0 

), is located, it is possible 
to derive coefficients for two independent exponential series, 
one to represent the curve for values of H greater than H 

op 
and a second series to represent the curve in the region H4H 

0 
This technique will give a curve with the correct shape, and 

will be highly accurate in terms of the ud /H relationship, 

except at H=H 
0 where there may exist a discontinuity. It is 

therefore desireable to further modify the expression for the 

curve to eliminate the discontinuity at (Hol BO). 

Consider the expression for the hyperbolic tangent 

function, 

-tanh(jx - 
2. e 

: x- 

which has the correct general shape required, but is not suit- 

able for the representation of the magnetisation curves due to 

the symmetrical shape of the function. If coefficients are 

introduced into the expression, and the variable changed to H, 

-x 
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then an expression for the f lux density is obtained, 

B IC, exp (-IC 2H) 
...... 2.6.3 

1 1- e. -... p (-K 3H) 

Fig. 2.6.5 illustrates the effect which the variation of the 

relative magnitudes of X2 and K3 has on the shape of the 

function. For K3 =K 21 the shape is similar to that for the 

hyperbolic tangent, i. e. symmetrical. If K3<K 21 then the 

flux density will tend towards -oo as H increases negatively. 
By making K3 larger than K2 than as H -a- - cx3 ,B -%- 0. It is 

therefore impossible to produce an asymmetric function of 
this type whichretains, the correct shape required for the 

representation. However, if K3*>> K21 then for all values of 
H less than zero, B is effectively zero, and it becomes 

possible to produce a function to represent the curve which 
has the correct asymmetric shape and is continuous at all 
points in the range - co <H<+ oo , i. e. , 

B=K 10 
1- exp(-K 2* H) 

+K 3* 
1- exp(-K 4* H) 

1+ exp(-Ko. H) I+ exp (+K . H) 
0 

2.6.4 

where the two terms, one representing the curve for values 
of H>O, and the second in the region H40, are virtually 
independent if K0 is very large compared with K2 and K 4. By 

allowing for the air line and shifting the origin of the express- 
ion to the point of maximum slope, (H 

0, 
B0), then the complete 

expression becomes, 
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B=0+u0. (H-H 
0) 

n 
2i-l* exp (-K 2i* (H-Ho))] / 

[1 
+ exp(-Ko. (H-Ho))] 

1- exp(-K - (H-H ))j / 
[I 

+ exp( Ko. (H-H +K 2j-l* 2j* 00 j=n+l 
2.6.5 

This expression has been used to represent single curves 

which are then utilised in the representation of the complete 

magnetisation characteristic. An example is given in Fig. 

2.6.6 which shows the recorded magnetisation characteristic 

of a single-phase, 1-kVA, 250v. transformer, together with 
the curves obtained using eqn. 2.6.5. The coefficients for this 

characteristic and those for the other transformers used in 
this investigation are given in appendix Al. 

I 
The method used to obtain the coefficients is described 

in appendix A2 which also contains a brief description of the 

computer program used in the determination of the coefficients. 

2.6.3 General observations on method of representation. 

, Although the method of representing the complete B/H 

characteristic of a magnetic material , presented in section 
2.6.1, requires that a minimum . of twQ, and preferably three 

curves are initially represented, using for example eqn. 2.6.5, 

the information given by steel and transformer manufacturers 
does not always specify the amount of detailnecessary to do 

this. A method, which is described in detail in appendix A3, 

has therefore been devised which allows the complete represent- 

ation to be achieved with the minimum of informations i. e. the 

1ý 
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B/H curve (B 
r7-0)' 

and a knowledge of BR and Hc. This 

method, while being less accurate than that described above, 

is very useful where it is impractical to measure the trans- 
former characteristics directly. 

It should be noted, however, that the characteristics 

of the completed transformer may differ considerably from 

that of the steel itself, due to air gaps in the core caused by 

the methods used in the construction. The characteristics of 
the steel also vary according to the angle at which the flux 

crosses the grain direction. This problem is dealt with in 

greater detail in chapter 3. 

For the purposes of representing the B/H character- 
istics of magnetic materials, it was assumed in section 2.6.1 

that, in general, increasing curves do not intersect. Examin- 

ation of the oscilloscope traces shown in Fig. 2.6.7 indicate 
that, under certain circumstances, curves of this type will in 
fact cross. The occurrence of these crossovers can be 

explained by considering the process of magnetisation as 
proposed by Preisach 

13 
which is given in appendix A4. It is 

unlikely that errors due to this imperfection in the represent- 

ation will in themselves be significant, and in any case will be 

much less than if hysteresis is neglected. This is therefore 

not considered a serious fault in the representation, but if 

necessary, it should be possible to modify the method given to 
incorporate this type of behaviou r. 

2.7 Summary. 

The various ways in which a static, nonlinear, 
electromagnetic device may be modelled mathematically have 
been described and a method of achieving this by a combined 
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electric -circuit and magnetic -circuit approach is given. 
Examples of the application of this method are presented for 

the single-phase transformer, and the three-limb, core type 
three-phase transformer with two windings perphase. 

A method of representing the complete magnetisation 

characteristic of a ferromagnetic material has been proposed 
together with a suitable expression for representing the B/H 

relationship of a single curve which is accurate over the 

complete range of H. A discrepancy between the method of 

representation proposed and the observed behaviour of 
ferromagnetic materials is discussed and the conclusion 
reached that this will have little effect on results obtained 
using this method. 
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-CHAPTER 3- 

EXPERIMENTAL ]REQUIREMENTS 

It is generally agreed that the various factors which 

may affect the performance of transformers include the trans- 

former parameters (winding resistance, leakage inductance, 

etc. ), the magnetisation characteristic of the core, the supply 

voltage and impedance, and the point on the voltage waveform 
at which the supply is connected (transient performance). The 

magnitude and direction of residual core flux can also have a 
considerable effect on the transient behaviour of transformers. 
The way in which values for these factors are obtained are 
described in the first part of this chapter. - 

The second part of the chapter is devoted to the 
. 

techniques used in the control and monitoring of transformer 

conditions. 

3.1 Transformer Parameters. 

The parameters required for the solution of the 

transformer equations are the winding resistancess coil-leakage 
inductances (one or two windings per phase), and in the case 
of a polyphase transformer, the phase-leakage inductances. 
All the above parameters are assumed to be constant. 

The d. c. resistance and coil-leakage inductance values 
were measured using standard d. c. and short-circuit tests. 
The conventional method of dividing the total leakage inductance 

obtained from the shoit-circuit test equally between the two 
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coils used (all parameters referred to N turns) was employed, 

which gave reasonable results when used in subsequent 

computations. 

A test to measure the phase-leakage inductances has 

been devised by MacFadyen This test involves the measure- 

ment of the flux linking -search coils sited on each branch of 
the magnetic core at the limb under consideration, as shown 
in Fig. 3.1.1. Thus knowing 91,92 and ý331 ý3pf the phase- 
leakage flux can be determined. The corresponding phase- 
leakage inductance is given approximately by, 

Mp=i 

where, Mp is the phase-leakage inductance, and iA is the limb 
coil current. 

An alternative method of estimating the phase-leakage 
inductance is simply to divide the single value of zero- 
sequence inductance obtainable for the three-limb transformer 

equally among the three phase-leakage paths. In the case of 
a fivelimb transformer$ the zero-sequence inductance will be 

highly nonlinear unless the outer limbs are excited at the 

same time as the three wound limbs, forcing the flux to return 
in the air instead of via the low reluctance paths provided by 
the outer limbs. Since it may not be-practicable to measure 

phase-leakage inductance directly, this method could prove a 
convenient alternative. MacFadyen has shown that large errors 
may be introduced by allowing for only a single phase-leakage 
path, or by neglecting the effects of phase-leakage flux entirely 
but has presented no comparison of results obtained using 
phase-leakage inductances and those for zero-sequence induct- 
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ance. A comparison of this type will be made in chapter 4. 

one transformer parameter which will normally only 

apply to transformers with high voltage windings (e. g. trans- 

mission and distribution transformers) is the h. v. winding 

self -capacitance. This capacitance is distributed throughout 

the winding, but for simplicity can be considered as a single, 

lumped value. A simple way of measuring this capacitance 

is to charge the winding capacitance using a d. c. source and 

to measure the frequency of the oscillation which occurs when 

the supply is suddenly removed. If L, the winding self- 

inductance is constant, i. e. nonlinearity can be neglected, then 

the frequency of oscillation is given by, 

1 
IR 22 

L. C 4. L71 

Since, for virtually all transformers, (1/L. C)>> (IR 2 /4. L2t 

the frequency will be close to the undamped natural frequency, 

1 
(L. C) 2 

In order to assure reasonable linearity the voltages 

and currents are kept very small. Both L and C are assumed 

unknown so that it is necessary to measure two values of 

frequency; one for the winding self -capacitance aloneg and one 

with a known capacitance, C1, connected in parallel with the 

winding so that, 

I 
1/(L. C) 2 

02 1/(L. (C +C 1))2 
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which gives, 
c 

co 

11 
t02 

The value of C obtained can be checked by repeating 

this procedure using several different values of Cl. This 

method of measuring capacitance, while being approximate, 

should be sufficiently accurate for use in the present invest- 

igation. A complete list of the parameters, including winding 

capacitance where relevent2 is given in appendix Al. 

3.2 Magnetisation Characteristic. 

It may often be necessary to obtain the magnetisation 

characteristic of a transformer experimentally, even where 
information on the characteristic is available, since the 

methods of construction used in power transformers introduce 

small air gaps between core sections, which can cause the 

magnetic properties of the completed transformer to differ 

considerably from that of the steel alone. In addition, 

components of flux are forced to cross the steel normal to 

the grain at the junctions as shown in Fig. 3.2.1 which may 

also affect the B/H characteristic of the transformer. By 

obtaining the magnetisation characteristic directly, and 

assuming that the core is magnetically homogenous, the eff ect 

of core air gaps and cross-grain flux may be taken into account 

without introducing additional equations into the transformer 

model described in chapter 2. 

The measurement of the B/H characteristic involves 

obtaining a value of magnetic f lux density for a corresponding 

value of applied field strength. As the B/11 relationship is 
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non-unique, the flux density for a given value of field strength 
is only meaningful if the magnetic history of the core is 

known. While the measurement of absolute flux density in the 

core is virtually impossible, it is possible to measure changes 
in the flux density by integrating the e. m. f. induced in a 

search coil wound round the section of core to be examined. 

The signal f rom the integrator is calibrated by applying the 

following equations, 

v= -f dt 

V=B. A. NS 

where., V is the flux linkages in the search coil 
e is the e. m. f. induced in the search coil 
A is the effective cross-sectional area of the core 
Ns is the number of turns in the search coil 

If a sinusoidally varying voltage is applied to the 

primary winding of the transformer, the e. m. f. induced in the 

search coil is given by, 

A 
K sin(tat) 

so that, 
y= -E/ca Cos('t-Jt) 

and, 
AA 

B= E/(N A. C3) eue. 93.2.1 

It is therefore possible to calibrate the integrated e. m. f 

signal in terms of f lux density if the peak value of the sinu- 

soidal voltage induced in the search coil is known. 

36 



Ampere's Magnetic Circuital Law, 

H. dl = N. i 

can be applied round any closed path in the core. If the flux 

density is assumed to be constant in all parts of the flux path, 

then the magnetic circuit equation becomes, 

H. L 

i. H=N. i/L ooeooo3.2.2 

where, i is the current in the primary winding. 
L is the mean flux path length. 

The voltage drop across a low resistance shunt 

connected in series with the primary winding will be directly 

proportional to the current in the winding. This voltage signal 
can therefore be calibrated in terms of the magnetic field 

strength, H, using eqn. 3.2.2. 

The magnetisation characteristic is obtained by 

applying a slowly varying direct voltage to the primary wind- 

ing of the transformer. The signal from the integrator is 

applied to the Y-plates of an oscilloscope, and the signal from 

the series shunt to the X-plates' as slýown in Fig. 3.2.2. An 

oscillogram of the B/H characteristic is produced in this way 

and two examples obtained from an 8-kVA, three-phase trans- 

former are shown in Fig. 3.2.3. D. c. excitation is used to 

eliminate as far as possible the effects of eddy-currents. 
This method is also used-to record flux density and current 
during transient and steady-state a. c. conditions. 
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In order to calibrate the B/H characteristic in terms 

of the absolute value of flux density., rather than the change in 

flux density, all measurements were taken with the transformer 

core initially de-magnetised. 

In the case of a three-limb, three-phase transformer 

core, the B/H characteristic is measured by energising the. 

two outer limbs in series so that the resultant fluxes are in 

the same direction round the core. If the coils are identical 

and the core is symmetrical about the centre limb, then very 

little flux will be set up in the centre limb. As with the single- 

phase transformer, the B/H characteristic is obtained in this 

way assuming that the flux density is constant in all parts of 
the core flux path, i. e. that the cross-sectional areas of the 
limbs and yokes are all the same. 

To check the magnetic isotropy of the core, i. e. to 

ensure that the effect of core air gaps and cross-grain flux 

does not lead to appreciable variation in the magnetic 

properties from section to section in the core, the measure- 

ment of the B/H characteristic was also carried out using first 

the coil on one outer limb in series with that on the centre 

limb, and then the other limb and centre limb together. No 

measurable difference could be detected in any of the three 

magnetisation characteristics thus obtained. 

The characteristics of the single-phase and two three- 

phase transformers. which were used in the study of transform- 

er behaviour are given in Figs. 2.6.6,3.2.4 and 3.2.5 res., 

together with the corresponding exponential series curves. The 

series coefficients are given in appendix Al. Fig. 3.2.6 shows 
the magnetisation characteristic of the steel used in the 

construction of the 50-kVA distribution transformer as supplied 
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by the steel manufacturer. The experimentally -obtained 
characteristic in Fig. 3.2.5 departs considerably from this 

and serves to illustrate the effects of constructional methods 

on the magnetic properties of the core. 

0 

3.3 Supply Impedance. 

Fig. 3.3.1 shows the circuit used to control and 

record transient and steady-state conditions in a single-phase 
transformer. The mains supply, the auto -transformer and 

other external circuit elements will all have a certain imped- 

ance, and the total impedance, which is assumed constant for 

a given frquency is given by, 

ZsRs+ jx 
s 

To protect the switching angle selector from the high steýtdy- 
state currents used in the measurement of Rs and XS the 
impedance of this device is measured separately. 

The Thevinin equivalent circuit of the supply, which 
is used in the computation of transformer performance, consists 

of an open-circuit e. m. L., TE, and the effective supply imped- 

anc 
* 
es Rs + jxso E can be measured directly. If this circuit 

is used to supply a unity power-factor load then, taking the 

voltage across the load as reference, 

EL& = VLOf + IL02. zs& ...... 3.3.1 

where, V is the load voltage. 
T is the load current. 
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S, the phase angle between E and V (see Fig. 3.3.2) was 

measured using a digital phase meter, allowing Rs, Xs and 
to be evaluated from eqn. 3.3.1. 

S 
For auto -transformer turns ratios other than 1: 1. the 

leakage inductance of the auto-transformer, which has a 
degree of nonlinearity dependent on the turns ratio, causes the 

supply inductance to vary with current. However, since 1S is 

very small compared with the self inductance of the test 

transformer primary winding for rated steady-state conditions, 

its value will only become significant when the test transformer 

saturates, i. e. during transient conditions. For this reason 
the value of ls used in the calculation of transformer perform- 

ance was that obtained for large values of current. Appendix 
Al lists the values of RS and 1S used in the investigation and 
the effect of varying the supply impedance is examined and 
discussed in chapter 4. 

3.4 Switching angle selector., 

The double-pole switching angle selectors 
14 

which 

were available in the department had been used successfully in 

the study of switching transients for a number of years. In 

the study of transients in three-phase transformers with four- 

wire supplies it is necessary to control the switching in all 

three lines. The units available could not be readily connected 

together to give non- simultaneous switýhing in three lines, and 

unreliable operation was experienced, due to pick-up problems 

in the pulse transformers, when this was attempted. It was 

decided to try to improve the design of the switching angle 

selectors with a view to constructing a single-pole unit which 

could be readily connected- in series with a number of similar 
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units to provide n-pole operation. 

Several sucessful designs were produced, but the 

circuit shown in Fig. 3.4.1 was chosen as the final version 
owing to its compact size when constructed, and its capability 
to supply several watts of power to the thyristor gate, if 

required. The operation of the unit is described below. 

3.4.1 Description of circuit. 

The variable phase (with respect to the mains supply), 

sine-wave output from the magslip, IV4 is reduced to a low 

voltage, square-wave signal by resistor R1 and zener diode Z1. 
The square-wave signal is fed to the base of transistor TI via 
a current limiting resistor R2. This causes TI to switch 'on' 
and 'off' producing a large square-wave voltage at the 
collector of 71 as shown in Fig. 3.4.1. Capacitor CI and 
resistor IR5 form a differentiating arrangement which forms a 
train of negative and Positive pulses at the lagging and leading 
edges of the square-wave, i. e. at the zero-voltage points on 
the magslip output. Diode DI prevents the negative pulses 
from reaching transistor T2 which forms an emitter -follower 
arrangement with JR7 . The magnitude of the pulses appearing 
across R7 while SCRI is in the non-conducting state is 
limited by the large resistor R3. 

When the ']Reset' switch. is closed, SCIRI is gated 'on' 

by push-button PB1 and held in this condition by hold-on 

resistor R8 when PBI is released. This action raises the 

collector of T2 to the d. c. supply level, +9v., thus bringing 

the emitter follower into operation. This in turn causes 
large positive pulses to appear across R7. The first positive 
pulsd reaching T2 once. SCR1 has been switched 'on' will 
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cause SCR2 to start conducting, which provides the supply to 

a multivibrator as shown. SCR2 is held-on by resistor R10. 

The high frequency (about 20kIIz) output from the 

collectors of T3 and T4 is used to switch alternately the two 

darlingto, pairs, T5 and T7. And, T6 and T8. The output 
from PT1 is a high frequency square-wave with no d. c. 

component. -A full-wave rectifier (D2-D5) and a small smooth- 
ing capacitor C4 provide a sPike-free d. c. signal to the gate 

of the main thyristor via a current limiting resistor R19, the 

value of which can be adjusted to cater for the gate require- 

ments of the thyristor. 

The main thyristor used in the new units was an 8OOv. 
30A rms triac which required a gate current of 200mA. at a 
voltage of 3v. The unit is capable of providing up to 10 watts 
of power to the thyristor gate which is sufficient for most, if 
not all., applications. 

The interconnection of single-pole units to provide 
n-pole operation is achieved by connecting the output from the 

emitter-follower of one unit to the gate of either SCRI or SCR2 
in a second unit to give non- simultaneous or simultaneous 
switching respectively. In order that all connected devices may 
be operated from a single 'master' unit, only the d. c. supply 
in'the master unit is used, thus making it possible to reset 

all units by the operation of a stngle spitch. 

3.4.2 Advantages over previous design. 

The large pulses produced by the pulse unit and the 

low output impedance makes the units less prone to the pick-up 

problems experienced with. the original devices, the circuit for 

which is shown in Fig. . 3.4.2. Previously a d. c. supply had 
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to be provided on the secondary side of the pulse transformers 

for each pole, in addition to the d. c. supply required on the 

primary side -a total of three supplies for each double-pole 

unit. This arrangement could prove problematic if the unit 

was required to operate in h. v. systems. Only one d. c. 

supply is required in the new design, irrespective of the 

number of interconnected poles, although the number may be 

limited in practice by the output capacity of a single supply. 

The insulation level is governed only by the pulse trans- 

formers which can be chosen to suit the particular applic- 

ation. 

The compact nature of the electronic circuit makes it 

possible, using 211 magslips, to assemble a complete double- 

pole unit, including triaes and heatsinks, into a box much 
smaller than was previously possible (see Fig. 3.4.3). 
Finally, apart from the increased flexibility of the new design, 
the Saving in cost achieved through no longer requiring the 

number of isolated d. c. supplies, and the use of smaller boxes 

etc., more than compensates for the additional cost of the 

electronic components. 

3.4.3 Impedance of switching angle selector. 

The recorded voltage/current characteristic for the 

switching angle selector is shown in Fig. 3.4.4. The voltage 
drop across the pole can be expressed as, 

Vpole = a. (i/lil) + b. i 

where a and b are constants, and i is the instantaneous current 
through the pole. Thus the impedance for any given value of 
current is given by, 

. 
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Rpole ýb+ a/lil 

3.5 Recording and Measuring Methods. 

There are three quantities which are of interest in the 

study of transformer behaviour under transient and steady- 

state conditions, viz., voltage, current and flux or flux density. 

The transformer m. m. f. 's may also be of considerable interest 

but it is not possible to measure these except under special 

circumstances. 

The basic recording device used in the investigation 

was a Tektronix 5013 storage oscilloscope. In previous work 
in the department 15-17 

, ultra-violet recorders were utilised, 

but this method lacked the flexibility of the storage oscilloscope 

in that it takes several seconds before the recording becomes 

discernible, and it is not possible to superimpose two or more 
traces unless taken at the same time. In addition, since a 

permanent record was not always required, wastage of 
* 
large 

amounts of the special u. v. sensitive paper was eliminated. 

Voltage recording on the oscilloscope was invariably 

carried out using high resistance voltage dividers, while flux 

density was monitored using the method described in section 3.2. 

A signal proportional to the current can be obtained 
in two ways, i. e. by the use of low resistance shunts in the 

current paths, or from current transformers. Wherever 

possible, the former method was adopted, usually when the 

shunts could be sited at the star point of a three-phase 

transformer winding, or invariably in the single-phase case. 
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Current transformers were used where it was necessary to 

isolate the current signals, either because the star point of 
the winding was not accessible, or the winding, was delta 

connected. Results obtained in this way were indistinguishable 

from those obtained using shunts, indicating that little or no 
distortion in the current waveform had been introduced through 

the use of current transformers. 

The equipment used in the experimental work is 

shown in Fig. 3.5.1. 
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-CHAPTER 4- 

MAGNETIC NTONLINEARrrY AND HYSTERESIS 

IN TRANSFORMERS 

The characteristic nonlinearity and hysteresis which 
is exhibited by magnetic materials such as iron, cobalt, etc. , 
play a significant role in determining the performance of 
devices incorporating these materials. These effects can, in 

some instances, be employed to advantage. Permanent 

magnets, hysteresis motors and the magnetic core storage 

used in computers are all examples of the useful application 

of the phenomenon of magnetic hysteresis. Saturable reactors 

and static voltage stabilisers depend upon saturation of the 

magnetic core for their operation. 

The effects of magnetic nonlinearity and hysteresis 

can, however) create problems in the operation of the more 

conventional electromagnetic machines such as transformers 

and induction motors. These problems, which are mainly 

associated with the transient performance and efficiency of 

operationp have been the subject of a vast amount of 
literature dating back over several decades. 

Both phenomena cause losses in these types of 

m6chines, either directly or indirectly. Losses due to 

hysteresis which result in heating of the magnetic core can 
be minimized by the selection of a suitable core material 
such as grain-orientated silicon steel which is widely used 
in transformer laminations. Magnetic nonlinearity, while 
not a direct source of losses, effectively limits the level of 
flux density at which a machine with a steel or Iron core can 
be operated, since higher levels of flux density would 
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require disproportionately larger magnetising currents, 

which in. turn result in large losses in the machine windings. 

While much attention has been given in the past to 

the effect of magnetic nonlinearity on the transient 

performance of transformers 
18 " 19,20,21 

, the part played by 

hysteresis has been largely neglected. This is probably due 

to the problems involved in satisfactorily representing the 

complete magnetisation characteristic of the core, and 

subsequently utilising the method of representation in the 

analysis of the complete device. Yet as will be shown, 

residual core flux, which is a direct consequence of 
hysteresis, can have a very significant effect on transients 

due to switching operations. 

In order to study the ways in which the transient 

behaviour of transformers can be affected by a combination 

of magnetic nonlinearity and hysteresis, the performance 

equations for the single-phase transformer and a three-limb, 

three-phase transformer, derived in chapter 2, are used in 

conjunction with the representation of the complete magnet- 

isation characteristic for magnetic materials, which was 

also presented in that chapter. 

#, 4.1 Single-Phase Transformer, 

In chapter 2, the performance equations for the 

single-phase transformer were given as, 

IA 
: -- i A' RA +1A* PlA + M' P'm 

va = 'e Ra+ 'a' P'a + M. Pi 

where all quantities are referred to N (primary) turns. 
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In order to solve the above equations, the secondary 

voltage., va. must be expressed in terms of the load 

quantities. Thus for a series combination of resistance, 

capacitance and inductance as the load., the secondary circuit 

equation becomes., 

'L* RL+ý L* pi L+qc /C LýiaRa+1 ep'a + M*P'm 

where, qc is the instantaneous charge on 

Also, ia= -i L 

Pqc = 'L 

The above equations can be solved by means of a 

numerical integration technique such as the Runge-Kutta 

method. The computation of the transformer transients 

using this method of solution is relatively straightforward, if 

a single-valued function representation of the B/H character- 
istic is used. If. however, the complete magnetisation 

characteristic is represented using the method described in 

chapter 2, then it becomes necessary to monitor the 

-magnetising currentg i, in ýorder to detect turning---points in 
m 

the B/H plane. When a positive or negative peak value of 
im (or the flux) is detected, then all quantities must be reset 

'to their values at the beginning of the step, i. e. at the 
turning point, and the new trajectory for the magnetisation 
characteristic generated, 

An example of the resultant computed transient B/H 

pattern is shown in Fig. 4.1.1. The apparent discrepancy 
between the computed and recorded patterns is due to the 
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effects of eddy currents, for which no allbwance has been 

made in the transformer model. If the conventional method 

of incorporating eddy current losses in the transformer 

model is used i. e. by shunting the input terminals of the 

transformer by a resistor which produces losses equal to 

those due to eddy currents, the resultant steady-state B/I 

pattern corresponds very closely to the recorded pattern 

as shown in Fig. 4.1.2. This method of allowing for eddy 

current effects is only valid for steady-state conditions. 

4.2 Residual Flux in Single-Phase Transformers. 

In single-phase transformers, with only one 

nonlinear magnetic path to consider, the incorporation of 

residual conditions in the calculations is a relatively 

simple matter. In the de-energised state, (no currents in 
the coils of the transformer),, the equation for the magnetic 
path in the core is, 

H. dl 

i. e. there is no residual value of magnetising current 

--associated with the core path, even though residual flux 

may be present. 

A single-phase transformer operating at or near 
its rated voltage has a steady-state B/H characteristic 

similar to that shown in Fig. 4.2.1. The characteristic 

will cross the zero-H axis at a point close to the limit 

cycle values, tB 
IR 0 Supply disconnection will normally 

occur when the input current falls to zero, i. e., 

il =i 
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Thus at this point, 

im= -i L 4.2.1 

The point on the steady-state B/H characteristic 

at which this condition will occur will depend largely on 

two factors, viz., the size of the load, if any, and the load 

power factor. 

In the unloaded transformer, since no load current 
f lows, the residual conditions will be established at the 

33 
instant of supply interruption., i. e. at the point (0,, Br) in 

Fig. 4.2.1, provided eddy current effects can be neglected. 

In a large unity power factor load, the load current will be 

virtually in phase with the supply voltage, and the flux will 

lag the load current by approximately 90 0, as shown in Fig. 

4.2.2(a). Thus when the input voltage phase angle is zero, 

va=iL=0, and Q and im are at their negative maxima, 
(point A in Fig. 4.2.2(b) ). If the load resistance is very 

small, then the input current will fall to zero when the 

phase angle of the input voltage is very small, i. e. when. 
iL= _'M . This corresponds to point B in Fig. 4.2.2 (b). 

As the size of the load is reduced, the point on the B/H 

characteristic corresponding to input current zero will be 

displaced towards the point (0, --B r 
), which is the no-load 

point. 

Following supply interruption, the magnetisation 

current will decay to zero along with the load current, and 
the final value of residual flux density for a unity power 
factor load will be tB 

r' 
depending on the polarity of the 

input current immediately before disconnection. 
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A large inductive load will cause the load current 
to lag the supply voltage by 0 as shown in Fig. 4.2,3(a). 

As Q increases., the point on the B/H characteristic at 

which supply interruption occurs will shift along the lower 

or upper curve in the direction of the arrows, as shown in 

Fig. 4.2.3(b). When the load is purely inductive, 

disconnection will occur just as the load current falls to zerq 
Le, at point C or C' in Fig. 4.2.3(b). As with a unity 

power factor load., this Point 'will move toward the zero 
load points as the size of the load is reduced. The final 

residual flux level for points lying between (0, -B r) and 
(HC$O) and those lying between (0., +B r) and (-Hc. 9 0) will 
depend on the actual point of disconnection., since the 

magnetisation current will decay to zero along a trajectory 

determined by that point, as shown in Fig. 4., 2.3(b). 

A similar argument can be applied to leading power 
factor loads to show that the disconnection point lies between 

point A, the unity power factor point, and point D. or AQ 

and D99 for a large purely capacitive load, in Fig. 4.2.4. 

Thus the size or WA of the load determines the range over 

which the residual flux value can vary, and the power factor 

of the load determines the final value of Br# Fig. 4.2.5 

shows the variation of residual flux with kVA and power 
factor. 

The curves for leading power factor loads are shown 
broken since the capacitance in the system, due to winding 

self-capacitance or a leading p. f. load element, may cause 
Qringing9 between the nonlinear inductance of the transformer 

and the capacitancev on supply interruption. These damped 

oscillations cause field rieversals, which tend to 
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de-magnetise the core. The extent to which de-magnetisation 

will take place depends on the magnitude and frequency of 
the oscillations and the amount of natural damping in the 

system. It is therefore difficult to predict the final state of 

the core following supply interruption, for this condition. 

Where the value of capacitance is small, the tendancy 

will be for high frequency oscillations of low a. mplitude to 

occur which will decay rapidly due to high eddy current and 

hysteresis losses. De-magnetisation will not usually be 

great in this case. Large values of capacitance will cause 

low frequency, high amplitude oscillations to be initiated, 

with longer time constants. This will result in a greater 

degree of de-magnetisation. 

This behaviour introduces a frequency-dependent 

factor into the analysis., i. e. eddy current loss. Since no 

allowance has been made for the effects of eddy currents in 

the analysisg the results of attempts to compute residual 

flux density) where capacitance is significant, will be subject 

to a degree of error. The conventional method of catering 
for eddy current losses by shunting the input terminals of the 

transformer with a constant value of resistance will only be 

valid for frequencies about 50 Hz. - the frequency at which 

- 
the losses are measured. 

4.2.1 Effects of hysteresis on transieýt performance. 

-Fig. 4.2.6 shows the recorded transient current 

pattern for a single-phase transformer for a switching angle 

of 00, together with the computed results using the complete 

representation of the magnetisation characteristic and those 

for a single-valued function representation. The transformer 
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is unloaded and initially de-magnetised. From these results 

and those given in Fig. 4.2.7, which illustrate the variation 

of peak transient current with switching angle, it can be seen 
that hysteresis does not significantly affect the peak transient 

current due to switching in an unloaded, de-magnetised single- 

phase transformer. Both sets of computed results were also 
found to be virtually identical for the case of a loaded trans- 

former, (for example see Fig. 4.2.8). 

The reason for the similarity between computed 

results using the complete B/H representation and those for a 

single-valued function, is that the initial magnetisation 
trajectory and residual flux level (zero) is identical in both 

cases, which will tend to produce similar results. 

In the general case, however, where residual flux is 

present in the core when the SuPply is connected, the initial 

magnetisation trajectory may differ considerably from that for 

zero remanence; as will the level of peak flux density for a 

given switching angle. An example of the effect which differ- 

ent residual flux levels in an unloaded single-phase transform- 

er have on the transient current is given in Fig. 4.2.9, while 
Fig. 4.2.10 shows how the peak transient current varies with 
the value of residual flux density. 

comparison of the curves of peak transient current 

versus switching angle for residual flux density values of 0, 

+0.9 Tesla and -0.9 Tesla, give n in Fig. 4.2.11, shows the 

considerable influence of. Br on the transient performance of 

an unloaded single-phase transformer, for any given switching 

angle. Results for various loaded conditions, which are given 
in Figs. 4.2.12,4.2.13 and 4.2.14 show a similar dependance 

on residual flux density. 
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It should be noted, however, that the damped 

oscillations observed in the initial stages of the transient 

current pattern for a leading power factor load (Fig. 4.2.14(a)) 

which are due to the interaction of the leakage inductance of 
the transformer and the load, may in fact produce larger 

current peaks than the transient magnetising current. This 

region of the transient current will not be greatly influenced 
by residual flux, and, depending on the switching angle, little 

or no variation in the peak value of current will take place 
as the level of residual flux density is varied. Normally this 
initial oscillation has a very short time constant compared 
with the magnetising current transient, and should not cause 
spurious operation of protection equipment in power systems. 
The peak. current following this initial Oringing' may therefore 

still be of considerable interest. 

4.3 Three-Phase Transformer. 

The nine differential and five algebraic simultaneous 
equations for the three-limb, three-phase transformer with 
two -windings per phase, which were derived from the 

performance equations of the general, static electromagnetic 
sy stem in chapte r 2, do not take account of the transformer 

winding configuration or the type of load. The primary circuit 

equations (eqn. 2.4. I(a) ) can be used in the given form as 
long as the phase voltages can be precisely defined, which is 

the case for a delta or four-wire star connection, but not for 

a star connected winding with floating star point. 

The secondary circuit equations (eqn. 2.4. I(b) ) must 
be modified to allow for both winding configuration and the 
type of load, if any, as in the case of the single-phase 
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transformer. Additional differential or algebraic equations 

may be required, depending on the load arrangement. For 

example, if the load is delta -connected an additional, zero- 

sequence, equation is required, i. e. since, 

av+ 

then, 0i 
aLo 

R 
aL +1 aV pi aL +q ca 

/C 
aL 

+i bL* R bL + 'bL*P'bL + CcbICbL 

+i cL* 
R 

cL +1 cL*pi CL + qcc /CCL 
....,,.. 4.3.1 

assuming a series IR, 12 C load per phase. This equation is 

required since in the secondary circuit there are four 

independent variables (currents) for this arrangement, but only 
three equations in the original set. The presence of 

capacitance in the system gives rise to further simple differ- 

ential equations, 

Pqca =i aL 

Pqcb 2-- i bL 

pqcc =i cL -I 

which apply to any arrangement of an R, I, C series connected 

load. 

The magnetic circuit equations (eqns. 2.4.2 and 2.4.4) 

are only affected by changes in the magnetic circuit and thus 

only apply to the three-limb core-type transformer. 
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4.3.1 Method of calculation. 

In a three-phase, two-winding transformer, there are 
three possible primary winding configurations as well as three 

for Ahe secondary winding and three for the load (considering 

the load as three lumped impedances arranged in delta or star). 
Not all combinations of secondary winding and load connections 

are possible; for example a delta connected secondary winding 

cannot be considered along with a four-wire star connected 
load. In addition there are two no-load secondary connections, 
star and delta, giving a total of seven secondary circuit 
configurations, which are summarised in tabulated form below. 

Load 
No-load 3 -wire 4-wire Delta See. star star 

3-wire 
star x x x 

4-wire 
star x x 

Delta x x x 

x indicates possible combination 
* 3- and 4-wire star identical for no-load 

Since any combination of primary winding and secondary circuit 

configuration is possible, then a total of twenty-one permuta- 
tions of the three circuit configurations are feasible. 

general computer program was developed which 

would allow any one of the twenty-one permutations to be 

chosen. The number of diff erential equations required to 
describe any particular system is dependent on the type and 
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configuration of the load. There are a maximum of ten 

differential equations which will form the major system of 

equations, i. e. three each for the primary circuit., the magnetic 

circuit, and the secondary' winding, plus a zero-sequence 

equation in the case of a delta connected load. The other 
differential equations, which 'are dependent on the type of load, 

will be of a trivial nature, e. g. for a capacitive load, 

pqc = ic 

The major differential equations are arranged in 

matrix form, having first substituted for '4 to i8f rom the 

algebraic magnetic circuit equations (eqn. 2.4.4), 

IV] 

= 
where V is the voltage vector., M is the inductance matrix, 
and P is the solution vector. lf all switching operations are 
confined to the input side of the transformer, then the three 

magnetic circuit differential equations and the four possible 

secondary circuit equations remain unaltered throughout the 

computation. It is therefore possible to define the first seven 

-elements -of the voltage vector, and the first 7x7 elements of 
the inductance matrix, independently of the primary winding 

connection. 

The remaining elements of the voltage vector and 
inductance matrix will depend on the primary winding connect- 
ion and switching conditions. An example of the complete 

matrix equation for an arrangement comprising delta connected 

primary, secondary and load circuits is given overleaf. 
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The voltage vector quantities are given by, 

a* 
Ra-i b" Rb -ic. R 

'o + 'a - 2. 'b +ic )*"bL /3 - 'bo l3b +q b/Cb 

2. ic) /3 -i Rc +q /cc 6 ("o + 'a + 'b *I'cL cc 

v7= -(i o- 
2. ia+ib+ic). R 

aL 
/3 -q a/ca 

0+a-2. 
ib+icRU 13 -q bICb 

0+a+ib-2. 
icR 

cL 
13 - qc/Cc 

8 A*11A - 'B*"B - 'C*Rc 

v9=vB- (2. IB - 'A - 'C )*Us - 'B*UB 

v 10 :, -- VA -(2, iA - 'B - 'C )' Rs -i A'13A 

Each phase of the load is taken, as before, as a 

series combination of resistance, inductance and capacitance. 
The first 7x7 elements of the inductance matrix depend only 

-on-the- secondary circuit - configuration. 

The solution vector, P, can be obtained by matrix 
inversion or, as is done in the computer program, by 

elimination. Since the differential equations are nonlinear, 
the values of inductance must be recalculated, and the new 

solution vector found, at each stage of the computation. 
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As with the single-phase transformer, the use of the 

method of representing the complete B/H relationship 
described in chapter 2 requires that the magnetising currents 

are monitored in order to detect turning points in the B/H 

plane. In the case of a three-limb transformer there are a 
total of five nonlinear magnetic paths, i. e. the three limb and 
two yoke paths. A turning point detected in any one or more 
of the core sections will necessitate the resetting of all 
quantities to their respective values at the time the turning 

point occurred., and new magnetisation trajectories generated 
for those sections. Occasionally, the effect which the new 

magnetisation curves have on the overall system will 
subsequently cause turning points in the B/H characteristics 
of other sections. It may therefore be necessary to reset the 
transformer quantities several times before a stable situation 
is established. 

A flow diagram for the computer program used. to 

compute three-phase transformer performance is shown in 
Fig. 4.3.1. The program also includes provision for the 

computation of residual conditions in three-phase traýsformersv 

which will be explained in the following sections. 

4.4 --Zero Residual Flux Conditions. 

Although, in general, residual flux is present to some 

extent in transform 
' 
er cores at the instant of connection of the 

supply, the particular case where the core is magnetically 
neutral immediately prior to switch-on provides a convenient 

means whereby the effects of hysteresis on transformer 

transients can be examined. This examination cannot be 

undertaken through experiment alone, since there is no means 
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of eliminating the effects of hysteresis from recorded 
transients in order to compare these with the results for the 

actual transformer. 

A theoretical comparison of this type can, however, 

be achieved through calculation, by obtaining results for 

identical conditions of voltage, switching angles, etc. , using 
a single-valued function representation of the B/H character- 
istic, and the complete representation. The effect of 
hysteresis on the transient currents and fluxes in a three- 

phase transformer was investigated by initially varying the 

switching conditions to find where large discrepancies between 

results for the two methods of representing the magnetisation 
characteristic were evident. The influence of such factors as 
winding configuration, switching sequence and load on these 
discrepancies were subsequently examined. 

4.4.1 Switching conditions. 

The two sets of results obtained for the transient 

currents due to simultaneous switching of the supply to a 
three-phase transformer show a marked similarity, 
irrespective of switching angle, load, etc., so long as the 

transformer is initially de-magnetised. An example of this is 

given in Fig. 4.4.1. At no point do the two computed results 
differ by more than 2%, which is better than the accuracy of 
the illustration. As in the case of the single-phase trans- 

former, the reason for the similarity is that the initial 

magnetisation trajectories and residual flux density (zero) are 
identical in all cases. 

The condition where one or more, but not all, phases 

in a poly-phase transformer are energised, as occurs during 
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non-simultaneous switching of the supply, can be visualised 

as effectively setting up 'residual' conditions in the core 

members which may influence the subsequent transients when 
the remaining lines are connected. Since the transformer 

equations take account of magnetic coupling between phases, 

then for short delays between the switching of all lines, i. e. 

until a turning point in the B/H characteristic of one or more 

of the core sections has been reached, the conditions in the 

core will be the same for both methods of representation. 
Little difference would therefore be expected between the two 

sets of results, at least in the first transient peaks, for short 

switching delays. 

The occurrence of a turning point in the B/H plane 

causes the magnetisation trajectories for the two methods of 

representation employed, to diverge, resulting in possibly 
differing conditions in the core when the remaining supply lines 

are connected. This in turn would be expected to result in 

discrepancies in the transient current patterns. The time taken 

to reach the first significant turning point in the B/H plane 

will be largely governed by the initial switching angle. For 

example, in a three-wire star connected transformer, for an 

initial switching angle of 900, the first turning point will 

occur after approximately 5 ms (90 0) for a 50 Hz. supply, 

unless the third line is connected before this. For other 

switching angles this time will vary up to a maximum of about 
00 10 ms when the initial switching angle is 0 or 180 

In practice, discrepancies were only found in cases 

---where the--unloaded transformer- had -been energised 

asymmetrically, i. e. the centre limb and an outer limb 

energised first in the case of a three-wire star connected 
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primary winding (Fig. 4.4.2), or an outer. limb energised 
first in the case of a four-wire star, or delta, connected 

primary (Fig. 4.4.3). Where the transformer had been 

energised symmetrically, i. e. the centre limb first followed 

by the two outer limb together, or vice-versa, results for the 

two methods of representing the B/H relationship were 

practically indistinguishable. The only exception to this was 
the four-wire star connected primary which gave the same 

results for both methods of representation when any two phases 

were energised simultaneously, followed by the third. 

The reason for this behaviour can be established by 

considering the transient flux density distribution during the 

switching operations. For the three-wire star connection, 
Fig. 4.4.4, if phases A and C are energised fir st, the core 
being initially de-magnetised, then the reluctance of the flux 

paths for PA and QC will be the same at any point in time, 

and thus the instantaneous impedance of both phases will be 

nominally the same. The voltage and flux for each phase will 
be equal and opposite for the two outer limbs, and practically 

no flux will take a path through the centre limb, which will 

therefore remain de-magnetised until the third line is 

connected. This will be the case irrespective of the B/H 

characteristic, but only applies to transformers which are 

symmetrical about the centre limb. 

Therefore, assuming that the effects of regulation are 

small, the flux density distribution at any point in time for 

a symmetrically energised transformer will be effectively 

independent of the magnetisation characteristic, so that there 

will be little difference between results computed using a 

single-valued curve to represent the magnetisation character- 
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istic and those using the complete representation. Fig. 4.4.5 

shows the transient B/t and i/t patterns for the symmetrical 

energisation of an unloaded transformer with a three-wire star 

connected primary winding. No significant difference between 

the two computed results for this condition could be discerned. 

The discrepancies arise when, as a result of the 

dissimilar flux path reluctances which occur during asymmet- 

rical energisation, the flux distribution becomes dependent upon 
the magnetisation characteristic. If Phases B and C in Fig. 
4.4.4 are energised first, then although the B/t patterns are. 
identical up to the first peak, as shown in Fig. 4.4.6$ 

differences begin to appear in the region of zero flux as a 

result of the change in the B/H trajectories, which affect the 

flux (and voltage) distribution. Transients initiated by switch- 
ing the third line at a point where the flux density curves 
diverge will be different in the two cases, as illustrated in 

Fig. 4.4.2, since even a small change in initial flux conditions 

can cause large changes in the currents due to the nonlinear 
nature of the magnetisation characteristic. 

Similar arguements can be used to explain the results 

obtained for four-wire star and delta connected windings. 
Although a four-wire star connected primary appears to be 

-asymmetrically energised whenone outer limb and the centre 
limb are switched together before the third line is connected, 

since the voltages, and hence the fluxes, are effectively 
independent in each limb, the flux in the third limb will not be 

significantly affected by the B/H characteristic, and no major 
differences between the transients computed using the two 

methods of representation will be detected. 
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4.4.2 Secondary configuration and load. 

An unloaded delta connected secondary winding will 
have an eff ect on the transient currents since it provides a 
low impedance path for zero-sequence components of current, 
but will have only a marginal effect on the transient flux 

distribution. A relatively large load, however, whether 
balanced or unbalanced will effectively determine the transient 

e. m. f distribution in the transformer, for a three-wire star 

or delta connected primary, and so maintain a flux distribution 

which is largely independent of the magnetisation characteristic. 

Fig. 4.4.7 shows the results obtained from both 

methods of representing the B/H relationship for a loaded 
transformer with. a delta connected primary, energised 
asymmetrically. Where the load is small, the influence of the 
load on the flux distribution will diminish, which may give 
rise to differing results as found in the no-load case. 

In general, thereforep magnetic hysteresis will have 

an effect on the transient behaviour of poly-phase transformers, 

even when the core is initially de-magnetised. This effect is 

only evident after long delays in the switching operation, and 

can be largely eliminated if the transformer is energised while 
loaded. 

4.5 Residual Conditions in Three-Phase Transformers. 

Unlike the single-phase transformer, there is no simple 

way to predict the values of residual flux in a three-phase 

transformer, even if unloaded. This is mainly due to the 

effects of magnetic coupling between energised and de-energised 
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phases during non -simultaneous disconnection of the supply 

lines. In attempting to overcome this probl em, Nakra and 

Barton 
2 have established residual flux artificially by exciting 

the outer limbs of a three-limb transformer in series-aiding 

so that the centre limb remains de-magnetised. This method, 

while providing a convenient means of testing the method of 

analysis, does not, in general, result in residual conditions 

which occur in practice as will be shown. 

The situation is further complicated by the effects of 
load. Although, as with the single-phase transformer, it is 

evident that capacitance either in the load or appearing as 

winding self -capacitance, may tend to de-magnet ise the core 

following supply interruption, the effect of a lagging or unity 

power factor load is less obvious. It is possible, however, 

by making a few simplifications to the transformer model, to 

make a qualitative study of the behaviour of the fields and 
fluxes in the core of the transformer during disconnection, 

and to deduce from this the relative values of the residual 

conditions once all currents have decayed to zero. In order 

to confirm these deductions, a means of obtaining numerical 

values for the remanent fields and fluxes is essential. There 

are basically two ways in which these conditions can be 

ascertained, i. e. by measurement or by calculation. The 

M. easurement of residual flux is relatively easily achieved by 

continuous monitoring using the system described in chapter 3. 

The magnitude of the residual magnetic field in a 

particular core member may have an effect on reclosure 

transients, since the values of residual flux density and field 

strength effectively define the initial magnetisation trajectory 

for that core member. No means of directly measuring the 

magnetic field in the core has yet been devised, and, due to 
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the nature of the B/H characteristic, H cannot be inferred 

from the value of flux density. It is therefore only possible 
to obtain values for the residual field strength by calculation, 

which can be done using the transformer model described in 

chapter 2. 

The section following describes the method used to 

establish residual conditions experimentally, and by calculation, 
the results of which are used to confirm the findings of the 

subsequent qualitative analysis. Also presented is a means 

whereby numerical values for the residual conditions may be 

obtained graphically, which is based on the results of the 

qualitative analysis. 

4.5.1 Establishing residual conditions. 

For the purposes of this investigation, residual 
conditions in the core were created by initially energising the 

transformer and allowing the currents, fluxes, etc., to'reach 

steady-state before disconnecting the supply by removing, 
simultaneously, the gate signals to the thyristors used in 

controlling the switch-on conditions. The thyristors will cease 

to conduct only when the current falls to a value close to zero, 
(typically less than 5OmA. ). Thus for a given steady-state 

condition there will be a finite number of residual conditions, 
depending on the harmonic content of the line currents. For 

example, if the line currents are predominantly of fundamental 

frequency, then the* residual conditions will depend only on the 

first line to be disconnected, and the polarity of the current 
in that line immediately before interruption, giving a total of 

six possible residual conditions, (3 lines x2 polarities = 6). 

Where the harmonic content causes the line current to 
fall to zero more than once per half -cycle of the fundamental, 
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the number of possible residual conditions will be correspond- 
ingly increased. This may occur, for example, in the case 

of a small leading power factor load. 

This procedure can be simulated in the calculation of 

residual conditions by allowing the current in a given line to 

fall to zero, and adjusting the transformer equations to allow 
for that line being disconnected. This is repeated for each 
line in turn as the currents fall to zero, until the supply has 

been completely disconnected. At this stage in the computation 
there may still be circulating coil currents due to winding 
configuration or load, which can continue to affect flux density 

and field levels. The computation must therefore be continued 

until these currents have decayed to insignificant levels. 

The accuracy to which residual conditions can be 

computed will depend largely on how well the transformer 

conditions immediately prior to, and during, supply interrupt- 

ion can be represented mathematically. Fig. 4.5.1 shows the 

recorded and computed traces for the line currcnts and limb 

flux densities in a three-limb, unloaded 8-kVA transformer 

with a three-wire star connected primary winding before and 
during a disconnection procedure in which the current in line 

A was the first to fall to zero after the thyristor gate signals 
had been removed. The computed steady-state performance 

prior to disconnection is obtained by allowing any transients 

to decay to zero following switch-on. The transient region 

can be minimised by selection of suitable switching conditions. 
Computed residual conditions are tabulted below, together with 
the measured values of residual flux density in each limb. 
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Core Computed Measured 

Member B (T) H (A/m) B (T) 

Limb 1 0.09 -1.7 0.06 

Limb 2 -0.61 -3.9 -0.59 
Limb 3 0.52 -1.6 0.48 

Yoke 1-2 0.11 -1.5 - 
Yoke 2-3 0.52 -1.6 

Although recorded and computed values of remanent 
flux density compare well in this case, a complete comparison 

of all residual conditions is not possible. A convenient 
indirect method is to compare recorded and computed reconnec- 
tion transient currents. The transient current patterns obtained 
when the transformer, with the residual conditions as given 
above, is reconnected to the supply, is shown in Fig. 4.5.21 
together with the computed pattern. The close correlation 
indicates that the computed residual conditions do in fact 

compare well with the actual values of B and H. 

No attempt has been made here to compute or measure 
the effects of current 'chopping, or the voltage drop due to 

arcing in circuit breakers on the residual conditions. While 

it. is quite possible to carry out the computation, it is 

extremely difficult to achieve any control over such switching 

conditions experimentally, and therefore no reasonable 

comparison of computed and experimental results could be made. 

I 
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4.5.2 Qualitative analysis. 

Before attempting to analyse qualitatively the 

establishment of residual conditions in a three-limb transform- 

er, it is necessary to make some simplifying approximations 

without which the analysis would be impossibly cumbersome. 

It is assumed that leakage f luxes (both coil- and 

phase-leakage) are negligible compared with the mutual fluxes 

and can be neglected. It is also assumed that coil resistance 
is insignificant during disconnection so that the coil e. m. f. 

equals the voltage, i. e. the effects of regulation can be 

neglected. Thus for the transformer shown in Fig. 2.4.12 

97 = '01 , 
98 = 93 

91 + 92 + '03 ...... 4.5.1 

Also, two new quantities are defined, 

= i1+il 

t=i 

In effect, the yokes and outer limbs are considered 

'as single sections, and values of flux are assumed to be the 

same in adjacent yoke and limb. Thus, since 14 =i 5 =i 6= OP 

the magnetic circuit equations given in chapter 2 (eqn. 2.4.4) 

become, 

70 



It is evident from the symmetry of the transformer 

that the residual conditions created when the first line is 

disconnected when the current falls to zero while going 

positive, will be equal in magnitude but opposite in polarity 
to those for the same line disconnected first when the current 
is zero, going negative. Thus there will be only three 

absolute sets of residual conditions which have to be 

considered in this case. This does not apply to cases where 
the line currents have a significant even harmonic content, or 

where the line current falls to zero more than once per half- - 
cycle of the fundamental. 

Fig. 4.5.4 shows an example of the recorded B/t 

and i/t patterns taken during the disconnection of the trans- 
formerp in which the current in line X is the first to fall to 

zero following the removal of the thyristor gate signals. Also 

shown are the corresponding computed patterns. At the 
instant the current in line X becomes zero, 

ix =0 

and eqn. 4.5.3 reduces to, 

'If4.5.4 l= '3 

Since the flux path lengths of the two outer sections are the 

same, the values of field strength will be identical assuming 

constant cross-sectional area. If the current in line X falls 

to zero while going positive, then from the phasor diagram 

of Fig. 4.5.3 the following relationships at this point can be 

established, 
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iI-ii i- iA 
4.5.2 

il -i-i-i++0 3Cc2Bb 

II 
1- 'A 'a 3C...... 

4.5.3 

These equations can now be applied to particular 

cases. Since the same techniques are applied throughout, 

only two examples are presented here, viz., unloaded delta 

connected transformer, and delta connected primary with 

resistive load. Other selected examples including star 

connection and inductive and capacitive load conditions are 

given in Appendix A5. 

(1) Delta connected primary, no load. 

In this case, the magnetic circuit equations (eqn. 4.5.2) 

reduce to, 

"l 
-iA- '2 

I 
+iB 

and for the electric circuit, 

y+iZ= 

Fig. 4.5.3 shows the approximate phase relationships 

between the steady-state currents, voltages and fluxes. These 

relationships are used only as a guide as to the conditions in 

the core and coils immediately before the disconnection 

procedure begins, and not for actual numerical values at this 

stage. 
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i and 9, are positive and increasing positively. 

I and are positive and decreasing. 3 ý33 

i2 and 92 are near their negative maxima. 

91 +92 +93 =. 

The general magnetic state of the core at the instant 

ix becomes zero can be summarised as in Fig. 4.5.5- Here 

it is assumed that all sections operate in the steady-state on 
the same B/H characteristic, which lies near the limit cycle 

at rated voltage. It should be noted that the magnitude of ý)j 

is less than that f at this point since H and H' are 0 93 12 
restricted to have the same value. The measured and 

computed core conditions at this stage are tabulated below. 

Core Computed Measured 
Member B (T) H (A /m) -B (T) 

Limb 1 0.64 29.8 0.65 
Limb 2 -1.50 -715.3 -1.50 
Limb 3 0.86 29.4 0.85 

The coil currents and core f luxes will begin to decay 

following the disconnection of line X. During this period the 

values of field strength in the two outer sections will remain 

equal, and the three main fluxes will sum to zero at all points 
in time. The magnitude of Q in the centre limb will be larger 

than in either of the two outer sections until the two remaining 
lines have been disconnected, which occurs approximately 900 

after line X, since the main component of the line current i Y. 
(and iz) is iB with line X removed. 
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When all lines have been disconnected, 

'A =iB=ic...... 4.5.5 

therfore, 19=it=j...... 4.5.6 132 

Note that all final values of magnetising current have the same 

polarity. The value of field strength for the centre limb will 
be larger than H1 and H3 since the flux path length is Shorter. 
Therefore, in order to maintain Z9=0, the m. m. f. Is in the 

outer limb and yoke sections have become negative. The 

final state of the core is established at the instant the last two 

lines are removed since eqns. 4.5.1 and 4.5.6 cannot be 

satisfied simultaneously unless all core conditions are stable. 

I 

This is not necessarily the case if phase-leakage flux is 

allowed for, but is found to be very close to the practical case. 

Thus for the disconnection sequence considered, 91 

will, in general., be smaller than 93 and have approximately 
the same remanent field strength. 92 will be larger than, 

and opposite in polarity to both 91 and 931 while H 2. will have 
2 the same polarity as H11' and H31 but will be larger in magni- 

tude. These final conditions are illustrated in Fig. 4.5.5. 

The computed and measured values tabulated below confirm 

these general Conclusions. 

Core Computed Measured 

Member B (T) H (A /m) B (T) 

Limb 1 0.27 -3.9 0.19 

Limb 2 -0.69 -9.6 -0.70 
Limb 3 0.42 -4.0 0045 
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The residual conditions which are established when 

either of the other two lines is disconnected first can be 

deduced in exactly the same mannerý as demonstrated in 

appendix A5. Computed and measured values for these 

conditions are tabulated below. 

(a) 

(b) 

Core Computed Measured 
Member B (T) H (A/m) B (T) 

Limb 1 0.50 -2.1 0.50 

Limb 2 0.11 -5.6 0.05 
Limb 3 -0.59 -1.9 -0.60 

Core Computed Measured 
Member B (T) H (A/m) B (T) 

Limb 1 -0.58 -1.8 -0.65 
Limb 2 0.30 -5.1 0.30 

Limb 3 0.31 -2.0 0.30 

(a) - line Y disconnected first. 
(b) - line Z disconnected first. 

In each case the'residual conditions are those for the 

current in the first line to be disconnected falling to zero 

while going positive. Residual conditions for the first line 

removed when the current in that line is zero, going negativeý 

will be equal in magnitude, but opposite in polarity to the 

corresponding case considered above. 

Residual conditions show a similar pattern for all 
disconnection sequences in an unloaded transformer with a 
delta connected primary winding. There are, however, 
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variations in the relative values of flux and m. m. f. depending 

on which line is first to be disconnected. It would not be 

valid, therefore, to attempt to define a general set of residual 

conditions which could be adapted to fit all disconnection 

sequences. 

A delta connected secondary winding will have very 

little effect on the residual conditions, since the basic relation- 

ships remain unchanged. The two other primary winding 

connections, i. e. three- and four-wire star, can be treated in 

a similar way to the delta connected winding, as shown in 

appendix A5. 

(2) Delta connected primary, four-wire star connected 

secondary with resistive load - line X disconnected first. 

In the phasor diagram for this configuaration, given in 

Fig. 4.5.61 it is assumed that the load is sufficiently large so 

that the steady-state primary phase currents are approximately 
in phase with their respective voltage, i. e. steady-state 

magnetising current is small compared with the load current. 

The magnetic circuit equations in this case are, 

iI--ii 1 'A 
4.5.7 

'23 -iC-ic-i2+iB+ib= 

and, 91 + 92 +- 93 ý0 

When ix = 0, while going positive, 

and 91 are large negative and falling. 

i2 and 92 are small (near zero), increasing negatively. 
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12 and are large positive and increasing. 3 93 

as illustrated in Fig. 4.5.7. Also, 

A 
=" 

iy= -i 

' "' -93 Pl 

As VB falls to zero from its negative maximum, ý32 will 

become increasingly negative. vC and vA will also reduce 

with v,, from their positive values towards zero. Thus 9, 

and 93 will both increase positively since, 

Alp =-I. 
f 

e. dt 
N 

so that the change in 9 will be approximately the same for 

91 and 93 since, neglecting the effects of regulation, for a 

large balanced resistive load, eA=eC when line X is removed. 

Thus 91 will fall from its negative value towards zero, while 

Q and 1t become larger. 
3 13 

All line currents will become zero when v is near B 
zero, and, 

iI and are very large and positive 3 93 

i2 and 92 are large and negative. 

il and 1 91 are small, (ipj negative; i positive). 

as shown in Fig. 4.5.7. As circulating currents decay to 

zero and will fall, and finally, as before, i I=i =it 1 03 92 12 31 
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giving rise to the residual conditions shown in Fig. 4.5.71, 

which are confirmed by the computed and measured conditions 

tabluated below. 

Core 
Computed Measured 

Member B (T) H (A/m) B (T) 

Limb 1 -0.06 0.97 -0.10 
Limb 2 -0.52 1.20 -0.55 
Limb 3 0.58 1.20 

other primary winding configurations will naturally 

give different residual conditions to the delta connected primary 

considered above. These other cases can be analysed using 

basically the same techniques (see appendix A5). The table 

below lists the computed residual conditions for the three 

primary winding connections, with the secondary connected in 

star and unloaded. ]Results for an unloaded delta connected 

secondary winding were found to be virtually identical to the 

corresponding cases given below. 

4-wire star , 3-wire star Delt a Core 
Member B (T) H (A/m) B (T) H (A /m) B (T)_ I H (A/m) 

Limb 1 0.27 -4.0 0.09 -1.7 0.27 -3.9 
Limb 2 -0.69 -9.4 -0.61 -3.9 -0.69 -9.6 
Limb 3 0.43 -3.9 0.52 -1.6 0.42 -4.0 

jine A (X) disconnected first when iA zero, going positive. 

It can be seen from the example given in appendix A5 

that the magnetic state of the transformer core when lines A 

and C have been disconnected from the four-wire star 
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connected primary, is very similar to the delta case illustrated 
in Fig. 4.5.5 when iX is zero. The subsequent decay of the 
fluxes and m. m. f. Is to their final residual values is the same 
in both instances, giving rise to the near identical conditions 
listed above. The examples given in appendix A5 show that 

the residual conditions for 4-wire -star and delta primary 

winding connections are in fact, effectively the same for any 

particular disconnection sequence, for the same value of phase 

voltage. 

In addition to the winding configuration, the size or 
impedance of the load, if any, on the transformer, will have 

an effect on remanent flux density and field strength, as was 
demonstrated by the unity power factor loaded case examined 

above. Computed results, which are shown in Fig. 4.5.8 

illustrate the variation in residual flux density with load IWA 

for a three-wire star connected primary winding. As the load 

is reduced, residual flux levels tend towards those found for 

the unloaded case, as would be expected. Changes in residual 
flux density are also found as the power factor is varied., 

while maintaining the load impedance constant, as shown in 

Fig. 4.5.9(a) and (b). As in the no-load case, the same 

residual conditions are obtained for four-wire star and delta 

connected primary windings (Fig. 4.5.9(b) ). 

The results given above, and in appendix A5, for the 

residual conditions established when the supply to a three- 

phase transformer is interrupted, show the same general 
trends as in the single-phase case, i. e. that resistive loads 

tend to ensure large residual flux levels, while low power 
factor inductive loads will produce conditions close to the de- 

magnetised state. Residual conditions for a capacitive load 

on the transformer are difficult to predict in either type of 

79 



transformer, but the damped oscillations which can occur 
following disconnection of the supply will tend to de-magnetise 
the core in both cases, and the final residual flux levels will 
be critically dependent on the frequency and amplitude of these 

oscillations. 

]Results for the limb fluxes during interruption of the 

supply to a. three-phase transformer, which has a large leading 

power factor load, given in Fig. 4.5.10, show that the rate of 

damping of the oscillations is larger in practice than predicted 

using the transformer model described in chapter 2. The 
. 

reason for the discrepancy is, as indicated previously, almost 

certainly the effect of eddy current losses in the core. The 

rapid decay of the oscillations will tend to maintain the levels 

of residual flux, and thus, in practice, the values of remanent 
flux density will be larger than those computed. 

Although the load power factor for a power transformer 

will usually be close to unity, the case where winding self- 

capacitance in an hv. winding is significant can be approxim- 

ated by loading the transformer in the computer program with 

a leading power factor load. Tests on an 1IkV/433v; 50-kVA 

distribution transformer,. details of which are given in appendix 
Al, were carried out in order to confirm that the transformer 

model was valid for larger transformers than had previously 
been used in the department. Besults were taken for various 

conditions of switching angles and residual conditions, using a 

value of winding self capacitance which was estimated from 

results of the test described in chapter 3. No attempt was 

made to load the transformer for reasons of safety. 

Figs. 4.5.11 and 4.5.12 show examples of the computed 

and recorded transient currents for this transformer, which 
were taken at reduced voltage in order to prevent damage to 
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the switching thyristors which had a peak current rating of 
180 A. The results for zero residual conditions show that 
the accuracy achieved is similar to that for the smaller, 8-INA 

transformer. However, attempts to compute residual conditions 
following supply interruption were not successful, as can be 

seen from the results in Fig. 4.50 12. Again, this is due to the 

effects of eddy currents limiting the extent of de-magnetisation. 

4.5.3 Graphical estimation of residual conditions. 

The values of remanent flux density obtained by 

computation correspond closely with measured values (except 

where capacitance is significant), demonstrating that this is a 

valid method of evaluating residual conditions to within reason- 

ably close limits. The computation time (and cost) may be 

saved by utilising the findings of the qualitative analysis to 

produce numerical values for the various residual quantities. 
A graphical method has therefore been devised which should 

allow residual conditions to be estimated to within perhaps j20% 

of the actual values. 

The method utilises the recorded B/H characteristic 

which is modified to produce intermediate trajectories using the 

interpolation technique for the mathematical representation 

presented in chapter 2. It is assumed that all sections of the 

core operate on the same steady-state B/H cycle, which is the 

case if the core has the same cross-sectional area at all points, 

and the transformek is energised from a balanced three-phase 

supply. 

The no-load case considered above, i. e. delta connected 

primary winding, is used as an example of the technique. 

Consider the phasor diagram of Fig. 4.5.3. When the current 
in line X falls to zero while going positive, 91 and 93 are 
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both positive and sum to the peak value of 9) since 92 is near 
the negative peak, and 0. Neglecting the effects of 

regulation, the limb flux is given by, 

9=. 90- R' -fvph. dt 

A 
where, Vph =V ph* sin(co. t) 

The peak value of the steady-state flux is therefore 

given by, 
A 

ph 

-N 
Av 

and, B ph 
N. A. ca 

since all core sections have the same cross-sectional area. 
A Substituting numerical values for V 

ph, 
N, A and ca from 

appendix Al gives, 

A 
1.51 Tesla 

This information allows the steady-state B/H loop of 
Fig. 4.5.13 to be derived from the magnetisation character- 
istic of the transformer given in Fig. 3.2.4(a). Since flux 

paths 1 and 3 are operating on different parts of the B/H 

cycle at this point in time (see Fig. 4.5.5), and from eqn. 
4.5.4j iI= 11 it is necessary to search for a value of H 131 
which will give B1+B3=1.51 Tesla. This can be done by 

inspection, and leads to the following conditions, 
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Hl HI= 26 A/m. 13 
0.61 T. 

0.90 T. 

as shown in Fig. 4.5.13. 

As before, the flux in limb 3 will continue to decay 

along the upper boundary curve, while B2 follows the lower 

boundary curve. It is necessary to generate a new trajectory 
for the flux in limb 1, which can be done knowing the point at 
which the new curve originates, as shown in Fig. 4.5.13. The 
final relationships, which apply when all coil currents are 

zero are, 

91 +92 +93 0 

II=I=11 123 

and, taking into account the flux path lengths and cross- 
sectional are of the core members, 

B2+B3=0 

Hj = H3' = 0.41. H2 

The residual conditions, which are obtained by finding 

points on the B/H trajectories which satisfy these equations, 
by trial and error methods, are listed below, together with 
computed and measured values. Very close correlation 
between computed and estimated residual conditions has been 

achieved in this case, with the maximum difference in flux 

density values being about 5%, and a maximum difference of 

. 7% in the field strength. 
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Core Estimated Computed Measured 

Member B (T) H (A/m) B (T) H (A/m) B (T) 

Limb 1 0.28 -3.7 0.27 -3.9 0.19 

Limb 2 -0.72 -9.0 -0.69 -9.6 -0.70 
Limb 3 0.44 -3.7 0.42 -4.0 0.45 

The residual conditions obtained above are sufficiently 

accurate to allow reconnection transient currents to be 

computed to within a few per cent of recorded values, as 

shown in the example given in Fig. 4.5.14. 

4.6 Effect of Residual Conditions on Reclosure Transients. 

The maximum level of flux in any section of the core 
is very dependent on the initial value since, 

lp =-1. 
f 

e. dt lpo R 

As it is the peak flux which determines the magnitude of the 

transient magnetising currents, this initial value of flux will 

have a considerable effect on the transient current peak, 

particularly in the case of a highly nonlinear magnetisation 

characteristic. A_. small value of 90 can result in a large 

increase in the magnitude of the peak transient current over 

the case where ý) 
0 

is zero. 

Conversely, as has been shown in the single-phase 
transformer (Fig. 4.2.9), residual flux can also reduce the 

peak transient current, depending on NAether the direction of 
go tends to reduce or enhance the value of maximum f lux. 
For example see Fig. 4.6.1. Since switching conditions are 
usually random, the precise effect which residual flux will 
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have on reclosure transients is impossible to predict. However, 
knowing the winding configuration, type of load, transformer 

parameters, etc., it is possible to compute the range within 
which the transient current peaks will lie. This range will 
inevitably be much wider than for zero residual conditions only 
considered. 

In a study of this type there is an infinite variety of 

combinations of winding configuration, switching angles, load, 

switching sequence, etc., all of which will have some effect 
on the residual conditions or subsequent reclosure transients. 

It is not possible, therefore, to present a comprehensive set 

of computed and experimental results which covers all possible 

conditions. The accuracy of the computed transients using the 
tr ansformer model given in chapter 2 has already been 
demonstrated in this chapter, as well as in reference 1. The 

examples given below, which are used to illustrate the major 
influences of the various factors affecting transient behaviour, 

are predominantly computed results, with occasional recorded 

results presented to validate certain observations. 

4.6.1 Significance of residual phase-leakage flux and m. m. f. 

macFadyen 
I has demonstrated the importance of 

incorporating phase-leakage flux in the transient calculations, 

and so allowance for this was invariably made. It was found 

that the use of the zero-sequence inductance in place of 

measured values of phase-leakage inductance did not give rise 
to significant- changes in the computation of switching transients. 

In the qualitative analysis of the establishment of residual 

conditions, however, it was assumed that phase-leakage flux 

was negligibfe compared with the main core fluxes. In order 
to examine the effect of neglecting residual phase-leakage flux, 
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the values associated with each phase-leakage path were set to 

zero by making outer limb and adjacent yoke flux densities 

and field strengths equal. Several computer runs were made 

which, as the example given in Fig. 4.6.2 shows, indicated 

that this does not have a serious effect on the reclosure 

transients. 

If the values of residual field strength in all core 

sections are also set to zero, then for the case considered 

above, the difference between results computed using the 

complete set of residual conditions, and those using the basic 

information only (i. e. residual flux density in the three limbs) 

is no greater than about 1% at the peak current value. It 

should therefore be possible to predict, within a'reasonable 
d6gree of accu 

' 
racy, the reclosure transients for a transformer 

of this type, knowing only the level of remanent flux in each 
limb, which may be obtained experimentally, or by graphical 

means (see Fig. 4.5.14). 

4.6.2 Switching conditions. 

it has already been stated that the residual conditions 

which result when the current in the first line to be disconnect- 

ed from the transformer is zero, - going positive, will be equal r) 
in, magnitude, but opposite in polarity to those which are 

established when the current is zero, going negative. In a 

--de-mapetised transformer, the inrush currents for a particular 

set of switching conditions will be equal and opposite to those 

obtained when the first switching angle is altered by 180 0, as 

shown in Fig. 4.6.3. This is not the case when residual 

conditions are present. If the initial switching angle is changed 
by 180 0, the resulting transient currents will differ consider- 
ably in magnitude from the original values, as shown in 
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Fig. 4.6.4. A change in the polarity of the residual conditions 
is also required before the transient currents will have the 

same magnitude, as illustrated by the two examples given in 
Fig. 4.6.4. 

In Fig. 4.6.5, the yariation in peak transient current 

with simultaneous switching angle is shown, for an unloaded 
transformer with a delta connected primary winding. These 

results demonstrate the considerable effect which residual 

conditions have over the entire switching range, causing increa- 

ses of more than 507o in the largest value of peak current in 

lines Y and Z. Residual conditions will have a similar effect 
for other primary winding connections, as in the case of a 
three-wire star connection, shown in Fig. 4.6.6. 

For a de-magnetised transformer., the largest transient 

currents are usually found when the transformer is energised 

non-simultaneously ( 0(= 00 or 1800; p= 900), as the curves in 

Fig. 4.6.7 indicate. When residual conditions are presentV it 

is found that the same switching conditions can also produce 

maximum peak transient current, depending on the nature of 
the residual conditionsp i. e. whether the polarity of residual 
flux tends to enhance or diminish the peak level of transient 

flux. For the switching sequence considered, the results in 

Fig. 4.6.7 show that residual conditions established when line 

X is disconnected first cause a 35% increase in the largest 

current peak (line Y) over the de-magnetised case. Fig. 4.6.7 

also shows that, for non-zero residual flux, the switching 

conditions which result in minimum transient current are, in 

general, 0(= 90 0 or 270 0; A= 900 or 2700, as for a de- 

magnetised transformer. 

It is also necessary to consider the reconnection 
transient currents obtained when the transformer is loaded, 
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since, as has been demonstrated, the size and power factor of 
the load has considerable influence on the residual conditions 

established for a given disconnection sequence. The transient 

currents for a unity power factor load show a marked depend- 

ence on residual conditions, as would be expected. Fig. 4.6.8 

illustrates the considerable effect which residual conditions can 

have on the. transient current patterns, for this type of load. 

The effect of remanent flux on the variation, with switching 

conditions, of peak transient current in each line, for 

simultaneous and non-simultaneous switching is shown in Figs. 

4.6.9 and 4.6.10 respectively. The range over which the 

peak currents vary is not as great in this case as for the 

unloaded transformer. This is due to the large steady-state 

current level which restricts the minimum transient current 

values. 

For a low power factor inductive load, however, the 

range over which the peak transient currents vary will not be 

as great as in either the no-load or unity power factor load 

cases. This is a consequence of the de-magnetising effect of 

the load, which, if purely inductive, will effectively result in 

zero residual conditions when the supply is disconnected, and 

all reconnection transient current patterns for a given set of 

switching conditions will be virtually the same, irrespective of 

disconnection sequence. An example of the transient current 

patterns obtained for this type of load'is given in Fig. 4.6.11. 

Fig. 4.6.12 shows the expected variation in peak transient 

current with simultaneous and non- simultaneous switching 

conditions for a hypothetical zero power factor inductive load. 

No results for a cap acitiv ely -loaded transformer are 

presented here owing to the problems associated with evaluating 
residual conditions (see Figs. 4.5.10 and 4.5.12). 
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Where no residual flux is present, if the switching 

conditions are specified with respect to the voltage of the first 

phase or line to be connected, the variation in the transient 

current patterns of the first and subsequent lines to be 

connected is small as shown in Fig. 4.6.13. The maximum 
difference in the magnitude of the current peaks for 

corresponding lines is about 3% for the example given, although 

variations of up to 12% were found where the transient peaks 

were very large. This figure is small compared to the 125% 

variation found when residual conditions are present, as the 

example in Fig. 4.6.14 shows. 

These large differences are due to the relative 

variation of remanent flux from limb to limb as the connection 
sequence is changed. It is therefore important to specify the 

switching sequence together with the other parameters when 
considering reconnection transients. 
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-CHAPTER 5- 

FERRORESONANCE 

The solution to ferroresonance problems has usually 

been sought in one of two forms, 

1. Analytical solution 
22,23,28 

, where the various 

quantities are obtained as explicit functions of the system 

parameters. These functions normally take the form of a 

power series. 

2. Topological or phase-plane solution 
22p23p25 

which, in general, gives more qualitative information about 

ferroresonant conditions rather than the currents, voltages, 

etc., as explicit functions of time. 

13oth techniques are extremely valuable in the study 

of the phenomenon of ferroresonance and have been extensively 

applied to this end. While these methods will undoubtedly 

continue to be utilised and developed, there exists presently 

serious limitations as to their application in higher order 
27 

systems such as those incorporating three-phase transformers 

Since topological and analytical solutions are highly desireable 

from the point of view of obtaining the maximum amount of 

-information 
for the minimum effort,, ferroresonance in a three- 

phase system may be reduced to the equivalent single-phase 

case 
26 for ease of solution. 'This treatment is only valid for 

a limited number of situations, for example, where resonance 
24 occurs in one phase only . 

The case where a three-phase ferroresonant condition 
is treated strictly as such appears to have been almost 
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totally neglected. Numerical methods of solution (for example 

see reference 22) do not suffer from the limitations of phase- 

plane or analytical techniques in that it is quite possible to 

obtain a solution to highly complex problems without sacrificing 

accuracy or over-simplifyibg the situation to a point where 

results are highly questionable. The main disadvantage of 
this type of -approach is that each single set of initial conditions 

and system parameters must be analysed individually in order 
to build up a complete picture of the phenomenon. This 

naturally requires a large amount of computational effort whicb 

may be prohibitive in a general study of ferroresonance. It is 

also less valuable than topological methods in leading to a 

better understanding of the subject of ferroresonance. 

When applied to specific systems, however, the amount 

of computer time necessary to obtain the solution to a given 

problem will be relatively small, and a more accurate and true 

- analysis of system behaviour may be derived. 

5,, 1 Single-Phase Ferroresonance. 

Fig. 5.1.1(a) shows the simplest practical ferroreson- 

ant circuit which is usually the basis for a study of the subject. 
25 

Swift uses a parallel L-C arrangement as shown in Fig. 

5.1. I(b) which is a crude representation of an unloaded single- 

phase transformer energised through a long feeder line. 

Since the present investigation is not concerned with specific 

applications, rather than validating a method of numerical 
analysis, the former circuit was chosen owing to its simplicity. 

The differential equation for the circuit may be written, 

i. R + N. PP + 
1. fi. 

dt 
c 
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This equation may be differentiated with respect to time, i. e., 

pv = R,. pi + N. p 
29+ i/C ...... 5.1.2 

If the relationship between the current and flux is obtained 
from the magnetisation characteristic of the nonlinear inductor 

and expressed as, 

i= 

then by substituting for i in eqn. 5.1.2 the following equation 
is obtained which may be solved using one of the methods 

indicated., 

129 pv p [49)] +f (P) /C+N. 3 .. 5.1.3 

owing to the highly complex nature of the magnetis- 

ation characteristic of an iron-cored coil, the function f(p) 

cannot be written explicitly in terms of flux. The function is 

almost invariably approximated by a single-valued power series 

which usually has the form, 

i= 

The cubic term is sometimes replaced by one of fifth or 

seventh order, depending on the shape of the magnetisation 

characteristic and the type of solution sought. 

'Combining eqns. 5.1.3 and 5.1.4, assuming sinusoid- 

al excitation, and neglecting losses (i. e. R=O), then the 

following equation is obtained, 
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2a b' 3 
caEcoscAt N. p 9+j. p + ý. Q oooo5ol. 5 

which is the classical differential equation known as 'Duffing's 

Equation'. 

Alternatively., the equations for the circuit shown in 

Fig. 5.1.1(a) man be written as., 

v=i. R + Lpi + M. Pi + q/C ...... 5.1.6 

and, pq =i 

Equations 5.1.6 and 5.1.7 may be solved simultaneously using 

a method of numerical integration to give the system voltages 

and currents directly. It is possible in this case to use a 
highly accurate representation of the magnetisation character- 

istic without unduly increasing the Complexity of the method of 

solution. 

5.1.1 Modes of ferroresonance. 

There are basically two types of resonance which may 

occurg viz. , subliarmonic in which the voltages and currents 

contain components of frequencies' which are integral sub- 

multiples -(predominantly 1/3 or 1/5) of the supply frequencyt 

and fundamental resonance in which the only significant harmon- 

ics are of a higher frequency than the supply. In general, the 

conditions associated with subharmonic resonance are much 
less severe in terms of voltage and current than with fundamen- 

tal resonance. 

The single-phase transformer which was used to 

produce the results given in chapter 4 was connected in series 
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with a 6. BuF capacitor to give the circuit'shown in Fig. 

5.1.1(a). Fig. 5.1.2 shows the computed and recorded 

steady-state current, voltage and B/H patterns obtained for 

the initial conditions indicated. It can be seen that the 

fundamental component of frequency of the current and voltage 

waveforms has a period of 60ms, i. e. a frequency of 16-ý! Hz. 3 

This condition is therefore one of subharmonic forroresonance. 

It was found experimentally that this condition was stable only 

over a relatively small range of applied voltage, i. e. from 

about v=90v to V=160v. An interesting aspect of this condition 

was that as the applied voltage was increased, the value of 

peak current fell, so that at 140v the B/H pattern shown in 

Fig. 5.1.3 was obtained, which has a lower peak current (and 

flux density) than that shown in Fig. 5.1.2. 

Reduction in the applied voltage below 115v gave rise 
to the current waveform shown in Fig. 5.1.4. The asymmetr- 

ical nature of the waveform indicates the presence of a 

component of frequency twice that of the fundamental. Since 

the apparent fundamental frequency is 1613 Hz. - 1/3 that of 

the supplyp then this component has a frequency of 33-31Hz. or 

2/3 the supply frequency. The computed results also exhibt 

the asymmetrical form found experimentally. 

In order to demonstrate the significance of hysteresis 

in estabishing subharmonic ferroresonance., an attempt was 

made to compute this condition using a single-valued represent- 

ation of the transformer magnetisation characteristic. The 

results of this computation are presented in Fig. 5.1.5(b) 

along with recorded and computed current waveforms obtained 
from the ferroresonant condition shown in Fig. 5.1.3. This 

28 
appears to confirm theyiew expressed by Swift that - 
Isubharmonic stability is critical. ly dependent on losses in the 
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circuit'. While there are certainly subharmonic components of 
frequency in the current waveform illustrated, a prolonged 

computation failed to stabillse. Although it is not valid to 
draw concrete conclusions from a single result such as this., it 

is nevertheless difficult to accept the possibility of an analytical 

solution giving reasonable results in this case., since numerical 

methods properly applied are inherently more accurate in 

solving a problem of this type. The fact that analytical 

methods often lead to sucess must be due in part to the fact, 

demonstrated by Hayashi 
22 

, -that the method of representation 

of the magnetisation characteristic and the form of the solution 

can be chosen to give acceptable results in cases such as this. 

An increase in applied voltage results in a spontaneous 
jump from a non-resonant condition to one of fundamental ferro- 

resonance at approximately 230v. Once in this condition the 

applied voltage can be reduced to a value of about 65v before 

resonance failed to be sustained. Fig. 5.1.6 shows the value 

of peak current obtained experimentally as the r. m. s applied 

voltage was varied together with some computed results. Also 

shown is the region in which subharmonic ferroresonance is 

sustained, which has a negative slope in the stable portion of 
the curve. 

. -An example of recorded and computed results for a 
fundamental resonant condition (V=200v) is given in Fig. 5.1.7. 

This illustrates the statement made above that this condition is 

more severe that that of subharmonic resonance. Character- 

istic of this mode of ferroresonance is the high third harmonic 

content of the current and voltage waveforms which gives rise 
to current spikes as shown. 

In practices three modes of single-phase ferroresonance 

Could be distinguished. on increasing the applied voltage 
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beyond that required to establish fundamental resonance2 a 
third type becomes evident which is characterised by a large 

second harmonic component of frequency in the steady-state 

current and voltage waveforms, which results in an 

unsymmetrical B/H pattern as illustrated in Fig. 5.1.8. 

The discrepancy between computed and recorded B/H patterns 
in this case, and in Fig. 5.1.7. is due to the effect of eddy 

currents, which is not incorporated in the computed results. 

This mode of ferroresonance has been observed previously-- 

and it was proposed that the condition might be utilised in 

computer logic or memory circuits. This application would 

appear impractical today due. to the relatively large power 

losses and bulk involved in such a system, compared with 

modern integrated circuit devices. 

5.2 Ferroresonance in Three-Phase Systems. 

Ferroresonance has been observed in three-phase 
30931,32 

systems under a variety. of conditions The system 

may appear to resonate in one phase only, or a true three- 

phase condition may occur. In all cases of ferroresonance 

found in practice, the condition is initiated by some form of 

system disturbance. This disturbance may take the form of 

switching transients (connection or disconnection), load- 

shedding or a fault causing disconnection of one or two lines 

only. 

Perhaps the most interesting occurrence of ferro- 

resonance in a three-phase system is that which takes place 

when the supply to an unloaded or lightly loaded transformer 

which is fed from one side of a double-circuit line (Fig. 5.2.1) 

is interrupted. The second circuit is used to supply 
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a remote load. In practice, when the two circuits are 
energised,, the voltage between lines of the same phase at 
any distance from the busbars is effectively zero, and 
capacitive coupling between lines will have relatively little 

effect on the steady-state performance of the system. 

If the supply to the transformer is interrupted at a 
point remote from the transformer,, the capacitive coupling 
between the lines of the feeder circuits may cause ferro- 

resonance to be initiated, even though there is no direct 

connection between the transformer and the busbar. This 

will be a true three-phase condition, usually associated with 
systems with floating neutral, As will be shown, it is 

possible for resonance to occur in a system with the star 
point of the transformer earthed. One phase of a crude 
model of this situation is shown in Fig. 5.2.1. (b). This 

simplified version of the conditions described above was used 
to obtain experimental results in the laboratory. 

Obviously, to reliably predict the initiation of ferro- 

resonance, rather than the conditions required to sustain 
resonanceg once initiated, the system conditions immediately 

prior to the disturbance which precedes the resonant condition 
must be accurately specified. Since the system will usually 
be operating in steady-state before the disturbance takes 

place., a means of establishing these conditions was adoptedg 
which was similar to that used to compute residual conditions 
in chapter 4. The "series capacitor shown in Fig. 5.2.2 was 
initially short-circuited and the system allowed to settle into 
a non-resonant steady-state condition, after connecting the 
supply. At a predetermined point on the supply voltage 
waveform,, the switches across the series capacitors were 
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opened simultaneously in all three lines., and. the system 
again allowed to settled into steady-state. 

5.2.1 Three-phase system equations. 

The mathematical model used in the computation of 
three-phase ferroresonant conditions was that described in 

chapter 2, with suitable modifications to take account of 

series and parallel capacitance. For the case described 

above (i. e. earthed neutral)., the primary voltage equations 

may be written,, 

VA = 'SA'ps + ls'p'sA- +q sAICsA + q pA/CpA 

VB =i sBo 
Rs+ 1s opi sB +q S13/CSB + qpB/CPB 

VC =i sc* 
Rs+Is pisC + qsC/CSC + qPC/C 

PC 

Alsos 

qpA/CpA 'A*. RA + 1A"P'A + MJ*P'l 

qpB/CPB =i B* RB +1 B*P'B + M2'P'2 

qpc/cpc = ic*R c+ IC*pi c+m3* P'3 

Incorporating these equations into the transformer 

model, the following matrix equation is obtained, 
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V5 
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V7 

where, 

MýM4 

+M 
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-M 
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-M -M m -MýM7 M 
+MýM8 -M 8 

-M8 
M31ý"6 

+M 1% 

m 
-M 6 m 8 -MUM8 

m m 
2 m 3 

lcTlb 

+lc 

mi 'A 

11,12 1B 

m3 1c 

V5 =q pA 
/ CpA - i A* 'E'A 

V6 = qp, 3/c pB - i B* RB 

V7 = qpC/CpC - iC. IRC 

The zero-sequence equation, for which, 

V4 = -i a- 
(Ra +Rb+R C) 

caters for a delta-comected secondary winding. 
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The remainder of the system quantities are found 

from the following additional differential equations,, 

pi SA 
(VA - 'SA- RA -q SA/CSA +q pA 

/ CpA) / 's 

pi sp 31 (VB -i sB* 
RB-q 

SB'CBB +q pB/CpB 
)/l 

s 

Pisc (VC -i sco 
RC - qsC/CSC + qsC/CSC)/ls 

PqSA =i SA : 

PqSB =i SB : 

Pqsc =i sc : 

i Pc'pA 'sA-. A 

pq PB sB- 
iB 

Pqpc i 
sc- 

ic 

The equations for any other circuit configuration may 
be derived in the same manner as the example given above. 
Solution of the equations is carried out as before using a 

numerical integration technique. 

The opening of the switches across the series 

capacitors is simulated in the computer program by restrict- 
ing th6 capacitor charges to zero. at each step in the comput- 

ation until the point corresponding to the opening of the 

switches, where the values of q for the series capacitors 

are allowed to vary according to the differential equations 

given above. 
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5.2.2 Hesults. 

Initially, a series of experimental tests were carried 

out in order to establish the conditions required for sub- 
harmonic and fundamental resonance. It was found that, for 

the laboratory model, the *conditions required for the 

initiation of subharmonic resonance were very critical indeed. 

A slight variation in the nominal supply voltage of 107v rms/ 

phase, and/or the switching conditions for the series capaci- 
tors (opened when VA at 137 0 or 3170 prevented a stable 

resonant state from being established, 

The steady-state current and voltage waveforms for 

this condition are shown in Fig. 5.2.2. As can be seen, 

very close agreement between computed and recorded results 

was achieved. A similar correlation between experimental 

and computed results was found in terms of the critical 
influence of the system conditions on the establishment of 

stable subharmonic resonance. A change of one step length 
(0.0002s = 3.60 at 5OHz. ) in the point in the computation at 

which the series capacitor switches were opened resulted in 

a non-resonant condition2 even though the transient voltages 

and currents immediately following the opening of the switches 

were virtually indistinguishable from those leading to a 

-stable resonant condition. Computed and recorded results for 

the transient voltage in phase B of the transformer following 

the switching operation are shown in Fig. 5.2.3. These 

results highlight the importance of the transient region between 

non-resonant and resonant states. 

An attempt to compute subharmonic ferroresonance 

using a single-valued function representation of the B/H 

characteristic of the transformer was, as in the single-phase 
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case, completely unsuccessful. It was not possible, despite 

prolonged computation and reduced step length, to establish a 

recognisable steady-state condition2 thus further emphasising 
the necessity of incorporating the non-unique nature of the 

B/H relationship in calculations of this type. 

Further experimental investigation led to the discovery 

of a second 'subharmonic condition,, for which the predominant 

subharmonic frequency was IOHz., Le. 1/5 of the supply 
frequency. The steady-state current and voltage waveforms 

are shown in Fig. 5.2.4, together with the system parameters. 
This condition is much more severe in terms of the voltage 

and current magnitudes than the 1/3 subharmonic condition 

above. Although several attempts were made to compute the 

1/5 subharmonic resonant condition, using various step lengths 

in the numerical integration2 the computed transients caused 
by the opening of the switches very rapidly deviated from the 

experimental valuesq thus failing to initiate a stable resonant 

condition. 

Fundamental resonance normally involves higher 

voltages and currents than subharmonic resonance., for tile 

same system parametersl as was shown in the single-phase 

case., It was observed in the experimental work that 

fundamental resonance in the three-phase system was readily 

initiated.. and variations in voltage and switching were far 

less significant than for subharmonic resonance. Despite this 

apparantly reduced requirement for accuracy in specifying the 

system conditions., computed results were much less 

satisfactory than in the 1/3 subharmonic case, although 

recognisable steady-state voltage and current waveforms 

could be obtained which had the same general form as the 
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recorded waveform, -; as the example in Fig. 5.2.5 shows. 
The computed results appear to contain a component of 
frequency which is 1/2 that of the supply., and which is absent 
from the recorded waveforms. 

Fig. 5.2.6 shows the voltage across phase B of the 

transformer immediately prior to, and following the opening 

of the series capacitor switches. The computed and recorded 

waveshapes correspond reasonably well up to about 40 ms 

i after the switches are opened, but subsequently diverge. The 
large voltages which appear across the transformer terminals 
indicate high rates of change of flux density in the core. 
This in turn leads to large eddy current losses and possible 
changes in the magnetisation characteristic of the core due to 
skin effect in the laminations. - It is therefore not surprising 
to find a lack of correlation between computed and 
experimental results in this case, since eddy currents are 

not catered for in the computation. 

This deduction is supported by the fact that the 

highly accurate computed results which were obtained for the 

1/3 subharmonic resonant condition., were produced by the 

identical computer program used to produce the waveforms 

given in Figs. 5.2.5 and 5.2.6p 
' 
the only difference being the 

magnitude of the applied voltage (Vph = 107v and 270v). 

Since eddy current losses are unlikely to be significant in the 

low voltage, subharmonic resonance case, compared with the 

effects of hysteresis, it seems reasonable to conclude that 

the discrepancies found between computed and recorded 

results when the voltage is increased, are due to the damping 

eff ect of eddy current losses. 

The possibility that these discrepancies are due to 
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rounding errors in the computation was investigated by 

running the same program on two different computers (ICL 

1904S and GE415) with different rounding errors. The results 

produced corresponded to within 0.1% even after several 
thousands of steps. Since the rounding errors for the two 

computers differ by a factor of 2 (1 byte) this source of error 

can be discounted. 

It should be noted, however, that while it was not 

possible to compute accurately the waveshapes of the currents 

and voltages for fundamental resonance, it was nevertheless 

possible to show that ferroresonance had been established. 

S 

104 



-CHAPTER 6- 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The advantages and disadvantages of the various 

approaches to transformer analysis have been discussed in 

chapter 2, which indicate that an accurate representation of 
the electromagnetic relationships can be achieved using the 

techniques developed in references I and 2, without recourse 
to complex and time-consuming magnetic field analysis. It 

has been shown that assuming the transformer core to be 

magnetically isotropic does not lead to significant discrepancies 

between theory and practice, although variations in the maanet- 
ic properties from point to point in the core due mainly to 

corner effects2 can have a large effect on the form of the 

measured B/H characteristic. 

preliminary examination of corner effects has 

shown that these may be catered for directly in the transform- 

er model using similar equations as for the rest of the 

magnetic circuit, and assuming a discretely variable magnet- 
isation characteristic. Thus the necessity to carry out flux 

and field measurements on the completed transformer may be 

avoided. 

The transformer model can also be extended to cater 
for multi-winding transformers, using the concept of mutual 
leakage inductance. For a transformer with more than two 

windings per phase, as shown in Fig. 6.1(a), flux may link 

with two or more coils on the same limb, but fail to link all 

coils. Allowance can be made in the transformer equations 
for the mutual components of leakage flux by incorporating 
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a mutual leakage inductance term in the voltage equations. 

The use of an exponential series to represent the 

complete, multi-valued B/H relationship for the transformer 

core is a logical extension to the single-valued representation 
1 

used by MacFadyen The high degree of accuracy achieved 
in the representation of magnetisation characteristics has been 
demonstrated in two ways, 

(i) By comparison of the series representation of the 
B/H characteristics of several transformers with recorded 

curves. I 
(ii) By the degree of correlation between computed 

and recorded patterns of transient and steady-state current, 
voltage and flux. 

Generation of intermediate B/H trajectories by inter- 

polation between curves which are explicitly represented , does 

not allow for the intersection of increasing curves, which has 
been shown to take place under certain circumstances (see 

Fig. 2.6.7 and appendix AQ. Considering the accuracy 

achieved in using the simple interpolation technique, it is 

unlikely that significant errors are introduced by failing to 

allow curves of the same type to intersect. 

Throughout the investigation, eddy currents in the 

core have been deliberately neglected. This was done in order 
to highlight the areas where eddy currents have the greatest 
influence. If, as is- assumed in the transformer analysis, the 
flux in any core member is evenly distributed over the cross- 
sectional area of the iron, then the conventional method of 
representing the effects of eddy currents in the analysis, by a 
resistive load on a secondary winding, is valid, as long as 
there is one such arrangement for each core member. 
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Alternatively, for uniform flux density, the magnitude 
of the eddy current in a lamination is proportional to the rate 
of change of flux density, which is evaluated for each core 
section at every stage of the analysis, and which could there- 
fore be used to obtain a value for the eddy current. Many of 
the instances where eddy currents have been found to have a 

significant effect on transformer behaviour involve large rates 
of change of flux (e. g. f erroresonance and supply disconnection), 

which can cause the flux distribution in the core laminations 

to vary due to skin effect. It may be necessary therefore to 
investigate this phenomenon in detail before eddy currents can 
be adequately represented. 

In chapter 4, the processes involved in the establish- 
rnent of residual core conditions following supply Interruption 

were examined, and it was shown that for a given system 

operating in steady-state, there are only a finite number of 

residual conditions which can occur, * if disconnection takes 

place at a natural current zero. The effect which these 

residual conditions have on subsequent reclosure transients has 

been shown to be considerable in the case of a transformer 

which is unloaded, or has a near-unity power factor load. 

Large, low power factor loads (inductive or capacitive), tend 

to produce near-zero residual conditions following supply 
disconnection, so that relatively little variation in the reclosure 
transients will occur, for any given switching conditions. 

There is little doubt that the large discrepancies found 
between computed and recorded disconnection and reclosure 
transients, where system capacitance was significant, were due 
to eddy current losses in the core. Since, in M. V. and H. V. 

systems, capacitance is generally present in the form of 
transformer winding self -capacitance, as in the case of the 
50-kVA distribution transformer considered in chapter 4, and 
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line-to-earth and line-to-line capacitance, it will be necessary 
to incorporate some means of allowing for eddy current loss 

in distribution and transmission transformers when computing 

residual conditions. 

simple series resonant. circuit has been used in 

chapter 5 to demonstrate the three modes of ferroresonance 

which can be distinguished in single-phase systems, L e. 

subharmonic, normal or fundamental, and asymmetric or 

superharmonic resonance. The accuracy achieved in computing 
the steady-state conditions for each of these modes shows that 

the method of analysis, based on the transformer model of 

chapter 2, is valid in this case. 

Although one case of subharmonic resonance in a 
three-phase system was suce 

, 
ssfullY computed, attempts to 

compute fundamental resonance failed to achieve a reasonable 
degree of correlation with experimental results - again due 

eddy current effects. It has been shown2 however, that' 

ferroresonance is not necessarily restricted to single-phase 

conditions, and since analytical techniques are unlikely to 

yield useful results in polyphase cases; numerical methods of 

analysis such as that used in the present investigation, appear 
to offer the best alternative. Further development of the 

transformer model is essential, particularly with regard to 

iron losses, in order to Produce reliable and accurate 
solutions. 

The study of ferroresonance is only one example of 
the possible extension of the range of application of the trans- 
former model. The use of vacuum circuit breakers in 
distribution systems creates problems in transformer protection 
due to the high voltages induced in the windings, caused by the 
current- chopping properties of these devices. The method of 
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analysis used in the computation of residual conditions can be 

readily adapted to provide a means of determining transient 

overvoltages due to current -chopping, and ways in which these 

may be minimised to avoid damage to transformers which are 

switched using v. c. bIs. 

A further application is in the study of transformer 

performance under various secondary circuit conditions, 
including unbalanced, single-phase, two-phase and nonlinear 
loads, as well as short-circuits etc. Other static electro- 

magnetic devices may also be modelled, and their transient 

and steady-state performance determined, using the same 
techniques as for the transformer. For example, of interest 

to power system protection engineers is the performance of 

current transformers during transient conditions. The 
behaviour of voltage stabilisation equipment and short-circuit 
limiting couplings during sudden load changes are other areas 

where this type of approach could prove valuable. 
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APPENDIX Al 

Transformer Parameters. 

(1) Single-Phase Transformer. 

Nominal rating: 

Rated voltage: 

Winding resistances: 

Leakage inductances: 

External primary resistance: 

External primary inductance: 

Flux path lengths (Fig. Al. 1): 

Core C. S. A. Is (Fig. A 1.1): 

con turns: 

Series coefficients: - (K 
0=1.0) 

I kVA. 

250 

RA=1.06cL p=1.70 ci. * 

1, A 0.00157 H. 'la 
= 0.0054 H. 

Rs0.85cL 

1s = 0.0012 H. 

L = 0.139 6 m. 

A = 0.0026 m2 

N1 = 240 

L2=0.293 m. 

A2=0.0013 m2 

N2 = 446 

K 
2i-1 

Top curve Br= 0 curve Lower curve 

0.012249 

0.584281 
0.630603 

-0.03797 

-0.10073 

-0.064357 

0.316506 

0.867873 

0.632325 

-0.316762 

-0.428730 

-0.088836 

0.68076 
0.855769 
0.639468 

-0.836004 
-0.736386 

-0.611022 
B=0.95 T. B=0.36 T. 0.0 

21 

All curves 

5.90124. 10-2 

3.14299. 10-3 

7.98744. 10-5 

-8.27501. 10-2 

-3.77088. 10-3 

-7.39063. 10- 5 

H0= 38.0A. m-1 
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(2) Small Three-Phase Transformer. 

Nominal rating: 

Rated phase voltages: 

Primary resistance: 

Secondary resistance: 

Primary leakage inductance: 

See. leakage inductance: 

Ext. primary resistance: 

E, xt. primary inductance: 

Phase leakage inductances: 

8 IWA. 

240 v. / 415 v. 

0.764 n/phase. 

0.69 a /phase. 

0.00123 H. /phase. 

0.00369 H. /phase. 

0.45 CZ /line (3-wire star) 

0.6 a /line (4-wire star) 
0.3 Q /line (delta) 

0.00055 H. /line (3-wire star) 
0.00075 H. /line (4-wire star) 
0.0014 H. /line (delta) 

M4 ='0.00844 H. 

M5 = 0.00694 H. 

M6 = 0.01124 H. 

Flux path lengths (Fig. Al. 2): LI=0.285 m 

Core C. S. A.. Is (Fig. A 1.2): A* 0. '0054 m2 

Coil turns: N 132 

0ý 

L2=0.41 m 

A2 = 0.0054 m2 

N2 ý_, 228 
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Series coefficients: - (K 
0= 

100.0) 

K 2i-I K 21 

Top'curve =0 curve B Lower curve All curves 
r 

0.011847 0.163231 0.466535 4.63878. 10-1 

0.308789 0.5369 0.576735 3.10537. 10-2 

0.798201 0.818619 0.825121 1.78794. 10-3 

0.350698 0.354836 0.35823 8.76442. 10- 5 

-0.009995 . -0.137274 -0.308138 -7.31445. 10- 1 

-0.069472 -0.271919 -0.492279 -3.87953. 10-2. 

-0.062 -0.263484 -0.758486 -4.82854. 10-3 

-0.046206 -0.1613 -0.352237 -8.95966. 10- 5 

B0=0.6 T. B0=0.195 T. B0= -0.16 T. Ho = 6. OA. m. -1 

(3) Three-Phase Distribution Transformer. 

Nominal rating: 

phase voltages: 

Primary ( 1. v. ) resistance: 

50 kVA. 

433 v. / 11 M 

0.03 r2/phase. 

. 
Secondary ( h. v. )resistance: 55.7 ca /phase. 

Primary leakage inductance: 0.00025 H. /phase. 

Secondary leakage induct.: 

External primary resistance: 

External primary inductance: 

Zero-sequence inductance: 
W%'Aa; Al se4, ý. - &packka r, u -. 

0.446 H. /phase. 

as for 8 WA. transformer. 

as for 8 WA. transformer. 

0.0072 H. /phase. 
SVIIIF fj*Ae-st 

I 
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Flux path lengths (Fig. Al. 2): L 0.47 mL2=0.9 m 
22 

Core C. 'S. A. vs (Fig. A1.2): A 0.00942 mA2=0.0096 m 

Coil turns: N 89 N2ý 3916 

Series coefficients: - 
(IýD = 10 0' 0) 

K2i-1 

Top curve Br=0 curve 

0.0 

0.141471 
0.905669 

0.255633 

-0.355051 

-0.398103 

-0.771141 

-0.249764 

0.172219 

0.479252 
0.905669 

0.255633 

-0.204053 

-0.228795 
-0.443184 

-0.143542 

13 
0=0.76 

T. B0=0.25 T. 

Lower curve 

0.712219 

0.479252 

0.905669 

0.255633 

-0.028567 

-0.032031 

-0.062046 
-0.020096 

B0= -0.29 T. 

K 21 

All curves 

2.89655. -1 10 

3.17890. 10- 2 

1.40383. 10- 3 

1.10795. 10-4 

-4.31881. 10-1 

-2.90272. 10- 2 

-1.37281. 10-3 

-1.16644. 10-4 

8.0 A. M-1 
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APPENDEKA2 

Evaluation of Exponential Series Coefficients. 

The method used to evaluate the coefficients of the 

exponential series given in eqn. 2.6.5 is virtually identical 

to that given in reference I for calculating the coefficients of 

eqn. 2.5.1. One point on the curve must be specified for 

each coefficient, i. e. a total of 2. (1 + j) points. Initially the 

origin is shifted to the point (H 
0B0), and the air-line 

contribution subtracted from each value of B, so that, 

Bn- ilo- ( 

H'=H-H 
nn0 

Points are then taken in pairs, as shown in Fig. A2.1. 

The contribution from all terms, except the term contai . ning 
the coefficients to be evaluated, is deducted from the two 

values of B' under consideration to give, 

AB f=BI- Z(ali terms except term containing Kn) at H= Hn' 
nn 

. &B I=Bf 
-2: (all terms except term containing Xn) at H= H' 

n+l n+l n+l 

-----An initial value of zero is assigned to -all coefficients, 

so that for the first two points, on the first iteration, 

AB t= --B t= Kl. (1-exp(-K H'j)]/[1+exp(-K H')] 11 2" 01 

ABt B'=xe. H)] I+exp(-X . H')] 22 l"fl- xP(-K2 2o2 
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and, in general, 

AB" =gn. [l - exp(-Kn+,. H' )] / [l + exp(-X . H' )] ... 1 
on 

AB 9 
: -- Ký. [l - exp(-K 1. Ht , 

)] / [l + e#(-X .H7.., 2 
n+I n+ n+ o n+1)] * 

Dividing eqn. I by eqn. 2, 

2 (1-exp(-Ký+,. H')]/[I-exp(-Ký+,. H' 1)1.3 ABn/A6Bn+l Yn "': Zn* n n+ 

where, 

Z= [1+exp(-Ko. H9+, )] / [I+exp(-K 
. Hn")] 

nn0 

A value. of K, 
+, which satisfies eqn. 3 is found by 

an iteration process in the computer program. Alternatively, 

Kn+, may be evaluated manually by plotting Yn over a range 

of values for Kn+I , and interpolating to find the value which 

satisfies eqn. 3. Kn is then found from either eqn. 1 or 

eqn. 2. 

In this way values for all coefficients can be obtained. 

Ilowever, it is only possible to fit the series exactly to two 

points in this way, and so the process must be repeated until 

-the error at all. points falls to an acceptable level. It was 

found that, for each of the three magnetisation characteristics 

represented for the purposes of the investigation, all points 

chosen in the evaluation of the series coefficients could be 

fitted to within 0.001% after twenty or so iterations. 

Under certain circumstances it is not possible to 

obtain correct values for Kn and K 
n+1 

for a given pair of 

points. This occurs when JABnQj>jAB' 11 H j< IHO 
+11 

), or 
n+ 

(I 
nn 
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when either or both AB I and AB' have the wrong sign - n n+I 
AB should have the same sign as H'. If any of these 

conditions occur. during, the evaluation of the coefficients it is 

usually a result of attempting to incorporate too many terms 

in the series, or is due to the points chosen being badly 

distributed. As a general rule, pairs of points should be 

selected with the order of magnitude of-H, and with relatively 

much larger gaps between successive pairs, i. e. on a 
logarithmic basis. 

The computer program written to evaluate the series 

coefficients also contains provision for calculating coefficients 
for other curves using the same values of K 

n+I as for the 

first curve represented. For these other curves, therefore, 

it is only necessary to specify one point for each term in 
the series, in order to evaluate the new values of Kn. 
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APPENDIX A3 

Derivation of the Complete Magnetisation Characteristic 

Representation from a Single Curve. 

The method of obtaining a representation of the 

complete magnetisation characteristic from a knowledge of the 

B/H curve for Br= 0, and the values of BR and Hcp is based 

on a system of modifying the coefficients of the series 

representation of the known curve to produce new coefficients 
for series to represent the limit cycle or boundary curve, and 

the curve for which Br= BR* 

Initially an exponential series is obtained to represent 
the known curve for values of H> Ho. This is done assuming 

negligible influence in this region of the terms representing 
the curve for H-4 H0, so that, 

n 
BH>H z- B, + ji 0. 

(H-H0) +Z K2i_,. [1-exp(-IZ2i. (H-H0»1/D(H) 
0 i=l 

00000 41 1 

wheret 
D(H) =1+ exp(-K 0. 

(H-H 
0» 

This assumption is valid if K0 is very large. Certain other 

assumptions must also be made in order to complete the 

representation, i. e. that the boundary curve has its-point of 

maximum slope at H= Hoe Experience has shown this to be 

approximately true in practice. Also, in general, HC>H 
Of 

which is the case considered here. 

Eqn. 1 can be modified to represent the lower 

boundary curve by initially shifting the origin from (H 
0B1) 

to 
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(H ,B) as shown in Ficr. A3.1. The value of B is obtained 0202 
by adjusting the coefficients of eqn. I so that the curve 

passes through the point (H., O). As stated in section 2.6.1, 

increasing curves do not intersect, but become infinitely 

close as H-oca. The ultimate level of B in eqn. 1 as H-* oo 

neglecting the jao. (H-HO) term is, - 

n 
Bmax =B1+ 2K2i-1 

i=l 

and the displaced curve must also reach this ultimate levelp 

without intersecting the original curve, so that, 

nn 
B+ 2 K2i-1 BI+ LK 

21-1 ..... 2 

where K' are the required modified coefficients. For 2i-I 
simplicity, only K1 is adjusted, the rest of the K 21-1 values 
being left unaltered. This allows for the case of n=1,. and 
is shown to be justified when the coefficients derived using 
this method are compared with those obtained using the method 
described in chapter 2. Eqn. 2 therefore reduces to, 

B2+K = B1+K1 ...... 3 

The value of flux density at H=Hc is zero on the 

lower boundary curve, therefore, 

0=B+ J10. (HC-HO) + KI. E /D(Hc) + S/D(Hc) 22 

...... 4 

where, 
E2 exp(-K 2" (He - HO) 
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n 
exp(-K2i* (HC-Ho))] 

Substituting for K1 from eqn. 3 in eqn. 4, gives, 

B2=-[ po. (Hj-HO). D (He) +'E 2* (B, +Kl) +S3ýE r2+ D(HC)3 

0 00 000 

D2 and K1 can therefore be found from eqns. 5 and 3. 

The equation used to represent the lower boundary curve 
(curve (b) in Fig. A 3.1) in the region H>H 

op 

n 
BbH>HO ýB2 flao. (H-Ho) + EK21_l. [l-exp(-K2i. (H-1ý0))]/D(H) 

cannot intersect curve (a) in Fig. A3.1, since the difference 

between the two curves is given by, 

, 
&13 =. (Bl-B 2 ). 

[l - (1-exp(-K 
2' (H-Ho))] /D(H)] 

which is positive for all values of H> Hop if B1>B 20 

The equation for the lower boundary curve in the 

region H/, Ho isq 

m 
B bH4HO `ý B2+ po, (H-H 

0)+EK 2' 1. 
(1 - exp (-, 'C2jo (H-H )))/D'(H) 

j=n+l 0 

oo6 

where, 
DI (H) =1+ exp(+K 0. 

(H-H 
0 

Since this part of the curve is used to represent the upper 
boundary curve in the'region H>-Hop the final value of B as 
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H-,,, - -x)o , neglecting the air-line term, will be, 

n 
Bmax = -[Bl +'EK 2i-11 

Therefore, 

m 
B+ 2ý_: K 2 21-1 j=n+ 

By defining, 

I"jlj=2n+'1-2m = 

and, B0= 

..... 7 

this section of the lower boundary curve is then represented 
by eqn. I with the origin moved from (Hov 131) to (H 

0B2) and 
the whole curve rotated by 180 0 about the new origin. In 

order to satisfy eqn. 7, the value of K2n+l is adjusted so that, 

I 
K2n+l B1-K, -B 

The lower boundary curve now has the correct shape, but 

does not necessarily pass through the (0, -B R) point. This is 

-achieved by modifying the coefficient K 2n+2 in the term, 

XLW (1 - exP(-K 2n+2* (H-Ho)))/D'(H) 

Eqn. 6 reduces to the following form at (0, -BJR)P 

K ex K (-H0»)/D (0) + Sl/D'(O) (-'o)+ 2n+1*(1- P(- 2n+2* 

4000 th. 08 
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where, m 
S, = Z: K 2j-l*ll - exp(K 2j * llo)] 

J=n+2 

and solving eqn. 8 for K2n+2 gives, 

log +[D'(0). (BI+B pos'HO) +S K' I/Ho K2n+2 ý ell 2- 13 ý 2n+I 

000a00 

In cases where, 

+B2- Po. H 
0 +S 1<0 

it is not possible to find a value for K 2n+2 using the above 
method. If this occurs, then an alternative method is to 

modify the relative values of K 2n+l and K 2n+31 while keeping 
the sum of the two coefficients constant, so that, 

K it +KIKI+K 0*000010 2n+l 2n+3 2n+l 2n+3 

and, 

-B, =B X/D'(0) +K, Y/D'(0) +S /D'(0) 
.12- 

Ilo + Kýn+l* 
2n+3* 2- 

4*00* Oil 

where, 

exP(K 2n+2. HC» 

y=1- exp(K2n+41 Id 
m 

s2 Y] K 2j-1" (1 - exP(K2j* H0 
j=n+3 

From eqn. 11, 

K it X+KyZ...... 12 2n+l* 
ýn+3* 
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where., 

-00). (B 
R+B2- Po"%) + S2 

Solving eqns. 10 and 12 for le. ' and K gives, 2n+I 2n+3 

(Z - W. Y)/(X-Y) --2n+l 
f It K 2n+3 w -. K 2n+l 

The original curve, (a) in Fig. A3.1 is represented 
in the region, H<H 

0t 
by a modified version of eqn. 6. This 

modification can be done in two ways, 

(i) Eqn. 6 can be shifted so that its origin lies at 
(H 

0 
B, ), and the sum of the exponential terms multiplied by 

a factor, C, to cause the curve to pass through the (0,0) 

point, 

0=B, -uO. Ho + C. Eterms I 
H=O 

which gives, 

(U 
0H0- 

Bl)/IEterms IH=O' 

(H) Again shifting the origin of eqn. 6 from (Ho, B 2) 
to (Ho B, ), the coefficient K 2n+l can be altered to cause the 

curve to pass through the (0,0) point such that, 

B, - PooH x ol]/D'(0) + S, /D'(0) 
0+ 

Iýn+l* E 1-6 V(K2n+2* H 
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Rearranging the above equation gives, 

KI -= [(uo. Ho-Bl). D'(0) - Sl)/[I+exp . Ho)] 
2n+l 

(K2n+2 

Either method will give a reasonable representation of this 

part of the curve. 

The coefficients for any other curve in the B/H plane 

can be derived in a similar way to the lower boundary curve, 

if two points on the curve are known. To complete the 

representation, coefficients for the 13 
r =B R curve must be 

obtained. Since only one point on this curve is known precisely, 

i. e. (0, B ), a second point must be estimated in order that 

the coefficients can be evaluated. It is expedient to estimate 

the value of B at the point of maximum slope of the curve, 
i. e. the point (HovB 3) in Fig. A3.1. B. can be taken arbitra- 

rily at a point half way between B IR and the value of B at H=H 
0 

on the upper boundary curve. 

The coefficients given below for the magnetisation 

characteristic representation of the single-phase transformer 

which have been derived using the above method compare 

favourably with those given in appendix Al. 

Top curve Brf 0 curve Lower curve 

0.0 . 0.316506 0.676506 

0.569379 0.867873 0.861873 

0.632325 0.632325 0.632325 

-0.072480 -0.370790 -0.926976 

-0.051450 -0.246961 --0. -617403 

-0.052694 -0.252930 -0.632325 

B =O. 975 T. 3 B =O. 36T. « 
1 B =O 0T 2' 

All curves 

5.90124.10-2 

3.14299.10-3 

7.98744.10-5 

-5.90124.10-2 

-3.14299.10-3 

-7.98744.10-5 

38.0 A. m-1 
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Fig. A3.2 shows that the curves produced using the 

above method do not deviate greatly from those derived using 
the method presented in chapter 2. Note that in this instance 

it has not been possible to cause the lower boundary curve to 

pass through the (0, -B R 
). point by adjusting K8 as in eqn. 9. 

Instead, the relative values of K7 and K9 have been altered 
in order to achieve this, and K8 set equal to -K 2* 
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APPENDIX A4 

Preisach Theory 13 

Preisach assumes that the magnetic material consists 

of a large number of elementary dipoles, each of which can be 

represented by a rectangular hysteresis loop, of variable width, 
2H., and displaced along the H-axis by an amount, H 

In V as 

shown in Fig. M. 1. The displacement, Hms is caused by the 

action of the other dipoles, and varies from dipole to dipole, 

and also with the overall magnetic state of the material. A 

probability density function, ý (H 
C2H In 

) is used to define the 

distribution of the dipoles in terms of their magnetization 

parameters, so that the number of dipoles within the range, 
Hm--O, Hm+dH 

M and Hc --a-. Hc+ dHc is, ý (Hc, Hm). dH 
c. 

&I 
mo 

When the material is magnetically neutral, there are 

as many dipoles in the state +B s as there are at -B s as shown 
in Fig. A4.2(a). If an external field, H>0, is applied, all 
dipoles in the -Bs state will switch to the +B s state where the 

applied field is greater than the corresponding value of Hc+H 
In, 

Thus all dipoles lying below the line of state defined by the 

equation, 

H +H M, c 

will be in the +B s state, as shown in Fig. A4.2(b). As the 

field is reduced from its peak positive value, H 
max , which 

corresponds to the line Q-Q in Fig. A4.2(c), reverse switching 
from +B s 

to -Bs will occur in those dipoles for which H (the 

applied field) is less than Hm- Hcj i. e. all dipoles lying 

above the line of state defined by, 
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H= Hm -Hc 

as shown in Fig. A4.2(c). 

The resultant value of flux density in the material 

will be given by the difference of the total number of dipoles 

in the +B s state and the total number in the -Bs stateý 

multiplied by the contribution to the net flux density from each 
dipole2 Bse This difference is represented by the area 

enclosed by the lines Q-Q and R-R in Fig. A4.2(c), and the. 

H and H axes. Thus the net flux density is given by, 
cm 

B=2. Bs ff ý (Hcv HM). dH 
c. 

dH 
m 

Although it is not possible to carry out a full analysis 

of the magnetic state of the material under consideration, 

without knowledge of the distribution function, ý(HcqHm), a 

qualitative study of the magnetic behaviour can still be made 

using the concepts developed for the HC/Hm diagram., and 

relating these to the B/H plane. In this way it is possible to 

explain the appearance of the observed crossovers of increasing 

B/H trajectories, and to derive the criteria for these to occur. 

Consider the case where. a piece of magnetic material 
is initially in the neutral state, as shown in Fig. A4.3(a). A 

positive field, H, is applied which slowly Increases from zero 
to a value, Hly so that all dipoles below the line Hj-H I in 

Fig. A4.3(b) are in the +B s state. The field is then slowly 

reduced to a value, H2>0. The number of dipoles switched 
from their original -B s state to +B s 

is therefore represented 
by the area, A, shown shaded in Fig. A4.3(c). The B/H 
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trajectory corresponding to these two operations is shown in 

Fig. A4.4(a). As the applied field is again increased, this 

time from H2 to H3 <Hl, the difference in the number of 

switched dipoles, and hence the net flux density, for any 

value of H during this third operation, and the same value of 

H during the initial magnetisation (0-, -H, ), is represented by 

the shaded area, B, in Fig. A4.3(d). Thus as H increases 

from H2 to H3 the net flux density is greater at all points, 

than that for the initial magnetisation, and'the B/H trajectory 

for this operation lies above the initial curve. If H 3ý 1121 then. 

the material is in exactly the same magnetic state as at the ' 

end of the first excursion in H, and further increase in H 

will cause the B/H curve to follow the initial trajectory, shown 

as a broken line in Fig. A4.4(b). 

If, instead of the field reducing to a value of H2 

which is greater than zero, from H, .a minimum value of H 

is reached such that, -H 14H40, then as the field is slowly 

increased from this minimum value, the net difference in flux 

density between this operation and the initial magnetisation is 

represented by the difference of the shaded areas, C and D, in 

Fig. A4.3(e). At H=01 if the net magnetisation is negative, 

then the B/H trajectory will lie below the initial curve. At 

H -H2 , all dipoles for which H 
In .40 have reverted to their 

original +Bs *state, and the net magnetisation is given by area 

D only. Thus at this point, since the difference is positive, 

the trajectory must lie above the Initial magnetisation curve, 

i. e. the curves have crossed, as shown in Fig. AM(c). The 

crossover will occur when, the net difference in magnetisation 
between the two curves is zero, i. e. the number of dipoles 

represented by area C in Fig. A4.3(e) is equal to that repres- 

ented by area D. The conditions required for the cross-over 

of other curves can be derived in the same way. 
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APPENDIX A5 

Establishment of Residual Conditions in Three-Phase 

Transformers. 

(a) Delta connected primary, no load. 

i) Line Y aisconnected first: - 

iy= 

iB= 

Iý 

Referring to the phasor diagram of Fig. 4.5.3, when 
i 0, the following information regarding the magnetic state y 
of the core can be derived, 

i2 and ý3 2 are positive and increasing positively. 

I and 91 are positive and decreasing. 

I and are near their negative maxima. 3 ýý3 

These conditions are similar to those found for iX disconnected 

first. However, since the flux path lengths of sections I and 2 

are different, H>HIT he ratio H'j/H will be constant 2 10 2 
following the disconnection of line Y,, and will be equal to 

L2 /(Ll + L7)* Consequently 91 and 92 will be closer at this 

stage than the corresponding fluxes in the case considered in 

chapter 4, while H' will have a value about the same as H 32 
previously, assuming that the peak flux levels are similar. 
Fig. A5.1 illustrates this situation, and the behaviour of the 
fields and f luxes as iX and iZ fall to zero. 
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The ratio H'/H is maintained as i 12C and the fluxes 

decay. When all line currents are zero, then eqn. 4.5.1 and 

eqn. 4.5.6 will hold as before, and ij and i will have become 12 
negative. Also, HHf>H which results in the conditions 13 21 
shown in Fig. A 5.1, i. e. 92 has become very small, while 
91' is only slightly smaller in magnitude than 93* Computed 

and measured residual conditions for this case which are 

given in section 4.5.2 confirm these deductions. 

ii) Line Z disconnected first: - 

Using the same arguements as above, it can be shown 
that the condition of the core as iZ falls to zero, while going 

positive, will be as illustrated in Fig. A5.1(b). In this case 
the two positive fluxes, P2 and ý3 3 have very different values 

at this stage, although as the ratio of H /H' is maintained 23 
constant during the subsequent dec 

I 
ay of iX and iY, the final 

value of H2 will be larger than H 31 causing the two fluxes 

to assume final levels which will be closer together than the 

corresponding fluxes in previous cases, as shown in Fig. A5.2. 

(b) Three-wire Star connected primary, no load. 

1). Line A disconnected first-. - 

The magnetic circuit equations for this case are, 

2+ 

it 
-i 32+ 

91 +92 +93 
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also, for the electric circuit, 

iA+iB+iC= 

The approximate phase relationships are given in 

Fig. A5.2(a). When the current in line A falls to zero while 

going positive, 

'A 0 

B -ic 

and, I 
12B 
f '3 '2 + 2. i B0 

i'l and P, are near zero and increasing positively. 

II and _are 
large positive and decreasing.. 3 P3 

2 and 92 are large negative, increasing negatively. 

I. .1. I Since il is very small, then. from eqp. I above, i -i 2 3' 
Therefore IH >IH; I, and since both values of H are large, 21 3 
1921 ý'1931 - 

91 will therefore have a small positive value, as 

shown in Fig. A5.2(b), in order that EVY = 0. 

As the currents in the remaining two lines fall to 

zero, i and V will decay at about the same rate, and the 23 
difference between 192 1 and 1'031 will reduce. Thus 9, 

follows the trajectory shown in Fig. A5.2(b). Finally, when 

all coil currents are zero, the magnetic circuit equations 

again reduce to, 

13 
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I The condition of the core when all coil currents are 

zero will therefore be as shown in Fig. A5.2(b). 9, will be 

small and have the same polarity as 93 which is large. ý32 

will be opposite in polarity to P, and 93 , and be larger than 

either. Computed results for this condition are given in 

section 4.5.2. 

Fig. A5.3 illustrates the magnetic behaviour of the 

core for lines B and C disconnected first when the respective 

currents are zero , going positive. The behaviour under these 
conditions is deduced in the same way as above. 

(c) Four-wire Star connected primary, no load. 

The magnetic circuit equations for all lines connected 
are identical to the three-wire case, as are the steady-state 
phase relationships as given in Fig. A5.2(a). When the' 

I current in line A falls to zero, iB- _iC, and the other 
conditions will be very similar to those for a three-wire star 
connection at this point as shown in Fig. A5.4(a). 

In the four-wire case, however 1 92 and '2 will 

continue to increase negatively, since the e. m. f. for the 

centre limb, and hence the flux, is virtually independent of 
the other phases. 93 and i 3' will decrease, forcing 91 to 

increase positively. The next line current to fall to zero will 
be iC, and when this occurs, iI=iI, i. e. H' =HI At this 131 3" 
stage 'P2 and '2 will be large, negative and decreasing in 

magnitude as shown in Fig. A5.4(a). All m. m. f. 's will now 
decay, maintaining il = i3' and EP 0 at all points. Finally 

becomes zero, and iI=1 13' the residual conditions when 'B 12 
shown in Fig. A5.4(a)-are established, which correspond with 
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the computed conditions given in section 4.5.2. 

Also given in Fig. A5.4 are the residual conditions 
for the two other disconnection sequences which can be 

derived in the same way as above. 

(d) Delta connected primary, inductive load. 

Fig. A5.5(a) shows the approximate phase relation- 

ships for a large, purely inductive load on the transformer. 
As in the case of a resistive load, it is assumed the load 

currents are much larger than the steady-state magnetising 
currents, and therefore the phase currents will lag the phase 
coltages by 90 0 as shown. The magnetic circuit equations 

are as for the resistive load (eqn. 4.5.7). 

For ix 12 0, going positive, 

iy= -i 

'A 'C 

v BC 
0 

and 9, are positive and increasing. 

II and are positive and decreasing. 3 93 

i2 and 92 are near their negative maxima. 

This condition is summarised in Fig. A5.5(b). Since iA=iC 
(which will be primarily the load component of the input current) 
then for a balanced load, 'a ý- 'ce 
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Therefore, 
i di /dt di 

a 
/dt .c 

and, varvc 

AB CA 

However, since di /dt and di /dt were opposite in 
aC 

sign immediately before line X was removed, the only way in 

which the above equations can be satisfied is if the phase 

voltages fall immediately to- zero, also satisfying the voltage 

equation for the delta connected primary, 

AB +v BC +v CA 
0 

Thus all phase voltages are zero, and all currents are at a 

% turning point at this stage. 

The change in flux in the two outer sections following 

the disconnection of line X will be approximately the same 

T since VAD 1' vCAI and this change will be given by, 

Ap =-I. 
fe. dt 

N 

so that ý31 93 during this period. AQ will be negative in 
this case, causing 9, and 'P3 to decrease. The flux in the 

centre limb will fall from its negative maximum to a value 
near zero when the. remaining lines are disconnected. Since 

0, and ý)31 it follows that at. this stage all fluxes 

will be very small. Fig. A5.5(b) which illustrates this 

condition shows the same flux and field distribution as the 

computed results given in section 4.5.2. 

140 



(e) Delta connected primary, capacitive load. 

The steady-state phasor diagram, shown in Fig. A 5.6 

is used to establish the basic relationships between each of the 

various quantities. At the instant that iX = 0, going positive, 

and 91 are negative and increasing negatively. 
11 and are negative and decreasing in magnitude. 3 93 

i2 and 92 are near their positive maxima. 

i. e. the conditions in the core are very similar to those for 

the transformer load being purely inductive, and line X 

disconnected first when ix = 0, going negative. 

Since the input currents are predominantly load 

current, and iA= iC, then for a balanced load, 

ia -I. 'c -I. C Lo (dv, /dt) --. CL* (dvc/dt) 

and thus, 

iy -i z 

.. 13C 

va -V 0+1, 
fi 

a. 
dt 

c 

41 dt vc vo + i. fc 
c 

since v -v =v when ca0 
iX = 0, going positive. Av is the 

same in both phases, and is positive in this case, since 'a 

and ic are initially positive and will fall to zero during the 
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disconnection procedure. Also, since, 

VAB +V BC +V CA 0 

then, AV BC 7 -AV -2. Av AB 'ýIVCA 

Thus the maximum change in v AB and v CA will be 0.5. AV 
linee 

At the instant line X is disconnected, 

VA B VCA" V line 

so that the fluxes in sections 1 and 3 of the core will be 

given by, 

-Vo + ia. dt ] dt 0c 

[+V 
0+fic 

dt] dt 533 go 
Nc 

VAB changes from -(vr2/43). V line to (I I-r2 - 4-2ý-r3). V line' 
so that API is negative. Similarly, 

16533 is positive. 
02 will fall to a value near zero, so* that when disconnection 

1,0, as of the last two lines takes place, ý33 --1*- -9$1 and 92 

shown in Fig. A5.6(b). 

If no oscillations took place following the disconnection 

of the last two lines, the final residual conditions would be as 

shown in Fig. A5.6(b). However, as the computed results 

given in section 4.5.2 indicate, a degree of de-magnetisation 

takes place as would be expected. 
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I Fig, 211 Equivalent circuit for single-phase, two winding 
transformer. 
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Fig. 2.2.1 General static, polyphase system. 
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Fig. 2.22 Assumed flux paths in general system. 
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Fig. 23.1 Single-phase, two winding transformer. 
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Fig. 2.5.1 Magnetisation curve - linear approximation. 
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Fig. 2.61 Variation of magnetisation curve with M. 
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Fig. 2.6.2 Half-height width of differentiated loop. 
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Fig. 2.6.3 Typical B/H loop showing salient points and 

curves. 
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Fig. 2.6.4 General shape of comptet e, B/H curve. 



Fig. 2.65 Effect of varying K and K 'in eqn. 2.6.3 
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Fig. 2.6.7 Intersection of increasing trajectories. 



Fig. 3.1.1 Location of search coils. 
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Resistance (ka) Capacitance (, uF) 
Rl 2.2 cl 0.047 

R2 1.0 C2 0.01 

R3 4.7 C3 0.01 

R4 1.0 C4 0.33 

R5 10.0 

R6 0.47 

R7 2.2 D1-5 IN4001 

R8 0.47 

R9 0.47 T1-6 BC107 

Rio 0.47 T7-8 2N3053 

Ril 0.22 

R12 4.7 SCR1-2 BTX-30 
B13 4.7 

IR14 0.22 Z1-3 3v zener diodes 
B15 2.2 

R16 4.7 

P17 4.7 

B18 2.2 

R19 0.15 

All resistors ,! watt except R8 and IR10 which are -2watt 

values of R19 and C4 depend on gate characteristics of triac used. 

Fig. 3.4.1 (b) Component values of Switching Angle Selector. 
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Fig. 3.4.2 Switching angle selector - original design. 
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Fig. a5.1 Experimental equipment. 
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Fig. 4.2.4 Supply interruption - leading p. f. load. 
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-(a) Phdsor diagrai 

(b) Line A disconnected first. 
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Fig. A5.2 Disconnection of supply to 3-wire star 
connected. primary, no load. 
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(a) Line B disconnected first. 

(b) Line C disconnected first. 

Fig. A5.3 Disconnection of supply to 3-wire star 
connected primary, no load. 
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a 
(b) Line B disconnected first. (c) Line C disconnected first. 

Fig. AS-4 Core conditions during disconnection of 
supply - 4-wire star primary, no load. 
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Line A disconnected first. 
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(a) Phasor diagram ýj IA)ll 
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(b) Line X disconnected first. 

Fig. A5.5 Disconnection of - supply to delta 

connected primary - 4-wire star connected, 
zero pA inductive load. 
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(a) Phasor d 

Fig. A5.6 Disconnection Of supply to delta 
connected primary - 4-wire star connected, 
zero pf capacitive load. 

(b) Line X disconnected first. 


