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Abstract

There are many nonlinear econometric models which are useful in analysis of fin-
ancial time series. In this thesis, we consider two kinds of nonlinear autoregressive
models for nonnegative integer-valued time series: threshold autoregressive mod-
els and Markov switching models, in which the conditional distribution given
historical information is the Poisson distribution. The link between the condi-
tional variance (i.e. the conditional mean for the Poisson distribution) and its
past values as well as the observed values of the Poisson process may be different
according to the threshold variable in threshold autoregressive models, and to an
unobservable state variable in Markov switching models in different regimes. We
give a condition on parameters under which the Poisson generalized threshold
autoregressive heteroscedastic (PTGARCH) process can be approximated by a
geometrically ergodic process. Under this condition, we discuss statistical in-
ference (estimation and tests) for PTGARCH models, and give the asymptotic
theory on the inference. The complete structure of the threshold autoregressive
model is not exactly specific in economic theory for the most financial applications
of the model. In particular, the number of regimes, the value of threshold and the
delay parameter are often unknown and cannot be assumed known. Therefore,
in this research, the performance of various information criteria for choosing the
number of regimes, the threshold value and the delay parameters for different
sample sizes is investigated. Tests for threshold nonlinearity are applied. The

characteristics of Markovian switching Poisson generalized autoregressive hetero-

il



scedastic (MS-PGARCH) models are given, and the maximum likelihood estima-
tion of parameters is discussed. Simulation studies and applications to modelling
financial counting time series are presented to support our methodology for both

the PTGARCH model and the MS-PGARCH model.
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Chapter 1

Introduction

1.1 Background

A time series can be discrete or continuous valued and may be modelled linearly
or nonlinearly. For example, AR models, MA models and ARMA models are
linear models. These models are usually used for modelling means. These kinds
of models have become more popular nowadays, partly because they have been
integrated into much economics and statistics software. In contrast, they have
some limitations, for example, they cannot handle many dynamic patterns of vari-
ance, e.g. volatility clustering (the variance of the returns is high for extended
periods of time, and then becomes low for other extended periods) and asym-
metry (rising and declining patterns). Many applications in economic time series
exhibit periods of unusually large volatility followed by periods of relative tran-
quility (i.e the variance does not stay constant over time). In such circumstances,
if we plan to pay the price of assets at time ¢ and sell at time ¢ + 1, then the
conditional variance would be important, but the unconditional variance would
not. Therefore, it is informative to introduce an explanatory variable which helps
to predict the volatility. If the explanatory variables are constant over time then

the conditional variance is constant. If the explanatory variables change over
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time, then the conditional variance is a function of time (it is a stochastic pro-
cess!). Actually, in time series analysis, there are many volatility models, which
are used to forecast volatility. In widespread use, there are two different classes of
volatility models. First, the conditional variance is considered directly as a func-
tion of observed variables. The second kind formulates a volatility model that
is not a function purely of observed variables (latent volatility). This research is
concerned with the first type of volatility models. The simplest examples here
are autoregressive conditional heteroscedastic (ARCH) models (Engle (1982)),
CHARMA models (Tsay (1987)), and generalized autoregressive conditional het-
eroscedastic (GARCH) models (Bollerslev (1986)). A GARCH (p,q) model is

defined as a process {Y; };cz which satisfies

Yi|Fior ~ N(0,02),Vt € Z,

2 _ a . y2 P 3 2
op = o + X Y+ X5, B,

where oy > 0,0, > 0,9 =1,...,q,8; > 0,7 =1, ..., p. But, up to recent years, most
of the literature on this kind of model has been continuous-valued time series.
In the past few decades, many different nonlinear models have been proposed
(see Tong and Series (1990) and Granger and Terasvirta (1993) for example).
TAR models (Tong and Lim (1980)), STAR models (Chan and Tong (1986)),
MSA models (Hamilton (1989)) and SETAR models (Chan and Tsay (1998)) are
among the popular ones. Regime-switching models such as the threshold autore-
gressive (TAR) and the Markov switching autoregressive (MSAR) model have
become increasingly popular for nonlinear time series and state regime switching
phenomena in various fields such as science and social science studies. There are
many studies concerning these kinds of models, (see, Tong (1978), Tong and Lim
(1980), Caner and Hansen (2001), Tsay (2005), Enders (2010), Hansen (2011),
Medeiros et al. (2002), Engel and Hamilton (1989), Huang (1999) and Kuan

(2002)). These models consist of several regimes which can describe the time
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series pattern in various states. The switching between states is according to
threshold variable (Y;_4) in the TAR model and unobservable (hidden) state (S;)
in the Markov switching model.

TAR models are used for capturing nonlinearities such as asymmetric features
and jump phenomena of the conditional mean of a time series. This kind of mod-
els is characterized by piecewise linear processes separated according to the mag-
nitude of a threshold variable. More recently, people have applied the threshold
idea to modelling the conditional variance (i.e. volatility) of a time series. In
the management of risk, the volatility is considered as a measure of risk of an
economic position. Threshold GARCH (TGARCH) models, have been proposed
to describe the asymmetrical features of the time-varying volatility of time series
(see, Higgins and Bera (1992), Li and Li (1998), Hwang and Kim (2004), Hwang
and Basawa (2004) and Pan et al. (2008)). However, most of the research on
TAR and TGARCH models in the literature is about continuous-valued time
series, and this project will focus on the statistical work on threshold models for
discrete-valued time series.

Recently, there has been growing interest in modeling discrete-valued time
series, such as count time series, that arise in various fields such as environ-
mental, medical or financial and economic applications. Examples include the
monthly cases of rare infectious diseases reported in a specified area, the number
of customers waiting to be served at a counter recorded at discrete points in time,
the daily number of absent workers in a firm, the monthly number of claimants
collecting wage loss benefit for injuries in the workplace, the number of trans-
action times for the shares of a company in the markets and so on. There has
been some research on discrete-valued time series analysis. McKenzie (1985) is a
survey paper of early work on linear models for discrete-valued time series such
as discrete AR, MA and ARMA. Chapter 4 of Kedem and Fokianos (2002) gives

a comprehensive account for models for time series of counts. The most popu-
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lar model among authors is the log-linear model. But recently published studies
focus on a specified discrete conditional distribution with a conditional mean as
a linear function of historical observations (see, Ferland et al. (2006), Fokianos
et al. (2009), Fokianos and Fried (2010), and Weiss and Testik (2009)). They
have discussed the Poisson autoregressive models, which assume the conditional
distribution given the history is a Poisson distribution with mean as a linear
function of previous mean and previous states. Because the mean and variance
of a Poisson distribution are the same, the model for conditional mean and con-
ditional variance coincides. Therefore, the Poisson autoregressive model is called
Poisson GARCH model too. All previously mentioned models assume that the
conditional mean (and variance) is a linear function of the past observations so
that we call them linear Poisson AR models or linear Poisson GARCH models.

In this research, we study a type of threshold autoregressive model for non-
negative integer-valued time series in which the conditional distribution given
the history is a Poisson distribution, but the conditional mean (i.e. variance)
is a nonlinear threshold function of the past observations as well as the past
conditional means (and variances), which may be different when the threshold
variable is in different regimes. It will be shown that this kind of models have
good probabilistic properties and are good at capturing the asymmetrical fea-
tures of the count time series. This is an attempt on discrete valued threshold
AR (or GARCH) models. We discuss the conditions for geometric ergodicity
of the proposed Poisson threshold AR (or GARCH) models, which are denoted
by PTAR (or PTGARCH). We derive the maximum likelihood estimation for
PTAR (or PTGARCH) and prove the consistency and asymptotic normality of
the proposed estimators.

In forecasting and analyzing time series observations, there are surely tradeoffs
between different stochastic time series models. Therefore, it is very important to

look for a suitable test of the capability of selecting a practitioner with respect to
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whether a linear or a nonlinear model is better to describe the time series under
study. A test for threshold nonlinearity has been discussed by many authors.
For example, Tsay (1989) suggests some predictive residuals and computes the
simple statistic for an arranged autoregression, Cryer and Chan (2008) apply a
Likelihood Ratio test with threshold model as the alternative hypothesis, and
Al-Awadhi and Jolliffe (1998) use the value of Normalized Akaike’s Information
Criterion (NAIC), as well as the value of mean square error (MSE). In this pro-
ject, we also discuss the threshold nonlinearity test of PTAR (or PTGARCH).
Nonlinearity is caused by the threshold variable switching between regimes and by
the model having more than one regime with different linear PGARCH models.

In many time series applications of the TAR model, both the value of threshold
and the time delay often cannot be assumed known. Furthermore, the number
of regimes in the model is often unknown as well. Some proposals exist on how
to select the threshold value, the threshold delay and the number of regimes in
TAR models. Tsay (1989) proposed to select the threshold value using a graph-
ical method (in arranged autoregression). To choose the number of regimes he
used scatterplots of predictive residuals and recursive t—ratios of an AR model’s
parameters against the threshold variable. Aide et al. (1988) suggested that for
determining the value of threshold and the delay parameter, the AIC criterion
and the normalized value of AIC can be used. They used a grid search: the
original data series is arranged from small to large so that the sample of the
threshold variable is divided into « intervals with § grid points corresponding to
v x 100th percentile point to the v x 100th percentile point of the observations,
say between the 30th and 70th percentile points, the corresponding values of the
AIC are calculated, and the estimated value of the threshold is the one which
minimizes the value of the AIC. Strikholm and Terdsvirta (2006) used smooth
transition autoregression to determine the number of regimes in TAR models.

Hamaker (2009) suggested an information criteria to estimate the number of re-
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gimes in threshold autoregressive models in small to moderate sample sizes. To
determine the appropriate value of threshold and the delay of parameter as well
as the number of regimes in the PTGARCH model, we use the different informa-
tion criteria, which includes —2 times the log-likelihood function and the number
of unknown parameters.

We carry out much simulation work on the proposed methods for estimation
of parameters and determination of threshold value, delay parameter and the
number of regimes. We also give a real data example to show that the proposed
model can fit to data better than the single regime linear Poisson GARCH model.
Regarding the MS-PGARCH model many experiments are carried out for the
maximum likelihood estimation for different cases. An application of the MS-
GARCH model to a real time series shows that the suggested MS-GARCH models

can fit to data well.

1.2 Overview of the study

In this thesis, we study the statistical inference for threshold autoregressive mod-
els and Markov switching autoregressive models for nonnegative integer-valued
time series. The conditional distribution given a history in such models is the
Poisson distribution. The research studies the probabilistic and statistical prop-
erties of these models as well as introducing a huge number of simulation exper-
iments to examine the suggested methods.

In Chapter 1, we review the history and background of nonlinear time series.
Chapter 2 introduces the Poisson threshold GARCH (PTGARCH) model and
discusses its probabilistic properties such as geometric ergodicity. We use the
"perturbation" approach introduced by Fokianos et al. (2009) to obtain a geo-
metrically ergodic approximation to the model. Statistical tools including the
maximum likelihood estimators of parameters, their asymptotic theory and in-

formation criteria are given. Furthermore, we discuss two types of nonlinearity
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tests: the Lagrange multiplier and the Likelihood Ratio test. Chapter 3 presents
many simulation results to illustrate the parameter estimation for the PTGARCH
model such as autoregressive coefficients and the threshold value as well as non-
linearity tests. At the end of Chapter 3 a real data example is given, to support
the proposed model by numerical evidence. Chapter 4 focuses on the determin-
ation of the number of regimes in PTGARCH models, using various information
criteria. In Chapter 5, we illustrate the determination of the time delay and the
simultaneous determination of the delay parameter and the value of threshold
for the PTGARCH model. It presents several simulations and some real data
examples to evaluate the model performance using various information criteria
(AIC, BIC and HQIC). The general framework in this chapter comes from Aide
et al. (1988), Tong and Lim (1980) and Al-Awadhi and Jolliffe (1998). Chapter
6 introduces another kind of nonlinear time series model for count time series.
The switches between the regimes are according to an unobservable state vari-
able. This model is called a Poisson Markov switching model for count time
series. Statistical inference, a few simulation results on the maximum likelihood
estimation for the model and real data analysis are discussed. Chapter 7, the last
chapter of the thesis, consists of a summary of our findings and some problems

for further work related to this area.



Chapter 2

The PTGARCH Model and its

Statistical Inference

The current chapter provides an introduction to unperturbed and perturbed mod-
els, as well as some basic concepts in time series analysis and statistics. The
purpose of this chapter is to present a kind of threshold GARCH model for non-
negative integer valued time series and to discuss the link between unperturbed
and perturbed models and the probabilistic aspect of time series such as geomet-
ric ergodicity (and stationarity), which will be used in the following chapters of

the thesis.

2.1 The Model

2.1.1 Definition of the model

Suppose that {Y;};>1 is a nonnegative integer-valued time series. Consider the

model defined by

Y;|F)) ~ Poisson()\,),
(2.1)

At = @0+ d1Yi—1 +djore—1, when 7,1 <Y g<r;, j=1,---,s,
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for t > d, where Yy, Ao, -, Y41, A¢_1 are fixed, the parameters ¢;o, ¢;o are
assumed to be positive real numbers, ¢;; are assumed to be nonnegative real
numbers, 0 =rog < r; < --- <7rs_1 <1y = 00 are positive integers, Y; 4 is called
the threshold variable with delay d, r; are called threshold values, and F;_;
denotes the information set available at time ¢ — 1 which is a o—field generated
by (Yi—1,Y; 2,--+,Y5,Ag). One of the properties of the Poisson distribution is
the first moment and the second moments are the same, that is, E[V;|F)] =
Var[Y;|F)] = A Therefore, we can call the model defined by (2.1) a Poisson
threshold generalized autoregressive (PTGAR) model with s regimes, order (1,1)
and delay d, denoted by PTGAR(1,1;s,d). Because this is also a model for
conditional variance, similar to a GARCH model (Bollerslev (1986)), we can

call it a Poisson threshold generalized autoregressive conditional heteroscedastic

(PTGARCH) model with s regimes, denoted by PTGARCH(1,1;s;d).
The model (2.1) can be rewritten in a form of Poisson process by assuming
that the time series of counts {Y;} is equal to the number of events of Ny(-) in

the time interval [0, \;] as follows:

Y: = Ne(Ae) (2.2)

At = @jo+ ¢j1Ys1+ Pjor 1, when r; 1 <Y, 4<r;, j=1,---s.

for ¢ > d and both Y; and ) are fixed. Here V;()\;) denotes a Poisson process

with intensity \;, and ); is defined by (2.1).

2.1.2 Ergodicity of a perturbed model

To create a PTGAR model, we need to estimate the parameters. To this end, we
would like to discuss stationarity and geometrical ergodicity for {Y;}. Stationarity
and ergodicity are important concepts in time series analysis. It is informative

to present definitions of these concepts.

Definition 1. If (}/7517}/7527Y;B’ ,3/;57) and (}/zf1+l,Y;§2+l,Y;3+l, ""7}/t'n+l)
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have the same joint distribution for all ¢; < t5 < --- < t,,, n, and [, then we say
that the process {Y;} is strictly stationary. That is, {Y;} is strictly stationary if

and only if

Ftl,tz,...,tn (yh Y2, Y3, -y yn) = Et1+l,t2+l,...,tn+l(y17 Y2, Y3, -y yn)

where Fy, 1, 1. (Y1, Y2, Y3, ..., Yn) denotes the joint distribution function of V;,,Y,,
N

n

Definition 2. The process {Y;} is called geometrically ergodic, if there exists
a probability vector v = (vq,...,vs) with v; > 0, E;Zl v; = 1, and a number

0 < A < 1 such that
|Pfy — vj| < Mj; A" for all  4,j,n

where P/} is the n-step transition probability, and M;; is a constant depending
oni,j.
To show geometric ergodicity, we need i—irreducibility. Here v represents

the Lebesgue measure with support interval [k, 00) for some k& > A\* where \* =

—12)012 is the solution of the skeleton of the model defined by (2.2). Establishing

y—irreducibility and finding a small set for the model defined by (2.2) is quite
complicated. We are going to resort a perturbed chain (Y™, A}*) to avoid this

issue:

Y = Ne(A")

AP = djo + 9 Y + Gje At +Erm, when r;_ <Y, <r;, j=1,---,s

where

Etm = CmUt7

with Uy being a sequence of iid random variables uniformly distributed on [0, 1]
such that Uy is independent of {NV;(-)}, and C,, > 0 is a sequence of positive

numbers which tends to zero as m — 0.

10
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In the following, we provide a simple sufficient condition for the geometric

ergodicity of the model defined by (2.3).

Theorem 1 . If max;<j<s(¢j1 + ¢j2) < 1, then (Y, \]") defined by (2.3) is

geometrically ergodic.
To prove Theorem 1, we need three lemmas.

Lemma 2.1. Let {)\;} be a Markov chain defined by (2.1) or (2.3). If there
is a ¢12 such that 0 < ¢12 < 1, then every point in [A\*, 00) is reachable, where

A= % (for the definition of reachable, see Meyn, S.P. and Tweedie, R.L.

(1993), p. 135).

Proof. Without loss of generality, assume 0 < ¢ < 1. For a point x €
[A*,00), if A\g > @, we start from A\, = X5_,(¢jo + @jorn1 + @1 Ye1)I(rj1 <
Y,—a <rj),n=d+1,d+2,---. Consider the path Y}, = N € [r;_1,7;),k=1,....,d
and YV, =0,d+ 1<k <n.

We can prove that \; could be arbitrarily close to x. For n > d,

Adr1 = Qjo+ @jpAa+ 0j1Yq
= ¢jo+ @jpAg + 0 N

Adre = @Qjo+ Gjedar1 + ¢j1Yan
= Gjo + bjaldjo + PiaAa + o1 N]
= djo+ jodja + Prda + 01052 N

Airs = Gjo+ Gjodjz + Gjodss + Plada + G105 N

X = Gjo+ Bjodja + Gjodis + Gjod + -+ Gjdh '+ dhAa + 0l N
Aat1 = @10+ P22

11
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Aaark = G10 + Pro0P12 + Prodie + - + ¢10¢lf51 + ¢’f2)\2d

1 — k
— |12 4 oy

1—¢]f2 k 1— ?2 k 4d E 1d—1
= ¢ 1= 6 + 15950 1~ o + PlaPiora + G Pladiy N.

Note that Aygi is increasing with N. Let N =: N,, be the least integer such that

)\2d+k(N) >, /\2d+k(N — 1) < z. Then

Aoask(N) = Azarr(N = 1) = @105 ' djn

and for any J > 0, because 0 < ¢ < 1, we can select a k such that ¢%, ?;lgbjl <
d. Therefore, € |Aogir(N — 1),/\2d+k(N)), where the distance between the
minimum and maximum of the interval is less than 0. Because ¢ is arbitrary,
x can be approximated arbitrarily closely, and so x is reachable if z € [\*, 00).

(Note that the reasoning is exactly the same for the model defined in (2.3)).

Lemma 2.2. Let {A\]"} be a Markov chain defined by (2.3). Under the same
conditions as Lemma 2.1, for any constant A > \*, the interval [\*, 4] is a small

set (for the definition of a small set, see Meyn, S.P. and Tweedie, R.L. (1993)).

Proof. This lemma can be proved by the same technique as that for Lemma
2.1 with a slight modification. Without loss of generality, we assume d = 1.
Let C = [\, A] for a finite A > A\*. Because 0 < ¢12 < 1, for given ¢ > 0,
there exists a positive integer n such that @5 (@A — \*| < €. Consider a path
Y =NY"=Y"=.Y"=0 A\"=A\

Then forn >1

Ay = Qo+ G + oY +Eam

= Qo+ Qi + ¢j1N + 2

12
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A3 = @0+ P12y FEgm
= 010 + Qjod12 + $12052 A" + Pj1P12N + P12€2m + E3.m
AP = d10 + dr0d12 + Gjodia + D120 AT + 0101 N + Blagam + Pr283m + Eam
A= o+ Prod12 + Prodis + -+ Dr0BTs ° + Djodls ” + B TP\
+ 608l "N + 3 am + 615 e o+ Enm
Ay = 10+ Grodiz + Grodis + -+ P00t 7 + djodls "t + Oy P AT

+ gbjlqb?;lN + ¢7112_152,m + ¢7f2_253,m +eeet Entl,m

1 - . — n—1lym n—
= ¢o {1_—&} + ¢y + 0jdly AT + Sty N

+ Y (h12) Ent1im
= N1 =15 + 0j2dls AT + ¢jods ' + djdts "N + S0 (d12) Ent1—iim

= A (P = X)X+ 0075+ s TN + S (h12) Enti—im-

Consider an open interval (aj,as) with a; > A\*, and let N be the least integer

such that

Vi1 (N) = X+ djo0ls ' + dndly "N > as,

without loss of generality, assume that N > 2, and for any given § > 0, choose n

large enough such that ¢;,¢75 " < 6. Therefore,
ao — 0 < ¢n+1(N — ].) < asy.

Note that
AP (N =1) = Ppp1t(N = 1)+ @15 (@A — X) + 05 (d12) Entiimm

and P(Eﬁz_ol(aﬁlg)isnﬂ_im < e— ¢ty HpjuA — )\*)) > (0. Choose € small enough

13
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such that

a3 — 0 < (N —1) < N (N — 1) < a,
if
0< Z?:_(]l(QSlQ)iEn—&—l—i,m + Cb?Q_l((ZSJQ)\ - )\*) < €.

So these choices of n, N, A" (N — 1) € (a1, az), for all A € C, and therefore,

inf P! ()\, (al,a2)> > P(Y{” =NY =Y = Y"= 0) > 0.
S

This means that the open interval (ai,as) is uniformly reachable from all A €

I\, Al

Lemma 2.3. Let {\"} be a Markov chain defined by (2.3). Under the same

conditions as Lemma 2.1, {\/*} is aperiodic.

Proof. Suppose we have a small set C' = (A\*, A]. Note that ¢(C) > 0, let
A=A € C. Then A" = ¢jo + ¢;1 Y™ + @i | + €4m, When 7,1 < Y™ < ;.
For the path where Y, € [0,75) is zero, we have A" = ¢19 + @12\ + €t =
MN(1 = ¢12) + d12A + €pm = A+ d12(A — X*) + £1,n > A* because ¢ > 0 and
gem > 0. On the other hand, \* — XA = X\ (1 — ¢12) — M1 — ¢12) + e1m =
—(1 — ¢12)(A — A*) + £ < 0 because ¢12 < 1 and A > A\*. This means that, if
0 < ¢12 <1, then A € C, Y™, =0 and &;,,, small enough, imply A* € C'. Then
PA\,C) > P(Y", =0 and &, issmall enough|A\*; = \) = P(N,(\) =
0) > 0. Similarly, P?(\,C) > P(Y/" = Y™ =0 and &y m,&+1m are small
enough|A\"; = A) > 0, and for any positive integer k > 2,

PE(N,C) > P = Y™ =0, and &4, 41,ms " Et—14k,m are small

enough|A\"; = A) > 0. Therefore, {\"} is aperiodic.

14
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Proof of Theorem 1. Denote

Co = llglja;(s ®jo, = ggg(eﬁﬂ + ¢j2),

and
Eym, = ZI(T]'A <Yy <7i)erm-
j=1
Note that
N =Y {bj0 oY + G M (e S Y <) +evp,
j=1
=1 i=1
+ A\ Z Gjol(rj-1 <Yy <1j) +eym,
j=1
< ¢+ Y™ Z¢j1](7"j—1 <Y, <rj)
j=1
O Gl S Y < 1) + ey, = AT
j=1
and
E(evm,) = ZE[gt,mI(Tj—l <Y <))
j=1
< Y E(em) € Crn =0
=
as m — Q.

Take the test function as V(x) = 1+ z*. We will show that {X["} is V-

geometrically ergodic Markovian Chain by showing that {X;"} is irreducible and

15
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aperiodic, and there exist constants 0 < k1 < 1,0 < kg < oo such that
E[VOAMIN' ;=A< (1 —=k)V(A) + k(N € O) (2.4)
for a small set C. Note that

EV AN = Al
= E[1+ "N = A

< 1+ BIAM) AL = A

k 5 g
= 1+ Z <l;) (AZ%zI(le <Yr < Tj))
i—0

j=1

s k—i
KB |:(Nt1()‘?11> Z Gl (rj-1 S Y7y <rj) +co+ EYt’fl)

j=1

)\,?11—)\1.

We then use a simple property of a Poisson random variable: The k-th moment
of a Poisson random variable with parameter A is a polynomial of A\ with degree
k. This property is an application of the binomial theorem plus the fact that
E(eym ) =0 as m — oo.

Hence,

k s 7
VO, =3 = 143 (5) (A ot << )
=0

J=1

s k—i
'(/\Z¢j1[(7“j1 <Y < 7“]'))

Jj=1

k—1i
&
14 5 ) .
( )\ij1 (bjl[(rj*l < Y;tTd < rj)

16
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if ¢ is a large enough constant. Therefore,

k s i
EVORING =A< 1+ 3 (5) (WX et < v <)
i=0 =1
s k—i
(/\Z Gl (rj—1 <Yy < Tj))

j=1

[“( ) C )
)\Z] 1¢31[(r] 1 < Y a4 < T])
= 1+ Z (2> (AZ Gjol(rj—1 < Y7, < Tj))
=0 =1
s k—1i
'(>‘2¢j11(7’j1 <Y< 7’1))

j=1

+i (f) (Aiqsﬂ[(rjl <Yy", < rj))i

j=1

s k—i
()‘Z‘bﬂ[ rj-1 <YMy < T]))

k—1 . m
2 (O : )
N m J\AY ol (rja YT <))

The last term in the above equation is

M

iMI

k k—i
S e
i=0 m=1
for some constants £, depending on » >, ¢j1 (11 < Y™y < 71j) < maxi<j<s @i,
E;:l ijg[(?”j,l S }/;Td < 7’]) < maxi<j<s ¢j27 and c¢. Note that
k—i k-1

k k—1
DN =N A DA =D A
m=0

=0 m=1 m=0

17
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Hence

k s 7
VO =3 = 143 (8) (A oty < v < )
i=0 Jj=1

k—

s k—1 1
(/\Z Gl (rj-1 <Y < Tj)) + ) A
j=1 m=0
s k k—1
=1 -+ (Z(¢31 + ¢j2)1(rj_1 S }/trfd < Tj)) )\k + Z Cm)\m
j=1 m=0

k k—1
= 14+ (lngljagxs(qﬁjl + gbjz)) pLE Z_Ocm)\m

for some constants ¢, depending on F,,.

Take C' = [\*, K| as the small set, where \* = 1?;0] - is a fixed point of the

skeleton A\, = ¢jo + ¢joAi—1 of (2.2) and (2.3).

Note that

Ak {1 — (maX1<j<s(¢j1 * (bﬂ)) k] }

k
1+(1r2?§xs(¢j1+¢j2)) A= {1_ 1+ M
(1M € 0)+I(\ e

If A > 1, then p’:% > % Since max;<;<s(¢j1 + ¢j2) < 1,

k k
14 ( max (¢ + ¢j2)> A< {1 ! [1 - < max (¢ + ¢j2)) }
1<j<s 2 1<5<s

.G+AﬂhﬂAeCy+MAEON.

k
Defining k1 = %{1 - <max1§jgs(¢j1 + ¢j2)) ], we will show that (2.4) holds.

For A € ¢, we obtain

AL = | maxi<j<s(d1 + Bj2) k
ey

k
Y max (¢;1 + ¢j2))

su
L 1<j<s

AeCe

18
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as K increases to infinity. Take K > 1 large enough such that

k—1
D me CmA™
sup =—————

)
)\GCC ]_ + )\k ’

k
where 0<0 < 3 {1— (max1§j§3(¢j1 +¢j2)> 1 Buton C, 1+ (maX1§j§S<¢j1+

gbjg))k)\k + an;ll cmA™ is bounded and (1 — x1)V'(\) is always positive. This
shows that (2.4) holds for all A € C'. This completes the proof of Theorem 1. By
Lemmas 2.1, 2.2, 2.3 and Theorem 1 (drift-criteria for the geometric ergodicity
of a Markov chain (Isaacson (1979))), we conclude that the chain {\}*,;t > 0} is

geometrically ergodic.

The theorem below shows that {(Y;™, A\[*)} approximates to {(Y;, A\;)} when

m — Q.

Theorem 2. Assume that {(Y;, A\;)} and {(Y;™, A\]")} are defined by (2.2)
and (2.3) respectively. If the condition max;<j<s(¢j1 + ¢;2) < 1 holds, then as

cm — 0 as m — oo, if A" = A, the following results hold true:

DIEN" = M) = |EY" = Y3)| < arm;
(1) E(N" — )\t)2 < g m;

(@) E(Y," = Yi)* < agm,

where o, — 0 as m — oo for i = 1,2,3. The sequences «;,, can be chosen to

be independent of ¢.

Proof of Theorem 2. Denote ¢; = max;<j<s(¢;1 + ¢j2) < 1. We first prove

19
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(i). By subtracting model defined (2.2) from model defined (2.3), we obtain that

AN =M = i%‘O[(I(U—l <Yy <rj) = 1(rjo1 <Y < Tj))]
j=1
+§:¢j1 |:(§/t7f1 =Yl (rja <Yy <1j)
j=1
Y1 <I(Tj—1 <Yy <rj) = 1(rjo1 <Yia < Tj))]
+ i P2 |:()‘?i1 = M) (o SV <)
j=1
+ 1 (I(rj_l <Y, <ry)—I(rjis1 <Y< 7“]'))] +e(Yi™)
= (Y —Yia) i¢jll(rj—1 <Yy <rj)

J=1

+ O = Ae) D gl (rja S Y <) + Ry

=1

(2.5)

where

R" = Z¢j0 KI(Tj—l <Yl <r) = 1(rj-1 <Yia < Tj))]
j=1

+ (Z O Yio1 + Z ¢j2)‘t1> [I(le <Yy <ry) = I(rjo1 < Yiag <ry)
Jj=1 j=1
+ (2.

It can be easily seen that

E(R") < Cp+ Dy,

where D,, — 0 as m — 00.

Hence

20
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EN'"=N) = E [(thl Y)Y onl(rja <Yy < Tj)]

j=1
+E [(/\?11 = Ae1) Y il (rjy Yy < 1))
=1
+E(R™).
Therefore,
‘E(AT —A)| < ‘E[(Yﬁl Y)Y onl(rja <Y, < Tj)]
7=1
+ E|:<)‘?11 —Xe1) Y il (rja Yy <)) ‘ + ‘E(R?)
=1

IA

)

‘E [E<(th1 — Y)Y opl(rja <Y, < 1))

Jj=1

1<j<s

+E {(xgzl — A1) iqbﬂl(rj_l <Y <rj) ‘ + ’E(RQ”)
=1
< ‘E[()\?ll — A—1) icbjlf(ﬁ—l <Yr < Tj)]
et
+E [(Aj;z L= A1) iqsﬂf(rj_l <Y, < rj)} ‘ + ‘E(R%”)
=1
< ‘E [()\1”1 = Ai-1) i(%’l + @) (rj—1 <Y, < 7‘1)1 '
st
—|—‘E(R;n)
< max (¢ + di2) |[E(NL — Aea)| + ‘E(Rln) :

By using simple recursion, we get

—_

t—

< (;nax (dj1 + ¢j2)>
- <j<s

(2

E(R™)].

’EMT—M)

I
=)

21
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Since maxi<;j<s(¢1 + ¢j2) < 1, and E(R}") — 0 as m — oo, we have

‘EMT—&)

By using equation (2.5) again, the second statement becomes

EN'=N)? = E [(Yt’iﬁ Y)Y bnl(ria Yy <))

=1
s 2
A = A1) D gl (rja SV <my) + Ri”}
=1
= E [(Y;STl Y)Y el SV, <y
j=1
s 2
L = X Y 0l (1 < Y < 7y + E(RY
j=1

+2E{ [(Ytrfl Y)Y Gl (rja SV, <))
=1
+A = A1) D el (rja <V <) Rln}
=1

s 2
= E[(Yﬂ - Yt—1)2<z¢j11(7“j—1 <Y< Tj))
j=1

s 2
+(AL - At—l)z(Z%zf(?"j—l <V, < Tj))

J=1

L2V = Y)Y ol (rja <Yy <))

=1
P = N) Y bl (rja <V <)
j=1
+E(R")? + QE{ [(Yt"fl Y)Y onl(rja <Y, <))
j=1
(A = Nma) Y gl (rjn S YTy < Tj)} RT}
j=1

However, for A7* > A\, (if Ay > A", the method is the same), using the properties
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of the Poisson process, we get that

E [E<(Y2T1 = Y1) > o ¢l (rjan S YTy <1y)

)

SO = A1) 25y el (o SV <)) E(NR, — /\t—1|]:t—2)]

(A = Nm1) D5y @l (i S YTy <rj)

=E| 3o 0nd(rj SV, < 1))

= E{(Ay = M) 2050 @I (o S Y2y <ry) - 300 $jal (rjma S Y2y < 1j)

and

2
E{E{(Yt”fl - 3?—1)2(2;1 Pl(rji1 <Y"y < Tj))

)

s 2
< EWNL - >\t—1)2<z¢j11(7“j—1 <Y< Tj))

j=1

F2AEN" ) = Mo)| Y i (rjo <Yy < 1)

j=1

(2.6)

where F;_9 = 0(A—2, Yi—2, \7"5, YJ"), we used the fact that Y™ = Ny (\}") is the
event numbers for N;(-) in the stochastic time interval [0, A}"] and similarly for
Y: = Ny(\¢). In other word, {Y;"} and {Y;} are generated by the same sequences
of independent Poisson processes { N;(+)} of unit intensity.

Finally, with K positive constant,

E(R{")* + ZEK(Yt”H Y)Y oul(rja SV, <)

j=1

X (A = Aeo1) Z Gl (ri <Y™, < m))R;”} < KC?

J=1
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Hence

EO"—N)? <

IA

IA

IA

IA

IN

IN

s 2
E [(thl - Yt—l)Q(Z Gl (rjia <Yy < Tj))
j=1

s 2
+(AL — /\t—1)2(z¢j21(rj—1 <Y < Tj))

J=1

F200 ) = Me)? D b l(ri <YV, <)

j=1

X ol (rja <V, < ;)

J=1

s 2
E{(X{"d — A1)? KZ%‘J(TJ» <Y < Tj))
j=1

+2) opl(rja <Y <) Y dpl(rya <Yy <))

j=1 j=1

s 2
+<Z¢j2[(7‘j—1 <Y< Tj)) }

j=1

+ KC2,

F2N = A1) Yl (i <V, < 7‘;’)} +KCy,
j=1
2

(A = Aee1)?

E{ |:Z(¢j1 + @jo)l(rj—1 <YMy <r1y)

J=1

+2[(A2y = A1) Z¢j11(7“j—1 <Yy™" < Tj)} + KC?
=1
2
{fg%}i(gbjl + ¢j2)] B\ — )‘t—1)2
/BN = M) Y ol (i <Yy <ry) + KC,
=1

- 12
maX(¢j1 + <15j2) E(Aﬁl - )\t)2 + 2C2|E()‘?11 - )‘t—l)’

1<j<s

+KC?

12
max (¢;1 + dj2) | BN — M—1)? + 20200 m

1<j<s

+KC?

Q2 m
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where Co = MaXj<j<s ¢j1
The third statement, from equation (2.6), and the second statement of the

Theorem 2, we conclude that

2.2 Statistical Inference

We introduce some statistical methods in time series first. The goal of this section
is to estimate the parameters of models using Maximum likelihood estimation
(MLE) and to study the asymptotic properties of the MLE. We discuss the main
tool for linking between the estimated parameters of the unperturbed and the
perturbed model. We present two different nonlinear tests to detect the threshold
nonlinearity for the model: the Lagrange Multiplier test and the Likelihood Ratio

test.

2.2.1 Parameter estimation and information criteria

The parameters to be estimated for the stochastic TAR model are the num-
ber of regimes, the threshold value, the time delay, and the intercepts and the
autoregressive coefficients. The determination and selection of these parameters
is required to fit an observed stationary time series. We use maximum likelihood

and information criteria to estimate these parameters.

2.2.1.1 Conditional maximum likelihood inference

We consider conditional maximum likelihood inference about Poisson TGARCH
models.
Let 0 = (¢jo0, 9j1,¢j2,J = 1,...,s)" denote a 3s—dimensional parameter vector

which has true value 6y = (¢%, ¢, ¢%,7 = 1,...,s). The estimate of § can
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be found by maximizing the conditional likelihood function of the observations

Y1,Y5, Vs, ..., Y, given by

M (0)Y exp(—\ (0
SN0}

t=1
where \(0) is defined by (2.2). The log-likelihood function is equal to

n

(0) =Y _(Yilog \i(6) — Ai(6) — log (7)) Zet (2.7)

t=1

Clearly, the term log(Y;!) can be neglected, because the derivative of this term is

equal to zero. Note that the derivative of ¢,(0) is

% - ()\3?9) B 1) aAatég)'

The score function is then defined by

t=1 t=1

O (0)
0y

where

S

O\ o\
@QS:O = I(’f’Z 1 <Y,_ d<rz) +Z¢32 aq;olf(rj_lg}/;_d<rj>

u O
gqjt = Yt—1]<m_1 <Yia< n) + Z ¢j2—tlf(7"j—1 <Yia< Tj)
il 1

O\ : o))
(%);2 = M- 1]<7“z1<Yt d<rz)+2¢]2 a;llf(rj—lﬁyi—d<7’j)-

(2.9)

If the solution to the equation S, () = 0 exists, then we can find the conditional

maximum likelihood estimate 6 of 6. In addition, the conditional information
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matrix for 6 is equal to

oun = Sl ]Sl (5)(25)

5ol

Because the region of ergodicity for the model defined by (2.1) is unknown, we

-

use the approximate model defined by (2.3). Theorem 2 shows that {(Y,™, \[*)}
converges in distribution to the {(Y;, A/)} model. Hence, it is informative for
studying asymptotic properties of the maximum likelihood estimate using the
process (Y™, Af"). The likelihood function for model (2.3), including the obser-

vations Uy, Us, Us, ....., U, is defined as

where f,(-) is the density function of U; which is an i.i.d sequence of uniformly
distributed random variables on (0, 1), and A/*(6) is defined by (2.3). The log

likelihood function is given, up to a constant, by

n

er(0) = (Y log A7 (0) — A" (0) — log(Y, +Zlogfu (V) = 4(0)

t=1

Taking the derivatives, we get the score function

megy . O0MO) R 00GM0) (Y oA (0)
S0 = —gg— = o0 _;(A?(Q)_l) o 0 (2

t=1
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where

O\ . .
6¢j0 = I(Ti—l < Y;tfd < 7”2') Z ¢]2 aqzz 1I<Tj—1 < }/tfd < Tj>

O N )
3¢21 = e 1](7’Z rs d<r%> +Z¢y2 8;1](%—1 SY;_d<rj>

O\ HAm )
3¢Zz = A II(T’ 1Yt < TZ) +Z¢J2 @gl 1](7“g'—1 <Y/ < rj).

(2.12)

We can find the conditional maximum estimate 8™ of 6 by solving the equation

Sm(e) = ‘%ge( ) = 0. In addition, the conditional information matrix for 6™ is

equal to

1 ONO) [ ON(0)
Gr(0) = L L : 2.13
10 = 5w (Zw) (C 21

Theorem 3. Assume that {(Y;, A\;)} and {(Y;™, \]*)} are defined by (2.2) and
(2.3) respectively. If 0 < maxi<;<s(¢;1 + ¢j2) < 1 holds, and at 6 = 6, where 6,

is the true value of 0, then the following statements hold:

0 [e(G5 - 555)| = e
0 (G5 - <
- [e(5 - o) =
o B3 -Re) <

The sequences S, can be chosen to be independent of ¢ and By, ,, — 0 as m — 0o

fort=1,2,...,s,and k =1,2,3,4.

Proof of Theorem 3

Note that 6y = (6%, #%, ¢%,7 = 1,...,s)’. The differences of derivatives with

28



Chapter 2 The PTGARCH Model and its Statistical Inference

respect to ¢, m = 0,1,2, can be derived by subtracting equation (2.9) from

equation (2.12) as follows:

O] o\
a¢t.0 - 8¢t0 =[I(rios <YY", <ri) = I(ricy <Yiqg <1
O\
Zgb]? q;l](r] 1<Y; d<’l"])
7=1
L9
Z¢J2 — 1 Tj—l <Yi4< ’l”j)

a@o
=[I(rioa <YY", <) —1(rioy <Yiq<r;)
° O\ O\ -
+ jzl P52 [( 8¢2z‘01 B &;01)](73_1 = Vo< Tj)}

s

O\
+Z¢y2 — 1{ rj- 1SYtTd<7“j)—f(7”j—1SY%—d<7”j)}

Hence,
oA OA i
E(&Z;;o B (9¢;) E<I i <Y <) —I(ri1 <Y q< 7’1))

+

ON™ O\

+E {Zgbﬂ TJ 1 <Y” d<TJ)(a¢i0 - Do )}
01

E|:Z¢]2(a¢o)

X (I(Tj—l <Y2 <) = I(rj-1 <Y <7“j))]

'E<a/\? — 8)\t)' < 'E<I(Ti—1 <Y™ <) —I(ri Syi—d<7"i)>‘

0dio  Odio
s - ONy O
+ ‘E{Z Gl (rj—1 <Y, < Tj)< (7@;‘01 - 6@%1;-01)] ‘

j=1
: O\
| en(562)
X <I(Tj—1 <Yy <rj) —1(rjs1 <Yiq < Tj))”

ON™ . ON .
b ( 900 Dom )‘*‘E(Rlvt)
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where 3, — 0 as m — oo, and

P'“Tt = (I(T’z‘—l Y™ <) —I(rio <Yig < Tz))

{Z¢g2<aa>;; 1) ( (rjio1 <Y, <rj) —I(rjis1 < Y4 < m))]

and E(R;”t) — 0 as m — oo.

For ¢%, and by using the same technique, we have

N O
8¢i2 a¢z2

A (i <Y, <) — Nl (ricn < Yig <13)]
Z¢y2 &2 ——I(rji. <Yy < 1))

> O\
Z¢32 aﬁ;zl T] 1 S n—d < Tj)

= [/\?11 - )\t—l} I(rioy <Y, <)

+Xio1 {—7(7}—1 <YY", <r)—I(riog <Y< Tz):|

> ON OA_
+ |:Z¢j2[(7”j1 <Yy", < Tj)( a(;; o 89;21)1

j=1

—~ 0\
+Z¢]2 @QZZ 1[ Tj— 1§Y;T:Ld<7’j>—f<7‘j_1§§/t_d<7“j)

ON™ O i )
E<a¢22 a agb;) - E|:<)\t1 — M) (ri <Y, < 7‘1)}

[ ( (rica <Yy <r) =I(ria <Y, 4 < Tz)>:|
ON" 0N
|:Z¢JQITJ 1 <Y< )(3@-2 - 8@2)}

O\
+E Z¢j2 aq;;

X {I(Til LY <) = I(rin <Y g <)

|
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ON* OA
‘E(a¢t2 a 8@51;) ‘ S ‘E<)\;n_1 B At_l)‘[(?“i—l S }/;Td < Ti)

+ E{)\t—l |:I(Ti—1 <YM <) —I(rie <Yiig < Tz)] H
: N, OA
. < ym ) _
+E|:]ZI¢JQI(T]—1—}/;d<rj)<a¢z2 8¢z2 >:H
- ON—1
+ {Z¢]2 8¢z

X |:I<Ti—1 <YY" <) = I(rieg <Yig <ry)

IN

‘E()\;n_l — )\t—1>](7"i—1 < Y;Td < Ti)

s . o™ O
+‘E{Z Gjol(rj— <Y™, < Tj)( 89;121 N 8(/;21)] ‘

j=1
+E(Ry)|
oA, ON1 -
< a1m+1rnjaJ<X8¢J2 (8@'2 - Dra + E(R2,t>
S ﬁ2,m7

where 35, — 0 as m — oo, and

1?5'3 = A1 {](7”11 <Y™m <) —I(ri SYtd<7”i)}

+Z¢32 8¢2 [ T]—lgytr_rbd<rj>—j(Tj_1Sn_d</rj):|‘

Note that E(]A%Q”t) — 0asm — o0
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For ¢?, we get

N O
a(bil 8¢21

=Y, I(rioa Y™ <) =Y (rimn < Yieg <1y)]

+Z¢J2 &;111 ri-1 <Yy <rj)

s

O\
2%2 85211 (rjo1 <Yiq<rj)

= {Y;Tl — Y;‘,l] I(rioy <Y, < 1)

+Y [[(Tz'1 <Y <) —1(riog <Yig<rm)

i O\ O
)

J=1

s

O\
# o [ <Y< ) S Ve <)

)4
8¢il a¢zl

-+ max
1<j<s P2\ E

E KY& - Yt_1> (I(rim <Y, < n))} ‘

oA, ON\_1 .
_ E(R™
( O 0di1 )‘ N ’ <R37t)

?

where

R;Tt = Yt—l[](ﬁq <Y <) = I(ri SYt—d<T1)1

O\
+Z¢g2 tl{ J—lSYtTd<7“j)_I(Tj‘1SYt_d<rj)]’

and E(Rg”t) — 0 as m — oo.

Hence,
O\ 0N 0N, Oy
- < m m j E - S ms
‘E (3¢i1 a¢i1> ‘ = Om T Qam ¥ 112]2?3 b1 < 0pi 0pin s,

where ay ,, f3,m — 0 as m — oo.
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For the last assertion,

E(axn_a&>2
a¢i2 a¢z2

- e (.- >\>(I( <y, < N

° ZOONT L ML\ .
+{(Z¢j2f(”1 = rj)) ( Gon a¢i;> 1 +y

Jj=1

+2) dppl(rja <Yy <) (/\tl - AH) ( 84;21 - 85;%’21)

J=1

+2§:¢ﬂ1@f45;sz<rﬂ<Agl—Ap4)Rg}
j=1

> O™ OXNi—1\ 2
+22¢j21(7"j_1 <Yy", < 7"]-( 8<;-21 _ 8;;)}23;}

J=1

_ E{(Mﬁl—At1>2(Hn1§57%<<r0)1

> . RVEC) Vi) VA o
+E Z ¢j2](7ﬁj—1 S Y;f—d < r]) a¢2 - a¢2 + E(RQ,t)

=1

[ & O\ O

2B " ¢pl(ria <Y A" — A =1 2o
+ | < P2 (TJ 1S Yy < TJ) (At—l A 1) ( Dra Dia

+2F ](7‘1‘—1 < Y;Td < Tz‘) ()\?11 - /\t—l)Rg?t]

=~ O\ OMi1 \ ~
+2E| Y dpl(rj <V, < Tj)< L 1>Rg?t]

L Opi Oio
oA, 0Nt
< Qo t CgoE( 8;; - 8;21) + 2¢2082,m/@2,m + Ym
S ﬁ4,m7

where Sy, — 0, and 7, — 0 as m — 00, and cyy = maxi<j<s Pjo.
Furthermore, it is easy to see that ( the idea of proof is same as the last assertion

in Theorem 3).

m 2
E (a)\t a)\t ) S 65,m

900 Dby
VA ) VN
— <
and E ( 6911 aeﬂ) = ﬁ6,m7
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where 5 ., B6,m are independent of ¢ and S5 ., Bs.m — 0, as t — o0.

Definition 3. Define the matrices

o - 5oL (E)E)]
oo - w1 (%)(3))

where 7™ and 7 are the equilibrium distribution of the markov chains A" and A,

respectively.

Theorem 4. Under the assumption max;<j<s(¢;1 + ¢;2) < 1, the Rao score

statistic satisfies
Qn(9> — X2D7

in distribution at 6 = 6y, as n — oo, where

Here S,(0) is the score function defined by (2.8), G, (6) is the conditional inform-
ation matrix defined by (2.10), and x% is the Chi-square distribution with degree

of freedom D, where D is the number of parameters.

Proof of Theorem 4. To prove this theorem, we need to prove two assertions:

Stability and Asymptotic Normality (Basawa (1991)):

(i) Stability,
1
in probability at 6 = 6y, as n — oo, where G(f) is a s X s positive conditional

information matrix.
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To prove the stability assertion, we use a proposition in Brockwell and Davis
(2009, Proposition 6.3.9) which is the main tool for linking between 6 and 6™

This means, the following have to be proved:

(1) 1Gm(0) 4 G™(0), as n — oo, for each m =1,2, ...,

n

(2) G™(0) — G(6) as m — oo,

(3) limy, o0 limsup,, . P[|GI(6) — G,(0)] > en] = 0 for any € > 0.

The first assertion follows by Jensen and Rahbek (2007). They present that
LG™(0) converges in probability to G™(6), by using the Law of Large Number

(LLN) for a geometrically ergodic process, that is

LT[ 1 form [orm\ IRV IVAN
it il Exm|
n;[xy«ae)(ae)]% " [A;ﬂ(@@ BT,

in probability, as n — oo.

For the second statement, the limiting conditional information matrix con-
verges to another conditional information matrix of PGARCH (1,1), as has been
discussed by Fokianos et al. (2009). We need to evaluate the differences between

L (225)2 and +(%)? where 0 = (¢, %, ¢%), i.e. we need to evaluate the fol-

pva ST 50 10> Pi1
. . AN O\ oA

lowing difference $($)2 — Ait(g(;‘;)Q, ﬁ(%zlf - /\it(aa(;\itlf and %(6&0)2 -

10N \2

)\_t(a(bito) )
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Firstly, with 6y = ¢%,

1 faxm\? <8>\t)
2 (a) e

N N\ "
- o (&) (52 )

O O\ M\ O "
) E< (8@2) (8@2) “t(%> - (aozz / A

AN\ ? )Y m O
N E< 8¢z2) (8¢12) )//\ +(<a¢z2)
O\ O\ O\ O
‘(3@2) N (59(/5@'2) } EH(&M) " <3¢z2>
1 BN W
T C—%{E()\t—At >2E(a¢i2”

Co
m + g\/alm S 57
0

7N

)
o) or

IA
S |-
&

]

IN
S8
%

where [ can be chosen arbitrarily small, and ¢; are some constants. Here, because

of the facts that A\, > mini<j<; ¢jo, and A" > minj<j<s @jo, the first part of

m>4 7

Theorem 3, the second conclusion of Theorem 2 and finite moments of (

(575) and (25%).

Secondly, with 6y = ¢, similar to the above discussion

1 (@Am) (axt)Q
JPio A \ Odio

1 _|[[/oxm O\’ O\ m

Co (a¢io> a (a¢io> (8@0) ()\t At)

) () ()

Co Dio Odio 9io d9io

1 O\’ .
+ SE (a%) (A — A,

IA
|
&

E

IA
|
&y

But, the first expectation can be bounded by ¢ 51 ,,,, and the second expectation,

E‘ ( O\ )Q(At —a| = {E()\t - AWE(;Q;)“ F

a¢i0
Co4/ 2 -

IN
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Hence,

< —51m+ Q2 m

) H ()
)‘?L a¢z0 /\t a¢10 0
B

IA

where 3; also can be chosen arbitrarily small.

Finally, with 6y = ¢{,, it follows that

1 /oX™\? 1[N\

W(a@l) ‘X(a@l)
1 (9)\?1 2 aAt aAt m
o (aqzsﬂ) B (a@l) (a@l) (e = A7)
(20 - (2N () (2))

8@1 aﬁbn a¢zl a¢zl
O\ L

; _E[(%) Oy — A >}

C1
C_ﬁ3m + \/ Q2 m < 527
0

IN

E

IA

IN

where 5 can be chosen arbitrarily small.
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Then

O\
“t((%
<y
nt:l Co

1 O\

2l (%

(5) (50)) e (%) (%)) /]
E )(55) (%) (%))

) ((5)(%)))/ ]
855)(8;5 - <8—2f) (%)

For the first summand

5

O\

as m — oo and k is constant. To see this

IN

IN

IN

O NN [ ON )
— <
) () (@) (5) | <m0
ON™N [ ONP O\ [ O\

)|
|

|
gl
@)
|
#1()(

klﬁc,m + klﬂa,m

537

(5
) (5

o) - (5
N o\,

7) - (%

oy (2]

e
oy (o

00

) (5
N

)(89

38



Chapter 2 The PTGARCH Model and its Statistical Inference

where (3 can be chosen arbitrarily small and because of Theorem 3 and the finite

©) and ().

moments of (

<

/
For the second summand, the same idea applies because of EH (‘”t) <%)
00, and the fact, for CZE‘)\t A7 < (Olgm)l/z.
0
This leads to

lim limsup P[|G)*(6) — G,(0)| > en] = 0.

m—00 o0

This completes the proof of the stability.
(ii) Asymptotic Normality

1

%Sn(e) — Np(0,G(0)),

in distribution at 8 = 6y, as n — oo, where Np denotes a D-variate normal
distribution, and G(#) is a non singular D x D matrix.
To prove the Asymptotic Normality assertion, we use the same proposition as in

the proof of stability, but in this case, in the following way:
(1) \/LESZL” B sm = N(0, G™) as n — oo for each m = 1,2, ..,
(2) S™ B N(0,G) as m — oo,
(3) limy,—yo0 limsup,_,, P(||Sm = S, || > 6y/n) =0, for any § > 0.

For assertion (1), having evaluated the true value 6 = 6, the equation (2.8)

illustrates that the score is defined as

() — aege(e): aege(e)

t=1

- 2 ()%
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where ¢y =
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AL (9)
90

O™
iz
oA
oo}
O™
Dbig

t—1

<
k=0
t—1
<
k=0
t—1
< E b oI(r;
= 2,0 1—1
k=0

score function such that

d

o0 (6)
0

where E(Y"|F_1) =

-

k
Z 0¥ 1L (i S Y7

, is given by (2.12). Furthermore, from (2.3) and (2.12), we find,

ZCS,O)‘ﬁk—ll(Ti—l <Y e <Ti),

—k < ri)v

<Y < 1),

22:1 ®j2. Now, we must find the conditional expected value of our

ym AP
(=)

(Y™ O™ oA
B2l Fror = g |- 1}
[OA oA

a0 T [ 1} =0

Ay, and Fy_; is the o— algebra generated by

{Uk41, Ny, k < t—1}. By using the central limit theorem for martingale differences

in Brown and Eagleson (1971), we have the variance of the score function as

Var (

oem ()
90

)

m

> (5
(0 -
>

t=1

oA
29

40

)

m Ym
N\ ( (Y,

)a ) (e
) ()
)

oA

-1
00

)or)

)

-

2
) (%) (5
Ym

0N > E(——l

00 A
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But
Ym 2 (Ym)2 Ym
Ell-t — 4| = FE L9 t 41 _
G- 1] = o[ -5 1)l
_ 1
— AT'
Hence,

Var (8689(8)

= L foNm fonry
EO“tw(%>(%)

=1
m
n

From the above, F {(?—Z — 1)

]—}1] = 0. In addition, from Holder’s inequality,

o™ (0)
90

o0 (0) is a
o0

we conclude that the expectation of is finite. Therefore,

martingale difference sequence with respect to the past information (F;_;). An
application of the CLT, gives \/LHSZL” is asymptotically Normality with variance

given by the limit,

1 <& NN /oA’ .
- El(N™ 2 t t B m
"2 O”(%)(%) )HG’

where N = % — 1 (Hall and Heyde (1980)) and by the LLN for geometrically
ergodic process (Jensen and Rahbek (2007)). Hence the conditional Lindeberg’s

condition which guarantee that the variance is arbitrarily small for the contribu-

tion of any random variable. This implies that

(50 m)lee) = e (5

06

(75

.7:,5_1> — 0,
4

9O < 50, This prove the first part of the Asymptotic

as n — oo and E e

Normality.

The second part follows from assertion (2) of the stability.
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In the last assertion, for convenience, we write

@) [y, ON' 0N
90 —(/\_m_1> a0~ g

and

o(0) Y, O\ N@)\t
00 \\ 00 TR

where 839 and 2t are defined by (2.12) and (2.9) respectively. Then

%(sg—sn) = \/—Z<Man9 (92%9))
_ z (32 - %)

1 - o (ON 0N " O
= TZ{Nt (89 3Q>+(Nt —Nt)%}.

For the first summand in the above expression,

(O 9N SN
(5 (5 5)1-54) < #(-fgv] -
2 n 2
< ﬁ;E < KB% =0

as m — 0o. The second summand, E| %t is finite and [N} — N;| is bounded

above by B4.m, and B4, — 0 as m — oo. To see this, we have

ym Y,
N"—N, = L—1)— <—t—1>
' ' (/\T A
R et Ol (1O )
A ’

Y-V
7

E < %,/Oég}m. Using Theorem 2 and the fact that E|Y;|? < oo, we find
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Yi(A' =)
XA

E

a2, E|Y:|?
< Ve < o,
0

Having proved assertions (1), (2) and (3), we get

1

%Sn(e) — Np(0,G(0)),

in distribution, as n — oo. This completes the proof of Asymptotic Normality.

From Stability assertion, we have
LG, (0) 4 G(0) as n — oo,
hence

[Gn ()] = [G(O)] 71 (1 + 0,(1))

Therefore, from Theorem 4, we get

Qn(e) = Sp (9)/[Gn(9)] _1Sn(9)

But from Asymptotic Normality, we have

%0—1/2(9)571(9) — N(0,1p),

where Ip is the identity matrix of size D.

Hence,

0,(0) = x5, as n— .
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In the next part, we will present the most popular information criteria in time
series analysis used to identify the suitable model. In particular, we discuss
the AIC (Akaike (1973)), BIC (Schwarz (1978)) and HQIC (Hannan and Quinn
(1979)). The aim of these criteria is to find the model with the lowest value
of the selected information criteria. We will use these criteria to estimate the
parameters of PTGARCH (1,1) model such as the value of threshold, time delay

and the number of regimes in the next chapters.

2.2.1.2 Akaike information criterion (AIC)

The Akaike Information criterion (AIC) is considered to be one of the most im-
portant criteria used to determine the parameters of a statistical model. The
AIC is a measure of the relative goodness of fit of a statistical model and was
introduced by Akaike (1973). Assuming a stationary time series Y;, t = 1,2, ...N,
the AIC statistic is defined as two parts; first part is maximizing the conditional

log-likelihood function and the second part is a penalty for model complexity.

AIC = Z2In(L) + 2k,

2
N
where L is likelihood function, k is the number of parameters to be estimated

and N is the number of observations.

2.2.1.3 Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) is another criterion for model selection
among a finite set of models, which was introduced by Schwarz (1978). It is given

as

BIC = 22In(L) + £In(N),
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2.2.1.4 Hannan-Quinn information criterion (HQIC)

The Hannan-Quinn information criterion (HQIC) is one objective measure of
model suitability that balances model complexity and model fit. The HQIC,

introduced by Hannan and Quinn (1979) is defined as
HQIC = 22In(L) + ZIn(In(N)),

where L is the likelihood function, k is the number of parameters to be estim-
ated and N is the number of observations. The best model is the model that

corresponds to the minimum (i.e minHQIC).

2.2.2 Testing nonlinearity

The model defined by (2.2) has s regimes. Each regime follows a linear GARCH
model, but the whole process follows a nonlinear GARCH model. The nonlin-
earity is caused by the endogenous switching between the regimes and there are
s regimes with different linear models. In this part, we discuss tests for the
threshold nonlinearity. The majority of tests for the threshold nonlinearity are
built for detecting quadratic nonlinearity; for example, Keenan’s test and Tasy’s
test. We will focus on the Lagrange Multiplier Test (LM) and the log likeli-
hood Ratio test (LR) with the threshold autoregressive model as the alternative
hypothesis. The main problem for the threshold nonlinearity test is that the
nuisance parameters are not identifiable under the null hypothesis. Because the
log-likelihood function of these tests for the model defined by (2.2) are quadratic,
then the sampling distribution of these tests is no longer approximately x3 distri-
bution with k degrees of freedom under the null hypothesis for all sample sizes,
see Buse (1982) and Cryer and Chan (2008). These test have a nonstandard
sampling distribution (Chan (1991), Tong and Series (1990) and Hansen (1996)).

These tests are widely used in nonlinear time series.
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2.2.2.1 Lagrange multiplier (LM) test

In 1959, David Silvey used the name Lagrange multiplier test. This test has be-
come increasingly popular under the title of Lagrange multiplier in econometrics,
although it was proposed approximately a decade earlier by Rao (1948). The LM
test measures the distance between composite hypotheses Hy and H; in terms
of the score function S(6y). The null hypothesis Hy : A\; has one regime (linear
GARCH (1,1) model), whereas the alternative hypothesis is H; : that the process
follows the model defined by (2.1). Suppose that 0o is the maximum likelihood
estimate of 6 under the null hypothesis Hy. Then, the LM test depends on the

score function at 6y, where

~ / ~ ~

LM = (S(80)) (Gnl00)) ™" (Sul00)) — x}.

Here Sn(éo) and Gn(éo) are the score function and conditional information matrix
respectively. The LM* test statistic function was calculated by using the standard
Lagrange Multiplier test (LM). This test statistic function uses the maximum

(max) and average (ave) to generate the test statistic LM*. That is,

LM* = max LM (2.14)
u<r<v
and
LM* = aveugrngM. (215)

In general, simulation is used to calculate empirical critical values of the test
statistic LM™ which depends upon the selection of the lower and upper threshold
value 7. The maximum and average LM test is considered by Hansen (1996) as

a test statistic.
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2.2.2.2 Likelihood ratio (LR) test

The LR test is used to compare the fit of two models, and one of them is the null
hypothesis which is a special case of the other (the alternative hypothesis model).
This test is based on the Likelihood ratio. The LR test depends on the difference
between the maximum likelihood estimates of the parameters (6y) under the null
hypothesis and the alternative hypothesis. The null hypotheses is Hy: the process
follows a linear GARCH (1,1) model

At = Qo + Por1 -1 + Po2Yi—1,

whereas the alternative hypothesis is H;: the process follows a nonlinear TAR

model
At = @jo+ ¢nYic1 + djoN—1, when 1 <Y, 4<r;, j=1,...,s.
The log likelihood ratio ¢(r) is defined, as a function of the threshold value r, by
0r) = :(r;0) — 6o(0),

where r is the vector of the selected threshold values (rq,79,...,7s). The para-
meter r is referred to as a noise parameter under the null hypotheses. Usually,
we use LRy = MaX,< <, [(r)| as a test statistic, where v and v are lower and
upper bounds of the threshold value respectively. Andrews and Ploberger (1994)
used the average of ((r) as a test statistic. Under the null hypotheses, the LR
test is no longer approximately x? with & degrees of freedom. When selecting
u and v, we should ensure that enough data falls into each regime. Both the
LM test and the LR test are a suitable measure of the distance between the null
hypothesis and the alternative hypothesis.

The decision rule is to reject the null hypothesis if both tests, LM™* which
is defined by (2.14) or (2.15) and LR, are greater than Y%, where y; denotes
the 90th, 95th and 99th percentiles of the chi-square distribution with degree of

freedom «. In general, large values of these tests lead to the rejection of the null
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hypothesis. Most statistical programmes will provide the p-value for the LM test.
Hence, the decision rule is to reject Hy if the p-value is less than or equal to the

significance level a.

2.3 Summary

This chapter introduces a kind of threshold autoregressive model for nonlinear
count time series. We have illustrated a simple sufficient condition for geometric
ergodicity of a perturbed model. Theorem 2 shows the difference between the
unperturbed model and the perturbed model. In addition, we have discussed
maximum likelihood estimation (MLE) for the model. We also provided the
asymptotic properties for the nonlinear model defined by (2.2) by deriving the
asymptotic properties of the nonlinear model (2.3). The estimation method used
in this chapter enable us to fit a threshold model to given series of data. We
have introduced some criteria for model selection. Our model is a nonlinear
model, and therefore two different kinds of nonlinearity tests were presented.
The performance of different information criteria for choosing the rest of the
parameters such as the number of regimes, the threshold value and the delay

parameter for the Poisson TAR model will be investigated in the next chapters.
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Simulation and Data Analysis

In this chapter, we carry out a few simulations to show the asymptotic distri-
bution of the maximum likelihood estimator (MLE) for the model defined by
(2.2). We also use real data to illustrate our methodology. The values of the
maximum likelihood estimators are computed by optimizing the log-likelihood
function defined by (2.7). The analytical solution of the equation (2.8) does not
exist. Therefore, we use a quasi-Newton method which is an iterative method
for finding roots of equations (2.8). This method is used for solving nonlinear
optimization problems, and specifically, to find steady-state of the score function.

An important subject for PTGARCH models is how to determine the threshold
value r. Therefore, we also carry out some simulations for selecting the appropri-
ate threshold value using various information criteria (AIC, BIC, HQIC) which
are presented in the previous chapter.

Our model includes at least two different autoregressive regimes. It is useful
for us to study the test for threshold nonlinearity. To that end, we use the
Lagrange Multiplier test (LM) which is defined by (2.14) and (2.15). We give a
few simulation results to illustrate asymptotic normality of the MLE for model
(2.2) and the threshold nonlinearity first, then apply the model defined by (2.2)

to the real data example.
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3.1 Numerical results: simulation and real data

example

3.1.1 The performance of Maximum Likelihood Estimators

(MLE)

In this section, we carry out some simulation studies to show the finite sample
properties of the MLE for the PTGARCH models. To make the analysis simple,

we consider a two-regime model defined as follows

Y;|F3 ~ Poisson()\,),
A = di +b1Yi 1 + a1, it Y, 4<m, (3.1)
dy + boYi—1 + as i1, if Y,_4>m,

where t > 1, the initial values Yj, A\g are fixed, the intercept coefficients d;,i = 1,2
are assumed to be positive real numbers, and the autoregression coefficients
a;,b;;1 = 1,2 are assumed to be nonnegative real numbers. Theorem 1 and
Theorem 2 in Chapter 2 show that the process \; is approximated by a geomet-
rically ergodic process A[*. This process consists of two regimes and it switches
between them according to the threshold variable Y;_ 4. If the threshold variable
does not exceed the threshold value then the process ); falls in the first regime,
otherwise the process \; follows the second regime. The systems may differ from
each other with respect to the constants (i.e., d;,i = 1,2) and the GARCH coef-
ficients (i.e., a;,b;,7 = 1,2). Each regime follows a linear PGARCH(1,1) model.
Ferland et al. (2006) showed that the PGARCH (1,1) model has the first and the
second moments identical to those of an ARMA (1,1) model, and it is stationary,
provided that the sum of the different autoregression coefficients is less than one.
In contrast, we find out that the PTGARCH (1,1; 2;1) process can be approx-

imated by a stationary process provided that max(a; + b1, as + by) < 1. The log
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likelihood function and the score function are defined by equation (2.7) and (2.8)

. ot (0) - . . . . .
respectively, where afe()) is a six-dimensional vector with components given as

follows:

0 _ J(Yt_d < r) P [alfm_d <1) + agl(Yieq > r)},

dd, Od,

O\ O

a—d; = I(Yt—d > 7“) + a;; {all(yt—d <r)+al(Yiq > T)]a

O\ o1 [ ]

a_ai = )\HI(Yt_d < r) + 6211 _all(Yt_d <7)+al(Yia> r)_ ,

o)\ o1 [ ]

a_a; = At1[<Ytd > r) + a;; _all(nd <7r)+agl(Yiea>1)|,

o)\ ON1 [ ]

a_bt = YHI<YM < r) - 62 Sad(Yiea <7) 4 aol(Yig > 1) |,
1 1 L i

o)) o1 [ ]

a_bt = Yt_ll(Y;_d > 7”> —+ a[t) ! CLlf(Y;g_d < 7”) + CLQI(}/;_C[ > ’/’) .
2 2 L i

(3.2)

We calculate the MLEs by optimising equation (2.8) using the quasi-Newton
method. Simulated time series with different sample sizes were generated from
two PTGARCH (1, 1;7; d) models. The parameters of the first model are (dy, ay, by;
dy, ag,be,r,d) = (0.4,0.5,0.3;0.5,0.3,0.4,2,1), while the second model is with
(dy,ay,by;da, ag,be,1,d) = (0.6,0.7,0.2;0.3,0.4,0.5, 3, 2). Note that, for these choi-
ces of coefficient values, max(0.5 +0.3,0.3 + 0.4) = 0.8 and max(0.7 4+ 0.2,0.4 +
0.5) = 0.9 for the first and the second model respectively. The rest of the results
for different sets of parameter values were analogous, the condition max(a; +
by, as+be) < 1 was taken into account, and hence they are omitted here. Ferland
et al. (2006) showed that any PGARCH (1,1) model has first and second moments
identical to those of an ARMA (1,1) model

(¥ = 1) — (a4 B)(Yier — 1) = e, — aci,

where the sequence e; is a white noise with constant first and second moments,
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that is, E'(e;) = Var(e;) = p. As mentioned previously, the model defined by (3.1)
has two different sub-models, each sub-model may follow a linear PGARCH (1,1)
model and has moment up to second order. This means we have two different
ARMA (1,1) models, one for each PGARCH (1,1) model. This result indicates
that the least-squares method may be used for estimating the parameters. We
use this property to compare the least-squares estimators (LSE) with maximum
likelihood estimators (MLE). To do this, the algorithm for optimisation of equa-
tion (2.7) is done by using the recursions of the equations (2.9). In what follows,
we carry out simulations and real data analysis.

Table 3.1 compares the maximum likelihood estimators (MLE) and the least-
squares estimators (LSE). In Table 3.1 the results are given for the data generated

with the first model.

Table 3.1 reports the estimates of the parameters obtained by averaging out
the results from all simulations. It also reports the average absolute error (AAE)
of both estimators (MLE and LSE) for different sample sizes. The mean square
error (MSE) has been computed using the simulation output. Note that the MSE
of both estimators decreases as the sample size increases. In all cases, the least-
squares estimators have greater errors than the maximum likelihood estimators
and as the sample size increases, the average absolute error (AAE) of both types
of estimator decreases. The MSE is defined as MSE(f) = % S7(6 — 6)? while the
AAE is defined as AAE(f) = > |0—0]. As expected, the MLE performs better
than the LSE. Both estimators are close to the true parameter value because as
the sample size increases, the mean values of the estimates approach the true
parameter values. The MLE is more consistent with smaller MSE and more
focused around true parameters when the sample size increases from small to
large. The initial values for parameters are obtained by the ARIMA (1,1) fit to
the data for MLE.

Table 3.2 supports the results for the standard error found by standard devi-

52



(6820°0) (6%00°0) (¥960°2) (8620°0) (9€00°0) (1£00°0) (L000°0) (€£100°0) (601T0°0) (€0000) (¥0000) (0T00°0)

290€'0 TI00'0 LZEC'0  61.L80  GEE6'T  G8ZT'0  ¥62S°0  ©2Z8E'0  L66£0  TI66C0  LT0S0  TO0E0  S86F'0  820F'0  0000T
(6650°0) (8110°0) (8¢Lz'@) (L620°0) (¥900°0) (1900°0) (£100°0) (¢2000) (9810°0) (90000) (0T00°0) (¥5000)

LTIE0 €S00°0 S6TC0  GE9T'0 1896’1  982T°0 €IS0  GI6E0  €868°0  LS68°0  6SIS0  gO0E0  S96F'0  990F'0  000S
(80€0°0) (€120°0) (91¢¥2) (8620°0) (2010°0) (9010°0) (¢2000) (¢¥000) (29200) (1T00°0) (L100°0) (8€00°0)

9gI€’0 GS000 GOEG'0  €L65C°0 68.6'T  €621°0 CFPIS0  G86E0  G868°0  L¥6Z°0  9FIS0 00080 09670  LLOW'O  000€
(61€0°0) (£220°0) (¥eoce) (8620°0) (Lz10°0) (Fe€10°0) (0£00°0) (95000) (6€%0°0) (€1000) (61T00°0) (€F00°0)

PPIE0 G000 €8%’0  0696°0  €886'T  G8CI'0 L6050  SPOP'0  IS68°0  6V6C0  PSIS0 96650  TS6F'0  00IF0  00ST

dST  HTN “q o P 'q D 'p “q o P '9 D 'p u

AVV sojewrr)sy oaenbg jsesry S91RWI)SH POOYI[ONIT WINUWIIXCA SOZIS

"suorye[WIS (J)()] UO poseq

23

Chapter 3 Simulation and Data Analysis

ore symsoy “eyep o) 03 1y (1°7T) VINIUV U3 Aq pourejqo olom siojoureled I0j sonfea [RIIIUL o], 'sozIs ojdures JUSIoPIp
10] ‘AfoA1poadser 1 pue g ole AR[ep oW} pUR on[es PlOYSAIY) Pue ‘(F°0‘¢'0‘G0 €007 0) = (% CnCpilq‘in‘lp) uoym
(1T°¢) Topow 10§ (sesorjjuored UI) SIOLI dIRNDS WA I1OT[) T[HIM SOIRTIT)SO SoIeNDS-)SeI] PUR SRS POOYINI] WINWIXRIN T'¢ d[qR],



Chapter 3 Simulation and Data Analysis

ation (SD) of the simulated estimators (MLE) and obtained by the asymptotic
theory. The SD is defined as SD(0) = Vo (0 —0)2.

Table 3.2: Comparison  of standard errors for model (3.1) with
(dy,a1,by5da,az,b) = (0.4,0.5,0.3;0.5,0.3,0.4), for different sample
sizes. Threshold value is 2. Results are based on 1000 simulations.

Sizes Simulated standard error Standard error from G(6y)

n dl ay bl dg a9 b2 dl aq bl d2 ag bQ
2500 0.0663 0.0443 0.0364 0.2096 0.0754 0.0554 0.0647 0.0434 0.0359 0.1995 0.0708 0.0531
3000 0.0570 0.0380 0.0343 0.1876 0.0657 0.0502 0.0592 0.0396 0.0326 0.1853 0.0656 0.0492
5000 0.0473 0.0316 0.0252 0.1510 0.0523 0.0387 0.0459 0.0308 0.0252 0.1431 0.0507 0.0380
10000 0.0321 0.0219 0.0174 0.1046 0.0373 0.0271 0.03250 0.0218 0.0178 0.1008 0.0357 0.0268

The results show that the square error obtained by simulation decreases as the
sample size increases and similarly for the standard error obtained after comput-
ing the inverse of matrix GG. In all cases considered, the standard errors obtained
after calculating the matrix inverse G are smaller than the standard error based
on the simulations.

Tables 3.3 shows maximum likelihood estimators with their mean square errors
(in parentheses), and average absolute errors of two different nonlinear models for
different sample sizes. The results have been calculated by using the simulation
output. The table reports that the values of MSE and AAE decrease when the
sample size increases in both nonlinear models. The starting values for parameters
are obtained by a uniform distribution as follows d; ~ unif(0.1, mean(data)),

a; ~unif(0.1, 0.9), by ~unif(0.1, 0.9), dy ~ unif(0.1, mean(data)),

as ~unif(0.1, 0.9) and by ~ unif(0.1, 0.9). Tables 3.3 shows that the MLE
estimates become more efficient with smaller MSEs and more closed to the true
parameters 0y = (dy, a1, b1;ds, as,be) as well as the AAE of estimates decreases
gradually when the sample sizes increases from 200 to 10000 in both nonlinear
models.

Table 3.4 compares the standard errors of the estimators obtained by the stand-
ard deviation of the simulated estimators and by the standard errors obtained

after calculating the matrix inverse G. Clearly, in both nonlinear models, the
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Table 3.3: Maximum likelihood estimates with their mean square errors (in par-
entheses), and the average absolute error of estimates for two different
nonlinear model and different threshold value and time delay for dif-
ferent sample sizes.

Parameters Sample Maximum likelihood estimators (MLE) Average absolute errors

Regime 1 Regime 2  sizes d; ay by dy ay by AAE

d1=04  dy=0.5 200 0.5617 0.4212 0.2973 0.7920 0.2061 0.3718 0.2778
a1=0.5  ay=0.3 (0.1611)(0.0513)( 0.0214)(0.9627)( 0.1261) (0.0478)

b=03  b,=0.4 500  0.4476 0.4795 0.2953 0.5986 0.2673 0.3907 0.1502
r=2 (0.0277)(0.0114) (0.0068) (0.2548) (0.0317) (0.0157)

d=1 1000 0.4311 0.485 0.2991 0.5255 0.2858 0.3999 0.1023
(0.0127)(0.0052) (0.0034) (0.1094) (0.0147) (0.0077 )

5000 0.4053 0.4979 0.2993 0.5169 0.2933 0.3996 0.0455
(0.0023)(0.0010) (0.0007) (0.0215) (0.0028) (0.0014)

10000  0.4023 0.4988 0.3005 0.5052 0.2991 0.3989 0.0316
(0.0010)(0.0004) (0.0003) (0.0105) (0.0013) (0.0008 )

di=0.6  dy=0.3 200 1.1025 0.5683 0.1730 0.4514 0.3754 0.4874 0.2742
=07 a;=04 (0.9628)(0.1151) (0.0158) (0.5814) (0.0381) (0.0097)

b1=0.2  b=0.5 500  0.8835 0.6129 0.1968 0.3680 0.3881 0.4963 0.1590
r=3 (0.2963)(0.0351)( 0.0045)(0.1393) (0.0102) (0.0033)

d=2 1000 0.7497 0.6551 0.1986 0.3448 0.3898 0.4998 0.1059
(0.1158)(0.0138) (0.0023) (0.0565) (0.0041) (0.0015)

5000 0.6456 0.6862 0.1992 0.3058 0.3996 0.4990 0.0478
(0.0213)(0.0026)( 0.0004)(0.0109) (0.0007) (0.0003)

10000 0.6241 0.6924 0.1998 0.3055 0.3986 0.5000 0.0341

(0.0106)(0.0013) (0.0002) (0.0053) (0.0004) (0.0001 )
NOTE: The starting values for parameters follow uniform distributions. Results are

based on 1000 simulations.

result shows that the standard errors based on the simulations are larger than
the ones obtained after calculating and inverting the matrix G. Both measures

decrease gradually as the sample size increases.

Figure 3.1 shows both histograms and QQ-plots of the sampling distribution
of the estimators for the first model (3.1) when there are 5000 and for 1000
simulation runs. The QQ-plots support the claim of asymptotic normality of
the parameters 6 = (dy,ay,by;ba,as,by). The figures show that the sampling
distribution of the estimator of the intercept is slightly skewed (the right tail).
It has less accuracy compared to the autoregressive coefficients. These results
are in agrement with those reported by Fokianos et al. (2009) for the linear
model. In addition, the figures indicate that the histograms look like the normal

distribution.
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Figure 3.1: Histograms and QQ-plots of the sampling distribution of the estim-
ators of § = (621, a1, by: ds, Go, 132) for model (3.1), when the true values
are (0.4,0.5,0.3;0.5,0.3,0.4). The initial values follow a special uni-
form distribution. The results are based on 5000 data points and 1000
simulations.

Figure 3.2 illustrates the boxplot of the average absolute errors of both es-
timators of the first model for different sample sizes. The figure reports the
comparison between the average absolute errors of the maximum likelihood es-
timators and the least-square estimators. The plot reports in all cases considered,
that the maximum likelihood estimators have lower average absolute errors than
the least-squares estimators and the average absolute errors of both estimators
decrease as sample size increases. The average of the outliers of LSE is far larger
than that of MLE in all sample size cases. In general, MLE estimation is much
more accurate than that of LSE.

Figure 3.3 provides the boxplot of the average absolute errors of the maximum
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Figure 3.2: Boxplots of average absolute error (AAE) for maximum likelihood es-
timator (bottom boxplots) and the conditional least square estimator

(top boxplots) for different sample sizes. The initial values of para-
meters of the MLE follow ARIMA (1,1) fit data model. The plots are
based on 1000 simulations.

likelihood estimator of model (3.1) when (dy, aq, by; da, as, by) = (0.4,0.5,0.3;0.5,
0.3,0.4) for different sample sizes. Figure 3.3 shows that the larger the sample
size is, the better the estimation of the MLE, because the smaller the AAE of
estimation is. There are outliers in all five different sample size cases and the
smaller the sample size is, the larger the range of values of the outliers is. Overall,
the plot shows the boxplot size decreases gradually as the sample size increases
in both estimators.

Figure 3.4 presents the boxplot of the average absolute errors of the maximum
likelihood estimator for model (3.1) when (dy, a1, by; do, as,be) = (0.6,0.7,0.2;0.3
,0.4,0.5), and threshold value and time delay are 3 and 2 respectively for different

sample sizes. It reports that the values of AAE reduce gradually when the sample
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Figure 3.3: Boxplot of average absolute errors (AAE) for maximum like-
lihood estimator for model (3.1) when (di,ay,bi;ds,as,by) =
(0.4,0.5,0.3;0.5,0.3,0.4), and threshold value and time delay are 2
and 1 respectively for different sample sizes. The initial values of
parameters follow uniform distributions. The plots are based on 1000
simulations.

size increases. From the plot, it can be seen that the range of outliers is larger
for small sample size but this range gradually becomes smaller as the sample size
increases. Figure 3.5 illustrates the histograms and QQ-plots for the sampling
distribution of the standardized maximum likelihood estimators of model (3.1)
when (dy, aq,by;dy, as,by) = (0.6,0.7,0.2;0.3,0.4,0.5), and threshold value and
time delay are 3 and 2 respectively for 5000 data points and 1000 simulations.
Table 3.5 reports the mean square Pearson residuals (MSPR) which is defined
by Zi\ilNe—zP, where ¢; = Yt%)\’t\t and p denotes the number of estimated parameters

for two different models (Kedem and Fokianos (2002)). The MSPR of both models
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Figure 3.4: Boxplot of average absolute errors (AAE) for maximum like-
lihood estimator for model (3.1) when (di,ay,bi;ds,as,by) =
(0.6,0.7,0.2;0.3,0.4,0.5), and threshold value and time delay are 3
and 2 respectively for different sample sizes. The initial values of
parameters follow uniform distributions. The plots are based on 1000
simulations.

was obtained by averaging out the results from all simulations. In all cases, the
values of MSPR of both models decrease gradually when the sample sizes increase.
This means that the models become more adequate with larger sample sizes.
Figure 3.6 illustrates boxplot of MSPR for two nonlinear models with different
sample sizes. The plot shows that the MSPR of both models clearly reduces

gradually as the sample size increases from 200 to 2000.
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Figure 3.5: Histograms and QQ-plots of the sampling distribution of the estimat-
ors of § = (dl, a1, by; do, Gio, 52) for model (3.1), when the true value are
(0.6,0.7,0.2;0.3,0.4,0.5). The initial values follow a uniform distribu-
tion. The results are based on 5000 data points and 1000 simulations.

Table 3.5: The MSPR calculated for different models. The first model was gener-
ated with d; = 0.4,a; = 0.5,01 = 0.3;dy = 0.5,a0 = 0.3, = 0.4;7r =2
and d = 1, while the second model was generated with d; = 0.6,a; =
0.7,00 =0.2;dy = 0.3,a0 = 0.4,b5 = 0.5;r = 3 and d = 2. The results
are based on 1000 simulations.

Sample Average of MSPR
Sizes  First model Second model
200 0.00515 0.00517
500 0.00203 0.00202
1000 0.00101 0.00100
2000 0.00050 0.00050
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Figure 3.6: Boxplot of MSPR for different models. The first model generated
with (d; = 04,a; = 0.5,b; = 0.3;dy = 0.5,a9 = 0.3,by = 0.4;r = 2
and d = 1), while the second model generated with (d; = 0.6,a; =
0.7,b1 =0.2;dy = 0.3,a2 = 0.4,05 = 0.5;r = 3 and d = 2. The results
are based on 1000 simulations.
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3.1.2 Determination of the threshold value r

In this part, we present a few simulations to determine the threshold value when
the delay parameter d and the number of regimes s are given. To estimate the
threshold value, we arrange the original data in increasing order, then use a lower
bound of at least 20% — 25% of the total number of observations in each state
distribution (regime). Let the corresponding data in the arranged series be the
threshold candidate value {r.}, for each of which the AIC(r.,d) is calculated,

then

AIC(F.,d) = min AIC(r.,d)

Te

and the corresponding 7 is the threshold value (7).

Table 3.6 displays the AIC, BIC and HQIC values of the estimated threshold
parameter r for four different PTGARCH (1,1;2,1) models and three different
sample sizes. In the first and the second model, the table shows the information
criteria is smallest when 7 = 2 at a sample size of 2000, so we estimate the
threshold value to be 2. This is true also for sample sizes 5000 and 10000, where
the AIC, BIC and HQIC are smallest when 7 = 2, therefore the corresponding 7=
2. Similar results, for 7 = 3, are obtained for the rest of the models in all different
sample sizes. Table 3.6 reports the estimate of the threshold parameter obtained
by averaging out the results of the AIC, BIC and HQIC for all simulations. From
the results in Table 3.6,it can be seen that the maximum of possible threshold
values r for the first three models is 4 for all sample sizes, whereas it is 6 for the
sample size 2000 and 5 for the sample sizes 5000 and 10000 in the last model

respectively.
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Table 3.6: The average of AIC, BIC and HQIC values of model (3.1) for four
different PTGARCH (1,1;2,1) models and three different sample sizes.

Regime Regime Sample Possible AlC BIC HQIC Percentage of Estimate of
1 2 size values (r,1) (r,1) (r,1) correct choices (7)
d;—=0.5 ds—0.4 1 1.2939 1.3107 1.2940 14.9 2
a;1—=0.4 as—=0.5 2000 2 1.2920 1.3088 1.2921 64 2
b,—0.3 b>—0.3 3 1.2933 1.3101 1.2934 20.2 2
4 1.2968 1.3136 1.2969 0.9 2
1 1.2894 1.2972 1.2895 5.1 2
r =2 5000 2 1.2874 1.2952 1.2876 82.8 2
3 1.2887 1.2965 1.2889 12 2
4 1.2853 1.2931 1.2954 0.1 2
1 1.2872 1.2915 1.2873 0.9 2
10000 2 1.2853 1.2896 1.2854 94.7 2
3 1.2866 1.2909 1.2867 4.3 2
4 1.2863 1.2907 1.2865 0.1 2
d,=0.4 d>=0.5 1 0.9774 0.9942 0.9775 8.4 2
a;—0.5 as—0.3 2000 2 0.9734 0.9902 0.9735 72.3 2
b,=0.3 b>—=0.4 3 0.9752 0.9920 0.9753 12.2 2
4 0.9754 0.9922 0.9755 7.1 2
1 0.9733 0.9811 0.9735 3.1 2
r =2 5000 2 0.0.9695 0.9773 0.9696 89.5 2
3 0.97125 0.9790 0.9714 6.1 2
4 0.9723 0.9802 0.9725 1.3 2
1 0.9696 0.9739 0.9697 0.2 2
10000 2 0.9657 0.9700 0.9658 98.6 2
3 0.9674 0.9718 0.9676 1.0 2
4 0.9685 0.9728 0.9686 0.2 2
d,=0.4 d>=0.5 1 1.1861 1.2029 1.1862 6.2 3
a1—0.5 ax—0.4 2000 2 1.1831 1.2000 1.1832 16 3
b,=0.3 b>=0.3 3 1.1816 1.1984 1.1817 54.7 3
4 1.1836 1.2004 1.1837 23.1 3
1 1.1776 1.1854 1.1777 0.2 3
r=3 5000 2 1.1744 0.1.1822 0.1.1746 7.7 3
3 1.1728 1.1806 1.1730 81.1 3
4 1.1749 1.1827 1.1751 11 3
1 1.1763 1.1806 1.1764 0.0 3
10000 2 1.1732 0.1.1775 0.1.1733 1.9 3
3 1.1716 1.1759 1.1717 92.9 3
4 1.1723 1.1767 1.1725 5.2 3
d1=0.9 d>=0.5 2 -0.5823 -0.5654 -0.5822 0.1 3
a;—0.5 as—0.3 2000 3 -0.6003 -0.5835 -0.6002 93.2 3
b,=0.2 b>—=0.4 4 -0.5961 -0.5793 -0.5960 4 3
5 -0.5953 -0.5785 -0.5952 2.5 3
6 -0.5804 -0.5636 -0.5803 0.2 3
3 -0.6070 -0.5992 -0.6069 99 3
r =3 5000 4 -0.9029 -0.5828 -0.6027 0.9 3
5 -0.6020 -0.5942 -0.6019 0.1 3
1 -0.5331 -0.5288 -0.5330 0.0 3
2 -0.5871 -0.5828 -0.5870 0.0 3
10000 3 -0.6051 -0.6008 -0.6050 100 3
4 -0.6010 -0.5967 -0.6009 0.0 3
5 -0.6002 -0.5959 -0.6001 0.0 3

NOTE: The fourth column shows the possible values of threshold parameters. The
fifth, sixth and seventh column report the averages of AIC, BIC and HQIC
respectively. The eighth column represents the percentages of correct choices of

corresponding threshold values to those in the fourth column. Simulation results are
given for four different PTGARCH (1,1;2,1) models and different threshold values.

Correct threshold value detection percentages are printed bold. Results are based on

1000 simulations.
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Table 3.7 reports the relative rates of correct choices of the threshold parameter
for different PTGARCH models, as well as the average of information criteria for

model (3.1). Obviously the results report that the relative rate of correct choices

Table 3.7: The percentage of correct choices and average of AIC, BIC and HQIC
values for four PTGARCH models (3.1) and for three different sample

sizes.
Regime  Regime  Sample  Percentageof ~ Averageof ~ Average of Average of
1 2 sizes correct choices  AIC(f,1)  BIC(r,1) — HQIC(#,1)
=05 =04 2000 64 1.2920 1.3088 1.2921
=04  0y=05 5000 82.8 1.2874 12952 1.2876
h=03 =03 10000 947 1.2853 1.2896 1.2854
=04 dy=05 2000 723 0.9734 0.9902 0.9735
u=05  0=03 5000 89.5 0.9695 0.9773 0.9696
h=04  b=04 10000 986 0.9657 0.9700 0.9658
=04 dy=05 2000 DT 11816 11984 11817
0n=05  a=04 5000 81.1 11728 1.1806 11730
h=0.3 =03 10000 929 11716 11759 L1717
d=09  dy=05 2000 93.2 -.6003 -.583 -0.6002
0u=05  0=03 5000 99 -0.6070 -.5992 -0.6069
h=02  b=04 10000 100 -0.6051 -0.6008 -0.6050

NOTE: The fourth column reports the relative rates of correct choices of threshold
value for model (3.1). The threshold value of the first and the second model is 2 while
the value of threshold in the third and fourth model were 3. Results are based on 1000

simulations.
increases as the sample size increases from 2000 to 10000 for all different models.

In addition, the table shows that the average of the information criteria decreases

as the sample size increases.
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3.1.3 Test for threshold nonlinearity (Lagrange Multiplier

Test)

In the previous chapter, we mentioned the Lagrange Multiplier (LM) and Like-
lihood Ratio (LR) test as a test for threshold nonlinearity. Here we do some
simulations to support the threshold nonlinearity test using the LM* test which
is defined by (2.14) and (2.15).

Table 3.8 shows a few simulation results examining the adequacy of the LM*
test for different sample sizes when (dy, aq, b1; ds, as, bs) = (0.4,0.5,0.3;0.5,0.3,0.4)
and the value of the threshold is 2. The outcomes are given for the data gener-
ated with a PTGARCH (1,1;2,1) process. In addition, the values of max LM
and ave LM test for a PTGARCH (1,1;2,1) model with their p—values (at 95%
level of significance) for the X% test which are obtained using 1 — pchisq(LM*, 3)
can be seen. This test is an one-tail (right-tail) test with 5% level of significance.
From the outcomes in Table 3.8, it can be seen that the values of max LM are
larger than the critical value of 7.815. In other words, the p—values are less than
the significant level for different sample sizes. That is, there is clearly significant
benefit at significant level & = 0.05 in using the nonlinear model for all sample
size cases. In contrast, the values of ave LM for the sample sizes (500 and 1000)
indicate that there is no evidence for us to reject the null hypothesis, but when
the sample size increases, there is significant improvement at the 5% level of sig-
nificance in using the nonlinear model. In general, the values of LM™* improve
gradually as the sample size increases.

Table 3.9 contains the results for the data that were generated with a specific
PTGARCH (1,1;2,1) model. This model has specific parameters which were fixed
across the regimes. That is, the specific model has the same autoregressive coef-
ficients and the intercept in both regimes. Table 3.9 reports that the p—values
of tests are greater than the level of significance o = 0.05 for all sample sizes.

Therefore, the decision is to accept the null hypothesis. In other words, there is
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Table 3.8: Achieved significance level of the LM™ test for different sample sizes.
The data were generated by PTGARCH (1,1;2,1) process.

Sample sizes

n

LM~

max LM p—value ave LM p—value

500 8.32% 0.039 6.75 0.0801
1000 9.19* 0.026 7.21 0.065
1500 10.25* 0.014 8.02* 0.045
2000 11.54* 0.009 8.53* 0.036
2500 12.46* 0.005 9.07* 0.028
5000 18.74* 0.0003 12.28* 0.006

NOTE: The parameters used are (610;620) = (0.4,0.5,0.3;0.5,0.3,0.4), and the LM
denotes the Lagrange multiplier test. * denotes reject Hy with significant level 0.05.
Results are based on 1000 simulations.

not sufficient evidence to reject the null hypothesis at the ae = 0.05 level in using

the linear model.

Table 3.9: Achieved significance level of the LM* test for different sample sizes.

The data were generated by PTGARCH (

1,1;2,1) process.

Sample sizes

n

LM*
max LM p—value ave LM p—value

500 7.17 0.066 6.20 0.102
1000 6.77 0.079 5.93 0.115
1500 6.87 0.076 6.01 0.111
2000 6.90 0.075 6.04 0.109
2500 6.99 0.071 6.075 0.107
5000 6.68 0.083 5.81 0.121

NOTE: The parameters used are (#19;6020) = (0.4,0.5,0.3;0.4,0.5,0.3). The third
column reports the p—values of the y? test statistic. Results are based on 1000

simulations.

3.1.4 A real data example

To apply our methodology to model (3.1), we use as data the number of transac-

tions per minute for the stock Ericsson B, in the period 2 — 3 July, 2002. There

are approximately 7000 observations in the data set which includes all of the

transactions per minutes for the stock Ericsson B for the period 2-22 July, 2002.

For the purpose of the analysis in the thesis, only the first 650 observations of the

original data set, conveying around 11 hours of transactions were used. Note that

the first and the last minute were neglected. The sample mean of the particular

realization was 10.08, with a standard deviation of 5.62072. Figure 3.7 presents

the observation numbers, the histogram and the sample autocorrelation function.
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From Figure 3.7, it can be seen that the time series does not exhibit any trend-
ing behaviour. The plot of the sample autocorrelation function of the number of
transactions suggests significant serial correlation between transactions.

To model these data, we considered the model (3.1). Table 3.10 reports possible
threshold values (r) and their information criteria (AIC,BIC and HQIC) for the
PTGARCH (1,1,2,1) model fitted to the number of transactions when the number

of regimes (s=2) and the time delay (d=1) are given. From Table 3.10, it can be

Table 3.10: Information criteria for the PTGARCH (1,1,2,1) model fitted to the
number of transactions.

Possible threshold Information criteria
values (r) AIC BIC HQIC
5 -27.0960 -27.0547 -27.0800
6 -27.0728 -27.0315 -27.0568
7 -27.1124  -27.0711 -27.0964
8 -27.1184 -27.0771 -27.1024
9 -27.1177  -27.0764 -27.1017
10 -27.1085 -27.0672 -27.0925
11 -27.1118 -27.0705 -27.0958
12 -24.7331 -24.6918 -24.7171
13 -27.0742 -27.0329 -27.0582

seen that the smallest values of information criteria are reached when the possible
threshold value is 8. Therefore, the estimated threshold value is 8.

The Table 3.11 shows the maximum likelihood estimates of parameters (dy, aq, by;
ds, as, by) and the standard error of the estimators obtained by inversion of the

information matrix (see Theorem 4) .

Table 3.11: The estimated parameters for model (3.1) and their standard errors.

Model First regime, n; = 240 Second regime, mny =410
Parameters dy ay by dy Qs bo
Estimated value 0.3914 0.8915  0.0123 0.5157 0.7721 0.1750
Standard error  0.2217 0.0278  0.0480 0.2621 0.0276 0.0260

The ave LM test of the model is 33.5, so there is clearly significant benefit at the
5% level of significance in using the nonlinear model. In addition, the mean square

of the Pearson residuals (MSPR) for nonlinear models, is equal to 2.3295 which
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is slightly smaller than the corresponding mean square of the Pearson residuals
obtained from the linear model fit (2.3523) (Kedem and Fokianos (2002)). The

estimated model can be expressed as

5 0.3914 + 0.01234Y;_; + 0.8915);_1, if Y <8,
0.5157 + 0.1750Y;_1 + 0.7721\,_1, if Y, >8.

The plot 3.8 shows the sequence of residuals and their cumulative periodogram
plot, as well as their autocorrelation function of the transaction data. The cumu-
lative periodogram plot obviously indicates that the Pearson residuals obtained
after the application of the nonlinear model (s = 2,d = 1) do not deviate from a
white noise sequence. The plot of the autocorrelation function reveals no signi-

ficant serial correlation in the sequence of residuals.

3.2 Summary

In this chapter, we presented our methodology on how to estimate the model
(3.1) and how to detect a nonlinearity and the value of threshold as well. We
carried out a few simulation results to estimate the parameters of the model (3.1)
using MLE and LSE, and used the average of the AIC criterion to determine the
threshold value. The MLE estimator is more efficient than the CLSE estimator.
Simulated standard error was compared with standard error defined by (2.10).
Testing the threshold nonlinearity is investigated using LM™* defined by (2.14)
and (2.15). Boxplot of average absolute errors (AAE) for both estimators MLE
and LSE are illustrated. In addition, histograms and QQ-plots of the sampling
distribution of the MLE are presented. As a real data example, we applied the
model (3.1) to the number of transactions per minute for stock Ericsson B when
the delay parameter d and the number of regimes (s) are given. The simple

sufficient condition for the geometric ergodicity is taken into account.
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Figure 3.7: From top to bottom: Time plot of the number of transactions per
minute for the stock Ericsson B in the period July 2-22,2002, his-
togram of the observation number and the sample autocorrelation
function.
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Figure 3.8: Pearson residuals (top) and their cumulative periodogram plot
(middle), and the sample autocorrelation function of Pearson residuals
(bottom) for the nonlinear model fitted to the number of transactions.
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Determination of the Number of

Regimes

4.1 Introduction

The economic theory in the majority of financial applications concerning the TAR
model is not specific about the general framework of the model. For example, the
appropriate number of regimes usually cannot be fixed, as well as the value of
threshold and the time delay (which determines the threshold variable in the TAR
model). Some studies have been published that concentrate on how to choose a
suitable number of regimes in TAR models. Tsay (1989) proposed a scatter-
plot for locating the threshold value in an arranged autoregressive model. He
used a lagged variable against the recursive estimates’ t-ratios of an AR model’s
parameters to determine both the number and location of the threshold.
Recently, Hamaker (2009) suggested determining the number of regimes in a
TAR model using six different information criteria with data sets containing small
to moderate sample sizes (N = 50,100, 200). Gonzalo and Pitarakis (2002) sug-
gested selecting the number of regimes (s) or the value of threshold sequentially

starting from a single sub-model (s=1) and using model selection criteria for
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determining between model with one ore more threshold values, in moderate to
large sample sizes (N = 200, 400, 800).

The research on TAR models in the literature mostly is about continuous-
valued time series, and this project will work on threshold models for discrete time
series. In recent times, modeling count time series has gained significant interest
with various applications in many different areas. For example, in medicine, the
number of cases of campylobacterosis infectious diseases reported in a specified
area, in economy and finance, the number of transaction time series for the stock
in a company, and in the environment, the daily temperature in a country and
the number of accidents in a city. A few studies have been focused on a specified
discrete conditional distribution with a conditional mean as a linear function of
historical observations (Ferland et al. (2006), Fokianos et al. (2009), and Fokianos
and Fried (2010)). Two studies have discussed Poisson autoregressive models
(Fokianos et al. (2009), and Weiss and Testik (2009)) and both assume that the
conditional distribution, given the history, follows a Poisson distribution with
mean and variance being the same. The conditional mean and variance are linear
functions of their previous values and past observations. Therefore, we call them
linear Poisson GARCH models.

One of the main goal in TAR modeling is how to determine the suitable number
of regimes if both the time delay and the values of threshold are given. The

objective of this chapter is to discuss such an issue.

4.2 The PTGARCH(1,1;s,1) Model

Consider the model defined by (3.1). In the PTGARCH process the conditional
variance for Poisson distribution is response, and its past values as well as the
observed values are the covariants. A PTGARCH process consists of two or more

regimes. Each regime follows a linear PGARCH process. PTGARCH processes

73



Chapter 4 Determination of the Number of Regimes

are characterized by frequent switches between the regimes. They switch between
the regimes according to the threshold variable. If the threshold variable Y;_ 4
exceeded the value of threshold r; then the processes fall into the first regime,
and if r < Y,_4 < ry, then the processes switches to the second regime, and so
on. Figure 4.1 shows six different models, a linear PGARCH process, and five
different nonlinear PTGARCH processes in which regimes are created by first
order linear PGARCH processes.

The linear PGARCH process is illustrated at the top of the graph, and was

generated with (d = 0.3,a = 0.5,b = 0.4). The first PTGARCH process is

0.9 + 0.2Y;_1 + 0.5\_1, if Y, <2,

0.4+ 0.4Y;_1 + 0.3\_1, if Y, >2,

the second PTGARCH model is

1.0+ 0.3V, 1 + 0.5\ 1, if Y, <3,
0.5+ 0.3Y;_1 + 0.5)\_1, if Y>3,

the third PTGARCH model is

1.2 4 0.45)\_1, it Y, <2
0.6 +0.5Y,_1 +0.2\_1, it Y, > 2,

the fourth PTGARCH model is given

0.6 + 0.2Y;_1 + 0.46)\,_1, if Y, <3,
1.0+ 0.6Y,_1, if Y, >3,
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Figure 4.1: From top to bottom: Linear PGARCH process and five different PT-
GARCH processes with different threshold values. The left column
contains a plot of the time series and the right column contains their
autocorrelation functions.
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and the last PTGARCH process is

3.0+ 0.2Y;_; + 0.4\, if Y, <3,
A =1 1.5+40.3Y, 1 4+ 0.2)\_1, if 3<Y,; <7, (4.5)
0.7+ 0.4}/;_1 + 0.3/\75_17 if Y;5_1 > 7.

In Figure 4.1, the plots on the left are the time series plotted against time for dif-
ferent models and the plots in the right are the autocorrelation function (ACF).
The figure shows that the different PTGARCH models have low autocorrelation
functions, and highly random appearance. In contrast, the plot of the autocorrel-

ation function of linear model reveals a high dependence between observations.

4.3 Determination of the number of regimes
with different information criteria

Recently, a few authors have concentrated on the study of our main problem,
the determination of the number of regimes in a TAR model, using various in-
formation criteria in small to moderate sample sizes (N = 50,100, 200) (Hamaker
(2009)), and in moderate to large sample sizes (N = 200, 400, 600, 800) (Gonzalo
and Pitarakis (2002); Strikholm and Terédsvirta (2006)). Pena and Rodriguez
(2005) have studied the same problem by using different statistical tests. All
studies discussed the determination number of regimes in a threshold autore-
gressive model only for continuous-valued time series. However, to the best of
our knowledge, no one has discussed the same problem for count time series.
Therefore, this chapter as far as we know, is the first statistical work to identify
the number of regimes in a threshold autoregressive model for discrete-valued
time series using different information criteria. The different information criteria
used in the following experiments are the AIC, BIC, BIC2 and HQIC which were

mentioned previously in the third chapter. These criteria can be expressed in a
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unified formula as
0 =24 (likelih d)+K*/\ (4.6)
= N OgULIREeLTNoOo N IC- .

The information criteria consist of two parts, first part is -2 time the log-likelihood
function, and the second term corresponds to penalty terms Ao = 2, A\j¢ =
log(N), Ajc = 2log(N), and A\jc = 2log(log(N)) respectively for AIC, BIC, BIC2,
HQIC. K is the number of parameters in each regime and N is a sample size.
The Loglikelihood function is given in (2.7). Actually, we have three parameters:
an intercept ¢jo, and autoregressive coefficients ¢;i, ¢;2 in each regime. Hence
the total number of regular coefficients across regimes is 3s. In addition, there

are s — 1 threshold values.

4.4 Simulations

This section will concentrate on the performance of information criteria in moder-
ate to large samples. The selected sample sizes are 300, 500 and 800 observations.
All results are based on 1000 simulations. Four simulation studies are examined
and their results are presented below.

In the first experiment study we use two kinds of nonlinearity tests, the Like-
lihood ratio (LR) and the Lagrange multiplier (max LM) tests, to determine the
type of model. LR and LM tests are used to distinguish between the linearity and
nonlinearity. The second experiment study compares two models. A PGARCH
(1,1) model as a linear PGARCH, and PTGARCH (1,1;2,1) as a nonlinear PTG-
ARCH. The performance of various information criteria is evaluated according to
the true model rate detection and LR test is given for both linear GARCH and
nonlinear GARCH. The third experiment studies the performance of four inform-
ation criteria calculated when the data is generated from a nonlinear model (the

true model) with different orders. In the last experiment, we examine whether
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the four information criteria can be used to determine a higher number of re-
gimes (s=3). To study the performance of the different information criteria and
compare their behaviour with results obtained from various model selection cri-
teria, we assume the various models, such as PGARCH (1,1) model, PTGARCH
(1,1;2,1) model, and PTGARCH (1,1;3,1) model.

4.4.1 Experiment study 1: Linearity model against

nonlinearity

The first study creates two types of linearity test: LR test and LM test, to
determine whether the selected model is a linear PGARCH (1,1) model or a
PTGARCH (1,1;2,1) model. It should be noted that a PTGARCH (1,1;2,1)
model has two regimes and each regime is formed by a linear PGARCH (1,1)
process. We use a different parameter value in simulating the data. Hence, both
models are fitted with the simulated observations. Both types of model have a
different intercept, and autoregressive coefficient values are used in simulating
data for different sample sizes (N = 500,800 and 1100). The threshold value r
and the time delay d of the models are given. In Table 4.1 the data were generated
with five different PTGARCH (1,1;2,1) processes.

The different coefficients are used to discover the difference in the coefficients’
effect on the model selection results. For example, the first model has two differ-

ent parameters in each regime and this model can be written as

0.9+02Y, 1 +05X\ 1,  if Y,,<2
0.4+04Y,_1 + 0.3)\15,1, if Y, >2.

In the second model, the intercept and the coefficient of Y;_; are equal in each

regime, while the autoregressive coefficient of \;_; differs with parameter values
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Table 4.1: The percentage of correct model detecting for a nonlinear PTGARCH
(1,1;2,1) model when compared to a linear PGARCH (1,1) model us-
ing LR test and LM test for different significance levels, for different
threshold values, coefficients and sample sizes.

Threshold Regime Regime Sample L-R test L-M test
r 1 2 size One regime Two-regime One regime Two-regime
n a=005 a=0.0la=005 a=0.0la=005 a=00la=0.05 a=0.01

r=2 d,=0.9 dy=04 500 13.3 39.3 86.7 60.7 0.0 0.0 100 100
a1=0.5 a;=0.3 800 1.4 8.3 98.6 91.7 0.0 0.0 100 100

01=0.2 by=04 1100 0.0 1.5 100 98.5 0.0 0.0 100 100

r=2 d1=0.5 dy=0.5 500 21.2 66.7 78.8 33.3 0.1 0.7 99.9 99.3
a1=0.5 a;=0.3 800 1.5 14.2 98.5 85.8 0.0 0.0 100 100

b1=0.4 0,=04 1100 0.2 0.8 99.8 99.2 0.0 0.0 1000 100

r=2 d1=0.6 dy=0.6 500 16.3 56.2 83.7 43.8 0.2 1.6 99.8 98.4
a1=0.5 a;=0.5 800 1.4 11.0 98.6 89.0 0.0 0.2 100 99.8

b1=04 b,=0.2 1100 0.1 0.7 99.9 99.3 0.0 0.0 100 100

r=3 di=1.0 dy=0.5 500 46.6 86.6 53.4 134 0.0 0.0 100 100
a1=0.5 ax=0.5 800 10.4 49.7 89.6 50.3 0.0 0.0 100 100

0=0.3 b=0.3 1100 1.2 19.2 98.8 80.8 0.0 0.0 100 100

r=4 di=1.0 dy=0.5 500 4.4 24.1 95.6 75.9 0.0 0.1 100 99.9
a1=0.5 ay=0.5 800 0.0 1.6 100 98.4 0.0 0.0 100 100

b1=0.3 0,=0.3 1100 0.0 0.1 100 99.9 0.0 0.0 100 100

NOTE: Percentage of correctly selecting a nonlinear (two-regime)
PTGARCH(1,1;2,1) model with p = ¢ = 1 based on 1000 simulations. LR test and
LM test denote likelihood ratio test and Lagrange multiplier test respectively.

a; = 0.5 and ay = 0.3. The model is defined as

0.5+ 0.4Y;_1 + 0.5\ _1, if Y, <2,
0.5+ 0.4Y,_1 + 0.3\_1, it Y, >2.

In the third model, all parameters in each regime are the same except for the

autoregressive coefficient of Y;_; which differs with parameter values b; = 0.4 and

bg =0.2:
0.6 + 0.4Y;_1 + 0.5\_1, if Y, <2,
0.6 +0.2Y,_1 + 0.5)\_1, if Y, > 2.

The fourth and the fifth model have the same autoregressive coefficients in both
regimes, while the intercept and the threshold value differ, with the threshold

value being 3 in the fourth and 4 in the fifth model. The fourth model is

1.0 4+ 0.3Y;—1 + 0.5 1, if Y, <3,

0.5+ 0.3Y,_1 +0.5\_1, if Y, >3,
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and the fifth model is

- 1.0+ 0.3Y;_1 + 0.5, it Y, <4, (4.11)
0.540.3Y;—1 + 0.5 1, if Y, >4.
The reason for choosing the fourth and fifth models with these characteristics is
to study the effect of the threshold value on the models.

In Table 4.1, the percentages of correctly identified models are given. The
percentages of the LR test correctly selected two regimes between 53.4 and 100,
and between 13.4 and 99.9 for a = 0.05,0.01 respectively. In contrast, the per-
centages are between 0.0 and 46.6, and 0.1 and 46.6, for falsely selecting the one
regime model (linear model). On the other hand, the percentages of LM test
correctly selected models lie between 99.8 and 100, and between 98.4 and 100
for « = 0.05,0.01 in all models respectively. It should be mentioned the fact
that the LR and the LM tests are specifically designed for detecting quadratic
nonlinearity. The percentages of the values of both LR and LM tests increase
as the sample size increases. The distribution of the LR test and LM test is no
longer approximately x3. Note that x3 o5 = 7.82 and x3 o, = 11.35. (see Cryer
and Chan (2008)).

In Table 4.2 the data were generated from two regimes. It reports six different
models with different threshold values. Each sub-model has the same intercepts

and the parameter coefficients. That is, in general,

di +b1Yi 1+ ar A, if Vi, <n,
A = (4.12)
di +b1Yo1 + a1, it Yio>r,
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Table 4.2: The percentage of correct model detecting for a linear PGARCH(1,1)
model when compared to a nonlinear PTGARCH(1,1;2,1) model using
test statistic (LR test and LM test) for different significance levels, for
different threshold values, coefficients and sample sizes.

Threshold Regimel= Regime2 Sample L-R test L-M test
r 0,=0, size One regime Two-regime One regime Two-regime
n a=00 a=00la=0.05 a=00la=0.05 a=0.0la=0.05 a=0.01
r=2 dy= dy=0.9 500 100 100 0.0 0.0 53.7 81.7 46.3 18.3
a1= a;=0.5 800 99.8 100 0.2 0.0 57.5 84.0 42.5 16.0
b= b,=0.2 1100 99.9 100 0.1 0.0 59.5 85.8 40.5 14.2
r=2 dy= dy=0.5 500 99.8 100 0.2 0.0 68.6 89.8 314 10.2
a1= ay=0.3 800 99.7 100 0.3 0.0 68.3 90.9 31.7 9.1
b= by=0.4 1100 99.8 100 0.2 0.0 66.1 88.2 33.9 11.8
r=2 dy= dy=0.5 500 99.9 99.9 0.1 0.1 52.0 80.9 48.0 19.1
a1= as=0.5 800 99.8 99.9 0.2 0.1 51.3 81.2 48.7 18.8
b= by=0.4 1100 99.9 100 0.1 0.0 53.8 82.3 46.2 17.7
r=3 dy= dy=0.6 500 99.6 100 0.4 0.0 61.6 85.7 38.4 14.3
a1= a;=0.5 800 100 100 0.0 0.0 62.8 86.7 374 13.3
b= b,=0.2 1100 100 100 0.0 0.0 64.7 87.3 35.3 12.3
r=3 di= d»=1.0 500 99.7 99.9 0.3 0.1 56.6 81.7 434 18.3
a1= as=0.5 800 99.8 100 0.2 0.0 54.3 81.4 45.7 18.6
b= b,=0.3 1100 99.9 100 0.1 0.0 55.1 82.2 44.9 17.8
r=4 dy= dy=1.0 500 99.9 100 0.1 0.0 53.6 79.7 46.4 20.3
a1= as=0.5 800 99.9 100 0.1 0.0 56.6 83.0 43.4 17.0
b= b,=0.3 1100 100 100 00 00 56.8 82.1 43.2 17.9

NOTE: Percentage of correctly selecting a linear model (one regime) PGARCH(1,1)
model with p = ¢ = 1 based on 1000 simulations. LR test and LM test denote
likelihood ratio test and Lagrange multiplier test respectively.

which can be rewritten as follows

A = <d1 +b0Yq + al)\t—l)I<Y;—1 <r)+ (d1 +b0Y o+ a1)\t—1)I(Yt—1 > )
= (d1 +b0Y o + al)\t—l) (I(Kf—l <r)+ 1Y > 7”))

= (dl + bl}/;_l + al)\t_l .

Table 4.2 shows the percentages of LR test of model (one regime) between 99.6
and 100, and between 99.9 and 100 for a = 0.05,0.01 in all models respectively,
while the percentages of LM test were between 51.3 and 68.6 and between 79.7
and 90.9 for a = 0.05,0.01 respectively. In contrast, the results indicate the
false selection of the two regime models with different parameters in between
31.4 and 48.7 and between 9.1 and 20.3 of the cases for & = 0.05 and a = 0.01
respectively, in the LM values. The LR test and LM test results improve as

sample size increases.
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4.4.2 Experiment study 2: Linear PGARCH (1,1) against
PTGARCH(1,1:2,1)

The purpose of this study is to compare the performance of four information
criteria in case of a linear PGARCH (1,1) model and a nonlinear PTGARCH
(1,1;2,1) model, which has two sub-models formed by PGARCH (1,1) processes.
Different parameters are used in each regime in simulating the data for different
sample sizes (N = 300, 500, 800). The information criteria are used to distinguish
between a linear and a nonlinear model. LR tests of both models are calculated.
Table 4.3 shows the percentages of correct decisions for a linear PGARCH (1,1)

when compared to a nonlinear PTGARCH (1,1;2,1) model. The AIC, BIC, BIC2,

Table 4.3: The percentage of correct model detection for a linear PGARCH (1,1)
model when compared to a PTGARCH (1,1:2,1) model for different
coefficients and sample sizes.

PGARCH Parameter Size AlIC BIC BIC?2 HQIC
d,=0.9 300 85.3 99.6 100 97.5
a1=0.5 500 85.6 99.9 100 97.8
b1=0.2 800 88.8 100 100 99.0
d,=0.8 300 84.9 99.9 100 96.8
a1=0.6 500 85.1 99.8 100 97.8
b1=0.3 800 84.2 100 100 97.4
d,=0.6 300 86.8 99.6 100 97.9
a1=0.5 500 85.3 99.8 100 98.0
b1=0.4 800 89.1 100 100 98.5

NOTE: Percentage of correctly selecting a linear model with p = ¢ = 1 based on
1000 simulations.
and HQIC refer to the model choosing criteria with different penalty terms. In

Tables 4.3 and 4.4, the data were generated from a linear PTGARCH (1,1) model.

The BIC, BIC2 and HQIC perform very well above chance level (i.e, 50%)
(percentages between 96.8 and 100). Clearly, the HQIC and BIC values improve
as sample size increases. The BIC and its variants (BIC2) indicate the correct
model with probability close to 1. The BIC2 results are in agreement with those

reported by Hamaker (2009) for different sample sizes. In light of the above,
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Table 4.4: The percentage of correct model detection for a linear PGARCH (1,1)
model when compared to a nonlinear PTGARCH (1,1;2,1) model for
different threshold values, coefficients and sample sizes.

Parameters  Size L-R Test Average of LR
Regimel n a=0.1 a=0.05 a=0.01 ALR
d,=0.9 300 98.8 99.5 99.9 1.710
a1=0.5 500 99.0 99.6 99.9 1.657
b1=0.2 800 99.2 99.7 100 1.518
d,=0.8 300 98.0 99.0 99.4 1.99
a1=0.6 500 98.7 99.4 99.6 2.024
b1=0.3 800 97.8 99.2 99.5 2.200
d,=0.6 300 99.3 99.9 100 1.651
a1=0.5 500 98.8 99.7 99.9 1.662
by=0.4 800 99.0 99.6 100.0 1.564

NOTE: Percentage of correctly selecting a linear PGARCH model with p =¢ =1
based on 1000 simulations.

we can conclude that the BIC and its variants have a strong performance for
the linear model for different sample sizes. Table 4.4 shows LR tests of different
significance levels (o = 0.1,0.05,0.01) for different sample sizes. The average of
the LR tests is given. The table reports that the LR test improves as sample size
increases for different significance levels. All results support a correctly selected
model.

The results in Tables 4.5 and 4.6 are created for the data generated with six
different PTGARCH (1,1;2,1) processes, when comparing a linear PGARCH (1,1)
to a nonlinear PTGARCH (1,1;2,1) model. Specific coefficients were selected
across the regimes to see how differences in coefficients affect the model selection

results. The six models are expressed respectively as

;

0.9+ 0.3Y;_1 + 0.2)\_1, if Y, <2,
A = (4.13)
0.6 + 0.4Y,_1 + 0.5)\_1, if Y, >2,
0.8 +0.2Y, 1 + 0.7TA\_1, if Y, <2,
0.5+ 0.2Y,_1 + 0.5)\_1, if Y >2,

\
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Table 4.5: The percentage of correct model detection for a nonlinear PTG-
ARCH(1,1:2,1) model when compared to a linear PGARCH(1,1)model
for different threshold values, coefficients and sample sizes.

Threshold Regime 1 Regime 2 Size AIC BIC  BIC2 HQIC
r=2 d1=0.9 dy=0.6 300 90.0 30.7 0.5 66.5
a;=0.2 as=0.5 500 98.3 59.2 4.4 90.8
b1=0.3 by=0.4 800 100 88.3 24.8 99.1
r=2 d,=0.8 dy=0.5 300 89.9 31.8 1.7 69.1
a,=0.7 as=0.5 500 97.8 58.2 5.7 87.5
b1=0.2 by=0.2 800 99.4 84.9 22.5 97.8
r=3 d1=0.5 dy=1.5 300 83.2 21.8 0.4 56.4
a1=0.5 as=0.5 500 97.1 47.4 2.3 85.4
b1=0.3 by=0.3 800 100 79.9 14.3 97.5
r=3 d1=0.9 dy=0.9 300 96.9 53.4 4.8 86.8
a1=0.3 a3=0.6 500 99.8 88.6 20.6 98.5
b1=0.3 by=0.3 800 100 99.5 66.0 100
r=3 d,=0.9 dy=0.9 300 76.6 17.7 0.3 47.8
a1=0.3 ay=0.3 500 91.5 30.1 1.3 68.7
b1=0.3 by=0.6 800 98.6 58.0 5.0 89.1
r=4 dy=1.2 dy=1.2 300 94.8 44.7 3.0 79.6
a1=0.6 as=0.3 500 98.5 74.9 12.6 64.0
b1=0.3 b,=0.3 800 99.9 95.3 45.1 99.6

NOTE: Percentage of correctly selecting two-regime PTGARCH model with
p = q =1 based on 1000 simulations.

)\t:

)\t:

)\t:

)\t:

\

1.5+ 0.3Y,_1 + 0.5\ 1,

1.2 4+0.3Y, 1 + 0.6)_1,
1.2 4+0.3Y,1 + 0.3\_1,

0.5 + 0.3Y;_1 + 0.5\_1,

0.9 +0.3Y,1 + 0.3\_1,
0.9+ 0.3Y,_1 + 0.6\_1,

0.9+ 0.3Y,_1 +0.3\_1,
0.9+ 0.6Y,_1 + 0.3\_1,

if

if

if

if

if

if

if
if

(4.15)
)/;5—1 > 37
Y, <3,
! (4.16)
)/;5—1 > 37
Y, <3,
! (4.17)
}/;5—1 > 37
Y, <4,
e (4.18)
Y, > 4.

The first and second models are models for which the parameters across the

two regimes differ.
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Table 4.6: The percentage of correct model detection for a nonlinear PTGARCH
(1,1:2,1) model when compared to a linear PGARCH (1,1) model for
different threshold values, coefficients and sample sizes.

Parameters Size L-R Test Average of LR
Threshold Regime 1 Regime 2 n a=0.1 a=0.05 a=0.01 ALR
r=2 d,=0.9 dy=0.6 300 54.5 38.2 11.9 7.09
a;=0.2 as=0.5 500 86.3 73.0 41.0 10.74
0,=0.3 by=0.4 800 98.5 96.2 82.0 16.52
r=2 d,=0.8 dy=0.5 300 55.7 39.2 14.2 7.33
a;=0.7 as=0.5 500 82.3 70.6 38.8 10.59
01=0.2 by=0.2 800 97.2 94.1 78.6 15.91
r=2 d=0.5 dy=1.5 300 43.9 27.2 6.6 6.16
a1=0.5 as=0.5 500 78.6 65.0 28.9 9.50
01=0.3 by=0.3 800 96.4 91.9 71.4 14.44
r=3 d,=0.9 dy=0.9 300 76.7 61.3 28.3 9.36
a1=0.3 as=0.6 500 97.5 94.3 75.4 14.99
01=0.3 by=0.3 800 100 100 98.3 23.06
r=3 d,=0.9 dy=0.9 300 37.0 22.7 5.1 5.59
a1=0.3 as=0.3 500 60.4 43.3 16.8 7.76
b1=0.3 by=0.6 800 85.9 4.7 47.0 11.35
r=4 d1=1.2 de=1.2 300 70.6 53.3 22.2 8.57
a1=0.6 as=0.3 500 91.8 83.8 59.1 12.80
b1=0.3 by=0.3 800 99.4 98.2 93.1 19.74
NOTE: Percentage of correctly choice two-regime PTGARCH model with p=¢ =1

based on 1000 simulations.

whereas the intercepts differ across regimes. In the fourth model, the intercepts
and autoregressive coefficients of the past observation (Y;_;) are fixed across the
regimes, while the parameters of the past value of conditional variance (\;_;) are
different, and the value of threshold is 3. The coefficients of the autoregressive
coefficients of the observed values (Y;_;) differ in the fifth model, whereas the
intercepts and coefficients of the conditional variance (\;_;) are fixed across the
regimes. The latter model has different parameters of the past value of condi-
tional variance (A1), whereas the intercepts and autoregressive coefficients of
the observed values (Y; ;) are fixed across the regimes, and the threshold value
is 4.

Table 4.5 reports the percentage of correctly identified models. For all sample
sizes, the AIC performs best. The performance of HQIC seems good when sample
size increases. The Table 4.5 shows that when the intercepts and autoregressive
coefficients of the observed values (Y;_1) are fixed across the regimes, the BIC

criterion is good for large sample sizes. The BIC2 criterion has the worst per-
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formance among all criteria for the complex models.

In Table 4.6, the percentages of LR tests for the threshold nonlinearity are
given for different significance levels (v = 0.1,0.05,0.01). The percentages have
been compared using critical values of X%,a which are 6.25, 7.82, and 11.35 of sig-
nificance levels (o = 0.1,0.05,0.01) respectively. Table 4.6 indicates that the LR
test supports a linearity model when the intercepts and autoregressive coefficients
of the past values of conditional variance (A\;_;) are fixed across the regimes at
a = 0.01, although the data were generated from a nonlinear model, and the rest
of the results support the correct models at the different significance levels. The

average of LR tests is given.

4.4.3 Experiment study 3: Nonlinear PTGARCH (1,1:2,1)

with different coefficients, and different order

The aim of the third experiment study is to define whether the information cri-
teria can distinguish among three different models, namely a linear PGARCH
(1,1) process, a nonlinear PTGARCH (1,1;2,1) process with p = ¢ = 1 and a
nonlinear PTGARCH (1,1;2,1) process with different coefficients. The first (lin-
ear) PGARCH (1,1) model was simulated with d; = 0.7,a; = 0.5,b; = 0.3. That
is, Ay = 0.7+ 0.3Y;_1 + 0.5X\;_1. The first nonlinear model was simulated with
(dy =1.2,a; =0.2,by = 0.3;dy = 0.6,a2 = 0.4,by = 0.5)

1.2+ 0.3Y;1 + 0.2\ _1, if Y, <3,

0.6 4+ 0.5Y;1 + 04X, it Y>3,

and the second nonlinear model has two regimes, but the autoregressive coefficient

of Y;_1 of the first regime disappears. That is,

1.2+ 0.45\_1, if Y, <2
A = (4.20)

0.6 + 0.5Y;_1 + 0.2\,_1, it Y, > 2.
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From the results in Table 4.7, it can be seen that the AIC performs best when
looking at all three models with correct model detection percentages of 83.9 for
a linear model, 74.8 for the first nonlinear PTGARCH (1,1;2,1) model and 53.1
for the second nonlinear PTGARCH (1,1;2,1) model when the sample size is 300.

Obviously, the HQIC performs quite well focusing on the results for all three

Table 4.7: Model selection for a linear GARCH(1,1) model and two different PT-
GARCH(1,1;2,1) models for different sample sizes.
Threshold Regime 1  Regime 2 Size  Model AIC BIC BIC?2 HQIC

r—2 d,—07 a 83.9  99.5 100 96.2
a1=0.5 300 b 8.6 0.2 0.0 0.7
b1 =0.3 c 7.5 0.3 0.0 3.1
a 83.3  99.7 100 96.6
500 b 9.6 0.1 0.0 15
c 7.1 0.2 0.0 1.9
a 87.4  99.9 100 98.4
800 b 8.7 0.1 0.0 0.5
c 3.9 0.0 0.0 1.1
=2 di—1.2 d2—0.6 a 12.1 67.7 95.8 36.0
a1=0.2 a;=0.45 300 b 74.8  11.3 0.1 42.1
b =0.3 b,—0.25 c 13.1 21.0 4.1 21.9
a 2.0 45.4 90.3 12.6
500 b 94.2  37.5 1.3 78.5
c 3.8 17.1 8.4 8.9
a 0.1 15.7 79.1 1.8
800 b 99.3  78.5 9.2 96.6
c 0.6 5.8 11.7 1.6
r—2 di—1.2 dy—0.6 a 20.8 774 98.8 16.7
a1=0.45 a,—0.2 300 b 26.1 2.8 0.0 12.2
by =0.5 c 53.1 19.8 1.2 41.1
a 7.8 55.1 95.3 24.3
500 b 30.4 5.6 0.1 15.2
c 61.8  39.3 4.6 60.5
a 1.6 31.6 82.3 8.1
800 b 34.8 9.2 0.4 20.3
c 63.6  59.2 17.3 71.6

NOTE: Simulation results for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models. All three models were fitted to the data. The correct
model detection percentages are printed in bold. Results are based on 1000
simulations.

models for different sample sizes. In particular, when the sample size is 800, the
percentage of correct model detection for a linear model is 98.4, and 96.6 and
71.6 for the first and second nonlinear PTGARCH (1,1;2,1) model respectively.

The BIC2 does not perform well, as it cannot distinguish between the last two
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nonlinear PTGARCH (1,1;2,1) models, whereas the BIC improves fairly well when
the sample size increases to 800.

Table 4.8 contains three different models, a linear model and two various non-
linear models. The difference between this table and Table 4.7 is in the last model
in which the autoregression coefficient of the past observation (Y;_;) disappeared
in the second regime. That is, the last model in each table contains two regimes
with different order and parameters. These models in Table 4.8 can be expressed

respectively as A\, = 0.9 4+ 0.3Y;_; +0.2\;,_1, and

(

0.94+03Y 1 +02)\ 1, if Yi,<2
0.6 + 0.4Yt_1 + 0.5/\75_17 if Y;g_l > 2,
0.9+ 0.3Y;1 +0.2X;_1, if Y, <2,

M= t—1 t—1 t—1 (4.29)
0.6 +0.2\_1, i Y, > 2.

\

Tables 4.9 and 4.10 contain also three different models, linear and two differ-
ent nonlinear models. The difference between these tables is in the last model
in each table. In Table 4.9 and 4.10, the parameter of the past value of condi-
tional variance (\;—1) has disappeared in the first regime and the second regime

respectively. The last model in Tables 4.9 and 4.10 are expressed respectively as:

1.2+ 0.4Y,_4, if Y, <3,
AN = (4.23)
0.6 4+ 0.6Y;_1 + 0.3)\;_1, if Y, >3,
and
1.540.4Y;_1 + 0.3\ 1, if Y, <3,
AN = (4.24)
1.0+ 0.6Y;_q, if Y1 > 3.

In model (4.23), the autoregressive coefficient of A\;_; of the first regime was
set to zero. It should be noted that the estimation theory developed in Chapter

2 applies for this model when this autoregressive coefficient takes values between

88



Chapter 4 Determination of the Number of Regimes

zero and one. The results in Table 4.11 for threshold value » = 2 and the para-
meters the last model dy = 1.2,a; = 0.45,dy = 0.6,a5 = 0.2,by = 0.5 have been
used also in Table 4.7 last model for comparison proposes. Similarly, for r = 2
and the parameters d; = 0.9,a; = 0.2,by = 0.3,dy = 0.6,a2, = 0.5 the results
have been used in Table 4.8 last model. In addition, results for » = 3 and the
parameters d; = 1.2,b; = 0.4,ds = 0.6, a2 = 0.3, b2 = 0.6 were used in Table 4.9,
and for » = 3 and the parameters d; = 1.5,a, = 0.3,b; = 0.4,dy = 1.0,b5 = 0.6
were used in Table 4.10. Table 4.11 shows two different cases in different models.
In the first case, the coefficients of autoregression of the past observation Y; ;
disappeared, and in the other case, the autoregressive parameters of the past
value )\;_; disappeared. In Table 4.11, it can be concluded that the AIC performs
well in small samples, with correct model detection percentage of 53.1 in the first
model. The other criteria have one scenario in which they perform around chance
level (i.e., 33.3%) or much lower. The HQIC and AIC become best criteria when
the sample size increases. The performance of BIC improves as the sample size
increases from 300 to 800 in the current framework. In contrast, in the second
case, the table shows that the HQIC performs best when looking at the two dif-
ferent models with correct model detection percentage of 54.4 in the first model,
and the performance of BIC and HQIC criteria gets best as the sample size in-
creases. Moreover, the performance of all four information criteria increases as
the sample size increases. In both cases, the BIC2 performs worse in small and

moderate samples.
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Table 4.8: Model selection for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models for sample sizes.

Threshold Regime 1 Regime 2 Size  Model  AIC BIC  BIC2 HQIC

r=2 4,=0.9 a 835 99.3 100  96.6
0,=0.2 300 b 8.6 0.3 0.0 1.3
b=0.3 c 7.9 0.4 0.0 2.1
a 829 997 100  97.1
500 b 9.0 0.3 0.0 0.7
c 8.1 0.0 0.0 2.2
a 86.7 99.9 100  97.9
800 b 8.0 0.1 0.0 0.9
c 5.3 0.0 0.0 1.2
=2 4,—0.9 dy—0.6 a 9.6 69.3 996  33.8
4,=0.2 =05 300 b 90.1 294 0.3 65.2
b=0.3 by=0.4 c 0.3 1.3 0.1 1.0
a 0.1 408 953 87
500 b 98.5  59.1 4.7 91.3
c 0.0 0.1 0.0 0.0
a 0.0 112 783 0.7
800 b 100 88.8 217  99.3
c 0.0 0.0 0.0 0.0
r=2 4,=0.9 dy—0.6 a 127 635 961 341
0,=0.2 ;=05 300 b 378 44 0.0 176
b=0.3 c 495 321 3.9 48.3
a 3.1 378 860 134
50 b 35.7 5.5 0.0 19.2
c 612 56.7 140 674
a 0.5 113 628 23
800 b 383 103 08 21.5

c 61.2 78.4 36.4 76.2

NOTE: Simulation results for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models. The correct model detection percentages are printed in
bold. Results are based on 1000 simulations.
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Table 4.9: Model selection for a linear GARCH(1,1) model and two different PT-
GARCH(1,1;2,1) model for different sample sizes.

Threshold Regime 1 Regime 2 Size  Model AlIC BIC BIC?2 HQIC
r=2 d1=0.3 a 86.8 99.9 100 98.1
a;=0.5 300 b 12.7 0.1 0.0 1.8
b1=0.4 c 0.5 0.0 0.0 0.1
a 88.9 100 100 98.8
500 b 11.1 0.0 0.0 1.2
c 0.0 0.0 0.0 0.0
a 87.5 100 100 99.0
800 b 12.5 0.0 0.0 1.0
c 0.0 0.0 0.0 0.0
r=3 d;=0.9 ds=0.5 a 23.3 82.2 99.3 53.1
a;=0.3 as=0.3 300 b 70.7 11.0 0.2 38.9
d1=0.3 by=0.6 c 6.0 6.8 0.5 8.0
a 6.8 65.0 97.6 27.6
500 b 90.9 28.6 0.8 68.1
c 2.3 6.4 1.6 4.1
a 0.7 34.3 92.8 7.4
800 b 99.2 64.1 5.1 91.8
¢ 0.1 1.6 2.1 0.8
r=3 di=1.2 d2=0.6 a 1.5 28.5 78.6 7.8
b1=0.4 a2=0.3 300 b 51.9 23.4 2.2 37.8
by=0.6 ¢ 46.6 48.1 19.2 54.4
a 0.1 4.0 39.7 0.3
500 b 50.4 33.1 11.2 40.5
c 49.3 62.9 49.1 59.2
a 0.0 3.9 41.8 0.3
800 b 50.4 32.7 11.2 39.8
c 49.4 63.4 47.0 59.9

NOTE: Simulation results for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models. The correct model detection percentages are printed in
bold. Results are based on 1000 simulations.
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Table 4.10: Model selection for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models for different sample sizes.

Threshold Regime 1 Regime 2 Size  Model  AIC BIC  BIC2 HQIC

=3 d=1.0 a 81.7 995 100  95.8
4;=0.4 300 b 8.7 0.0 0.0 1.0
b=0.3 c 9.6 0.5 0.0 3.2
a 84.8 997 100  97.1
500 b 0.7 0.0 0.0 1.0
c 5.5 0.3 0.0 1.9
a 88.4 100 100  98.7
800 b 9.3 0.0 0.0 0.6
c 2.3 0.0 0.0 0.7
=2 4,—023 dy—0.5 a 6.7 5.7 955 231
=07 =05 300 b 59.2 18.2 0.6 40.2
b =0.2 by=0.2 c 341 251 39 36.7
a 15 3.0 855 6.7
500 b 68.6 253 2.4 52.0
c 209 437 121 413
a 0.2 7.9 5.2 1.1
800 b 81.9 429 54 68.8
c 179 492 354 301
=3 d=15 dy=1.0 a 158 680 962  36.1
a1-0.3 by=06 300 b 280 25 0.1 10.9
b =0.4 c 56.2 295 3.7 53.0
a 2.1 406 872 120
500 b 275 25 0.2 13.0
c 704 569 126  75.0
a 0.4 125 671 29
800 b 301 3.3 0.1 11.2

c 69.5 84.2 32.8 85.9

NOTE: Simulation results for a linear GARCH (1,1) model and two different
PTGARCH (1,1;2,1) models. The correct model detection percentages are printed in
bold. Results are based on 1000 simulations.
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Table 4.11: Model selection percentage for different nonlinear PTG-
ARCH(1,1;2,1) models for different sample sizes.

Threshold Regime 1 Regime 2 Size S AIC BIC  BIC2 HQIC

r—2 dy—1.2 dy—0.6 a 208 774 988 467
a,—0.45 =02 300 b 261 28 0.0 12.2

by—0.5 c 531 198 1.2 41.1

a 78 551 953 24.3

500 b 304 5.6 0.1 15.2

c 618 393 4.6 60.5

a 16 316 823 81

800 b 348 9.2 0.4 20.3

c 636 592 17.3 716

r—2 d,—0.9 dy,—0.6 a 127 635 961 341
a,-0.2 a,=0.5 300 b 378 44 0.0 17.6

b—0.3 c 495 321 3.9 48.3

a 31 378 860 134

500 b 357 55 0.0 19.2

¢ 612 567 140 67.4

a 05 113 628 23

800 b 383 103 08 21.5

c 612 784 364  76.2

r—3 d—1.2 d,—0.6 a L5 285 786 738
by—0.4 =03 300 b 519 234 22 37.8

b,—0.6 c 466 481 19.2 544

a 01 4.0 397 0.3

50 b 504 331 112 405

c 493 629  49.1  59.2

a 0.0 3.9 418 03

800 b 504 327 112 398

c 494 634 470  59.9

r—3 d—15 dy—1.0 a 158 680 962  36.1
0.3 b,—0.6 300 b 280 25 0.1 10.9

by—0.4 ¢ 562 295 3.7 53.0

a 21 406 872 120

500 b 275 25 0.2 13.0

c 704 569 12.6  75.0

a 04 125 671 29

800 b 301 33 0.1 11.2

c 69.5 84.2 32.8 85.9

NOTE: Simulation results for two-regime PTGARCH (1,1;2,1) model with different
orders (p # ¢), when fitting a linear PGARCH (1,1) model (s = 1), a
PTGARCH(1,1;2,1) model (s = 2) with (p = ¢ =1) and a PTGARCH (1,1;2,1) model
(s = 3) with different orders (p # ¢). The correct model detection percentages are
printed in bold. Results are based on 1000 simulations.
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4.4.4 Experiment study 4: Nonlinear PTGARCH (1,1:3,1)

with different coefficients

The main purpose of this experiment is distinguishing between two nonlinear
PTGARCH (1,1;3,1) models using the information criteria. The first model was
simulated with d; = 3.0,a; = 0.4,0; = 0.2;dy = 1.5,a, = 0.2,by = 0.3,;d3 =
0.7,a3 = 0.3,b3 = 0.4:

3.04 0.2, 1 + 0.4\, if Y, <3,
A =19 1.5+ 0.3Y;1 +0.2\_1, if 3<Y,_,<7, (4.25)
0.7+ 0.4Y,_; + 0.3)\_1, if Y, >7,

and the second model was simulated with d; = 2.5,a; = 0.39,b; = 0.6;dy =

0.6,a3 = 0.3,by = 0.45;d3 = 1.0, a3 = 0.2, by = 0.35:

2.5+ 0.6Y;_1 + 0.39\_1, if Y, <3,
At =14 0.6+ 0.45Y;_1 + 0.3\_1, if 3<Y,,<7, (4.26)
1.040.35Y,_; + 0.2)\;_1, if Y, >T7.

The threshold values of both models are given (r; = 3,7 = 7). In Table 4.12
the outcomes are given for the data generated with two different nonlinear PT-
GARCH (1,1:3,1) processes, when comparing a nonlinear PTGARCH (1,1:2,1)
model to a nonlincar PTGARCH (1,1:3,1) model. The threshold value of the
nonlinear PTGARCH (1,1:2,1) model is given (r = 4) and then the remaining
parameters are estimated. From the outcomes in Table 4.12, it can be concluded
that AIC performs best when focusing on the small size (N=200, 300), with cor-
rect model detection percentages of 44.2% for the first model and 68.6% for the
second model. The other criteria perform at a much lower chance level 50.0% or
lower. In contrast, from the outcomes for large sample size (N=800), it is obvious

that the AIC, the BIC and the HQIC have a tendency to outperform and their
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performance gets best when the sample sizes increases.

In Table 4.13, the results are given for three-regime PTGARCH (1,1:3,1) when
fitting a linear PGARCH (1,1) model (s=1), a PTGARCH (1,1:2,1) model (s=2)
and a PTGARCH (1,1:3,1) model with correct model detection percentages. It
can be seen that the AIC and HQIC perform well above chance level (i.e, 33.3%)
with percentages between 42.8 and 97.5 for moderate to large sample size. The

measures increase as sample size increases.
Table 4.12: The percentage of correct model detection for a nonlinear PT-
GARCH(1,1:3,1) model when compared to a nonlinear PTG-

ARCH(1,1:2,1) model for different threshold values, coefficients and
sample sizes.

Threshold  Regime 1 Regime2 Regimed  Size  AIC  BIC' BIC? HOQIC
r=4 h=3 d=lh o =0T A0 42 82 01 23
=3 =04 =02 a3 30 62 03 04 49
=T =02 =03 h=04 W0 85 40 41 TS

00 972 196 U2 %6

r=4 G=25 =06 =10 300 686 B3 23 5
=9 0=03  o=03 a=02 M0 899 By 9T Tl
ry=l =06 =04 =035 K0 BT W7 Hd 0

00 98 %8 8T 9T

NOTE: Percentage of correctly choice three-regime PTGARCH models with
p = q = 1 based on 1000 simulations.
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Table 4.13: Model selection percentages for a nonlinear PTGARCH(1,1;3,1)model
for different sample sizes.

Threshold Regime I Regime 2 Regime3 ~ Size s AIC ~ BIC  BIC2  HQIC
r=4 4G=30  dy=15  dy=0T7 2.4 22 81 114
rn=3 u=04  a=02  a3=03 200 M4 614 139 663
ry=T h=02  b,=03 =04 432 64 00 223
0.3 127 721 18
3.5 704 217 5hd

300
642 165 0.2 42.8
0.0 0.7 264 01
500 115 512 692 242
88,5 481 44 75.7
0.0 0.0 2.5 0.0
800 2.5 170 711 5.9

975 830 264 941
8.9 674 B2 278
H1 48 18 448
46.0 7.8 0.0 244
14 493 9%8 138

r=4 d1:2.5 d2:0.6 d3:1.0
T1:3 (11:0.39 a2:0.3 G3:0.2 200
7’2:7 b1:0.6 62:045 b3:035

300 40 285 26 379
64.6 222 0.6 48.3
0.0 9.4 845 0.7

500 42 145 83 6.6
9%8 761 7.2 92.7
0.0 1.2 402 01

800 41 132 182 64

CO DO M QO DO M O DD O DD DD DD DD — O DD

95.9 8.6 41.6  93.5

NOTE: Percentages of correctly selected three-regime PTGARCH (1,1;3,1) models
with p = g=1. The simulation results for three-regime PTGARCH process when
fitting a linear PGARCH (1,1) model (s=1), a nonlinear PTGARCH (1,1;2,1) model
(s=2) and nonlinear PTGARCH (1,1;3,1) model (s=3). The correct model detection
percentages are printed in bold. Results are based on 1000 simulations.
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4.5 A real data example

As an example of application, we study the real data (as described in section
(3.1)), to illustrate our methodology. Figure 4.2 shows the time series of the
data and the sample autocorrelation function of the transaction series. The plot
reports that there is dependence between the transactions. Table 4.14 shows the
descriptive statistics for the number of transactions. In this data example, we

have determined the maximum time delay (d), which is equal to 6.

0 100 200 300 400 500 600

Number of transactions per minute
0 10 20 30

Time

M

T T T 1
0o 10 20 30

Frequency
60 100

20

Number of transactions

0.8
I I T |

ACF
0.4

AL b b b by

T T T T T T
0 5 10 15 20 25

Lag

Figure 4.2: From top to bottom: Time plot of the number of transactions per
minute for the stock Ericsson B in the period July 2-22, 2002, his-
togram of the observation numbers and the sample autocorrelation
function.

In this example, we try to determine the number of regimes for TGARCH

modelling. To do this, we compute the maximum likelihood estimates of the
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Table 4.14: Descriptive statistics for transaction data.
N Lower 25% Median Mean 75% Upper Var

650 0.00 6.00 9.00 10.08 13.00 37.00 31.59247

parameters d;, a;, b;,7 = 1,2, 3 and calculate the normalized information criteria

which are defined by

NIC(r,d) = 1)

N-Ng’

where Ny = max(d, L), where d = 1,2,..., D, and L is the maximum order for
each of the s piecewise linear GARCH models, to determine the threshold value
and time delay.

Table 4.15 reports the estimated parameters for the TGARCH model when the
model has two regimes (i.e. m = 2). Table 4.15 shows the possible threshold

values (r) between 5 and 13, and time delay (d).

Table 4.15: Normalized information criteria of the PTGARCH (1,1;2,d) model
fitted to the transactions’ number for 1 < d < 6.

Suggested time Possible threshold Information criteria The estimated parameters
delay (d) values (r) AIC BIC BIC2 HQIC  d; a b dy a b
2 5 -26.4600 -26.4195 -26.3610 -26.4443 1.764e-07 0.9757 1.991e-02 0.4581 0.7855 0.1727
2 6 -26.4689 -26.4284 -26.3699 -26.4532 2.482e-05 0.9696 1.048¢-02 0.6673 0.7765 0.1682
| 7 -26.4727-26.4323 -26.3739 -26.4570 3.879¢-01 0.8949 1.951e-07 0.2915 0.7764 0.1892
2 8 -26.4585 -26.4180 -26.3596 -26.4428 8.175e-05 0.9043 9.286e-02 0.7948 0.7528 0.1789
2 9 -26.4870 -26.4465 -26.3880 -26.4713 1.712¢-01 0.9122 4.899%-02 1.5881 0.6909 0.1884
2 10 -26.4903 -26.4498 -26.3913 -26.4746 3.767e-02 0.9224 6.833e-02 1.3712 0.6645 0.2272
2 11 -26.4939 -26.4535 -26.3950 -26.4783 4.152e-02 0.9156 7.607e-02 1.4155 0.6540 0.2398
3 12 -26.5005 -26.4600 -26.4014 -26.4848 1.264e-01 0.9079 6.960e-02 2.3965 0.5826 0.2456
2 13 -26.4524 -26.4120 -26.3535 -26.4368 1.906e-02 0.8692 1.369-01 0.7452 0.6682 0.2580

NOTE: The columns from three to six report the normalized information criteria.
The other columns report the estimated parameters for the TGARCH model fitted to
the transactions’ number.

The normalized information criteria are smallest when r = 12 and d = 3.
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Therefore, the suggested TGARCH model is:

. 0.1264 + 0.0696Y;_1 4+ 0.9079\,_1, if Y, 5<12,

o 2.3965 + 0.2456Y;_1 + 0.5826),_1, if Y, 3> 12
Tables 4.16 and 4.17 report autoregressive coefficients, the possible threshold
value and time delay for the TGARCH model when the coefficients of autore-
gression of the past values (\;_;) disappeared (i.e. a; = 0,7 = 1,2) respectively.
Table 4.16 shows the possible threshold values (r) between 5 and 13, and time
delay (d).

Table 4.16: Normalized information criteria of the PTGARCH (1,1;2,d) model
fitted to the transactions’ number for 1 < d < 6.

Suggested time Possible threshold Information criteria The estimated parameters
delay (d) values (r) AIC BIC BIC2 HQIC dy b dy ag by
3 5 -26.3509-26.3171 -26.2683 -26.3378 5.6678 0.2458 1.0745 0.7019 0.2039
5 6 -26.3437-26.3098 -26.2608 -26.3305 5.5252 0.2501 1.6093 0.6822 0.1961
4 7 -26.2528 -26.2189 -26.1701 -26.2397 5.7455 0.2932 2.0206 0.5987 0.2381
3 8 -26.2315-26.1977-26.1489 -26.2184 5.1944 0.3594 2.6186 0.5807 0.2160
4 9 -26.2294 -26.1955 -26.1467 -26.2162 5.5087 0.3298 3.2982 0.4844 0.2778
2 10 -26.2127-26.1790 -26.1302 -26.1996 6.4593 0.2472 1.1533 0.6443 0.2670
3 11 -26.2166 -26.1828 -26.1340 -26.2035 5.6866 0.3391 3.8495 0.4980 0.2384
4 12 -26.1985 -26.1646 -26.1158 -26.1854 5.7283 0.3510 3.2515 0.5697 0.2388
3 13 -26.1901 -26.1563 -26.1075-26.1770 5.7304 0.3540 4.3740 0.4583 0.2923

NOTE: The columns from three to six report the normalized information criteria.
The other columns report the estimated parameters for the TGARCH model fitted to
the transactions’ number.

In Table 4.16 the information criteria are smallest when » = 5 and d = 3.

Therefore, the possible TGARCH model can be expressed as:

5 5.6678 + 0.2458Y;_1, if Y, 3<5,
t= )
1.0745 + 0.2039Y;—1 + 0.7019A,_1, if Y,3>5.

In contrast, the smallest values of the different information criteria in Table
4.17 were reached when r = 12, d = 3. Therefore, the estimated TGARCH model

18:
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Table 4.17: Normalized information criteria of the PTGARCH (1,1;2,d) model
fitted to the transactions’ number for 1 < d < 6.

Suggested time Possible threshold Information criteria The estimated parameters
delay(d) values (r) AIC BIC BIC2 HQIC di o b dy by
4 H -26.1129-26.0790 -26.0302 -26.0998 2.8835 0.3799 0.15270 5.7257 0.4741
H 6 -26.1396 -26.1057 -26.0568 -26.1265 1.3511 0.5835 0.12150 5.9724 0.4750
H 7 -26.1974-26.1635 -26.1146 -26.1843 1.1859 0.6285 0.15430 6.4413 0.4218
H 8 -26.2528 -26.2189 -26.1699 -26.2396 0.3450 0.7604 0.14560 6.3821 0.4553
3 9 -26.3046 -26.2708 -26.2220 -26.2915 0.8092 0.7347 0.11840 7.8115 0.3633
2 10 -26.3016 -26.2679 -26.2192 -26.2885 0.2575 0.8929 0.05698 6.3640 0.5209
3 11 -26.3398 -26.3061 -26.2573 -26.3268 0.2756 0.8412 0.10960 7.5620 0.3698
3 12 -26.3991 -26.3653 -26.3166 -26.3860 0.1455 0.8633 0.11140 7.1071 0.4597
3 13 -26.3337-26.2999 -26.2511 -26.3206 0.5543 0.7706 0.15740 6.7477 0.5416

NOTE: The columns from three to six report the normalized information criteria.
The other columns report the estimated parameters for the TGARCH model fitted to
the transactions’ number.

0.1455 + 0.11140Y;_; + 0.8633)\,_1, if Y5 <12,
7.1071 4+ 0.4597Y,_, if Y, 5> 12,

Tables 4.18 and 4.19 show the parameters to be estimated (d;, a;, b;,r and
d,i = 1,2) for the TGARCH model when the autoregressive parameters of the
past observation (Y;_;) disappeared (i.e. b; = 0,7 = 1,2) respectively. In Table
4.18 the values of information criteria support that the best choice of the threshold
value and time delay are 9 and 2 respectively. Therefore, the suggested TGARCH

model for the example data can be expressed as:

N 0.27540 4 0.9363)\,_1, if Y, 5<09,
t — R
2.1554 + 0.1906Y;_1 + 0.6489\;_1, it Y o>09.
In contrast, according to the information criteria in Table 4.19, the suggested

threshold value and the time delay are 13 and 6 respectively. Therefore, the
possible TGARCH model is:
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Chapter 4 Determination of the Number of Regimes

Table 4.18: Normalized information criteria of the PTGARCH(1,1;2,d) model fit-
ted to the transactions’ number for 1 < d < 6.

Suggested time Possible threshold Information criteria The estimated parameters
delay(d) values (r) AIC BIC BIC2 HQIC & o dy a9 by

H -26.4597 -26.4260 -26.3774 -26.4467 0.47620 0.8723 0.2461 0.7850 0.1847
-26.4707 -26.4370 -26.3883 -26.4576 0.02218 0.9734 0.7869 0.7692 0.1652
-26.4743 -26.4407 -26.3920 -26.4613 0.44670 0.8843 0.5642 0.7814 0.1639
-26.4768 -26.4431 -26.3945 -26.4637 0.56100 0.8776 0.8072 0.7763 0.1511
-26.4816 -26.4478 -26.3991 -26.4685 0.27540 0.9363 2.1554 0.6489 0.1906
10 -26.4735 -26.4398 -26.3911 -26.4604 0.18850 0.9539 2.3395 0.5886 0.2374
11 -26.4659 -26.4322 -26.3835 -26.4528 0.21180 0.9524 2.4534 0.5893 0.2425
12 -26.4645 -26.4307 -26.3819 -26.4514 0.18360 0.9599 3.5053 0.5049 0.2461
13 -26.3094 -26.2757 -26.2269 -26.2964 0.57210 0.9125 3.7557 0.4700 0.3005

NOTE: The columns from three to six report the normalized information criteria.
The other columns report the estimated parameters for the TGARCH model fitted to
the transactions’ number.

O oo —J O

1
2
1
1
2
2
2
3
3

; 1.0130 + 0.2302Y,_ + 0.6415),_1, if Y, <13,
1.7387 + 0.9067\;_1, if Y, > 13.

Table 4.20 reports the estimated autoregressive coefficients, the corresponding
threshold values and time delay for the TGARCH model when the model has
three regimes (s = 3). The table shows that the values of normalized criteria are

smallest when 1 = 7,7y = 12 and d = 3.

Therefore, the estimated TGARCH model is:

0.1384 + 0.02834Y;_; + 0.9340\;_1, if Y, <T,
A=< 0.3768 + 0.07388Y;_; + 0.8881),_1, if 7<Y, 5<12,
2.4144 + 0.2380Y;_1 4+ 0.5901\,_1, if Y5> 12.

Table 4.21 presents the six estimated TGARCH models in Tables 4.15, 4.16, 4.17,

4.18, 4.19 and 4.20, and one linear model. The table reports the mean square of
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Table 4.19: Normalized information criteria of the PTGARCH(1,1;2,d) model fit-
ted to the transactions’ number for 1 < d < 6.

Suggested time Possible threshold Information criteria The estimated parameters
delay (d) values (r) AIC BIC BIC2 HQIC d o b &y
b ) -26.1311-26.0972 -26.0483 -26.1180 1.1035 0.4490 3.409-01 1.4928 0.8818
2 0 -26.1784-26.1446 -26.0959 -26.1653 1.0656 0.7374 1.020e-02 2.1445 0.8392
1 T -26.2797 -26.2460 -26.1973 -26.2666 0.5063 0.8520 1.5326-08 2.1542 (.8440
6 8 -26.2498 -26.2158 -26.1668 -26.2366 0.8720 0.6316 2.042e-01 2.6114 0.8066
1 9 -26.3835 -26.3498 -26.3011 -26.3704 0.7435 0.8366 1.635¢-02 2.8784 (.8085
1 10 -26.3684 -26.3347 -26.2860 -26.3553 0.4482 0.8222 9.909¢-02 3.0455 0.8052
2 11 -26.3375 -26.3038 -26.2551 -26.3244 0.6567 0.8686 1.103-02 3.5807 0.7727
6 12 -26.3695 -26.3356 -26.2866 -26.3564 0.6791 0.7077 1.911e-01 2.9345 0.8144
6 13 -26.3934 -26.3594 -26.3104 -26.3802 1.0130 0.6415 2.302¢-01 1.7387 0.9067

NOTE: The columns from three to six report the normalized information criteria.
The other columns report the estimated parameters for the TGARCH model fitted to
the transactions’ number.

the Pearson residuals (MSPR) for each model. According to the results in Table
4.21 the data follows a nonlinear model. In particular, the values of the average
of LM test for the model which have two regimes are very large compared to the
value of the average of LM test for the linear model, and also the mean square error
of the Pearson residuals are slightly smallest than the corresponding mean square
error of the Pearson residuals obtained from the linear model fit. In addition, all
experiment studies have shown that the BIC2 has a strong performance for the
data generated from linear model in different sample sizes with probability one.
However, the values of BIC2 are close to -26.40 when s = 2 and s = 2,b; = 0
compared with -26.36 for the linear model (s = 1). In addition, the normalized
AIC value for the linear model was clearly larger than those for the nonlinear
models (s = 2,s = 2)b; = 0 and s = 3) (Al-Awadhi and Jolliffe 1998). An
important issue in Table 4.21 is how to determine the appropriate number of
regimes (s). In Table 4.21, there are two models which have the autoregressive
coefficients of the past value (\;_;) disappeared. When a; = 0, the normalized

AIC value is equal to -26.3509, in comparison to -26.3991 when ay = 0. Therefore,
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Chapter 4 Determination of the Number of Regimes

we select the model which has the smallest of the two values of AIC. A similar
thing happens when the parameters of autoregression of the past observation Y;_;
disappear. The smallest value of AIC is -26.4816 when b; = 0. The Table 4.21

can be reduced to the four estimated models as in Table 4.22.
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Chapter 4 Determination of the Number of Regimes

Table 4.22 shows four different TGARCH models. The simulation studies show
that AIC, BIC and HQIC perform quite well when one of the autoregressive
parameters disappears. Therefore, the values of AIC, BIC and HQIC are close
to -26.482, -26.45 and -26.469 respectively, for the model s = 2,b; = 0. When
s = 2,a, = 0, the values of the three criteria are -26.40, -26.37 and -26.39

respectively. Hence, the model s = 2,b; = 0 may be better.

Table 4.23 reports three different TGARCH models. The simulation results
report that the AIC and HQIC are the most appropriate measures to use for
nonlinear models s = 2 and s = 2,b; = 0. However, the performance of AIC
and HQIC criteria is very high for the nonlinear model (s = 2) and good for
nonlinear model (s = 2,b; = 0). The NAIC and NBIC values for the nonlinear
model (s = 2) are smaller than those for nonlinear model (s = 2,b; = 0). When
(s = 2), the coefficient of autoregression of the past observation (Y;_1) in the first
regime is 0.0696. We can apply an approximate likelihood ratio test (LR) to test
Hy : by = 0. In this case, the test statistic is 11.85 and the corresponding p-value
of the test close to 0.001. Hence, there is clearly significant benefit at the 5%
level of significance in using the bigger model (s = 2). In light of the above, the

nonlinear model (s = 2) might be better than the nonlinear model s = 2,b; = 0.

The simulation results to select the number of regimes in different sample sizes
show that the AIC and HQIC should be preferred for the nonlinear model (s = 2
and s = 3). The value of AIC in both models is close to -26.50 and the values of
HQIC criteria close to -26.48 and -26.47, for nonlinear models s = 2 and s = 3
respectively. When s = 2, the value of HQIC is slightly smaller than that of s = 3.
In addition, the value of MSEPR of nonlinear model (s = 2) is slightly smaller
than the corresponding MSEPR obtained from the nonlinear (s = 3) model fit.
Therefore, there is no point to select the nonlinear model (s = 3). Hence, the

estimated model of the number of transactions per minute for July 2, 2002 could
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Chapter 4 Determination of the Number of Regimes

be nonlinear model (s = 2). The estimated model can be expressed as

; 0.1264 + 0.0696Y;_1 -+ 0.9079\,_1, if Yy <12,
2.3965 + 0.2456Y;_1 + 0.5826\,_1, if Y,y > 12.

Table 4.24 summarizes the results of the estimated parameters for nonlinear model

(s = 2). Table 4.24 shows that the relatively large standard error of the para-

Table 4.24: The estimated parameters for model (3.1).
Model Threshold value time delay First regime, n; =467  Second regime, ny =182

Parameters T d d; a b dy ay by
Estimated value 12 3 0.1264 0.9079 0.0696  2.3965 0.5826  0.2456
Standard error 0.1135 0.0236  0.0184  0.4850 0.0507  0.0315

meters in the second regime reflect that there are few observations in that regime
comparing with the first regime. The plot 4.3 shows the time series of the num-
ber of transactions in the period July 2-22, 2002. The first regime (blue line) has
values from 0 to 12, while the second regime (red line) takes values above 12.
There are 467 and 182 observations in the first and second regime respectively.
The plot 4.4 shows the sequence of residuals and their cumulative periodogram
plot, and the autocorrelation function of the Pearson residuals for the transac-
tion data. The cumulative periodogram plot obviously indicates that the Pearson
residuals obtained after the application of the nonlinear model (s = 2) do not
deviate from a white noise sequence. The plot of the autocorrelation function

reveals no significant serial correlation in the sequence of residuals.
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Figure 4.3: Time plot of two-regime of the number of transactions per minute for
the stock Ericsson B in the period July 2-22, 2002. The green dotted
line is the threshold value, the blue and the red lines correspond to
the observations in the first and the second regime respectively.
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Figure 4.4: Pearson residuals (top) and their cumulative periodogram plot
(middle), and the sample autocorrelation function (bottom) for the
nonlinear model fitted to the number of transactions.
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4.6 Summary

A PTGARCH model is a type of time series model that may be of use in various
fields such as social and scientific research that focuses on processes. Many of
theses processes are characterized by some type of switches between two or more
sub-models, where switching is based on the threshold variable (Y;_q).

The main purpose in PTGARCH modelling is how to determine the number of
regimes. There are many ways to determine the number of regimes, one of them
is by using various information criteria. However, there is no criterion which can
be considered as the most suitable for this goal.

In this project, the performance of four information criteria was compared
in the situation of defining the number of regimes. This study is an extension
of existing studies by Gonzalo and Pitarakis (2002) who focused on moderate
to large sample sizes, Strikholm and Terésvirta (2006) who considered small to
moderate sample sizes, and Hamaker (2009) who used also small to moderate
sample sizes.

The threshold nonlinearity tests (LM test and LR test) are investigated to define
the type of model, either one regime (linear ) or more than one regime (nonlinear).
If the model has one regime, it can be concluded that the BIC and BIC2 perform
well with correct model detection percentages of close to 100%. In contrast,
for nonlinear model with order (p = ¢ = 1), the AIC or HQIC is suggested,
whereas when the autoregressive coefficients of the past observation (Y;_;) have
disappeared, (b; = 0,7 = 1,2) (with different orders), it can be seen that in
small sample sizes the AIC is the most suitable criterion, and HQIC is the most
appropriate choice for large sample sizes. In addition, when the autoregressive
parameters of the past values (\;_1) disappeared, (a; = 0,7 = 1, 1), the BIC and
HQIC could be preferred. To sum up, the Table 4.25 shows the criteria that are
appropriate measures for selecting the number of regimes in different sample sizes.

Moreover, a real data example is given. So this chapter provides some practical
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methods for determining the number of regimes of a PTGARCH model.

Table 4.25: The performance of diverse information criteria for selecting the num-
ber of regimes in different sample sizes.

Experiment Sample AIC BIC BIC2 HQIC
Studies Sizes |Linear Nonlinear|Linear Nonlinear|Linear Nonlinear|Linear Nonlinear
n (s=1) (s=2) |(s=1) (s=2) |(s=1) (s=2) |(s=1) (s=2)
300 * % * £
2 500 * % * % *
800 * * * * *
N by or ay or by or ay or by or ay or by or a or
62:0 (12:0 b2:O (1,220 b2=0 (1220 bQZO (12:0
300 * *
3 500 * k * * *
800 * * * *
N s—3 s=3 s—3 s—=3
200,300 *
4 500 * *
800 * * *

NOTE: * denotes the criteria which should be preferred, and s denotes the number of
regimes.
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Chapter 5

Simultaneous Determination of
the Time Delay and the
Threshold Value

5.1 Introduction

In the previous chapters, the parameter estimation and the determination of
the threshold value r of the PTGARCH model, as well as the performance of
various information criteria for the determination of the number of regimes were
investigated in the cases of different sample sizes. The main goal of the present
chapter is to complete the general framework of the PTGARCH model. We
discuss how to choose a suitable delay parameter d as well as how to determine the
appropriate threshold value and the delay parameter together when the number
of regimes is given. To this end, we carry out some simulations and real data

analysis.
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5.2 Determination of the delay parameter d

Many studies have investigated the issue of determining the delay parameter d
in a TAR model using information criteria such as AIC, BIC and test statistics
such as the F'—statistic in different sample sizes. Given the parameters of a TAR
model, the value of threshold and the order of the AR process in each regime, Tong
and Lim (1980) used the AIC value to determine the delay parameter d. Tsay
(1989) suggested a different procedure to identify the delay parameter d which
depends on the order of the AR model, by using the F—statistic before locating
threshold values. Aide et al (1988), and Al-Awadhi and Jolliffe (1998) used the
normalized value of AIC. Both studies have been used to describe and predict
different phenomena such as Karst spring flow and climatic data respectively.
Wong and Li (1998) and also De Gooijer (2001) concentrated on determining the
delay parameter d and the order of the AR model in each regime by using the
small sample corrected AIC, which was developed for TAR models.

In this part, we run some simulation studies to identify the delay parameter d
for the PTGARCH models. We consider a two-regime (s = 2) model defined by
(3.1). To determine the delay parameter d, we use normalized information criteria
(NIC) such as NIAC, NIBC and NIHQC, which are related to the information
criteria. For example, Al-Awadhi and Jolliffe (1998) defined a NIAC as follows

Niac = 4@
NIAC(d) = min{NIAC(d)}, (5.1)

where N — d is the effective sample size and d is the estimation of the delay
parameter.
The main purpose here is to determine the delay parameter d and all the

parameters of the model defined by (3.1) are given. For illustration, we carry

out many simulations for the model defined by (3.1). The PTGARCH (1,1;2,d)
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models that were used to generate the data are

0.4+ 0.3Y; 1 +0.5M_1, it Y, <2,

0.5+ 0.4Y;_; + 0.3\, if Y g>2,
and

0.8+ 0.3Y,_1 + 0.5\_1, if Y,_,<3,

0.5+ 0.3Y;_1 + 0~5/\t—17 if Yi_qg> 3,

in Table 5.1 the results are obtained by averaging out of the smallest AIC, BIC
and HQIC values for all simulations with different delay parameters (i.e. d =
1,2,3,4). Table 5.1 illustrates the relative rates of correct choices of the delay
parameter d and the average of smallest information criteria (AIC, BIC and
HQIC) values for the model described by equations (5.2) and (5.3). Clearly,
the results show that the relative rates of correct choices improve as the sample
size increases from 1000 to 2000. Table 5.1 reports the percentages of correctly
selected delay parameters d, which improve when the sample size increases. The
BIC values decrease when sample sizes increases.

Table 5.2 contains the outcomes for the data that were generated with the
PTGARCH (1,1;2,d,r) model. To identify how the difference in the delay para-
meter affects the model selection results, we fix a specific threshold value. That
is, the models have the same threshold value (r = 2), while the delay parameters
differ (1 < d < 4). The models are given by (5.2). Table 5.2 shows the percent-
ages of correct choices for each possible value of the delay parameter (1 < d < 4).
The percentages of suggested delay parameter improve significantly when the
sample size increases. The percentage of false selection of the delay parameter
d decreases when the sample size increases. In contrast, the percentage of the
rest of the possible values of the delay parameter decreases, when the sample size

increases. The average of the smallest information criterion reduces when the
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delay parameters were 1 and 2 for all sample size cases. From the results in Table
5.2, it can be seen that the model with threshold value (r = 2) and the delay
parameters (d = 2) is the best, because it has the smallest value in all information
criteria.

Table 5.1: The percentage of correct choice of threshold delay for different

PTGARCH(1,1:2,d) models and the average of AIC, BIC and HQIC
values for different threshold values, coefficients and sample sizes.

Percentage of

rand d Regime 1 Regime 2 Size correct choices

AIC  BIC HQIC

r=2 d;=0.4 dy=0.5 1000 79.1 09777 1.0071  0.9773
d=1 a;=0.5 a2=0.3 1500 91.6 0.9750  0.9963  0.9750
b1=0.3 b,=0.4 2000 95.8 0.9775  0.9943 0.9776

1000 69.7 1.2955 1.3249 1.2951

d=2 1500 80.5 1.3028 1.3240 1.3027
2000 87.1 1.2985 1.3153 1.2985

1000 78.6 1.2630  1.2925  1.2626

d=3 1500 85.1 1.2578  1.2791  1.2578
2000 92.2 1.2544  1.2712  1.2545

1000 93.1 1.2283  1.2578  1.2279

d=4 1500 96.5 1.2332  1.2545 1.2332
2000 97.0 1.2320  1.2488 1.2321

r=3 d1=0.8 dy=0.5 1000 68.4 -1.5147 -1.4852 -1.5151
d=1 a;=0.5 ax=0.5 1500 83.2 -1.5176 -1.4963 -1.5176
b1=0.3 by=0.3 2000 89.3 -1.5259 -1.5091 -1.5258

1000 69.9 -1.5393  -1.5099 -1.5397

d=2 1500 81.4 -1.5590 -1.5378 -1.5591
2000 91.6 -1.5491 -1.5323 -1.5490

1000 70.8 -1.5723 -1.5428 -1.5727

d=3 1500 84.1 -1.5692 -1.5479 -1.5692
2000 91.3 -1.5787 -1.5619 -1.5786

1000 82.5 -1.5951 -1.5656 -1.5955

d=4 1500 91.0 -1.5946 -1.5733 -1.5946
2000 96.0 -1.6152 -1.5984 -1.6151

NOTE: The results are based on 1000 simulations.
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Table 5.2: Model selection percentages for different PTGARCH (1,1;2,d) models
and different delay parameters d for different sample sizes.
Regime Regime Sample Possible —AIC BIC HQIC Percentage of

1 2 size  values d (7,d) (7,d) (7,d) correct choices
d1=0.5 dy=04 1 1.4189 1.4483 1.4185 65.4
a1=0.4  ay=0.5 1000 2 1.4275  1.4569  1.4271 24
01=0.3 b,=0.3 3 1.4245  1.4540 1.4241 8.3
4 1.4223 14517 1.4219 23.9
1 1.4055 1.4267 1.4054 83.3
r=2 d=1 1500 2 1.4148  1.4360  1.4147 0.9
3 1.4126  1.4339 1.4126 4.0
4 1.4106  1.4319 1.4106 11.8
1 1.4034 1.4202 1.4035 90.7
2000 2 1.4128  1.4296 1.4129 1.0
3 1.4109  1.4277 1.4110 2.2
4 1.4094  1.4262  1.4095 6.1
d1=0.5 dy=04 1 1.1332  1.1626  1.1328 0.9
=04  ay=0.5 1000 2 1.1185 1.1480 1.1181 69.9
01=0.3  b,=0.3 3 1.1233  1.1527  1.1229 11.2
4 1.1227  1.1521  1.1223 18.0
1 1.1256  1.1468  1.1255 0.3
r=2 d=2 1500 2 1.1119 1.1331 1.1118 77.3
3 1.1169 1.1381  1.1168 9.5
4 1.1170  1.1382  1.1169 12.9
1 1.1191  1.1359  1.1192 0.0
2000 2 1.1056 1.1224 1.1057 86.5
3 1.11116  1.1279  1.11125 6.4
4 1.11119 1.1279  1.11128 7.1
405 dy 04 1 L1775 12069 11771 04
=04 ay—05 1000 2 11706 1.2000 1.1702 37
b=0.3  by—0.3 3 1.1624 1.1918 1.1620 75.1
4 1.1665  1.1959  1.1661 20.8
1 1.1624  1.1836  1.1623 0.5
r=2 d=3 1500 2 1.1558  1.1770  1.1558 2.3
3 1.1483 1.1696 1.1483 87.5
4 1.15633  1.1746  1.1533 9.7
1 1.1661  1.1829  1.1662 0.2
2000 2 1.1602  1.1770  1.1603 1.4
3 1.1532 1.1700 1.1532 89.8
4 1.1580  1.1748  1.1581 8.6
405 dy 04 1 13147 13441 1.3143 0.2
=04 a;—05 1000 2 13123 1.3418  1.3119 2.5
bi=0.3  by—0.3 3 13094  1.3388  1.3090 9.9
4 1.3061 1.3356 1.3057 87.4
1 1.3243  1.3455  1.3242 0.5
r=2 d=4 1500 2 1.3228  1.3441  1.3228 24
3 1.3205  1.3418  1.3205 8.9
4 1.3179 1.3391 1.3179 88.2
1 1.3125  1.3293  1.3126 0.7
2000 2 1.3112  1.3280 1.3113 2.1
3 1.3093  1.3261  1.3093 8.6
4 1.3069 1.3237 1.3069 88.6

NOTE: The fourth column shows the suggested threshold delay d. Columns from
fifth to seventh report the average of AIC, BIC and HQIC respectively. The last
column shows the percentage of correct choices. The corrected delay parameter d
detection percentages are printed in bold. Results are based on 1000 simulations.
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5.3 Simultaneous determination of the delay
parameter d and the value of threshold r

In the previous section, we have treated the issue of determining the delay para-
meter d. We mentioned how to estimate the value of threshold r for a PTGARCH
model in the Chapter 3. In the current section, we will focus on the determin-
ation of the value of threshold r and the delay parameter d at the same time.
Many authors have adopted the Tong and Lim (1980) method to determine the
threshold value. Tsay (1989) use the Tong and Lim method and scatter plot of
the standardized predictive residuals against the threshold variable Y;_4 (in ar-

ranged autoregression). Here we adopt the following method:

1. Arrange the samples of the threshold variable Y;_; in increasing order.

2. Divide the sample of the threshold variable into intervals which typically
are defined to be from the u x 100th percentile to the v x 100th percentile

of the data, e.g. 20th percentile to the 80th percentile of the data.

3. Choice of v and v which should guarantee that there are enough data falling
into each of the sub-models, because the extreme threshold candidate value
(u,v) means there are not enough data to estimate the parameters. There-
fore, each regime contains at least 10% of the total observation number

(Strikholm and Terésvirta (2006)).

4. Calculate the normalized information criterion (NIC) which is defined by

(5.1) for each threshold candidate value at the probable delay parameters.

5. Compute the minimum values of the normalized information criteria for
each pair of threshold candidate value and probable delay parameter, and
the smallest value of the criteria gives the required estimated threshold

value and the delay parameter.
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We give a few simulation results to illustrate the determination of the value of
threshold r when the maximum of the proposed values of the delay parameter is
4, (i.e. d=1,2,3,4) and the number of regimes are fixed (s = 2). A simulated
time series generated from model defined by (5.3) with different parameters for
different lengths has very high frequency. Therefore, applying the 30% rule to
the current simulation indicates that at least 300, 450 and 600 observations need
to fall in each regime for sample size 1000, 1500 and 2000. If the threshold
value estimate is close to the minimum or the maximum observation, may be not
reliable because of the small sample size in one of the regimes.

In Table 5.3, the data have been generated by different PTGARCH (1,1;2,d)
models. The table illustrates the relative rates of correct choices of the delay
parameter d and the value of threshold r for the model described by equation
(5.3). Clearly, the results show that the relative rates of correct choices for
both d and r improve as the sample size increases from 1000 to 2000. Table
5.3 also reports the percentages of correctly selected delay parameters d and of
the threshold value r becomes larger as the sample size increases, whereas the
percentages of false choices of the delay parameters d and of the threshold value
r become smaller as the sample size increases. All results in Table 5.3 are based

on the equation (5.1).
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Table 5.3: The percentage of correct choices of threshold delay d and the value
of threshold r (together) for different nonlinear PTGARCH(1,1:2,d)
models and different sample sizes.

Regime 1 Regime 2  Sizes proposed values d Percentage of possible values r
n d r=2 r=3 r=4
3.1 65.6 5.3
1.1 9.2 2.4
0.8 2.7 2.4

a1=0.5 az=0.5 1000
b1:O3 b2:03

r=23 d=1 0.9 2.9 3.4
1500 2.5 82.8 23

0.3 5.0 1.2

0.2 1.7 1.5

0.0 0.6 1.8

2000 1.5 90.5 1.5

0.2 3.6 1.0
0.0 0.5 0.3
0.0 0.4 0.4
0.6 3.0 0.6
3.4 68.0 4.4
1.6 8.2 2.2

d;=0.8 d>=0.5 1000
a1=0.5 as=0.5

r=3 d=2 0.4 4.9 2.0
1500 0.2 2.4 0.1

1.3 824 34

0.0 6.6 1.5

0.2 0.9 0.9

2000 0.2 1.3 0.4

0.7 89.2 1.8
0.0 4.0 0.6
0.1 1.2 0.5
0.4 0.7 0.3
0.3 3.1 0.7
2.4 73.3 4.7

d;=0.8 dy=0.5 1000
(11105 02:05
b=0.3 by=0.3

r=3 d=3 2.2 9.8 1.8
1500 0.0 0.1 0.1

0.3 3.0 0.2

1.8 84.6 3.1

0.2 5.8 0.8

2000 0.0 0.4 0.0

0.0 2.0 0.1

0.8 91.2 1.7

0.3 2.7 0.8

d;=0.8 ds=0.5 1000 0.2 0.0 0.0
a;=0.5 az=0.5 0.1 0.2 0.6
b:=0.3 bo=0.3 1.1 4.0 0.7
r=3 d=4 4.0 83.7 5.1
1500 0.1 0.0 0.1

0.1 0.1 0.0

0.5 2.6 0.2

1.5 914 34

2000 0.0 0.0 0.0

0.1 0.3 0.0
0.0 1.1 0.1
1.0 96.4 1.0

NOTE: Experiment results for two-regime PTGARCH model with p = ¢ = 1. The
fourth column reports the proposed values of d. The other three columns show
percentage of possible values of . The percentages of correct threshold delay d and
threshold value r are printed in bold. Results are based on 1000 simulations.
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5.4 A real data example

We illustrate the application of the PTGARCH (1,1,2,d) model to data of daily
admissions for asthma to a single hospital (at Campbelltown) in the Sydney
metropolitan area from 1st January 1990 to 31st December 1993. There are 1461
observations available. The sample mean of the series is 1.9391 and the variance
is equal to 2.7025. The data has previously been analyzed by Davis et al. (1999
and 2000) using a GLARMA and generalized linear model analysis respectively.
Figure 5.1 illustrates the data, histogram of asthma counts and the respective
autocorrelation function. The plot shows that there is some type of periodicity in
these data and for relatively large lag values the autocorrelation function is still
significant.

We present the estimation methods with the asthma count, using the normal-
ized Akaike’s information criterion (NAIC), which is related to AIC. Wilks (1985)
and Katz and Skaggs (1981) have discussed the AIC in the framework of AR mod-
els. Table 5.4 shows the normalized AIC values of TAR model fitted to counts
of daily admissions for asthma of a single hospital, using the NAIC method with
the interval of threshold value approximately between the 25th percentile and the
75th percentile of the data. Therefore, the threshold values are between 1 and 4,
while the maximum time delay is equal to 7, and the number of regimes are given.
Table 5.5 shows estimated time delay and their normalized information criteria
for each possible threshold value. The table illustrates that the normalized in-
formation criteria values are smallest when d = 3 and r = 2, so the estimation
of threshold value and of the delay parameter are 2 and 3 respectively. Table 5.6
reports the estimated parameters for the model described by equation (3.1). It
shows that the relatively small standard deviations of the parameters in the first
regime reflect that there are a lot of observations in that regime. After fitting
the full model with the threshold value and time delay to the original data, we

conclude with the PTGARCH (1,1,2) model for the counts of daily admissions
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for asthma to a single hospital:

5 0.0651 + 0.0251Y;_1 + 0.9233)\,_1, if Y5 <2,
0.2943 + 0.1560Y;_; + 0.7476\;_1, if Y5> 2.

The aveLM test value of the model is 15.5795, and the corresponding critical
values of significance levels 10%,5% and 1% of the test are 6.251,7.815,11.345
respectively, so there is clearly significant benefit at the 10%, 5% and 1% level of
significance in using the nonlinear model. In addition, for the asthma data and
for the linear model application, the MSPR is equal to 1.1465. The AIC (BIC) of
the fit is equal to 1.1334 (1.1442, respectively), while the MSPR and the values of
AIC and BIC for the nonlinear model application are 1.1287, 1.1179 and 1.1396
respectively which are slightly smaller than the corresponding MSPR, AIC and
BIC are obtained from the linear model fit. Figure 5.2 illustrates the time series
of asthma counts in a single hospital. The time plot shows that the first regime
has more observations than the second regime. The plot 5.3 shows the sequence of
residuals and their cumulative periodogram plot, as well as their autocorrelation
function of the asthma data. The plot of the autocorrelation function reveals no

significant serial correlation in the sequence of residuals.

5.5 Summary

The main target in this project is to estimate the parameter, number of regimes,
threshold value and the delay parameters in the PTGARCH model. In this
chapter, many simulations have been carried out to identify the delay parameter,
and the delay parameter and threshold value simultaneously, using normalized
information criteria. Moreover, an example of an application of the model to a
real time series is given. Applying the method in this chapter, one can build a

complete structure of the PTGARCH model.
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Figure 5.1: From top to the bottom: time-series plot, histogram and sample auto-
correlation function of the asthma counts.
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Table 5.4: Normalized information criteria for the PTGARCH (1,1,2,1) model
fitted to counts of daily admissions for asthma of a single hospital.

Suggested threshold Possible time Normalized information criteria

value (1) delay (d) AIC BIC BIC2 HQIC
1 1.1369 1.1586 1.1886 1.1450

2 1.1352 1.1569 1.1869 1.1433

3 1.1286 1.1503 1.1803 1.1367

1 4 1.1346 1.1563 1.1863 1.1427
) 1.1309 1.1527 1.1827 1.1390

6 1.1300 1.1518 1.1819 1.1382

7 1.1264 1.1483 1.1783 1.1346

1 1.1365 1.1582 1.1881 1.1446

2 1.1333 1.1551 1.1850 1.1414

3 1.1202 1.1420 1.1720 1.1283

2 4 1.1350 1.1567 1.1867 1.1431
) 1.1316 1.1534 1.1834 1.1397

6 1.12751.1493 1.1794 1.1357

7 1.1286 1.1505 1.18052  1.1368

1 1.1362 1.1580 1.1879 1.1443

2 1.13851.1602 1.1902 1.1466

3 1.1263 1.1481 1.1781 1.1341

3 4 1.1388 1.1606 1.1906 1.1469
5 1.1340 1.1558 1.1858 1.1421

6 1.1319 1.1537 1.1838 1.1401

7 1.1297 1.1515 1.1815 1.1378

1 1.1374 1.1591 1.1890 1.1455

2 1.1384 1.1601 1.1901 1.1465

3 1.1270 1.1488 1.1788 1.1351

4 4 1.1387 1.1605 1.1905 1.1469
5 1.1682 1.1900 1.2200 1.1764

6 1.1322 1.1540 1.1840 1.1403

7 1.1298 1.1516 1.1817 1.1379

Table 5.5: Normalized information criteria for the PGARCH (1,1,2,1) model fit-
ted to counts of daily admissions for asthma to a single hospital for
the estimated the threshold values and time delays.

Estimated threshold Estimated time Normalized information criteria

value (r) delay (d) AIC BIC BIC2 HQIC
1 7 1.1264 1.1483 1.1783  1.1346
2 3 1.1202 1.1420 1.1720  1.1283
3 3 1.1263 1.1481 1.1781  1.1345
4 3 1.1270 1.1488 1.1788  1.1351
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Table 5.6: The estimated parameters for model (3.1) and their standard errors.

Model First regime, n; = 1042 Second regime, ng =419
Parameters r d dy aj by da as by
Estimated value 2 3 0.06509 0.9233  0.02508 0.2943 0.7476  0.1560
Standard error 0.0312 0.0243  0.0176 0.0872 0.0446 0.0257

Time series of asthma counts
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Figure 5.2: Time plot of two-regime of the counts of daily admissions for asthma
to a single hospital. The green dotted line is the threshold value. The
blue and the red lines correspond to the observations in the first and
the second regime respectively.
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Figure 5.3: Pearson residuals (top), their cumulative periodogram plot (middle),
and the sample autocorrelation function of Pearson residuals (bottom)
for the nonlinear model fitted to counts of daily admissions for asthma
to a single hospital.
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Chapter 6

Poisson Markov Switching Model

6.1 Introduction

In the past few decades, there has been growing interest in nonlinear time series
models, see Hamilton (1989), Tong and Series (1990) and Granger and Teras-
virta (1993) for such examples. The Markov switching model of Hamilton (1989)
is one of the most popular nonlinear models in time series. It consists of many
regimes which can describe the time series pattern in various states. The switch-
ing between states is according to an unobservable (hidden) state, and each state
follows a linear model. In this chapter, we discuss Poisson Markov switching
models for count time series. Because the conditional mean coincides with the
conditional variance for a Poisson process, we call our model a Markov switching
Poisson generalized autoregressive conditional heteroscedastic (MS-PGARCH)
model. We study the probability structure (ergodicity and stationarity) of the
MS-PGARCH model first, and then discuss its maximum likelihood estimation.
Finally, in order to give numerical evidence, we run a few simulation studies and

fit a simple MS-PGARCH model to some real data sets.
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6.2 The Markov Switching Model of Conditional

Variance (Mean)

6.2.1 Definition of the model

Suppose that {Y;} is a nonnegative integer-valued time series. Consider the model

defined by
V| FoS ~ Poisson(N,), A = ¢(Sy) + a(Si)M\_1 + b(S:)Yi_1 (6.1)

where F;_; denotes the information set available at time ¢ — 1, which is a o —field
generated by {(Yi-1,S:-1), (Yi—2,St-2), ..., (Y0, 50), (Ao, So)}. St is a stationary
Markov chain with finite state space S = {1,2,...m} and an irreducible and aperi-
odic m x m transition matrix, P, with typical element p;; = Pr(S; = j|S;—1 = 1),

that is,
P = [p;] = [Pr(S; = j|Sim1 = )],4,5 = 1,2, ..., m.

The stationary distribution {S:;} is denoted by © = (m,ma, 73, ..., Tn)". The
states of S; represent the different regimes of the model. The coefficients (¢;, a;,
and b;,i = 1,2,..,m) are assumed to be strictly positive and P;; > 0. We call
the model defined by (6.1) a Markov-switching Poisson generalized autoregressive
heteroscedastic (MS-PGARCH) model, denoted by MS-PGARCH (m;1,1), where
m is called the number of regimes of the model.

The model (6.1) can be rewritten in a form of Poisson process by assuming that

the time series of counts {Y;} is equal to the number of events N;(\;) of Ny(+) in
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the time interval [0, \;] as follows

Yy = Ni(\) (62)

)\t = C(St) + a(St))\t—l + b(St)Y;_l

for ¢ > 1 and both Y; and ) are fixed. Ny()\;) denotes a Poisson process with

intensity A¢, and ), is defined by (6.1).

6.2.2 Ergodicity of a perturbed model

We study the stationarity and ergodicity of {Y;} by proving these properties for
{(At, St)}, given a suitable initial distribution for (Ao, Sp). However, establishing
y-irreducibility and finding a small set is quite complicated because of the fact
that \; has discrete-valued random innovations. Given the value of \g, the set of
possible values for \; is countable. In fact, the set of states that are reachable
from a fixed starting state is also countable, and distinct initial values can have
distinct sets of reachable locations. To avoid this issue, we consider a model with

e-perturbation defined by
V"= NN, A= e(Se) + a(S)NZy + b(S)YEy + ins (6.3)
where
Etm = Uy, ¢, >0, ¢, =0, as n — oo,

and {U;} is a sequence of iid uniform random variables on (0,1) and such that
U, is independent of .7-"533

We have the following results on the ergodicity of model (6.3). There it is first
proved that the unobserved process { (A}, S;)} is geometrically ergodic.

Before stating main results, we need some notations. Let

M, = [pi(ali) + b@)"], 6.5 =1,2,....m; u>0.
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Define a norm [|Df| = ;. d;; for a nonnegative vector or matrix D = [d;;], and
p(D) for the spectral radius of matrix D. Let A:={i:0<a(i) < 1,1 <i<m}
and \* := min;ea{c(7)/(1 — a(i))}, and ¢ and v denote the Lebesgue and the
counting measure of a set, respectively. If A # (), without loss of generality, write

A*:=¢(1)/(1 —a(1)). Moreover, for convenience, write

Ap =[S =i, 81 = )a(D)], By = [1(S; =i, 51 = j)ba)],

Cipt = [1(Sy = 4,81 = 7)a" ()b (i)], My := [pja"(@)b'(3)], 5,5 =1,...,m,

where 1(+) is the indicator function. Again, let 1g, := (1(S; =1),...,1(S; =m)),
|J| denote the length of the interval J, and Z := (A}, Sy).
We are now ready to state the ergodicity of the process {Y;"} defined by (6.3).

But, for the proof of ergodicity, we need the following lemma.

Lemma 6.1 Let {Z'} be a Markov chain defined by (6.3). If A # ), then
every point in D = {(\,s) € Ry xRy : (A, s) € U~, D;} is reachable, where
D; = {(N\s) € Ry xRy + A > (i) +a(i)\ys € T;} with T; = {j € S :
c(7) +a(iN <c(i)+a(i)N}, i=1,2,...,m.

Proof. Notice that if A” | = A > \*, then
AL = c(S) + a(S)A + b(Se)Ni—a(X) + e
> o(S) + alS)N = (c(S,) + a(S)N) (1(a(S,) = 1) + 1(a(S,) < 1))
= (e(S) +a(S)M)1(a(Se) = 1) + (e(Sh) + a(S)M)1(a(S: < 1))
> XN1(a(S) > 1) + (e(St) + a(S)A")1(a(S; < 1))
c(S) a(5t)

= AN1(a(Sy) = 1) + (1 — a(Sy)) (1 a aRd G(St)x*> 1(a(S, < 1))

v

N 1(a(Sy) > 1)+ (1 —a(Sy)) ()\* + a(St)t)/\*) L(a(S; < 1)) =\

1 —a(S,

Hence, if \j = A > A" is true, we know that A} > A\* for all £ > 1. Now consider a
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point (d, s;) € D; C D. We will show that there exists a j > 1 and an interval J,
such that d € Jg, |J4| < € for sufficiently small € > 0, and P?(z, G) > 0, where
20 = (A, s0) € Dand G ={(\,s) € D: X € Jg, s =s;}

First assume that d = ¢(i) + a(i)A* and s; = ¢. In this case, define j to be the
smallest positive integer such that a(1)7a(z)(A—A*) < ¢, since a(1) < 1. Consider
a path such that Aj = A, So =80, Yo' =VY"= ... =Y =0,5 =5 =... =

S; =1, and S;41 = ¢. This implies that

[y

N1 = c(i) +a(@)A +a(1Ya(i)(A = X) +a(i) ) a(1)'ejin + €410 (64)

7

Il
=)

From (6.4) together with

P(51:S2:...:Sj:].,5j+1 :Z|ZSL:ZO) >0,

PP =Y = ... =Y = 020 = 2,Wy;) >0, and
j—1

P(a(i) ) a(1)'ejin + €jr1n < € — a(l)a(i)(A = A7) >0,
=0

Pj+1<ZO,G) Z P(}/O”:Yln:— _O Sl 52 ...:Sj:1,3j+1:i,
j—1
a(i) ) a(1)'ejin + €jrin < € — a(l)a(i)(A = \)|Z5 = 2)
=0
= P(Yg=...=Y"=0Z = 2, W)
P(Sl:...:Sj:175j+1:’i‘Z3220)

—

xP(a(i) }_ a(1)'ejmin +€ju1n < € — a(1)a(i)(A = X")) >

7

Il
=)

where Wij = {w : Sl = ... = Sj = 1,Sj+1 = Z,CL(’Z) Zz;& a(1>i5j7i,n + Ejtin <

e —a(1l)a(i)(A— )}
Next assume that d = ¢(i) + a(i)\* and s; = k # i. Obviously, c(k) + a(k)\* <
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c(i)+a(i)\*. Hence ¢ := c(i) +a(i)\* —c(k) —a(k)A* > 0. If § = 0, replace i with
k in (6.4), the assertion is also true. If § > 0, define j to be the smallest positive
integer such that a(1)?"'a(k)b(1) < € and a(1)7a(k)(A—\*) < §/2, since a(1) < 1.
Consider a path such that \j = A, S = so, Yg" = N, Y" = ... =Y =0,
S1 =95 =...=5;=1, and Sj;; = k. This shows that

J—1

Niyo= ek) +alk) (A +a(l) (A= A) +a() 0N + ) a(l)ejin)

"—8]'4_1,”

<.
I
—

= Z,j—}—l(N) + a<k) a(l)igj—i,n + €j+1,n>

%

I
o

where A ;1 (N) := c(k) +a(k)(A* +a(1)7(A = X*) +a(1)’"'b(1)N). If there exists
an N such that A\ ;. (N) = d, in an analogous way as above s = i case, one
can show that P7*!(z,G) > 0, where G = {(\,s) € D : A € Jz, s = k} with
Ja = [d,d+¢). Otherwise, let N := Nj;; be the least integer such that A}, (N —
1) < d < Ap ;i (N) (N ja(0) < d). Taking Jg = [Af; (N — 1), A ;1 (V),
we easily obtain that P7™1(z),G) > 0 and |J4| = a(1)?ta(k)b(1) < e, where
G={(\s): A€ Jy,s=k}.

Now, we consider the case that d > c(i) + a(i)A*. If s; = ¢, define j to be
the smallest positive integer such that a(1)7~'b(1)a(i) < ¢ and a(1)7a(i)(\ —
A*) < (d — (i) — a(i)A*)/2, and consider a path such that Z} = zo, YJ' = N,
Yr=Y=...=Y"=0,51=5=..=5 =1 and Sj;; =i. We can also
obtain that there exists a j > 1 and |J;| < € such that P'*1(z5, G) > 0, where
G={(\s)eD: e Jys=1i} with J; = [d,d+¢) if there exists an N such that
A7

Pi1(N) = d, otherwise Jy = [A?;, (N —1), A}, (N)) with N := N;,; being the

» N, +1

least integer such that A}, ; (N —1) <d < A}, 1 (N) (A} 11(0) <d). f s=Fk #i
and c(k) + a(k)\* < c(i) + a(i)\*, define j to be the smallest positive integer
such that a(1)77'0(1)a(k) < € and a(l)/a(k)(A — X*) < (d — c(k) — a(k)\*)/2,

and consider a path such that Z§ = 25, V' = N, Y* = Y)' = ... = Y/ =
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0,5 =8 =...=25; =1, and Sj31 = k. If there exists an N such that
Ar o1 (N) = d, in an analogous way as above, one can show that P’(zy, G) > 0,
where G = {(\,s) € D: X € [d,d+¢),s = k}. Otherwise, let N := N, be the
least integer such that Ay, (N —1) < d < Af ;1 (N) (A;;1(0) < d). Taking
G={(\s)eD:Ae [\, (N—-1),A;,,(N)),s =k}, we easily obtain that
PI(29,G) > 0 and |[A} ;1 (N = 1), A%, (N))| = a(1)~'a(k)b(1) < e. Similarly,
we may get that P7(z9,G) > 0if s = k # i and c(k) + a(k)\* = c(i) + a(i)\*,
where G is defined as above in the same manner. Since ¢ is arbitrary, (d, s;) can
be approximated arbitrarily closely, and (d, s;) is reachable if (d,s;) € D. This

completes the proof of Lemma 6.1.

Proposition 6.1. Suppose that p(M;) < 1. Then, given an appropriate initial
distribution for (A, Sp), the process {(\}, S;)} defined as in (6.3) is a stationary
and geometrically ergodic Markov chain with finite first moment. Moreover, the
process {Y;"} defined as in (6.3) is also a stationary and ergodic Markov chain

with finite first moment.

Proof. We will first prove that the Markov chain {Z]'} is ¢-irreducible, aperiodic,
and positive Harris recurrent. These properties will imply that {Z"} has a unique
stationary distribution 7(\,S), and that if Z§ ~ 7(\,S) then {Z'} is stationary
and geometrically ergodic.

First note that A # () if p(M;) < 1. The state space is equipped with Fp,
the Borel o-algebra on R, x R, restricted to D. The measure 9 is the product
measure ¢ ® v on (D, Fp). Let G € Fp such that ¢)(G) > 0. Then there exists
a point (d,k) € G C D; such that ¥(DJ) > 0, where Df = G N B with
Bf ={(\s): X\ €[dd+§/2),s =k} for any § > 0. Write DI = {(z, ) :
v =y—dy € Df s =k} Since d > c(i) + a(i)\* > c(k) + a(k)\*, then
(d—c(k))/a(k) > A*. Thus using the technique of proof of Lemma 6.1 for some j,

(A%, .5;) will be arbitrarily close to ((d—c(k))/a(k), 1) by choosing j large enough
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and S; = 1. In particular, j can be chosen so that |c(k) + a(k)\} —d| < €/2,
where € < 0. Consider a path of the next step such that Y;* = 0 and Sj4; = £,

we have

P((X,1),G) = P((N',1), Dy)

v

P(gjr1n € DT (1)) P(Sji1 = k|S; = 1)P(Y]" = 0]X} = X)

1 n n /
= acb(Dfs‘fg(l) N(0,¢))P(Sja = k|S; = PV = 0]AF = X) > 0,

where D§" (1) = {z : (z,5) € D& }. Hence PI*'(2,G) > 0, which implies
W-irreducibility. It remains to prove the existence of a small set, aperiodicity and
positive Harris recurrent.

Let C = {(\,s) € D : A < M*} for any M* > X\*, and define j to be the

smallest positive integer such that a(1)’~'(M* — \*) < /2 for sufficiently small

¢. Then
)l\lélgp(sl =Sy=... :Sj—l = 1‘ZSL:ZO) > 0,
)1\22 PYy =Y"=...=Y",=0[Zy = 2,W;_1) >0, and
Pe1n +Eom+ - +&jin < % — a(1) (M = \)) > 0,
where W1 = {w : S1 = ... =51 =Le,+ecn+...+ec1, < /2 —

a(1)771(M* — X\*)}. Thus inf,cc PP~ (2, H) > 0, where H = {(\,s) € D : A\ €
[A*, N +¢/2]}. Taking p = Unif(A\* 4+ ¢/2, \* 4+ ¢) and

y= inf Pz, H) inf {P(Y]L = 0|20, = 2)P(S; = 1|70, = 2)}/en > 0,
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then, for all G € Z(R,. x R,),

Pi(,G) > Pi(-GNH) = / Ply, G O H) P\ (=, dy)

R+ XR+

> / Py, G N H) P2, dy)
2 ig]{P(Y}ﬁl =012, = 2)P(S; = 1|2}, = 2)}

X /H P(ejn € Gyni(e/2—a(l)(y—A),e —a(l)(y — \)) P~ (z,dy)
> yP(U; € Gya-N(g/2,¢)) = yu(G),

which establishes C' as a small set, where H. = {(\,s) € D : X € (\*+¢/2, \*+¢)}
and G, ={z:x =2 — X —a(l)(u—\), (21, 22) € G}.

We now show that {Z;'} is aperiodic. Consider the small set C'= {()\,s) € D :
A < M*} with M* > \*. Note that ¢»(C) > 0. If Z*, = (\,s) € C, consider a
path such that ¥,", =0, S; =1, and &;,, < (1 —a(1))(M* — X*), then

N <A =c(l) +a()A+ e, < (1) +a(l)M* + (1 —a(l))(M* = X)) = M~

This implies

P(ZI e C|Z = (\s) € C)
> P(Y:, =0,5 =1 e, <(1—a)(M* = A)[Z, = (A s) € C)

= P(N,_1(N) = 0)P(S; = 1|Si_1 = 8)P(en < (1 — a(1))(M* — X)) > 0.

Similarly,

(7 € CIZ0, = (A 5) € C)
> P(}/tn = }/15711 = 07 St+1 = St = 178t+1,n < (]- - a(]'))(M* - /\*>7

Eon < (1—a(1))(M* = X)|Z", = (\,s) € C) > 0.
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It follows that {Z]'} is aperiodic by Chan (1990)( Prop. Al.1).

Finally, we prove that {Z'} is positive Harris recurrent. It is well-known
that MF — 0 as k — oo, if p(M;) < 1. Thus, for some positive constant
a < 1, there exists a positive integer N such that [|[MF|| < « for all k¥ > N.
Consider V(z) = 1+ x1, where x = (21, x2) with x; > 0. Define the small set
C={N\s)eD: X< M.,seS} where M* = K/(1 —2¢ — ) with ¢ > 0
such that 1 — 2 —a > 0, M* = K/(1 — 2¢ — «) > max{1,\*}, and constant
K = (ca/2 + ) N IMY| with ¢ = max{c(1),...,¢(m)}. First note that S,
and Y;", are conditionally independent under given (S;_1, A" ;), which implies

that

E([[Bils, Y/ 1IN S-1) = E([[BeLs, . [[[A1, Se) EQY2 1[Ny, Si1)

= N E(IBds, N1, Si1) = A [[Mor s, |-

In addition,

E([[ALs, (A N1 Si-1) = Ay [ Maols, |-

It follows that

E([[Ads, Ay + Bils, Y I 1, Siea) = A [[Mads, |-
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Therefore, for any \ > M*,

E[V(ZK&”ZJT\LI()&A) =z=(\s)|=E[l+ /\Tziftlz}tf(tfl) = 2]
1+ E[|[1sy, ANl 281y = 2]
1+ El||1sy,c(Snt) + Antlsy, ANi—1 + Bailsy, Yai_:
+1lsyentalll 2 ¢—1) = 2]
1+ Eenin + Elc(Sne)| 2 -1y = 2]
+E[E(|Aviloy, A1 + Builsy Yl Z8a 0 ve) | Zhn = 2)]
1+ Eentn + Ele(Sne)| 2R 1) = 2] + Ell|Mi1sy, ARl 281y = 2]
N
1+ Z HMf_lE[lsNt_Hl5Nt—i+1,n‘ZzT\L/(t_1) = z|||
i=1
N
+ 3 IMIT E[Lsy, o e(Shi-i)| ZRny = 2

=1

+HM1NE[1SN(1—1))\|Z]T\L/(t71) = ZH

N N
Cn i— i—
< LY M e Y M MY A = 1+ K+ | MY
i=1 i=1
K

< 1+)\(04+X) <T4+HAMa+K)<14+A(1-2)=1-X+A1—¢)

< 1l—e+AMl—¢)=1—-9)V(N09),
where 92 % is the o-algebra generated by {Z7,u < v < t}. Furthermore, it is

easy to see that, for A € C,

EV(Z3)| Ziyry = 21 < 1+ K + [MYM A< L

for some constant L. This implies that the chain {Z},} has a unique station-
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ary distribution (), s), and that if Z§ ~ w(\,s) then {Z}%,} is stationary and
geometrically ergodic, and that EAY, < oo. Furthermore, by Lemma 3.1 in Tjgs-
theim (1990), {Z'} is also stationary and geometrically ergodic. Finally, note

that
Vi =07 (Si) (My = e(Ser1) = alSip )N = €vv1n) = 9( 2415 28 E1.m)s

which shows that Y, depends on { Z'} only through Z} and Z}',,. Since {(Z}",e:,)}
is stationary and ergodic, Theorem 36.4 of Billingsley (1995) shows that {Y;"} is
stationary and ergodic. It is not difficult to see that EY;” < co. This completes
the proof of proposition 6.1.

In order to prove proposition 6.2, we need the following Lemma.

Lemma 6.2. If p(M,,) < 1, then p(M,,) <1 for 0 < u; < us.

Proof. First recall some properties of nonnegative matrices and nonnegative
irreducible matrices (see Berman and Plemmons (1979) and Horn and Johnson

(1991)). For a m x m nonnegative matrix R = [r;j],

mjin {Z rij} < p(R) < max {Z rij} : (6.5)

In particular, for two nonnegative irreducible matrices @ = [¢;;] and R = [r;],
if ¢;j > 1ij, 4,5 = 1,2,...,m, and Q # R, then p(Q) > p(R). This immedi-
ately implies that if R is a nonnegative irreducible matrix and min; {>"1" r;;} <

max; {> .-, 7}, then, by (6.5),

mjin {Z nj} < p(R) < max {Z 7“2-]} . (6.6)

Next notice that the transition matrix P is nonnegative irreducible and a(S;) +
b(S;) > 0. Hence it is easy to prove that M, is nonnegative irreducible for any

u > 0. From (6.6) and p(M,,) < 1, we conclude that there exists some 1 < i; < m
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such that a(iy) +b(i1) < 1. If max;{a(i) +b(i)} < 1, by (6.5) and (6.6), we know
that Lemma 6.2 is true. Otherwise suppose that there exists some 1 < i5 < m

such that a(iz) 4 b(i2) > 1. For convenience, now define a function

We will show that log f(u) is a convex function on [0, 00).

Since the transition matrix P is irreducible and aperiodic, and a(i) + b(i) > 0,
1 =1,2,...,m, this implies that M, is also an irreducible and aperiodic m x m
matrix. Therefore, by Theorem 8.5.1 in Horn and Johnson (1991), we may get
that

lim f™"(u)M, = Ly,

u
n—o0

where L, is a constant positive matrix. It follows that

lim (172" = f(u),

n—o0

where 1 = (1,1,...,1)7. Again write M{(8) = [((M™);;)?], where (M™);; de-
notes the (7, j)-element of M. Then, we have
: 1 T n
log f(")/vl + (1 — ’}/)’Uz) = T}]_)I{.lo ﬁ 10g<1 Mvv1+(1_7)v27r)

|
< lim = log[1"(M™(y) o M{(1 — ~))7)]

n—oo M,

1
< lim = log[(1"M] 7)" (1" M 7)' 7]

n—oo M,

1 1
= v lim —log(1"M; ) + (1 — ) lim —log(17" M} )

n—oo M, n—oo 1

= 7log f(v1) + (1 — ) log f(va),

where 0 < v < 1 and vy,v9 > 0,v; # vq, and o denotes the Hadamard product
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of matrices, the two inequalities are applications of the Holder’s inequality. This

shows that log f(u) is a convex function. Hence, together with f(0) = 1 and

flug) <1,

p(My,) = f(ur) =exp{log f(u1)} = exp{log f(y x 0+ (1 — y)uz)}

< exp{ylog f(0) + (1 — ) log f(u2)} < 1,

where v =1 — uy /us.

Remark 6.1. It is not difficult to verify that p(M;) = a + b, if a(S;) = a and

For the existence of high moments for the process {Y;"}, we have the following

proposition.

Proposition 6.2. Suppose that p(My) < 1, where k > 1 is a positive integer.
Given an appropriate initial distribution for (A§, Sp). Then the process {Y;"}
defined as in (6.3) is a stationary and ergodic Markov chain with finite moment

of order k.

Proof. By Lemma 6.2 and Proposition 6.1, we can obtain the stationarity and
ergodicity of the process {Y;"} defined as in (6.3). A similar argument of the proof
of Proposition 6.1 can be used to show the process {Y;*} with finite moment of
order k.

By p(M;,) < 1, we know that there exists a positive integer N such that || M}|| <
ay, with some a, < 1 for all [ > N. Consider V(z) = 1 + 2%, where z = (11, 25)
with 21 > 0. Define the small set C' = {(\,s) € D : A < M* s € S}, where
M* = /(1 — 2e — ) with € > 0 such that 1 —2c —ay, > 0, 5/(1 — 2e — ay) >
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max{1, \*}, and constant § = Z;:é d; is defined as follows. Note that

El|AneLsy, Ao 1By, o Yo 1" N1, Sve—i]
= (ANo1)'El(17 Anidsy, ) (1 Belsy, )" )| o1, Sne-1]
XE[(Y]Gt—l)k_i‘Ar]ift—la Sni-1]

= ()‘?Vt—l)kE[]-TONt,i,k—i]-SNt_l |>‘7Ji/'t—17 SNt—l]
k—1

+ Z()‘thﬂ)lfl(a(sm—l), b(Sni-1))

=1

k—1
= | Mig-iLsye o) I+ D (ARemn)' fila(Swe-1), b(Sni1))

=1

and

k
Z O]iMz,k—z - Mk,‘
=0

Therefore, for any \ > M*,

EWV(Z§) Z5g-1) = 2 = (A 8)] = BIL+ (\3) | ZR ey = 2]
= 1+ B[l 1sy ARell*| ZR ey = 2]
= 14 E[||1sy,c(Snt) + Antlsy, ANi—1 + Bnilsy,  Ya1
+1sy,enenll*1 280 1) = 7]

= 1+ E[HANt]'SNt—lAR/t—l + BNtlSNt71Y]Gt—1||k|Z]7\lf(t—1) = Z]

k
+ ) ClLElLsy,c(Sne) + Lsy,enenll

j=1

X[ AniLsy, M1 + Brelsy, Y 1771 2841y = 2]
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= 1—|—ch ’ANt]-SNt 1)\%15 1H

A" S n
N(t—1), Nt—1)|ZN(t—1) = 2]

XHBNt]‘SNt 1YNt 1||k Z|ﬁ
+ZCJE |1SNt (SNt) + ]-SthNtn”]

—il oA, S n
><||ANt]‘SNt 1>‘Nt 1+BNt]‘SNt 1YNt IHk |J N(t—1), Nt_1)|ZN(t—1) :Z]

= 1+ Z CLEIMig-i1sy, s M) N ZR 11y = 2]

1=0

k—1
+3 B[Ny 1) filalSni—1), b(Sne—)| Zxyyy = 2]
=1

+ Z CJE E(||1sy,c(Snt) + Lsy,ennll’

n n —j A8 n
X[[AneLsy, Aot + Bilsy,  Yall® ]’yN(tfl),th)‘ZN(t—l) =7

k—1
= 1+ HMliVE[]'SN(t—1))\k|ZK/(t71) = ZH + Zdj)\]

j=0

k—1
d.;
< 1A (ak+2)\k]j> <1+ M (ap+8) <1+ A (1—2¢)

Jj=0

= (1-2)V(\s).

Furthermore, it is easy to see that, for A < M*,
E[V(Z}@MZK,(FD =21 <Ly

for some constant L;. This implies that there exists finite moment of order k for

{Z},,t > 0}. It follows that there exists finite moment of order k for {Y;*,¢ > 0}.

Remark 6.2. A similar argument as Remark 2.1, we easily know that p(Mj) =
(a+b)*, if a(S;) = a and b(S;) = b. Obviously, a+b < 1 if and only if (a+b)*
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Hence, Proposition 6.1 and 6.2 reduce to Proposition 2.1 and 2.2 in Fokianos et al.

(2009), if a(S;) = a and b(S;) = b.

The following proposition quantifies the difference between (6.2) and (6.3), as
n — oo, and shows that the perturbed model can be made arbitrarily close to

the unperturbed model.

Proposition 6.3. Suppose that p(M;) < 1 and {(Y;, )} and {(Y;", \})} are
defined by (6.2) and (6.3) respectively, and (Aj, So) =4 (Ao, So), then the following
statements hold:

(1). |EOY = M)l = [EQ7 = V)| < 81,

(2). E(\} — \)? < g,

(3). BY? — Yo < 6,
where 6;,, — 0 as n — oo for ¢« = 1,2,3. Furthermore, almost surely for any

0 > 0, with n large enough

AP — A <6 and [V — Y <6

Proof. Since p(Ms;) < 1, by Lemma 6.2, we have that p(M;) < 1 and

S MP=(I-M)T, > My =(1-M)",
k=0 k=0

where I denotes the identity matrix. By the equations (6.2) and (6.3),

AL = A= alS) (Mg — A1) +0(S) (V2 — Yier) + €. (6.7)
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Therefore, by using (6.7),

E( =)
= E[E[Ads, (N — A1) + Bels, (Y2 = Yo ) [[[Sem1, Ay Adea] + EErn)
= E[|Mi1s,_, (M) = M-)ll] + Elern) = M1 E[1s,_, (MZy — M)l + E(ern)
= [[MiE[1s,  [|[Aim1ls, (A g — Ae2) + Beals, o (V") — Yieo) + erall]l
+E(etn)
= [[MiE[Ai11s, (N y — M—2) + Bioals, (Y2, — Yio)|[]|l

+E(en) + [MiE[Ls, ,e11,0]ll

= Bewn) ||(I+ M+ 4+ M|+ [ M{E[Ls, (A5 — M)l
— %||(I+M1+...+Mf‘1)\\ < %\\(I+Ml+...+Mf‘1+...)H

B %" (7 =)~} < %n (1 = M) 7| o= 61, — 0

as n — 0o, which implies the first assertion.

Next consider the second statement. By using (6.7) again,

E(\ = M\)* = Ela®(S)(Noy — A)’] + E[B*(S) (Y — Yier)?]
+2E[a(S)b(S) (Mg = M) (Y2 = Yioa)] + E(ef,)
F2E[a(S) (A1 — Ai—1)een] + 2E[b(S:) (V2 — Yior)ewn).
We first calculate the second term of the above expression, by using the properties
of the Poisson process and the conditional expectation, assuming first, that A} ; >

A and V" —Y;_ 1 ~ Poisson(A!' ; —\;_1) independently of Y;_; ~ Poisson(A;_1)

(e AT > Ay say A = A\ + i
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Y=Y+ 72, and Z; ~ Poisson(u,), Y'>Y
Ay > Ao say AL = Ao+ o
Yo' =Yy + Zy and Zy ~ Poisson(pug) -+ ).

Now we have that

E*(S)(Y) = Yir)"] = BB (S) (Y21 = Vi) IS, Ay, A
= E[E(bz(St)]St,l, A1 A BV — Y;ffl)QISt—la A1 A1)
= Bl|Mols, [ E(Ni-a (W) = Neea(A-1))?]

= E[|Mo1s,_,[|(A7y — X—1)?] + E[|Moa1s,_, [[(A}y — Ae—1))]

IN

| Moa|l[EN)-y — M—1)® + BN — A1)

Similarly,
Ela®(S) (A — Aie1)?] < |[Mao||[ BN, — Ai—1)?

and
2B[a(Si)b(S) Ny — A1) (V2 = Yien)] < 2[|Mu[[E(O, — An)?.
Finally, with K a positive constant,

B(ef,) + 2B[a(St)(N_y — M-1)een] + 2B[b(S) (Vi) — Yio1)era]

IN

/3 + || Mol ||(I — My) 7| + 2| Mo || || (1 = My) ™|

1
Thus, by simple recursion,

EQ} = X)? < |[IMo]| BNy — Nc1)? + [ Mog|61, + K

IA

(1 — M)~ H|(|| Moz |61, + Kc) == 020 — 0
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as n — 0o, which implies the second assertion. The third assertion follows that

E(Y ) —Y,1)? = E(Nioi (A ) — Neei(Aem))?

= EO ;=M a)+EOY = No1) < o+ 610 = 030

As to last statement of the proposition this follows by the second and third
assertions of the proposition.
To make the analysis simple, a special case of the model defined by (6.1), will

be described in the next section.

6.2.3 A simple model

Assume that the unobservable Markov chain S; has two states: 1 and 2. A simple

Markov switching model for the process \; contains two GARCH specifications:

Y;|F)® ~ Poisson()),
- 1+ a1 +01Y 1, if S;=1, (6.9)
Co + aghi—1 + boY; 4, it Sy =2,

where t > 1, the initial values Yy, A\g are fixed, and ¢;, a;, b;, 7 = 1, 2, are assumed to
be positive. S; denotes an unobservable stationary Markov chain with finite state
space S = {1,2}, and F;_; denotes the information set available at time ¢ — 1,
which is a o—field generated by {(Y;_1,S:-1), (Yi—2,S:2), ..., (Yo, 51), (X, So) }-
A model specification for the process \; contains two regimes, and each of them
follows a GARCH(1,1) model. The process \; switches between two regimes
according to the value of the state variable S;. The limiting unconditional mean

: c1P(st=1)+caP(s:=2) .
(as t — o0) of the process is 1—[(a1+bl1)P(tst:1)+2(a2—|—tb2)P(st:2)}' In this model, the

process \; is governed by two regimes with special means, and the transition
between regimes is determined by the value of the state variable S;. We call the

model defined by (6.8) a Markov Switching Poisson Generalized Autoregressive

147



Chapter 6 Poisson Markov Switching Model

Heteroscedastic model with 2 regimes, denoted by M.S— PGARCH (2;1,1). The

model (6.8) can be rewritten in a form of Poisson process as follows
}/2 - Nt()\t)a (69)

where Ny()\;) denotes a Poisson process with intensity \;. That is Y; is equal
to the number of events N;(\;) of Ny(+) in the time interval [0, \;], where ); is

defined by (6.8). This process can be approximated by the following process.

Y™ = Ny(A),
c1+ a N+ 0"+ e1im, if S =1,

/\zn _ 1 1N —1 1441 1,t t (610)
Co + ag)\ﬁl + bQY;TI + 627tm, lf St = 2,

where ¢, = C,U; , Cy > 0,C,, — 00 as m — oo, and {U;} is a sequence of
independent identical distribution (iid) uniform variables on (0, 1) and such that
the {U;} is dependent of F,"}"°.

Proposition 6.3. shows that the model (6.10) converges to the model (6.9) when

m — oco. Assume S; in model (6.9) follows a first-order Markov chain with the

transition matrix P, = [p;;] = Pr(s; = jls;i—1 =1),4,7 = 1,2, i.e.

Pr(s;=1|s;.1=1) Pr(s;=2|s;1=1)

P2 -
Pr(s; =1|s;-1 =2) Pr(s; =2|s—1 =2)
P11 P12 y45! 1—pu
P21 P22 1 —pa P22

where p;j, (1,7 = 1,2) denote the transition probabilities of the state variable
S¢ = 7 given S;_; = i. The transition probabilities satisfy 23:1 pi; = 1, and 0 <
pi; <1, 7=1,2. A small value of the transition probabilities p;» and ps; means

that the process tends to stay longer in state 1 and 2 respectively. In general,
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the expected duration of the model to stay in the state 1 is Y oo, kpiy'(1 —

p11) = ﬁ, and the expected duration of the other state is (see, Hamilton

1
1—p22
(1989)). The matrix above shows that the transition matrix P, contains only two
parameters (p11,p22). The stationary (steady-state) distribution of the Markov

chain {S;} is

PT(St - 1) 2—;:1])321722
m = —=
PT(St - 1) 2—;:fi;22

According to the definition of the model (6.9), the M.S— PGARCH (2,1,1) model
uses an unobservable Markov chain to govern the transition from one conditional
mean (variance) to another. This is different from that of a PTGARCH model
defined in Chapter 2, for which the switch is determined by a particular lagged
variable (Y;_4). We mentioned previously that the nonlinear time series models
have some drawbacks. The model defined by (6.2) has also the drawback that
the state variables (S;) are independent of (Y;_1) (over time) and consequently

may be difficult to apply in time series data.

6.3 Statistical Inference

In the last few decades, many authors have discussed the different methods to
estimate the Markov switching model, for example, Hamilton (1989,1990 and
1994), Kim (1994), Kim and Nelson (2003), Francq and Zakoian (2001) and,
Safaei (2012). Here, we concentrate on the MS-PGARCH(2,1,1) model of or-
der (1,1). However, the procedure of high order MS-PGARCH model would be
straightforward.

This is because the states are not directly observable. Therefore, it is quite
difficult to estimate a MSAR model than other models. Many methods exist
for the estimation of the unknown parameters. For example, the EM algorithm

(Hamilton (1989)), and the Gibbs sampler (Albert and Chib (1993)). The first
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method is more difficult to implement in the presence of AR lags (see Filardo
(1994)), while the second approach requires heavy computation. Hence, in the
next section, we estimate the parameters in the model defined by (6.9) using a

MLE numerical method.

6.3.1 Maximum likelihood estimation of MS-PGARCH

model

We will discuss Maximum likelihood estimation (MLE) for the MS-PGARCH
model. The main goal of this method is to define the coefficients that maximize
the probability of observations. We concentrate on a M S — PGARCH (2,1,1)
model to make the analysis simple, and extension to a model with m regimes
would be straightforward. The vector of parameters for model defined by (6.9)
is 0 = (¢, a4, b, p11, paz, @ = 1,2). The estimate of 6 can be found by maximizing
the conditional likelihood function of the observations Y7, Y5, ..., Y,, given the pre-
diction probability Pr(s, = i|/F,>}",0) which are based on the information prior

to time ¢. The conditional log likelihood function is given by

T
(r(0) = %Zlog Pr(Y, = k|F¥2S 9), (6.11)

=1
where Pr(Y; = k|F,"}°,6) is the distribution of ¥; conditional on F,"}*® given

Pr(s; = i|F, )5, 0), that is

Pr(Y, = k|F2Y°,0) = Pr(s,=1|F,_1,0)Pr(Y, = k|S, =1, F,_1)
+PT’(8t = 2|ft_1,9)P7’<}/t = l{?|St = 2,.E_1)

(6.12)
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where Pr(Y; = k|S, = i, F;"}°,0) is the distribution of Y; conditional on F;"}*®

and S; =1, (i = 1,2), that is

Pr(Y; = kIS, =i, F;)°,0)
Af exp(=M)
k!
(¢i + aide—1 + biY%—l)k exp[—(¢ + ai -1 + b;Yi1)]

= b . (6.13)

For i = 1,2, the filtering probabilities of S; which are based on the past and

present information are

Pr(s, = i|Fi_1,0)Pr(Y, = K|S, = i, F,)°,0)

Pr(S; =1i|F;,0) =
(5 =l7,6) Pr(Y; = k|F)S,0)

(6.14)

By the Bayes theorem, and the relationship between prediction and filtering prob-

abilities, this leads to

Pr(StJrl = ’L"thl, 0) = pMPT’(St = 1“/_';5,1, 9) +p21P7“(St = 2‘./_';5,1, 9), (615)

where py; = Pr(Si1 = i|S; = 1) and py; = Pr(Si1 = i|S; = 2) are transition
probabilities. Note that the equations (6.12)-(6.15) form a recursive system for
t = h,...,T, with initial values Pr(S, = i|F,_1,0). We can calculate the filter-
ing probabilities Pr(S; = i|F;,0) as well as the distribution of Y; conditional on
F % for t = h,..,T. The equation (6.11) is a complex nonlinear function of 6.
The MLE 67 can be calculated by using a numerical search algorithm. There are
many programs to compute the MLE O such as the GAUSS program and R pro-
gram and both adopt the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
We use the second program to estimate the model parameters. Both prediction
probabilities and filtering probabilities are computed by plugging f7 into their
formulae.

To calculate the smoothing probabilities Pr(S; = i|Fr, #), which are based on

151



Chapter 6 Poisson Markov Switching Model

all the information in the sample, we use the method of Kim’s (1994) smoothing
algorithm as follows. Consider the joint probability that S; = ¢ and S;11 = J

based on the full-sample information:

PT(St = i, St+1 = j|]:T, 0)

== PT’(SH_l == j|fT,0) X PT’(St == i|St+1 == j, .FT,Q)

Q

Pr(Sp1 = jlFr, 0) x Pr(S; = t|Si1 = j, F1,0)
Pr(Si1 = j|Fr,0) x Pr(S; =i, S = j|Fe, 0)
Pr(Si1 = j|F:,0)
Pr(Syy1 = j|Fr,0) x Pr(Sy = i|Fi,0) X Pr(Siy1 = j|S: =i, F,0)
Pr(Si1 = j|F,0)

In addition,

Pr(S, = i|Fr,0) (6.16)

2
= ZPT(StZi,StH = j|Fr,0)

j=1

Pr(Sip1 = 1|1Fp,0) x Pr(S; =i|Fi,0) x Pr(Si, = 1|8, =i, F,0)
PT(SH_l = 1|ft, 9)

Pr(Sip1 = 2|Fr,0) x Pr(S; = i|F:, 0) x Pr(Si = 2|S; =i, F,0)
Pr(Sip1 = 2|F,0)

Q

PT(St = i‘ft, 9)
(pﬂPT(StH = 1’-7'—T,9) pz‘2PT(St+1 = Q\J:T,Q))

Pr(Si1 = 1|F,0) Pr(Sy1 = 2|F,0)

The above procedure can be iterated for t = T — 1,7 — 2,7 — 3,......2,1,
and the smoothing probabilities Pr(S; = i, |Fp,0) for t = T — 1,7 —2,T —
3,.....,2, 1 are estimates of smoothed probabilities. Pr(Sr|Fr,0) is estimated at
the last iteration of the filtering probabilities. These probabilities are function
of 0, plugging the MLE 07 into (6.12), (6.14) and (6.15) formulae yields the

estimated smoothing probabilities.
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6.3.2 Simulation

In this part, we carry out a few simulation studies on calculation of the MLEs
of the model (6.9)and (6.10). The MLEs were computed by optimizing the log-
likelihood function (6.11). All simulation cases are performed using the R func-
tion Optim of package stats, which adopts the BEFGS (Broyden-Fletcher-Goldfard-
Shanno) algorithm. Five different cases will be examined, using different gradient
functions, different methods to obtain the initial values of the parameters, differ-

ent numbers of simulation times and different relative convergence tolerances.

Case 1

In this case, the true parameters of the model will be used as the initial values. No
gradient function is used, and the results are obtained over 1000 simulations with
relative convergence tolerance being 1e~4. Larger values of convergence tolerance
may produce inaccurate results since convergence tolerance applies to each step.

Table 6.1 contains the results for the data that was generated with

(Cl7 as, bl, Co, 9, bg,pll,pgg) = (08, 05, 03, 06, 03, 04, 07, 04)

for different sample sizes. It reports the maximum likelihood estimates (MLEs) of
the model defined by (6.9) and (6.10) for the parameters (¢;, a;, b;, i = 1,2) with
their mean square error (MSE) (in parentheses) as well as absolute average error
(AAE) for different sample sizes. The estimates of parameters and their mean
square errors are obtained by averaging out the results from all simulations. We
see the mean square error (MSE) as well as average absolute error (AAE) reduce
significantly as the sample size increases from 500 to 2000. In Table 6.1, it can
be seen that the sample sizes play an important role in accuracy of estimation
(see the MSE and AAE). Both the MSE and the AAE were calculated using the
simulation output. Table 6.2 shows standard errors which are found using the

standard deviation (SD) of the simulated estimators of model (6.9) and (6.10).
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Table 6.1: Maximum likelihood estimates with their mean square errors
(in parentheses), and the average absolute errors of estimates
for model (6.9) and (6.10) when (ci,aq,bs;co,a0,bo,p11,p22) =
(0.8,0.5,0.3;0.6,0.3,0.4,0.7,0.4), for different sample sizes. Results
obtained from 1000 simulations.

Sample size Maximum Likelihood Estimates (MLE] Average Absolute Error
n o o  hoa  wm ko AAR
500 08134 05045 02901 06037 0.3021 0399 07023 0.3968 0.0032
(0.0368) { 0.0092) (0.0051) (0.0101) (0.0108) (0.0087) (0.0026) ( 0.0030 |

1000 07974 05028 02972 05995 03046 03991 07013 0.3995 0.0011
(0.0051) (0.0027) { 0.0020) ( 0.0015) (0.0024) (0.0021) (0.0004) ( 0.0002)

1500 08005 05049 02967 05989 02989 03976 0.7005 0.3997 0.0007
(0.0012) { 0.0013)  0.001L) { 0.0005) { 0.0012 ) (0.0010) ~(0.0002) (0.0001)

20000 08007 05031 0299 05999 02997 0.3988 0.7005 03997 0.000

(0.00003) { 0.0001)  0.0001) { 0.00001) ( 0.0001) { 000064} (0.00001) (0.00001

They are obtained from 1000 simulations using different sample sizes. As the
sample size increases from small to large, the simulated standard error clearly
decreases.

Figure 6.1 provides the boxplot of the AAE of MLEs for the model defined by
(6.9) and (6.10) for different sample sizes. The plot 6.1 shows the AAE reduces
gradually as the sample size increases from 500 to 2000. The larger the sample
size is the smaller the number of outliers is. The distribution of the AAE values

is positive (right) skewed independently of the sample sizes. Table 6.3 shows the

Table 6.2: The simulated standard error for model (6.9) and (6.10) when
(Cl, as, bl, Co, A2, bg,pn,pQQ) = (08, 05, 03, 06, 03, 04, 07, 04), for
different sample sizes. The results are based on 1000 simulations each.

Sample size Simulated Standard Error
n c1 ap b1 c2 as b  pu1 D2
500 0.1920 0.0960 0.0711 0.1007 0.1038 0.0932 0.0513 0.0547
1000  0.0717 0.0517 0.0444 0.0390 0.0490 0.0462 0.0190 0.0157
1500  0.0351 0.0362 0.0337 0.0232 0.0348 0.0309 0.0126 0.0092
2000  0.0174 0.0257 0.0267 0.0109 0.0272 0.0202 0.0088 0.0072
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distribution of the maximum likelihood estimates for model (6.9) and (6.10), de-

scriptive statistic of the parameters as well as the root mean square estimations

~

(RMSE) which is defined as RMSE(8) = \/MSE(8) = \/E(8 — 6)? for differ-
ent sample sizes. Table 6.3 shows that the value of RMSE for each parameter

decreases gradually as the sample size increases.
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Figure 6.1: Boxplot of AAE for maximum likelihood estimator of model (6.9)
and (6.10) for different sample sizes. Results are based on 1000
simulations.
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of
(6.9) and

the maximum

likelihood

estimates  of

(6-10) when (01,al,b1;02,a2,b27p1171722) =
(0.8,0.5,0.3;0.6,0.3,0.4,0.7,0.4) for different sample sizes. Res-
ults are based on 1000 simulations.

Sample size Parameter Value Mean RMSE Summary

n Lower 25% Median 75% Upper
c1 0.8 0.8134 0.0831 -0.0297 0.7794 0.8006 0.8244 2.3230
aj 0.5 0.5045 0.0659 0.0302 0.4580 0.5016 0.5526 1.2930
b1 0.3 0.2901 0.0538 -0.1369 0.2445 0.2936 0.3312 0.5826

500 2 0.6 0.6037 0.0478 0.0648 0.5874 0.6008 0.6199 1.1780
as 0.3  0.3021 0.0666 -0.3262 0.2665 0.3025 0.3503 0.6630
bo 0.4 0.3995 0.0564 -0.1791 0.3740 0.4013 0.4377 0.8204
D11 0.7 0.7023 0.0270 0.1925 0.6871 0.7010 0.7178 1.0000
D22 0.4  0.3968 0.0253 0.0000 0.3869 0.3993 0.4106 0.9453
c1 0.8 0.7974 0.0245 0.1236 0.7930 0.8002 0.8073 1.3910
aj 0.5 0.5028 0.0321 0.1760 0.4845 0.5010 0.5184 0.8819
b1 0.3 0.29720.0318 0.1196 0.2757 0.2997 0.3189 0.4931

1000 2 0.6  0.5995 0.0151 0.2340 0.5954 0.6001 0.6053 0.9260
as 0.3 0.3046 0.0303 0.0487 0.2902 0.3009 0.3182 0.5789
bo 0.4 0.3991 0.0245 0.0022 0.3903 0.4007 0.4122 0.6538
P11 0.7 0.7013 0.0112 0.5476 0.6952 0.7002 0.7064 0.8712
D22 0.4  0.3995 0.0086 0.2495 0.3956 0.3999 0.4031 0.5045
c1 0.8  0.8005 0.0130 0.3399 0.7964 0.8002 0.8038 1.1860
aj 0.5 0.5049 0.0225 0.3018 0.4925 0.5013 0.5144 0.7335
b1 0.3 0.2969 0.0227 0.1088 0.2839 0.2989 0.3075 0.4171

1500 2 0.6  0.5989 0.0090 0.2249 0.5970 0.6001 0.6027 0.8283
as 0.3 0.2989 0.0203 0.0808 0.2930 0.3003 0.3080 0.5187
bo 0.4 0.3976 0.0167 0.0702 0.3921 0.3997 0.4047 0.6379
P11 0.7 0.7005 0.0074 0.5894 0.6978 0.7002 0.7033 0.8115
D22 0.4 0.3997 0.0054 0.3298 0.3979 0.3999 0.4015 0.5037
c1 0.8  0.8007 0.0069 0.7085 0.7981 0.8000 0.8024 1.1930
aj 0.5 0.5031 0.0158 0.3961 0.4962 0.5013 0.5099 0.5911
b1 0.3  0.29950.0167 0.1964 0.2938 0.3004 0.3057 0.4041

2000 o 0.6  0.5999 0.0053 0.5321 0.5986 0.6001 0.6017 0.7367
as 0.3 0.2997 0.0147 0.0778 0.2967 0.3004 0.3057 0.6630
bo 0.4 0.3988 0.0110 0.2882 0.3962 0.4001 0.4039 0.5363
P11 0.7 0.7005 0.0051 0.6497 0.6990 0.7001 0.7023 0.7340
D22 0.4 0.3997 0.0039 0.3263 0.3987 0.3999 0.4008 0.4277
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Case 2

In this case, the initial values of the intercept and the autoregressive parameters
were obtained by the ARIMA (1,1) fit to the data, and the starting values for the
transition probabilities (p1; and peg) were obtained by counting the number of
states in regimes 1 and 2 and then dividing by the sample size for each simulation.
500 simulations are taken and the relative convergence tolerance is le”4. As in
case 1, no gradient function will be used.

Table 6.4 reports MLEs with their mean square errors (in parentheses), and
the average absolute error of estimates for two various models for different sample
sizes. The table shows the estimates of the parameters obtained by averaging out
the results from all simulations. The MSE was computed by using the simulations
output. From Table 6.4, it can be seen that the MSE and AAE of MLSE for both
different models decreases gradually when the sample size increases from 2000 to
10000.

Table 6.4: Maximum likelihood estimates with their mean square errors (in par-

entheses), and the average absolute error of estimates for two vari-
ous models for different sample sizes. Results obtained from 500

simulations.
Regime Regime Sample size Maximum Likelihood Estimators (MLE) Average Absolute Error
One Two n cy ay by co as by P11 D22 AAE
c1=0.8 ¢=0.6 2000 1.0221 0.4086 0.4149 1.3965 0.2933  0.3880 0.6642 0.3649 0.1891
a;=0.5 ay=0.4 (0.1301) ( 0.0140) (0.0014) (0.7019) (0.0181) (0.0037) (0.0185) ( 0.0064 )
b1=0.4 by=0.4 3000 1.0197 0.4057 0.4175 1.3994 0.2934 0.3860 0.6556 0.3685 0.1821
P11=0.6 p22=0.4 (0.1085) (0.0130) (0.0010) ( 0.6823) (0.0157) (0.0025) (0.0152) ( 0.0052)
5000 1.0595 0.3969 0.4190 1.4050  0.2947  0.3907 0.6386  0.3800 0.1814
(0.1150) ( 0.0139) ( 0.0008) ( 0.6761) ( 0.0133 ) (0.0015) (0.0099) (0.0028)
10000 1.0741 0.3911 0.4213 1.4134 0.2947 0.3962 0.6240 0.3868 0.1781
(0.1041) ( 0.0137) ( 0.0006) (0.6762) ( 0.0120) ( 0.0008) (0.0058) (0.0018)
c1=0.6 ¢2=0.7 2000 1.2926 0.3917 0.4260 0.8301  0.4219 0.3407 0.3678 0.6863 0.1791
a1= 0.54 ap=0.45 (0.5569) (1 0.0342) (0.0067) (0.0851) (0.0068) (0.0037) (0.0062) ( 0.0224 )
b1=0.45 b=0.3 3000 1.2841 0.3873  0.4297 0.8251 0.4239  0.3407 0.3694 0.6821 0.1740
p11=0.4 p22=0.6 (0.5319) (0.0341) (0.0046) ( 0.0823) (0.0059) (0.0033) (0.0040) (0.0194)
5000 1.2874 0.3788 0.4274 0.8486 0.4186  0.3455 0.3699 0.6708 0.1734
(0.5126) ( 0.0335) ( 0.0032) (0.0831) ( 0.0053 ) (0.0033) (0.0033) (0.0163)
10000 1.2712  0.3815 0.4340 0.8352 0.4213 0.3450 0.3697 0.6759 0.1659

(0.4763) ( 0.0308) ( 0.0022) (0.0662) ( 0.0042) ( 0.0032) (0.0027) (0.0160)

Table 6.5 illustrates the simulated standard errors for two different models

for different sample sizes. The table shows that the standard errors of most
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parameters decreases when the sample size increases for both models. Table 6.6

Table 6.5: The simulated standard errors for two different models for different
sample sizes. The results are based on 500 simulations each.

Regime 1 Regime 2 Sample size Simulated Standard Error

=08  ¢=0.6 2000 0.3608 0.1184 0.0372 0.8378 0.1347 0.0608 0.1362 0.0798
a1=0.5 ap=04 3000  0.32930.1139 0.0323 0.8260 0.1253 0.0502 0.1234 0.0719
b1=04  by=04 5000 0.3392 0.1179 0.0281 0.8222 0.1155 0.0391 0.0993 0.0526
p11=0.6 pp=04 10000 0.3226 0.1180 0.0261 0.8223 0.1096 0.0284 0.0761 0.0424

c=0.6 c=0.7 2000  0.7463 0.1850 0.0830 0.2917 0.0822 0.0610 0.0788 0.1497
a1=0.54 ap=045 3000  0.7293 0.1848 0.0678 0.2868 0.0767 0.0575 0.0630 0.1391
b1=045 bo=0.3 5000 0.7159 0.1830 0.0566 0.2883 0.0730 0.0576 0.0583 0.1275
p11=0.6 pp=04 10000 0.6901 0.1755 0.0469 0.2572 0.0650 0.0572 0.0519 0.1266

shows the variance of AAE for two different models for different sample sizes.

The variance of AAE reduces when the sample sizes increases.

Table 6.6: The variance of average absolute error for two different models for
different sample sizes. The results are based on 500 simulations each.

Regime 1 Regime 2 Sample Size Variance of AAE

c1=0.8 ¢2=0.6 2000 0.002664
a1=0.5 a2=04 3000 0.001917
b11=0.4 by=0.4 5000 0.001082
p11=0.6 p22=0.4 10000 0.000514
c1=0.6 c2=0.7 2000 0.002884
a1=0.54 a2=0.45 3000 0.002257
b1=0.45 b9=0.3 5000 0.001454
p11=0.4  p22=0.6 10000 0.000980

Table 6.7 presents the descriptive information about AAE for two different
models for different sample sizes. The mean of AAE for both models decreases

when the sample size increases.
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Table 6.7: Summary of average absolute error of two various models for different
sample sizes. Results are based on 500 simulations.

Regime Regime Sample Size Summary
One Two n Lower 25% Median Mean 75% Upper

c1—0.8 ¢2—0.6 2000 0.06038 0.15414 0.18752 0.18912 0.22221 0.35875
a1—0.5 ax—0.4 3000 0.05016 0.15020 0.18221 0.18213 0.21169 0.34767
b1=0.4 by=0.4 5000 0.08418 0.15815 0.18271 0.18137 0.20361 0.28980
p11=0.6 p22=0.4 10000  0.11205 0.16270 0.17880 0.17810 0.19200 0.25070

c1—0.6 ¢c2—0.7 2000 0.06133 0.14173 0.17435 0.17912 0.20735 0.35491
a1—0.54 a2—=0.45 3000 0.04764 0.14055 0.17341 0.17403 0.20372 0.31549
b1=0.45 b2=0.3 5000 0.06719 0.14950 0.17314 0.17344 0.19820 0.27875
p11=0.4 p22=0.6 10000  0.06601 0.14396 0.16572 0.16591 0.18841 0.25307

Table 6.8 reports the maximum likelihood estimation of model (6.9) and (6.10)
when
(c1,a1,b1; 0, a2,b2,p11,p22) = (0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6) and the de-
scriptive statistics of these parameters. The RMSE values of the parameters
are given. In Table 6.8, it can be seen that the RMSE of the parameters of the
second regime decreases when the sample size increases from 2000 to 10000.

Table 6.9 reports the maximum likelihood estimation of model (6.9) and (6.10)
when
(c1,a1,b1;5 9, a2,b2, p11,p22) = (0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6) and the de-
scriptive statistics of these estimates. The RMSE values of the parameters are
given.

Figure 6.2 shows the boxplot of the values of estimated parameters for model
when (c1,ay, by; o, as, by, P11, p22) = (0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for two
different sample sizes. The plot illustrates that the range of boxplot of the estim-
ated parameters values reduce when the sample size increases from 2000 to 5000.
We see that as the sample size increases, the values of outliers of the estimated
parameters decrease. From Figure 6.2, it can be deduced that the MLE estimates

become more efficient with small range of boxplot of parameters and outliers less
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Table 6.8: Distribution  of the maximum  likelihood  estimates  of
model (69) and (610) when (Cl, ai, bl, Co, A2, bg, pn,pgg) =
(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Res-
ults are based on 500 simulations.

Sample size Parameter Value Mean RMSE Summary

n Lower 25% Median 75% Upper
c1 0.8 1.0220 03136 0.3186 0.8479 1.0650 1.2190 1.7210
ai 0.5 0.4086 0.1026 0.2379 0.3546 0.3982 0.4569 0.6557
by 0.4 0.4149 0.0296 0.3206 0.3917 0.4159 0.4373 0.5490

2000 co 0.6 1.3970 0.7966 0.6665 1.2190 1.3960 1.5600 2.2300
a9 0.4 0.2933 0.1125 0.0002 0.2420 0.2948 0.3507 0.5515
b 0.4 0.3880 0.0427 0.0692 0.3605 0.3897 0.4203 0.5943
P11 0.6 0.6642 0.0719 00.3098 0.5959 0.6067 0.6436 0.9939
D22 0.4 0.3649 0.0437 0.1241 0.3764 0.3951 0.4052 0.5934
c1 0.8 1.0197 0.2909 0.3400 0.8960 1.0640 1.1870 1.6190
al 0.5 0.4057 0.1010 0.2568 0.3625 0.3932 0.4419 0.6205
by 0.4 041752 0.0261 0.3232 0.3993 0.4183 0.4368 0.5036

3000 co 0.6 1.3990 0.7994 0.67550 1.2730 1.3940 1.5330 2.0950
a9 0.4 0.2934 0.1098 0.0227 0.2554 0.2968 0.3353 0.5216
b 0.4 0.3860 0.0342 0.1699 0.3691 0.3925 0.4161 0.4932
D11 0.6 0.6556 0.0597 0.5757 0.5976 0.6051 0.6194 0.9978
D22 0.4 0.3685 0.0359 0.1262 0.3828 0.3955 0.4027 0.4245
c1 0.8 1.0590 0.3160 0.3879 0.9997 1.1020 1.1990 1.5700
al 0.5 0.3969 0.1082 0.2889 0.3578 0.3829 0.4158 0.6352
by 0.4 0.4190 0.0230 0.3485 0.4059 0.4187 0.4319 0.4929

5000 co 0.6 1.4050 0.8050 0.6018 1.29101.4160 1.5190 1.8210
a9 0.4 0.2947 0.1056 0.1082 0.2646 0.2942 0.3271 0.4270
bo 0.4 0.3907 0.0264 0.1879 0.37710.3962 0.4139 0.4817
D11 0.6 0.6386 0.0426 0.5837 0.5972 0.6035 0.6115 0.9644
D22 0.4 0.3800 0.0243 0.1872 0.3895 0.3969 0.4030 0.4165
c1 0.8 0.1.0740 0.3118 0.3847 1.05101.1110 1.1650 1.3700
a1 0.5 0.3911 0.1118 0.3062 0.3654 0.3829 0.3991 0.5673
by 0.4 04213 0.0225 0.3761 0.4116 0.4207 0.4309 0.4603

10000 Co 0.6 1.4130 0.8134 0.9781 1.34001.4190 1.4970 1.7070
as 0.4 0.2947 0.1053 0.1590 0.2762 0.2941 0.3152 0.3750
bo 0.4 0.3962 0.0180 0.2684 0.3882 0.4007 0.4113 0.4929
D11 0.6 0.6240 0.0263 0.5881 0.5985 0.6017 0.6059 0.9713
D22 0.4 0.3868 0.0159 0.1351 0.3945 0.3987 0.4018 0.4121

when the sample size increases from 2000 to 5000.

Figure 6.3 shows the boxplot of AAE for maximum likelihood estimator of

model (6.9) and (6.10) when (c1, ay, by; ¢o, ag, ba, P11, p22) = (0.8,0.5,0.4;0.6,0.4, 0.4,
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of

the maximum  likelihood  estimates  of

(69) and (610) when (Cl, ai, bl, Co, A2, bg, pn,pgg) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for different sample sizes.
Results are based on 500 simulations.

Sample size Parameter Value Mean RMSE Summary

n

Lower 25%  Median 75%  Upper

c1 0.6  1.2930 0.6942 0.4667 1.1180 1.2930 1.4680 2.1700
ai 0.54 0.39170.1643 0.07792 0.31810 0.37360 0.45690 0.7653
b1 0.45 0.4260 0.0685 0.2485 0.3698 0.4131 0.4718 0.6921
2000 c2 0.7 0.8301 0.2450 0.1722 0.6136 0.8529 1.0270 1.4630
as 0.45 0.42190.0676 0.2191 0.3626 0.4219 0.4825 0.6323
bo 0.3  0.3407 0.0510 0.2039 0.3132 0.3435 0.3741 0.4555
P11 0.4 0.3678 0.0489 0.1700 0.3334 0.3916 0.4040 0.7608
D22 0.6  0.6863 0.0935 0.4024 0.6003 0.6136 0.7966 0.9821
c1 0.6 1.28400.6842 0.5894 1.1040 1.2840 1.4630 1.9460
ay 0.54 0.38730.1626 0.1911 0.3118 0.3645 0.4606 0.7310
b1 0.45 0.4297 0.0565 0.2670 0.3867 0.4165 0.4661 0.6696
3000 2 0.7 0.82510.2510 0.2809 0.5876 0.8874 1.0310 1.4390
az 0.45 0.4239 0.0645 0.2577 0.3681 0.4187 0.4808 0.6051
b2 0.3 0.34070.0490 0.2330 0.3153 0.3423 0.3693 0.4346
P11 0.4 0.3694 0.0379 0.1910 0.3570 0.3918 0.4018 0.5284
D22 0.6 0.68220.0866 0.3876 0.6008 0.6123 0.7875 0.9830
c1 0.6 1.28700.6874 0.6883 1.1690 1.3070 1.4170 1.8510
ai 0.54 0.3788 0.1656 0.2109 0.3139 0.3547 0.4406 0.6373
bl 0.45 0.4274 0.0483 0.3248 0.3924 0.4145 0.4561 0.6344
5000 c2 0.7 0.8486 0.2641 0.1909 0.5915 0.9277 1.0310 1.3140
as 0.45 0.4186 0.0642 0.2769 0.3701 0.4039 0.4717 0.6014
bo 0.3 0.34550.0506 0.2193 0.3240 0.3487 0.3714 0.4239
P11 0.4 0.3699 0.0339 0.1941 0.3447 0.3950 0.4012 0.4638
D22 0.6 0.6708 0.0734 0.5825 0.5996 0.6069 0.7620 0.9411
c1 0.6 1.27100.6712 0.8006 1.1760 1.2840 1.3790 1.7040
ay 0.54 0.38150.1589 0.2263 0.3214 0.3604 0.4481 0.5773
b1 0.45 0.4340 0.0411 0.3421 0.4005 0.4212 0.4671 0.5740
10000 2 0.7 0.83520.2380 0.3970 0.5835 0.9261 1.0190 1.1950
a2 0.45 0.4213 0.0586 0.3040 0.3748 0.4020 0.4747 0.5509
ba 0.3 0.3450 0.0501 0.2108 0.3209 0.3520 0.3713 0.4100
P11 0.4 0.3697 0.0320 0.2430 0.3396 0.3939 0.3999 0.4117
D22 0.6 0.67590.0774 0.5884 0.6009 0.6076 0.7837 0.9049

0.6,0.4), for different sample sizes. In Figure 6.3, it can be seen that when the

sample size increases the boxplot decreases slowly.

Figure 6.4 illustrates the histogram of AAE for the maximum likelihood estim-
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Figure 6.2: Boxplot of the values of estimated parameters of model
(69) and (610) when (Cl, az, bl, Co, A2, bg,plhpgg) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for different sample sizes.
Results are based on 500 simulations.The initial values for the
intercept and the slope parameters are obtained by the ARIMA(1,1)
model.

ator of model (6.9) and (6.10) when (c1, ay, by; ¢, as, ba, p11, pe2) = (0.8,0.5,0.4; 0.6,
0.4,0.4,0.6,0.4), for different sample sizes. The figure shows that the histogram
of AAE values would be reasonably symmetric.

Figure 6.5 shows the boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1, aq, by; ¢a, ag, ba, 11, p22) = (0.6,0.54,0.45;0.7,0.45
,0.3,0.4,0.6), for different sample sizes. In Figure 6.5, it can be seen that when
the sample size increases the boxplot decreases slowly. Figure 6.6 illustrates the
histogram of AAE for maximum likelihood estimator of model (6.9) and (6.10)
when (¢, aq, by; ¢, as, be, p11, pe2) = (0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for dif-
ferent sample sizes. The figure shows that the histogram of AAE values would

be reasonably symmetric.
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Boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;¢0,a2,b2,p11,P22) =

(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results
are based on 500 simulations.The initial values for the intercept and
the slope parameters are obtained by the ARIMA (1,1) model.
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Figure 6.4: Histogram of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;¢0,a2,b2,p11,P22) =
(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results
are based on 500 simulations. The initial values for parameters are
obtained by the ARIMA(1,1) model.
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Figure 6.5: Boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;¢0,a2,b2,p11,P22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for different sample sizes.
Results are based on 500 simulations.The initial values for paramet-
ers are obtained by the ARIMA(1,1) model.

165



Chapter 6 Poisson Markov Switching Model

Size=2000 Size=3000
© 7 —_— —
/\ o
© -
©o
= el
2 <« o 2
3 ji <
a (=)
N o~
o - o
I T T T T T T 1 I T T T T T 1
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
AAE AAE
Size=5000 Size=10000
— ~ i
o — =
—
S —
(o]
N o ]
= =
£ o £
[ = = o —
a a
< < -
o~ ~ -
o o -~
I T T T T T 1 I T T T T 1
0.00 0.10 0.20 0.30 0.00 0.05 0.10 0.15 0.20 0.25
AAE AAE

Figure 6.6: Histogram of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;¢0,a2,b2,p11,P22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.4,0.6), for different sample sizes.
Results are based on 500 simulations. The initial values for
parameters are obtained by the ARIMA (1,1) model.
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Case 3
In the present case, the starting values of all parameters are similar to those in
case 2. A numerical approximation of the gradient function will be used. The
outcomes are based on 1000 simulations with relative convergence tolerance (e™®).
Table 6.10 shows MLE with their MSE (in parentheses) as well as AAE of the
MLE for different sample sizes. The table shows that the values of MSE of the
MLE for all parameters become smaller as the sample size increases from 2000
to 10000. In Table 6.10 the AAE values decrease gradually as the sample size

increases from small to the large.

Table 6.10: Maximum likelihood estimates with their mean square errors
(in parentheses), and the average absolute error of estimates
for model (6.9) and (6.10) when (ci,a1,bi;co,a0,b,p11,p22) =
(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results
obtained from 1000 simulations.

Sample size Maximum Likeihood Estimators (MLE) Average Absolute Error
n a o b oo o ko AAE
2000 06163 04990 04160 1.0985 0.3419 0.3664 0.6700 0.4010 0.2334
(0.1626) ( 0.0185) (0.0131) (0.4633) (0.0425) (0.0299) (0.0825) ( 0.1065 )

3000 05041 05141 04036 11324 03264 0.3699 0.6934  0.4009 0.2236
(0.1400) (0.0152) ( 0.0086) (0.4588) (0.0852) (0.0270) (0.0745) ( 0.0097)

5000 06121 05129 04032 10483 03271 03712 06992 0.3847 0.1976
(0.1013) ( 0.0096) (0.0057) ( 0.3364) ( 0.0316 ) (0.0222) (0.0672) (0.0868)

10000 0.6389 03081 04003 1.0080 0.3238 03778 0.7193  0.3346 0.1692

(0.0650) (0.0051 ) (00026 ) (0.2555 ) { 0.0231) ( 0.0166) (0.053) (0.0679)

Table 6.11 reports simulated standard errors for model (6.9) and (6.10) when
(c1,a1,b1;5 o, a2,ba, P11, p22) = (0.8,0.5,0.4;0.6,0.4,0.4, 0.6, 0.4) for different sample
sizes. The simulated standard error for regressive coefficients and the transition
probabilities reduces clearly as the sample size increases from 2000 to 10000.

Table 6.12 presents the variance of AAE for model (6.9) and (6.10) for different

sample sizes.
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Table 6.11: The simulated standard errors for model (6.9) and (6.10) when
(Cl,CLl,bl;CQ,CLQ,bQ,pH,p22> = (08,05,04706, 04,04,06,04), for
different sample sizes. The results are based on 1000 simulations

each.
Sample size Simulated Standard Error
n c1 a by 2 as by pu pa2

2000  0.4032 0.1360 0.1146 0.6807 0.2063 0.1728 0.2872 0.3263
3000  0.37420.1233 0.0926 0.6774 0.1876 0.1645 0.2729 0.3158
5000  0.31820.0981 0.0757 0.5800 0.1779 0.1489 0.2593 0.2946
10000 0.2550 0.0712 0.0509 0.5055 0.1519 0.1287 0.2355 0.2604

Table 6.12: The variance of average absolute error for model (6.9) and (6.10) for
different sample sizes. The results are based on 1000 simulations each.

Regime 1 Regime 2 Sample Size Variance of AAE

c1=0.8 ¢3=0.6 2000 0.00506
a1=0.5 as=0.4 3000 0.00494
b1=04 by=0.4 5000 0.00418
p11=0.6 pp—=04 10000 0.00295

Table 6.13 presents the descriptive information of AAE for model (6.9) and
(6.10) for different sample sizes. The values of different descriptive information
of AAE for the model decrease when the sample size increases.

Table 6.13: Summary of average absolute error for model (6.10) for different
sample sizes. Results are based on 1000 simulations.

Regime Regime Sample Size Summary
One Two n Lower 25% Median Mean 75% Upper

c1=0.8 ¢2=0.6 2000 0.05171 0.18670 0.23250 0.23340 0.28100 0.50960
a1—0.5 ax—0.4 3000 0.04243 0.17800 0.22160 0.22360 0.26900 0.44260
b1=0.4 by=0.4 5000 0.03674 0.15290 0.19880 0.19760 0.24140 0.43690
p11=0.6 p22=0.4 10000  0.03094 0.13010 0.16790 0.16920 0.20540 0.40310

Table 6.14 reports the maximum likelihood estimation of model (6.9) and (6.10)

when (c1, ay, by; o, as, by, P11, p22) = (0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), and the de-
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scriptive statistics of these parameters. In addition, it shows that the RMSE

values of the parameters reduce slowly as the sample size increases.

Table 6.14: Distribution

model

(6.9)

and

the maximum likelihood

estimates  of

(610) when (Cl7alybl;627a‘2762ap11>p22) =

(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results
are based on 1000 simulations.

Sample size Parameter Value Mean RMSE

Summary

n Lower 25% Median 75% Upper
c1 0.8 0.6163 0.3126 0.0000 0.4019 0.6341 0.8157 2.6140
al 0.5 0.4990 0.0941 0.0000 0.4326 0.4956 0.5576 1.1680
b1 0.4 0.4160 0.0760 0.0000 0.3632 0.4095 0.4599 1.2930
2000 co 0.6  1.0990 0.5675 0.0000 0.8214 1.0810 1.3870 2.9400
as 0.4 0.3419 0.1567 0.0000 0.2263 0.3500 0.4517 1.7500
bo 0.4 0.3664 0.1304 0.0000 0.2745 0.3746 0.4683 0.9356
P11 0.6 0.6700 0.2463 0.0000 0.5027 0.7383 0.9053 1.0000
P22 0.4 0.4010 0.2833 0.0000 0.1052 0.3268 0.6954 0.9985
c1 0.8 0.5941 0.2914 0.0000 0.4193 0.6114 0.7577 2.2190
ai 0.5 0.5141 0.0817 0.0000 0.4508 0.4978 0.5654 1.2980
b1 0.4 0.4036 0.0620 0.0155 0.3643 0.4018 0.4427 0.9611
3000 Co 0.6 1.13200.5778 0.0000 0.8752 1.1420 1.3950 2.5240
ao 0.4 0.3264 0.1459 0.0000 0.2173 0.3404 0.4373 0.9420
b 0.4 0.3699 0.1229 0.0000 0.2872 0.3784 0.4634 0.9223
P11 0.6 0.6934 0.2369 0.0000 0.5329 0.7516 0.9120 1.0000
D22 0.4 0.4009 0.2699 0.0000 0.1385 0.3381 0.6613 0.9988
c1 0.8 0.61210.2441 0.0000 0.4879 0.6358 0.7604 1.5650
al 0.5 0.5129 0.0655 0.1279 0.4595 0.5004 0.5494 1.0660
b1 0.4 0.4032 0.0506 0.0000 0.3676 0.4021 0.4379 0.9630
5000 Co 0.6 1.0480 0.4979 0.0000 0.8309 1.0680 1.3000 2.8760
as 0.4 0.32710.1377 0.0000 0.2237 0.3332 0.4235 0.8986
bo 0.4 0.37120.1112 0.0000 0.2944 0.3811 0.4627 0.7497
P11 0.6 0.6992 0.2234 0.0000 0.5617 0.7539 0.9002 1.0000
P22 0.4 0.3847 0.2503 0.0000 0.1479 0.3347 0.6271 0.9913
c1 0.8 0.6389 0.1987 0.0000 0.5429 0.6576 0.7459 1.5670
ai 0.5 0.5081 0.0460 0.2729 0.4701 0.4981 0.5353 1.0600
b1 0.4 0.4003 0.0347 0.0309 0.3775 0.4015 0.4254 0.6149
10000 co 0.6  1.0080 0.4408 0.0000 0.8275 1.0330 1.1960 1.8790
as 0.4 0.3238 0.1187 0.0000 0.2462 0.3292 0.4307 0.7857
b 0.4 0.3778 0.0948 0.0000 0.3100 0.3880 0.4504 0.8463
P11 0.6 0.7193 0.2022 0.0007 0.5871 0.7561 0.8813 0.9999
D22 0.4 0.3346 0.2179 0.0000 0.1342 0.3006 0.4929 0.9857

Figure 6.7 shows the values of AAE for maximum likelihood estimator of model
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(6.9) and (6.10) for different sample sizes. The AAE values become smaller when

the sample size increases. The plot shows the parameters have slight outliers.
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Figure 6.7: Boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;c0,a0,b0,p11,022) =
(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results
are based on 1000 simulations.

Figure 6.8 presents the boxplot of the estimated parameter values for model
(6.9) and (6.10) when (cy, ay, by; co, ag, ba, p11,p22) = (0.8,0.5,0.4;0.6,0.4,0.4, 0.6,
0.4), for two different sample sizes. The values of the outliers of large sample sizes
(10000) are smaller in comparison to the values of outliers of 3000. Figure 6.8
shows the tendency of the MLE estimates to become more efficient with smaller
values of the outliers as the sample size increases from 3000 to 10000. Figure
6.9 illustrates the histogram of AAE for maximum likelihood estimator of model
(6.10) when (¢, aq,by;ca,as,be, p11,p22) = (0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for
different sample sizes. Figure 6.9 reports that the histogram of AAE could be

symmetric.
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(0.8,0.5,0.4;0.6,0.4,0.4,0.6,0.4), for different sample sizes. Results

are based on 1000 simulations.
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are based on 1000 simulations.
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Case 4

Here, the initial values of the parameters (autoregressive coefficients and inter-
cept) are the same as in case 3. However, the initial values of the transition
probabilities (p1; and pao) are fixed. That is, p1; = peg = 0.5. The gradient func-
tion is obtained in a similar way to case 3, as well as, the number of simulations
and tolerance level.

Table 6.15 reports the results of simulation for MS-GARCH (2;1,1) model with
different parameters. The first model has the parameters (c1, aq, by; ¢, as, ba, p11,
pa2) = (0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3), whereas the parameters of the second
model are (0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7). In the first model, the transition
probability is 0.3 from the first state (S; = 1) to the other, while it is 0.7 from
the second state (S; = 2) to the first state. In contrast, the transition probability
between states is 0.3 in the second model. Table 6.15 shows the MLEs with their
MSE (in parentheses) as well as the AAE of the MLE for different sample sizes.
The table shows that the MSE values of the MLE for all parameters become smal-
ler as the sample size increases from 500 to 2000. In Table 6.15, the AAE values
decrease gradually as the sample size increases in both models. Table 6.16 re-
ports simulated standard error for two various models defined by (6.9) and (6.10)
for different sample sizes. The simulated standard error for intercept, regress-
ive coefficients and the transition probabilities reduces clearly as the sample size
increases from 500 to 2000 in both models. Table 6.17 presents the variance of
average absolute error for different models defined by (6.9) and (6.10) for different
sample sizes. Clearly, it reduces gradually when the sample size increases in both
models. Table 6.18 presents the descriptive information of AAE for model (6.9)
and (6.10) for different sample sizes. The values of different descriptive informa-
tion of AAE for the model decrease when the sample size increases. Table 6.18
reports the range of AAE for different models are 1.211 and 0.610 respectively

when the sample size is 500, while they are 0.599 and 0.484 when the sample
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Table 6.15: Maximum likelihood estimates with their mean square errors (in par-
entheses), and the average absolute error of estimates for two differ-
ent MS-GARCH (2;1,1) models for different sample sizes. Results
obtained from 1000 simulations.

Parameters  Sample Maximum Likelihood Estimators (MLE) Average Absolute Error
Regime 1 Regime 2 Sizes ¢ ay by ) ag by P P22 AAE
=08 =10 500 0.8946 0.4586 0.4024 2.1639 0.3065 0.2911 0.7377 0.3504 0.3470
a1=0.5  ay=04 (0.3080) ( 0.0322) (0.0181) (2.9043) (0.0714) (0.0350) (0.0829) ( 0.0947 )
b1=0.4  b=0.3 1000 0.7571 0.4950 0.4003 1.8960 0.2887  0.2915 0.7405 0.3460 0.2885
p11=0.7 poa=0.3 (0.1836) (0.0256) ( 0.0149) (1.5345) (0.0565) (0.0287) (0.0719) ( 0.1027)
1500 0.7187 0.4992 0.3988 1.8318 0.2975  0.2831  0.7527  0.3422 0.2686
(0.1543) ( 0.0206) (0.0110) ( 1.1610) ( 0.0542 ) (0.0278) (0.0668) (0.1054)
2000 0.6814 0.5044 0.3988 1.7864 0.2948  0.2841 0.7630 0.3211 0.2518
(0.1279) (0.0120) (0.0082) (1.0026) (0.0470) (0.0252) (0.0599) (0.0960)
c1=0.6 =07 500 0.7082 0.5587 0.4282 0.7885 0.4684 0.2789 0.6280 0.6234 0.2454
a1=0.54 ay=0.45 (0.3883) (0.0638) (0.0413) (0.3114) (0.0419) (0.0291) (0.0860) (0.0933 )
b1=0.45 b=0.3 1000 0.6088 0.5881 0.4186 0.6748 04773  0.2665 0.6707 0.6574 0.1990
p11=0.7 po=0.7 (0.2269) (0.0435) (0.0245) (0.1893) (0.0290) (0.0208) (0.0611) ( 0.0700)
1500 0.5503 0.5867 0.4256 0.6778 0.4839  0.2692 0.6652 0.6677 0.1807
(0.1761) (0.0341) ( 0.0227) ( 0.1565) ( 0.0253) (0.0169 ) (0.0567) ( 0.0570)
2000 0.6814 0.5044 0.3988 1.7864 0.2948  0.2841 0.7630 0.3211 0.1652

(0.1549) (0.0224) (0.0183) (0.1354) (0.0170) (0.0112) (0.0439) (0.0460)
NOTE: The estimates are obtained using starting values for the transition

probabilities p1; = pao = 0.5 and the starting values for regressive coefficients were
obtained by the ARIMA (1,1) fit to the data. Results are based on 1000 simulations.

size is 1500. In both models, the range of AAE decreases as the sample size
increases. Table 6.19 reports the maximum likelihood estimation of model (6.9)
and (6.10) when (¢, aq,b1; 2, ag, ba, p11,p22) = (0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3),
and the descriptive statistics of estimates. In addition, it shows that the RMSE
values reduce slowly as the sample size increases. Figure 6.10 shows the val-
ues of AAE for maximum likelihood estimator of model (6.9) and (6.10) for
different sample sizes. The AAE values become smaller when the sample size
increases. The plot shows the estimates have slight outliers. Figure 6.11 presents
the boxplot of the estimated parameter values for model (6.9) and (6.10) when
(c1,a1,b1;5 2, a2,b2, p11,p22) = (0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3), for two different
sample sizes. The values of the outliers of large sample sizes (1000) are smal-
ler in comparison to the values of the outliers of 500. Figure 6.11 shows the
tendency of the MLE estimates to become more efficient with smaller values of

the outliers as the sample size increases from 500 to 1000. Figure 6.12 illus-
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Table 6.16: The simulated standard error for two different MS-GARCH (2;1,1)
models for different sample sizes for different sample sizes. The results
are based on 1000 simulations each.

Parameters Sample Simulated Standard Error
Regime 1 Regime 2 Sizes a a1 by Co ao bo P11 P22
c1=0.8 ¢=1.0 500 0.5550 0.1794 0.1347 1.7042 0.2672 0.1872 0.2879 0.3077
a1=0.5 as=0.4 1000 0.4285 0.1600 0.1220 1.2387 0.2378 0.1694 0.2682 0.3205
b1=0.4 b=0.3 1500 0.3929 0.1435 0.1051 1.0775 0.2328 0.1668 0.2585 0.3247
p11=0.7 p22=0.3 2000 0.3577 0.10957 0.0908 1.0013 0.2168 0.1589 0.2447 0.3099
c1=0.6 ¢=0.7 500 0.6231 0.2526 0.2031 0.5581 0.2047 0.1707 0.2932 0.3054
a1=0.54 as=0.45 1000 0.4763 0.2086 0.1567 0.4351 0.1703 0.1442 0.2471 0.2646
b1=0.45 b,=0.3 1500 0.4197 0.1848 0.1505 0.3956 0.1592 0.1298 0.2380 0.2387
p11=0.7 p2p=0.7 2000 0.3577 0.16957 0.1321 0.3456 0.1368 0.1189 0.2147 0.2099

Table 6.17: The variance of average absolute error for two different MS-GARCH
(2;1,1) models for different sample sizes for different sample sizes. The
results are based on 1000 simulations each.

Regime 1 Regime 2 Sample Size Variance of AAE

=08 =10 500 0.02421
a1=0.5 as—0.4 1000 0.01087
b1=0.4  by=0.3 1500 0.00701
p11—0.7 pp—03 2000 0.00670
c1—0.6 ¢3-0.7 500 0.00830
a1=0.54 az=0.45 1000 0.00559
b1=0.45 by=0.3 1500 0.0050
p11=0.7 pp=0.7 2000 0.00470

trates histogram of AAE for maximum likelihood estimator of model (6.9) and
(610) when (Cl, ai, bl, Co, A2, bQ,pll,pgg) = (()8, 05, 04, 10, 04, 03, 07, 03), for
different sample sizes. Figure 6.12 reports that the histogram of AAE could be

symmetric.
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Table 6.18: Summary of average absolute errors for two different MS-GARCH
(2;1,1) models for different sample sizes for different sample sizes.
Results are based on 1000 simulations.

Regime Regime Sample Sizes Summary
One Two n Lower 25% Median Mean 75% Upper

c1—0.8 ¢2=1.0 500 0.05784 0.24233 0.31300 0.34705 0.41400 1.26846
a1—0.5 ax=04 1000 0.06537 0.21919 0.27835 0.28850 0.34231 0.97494
b1=0.4 b2=0.3 1500 0.04115 0.21281 0.26278 0.26862 0.32127 0.64004
p11=0.7 p22=0.3 2000 0.03652 0.19366 0.24771 0.25179 0.30073 0.58622
c1—=0.6 c2=0.7 500 0.04354 0.18127 0.23267 0.24541 0.29440 0.65320
a1—0.54 a2=0.45 1000 0.03277 0.14693 0.19212 0.19898 0.23872 0.52493
b1=0.45 b2=0.3 1500 0.03455 0.12819 0.17104 0.18069 0.22135 0.51901
p11=0.7 p22=0.7 2000 0.02452 0.11436 0.16541 0.17058 0.21457 0.42624
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Figure 6.10: Boxplot of AAE for maximum likelihood estimator of
model ((6.9) and (6.10) when (c1,aq,by;c,a,be,p11,p22) =
(0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3), for different sample sizes. Results
are based on 1000 simulations.
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Table 6.19: Distribution

model

(6.9)

and

the maximum likelihood

estimates  of
(6-10) when (017a17bl;027a27bzap117p22) =

(0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3), for different sample sizes. Results
are based on 1000 simulations.

Sample size Parameter Value Mean RMSE

Summary

n Lower 25% Median 75% Upper
c1 0.8  0.8946 0.4249 0.0000 0.5502 0.8716 1.2090 3.7190
ai 0.5 0.4586 0.1323 0.0000 0.3668 0.4567 0.5557 1.6090
b1 0.4 0.4024 0.0933 0.0000 0.3324 0.3874 0.4539 1.1150
500 co 1.0 2.1640 1.2743 0.0000 1.3080 1.9500 2.8320 8.6520
as 0.4 0.3065 0.2196 0.0000 0.0867 0.2882 0.4698 1.5230
b 0.3 0.2911 0.1481 0.0000 0.1629 0.2981 0.4089 0.9703
P11 0.7 0.73770.2378 0.0000 0.5926 0.8385 0.9656 1.0000
D22 0.3  0.3504 0.2459 0.0000 0.0975 0.2872 0.5120 0.9975
c1 0.8 0.75710.3324 0.0000 0.4994 0.7617 1.0120 3.1850
al 0.5 0.4950 0.1087 0.0000 0.4200 0.4879 0.5596 1.3620
b1 0.4 0.4003 0.0771 0.0000 0.3451 0.3891 0.4403 1.2590
1000 Co 1.0  1.8960 0.9785 0.0000 1.3350 1.8370 2.3620 7.2980
as 0.4 0.28870.1943 0.0000 0.1223 0.2885 0.4312 1.3560
bo 0.3 0.29150.1322 0.0000 0.1839 0.3015 0.3932 1.1200
P11 0.7  0.7405 0.2216 0.0000 0.6150 0.8370 0.9392 1.0000
P22 0.3 0.3460 0.2631 0.0000 0.0699 0.2605 0.5711 0.9971
c1 0.8  0.7187 0.2899 0.0000 0.4936 0.7382 0.9348 4.0960
ai 0.5 0.4992 0.0938 0.0000 0.4357 0.4932 0.5567 1.5220
b1 0.4 0.3988 0.0699 0.0000 0.3491 0.3869 0.4355 0.9283
1500 co 1.0 1.8320 0.8938 0.0000 1.3460 1.8140 2.2890 4.4480
a9 0.4 0.29750.1876 0.0000 0.1382 0.2976 0.4338 1.6450
b 0.3  0.2831 0.1260 0.0000 0.1857 0.2912 0.3776 1.5050
P11 0.7  0.7527 0.2175 0.0000 0.6259 0.8492 0.9413 1.0000
D22 0.3 0.3422 0.2705 0.0000 0.0427 0.2477 0.3422 0.9982
c1 0.8 0.6814 0.2709 0.0000 0.4994 0.7057 0.8997 2.0640
al 0.5 0.5044 0.0773 0.0000 0.4480 0.4997 0.5562 1.0740
b1 0.4 0.3988 0.0584 0.0000 0.3571 0.3887 0.4265 1.1550
2000 Co 1.0 1.786 0.8407 0.0000 1.356 1.751 2.1800 3.8300
ao 0.4 0.2948 0.1770 0.0000 0.1537 0.2905 0.4313 0.9977
bo 0.3 0.2841 0.1243 0.0000 0.1841 0.2918 0.3890 0.9371
P11 0.7 0.7630 0.2037 0.0000 0.6667 0.8297 0.9389 1.0000
P22 0.3 0.3211 0.2622 0.0000 0.0191 0.2160 0.5491 0.9963
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Figure 6.11: Boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;c2,a,be,p11,p22) =
(0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3) for different sample sizes. Results

are based on 1000 simulations.
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Figure 6.12: Histogram of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;c2,a2,be,p11,p22) =
(0.8,0.5,0.4;1.0,0.4,0.3,0.7,0.3), for different sample sizes. Results

are based on 1000 simulations.
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Case 5

In the last case, the estimates are obtained using the starting values p;; = pas =

0.5. The starting values for autoregressive coefficients and intercept are obtained

using a uniform distribution as follows: (¢; ~ unif(0.1,0.9), a; ~ unif(0.1,0.9) and

b; ~ unif(0.1,0.9),7 = 1,2). The gradient function and the number of replications

as well as the tolerance level are obtained in a similar way to cases 3 and 4.
Table 6.20 contains the results for the data that was generated in a similar way

to the second model in the simulation case 4. That is,

=

0.6 + 0.54\,_; + 0.45Y,_1, if 5, =1,
= (6.18)
0.7+ 0.45)_1 + 0.3Y;_1, if S, =2.

It shows the MLEs with their MSE (in parentheses) for different sample sizes.
The table reports that the values of AAE decrease clearly as the sample size

increases from 500 to 2000.

Table 6.20: Maximum likelihood estimates with their mean square er-
rors (in parentheses), and the average absolute errors of es-
timates for model (6.18) when (c1,aq,by;ca,as,bo,pr1,p22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7), for different sample sizes. Res-
ults obtained from 1000 simulations.

Sample size Maxinum Likelihood Estimates (MLE) Average Absolute Error

n a o bh o u kb o m AAE

500 06476 05249 03738 06719 05403 0.3673 06149 0.6057 02442
(0.2890) (0.05:44) (0.0498) (0.2781) (0.0643) (0.0519) (0.0919) (0.0914)

1000 06167 0.5649 03574 06088 0.5389 03612 0.6481 0.6439 02125
(0.2116) (0.0384) (0.0443) (0.1971) (0.0506) (0.0374) (0.0680) (0.0701)

1500 0866 0.543 03617 06133 05458 03571 06543 0.6624 0.1928
(0.1494) (0.0301) (0.0388) (0.1641) (0.0389) (0.0314) (0.0631) (0.0613)

2000 0.5639 05480 03553 0.5673 0.5512 03573 0.6590 (0.6695 01759

(0.1107) (0.0246) (0.0353) ( 0.1342)  0.0341)  0.0262) ( 0.0530) (0.0513)

Table 6.21 reports the simulated standard error of models defined by (6.18) for
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different sample sizes. The simulated standard error for intercept, autoregressive
coefficients and the transition probabilities reduces clearly as the sample size

increases from 500 to 2000. Table 6.22 reports the maximum likelihood estimation

Table 6.21: The simulated standard error for model (6.18) when
(Cl,al,bl;CQ,ag,bQ,pH,pgz) = (06,054, 045,07,045,03,07,07),
for different sample sizes. The results are based on 1000 simulations

each.
Sample size Simulated Standard Error
n c1 a by 2 as by pu pa2

500 0.5376 0.2332 0.2232 0.5274 0.2535 0.2277 0.3031 0.3023
1000 0.4600 0.1959 0.2105 0.4439 0.2248 0.1934 0.2608 0.2647
1500 0.3866 0.1734 0.1969 0.4051 0.1972 0.1771 0.2512 0.2475
2000 0.3327 0.1570 0.1878 0.3664 0.1847 0.1617 0.2303 0.2265

of model (6.18) when (c1, aq, by; ¢, as, be, p11, pe2) = (0.6,0.54,0.45;0.7,0.45, 0.3,
0.7,0.7), and the descriptive statistics of estimates. In addition, it shows that the
RMSE values decrease slowly as the sample size increases.

Figure 6.13 shows the values of AAE for the maximum likelihood estimator of
model (6.18) for different sample sizes. The AAE values become smaller when
the sample size increases. The plot shows the estimates have slight outliers.

Figure 6.14 presents the boxplot of the estimated parameter values of model
(6.10) for two different sample sizes. The values of the outliers of large sample
sizes (2000) are smaller in comparison to the values of the outliers of sample
size 1000. It shows the tendency of the MLE estimates to become more efficient
with smaller values of the outliers as the sample size increases from 1000 to 2000.
The histogram of AAE for maximum likelihood estimator of model (6.9) and
(6.10) when (cy,aq,bi;co,a0,be, p11,p22) = (0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7),

for different sample sizes is shown in Figure 6.15.
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Table 6.22: Distribution of the maximum likelihood estimates
of model (618) when (Cl, ai, bl, Co, Q9, bg, pll,pgg) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7), for different sample sizes.
Results are based on 1000 simulations.

Sample size Parameter Value Mean RMSE Summary

n Lower 25% Median 75% Upper
c1 0.6 0.6476 0.3859 0.0000 0.2910 0.5804 0.8834 5.5810
ay 0.54 0.5249 0.1699 0.0000 0.4032 0.5289 0.6435 1.7870
by 0.45 0.3738 0.1758 0.0000 0.2549 0.3527 0.4720 1.4200

500 Co 0.7 0.6719 0.3924 0.0000 0.3129 0.6221 0.9032 3.8140
s 0.45 0.5403 0.1873 0.0000 0.4140 0.5230 0.6653 1.5710
by 0.3 0.3673 0.1642 0.0000 0.2476 0.3460 0.4747 1.6350
P11 0.7 0.6149 0.2399 0.0000 0.4367 0.6687 0.8644 1.0000
D22 0.7 0.6057 0.2386 0.0000 0.4113 0.6660 0.8487 1.0000
c1 0.6 0.61670.3390 0.0000 0.3062 0.5783 0.8259 3.3200
a; 0.54 0.5549 0.1405 0.0000 0.4548 0.5501 0.6485 1.4340
by 0.45 0.3574 0.1636 0.0000 0.2568 0.3460 0.4421 1.4810

1000 Co 0.7 0.6088 0.3468 0.0000 0.3125 0.5689 0.8248 2.7020
as 0.45 0.5389 0.1617 0.0000 0.4458 0.5316 0.6303 1.8150
by 0.3 0.36120.1412 0.0000 0.2556 0.3483 0.4487 1.3280
P11 0.7 0.6481 0.2038 0.0000 0.4904 0.7012 0.8569 1.0000
D22 0.7 0.6439 0.2036 0.0000 0.4977 0.7028 0.8402 1.0000
c1 0.6 0.5866 0.2944 0.0000 0.3408 0.5485 0.7856 2.5620
aq 0.54 0.5543 0.1217 0.0000 0.4624 0.5453 0.6385 1.3520
by 0.45 0.3617 0.1521 0.0000 0.2718 0.3494 0.4303 1.4830

1500 Co 0.7 0.6133 0.3167 0.0000 0.3611 0.5765 0.8100 2.7560
as 0.45 0.5458 0.1479 0.0000 0.4612 0.5398 0.6253 1.5140
by 0.3 0.35710.1241 0.0000 0.2713 0.3500 0.4289 1.5650
P 0.7 0.6543 0.1936 0.0000 0.5187 0.7089 0.8437 1.0000
D22 0.7 0.6624 0.1922 0.0000 0.5224 0.7049 0.8603 1.0000
c1 0.6 0.5639 0.2575 0.0000 0.3492 0.5524 0.7491 2.0680
ay 0.54 0.5480 0.1064 0.0000 0.4679 0.5350 0.6100 1.5360
by 0.45 0.3553 0.1488 0.0000 0.2672 0.3431 0.4272 1.5950

2000 Co 0.7 0.5673 0.2908 0.0000 0.3445 0.5527 0.7616 2.6160
s 0.45 0.55120.1402 0.0000 0.4752 0.5473 0.6235 1.4500
by 0.3 0.35730.1173 0.0000 0.2747 0.3536 0.4248 1.5280
P11 0.7 0.6590 0.1762 0.0000 0.5324 0.7060 0.8302 1.0000
D22 0.7 0.6695 0.1698 0.0000 0.5573 0.7122 0.8288 1.0000
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Figure 6.13: Boxplot of AAE for maximum likelihood estimator
of model (618) when (Cl, ay, bl, Co, A2, b2,p11,p22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7), for different sample sizes.
Results are based on 1000 simulations.
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Figure 6.14: Boxplot of AAE for maximum likelihood estimator of
model (6.9) and (6.10) when (c1,aq,b1;c2,a2,be,p11,p22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7) for different sample sizes.
Results are based on 1000 simulations.
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Figure 6.15: Histogram of AAE  for maximum  likelihood  estim-
ator of model (6.18) when (c1,aq,b;;c2,a9,be,p11,p22) =
(0.6,0.54,0.45;0.7,0.45,0.3,0.7,0.7), for different sample sizes.
Results are based on 1000 simulations.
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6.3.3 A real data example

There are several authors who have used a certain example data for different
TAR and MSAR models. One example of such data is the growth rate of the U.S
quarterly real gross national product from 1947 II to 1991 I. These data have been
widely used in nonlinear analysis of economic time series. Tiao and Tsay (1994)
and Potter (1995) employ TAR models, while Hamilton (1989) and McCulloch
and Tsay (1994) used Markov switching models. Therefore, in this section we
applied model (6.9) and (6.10) to illustrate our methodology of the real data (as
described in section 3.1), which have been also applied to the TGARCH model
in Chapter 4. The starting values of the model parameters in the real data case
are the same to those used in case 5 of the simulation part of this chapter.

Table 6.23 shows the estimated parameters of models defined by (6.9). The
estimates of the parameters are those corresponding to the minimum value of the
log likelihood function over all simulations. The steady-state distribution of the
Markov chain S; is

0.743

0.257

Table 6.23: The estimated parameters for model (6.9).
First State

Parameters c1 ar by P11 P12
Estimated value 0.053 0.8700.099 0.716 0.284
Second State

Parameters Co as by P21 P22
Estimated value 3.484 0.9150.084 0.820 0.180
NOTE: The estimates are obtained by using starting values from the uniform
distribution. The results are based on 1000 simulations.
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The results in Table 6.23 can be expressed as

N 0.053 + 0.099Y;_; + 0.870)\,_1, if S, =1,
3.484 + 0.084Y,_1 + 0.915\,_, it S, =2.

From Table 6.23, it can be seen that there are several interesting findings. First,
the limiting unconditional mean (as ¢ — oo) of the number of transactions per

minute of the original model for state 1 is = 1.710 and that of state 2

Cc1
1—(a1 +b1)
c2

is Taatty) = 3,484. Hence, state 1 consists of minutes with a expansion period,

while state 2 corresponds to minutes with contraction period. Second, the trans-

ition probabilities appear to be different for different states. The process tends to

stay longer in state 1 than in state 2. Third, the expected duration for the process
1

to stay in the state 1 is o 3.521, while the expected duration of the other

1
1—p22

state is = 1.220. That is, the expected duration for a contraction period
and an expansion period are approximately 1.220 and 3.521 minutes. Figure
6.16 shows filtered and smoothed probabilities of the real data described in sec-
tion (3.1). The lines depicting the filtered and smoothed probabilities of the real
data clearly have similar shape (pattern). The filtered and smoothed probabil-

ities in both states are observed to follow the same pattern, without practically

any separation between the two lines.

6.4 Summary

Volatility clustering over time is also a stylized fact for discrete financial data.
Therefore, the GARCH-type model is applied for studying this pattern of count
time series data. The Markov switching Poisson GARCH model is used to de-
scribe the asymmetric phenomena in volatility of count data. We have studied
the probability structure of the MS-PGARCH model. The maximum likelihood

estimation of model (6.9) is investigated. Many simulations were carried out to
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Figure 6.16: From top to bottom: Time plot of the number of transactions per
minute for the stock Ericsson B in the period July 2-22,2002, filtered
(blue line) and smoothed (red line) probabilities of the S; =i,i =
1, 2 respectively.
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estimate the model parameters with different sample sizes and different initial
values of the parameters. The starting values play an important role in accuracy
of the estimated parameters. It is concluded that when the MLE can provide
reasonable estimation of the MS-PGARCH model. An application of the MS-

GARCH model to a real count time series data is presented.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

The aims of this thesis include studying the ergodicity and statistical inference
for a specific kind of threshold generalized autoregressive conditional heterosce-
dastic (PTGARCH) models for nonnegative integer-valued time series when the
conditional distribution given historical information is the Poisson distribution,
and also finding an answer to the question: "How to build a complete structure
of PTGARCH models?" These models are characterized by frequent switches of
two or more regimes, based on the threshold variable (Y;_4). Taking into con-
sideration the many numerical simulations and a real data set, we estimate the
parameters d;, a;, b;, s,7;,1=1,2,...,s and d for the PTGARCH model.

In chapter 2, we established a simple sufficient condition for the geometric er-
godicity of model (2.1), and we discussed the problem of statistical tools including
the maximum likelihood estimators of parameters (d;, a; and b;,i = 1,2, ..., s) and
their asymptotic theory. We presented four different information criteria (AIC,
BIC, BIC2 and HQIC) for determining the threshold value (7), time delay (d) and
the number of regimes (s). We also discussed the use of two types of nonlinearity

tests, Lagrange multiplier (LM) and Likelihood ratio (LR) test.

190



Chapter 7 Conclusions and Further Work

In chapter 3, we carried out many simulation results to estimate the paramet-
ers using MLE for two regimes of the PTGARCH model to make the analysis
simple. We computed MLEs by optimizing the log-likelihood function (2.7), us-
ing a quasi-Newton method. We also reported a numerical simulation outcome
for selecting the appropriate threshold value (r) using information criteria. We
tested the threshold nonlinearity using LM* defined by (2.14) and (2.15). The
simulation outcomes showed that our methodology is optimized for estimating
the parameters of the PTGARCH model. In addition, the average absolute er-
ror (AAE) of the MLE decreases when the sample size increases, and the mean
square error (MSE) of the MLE is lower than that of the conditional least square
error (CLSE), for all sample sizes. We found that the Q-Q plot of the sampling
distribution of the MLE of the parameters, supports the claim of asymptotic
normality. Finally, we used a numerical example to illustrate our methodology.

In chapter 4, we investigated the performance of various information criteria
for selecting the number of regimes in different sample sizes, when the threshold
value (r) and time delay (d) are known. We used the threshold nonlinearity test
to define the kind of model, either one regime (s=1) or more than one regime
(s > 1). We found that the BIC and BIC2 have a strong performance for the
simpler linear model (s=1), and the AIC and HQIC perform very well for the
complex PTGARCH models (s = 2,s =3, and s = 2,b; = 0,7 = 1,2) in different
sample sizes, while AIC, BIC and HQIC have good performance for nonlinear
model (s = 2,a; = 0,7 = 1,2). Using various information criteria, we investigated
the number of regimes in time series of the number of transactions per minute
for the stock Ericsson B for the period July 2-3, 2002.

In chapter 5, we carried out many simulations to determine the delay parameter
(d), and to identify the time delay and the value of threshold (r) simultaneously
using the normalized information criteria. By applying this method, one can

build a complete structure of a PTGARCH model. We applied the model (3.1)
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to the asthma data when the number of regimes are given.

In the final chapter, we introduced another kind of the regime switching model.
We focussed on a Markov-switching generalized autoregressive heteroscedastic
(MS-PGARCH)-type Poisson time series model. We investigated the geometric
ergodicity process by Markov theory and irreducibility. We treated the problem of
maximum likelihood estimation of the parameters. We carried out many different
simulations with regards to the optimization function arguments, for different
sample sizes, to estimate the parameters of (MS-PGARCH) model. A real data

example was used afterwards to confirm the results of the simulations.

7.2 Further work

In this field, there are many interesting open questions. For example,

e Is it possible to develop a theory for obtaining a simple sufficient condition

for ergodicity or geometrical ergodicity for an unperturbed model?

e How to develop a theory to obtain a necessary and sufficient condition for

stationarity for a given class of nonlinear count time series model?

e [s it possible to estimate the parameters of a model defined by (2.1) using

other estimation methods such as Bayesian estimation and Gibbs sampler?

e Is there a measure (criterion) capable of determining the kind of model (lin-
ear or nonlinear), as well as of selecting the number of regimes , threshold

value and time delay, e.g. MSE (Al-Awadhi and Jolliffe (1998))?
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e Could all aspects of the research in this project be done in the general

PTGARCH (p,q:s,7) model, defined as

Y,|F) ) ~ Poisson(\,),

)\t = (bj() + 2321 ¢tivt7i + mezl Sojm)\tfmu

when 71 <Y q<wr; j=1,--s

\

where ¢j0 >0, ¢;; >0,i=1,2,...,q, ¢jm=>0,m=1,2,...,pand

D=1 <reg < - <req <ry=007
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