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ABSTRACT

A new model for piezoelectric ultrasonic transducers is pro-
posed. Using a systems engineering approach, the concept of
feedback is used to explain secondary piezoelectric effects
and to clearly describe electro-mechanical interaction. The
model is derived from the fundamental piezoelectric equations
and it embraces the relevant practical situations where the
transducer is subject to arbitrary electrical and mechanical
loading. The following main features are incorporated within
the model.

a It is valid over a wide range of frequencies,
It is applicable in both transmission and reception
modes,
It involves realisable elements which are readily
simulated, and
Piezoelectric, pressure and voltage interactions
are clearly related.

b

c

d

The model has been verified extensively in computer simula-
tions and water tank measurements of transducer profiles.
Extremely close substantiation of the theoretical analyses
was obtained, and the model is considered to offer significant
advantages over existing transducer analogies.

(vi)



CHAPTER I

INTRODUCTION



The conversion of electrical energy to mechanical energy and
vice versa may be achieved by a number of physically different
processes. Such electro-mechanical transducers include
magnetostrictive, electro-magnetic, electrostatic, moving
coil, piezoelectric and ferroelectric devices. The present
application is concerned only with transducer action involv-
ing the latter two effects, namely piezoelectricity and
ferroelectricity.

1.1 PIEZOELECTRICITYAND FERROELECTRICITY

Piezoelectricity is the phenomenon whereby electric dipoles
are generated in certain anisotropic crystals when the
material is subjected to a mechanical stress. This is
known as the direct piezoelectric effect. The inverse piezo-
electric effect occurs when the same materials demonstrate
a dimensional change under the influence of an electric
field. For a material to exhibit an anisotropic effect
such as piezoelectricity~. it is a requirement that its
crystal structure should have no centre of symmetry. That
is, there is at least one axis in the crystal where the
atomic arrangement appears different as one proceeds in
opposite directions along the axis. Naturally occurring
piezoelectric crystals include quartz, tourmaline and
rochelle salt.

While the piezoelectric effect is exhibited to a marked
degree only in certain anisotropic crystals, all dielectrics
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are electrostrictive, in that they show a dimensional change
parallel to an applied electric field. In most cases, the
magnitude of this effect is relatively small, but some mater-
ials, notably certain titanates and zirconates, demonstrate
electrostriction to a considerable extent. Such materials
form the very important class of electromechanical trans-
ducers known as piezoelectric ceramics, or ferroelectrics.

Above a certain temperature (the Curie temperature), the
crystal structure of a ferroelectric material does possess
a centre of symmetry and thus no resultant dipole moment is
possible. Such a crystal, when cooled below the Curie tem-
perature, contains domains for which each electric dipole
is aligned in a specific allowed direction. When summed
over the entire crystal, the net electric dipole for all of
the domains is zero. However, if the crystal is cooled in
the presence of an electric field (polling field), the
domains tend to align in that allowed direction which is
nearest to the direction· of the applied electric field.
After removal of the polling field, the dipoles cannot
easily return to their original positions, and there exists
within the ceramic material, a remanent polarisation.

The crystal thus exhibits a permanent electric dipole and
when subject to mechanical stress, the lattice distorts,
resulting 1n a change in the total dipole moment of the
crystal. The material has thus become piezoelectrically
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'polarised' and is hence capable of electro r mechanical
transducer action. Such devices are termed ferroelectric
because this behaviour presents a physical analogy with the
remanent magnetic behaviour of ferromagnetic materials.

In the present application, ferroelectrics are considered
to behave like naturally occurring piezoelectric crystals,
each having identical relationships between electrical and
mechanical quantities. Consequently, the term 'piezoelectric'
is used throughout to describe both truly piezoelectric and
ferroelectric materials.

1.2 APPLICATION OF PIEZOELECTRIC TRANSDUCERS AND
SYSTEM MODELLING

The devices under consideration are assumed to operate, for
both transmission and reception, in the thickness mode.
That is, each device comprises a thin plate or disc of piezo-
electric material which undergoes uniform, compressional
vibration in the thickness direction. The fundamental
operating frequency of such transducers is generally in
the range Q.l to 10 MHz, although this may deviate con-
side.ably, depending on the application and piezoelectric
material employed. Operating either as single, independent
elements, or as part of an array of identical devices, thick-
ness mode piezoelectric transducers have found widespread
application in the following principal areas.
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, Underwater sonar, navigation and communications
systems.

Ultrasonic non-destructive testing (ndt) systems.

• Acoustic Emission systems.

• Medical diagnosis.

• Imaging systems, including acoustic holography and
tomography.

• Layer thickness testing.

• The measurement and evaluation of some material
characceristics.

An essential pre-requisite to the practical implementation
of any transducer based system is the availability of a
model which accurately predicts transducer performance and
response characteristics. Such a model should also embrace
the entire acoustic system and as a result, must include
the following operating factors.

1 The majority of piezoelectric transducer applications
involve some form of transient excitation. Any model must
therefore accurately predict transient response character-
istics.

2 The mechanical boundary conditions relevant to the
particular application.
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3 The electrical boundary conditions often exert con-
$1derableinfluence on transducer response. These are often
overlooked, especially in transient operation, where accurate
modelling of the transmitting and receiving circuitry is
required.

It should be noted that the relative complexity of any trans-
ducer model is closely related to the particular application
and operating conditions. Relatively simple transducer
approximations may be sufficient for some continuous wave
(eW) applications, whereas more accurate and sophisticated
modelling techniques are required for transient operation.

The behaviour of piezoelectric ultrasonic transducers has
been widely investigated in the transmission and reception
modes. Several models, for example Mason (28), Cook: (b),

Redwood (16), Martin (17), Kossof (18) and Krimholtz (21)

have been proposed to explain this behaviour,.but in general.;
they suffer from one or more of the following·!1mitations.

a Some are not truly wideband, being valid only over
a narrow range of frequencies in the region of mechanical
resonance. Consequently, their application to transient
problems is strictly limited.

b None brings out clearly the physical nature of the
piezoelectric transduction process.

-"'-
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c Unreal circuit elements such as negative capacitance'
are frequently employed in the electrical analogues proposed,
making exact physical interpretation difficult.

d The effects of external electrical and mechanical
loading are usually difficult to interpret.

e Because of the complexity of some of the models,
only simple, often impractical situations can be analysed.

1.3 AIMS AND CONTRIBUTIONS OF THE THESIS

A model is described which is: the outcome of attempts to
eliminate the previously mentioned limitations. Using a
systems engineering approach, the concept of feedback is used
to explain piezoelectric interaction and to clearly-describe
the complex electro-mechanical relationships. The resultant
model is derived from the fundamental piezoelectric equa-
tions and it possesses the following main features.

a It is valid over a wide range of operating frequen-
cies·and as such it may be applied to both.CW and transient.
modes of operation.

b The theory is applicable in both transmission and
reception modes.

c Feedback mechanisms are involved which clearly
relate pressure and voltage interactions. f
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d The model involves realisable elements which are
readily simulated.

e The model embraces relevant practical situations
where the transducer is subject to arbitrary electrical and
mechanical loading.

f The physical nature of the transduction process,
for example primary and secondary piezoelectric interaction,
are clearly emphasised and the factors influencing such
effects are readily recognisable.

For these reasons, the model is believed to offer significant
advantages over existing piezoelectric transducer analogies.
Consequently, development of the feedback model is con-
sidered to comprise the major contribution of the present
work.

In the course of the thesis, the model is verified extensively
using computer simulation, voltage measurement and water
tank measurement of transducer wave profiles. As a result
of such investigations, it is considered that the thesis
offers the following additional contributions to piezo-
electric system design.

1 The thesis clearly defines all parameters which
influence secondary piezoelectric action. The omission of
such effects permits considerable simplification of the
modelling process, thereby permitting the use of relatively
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simple computer algorithms for direct evaluation of trans-
ducer response in the time domain.

2 A method is presented which permits accurate modell-
ing of the electronic pulser configuration employed in the
great majority of transient excitation systems. Consequently,
it is possible to accurately predict and calibrate piezo-
electric transducer performance under practical operating
condit~ons.

3 Techniques are described for the simple and accurate
measurement of acoustic impedance ratios and/or mechanical
bond integrity at the transducer faces. These are con-
sidered to offer considerable improvement over existing
methods.

4 A new type of membrane hydrophone was employed for
the water tank measurements of acoustic pressure wave pro-
files. It is demonstrated that the transducer model may
readily be extended to cover this type of device.

The following'chapters (II, III, IV, V) outline development
of the feedback model and offer detailed comparisons with
existing transducer analogies. Chapters VI and VII exten-
sively discuss transducer action in conjunction with experi-
mental verification, while chapter VIII presents an alter-
native modelling ,technique under limited conditions of no
secondary piezoelectric action.
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CHAPTER II

PIEZOELECTRIC TRANSDUCER MODELLING TECHNIQUES



2.1. INTRODUCTION

This chapter is a review of the various methods which
have been employed in order to model the thickness mode
piezoelectric transducer.' The more important, (and
widely applied), transducer analogies are described in
some considerable detail, with particular emphasis on
the following aspects:-

(i) A clear illustration of the underlying physical
concepts involved with piezoelectric transducer
behaviour.

(ii) The applicability of the various models in ultrasonic
system design.

The concluding section in the chapter describes the
proposal of a new mOdel which is believed to offer
significant advantages over existing analogies and
simulation studies.

The physical behaviour of a piezoelectric transducer may
be predicted by a set of linear equations and as a result,
it is possible to construct a model which accurately
describes operational characteristics of the device.
This may be achieved by a variety of methods, all of
which must symbolically represent the appropriate governing
equations of the system.

Two principal analytic techniques have been developed in
order to describe thickness mode transducer properties.
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dne method, most often applied to resonator theory,
involves solving the relevant differential equations
with specific boundary conditions (usually zero stress)
in order to determine impedance characteristics for a
particular vibrational mode. Solutions corresponding
to steady state plate vibrations have been given by
Tiersten CS b) and more recently Meeker 00), who extended
the basic analysis to include finite boundary conditions.
With this technique, the relationships among transducer
material constants are clearly defined, and the method
has found principal application in the determination of
piezoelectr ic parameters (15).

A second, much larger group of analyses, incorporates
solutions of the relevantdifferential equations with
arbitrary boundary conditions, in order to develop some
form of model analogy for the transducer. Because the
boundary conditions are arbitrary, this latter concept
is of particular interest in ultrasonics systems design.
In addition, familiarity with the properties of the
analogous model results in a clearer insight into the
physical behaviour of the system. Such models include
electrical networks, block diagrams, signal flow graphs
and analogue or digital simulation diagrams.

In the case of electro-acoustic devices, it has been found
convenient in the past to represent such an inter-
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disciplinary system by some form of equivalent electrical
circuit. That is, the device is modelled by a purely
electrical system with governing differential equations
of the same form as those describing piezoelectric element
behaviour. Common· electro-mechanical analogues are those
of force-voltage and velocity-current, thereby allowing
mechancial system properties to be conveniently evaluated
by means of relatively familiar electrical network concepts.

On the other hand, advances in both analogue and digital
computer technology have led to the development of
mathematical transducer models which are more amenable
to simulation analysis. An example of this technique,
which is described in section 2.5. of this chapter,
involves formulating the transduction process using matrix
theory.

Before commencing with the review, it is worthwhile to
state briefly the major ~hysical assumptions involved
in thickness mode transducer behaviour.

a. The transducer only operates in the thickness mode
and has lateral dimensions comprising many wave-
lengths of sound.

b~ The transducer and all surrounding media are loss free.

c. The transducer generates a single mode stress wave.
That is, wave modes are uncoupled, thereby permitting
description by a single electro-mechanical coupling factor.
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d. The transduction process is linear and confined
to one dimension.

e. Force and velocity fields are uniform over the
surface area of the transducer.

Any deviation from these five basic assumptions is clearly
outlined under the appropriate model section.

2.2. THE EQUIVALENT ELECTRICAL CIRCUIT ACCORDING TO
W.P. MASON

This section descr ibes the derivation of an exact transducer
electrical equivalent circuit (within the confines of
earlier assumptions). Basic physical concepts behind
the analogy are clearly defined, along with a brief
discussion on the relevant model applications.

Much of the original work on piezoelectric transducer
dynamic analogtes was performed by W.P. Mason (lQ)
and this book provides a .classic introduction to equivalent
circuit treatments of various piezoelectric configurations.
In order to derive the electrical equivalent circuit for
a particular transducer, Mason utilised the fundamental
piezoelectric relationships, in conjunction with the
appropriate wave equation and boundary conditions. relevant
to that configuration. This technique yields three
coupled equations, describing the transducer system in
terms of three dependent and three independent variables:
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~representing a network with one pair of electrical
terminals and two pairs of mechanical terminals.
By postulating an electromechanical transformer, these
equations may be related to an equivalent circuit,
the parameters of which are electrical analogues of
the coefficients in the original equations.

This model, (or the techniques employed in its derivation)
has provided the basis for a large number of subsequent
transducer analyses. For example, using the model, Kosso!
«(8) and Thurston (51) developed simplified electrical
analogues designed to approximate transducer operation in
the vicinity of the first thickness resonance. Redwood (30)

and others t s, II) '54- ), using either the basic model or the
fundamental equations involved in the derivation, discussed
transducer operation under transient conditions. Sittig
(So), Papadakis (34) and others have used the basic model
to help analyse layered transducer structures. Because
of the significance of Mason's model in the historical
development of transducer system characterisation, it is
well worthwhile at this stage to consider the major aspects
involved in the derivation.
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Derivation of the Mason Equivalent Circuit

The piezoelectric equations appropriate to the case of
a flat, electroded thickness mode transducer are outlined
in AI.I, where the relationships between electrical and
mechanical quantities are expressed in terms of charge.
That is,

r = Indirect Effect.

r is the mechanical stress.

yD is Young's Modulus of Elasticity, measured
under conditions of constant electrical displacement.

h is the piezoelectric constant relating stress to
applied charge density.

Sx is the mechanical strain.

D is the electrical displacement.

and,

E = -hS + DiesX Direct Effect.

h relates the electrical field developed per
applied mechanical strain.

•
~s is the material permittivity measured under
conditions of constant strain.

14



·- .

Assuming that the device vibrates only in the x-direction,
the piezoelectric relations may be written as follows,

r = Ya t - hD
.: a.x

1

E = - hll
ax

+ 0/e

Where t denotes particle displacement within the transducer
and the suffixes have been dropped for convenience.

Under the assumption that any applied field is sinusoidal,
the disc is expected to undergo sinusoidal expansion and
contraction. Consequently, elastic waves travel backwards
and forwards inside the transducer. In other words, the
mechanical behaviour is similar to that of a transmission

Solving the wave equation in one dimension yields,

t =
.
"

~ .,
----....;.;... 2·

A and B are constants determined by boundary conditions
at opposite faces of the transducer. By substituting for
t into the piezoelectric relations, an equation which
relates force, F, to the charge on the transducer plates,
Q, is obt.aLned r
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-(F + hQ) = {(jh'ZCA)e-j8x + (_jwZCB)ejaX}ejwt ----3

Where Zc is the acoustic impedance of the transducer.

Differentiating equation 2 with respect to time yields,

= ~c [(jwZCA) e-j8X-(jWZCB) ejBX] ejwt ------4

Equations 3 and 4 are formally identical with those of

an electrical transmission line of characteristic

impedance Zc. a E; ••The term at (particle veloc1ty) 1S analogous

to current and - (F+hQ) analogous to voltage.

By integrating the expression for electric field in

equation 1, it is possible to obtain the following

relationship between voltage and charge.

2

hQ = hCoV + ~ CO[ih. _ .!h)
JW atat ------5

Where Co is the clamped or static capacitance of the

transducer and the expression contained in brackets

represents the difference in particle velocity at the

rear and front faces. Since the term hQ denotes force,

both terms on the right hand side of this equation must

also represent forces. By considering the first of these

terms, hCo~, as the force generated by an applied voltage

V, then hCo becomes a transformation factor relating force

to voltage. Mason represented this electrically as a

force to voltage 'transformer' of turns ratio hCo, such

16



that when a voltage is applied across the primary, a

force is generated across the secondary and vice versa.

By means of current-velocity and voltage-force analogies,

h h2Co . . 5 b' dt e term ~ 1n equatlon may e 1nterprete as a

'mechanical impedance'. That is, htCO may be considered

a mechanical capacitance. However, care must be taken

concerning the sign of this quantity. In equation 5

the total driving force is hQ and this must appear across

the secondary of the electro-mechanical transformer. This
2

implies that the force term ~WCO[~~1-~~l] is negative in

value, otherwise the total force across it and the

secondary of the transformer (hCoV) would be of greater

value than the total driving force (hQ). Consequently,
1the element 112Co must be regarded as a negative capacitance.

This illustrates one of the drawbacks of dynamical analogies

in that unreal circuit elements often have to be used in

order to model system characteristics.

In order to fully define the transducer at its electrical

terminals, a relationship between input voltage and

current must be determined. Since current flowing into

the device is given by jWQ, equation 5 yields,

I = jWCov + hCo [.!.h - .!U]at at -----6
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The first term of this equation represents current

flowing into a capacitance Co which is across the

primary of the electromechanical transformer. The

second term may be construed as an electrical current

flowing through the transformer primary due to a flow

of 'mechanical current' in the secondary.

The complete equivalent circuit, according to Mason,

may be drawn as shown in figure 2.1, which depicts a

transducer loaded at front and rear faces by mechanical

impedances Zl and Z2 respectively. The transducer is

considered a six terminal device, one pair representing,

the electrical terminals and the other two pairs as

mechanical terminals connected to loading media situated

at the opposite faces. The transmission line, which is

assumed lossless, represents the necessary time delay for

mechanical signals to travel through the transducer

thickness. A negativ~ capacitance effectively simulates

secondary piezoelectric action, while force to voltage

conversion is represented by an ideal transformer. Since

the model is derived from the fundamental system

relationships, it is exact, within the limits of the initial

simplifying assumptions, which were stated in section 2.1.

In addition, the model is applicable under both continuous

wave and transrent conditions, although in many instances

calculations are extremely complex and the important

underlying electromechanical relationships tend to become
obscured.
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A useful variant of Mason's model, especially

convenient for the analysis of steady state systems,

may be readily obtained by replacing the transmission

line with its lumped T equivalent circuit. The

resultant model is shown in figure 2.2.

Although the electrical equivalent circuits of figures

2.1 and 2.2 have served as the basis for very many

subsequent transducer analyses, Mason's fundamental

model suffers from the following inherent disadvantages.

1. Effects of mechanical loading and backing

variations are difficult to determine without

recourse to full mathematical analysis. Similarly,

the effects of various electrical load terminations

on transmission and reception characteristics are

not readily envisaged.

2. The electrical equivalent circuits involve the unreal

element of negative capacitance. Consequently,

physical interpretation of piezoelectric action is

difficult to conceive. In addition, the effects of

transducer parameter variations on operating

performance are not readily predictable.

3. Transient analysis, for all but the simplest of cases,

is extremely difficult due to the mathematical

complexity involved.
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4. Use of the model requires a certain degree of

competence in network theory and a knowledge of

transmission line behaviour.

As a result of these drawbacks, the exact equivalent

circuits have not found widespread acceptance in the

analysis of a generalised transduction system. That

is, under conditions of arbitrary excitation (force

or voltage) and arbitrary electrical or mechanical

loading. Instead, analyses based on the Mason Model

tend to consider simplified versions, either by constraining

the frequency range of interest or interpeting only simple

cases of mechanical and electrical loading. However, many

of these investigations do provide enhanced understanding

of transducer performance and for this reason the more

important works are briefly presented in the following

section.
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1.3 SOME IMPORTANT ELECTRICAL ANALOGUES

2.3 (i) The Basic Lumped Parameter Equivalent Circuit

In the model, the properties of a piezoelectric

vibrator are represented by the lumped parameter

equivalent circuit shown in figure 2.3. The circuit

comprises a series branch consisting of Cl (the motional

capacitance), Ll (the motional inductance) and RI

(motional resistance), shunted by a capacitance Co,

representing the electrical capacitance of the transducer.

Ll and Cl are chosen such that they resonate at a

frequency equal to the mechanical resonance of the

piezoelectric element. By suitable alteration of these

components, different modes of vibration may be studied.

Mechanical loss is included in this model by means of

the resistive component RI' and the transducer quality

factor which is defined by,

Inspection of the equivalent circuit shows that two

conditions of resonance exist; a series resonant condition
"when Ll, Cl and RI resonate to produce an impedance minimum,

and a parallel condition when the L1-C1-R1 branch is

inductive and tunes with Co to produce an impedance maximum.

The frequencies at which these conditions occur are defined

as the resonance and anti-resonance frequencies respectively.
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It should be noted that the representation of a

piezoelectric vibrator by this circuit is useful only

if the ciruit parameters are constant and independent

of frequency. In practice this is not the case and

the model is applicable only over a very narrow frequency

interval in the vicinity of an isolated mechanical

resonance. However, as indicated in the IEEE Standard

on Piezoelectricity (IS) the model may be extended to

incorporate neighbouring resonances by including

additional R-L-C branches in parallel with the main

R1-C1-L1 branch.

Since it is'only valid over a limited range of operating

frequencies, this model cannot be applied to transient

analysis of transducer behaviour and in acoustic systems

the main applications are confined to continuous wave

operation in the vicinity of the transducer resonant

frequency. Using this equivalent circuit, Thurston (51

analysed transducer bandwidth as a function of mechanical

and electrical terminations. Effects of electrical

matching networks on improving transducer transmission

characteristics were also investigated.

Despite being confined to narrowband systems, this form

of representation is widely used in the experimental

determination and verification of piezoelectric transducer

characteristics. Standard methods of obtaining these
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constants basically consist of determining the electrical

impedance of a piezoelectric resonator as a function of

frequency. In principle, it is necessary to measure the

resonance and anti-resonance frequencies along with the

free and clamped capacitances in order to determine the

relevant material constants. In some instances, accurate

measurement of the anti-resonant frequency can be

obscured due to the presence of other vibrational modes.

For example, radial vibrations are often troublesome

when measuring thickness characteristics of piezoelectric

discs. In such cases, it is more convenient to

characterise the resonator by a lumped parameter circuit

and calculate the material constants from the measured

parameters of this circuit. A full description concerning

the use of this equivalent circuit in determining

transducer properties is given in (is) and (Ib).

2.3ii The Equivalent Circuit According to Kossof

An inspection of Mason's lumped parameter equivalent

circuit (fig 2.2) reveals that the term jZc tana/2

tends towards infinity as the mechanical resonant frequency

is approached. Since this term appears in series with both

mechanical output ports, transducer behaviour
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around this resonance is severely distorted. However,
by utilising a standard network identity, Kossof (18 )

derived an alternative equivalent circuit which
effectively overcomes the problem. This equivalent
circuit is shown in figure 2.4, depicting a thickness
mode transducer mechanically loaded at opposite faces
by media of acoustic impedancesZ1 and Z2. The figure
outlines a force F1, produced at one of the transducer
faces, by a voltage v applied to the electrical terminals.
Note that the converse is also true, that is, a voltage v
produced by an applied force, Fl.

By treating any intermediate layer between the transmitting
transducer and irradiated medium as a loss less transmission
line, the effects of various backing and matching layers
were analysed according to conventional network theory.
In a similar manner, the effects of inductive electrical
matching circuits on the transmitting, receiving and
impedance transfer functions were also investigated. The
analyses were performed under steady state operating
conditions and all computational results presented in the
frequency domain. In this way, changes in bandwidth,
centre frequency and transmission characteristics were
readily evaluated as functions of mechanical loading
(including quarter wave matching), electrical tuning and
negative capacitance of the equivalent circuit.
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It should be noted that the work done by Kossof was
essentially narrowband, being restricted, through
mathematical complexity, to a narrow range of frequencies
centred around the mechanical resonance. (Approx.0.5fo-1.5fo
where fo is the mechanical resonant frequency, according to
Kossof's notation). In addition, the analysis was based
almost entirely on network theory, with tuned circuit
analogues used to explain resonant behaviour. Consequently,
the underlying physical interactions involved in the
transduction process tend to be obscured by electrical
circuit topology.

2.3iii The Equivalent Circuits of Martin and Sigelmann

Further simplification of Mason's equivalent circuit
model is possible if the electrical or acoustic excitation
functions are known along with the electrical or mechanical
impedance. For a transducer operating as a source, this
condition is met if the generator emf and impedance are
both known. Operating as a detector, the condition is
satisfied if the incident acoustic signal and the acoustic
impedance of the loading medium are known. The overall
transduction system may then be modelled as a Thevenin
mechanical equivalent circuit for the transmitting mode
and the Thevenin electrical equivalent circuit for the
receiving mode.
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In the analysis of Martin and Sigelmann (27 ), Mason's
three-port equivalent circuit was reduced to two, single
port networks representing transmission and reception.
The circuit appropriate to the transmitting mode consists
of a source Fmeq, which is equivalent to that force
exerted by the transducer on a perfectly rigid medium,
and an impedance Zmeq, which models the mechanical
impedance of the device. The corresponding analogy for
reception consists of a voltage source Veeq, which
corresponds to the open circuit voltage, and an impedance
Zeeq, corresponding to the electrical impedance of the
transducer. In each case the Thevenin parameters were
derived from the constituent equations used by Mason.
Both models are outlined in figure 2.5.

Martin and Sigelmann used these equivalent circuits in
order to study transducer system behaviour under various
conditions of mechanical loading, transducer element size
and output resistance of the electrical excitation source.
Experimental data for transducer electrical impedance as
a function of frequency was in good agreement with the
simulated predictions. However, it may be added that their
method of adjusting transducer parameters in order to
obtain a 'closestfit' for these curves must be questioned,
since discrepancies invariably arise due to the presence
of radial modes. This is discussed in greater detail in
chapter seven.
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Although this form of presentation has advantages in
that the models are simple and lend themselves fairly
readily to computer simulation, the following two
disadvantages are apparent.

a. With the formulation of Martin and Sigelmann (l7 )
an extension to a generalised case including transient
excitation is extremely difficult.

b. The Thevenin parameters Fmeq, Veeq are effectively
black boxes.

Consequently, the electrical model itself gives little
or no insight into the physical behaviour of the
transduction process. It is significant that in their
presentation, Martin and Sigelmann make very little
attempt to relate experimental and simulation results
to the transducer physical behaviour.

In addition, as pointed out by the authors, the parameter
Fmeq implies that one face of the transducer is rigidly
clamped. That is, no motion of that face may occur.
Since this condition cannot readily be achieved,
experimental verification of Fmeq is extremely difficult
and simpler techniques of verifying the simUlations (such
as measurement of electrical impedance as a function of
frequency) have to be employed.
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2.3iv The Transmission Line Model of Krimholtz, Leedom
and Matthaei (KLM Model)

Originally developed to facilitate the analysis of
interdigital surface wave transducers UI) this
transmission line model of the thickness mode transducer has
found application in some ultrasonic systems design ( It,
44 ). While'retaining the intuitively satisfying concept
of a transmission line, the KLM analysis differs from that
of Mason in that the cumbersome distributed coupling of
the piezoelectric effect is replaced by a single coupling
point at the centre of the transducer. The differences
between distributed and single point coupling are incorporated
by means of a coupling transformer with a frequency
dependent turns ratio, and a series reactance. In this
manner, the acoustical and electrical ports may be
considered separately, hence aiding the interpretation
of various matching schemes.

The KLM model corresponding to a thickness mode piezoelectric
transducer is shown in figure 2.6 and a detailed account of
its derivation is outlined in (11). In the figure zc and Vc
are the characteristic impedance and velocity associated

L
with the acoustic transmission line. The line length, L,
is equivalent to the transducer dimension in the direction
of acoustic wave propagation.
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Although exact equivalence between this model and that
of Mason has been demonstrated (21), basic understanding
of the system behaviour is facilitated by the KLM
technique. For example, consider a transducer free of
any electrical loading. That is, the electrodes are
on open circuit. Under these conditions, transducer
behaviour is analogous to that of a mechanical transmission
line free of electrical loading. This fact is readily
observable from figure 2.6, since no current may flow
through the transformer primary. However, in the case
of Mason's model, this effect is not so readily apparent
unless the negative capacitance is transferred to the
transformer primary where, under open circuit conditions,
it cancels with the clamped capacitance, Co.

Furthermore, in Mason's circuit, the acoustic forces
F~ and F2 are not developed across the transmission line
alone, but are developed partly across the line terminals
and partly across the transformer secondary. In the KLM
analysis, the forces appear directly across the transmission
line terminals. This is physically more acceptable, since
it enables a clear distinction to be drawn between the
lumped element electrical behaviour and the wave acoustic
behaviour of the transducer. The analysis of complex
electrical and mechanical matching systems is also
simplified. For example, the investigation of multi-
layered transducer structures is facilitated since the
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equivalent circuits corresponding to each layer may be
simply added to the output ports of the model. Use of
the KLM technique in this respect has been performed
by silk ( 4+ ) where the transmission characteristics
of a l2-layered transducer system have been investigated.
Using similar techniques, Desillets et al ( 1 ) developed
criteria for optimum broad band transducer design using
quarter-wave matching techniques. In each case, a
transfer function of the system was obtained in the
frequency domain and the effects of finite bond thickness,
electrical and mechanical loading were determined. By
means of the pver~Four ier Transform, transfer function
impulse response was also investigated, although this was
performed only for the simpler electro-mechanical
configurations.

Although this model aids physical and computational
interpretation of various mechanical matching schemes,
the effects of various electrical loading configurations
cannot be readily comprehended due to the complex nature
of the coupling transformer and series reactance. In
consequence, the important phenomenon of secondary
piezoelectric action is not clearly illustrated and in
this respect the model suffers from the same disadvantages
as that of Mason.
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So far, the discussion has centred round a group
of analyses which tend to be devoted to steady state
system performance, despite the fact that both the
Mason and KLM equivalent circuits are applicable to
wideband systems. In the following section, transient
analysis and modelling of the transducer is described
along the lines of Cook, Redwood and Filipczynski, all
of which yield considerable insight into transient
performance.

2.4. TRANSIENT ANALYSIS OF THE PIEZOELECTRIC TRANSDUCER

The transient analyses contained in this section, with
the exception of Cook (6) are based on Mason's piezoelectric
stress-charge relations. In each case, the development
of a system transfer function follows similar lines to
those adopted by Mason in the formulation of his
equivalent circuit. Apart from the important work of
Redwood (30)and Filipczyn'ski (11), no real attempt is made
to obtain an electrical analogue of the transducer,.
the transfer functions themselves being used to study
performance under transient conditions.

2.4i The Transient Analysis of Cook

In the analysis according to Cook (6), Mason's fundamental
charge relationships were not employed, instead the
piezoelectric constant, e, (see Appendix A) was used
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to relate stress to an applied voltage. By solving
the relevant system and boundary equations for the
thickness-mode transducer loaded by real, semi-infinite
media, it~as shown that the distributed input
stress could be represented by two stress generators
situated at opposite faces of the transducer. The
situation in fig :2.7. where the piezoelectric generator
is represented by two lumped stress sources of equal
magnitude, eVo(t), where Vo(t) is the voltage applied
across the transducer faces. Physically, transient
operation of this model may be interpreted as follows:

When an impulse of voltage is applied to the transducer,
two stress impulses are initiated at each face, one
travelling into the loading medium and the other into
the transducer. The relative magnitude of each stress
impulse is determined by the appropriate impedance ratio.
These impulses reverberate to and fro inside the
transducer until they eventually die out due to transmission
losses into the surrounding media. Graphical superposition
techniques were then used by Cook in order to determine
the form and magnitude of the generated acoustic pulse.

In the analysis, effects of the negative capacitance in
the transducer transfer function were ignored. Consequently,
the model is s'trictlyonly applicable to transducers
having low values of electro mechanical coupling, such as
quartz. Reasonable experimental verification was obtained
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fpr an x-cut quartz crystal, immersed in water, when
unit impulse, unit step and sinewave voltages were
applied to the input terminals. Nevertheless, the
following points should be noted when considering
any extension of Cook's model to a more generalised
system.

1. Only mechanical behaviour was considered, with no
attempt made to include effects of electrical
loading on transmitter characteristics.

2. No analysis was performed for the receiving mode.

3. The analysis is only justified for transducers of
low values of electromechanical coupling coefficient.
That is, K less than 0.1. For higher values of K,
applicable to piezocernmic . devices, the simple
reverberation technique should not be considered
as secondary piezoelectric effects must be taken
into account.

'";
,.._-

2.4ii The Transfent Analysis of Redwood

Following the analysis adopted by Mason, Redwood (3~

obtained transfer functions for the thickness mode
transducer during transmission and reception. ~ommencing
with the fundamental system equations, and appliing
oaplace Transform techniques, solutions were obcaIned
for the transient performance of the piezoelectric
transducer corresponding to the following three.....condi tions.
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a. The case of an electrically free transducer subject
to semi-infinite conditions of mechanical load with
arbitrary acoustic impedance.

For this example it was demonstrated that the open
circuit voltage produced by an incident stress
wave is proportional to the time integral of that
stress wave. In addition, due to multiple
reverberation within the transducer, the resultant
transient wave shape is formed by repetition at
regular intervals of the transducer transit time:
eventually decaying to zero by virtue of reflection
losses at the front and rear faces.

Mathematically, Redwood demonstrated that the open
circuit receiver response V(t), due to an incident
stress F1(t) is represented by the following
Laplace transfer function,

V( s)
F1 (s) = -h(l-ro) [i-(l+rX)e-ST+rx(l+rO)e-2ST

, sZ 1

-3sT-rorx(l+rx)e •••••••••• ]

Where,
s is the Laplace complex variable
ro, rx are reflection coefficients for waves of
particle displacement 'at the transducer front
and rear faces respectively. They are less than unity.
V1{s), F1(s) are Laplace Transforms of the,output
voltage and input force respectively.
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Consequently, the open circuit voltage follows the
integral of the incident force, with the relative
amplitudes of successive electrical signals at t = 0,

T, 2T •••••• being given by 1, - (1 + rx), rx(l + ro)
••••••••• etc. Using graphical techniques, Redwood
(3&, ':57) demonstrated how to construct;:the overall
voltage output for a step input of force applied to
the transducer front face. It should be noted that,
within the basic assumptions of Mason's model, this
transient solution for the electrically free transducer
is exact.

b. The case of a rigidly backed receiver with a purely
resistive load connected across the electrodes.

Due to mathematical complexity of the analysis
and difficulty in obtaining an inverse ~aplace
Transform solution, Redwood (3~ treated the
relatively simple case of a transducer rigidly
backed at one face. ,Using this example, he was
able to demonstrate that when the transducer is
terminated by a small resistive load, the waveform
of voltage follows that of the incident force very
closely, but.not exactly (~7). As the value of
resistance is increased, the result tends towards
that outlined in the previous case, where the transducer
was on electrical open circuit.
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Although the physical significance of these
results tended to be obscured by mathematical
complexity, Redwood was able to show (~b,o'),by
means of simple equivalent circuits, that the
differences could be attributed to the negative
capacitance present in Mason's model. It will be
demonstrated in chapters three and four that such
effects are caused by secondary piezoelectric action
and that the results may be extended to arbitrary
conditions of electrical and mechanical load.

c. The piezoelectric transducer as a generator of
ultrasound.

In this case, an exact analysis, valid over all time,
was not attempted due to mathematical complexity
and the resultant lack of physical interpretation.
However, by provisionally ignoring the negative
capacitance, a physically meaningful approximation
was obtained for the transmitting response of a
piezoelectric element (strictly speaking, such an
approximation is valid only for devices possessing low
values of coupling coefficient). Subsequently, it was
demonstrated ~&,'l), that the transient mechanical
behaviour of the transducer is very similar to that
of the open circuit receiver, except that there is
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no l/s multiplier, i.e. no integration effect occurs.
The transfer function obtained by Redwood which
describes such a generator is given by,

F 1 (s)
V (s)

= -hCO(l;rO) [1-(1+rx)e-ST+rx(1+ro)e-2sT-rorx.
-3sT(l+rx)e •••••]

where hCo is the transformation factor relating force
to voltage.

Once again, the waveform repeats at integer multiples
of the transducer transit time, the amount of ringing
being dependent on the reflection coefficients ro and
rx. In this approximation, a step function of voltage
gives rise to a decaying, repeated step function of
force. Note that in the case of the open circuit
receiver, a step input of force leads to a decaying,
repeated, ramp function of voltage. In both cases
Redwood demonstrated ~ow to graphically superimpose the
waveforms over every transit period, in order to
obtain the full transient response. In an attempt
to verify these results an electrical analogue of
the transducer was constructed (l~). This incoporated
an electrical transmission line in order to simulate
mechanical behaviour. Excellent agreement was obtained
between experimental and theoretical results.

37



However, it must be stressed that much of the
previously discussed analysis is valid only if the
negative capacitance present in Mason's model may
safely be neglected. In order to examine the effects
of this element on transducer transient behaviour,
Redwood proposed simplified, but exact equivalent
circuits valid only over the first transit interval.
That is, over the time interval,

o ~ t < T
These circuits, shown in figure 2.8, provide valuable
information concerning the effects of negative
capacitance on output voltage and stress waveforms.
Such models do make it possible to determine many
transient features without recourse to a full theoretical
analysis. It is important to note however, that the
equivalent circuits, while providing information on
the nature of the response, are valid only ~~er a very

JI

narrow interval of time. Consequently, they~cannot be
used to predict overall tran~ient response, and hence
the bandwidth, of a transducer configuration.

The analyses.of Redwood provided the basis for much
further work on transient performance, partiiularly
by Sinha (4b , 47 , , ), Yadav
( bl. ), Carame (4) and Steutzer ({,~. Sinha
employed almost identical methods in order to obtain
the response due to a voltage impulse, periodic step
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and ramp'inputs. In each case the underlying
assumptions were similar to those of Redwood.

Steutzer extended Redwood's approach to the
case of mechanically free boundaries. For an air-
backed and air-loaded transducer, he predicted
transient behaviour under two extremes of electrical
loading (~); open circuit and short circuit
conditions. In each case the excitation waveform was a
step input of voltage. For a short circuited, voltage
step excited'transducer, it was demonstrated that
stress and current responses consisted initially of
alternating exponential pulses, decaying eventually
to a sinewave accompanied by a sequence of sharp spikes.

In addition, Steutzer (~) demonstrated a technique
for determining basic thickness mode operating parameters.
When a step input of charge is deposited the
transducer electrodes from an electrically isolated
source, the situation approximates to open circuit
excitation. By close observation of the resultant
voltage waveform across the electrodes, a simple
'dynamic measuring technique was devised for obtaining
electromechanical coupling factors and acoustic
impedance ratios.
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2.4iii The Transient Analysis of Filipczynski

In this analysis (tI) the influence of negative
capacitance was not entirely neglected in evaluating
transducer performance. The analysis is similar to
that of Redwood in that Laplace Transform techniques
are used to obtain system transfer functions.

Filipczynski showed that the negative capacitance has
a direct influence on the resonant characteristics of
the transducer, effectively determining the mechanical
and electrical resonant frequencies. For devices of
high electromechanical coupling coefficient (K>0.1) it
was demonstrated that the mechanical resonant frequency
is greater than the electrical resonant frequency,
while for K equal to zero, they are identical. By
means of a simplified electrical driving system, the
influence of negative capacitance was experimentally
verified. In addition, a method was describe&for
computing the form and magnitude of the acoustic-pulse
generated by a piezoelectric transducer of high (K=0.5)
electromechanical coupling coefficient. when the device
is excited by an electrical generator of high output
impedance.

....
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By means of an analysis similar to that of Redwood,
a voltage-force transfer function was obtained. From
this, the equivalent circuit of figure 2.9 was deduced
(II). It should be noted that this is essentially
equivalent to that derived by Mason, except that the
negative capacitance has been placed on the electrical
side of the transformer. This equivalence is not unexpected,
since the method of derivation is essentially the same in
both cases.

From the circuit, it may be observed for the electrodes
an open circuit, that the negative capacitance and the
transducer clamped capacitance cancel each other.
Consequently, if the output impedance of the electrical
generator driving such a system were to approximate
open circuit conditions, the transducer behaviour would
be entirely mechanical and determined by the properties
of the transmission.line. In fact, the model is now
equivalent to that described by Redwood for the
transmitting mode.

In an attempt to verify this theory, Filipczynski utilised
the experimental configuration shown in figure 2.10.
(It may be noted that this ciruit is similar to that used
by Steutzer for the determination of transudcer
parameters ~S». In this circuit, the thyristor is
turned on for a short period of time which is much less
than the transducer transit interval. The coupling
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capacitor, Cc, then deposits a step function of
charge on the transducer electrodes. By sel~cting
Cc at a very low value compared with Co (7pf and
IOOpf respectively), good electrical isolation is
obtained between the thyristor and transducer. It
was demonstrated that a step function of charge produced
a decaying ftrain of sawtooth voltage pulses across the
transducer. This compared well with the theoretical
analysis of the corresponding transfer function.

It should be noted however, that these results were
obtained for a highly idealised, inefficient transmitting
system. The theory was not extended to a practical
system including matching and cabling effects because

.of the degree of mathematical complexity involved.

Up to this point, the presentation has concentrated on a
review of transducer analogies based on electrical
equivalent circuits, as these tend to be the most
common representations of piezoelectric transducer
systems. Consequently, the analysis and identification
of transducer behaviour is based on electrical circuit
theory utilising network and transmission line concepts.

However, another, more recent mathematical model of the
transduction process involves matrix theory in order to
formulate the transduction equations. Although a detailed
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physical insight is often lost, the technique..Lends
itself very well to computer simulation and for this
reason has been incorporated in a number of transducer
analyses. The following section presents a brief
account of transduction matrix theory, followed by a
description of its application to piezoelectric system
design.

2.5. MATRIX FORMULATION OF THE TRANSDUCTION EQUATIONS

The input of any transducer in the transmitting mode
may be completely characterised by the voltage, '.V(t)
across the transducer, and the current, I(t) flowing
through the transducer. The output of the device may be
characterised by the distributed field quantities of
stress (force/unit area), F(x,t) and velocity U(x,t) ,
for every x in the region of the test medium. By applying
the simplifying assumptions dis~ussed earlier; that is,
a one dimensional, single mode, linear transduction
process, the force and velocity fields may be considered
as scalar quantities. The process may then be
characterised (~) by a complex matrix which relates
the electrical input parameters to the mechanical input
parameters in the frequency domain. This matrix,
relating any electro-acoustic transducer's input and
output parameters is denoted as the transduction matrix,
T. ~hat is,

[~] = [~~][i]
= [T] [~]
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Applying the same assumptions for a transducer
operating in the receiving mode; a transduction
matrix relating electrical output parameters to
mechanical input parameters is given by,

[~] = rA' B ']
Le' D'

Where Tl is the inverse of T.

Although in theory it is possible to characterise
the transduction matrix by measuring the input and
output parameters, this is very difficult in practice
for the thickness mode transducer. The input
impedance characteristics of such a transducer ,are
usually a function of the media to which the device
is coupled and in addition, the extent of the force
and velocity fields can seldom be measured or predicted
directly, especially in the case of solid test media.

However, it has been shown that for a particular transducer
design, the matrix elements may be computed directly
from the material properties of the elements
constituting the transducer. In the analyses of Sittig
(~, SI ), which are primarily concerned with composite,
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'multi-layered transducer structures, Mason's lumped
element equivalent circuit was used in order to
formulate the tranduction matrix. Intermediate
bonding layers, represented by their electrical
transmission line equivalent circuits were also
formulated using matrix topology.

As an example of the technique, consider a transducer
loaded at one face with a semi-infinite medium of
acoustic impedance Z2' and at the opposite face by
a single intermediate layer of finite width. The
configuration is shown in figure 2.11. Modelling
the intermediate layer by an equivalent, lossless
transmission line, and using Mason's lumped element
equivalent circuit for the transducer, the overall
circuit may be re-drawn in the form of figure 2.12.

By analysing the lumped element circuit, Sittig
obtained the following .matrix equation relating input
voltage and current to output force and velocity for
the transducer.

[
Ac Bc ] [F 1]
Cc Dc Ui
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'Where,

rAC BC] =

Lcc Dc
~~ j~2/WCO] FcoS~C+j~bSin~C)
~ bweo 0 l jsina/Zc

Q = cosaC~l + jZbsinac, Zb=Z2/Zc

. .
Zc(ZbCosac+jsinac)
2(COS~C-l)+jZbSin~C~

For the piezoelectrically inactive layer, the input and

following transformation matrix,
output forces and velocities may be related by the

where,

rAL BLJ
LCL DL

jZLsin~Ll
cosaL J

The relationship between output force and velocity,
Fo, uo and input vbltage and current, V,I is now
given by,

[:] =
[AC BC] ~AL BL] ~:]Cc Dc CL DL
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~mploying this technique, Sittig (51) analysed
the effects of bonding and electrode layer thickness
on transducer performance, and in particular that
configuration of an ultrasonic delay line consisting
of transmitting transducer, intermediate delay line
medium and receiving transducer. More recently,
Lewis ~~} used a similar technique in order to analyse
a multi-layer transducer configuration typical of
ultrasonic imaging and non-destructive testing
systems. Frequency response curves were obtained
for a variety of matching layers, and by means of an
inverse Fourier Transform routine, pulse shapes in
the time domain were also studied.

In conclusion, the matrix technique can be extremely
useful in the study of multi-layer transducer
systems, since it is simple and lends itself ideally
to computer simulation. However, the technique
provides little insight into physical behaviour: cause
and effect relationships being interpreted from computer
results. Even with the straightforward case of a
transducer loaded by semi-infinite media of each
face, a thorough understanding of physical behaviour
may only be obtained if some form of physical model
is used in conjunction with the computer simulation.
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For example, it is possible to enhance physical
understanding if changes in a particular matrix
parameter were related directly to changes in
the same parameter, contained in Mason's equivalent
circuit.

2.6. AN ALTERNATIVE APPROACH TO PIEZOELECTRIC TRANSDUCER
MODELLING

The great majority of piezoelectric transducer
modelling schemes involve device representation by
some form of equivalent electrical circuit. This is
not without good reason since electrical analogies
offer the following advantages.

1. A knowledge of the circuit diagram of the analogous
system permits prediction of the transducer
behaviour based on network topology alone. For
example, series and parallel resonance along with
loading effects may readily be described.

2. Standard network theorems and techniques
may be applied in order to reduce or simplify
the equivalent circuit and hence derive the necessary
input/output relationships.

3. It is possible to construct an actual working model
of the equivalent circuit. This may be achieved
by discrete circuit element implementation, as
performed by Redwood ~1) or by analogue computer
simulation, as illustrated by Dotti (g).
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On the other hand, as outlined in some previous
-sections, electrical analogies suffer from the
following disadvantages.

1. Actual physical elements must be identified
that are analogous to resistance, capacitance
and inductance as do the physical quantities
which correspond to voltage and current.
This is not always possible in the case of a
thickness mode transducer, where, in order to
describe secondary piezoelectric action, a
negative capacitance was postulated. This is
unlike any real circuit element.

2. The physical parameters and variables of the.
transducer must be converted and expressed in
terms of equivalent electrical units. For example,
mechanical or acoustical ohms.

3. In some instances, ·for example in the analysis of
Kossof, modification of the equivalent circuit is
required. This may only be achieved if the user
has a degree or proficiency in electrical circuit
theory.~
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4. If the response of the analogous electrical
circuit cannot readily be ascertained by
inspection, then it is necessary either to
solve the basic differential equations or perform
an often complicated network reduction. Both of
these may require more effort than dealing with
the equations in some alternative manner. For
example, the response of a transducer under
arbitrary electrical loading cannot readily be
predicted from inspection of the Mason or KLM
equivalent circuits. The complex mathematical
analysis required to obtain such a response
invariably obscures the physical significance of
the device behaviour.

5. In some instances, for example the basic lumped
parameter equivalent circuit, the model' is
constructed from inspection of the physical system,

which it represents, rather than directly from a
study of the defining (differential equations.

6. Basic equations describing the physical phenomena in
disciplines other than circuit theory are not used.
Consequently, much physical insight into the
nature of the transduction process is obscured by
electric circuit topology.
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The remainder of this section is devoted to the
description of an alternative strategy for modelling
thickness mode piezoelectric transducer behaviour.
This technique, utilising a systems block diagram
approach, is considered to overcome many, if not
all, of the disadvantages associated with equivalent
circuit methods. It should be noted that the
application of block diagrams in describing electro-
mechanical systems is not new. Preis (~~)has used a
block diagram approach to model behaviour of the elecro-
dynamic loudspeaker, while Ashley (I> utilised closely
related signal flow graphs in order to model the same
process.

By deriving the relevant force-voltage and voltage-
force transduction equations in a form suitable for
implementation via a block-diagram, feedback model,
a systems approach may ~e employed to analyse the
transfer function. Using this method, the system
equations and processes are illustrated quite
differently from dynamical analogies, thereby providing
new and often better insight into system performance.
Representing the transducer system in a systems format
offers the following advantages:
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1. All the elements of a block-diagram and their
interconnections are obtained directly from
the fundamental equations of the system which
they represent. Each block describes a specific
process within the general system in terms of a
transfer function which may describe ratios of
inter-disciplinary quantities. Consequently,
the physical significance behind each process ~ithin
the transduction system is readily enhanced and by
analysing individual blocks, their effect on the
overall transfer function may be determined.

2. The interactive coupling among all processes within
the transducer system is clearly shown and
provided by the block interconnections.

3. Any required input/output relationship may be
determined from a straightforward re-arrangement
of the systems model. Such graphical manipulations
are capable of producing additional insight into
the behaviour of the transducer system.

4. Block diagram reduction of any complex, linear
system is often a relatively straightforward process.
Consequently, the determination of the overall
system transfer function is less susceptible to
mathematical error.
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However, it should be emphasised that the systems
method is essentially a frequency domain technique
and relies heavily upon the topics of linear
systems theory. The user must therefore be
conversant with such concepts.as feedback and
transfer functions.

In subsequent chapters it will be demonstrated that,
by deriving the transduction equations in a manner
suitable for systems feedback presentation, a model
is obtained which is superior to existing dynamic
analogies. It will be shown that the new model permits
a very clear insight into transducer operation and the
various factors which affect its behaviour both in
transmission and reception. The following two
chapters present the derivation of such a model,
applicable to the general case of arbitrary electrical
and mechanical loading •

•
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CHAPTER III

THE PIEZOELECTRIC TRANSDUCER AS A

RECEIVER OF ULTRASOUND



3.1 INTRODUCTION

This chapter presents the development of a block-diagram
transfer function which accurately describes the behaviour
of a piezoelectric transducer when operating as a receiver
of ultrasound. As outlined in Appendix A, the term 'piezo-
electric' is used to embrace not only naturally occurring
piezoelectric materials such as quartz but also polarised
ceramics such as barium titanate. The initial part of the
theory follows closely the methods adopted by Redwood (3b),

Filipczynski ("), Stuetzer (54), Dotti (s) and Yamamoto
(~), whereby Mason's (~8) fundamental piezoelectric equa-
tions are used as a starting point in obtaining transducer
characteristics. However, in the present case, no attempt
is made to produce an electrical analogue of the transducer,
which in the case of a piezoelectric disc invokes the unreal
component parameter of negative capacitance. Instead, a
systems model, utilising the concept of feedback, is pro-
posed in order to clearly explain electro-mechanical inter-
action. The investigation concerns a completely general
case where the transducer is subject to arbitrary electrical
and mechanical loading.

The type of transducer under consideration is a thin piezo-
electric disc vibrating unidirectionally in its thickness
compressional mode. The transducer geometry is outlined in
figure 3.1, which shows a thin disc of radius, r, and
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thickness, L. In order to simplify mathematical computa-
tion, the following assumptions will be made concerning
the properties and behaviour of such a device.

1 The diameter of the transducer is much greater
than its thickness, thereby permitting the assumption that
all mechanical wave fronts are planar in nature. The pro-
pagation of undistorted plane waves within the transducer
is considered justified in this context, since the ratio of
diameter to thickness is in the region of 20:1.

2 A second assumption is that the disc vibrates in a
piston-like manner and that acoustic wave motion is in one
direction only, the direction normal to the plane surface
of the transducer. Consequently, mechanical and electrical
quantities such as stress, strain, electric field and dis-
placement are assumed to vary only in the x-direction. This
implies that only a single mode of vibration is possible,
namely that of the transducer vibrating in its thickness
compressional mode. However, in general, the compressional
mode is simultaneously accompanied by radial modes as the
plate diameter expands and contracts. Redwood (~1) and
Filipczynski (II) have both indicated that the radial mode
can be neglected for thin transducers of large diameter
operating into solid media. However, for transducers
operating under lightly loaded conditions, for example,
radiating into a water bath, the radial mode can be signifi-
cant. Nevertheless, providing the disc diameter is much
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greater than its thickness, the frequency difference between
the radial and thickness modes is so large that they can
easily be distinguished. Consequently, an analysis of the
latter mode may proceed independently.

3 The third assumption is that initially, the trans-
ducer and surrounding media are considered loss-free. As a
result, all acoustic media are represented by real acoustic
impedances, defined as the product of cross sectional area,
density and longitudinal velocity. In the case of a trans-
ducer bonded to solid media, the energy loss to the surround-
ing material is usually very much greater than that dissi-
pated through internal friction in the device itself. How-
ever, it should be noted that for operation under lightly
loaded conditions, a significant loss can occur within the
piezoelectric material. The effects of internal mechanical
losses within the transducer are discussed in chapter VI.

4 Finally, the analysis is restricted to operation
much below the yield stress of the materials employed. That
is, where mechanical and electrical quantities are connected
by the linear piezoelectric equations as outlined in
Appendix A. Consequently, effects such as cavitation,
localised plastic deformation and irregular modes of vibra-
tion are neglected along with any possible variation in
transducer properties due to ageing and thermal effects.
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.......

~ EQUATIONS OF MOTION FOR A PIEZOELECTRIC
PLATE TRANSDUCER

In order that the nature of electrical and mechanical energy
propagation may be studied, we consider firstly the basic
piezoelectric relations which were originally proposed by
Mason tU).

Indirect effect

Direct effect

YxD is the elastic constant in the x-direction, measured
under conditions of constant electrical displace-
ment, (electrodes on open circuit) expressed in
Newtons ,per square metre

£ S is the absolute permittivity of the transducerx
material in the x-direction, measured under condi-

.tions of constant strain, in Farads per.metre •..
Ox is the electric displacement in the x-direction,

expressed in coulombs per square metre

Ex is the electric field strength in the x-direction,
expressed in volts per metre

r is the tensile or compressive stress in thex
x-direction in Newtons per square metre
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..,.. .

Sx is the strain, or fractional change in length, in
the x-direction

h33 is a piezoelectric constant relating the stress
developed per applied charge density or the elec-
tric field developed per applied mechanical strain.
It is usually measured under conditions of con-
stant electrical displacement. The suffix 33
indicates that the constant is applicable to the
thickness direction of the crystal.

In addition,

where tx is the mechanical displacement of an arbitrary
point within the transducer.

A full description of the piezoelectric relati~s is given
in Appendix A. ..-~

For convenience, the suffices are dropped and hence the
piezoelectric relations can be written as followsl

r Y3t hD If=_ ...
ax

E = -hat + Ole,
ax

-..
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Assuming that there is no net free charge within the trans-
ducer, then Gauss· Law (eo T5: E.ds = to) yields:

aD = 0
ax

therefore ar
ax

ie

ar ya2~-=-
ax ax2

1

Considering an infinitesimal volume element within the
transducer and using Newton's Law relating force to accelera-
tion, it is possible to obtain,

ar = p a2~
ax at2

2

Where P is the material density.

Equating 1 and 2, the standard wave equation describing
mechanical propagation within the transducer is obtained.

3

where V2 = YIp is the longitudinal wave velocity in metres
per second. It should be noted, as indicated by Redwood (3b)

that the wave equation for the piezoelectric disc is identi-
cal to the wave equation corresponding to propagation in a
non-piezoelectric material.
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At this point, it is convenient to introduce the Laplace
transform which ls defined by,

OD

G[f(t)] = Je-ST f{t)dt
o

where S is a complex variable, f(t) is the time function to
be transformed and G is the transformation symbol. The solu-
tion to equation 3 can now be expressed as:

t{S) = Ae-S{x/V) + BeS(x/V) ------- 4

This represents two waves travelling inside the disc, one
in the positive x-direction and the other in the negative
x-direction. A and B are constants defined by the boundary
conditions of x = 0 and x = L (ie at the faces of the trans-
ducer).

Before developing the relationship between electrical and
mechanical wave quantities, it is interesting to note that
since there is no net free charge within the transducer, all
free charge must reside on the surface. Consequently, the
electrical displacement D can be expressed as follows:

D = g_ C/m2
A'

where A' = Rr2 is the area of a plane surface of the trans-
ducer and Q is the net charge residing on either of the sur-
faces.
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It ls now possible to utilise the basic piezoelectric
relationships, along with the solution of the wave equation,
to relate electro-mechanical wave propagation within the
transducer. From the equation describing the indirect
effect, we have the relation,

r = y II - hD
ax

therefore F + hQ = y .ll
A'" A"':. ax

where F is the force in the x-direction

therefore F + hQ = A"Y II
ax

Substituting equation 4 into the above expression, a general
relationship relating the transforms of force and mech-
anical displacement inside the transducer is obtained.

F(S) + hQ(S) = SZ {_Ae-S(x/VC) + BeS(x/VC)}C . 5

where Zc = pVcA'" is the acoustic impedance of the transducer.
Similarly, the equation for force in a non-piezoelectric
medium can be found by utilising equations 2 and 4. This
yields,

6

where Zm is the acoustic impedance of the medium.
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Considering now the direct piezoelectric effect, we have:

E = -h II + E.
ax £

The voltage across the transducer is obtained by integrating
the electric field in the transducer over the thickness

L
V = !E dx

L
= J {-h II + ..lLJdXax A"£

0

= -h{ ~(x=L) - ~(x=O)} + QL
A'£

therefore 7

where Co is the bulk, static capacitance of the transducer.
The term t(X=L) - t(x=o) simply indicates the difference
in mechanical displacement between the opposite faces of the
transducer.

Now consider an arbitrary electrical impedance placed across
the transducer terminals, as outlined in figure 3.2. The
figure depicts a mechanical wave striking a piezoelectric
disc transducer which is electrically loaded by an impedance
ZE. We assume that any externally deposited surface charge
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has been allowed to leak away through the load, so that
inltlally, the voltage across the transducer, vet) is zero.
On striking the surface, the mechanical wave induces a
polarisation of charge in the transducer, due to the direct
piezoelectric effect. A current, I(t) thus flows through
the loading impedance, producing a voltage Vet). Conse-
quently, we can obtain a relationship between the charge
produced piezoelectrically and the voltage measured across
the transducer.

The current, I{t) is related to the charge by the equation,

I (t) = dQ
dt

Laplace transforming, and assuming zero initial conditions,
yields,

I(S) = -SQ(S)

therefore V(S) = -SQ(S) ZE(S)

or, O(S) = -V(S)
SZE CS)

Substituting the above into equation 7 gives for the trans-
form of voltage across the device,

V(S) = V(S)
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Denoting CoZE(S) by 1tSl, the following expression is readily
obtained for the voltage transform across the loaded trans-
ducer

v (5) = -h{ t tx=L) - t (x=O) } (5) { ST (S) }
1 + ,ST (S)

8

3.3
3.3i

THE TRANSDUCER AS A RECEIVER OF MECHANICAL WAVES

Boundary Conditions and Development of the
System Equation

Consider a piezoelectric crystal positioned between two non-
piezoelectric elastic media, which are assumed to extend
indefinitely away from the transducer. The situation is
outlined in figure 3.3 which depicts an incident mechanical
wave striking the transducer. The incident wave is travell-
ing in medium 1, which has a characteristic impedance Zl' at
a velocity Vl in the positive x-direction. Al is an ampli-
tude factor relating to the incident wave and Bl is an
amplitude factor relating to the reflected wave at the trans-
ducer boundary. The transducer has a characteristic imped-
ance Zc and a longitudinal velocity VC. A and B are ampli~
tude factors describing the forward and backward travelling
waves within the transducer. Similarly, medium 2 has a
characteristic impedance Z2 and a longitudinal velocity V2•
A2 is an amplitude factor relating to the wave which is
transmitted into medium 2. In addition, the following pOints
should be noted.
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1 Medium 1 is often referred to as the loading medium
with medium 2 as the backing medium, corresponding to the
transducer front and rear faces respectively.

2 All acoustic impedances are assumed real, their
value per unit area being given by the product of material
density and longitudinal velocity.

3 The time taken for mechanical waves to cross the
transducer, the transit time, is given by

Such a system is mechanically constrained by two boundary
conditions, namely continuity of mechanical displacement and
continuity of normal stress. Applying the first of these
at each face of the transducer yields,

~l(x=o) = ~C(x=O) and ~2(x=L) = ~C(X=L)

where ~l (5) = Ale-S(X/VI) + B eS(x/VI)
1

t2 (5) = A2e-S(X/V2)

~c(5) = Ae-S(x/Vc) + BeS(x/VC)

In a similar manner, continuity of normal stress at the
boundaries gives rise to the following set of equations.
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Fl (x=O) ::Fe (x=O) and Fe (x=t.): = F2 (x=L)

•

These boundary conditions give rise to four equations
involving A, B, AI' Bl and B2•

9

If we assume that there is an arbitrary electrical impedance,
having a Laplace transform, ZE(S), connected across the
electrodes of the transducer, then an expression for the
transform of voltage across the crystal is given by equa-
tion 8.

{
ST{S) }V (S) = -h{ t (x=L) - t (x=o)} (S)

1 + ST (S)

therefore

V (S) = -h{A (e-ST - 1) + B (eST _ I)} { ST (S) } --- 10
1 + ST (S)
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It 1s necessary to obtain expressions for A and B in terms
of Al, the incident mechanical wave. From equation 9 it
is possible to obtain the following expressions:

and

The first of these two equations can be written in the form:

The second equation can similarly be expressed in the manner
below.

We define

and ~=

The previous two equations now become,

11
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and
hQ(S)e-ST
S (ZC +Z2)

11

Equations 11 are more conveniently expressed in matrix form.

B

1 -~ A

=

-1

Solving the above matrix equation yields for A and B,

-1

1 -~A

1= -
A

B
{_ hQ(S)e-ST }

S(ZC + Z2)

We can thus obtain two expressions for A and B viz:

A =

B =

12

where J1, J2 and L are the following matrices:
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-1)

(L) =

Substituting equation 12 into equation 10, the following
expression for the transform of voltage across the trans-
ducer is obtained.

{
(Jl) (L) -ST (J2) (L) ST }{ ST(S) }

V(S) = - h (e - 1) + (e - 1)
A A 1 + ST(S)

= -h(J )e-ST - (J ) + (J leST - (J ») (L) { ST(S) }
1 1 2 2 A 1 + ST (5)

Substituting for (J1) and (J2) and rearranging terms pro-
duces an expression for the voltage transform:

X(L) { ST(S) }
A 1 + ST (5)

Letting U(S) = __S~T~(~S~)__ , we may write,
1 + ST(S)
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V(S) = (K)(L) h(l _ e-ST) U(S)
A

13

Equation 13 represents the mechanical response of a lossless,
piezoelectric transducer under arbitrary conditions of elec-
trical loading. As such, it is a general equation describ-
ing fully the transient behaviour of the transducer when it
is operating in the receiving mode. Consequently, equation
13 shall be termed the system equation of the electrically
loaded piezoelectric receiver.

3.3ii Development of the Closed Loop Transfer Function

The system equation obtained in the previous section is
essentially a transfer function relating, in the S-domain,
the voltage developed across the transducer, V(S) to the
incident mechanical value, which for the moment is denoted
by the amplitude factor AI. However, in this form, it is
neither amenable to mathematical evaluation or physical
interpretation. In the present section, a block diagram
model of the transducer is developed. The model is based on
a closed loop, feedback system which not only lends itself
to mathematical analysis, but provides a ready insight into
the physical behaviour of a piezoelectric receiver.

In the previous section it was shown that the voltage across
the transducer was related to the surface charge by the
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following transform relationship,

c (S) = _-V~(S.....)_ =

Substituting into equation 13 for O(S) gives,

+hCoV(S) 1(1 - Rae-ST)
S 2 T (S) (Zc + Z1 )

14

The amplitude factor A1 will now be examined in more detail.
Al denotes the incident mechanical wave, which is assumed to
be planar and undistorted. It is required, after the manner
of Redwood (~6),to describe the incident wave in terms of
force or pressure. The expression for the initial wave of
force striking the transducer is given by the following trans-
form equation.

By considering only the incident wave at x = 0,

15
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One additional quantity remains to be defined, the electro-
mechanical coupling coefficient, K, of a piezoelectric trans-
ducer. It is a measure of the efficiency of the device when
converting electrical voltage to mechanical displacement and
vice versa.

s ~

K = hJJ
eJJ

Y~
JJ

where all parameters and suffixes are as previously defined.

Dropping the suffixes for simplicity, we may write,

The permittivity, e, is related to the static capacity of
the transducer by the equation,

A"

Also, the elastic constant, Y, is related to the longitudinal
velocity by the expression,

By direct substitution and noting that ~ = T, Z = A~VCP'Vc C
we may write,
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16

Now let

and
17

Substituting equations 15, 16 and 17 into equation 14 results
in the following expression for V(S).

{
-hFI (5)

V(S) = U(S) (1- ~)KF(S) +
SZl

+ K2ZCV(S) [KF(S) +
S2T(5) T (Zc + Zl)

therefore
V(S) -Fl(S)K2KF(S) 2Zc---- = --~----~-- ----~--
U(S) SThCo (ZC + Zl)

V(S)K2KF(S) [hC] Zc

+ SThCo ST(:1 (Zc + Zll

v (5) K2KB(5)
+ ----....;;;.__

SThCo

If we now let,
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K2
M(S) = , wts) = U (S)M(S)

SThCO

Nts)
hCo=-
251

TF
2ZC

=
Zc +Zl

TB
2ZC

=
Zc + Z2

Then,

+ V(S)W(S)KB(S)N(S)TB 18

This equation can now be expressed in the form of a trans-
fer function for the transducer in reception. The transfer
function, H(S), is defined as,

R(S) = Transformed Output Voltage = V(S)
Transformed Input Force Fl (5)

Collecting terms in equation 18 and solving for V(S) in terms
of Fl(S) yields I

-w (5) KF (5) TF
H (5) = --------~--=-------1 - {W(S)KF(S)N(S)TF + W(S)KB(S)N(S)TB}
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This equation is the.generalised transfer function for an
electrically loaded piezoelectric disc operating in the
receiving mode. When expressed in this manner, it is known
as the system closed loop transfer function. It is now
possible to express the transfer function in block diagram
form, as a closed loop, feedback system. Before doing so,
however, a brief review of block diagram and feedback nomen-
clature is required.

A block diagram of a typical feedback system is shown in
figure 3.4. The various parameters in the system are defined
as follows. (All quantities are expressed in the S-domain).

ReS) is the Laplace transform of the input signal.
C(S) is the transformed output signal.
G(S) is the direct or forward transfer function.
Xes) is the feedback transfer function.
E(S) is the error signal.
± indicates whether the feedback is positive (+) or

negative (-).
C (5)=-
R(S)

is the system transfer function or the ratioH(S)

of output to input, in the S-domain.

For the simple system outlined in figure 3.4, it is readily
shown that, for a positive feedback system,

C (S) = G (S)

R(S) 1 - G(S)X(S)
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While for a negative feedback system,

C(S) = _-,G,-,( __S__) __

R(S) 1 + G(S)X(S)

The foregoing theory can now be utilised to obtain a feed-
back representation of the piezoelectric transducer in
reception. Equation 19 is now written in the form,

W (S)KF (S)TF
-R(S) = ----------------~--~-----------1 - W(S)KF(S)N(S)TF - W(S)KB{S)N{S)TB

----20

This can now be expressed in ,the form of a closed loop,
positive feedback system, as indicated in the block diagram
of figure 3.5. The equivalence of equation 20and the block
diagram can be explained as follows:

Referring to figure 3.5, we may write,

E{S) = J(S)N(S) + Fl(S)

therefore

v (S) = -J (S)
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therefore

V(S)

Fl (5)
-W CS)KF (5)TF

= ------------------~--~~------------1 - W (S) KF CS)N (S) TF - W (5)KB (5)N (5)TB

This equation is identical to equation 20, hence verifying
the validity of the block diagram. It is now required to
examine in detail each component of the block diagram in
order to obtain a physical interpretation of the overall
feedback model.

3.4 PHYSICAL SIGNIFICANCE OF THE FEEDBACK MODEL

In order to understand the physical significance of some of
the parameters contained in the block diagram, it is import-
ant to differentiate clearly between a function of force
(pressure) and a function of particle displacement. In
addition, a brief review of plane wave interaction at a
boundary is essential.

Consider, after the manner of Blitz (4), a packet of plane
waves incident normally to a plane boundary which separates
two media A and B, each having characteristic impedances
ZA and ZB respectively. Part of the incident sound energy
is reflected back into medium A and the remainder trans-
mitted into medium B. The general situation is outlined in
figure 3.6 where PI' PR and PT represent values of acoustic
pressure for incident, reflected and transmitted waves. The.
corresponding values of particle displacement are:
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~I' ~R and ~T

The relationships between pressure and particle displacement
are,

(Laplace transforming)

PR (S)

=

As usual, two boundary conditions apply, ie continuity of
pressure and continuity of normal displacement.

Using these two equations it is readily shown that, (Blitz
(1n.

2ZB=----
ZA + ZB

= transmission coefficient for waves of
force

PR ZB - ZA reflection coefficient for waves of force- = =
PI ZB + ZA

tT 2ZA transmission coefficient for particle- = =
tI ZA + ZB displacements
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= reflection coefficient for particle
displacements.

It should be noted from the above that reflection coefficients
for particle displacements are 180 degrees out of phase with
the reflection coefficients of pressure. It is now required
to apply all of this information to the block diagram shown
in figure 3.5.

It is possible to rearrange figure 3.5 by removing the block
TF from the forward path and instead placing it in both the
feedback and input paths. This new arrangement is shown in
figure 3.7.

2ZcThe term TF = ----~-
Zc + Zl

for waves of force travelling into the transducer from the

is simply the transmission coefficient

front face medium. The remainder of the forward loop now
comprises the product of KF(S) and W(S). This can be written
as,

Forward path = Kp(S)W(S) (-1)

Neglecting for the moment the negative sign and expanding
W(S) yields:

KF (S)u(S)M (S)
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where the ter.m_!_ 1s a convers10n factor wh1ch converts the
SZc

pressure function inside the transducer to one of particle
displacement. Consequently, 1f there is a wave of force,
with a Laplace transform FlCS) incident on the transducer
front face, then a wave of particle displacement, having a
transform DlCS), is transmitted into the device. The physi-
cal situation is outlined in figure 3.8a, with the equivalent
block d1agram representation shown 1n figure 3.8b.

It is now possible to examine the block KF(S),

wh1ch 1s defined by the following expression,

Cl - e-ST) (1 - Rae-ST)
= ----------------~-----

where,

~= Reflection coefficient for pressure waves
1ncident on the transducer front face

Zc - Z2= ~---..;;;...
Zc + Z2

Reflect10n coefficient for pressure waves
It

incident on the transducer rear face.

Now consider a function of particle d1splacement propagating
through the transducer. Since the transducer at present is
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assumed lossless, the wave will undergo multiple, distor-
tionless reflections as i~ passes back and forth between
the two faces of the disc. Thus, on noting that the reflec-
tion coefficients for particle displacement are 180 degrees
out of phase with those of pressure, figure 3.9a may be
constructed. From the figure, the total particle displace-
ments at the transducer front face are given by the series,

Now, representing a delay of one transducer transit time, T,
by the Laplace delay operator e-ST, the transformed series
becomes:

tF(S) = Dl(S){l + ~{l + ~)e-2ST ~ ~RB2(1 + ~)e-4ST +

+ ~2~3tl + ~>e-6ST ••••••}

='D1tS>{l + RBtl +. ~)e-2ST(1 + ~RBe-2ST +

+ ~2Ra2e-4ST ••••••J}

= DltS){l + Ratl + ~)e-2ST[~ l~Ralne-2nSTJ}
. n=O

,

The term inside the square brackets is a geometricprogres-
sion whose sum to infinity is given by the following expres-
sion:
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The transformed series representing front face displacements
is now reduced to the form,

therefore 21

In a similar manner, the transformed displacements of the
rear face are represented by the series,

•• •

3 3 -6ST }+ ~ Rs e ••••••

n=oo
(S)· (1 ) -ST \ (R_R

B
)ne-2nST= D1 + RB e ~-T

n=O

therefore
0l(S) (1 + RB)e-ST

1 - ~RBe-2ST
22
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Now recall that the voltage developed across the transducer
is proportional to the difference in displacements between
the opposite faces, or more exactly, from equation 8,

where

- e-ST)(1 - Rae-ST)}
tl - ~RBe-2ST)

Consequently, the term KF(S) represents physically the,

difference in particle displacement between the front and
rear faces when an impulse of force is incident on the front
face. The time domain ~epresentation of KF is shown in
figure 3.9b. KF(t) consists of a train of weighted impulse
functions, alternately changing in sign and separated by
the transducer transit interval, T. The weighting factors
are, 1, -Cl + RB), RaCl + RF), -~RB(l + RB), RFRB2(l +~)
•••••• etc and these are determined by the mechanical quali-
ties of the front and rear face media. KF shall be defined
as the front face reverberation factor of the transducer.
Essentially, it represents the difference in displacement
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between the front and rear faces when an ideal impulse func-
tion of displacement is incident on the front face.

It should be noted that, due to changes of phase inherent in
KF, the type of feedback alternates between positive and
negative at each instant of phase reversal. This feature is
given detailed analysis in chapter V, when transducer elec-
trical impedance is discussed.

The remaining two terms in the forward loop are hand U.(S).
Since h simply represents the piezoelectric conversion from
displacement to voltage, the complete forward loop of the
block diagram may be drawn as shown in figure 3.10.

The term U(S) is the Laplace transform of a function which
represents the modification of the voltage waveform by the
external electrical load.

SCOZE(S)U(S) = ----~-----
1 + SCOZE(S)

This is a Laplace transform of the transfer function of an
electrical network equivalent to that shown.in figure 3.11.
In the figure, which is the electrical equivalent circuit at
the transducer electrodes, Io is the current flowing out of
the transducer and through the external load. VT is the
voltage generated piezoelectrically by the transducer and
Vo is the output voltage generated across the load. ·From
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a:- --

the diagram, it is clear that ZE has a considerable effect
on the form and magnitude of the output voltage waveform.
For ZE equal to infinity, the transducer electrodes are on
open circuit and hence the output current, Io' is equal to
zero. That is, no current may flow out of the transducer and
hence there is no nett voltage attenuation. When the elec-
trodes are on short circuit, the output current, Io' is a
maximum and the output voltage, Vo' is equal to zero. For
this case, there is, as expected, complete voltage attenua-
tion. The function U{s) is thus defined as the voltage
attenuation factor.

Under conditions of arbitrary electrical load, current Io
flows out of the transducer, resulting in a change of elec-
trical charge on the transducer electrodes. It will now
be demonstrated that the alteration in charge is responsible,

for the feedback terms contained in figure 3.5 and that it
is a direct indication of a secondary piezoelectric effect
as discussed in Appendix A.

Consider initially the particular feedback loop relating to
the transducer front face. The two elements contained in
this loop are TF and N{S). That is,

Front face feedback loop = TF N{S)

2ZC hCo
= -Zc +Zl 2ST
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The output voltage generated by the transducer across the
hexternal load is thus applied directly to the block --~--,

SZE(S)
which can be split~ up into three separate units as indicated
in figure 3.12.

Defining,

1YE(S) =--
ZE (S)

This Is simply the admittance of the external electrical
load and serves to relate the transformed output current,
Io(S) to the transformed output voltage, Vo(S). The function
YE is consequently defined as the feedback admittance func-
tion.

The transformed output current, I (S) is then integrated
. 0

(figure 3.12) to form the charge transform 0o{S). Due to
the inverse piezoelectric effect, the charge 00 produces a
force, F at both faces of the transducer. As indicated byo
Redwood (37), a portion of the force is transmitted into the
load and backing media and a portion transmitted into the
transducer. The transformed fraction propagating into the
transducer at its front face is given by,
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(Front)

This expression serves to complete the feedback loop and
hence FOT{S) represents a transform of the force being fed
back into the transducer at its front face. The force FOT
can thus generate a voltage in a manner identical to that
of the incident force.

The overall block diagram relating to the transducer front
face can thus be drawn as in figure 3.13. It is important
to notice, that for the transducer on open circuit, no
current can flow out of the device, and hence there is no
feedback. That is, the response of a piezoelectric receiver
with no electrical load, is simply the forward transducer
function. On the other hand, with the electrodes on short
circuit (ie ZE = 0), the output current, and hence the.
feedback, is at a maximum value. The output vo~tage is, of
course, zero. Since the overall magnitude of the feedback
loop is proportional to the square of the electro-mechanical
coupling coefficient, some researchers, notably stuetzer
(SS), have used the short circuit termination to measure
and compare transducer parameters.

The feedback loop of figure 3.5 relating to the transducer
rear face has not yet been considered. In addition to
generating a wave of force at the front face, the output....
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voltage also produces, in an identical manner, a stress wave
at the transducer back face. This wave of force must also
contribute, as indicated in figure 3.5, to the overall feed-
back of the system. In this case, the transform of the
wave of force generated into the transducer is given by,

This expression, apart from the transmission coefficient,
is identical to that obtained at the transducer front face.
In fact, it is readily shown that the transducer rear face
behaves in an identical manner to the front face, except
that the reflection coefficients generally differ due to
unequal backing and load materials. Consequently, identical
transfer function blocks are valid for the rear face, except
that ~ must be replaced by ~ and vice versa. For example,
consider the wave generated due to secondary piezoelectric
action at the transducer rear face. This function of force
is converted to a function of particle displacement by the
conversion factor -1-. However, the term relating to the

SZC
difference in particle displacement is now given by KB(S)
where,

88



This expression is Identic~l to KF(S) except that ~ has
replaced Ra and vice versa. It thus follows, that for the
general case where external forces Fl(t) and F2(t) are
applied to the front and rear faces respectively, the over-
all block diagram of figure 3.14 is applicable. This
represents a completely general model of a lossless, arbit-
rary loaded (both electrically and mechanically) piezoelectric
receiver. The device is shown as a three port network,
with secondary effects being modelled using the concept of
feedback, which vanishes completely when the transducer is
electrically on open circuit. The individual elements in
figure 3.14 may be summarised as follows:

TF Transmission coefficient of waves of force striking
the front face

TB Transmission coefficient for waves of force strik-
ing the rear face

Conversion factor relating force to particle dis-
placement

Difference between front and rear face displace-
ments when a wave of force leaves the transducer
front face. It is defined as the front face
reverberation factor
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KB Difference between front and rear face displace-
ments when a wave of force leaves the transducer
rear face. It is defined as the rear face reverbera-
tion factor

h The piezoelectric constant relating particle dis-
placement to voltage or electrical charge to force

U The voltage attenuation factor due to an external
electrical load

YE The feedback admittance, resulting in current flow
out of the transducer.

Before developing a systems model for the piezoelectric
transmitter, it is worthwhile at this stage to compare the
present model with one of the reduced, circuit models
devloped by Redwood (34) for the piezoelectric receiver.

3.5 COMPARISON OF THE FEEDBACK MODEL WITH THE EQUI-
VALENT CIRCUIT OF REDWOOD

\

By utilising Mason's concept of negative capacitance,
Redwood (~b) postulated the equivalent 'electrical' circuit
shown..in 3.15. Due to the mathematical complexity of his
analysis, he treated only simple cases of piezoelectric
transducers in reception. Figure 3.15 is hence only appli-
cable under the following constraints,
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1 The transducer 1s rigidly backed. That is, Z2 is
equal to infinity and no contribution whatsoever can be
expected from the rear face.

2 The model is only valid during the time interval
o < t ~ T, ie over the first transit interval. Consequently,
multiple reflections within the transducer are omitted.

3 The electrical load is purely resistive.

The transfer function of the circuit shown in figure 3.15
may be written as follows:

-SRh2C= ~o~ ___
S2RC Z + SZ - h2Co 0

where Z = Z + Z1 C

therefore v (S) = -_2_h_C..;;..oR_S_
F(S) S2RC Z + SZ - h2Co 0

23

Now consider the generalised model shown in figure 3.14.
For a rigidly backed transducer no contributions are obtained
from the rear face during the time interval 0 < t < T, KF(S)
reduces to unity. The equivalent block diagram for such a
device is shown in figure 3.16, where, as in Redwood's
model, the electrical loading is a pure resistance, R.

The transfer function of such a system can be expressed as,
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where

h~TF -- U(S}
VeS) = SZC
F(S)

1 - TF ....h... U(S) h
SZC 2SR

U(S) =
SRCo

1 + .SRCo

TF
2ZC Zc

= =-
Zc + Zl Z

Substituting for U(S) and TF yields for the transfer func-
tion,

v (S) = __Z_(l_+_S_RC_;o=-)__
F (S) h2C1___ ~o __

SZ (l + SRCo)

therefore v (S) = -_2_h_Co_R_S_
F(S) S2RC Z + SZ - h2Co 0

24

Equations 23 and 24 are formally identical, hence demonstrat-
ing the equivalence of the two approaches, for this relatively
simple example.

It should be pOinted out, that although an extension of
Redwood's model to the more general situation is mathematically
possible, the physical significance of transducer behaviour
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ls almost completely obscu~ed. This is certainly not the
case with the systems feedback model where the effect each
component has on transducer behaviour may readily be
observed.

3.7 CONCLUDING REMARKS

A block diagram representation of the piezoelectric trans-
ducer acting in the receiving mode has been developed. The
model is exact within the constraints of the initial assump-
tions. In addition, it is valid over all frequencies and
conditions of electrical and mechanical loading. Each ele-
ment wit~in the block diagram has been related to a recognis-
able physical quantIty involved in the transduction process.
Consequently, the overall model Illustrates very clearly
the complex electro-mechanical interactions which occur.
Secondary piezoelectric effects are illustrated using the
concept of feedback and the conditions under which such
effects may be of importance are clearly demonstrated. In
summary, the amount of feedback (or secondary pieeoelectric
action) is dependent on the following factors:

1 The magnitude and nature of the electrical load.
It was shown that under conditions of electrical open cir-
cuit, there is no current flow out of the transducer and
hence no secondary action.
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2 The amount of feedback 1s directly proportional to
the square of the electro-mechanical coupling coefficient.
Consequently, for transducers of low coupling coefficient,
such as quartz, secondary effects may be negligible.

3 The amount of feedback is in general, inversely
proportional to frequency. At higher frequencies, secondary
action has less effect on transducer performance.

4 The amount of feedback is dependent on conditions
of mechanical loading at the front and rear faces. This
follows directly from the presence of the blocks TF/2 and
TB/2 in the feedback loops. However, it should be noted
that this cannot be employed to minimise secondary piezo-
electric action since each block appears in the input path
of the diagram.

In subsequent chapters, the model is used to predict response
characteristics of a piezoelectric receiver in both time and
frequency domains, with particular emphasis on the effects of
electrical loading. However, before this is undertaken,
transducer performance as a generator of ultrasound must be
considered. The following chapter describes the generalised
behaviour of a transducer in the transmitting mode.
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CHAPTER IV

THE PIEZOELECTRIC TRANSDUCER AS
A TRNNSMITTER OF ULTRASOUND



4.1 INTRODUCTION

This chapter describes the development of a feedback model
which accurately describes piezoelectric transducer behaviour
when the device is acting as a generator of ultrasound. All
of the physical assumptions made in the previous chapter are
again applied. That is, plane wave propagation is assumed
in a thin, lossless, piezoelectric disc which vibrates
undirectionally in its thickness mode. The transducer is
also assumed to operate under arbitrary external mechanical
and electrical boundary conditions.

As in chapter III, no attempt is made to derive a direct
electrical analogue of the piezoelectric transmitter. A
block diagram systems approach, yielding a feedback transfer
function, is again adopted. The resultant model is shown
to clearly illustrate the interaction between electrical and
mechanical quantities. As in the case of the receiver, 1mport~
ance of secondary piezoelectric effects is clearly outlined.

4.2 THE TRANSDUCER AS A TRANSMITTER OF MECHANICAL
WAVES

4.21 Mechanical Boundary Conditions

Consider, after the manner of chapter III, a piezoelectric
crystal positioned between two non-piezoelectric elastic
media, which are assumed to extend indefinitely away from
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the device. The transducer is then subjected to an arbitrary
electrical excitation which causes stress waves to propagate
into both front and rear media. In addition, waves of force
are generated at both surfaces inside the crystal, directed
towards the plate centre. The physical situation is shown
1n figure 4.1, which outlines the general mechanical boundary
conditions. The terms A and B are amplitude factors, relat-
ing to the waves of force inside the transducer, while Bl
and A2 describe waves propagating into the front and rear
media respectively_ Medium 1, corresponding to the front
face, is defined by its real characteristic impedance Zl and
medium 2, (at the rear face) by the real characteristic
impedance Z2- The transducer has, as before, a real character-
istic impedance ZC.

The present situation is almost identical to that described
for the piezoelectric receiver in chapter III, figure 3.3.
The difference is that for the transmitter, there is no
incident wave of force, AI. Consequently, the initial part
of the present analysis will correspond exactly to that 1n
Section 3.3i, except that Al is set to zero.

Equations 12 in chapter III may therefore be used directly
to give expressions for the amplitude factors, A and B, of
the waves of force inside the transducer, ie
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A=
(J1) (L").

B
(J2) (L").

=
A A

where

(Jl) = (1 - I7e-ST)

(J2) = e-ST(R e-ST - 1):a

-hQ (5)
S (ZC + Zl) TF

(L"). = = -hQ (5)
-hQ (5) 2SZC TBS (Zc + Z2)

~ = 1 - ~RBe-2ST

where ~ and Ra are reflection coefficients for pressure
waves incident on the front and rear faces of the trans-
ducer.

4.2ii Relationship Between Force and Charge During
Transmission

In this section, a relationship is developed between the
charge deposited on the transducer electrodes and the forces
created at each face. A general expression relating the
transforms of force and charge at any pOint x inside the
transducer was given in chapter Ill, equation 5, le
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Substituting for A and B yields,

- (J ) (L~). (J ) (L~)
F (S) + hQ (S) = SZ {. 1 e-s (x/VC) +. 2 . eS (x/VC) }
x C A A

therefore

therefore

This equation describes the general Laplace transform
relationship between the force or stress at any position x
within the transducer and the charge on the electrodes. In
the case of a piezoelectric transmitter, the interest is
primarily centred on the forces at the transdu~er front and~..rear faces. That is, at x = 0 and x = L respectively.

Using equation 1, the force generated at the transducer
front face can be obtained using the following transform
equation.

-6-
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= -hQ(S}{2A _ T + T R_e-ST + T R e-2ST _ TBe-ST}2A F B~~ F B

Noting that, TF = (1 + ~), TB = (I + RB).gives,

= -hQ(S){U _ ~) _ e-ST(l _ ~)
2A

= -hQ(S) ~ - ~) {Cl - e-ST) U - RBe-ST)}

(1 - ~RBe-2ST)

Consequently, an expression for the transform of the stress
wave generated at the front face is given by,

2

The force generated at the transducer rear face tK = L) can
be obtained in a similar manner. By substituting for x in
equation 1, the following expression is readily obtained.

= _-_hQ_(S_)_~_l_-_R..;.;;B_)(1 _ e-ST) (1_ ~e -ST) }

1 - ~RBe-2ST
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The Laplace transform of the stress wave generated at the
rear face of the transducer is thus given by,

FB (5) = -hQ (8) 3

Equations 2 and 3 are Laplace transforms of the waves of
force which radiate into the surrounding media when a piezo-
electric disc is electrically stimulated by a function of
charge whose Laplace transform is Q(8). Each equation is
effectively a transfer function relating output force to
the charge on the transducer electrodes.

At this stage, it would be extremely useful to consider the
physical implications of these two equations, since they are
of fundamental importance in the development of the trans-
mitting model.

When a quantity of charge is deposited on the transducer
electrodes, stresses are.set up at both front and rear
faces due to the inverse piezoelectric effect. These stresses
cause waves of force to propagate into the surrounding media,
as well as into the transducer material. The Laplace trans-
forms of these forces are given by,

Laplace transform of the
initial force generated
into the load medium

Z
= -hQ(S) 1

(Zc + Zl)
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Laplace transform of the
initial force generated
into the backing medium

Laplace transform of the
initial force generated
into the transducer at

hQ (S)Zc
= ---- = aT(S)

(Zc + Zl)

the front face

Laplace transform of the
initial force generated
into the transducer at
the rear face

Where hQ(S} corresponds to the Laplace transform of the
initial force generated at each face of the transducer due
to piezoelectric action.

The previous four expressions are indicated diagramatically
in figure 4.2a, where the notation is that of Redwood (37),

ie waves travelling into the transducer material are assumed
positive. These expressions have a direct analogy with the
division of voltage in a series resistive electrical circuit,
as shown in figure 4.2h. In the figure, V is the excitation
voltage analogous to the initial force, hQ. Vc and VI are
the voltages across resistances Zc and Zl respectively.
Consequently, Vc is analogous to the wave of force directed
into the transducer at the front face, and VI is analogous
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to that force directed away from the transducer.

5ince the internal quantities of force, aT and bT, rever-
berate back and forth within the transducer, it is possible
to verify equations 2 and 3 in a more fundame~tal, physically
meaningful manner by constructing the lattice diagram of
figure 4.3.

From the figure, substituting for aT and bT and noting that

it is possible to obtain the following 5-domain series for
stress waves leaving the transducer front face.

{
-u - ~) (1 + RB)Fl (5) = hQ (5) + (1 - ~) e-5T

2 . 2

u +~) -25T- Ra (1 - IT) ----- e
2
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- ~Ra(l + Ra)e-3ST +~Ra2(1 + ~)e-4ST ••••••}

01)

- (1 + RB)e-ST ~ (RpRB)n e-2nST}
n=O

Taking the sum to infinity for a geometric progression yields
the following transform of the stress wave leaving the front
face:

(1 R )e-ST
B }

(1 - ~) {(I
= -hQ (S)

2

~) { RB(l + Rp)e-2ST - (1 +----=-- 1 +
2 1 _ ~RBe-2ST

- e-ST) (1 - Rae-ST)}
1 - ITRBe-2ST

PI (S) = -hQ (S)

Consequently, a transformed expression for the waves of
force generated into the load medium is given by,

FI (S) = -hQ (S)

This is identical to the expression given by equation 2, ie
the lattice diagram has been used to corroborate the force/
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charge re1at1.onship. In an analogous manner, the series
corresponding to the stress waves leaving the rear face can
be obtained. From figure 4.3 we have,

-ST -ST
{(1 - e ) (1 - ~e ) }

1 - ~RBe-2ST
= -hQ (S)

therefore F2 (S) = - hQ (S)

This is identical in form to equation 3. Consequently, the
inverse Laplace transforms of equations 2 and 3 each represent
a time series of waves of force leaving the transducer front
and rear faces respectively. The time series is produced
by multiple reflections occurring inside the transducer as
the opposite faces displace under the stimulus of applied
charge.

Furthermore, in the previous chapter it was demonstrated
that KF(t) and KB(t) were time series describing the differ-
ence in displacement produced at opposite faces of the
crystal under conditions of external mechanical stress •. That
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is, with a mechanical wave incident on the front and rear
face respectively. However, in the present context, KF(t)
and ~tt} describe the stress behaviour at each face of the
transducer when the surfaces are simultaneously displaced
due to the inverse piezoelectric effect, ie by the appli-
cation of a function of charge to the electrodes. It should
thus be noted that, although the expressions in each case
are mathematically identical, they represent physically
different situations.

One additional relationship is required before a complete
model of the piezoelectric transmitter may be developed.
In the following section, a correspondence is presented
between the surface charge Laplace transform O(S) and the
transformed voltage across the transducer electrodes, V(S).

4.3 Relationship Between Voltage and Charge for the
Transmitting Mode

From equation 7, chapter' III, it may be written,

-------4

From equation 10, chapter III,

-h{~X=L - ~x=O}(S) = _h{A(e-ST - 1) + B(eST - 1)}
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Substituting for A and B yields,

1

(1 - e-ST) (1 - R e-ST)+ ~F _

(1 - R R e-2ST)F B

= -h2Q (S) { KF (S)

S tzc + Z1)

Substituting directly into equation 4 results in the follow-
ing expression for the transform of voltage across the trans-
ducer
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or,

5

Equation 5 describes the relationship (in the S-domain)
between the voltage measured across the transducer terminals
and the charge on the electrodes. It is worth noting that
the electrical impedance of the transducer is readily
obtained from this expression. Defining the electrical
operational impedance as:

= V(S) ,
SQ (S)

then

1=- {I -

This equation is extensively analysed in the next chapter
concerning device impedance characteristics.

Using equations 2, 3 and 5, it is now possible to obtain a
transfer function which relates the output wave of force to
the input excitation voltage.

~ GENERAL TRANSFER FUNCTION OF THE PIEZOELECTRIC
TRANSMITTER

The remainder of this chapter outlines the development of a
systems feedback model describing the piezoelectric trans-

107



mitter. The model, which can be readily adapted to suit
any type of electrical configuration, not only outlines
piezoelectric operation, but also affords a clear insight
into the interaction between electrical and mechanical parts
of the system.

In the present section a transfer function relating excita-
tion voltage to output force is developed. The transducer
is assumed to have an arbitrary electrical load, ZE' con-
nected across its terminals and it is driven from a non-
ideal voltage source, having an output impedance Zoe The
overall situation is outlined in figure 4.4, where IT{S) is
defined as the Laplace transform of current through the
transducer.

From the figure, a transfer function relating the transformed
input voltage to the transform of current through the trans-
ducer may be obtained from

= -------------------

where ZE' Zo and ZT are generally functions of S
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therefore

= a (S)
ZT (S) + b (S)

IT e.S)= a (S) e (S)
ZT e.5)+ b (s)

0(5) = a (5)e (5) 7S{ZT <.S)+ b (5)}
therefore

Expressions for the transformed force functions at the trans-
ducer front and rear faces are given by equations 2 and 3.

A
FB (5) = -hQ(S) ~ KB(5)2

where ~ Zl AB Z2
= -=,

2 Zc + Zl 2 Zc + Z2

Substituting from equation 7 for FF(5) yields the following
transfer function relating the transform of force generated
at the front face to the transform of the input voltage.

FF (5) -ha (5) [AF1~- = . - K (S)
e (S) S{ZT (.S) + b (S) } 2. F

Substituting from equation 6 for ZT yields,
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FFCS)
=

-ha (5) [; 1KF(5)
e (S)

[~ + ::)
Co51 h2

[~(5) :F :B]-- +KB (S)
SZC

letting

yields,

= -_h_a_<_S_)..\..:[:=-F....Jl_y_(_S_)_KF_CS_) _

[
TFTBJ~(S) ;- + KB(S) '2

8

1 - ~ yeS)
SZc

This equation is a general transfer function relating the
stress wave generated into the load medium to the input
voltage. In a similar manner, it can readily be shown that
the stress wave generated into the backing medium is related
to the input voltage by the following equation

FB{S)

e (S)

= -h_a_{_S_)...Io.[:_~2B...I1L-Y_(_S_)K_B_(_S_) _

1 - h
2

yeS) [KF{S) T2F + KB{S)
SZc

9

Equations 8 and 9 are in the form of feedback transfer
functions and as a result, the overall block diagram of
figure 4.5 may be constructed. The equivalence between the
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diagram and, for example, equation 8, may be readily veri-
fied as follows. From figure 4.5 we have:

E (S) = e (S) a (S) +p (S) + 0 (S)

TF hpes) = E(S)Y(S)hKF(S) -----
2 SZc

TB hO(S) = E(S)Y(S)hKB(S) -----
2 SZc

Substituting the last three equations into the first, and
removing E(S) gives

This is equivalent to equation 8, hence verifying the
validity of the block diagram. As in the case of the piezo-
electric receiver, it is now required to examine in detail
each component of the block diagram in order to obtain a
rigorous physical interpretation of the feedback model.
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4.5 PHYSICAL SIGNIFICANCE OF THE POSITIVE FEEDBACK
TRANSMISSION MODEL

Referring to figure 4.5, it is possible to move the block
ytS) from the forward loop and place it in the input and
feedback paths. This is analogous to the operation carried
out in the case of the piezoelectric receiver, where the
block TF was repositioned in an identical manner.

Consider firstly the input path, which is now represented
by,

Input path = a (S)Y (S)e (S)

a (S) Co
= ---...;:;__ e (S)

1 + b{S)SCo

1 [ a (S)=, 1= - e (S)
S 1 + b{S)SCo

Substituting for a and b.gives,

ZESCo

1 Zo + ZE e (S)
S ZoZE

1 + SCoZo + ZE

where ZE and Zo are in general functions of S
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e (S) 10

Now consider the electrical circuit shown in figure 4.6.
The transform of current through the capacitance Co' is
given by:

e (S)

This is almost identical to equation 10, except for the
factor lIS. However, it is known that the transformed
current I{S) through the capacitor is related to the charge
on the capacitor electrodes by the following expression,

where QC{S) is the transform of charge on the capacitor
plates. Equation 10, which represents the input path of
the block diagram is hence a transfer function relating the
charge on the plates of a capacitance Co' to the driving
voltage, e. Since Co is the bulk, static capacitance of
the transducer, the equivalent circuit shown in figure 4.6
does in fact, represent the electrical input of the model
as viewed from the driving source. However, it is important
to note at this stage that the input impedance of the trans-
ducer is not simply the impedance of the static capacitance
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Co' It will be demonstrated in a later section that the
input impedance characteristics are greatly modified by the
resonant nature of the transducer, in conjunction with the
effects of secondary piezoelectric action.

Now consider the significance of the block Y(S), which has
been repositioned in each feedback path.

[
SC ]Y(S) = 1 0

S 1 + b(S)SCo

S
111

= -
SCo

1 +

where ZE and Zo are generally function of S.

The term inside the square brackets is readily shown to be
the admittance of the electrical network outlined in figure
4.7.

In the figure, VF refers to the feedback voltage and IF
refers to the feedback current. However, in order to
physically justify these two terms, some of the remaining
parameters of figure 4.5 must first be explained.

Considering initially the forward loop; the input to the
block, h, consists of the charge transform 0c(S) as explained
previously. The parameter, h, is simply the piezoelectric
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conversion factor relating charge to stress and hence the
input to the blocks KF~) and KB(S) is one of force. This
is to be expected, since, as explained in Section 4.2ii,
KF(S) represents a transformed time series of waves of
force generated at the transducer front face. A fraction
of this force is transmitted into the load medium, that
fraction being given by AF/2, where

Also, a fraction of the force generated at the front face
is transmitted back into the transducer, this fraction
being given by TF/2, where

This force, which represents the force in the front face
feedback loop, is then transformed into a function of
particle displacement by the block l/SZC. The function of
particle displacement is in turn converted to one of volt-
age by the piezoelectric conversion factor, h, in the
feedback loop. This corresponds to the feedback voltage
VF which in turn gives rise to the feedback current IF as
indicated in figure 4.7. The current IF is related to a
feedback function of charge, OF' where in Laplace notation,

115



IF(S)
Q (S) = _..;;;__
F s

Consequently, the relationship between QF(S) and VF(S) is
given by the following equation,

= 1 YF(S) VF (S)S

where YF is the admittance of the equivalent electrical net-
work shown in figure 4.7.

It is now possible to construct a systems block diagram
which accurately describes the behaviour of a piezoelectric
transducer when operating in the transmitting mode. This
is shown in figure 4.8 which depicts a completely general
model of a lossless, piezoelectric transmitter. As in
the case of the piezoelectric receiver, the device is
shown as a three port network utilising the concept of
feedback to model secondary piezoelectric effects.

The individual elements of figure 4.8 may be summarised
as follows:

e Input excitation voltage

Y1 Operational admittance of the equivalent electrical
circuit at the transducer input
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h Conversion factor from charge to force or from
particle displacement to voltage

KF Time series describing front face stresses, the
front face reverberation factor

KB Time series describing rear face stresses, the
rear face reverberation factor

AF Fraction of front face stress transmitted into
2

the load medium

Aa Fraction of rear face stress transmitted into the
2

backing medium

TF Fraction of front face stress transmitted into
2

the transducer

Ta Fraction of rear face stress transmitted into
2

the transducer

Conversion factor from stress to particle dis-
placement

Feedback voltage in front face feedback loop.

Feedback voltage in rear face feedback loop

Operational electrical admittance in each feed-
back loop
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0c Charge generated on the transducer electrodes
by the driving voltage

OF Charge generated due to the front face feedback
loop

OB Charge generated due to the rear face feedback
loop •.

It may be clearly seen from figure 4.8 that the amount of
feedback is dependent on the following four principal
factors.

I As in the case of the receiving model, the amount
of feedback is again proportional to the square of the
electromechanical coupling coefficient. For example, both
feedback loops contain the term hlZc, which may be written
as follows,

Consequently, for transducer materials with low values of
K, such as quartz (ie where K is less than 0.2), the per-
centage feedback is relatively low. However, for some
ceramic materials, K is in the region of 0.5-0.7 and in
such instances a significant feedback contribution may
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arise. Similar observations have occurred in other trans-
ducer analyses, particularly those of Filipczynski (II ) and
Redwood (37). As explained in a previous chapter both of
these utilise the concept of negative capacitance in order
to explain what is effectively a feedback phenomenon. The
arguments as to whether or not this 'component' could
safely be neglected centred round the value of K. On an
intuitive basis, the effects of feedback can be modelled
by postulating a negative capacitance, since such a concept
would lead to exponentially increasing functions in the
time domain. Similar behaviour is to be expected in a
feedback system.

2 The amount of feedback is dependent on the load
and backing materials, since the stresses transmitted into
the transducer depend on the factors TF and TB. Consequently
the largest amount of feedback occurs when the transducer
is air loaded and air backed and the smallest amount
occurs when the device is ideally matched at both faces.
As a result, values of K are usually measured with the
transducer in the mechanically free state. The transducer
transmitting characteristics are thus highly dependent
on the external mechanical boundary conditions.

3 The amount of feedback is dependent on the elec-
trical characteristics of the driving source and also on
the characteristics of any external electrical load. Zero
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feedback occurs for both ZE and Zo equal to infinity,
rising to a maximum when both these components are them-
selves zero. Such effects can be of great importance when
assessing transducer operation and a further more complete
investigation of these is performed in later chapters.

4 The quantity of charge feedback to the transducer
electrodes decreases with frequency. At high frequencies
the device assumes the characteristics of the forward
paths in figure 4.8, with the transducer behaving elec-
trically like a simple capacitor. The frequency response
characteristics of both transmitter and receiver are dis-
cussed in a later chapter.

Before leaving the present section, some additional points
are worth noting.

Firstly, as in the case of the piezoelectric receiver, the
feedback alternates between positive and negative as the
functions KF and KB undergo phase reversal. Consequently,
the total charge on the transducer plates alternately
increases and decreases with each mechanical reflection.
As a result, the current through the device also fluctuates,
giving rise to a complex ~lectrical impedance characteristic.
The relationship between feedback and the transducer imped-
ance characteristic is presented in the next chapter.
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Secondly, for a practical piezoelectric transmitter, the
feedback loops must invariably be taken into consideration.
Secondary piezoelectric effects are in fact absent if both
ZE and Zo are infinite. However, such conditions result in
zero output from the device and are hence impractical.
Similarly a low value of K, while reducing the effects of
feedback, results in an inefficient transducer. This situ-
ation does not arise in the case of the piezoelectric
receiver where secondary effects disappear completely when
the transducer has no external electrical load.

Thirdly, as in the case of the piezoelectric receiver, an
inversion factor, -1, appears in'the block diagram. This
corresponds to the statement made in Appendix A, whereby
the resultant stress has a direction opposite to that of
the incident electrical field and vice versa. In the trans-
mitting mode, a positive stress generated at the trans-
ducer front face corresponds to a negative excitation volt-
age.

4.6 CONCLUDING REMARKS

A block diagram model of the piezoelectric transducer
acting as a generator of ultrasound has been developed.
The model is exact within the constraints of the initial
simplifying assumptions. It is wideband and valid under
arbitrary conditions of electrical and mechanical loading.
The physical significance of each element in the block
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diagram has been carefully developed in order to obtain a
clear and distinct relationship between electrical and
mechanical quantities. In addition, the factors which con-
trol secondary piezoelectric action are readily defined,
along with the importance of this effect on the overall
transfer function. It is considered that no other trans-
ducer model illustrates these concepts with the same degree
of clarity, either in transmission or reception. For
example, it has been demonstrated that no feedback effect
occurs for the receiving transducer under conditions of
electrical open circuit. This is not the case with the
efficient transmitter, since the generator output impedance
nearly always results in a degree of secondary piezoelectric
action.

In subsequent chapters, the influence of the various
elements contained in both transmitting and receiving block
diagrams ls investigated in detail. With the aid of com-
puter simulation graphs~. the major factors affecting trans-
ducer performance are demonstrated. Where possible, the
simulations are corroborated by experimental results.
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CHAPTER V

FEEDBACK REPRESENTATION OF

TRANSDUCER OPERATIONAL IMPEDANCE



5.1 INTRODUCTION

This chapter presents an analysis of transducer electrical
impedance under a wide variety of mechanical loading
conditions. A systems model is used to describe this
impedance, which is representative of the electrical
input impedance in the transmitting mode and the elec-
trical output impedance for the receiving mode. The
analysis is valid over all frequencies within the con-
straints of the initial simplifying assumptions outlined
in chapter 3, section 3.1.

For a fixed voltage input, the total current flowing
through the transducer is considered as the vector sum

-of two current quantities. Firstly, there is an
input current, arising directly from the applied voltage
source and secondly, there is a feedback current which
is generated by secondary piezoelectric action.
Although analyses of transducer electrical impedance
are widespread and hence well defined, it is believed
that by treating the problem in this manner, an extremely
valuable insight into the nature of the electrical
characteristics is provided. By careful analysis of
the individual blocks within the feedback model, complex
variations in the impedance characteristics are readily
explained and the physical processes which contribute
to such deviations are clearly isolated.

Consequently, analysis of the individual blocks within
the feedback system are carried out in considerable
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detail, with particular emphasis on those factors which
determine the total amount of current feedback.
Detailed investigation of such parameters as KF and KB
are also justified due to their involvement in subse-
quent chapters, where transmitter and receiver charac-
teristics are similarly analysed.

A number of computer simulations are presented and where
possible, the description of relevant characteristics is
performed by the systems feedback approach. A
Tektronix 4051 graphics terminal was used in conjunction
with appropriate software in order to generate the sim-
ulation diagrams. The program provides simulated
magnitude and phase characteristics for all, or sections
of the model over a wide range of frequency and mechanical
loading conditions. A complete BASIC listing of the
program is provided in Appendix (E). Unless otherwise
stated, nominal data used in the simulation is outlined
in table 5.1.

5.2 TRANSDUCER OPERATIONAL IMPEDANCE

An expression for the electrical impedance of the piezo-
electric transducer was derived in the previous chapter.
That is, a transfer function relating transducer voltage
to current and described by the following equation.

VT(s} 1 K~ (
6 !I:~2) 1= [ 1- ST :KF(s) c + :KB(s}IT(S) SCa 6c+61

= i§T(,S) (1)
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where,
~-.

VT is the voltage across the transducer element
IT is the current through the transducer element
i5T is the transducer electrical impedance.

The characteristics of this expression may be conveniently
evaluated by adopting a systems approach. A relation-
ship between voltage VT and current IT is outlined in
the feedback block diagram of figure 5.1. Although the
transfer function of this system describes electrical
admittance, the equivalence with equation 1may readily
be observed.: However, in order to appreciate the
physical implications of the operational transfer
function, it is more convenient to substitute for K2/T
and re-arrange the blocks to obtain the diagram outlined
in figure 5.2.

On application of a voltage VT, to the transducer elec-
trodes, a current I flows through the bulk capacitance
(Co), of the device. As described in the previous
chapter, two forces, ~F and FB, are produced a~ the
front and rear faces respectively. ..A fraction of each
force is transmitted into the load and backing media
and the remainder into the transducer. By means of
secondary piezoelectric action, these forces travelling
inside the device produce feedback currents IF and IB

1!
at the input summing point. Since the feedback is
shown as being positive, the resultant current through
the transducer is the sum of the input current through
the bulk capacitance and the feedback currents produced
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by front and rear face displacements. This process is
outlined in figure 5.2 where the various relationships
between force, particle displacement and current are
clearly defined.

Investigation of figures 5.1 and 5.2 reveals that the
electrical impedance of the lossless transducer is a
complex function whose behaviour is dependent on many
parameters. For example, it is apparent that no feed-
back effects may occur under the following operating
conditions:

i) When the electromechanical coupling factor is
'equal to zero. Although an absolute value of
zero for k is impossible in practice, in some
instances the value is so low that secondary
effects may be neglected.

ii) When the functions KF and KB are equal to zero.
This condition also implies that no force is

r generated, either into the transducer or
surrounding media. Since KF and KB are rever-
beration factors analogous to the behaviour of
a lossless transmission line, it is to be
expected that destructive interference may
occur at particular frequencies, resulting in
zero mechanical transmission.

iii) When the operating frequency is high. That is,
effects of secondary piezoelectric action dim-
inish with increasing frequency. This is to
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be expected,on the basis that particle dis-
placement is inversely proportional to the
frequency of an applied force.

iv) When the functions TF and TB are equal to
zero. This implies that both front and
rear faces are totally rigid, resulting in
no mechanical displacement. Such a situ-
ation is unlikely to be encountered in
practice.

It may also be observed, that for no secondary piezo-
electric action, the electrical behaviour of a transducer
element corresponds exactly to that of a pure capacitance.
FUrthermore, while conditions of zero feedback are gen-
erally impractical, these factors all combine to determine
the total amount of current feedback, and hence the
electrical impedance characteristics.

The nature of the transducer impedance under no loss
conditions has been subject to many analyses and as a
result, the overall behaviour is well defined. However,
in this context, it is considered that a systems feed-
back approach is by far the best technique for explan-
ation of this complex phenomenon. Consequently, the
following section involves a detailed explanation of the
electrical impedance characteristics, with particular
emphasis on the roles played by individual blocks within
the systems model.
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5.3 ANALVSIS OF ELECTRICAL IMPEDANCE

In order to evaluate the effects of secondary piezo-

electric action on the impedance characteristics,

consider firstly the specific case of a piezoelectric

resonator. That is, device operation in the mechanically

free state. Such a situation is approximated by an air

backed, air loaded transducer and is of importance in

the determination of some piezoelectric parameters.

S.3.i Impedance of the Loss1ess Piezoelectric
Resonator

For a mechanically free transducer, ~ and ~ are equal

to unity. Consequently, the expression for the trans-

form of electrical input impedance may be written as

follows.

STR(S) S~ [1
K2

(KFR(s) + ~R(s»)]= ST
0

where,

1 - -ST
KFR(s) KBR (s) e= =

1 + e-ST

The transformed resonator electrical impedance thus

becomes,

1 2K2 (1 -ST
iSTR(s) [ 1 - - e ) ]= SCo ST (1 + e-ST)

jw~ [
2K2 (1 -jwT

• iSTR(jw) 1 - - e )].. = jwT
0 (1 + e-JwT)

(2)

(3)
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= ~ [ 1 - K2 tan (wT72) ])WCo (wT 2)

Plotting impedance amplitude and phase as functions of
frequency yields the characteristics outlined in figures
s.3a and s.3b. The nominal transducer parameters used
in obtaining these curves are shown in table 5.1. A
close study of the figures reveals the following three
main aspects.

i) The phase angle of the impedance function is
always equal to ~ ~/2. That is, the impedance
of a lossless, piezoelectric resonator always
constitutes a pure reactance.

ii) The amplitude function contains impedance
maxima which occur at odd multiples of a
particular frequency. This frequency,
denoted by f2' is defined as the anit-
resonant frequency, or the mechanical
resonant frequency of the transducer.

iii) The amplitude function also contains impedance
minima, which are not related by simple mult-
iples of a fundamental frequency. For the
lossless resonator, these correspond to points
of zero impedance, with the first minimum
occurring at the transducer resonant frequency,
denoted by fl. This is sometimes referred
to as the electrical resonant frequency and
is invariably lower than the frequency of
mechanical resonance.
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It should be noted that this theory applies only to an
ideal, lossless resonator which behaves as a pure
reactance and the characteristic frequencies fl and f2
are well defined. In practice, mechanical and elec-
trical dissipation present in real materials obscures
the definition of these frequencies. For example, in
a lossy resonator there are generally three frequencies
of interest near the impedance maximum and three
frequencies near the impedance minimum. These corres-
pond to the frequency of max/min absolute impedance,
the frequency of max/min resistance and the frequency
of max/min reactance. They are extensively used in
the determination of transducer parameters such as
coupling coefficient and mechanical quality factor (/17).

However, for the purpose of the present analysis it is
sufficient to consider a loss-free transducer.

In order to appreciate the nature of the impedance
characteristics, consider the admittance block diagram
of figure 5.4. The resonator impedance is thus given
by the following Laplace equation.

HRls) = (1 - A.r(s»/SCo (4)

where

Arr(s) 2K2 (1 - e-ST)
= ST (1 + e-ST)

T 1= 2f2

f2 is the frequency of mechanical resonance •
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And,

A.r (jw) =
(1 - e-jwT)

(1 + e-jwT)

.
•• A.r(w) =

2K2wT tan (wT/2}

A.rrepresents the total amount of current feedback and
is henceforth defined as the feedback factor. Figures
5.5a and 5.5b depict the amplitude and phase character-
istics of ~, as functions of frequency. In order to
understand their significance, consider the behaviour of
the resonator reverberation factor, which is the same for
each face and is given by,

=
(1 - e-ST)
(1 + e-ST)

The amplitude and phase characteristics of this function
are shown in figures 5.6a and 5.6b. The value of KR is
infinite when,

-STe = - 1

or,

wT = mlf m = 1,3,5 •••

For m equal to unity,

f = 1
2'r

This corresponds to the frequency of mechanical resonance,
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and at odd multiples of this frequency, the r~verberation
factor is infinite.

The value of KR is equal to zero when,

-ST 1e = or,

wT = (m-1)n m = 1,3,5 • • •

For m= 3,

f 1= T

This corresponds to twice the frequency of mechanical
resonance. Consequently, the reverberation factor is
equal to zero at even multiples of the mechanical
resonance. The amplitude behaviour of the lossless
resonator reverberation factor may readily be observed
from figure 5.6a.

Phase characteristics of the reverberation factor are
outlined in figure 5.6b, from which it is apparent that
the phase is always ~ n/2 radians.
readily apparent from,

This fact is

-~
(1 _ e-jwT)
(1 + e-jwT) = = j tan (wT/2)

It is now possible to consider the behaviour of the
feedback function, ~. However, before doing so, it

•should be noted that the behaviour of KR is somewhat
analogous to that associated with a 10ssless open
circuit transmission line. That is, conditions of
maximum constructive interference (maximum amplitude)
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and condit~ons of maximum destructive interference (zero
amplitude) occur at odd and even multiples of the mech-
anical resonance respectively.

From figure S.Sa, it may be observed that the magnitude
of the feedback function is a maximum at odd multiples
of the mechanical resonance, while for even multiples the
magnitude is zero. That is, at frequencies of 2f2,
4f2 etc., there is no feedback, while at f2, 3f2 •••,
there occurs maximum current feedback. This is to be
expected from the behaviour of the reverberation factor.
However, due to the liS multiplier in the feedback
function, the magnitude at ~ has a finite value at
low frequencies, and also demonstrates a general decrease
with increasing frequency, although this may not be
readily apparent at positions of impedance maxima in
figure S.Sa.

Figure S.Sb indicates that the phase of the feedback
factor changes by n radians at regular multiples of the
mechanical resonant frequency. Again this is to be
expected, since the liS multiplier corresponds to a
constant phase shift of - n/2 radians. When added to
the phase shift of KR in figure S.6b, the result shown
in figure S.Sb is obtained. It is important to note
that in terms of the feedback model, a phase shift of n
-radians in the feedback factor corresponds to a reversal
in the type of feedback from positive to negative and
vice versa.

From equation 4, the impedance of the transducer is

133



equal to zero when ~ is real and equal to unity.
that ~ is always real for the lossless resonator).
That is, when:

(Note

wT2K2 = tan (wT/2) or,

xKT = tan (X) (5)

where X =~fT.

This equation has been used by ?noe et al (~~ in order to
determine the fundamental and overtone electrical resonant
frequencies for different values of coupling coefficient.
From this equation it is readily observed that the fund-
amental and overtone frequencies of electrical resonance
are not related as simple integer multiples as in the
case of mechanical resonance. This fact is verified
by figures 5.3a,b and 5.5a,b; where it may be observed
that the frequencies of electrical and mechanical
resonance come closer together with increasing frequency.
The reason for this will be shortly evident, in that
electrical resonance is a feedback effect, which of
course decreases with frequency.

It is now possible to study the resonator impedance
characteristics with specific reference to the feedback
model. In order to simplify the process, consider two
separate frequency ranges, separated by the frequency
of electrical resonance, fl.
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I. Impedance Characteristics Below Resonance

i.e. 0 ~ f < fl

With reference to figure 5.Sa and S.Sb, the amplitude of
the feedback function in this frequency range is less
than unity and the corresponding phase shift is zero.
Under these conditions, the feedback is positive in
nature and for a fixed input voltage, total current
through the transducer increases. Consequently, the
effective electrical impedance is lower than that
expected from the reactance of the static capacitance:
This effect may readily be observed from figure S.3a,
where the amplitude of the impedance function steadily
decreases with frequency, eventually becoming zero at
the electrical resonance, fl. At this particular
frequency, the feedback factor is equal to unity.
With reference to figure 5.3b, the phase angle of the
impedance function within this frequency range remains
constant at - ~/2 radians. Consequently, the resonator
impedance characteristics over the frequency range
o ~ f < fl are essentially those of a pure capacitance,
modified by the effects of positive feedback.

Due to these secondary piezoelectric effects, the effect-
ive low frequency capacitance is larger than the static
capacitance; which is measured under mechanically
,clamped conditions, when no feedback is possible.
There are thus two capacitances associated with the
piezoelectric transducer, which may be defined as
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follows.

a. The free capacitance, denoted by CT. This
capacitance is measured for the piezoelectric
resonator operating under low frequency con-
ditions, usually in the region of 1 kHz.

b. The static capacitance, denoted by Co. This
is the actual bulk capacitance of the trans-
ducer material and is not modified by piezo-
electric action. As a result, it is smaller
in value than CT.

At this stage, it is interesting to verify a unique
relationship between the electromechanical coupling
coefficient K, and the two transducer capacitances.
Consider the feedback function, expressed in terms of
frequency

~
2Kz tan (wT/2)= WT

KZ tan (X)= X

•
~

KZ sin (X)
• • = X (X)cos

For X very small,

sin X + X
cos X + 1

~ = KZ

where. X = rrfT

That is, for very low values of frequency, the total
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amount of secondary feedback is given by the square of...
the electromechanical coupling coefficient. ·The
relationship between currents of the summary point in
figure 5.4 may now be written as follows.

I (s) = K2 I(s) + V(s) sCo

Assuming V is held constant, the transform of I may be
written as,

I(s) = S Q(s)

and at low frequencies,

Q(s) =

••• t(s) =

This yields,

=

CT - C
• K2 0 (6)•• = CT -"-.This well known relationship would appear to present an
ideal method of obtaining the value of K from known
values of CT and ·Co• However, there are practical
difficulties associated with accurate measurement of
the transducer capacitances. The dielectric constant

It.

corresponding to Co is ideally measured with both
surfaces of the transducer rigidly clamped; which is
extremely difficult because of the great stiffness of
transducer materials. One method of overcoming this
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problem is to measure the capacitance under high frequency
conditions. That is, above all elastic resonances and
their major harrnonics,when inertia effectively blocks
out the piezoelectric effect.

However, due to the imperfect nature of all dielectric
~materials, interfacial polarisation (uneven charge

distribution) results in the effective dielectric con-
stant having a certain degree of frequency dependence,
which is independent of any piezoelectric action. For
example, using quoted figures for PZT 5-A (59), the
dielectric constants increase by 2.4% per decade over
the frequency range I Hz to I kHz. For frequencies
greater than I kHz and less than 20 MHz, the dielectric
constants decrease by 2.4% per decade of frequency.
Consequently, in order to minimise such errors, CT and
Co should ideally be measured at the same frequency.

Yet another technique, mentioned by various authors
such as Miller (31) and Kasai (11), recommends that the
static capacitance be measured at a frequency corres-
ponding to twice the mechanical resonance. At this
frequency, the feedback factor is zero, and hence no
feedback may occur. Although this method is theoret-
ically sound, it does not consider the presence of
other, unwanted modes corrupting the results •. As will
be evident at a later stage, the conditions under which
this method is viable have to be very accurately defined.
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II. Impedance Characteristics Above the Resonant
Frequency

Once again referring to figure S.Sa, it is evident that
the feedback factor increases in magnitude with frequency,
eventually becoming greater than unity and reaching a
maximum value at the mechanical resonance. For values
of ~ greater than unity, the resonator impedance is
negative, corresponding to a phase change of n radians.
This occurs after the frequency of electrical resonance
and may readily be observed from figure S.3b. As
the input voltage is assumed constant, the current phase
has changed by n radians, effectively leading to a
reversal in the type of feedback, from positive to
negative.

Consequently, total current flowing through the trans-
ducer decreases, resulting in an effective increase in
impedance. This process increases with frequency until
the pOint of mechanical resonance is reached. At this
frequency, the phase of the feedback factor undergoes
a phase change of -n radians, which may be seen from
figure S.Sb. (As shown-in figure S.3b, the overall
phase of the resonator impedance also changes by -IT

radians). In consequence, the type of feedback once
again undergoes reversal, from negative to positive,
giving rise to an increase in current through the trans-
ducer. The effective impedance of the resonator thus
starts to fall, as shown in figure S.3a.

At a frequency equal to twice the mechanical resonance,
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the magnitude of the feedback factor is equal to zero,
and at this frequency the transducer behaves electrically
as a capacitance of value Co. By increasing frequency
still further, the transducer impedance magnitude con-
tinues to fall until the first overtone of electrical
resonance is reached, corresponding to the second root
of equation 5. However, in this case the separation
between e1ectrica1md mechanical resonant frequencies
is not so great. This is not surprising, since the
phenomenon of e1ectrlca1 resonance is a positive feed-
back effect and the total amount of current feedback
tends to decrease with frequency. For example, consider
figure 5.5a, where the fundamental electrical resonant
frequency occurs at fl. At this paint, the magnitude
of the feedback factor is equal to unity. The first
overtone of electrical resonance occurs at the frequency
denoted by f11' where the magnitude of ~ is again
unity. However, since the amount of feedback has been
reduced by increasing frequency, fl1 is relatively
higher, and hence closer to its associated mechanical
resonance, than fl. As· frequency continues to increase,
the difference between electrical and mechanical reson-
ances becomes smaller, until eventually they cannot be
distinguished. At this point, no secondary piezo-
electric action takes place, and the transducer impedance
corresponds to that of the static capacitance, Co.
This reduction in the amount of positive feedback at
higher frequencies may also be readily observed from
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the resonator phase characteristics of figure S.3b.

Additional Points of Interest•

As stated previously, the overall behaviour of the trans-
ducer impedance function is that of a pure capacitance,
modified by the effects of positive feedback. Figure
5.7 shows a comparison between the impedance magnitudes
of a pure capacitance equal to the static capacitance,
Co' and the transducer impedance magnitude. As expected,
the curves intersect of frequencies corresponding to
even multiples of the mechanical resonance. The effects
of feedback are clearly demonstrated.

It should also be noted that the electrical impedance
is purely capacitance if K is equal to zero. As indic-
ated earlier, the amount of feedback, and hence the
relationship between electrical and mechanical resonances,
depends on the value of coupling coefficient. Figure
5.8 shows the impedance magnitude characteristics for
three different values of K, corresponding to KZ = 0.75,
0.5 and 0.25. Once again it maybe observed that the
frequencies of electrical and mechanical resonance
approach equality under conditions of minimum feedback.
That is, at the lowest value of coupling coefficient.

At this stage it is worth noting an additional point
which is given greater emphasis'in chapter 7. Electrical
resonance corresponds to a condition of maximum current
flow through the transducer. Since this condition
infers maximum charge on the transducer electrodes, it
is reasonable to expect that a maximum stress is generated
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at this frequency. This is corroberated by an analysis
of the piezoelectric transmitter and explains why in
many instances, maximum stress output does not coincide
with the frequency of mechanical resonance,. Consequently,
any factors which affect the position of electrical
resonance, must also determine the frequency of maximum
stress output from the transducer.

As stated in section 5.2, the amount of feedback also
depends upon the front and rear face loading conditions,
with maximum current feedback occurring for the mechan-
ically free resonator. This is to be expected, since,
for the resonator all mechanical energy is reflected
back into the device, resulting in maximum secondary
piezoelectric action. Furthermore, it must be
emphasised that the present analysis corresponds only
to the ideal transducer. Internal dissipation also
affects the amount of feedback as well as the mechanical
resonance characteristics. Aspects of transducer
losses are dealt with in chapters 6 and 9. The next
section describes the transducer iwpedance character-
istics when the device is loaded mechanically at each
face.

5.3.1i Electrical Impedance of the Mechanically
Loaded Transducer

When a transducer is mechanically loaded by materials
possessing real acoustic impedances, the impedance
characteristics are defined by equation 1. For the
general situation, the transfer function cannot be
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described by a single feedback loop and hence the. .-
complete admittance block diagrams of figures.S:_l and
5.2 must be used. The analysis is correspondingly
more complex than in the case of a mechanically free
transducer, or resonator.

With reference to figure 5.1, it may be observed that
the transfer function consists of two feedback factors,
corresponding to the front and rear faces of the trans-
ducer. The total amount of feedback, which is the
sum of the front and rear face feedback factors, is
thus given by the following Laplace equation.

A.r(s) =

Where KF and KB are the front and rear face reverberation
factors respectively.

In order to appreciate the nature of the loaded trans-
ducer characteristics, it is necessary first of all to
study the behaviour of this function under different
conditions of mechanical load. Three separat~ config-

-~
urations are considered, corresponding to the following
physical situations.

• The transducer is equally loaded at both faces by
water. Since the acoustic impedance of water is 1.4
kg/m2 s, this situation corresponds to light m~chanical
loading, or light damping.

• The transducer is assumed to be loaded at the
rear face by a material having an acoustic impedance

143



equal to one half of the transducer acoustic impedance.
This condition is henceforth referred to as, 'fifty
percent matched backing'. The transducer is loaded
at the front face by crown glass. Since the acoustic
impedance of crown glass is 14.1 kg/m2-s, this solution
corresponds to medium mechanical loading, or medium
damping.

• The transducer is assumed to be loaded at the rear
face by a material whose acoustic impeaance is equal to
that of the transducer. That is, a condition known
as 'matched backing'. The device is loaded at the
front face by crown glass. This situation corresponds
to heavy mechanical loading, or heavy damping.

Consider firstly the frequency response characteristics
of the reverberation factors KF and KB and KB, as these
yield considerable insight into the behaviour of the
overall feedback factor, and hence impedance. As a
result of their symmetry, it is sufficient to analyse
only one, in this case KF•

=
-jWT -jwT(1- e . ) (1 - RB e )

(1 _ Rp ~ e-j2WT)

As in the case of the mechanically free transducer,
this function is equal to zero when,

wT = (m-l)7f, m = 1,3,5 •••

This situation occurs at even multiples of the mechan-
ical resonance and is the same as the case for the
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resonator. -jWT)Note that the term (1 - ~ e may never
equal zero as the reflection coefficient is always less
than unity. In a similar manner, the amplitude of KF
is never infinite, as was the case of the mechanically
free transducer. For example, this condition is only
reached when,

~ ~ e-2jwT = 1

•.. cos 2 wT = 1

As the product ~ ~ is always less than unity for the
loaded transducer, the condition may never be realised
and hence the amplitude of the reverberation factor is
always finite. It should be noted also, that in practice
the resonator reverberation factor is never infinite due
to internal mechanical dissipation within the transducer.

Amplitude-frequency characteristics of KF are shown in
figure S.9a, corresponding to the three different con-
ditions of mechanical load. In each case, the magnitude
reaches maximum and minimum values at odd and even
multiples of the mechanical resonance respectively.
The amplitude function also decreases with increasing
mechanical load. That is, with increasing damping.
This is to be expected, since more energy is effectively
being transferred to the surrounding media.

Figure 5.9b depicts the phase characteristics of KF
under the same three conditions of mechanical load.
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Unlike the resonator, the loaded phase function is no
longer either ± n/2 radians, but varies between + ~/2
and - ~/2 in a periodic manner over the frequency range.
In consequence, a reverberation factor for the loaded
transducer is no longer purely imaginary, but contains
real components, the relative magnitudes of which increase
with mechanical damping. This is clearly outlined in
figure 5.9b, where the function is purely real at odd multiples
of the mechanical resonance. This relative increase
in real parts with damping may also be anticipated, since
the effective dissipation increases with increasing
loss to the surrounding media.

It is now possible to evaluate the significance of the
total current feedback factor for a mechanically loaded
transducer. This may be expressed in the frequency
domain by the following equation:

A.r (jw) =

(7)

The magnitude and phase of A.r are shown as functions of
frequency in figures 5.10a and 5.10b respectively. The
three cases of mechanical damping described previously
were again considered. From figure 5.10a, it may be
observed that the total amount of current feedback
varies with the following parameters.

The total amount of feedback decreases with
increasing mechanical load. This effect is in
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sympathy with the behaviour of the reverberation factors
which also exhibit a decrease with increasing mechanical
damping.

• Under conditions of light mechanical load, the
total amount of current feedback is a maximum at odd
multiples of the mechanical resonance. This effect
may again be reconciled with the behaviour of the
reverberation factors. However, as damping 'is increased,
the distinct maxima demonstrate a significant decrease,
eventually disappearing altogether. For conditions of
heavy damping, the maximum amount of feedback occurs .
at lower frequencies, where it is limited by the square
of the coupling coefficient. This effect is a combin-
ation of the reverberation factor characteristics and

1the jw multiplier in the feedback factor.

• The total amount of current feedback decreases
with increasing frequency. This is similar to the
behaviour of the mechanically free transducer.

It is interesting to note that like the piezoelectric
resonator, the amount of.feedback at low frequencies is
equal to K2 and is independent of mechanical load.
Although not readily apparent from equation 7, the
validity of this statement may be demonstrated as
follows.

From equation 7, and letting wT = P
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A.r (jw) =
K2 (l-cosp+jsinP) x

jP(1-~~cos2P+j~~sin2p)

K2
= jp' (l-cosP+JsinP) x

l+IT:' l+~
[ (l-~cosp+j~sinP) (~)+(l-~cosp+j~sinp) (-;r-) ]

1-~Racos2p+~Rasin2p+j2~RasinpcosP

For w very small,

sin P + P
cos P + 1

•..

In the.limit, as P + 0

=
K2 2(1-~~)
2(1-~~)

Consequently, it maybe concluded that as frequency tends
to zero, the total amount of current feedback tends
towards a limiting value of K2 and is hence independent
of mechanical load. Equation 6, which related K to the
transducer capacitances, is thus valid under general
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conditions.

Figure S.IOb outlines the phase of the total feedback
factor under the sarne three conditions of mechanical
loading. The form of these characteristics may
readily be appreciated by noting that the ~ multiplierJW
contained in ~ corresponds to a phase shift of - n/2
radians. Consequently, by adding - n/2 to the phase
characteristics of each reverberation factor, the over-
all phase of the feedback factor is obtained. As in
the case of the piezoelectric resonator, this phase
characteristic effectively determines the nature of the
feedback. That is, whether the currents at the summing
point of the feedback model sum in a constructive or
destructive manner.

From figure S.IOb it may be observed that for low values
of frequency and mechanical damping, the feedback factor
is almost totally real with small imaginiary parts.
However, as frequency increases up to the vicinity of
mechanical resonance, stronger imaginary components
emerge. Furthermore, as the amoun t of damping increases,
the feedback factor becomes increasingly complex, the
phase eventually varying almost linearly between 0 and
- n over the frequency intervals 0 to 2fl, 2fl to 4fl
etc. As shall be demonstrated, the increasingly com-

.
plex nature of the feedback factor has a significant
effect on the overall impedance function.

It is now possible to consider the transducer impedance
characteristics shown in figures S.lla and S.llb, which
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describe the magnitude and phase characteristics res-
pectively. In a manner similar to that for the
resonator, the loaded transducer impedance may be
represented by the following Laplace equation

= 1
SCo

The admittance transfer function is also represented by
the block diagram of figure 5.4. However, unlike the
resonator, the feedback factor for the loaded transducer
is not purely real, but instead becomes more complex
with increased mechanical damping. As a result, the

'~~~'.feedback current is rarely in phase (completely positive)
or anti phase (completely negative) with respect to the
input current. This effect, which increases with
mechanical load, tends to obscure the well defined
impedance maxima and minima which were obtained for the
mechanically free transducer.

The electrical impedance is a minimum when, for frequ-
encies below mechanical resonance,

11 - A.r(jw}I is a minimum

For the loaded transducer, A.ris nearly always complex,
the degree of which depends on mechanical damping.
As a result, the behaviour of this function never tends
to zero at a particular frequency, as in the case of
the resonator. Instead, an impedance minimum is
evident, the extent and position of which depends on
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the amount of mechanical load. This may be seen from
figure S.lla, where the extent and position of the.
impedance minima for light and medium damping are
clearly different. As damping increases, the impedance
minimum disappears altogether, as the transducer elec-
trical behaviour starts to resemble that of a capacitance.
This may also be observed from figure S.llb, where the
impedance phase angle tends towards - rr/2radians as
damping is increased. In addition, as in the case of
the resonator, there is no feedback at even multiples
of the mechanical resonance, and the impedance corres-
ponds to that of theclam?edcapacitance, C •

. 0

In order to appreciate some of these effects, consider
the water backed and water loaded transducer, a situ-
ation which corresponds to light mechanical damping.
At low frequencies, the feedback factor is real and
possesses a magnitude equal to K2. The feedback
current is thus in phase with the input current and
hence the impedance falls, behaving electrically like
the capacitance CT. With increasing frequency, the
feedback factor becomes complex and starts to increase
in magnitude. Consequently, the feedback current
becomes increasingly anti phase with respect to the
input current, giving rise to the first impedance
minimum as shown in figure S.lla. This degree of
phase shift further increases with frequency, resulting
in an increase in impedance which reaches a maximum
at the mechanical resonance. At this point, the
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feedback is almost entirely negative, and hence as the
magnitude of the feedback factor falls, the resultant
decrease in negative feedback corresponds to an increase
in total current through the transducer, causing the
impedance to fall.

The same process occurs for increased damping, except
that the magnitude of the feedback factor is reduced and
the phase is aiways complex. (Except at.zero frequency).
As a result, the impedance maximum and minimum are less
well defined, eventually decreasing altogther. In
addition, like the resonator the amount of feedback
decreases with frequency, with the result that any
impedance fluctuations around odd multiples of mechan-
ical resonance disappear. A similar effect is observed
with the impedance phase characterisitcs, which even-
tually approach those of a pure capacitance for con-
ditions of high frequency and/or heavy damping.

It is interesting to consider the transducer impedance
under conditions of maximum damping. That is, when
the device is backed and.loaded bya material possessing
the same acoustic impedance as the transducer. For
this condition the impedance transform is given by,

=

In this case, the impedance approximates to that of a
capacitance, which at low frequencies tends towards
the free capacitance eT' and at higher frequencies
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behaves like the damped transducer capacitance Co.
For example,

= 1 [K2 ]~C I - J'wT (l-coswT+jsinwT)JW 0

For higher frequencies,

= 1
jwCo

which is the impedance of the damped capacitance.

While for low frequencies,

ST (jw) = 1
jwCo

And from equation six,

=
1

S CT

which is the impedance of the free capacitance.

These effects are clearly demonstrated in figure 5.12a,
where the impedance magnitude characteristic of a
heavily damped transducer is compared against the
impedance behaviour of the two capacitances. It is
interesting to note that the impedance approximates
to the clamped capacitance at very much lower frequencies~

than for the mechanically free transducer; close
correlation being obtained for frequencies above the
mechanical resonance. This is even more pronounced
for transducers of lower electromechanical coupling
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coeffiflent, due to the corresponding reduction in feed-
back. The effects of decreasing K are demonstrated
in figure 5.12b where it may be readily observed that
the impedance more closely approximates the clamped
capacitance Co.

5.3.iii Impedance Characteristics Under Conditions
of Rigid or Semi Rigid Loading

In order to complete the section ori transducer electrical
impedance, it is worthwhile to consider the situation
where the transducer is loaded at one or both faces by
a material possessing a higher acoustic impedance than
that of the transducer. For example, the term 'rigid
loading' applied to either face implies that the trans-
ducer is loaded at that face by a material whose elastic
stiffness is so high, that the particular face of the
transducer is incapable of mechanical displacement.
Since piezoelectric devices have high coefficients of
stiffness, such a condition is impossible to achieve
in practice. In addition, although some loading
materials have higher acoustic impedances than the

. .
transducer material, a coupling medium (often water
based) is invariably inserted between the device and
the load surface. As a result, the physical situations
described in this section are rarely encountered in
practice, and consequently only the major effects are
presented. The following conditions are described.

• The rigidly backed and rigidly loaded transducer •

For this highly theoretical case,
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TF and TB are zero and hence no secondary piezoelectric
action may occur. The impedance is thus that of the
clam)edcapacitance, Co.

• The rigidly backed, air loaded transducer •

In this case,

0, = 1, = -1

The transducer feedback factor is thus given by,

= 1 -2sT
K2 [ - e ]
ST 1 + e-2sT

.•• A.r(w) =
K2wT tan(wT)

This is similar to the feedback factor obtained when the
transducer is mechanically free, except that wT/2 has
been replaced by wT. Consequently, theimpedanoemagni-
tude exhibits maxima at,

f =
fl

(2m+l) T ' . m = 0,1,2,3 •••

Zero magnitude is expected when the following trans-
cidental equation is satisfied.

tan (wT) = wT
KT

This equation behaves in a similar manner to that for
the piezoelectric resonator. That is, the impedance
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amplitude is zero at frequencies which are close to,
but less than, the frequencies of maximum impedance.
For the same reasons as before, the separation of
impedance maxima and minima decreases with increasing
frequency.

The amplitude and phase characteristics appropriate to
this condition are shown in figures S.l3a and S.l3b
respectively. The form of these characteristics may
be explained in an identical manner to that adopted for
the piezoelectric resonator, except that fl is replaced
by fl/2 in the analysis of the relevant feedback and
reverberation factors.

It is interesting to note the analogy between rever-
beration factor behaviour and that of a lossless trans-
mission line. For example, in the mechanically free
transducer, reflection coefficients are equal to unity;
that is, no phase change on reflection. This situation
is analogous to the behaviour of a lossless open circuit
transmission line. On the other hand, for the rigidly
damped transducer, reflection coefficients are equal
to - 1; a situation which corresponds to the lossless
transmission line on electrical short circuit.

• Miscellaneous loading and backing configurations •

Figures 5.14a and S.l4b show the transducer magnitude
and phase characteristics for the following conditions
of mechanical damping.

The rigidly backed transducer operating dlrectlylnto
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a glass load (medium damping). . ---~
....The air backed transducer operating into a steel load

of acoustic impedance 47 Kg/m2-s. This is mechanically
stiffer than the piezoelectric material, which is
assumed to have a nominal acoustic impedance of 33.712
Kg/m2 s. (medium damping).

The transducer with 50% matched backing and operating
into a steel load (heavy damping).

From the figures it may be observed that the impedance
characteristics demonstrate the expected maxima and
minima under conditions of lighter mechanical damping.
It should be noted that in this context, light damping
implies that the magnitudes of the reflection coeffic-
ienhs are close to unity, hence maximising the effects
of feedback.

The frequencies of minimum and maximum impedance for
the two cases of medium damping are different, being
governed by the mechanical loading conditions. For
miscellaneous loading of the type discussed he~e, it is..

_ • .-<;

difficult to'generalise on.rche positions of impedance
fluctuation~. However, it is possible to conclude that
as the stiffness of the surrounding media decreases,
the frequencies of maximum and minimum impedance tend
to increase, although for an accurate indication,

.1f

individual cases should be treated separately.··

In these examples, the highest amount of mechanical
damping occurs during the situation of 50% matched
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ba~king and operation into a simulated steel load. As
may be expected, the impedance characteristics start to
resemble those of a capacitor although in this case the
overall damping is not heavy enough for such an effective
approximation.

5.4 Concluding Remarks

This chapter has demonstrated how a systems feedback
approach may be adopted in order to describe operational
impedance of a piezoelectric transducer. In the
analysis, complex electro-mechanical phenomena which
contribute to the impedance characteristics have been
clearly identified over a wide range of external oper-
ating conditions. From the study, it is considered
that the feedback model is superior to other, dynamic
analogies in identifying and explaining the following
aspects of transducer impedance.

(i) The phenomenon of electrical resonance is
clearly shown to be a feedback effect and
is due exclusively to secondary piezo-
electric action.

(ii) The position and extent of impedance maxima
and minima depend on external mechanical
loading conditions as well as frequency
and coupling coefficient •.

The low frequency feedback factor, i.e.(iii)
the relative amount of secondary piezo-
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electric action; depends only on the
coupling coefficient. This is valid
under all conditions of mechanical load,
apart from the rigidly clam~edsituation,,

where no mechanical displacement is
possible. At very high frequencies,
for example ten times mechanical resonance,
secondary effects disappear.
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CHAPTER VI

SIMULATION AND RESULTS PART I



6{.1. INTRODUCTION

This chapter describes the simulation and experimental
verification of a transducer voltage transfer function.
The voltage transfer function is defined as the ratio of the
measured voltage across the transducer terminals and the
input source voltage.

Consider a transducer operating in the transmitting mode
while subject to arbitrary conditions of electrical
loading. This situation is described extensively in
Appendix C, but for convenience the configuration is
outlined in Figure 6.1.

From this figure, the Laplace Transform of the voltage
transfer function may be expressed as follows.

Vo( s)

e (s)

ZT(s)ZE(s) ( 1)=
Zo(s)ZT(S)+Zo(S)ZE(s)+ZT(s)ZE(S)

Where,
ZT is the electrical impedance of the transducer.
Zo and ZE are the electrical impedances corresponding to
the voltage generator and external load respectively.
The possible variations in these parameters are described
in Appendix C. ZO may comprise a resistive, capacitive
or inductive element (or the series combination of all
three) while ZE may comprise the para~lel combination of
resistive and inductive loading elements.
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Although the voltage transfer function is a relatively
uncommon characteristic in transducer measurement
studies, it provides considerable insight into many
aspects of device performancei particularly for
the transmission mode. For example, it will be
demonstrated that the measured voltage response
may be used to provide a clear indication of mechanical
loading effects, and in some instances, important
piezoelectric parameters. The technique is also .
considered to offer the following additional advantages.

(i) Experimental verification of the voltage response
may be performed in both time and frequency domains
with relative ease. As a result, a wide range of
electrical source and loading conditions may be
conveniently investigated. It is thus possible to
verify simulation studies without recourse to more
complex measurement techniques necessary for the
transmission and reception modes.

(ii) It is possible for some transducer parameters, such
as static capacitance, to vary considerably from
the manufacturer's quoted figures. For example it
is shown in Appendix D that this quantity may
deviate by as much as 20% from its nominal value.
By measuring the voltage response, variations in
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device parameters are readily observed and
steps may be taken to compensate for
incorrect values.

(iii) The transducer model assumes loss free, single
mode wave propagation within the device.
However, in practice there is a finite loss
coupled with radial mode disturbances. A
study of the voltage response provides a
clear indication of both these effects and as
a result limitations of the model are readily
observed. For example, internal losses are
expected to have greatest influence on device
operation under conditions of light damping,
when most of the wave energy is reflected back
into the transducer. Radial mode vibrations
are expected to become more dominant as the
diameter to thickness ratio decreases,
eventually corrupting thickness mode resonances.
By studying the nature of these effects, a
range of operating conditions for the model
may thus be clearly defined.

In addition, the voltage response technique
permits relatively straightforward verification
of the transducer impedance characteristics
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discussed in Chapter 5. Consequently,
it is considered appropriate at this stage
to evaluate voltage response, and in the
following chapter, present a more
conventional investigation based on
transducer transmission and reception.
Two sets of simulations are performed,
corresponding to CW and transient operation
in both frequency and time domains.

6.2 CW OPERATION

This section investigates the transfer function
described by equation 1, in the frequency domain.
The voltage generator is assumed to be a continuous
wave source possessing an output impedance which is
real and equal to 50 n. Addi tional electrical
components may be added either in parallel or in
series with the trans~ucer, depending on the
particular application. This mode of operation and
the various electrical loading configurations are
fully described in appendices Band C.

A computer program describing transfer function behaviour
in the frequency domain was developed in order to
perform the simulations. The program is designed to
cover all possible configurations of electrical
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and mechanical loading and a complete BASIC listing
is provided in Appendix E.

6.2i General Simulation Results

Before describing the experimental techniques and
particular simulation studies it is worthwhile
to briefly review the results of Chapter 5. This
is done by considering the voltage transfer function
under 'the same conditions of light, medium and
heavy damping. That is, the transducer is subject
to the following loading conditions:

Water Backed and Water Loaded (light damping)
50% Matched Backing and Glass load (medium damping)
Ideal Backing and Glass load (heavy damping)

Consequently, the voltage transfer function frequency
response characteristics are expected to demonstrate
marked fluctuations at electrical and mecharii,al..resonance: for conditions of light damping.--As
the mechanical load increases, these fluctuations
are expected to decrease, as the transducer impedance
eventually tends towards that of its cLamped capaci tance.

Figure 6.2a shows the frequency response of t~e
voltage transfer function for two values of source
resistance, corresponding to 50~and 470 $).. (The
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nominal transducer parameters of Table 5.1 are
used in this and the subsequent two simulation
diagrams.) In this figure the transducer is
lightly dam?ed, and hence fluctuations caused by
the transducer impedance function are clearly
evident. Increasing source resistance produces the
expected attentuation in the transfer characteristic,
although feedback effects still dominate due to the
light loading.

Figure 6.2b shows the effects of increasing damping
for a source resistance of son. Fluctuations in
the transfer characteristic are reduced because of
the diminished secondary action. Under conditions
of heavy damping the transducer impedance tends
towards that of the static capacitance, at all but
the lowest of frequencies.

-~
Figure 6.20 outlines the effect of introducing an
inductance in series with the transducer, under the
three conditions of mechanical load. The source
resistance is So~ and the value of inductance is 20~H.
This valttewas selected in order to produce a tuned
resonant frequency of lMHZ (the transducer mlchanical
resonance) with the static capacity Co. That is,

165



1
f =

21TJ£,.0 Co

From table 5.1, Co = 1.26lnF
and for Lo = 20~H,
f = o. 999MHZ.

For conditions of light 'damping, the effects of
feedback dominate the response, but as a result of
tuned resonance, the peak output is substantially
increased. As mechanical clamping is increased,
the transducer impedance approaches a pure capacitive
reactance. Consequently the transfer characteristics
are dominated by the Lo-Co combination, which
approaches that of a low pass filter.

The three simulation examples were selected in order
to outline some general features of the voltage

-transfer function in the frequency domain. In.._-
subsequent sections, particular transducer devices
are tested and experimental results compared with
their corresponding computer simulations. Transducer
parameter variations, unwanted vibrational modes and
the effects of internal loss are investigat~ under
different conditions of mechanical and electiical
loading.
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6.2ii CW Experimental Techniques

The experimental method for determining the voltage
transfer function is outlined in figure 6.3, which
depicts a transducer operating under mechancially
free conditions.

A Dymar VHF (low distortion) signal generator was
employed as the voltage source. The output impedance
of the instrument is 50~ and when checked over the
frequency range 0 to 10MHZ, was found to deviate by
±20 from this value. Consequently, the output
impedance was assumed to be SOS'tthroughout the
experimental period. Frequency measurements were
performed using a Tektronix 7015 225 MHZ Universal
Counter and voltage measurements by means of a
Hewlett Packard 3400 rms voltmeter. The latter
instrument possesses an input impedance and bandwidth

l'..of 10M.Sl:and lOMHZ, respectively. The transducer -was
mounted in a special holder, designed to permit
flexibility when changing devices and allow additional
electrical components to be added with relative ease.
All connecting leads were kept as short as possible.

lE

The output voltage from the generator was adjusted to
200mV with the terminals open circuit i.e. no
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transducer in the system. This voltage, denoted by
Vo-c was maintained constant throughout the
experiments. After inserting a transducer, frequency
was slowly increased and the voltage across the
device monitored on the rms voltmeter. This
voltage is denoted by Vo and hence the voltage transfer
function for the system shown in figure 6.3 may be .
expressed as follows. (From Equation 1)

=Vo ZT Where ZT is expressed in ohms
Voc 50 + ZT

This magnitude was plotted as a function of frequency
over the range 100KHZ to 10MHZ.

Four different transducers were tested. The transducer
was Lead Zirconate Titanate (PZT5A) and the devices
possessed electrical resonant frequencies of 0.5, 1, 2
and 5MHZ. Where possible, the physical dimensions
and parameters of each transducer were carefully
checked. Full details on each transducer and the
individual measurements are described in Appendix o.
All transducer data is provided in Tables 01 and 02t

contained in this appendix.

168



Tests were initially conducted with each transducer
in the mechanically free state. This situation
of air backing and air loading corresponds to the
resonator condition described in Chapter S. Because
of the electrical conductivity of water, this medium
was not used to simulate conditions of light damping.
Instead, transformer oil was employed. This material
has an acoustic impedance similar to that of water
(1.27Kg/m-s (Ensminger (q» and is electrically non-
conductive. In section 6.2iii a commercially
available ultrasonic probe was used to demonstrate
the effects of increased mechanical load. For later
sections of the work, different backing materials
were employed and a technique for measuring the
acoustic impedances is described in section 6.3iii.

In addition, electrical loading conditions were also
varied. This included varying source resistance and
the incorporation of inductive matching elements,
both in series and in parallel with the transducer.
These components were easily attached to the transducer
holder by simply inserting them in appropriate sockets.
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6.2iii Results and Simulations

Graphs of transfer function magnitude versus frequency
are presented for each ·case. The graphs were drawn
by inserting data on a cassette tape and then using
the 4051 graphics terminal to plot the results. For
convenience, simulated response characteristics are
shown on the same graph.

a) Mechanically Free Transducer Response

Consider firstly the response of a mechanically free
transducer possessing the nominal electrical resonant
frequency of 2MHZ. The device has a diameter/
thickness ratio of 21.16 and a mechanical resonance
corresponding to 2.3MHZ. The theoretical value
(provided by the manufacturer) of static capacitance
is 2.4nF and this was used in the simulation diagram.
Other relevant parameters are provided in Appendix D,
tables D1 and D2.

Experimental and simulated transfer function responses
are shown in figure 6.4a. It may be observed that the
frequency of electrical resonance is slightly greater than
2MHZ. However, as described in Appendix D, each
transducer has a 7% tolerance variation in electrical
resonant frequency. The electrical resonance in this

170



case is within the tolerance range. In addition,
the simulated plots were calculated from a basis
of the mechanical resonant frequency, which
defines the transit time, T. Transit time was
calculated by dividing transducer thickness by the
longitudinal wave velocity. Although thickness
of each transducer was carefully measured, published
values of velocity shown in Appendix D were used.
Consequently, any variation in this quantity has a
corresponding effect on transit time, and hence
electrical and mechanical resonant frequencies.

From figure 6.4a, the following differences are
evident between the practical and theoretical
characteristics.

1. Radial mode vibrational effects may be readily
observed at lower frequencies by the additional
oscillations in the experimental transfer
characteristic. They are caused by impedance
fluctuations in the transducer as the diameter
of the disc expands and contracts. These effects
are clearly evident for frequencies up to the
mechanical resonance (maximum transducer impedance)
after which they tend to decay, having almost
disappeared at twice mechanical resonance. Radial
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mode effects tend to obscure both frequencies
of maximum and minimum transducer impedance,
making exact measurement of these quanti~ies
extremely difficult.

2. Effects of internal dissipation within the
transducer are also evident. This may be observed
from the fact that the experimental transfer
characteristic is neither zero nor unity at the
electrical and mechanical resonant frequencies
respectively. The impedance maxima also decrease
with frequency, as indicated by a qrop in the
peak magnitude of the experimental graph at
the first overtone of mechanical resonance. It
may be noted that the effects of internal
dissipation on the transducer impedance characteristic
are similar to those described in chapter 5, when
losses occur due to light mechanical loading. In
fact Martin and Sigelman (n), in an attempt to
include internal dissipation in their Thevenin Model,
postulated a 'loading factor' on the transducer face.
The acoustic impedance of the loading factor was
selected to produce closest agreement between
theoretical and practical measurements on transducer
impedance.
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The factors which contribute to transducer loss
are complex functions, involving many parameters.
For example, absorption of the mechanical wave
occurs, resulting in attenuation in the
piezoelectric material. This is generally
frequency dependent, the amount of attenuation
increasing with frequency. However, published
data (Kossof (18» on piezoceramic materials of
the type considered here indicates that such
mechanical dissipation is extremely small when
compared to the total loss encountered when the
transducer is mechanically loaded, even under
conditions of light damping. Nevertheless, some
transducer materials, notably Lead Metaniobate (Silk(44»
exhibit considerable attentuation and in such cases
internal loss may not be neglected.

Another source of loss was revealed by Ma~tln (26)
and Hilke (K) who indicated that the piezOelectric
parameter h is also frequency dependent, causing

~ the electromechanical coupling factor to decrease
with frequency. This serves to reduce secondary
piezoelectric action even further at higher•frequencies. However, it should be noted that very
little published data on the frequency dependence
of h is available for the transducer types under
consideration.

-~-
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3. ·Figure 6.4a also indicates that the experimental
characteristic is generally of higher amplitude
than the theoretical curve. That is, the
theoretical value of transducer impedance is low,
caused by too high a value of static capacitance.
Consequently, the static capacitance was measured
at twice the mechanical resonant frequency, where
no piezoelectric action is assumed to take place.
The method of measurement is fully described in
Appendix D.

Some authors, for example Kikuchi ('~' recommend
this technique for measuring static capacitance.
However, as shall be demonstrated, it is only
valid for those situations where radial mode
vibrations do not corrupt the results. That is,
for those transducers possessing a sufficiently
high diameter to thickness ratio. In the case of
the 2MHZ crystal no radial modes are evident
at twice mechanical resonance (4.6MHZ) and the
measured value of static capacitance was_found
to be 1.87nF.

Figure 6.4b compares experimental and simulated
responses for the new value of static capacitance.
Apart from internal loss and radial mode effects,
the two characteristics are in very close agreement.
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Figure 6.4c shows the characteristics for a
4MHZ transducer which has a diameter/thickness
ratio of 43.7. The static capacitance of this
device was also measured at twice mechanical
resonance and was found to be 3.77nF compared with
its theoretical value of 4.88nF. The measured
value was used in the simulation plot and again
the characteristics are observed to be in good
agreement. It should be noted that in this case,
radial mode effects do not obscure the frequencies
of minimum and maximum impedance.

Figures 6.4d and 6.4e compare experimental and
theoretical characteristics for 1HHZ and O.SMHZ
transducers respectively. The diameter/thickness
ratios are 10.7 and 5.33 respectively and all
other relevant parameters are outlined in Appendix
D. From the figures, the following point~ may be
noted.

1. Measurement of static capacitance at twice
mechanical resonance is extremely difficult due
to radial mode effects occurring in the vicinity

1t
of this frequency. Even at four times mechanical
resonance, radial modes are still evident, making
accurate measurement almost impossible. In these
instances, an estimate of static capacitance was

-,- .
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made on the basis of a 'closest fit' between
experimental and theoretical curves. For the
lMHZ transducer, static capacitance was assumed
to be l.OSnF (theoretical value of l.22nF) while
for the O.SMHZ transducer a value of O.S7nF
(theoretical,value O.6lnF) was obtained. The
estimated values were used in the simulation
curves.

2. Differences between the two sets of overtone
frequencies are observed to increase with frequency.
This is caused partly by experimental inaccuracy,
but is considered largely due to error in
calculating the frequencies of mechanical resonance
as described earlier. These two transducers are
thicker than the 2MHZ and 4MHZ devices and hence
any error in measuring transit time is compounded
in the case of the lower frequency transducers.
However, since the overtone frequencies are largely
damped out, it was not considered worthwhile to
repeat the experiment for different values of
mechanical resonance.
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·b. Transducer Response Under Conditions of Mechanical
Damping.

As stated earlier, the transducers are assumed
loaded at both faces by transformer oil. The
theoretical and simulated response characteristics
corresponding to 1, 2 and 4MHZ transducers are shown
in figures 6.5a, 6.5b and 6.5c respectively. From
the graphs, the following main features emerge:

1. Radial and thickness mode impedance fluctuations
are reduced by the increased mechanical damping.
This may readily be verified by comparing the
respective characteristics with those for the
mechanically free transducers. Such behaviour
is expected (for thickness mode resonances)
from the transducer impedance characteristics
discussed in Chapter 5.

2. The effects of internal loss are much less significant
and for all three cases, excellent agreement is
obtained between simulated and experimental results.
However, in the case of the ll1HZ transducer, the
overtone frequencies of electrical and mechanical
resonance are not in complete agreement, primarily
because of slight .measurement error in the value
of mechanical resonance.
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Nevertheless, within the limits of experimental
accuracy, the characteristics are in very close
agreement. It may thus be concluded that for
this type of transducer material, the effects of
internal dissipation are negligible under finite
conditions of mechanical load.

To complete the present section, figure 6.5d shows
the measured response for a commercially available
!MHZ probe which is loaded at both faces by (unknown)
solid materials. For such conditions of damping,
transducer impedance fluctuations are expected to
diminish and this is reflected in the characteristic
shown in the figure. It should be noted that no
corresponding simulation characteristic is outlined,
due to the difficulty in obtaining values for the
acoustic impedances of the loading media. However,
the main features of increased damping are readily
demonstrated.

c. Transducer Response Under Varying Conditions of
Electrical Load

In this set of examples, a 2MHZ mechanically free
transducer was tested under three different conditions
of electrical load. That is, a resistive element in
parallel with the transducer, an inductive element in
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parallel with the transducer and an inductive
element in series with the transducer.

Figure 6.6a demonstrates the attentuation introduced
to the transfer characteristic when a resistor of IOOQ
is connected across the device. The experimental and
simulated results are shown to be in excellent
agreement.

Figure 6.6b shows the transfer characteristics when
a 2.2~H inductor is connected across the transducer
electrodes. This value of inductance resonates with
the transducer free capacitance (CT = 4.35nF) at
approximately 1.6MHZ and with the clamped capacitance
at approximately 2.SMHZ. At these frequencies, the
transfer characteristic is expected to attain a
maximum value of unity. Although this may readily
be observed from the figure, secondary piezoelectric..
effects still dominate the response. Comparing_this figure
with figure 6.4b reveals that two impedance maxima are
now evident on either side of the fundamental electrical
resonance. The inductor has also served to increase
slightly the position of the first mechanical resonance.
Furthermore at low frequencies and hence smal~ values
of inductive reactance, the effects of radial mode
vibrations have been extensively damped out. This
feature of radial mode damping under light electrical
load conditions is further emphasised in sect~on 6.3.
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Figure 6.6c shows the response when a lOpH inductor
is connected in series with the transducer. This
resonates with the transducer free and clamped
capacitances atO.76 and l.l6MHZ respectively. Once
again secondary'effects are observed to dominate
the response although the amplitude of the transfer
characteristic has been increased by the series-
resonance of the inductance and the transducer
capacitance. In this case radial mode vibration
has not been suppressed, possibly because of the
higher electrical loading. Excellent agreement is
again obtained between the practical and theoretical
characteristics.

6.3 TRANSIENT OPERATION

This section investigates the behaviour of the
voltage response under transient conditions. That
is, the transducer is assumed to be driven by;the..._-
application of a negative going step or ramp function to
a b1.ock~ng:capacitor. A complete description of
this mode of operation is described in Appendix C
which includes an analysis of the transmitting
circuitry under a variety of electrical load ~onditions.
Circuit configurations appropriate to transient
operation are shown in Appendix C, figures Cl and C2.
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From these figures, equation 1 may be expressed
as follows,

Vo(s) = ZT(s) ZE(s)

e (s) Zo(s) [ZT(s) + ZE(S)]+ ZT(s) ZE(s)

where,

Zo(s) = Ro + 1

seB

ZE (s) = RE I ILE

Ro is the on resistance of the pulser or electronic
switch.

CB is the blocking capacitor.

RE and LE are additional electrical loading elements
which may be connected across the transducer.

In addition, if the pulser is a fast switching MOSFET
as described in Appendix e, the measured voltage
across the transducer electrodes may be expressed by
the following transform equation.

1 ZT(s) ZE(s)
Vo(s) = 1(RO + seB) (ZT(s)+ZE(s» + ZT(s)ZE(s)s
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This quantity was evaluated in both time and frequency
domains, for a vareity of electrical and mechanical
load'conditions. Frequency response was obtained by
substituting jw for s and plotting the magnitude of
the output voltage as a function of frequency. Time
domain response was obtained by evaluating the real
and imaginary parts of equation 2, and after
appropriate frequency sampling, performing an Inverse
Fast Fourier Transform (IFFT). A complete listing and
description of the software is provided in Appendix E.

6.3i General Simulation Results

As in the previous section, it is worthwhile to consider
the results of some general simulation studies before
commencing on experimental investigation. In these
examples, a transducer with a resistive load is
considered, since this is an extremely common transmitting-configuration. An outline of the system is sbown in-_ ..",

figure 6.7.

This configuration is employed in many pulse excitation
systems in order to approximate an impulse of voltage
•
across the transducer. The pu1ser is assumed ideal,

J!
delivering a negative going step input to the,.b1ocking
capacitor. Unless otherwise stated, the nominal
transducer characteristics of Table 5.1. were used
in the simulations.
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FTequency spectra of the output voltage corresponding
to three values of load resistance are shown in
figure 6.8a. The transducer has a mechanical resonance
of !MHZ and is subject to conditions of light damping
(water backed and water loaded).

For small values of load resistance (IOn) the resultant
spectrum is clearly wideband, although as expected, the
amplitude is very low. This behaviour may be predicted,
since the time constant CoRE is extremely small compared
with the transducer transit time (12ns cf SOOns).
Consequently, the measured voltage approximates closely
to an impulse function, although small fluctuations
induced by secondary piezoelectric effects may be
observed.

Increasing load resistance to lOOn reduces the overall
bandwidth and the effects of feedback are more clearly
visible. For a load resistance of lkA , the spectrum
is essentially narrowband, with the transducer impedance
characteristics a dominant factor. It is evident that
the value of load resistance must be kept small to
obtain a wideband voltage response from this system.
This was also observed by Brown and Weight (3) who
proposed simple R-C shaping circuits in order to
increase bandwidth. However, bandwidth may be varied
by inserting a suitable value of inductance in parallel
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with the load resistor. This is demonstrated in
figure 6.8b, where a considerable change in the
frequency response is observed. It should be noted
however, that the spectrum still tends to be dominated
by the effects of secondary action.

Voltage response in the time domain is shown in
figure 6.9a, for the water loaded, water backed
transducer with a resistive load of lOOfi connected
across the electrodes. In this case, distoration
imposed by secondary piezoelectric action is very evident.
Apart from the first transit interval (O.Sus), the
exponential rise associated with a pulsed R-C system
is barely recognisable. However, the reduction in
secondary action through increased damping is readily seen
from figure 6.9b which corresponds to a transducer with
50% matched backing and operating into a glass load
(medium damping). However some secondary action is
still evident as the pulse shape does not form a perfect
exponential. This is because of the increase in transducer
capacitance towards the end of the decay period. That is,
at the low frequency end of the spectrum.

considerable insight into the nature of the time response
may be obtained by reducing the time domain to one transit
interval of the transducer. Over this time interval,
the reverberation factors associated with the transducer
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i~pedance are unity, hence permitting considerable
simplification of the voltage transfer function.

Consider the special case of a transducer free of
any electrical loading and driven from a pu1ser/
generator via a coupling capacitor CB. The voltage
source is assumed to possess zero output impedance
and deliver an ideal, negative going step input to
the coupling capacitor. As described in Appendix C,
some FET switching devices approximate very closely
this condition. The circuit configuration is shown
in 6.10 and hence the voltage transfer function may
now be expressed as follows.

Vo(s)
e (s)

= ZT (s) where,
Zo(s) + ZT(s)

ZT (s) K2 (KF(S)TF + KB (S)!~))/SCo= (1 - -ST 2

Zo (s) = l/SCB

e(s) = -u where u is the amplitude of the step- ,s input.
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·Over one transit interval, KF and KB are unity and

hence the transducer impedance becomes,

ZT (s) = (1 _ ~ (TF + ~B»/sco
ST 2 ~ o~t<T

= (s-a)/s2Co

where a = K2 [TF + TB]
2T

Consequently, the transfer function may be expressed

as follows,

Vo(s) = CB • (s-a)
e (s) Co+CB

= Kl (s-a)
s-K1a

s - CB a
Co + CB

Where Kl = CB/(Co+CB) •

The Laplace Transform of the output voltage is thus

given by,

Vo(s) = -Kl(s-a)u
s(s-K1a)

This may be expanded by partial fractions to give,

Vo(s) = lil-l + (l-Kd,
\S s-K1a)
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~ ...

The response in the time domain is obtained by
inverse transforming this expression.

o~t<T

substituting for Kl and a gives,

Vo(t)
u

= -1 + Co • exp r CB .!:.(TF+TB)tlCo+CB ~O+CB 2 ~ ----3

This function is plotted in figure 6.11, for a water
loaded, water backed transducer. Three nominal
values of transducer capacitance are shown, corresponding
to CB/2, CB and 2CB. Otherwise, the transducer parameters
of Table 5.1 were used in the graphs. (Unit step input)

At t=o, there is an initial jump in voltage which is
given by the ratio C~!CB' which is to be expe~ted in any..
capacitive divider system. A steady exponentiaY rise
then occurs, determined by the term in square brackets
in equation 3. This expression describes secondary
piezoelectric action, which is shown to depend on the
following quantities.
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~. As expected, secondary action depends on
mechanical load, becoming a maximum under light
loading conditions. For example,

TF = 2Zc
Zc+Z1

, TB = 2Zc
Zc+Z2

These quantities tend towards their maximum
value when Zl and Z2 are small i.e. conditions of
light damping. This is may be predicted, on the
basis of the discussion in Chapter 5.

2. The amount of secondary action increases with
coupling coefficient. This is also to be expected
from analyses performed in previous chapters.

3. Secondary action is dependent on the electrical
loading conditions; increasing as the electrical
load impedance decreases. This result is not
apparent from the investigation of Chapter 5,
although in both transmitter and receiver analyses,
the amount of feedback was observed to increase
as the external load impedance decreased.

Consequently, secondary action is maximised when
K, CB, TF and TB are large.
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It is interesting to note the form of equation 3
under mechanically free conditions. That is,
when TF and TB are unity. The output voltage may
be expressed as follows.

Vc = -1 + Co . exp ~K2CB . tiT] o~t<T
Co+CB is:O+CB-u

For t just less than the transit interval, the
measured voltage becomes,

Vo = -1 + Co exp r2K2CB]
u Co+CB ~O+CB

K = [C~~~B In(C~~CB(l+~o)]1/2

= [\!(l{~) In((lIg~X1I~Or2
This provides a method of measuring electromechanical
coupling coefficient for the'thickness mode transducer,
providing the static capacitance of the transducer
is accurately known. In a similar manner, equation 3
may be manipulated to provide information on the
acoustic impedance of external loading media, provided
that Co and K are accurately known. Application of
these equations to practical measurement are discussed
extensively in the following results section.
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6.3ii Experimental Techniques

A schematic diagram of the apparatus used in
determining the transient response is shown in
figure 6.12.

A complete circuit diagram of the electronic pulser
is provided in Appendix C; figure C4. The switching
device used was an International Rectifier IRF830.
switching mosfet. This device has an on' resistance
of 1.35n and a turn on time of less than 30ns. The input
(U), comprised a negative s~ep function of voltage which could
be varied between lv and 500v via a Brandenburg D.C.
power supply. Pulse repetition frequency was adjusted
to approximately 50 pulses per second by means of a
Hewlett-Packard pulse· generator. A Tektronix 7000
series storage oscilloscope was used to display the
voltage waveforms appearing across the transd~cer..electrodes. It should be noted that after firing, the
pulser was maintained in a conducting state for 50~s.
However, provision was made to adjust this period
from lOOns to 50~s, although the feature was not
necessary for the present set of experiments •

•
. .The same set of four transducers employed in section 6.2

were again tested. That is, the devices possessed
electrical resonant frequencies of 0.5, 1, 2 and 4MHZ.

-.....
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However, the majority of experiments were performed
on the lMHZ transducer since this device, with a
low diameter to thickness ratio of 10.9, should
provide an excellent indication of the model
limitations with respect to pure thickness mode wave
propagation.

In this section, all experimental results and simulation
diagrams are shown in the time domain: although
frequency response may readily be investigated by
replacing the oscilloscope with a spectrum analyser.

6.3iii Results and Simulations

Figure 6.l3a compares the theoretical and simulated response
characteristics for the lMHZ transducer. A resistor of
l20~ was connected across the transducer electrodes
and a step input of 50v applied to the 100pf blocking
capacitor. The transducer was immersed in an oil bath
in order to provide conditions of light mechanical damping.
It is readily apparent that both figures are in extremely
close agreement, even after several transducer transit
intervals. No radial mode effects are apparent,
despite the relatively small diameter/thickness ratio
(10.92). This would appear to substantiate observations
made in section 6.2, that radial mode.vibrational effects
are considerably diminished under conditions of low
impedance electrical loading.
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Figure 6.l3b compares the response characteristics
for the same configuration, except that the blocking
capacitor has been increased to 2.2nF. Once again
the theoretical and experimental curves are in very
close agreement. The increase in secondary action
due to the increased voltage across the transducer
becomes apparent when the voltage scales in figures
6.l3a and 6.l3b are compared. No radial mode effects
are again apparent in the latter figure.

Figure 6.l3c shows the response of a commercially
available, !MHZ probe louded at each face by solid
media. The blocking capacitor was lOOpf and a SOv
step input was applied to the network. A resistor
of l20n was connected across the transducer electrodes.
The effects of increased damping become readily
apparent when figures 6.l3a and 6.l3c are compared.
The extra mechanical loading has considerably reduced
secondary piezoelectric action; which has almost
disappeared after a few transit intervals. In fact,
the behaviour indicated in figure 6.l3c resembles that
shown in figure 6.9b; although the damping is probably
less in the former figure.

Figure 6.l4a compares the theoretical and experimental
response characteristics when a 4.7~H inductance is
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connected in parallel with a 120 St resistance across
the LMHZ transducer. In this case a SOv step input
was applied to a blocking capacitor of 2.2nF. The
transducer assembly was immersed in an oil bath to
provide conditions of light damping. Again it may
be readily observed that the two curves are in extremely
close agreement, and no radial modes are apparent.

It is interesting to note the distortion of the
wave shape due to secondary action in this latter
figure. Figure 6.14b compares the transient response
of the configuration with and without feedback. That
is, K = 0.486 and K = 0 respectively. For K = 0, the
transducer impedance is that of a pure capacitance,
of value equal to Co. Consequently, the smooth
decaying oscillatory waveform shown in figure 6.14b
is achieved. (A full description of this type of
waveform is presented in Appendix C). However, for
K =0.486, considerable distortion is introduced,
resulting in a longer decay time and different frequency
of oscillation.

Figure 6.15 shows the transient responses corresponding
to the LMHZ and 4MHZ transducers. Each devic~ is
mechanically free and no resistive or inductive
elements areconnected across the electrodes. In both
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photographs the waveforms demonstrate a slow rise
over which is superimposed an almost triangular
wave pattern. The slow rise is caused by radial
mode oscillation and this is particularly evident
in the lMHZ transducer, which has a much lower
diameter/thickness ratio. It is interesting to note
the influence of radial mode vibration under such
conditions of high impedance electrical loading.

After application of the initial voltage step, both
waveshapes show an exponential rise until the peak
of the first triangle is reached. This corresponds
to one transit interval, as described in section 6.3ii.
The measured voltage at this point is denoted by VO and
this is related to the coupling coefficient by equation
4 i.e.

K = rCO+CB
[ 2CB

1
1n( CO~~B ( l~VO ))] /2 ..

"where U~is the
amplitude of the
applied step function
of voltage.

Consequently, if Co, CB, Vo and u are accurately known,

= r~(lICB) in (lICB) (lIVO»)~1/2l Co Co u . 'J

then the thickness mode coupling coefficient may be
".

evaluated.

. ...
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T?is was done for each transducer in turn by applying
a step input of voltage to the blocking capacitor.
It should be noted that CB must not be too large,
or the measured secondary response becomes very
small and is difficult to determine. This is readily
observed from equation 3 where,

Va -1 If CB»Co
u

i.e. the voltage induced by secondary action is
completely damped out.

Consequently a blocking capacitance of 100pf was selected
in each case. ~he value of capacitance was checked on
a Wayne-Kerr Bridge in order to minimise experimental
and measurement error. The following results were
obtained.

a. 4MHZ transducer (see figure 6.15).
u = 150V
CB = 100pf
Co = 3.7723nF

Gives,
K = 0.484.

Va = -2.lv (measured from the oscilloscope trace)

Diam/thickness = 43.7:1.
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b. 2MHZ transducer.

u = sOv
Co = 1.87nF
Vo =-1.4v

Gives,
K = 0.483.

Diam/thickness = 21.16.

c. lMHZ Transducer (see figure 6.15)

u = SOv
Co = 1.OSnF
Vo =-2.42v

Gives,
K = 0.4876.

Diam/thickness = 10.7

d. O.SMHZ Transducer

u = SOv
Co = 0.S7nF
Vo =-4.22v

Diam/thickness = 5.33

Gives,
K = 0.496

These values are in very close agreement with the
theoretical value of thickness mode coupling coefficient
of 0.486. Even at the lowest diameter/thickness ratio,
the percentage error is only 2%. Conventional
measurement techniques (~) involve measuring the
frequencies of electrical and mechanical resonance. This
is extremely difficult for those transducers which possess
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diameter/thickness ratios of less than 20. As
demonstrated in Section 6.2iii, radial mode vibrations
make accurate determination of the resonance
frequencies extremely difficult due to multiple
oscillations around these points. Although radial
mode effects may be readily observed using the
transient response technique, their effect over the
first transit interval is very slight, hence allowing
accurate measurements to be made over the entire
transducer range.

This technique is very straightforward and easy to
use, requiring only a fast, gate controlled electronic
switch of low on resistance, a known value of blocking
capacitance and an oscilloscope. However, the value
of transducer static capacitance must also be accurately
known and if possible, measured, as described in
section 6.2iii.

It is also possible to predict acoustic impedance
values by means of this technique. For example, the
following expression which relates mechanical
quantities to measured voltage may be obtained from
equation 3.
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'l;'F+ TB ____ 5

.. z, + = Co+CB
CBK2

Co+CB
Co

= x say,

Consequently, if K, Co, Vo and Z, are accurately known,
then it is possible to estimate Zl or Z2. For example,
consider a transducer backed by a material of unknown
acoustic impedance and loaded at the opposite face by
air or a vacuum i.e.

Z, is the acoustic impedance of
the transducer material

Z2 = (2-x)Z,/(x-l) 6

.,.

To test the theory, it was decided to measure the acoustic
impedance of a lead based compound which is used..
commercially as a transducer backing material~ This
substance (Devcon L) consists of lead (94%) and a
plasticiser (6%). When mixed with suitable quantities
of hardner, the material solidifies in a time which is
proportional to the amount of hardning agent used in the

1!

process.
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A transducer of electrical resonant frequency equal
to ll1HZ was selected. The static capacitance was
carefully measured and as described in section 6.2ii
found to be 1.16nF. Figure 6.16 shows the transducer
assembly after backing with the lead based compound.

The following data was used in the experiment:

u = SOv
CB = 100pf

2Z. = 33.712 kg/m -s

This produced a measured voltage of -2.4v,across the
transducer electrodes. substituting these values
into equations Sand 6 produced the following value for
the acoustic impedance of the backing material.

6 2

Z2 = 9.11 x 10 kg/m -s

Figure 6.17 compares the experimental and theoretical
voltages across the backed transducer, when a resistive
load of lOOn is connected in parallel with the device.
The small resistive load damps out radial mode
oscillations, permitting the study of thickness mode
behaviour over several transit intervals. Once again,
a SOy step input was applied to a blocking capacitor
of 100pf. From the figure it may be observed that the
two characteristics are in very close agreement, hence
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corroborating the accuracy of the acoustic impedance
measurement. Damping introduced by the backing
material is readily s~en from the increased decay of
secondary piezoelectric action.

Although more experimental verification may be
necessary, the transient technique appears extremely
promising for the measurement of thickness mode
coupling coefficient and acoustic impedance. Other
authors such as Steutzer (~~)and Kasai (11) have also
reported on the use of transient response methods for
determining piezoelectric properties.

In the analysis of Steutzer, in step function of charge
was deposited on the transducer electrodes by means of
a mechanical switch and a charged capacitor of very
small value. The capacitor value had to be small in
order to present a high reactance, thus isolating the
transducer arrangement from associated supply electronics.
Consequently, the method is only an approximation, being
valid for these specified conditions. In addition, the
high electrical impedance conditions result in strong
radial mode disturbances. This method may only be
applied to those devices possessing diameter to
thickness ratios of greater than 20:1.
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It is interesting to note that the results of
Steutzer may be obtained from a limiting case of
the present, more general transient response
analysis. For a positive step function of charge,
Steutzer obtained the following expression for
measured voltage across the transducer electrodes
(after one transit interval). The transducer is assumed
equally loaded at both faces by a material of acoustic
impedance ZL.

Where Qo = UCB is the applied charge function
corresponding to a voltage of u volts.

----7

From equation 3,·for a negative going step input of
voltage.

Vo = U(-l + Co
Co+CB ICBexp ~O+CB

From very small values of CB i.e.

CB«Co, and using Maclaurin's Series Expansion,

exp [ J 1 + t ]
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Vo = U(-l +
Co

Co+CB for t just less
than T.

UCB ( Co K2(TF+2TB))•• Vo = Co+CB -1 + Co+CB

For CB«Co and TF = TB 2Zs , this expression becomes,
Zi+ZL

Vo = -UCB ( 1 - K 2 2Z s )
Co Z s+ZL

-----8

This is equivalent to equation 7, except that the input
is a negative step function of voltage. In this analysis,
the approximate method of Steutzer has been improved and
extended to a more general situation, where almost
any value of blocking capacitance may be used. However,
the value of blocking capacitor must not exceed the
transducer static capacitance by a large amount, otherwise
secondary action is damped out, as described previously.

Furthermore, the method may be applied to a much wider
range of transducers and excellent results were obtained
for diameter/thickness ra~ios as low as 5. The
improvement in accuracy is believed to arise because
of two factors:

1) The method is exact, no longer requiring an
approximation.
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.2} In the analysis of Steutzer, the transducer is
effectively on electrical open circuit. Consequently,
radial mode effects are at a maximum, leading to
measurement difficulties in the case of low
frequency transducers. However, in the present
method, the transducer is electrically loaded by
an impedance which is equivalent to the reactance
of the blocking capacitor. This is apparently
sufficient to reduce radial mode effects over the
first transit interval, hence improving measurement
accuracy. However, further investigation into
this aspect will have to be performed, in order
that radial mode effects can be predicted.

In the analysis of Kasai, a voltage step was applied
to the transducer from a generator of internal
resistance R. By measuring total current flows
through the transducer, a series of curves were
obtained, for which the thickness coupling coefficient
was evaluated. It should be noted that the current
quantity of interest (ie. that quantity proportional
to KZ) is the feedback current described in chapter
five. In cases where K is small, this current is
correspondingly reduced and becomes difficult to
measure. For example, it will be shown in the next
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chapter that the feedback current depends also.
on the value of source resistance, becoming less
as source resistance is increased. Consequently,
this method may only be applied to those
situations of low electrical source resistance.

In addition, the analysis of Kasai is applicable
only for mechanically free transducers and the
measurement of acoustic impedance cannot be made
using this technique.
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6.4. CONCLUDING REMARKS

In this chapter, operational impedance characteristics
were used to determine a transducer voltage transfer
function which relates source voltage to the measured
voltage across the device. The theory was experimentally
verified in both time and frequency domains for CW and
transient modes of excitation. A variety of electrical
and mechanical loading conditions were studied for a
wide range of transducer dimensions and frequencies.
The governing physical dimension was the transducer
diameter/thickness ratio and this varied from approximately
5(O.5MH device) to 43(4MHZ device).

From the simulation, experimental and analytical results,
the following main conclusions were drawn.

The CW investigation presented in section 6.2 showed
experimental verification of the main transducer
impedance characteristi~s under different mechanical
loading conditions. A reduction in the amount of
secondary piezoelectric action with increased mechanical
loading was readily observed. In addition, the following
features als~ emerged.

a. It is possible for substantial variations in some
piezoelectric parameters to occur, particularly
in the transducer dielectric constants. Unless
otherwise corrected, this may cause considerable
distortion in simulation and measurement studies.
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Q. The nature and extent of unwanted vibrational
modes were clearly demonstrated. These effects
were shown to complicate and influence transducer
measurements, particularly at low values of
diameter/thickness ratio~

c. The effects of internal dissipation on the behaviour
of a mechanically free transducer were readily
observed. However, under conditions of finite
damping, it was shown that such losses may
effectively be neglected for the type of transducer
under consideration.

The transient analysis presented in section 6.3
demonstrated excellent agreement between simulation
and experimental results. This not only verified
some aspects of the transducer model, but provided
a clear indication that the response characteristics
of such a pulser-transducer configuration may be
accurately predicted.

A method was also proposed for the measurement of
thickness mode coupling coefficient and/or the acoustic
impedance of solid loading media. This technique is
considered an improvement over existing methods, as it
enables fast, reliable measurements to be made on the
transducer types under evaluation. The method possesses
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the following additional advantages:

a. It is applicable over a wide range of transducer
frequencies and dimensions.

b. It is simple and easy to use, requiring only a
pulser, blocking capacitor and oscilloscope.

207



CHAPTER VII

SIMULATION AND RESULTS PART II



7.1. INTRODUCTION

This chapter presents a theoretical and experimental
investigation of the transducer transfer functions des-
cribed in chapters 3 and 4. Chapter 3 described the
receiving transfer function for which a relationship
between input force (stress) and output voltage was estab-
lished in the S-domain. Chapter 4 outlined the deriva-
tion of the transmitting transfer function which relates
input voltage to output force; again in the S-domain.

In subsequent sections, both transfer functions are
investigated over a wide range of mechanical and electrical
loading conditions. As in the previous chapter, transient
and CW (or gated CW) modes of operation are considered
separately, with essential simulation features being pre-
sented prior to the experimental results.

Particular emphasis is placed on the role of feedback in
the simulation analysis' and where possible the block dia-
gram approach is used to explain transducer characteristics.
Also, to maintain continuity with chapter 5, the investi-
gation of both transfer functions involves current as the
feedback quantity. Consequently, many of the simulation
diagrams presented in ~hapter 5 are directly applicable to
the present investigation, particularly for the transmitting
mode.
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The transfer functions are used to predict transducer
response characteristics over a wide range of external
loading conditions. Mechanical loading conditions of light,
medium and heavy damping are considered in order to provide
a representative cross section of practical operating situ-
ations. Electrical loading conditions are however more
complex, depending upon the particular application. A
generalised electrical load configuration is described
extensively in Appendices Band C. This may be applied,
(for both transmission and reception), to both transient
and CW modes of operation.

Where possible, the transducers calibrated in the previous
chapter were employed in the experimental sections of the
work. The characteristics of each transducer are pre-
sented in Appendix D.

7.2.

7.2 til

THE PIEZOELECTRIC TRANSMITTER TRANSFER FUNCTION

General Characteristics

A generalised transfer function relating input voltage to
output force was obtained in chapter 4 with the correspond-
ing block diagram shown in figure 4.8. For the present
analysis, the block diagram may be rearranged as shown in
figure 7.1, which indicates the summation of current quan-
tities at the input summing point. By treating the

209



transmitting model in this manner, much of the analysis
contained in chapter 5 may be directly applied to the feed-
back model. This not only maintains continuity, but also
avoids unnecessary duplication of the simulation diagrams.

From figure 7.1, the voltage force transfer function may
be expressed as follows:

---1

where ZI (S) ZE
=

Zo + ZE + ZOZE SCo

ZE + Z
ZF (5)

0=
Zo + ZE + ZoZE SCo

Zo represents the output impedance characteristics of the
voltage generator or driving circuit, while ZE is the
impedance of any external electrical load connected directly
across the transducer. The generalised form of these
impedances is shown in figure 7.2 and a more detailed dis-
cussion is presented in Appendix B.

Adopting the notation used in chapter 5, equation 1 may
be expressed in terms of a feedback factor, ~
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FF (S) -hCo ZI (S) KF (5) AF/2----- = ---------------------e (S) 1 - ZF (S) A.r (5)

where

The functions A.r' KF and KB have been extensively investi-
gated in chapter 5. They may readily be applied to an

.
investigation of the piezoelectric transmitter provided
that the electrical loading conditions are also known.
Figure 7.1 reveals that the output stress wave is strongly
dependent on both electrical and mechanical loading factors
as a result of the constraints which they impose on both
primary and secondary piezoelectric action. For example,
the following parameters directly influence the forward
path, ie primary piezoelectric action.

(i) The electrical load directly influences the nature
of the output force or pressure waveform through
the forward loop parameter ZI. The extent of
this influence depends on the form of ZE and Zo
and although it is difficult to generalise, it
should be noted that conditions which correspond
to zero output force (ZE zero, Zo infinite) are
unlikely to be encountered in practical situations.

211



(il) The reverberation factor KF also has a direct
influence on the output pressure waveform, as a
result of the external mechanical load conditions.
Consequently, zero output is expected to occur
at even multiples of mechanical resonance and in
the absence of feedback, a maximum is expected at
odd multiples of this resonance.

(ili) AFZero output force occurs if the block ~ is equal
to zero, ie

Consequently, this condition only arises when the
transducer operates in the mechanically free state
(Zl = 0), or resonator mode. Such operating con-
ditions do not apply to this chapter.

Secondary piezoelectric action is determined by the two
feedback loops in the transmitter block diagram. The
following factors are shown to influence the total amount
of current feedback.

tt} Maximum current feedback is expected to occur
under conditions of light mechanical loading.
That is, for larger values of TF, Ta' KF and Ka·
These conditions were discussed extensively in
chapter 5 in relation to feedback effects on
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transducer oper~tional impedance.

(1i) The amount of secondary piezoelectric action is
directly proportional to the square of the coup-
ing coefficient.

(iii) Electrical load conditions also determine the
amount of current feedback. Both feedback loops
contain the factor ZF and hence secondary piezo-
electric action is expected to increase for low
values of ZE or Zo' when maximum current may flow
out of the transducer. In addition, the block
ZF will in general introduce a phase shift to
the feedback loops. As indicated in chapter 5,
such phase shifts can play a major role in deter-
mining the effects of secondary piezoelectric
action. It is interesting to note that the
impedance characteristics discussed in chapter 5
were actually derived from a limiting case of this
general configuration. That is, no external
electrical loading connected across the trans-
ducer and Zo set to zero. ZF is thus equal to
unity and the total amount of current feedback is
determined by ~.

Uv) As in the case of electrical impedance, the
current feedback is inversely proportional to
frequency.
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In the following section, the main characteristics of the
voltage force transfer function are presented in both time
and frequency domains. computer simulation was performed
on the 4051 graphics terminal and a complete listing of
the program is described in Appendix E. It was thus possible
to study the transmitting response over a wide variety of
electrical load conditions, mechanical load conditions and
electrical input stimuli. As demonstrated in the present
section, a block diagram approach greatly enhances the
identification of those elements which have a major influ-
ence on system performance.

7.2ii Investigation of the Transmission Transfer
Function Using Simulation Techniques

This section investigates the response characteristics of
the transmission transfer function. The set of mechanical
load conditions described in the previous two chapters
are again considered. That is, light damping (water
loaded and water backed), medium damping (50 per cent
matched backing and a glass load) and heavy damping (ideal
backing, glass load). Unless otherwise stated, the
nominal transducer parameters shown in Table 5.1 are used
in the simulation diagrams. The value of piezoelectric
constant, h, was taken to be 21.5 x 108 v/m (Vernitron).
The section covers both CW and transient modes of opera-
tion, over a variety of electrical load conditions.
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7.21ii ew Operation

1. The Electrically Free Transducer Driven by an
Ideal Voltage Generator

This is an idealised situation where the transducer is on
electrical open circuit and is driven via a sinusoidal
voltage generator possessing zero output impedance, ie

Z = 0o
Z = QC!
E

It should be noted that for Zo equal to zero, then the
resultant voltage force transfer function is actually
independent of ZE' ie ZI and ZF are both equal to unity.
The electrical driving conditions thus correspond to those
deacz-Lbod 1n the analysis of the mechanically loaded imped-
ance transfer function. Consequently, the amount of current
feedback 1s the same and the voltage force transfer func-
tion may be expressed as follows:

FF (5) -hCo KF (S) ~/2= --~------------
e(S) 1 - A.r(S)

,IT is the total current flowing through the transducer and
its Laplace transform 1s described by the following equation:
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therefore

IT is equivalent to the reciprocal of the transducer elec-
trical impedance, ZT' under conditions of unit applied
voltage. Consequently, current minima and maxima are
expected to occur, the position and extent of which are
determined by the amount of feedback. The process is
clearly illustrated in figure 7.3 which shows the total
current tIT> as a function of frequency for the three speci-
fied conditions of mechanical damping. As expected, maxi-
mum current fluctuation occurs under conditions of light
damping, when secondary piezoelectric effects are a maxi-
mum. The current characteristic starts to smooth out as
damping is increased, indicating a reduction in the amount
of feedback. The dotted line in figure 7.3 indicates
current flow through a capacitance of value equal to Co'
the transducer static capacitance. That is, the total
current flow under conditions of zero feedback.

Transducer current is not the only quantity which influences
the voltage force transfer function. The transfer func-
tion may be expressed as follows:

= -
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2

On a physical basis, the term hIS represents a conversion
factor from current to force, while KF and ~ are the rever-
beration and transmission factors defined in chapter 4,
Section 4.5. Fp is defined as the forward path transmission
parameter and its frequency response characteristics are
shown in figure 7.4, for the three conditions of mechanical
load. From this figure it is evident that mechanical damp-
ing has a considerable influence on the response, partic-
ularly at lower frequencies. It should also be noted that
the parameter Fp is simply proportional to the time integral
of the reverberation factor KF• Consequently, a finite
(non-zero) response occurs at zero frequency, which is given
by the following expression.

= hAp T [ 1 - R ]Fp - ~~1.1)+0
2 1

-~
•

[ZlZ2 ] - -
hT--
Zc Zl + Z2

The low frequency magnitude of Fp is large when both imped-
ances Zl and Z2 are relatively high, ie under conditions
of heavy damping. This may readily be observ~d from fig-
ure 7.4 for frequencies up to the fundamental mechanical
resonance, denoted by f2. For frequencies above f2, the
amplitude response of Fp generally decreases as a result
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of the 1/5 multiplier contained in the function. However,
the main characteristics inherent in ~ remain evident,
for example, the increase in bandwidth under higher damp-
ing conditions.

The voltage force transfer function frequency response may
now be obtained by multiplying the total current response
by the forward path transmission parameter response, as
described in equation 2. This is shown in figure 7.5 for
the same three conditions of mechanical load. It is evi-
dent from the figure that considerable variations occur in
bandwidth as the damping changes.

In addition, the position of the first centre frequency
is also observed to decrease under conditions of heavy
damping. This occurs directly as a result of the low fre-
quency characteristics of Fp' which tends to reduce the
centre frequency under conditions of heavy damping.

The differences in bandwidth are mainly attributed to the
nature of the reverberation factor KF1 bandwidth increasing
in proportion to the degree of damping. The position of
the first centre frequency is lower than the frequency of
mechanical resonance in each case and this is primarily
influenced by the amount of feedback for conditions of.light and medium damping. Also, as the amount of feedback
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decreases with frequency, the frequencies of maximum out-
put eventually approach the harmonic frequencies of mech-
anical resonance. A similar shift in the frequency of
maximum output is also observed wth a decrease in coupling
coefficient. Figure 7.6 shows the transfer function res-
ponse for two values of K, corresponding to 0.7 and zero.
The latter value is equivalent to zero feedback.

It should be noted in figure 7.5 that no general decrease
in output force takes place as frequency is increased.
However, it must be remembered that this is an idealised
situation which assumes an ideal voltage generator and the
transducer to be mechanically loss free. In practice, there
is a decrease in the amplitude response with frequency.

To summarise, the following conclusions may be drawn con-
cerning the output force frequency characteristics when
the transducer is electrically driven via an ideal voltage
generator:

The response is independent of any electrical
load connected across the transducer.

Under conditions of light mechanical loading, the
frequency of peak output force is dominated by the effects
of current feedback. The system is essentially narrow-
band and the first centre frequency approximates closely
to the electrical resonant frequency of the transducer.
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c) Under conditions of heavy damping, the effective
bandwidth is increased and the peak output frequency (first
centre frequency) decreases to below the electrical reson-
ance.

2. The Electrically Loaded Transducer Driven from
a Non-Ideal Generator

For the electrically loaded transducer, the voltage force
transfer function is still defined by equation 2, ie

The function Fp is independent of electrical load condi-
tions. However, the total current flowing through the
transducer must now be expressed as follows:

The feedback factor for the electrically unloaded trans-
ducer is given by~. Denoting the feedback factor under
electrically loaded conditions by AT~ yields,

therefore IA.r • to> II = IA.r to> I I[ZF (w I I
;'~' (w) = ~w) + ~w) 3
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Consequently the amplitude and phase ot the feedback
factor is modified by the presence of the feedback imped-
ance ZF.

In addition, the total input current to the transducer
under electrically free conditions is given by (for unit
applied voltage),

I (5) = SCo

Consequently, the input current under electrically loaded
conditions may be expressed as:

I" (5) = 5Co ZI (5) = I (5) ZI (5)

therefore

In the following examples, a wide range of electrical
loading conditions are considered. Amplitude and phase
characteristics relating to input current and feedback
impedance are shown in figures 7.7-7.9b for the following
conditions of electrical load:

• Generator output resistance of 500
Inductances of 2.2 ~H (La) in series with 500
generator resistance
Inductances of 2.2 ~H (LM) in parallel with the
transducer. The generator resistance is 500.

•

•
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Consider firstly, the situation of a non-ideal voltage
generator driving the transducer. This configuration is
shown in figure 7.10, where the generator is assumed to
possess an output resistance equal to Ra ohms.

In this case,

This quantity is shown in figure 7.7, for Ra equal to
50 ohms. For unit input voltage, the maximum value of
input current is now limited to 1/Ro.

The magnitude and phase of the feedback factor are now
given by:

= lA (w) 1/(1 + w2R 2C 2) ~T 0 0

= I A.r (w) - tan-1 (wRoCo) --------4

The magnitude of the feedback current thus demonstrates an
additional, frequency dependent decrease which is governed
by the time constant RoCo• Feedback current, and hence
secondary piezoelectric action is thus reduced for larger
values of Ra. This is readily shown in figure 7.11 which
shows the variation in feedback factor for three values
of source resistance, corresponding to 0, 50 and 470 ohms.
The reduction in secondary action for higher values of
source resistance (and frequency) may readily be observed.
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Phase angle of the feedback factor is also modified by
the finite value of source resistance, the phase shift
increasing with frequency as a result of equation 4. The
degree of phase shift, for a source resistance of son, is
shown in figure 7.9a. This has important consequences
under conditions of light damping, where the type of feed-
back has a considerable influence on the nature of the total
output current. The nature of these effects may be illus-
trated as follows.

Figure 7.12 depicts the total current response for a source
resistance of son and the three stated conditions of mech-
anical load. For conditions of light damping, a comparison
with figure 7.3 indicates that the son source resistance
has reduced the total current, especially at the positions
of current maxima. However, at frequencies below mechanical
resonance (f2), attenuation introduced by the source
resistance is very small. For example, figure 7.8 shows
that the feedback impedance is approximately unity within
this frequency range, resulting in almost zero attenuation
of feedback current. This is reflected in figure 7.11 which
shows that the magnitude of the feedback factor is almost
unchanged by the introduction of a son source resistance.
As a result, secondary action within this frequency range
should not show the reduction indicated in figure 7.12.
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However, a close study of figure 7.9a reveals a phase shift
in the feedback factor of approximately 20° at the frequency
of mechanical resonance. This phase shift in the feedback
loop saves to reduce the amount of positive feedback in a
manner analogous to that described in chapter V, for the
mechanically loaded transducer. As a result, the first
current maximum in figure 7.12 has been substantially
reduced, indicating a reduction in the effects of secondary
action.

The overall current attenuation and phase shift increases
with frequency, leading to greater reductions in current
fluctuation. Eventually feedback effects disappear and
the total current tends towards lIRa.

The amount of feedback is also significantly reduced under
conditions of increased damping. This occurs as a result
of additional phase shifts in the feedback loop which smooth
out current fluctuations. Consequently, amplitude and phase
changes in the feedback factor which arise directly from
a finite value of source resistance have proportionally
less effect under conditions of heavier damping. However,
as may be observed from figure 7.12, the source resistance
serves to further minimise feedback induced current fluctu-
ations.

The output force characteristics are readily obtained from
the product of IT~(w) and Fp(w). These are shown for two
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values of source resistance, son and 4700 in figures 7.l3a
(light damping}, 7.l3b (medium damping) and 7.l3c (heavy
damping}. From these graphs, the following main features
are apparent:

a) Increasing source resistance reduces the peak
amplitude of the frequency response characteristic. This
is to be expected, as a result of the relative attenuation
in input current. For the same reason, the responses exhibit
a general decrease with frequency.

b) The amount of feedback decreases with source
resistance and frequency. This is verified by a general
shift in centre frequency towards mechanical resonance and
its harmonics.

c) Ov~rall system bandwidth demonstrates a general
increase with increased mechanical loading.

It should also be noted that under conditions of light
damping, relatively small values of source resistance have
a considerable effect on the frequency response character-
istics. This is readily verified by comparing figures
7.l3a and 7.5 for the water backed and water loaded trans-
ducer. The response under lightly damped conditions is
dominated by secondary piezoelectric action and hence any
changes in the feedback loop caused by electrical loading
are readily observed in the output force characteristic.
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This effect is not so marked under conditions o~ increased
damping, where electrical loading has relatively less inf1u-
ence.

Before concluding this section, it is interesting to compare
the output response under conditions of zero feedback. Fig-
ures 7.14ta-c) show the output force characteristics under
open loop conditions for source resistances of 500 and 4700.
From the graphs it may be observed that for higher damping
and source resistance a close approximation to the closed
loop responses of figures 7.13(b and c) is obtained. How-
ever, in the lightly damped situation, a close approxima-
tion occurs only at higher frequencies, where feedback
effects are reduced. It should also be noted that an
increase in -3db bandwidth occurs under closed loop condi-
tions. This may readily be observed by comparing figures
7.13a and 7.14a, for a source resistance of SOg. The
increase in -3db bandwidth under closed loop conditions
is discussed again in later sections.

To summarise, the following main features emerge concern-
ing the influence of generator resistance on the output
force response.

1 Increasing source resistance serves to decrease
the input current to the transducer, especially at higher
frequencies. The output force response thus generally
demonstrates a decrease with frequency.
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11 Increasing source resistance decreases the amount
of secondary action, feedback effects becoming almost negli-
gible for high values of source resistance.

iii Relatively small values of source resistance may
have considerable effects on the output force characteristics
under conditions of light damping. Phase shifts in the feed-
back loop are responsible for this phenomenon by causing a
reduction in the amount of positive feedback.

The investigation of inductive loading follows in a similar
manner. Figure 7.15 shows two possible configurations where
the inductor is placed in series or in parallel with the
transducer. In each case the generator has an output
resistance of Ro ohms.

Consider firstly an inductive element placed in series with
.the transducer configuration, as shown in figure 7.l5a.

The Laplace transform of the input current is.thus given by,
c

and

1
S2L C + SC R + 1o 0 0 0

For an inductive element placed in parallel with the trans-
ducer, as shown in figure 7.15b, the input current and
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feedb~ck imped~nce ~~¥ be expressed by the following trans-
form equations:

Under both series and parallel loading conditions, the
inductive elements resonate electrically with the trans-
ducer static capacitance at a frequency given by,

The magnitude and phase of input current and feedback
impedance are shown in figures 7.7 through to 7.9b for
both series and parallel inductive loading. Values of
inductance selected for the diagrams were 2.2 ~H and 20 ~H,
corresponding to tuned resonant frequencies of 3 MHz and
1 MHz respectively.

From the figures, it is apparent that inductive loading may
exert a considerable influence on the input and feedback
current characteristics of the piezoelectric transmitter.
As a result changes in bandwidth and centre frequency may
readily be achieved by the appropriate choice of inductive
matching element. This is demonstrated in figures 7.16
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and 7.17 which show the frequency response characteristics
for both types of inductive matching under mechanical load
conditions corresponding to light, medium and heavy damping.

Figure 7.16 outlines the response when a 2.2 ~H inductor is
connected in parallel with the transducer. As a result, the
centre frequency is increased to approximately 3 MHz for
each mechanical ioad configuration. This shift in centre
frequency may be attributed directly to·the relatively low
level of input current at lower frequencies, as indicated
in figure 7.7.

Figure 7.17 shows the frequency response characteristics
when an inductance of 20 ~H is placed in series with the
transducer element. In this"example, the overtone fre-
quencies of mechanical resonance have been suppressed and
the -3db bandwidth about the fundamental resonance has
been increased. A study of the input current character-
istic in figure 7.7 indicates a sharp peak about tuned
resonance, followed by a rapid decay as frequency increases.
Consequently, the output force contribution at higher fre-
quencies is substantially reduced.

Also, from figure 7.17, it is interesting to note the twin
peaks on either side of mechanical resonance. This is most
evident under conditions of light damping and is due mainly
to the influence of secondary piezoelectric action. It
is evident from figures 7.8 and 7.9a that the series
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inductance has considerable influence on the magnitude
and phase characteristics of the feedback current. Con-
sequently, the well defined maximum occurring near elec-
trical resonance is no longer apparent and the complex
characteristic of figure 7.17 is formed as a result.

In summary, the following main conclusions may be drawn
concerning the effects of inductive loading on the output
force frequency response.

a) Bandwidth and centre frequency may be selected
by the appropriate choice of inductive matching element.
The inductance may be placed in series or in parallel
with the transducer. A series element usually enhances
low frequency response while a parallel element usually
enhances high frequency response.

The response is most easily predicted under con-
dit!ons of heavy damping, when secondary action is a mini-
mum. Under lightly damped conditions, the effects of
secondary action are difficult to predict, because of com-
plex magnitude and phase changes within the feedback loop.
In such instances, the complete transmission model must be
used to accurately determine frequency response.

7.2iv Transient Operation

This section investigates transmission behaviour under trans-
ient conditions, in both time and frequency domains. The
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transducer 1s driven by the application of a negative
gOing step function to a blocking capacitor via a fast
electronic pulser. A complete description of this mode
of operation is provided in Appendix C. As a result, the
output force may be expressed by the following Laplace
equation:

1= -
hCo ZI (S) KF (S) AF/2

1 - ZF (S) A.r (S) ------5
s

This equation was evaluated in both time and frequency
domains for a variety of electrical and mechanical load
conditions. A description and listing of the software is
presented in Appendix F.

Consider firstly, the transducer to be free of any parallel
electrical loading as shown in figure 7.18. This is equi-
valent to applying a step input of voltage across the
transducer electrodes. The pulser is assumed to possess
an extremely low value of internal resistance «50) and
consequently,

Zo (5)
I=-

SCB

ZI
CB

ZF= =
Co + CB
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ZI and ZF are thus reduced for lower values of blocking
capacitance. Frequency spectra of the output force are
shown in figures 7.l9(a and b) for two values of CB'
corresponding to 2 nF and 0.1 nF respectively. Transducer
static capacitance was 1.261 nF, as indicated in Table 5.1.
Mechanical load conditions of light, medium and heavy damp-
ing are shown. The following main features are apparent
from the figures.

a) The peak amplitudes are substantially reduced for
the lower value of blocking capacitor. This is to be
expected from the corresponding reduction in ZI.

b) Secondary action is reduced for the lower value of
blocking capacitance. This is evident from the shift in
centre frequency towards mechanical resonance (1 MHz),
under conditions of light damping. The reduction in second-
ary action may be attributed to the decrease in ZF' the
feedback impedance. This is not apparent under increased
damping, where the effects of secondary action are reduced.

c) The bandwidth increases under conditions of
increased mechanical load. Under lightly damped condi-
tions, the spectrum is narrow band, centred between elec-
trical and mechanical resonance, depending on the value
of blocking capacitance.
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In conclusion, it is possible to eliminqte secondary
action in such a transmitting system by selecting a low
value of blocking capacitance. This is of course equivalent
to increasing source impedance, hence preventing current
tlow out ot the trqnsducer. Secondary action 1s thus
inhibited, as described in Section 7.2iii.

Some authors, for example Filipczynski (It) have employed
this technique in order to model transducer transient
response. However, as 'indicated in figure 7.l9b, secondary
action is by no means eliminated under conditions of light
damping, even for ,CB equal to 100 pf. Consequently, for
transducers of high coupling coefficient (K ~·5) and low
damping, such an approximation is only valid if the block-
ing capacitance is very small (CB < 5 pf); resulting in an
extremely inefficient transmission system.

The corresponding time domain responses are shown in fig-
ures 7.20ta and b) for the large and small values of block-
ing capacitance respectively. Both wave forms are observed
to comprise a train of positive exponential functions,
alternatively in sign at integral multiples of the trans-
ducer transit time. The exponential slope is greater for
the higher value of blocking capacitance, although in this
case, the signal tends towards sinusoidal behaviour after
a few transit intervals. Considerable distortion is also
evident.
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Excellent insight into the nature of these responses may
be achieved by truncating the time domain to a single transit
interval,· ie 0 < t < T. During this time interval, the
reverberation factors KF and KB are unity and hence equa-
tion 5 may be expressed as follows:

=
ZI Kl

S -·K ZF2

CKl
=

S - CK2
where,

hCo AF,
2

This function has an inverse haplace transform given by,

o < t < T
therefore

6

o < t < T
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Under conditions of no feedback (for example, K = 0) the
output force over this time interval is a step function of
amplitude[cB/~O + CB~.hCo AF/2. The exponential term in
equation 6 describes secondary piezoelectric action. As
expected, secondary effects depend on coupling coefficient,
mechanical damping and electrical loading conditions. This
may readily be observed by comparing figures 7.20(a and b).
Over the truncated time interval, the exponential rise is
greater in the former figure, indicating enhanced secondary
action.

It is evident from these figures that secondary action may
introduce considerable distortion to the output force wave-
form. Under conditions of zero feedback, the time domain
response consists of a train of decaying step functions,
the rate of decay being proportional to the amount of
mechanical damping. As secondary action increases, an
exponential rise is associated with each step function,
as observed in figure 7.20b. When feedback is further
increased, the exponential characteristics become difficult
to distinguish after a few transit intervals. The wave-
shape demonstrates a series of sharp spikes which eventually
approximate towards sinusoidal behaviour. This latter
phenomenon was also observed by Steutzer (54) in his
analysis of transducer current behaviour under short
circuit conditions. Under these conditions, current feed-
back is of course a maximum.
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As a second example of transient time-domain response, con-
sider the transducer to be loaded by a resistive element
connected across the electrodes. This configuration is
shown in figure 7.21.

Time domain waveforms were simulated under two conditions
of mechanical load, corresponding to medium and heavy damp-
ing. The following system characteristics were used in
the simulation diagrams.

CB = 2.2 nF

Co = 1.261 nF
K = 0.5

~ = lOOn
Mechanical Resonance = 1 MHz

Figures 7.22ta and b) outline the responses under condi-
tions of medium and heavy damping respectively. From these
diagrams, the following main features are apparent:

Signal bandwidth is increased under heavily
damped conditions. The effective pulse length is reduced
to little more than two transit intervals plus a low ampli-
tude exponential 'tail'. This latter feature is propor-
tional to the exponentially decaying driving voltage, which
has an effective time constant of tc + CB)~' where C is
the value of transducer capacitance. Features of the
driving voltage under such conditions were discussed in
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chapter Vl. For heavy damping (matched backing), no
reflections occur from the transducer rear face, as all
energy is transmitted to the backing material. Consequently
reverberation within the transducer is eliminated, giving
rise to the waveshape shown in figure 7.22b.

For both conditions of mechanical load, there is
little evidence of the positive exponential behaviour pre-
viously associated with secondary action. This may be
attributed firstly to the reduction in positive feedback
with increased damping. Secondly, charge generated by
secondary action may now decay through the load resistance,
ie the negative exponential nature of the driving waveform
serves to suppress the effects of secondary action. This
is evident under conditions of medium damping, as shown in
figure 7.22a. The exponential nature of the waveform is
a combination of a positive exponential function (secondary
action) and a negative exponential (driving voltage). The
net result is a flattening of the waveshape, although in
this instance, driving voltage is the dominant factor.
However, after two transit intervals, the driving voltage
has decayed sufficiently to be in turn, overcome by second-
ary effects. This is evident during the third transit
interval in figure 7.22a, where a positive exponential is
observed.
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Under conditions of heavy damping teigure 7.22b}, little
secondary action is evident, as indicated by the negative
exponential characteristics of the waveform.

In summary, the following conclusions may be drawn concern-
ing the nature of transient time-domain behaviour for the
piezoelectric transmitter:

i) Over the first transit interval, the waveform of
force is similar to the driving voltage. This is repeated
with alternate sign reversals, at multiples of the transit
interval. There is an overall amplitude decay witn time,
the rate of which is proportional to mechanical damping_
Increasing damping reduces the number of internal reflec-
tions, hence increasing signal bandwidth.

ii) Secondary effects are reduced under conditions of
high source impedance, low mechanical coupling and high
mechanical damping.

iii) Secondary action may introduce considerable dis-
tortion to the time domain waveshape. This is particularly
evident under conditions of light mechanical load.

A further investigation of transient time-domain behaviour
is performed in Section 7.4 where comparisons are made
between simulation theory and practical measurement.
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7.3 .THE PIEZOELECTRIC RECEIVER TRANSFER FUNCTION

7.3i General Characteristics

A transfer function describing the behaviour of a piezo-
electric receiver was obtained in Chapter III. The sub-
sequent block-diagram relating force to voltage is shown
in figure 3.14, which clearly illustrates the various
physical processes involved. This transfer function may
be expressed as follows:

1 - U (S)

Where V is the output voltage observed across the trans-o
ducer electrodes when a wave of force FF is incident on
the front face of the device. An arbitrary electrical load
of impedance ZE is assumed to be connected across the elec-
trodes. Other factors in the transfer function are:

This is the voltage attenuation factor introduced by the
external electrical load.
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is defined as the feedback admittance.

Substituting for UCS) and noting that,

the transfer function may be expressed as follows:

-T KF (S) _h_ SCo ZE (S)
»: CS) F SZC {l + SCo ZE{S}}

=
FFtS}

1 - 1 K' [~(Sl TF
+ KB (S) :B]{l + SCo ZE (S)} ST 2

h
-TF KF (S) ~ U(S)

= ~C~ __
1- ZFR (S) AT {S} -----------------------7

where

ZFR (S) 1=
1 + SCo ZE (S)

This quantity is defined as the feedback impedance for
the transducer operating in the receiving mode. Conse-
quently, an investigation of equation 7 may proceed by
adopting similar techniques to those employed for the
piezoelectric transmitter. For example, the influence of
secondary piezoelectric effects may be investigated by
considering the known characteristics of the feedback
factor ~ to be modified in both amplitude and phase, by
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a contribution from ZFR. In a similar manner, the effects
of electrical loading on the forward path may be considered
by an appropriate investigation of the attenuation factor
U. A block diagram corresponding to equation 7 is shown
in figure 7.23 where voltage quantities are combined at
the input summing point.

From this diagram it is apparent that no secondary action
may occur if the transducer is electrically open circuit.
That is, no external electrical loading elements are con-
nected across the device. In this situation, the transfer
function is open loop and the response is proportional to
the time integral of the reverberation factor KF• The maxi-
mum amount of secondary action occurs under short circuit
conditions, when the output voltage is of course zero.

The amount of secondary action is also dependent on the
feedback factor AT' and hence is expected to decrease with
increased frequency and external mechanical loading., In
subsequent sections the receiving response is investigated
under a variety of loading conditions and by means of the
feedback model, those factors having a significant influence
on the response are readily isolated.

As in the case of the transmitter, a computer program was
developed in order to investigate the receiver transfer
function in both time and frequency domains. A complete
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listing of this program is provided in Appendix F. Elec-
trical loading conditions were generalised so that system
analysis could be made over a wide, practical range of
operating conditions. A complete discussion on electrical
loading of the receiving transducer is given in Appendix B.

Figure 7.24 outlines the general electrical loading condi-
tions for the pulse-echo receiver. In this figure, the
branch Ro-CS-Lo represents the output characteristics of
the transmitting circuit and ~-LM the impedance network
of any matching or pulse shaping circuit. The branch
CA-RA is chosen to represent amplifier coupling and input
impedance characteristics respectively.

7.3ii Investigation of the Reception Transfer Function
Using Simulation Techniques

This section investigates the frequency response character-
istics of the receiver transfer function under the following
conditions of mechanical load:

light damping (water loaded and water backed)
medium damping tSO% matched backing, glass load)
heavy damping (ideal backing, glass load)

In addition, the following electrical load conditions are
also investigated:

a, The transducer is electrically isolated. That is,
all external loading components are assumed to possess such
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large values of impedance that the device may be considered
on electrical open circuit. Such a situation may arise
under transient conditions when the input impedance of any
pre-amplifying stage is large (approximately 50 kO or
greater).

b. The transducer 1s loaded by a resistive element
connected across the electrodes. This component may corres·
pond to a pulse shaping element in pulse echo mode, or to
the input resistance of any successive stage.

c. An inductive element is connected across the trans-
ducer. Again this may form part of a matching or pulse
shaping network.

1) Consider firstly an electrically isolated receiver.
In this situation no current may flow out of the transducer
and hence secondary piezoelectric action is completely
inhibited. The transfer function is thus open loop and
may be expressed as follows:

On a physical basis, TF is the transmission coefficient
for waves of force entering the transducer, l/SZc is a
conversion factor relating force to particle displacement
and KF 15 a reverberation factor describing the difference
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in particle displacement between opposite faces of the
device. The piezoelectric constant, h, relates particle
displacement to voltage. Br substituting for h/Zc, the
transfer function may be expressed as follows:

-TF K2 KF(S)
= - - _.;..._-

hCo T S

It is evident from this equation that the output voltage
is proportional to the time integral of the input force.
Consequently, the behaviour of the function is similar to
that of the forward path transmission factor (Fp)' described
in Section 7.21i. That is, the frequency response generally
has a finite value at zero frequency (d.c.) which is a
function of the mechanical load conditions.

Figure 7.25 shows the open-circuit receiver frequency response
for the three stated conditions of mechanical load. The
following main features are evident from the ·f~gure.~--~
1.1) Maximum response occurs under conditions of light
damping. Since there is no secondary action, peak output
occurs at the fundamental mechanical resonance. Other
peaks are evident at overtones of this frequency, but they
are of much lower ampl1tude. The system is essentially
narrow band.

1.11) As damping is increased, the peak response is
considerably reduced, with maximum response occurring at
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frequencies below mechanic~l resonance. The frequency of
maximum output is dependent upon the degree of damping.

i.iii) In all three cases there is a finite response at
zero frequency, the magnitude of which depends on the amount
of mechanical loading. Under such conditions, the transfer
function may be expressed as follows:

= -T !L TF Ze

(1 - ~)

(1 - ~RB)

-T K2 (1 - ~)
= F

heo (1 - I7RB)

-2 K2 Z2
8= heo Zl + Z2

For example, when the transducer is equally loaded at both
faces, the magnitude of the transfer function is equivalent
to K2/hCo• Consequently, for the water loaded, water backed
transducer, hCo = 2.7 and K = 0.7, the transfer function
has a magnitude of 0.18 at zero frequency. This may readily
be observed from figure 7.25.

In conclusion, the open circuit receiver response is greatly
influenced by mechanical loading with maximum output occurr-
ing under lightly damped conditions at the fundamental fre-
quency of mechanical resonance. The response indicates a
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gener~l decrease with frequency under all conditions of
mechanical load. It should be noted that the output voltage
is proportional to the time integral of the input wave of
force.

ii} Under finite conditions of resistive loading, the
voltage attenuation factor is no longer unity, ie

U(5) SCaR
=
1 + se R

0

ec R
r u (w) I 0

therefore =
+ w2c 2R2}~U 0

This function increases from zero with frequency, eventually
reaching a maximum value of unity. The rate of increase
is dependent on the product CoR. As a result, the output
voltage will generally be lowest for small values of load
resistance, over the frequency range of interest.

In addition, the amplitude and phase of the feedback loop
is also modified by the factor ZFR.

ZFR (5) 1=
1 + SCaR

therefore IZFRU.ll 1=
(1 + (j)2e2R2);

0

/ ZFR (w)
-1= -tan wC R

0
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As a result, the magnitude of this function decreases from
unity at zero frequency, eventually becoming zero. Con-
sequently, the influence of secondary piezoelectric action
is expected to be greatest at low frequences and under con-
ditions of light mechanical load. It should be noted that
the resistive element introduces a phase shift into the
feedback loop, which serves to further reduce the effects
of secondary action. This condition is identical to that
discussed in Section 7.2ii, for the resistively loaded trans-
mitter.

Figure 7.26 shows the frequency response of a 1 MHz (mech-
anical resonance) receiver under the following conditions
of resistive load. The transducer is subject to conditions
of light mechanical damping.

a. R = 10,
R = 100,

COR = 12.61 ns
CoR = 126.1 ns
~oR = 592.7 ns
CoR = 1.261 ~s
C R = 1.261 mso

K = 0.7
b.
c. R = 470,
d,

e.
R = 1 K,
R = 1 M,

From the figure the following main features are apparent:

i. For low values of load resistance, the magnitude
of the frequency response characteristic is very small.
Secondary effects are clearly evident from the reduction
in centre frequency to positions below mechanical resonance.
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For example, a resistive load of lon gives,

ZFR a I, ZFR = -4.5°, U = 0.08 (at 1 MHz)

Consequently, the feedback factor is very nearly equal to
~, and hence the frequency of maximum output is close to
the electrical resonance of the transducer. However, because
of the attenuation introduced by u, the response magnitude
is relatively low.

ii. As the load resistance is increased, secondary
effects are reduced and the frequency of maximum output
shifts towards mechanical resonance. The magnitude of the
response also increases.

For example, with a resistive load of 1 KO and frequency
equal to 1 MHz,

ZFR = 0.125

ZFR = -82.8°

U = 0.992

The factor, U, is almost unity and hence attenuation in
the forward path may be neglected. However, the amount of
feedback and the associated phase shift are sufficient to
reduce the peak output below the maximum value; which occurs
under open circuit conditions.
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A resistive load of 1 Mn approximates very closely to open
circuit conditions. In this instance,

-4= 1.26 x 10 tf = 1MHz)

Consequently, the transfer function may be considered open
loop. In general, the etfects of feedback may be neglected
at a particular frequency if,

wCoR ;;.100

However, it should be noted that this criterion is by no
means rigid, as it may be substantially reduced for lower
values of coupling coefficient and/or increased mechanical
damping.

The receiving response under conditions of inductive loading
is shown infigures 7.27(a and b) which correspond to parallel
inductive loads of 20 pH and 2.2 pH respectively. The
inductance values were selected to resonate with the trans-
ducer static capacitance at frequencies of 1 MHz (20 pH)
and 3 MHz (2.2 pH). Mechanical load conditions correspond-
ing to light, medium and heavy damping were considered.

Under such conditions of electrical load, the attenuation
and feedback impedance parameters may be expressed as
follows:
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Iu ~ =
(a)2L

M
CO

u- (a)2LMCO)

•
IZFR I 1= tl - tIl

2 L C )M 0

/ ZFR = 0

The feedback and input attenuation factors are thus a maxi-
mum at the frequency of tuned resonance. Consequently, it
may be expected that the receiver response is maximised at
this particular frequency. However, a study of figures
7.27ta and b) reveals that maxima occur on either side of
tuned resonance. These fluctuations are especially promin-
ant under conditions of light damping.

The response minima in the vicinity of tuned resonance
arises directly from secondary piezoelectric action and
as such, may be attributed to phase changes within the
feedback loop. Consequently, the type of feedback changes
from positive to negative and vice versa as frequency is
increased. The expected maxima at tuned resonance do not
occur due to the strong influence of negative feedback in
this region. As damping increases, the distinct peaks are
reduced, eventually being eliminated under heavily damped
conditions.

It is also evident from figures 7.27ta and b} that band-
width and centre frequency may be selected by the appropriate
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choice ot inductive tuning element, although care must be
taken when operating under conditions of light mechanical
load. In general, inductIve matching of this type produces
a narrowband spectrum, which is most easily predicted under
conditions of high mechanical damping.

It was stated earlier that the response in the time domain
for an open circuit piezoelectric receiver is proportional
to the integral of the input wave of force. However, since
the input force waveform is very rarely an ideal step or
sinusoidal function, time domain response of the piezo-
electric receiver is not included in the present section.
In3tead, the simulated time domain response of a complete
transmit-receive system (loop response) is presented in
Section 7.4 for a variety of electrical and mechanical load
conditions. Simulation accuracy is also discussed by compar-
ing the theoretical characteristics with experimentally
measured results.

7.4 COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS

This section describes experimental techniques employed for
verification of transducer behaviour in both transmitting
and receiving modes. The experimental work is based on
time domain performance under pulsed, transient conditions;
hence permitting a wide range of external loading factors
to be studied with relative ease. A comparison with the
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appropriate simulation response is readily achieved from
an oscilloscope wave trace.

Furthermore, a close study of experimental and theoretical
time domain waveshapes yields considerable insight into
some practical limitations of the transducer model. In

particular, diffraction and edge wave effects which occur
in the transmission mode are observed without difficulty.

Experimental testin~ in the frequency domain may also be
performed by replacing the oscilloscope with a suitable
spectrum analyser. It should be noted that most analysers
possess an input impedance of son and great care must be
taken to ensure that electrical loading of the transducer
does not occur. A high frequency (minimum 20 MHz bandwidth),
high input imp~dance (minimum of 10 kn over the frequency
range) buffer amplifier must therefore be inserted. However,
for the present purpose, it is considered that more informa-

l'

tion on transducer behaviour is available frorn-a study of
the time domain.

In addition, an investigation of the transmission system
also verifies the accuracy of the electronic pulser model.
(This was also achieved, to some extent in chapter VI).
This has important consequences for transducer'calibration
studies in such areas as medical ultrasonics and non-
destructive testing. It has been indicated by Carson ~)

-..-
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and Erikson 0°} that a ~equi~ement exists for defining a
standard ultrasonic generator to evaluate and calibrate
piezoelectric devices. Such a generator must produce a
short duration voltage tspike' similar to that employed in
most commercial scanning systems. The type of pulser
modelled in Appendix C conforms to this requirement and
may readily be characterised by turn on time and on resistance.

Where possible, all experiments were conducted using the
piezoelectric transducers studied in chapter VI. Full
details on the physical characteristics of these devices
are presented in Appendix D.

Experimental and Measurement Techniques

A diagram of the experimental system employed to investigate
the generation and reception of acoustic transients is shown
in figure 7.28.

In order to minimise diffraction effects a separate trans-
mit-receive configuration was used. It is also possible
to study pulse-echo operation by placing a suitable reflector
in front of the transmitting transducer. However, accurate
measurement of the acoustic pressure wave profile is
extremely difficult because of diffraction and interference
effects.
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wate~ was selected as the t~~sm1ss1on medium because of
its relatively low attenuation characteristics and well
defined acoustic properties. In addition, effective acoustic
coupling to solid media is best achieved by means of a thin
liquid layer between transducer and load. This intermediate
layer may introduce considerable distortion and attenuation
to the transmitted and received waveforms. (See for example,
Redwood and Lamb (3G}).

It should be noted that the relative positions of trans-
mitting and receiving elements may be extremely important
in the determination of accurate wave profiles. In general,
the distance between transducers was maintained at a mini-
mum to reduce attenuation losses; diffraction effects and
possible distortion induced by non-linear propagation
characteristics of the transmission medium.

Measuring systems of the type described are extensively
used in transducer calibration studies where time averaged
output power or peak power are the measured parameters.
However, quantitative measurements of the spatial and
temporal distributions of acoustic pressure are much more
difficult as a result of diffraction effects in the trans-
mitted wave and physical limitations of the detecting trans-
ducer.

The most widely accepted method ot quantitying acoustic
wave distributions is the use of a miniature piezoelectric
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hydrophone probe. Thi$ dev~ce co~prises a thickness mode
piezoelectric ceramic mounted at the end of a rod or cone;
the latter providing acoustic backing and mechanical
support. A typical hydrophone is shown in figure 7.29.
For the purpose of accurate wave measurement, the piezo-
ceramic hydrophone suffers from the following severe limita-
tions.

a. To achieve adequate spatial resolution and directivity
characteristics, a small diameter disc must be employed.
The disc diameter should not exceed 1-2 mm in order to
fulfil these requirements. However, such a small diameter
leads to a fundamental radial mode resonance in the I MHz
region. The radial mode greatly influences the measured
characteristics, making accurate representation of the
acoustic field profile almost impossible.

b. For accurate reproduction of an acoustic waveform,
the hydrophone must possess a flat frequency response
characteristic which extends well beyond the centre fre-
quency of the incident ultrasonic signal. The type of
transducer under consideration ~s-4 ~z) thus requires a
minimum hydrophone bandwidth of 25 MHz. Consequently, for
thickness mode operation, a detector thickness of 0.05 mm
or less is required to obtain the desired frequency response.

However, physical constraints imposed in the construction
of the hydrophone make the manufacture ,of such a receiver
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extremel~ difficult. Electrode mounting and the positioning
of protective layers and ~acking materials generally ensure
that commercially available hydrophones demonstrate extremely
uneven frequency characteristics.

c. The high acoustic impedance of piezoceramic materials
(33 x 106 kg/m2s) compared with water (1.4 x 106 kg/m2s);
gives rise to considerable acoustic reflection at the hydro-
phone face. This perturbs the very acoustic field which
the device is required to measure.

In addition, to achieve a good broadband response, the
hydrophone configuration should possess matched backing.
Materials possessing the same value of acoustic impedance
as the transducer are difficult to manufacture and moreover,
reliable bonding to the transducer is not always guaranteed.

Another measuring technique, adopted by various authors
like Carome (5) and Ying (~) involves the use of a thick
piezoelectric transducer as the receiving element. By
employing a receiving device sufficiently thick that the
transit time is greater than the pulse length of the incident
acoustic wave, reverberation within the receiving element
may be ignored. That is, only those displacement contri-
butions from the receiver front face are included in the
response. Although this technique eliminates uneveness in
the frequency response caused by the reverberation factors,
it also suffers from the following disadvantages:
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1. A s19nl~lcant pe~turbation of the incident acoustic
field takes place as a result of acoustic mismatch and
relatively large surface area of the detecting device.

ii. Such a device does not possess good directional
characteristics. This may distort the receiving response
if the incident acoustic wavefront is non~planar.

iii. Although radial mode effects are confined to lower
frequencies ~l-5 MHz), considerable distortion may be
incurred, especially under conditions of high impedance
electrical loading.

iv. When operating into a high impedance electrical
load, the detector output is proportional to the time integral
of the incident acoustic force. Some authors, for example
Carome ~), utilised a differentiating network, positioned
at the receiver output to achieve a more accurate represent-
ation of the incident acoustic wave. Great care has to be
exercised in order that .the differentiator does not elec-
trically load the receiving element.

However, recent developments in hydrophone technology have
led to the concept of an entirely different type of receiv-
ing device. The polyvlnylldene membrane hydrophone (pvdf)
described by Shotton ~1) and others ( ~S ) has eliminated
many of the disadvantages associated with piezoceramic
receiving elements.
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PVD~ 1s ~ p1ezoelect~ic pl~~t1c poly.me~ which is used as a
thin, acoustically transparent membrane, stretched over an
annular frame large enough to allow the entire ultrasonic
beam to pass through the central aperture. A small central
region of the membrane is coated on both surfaces with metal
film electrodes and 1s polled to induce piezoelectric pro-
perties only within that region. The device may be regarded
as a small sensing element suspended freely in the ultra-
sonic field, which responds to the local'pressure fluctu-
ations associated with the passage of ultrasonic waves.
This type of detector is considered to offer the following
important advantages:

a. The pvdf may be fabricated as a film, with thick-
nesses down to a few microns. Such devices thus possess
fundamental thickness mode resonances far above the range
of interest.

.•b. Radial mode frequencies are related ~ the diameter
of the entire membrane, rather than that of the active
element. Radial mode resonances are thus reduced to a few
kHz.

c. The acoustic impedance of pvdf (4.1 x 106 kg/m2s)
J!

is more closely matched to that of water than ,is the imped-
ance of ceramic materials. Consequently, the acoustic
reflection coefficient at the membrane surface is relatively
low, hence reducing perturbation of the acoustic field and

258



ensuring that the hyd~ophone frequency response is essen-
tially broadband. When. immersed in water, membrane hydro-
phones thus possess a broad, flat frequency response, free
from the effects of reverberation associated with conven-
tional backing and mounting configurations. In addition,
the piezoelectric properties of pvdf (see Table 7.1) are
such that the sensitivity of the device is comparable with
piezocerarnic receiving elements.

A disadvantage of pvdf is the low value of dielectric con-
stant «12), resulting in a transducer static capacitance
of only a few pf. Consequently, the output voltage signal
from the hydrophone is reduced by lead, cable and amplifier
input capacitances.

Another possible drawback results from the thin film leads
being exposed to the water surface. Unless distilled water
is used, the finite water resistance constitutes an elec-
trical load across the active element. In addition, elec-
trical pick-up and interference may result because of the
water conductivity.

However, the latter limitation has been largely overcome
with the recent introduction of the bilaminar shielded
membrane hydrophone (4~) in which the thin film conducting
leads are electrically isolated from the water surface by
a thin layer of insulating material. Although membrane
thickness is slightly increased as a result, no adverse
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effect~ on device ~ertor~ance have yet been re~orted.

While pvdf membrane hydrophones of this type are not yet
commercially available in large quantities, a prototype
b!laminar device was obtained from Marconi Research Lab-
oratories for the purpose of experimental evaluation. The
particular device has an active area of 1 mm2 and a funda-
mental mechanical resonant frequency of 44 MHz. Other
relevant details of the hydrophone parameters (supplied
from the manufacturer) are outlined in Table 7.1. It must
be emphasised that in the course of the experimental work,
the performance of the prototype hydrophone was also under
investigation, as evaluation of the devices has never been
reported under similar conditions.

Simulated frequency response characteristics for this hydro-
phone are shown in figure 7.30, for two values of cable
capacitance, corresponding to 50 pf and 140 pf. Attenuation
as a result of the larger value of cable capacitance is
readily observed. Both characteristics exhibit flat fre-
quency responses up to approximately 10 MHz, after which
they steadily rise to the mechanical resonance of 44 MHz.
Note that for this type of transducer, water loading is
equivalent to medium conditions of mechanical damping. It
should be noted also that both characteristics correspond
to electrical loading equivalent to 1 M~ across the trans-
ducer. The cable capacitance was assumed to act in parallel
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with this resistive element,

Figure 7.31 shows the frequency response characteristics
of a resistively loaded hydrophone. Resistive loads of
1 kO and 10 kO are considered, along with a cable capacitance
of 140 pf. (l40 pf is the manufacturer's stated value for
the cable capacitance of the prototype hydrophone). In
both cases, the response is no longer flat over the important
frequency range of 1-10 mHz, and the hydrophone will thus
distort the ultrasonic wave characteristics. For this
reason, all experimental work was performed with the hydro-
phone connected directly into the oscilloscope amplifier,
which constitutes an electrical load of I MO in parallel
with 20 pf. However, the problem of cable attenuation
remains, and this is expected to considerably reduce the
amplitude of the hydrophone response, but not appreciably
distort the received voltage waveshape.

The latter statement may be explained by considering the
transfer function for the piezoelectric receiver. For the
low value of coupling coefficient (k2 = 0.0225) and
relatively high mechanical loading conditions, it is safe
to ignore the effects of secondary action and hence the
transfer function may be expressed as follows:

261



The total caele capacitance, Cp, is considered to act in
parallel with the transducer. Consequently, the attenua-
tion factor U, may be written as follows:

U (S)

therefore

The receiver transfer function is thus reduced in magnitude
by the cable capacitance, but the phase response remains
unaffected. Magnitude reduction is readily observed from
figure 7.30. For a transducer static capacitance of 2.22 pf
and cable capacitances of 50 pf and 140 pf, a magnitude
reduction factor of 2.70 is evident between the respective
characteristics.

This type of membrane hydrophone is thus expected to faith-
fully reproduce the acoustic waveform for the range of trans-
ducers described in Appendix D. That is, piezoceramic trans-
mitters, with electrical resonant frequencies from 0.5-4 MHz.

Operating characteristics of the receiving device are not
the only conditions which must be considered when attempting
to quantify the ultrasonic waveform. The transducer model
predicts that a plane wave is emitted from the front face
of the piezoelectric transmitting element. In practice,
diffraction effects result in two separate wave components
generated at the front face. A plane wave component, as
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predicted ey the model, and ~ diffracted edge wave component
emanating from the perimeter of the device.

The concept of a direct plane wave, which travels in the
geometrical beam region straight ahead of the transducer,
and diffracted edge waves which travel in all directions
from the edge of the transducer, was first reported by
Kozina and Makarov oq). This later received experimental
confirmation by Carome (4) and subsequent theoretical
investigations were performed by Stephanishen and Robinson
(~\ l. More recent work by Weight and Hayman (~o) demon-
strated the presence of plane and edge wave components in
a water medium by means of schlieren visualisation. Photo-
elastic studies made by the present author (as yet unpub-
lished) have confirmed the existence of both longitudinal
and shear edge-wave components in solid media.

Typical edge and plane wave formations for the transducer
near field are shown in figure 7.32, where interaction
between the two components may be clearly observed.

The transducer near field is defined (10) as that region
in front of the transducer which is given by,
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--
where x is the dist~ce in t~ont ot the t~ansmitting element

Onl

d is the transducer diameter Un}, and
~ 1s the wavelength of the acoustic wave in the trans-

mission medium (m) ,

In the axial far-field of the transducer (ie x ~ d2/~~),
diffraction theory (4\) predicts that the plane and edge-
waves combine to produce a waveform which decays inversely
with distance from the source. For a 1 MHz, 20mm diameter
transducer, the far field commences approximately 70 mm
in front of the transducer face.

The present feedback model assumes only plane-wave propaga-
tion from the transmitting device. Consequently, the model
cannot produce a totally accurate representation of the
ultrasonic wave profile in either the near or far fields.

However, experimental verification of the plan~-wave character-
....

istics (as predicted by the model) is possible- by careful
positioning of a suitable receiving element within the
transducer near field. Ideally, the detecting device should
be placed as close as possible to the transmitter face,
without incurring unwanted reverberation between transmitter

r-
and receiver. Although edge-wave distortion is considerably
reduced towards the near-field/far-field interface, (the
edge-waves decay in proportion to l/x, plane waves theor-
etically remain unattenuated within the near field) this
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area should not be used tor accur~te me~surement of the
plane-w~ve component. As discussed previously, the trans-
mitted plane-wave char~cteristics often incorporate high
frequency components in the form of spikes and other rapid
discontinulties~ Such features are likely to be obscured
as a result of attenuation and frequency selective absorp-
tion induced by a relatively long water column.

Consider a detector situ~ted on the axis and close to the
transmitting device. A study of figure 7.32 indicates that
several plane-wave cycles may be received before edge-wave
interference starts to take place. The number of undis-
torted plane-wave cycles which can be measured in this

.manner increases as the transducer diameter increases in
relation to the fundamental wavelength. That is, axial
near-field diffraction effects are reduced for transducers
of large diameter to thickness ratio~

It should be noted that.measurements of this nature may
only be performed using a small detecting device which
causes minimum perturbation of the acoustic field. The
pvdf hydrophone is ideally suited to this purpose. Measure-
ment of the plane-wave component within the near field by
means of a detector of dimensions compatable to the trans-
mitting element is extremely difficult, due to edge-wave
distortion and field perturbation.
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Recently published work by ~1ng ~S} has reported on trans-
ducer near-field behaviour using a thick, disc transducer
as the detecting device. Experimental results were shown
to be in close agreement with computer simulations based on
Mason·s model. This is surprising in view of the expected
distortion associated with this type of detecting trans-
ducer.

7.4ii Experimental Results

This sub-section presents a representative set of experi-
mental results, which may be conveniently grouped into two
parts. Firstly, various acoustic field profiles for a
I MHz (electrical resonance) piezoelectric transmitter are
considered. The device was backed at its rear face by
the lead based epoxy, Devcon L; described in chapter VI.
The transducer front face operated directly into the water
column. Different electrical driving conditions were con-
sidered, representing various methods of transient excita-
tion. In each case the detecting element was the pvdf
membrane hydrophone, positioned 15 mm in front of and
axially with respect to the transmitter face.

Secondly, the loop response characteristics for a transmit-
receive system incorporating two circular disc, piezoceramic
devices a~e considered. In this case, the receiving element
consisted of an air backed, water loaded transducer with
an electrical resonant frequency of I MHz. The transmitting
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element W~S the ~ame transduce~ em~loyed in the ~revious
experiments, le the 1 MHz, le~d epoxy backed, water loaded
device. Consequently, a comparison could be made between
the known plane-wave profile and the actual output from
a detecting transducer. The driving conditions were main-
tained constant, while the detecting response was investi-
gated under a variety of electrical load conditions.

In order to minimise edge-wave interference, the receiving
element was placed axially at a distance of 70 mm from the
transmitter. This corresponds to the end of the near field.
Although some frequency smoothing of the acoustic wave
is expected in such a long water column, integration effects
in the receiver are expected to dominate and hence the
measured ~haracteristic should compare favourably with the
predicted receiver response. Accurate measurement of the
acoustic wave profile is thus not possible using this tech-
nique.

Consider firstly the transducer-hydrophone configuration.
Figure 7.33 compares experimental and simulated results for
the loop response of the system. That is, the responses
correspond to the hydrophone output. The electronic driving
network ls also shown corresponding to a 300 V step input
from'the FET pulser. Excellent agreement is observed
between the two waveforms, with secondary effects clearly
evident from the positive exponentials contained in the
characteristics.
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Figure 7.34 outlines the simul~ted plane wave of force
expected under the same driving conditions. Apart from the
inversion Clntroduced by the receiving element) and amplitude
scaling factors, the theoretical response characteristics
of figures 7.33 and 7.34 are almost identical; demonstrating
that the membrane hydrophone accurately represents the
incident ultrasonic wave profile.

Figure 7.35 shows the simulated and experimental response
profiles for a driving system incorporating a lower value
of.blocking capacitance (100 pf).

In this case, the almost square-wave nature of the character-
istics indicates a reduction in secondary action, as dLs-
cussed in Section 7.2iv. Once again, excellent agreement
is obtained between experimental and theoretical waveforms.

Figure 7.36 indicates the response of a resistively loaded
transmitter (lOOn). Experimental results are shown for two
different time scales corresponding to 5 ~s (A) and 1 ~s (B)

per division. Photograph B clearly demonstrates the edge-
wave, which occurs after the plane wave component. The
edge-wave is of course not predicted by the model. A close
study of the figures reveals negative exponential behaviour
over the first Wave cycle, thereafter positive exponentials
exist as a result of secondary piezoelectric action. This
phenomenon was also described in Section 7.2iv.
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The final configuration studied w~s that of an inductively
loaded transmitter, as shown in figures 7.37(a and b),
corresponding to inductance values of 4.7 ~H and 2.2 ~H
respectively. In each case, a load resistance of lOOn was
also connected in parallel with the transducer. This type
of configuration Is common in some non-destructive testing
applications (10) where the electrical load impedance is
used to shape the driving pulse.

From the figures it is evident that the system response
varies considerably as the inductance value changes. A
much higher output is achieved for the larger value of
inductance and in both cases, considerable waveform dis-
tortion is evident. Favourable agreement between simulated
and experimental response characteristics is again achieved.
However, there is some disparity, particularly in figure
7.37b, where the sharp discontinuities observed in the
theoretical trace tend to be smoothed out under practical
conditions. This is thought to be caused by frequency
dependent attenuation in the transducer material and water
column. In addition, the inductance values may not be
completely accurate over this range of frequencies, since
they were only specified up to 100 kHz.

For all of the characteristics shown in figures 7.33 through
to 7.37b, excellent agreement was obtained between simulated
and pr~ctical response measurements. The membrane hydro~
phone was shown to perform extremely well in providing
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accunat;« bl.1;o;rma,t~.onconce;z;-nin<]th.eult:ra$onic wave profile.
As expected from Section 7.2, the nature of thl$ wave pro-
ftle varied enormously under different conditions of elec-
trical load. Such variations are not always apparent when
using conventional hydrophone detecting techniques. It
should be noted, that to obtain an accurate description of
the entire acoustic field, diffraction effects must be
considered. The present feedback model thus requires
further work in order to overcome this limitation.

The second set of experiments involved an investigation of
the loop response characteristics of a separate piezoceramic
transmit-receive system. In each case, the transmitter con-
figuration remained constant, corresponding to step excita-
tion as shown in figure 7.33. Various electrical loading
conditions for the receiving element were studied.

Figure 7.38 compares practical and simulated response
characteristics for the 1 MHz, air backed, water loaded
receiving element looking directly into the oscilloscope.
In this mode, the receiver may be considered open circuit,
ie no secondary action may occur within the device. The
integrating action of the receiving transducer may readily
be observed from the triangular nature of the waveshape.
In addition, the light damping produces a narrowband
response. Excellent agreement 1s obtained between practical
and theoretical results.
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Figure 7.39 shows the system ~es~onse when a 1000 resistor
ls connected across the receiving element. In this situa-
tion, secondary action has a considerable influence on
receiver behaviour~ This is indicated by the relative wave-
form distortion and bandwidth increase when compared with
figure 7.38. Once again, close agreement is obtained between
experimental and simulation results.

The final configuration to be investigated was that of the
inductively loaded receiver, as shown in figures 7.40 (a and
b) respectively. Inductance values of 2.2 ~H and 20 ~H were
considered and in both cases a 100~ shaping resistor was
connected in parallel with the inductive element. In figure
7.40a, the low value of inductance tends to dominate the
response, resulting in considerable distortion and amplitude
reduction. This is to be expected, from the discussion in
Section 7.3ii. As the inductance value is increased, the
influence of the component diminishes and the ~esistive

~

element tends to dominate the response. This-is readily
observed by noting the similarity between figures 7.40b and
7.39.

7.5 CONCLUDING REMARKS

Piezoceramic transducer behaviour has been inve'stigated over
a wide range of electrical and mechanical load conditions.
Where possible, feedback syste~s theory was used to descrihe
operating characteristics for both transmittini and receiving
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modes. The theo~etic~l investi9~tion w~s expe~imentally
verified for tr~nsducer oper~tion in the time domain.
Experiment~l results were found to be in close agreement with
simulated response characte~istics within the limitations
of the feedback models. A pvdf hydrophone was shown to be
successful in verifying ultrasonic plane-wave profiles.
The major results concerning transmitter and receiver opera-
tion may be summarised as follows:

i. For the piezoelectric tr~nsmitter, the frequency
of maximum output is generally lower than the frequency of
mechanical resonance. Under conditions of light mechanical
damping, peak output occurs close to the frequency of elec-
trical resonance. For low values of coupling coefficient,
secondary action is reduced and maximum output tends towards
the frequency of mechanical resonance. Under conditions of
light damping, secondary piezoelectric action serves to
increase the -3db bandwidth of the output signal.

ii. The generator source impedance plays an important
role in determining the output force characteristics. For
voltage sources of very low output impedance «50), secondary
effects are maximised and in addition, transmitting response
is independent of any external electrical load (for example,
matching elements} connected across the device. As source
impedance increases, secondary effects are reduced along
with the amplitude of the output w~ve of force. Under con-
ditions of heavy damping and high values of source resist~nce
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the transmitter model may be considered open loop. Varia-
tions in source impedance have most influence under condi-
tions of light damping.

iil. The receiver model may he considered open loop if
the receiving transducer operates under high impedance elec-
trical loading conditions. In this case, the response is
proportional to the time integral of the incident wave of
force. Under such conditions, peak output occurs at the
frequency of mechanical resonance, for the majority of
mechanical load configurations. However, for conditions
of heavy damping, maximum output may occur below this fre-
quency.

iv. When the receiving element is electrically loaded
by a finite impedance, secondary effects are introduced.
These are maximised for small values of load impedance and
may lead to considerable distortion of the output voltage;
especially under conditions of light damping. The voltage
response also suffers attenuation with decreasing elec-
trical load impedance.

v. For both transmitting and receiving elements,
inductive matching may be employed to optimise bandwidth
and centre frequency. Such responses are most easily pre-
dicted under conditions of heavy mechanical damping. Con-
siderable distortion (ie the presence of rapid discon-
tinuities} of the output waveshape may also occur under
some conditions of inductive loading.

273



vi. Both tr~nsmitting ~nd receiving configur~tions
demonstr~te an incre~se in b~ndwidth with increased mech-
anical loading. In ~ddition, the effects of secondary
~ction diminish with frequency and increased mechanical
damping.

During the course of the experimental investigation, it
was emphasised that the present feedback model is unable
to cater for diffraction effects. This limitation must
he overcome if the techniques employed in this chapter are
to he employed in the accurate determination of transducer
field characteristics. Further discussion on this aspect
is presented in chapter IX, under the section ~suggestions
for further work'.
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CHAPTER VIII

DIRECT EVALUATION OF TIME DOMAIN RESPONSE



8.1 INT~ODUCTION

This chapter describes a method for obtaining detailed pre-
dictions of the time domain response for piezoelectric
transducers operating in both transmitting and receiving
modes. The technique makes use of the Z-transform to
determine the behaviour of the reverberation factors KF and
KB• By means of the substitution Z = eST, a direct des-
cription of these functions is readily obtained in the
Z-domain and after suitable sampling of the input waveform,
a wide variety of system responses may be conveniently
investigated.

Time domain response is achieved with a minimum of compu-
tational effort and the need to transform from frequency
to time is eliminated. As a result, the sampling and IFFT
processes described in the previous chapters are excluded,
providing considerable memory and time saving.

However, it must be stressed that the advantages in compu-
tational effort are only offered if both transmitting and
receiving transfer functions are considered open loop,
permitting the transformation from the S to Z domain to be
performed with relative ease. Although various transform
technl~ue~ are available to aid the S to Z transformation
for a closed loop system, the resultant mathematical com-
plexity offers no significant advantages in computational
effort, over the techniques described in chapter VII.
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Consequently, the modelling techniques' described in this
chapter are only applicable to situations where secondary
piezoelectric action may be neglected. It will be recalled
from previous chapters that this assumption is valid under
one or more of the following operating conditions:

1. Low value of electromechanical coupling coef-
ficient (K < 0.15),

ii. Under conditions of high mechanical loading {heavy
damping}, and

iii. When the associated electrical load impedances
are high. In the case of the transmitting mode, this may
occur as a result of high source resistance, or in the
receiving mode if the transducer is electrically free as
a result of high load impedances.

Conditions (ii) and (iii) are not uncommon in practice,
especially in acoustic imaging and non-destructive testing
wideband applications where heavily damped transducers are
frequently employed. By means of the methods outlined in
this chapter, excellent approximations to the time domain
response of such systems may be obtained. If required,
the frequency response may also be obtained, either from
an FFT routine, or by appropriate substitution for the
delay operator Z. The next section describes the appli-
cation of the Z-transfor.m to the transmitter and receiver
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transfer functions and how the resultant model may be con-
veniently implemented on a digital computer.

8.2 REPRESENTATION OF THE OPEN LOOP TRANSFER
FUNCTIONS IN THE Z-DOMAIN

8.2i The Open Loop Transfer Functions

The open loop transfer function relating input voltage to
force leaving the transducer front face may be expressed
as follows for the transmitting mode:

Fl (5)
e (5) = -[-Z-O--+--Z-E-Z~:--Z-O-ZE--SC-O-]

= - Z (5) K· (S) hC AF
I F 0 2

1

ZI~} is a transfer function which relates the signal gener-
ator voltage (e(S» to the voltage across the transducer
static capacitance, Co under general conditions of elec-
trical load. That is,

2

where VCo (5) is the voltage appearing across the static
capacitance of the transducer. The relationships between
VCo' e and the various electrical loading elements is illus-
trated in figure 8.1. The output force is now described by
the following transform equation, where VCo ls regarded as
the input voltage to the system.
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Similarly, the open loop transfer function for the piezo-
electric receiver may be expressed by the following equa-
tion:

therefore

4

It should be noted that this relationship is valid for a
receiving transducer which is free of any external elec-
trical loading, or where the load impedances are so high
that they may safely be neglected. As such, the equation
is exact and valid over all conditions of mechanical load.
However, for the transmitting transfer function, secondary
piezoelectric action is assumed negligible because of low
coupling factor, heavy damping or high electrical loading.
It is therefore an approximation, valid under one or more
of these operating conditions.

The quantities Veo and FI contained in equations 3 and 4
may be regarded as system inputs for transmission or recep-
tion respectively. In the subsequent analysis, they are
represented by a set of samples; each sample approximating
to a weighted impulse and separated in time by the appropriate
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sample spacing. Howeve~, ti~st tt is necessary to mani-
pulate the transfe~ tunctions into forms suitable for
direct analysis in the time domain.

8.2ii The Open Loop Z-Transfer Functions

The reverberation factor KF, which occurs in both trans-
mitter and receiver open loop transfer functions, may be
expressed in the S-domain by the following equation:

5

It was also shown in chapter III, Section 3.4 that the time
domain representation of KF may be considered as a train
of weighted impulse functions, alternately changing in
sign and separated by the transducer transit interval, T.
That is, the impulse response of KF is described by the
following weighting sequence:

~tt) = ~t - (1 + Ra) ~(t - T) + RB(l +~) ~(t - 2T)

+ ~RB(l + RB) 6(t - 3T) + ~RB2(1 + ~) 6(1 - 4T)

- ~2RB2(1 + Ra) ~(t - ST) + ~2RB3(1 + ~) B(t - 6T) _

where ~ is the Dirac Delta Function,

therefore
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KFttl = ~t ...u +Ral [t ~RBln ~Lt ...{2n +llT11 +
n=O

+ Ratl + ~l[~
~RB}n 15tt ...2{n +llT) ] 6

Now consider the input to the transducer tin either trans-
mitting or receiving modes) to be represented by the time
varying sequence x{t). By sampling x{t), the input may be
considered as a train of weighted impulses, defined by the
following equation for n samples:

n
Xs (t) = [ x(tAt) 6 (t - tAt) -------

1=0

7

where ~t is the sampling period and x(i~t) represents the
pulse train.

A convenient method for dealing with such sampled data is
the Z-transforrn, which is defined as follows:

'\ -R.x{Z) =L x{1~t) Z
1=0

where Z = eSAt•

Hence z-i simply represents a. del~y of isarnples.
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Furthermore, it may be shown that i~ a sampled data input
xsttl 1s applied to a linear system possessing a weighting
sequence httAt}, then the output is defined in the Z-domain
by the following relationship:

y (_Z) = X (_Z) H (_Z) 8

The z-transfer function of KF may be obtained by substitut-
ing for e-ST in equation 5. However, additional insight·
into the nature of the process and selection of an appro-
priate sampling interval is obtained if the Z-transform is
derived directly from the weighting sequence defined by
equation 6.

Let the sampling period be an integer multiple of the trans-
ducer transit time. That is,

T = mAt

This is a necessary condition in order to obtain the Z-
transfer function of the transducer weighting sequence.
For example, a delay of one transit interval is represented
in the S-domain by the delay operator e-ST• In order that
this may be represented in the Z-domain by an integer
number of samples, the following relationship must be
satisfied:

= e...smAt

le T = mAt
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Another constraint on the sampling process is ,that the
sampling trequency must be greater than twice the highest
frequency component in the system, in order to prevent
aliasing in the frequency domain. In the case of the piezo-
electric transducer, this is readily satisfied if m )10.

Equation 6 may now be written as follows:

~(tl = 6ltl + RaU + ~l [{~o(~Raln 6(t - 2{n + IhnAt) )

- U + Ral [~o (~Raln s It - (2n +llmAt)]

therefore

~ttAtl = 6lUtl + RBll + ~) [{~o(~Ra)n s (tAt - 2 x

x (n + l}mAt») - (1 + Ral [~=o(~Raln ~(tAt

- (2n + 1lmU l )

00

therefore ~tzl =I HUtlZ-t

£=0
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co

= 1 + Ra U + R_r)L (R_rRa)n Z-2(n + Urn
n=o

00

- (1 + Ra) L (RFRB)n z-{2n+ l)rn
n=o

co

= 1 + Rat1 + R_r)Z-2rnL {R_rRaZ-2rn}n
n=o

co

- (1 + Ra) z-rnL {R_rRBZ-2m}n
n=o

therefore

co

RTtZ) = 1 +L {~Raz~2m}n {Rat1 + R_r)Z~2m - t1 + Ra)Z~m}
n=o

Taking the sum to infinity for the geometric progression
results in the following expression for KF(Z):
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y (Z)
=-

x (Z)
9

where ytZ) and X(Z) are the notional output and input
functions respectively, of the system represented by KF{Z).

Therefore

Inverse transforming this expression results in the follow-
ing recursive equation describing the output sequence yen).

ytn) = x{n) - (I + RB) x{n - m)

+ RB x In - 2m) + ~RB yen - 2m) ---- 10

Consider firstly the piezoelectric transmitter transfer
function,

x{n) = Vco (n)

and hCo AFFl{n) ~ -yen)
2

Consequently, the transmitter may be modelled by the
recursive network outlined in figure 8.2.

,
This model may be ideally implemented on a digital computer.
By sampling the input voltage, an approximation to the out-
put wave of force may be obtained for a variety of mechanical
loading conditions. In addition, a wide variety. of input
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voltages may be accommodated, p~ovided they a~e compatible
with the constraints imposed by electrical loading in a
practical system.

In a similar manner, the open loop receiver transfer function,
described in equation 4, may be implemented by the recursive
model shown in figure 8.3.

It should be noted that the integrator in figure 8.3 could
have been replaced by the Z-transfer function Z/Z - 1 and
a new recursive equation developed. However, in terms of
programming effort, a single subroutine was used to simu-
late the recursive equation (10) for both transmitting and
receiving modes. Consequently, it was found more convenient
to simply integrate the sampled data by means of the trape-
zoidal rule, in order to obtain the receiver response.

The frequency response may be obtained by performing an
FFT on the output data samples or by replacingjZ with ejwt..
in equation 9. From this, direct equivalence-between equa-
tions 9 and 5 may readily be observed.

8.3 COMPUTER SIMULATION

A computer program was written to simulate transducer
1!

response in both transmitting and receiving modes. In
addition, the loop response in a transmit-receive configura-
tion was also evaluated. A general flow chart describing
the package is shown in figure 8.4, and a complete listing
Is glven in Appendix E.
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The input samples xIDl are,generated by sampl!ng a known
time function which corresponds to either input force or
input voltage. The samples are therefore assumed to be
impulse functions with amplitudes equal to the values of
the input time waveform at the sampling instants. A
variety of input pulse shapes is incorporated in the pro-
gram, including the unit step, rectangular pulse of vary-
ing width and gated CW of varying frequency, consisting of
one half cycle up to 50 cycles. In addition, the voltage
input from a capacitive discharge pulsed system (as des-
cribed in Appendix C) is also included. The consequences
of varying matching and pulse shaping elements are thus
readily observed from the response curves. Some of the
results obtained are presented in the following section,
along with a comparison with those obtained from the exact
(feedback) model.

8.4 RESULTS OF COMPUTER SIMULATION

In order to illustrate the main features of the modelling
technique, two sets of simulations were performed for
different conditions of electrical 'and mechanical loading.
Medium damping t50 per cent matched backing, glass load)
and heavy damping (ideal backing, glass load) were con-
sidered, while the transducer was electrically driven under
the following pulsed conditions:
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a. Capacitive discharge, with a resistor ~} con«
nected across the transducer,

b. Capacitive discharge, with the parallel cornbina-
tion of a resistor ~) and inductor (LE) connected across
the transducer.

A general equation describing th~ transient input voltage
is derived in Appendix C and from this, the ~ampled input
voltage waveform may be expressed as follows:

-v e-a (.tAt)
mVcot.tAt) = _~----

toaw
-ato{sin w.tAt- e sin w(.tAt- to)}

where to is the turn on time of the pulser,
Vm is the magnitude of the applied voltage ramp
function,

1a =
2~(Co + CB)

[LE tco
1
+ 1 tw =

CB) 4~2 (Co + CB) 2

Co' CB are the transducer static capacitance and block-
ing capacitance respectively, ~nd

Co + CB
a = __';'_-='

In each case, the output wave of force was obtained and com-
pared with the theoretical waveshape obtained under closed
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loop condition~ by means ot the IFFT. This latter tech-
nique, which includes secondary piezoelectric effects was
described in chapter VII and corresponds to an exact solu-
tion. As a result, waveshapes obtained using this tech-
nique are labelled 'exact solution' in some of the simula-
tion diagrams. For completeness, the response of an identi-
cal piezoelectric receiver was also calculated. The
receiving transducer was assumed to be on electrical open
circuit and subject to the same mechanical loading condi-
tions as the transmitter.

Consider firstly the situation where the transmitter is
electrically loaded by a resistive element connected across
the electrodes. The following nominal values were Jassumed:

to = 10 ns

CB = 2.2 nF
Co = 1.26 nF
K = 0.48

~ = 1000

~ = Unity

The simulation results are shown in figures 8.S(a-c) and
8.6la-c) which correspond to conditions of medium and heavy
damping respectively. A close examination of figures
8.Sla and b) reveals that the form of the output wave of
force is similar in each case. However, the effects of
secondary action are evident in the latter figure and are
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recognisable by a reduction in the slope ot the exponen~
tial parts ot the function. This flattening of the wave-
shape is to be expected from the analysis performed in
chapter VII, which considered the first transit interval.
It was demonstrated that during this time interval, secondary
piezoelectric action introduced an exponential increase
to the waveshape (positive feedback). However in this case,
the input voltage corresponds to a negative exponential
function which acts in opposition to the secondary effect,
hence flattening the waveshape.

Figures 8.6(a and b) show the corresponding waves of force
under conditions of heavy damping. In this instance,
secondary action has been further inhibited by the increased
mechanical loading and the two figures demonstrate a very
close correlation, although a slight amount of flattening
may be observed in the latter figure.

The transmit-receive (loop) response characteristics for
both systems are outlined in figures 8.Sc and 8.6c; corres-
ponding to medium and heavy damping respectively. The
expected increase in output bandwidth with damping is
readily apparent, as indicated by a reduction in the number
of cycles in figure 8.6c. Integration due to the open
circuit receiver may readily be observed.

The second set of simulation results correspond to the
piezoelectric transmitter loaded electrically by the
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parallel combination o~ a ~e~i~to~ ana inaucto~. The
following nominal component value~ were employed:

ton = 10 ns
CB = 10 nF
Co = 1.26 nF
K = 0.48

~ = lOOn
LE = 2.4 ~H

The form of the voltage observed across the transducer
static capacitance Vco' is shown in Appendix C, figure C3,
where the effects of underdarnping may readily be observed.
Values of LE' CE and ~ were selected in order that the
oscillation fr~quency was as close as possible to that of
the mechanical resonance (00 = 2w x 0.9655 rads/sec).

Simulated waveforms are shown in figures 8.7(a-c} and
8.8(a-c); once again corresponding to medium and heavy
damping respectively. A close study of figures 8.7(a and
b) and 8.8(a and b} reveals excellent agreement between
the open loop approximation and the exact (closed loop)
solution. The amplitude is higher in the case of medium
damping due to the constructive effect of the applied
voltage and the mechanical oscillations within the trans-
ducer. Under such conditions, an inductor may be used
to increase the output energy, although it must be noted
that a narrowband output ensues. These effects are also
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evident from the received volt~~e w~veforms shown in
figures 8.7c and 8.8cI where the number of cycles has been
suestant1~lly 1ncre~sed in comparison to the previous situ-
ation of only resistive loading. It should be noted that
the amplitude increase in figures 8.7 and 8.8 is due to
a combination of inductive matching and an increase in
the blocking capacitor CB' Increasing CB from 2.2 nF
to 10 nF increases the initial deposition of charge to
the transducer system.

It was stated in Section 8.1 that this modelling technique
is valid only if secondary piezoelectric effects may be
eliminated from the transfer function. Although such a
stipulation implies that conditions of light damping are
automatically invalid due to enhanced secondary action,
it is interesting to compare the approximate model response
under these conditions of mechanical load.

Simulated responses for the output waves of force are
shown in figures 8.9(a and b), corresponding to a water
loaded, water backed transducer. It is immediately apparent
that under such conditions, the approximate model breaks
down. The open loop response of figure 8.9a indicates
excessive ringing which corresponds to an extremely narrow-
band sign~l. In figure 8.9b however, secondary piezo~
electric action has reduced the ringing as well as intro-
ducing considerable distortion to the output waveshape.

291



This reduction in the nurnber o~ cycles (.tean increase in
overall bandwidthl is to be expected from the simulation
studies perfor.med in chapter VII, where it was demonstrated
that the effects of feedback in a lightly damped trans-
mitting system were;

i. a reduction in the centre frequency from mechanical
resonance, and

ii. an increase in the system bandwidth.

As a 'result of U) the frequency of the driving voltage
is no longer close to the frequency of maximum output force
and hence the effect of secondary action is to reduce the
amplitude and increase distortion in the output force wave-
form. This may readily be observed by comparing figures
8.9(a and b). As a consequence of (ii), the number of
cycles is reduced.

8.5 CONCLUDING REMARKS

The validity of using Z-transform techniques to model piezo-
electric transducer behaviour directly in the time domain
has been demonstrated. Transducer response to a wide
variety of input waveshapes may be obtained with a minimum
of computational effort for both transmitting and receiving
modes. The model has been shown to approximate very closely
to the exact transmitter response under conditions of
medium and heavy damping. However, the method should not
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ee used under condttions ot l~~nt d~p~ng. Th~t is, when
both f~ces of the tr~nsducer are subject to light mechanical
loading.

In many practical instances, the transducer is subject to a
considerable amount of external damping. This is often
deliberate, as in the case of wideband applications where
heavy damping serves to increase bandwidth; or may arise
directly as a result of probe construction. An example
of the latter effect is the perspex 'wear plate' incor-
porated in many non-destructive testing probes. This is
designed to protect the crystal face from damage and as
a result, mechanical damping is increased. The Z-transform
technique is extremely useful for predicting transducer
response under such conditions.

Furthermore, a value of electromechanical coupling coef-
ficient equal to 0.486 was used in the simulations; corres-
ponding to the ceramic material PZTS-A (lead zirconate -
titanate). For materials possessing lower values of coupl-
ing coefficient, secondary effects are diminished and the
open loop approximation becomes valid over a wider range
of mechanical load conditions.
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CHAPTER IX

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK



9.1 CONCLUDING SUMMARY

A systems approach has been applied to the study of thick-
ness mode, piezoelectric transducer behaviour. Based on
this theory, systematic, detailed investigations of recep-
tion, transmission and device operational impedance char-
acteristics were conducted. A wide range of electrical and
mechanical boundary conditions were included, for both CW
and transient modes of operation.

Considerable emphasis was placed on the effects of electrical
loading on transducer performance; as this has been an area
subject to some neglect in previous work, particularly under
transient conditions. Techniques for modelling transient
piezoelectric systems were proposed, and these were shown
to be successful under experimental conditions.

By deriving the transduction equations in a feedback systems
manner, the resultant model is considered to overcome many
of the inherent limitations of current transducer models.
The model and the modelling technique, described in chapters
III, IV and V, possess the following main advantages.

1 The model utilises realisable elements involving
feedback mechanisms which clearly illustrate the physical
phenomena involved.

2 The modelling involves basic concepts which do
not require advanced knowledge of electric circuit topology_
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It is thus easy to use and implement.

3 The model is truly wideband, suitable for the
analysis of transient and ew applications; under a wide
variety of electrical and mechanical loading conditions.

4 All piezoelectric, mechanical and electrical para-
meters which influence transducer behaviour are readily

.identified and may conveniently be evaluated for design con-
siderations.

5 The thesis highlights the importance of secondary
piezoelectric action on transducer behaviour. This is
clearly modelled as a feedback effect, with current, charge,
force or particle di,splacement as the feedback quantities.
Illustrated in this manner, the complex mechanism of second-
ary action is considerably clarified and moreover, factors
influencing secondary action, such as electro-mechanical
coupling, frequency, mechanical damping and electrical load-
ing, are readily identified.

Techniques for measuring such transducer parameters as thick-
ness mode coupling coefficient, static capacitance, acoustic
impedance ratios and mechanical bond integrity were also
proposed. Although the preliminary results were very
encouraging, it must be emphasised that further work is
required, particularly to encompass a wider range of trans-
ducer frequencies and specimen geometries. It is hoped
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that the measurement techniques described in chapter VI will
provide a basis for further work in the design of single-
element ultrasonic proves and multi-element transducer arrays.

In the course of the experimental work, a prototype pvdf
membrane hydrophone was employed to accurately monitor ultra-
sonic pressure wave profiles in a water tank. From the
results presented in chapter VII, it is considered that this
device performs considerably better than other, commercially
available hydrophone probes. As a result of this work, there
is a possibility of further collaboration with the hydrophone
manufacturer in the area of hydrophone simulation and cali-
bration.

In conclusion, it is considered that the work presented in
this thesis provides enhanced understanding of piezoelectric
transducer systems behaviour and it provides a comprehensive
basis for further investigation of such systems. The follow-
ing section indicates some of the more important areas which
would benefit from further investigation and analysis.

9.2 SUGGESTIONS FOR FURTHER WORK

The feedback model was developed with two principal aims in
mind. Firstly, an improved understanding of piezoelectric
transduction and the various factors which influence that
process in thickness-mode transducers. Secondly, that the
model forms part of an overall system concept which may be
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used to aid the design of single element piezoelectric
probes, multiple element transducer arrays and the electro-
mechanical boundary conditions which affect the operation
of such equipments.

Towards the latter aim especially, much additional work
remains to be done, and the following pages present a brief
summary of what are considered to be the more significant
areas requiring further research.

9.2i Transducer Vibrations Other Than in the Thickness
Direction

One of the fundamental assumptions made in the development
of the present transducer model is that of single mode wave
propagation in the thickness direction. However, in the
course of the present work, radial mode vibrations were
clearly evident and that under certain conditions they had
a significant effect on transducer response. For example,
radial mode effects were" shown to have greatest influence
on transducers of low diameter/thickness ratio under condi-
tions of electrical open circuit. This behaviour is not
predicted by the feedback model and in particular, the
latter phenomenon is not fully understood. Consequently,
further investigation into lateral vibration in a disc or
plate transducer is required.
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Lateral mode vibration is of p~rticular importance in the
development of multi-element transducer arrays for ultra-
sonic beam steering, scanning and focussing. Individual
transducers within such phased arrays are subject to spac-
ing and size restrictions which result in lateral modes
comparable in frequency with the thickness vibration. As
a result, accurate design of the beam profile output from
ultrasonic phased arrays, is extremely difficult.

Since it is intended to extend the present model to aid
the design of ultrasonic arrays, much further work is nec-
essary to investigate the characteristics of lateral modes
in order that effective methods of reducing their contri-
bution may be achieved.

At the present moment it is doubtful whether there exists
an exact mathematical solution describing the coupling
between thickness and lateral vibration in either circular
disc or rectangular plate transducers. Or, for that matter
whether the solution may be incorporated within a suitable
model.

Some approximate methods have been attempted, largely without
success. For example Smith (Sll extended Mason's model
by including an extra transmission line, describing the
radial mode. However, the approach was not rigorous and
no meaningful results were achieved. As an extension to
the present model, a feasibility study into lateral mode
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vibration and the possibility of incorporating it within a
feedback systems concept is currently being investigated.

9.2ii Mechanical Boundary Conditions Possessing
Finite Thickness (Layers)

Development of the feedback model assumed that all mechanical
loading media extended indefinitely away from the transducer.
However, in practical probe designs, the load and backing
materials often constitute layers of finite thickness. This
may be deliberate; for example quarter wave matching to
improve transmission characteristics or the incorporation of
a protective 'wear plate' in some ndt probes. In addition,
poor bonding between transducer and electrodes, transducer
and backing, transducer and wear plate etc, may produce
additional layers which can significantly distort the trans-
ducer waveshape.

Consequently, in order to apply the present work to the
design of such probes provision must be made for extending
the model to include layered media at both faces. Although
this is technically feasible, the overall complexity of
the transmission and reception block diagrams increases with
the number of layers, obscuring much of the clarity contained
in the original model. This is one of the reasons why layered
media were not included in the development of the transducer
model. In addition, as described in chapter II, much work
has already been performed in the investigation of layered

299



load and backing media.

9.2iii State - Space Representation of Transducer Behaviour

It has been demonstrated that the feedback model offers con-
siderable insight into piezoelectric transducer behaviour.
However, it should be noted that there exists an alternative
strategy to the block diagram, transfer function approach
described in the thesis. This alternative strategy may well
prove attractive for the modelling of multi-mode, multi-
layered transducer systems.

The analysis of transducer behaviour may also be approached
by means of the state space concept, in which the device is
characterised by a set of first order differential (or
difference) equations which describe the state variables of
the system. It may thus be possible to define an optimum
set of state variables in the sense that all quantities are
of clear physical significance to the transducer system.
Transducer performance is then evaluated by solving a set
of first order equations, rather than a single higher order
equation.

The viability of this approach to electro-acoustic ~ystems
has been confirmed by Ashley t' ) who applied state variable
theory to aid the design of an electrodynamic loudspeaker.
Although a complete investigation has yet to be performed,
the state variable concept may well prove attractive for
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the study and modelling of piezoelectric transducer systems.

9.2iv Diffraction and Transducer Beam Characterisation

As indicated in chapter VII, there exists no provision within
the present transducer model to accommodate diffraction effects
in the ultrasonic sound field. Although the model accurately
describes a plane wave component leaving the transducer face,
the diffracted edge wave component is not included. The

1presence of an edge wave influences not only the shape of a
transmitted acoustic pulse, but also transducer beam profile
characteristics.

Figure 9.1 shows the instantaneous sound field characteristics
of a 1 MHz transducer operating into a crown glass load via
a thin film of water based couplant. The transducer is air
backed and electrically driven under transient conditions.
The photograph was taken by means of a photoelastic tecnnique
using apparatus specially constructed for the investigation
of transient ultrasonic stress pulses in transparent solid
media.

In the photograph, the main longitudinal wave component may
readily be identified along with trailing shear waves·arising
directly from edge-wave diffraction. As well as shear mode
edge-waves, longitudinal edge-waves also exist, although
these are not readily apparent from the figure. The photo-
graph was taken at a particular instant in time to illustrate
far-field conditions.
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Figure 9.2 shows the sound pressure output from the same
transducer, but viewed at an earlier instant, in order to
demonstrate near field conditions. Once again, plane and
edge wav.e components may clearly be resolved.

It is evident from figures 9.1 and 9.2 that the transient
sound field is extremely complex, and particularly so for
solid media. Some simplification may be achieved with liquid
loading, due to the absence of shear components. It is
however, considered possible to accurately predict wave and
sound field profiles using the feedback model.

This method involves the translation of each pressure pulse
leaving the transducer into its CW components by means of
an FFT. Each CW component is then allowed to propagate to
the field point of interest using diffraction theory. The
components are then assembled in the correct phase using an
IFFT and the pressure amplitude calculated.

This technique may be employed to calculate the pressure
wave profile in both near and far-fields; that is, the actual
pressure wave incident on a receiving transducer. It may
also be used to calculate the directivity and beam spreading
characteristics of the transmitting device.

It must be emphaSised that this method employs the actual
pressure wave produced by the transmitting device to calculate
field characteristics. Other analyses for example that of

302



Weyns ('I} assume decayi~g exponential pulses or,gaussian
modulated sine pulses to be produced at the front face of
the transducer (in addition to neglecting the edge wave).
However, these are based on the output of a similar piezo-
electric receiver and as such, may bear little or no resem-
blance to the actual acoustic pressure wave. This has
important consequences in determining the operating charac-
teristics of a transient sound field.

It was appare~t in chapter VII that both electrical and
mechanical load conditions influence the shape of the trans-
mitted pressure and received voltage waveforms. Although
the effects of mechanical loading ~ave undergone considerable
investigation, apart from the present work, no systematic
study of electrical loading conditions has yet been under-
taken. (See for example Mason and Thurston (tq».

In chapter VII it was shown that electrical loading has con-
siderable influence on the output wave of force from the
transmitting device. As a result, it is possible to assume
that such factors also influence the transducer beam char-
acteristics. This is in fact, confirmed by the sequence
of photographs shown in figures 9.3(a-c).

The photographs, taken at the sarneinstant of time, depict
the beam characteristics of a 1 MHz transducer, operating
into a glass load. In each case, a different value of
inductance is connected across the device, with the rest
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of the transmitting circuitry remaining constant. The trans-
ducer remained stationary while the inductance values were
altered (by means of a switch in the driving unit), ensuring
uniformity of the couplant layer. Marked changes in the
beam characteristics are evident.

Apart from visualisation studies, some tentative work has
already commenced on measuring beam profile characteristics
in a water tank. Early results have indicated appreciable
changes in beam characteristics as the electrical driving
conditions are altered.

As a result, it is suggested that the feedback model should
be used to form the basis of a simulation study of transient
beam characteristics. This study is considered extremely
important in defining operation standards for ultrasonic
probes and arrays. The quality of medical diagnostic and
ndt equipment depends strongly on uniformly and continuity
in the field characteristics of the transducers employed.

9.2v............... Transducer Mechanical Loss

Development of the feedback model included the assumption
that the transducer and all surrounding media are mechanically
loss free. This approach has been experimentally justified
for lead zirconate titanate piezoceramic devices under condi-
tions of water loading. However, for more general ultrasonic
system applications, the present model requires further
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extension to include mechanical wave absorption in both the
transducer element and propagating channel.

When an ultrasonic wave propagates through a medium, the
intensity decreases exponentially with the distance travelled;
energy dissipated in the form of heat. Silk (+4) attempted
to compensate for such loss by introducing an exponentially
decaying attenuation factor into the transmission line model
of Krimholtz et al. However, it should be emphasised that
such losses are normally frequency dependent, attenuation
increasing with frequency. In an attempt to overcome this
problem, Dotti (8) recommended the insertion of a time
spread into the transmission line section of his model.

It is similarly possible to approximate for frequency depend-
ent absorption within the transducer by introducing a time
spread into the reverberation section of the feedback model.
As a result, the impulse response of each reverberation
factor is no longer a train of weighted impulse functions,
but instead comprises a train of pulses possessing finite
width and shape. This technique may readily be applied by
considering the following reverberation transfer function.

G (S) (1 - e-STl (1 - Rae-ST)
~ (S) = -------_;:...--

(1 - ~RBe-2ST)

Where G(S) 1s the transfer function of a spreading function
intended to model frequency dependent attenuation. For
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example, as a first order approximation, G(t) may be con-
sidered as a rectangular pulse of width At, ie

G(S) = 1 (1 _ e-SAt)
S

At < T

Consequently, the impulse response of KFL is a train of
rectangular pulses, alternating in sign, the magnitudes of
which are controlled by the values of ~ and RB• Similarly,
as a second order approximation, G(t) may be considered as
a triangular pulse of width At, ie

1G{S) = { -SAt/2e -

From which the attenuation with frequency is readily apparent.
For transducer materials possessing high mechanical loss,
the overall attenuation with distance may be modelled by
including a loss factor, a, which is independent of frequency.
As a result, the overall lossy, reverberation factor is given
by,

where L is the transducer thickness.

This approach, although by no means rigorous, has provided
encouraging results with the low-loss type of device under
consideration. However, it must be emphasised that much

306



further investigation 1s required for the accurate modelling
of lossy devices.

9.2vi Ultrasonic Channel Considerations

Characterisation of the propagating channel provides a
similar, but often more difficult problem to that of internal
mechanical dissipation within the transducer element. Attenua-
tion mechanisms in various media range from granular scattering
in metals, viscosity in liquids, to reflections at the layered
interfaces of reinforced fibre composite materials. In
addition, all media exhibit dispersion, whereby the acoustic
velocity is also a function of frequency. This results in
spreading and distortion of the ultrasonic wave as it pro-
pagates along the channel.

Although much work has been performed in the study of acoustic
wave propagation (see for example, Gooberman (I~», current
research involving ultrasonic materials evaluation has high-
lighted the need for more accurate characterisation in the
following areas;

a

ndt,
the characterisation of various metallic media for

b the characterisation of human tissue for non-
invasive medical diagnosis, and

c the characterisation of layered composite fibre
materials.
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Accurate modelling of the acoustic channel is extremely
~portant where ultrasonic techniques are employed to
identity abnormalities and discontinuities in the propagating
medium. For example, it is possible to obtain a transfer
function relating to such -flaws' using ultrasonic spectral
analysis techniques. Such a transfer function may be
obtained from the following frequency domain equation.

F(w) = ...;;Y;...:(~w~) _

x (w) T (w) C (w) R (w )

where X describes the input voltage to the transmitter
system,

T is the complete transfer function of the piezo-
electric transmitter system, including diffraction
effects,

R is the complete transfer function of the piezo-
electric receiver system, and

Y is the measured characteristic of the received
voltage.

In order to completely identify F(w), each transfer function
within this equation must be accurately known. While the
feedback model may yield sufficient insight into the trans-
duction process, the problem of channel characterisation still
remains. This is viewed as a considerable challenge which
must be overcome if further progress involving such tech-
niques is to be made.
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