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HEAD-DEPENDENT MODELLING AND OPTIMISATION OF 

WATER DISTRIBUTION SYSTEMS 
 

Alemtsehay Gebremeskel Seyoum 

ABSTRACT 

The construction, operation and maintenance of water distribution systems (WDSs) 

involve a huge capital investment and it is essential to design and manage them in a 

cost effective way. The optimisation approaches (e.g. evolutionary algorithms) for 

optimal design or operation of WDSs require simulation models to evaluate the 

hydraulic and/or water quality performances of solutions to the problem. An accurate 

performance assessment of solutions (feasible and infeasible) is crucial to guide the 

search towards the optimal solution efficiently. Conventional models are demand 

driven and consequently they are incapable of simulating pressure-deficient 

(infeasible) solutions accurately. When simulating a pressure-deficient network, 

results produced by demand-driven analysis model are highly unreliable and 

misleading. This thesis is concerned with the development and application of a new 

integrated head-dependent hydraulic and water quality model for pressure-deficient 

network modelling and optimisation of real-world systems.  

 

The original and novel aspects of the work carried out in this research are stated next. 

 

A new pressure dependent analysis (PDA) model has been developed for pressure-

deficient network modelling. The model is an enhanced version of the pressure-

dependent extension of EPANET (EPANET-PDX) that has an embedded logistic 

nodal head-flow function. The novelty of the proposed PDA is the formulation of a 

new, more efficient and robust implementation of the line search and backtracking 

procedure that greatly enhances computational properties for highly pressure 

deficient networks; and increases the algorithm’s consistency over a wider range of 

operating conditions. The model performed consistently well when simulating 

hypothetical and real-life networks under normal and pressure deficient conditions. 

Comparison between results generated by the new model and the original EPANET-



 

 

 

ii 

 

PDX demonstrated that the two models produce identical hydraulic results. From a 

numerical perspective, a significant reduction in numbers of iterations to complete a 

simulation has been obtained for all pressure operating conditions. Also, for 

extremely pressure deficient conditions a significant reduction in computational time 

has been achieved in comparison to the original EPANET-PDX.  

 

Water quality modelling under pressure-deficient conditions is addressed for the first 

time in this thesis. Hydraulic and water quality analyses based on two water supply 

zones in the UK were conducted for a range of simulated operating conditions 

including normal and subnormal pressure and pipe closures using  PDA. It is shown 

that operating conditions with subnormal pressures, if severe and protracted, can lead 

to spatial and temporal distributions of the water age and concentrations of chlorine 

and disinfection by-products that are significantly different from operating conditions 

in which the pressure is satisfactory.  

 

A new parallel model for the solution of multi-objective WDSs optimisation 

problems is developed. The model utilises a multi-objective genetic algorithm that 

has an embedded PDA hydraulic simulator. The PDA takes into account the pressure 

dependency of the nodal flows and thus avoids the need for penalties to address 

violations of the nodal pressure constraints. A controller-worker approach is 

implemented to parallelise the optimisation process in which a single controller 

processor executes the routine operation of the algorithm and employs the workers to 

carry out fitness evaluation. A real-life network that comprises multiple sources, 

multiple demand categories, many fire flows and extended period simulation is used 

to demonstrate the effectiveness of the model. Results show that the algorithm is 

stable and finds optimal and near-optimal solutions reliably and efficiently.  
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Chapter 1 

 

Introduction 

 

 

1.1 Background 

 

Water distribution systems (WDSs) are key components of public infrastructures and it 

is essential to design and rehabilitate them in a cost effective manner without 

compromising the required performance and regulatory standards. Evolutionary 

algorithms (EAs) are a commonly applied approach to solve WDSs optimisation 

problems. The algorithms are often coupled with simulation models to evaluate the 

hydraulic and/or water quality performances of solutions to the problem. The simulation 

models evaluate the conservation of mass and energy constraints and check other 

constraints such as nodal pressures and water quality for any violation. However, EAs 

by nature generate both feasible and infeasible solutions. Evidence from literature on 

constraint or infeasible solutions handling approaches demonstrated the benefits of 

explicitly maintaining infeasible solutions for single and multi-objective constrained 

optimization problems (e.g., Singh et al., 2008; Ray et al., 2009). The presence of 

infeasible solutions guides the algorithm search towards an optimal solution from both 

feasible and infeasible side of the search space. The recent WDSs optimization 

algorithms that retain infeasible solutions (pressure-deficient designs) in full achieved 

superior results in terms of algorithms’ convergence rate or quality of solutions 
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compared to those algorithms that reject or penalize infeasible solutions (Siew and 

Tanyimboh, 2012b; Saleh and Tanyimboh, 2013; Siew et al., 2014). This has given rise 

to the need of an efficient simulation model for evaluating the hydraulic and water 

quality performances of infeasible designs (pressure-deficient networks) more 

accurately. 

 

Hydraulic and water quality simulations of WDSs can be performed under time-varying 

conditions by employing extended period simulation (EPS) models. The models include 

important time-varying features such as water levels in tanks, nodal demands and the 

scheduling of pumps. Conventional EPS models are demand driven and thus assume that 

all demands are fully satisfied. In reality, several events make WDSs pressure deficient. 

Unavailability of system components for maintenance or rehabilitation purposes, pipe 

bursts, pump failures and large increases in demand (e.g. for firefighting purposes) are 

some of the pressure-deficient condition that WDSs often experience (Tanyimboh et al., 

1999; Kalungi and Tanyimboh, 2003; Siew and Tanyimboh, 2012a). During these 

events, not all demands can be satisfied in full and thus, the hydraulic and water quality 

performance of WDSs is reduced. When predicting the behaviour of a pressure-deficient 

system, results produced by demand-driven analysis (DDA) are highly unreliable and 

misleading (Tanyimboh and Templeman, 2010; Siew and Tanyimboh, 2012a).  

Consequently, EPS models based on DDA cannot simulate the performance of a 

pressure-deficient network realistically. In the aspect of evolutionary optimization of 

WDSs, accurate performance evaluation of solutions is highly essential in order to guide 

the search towards the optimal solutions efficiently. In this regard, the pressure 

dependent analysis (PDA) models that take into account the pressure dependent nature 

of nodal flows provide results that are more realistic (Chandapillai, 1991; Gupta and 

Bhave, 1996; Tanyimboh et al., 1999; Tabesh et al., 2009).  

  

One of the difficulties in using EAs for WDSs optimisation problems is that the 

algorithms require huge computational time when applied to large optimisation 

problems such as real-life networks with large numbers of pipes and multiple operating 
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conditions (VenZyl et al., 2004). In the optimisation of large water distribution systems, 

for instance, a single optimisation run may involve thousands of hydraulic and water 

quality simulations (e.g Ghebremichael et al., 2008; Seyoum and Tanyimboh, 2014) and 

that may take many days on modern computers such as workstations. Such 

computational time, however, is usually unacceptable for water utilities applications.  

This has limited the algorithms’ potential for practical applications to solve real-world 

WDSs optimisation problem. One way of addressing this difficulty is by utilising high 

performance and parallel computing approaches that are capable of reducing the 

computational time and makes the algorithms’ convergence to optimal solutions faster. 

Despite the inherent characteristics of EAs as being easily parallelised, only a handful of 

WDS optimisation research has been carried out to investigate EAs parallel 

implementations (Balla and Lingireddy, 2000; Wu and Zhu, 2009; Ewald et al., 2008; 

Artina et al., 2012; Barlow and Tanyimboh, 2014).  

 

The overall aim of this research is to help address the above-mentioned weaknesses, and 

in particular, to develop a fast and practical tool that can be utilised for WDNs analysis 

and optimisation effectively and efficiently.   

 

1.2 Objectives of the Research 

 

The objectives of this research are as follows: 

 

1. To develop a computationally efficient PDA model for pressure-deficient 

 network modelling 

 

2. To study the spatial and temporal distribution of water quality under normal and 

 abnormal pressure operating conditions in WDSs and make recommendations 
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3. To develop an efficient EA based model to solve computationally intensive WDSs 

optimisation problems  

 

4. To assess the practical capability, robustness and computational efficiency of both the 

PDA and EA optimisation model by applying them to hypothetical and real-life 

networks 

 

1.3 A Brief Description of the Methodology 

 

The thesis presents a new PDA model for pressure-deficient network modelling. The 

model is an enhanced version of the pressure-dependent extension of EPANET i.e., 

EPANET-PDX (Siew and Tanyimboh, 2012a). EPANET-PDX integrates a logistic 

nodal head-flow relationship (Tanyimboh and Templeman, 2010) into EPANET 

hydraulic simulator coupled with a line search and backtracking procedure (Press et al., 

1992) to facilitate convergence. The novelty of the proposed PDA is the formulation of a 

new, more efficient and robust implementation of the line search and backtracking 

procedure that greatly enhances computational properties for highly pressure deficient 

networks; and increases the algorithm’s consistency over a wider range of operating 

conditions. 

 

The thesis also presents a new parallel model for the solution of multi-objective WDSs 

optimisation problems. The new optimisation model utilises a multi-objective genetic 

algorithm (MOGA) that has an embedded PDA hydraulic simulator (Siew and 

Tanyimboh, 2012b). The MOGA is used to obtain least cost designs via optimization 

while PDA is used to evaluate the hydraulic performance and feasibility of each network 

design. The network hydraulic performance is formulated as an objective in the MOGA. 

The optimisation process is parallelised using a controller-worker approach where a 

single controller processor executes the routine operation of the algorithm and employs 
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the workers to carry out fitness evaluation. The fitness evaluation involves extended 

period simulations. 

 

1.4 Layout of Thesis 

 

 

The thesis is structured as follows: 

 

Chapter 2 contains a review of water distribution networks (WDNs) hydraulic and water 

quality analysis. The chapter provides a detailed review on the fundamentals required in 

the modelling of WDNs along with the two WDNs analysis approaches i.e., demand 

driven analysis and pressure dependent analysis.  

 

Chapter 3 presents a review of the existing approaches to enhance the efficiency and 

effectiveness of evolutionary algorithms (EAs), in particular genetic algorithm (GA) to 

solve WDSs optimisation problems. The chapter discusses the most common 

parallelization approaches that have been applied in WDS literature to improve the GA’s 

computational efficiency.  

 

Chapter 4 proposes a new algorithm for performing pressure-dependent modelling of 

WDNs. The chapter describes the method in detail. It also presents results obtained from 

the simulations of hypothetical and real life networks that verify the accuracy, 

robustness and computational efficiency of the algorithm. 

 

Chapter 5 focuses on investigating the spatial and temporal distribution of water quality 

in WDNs under various pressure operating conditions. The chapter presents water 

quality results generated from a PDA model based on hypothetical and real-life 

networks. Comparison and verification of results are also presented. 
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Chapter 6 proposes a parallel optimisation model that utilises MOGA that has an 

embedded PDA. The parallel model is described in detail and applied to real-life 

network to demonstrate its computational efficiency and robustness. The comparisons of 

results generated by the parallel and the serial models are presented. The chapter also 

presents the extensive investigation carried out on the serial MOGA using a network in 

literature. Solutions that are both fully feasible and cheaper than the best-known 

solutions in the literature are presented and discussed. 

 

Chapter 7 summarises the main ideas and conclusions from the research. Some 

suggestions for further research are discussed. 
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Chapter 2 

 

Review of Water Distribution Network Analysis 

 

 

2.1 Introduction 

 

Water distribution models have become standard engineering tools of water utilities 

applications such as design, calibration, rehabilitation and operation. The models 

simulate the dynamics of the systems under a wide range of conditions (e.g. peak 

demands, pipe bursts, pump failure, fire flows). Using water distribution network 

(WDN) models, problems can be predicted and solutions can be evaluated prior to 

investing resources in real-world projects (Walski et al., 2003). The information 

provided by the models is valuable in assisting engineers in making appropriate and 

timely decisions. For instance, models can help in identifying potential problem areas 

where water quality is an issue. The concentration of disinfection and disinfection by-

products throughout a network can be analysed (Ghebremichael et al., 2008; Seyoum 

and Tanyimboh, 2014); the impact of storage tanks on water quality can be evaluated 

(Clark and Grayman, 1998; Seyoum et al., 2014).  

 

The analysis of WDNs can be of either steady state or extended period. Steady state 

analysis that represents a snapshot in time is used to determine the operating behaviour 

of a system under equilibrium conditions where nodal demands and water level of 
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storage reservoirs are constant over time. This can be useful in analysing the short-term 

effect of fire flows or average demand conditions on the WDN. The results of steady 

state analysis are instantaneous and may or may not be representative of the performance 

of the system over time. On the other hand, extended period analysis is used to evaluate 

WDN performance over time. This is a more realistic analysis as the operation of real-

life WDNs varies with time. Extended period analysis is suitable in modelling tank 

filling and draining, regulating the operation of valves, and the changes in pressure and 

flow rates due to variation in demand.   

 

WDN analysis model is developed by using a node-link formulation governed by the 

conservation of mass at nodes and conservation of energy around hydraulic links. Node 

represents the connection point of two or more links or the end-point of a single link. 

The governing hydraulic equations are solved numerically to obtain nodal heads and 

flow rates in links. The model results are then assessed in reference to the minimum 

performance standards (e.g. minimum node pressure requirement) to verify the 

feasibility of the solution.   

 

There are two network analysis approaches in literature. The conventional approach, 

known as demand-driven analysis (DDA), is formulated on the basis that demands are 

fully satisfied irrespective of the network pressure. This assumption is valid only if the 

network performs under normal pressure conditions with adequate pressures at all nodes 

(Wu et al., 2009). However, in the presence of network irregularities such as pipe 

breaks, pump failures, temporary demand increase e.g. for fire fighting purposes, and 

system maintenance and repair restrictions, DDA provides unrealistic results 

(Tanyimboh and Templeman, 2010; Siew and Tanyimboh, 2012a). By contrast,  the 

pressure dependent analysis approach (PDA) takes into account the pressure dependent 

nature of nodal flows and thus the model provides results that are more realistic 

(Chandapillai, 1991; Gupta and Bhave, 1996; Tanyimboh et al., 1999).  
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The primary objective of this chapter is to review the fundamentals involved in the 

modelling of WDNs. The next section (Section 2.2) presents the governing hydraulic 

equations for WDN analysis. Section 2.3 provides a review on the various numerical 

methods that are commonly used to solve DDA. The research carried out herein involves 

PDA implementation and thus, different PDA approaches have been discussed and their 

limitations highlighted in Section 2.4. Section 2.5 presents a review on water quality 

modelling approach of WDSs. Besides the PDA implementation, water quality 

modelling is one of the major parts of the research herein. 

 

2.2 Governing Hydraulic Equations 

 

Conservation of mass and energy are the two governing equations in the hydraulic 

modelling of the WDN. The principle of the conservation of mass is expressed using 

continuity equation while the principle of energy is expressed using the head loss 

equation. The governing equations have to be satisfied in network analysis. In order to 

satisfy the conservation of mass, the sum of nodal inflows and outflows in a network 

must be zero. The flow continuity equation for node j, j = 1,…, ,Nn is described as  

 

req
j

HnHni

ij

HnHni

ij QnQpQp

jiji

=− ∑∑
<> ::

                                                                                           (2.1) 

 

where Nn  is the number of nodes in the network; ijQp  is the pipe inflow (if iHn > jHn ) 

or outflow (if iHn < jHn ) at node j ; req
jQn  is the demand (required supply) at node j ; 

iHn  and jHn are heads at nodes i  and j  respectively.  

 

In order to fulfil the conservation of energy in a network, the sum of head losses in pipes 

forming each loop must be equal to zero. 
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Nlplph
lpIJij

ij ,...,10 ==∑
∈

                                                                        (2.2) 

 

where lpIJ  represents the set of all links in loop lp . Nlp  is the total number of loops in a 

network. The conservation of energy for a given path in the network can be written as 

Eq. 2.3, where the total head loss along the path should be equal to the difference in 

head between its starting and ending nodes. The equation for the path starting from node 

i  with hydraulic gradient level (HGL) iHn  and ending at node j  with HGL jHn  can be 

written as  

 

IJijHnHnh
pIJij

jiij ∈∀−=∑
∈

                                                                  (2.3) 

 

where IJ is the set of all links in path .p  

 

The pipe frictional head loss in Eq. 2.2 and Eq. 2.3 can be calculated using three widely 

used formulae (Bhave and Gupta, 2006). These are Hazen-Williams formula, Darcy-

Weisbach formula, and Manning formula given by Eq. 2.4, Eq. 2.5 and Eq. 2.6 

respectively.   

 

ij
DC

QpL
h

ijij

ijij

ij ∀=
87.4852.1

852.1ω
        (2.4) 

 

ij
gD

QpLf
h

ij

ijijij

ij ∀=
52

2
8

π
        (2.5) 

 

ij
D

QpnL
h

ij

ijijij

ij ∀=
333.5

2)(29.10
        (2.6) 
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where ω is a dimensionless unit conversion factor and is equal to 10.67 in SI units; ,ijD

,ijh ,ijL and ijQp  represent diameter, head loss, length and flow rate for pipe ij ; ijC  and 

ijn are Hazen-Williams roughness coefficient and Manning roughness coefficient 

respectively; ijf   is the coefficient of friction in pipe ij .  

 

The frictional head loss equations (Eq. 2.4 - 2.6) are often expressed by a general head 

loss formula 

 

ijQpKh fn

ijijij ∀=         (2.7) 

 

where ijK  and fn represent pipe resistance coefficient and flow exponent respectively. 

The value of fn is 1.852 for Hazen-Williams formula and 2 for Darcy-Weisbach and 

Manning formulae. Eq. 2.8, Eq. 2.9 and Eq. 2.10 express the resistance coefficients of 

Hazen-Williams formula, Darcy-Weisbach formula, and Manning formula respectively. 

 

ij
DC

L
K

ijij

ij

ij ∀=
87.4852.1

ω
                              (2.8) 

 

ij
gD

Lf
K

ij

ijij

ij ∀=
52

8

π
                            (2.9) 

 

ij
D

Ln
K

ij

ijij

ij ∀=
333.5

2
29.10

                (2.10) 
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2.3 Demand Driven Network Analysis  

 

The most common type of water distribution network (WDN) analysis is considering the 

demands as fully satisfied at all demand nodes. This conventional network analysis 

approach (Demand driven analysis) is well established and widely used in water 

industries for simulating WDN performance under normal operational conditions. The 

analysis of WDN can be of either steady state or extended-period depending upon 

whether the analysis determines the behaviour of a network at a given point of time or 

over a certain interval of time.   

 

2.3.1 Steady State Analysis 

 

In Steady state analysis, nodal demands and reservoir water levels are presumed constant 

(Bhave and Gupta, 2006). These assumptions are valid for a very short period to analyse, 

for instance, specific worst-case situations where the effects of time are insignificant. 

These include events such as peak demand times, fire protection usage, and system 

component failures. Steady state analysis enables engineers to predict the response of a 

network to a specific set of hydraulic conditions. During the analysis, nodal demands, 

pipe lengths, diameters and roughness are often pre-determined, while pipe head losses, 

nodal heads and pipe flow rates are unknown parameters (variables) and obtained from 

the analysis. The constitutive equations formulated as systems of equations using any of 

the variables as the basic unknown parameters. 

 

2.3.1.1 Formulation of Hydraulic Equations 

 

The analysis of WDN involves formulating systems of hydraulic equations that can be 

solved iteratively by employing numerical methods. There are various ways of 
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formulating the system of equations. When the hydraulic equations formulated with the 

pipe flow rates )( ijQp as the basic unknown variables, the equations formed are known as 

q-equations (Bhave, 1991). The unknown parameters, for example, for the flow 

continuity (Eq. 2.1) and head loss equations (Eq. 2.7) are ij
Qp . The hydraulic equations 

formulated with the nodal heads as unknown variables are known as H-equations 

(Bhave, 1991). For example, by using Eq. 2.3 and Eq. 2.7, the flow continuity equation 

(Eq. 2.1) can be rewritten as   

 

NnjQn
K

HnHn

K

HnHn
req
j

n

HnHni HnHni ij

ij

n

ij

ji

f

ji ji

f
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=∀=−












 −
−













 −
∑ ∑

> <

                (2.11) 

 

To solve this system of equations, the number of unknown nodal heads must be equal to 

the number of continuity equations (Eq. 2.11). Also, the value of one nodal head should 

be known, which is generally taken as the fixed head at source node. 

 

Equations formulated by considering loop-flow corrections as the basic unknowns are 

known as −∆Qp equations (Bhave, 1991). These equations are set up by making an 

initial assumption of the pipe flow rates to satisfy nodal flow continuity (Eq. 2.1). 

However, the assumed pipe flow rates will not generally fulfil the loop-head loss 

relationship of Eq. 2.2. Thus, the loop-flow corrections are applied at each loop in order 

to adjust the pipe flow rates iteratively.  

 

NlijQpQpQp
ijlplp

k

lp

k

ij

k

ij ∈∀∆+= ∑
∈

−1                                                                (2.12) 

 

in which 
k

lpQp∆  represents the loop-flow correction applied for all pipe flows in loop lp  

according to the flow direction; 
1−k

ijQp is an estimated flow rate and 
k

ijQp  is the corrected 
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flow rate. k  represents the iteration number. ij
lp  represents all loops sharing link ij .

∑
∈

∆
ijlplp

k

lpQp  represents the summation of the corrections of all loops to which link ij

belongs. By applying the loop-head loss relationship (Eq. 2.2), the −∆Qp equations can 

be formulated as   

 

NlplpNlijQpQpK f

lp

nk

lp

k

ij

IJij

ij ,...,1;0)( )()1( =∈∀=∆+∑∑ −

∈

                           (2.13) 

 

where Nlp and Nl represent the number of loops and links in the network respectively. 

Eq. 2.13 produces a system of −∆Qp equations that can be simultaneously solved using 

an iterative method.  

 

2.3.1.2 Solution of  the Hydraulic Equations 

 

Several numerical methods have been widely used to solve the conventional demand 

driven network analysis problem. These are Hardy-Cross method (Cross, 1936), 

Newton-Raphson method (Martin and Peters, 1963), Linear Theory method (Wood and 

Charles, 1972) and Global Gradient method (Todini and Pilati, 1988). The methods 

solve a system of non-linear equations iteratively starting with an initial trial solution. 

The newly obtained solution is compared with the trial solution and the procedure is 

repeated until the difference between successive solutions is less than a user specified 

value.  

 

2.3.1.2.1 Hardy-Cross Method  

 

The Hardy Cross method (Cross, 1936) is an iterative procedure for network analysis. 

The approach is based on loop-flow correction equations, i.e., −∆Qp equations. It 
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involves assuming initial pipe flow rates for a loop to satisfy the flow continuity. The 

procedure is formulated as  

 

lpQpQpK f

lp

nk

lp

k

ij

IJij

ij ∀=∆+∑∑ −

∈

0)( )()1(                                                   (2.14) 

 

Applying the first order Taylor’s series expansion to Eq. 2.14 gives 

 

lpQpKnQpQpK
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ff

lp IJij
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ij
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The loop-flow correction values can be obtained by rearranging Eq. 2.15 as follows: 
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                                                        (2.16) 

 

The effect of adjacent loops on the loop-flow correction is neglected and thus each loop-

flow correction equation (Eq. 2.16) contains only one variable i.e. the 
)(k

lpQp∆  value as 

unknown. The loop-flow correction obtained from Eq. 2.16 is used to update the pipe 

flow rates as follows: 

 

lp

k

lp

k

ij

k

ij IJijlpQpQpQp ∈∀∀∆+= − ;)()1()(
                                           (2.17) 

 

The first iteration ends once the loop-flow corrections are calculated for all loops and the 

pipe flow rates are all updated. The next iteration involves using the updated pipe flow 

rates as the new estimates for pipe flow rates in Eqs. 2.14 to 2.17. The process is 

repeated until pre-specified convergence criteria are satisfied (e.g. when the loop-flow 

correction values become very small). 
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2.3.1.2.2 Newton-Raphson Method 

 

The Newton-Raphson method is a powerful numerical method for solving systems of 

non-linear equations. The method first proposed by Martin and Peters (1963) for the 

solution of WDN. The Newton-Raphson method can be formulated for a single variable 

non-linear function, ,0)( =xF  as follows: 

 

)(

)(
)(

)(
1

k

k
kk

xF

xF
xx

′
−=+                          (2.18) 

 

where )( )( kxF ′  is the derivative of )(xF evaluated at k
x . For a system of equations, Eq. 

2.18 can be written as: 

 

)()(
)(1

)(

)1( k

kx

kk
xFJxx

−+
−=                                                                                          (2.19) 

 

where x  is the vector of the variables; F  is the vector containing function values; and  

xJ is the Jacobian or the matrix of the first partial derivatives of each F with respect to 

each sx ' . To apply the Newton Raphson method to the WDN analysis, the continuity 

equations at the nodes (Eq. 2.11) can be written as  

 

0)( =HF           (2.20) 

 

where F  is the vector of the respective values of the nodal continuity equations and H  

is the vector of unknown nodal heads. From Eq. 2.19, the Newton Raphson formulation 

for the flow continuity can be expressed as  

 

)()(
)(1
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)1( k
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kk
HFJHH

−+
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where 
HJ  is the Jacobian matrix for the unknown nodal heads. Eq. 2.21 can be 

expressed in terms of the vector of the nodal head corrections (
kkk

HHH −=∆
+1

) as 

follows: 

 

)()(
)()(

)(

kk

kH HFHJ −=∆              (2.22) 

 

The systems of equations in Eqs. 2.22 are solved simultaneously to obtain 
k

H∆  which 

is then used to update .
1+k

H  The iterative process ends when a pre-specified 

convergence criteria is attained for the value of 
k

H∆ or )(
k

HF . 

 

2.3.1.2.3   Linear Theory Method 

 

The Linear Theory method is another network analysis method that is developed by 

Wood and Charles (1972). In this method, there is no need for making initial estimates 

for flows that satisfy the nodal flow equation, although this is fulfilled after the first 

iteration. As described earlier, the continuity equations are linear but the head loss 

equations are non-linear. In the Linear Theory method, the head loss equations are 

linearized by merging the non-linear term with the pipe resistance coefficient as follows:  
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Eqs. 2.23 are used to form a set of loop-head loss and nodal flow continuity equations. 

The system of linear equations formed is solved simultaneously in an iterative manner to 

give an approximated pipe flow rates. Eq. 2.23a is used for the first and second iteration 

where the initial pipe flow rate (
0

ijQp ) is set to unity. For successive iterations Eq. 2.23b 

is used in which pipe flow rates 
k

ijQp  are obtained by using the average of the flow rates 

obtained from previous iterations (i.e. 
)1( −k

ijQp and 
)2( −k

ijQp ). The iterative process is 

continued until the difference between two successive estimates of pipe flow rates (i.e. 

)1( −k

ijQp and
)2( −k

ijQp ) is within a specified tolerance.  

 

2.3.1.2.4 Global Gradient Method 

 

Todini and Pilati (1988) proposed the Global Gradient Method (GGM), which is the 

application of the Newton-Raphson method to obtain both pipe flow rates and nodal 

heads simultaneously. The Newton-Raphson method solves for the corrections of either 

pipe flow rates or nodal heads. GGM directly obtains the improved pipe flow rates and 

nodal heads in an iterative procedure that is continued until no further improvement is 

observed. GGM is similar to the Linear Theory method in that it does not require 

satisfying the continuity equations at all nodes to start the solution procedure. 

 

The GGM takes pipe flow rates and nodal heads as the basic unknowns to formulate the 

Q-H equations. The non-linear head loss equations for thk  iteration can be written as: 

 

ijQpQpKHnHn k

ij

n
k

ijij

k

j

k

i

f

∀=−−
−

0
1

                                                       (2.24) 

 

Also, the linear nodal flow continuity equations can be written as: 
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NnjQnQp
req
j

jij

k
ij ,.....,10 ==+∑

∈

                                                       (2.25) 

 

Todini and Pilati (1988) represent the governing Eqs. 2.24 and 2.25 in the following 

matrix notation: 

 

















0A

AA

M

LLL

M

21

1211

















Hn

Qp

L =

















−

−

req
Qn

HA

L

010

                                                                           (2.26) 

 

where 
11A  is a diagonal matrix whose elements are 

1
)(

−fn

ijij QpK . ijK  and fn are the 

resistance coefficient and flow exponent in the head loss formula respectively. ijQp is 

the flow rate in pipe ij .
21A  and 

01A  represent the overall incidence matrix relating the 

pipes to nodes with unknown and known heads respectively. Pipe flow leaving node is 

defined as -1, pipe flow into node as +1 and 0 if pipe is not connected to node. 
21A  is 

the transpose of 
21A . Qp  denotes the column vector of unknown pipe flow rates. Hn  

and 
0H  are column vectors for unknown and known nodal heads respectively. req

Qn  is 

the column vector for required nodal supplies.  

 

The GGM representation of the WDN problem in Eq. 2.26 can be rearranged as follows: 
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where ),(11 HnQpff =  and )(22 Qpff = indicate how far from zero the relevant equations 

are for any given approximated solution ,Qp Hn . Applying the Newton-Raphson 

method directly to this system results in the following set of equations for the flow and 

head corrections at iteration k  of the process: 
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11D is a diagonal matrix that represents the Jacobian of QpA 11
. Its diagonal element is 

1
)(

−fn

ijij QpnK . dQp  and dHn  represent the corrective steps of Qp  and Hn

respectively in successive iterations and can be defined as 

 

1+−= kk
QpQpdQp                                                                                                   (2.29) 

 

1+−= kk
HnHndHn                                                                                                    (2.30) 

 

From Eq. 2.27, 
1f  and 

2f  can be written as: 

 

01012111 HAHnAQpAf ++= kkkk
                                                                                (2.31) 

 

req
QnQpAf += kk

212                                                                                                   (2.32) 

 

By substituting Eq. 2.31 and Eq. 2.32 into Eq. 2.28, the iterative formulation of the 

GGM can be described as the following two equations. 

 

[ ] [ ])()()( 01011

1

112121

1
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1

1121

1 HAQpADAQnQpAADAHn +−−= −−−+ kkkreqkkk
         (2.33) 

 

)()( 010

1

1211

1

11

1 HAHnAQpADQpQp ++−= +−+ kkkkkk
                                              (2.34) 

 

To start the solution procedure, an initial guess of pipe flow rates is required. The initial 

pipe flow rate can be taken as unity or any arbitrarily chosen value.  The corresponding 
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nodal heads are obtained using Eq. 2.33. The pipe flow rates are then updated using Eq. 

2.34. As the algorithm progresses, the changes in pipe flow rates and nodal head values 

approach an insignificant value. The widely used EPANET 2 (Rossman, 2000) utilises 

the GGM as its network solver.  Initial pipe flow rates in EPANET 2 are chosen to be 

equal to the flow corresponding to a velocity of 1ft/sec (0.3048 m/sec). 

 

2.3.2 Extended Period Analysis 

 

Section 2.3.1 has focused on the steady state analysis of WDNs in which nodal demands 

and reservoir water levels are presumed constant. However, the operation of real-life 

WDNs in general varies with time; and both nodal demand and tank water level 

fluctuate over a day. Using extended period analysis, a more realistic network analysis 

can be conducted since the network demands and water levels in tanks are allowed to 

change throughout the time period. It enables to understand the effects of changing 

water usage over time, the filling and draining cycles of tanks, or the response of pumps 

and valves to system changes. Also, it is an essential tool for analysing network water 

quality, optimizing pump scheduling, storage tank design and location. 

 

Extended period analysis can be executed for a long period with network demands and 

operations changing from time to time. The total period of analysis is divided into 

several hydraulic time steps where the reservoir water levels and nodal demands are 

presumed constant in these time steps. For each time step, a steady state analysis is 

carried out. Results obtained at the end of these time steps, which involve the dynamics 

of tanks, pump scheduling and valve settings are used to update the inputs for the 

successive steady state analyses.  

 

The basic steps involved in extended period analysis can be summarised as follows: 
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Step 1. At time ,t  the following data are available: (1) water levels of tanks ))(( tH m ; (2) 

volumes of tanks ))(( tVm ; (3) Nodal demand factors, ),(tDFi and base demands, 
base
iQn  

for each node .i  The required demand for each demand node at time t  is calculated as  

 

)()()( tDFtQntQn i
base
i

req
i ×=                    (2.35) 

 

Step 2. Using the data in step 1, the steady state hydraulic analysis of the network is 

obtained for time t . The flow rates of the tanks, ),(tQTm are calculated as 

 

∑
∈

=

mBb

bm tQptQT )()(          (2.36) 

 

where mB is the set of links connected to tank m  and )(tQpb represent the flow rates of 

links connected to tank .m  

 

Step 3. Assuming the flow rate of a tank is constant during the time interval ),,( ttt ∆+ the 

volume change in a tank is obtained as  

 

ttQTtttV mm ∆=∆+∆ )(),(                    (2.37) 

 

where ),( tttVm ∆+∆ is the change of water volume in tank m  during the time interval 

),,( ttt ∆+ t∆ represents the time step between the current and the next steady state 

simulation.  

     

Step 4. The tank volume at time tt ∆+  is then calculated as  

 

ttQTtVtttV mmm ∆+=∆+ )()(),(                                                                                     (2.38) 
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Step 5. The tank water level )( ttH m ∆+ is then predicted using the tank capacity-

elevation curve by employing the tank volume in Eq. 2.38.   

 

Step 6. If any status change occurs within the time interval ),( ttt ∆+ (e.g tanks fully 

depleted or filled; valves opened or closed; pumps turned on or off), then the time tt ∆′+

( )ttttt ∆+<∆′+< at which the status occurs is determined. The time interval is reduced 

from t∆  to t∆′ . The volume change in tanks is calculated using Eq. 2.38 for the time 

tt ∆′+  and water tank levels are updated. 

 

Step 7. Time is advanced by the time step. Thus, ttt ∆′+=  if any status change occurs. 

Else ttt ∆+= . 

 

The whole procedure is repeated until the entire period of the extended period simulation 

is analysed. 

 

2.4  Pressure Dependent Network Analysis  

 

As mentioned in Section 2.3, the main assumption of demand driven analysis (DDA) 

approach is that nodal demands are fully satisfied regardless of the pressure in the 

system. This method is satisfactory if the nodal heads are sufficient. However, there are 

several events when not all the nodal demands can be fully satisfied due to pressure 

deficient conditions in the systems. Pressure deficient conditions may arise due to pump 

failures, pipe bursts and the unavailability of components for system maintenance or 

rehabilitation purposes (Tanyimboh et al., 1999; Kalungi and Tanyimboh, 2003; Siew 

and Tanyimboh, 2012a). Under these circumstances, the performance of WDN is 

reduced. This requires water utilities to accurately simulate and analyse WDNs for 

crucial decision-making. Pressure dependent network analysis (PDA) is a realistic 

approach for evaluating the performance of WDNs under both normal and pressure 
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deficient conditions. PDA approximates the actual pressure shortfall in the system under 

any network operating conditions.  

 

There are two PDA modelling approaches in literature for analysing WDNs under 

pressure-deficient conditions. The first method involves running DDA hydraulic 

simulator. The second method involves embedding the node head-flow relationship in 

the governing network equations. 

 

2.4.1   Methods  Based on Demand Driven Analysis  

 

The existing DDA models for simulating WDNs do not have a procedure to integrate 

nodal head-flow relationships for pressure dependent modelling. To perform pressure 

dependent modelling multiple DDA runs are executed while adjusting specific 

parameters until sufficient hydraulic consistency is achieved. Although the method may 

seem to be straightforward for small WDNs, it is often time consuming and difficult for 

large systems applications (Jinesh Babu and Mohan, 2012). In addition, the method is 

not practical in situations requiring large number of hydraulic simulations. These include 

water quality modelling over an extended period simulation (e.g. Rossman, 2000; 

Seyoum et al., 2014) and design optimisation procedures based on evolutionary 

algorithms (Siew and Tanyimboh, 2012b).  

 

Ang and Jowitt (2006) proposed an approach that involves iterative execution of DDA 

by introducing artificial reservoirs at demand nodes with insufficient pressure. The 

approach presumes that a low-resistance pipe connects each reservoir to its 

corresponding node. The method does not permit reverse flow from the artificial 

reservoir back into the network. Also, it does not allow flow to the reservoir to exceed 

the required demand of the corresponding node. In order to meet these conditions, the 

algorithm requires multiple runs of the EPANET solver where artificial reservoirs are 

added or removed from the model after each run. Jinesh Babu and Mohan (2012) 
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proposed an improvement to Ang and Jowitt (2006) method in order to carry out 

pressure-deficient network modelling in a single execution of the EPANET solver.   

Jinesh Babu and Mohan (2012) used artificial reservoir along with flow control valve 

and check valve. The flow control valve prevents surplus flow while the check valve 

prevents reverse flow from reservoir to demand node. The check valve will be closed if 

the nodal head is below the minimum required level. As noted by Gorev and 

Kodzhespirova (2013), the procedure by Jinesh Babu and Moha (2012) does not model 

the partial flow at a demand node satisfactorily. The approach is developed based on the 

head below which no flow is available. The head required for achieving a full demand 

satisfaction was not considered. By contrast, the approach proposed by Gorev and 

Kodzhespirova (2013) takes into account the partial flow at a demand node with proper 

resistance properties assigned to the artificial pipes. They used an artificial string made 

up of a flow control valve, a pipe with a check valve, and a reservoir at each node.  The 

pressure- dependent demands are determined as the flows in the strings. The resistance 

of the artificial pipes is chosen such that the demands are satisfied in full at a desired 

nodal pressure. The Gorev and Kodzhespirova (2013) modelling approach assumed an 

identical nodal head-outflow relationship that applies to all networks. Abdy Sayyed et al. 

(2015) improved the Gorev and Kodzhespirova (2013) approach by replacing the 

artificial pipe and reservoir with an emitter to simulate partial flow condition. Also, they 

addressed the limitation in the nodal head-flow relationship to make it more generic. The 

artificial string proposed in Abdy Sayyed et al. (2015) to model pressure-deficient WDN 

is made up of a check valve, flow control valve and an emitter at each demand node. 

However, the procedure of adding artificial links and nodes at each demand node 

enlarges the network size that may lead to extra computational cost. 

 

Rossman (2007) proposed the pressure-deficient analysis using the emitter component 

available in EPANET. Since the emitter operates based on unrestricted head-flow 

relationship, Rossman (2007) suggested modifying the EPANET 2 source code to add 

new status variables to the emitter to limit the nodal flow between zero flow and the 

fully assigned demand. The emitter approach was carried out in a single EPANET 2 run 
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while providing an improved computational efficiency in reference to the Ang and 

Jowitt (2006) approach. However, the algorithm has not been used to analyse large 

networks.  

 

Kalungi and Tanyimboh (2003) developed a model for carrying out pressure-driven 

network analysis based on a technique that involves identifying zero-flow and partial 

flow nodes. The approach is based on joint nodal head and pipe flow system of 

equations, which does not make explicit use of the head-flow relationship. The 

technique involves iterative use of DDA. 

 

Tanyimboh and Templeman (1995) and Tanyimboh and Tabesh (1997) developed a 

method of obtaining the available nodal outflow for pressure dependent network analysis 

based on the source head required to satisfying the network demand in full. They used 

the following source head-discharge relationship. 

 

snavl

ssss QRHH )(
min +=                                        (2.39) 

 

where 
sH is the head available at the source, 

avl

sQ  is the total flow from all demand 

nodes, 
sR  is the resistance constant and the exponent sn  was taken as 2. 

min

sH  represents 

the source head at which the most critical node of the network begins to deliver water. 

The expression for the sum of the nodal outflows is 
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ssavl

s
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HH
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/1
min





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

 −
=                                                          (2.40)  

 

The total available nodal outflows 
avl

sQ  is equal to the total nodal demands 
req

sQ  when 

sH =
des

sH . 
des

sH  is the required source head to satisfy all the demand nodes in full.  
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des

sH  is the total head losses (obtained from DDA) in links along a path from the source 

to the most critical node. Substituting 
sH  and 

avl

sQ   in Eq. (2.39) with 
des

sH  and 
req

sQ

respectively gives 

 

snreq

sss

des

s QRHH )(min +=                                                                           (2.41) 

 

From Eq. (2.41), an expression for
sR is obtained and applied into Eq. (2.40) to obtain the 

total flow delivered. Thus, the source head-discharge relationship for the source head 

method (SHM) is expressed as  
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Although SHM is a simple approach, it tends to underestimate the total flow from 

pressure deficient networks. The method is based on DDA results. Very often, DDA 

gives smaller or even larger negative heads for the most critical node (Tanyimboh and 

Templeman, 2010; Kalungi, 2003). As a result, SHM gives a high value of 
des

sH and thus 

an underestimated 
avl

sQ  value. Also, the SHM cannot be used for multiple-source 

networks. Tabesh (1998) proposed an enhancement of the SHM named the Improved 

Source Head method (ISHM). Unlike SHM, which estimates the network outflow based 

on just the critical node, the ISHM considers every demand node individually and 

calculate its flow as follows 
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where exponent jn varies between 1.5 and 2 (Gupta and Bhave, 1996). 
des

jsH ,   is the head 

required at the source to satisfy the demand at node j  in full. 
des

jsH ,  is obtained using 

DDA and it is taken as the nodal elevation plus the sum of the head losses in pipes 

connecting node j  to the source. Tanyimboh et al. (2001) demonstrated that ISHM 

provides better estimates of the nodal flows than SHM approach. The main difficulty in 

the ISHM is that the exponent, jn used requires an extensive field data for accurate 

calibration (Tanyimboh and Tabesh, 1997). 

 

2.4.2  Methods Based on Nodal Head-Flow Relationship  

 

Pressure deficient network analysis can be carried out by embedding a nodal head-flow 

relationship in the governing system of hydraulic equations. The nodal head-flow 

relationships used to estimate the actual flow at demand nodes based on nodal pressure 

(e.g Germanopoulos, 1985; Wagner et al., 1988; Udo and Ozawa, 2001; Tanyimboh and 

Templeman, 2010). The relationships are generally formulated on the basis that nodal 

demand is satisfied in full when the nodal head is equal to or greater than the desired 

head and zero when the nodal head is equal to or lower than the minimum head 

(Tanyimboh and Templeman, 2010). A major advantage of the methods where the head-

flow relationships are embedded in the system of equations is that they solve the system 

of non-linear equations only once; contrary to the PDA approaches, that involves 

iterative DDA simulations (see Section 2.4.1). Several head-flow relationships have 

been proposed in literature to characterise the variation of nodal pressure and flows in 

WDNs. 

 

Germanopoulos (1985) suggested the following head-flow relationship to estimate the 

available outflow at a node for a pressure deficient network.  
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where iQn and 
req

iQn are the available outflow and the required demand at node i  

respectively; ib  and ic  are coefficients to be calibrated for node i . iPr  is the available 

pressure at node i  and 
#Prr   is the nodal pressure at which a proportion of the required 

demand of node i  is supplied.  

 

Germanopoulos (1985) suggested that the coefficients ib  and ic  may be taken as 10 and 

5 respectively in the absence of field data and 
#Prr  is taken as the pressure to satisfy 

93.2% of the required nodal demand. However, the head-flow relationship does not fulfil 

the condition that 0=iQn  when 
min

ii HnHn =  and 
req

ii QnQn =  when
des

ii HnHn = ; in 

which iHn  is the head at node i ; 
min

iHn  is the nodal head at node i below which the 

outflow is zero; 
des

iHn  is the desired head at node i  for achieving a full demand 

satisfaction. Gupta and Bhave (1996) suggested an improvement to address the 

shortcomings. The modified head-outflow relationship is expressed as 
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Wagner et al. (1988) and Chandapillai (1991) suggested a parabolic relationship (Eq. 

2.46) for the HGL values between minHn  and desHn . 
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The value of the exponent parameter, ne varies between 1.5 and 2 (Gupta and Bhave, 

1996).   

  

Fujiwara and Ganesharaja (1993) proposed a differential function for the relationship 

between nodal head and flow. 
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Eq. 2.47 can be applied to any network. However, the function is not straightforward to 

use and more computational effort may require for its evaluation (Tabesh et al., 2002).  

                                      

Tanyimboh and Templeman (2010) suggested a nodal head-flow function based on the 

Logit function, which is expressed as  

 

)exp(1

)exp(

iii

iiireq

ii
Hn
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++

+
=                                                                                  (2.48) 

 

The parameters 
iα and

iβ  determine the shape of the function curve. Their values are 

obtained using field data.  Eq. 2.48 can be rearranged to give  
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where 
req

ii QnQn /  represents the nodal demand satisfaction ratio (DSR). The nodal DSR 

value is 1.0 when
des

ii HnHn ≥  and zero when
min

ii HnHn ≤ .  Tanyimboh and Templeman 

(2010) suggested that in the absence of field data the values of α and β can be found by 

taking Eq. 2.50 and 2.51 that effectively represent the conditions for full and zero 

demand satisfaction respectively. 

 

req

i
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ii QnHnQn 999.0)( =                                                                                             (2.50) 

 

req

iii QnHnQn 01.0)( min =                                                                                              (2.51) 

 

Solving Eq. 2.50 and 2.51 simultaneously will give 
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min
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HnHn −
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The major drawback that was noted in most of the nodal head-flow relationships in 

literature is the lack of continuity in the functions (and or their derivatives) at the 

transitions between zero and partial nodal flow and/or between partial and full demand 

satisfaction. These discontinuities may cause convergence difficulties when the 

functions are embedded in the governing systems of hydraulic equations (Gupta et al., 

2003; Tanyimboh and Templeman, 2010). By contrast, the Tanyimboh and Templeman 

(2010) nodal head-flow relationship provides a smooth transition between zero and 
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partial nodal outflow and between partial and full demand satisfaction. Both the function 

and its derivative have no discontinuities that make the function suitable to be 

incorporated into the system of equations effectively. Recently, Kovalenko et al. (2014) 

indicated that the Tanyimboh and Templeman (2010) function provides better 

convergence properties in the computational solution of the system of equations in 

comparison to the Wagner et al. (1988) function when a line search procedure that 

control the iteration step is used. Ciapioni et al. (2015) studied the nodal head-flow 

relationship in two urban areas with different topographical characteristics (flat and 

mountainous sites). The procedure consists of simulating a large number of possible 

scenarios regarding the users supplied by a demand node of WDN. The results showed 

that the Tanyimboh and Templeman (2010) function performed better than the other 

nodal head-flow relationships considered in the study.  

 

Several pressure dependent analysis works have been carried out by using the nodal 

head-flow relationship. Tabesh et al. (2002) proposed a method for solving head-

dependent flows based on the Newton-Raphson technique that explicitly incorporates 

the Wagner et al. (1988) head–flow relationship into the continuity equations. The 

method ensures fast convergence based on a step length adjustment parameter whose 

value is obtained by trial and error.  Recently, Tsakiris and Spiliotis (2014) proposed a 

PDA implementation of the Newton-Raphson method using a pipe flow formula 

computed by combining the Darcy-Weisbach pipe friction head loss formula and the 

Colebrook-White function for the friction factor (Spiliotis and Tsakiris, 2011). The 

approach utilised the Wagner et al. (1988) head–flow relationship for pressure-

dependent network analysis. The approach has the advantages that it avoids the iterative 

solution of the Colebrook-White function and benefits from the extra accuracy of the 

Darcy-Weisbach pipe friction head loss formula compared to empirical equations such 

as the Hazen-Williams formula. Also, the approach obviates the use of the hydraulic 

resistance or pipe resistance coefficient. Ackley et al. (2001) utilised the Wagner et al. 

(1988) head-flow relationship for the pressure-dependent analysis. They formulated the 

pressure-dependent analysis as an optimization model where the sum of nodal outflows 
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was maximized.  Also, Ackley et al. (2001) proposed a simple and efficient technique 

for verifying the accuracy of the PDA results. In this approach, the nodal flows obtained 

from the PDA model are used as nodal demands in a DDA model. The DDA model is 

run with all other network data remaining the same. If the PDA nodal flows are accurate, 

the nodal heads and pipe flows obtained from the DDA will be identical to the 

corresponding nodal heads and pipe flows generated by the PDA model. This PDA 

results verification technique has been adopted widely (e.g. Ackley et al., 2001; 

Tanyimboh et al., 2003; Kalungi and Tanyimboh, 2003; Siew and Tanyimboh, 2012a; 

Seyoum and Tanyimboh, 2014).  

 

Giustolisi et al. (2008b) proposed a steady- state model that integrates the Wagner et al. 

(1988) nodal head-flow relationship and leakage (Germanopoulos 1985; Germanopoulos 

and Jowitt 1989) with the Global Gradient Method. The performance of the model was 

analysed using networks with pipes only. Giustolisi et al. (2008a) analysed the hydraulic 

performance of a WDN by employing a 24-hour extended period simulation. The 

analysis was performed using a PDA whose values of the required nodal head for full 

demand satisfaction (
des

iHn ) varied according to the daily demand pattern. However, 

referring to OFWAT (2004), the prescribed level of service does not vary throughout the 

day for water utilities within the UK. As reported in Tanyimboh and Siew (2012), a 

prescribed minimum residual pressure that tracks the daily demand pattern tends to 

underestimate the available flow when demands are above average and overestimate the 

available flow when demands are below average.  

 

Tanyimboh and Templeman (2010) developed a PDA model based on the Newton 

Raphson method that has a line search and backtracking procedure. The model is known 

as PRAAWDS (Program for the Realistic Analysis of the Availability of Water in 

Distribution Systems) and it incorporates four nodal head-flow relationships, i.e the 

Wagner et al. (1988), Germanopoulos-Gupta-Bhave (Gupta and Bhave, 1996), Fujiwara 

and Ganeshrajah (1993), and Tanyimboh and Templeman (2010). It also enables 
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network simulation using DDA. The model incorporates the Ackley et al. (2001) PDA 

result verification technique. Several researches demonstrated the accuracy and 

robustness of PRAAWDS e.g. Setiadi et al. (2005), Tanyimboh and Setiadi (2008a, b) 

and Shan (2004). However, the model is restricted to simulation of steady state hydraulic 

condition. Also, it does not have a water quality modelling functionality.  

 

Siew and Tanyimboh (2012a) developed a pressure-dependent extension to EPANET 2 

called EPANET-PDX by integrating the Tanyimboh and Templeman (2010) nodal head-

flow function into the global gradient algorithm (Todini and Pilati, 1988) that is the 

hydraulic analysis model of EPANET 2. EPANET-PDX employs line minimisation to 

optimise iterative corrections of pipe flow rates and nodal heads. The PDA model is 

thought to have preserved the EPANET 2 modelling functionality in full. Extensive 

testing conducted on the model revealed good modelling performances. EPANET-PDX 

was combined with a multi-objective genetic algorithm for optimization of WDNs and 

superior results were obtained compared to other previous solutions (Siew and 

Tanyimboh, 2012b; Siew et al., 2014). The research carried out herein involves 

enhancing the computational performance of EPANET-PDX further. Chapter 4 presents 

an alternative implementation of the line search and backtracking procedure to integrate 

the Tanyimboh and Templeman (2010) nodal head-flow function into the system of 

hydraulic equations in the global gradient algorithm.  

 

2.5 Water Quality Modelling in Water Distribution Networks  

 

One of the key concerns of water industries today is the deterioration of water quality in 

WDNs (Rossman, 1993; Clark and Grayman, 1998). Water quality changes as it 

transports from the treatment plant to the consumers.  Some of these changes include, 

loss of disinfection residual, which can lead to bacterial re-growth (Clark and Haught, 

2005), formation of potentially carcinogenic disinfection by products (DBPs) due to 

reaction of disinfectant with organic and inorganic substances in water (Rodriguez et al., 
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2004), development of taste and odour, and corrosion. The water quality concerns in 

combination with the rigorous standards set by regulatory bodies have pressed water 

companies to depend increasingly on models in the quest to understand and control the 

dynamics of water quality processes. Water quality models can be used to investigate 

points in WDNs with long detention times, low disinfection residuals and excessive 

concentrations of disinfection by-products (DBPs). The models can also facilitate 

decision making for water quality management. This includes the selection of sampling 

locations and sampling frequency, optimisation of the operation and the locations of 

booster disinfection stations (Rossman et al., 1993). Water quality models have also 

been used to aid monitoring to help address concerns about possible deliberate 

contamination of water systems by terrorists (Skadsen et al., 2008). 

 

The current water quality models for water distribution systems are coupled with 

hydraulic models to describe the quality of the system. Flow rates in pipes and the flow 

paths that define how water travels through the network are used to determine mixing, 

residence times, and other hydraulic characteristics affecting disinfectant transport and 

decay. Similar to hydraulic analysis of WDN, the water quality analysis can be of either 

steady state or extended-period. 

 

2.5.1 Governing  Principles of Water Quality Modelling 

 

Most water- quality models utilize advective-reactive transport mechanism to predict the 

changes in constituent concentrations due to transport through a pipe and due to 

reactions within the bulk flow and along the pipe wall. The governing water-quality 

equations are based on the following principles. These are (1) conservation of mass 

within differential lengths of pipes; (2) complete and instantaneous mixing of the water 

entering at nodes and storage facilities; and (3) reaction kinetics for the growth or decay 

of the substance as it transports in pipes and storage facilities (Rossman and Boulos, 

1996; Rossman, 2000; Clark and Grayman, 1998).  
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The expressions for the conservation of mass during transport in pipes is 
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where =iC  concentration in link i at location x  and time t ; =iu mean flow velocity in 

link i ; and )( ii Cr  = rate of reaction as a function of concentration. Eq. 2.54 shows that 

the rate at which the mass of material changes within a small section of pipe equals the 

difference in mass flow into and out of the section plus the rate of reaction within the 

section. The equation is based on the assumption that the bulk fluid is completely mixed 

and there no intermixing of mass between adjacent parcels of water traveling down a 

pipe (i.e., longitudinal dispersion in pipes is negligible). To solve Eq. 2.54, iC at 0=x  

for all times (a boundary condition) and a value for ir should be known.  

 

Eq. 2.55 represents the concentration of substance leaving a node and entering a pipe. 

Considering complete and instantaneous mixing at nodes, the concentration of a 

substance in water leaving node q  is the flow-weighted sum of the concentrations from 

the inflowing pipes. 
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where =i  link with flow leaving node q ; =qI  set of links with flow into q ; jL  = length 

of link j ; jQp  = flow in link j ; =extC  external source concentration entering node q ;  

and =extQ external source flow entering node q .  
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Assuming that the contents of the storage facilities (tanks or reservoirs) are completely 

mixed and the concentration in the tanks undertake reaction; a mass balance can be 

expressed as  
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where sV  = volume in storage at time t , sC  = concentration within the storage facility, 

sI  = set of links providing flow into the facility, and sO  = set of links receiving flow 

from the facility; and )( sCr = rate of reaction as a function of concentration within the 

storage facility. 

 

As shown in Eqs. 2.54 and 2.56 concentrations within pipes, storage tanks, and 

reservoirs are a function of reaction terms. Several complex physical and chemical 

processes take place when water transport into distribution systems. The most frequently 

used chemical processes in water quality simulation models are bulk flow reactions, 

reactions that occur on the pipe wall, and formation reactions that involve a limiting 

reactant.  

 

When a substance travels in a pipe or resides in storage, it can undergo reaction with 

constituents in the bulk water. The rate of reaction can be described as a power function 

of concentration (Rossman, 2000). 

 

n

b CkCr =)(          (2.57) 

 

where bk  is a bulk reaction constant; n  is the reaction order; and C  is concentration in 

bulk water. When a limiting concentration exists on the ultimate growth or loss of a 

substance then the rate expression in Eq. 2.57 becomes 
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Zero-, first-, and second-order reactions are commonly used to model chemical 

processes that occur in WDNs. Using the generalized expressions in Eq. 2.57 and 2.58, 

these reactions can be modelled by allowing n  to equal 0, 1, or 2 and determining bk  

experimentally. 

 

During water flowing through pipes, the constituents in the bulk water can be 

transported to the pipe wall and react with materials at the pipe walls such as biofilm and 

corrosion materials. The rate of water-quality reaction occurring at the pipe wall is 

dependent on the concentration in the bulk water, the amount of wall area available for 

reaction and the rate of mass transfer between the bulk water and pipe wall. For first 

order kinetics, the rate of a pipe wall reaction can be expressed as 
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where wk is wall reaction rate constant (length/time), fk  mass transfer coefficient 

(length/time), and  hr  = hydraulic radius.  The value of the mass transfer coefficient fk

depends on the molecular diffusivity of the reactive species and on the Reynolds number 

of the flow (Rossman et. al, 1994). 
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2.5.2 Solution Methods of the Water Quality Equations 

 

Eulerian and Lagrangian approaches are two commonly used numerical methods to 

solve the dynamic water quality equations used in water quality models. In these 

solution methods, a hydraulic simulation must first be executed for extended-period 

simulation to determine the flow, flow direction and velocity in each pipe at all times 

during the simulation.  

 

Grayman et al. (1988) and Rossman et al. (1993) suggested the application of Discrete 

Volume Method (DVM), which is an Eulerian approach, for water quality modelling of 

WDNs. The method divides each pipe into equal segments with completely mixed 

volumes. At each successive water quality time-step, the concentration within each 

segment is first reacted and then transferred to the adjacent downstream segment. At 

nodes, the concentration is updated considering a flow-weighted average of incoming 

inflows (as described in Eq. 2.51). The resulting concentration is then transported to all 

adjacent downstream segments. This process is repeated for each water quality time-step 

until a different hydraulic condition is occurred. When this occurs, the pipes are divided 

again under the new hydraulic conditions and the process continues. The accuracy of 

DVM depends on the size of the water quality time step used. 

 

Liou and Kroon (1987) suggested the Lagrangian method for water quality modelling in 

WDNs. Similar to the Eulerian approach the method divides the pipes into segments. 

However, rather than using fixed control volumes as in Eulerian methods, the 

concentration and size of water parcels are tracked as they travel through the pipes. At 

each time step, the size of the farthest upstream parcel of each pipe increases as water 

enters into the pipe. At the same time, the farthest downstream parcel shortens as water 

leaves the pipe. Similar to the DVM, the reactions of a constituent within each parcel is 

calculated at each water quality time step. Also, the concentration at each node is 

updated taking a flow-weighted average of incoming inflows. If the resulting nodal 
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concentration is significantly different from the concentration of a downstream parcel, a 

new parcel will be created at the end of each link that receives inflow from a node. The 

process is then repeated for each water quality time-step until the next hydraulic change 

is occurred and the procedure begins again. It is worth mentioning that at the start of the 

procedure each pipe in the network consists of a single segment whose quality equals the 

initial quality assigned to the upstream node. 

 

Lagrangian solutions can be either time-driven or event-driven. In a time-driven method, 

conditions are updated at a fixed time step. In an event-driven model, conditions are 

updated when the source water quality changes or when the front of a parcel reaches a 

node. A comparison of different solution methods by Rossman and Boulos (1996) 

indicated that the Lagrangian time-driven method is the most efficient approach for 

water quality modelling of WDNs. The accuracy of the method depends on the water 

quality time step and the concentration tolerance used to limit the creation of new 

segments. 

 

Several computer models are available to simulate water quality processes in WDNs. 

EPANET 2, a public domain hydraulic and water quality model, is among the most 

widely used. EPANET’s water quality simulator employs a Lagrangian time-based 

approach. The model enables simulation of non-reactive tracer materials, chlorine decay, 

disinfection by-products growth (e.g trihalomethanes) and water age (Rossman, 2000). 

However, the model is single species and limited to model the dynamics of chlorine, 

trihalomethane or water age. The model does not allow simulation of multiple 

interacting species. Shang et al. (2008) developed a multispecies extension of EPANET 

model (EPANET-MSX). EPANET-MSX enables simulation of multiple chemical 

species in bulk water and at pipe wall. 

 

Both EPANET 2 and EPANET-MSX rely on DDA hydraulic model to obtain pipe flow 

data for subsequent water quality analysis. The use of DDA has restricted the application 

of the water quality models to normal operating conditions with satisfactory pressure. 
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The models breaks down when abnormal or irregular network operating conditions 

prevail due to considerable pressure reduction in the system (Seyoum and Tanymboh, 

2013). The application of PDA model to evaluate the water quality performance of 

WDNs under abnormal (pressure-deficient) conditions is presented in Chapter 5. 

 

2.6 Conclusions  

 

WDN models are very valuable tools that allow engineers to analyse hydraulic as well as 

water quality performances of networks over a wide range of operational conditions. The 

conventional demand driven network analysis approach that presumes demands are fully 

satisfied irrespective of the network pressure is valid only if the network performs under 

normal operating conditions. The models may be inadequate when abnormal network 

operating conditions prevail. By contrast, the pressure dependent network analysis is a 

realistic approach for evaluating the performance of WDNs under both normal and 

abnormal operating conditions. A comprehensive review on the different PDA 

modelling approaches in literature for analysing WDNs under pressure deficient 

networks is provided. The limitations of the approaches were identified and discussed. 

The chapter has presented the principles of hydraulics and water quality analysis that are 

often employed in WDN models. A review of the most commonly used numerical 

methods to solve the network hydraulic and water quality analysis problems has been 

done. The limitation of steady-state analysis was highlighted in comparison to the 

extended period analysis that determines the behaviour of a network over time.  

 

The next chapter comprises a review on genetic algorithm that is the most widely used 

evolutionary algorithm for optimisation of WDN design together with the current 

developments made to enhance the algorithm’s efficiency and effectiveness. 
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Chapter 3 

 

Review of the Recent Developments in Genetic 

Algorithms for Optimisation of Water 

Distribution Systems  

 

 

 

3.1 Introduction 

 

Water distribution systems (WDSs) comprise the networks of pipes, pumps, valves, 

reservoirs, tanks and nodes, which transport drinking water from the supply source to the 

users. The construction, operation and maintenance of these systems involve an 

enormous capital investment. It is, therefore, crucial to design and rehabilitate them in a 

cost effective manner without compromising the required performance and regulatory 

standards. Traditionally, engineers used rules of thumb to design WDSs; these methods 

are both time consuming and likely to produce sub-optimal solutions (Vairavamoorthy 

and Shen, 2004; Marchi et al., 2014). An effective solution method which is reliable, 

easy to implement and computationally efficient is required to enable the optimal design 

of real-life systems. Several optimization techniques have been proposed previously. 

Most of these techniques have employed mathematical programming approaches such as 

linear and non-linear programming where the design variables assumed to be continuous 

(Alperovits and Shamir, 1977; Morgan and Goulter, 1985; Su et al., 1987; Lansey and 
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Mays, 1989). These methods are computationally efficient as they approach the 

optimization problem in deterministic manner. Nevertheless, the performances of the 

mathematical programming techniques can become extremely complex due to the many 

non-linear constraints implemented while analysing networks with many pipes as well as 

hydraulic components such as pumps and storage reservoirs. These constraints are 

normally found in the form of nodal mass balance and energy conservation equations, 

which are commonly, satisfied using a hydraulic network solver (di Pierro, 2009). These 

difficulties associated with mathematical optimisation techniques have motivated several 

researchers to use stochastic search optimization methods such as evolutionary 

algorithms.  

 

Evolutionary algorithms (EAs) are derivative-free random search methods that are 

suitable to solve non-linear, non-convex, and multimodal problems successfully 

(Nicklow et al., 2010). EAs have gained widespread acceptance in recent years for 

optimizing the design and operation of WDSs. The methods are capable of handling 

discrete variables, which is one of the key aspects in the WDS optimization. EAs are 

mathematically non-complex and their search approach is dependent only on objective 

function and corresponding fitness values. Also, the population–based nature of EAs 

allows them to explore a vast search space of solutions and increases the chance of 

obtaining the global optimum solution. 

 

A number of EAs have been applied for optimizing the design and operation of WDSs. 

These include genetic algorithms (Simpson et al., 1994; Dandy et al., 1996; Savic and 

Walters,1997; Wu et al., 2001; Vairavamoorthy and Ali, 2000; and Montesinos et al., 

1999), ant-colony optimisation (Maier et al., 2003), particle swarm optimization 

(Montalvo et al., 2008), simulated annealing (Cunha and Sousa, 1999), shuffled frog 

leaping (Eusuff and Lansey, 2003), differential evolution (Vasan and Simonovic, 2010), 

harmony search (Geem, 2006), tabu search algorithm (Cunha and Ribeiro, 2004). 

Amongst the stochastic optimisation techniques, genetic algorithms (GAs) are probably 
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the best known and most extensively applied method in the area of WDS optimization 

due to their robustness and capability in yielding optimal or near optimal solutions 

(Dandy et al., 1996; Savic and Walters, 1997; Wu et al., 2001 and Vairavamoorthy and 

Ali, 2000, 2005).  

 

The main aim of this chapter is to review the existing approaches to enhance the 

efficiency and effectiveness of GAs to solve WDSs optimisation problems. The research 

carried out herein involves the implementation of GA and hence, the approach is 

discussed in detail in the next section (Section 3.2). Section 3.3 reviewed the main 

developments made on GAs for WDSs applications. Different approaches have been 

discussed and their limitations assessed. Also, the most common parallelization 

approaches that have been applied in WDS literature to improve the GAs’ computational 

efficiency are reviewed and their benefits and drawbacks are discussed. 

 

3.2 Genetic Algorithms 

 

Genetic algorithm (GA) is a stochastic optimization approach inspired by Darwin’s 

theory of evolutions that uses natural selection as the driving force (Holland, 1975; 

Goldberg, 1989). GA operates by creating a population of potential solutions for the 

given problem. It provides a fitness values to each solution. The fitness value determines 

the suitability of an individual solution (chromosome or strings) for a given problem. 

The higher the fitness is the more the probability of the individual to proceed to the next 

generation. The individuals of the population are recombined using operators such as 

crossover and mutation to produce new generation of individuals that are more likely to 

have better fitness value. A population of individuals undergoes a sequence of mutation 

and crossover transformations. A selection scheme biased towards selecting fitter 

individuals yields individuals for the next generation. The algorithm is then expected to 
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converge to the optimal solutions after several generations. The general framework of 

GA is described in Fig. 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 General framework of GA 

 

GA begins by randomly generating a population of individuals. The individuals are 

encoded as chromosomes, each consisting of a set of genes that describe a solution. The 

chromosomes are evaluated based on fitness values assigned to them. Individuals are 
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then selected from the population to create a mating pool based on their fitness values. 

Individuals with higher fitness values have a higher probability of being selected to 

produce offspring that represent new solutions. A very small portion of the offspring 

will mutate after reproduction. The GA operation continues until a pre-specified 

termination criterion is met (e.g. number of generations). 

 

3.2.1 Genetic Operators 

 

Genetic operators consist of selection, crossover and mutation. In combination, the 

operators serve to create and explore new offspring at each generation. Crossover 

involves the transformation of two or more individuals into new offspring. It plays an 

important role in the reproduction phase and usually set to have a very high probability 

of occurrence during the evolution process to enable exploring more of the solution 

space and reducing the chance of falling into a local optimal solution. On the other hand, 

mutation operator randomly changes individuals to ensure that the whole search space 

has been thoroughly investigated and to facilitate the recovery of genetic diversity lost 

during reproduction and selection process. Selection drives the search toward the regions 

of best individuals. 

 

3.2.1.1 Crossover Operator 

 

In crossover, there is a partial exchange of some of the parents’ genetic material to 

produce children. In doing so, it is expected that the GA will produce some offspring 

that may attain superior characteristics relative to their parents. In general, crossover 

happens to certain number of sub-strings in the chromosome after a point known as the 

crossover point. The simplest form of crossover (single-point crossover) works by 

selecting sections of one parent’s chromosome to include in the child and then filling the 
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remaining parts of the child from the other parent’s chromosome. A crossover point is 

randomly picked and genetic materials are exchanged between parents to produce 

offspring as illustrated in Fig. 3.2.  

 

                      Crossover point 

  

 
                 

Parent string     Offspring 

       

  

                                   
Single point crossover 

 
          Crossover points  

 

 
                                               

 Parent string                                                           Offspring 

 
Multi-point crossover 

 

Figure 3.2 Operation of single and multi-point crossover 

 

3.2.1.2 Mutation Operator 

 

Mutation is an operator that randomly changes the value of a bit within the string. 

Normally it is applied with a very low probability. If the probability of mutation is too 

high, there will be frequent disruption of good genetic material that will hinder the 

algorithm from converging quickly. There are various forms of mutation such as the 

inversion mutation, insertion mutation, displacement mutation etc. Fig. 3.3 shows the 

operation of the basic single-point mutation that randomly flips a bit within the 

chromosomes.  

 

1 1 0 1 1 1 1 1 1 0 1 0 

1 0 0 1 1 1 1 0 1 0 1 0 

1 1 0 1 1 1 1 0 1 1 1 0 

1 0 1 0 1 0 1 1 0 0 1 1 
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               Selected bit            Mutated bit 

   

 

 

Figure 3.3 Operation of the basic GA mutation  

 

3.2.1.3  Selection Operator 

 

Selection provides the driving force in a GA that guides the GA search toward 

promising regions in the search space. Selection operators are characterized by selection 

pressure that represents the degree at which the best individual in the population are 

favoured by repeated application of the selection operator (Back et al., 2000). Selection 

process can control the level of exploration and exploitation by varying selection 

pressure (Back, 1994). A higher selection pressure can cause premature convergence of 

the algorithm due to quick loss of diversity in the population, while a lower selection 

pressure makes a slow convergence of the algorithm to find optimal solution (Back et 

al., 2000). Therefore, an appropriate selection pressure that maintains a good balance 

between exploitation and exploration is required for optimisation problems (Goldberg 

and Deb, 1991).  

  

Roulette-wheel and tournament selection are the most commonly used selection 

operators in the literature. In the roulette-wheel selection, which was introduced by 

Holland (1975), each individual in the population occupies an area on the roulette-wheel 

proportional to its fitness. This representation makes high fitness individuals to have 

larger area and thus have higher selection probability. The roulette wheel is rotated as 

many times as the population size to select an individual that performs a genetic 

operation (e.g. crossover). Most spinning of the roulette wheel is likely to choose the 

fitter individuals. This may cause the population to lose genetic diversity and makes the 

algorithm to converge to suboptimal solution prematurely (Goldberg and Deb, 1991).  

1 0 1 0 1 0 1 0 0 0 1 0 
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Goldberg and Deb (1991) proposed tournament selection where a specified number of 

individuals are selected from the population and their fitness compared. The fittest 

individual is the winner and will be selected to be part of the mating pool. The 

tournament is repeated with different individuals until the mating pool is sufficiently 

filled. In tournament selection, the selection pressure can be adjusted according to the 

tournament size. An increased in tournament size can provide an increase in selection 

pressure. A large tournament size will result in a mating pool consisting of a higher 

number of fitter solutions on average as compared to a smaller tournament.  

 

3.2.2 Representation of Candidate Solution 

 

When GA is applied to optimization problems, the candidate solutions are normally 

encoded using different approaches. Among these, binary coding (Holland, 1975; 

Goldberg, 1989), Gray coding (Caruana et al., 1989) and real coding are included. 

Binary coding is the most common encoding method where problem variables are 

represented by bit combinations of 0 and 1. As described in Fig. 3.2 and Fig. 3.3, the 

crossover and mutation operators for binary coding are easy to apply. However, one of 

the main drawbacks of this representation is the existence of redundant codes (Herrera et 

a., 1998). For example, in the design of a network of five pipes shown in Fig. 3.4, if the 

commercially available pipe diameter sizes are (100, 200, 300, 400 and 500 mm) then a 

three-bit substrings that has 8 (i.e. 2
3
) possible bit combination will be used to map the 

diameters, therefore the mapping set will be (000, 001, 010, 011, 100, 101, 110, 111). It 

is worth noting that three redundant bit combinations are not corresponding to any of the 

available pipe diameters. One way of addressing this difficulty is by randomly 

remapping the redundant substrings to any of the five available pipe sizes.   

 

Similar to binary coding, Gray-coding uses strings, but differs in the way the bits are 

represented. The key feature of this representation is that only a single bit changes 
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between neighbouring substrings. Binary coding, on the other hand, can have a large 

number of changes between adjacent strings. Table 3.1 shows the binary and Gray code 

representation of eight available pipe sizes using a 3-bit combination.  

 

Table 3.1. Gray and binary code representation for 8 available pipe sizes 

Pipe size (mm) Gray coding Binary coding 

100 000 000 

200 001 001 

300 011 010 

400 010 011 

500 110 100 

600 111 101 

700 101 110 

800 100 111 

 

As can be seen in Table 3.1, in the binary representations, for the GA to change the 

representation from 400 mm and 500 mm, all three bits must alter simultaneously. 

Hence, the probability that crossover and mutation will occur to cross the Hamming cliff 

can be very small. Generally, the mutation probability is rather low and hence the 

chance of pipe size 400 mm becoming 500 mm is very low. Hamming cliff represents a 

phenomenon where neighbouring phenotypes (pipe sizes) are represented by completely 

different genotypes (binary code) (Caruana and Schaffer, 1988). The Hamming cliff may 

produce problems under some conditions, such as the convergence towards no global 

optimum (Herrera et a., 1998). Gray coding is therefore eliminates problems related to 

Hamming cliff. 

 

In real coding, genes are represented as real numbers where each has a unique value. 

Real number encoding is suitable for optimization problems with variables in continuous 

search space (Herrera et a., 1998). The issue of redundancy associated with binary 

coding is addressed in this representation. In real coding representation, both genotype 
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space and phenotype space have identical topological structure (Gen et al., 2008). 

Therefore, the coding and decoding processes that are needed in the binary coding are 

avoided, thus increasing the GA’s speed. Fig. 3.4 shows binary and real code 

representations of five randomly generated designs of a simple network.
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  Population 1 

P1 P2 P3 P4 P5 

Binary code representation 

011 001 010 000 001 

Real code representation 

400  200 300 100 200 

     

 Population 2 

P1 P2 P3 P4 P5 

Binary code representation 

011 000 010 001 001 

Real code representation 

400  100 300 200 200 

     

 Population 3 

P1 P2 P3 P4 P5 

Binary code representation 

100 001 010 000 000 

Real code representation 

500  200 300 100 100 

     

 Population 4 

P1 P2 P3 P4 P5 

Binary code representation 

001 100 010 000 000 

Real code representation 

200  500 300 100 100 

     

 Population 5 

P1 P2 P3 P4 P5 

Binary code representation 

010 001 011 000 010 

Real code representation 

300 200 400 100 300 

     
     

 
Figure 3.4 Binary and real code representations of five randomly generated water 

distribution network designs; available pipe sizes are (100, 200, 300, 400 and 500 mm) 
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P3 (300 mm) 
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P4 (100 mm) 

P5 (100 mm) 

P1 (200 mm) 

P3 (300 mm) 

P2 (500 mm) 

P4 (100 mm) 

P5 (100 mm) 

P1 (300 mm) 

P3 (400 mm) 

P2 (200 mm) 

P4 (100 mm) 

P5 (300 mm) 
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3.3 Recent Developments  in  Genetic Algorithms  for Water  

Distribution Systems Optimisation  
 

 

GAs have been dominantly used in the literature of the WDS optimisation field. This 

includes pump operation scheduling (Goldberg and Kuo, 1987; Mackle et al.,1995; Rao 

and Salomons, 2007), network design and rehabilitation (Savic and Walters, 1997; 

Dandy and Engelhardt, 2001; Halhal et al., 1997; Siew et al., 2014), network calibration 

(Vitkovsky and Simpson, 1997), water quality optimization (Munavalli and Mohan-

Kumar, 2003; Farmani et al., 2006) and tank siting and sizing (Vamvakeridou-Lyroudia 

et al., 2005; Prasad, 2010; Siew and Tanyimboh, 2011a). Many developments have been 

carried out to enhance GAs search capabilities and its computational efficiency in 

finding optimal and near optimal solutions. Among others implementing different 

coding systems, modifying genetic operators, reducing search space, applying various 

constraint handling methods, parallelization of GA are included.  

 

3.3.1 Advances in Representation Scheme and Genetic Operators 

 

Savic and Walters (1997) and Dandy et al. (1996) proposed the use of Gray coding as 

opposed to binary coding to overcome convergence problems related to the hamming 

cliff effect. Vairavamoorthy and Ali (2000) and Kadu et al. (2008) avoided the encoding 

and decoding of diameter variables and the issue of redundancy by implementing real 

coding. Dandy et al. (1996) proposed the use of an adjacency mutation operator based 

on the assumption that good solutions have the tendency to lie close each other. The 

mutation operator differs from the conventional bitwise mutation in that it mutates a 

complete decision variable substring to an adjacent decision variable substring located 

up or down the list of the design variable candidates, rather than randomly flipping bits 

from the solution string. Mutation plays an important role particularly in the later 

generations of the GA where the population is highly dense with good solutions. It 
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encourages exploring the search space further and increasing the chance of finding better 

solutions. Taking this into consideration Kadu et al. (2008) implemented a non-uniform 

mutation rate instead of a fixed mutation rate. The mutation probability increases from 

1% to 10% as the search proceeds. Saleh and Tanyimboh (2014) proposed a seamless 

generic procedure for dealing with redundant codes. The approach was implemented for 

optimal design of WDSs based on entropy and topology where the redundant codes 

represent closed pipes whose flow-carrying capacity is zero. The closed pipes are 

assigned pipe sizes taken from just above the upper end of the real set of available pipe 

diameters. As the assumed diameters have no functional value, it is expected that they 

will become extinct through evolution and natural selection.  

 

3.3.2 Enhancement to Computational Efficiency Related to the Use of the 

Network Solver 

 

During the GA process, a network solver is required to satisfy the governing network 

constraints (i.e. mass balance and energy conservation) for each member of the 

population under consideration, hence resulting in a high computational cost. In attempt 

to reduce the computational time required by the network solver, Vairavamoorthy and 

Ali (2000) proposed the use of a regression model that avoids the need for a hydraulic 

solver for each member of the population. The model is derived from regression analysis 

of several network designs. The model approximates the hydraulic behaviour of the 

networks and it is less computationally demanding. Hindi and Hamam (1993) and Savic 

and Walter (1995) proposed changes to the stopping criteria of the network solver to 

reduce the total number of iterations required to satisfy the governing equations. 
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3.3.3 Search Space Reduction 

 

The size of the search space is one of the main factors that influence the effectiveness 

and efficiency of the GA search in WDSs optimisation (Kadu et al. 2008).  The size of 

the search space can be wider when the network size is larger and more candidate pipe 

sizes included. This can lead to an increase in computational time and reduce the chance 

of obtaining global optimum solution. Restricting the number of candidate pipe 

diameters involved is one way of reducing the search-space size significantly. However, 

this has to be carried out in a clever way as an incorrect choice of candidate pipe sizes 

can result in a sub-optimal solution. In an effort to reduce the search space size, 

Vairavamoorthy and Ali (2005) proposed a GA framework for the least-cost pipe 

network design problem that excludes regions of the search space where infeasible 

solutions are likely to exist. The formulation uses heuristics, which attempt to measure 

the relative importance of each pipe with regard to the overall performance of the 

network. This involves a hydraulic simulation of the network and the solution of a 

system of linear equations with multiple right hand terms both of which impose a very 

high computational burden. Kadu et al. (2008) reported a spectacular reduction in WDS 

GA execution times employing a heuristic based on a critical path concept to limit the 

GA search to a region of the solution space where near optimal solutions were thought to 

exist. The approach is built on the assumption that the cheapest mode of delivering water 

from the source to a demand node is through the shortest available path. They minimized 

the search space by reducing the number of pipe diameter options for each link. 

However, their method is limited in scope as the critical path concept is not applicable to 

the more industrially relevant problem of rehabilitation or networks with pumps, 

multiple operating conditions and time varying demands.  
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3.3.4 Constraint Handling Techniques 

 

GAs are unconstrained optimisation procedure and they are incapable of differentiating 

feasible solutions from infeasible ones. Nevertheless, many real world optimisation 

problems such as WDSs are constrained optimisation problem, which necessitates 

appropriate handling of constraints. The most common approach to handle constraints in 

GAs is to use penalty functions (Savic and Walters, 1997; Vairavamoorthy and Ali, 

2000). The idea of using penalty function is to convert a constrained-optimisation 

problem into unconstrained by penalizing infeasible solutions based on the amount of 

their constraint violation in order to concentrate the GA search within the feasible region 

of the solution space. For this, an additional penalty cost is applied to the actual WDS 

cost of the infeasible solution. The penalty cost is calculated based on penalty 

parameters that are formulated in such a way that it penalizes any violations of the 

constraints. The amount of violation determines the probability of solutions being 

discarded in the next generation. Too high penalty will confine the GA search to the 

feasible region of the solution space potentially resulting in very expensive solutions. On 

the other hand, too low penalty moves the GA search towards the infeasible region.  

Therefore, an extensive and exhaustive fine-tuning of penalty parameter requires before 

the penalty function can be effectively incorporated into the GA framework.  

 

Many researchers have attempted to address the difficulties associated with penalty 

function. Khu and Keedwell (2005) converted each node pressure constraint into 

objective functions to avoid the use of penalty function. However, this procedure 

imposes huge computational demands when applied to real-life WDSs with large 

number of nodes. Prasad and Park (2004) adopted a constraint handling method, which 

does not require a penalty parameter (Deb, 2000). The approach uses a tournament 

selection operator in which feasible solutions are favourably selected over infeasible 

solutions. Also, when infeasible solutions are compared, those with smaller constraint 

violations are preferentially selected over those with larger violations. Among feasible 
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solutions, solutions with better objective functions preferentially selected over those 

with lower objective function values. However, this way of handling constraint ranks the 

most expensive feasible solution over a cost effective marginally infeasible solution, 

which can be acceptable in practice. Also, the method impedes the GA from using the 

good feature of marginally infeasible solutions to reach an optimal solution effectively. 

Wu and Simpson (2002) and Wu and Walski (2005) developed a self-adaptive penalty 

method based on a heuristic boundary search technique. The approach involved an 

evolving penalty factor that aimed to focus the GA search around the boundary between 

feasible and infeasible solution space. However, the implementation of this self-adaptive 

heuristic technique requires the prior calibration of several additional parameters. The 

self-adaptive penalty method proposed by Afshar and Marino (2007) uses a penalty 

parameter the value of which evolves during the execution of the algorithm. The ratio of 

the cost of the best feasible and infeasible solutions at each generation is used to guide 

the GA search towards the boundary of the feasible region by automatically adjusting 

the value of the penalty parameter. The procedure requires an initial value of the penalty 

parameter to be defined at the start of the optimization process. High and low initial 

values of the penalty parameter lead to searches inside and outside of the feasible region, 

respectively. Farmani et al. (2005) proposed a self-adaptive fitness formulation, which 

does not require any parameter calibration. The approach involves implementation of a 

two-stage penalty. The first stage ensures that the worst infeasible solution is assigned a 

penalty cost that is higher or at least equal to the cost of the best solution in the 

population. The penalty cost of the worst infeasible solutions is then further increased to 

the cost of the most expensive solution. The remaining infeasible solutions are penalised 

exponentially in proportion to their infeasibility. However, the approach allows the low-

cost infeasible solutions to be selected over feasible solutions with higher costs. In doing 

so, there may be a possibility that the population will be over-dominated by infeasible 

solutions and the search may converge to infeasible solutions. Siew and Tanyimboh 

(2012b) have proposed an alternative approach that avoids the use of penalty functions 

or other special constraint handling techniques. In particular, the method does not 
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involve any parameters that require prior calibration. The procedure involves a pressure 

dependent analysis (PDA) within a multi-objective optimisation search. GAs, by their 

nature, are heuristic and generate enormous quantities of infeasible solutions, which are 

pressure deficient. Unlike the conventional method of analysis, PDA can simulate 

infeasible candidate solutions accurately. The approach allows all the feasible and 

infeasible solutions generated to compete in a way that is fundamentally bias-free with 

respect to constraint violation. The algorithm promotes full exploitation of all feasible 

and infeasible solutions generated to guide the GA search toward the boundary between 

infeasible and feasible regions. In most recent time, Saleh and Tanyimboh (2014) have 

adopted the penalty-free approach for optimal design of WDSs based on entropy and 

topology. The algorithm includes a special procedure for gauging the infeasibility of 

solutions. Overall, the penalty-free approach generated superior results for all the 

optimization problems solved in terms of cost, hydraulic performance and computational 

efficiency compared to other solutions in literature.  

 

The penalty-free approach has been adopted in the research carried out herein due to its 

proven robustness and effectiveness. Comprehensive details on the method are provided 

in Chapter 6. 

 

3.3.5 Multi-Objective Optimisation Developments   

 

The optimisation of real-world WDSs involves several objectives, e.g, minimize cost, 

maximize performance, maximize reliability, etc., which are often conflicting in nature. 

The traditional single objective optimisation approach mainly aimed at finding the best 

solution, which corresponds to the minimum or maximum value of a single objective 

function that combines all different objectives. This type of optimisation approach 

cannot yield a set of alternative solutions that provide trade-off among different 

objectives. On the contrary, multi-objective optimisation approach produces a set of 
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non-dominated solutions, known as Pareto-optimal set. Each solution of the Pareto 

optimal set is not dominated by any other solution; the solutions are all of equal 

optimality. It is not possible to make improvement on one objective without making at 

least one of the other objectives worse. Pareto optimal solutions are found to be practical 

since the final solution of the decision maker is always a trade-off. For instance, 

engineers can evaluate the trade-off between different designs and make engineering 

judgment to obtain a practical solution based on the performance requirement and the 

available budget. Depending on the preference of a decision maker, a group of designs 

can be chosen from the Pareto optimal set for more detail analysis. For this reason, 

Pareto optimal solution sets are often preferred to single solutions (Konak et al., 2006). 

 

The population-based evolutionary algorithms such as GAs are well suitable to solve 

multi-objective optimisation problems (Gen et al., 2008; Konak et al., 2006). The ability 

of the algorithms to explore different regions of a solution space simultaneously enables 

them to find a diverse set of solutions for difficult problems with non-convex, 

discontinuous, and multi-modal solutions spaces. Evolutionary multi-objective 

optimisation algorithms can be grouped as elitist and non-elitist (Deb, 2001). Examples 

of non-elitist algorithms include Vector Evaluated Genetic Algorithm (Schaffer, 1985), 

Multi-objective Genetic Algorithm (Fonseca and Fleming, 1993) and Non-dominated 

Sorting Genetic Algorithm (Srinivas and Deb, 1994). Strength Pareto Evolutionary 

Algorithm (SPEA) (Zitzler and Thiele, 1998), Elitist Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) (Deb et al., 2002) and Pareto Archived Evolution Strategy 

(PAES) (Knowles and Corne, 2000) are the most common elitist methods. Elitism is one 

of the key factors for successful application of multi-objective EAs (Bekele and 

Nicklow, 2005; Kollat and Reed, 2006). It helps to prevent the loss of good solutions 

and in achieving better convergence in MOEA (Zitzler et al., 2000). Farmani et al. 

(2003) have assessed the application of some of the elitist and non-elitist multi-objective 

EAs in WDSs. The study indicated that the elitist Non-dominated Sorting Genetic 

Algorithm method (NSGA-II) (Deb et al., 2002) outperformed other approaches in terms 
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of finding a diverse set of solutions and generating Pareto-optimal solutions. NSGA-II is 

popular mainly due to its efficient non-dominated sorting procedure and strong global 

elitist approach implemented. It preserves elitism by combining parent and child 

populations before they are sorted and ranked into non-dominated fronts. By doing this, 

all elites from both the parent and child populations are preserved. This enables the 

algorithm to provide better spread of solutions and convergence near the optimal 

solutions. One of the advantages of NSGA-II is that it requires only few users’ specified 

parameters (Dridi et al., 2008).  

 

NSGA-II is one of the widely used multi-objective GA in many aspects of the WDS 

optimization researches.  Atiquzzaman et al. (2006) presented a multi-objective genetic 

algorithm that couples NSGA-II with EPANET to produce optimal and less optimal 

solutions with the aim of providing alternative design solution within available budget 

and tolerated pressure deficit. Farmani et al. (2006) optimised the design and operation 

of a complex WDS (“Anytown” network) that involves multiple loading conditions, 

pump scheduling, tank siting and sizing using the NSGA II. The problem was 

formulated as a multi-objective optimization problem with total cost, water quality and 

reliability as the objectives. Jayaram and Srinivasan (2008) proposed a multi-objective 

approach for the optimal design and rehabilitation of a water distribution network, with 

minimization of whole-life cost and maximization of performance as objectives. In the 

area of WDS security, Jeong and Abraham (2006) proposed a multi-objective 

optimization model for an operational response strategy to mitigate consequences of 

deliberate attacks on WDS. Preis and Ostfeld (2008) and Weickgenannt et al (2010) 

employed NSGA-II for optimal sensor  placement to detect contamination in WDSs. 

Nicolini et al. (2011) adopted a multi-objective optimisation approach for  optimal 

leakage management in water distribution network. The objectives considered were 

minimization of the number of valves and minimization of the total leakage in the 

system. Siew and Tanyimboh (2012b) introduced a penalty-free multi-objective 

evolutionary approach (PF-MOEA) for design optimization of WDS. The approach 
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utilizes pressure dependent analysis (PDA) coupled with NSGA-II. PDA is able to 

simulate both normal and pressure deficient networks and provides the means to identify 

the feasible region of the solution space effectively. Siew et al. (2014) applied PF-

MOEA for the phased whole-life design and rehabilitation of WDSs. The optimization 

model considers the initial construction, rehabilitation and upgrading costs. Repairs and 

pipe failure costs are included. The model also takes into consideration the deterioration 

over time of both the structural integrity and hydraulic capacity of every pipe. 

 

Czajkowska and Tanyimboh (2013) proposed a maximum entropy-based multi-objective 

genetic algorithm approach based on NSGA-II for the design optimization of WDS 

under multiple operating conditions. Saleh and Tanyimboh (2013, 2014) developed a 

multi-objective optimisation approach using NSGA-II for simultaneous layout, pipe size 

and entropy-based optimisation of WDSs. The optimization method is based on a 

general measure of hydraulic performance that combines statistical entropy, network 

connectivity and hydraulic feasibility. Barlow and Tanyimboh (2014) developed a multi-

objective memetic algorithm for least-cost design of WDSs. The algorithm hybridizes 

NSGA-II with local and cultural improvement operators. A description on the NSGA-II 

procedure is provided next. 

 

In the NSGA II procedure, an initial population is generated randomly. Each individual 

in the population is then assigned fitness and ranked based on its non-domination level. 

Using this population, the operators of tournament selection, crossover and mutation are 

used to create an offspring population. To preserve elitism, the parent and offspring 

populations are combined into a single population that is then sorted into various levels 

of non-domination. The next generation is created by first selecting solutions belonging 

to the best non-dominated front of the combined parent and offspring population, and 

then subsequent non-dominated fronts in the order of their ranking. If the last accepted 

front has more solutions than required to achieve the population size, the solutions 
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having the largest crowding distances (higher diversity) are chosen. This whole 

procedure is repeated until a pre-specified number of generations are reached. 

 

It is important to note that NSGA II employs a binary tournament selection operator 

where the selection criterion is based on the crowded-comparison operator. This 

operator requires both the non-domination rank and crowded distance value of each 

solution in the population. The diversity among non-dominated solutions is introduced 

by using the crowding comparison procedure, which is used in the tournament selection 

and during the population reduction stage. Given two solutions of S1 and S2, S1 is 

considered as the winner of the tournament if either S1 has a higher non-domination 

rank than S2 or if both have the same non-domination rank but S1 has a larger crowding 

distance than S2.  

 

Crowding distance is very important in guiding the selection process at the various 

stages of NSGA II towards a uniformly distributed Pareto optimal front.  The calculation 

of crowding distance in the NSGA II requires the solutions to be sorted in ascending 

order according to each objective considered. To maintain the boundary solutions for 

each objective function, solutions with the largest and smallest objective values are 

assigned an infinite distance value. The distance values for intermediate solutions are 

then calculated as the absolute normalised difference in the function values of two 

adjacent solutions. The overall crowding distance for the solution is the sum of the 

individual distance corresponding to each objective.  

 

3.3.6 Global- Local Hybrid Search 

 

One of the major advantages of GAs when applied to optimisation problem is that their 

capability to incorporate other local search and optimisation techniques within its 

framework to yield a hybrid, which achieves the best from the combination (Gen, 2008). 
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GAs are global search method and can rapidly locate the region where the global 

optimum exists. Nevertheless, the algorithms take a relatively long time to locate the 

exact global optimum in the region of convergence (De Jong, 2005; Preux and Talbi, 

1999). On the other hand, local search methods can converge to local optimal solutions 

rapidly; however, they have no capacity to identify global optima. A hybrid method that 

couples the exploration of GAs with the exploitation of local methods, therefore, has the 

potential to enhance the search to locate the exact global optimum and reduce the 

computation time required (El-Mihoub et al., 2006). However, one of the key concerns 

in hybrid algorithms is that the efficiency and effectiveness of the search is dependent on 

the division of the global and local search time (Goldberg and Voessner, 1999). 

Choosing a proper balance between global and local search may not be a straightforward 

and can actually be considered as an optimisation problem itself (e.g. see Goldberg and 

Voessner, 1999).  

 

Some of the recently proposed hybrid methods to solve WDSs optimisation problems 

include the algorithm developed by Haghighi et al. (2011). The algorithm combines GAs 

with integer linear programming (ILP). It requires defining a path from a source to each 

node arbitrarily. In doing so, a single pipe was excluded from each loop and the looped 

network was converted into a branched one. All excluded pipe sizes were determined by 

GAs while the rest of the pipes are optimized by ILP. ILP returns the optimum diameter 

to GAs and the evolution process continues until the convergence criteria are satisfied.  

The algorithm was applied on two networks from literature (each has 34 pipes) and a 

significant reduction in computational time has been reported. However, the algorithm 

has been applied on a looped network operating under single demand loading condition. 

The applicability of the algorithm in solving real-world WDSs problems such as 

networks operating under multiple operating conditions and the inclusion of pumps and 

storage reservoirs has not been assessed.  Barlow and Tanyimboh (2014) introduced a 

multi-objective memetic algorithm that hybridises GA with local and cultural 

improvement operators for least-cost WDS design problem. The hybrid algorithm was 
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formulated in such a way that the GA operates as normal, except that at a certain 

generation interval the local and cultural operators are applied to create child population. 

The performance of the algorithm was assessed in reference to GA using two benchmark 

networks that have 34 and 454 pipes. Substantial improvement in the algorithm’s 

computational efficiency has been reported.  However, it was noted that the performance 

of a network in Barlow and Tanyimboh (2014) approach is measured based on the total 

nodal pressure deficit throughout the network. A drawback of this approach is that it 

generates only the least cost feasible solution. The approach is not capable of 

recognizing other feasible solutions. For this, only solutions that are located in the low-

deficit region of objective space are more likely to be modified through local and 

cultural improvement operators to obtain the optimal solution. The local and cultural 

improvement operators are not applied to other individuals located in any other region of 

objective space.  By contrast, a procedure that guides the search approaching the optimal 

solution from both sides of the region of the objective space is more efficient for 

exploring and exploiting the search space (Dong and Wang, 2014). 

 

Wang et al. (2015) compared the performance of two hybrid search procedures named as 

high and low-level hybrid algorithms (Talbi, 2002) in reference to NSGA II. The high–

level hybrid algorithm combines different algorithms that are operating independently 

within the optimisation framework while the low-level hybrid algorithm embedded 

various algorithms within the NSGA-II. The performances of the hybrid algorithms and 

that of NSGA II were assessed based on the non-dominated solutions generated by the 

algorithms. The authors concluded that the hybrid algorithms provide a more diversified 

Pareto front for small and medium size networks and better convergence and diversity 

for large size network in reference to NSGA II. However, the performance assessment 

was carried out using graphical plots only; and no rigours analysis (e.g. quantitative 

comparison) was carried out to examine the outcome of the algorithms. 
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3.3.7 Parallelization of Multi-Objective Evolutionary Algorithms  

 

As described in Section 3.3.5, MOEAs have been widely used due to their potential in 

generating Pareto optimal solutions that provide decision makers flexibility in choosing 

a particular solution. Despite their benefit, MOEAs require a large number of function 

evaluations before generating good results (Shinde et al., 2011). This has limited the 

algorithms’ potential for practical applications to solve real-world WDSs optimisation 

problem. One way of addressing this difficulty is by implementing parallel computing 

approach that is capable of reducing the computational time and makes the algorithms’ 

convergence to optimal solutions faster. In parallel computing large problems are often 

broken into several ones that can be solved simultaneously on separate processors (Trobec 

et al., 2009). Since EAs are population based search approach, they are suitable for being 

implemented in parallel computing architectures (Cantu-Paz, 2000). The genetic 

operator such as crossover, mutation, and in particular the time-consuming fitness 

evaluation can be performed independently on different processors (Shinde et al., 2011).  

The most common parallelisation approaches that have been applied in WDS literature 

are the controller-worker model (single-population implementation) and island model 

(multiple-population implementation). The two types of parallel GAs have been 

extensively used to reduce the execution time of a variety of applications. The choice 

between the two parallel GAs’ approaches is determined by factors such as ease of 

implementation and their potential to reduce execution time.  

 

3.3.7.1 Controller-Worker Model (Single-Population Scheme) 

 

Controller-worker model is one of the successful implementations of parallel GAs 

(Nowostawski and Poli, 1999; Cantu-Paz and Goldberg, 2000). It employs a single 

population and the evaluation of the individuals is performed in parallel. The selection 

and mating is done globally in which each individual may compete and mate with any 
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other. The approach is very efficient particularly for problems that require considerable 

computations for fitness evaluation (Cantu-Paz and Goldberg, 2000). Fitness evaluation 

requires only the knowledge of the individual being evaluated. No communication is 

required during this stage. Parallelisation of fitness evaluation is performed by assigning 

a fraction of the population to each of the processors available. Communication occurs 

only when each worker receives the individual to evaluate and when the workers return 

the fitness values. Controller-worker GA explores the search space in exactly the same 

manner as serial GA (Digalakis and Margaritis, 2003; Nowostawski and Poli, 1999). 

Consequently, the existing design guidelines for serial GA are directly applicable when 

employing the controller-worker GA. The method can achieve significant speedup if the 

communication costs are small in reference to the computation costs (Kumar et al. 2006; 

Cantu-Paz and Goldberg, 2000). Its ease of implementation in particular makes the 

model more popular with practitioners (Alba, 2005; Castillo et al., 2008; Cantu-Paz, 

2000). 

 

3.3.7.2 Island Model (Multiple-Population Scheme) 

 

In island-model, the population is divided into few sub-populations that evolve serially 

and independently. Every processor (island) runs an independent GA using a separate 

sub-population. The processors communicate by exchanging some solutions (migrant 

solutions) occasionally (Nowostawski and Poli, 1999). In doing so, islands that were 

trapped in low-fitness regions of the search space can be taken over by individuals in the 

more successful islands. The island model fundamentally changes the GA search 

dynamics relative to the serial GA (Back et al., 1997). Thus, its difference from serial 

GA makes it hard to make a good and efficient comparison. Nevertheless, the model 

when designed well can be used to solve very complex problems for which the serial GA 

performs poorly regardless of the search duration (Tang et al., 2007). The 

communication over-heads required in the island model are much less than the 
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controller-worker model due to small population migration between islands (Digalakis 

and Margaritis, 2003). The model has high diversity as it has the working principle of 

isolated population with migration (Shinde et al., 2011). This produces a faster evolution 

of each island, which can cause a rapid convergence to optimal solution. However, 

despite the benefits of island model, it is much more difficult to design and assess the 

approach (Cantù-Paz and Goldberg, 2000). The application of the model is not 

straightforward, as it involves the choice of several parameters that require calibration 

(Artina et al., 2012). Among other things, one must decide the size of the island 

populations, the frequency of migration, and the number of migrant solutions and their 

destination. Traditionally, these parameters are set by trial and error. However, the trial 

and error approach may result in an inefficient use of computing resources as well as 

poor-quality solutions.  

 

3.3.7.3 Parallel Genetic Algorithm for Optimal Design of WDSs 

 

Despite the inherent characteristics of GA as being easily parallelised, only a handful of 

WDS optimisation research has been carried out to investigate its parallel 

implementations. Balla and Lingireddy (2000) reported a computational improvement 

by implementing a GA based parallel algorithm for optimal model calibration of WDS. 

A controller-worker approach was implemented on three networked PCs. One of the PCs 

was designed as a controller processor and the remaining as worker processors. The 

controller processor was dedicated to perform GA search, distribute solutions to and 

collect fitness evaluations values from the worker processors. The worker processors 

were in charge to perform hydraulic simulations and fitness calculation, and to return 

fitness values to controller process. Also, Wu and Zhu (2009) implemented the 

controller-worker model for pump scheduling optimisation to improve energy 

efficiency. Ewald et al. (2008) implemented an island model, which has an elitism 

strategy, for optimal location of booster chlorination stations in WDSs. Artina et al. 



Chapter 3:  Review of the Recent Developments in Genetic Algorithms for Optimisation 

of Water Distribution Systems 

 

68 

 

(2012) implemented both the controller-worker and island models for optimal design of 

networks. A good speed-up was reported from the two parallel implementations up to a 

limited number of processors. The researchers noted that for the island model, migration 

improves the final cost of feasible solutions in reference to a configuration that has no 

communication. Also, comparison with the serial version of the algorithm indicated that 

frequent and massive exchange of good solutions provides better results. Similarly, 

Barlow and Tanyimboh (2014) reported a substantial improvement in computational 

speed by applying the two parallel implementation methods for least cost design of 

WDSs. The controller-worker model was implemented to speed up the progress of the 

evolution on a single optimisation run, where the controller executes the routine 

operation of the GA and employs the workers to perform the fitness evaluations. 

Additionally, the island model was employed to perform independent optimisation runs 

simultaneously.  

 

3.4 Conclusions  

 

The optimisation problems of WDSs are complex and require computationally efficient 

algorithms, which are reliable and easy to implement. The classical optimization 

techniques though computational efficient have great limitations to solve highly 

constrained non-linear problems with discrete solution spaces. These techniques are 

incapable of solving multi-objective problems effectively. In contrast, the population-

based evolutionary algorithms are well suitable to solve multi-objective optimization 

problems due to their capability to search different regions of a solution space 

simultaneously. This key feature makes them suitable for handling highly complex 

combinatorial problems with non-convex, multi-modal and discontinuous solution 

space. A comprehensive review on genetic algorithm that is the most popular of several 

EAs in WDSs optimisation is provided. The general procedure and operators involved in 

the standard GA have been detailed. The chapter examines the existing approaches 
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proposed to enhance the effectiveness and efficiency of GA for WDSs optimisation. The 

limitations of the approaches were identified and discussed. A review on two most 

commonly applied parallel GA implementations in WDSs optimisation is presented. 

Controller-worker is a straightforward and efficient and implementation of parallel GA. 

The method can achieve significant speedup if the communication costs are small in 

comparison to the computation costs. On the other hand, the island model 

implementation, which works on independent population with migration, provides a 

high diversity that enables a faster evolution of each island and leads to a rapid 

convergence to optimal solution. However, the application of the model is not 

straightforward, as it involves the choice of several parameters that require calibration.  
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Chapter 4 

 

A New Pressure Dependent EPANET Extension 

Algorithm  

 

4.1. Introduction 

 

Water distribution models are used extensively in the design and operation of water 

distribution systems (WDSs) to help predict hydraulic and water quality behaviour 

within networks under a wide range of operating conditions. Nowadays, more attention 

has been given to the use of hydraulic models for solving optimisation problems in 

WDSs by combining them with evolutionary optimisation algorithms (EAs). The models 

evaluate the conservation of mass and energy constraints and check other constraints 

such as nodal pressures for any violation. EAs by nature are heuristic and generate a 

large number of infeasible designs, which are extremely pressure-deficient. This has 

given rise to the need for evaluating the performances of infeasible designs correctly. As 

explained in Chapter 2 (Section 2.4), the conventional demand driven analysis (DDA) 

models are incapable of simulating pressure-deficient networks. By contrast, the 

pressure dependent analysis (PDA) models gauge the performances of pressure-deficient 

designs realistically.  

 

As discussed in Chapter 3 (Section 3.3.4), EAs (such as genetic algorithms) are 

unconstrained optimisation procedures and they are unable to differentiate feasible and 

infeasible solutions. Nevertheless, many real world optimisation problems such as 
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WDSs are constrained optimisation problem, which necessitates appropriate handling of 

constraints. Previous studies on constraint or infeasible solutions handling approaches 

demonstrated the benefits of explicitly maintaining infeasible solutions (pressure 

deficient designs) for single and multi-objective constrained optimization problems 

(Singh et al., 2008; Ray et al., 2009). The presence of infeasible solutions guides the 

algorithm search towards an optimal solution from both feasible and infeasible side of 

the search space. The recent WDSs optimization algorithms that retain infeasible 

solutions in full achieved superior results in terms of algorithms’ convergence rate or 

quality of solutions compared to those algorithms that reject or penalize infeasible 

solutions (Siew and Tanyimboh, 2012b; Saleh and Tanyimboh, 2013; Siew et al., 2014). 

This further reinforces the importance of an efficient PDA that can simulate the 

pressure-deficient networks more accurately.  

 

In this chapter, a computationally efficient and robust PDA model has been proposed. 

This is crucial particularly in the context of optimization of real-life networks with 

hundreds or thousands of pipes where the computational time for evaluating millions of 

designs could be limiting. The proposed PDA is an enhancement of the pressure 

dependent extension of the EPANET hydraulic simulator (EPANET-PDX) that was 

developed by Siew and Tanyimboh (2012a). As discussed in Chapter 2 (Section 2.4.2.1) 

EPANET-PDX has an integrated logistic nodal head-flow function proposed by 

Tanyimboh and Templeman (2010) coupled with a line search and backtracking 

procedure to facilitate convergence. Extensive testing conducted on the model 

previously using benchmark as well as real life networks revealed good modelling 

performance. Also, the model was combined with a multi-objective genetic algorithm 

for optimization of WDSs and superior results were obtained compared to other previous 

solutions (Siew and Tanyimboh, 2012b; Siew et al., 2014). Overall, no convergence 

issues were reported while the model executed millions of simulations.  

 

Given the robustness and benefits of EPANET-PDX previously, including seamless 

integration in genetic algorithms, it seems beneficial to investigate ways of improving 
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the model further. In this chapter, a new line search and backtracking algorithm for 

integrating the logistic nodal head-flow function into the system of hydraulic equations 

in the global gradient algorithm is proposed. This has increased the robustness further by 

enhancing greatly the computational properties for low-pressure conditions (for 

extremely pressure deficient networks) and increasing the algorithm’s consistency over a 

wider range of operating conditions. Several extended period simulations were executed, 

for a real life network that comprises multiple supply sources and various demand 

categories for ranges of normal and pressure-deficient operating conditions. The new 

algorithm has also been applied on two benchmark networks and overall good 

computational performances have been achieved. Details of the results and 

computational efficiency of the algorithm are presented.  

 

4.2. Pressure Dependent Extension of EPANET  

 

EPANET 2 model adopted the global gradient algorithm (GGA) proposed by Todini and 

Pilati (1988) to solve the flow continuity and head loss equations of pipe networks 

(Rossman, 2000). Siew and Tanyimboh (2012a) enhanced the model to enable it to 

simulate pressure dependent flows. The enhanced pressured dependent model 

(EPANET-PDX) integrates the continuous nodal head-flow function that Tanyimboh 

and Templeman (2010) proposed in the GGA. As described in Chapter 2 (Section 2.4.2), 

the major advantage of the nodal head-flow function is that, it consists of a single 

continuous function that applies to the full range of flow conditions; i.e., zero,  partial,  

and full flow. It provides a smooth transition between normal and pressure deficient 

operating conditions. Moreover, the function and its first derivative have no 

discontinuities and created no convergence problems when integrated into systems of 

equations for WDSs. As shown in Chapter 2 (Section 2.4.2), the Tanyimboh and 

Templeman (2010) nodal head-flow function is expressed as   
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where, for node i , iQn and iHn  are the flow and head respectively; req

iQn  is the demand; 

iα and iβ  are parameters determined using field data.  

 

As shown in Chapter 2 (Section 2.3.1.2.4), the systems of hydraulic equations in the 

GGA are solved simultaneously as: 
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where 
11A  is a diagonal matrix whose elements are

1
)(

−fn

ijij QpK . 
ijK  and 

fn are the 

resistance coefficient and flow exponent in the head loss formula respectively. 
ijQp is 

the flow rate in pipe ij . 
21A  and 

01A  represent the overall incidence matrix relating the 

pipes to nodes with unknown and known heads respectively. Pipe flow leaving node is 

defined as -1, pipe flow into node as +1 and 0 if pipe is not connected to node. 
21A  is 

the transpose of 
21A . Qp  denotes the column vector of unknown pipe flow rates. Hn  

and 
0H  are column vectors for unknown and known nodal heads respectively. reqQn  is 

the column vector for required nodal supplies.   

 

To incorporate the nodal head-flow function, Eq. 4.3 is formulated as   
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where 
22A  is a diagonal matrix with the elements ./)( HnHnQn )(HnQn  is the nodal 

head-flow function described in Eq. 4.1. Eq. 4.4 can be rearranged as follows: 
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where ),(11 HnQpff =  and ),(22 HnQpff = indicate how far from zero the relevant 

equations are for any given approximated solution .,HnQp  

 

The pressure dependent network analysis formulation indicated in Eq. 4.4 is solved 

based on successive linearization using a first order Taylor series expansion that gives    
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where 
11D is the diagonal matrix of the flow derivatives of the pipe head losses whose 

elements are 
1

)(
−fn

ijij QpnK . 
22D  is the diagonal matrix of the head derivatives of the 

nodal head-flow function whose elements are described in Eq. 4.2.  k  represents the 

iteration number. Eq. (4.6) gives the following formulas to compute the heads and flows 

iteratively. 

 

FAHn 11k −+ =                           (4.7) 
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where 

 

22121121 DADAA −= −1
                                                                                               (4.9) 

 

kkk1k1
QpAHnAHnDHADAQpADAF 2122220101121111121 ++−−−=

−−
              (4.10) 

 

The GGA procedure described above is for steady state network analysis. Detail 

description on extended period analysis procedure is presented in Chapter 2 (Section 

2.3.2). 

 

EPANET-PDX utilized the line search and backtracking procedure (Press et al., 1992) to 

help ensure global convergence in the integration of the nodal head-flow functions in 

GGA.  The application of the line search and backtracking procedure in EPANET-PDX, 

however, was somewhat limited, in an attempt to preserve the excellent computational 

properties of EPANET 2. An improved implementation herein that allows more 

iterations of the line search procedure has been developed.  

 

4.3. A New Algorithm of the Line Search and Backtracking  

Procedure 
 

This section describes a new algorithm of the line search and backtracking procedure 

(Press et al., 1992) in EPANET for pressure-deficient networks modelling. The 

equations for conservation of energy along hydraulic links and mass balance at nodes 

described in Eq. 4.5 above can be expressed as follows: 

 

01012111 ),( HAHnAQpAQpHnf ++= kk
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HnAQpAQpHnf 22212 ),( += k
                                                                               (4.12) 

 

Together, Eq. 4.11 and 4.12 form a single system of simultaneous non-linear equations 

that is denoted by ),( QpHnF the solution of which is required. The aim of the line 

search and backtracking procedure is to find an appropriate Newton step size that 

decreases the function g , which is given in Eq. 4.13, in successive iterations sufficiently.  

 

F.F
2

1
=g                                                                                                                    (4.13) 

 

To implement the line search and backtracking procedure, a scalar parameter λ  for the 

Newton step has been introduced. Using λ  (step size), the nodal heads Hn  are updated 

iteratively as  

 

 δHnHnHn .λ+=+ k1k
                                                                                    (4.14) 

 

λ  satisfies 10 ≤< λ ; k represents the iteration number; Hnδ is the full Newton step for 

the nodal heads. The pipe flow rates 1+kQp  are then updated by substituting the newly 

obtained nodal heads 1+k
Hn  into Eq. (4.8).  

 

At each iteration of the GGA, the line search procedure checks the full Newton step first.  

If the Newton step does not reduce the value of g sufficiently, backtracking along the 

Newton direction is carried out in a series of minor iterations to obtain an acceptable 

step. The criterion for acceptance of a Newton step is  

 

δα ..),(),( 11
ggg

kkkk ∇+≤++ QpHnQpHn                                                             (4.15) 

 

where the parameter α satisfies 10 << α ; 4
10

−=α  (Press et al., 1992). g∇ is the 
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gradient of )( QpHn,g and ],[ QpHn δδδ =  is the Newton step. The initial rate of 

decrease of g is defined in Press et al. (1992) as  

                                                              

FFFJJF .).).(.(. 1 −=−=∇ −δg                                                                                     (4.16)                                                            

 

where J represents the Jacobian matrix. During backtracking that is when 

),( 11 ++ kkg QpHn  fails to meet the acceptance criterion in Eq. (4.16),  ),( 11 ++ kkg QpHn  is 

modelled as a quadratic function of λ by substituting 1+k
Hn  with HnHn δλ.+k . The 

value of λ  that minimize the function is obtained. For the second and any subsequent 

backtracks, ),( 11 ++ kk
g QpHn is modelled as a cubic function of λ . The backtracking 

procedure continues until either Eq. (4.16) is satisfied or λ  reaches the minimum set 

value
minλ . Siew and Tanyimboh (2012a) used 

minλ =0.2 to avoid the algorithm from 

taking too small steps that would result in long computational time. The same value has 

been used in this work as well.  

 

Fig. 4.1 shows a flow chart that describes the line search and backtracking 

implementation. At the first iteration, the algorithm starts from an initial guess of nodal 

heads and pipe flow values. Nodal elevations are considered as the initial nodal heads 

values while the initial pipe flow rates are calculated based on an assumed velocity of 1 

ft/sec (0.3048 m/sec). In each iteration of the computational solution, the Euclidean 

norm of the energy and mass balance was evaluated to ensure the algorithm did not 

converge spuriously and the real solution has been found. At the solution, the norm 

should approach a value of zero as an indication of the progress and accuracy of the 

algorithm.  

 

It was noted that in some cases when λ  reaches the minimum set value of 0.2 the norm 

fails to reduce in consecutive iterations. In such situations, a new nodal head is 

computed using the available Newton step (based on 2.0=λ  ) and the GGA iteration 

continues until the convergence criteria of the algorithm are fulfilled (See Fig. 4.1). The 
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algorithm may converge prematurely if this additional protection measure has not been 

provided. As the algorithm converges, the changes in pipe flow and nodal heads become 

insignificant. Thus, the EPANET-PDX’s convergence criteria of 0.001 ft (3.048 x 10
-4

 

m) for the maximum change in the nodal heads and 0.001 cfs (2.832x10
-5

 m
3
/s) for the 

maximum change in pipe flows between successive iterations have been preserved 

herein.  
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Figure 4.1 Line search implementation 
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The line search procedure implemented in EPANET-PDX (Siew and Tanyimboh, 

2012a) deviates from the classical line search implementation in an attempt to exploit 

the excellent computational properties of EPANET-2. The approach intermingles the 

line search and backtracking procedure with the GGA. In other words, the line search 

routine is not only generating optimum step sizes but also it performs GGA iterations. 

By doing this, the opportunity to use GGA was maximized and very often, the algorithm 

makes progress using the full step sizes. As a result, the algorithm bypasses the line 

search in most of the cases. However, as explained earlier, the sole purpose of the line 

search procedure is to provide an optimum step size that decreases the function 

 in successive iterations sufficiently. Major iteration (GGA) should not, 

therefore, be involved in line minimization. 

 

The new line search implementation herein by far has a clear separation between the line 

search procedure and GGA. The algorithm checks progress for every iteration. If the 

algorithm does not make progress, the line minimization or the line search will be 

carried out. The new implementation provided more scope for the line search procedure 

to change the course of the algorithm. Overall, the current implementation utilized the 

line search in full.  

 

4.4. Application of the Proposed Algorithm 

 

The proposed pressure dependent algorithm is applied on three network examples. The 

main aim of the examples is to verify the accuracy, robustness and computational 

efficiency of the algorithm in the perspective of both small and large networks subjected 

to various levels of pressure operating conditions. The first two examples are benchmark 

networks taken from literature and used mainly to assess the computational performance 

of the proposed model in terms of number of iterations and CPU time required for 

convergence. Furthermore, the accuracy of the algorithm is demonstrated in the second 

)( QpHn,g
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example by analysing the network’s hydraulic results. The third example is based on a 

real-life network in the UK. It is used to illustrate the capability of the proposed 

algorithm to handle large networks with multiple operating conditions efficiently and 

accurately. Comprehensive assessment on the algorithm was carried out by executing 

several extended period simulations for various sources heads and pipe closure 

conditions. Most importantly, this example focuses on demonstrating the computational 

efficiency of the algorithm on modelling extremely low-pressure conditions. All 

simulations for the three examples were carried out on an Intel Xeon workstation (2 

processors of CPU 2.4 GHz and RAM of 16 GB). For simplicity, the proposed algorithm 

is named hereinafter as EPANET-PDX (0.2) while EPANET-PDX is named EPANET-

PDX (0.1).  In all the simulations, the assumed head below which nodal flow is zero is 

equal to the nodal elevation. 

 

4.4.1   Example 1  

 

The example shown in Fig. 4.2 is a single source network taken from Todini (2003). The 

network consists of 11 demand nodes and 17 pipes of length 500 m with the Hazen-

Williams roughness coefficient of 130. Details of nodes and pipes are provided in Table 

4.1. Two sets of runs were carried out when applying the model to analyse the network. 

In the first set of runs, three steady state simulations were carried out by assuming 

various required pressures of 30 m, 20 m, and 10 m at all nodes. For all simulations, the 

source head was fixed at 150 m. In the second set of runs, four steady state simulations 

were executed by varying the source heads to 150 m, 125 m, 100 m and 75 m. The 

required pressure was fixed at 30 m at all nodes in all the simulations.  
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Figure 4.2 Layout of Example 1 

 

 Table 4.1 Node and pipe data for Example 1 

Node 
 

Elevation (m) 
 

 

Demand (m3/s) 

 
Pipe Diameter (mm) 

2 90 0.05 1 250 

3 80 0.02 2 200 

4 85 0.04 3 150 

5 85 0.05 4 250 

6 90 0.05 5 200 

7 85 0.05 6 150 

8 90 0.01 7 100 

9 85 0.04 8 200 

10 80 0.05 9 150 

11 90 0.04 10 100 

12 100 0.01 11 200 

   

12 150 

   

13 100 

   

14 100 

   

15 150 

   

16 100 

   

17 100 
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Table 4.2 summarises the computational performances of EPANET-PDX (0.1) and (0.2) 

for all the executed simulations. Generally, EPANET-PDX (0.2) provided smaller 

number of iterations, while for CPU time both models provided comparable results. 

 

Table 4.2 Number of iterations and CPU time required to converge for Example 1 

  First run Second run 

  

Required nodal pressure 

(m) 

Reservoir head  

(m) 

  

30 

(88%) 

20 

(89%) 

10 

 (91%) 

150 

(88%) 

125 

(71%) 

100 

(29%) 

75 

(0.04%) 

  Number of iterations 

 
EPANET-PDX (0.1) 9 11 29 9 9 10 8 

EPANET-PDX (0.2) 9 10 16 9 9 7 7 

  CPU time (Seconds) 

EPANET-PDX (0.1) 0.03 0.03 0.04 0.03 0.04 0.03 0.03 

EPANET-PDX (0.2) 0.05 0.04 0.04 0.05 0.03 0.03 0.03 

Values in parentheses represent the network demand satisfaction ratio (DSR) 

 

4.4.2   Example 2 

 

This example is based on “Anytown” benchmark network shown in Fig. 4.3. The 

network presented previously as an optimisation problem to find cost effective design to 

upgrade the existing system to meet future demands (Walski et al., 1987). Siew and 

Tanyimboh (2012a) modified the original input data to enable pressure dependent 

analysis. The diameters of the six new pipes (10, 13, 14, 15, 16 and 25) were set to be 

0.3048 m (12 in) and demands for nodes 2, 4, 5, 9, 10, 12 and 15 were reduced to 3.155 

l/s. The modified network is used herein to execute a steady state simulation. Pipe and 

node data of the network can be found in Appendix A (Table A-1. (1)- (4)). Also, the 



Chapter 4: A New Pressure Dependent EPANET Extension Algorithm 

 

 

84 
 

demand factors that represent the diurnal demand variation can be referred in Appendix 

A (Fig. A-1.1). 

 

 

 

Figure 4.3 Layout of Example 2 

 

 

The network is supplied from a treatment plant via three identical pumps operating in 

parallel. The water level in the treatment plant was fixed at 3.05 m (10 ft) while the 

required pressure for all nodes was 28.12 m (40 psi).  The network has two storage tanks 

(Tanks 41 and 42); and the pipes connecting the tanks were closed off. The network was 

operating under pressure deficit conditions with DSR of 87%. Comparisons of nodal 

heads and nodal outflows for all nodes are presented in Fig. 4.4 and 4.5 respectively, 

where both EPANET-PDX (0.1) and (0.2) generated essentially identical results. The 

average numbers of iterations required for EPANET-PDX (0.1) and (0.2) to converge 

were 13 and 10 respectively. Both models required on average 0.04 seconds to complete 

the simulation.   
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Figure 4.4 Nodal heads for Example 2 

 

 

Figure 4.5 Nodal flows for Example 2 

 

4.4.3   Example 3 

 

In addition to the benchmark networks in Example 1 and 2, the performance of 

EPANET-PDX (0.2) was assessed in detail using a large network. The large network is a 

hydraulic demand zone (referred to hereafter as water supply zone) in the UK. Fig. 4.6 
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shows the network that consists of 251 pipes of various lengths, 228 demand nodes 

(including the fire hydrants), 3 demand categories and 29 fire hydrants at various 

locations; pipe diameters are 32-400 mm. The network obtains water entirely from the 

neighbouring water supply zones through five variable head supply nodes (i.e. nodes 

R1-R5 in Fig. 4.6). Diagrams that illustrate the temporal variations of the demand 

categories and the variable-head supply nodes can be found in Chapter 5. The range of 

variation in the head levels at each supply node is insignificant. Hence, to simplify 

interpretation of results, the supply nodes were modelled as constant-head nodes with 

water levels of 155 m each. The network and dynamic operational data used here for the 

hydraulic analyses are taken from calibrated EPANET model and a geographical 

information system (GIS) database. The EPANET model contains node data that include 

elevations and demands for individual nodes and the relevant demand categories. The 

demand categories comprise domestic demand, 10-hour commercial demand and 

unaccounted for water, for duration of 96 hours. The network also has 29 different fire 

demands of 1hour each. These are applied at the 29 fire hydrants located at different 

positions in network. Also in the EPANET model are link data, including pipe lengths, 

diameter and roughness values; the Darcy-Weisbach pipe friction head loss formula was 

used for the hydraulic analyses. The information in the GIS database includes data on 

the pipes such as age, material, diameter, length, renewal and / or rehabilitation year, 

burst rate and other data of a geospatial nature. The required residual head at all demand 

nodes is 20 m. 
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Figure 4.6 Network layout for Example 3 

 

All the analyses reported on this network are extended period simulations (EPSs). Each 

EPS covered a period of 31 hours, based on a 1-hour hydraulic time step. For all three 

models considered here namely EPANET 2 and both versions of EPANET-PDX, 66 

extended period simulations were executed in total for normal and pressure deficient 

conditions considering source head variations and pipe closure conditions.  

 

4.4.3.1 Source Head Variation 

 

The computational performance, the accuracy and robustness of EPANET-PDX (0.2) 

was evaluated by analysing the network under the entire range of demand satisfaction by 

varying the supply node heads from 75 m to 130 m in equal steps of 1 m. 56 EPSs were 
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carried out without convergence complications. Fig. 4.7 shows a comparison of 

EPANET-PDX (0.1) and (0.2), for the average hourly network demand satisfaction 

ratios. Identical results were obtained for the hydraulic simulations, for the entire range 

of demand satisfaction ratios.  

 

 

Figure 4.7. Influence of variations in supply node heads on the flow delivered for 

Example 3 

 

For comprehensive analysis of the computational performance of EPANET-PDX (0.2), 

three scenarios were considered while evaluating the model. This was conducted by 

dividing the full network performance in Fig. 4.7 into 3 categories.   

 

4.4.3.1.1 Normal Pressure Condition  

 

The network is considered operating under normal condition when more than 99.9% of 

the total demand is satisfied. This corresponds to heads at supply node that ranges from 

116 m to 130 m in Fig 4.7. The number of iterations needed to solve the system of 

hydraulic equations as a function of pressure in the network is shown in Fig. 4.8. The 

average numbers of iterations required per simulation were 7.00, 5.00 and 5.16 for 
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EPANET-PDX (0.1), EPANET-PDX (0.2) and EPANET 2 respectively. EPANET-PDX 

(0.2) required the smallest numbers of iterations. Fig. 4.9 compares the CPU time. On 

average EPANET-PDX (0.1) and (0.2) that use line minimization required about 0.27 

seconds and 0.29 seconds, respectively, per EPS compared to 0.15 seconds for EPANET 

2. EPANET 2 in general is more efficient and consistent.  It is worth re-stating, however, 

that EPANET 2 and EPANET-PDX apply convergence criteria that are not identical 

(Siew and Tanyimboh, 2012a). The criterion used in EPANET 2 is the ratio of the sum 

of the absolute values of pipe flow changes to the total flow in all pipes should be less 

than 0.001. Therefore, it is worth emphasizing that the EPANET 2 results here provide a 

rough guide rather than an absolute direct comparison. 

 

 

Figure 4.8 Number of iterations required as a function of the available pressure in the 

network for normal operating condition for Example 3 
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Figure 4.9 Comparison of CPU time for EPANET 2 and EPANET-PDX for normal 

operating condition for Example 3 

 

4.4.3.1.2 Pressure Deficient Condition 
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deficient operating conditions. Similar computational performance as the normal 
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The average numbers of iterations required per simulations were 7.00 and 5.04 for 
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comparable results; i.e. 0.27 seconds and 0.29 seconds for EPANET-PDX (0.1) and 

EPANET-PDX (0.2) respectively, per EPS. 

 

 

Figure 4.10 Number of iterations required as a function of the available pressure in the 

network for pressure deficient operating condition for Example 3  

 

 

     

Figure 4.11 CPU time required as a function of the available pressure in the network for 

pressure deficient operating condition for Example 3   
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4.4.3.1.3 Extremely Low Pressure Condition  

 

The efficiency of EPANET-PDX (0.2) has been evaluated for extremely low-pressure 

condition. This is essential from the perspective of design optimisation of WDSs using 

evolutionary algorithms (EAs). In the application of evolutionary algorithms in WDSs, a 

large number of extremely pressure deficient designs (infeasible designs) are generated.  

As described in Section 4.1, recent evidence on handling infeasible solutions (designs) 

in WDSs optimisation problem demonstrated the benefit of retaining the infeasible 

designs in full as they usually contain useful genetic materials that can lead to optimal 

designs (for example smaller pipe sizes can lead to minimum cost solution). 

 

In order to evaluate these designs a computationally efficient PDA simulator requires. 

Most importantly, in the optimisation of real life networks with large number of pipe 

sizes the computational time to evaluate millions of designs over the progress of EAs 

could be limiting. Hence, any improvement on the computational performance of PDA 

simulator would be greatly beneficial. 

 

EPANET-PDX (0.2) is primarily developed to enhance the computational properties for 

extremely pressure deficient networks. To assess the model’s computational 

performances, the heads of the supply nodes were reduced to simulate an extremely low-

pressure condition. A network DSR below 9.23% was considered as an indicative cut-

off point for extremely low-pressure conditions in Fig 4.7. The corresponding heads at 

supply nodes varies between 75 m and 87 m. Fig. 4.12 and 4.13 show the number of 

iterations and CPU time needed to solve the system of hydraulic equations as a function 

of the pressure in the network. EPANET-PDX (0.2) achieved a significant improvement 

in both numbers of iterations and CPU time. The average numbers of iterations required 

per simulation were 6.85 and 4.08 for EPANET-PDX (0.1) and EPANET-PDX (0.2) 

respectively. The average CPU time required were 0.38 seconds and 0.28 seconds for 

EPANET-PDX (0.1) and EPANET-PDX (0.2) respectively. It was noted that EPANET-
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PDX (0.2) performs consistently well for normal, pressure deficient and extremely low 

flow conditions on the whole. However, EPANET-PDX (0.1) is quite variable in 

performance during extremely low flow condition when the supply node heads are very 

low. 

 

Fig. 4.14 shows the number of line search evaluations needed as a function of the 

pressure in the network. The line search procedure requires several evaluations (minor 

iterations) to determine an optimum step size that satisfies the line search criteria.  In 

general, EPANET-PDX (0.1) does not need line search evaluations. For extremely low 

pressures condition, the algorithm requires only one line search evaluation per 

simulation. The result evidently indicated that the line search and backtracking 

procedure in EPANET-PDX (0.1) is restricted.  On the other hand, EPANET-PDX (0.2) 

that has no restriction on the line search procedure requires on average 10.303 

evaluations per simulations.  

 

 

Figure 4.12 Number of iterations required as a function of the available pressure in the 

network for extremely low-pressure condition for Example 3 
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Figure 4.13 CPU time required as a function of the available pressure in the network for 

extremely low-pressure condition for Example 3   

 

 

      

Figure 4.14 Number of line search evaluations needed as a function of the available 

pressure in the network for Example 3 
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4.4.3.2 Pipe Closure Conditions 

 

The performance of EPANET-PDX (0.2) was assessed  in terms of simulating major 

supply mains failures by closing simultaneously the supply pipes from three supply 

nodes out of five (R1-R5). A total of 10 such ‘supply failures’ resulting from multiple 

simultaneous supply mains failures were simulated. In these simulations, only two 

supply nodes out of five supplied the network and the nodal demands were fully 

satisfied in each case (i.e. all the network DSRs were 1.0). Table 4.3 summarises the 

average number of iterations and CPU time for the pipe closure simulations. The 

average numbers of iterations required per EPS were 6.77, 5.22 and 4.90 for EPANET-

PDX (0.1), EPANET-PDX (0.2) and EPANET 2, respectively. The corresponding 

average CPU time for EPANET-PDX (0.1), EPANET-PDX (0.2) and EPANET 2 were 

0.20 seconds, 0.21 seconds and 0.14 seconds, respectively. With network DSR of 1.0 for 

each pipe closure simulation, the CPU time for the EPANET-PDX (0.1) and EPANET-

PDX (0.2) models were about the same while EPANET-PDX (0.2) provided smaller 

number of iterations in comparison to EPANET-PDX (0.1). Hence, overall the 

implementation of EPANET-PDX (0.2) would appear to be successful.  

 

Fig. 4.15 shows the number of line search evaluations needed for the supply nodes 

closure simulations. On average EPANET-PDX (0.2) requires 10.431 evaluations per 

simulation, while EPANET-PDX (0.1) needs only 0.16 evaluations per simulation. The 

results are consistent with the previous result for the source head variation simulations, 

where the line search procedure of EPANET-PDX (0.1) is limited. 
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Figure 4.15 Number of line search evaluations for pipe closure conditions for Example 3 
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    Table 4.3 Performance of simulators for pipe closure conditions for Example 3 

 
Closed 

supply 

nodes 

Average number of iterations Average CPU time (seconds) 

EPANET-PDX 

(0.1) 

EPANET-PDX 

(0.2) 
EPANET 2 

EPANET-PDX 

(0.1) 

EPANET-PDX 

(0.2) 
EPANET 2 

R1,2,3 6.969 5.250 4.875 0.197 0.202 0.137 

R1,2,4 6.719 5.156 5.000 0.200 0.209 0.137 

R1,2,5 6.781 5.250 4.875 0.193 0.207 0.140 

R1,3,4 6.750 5.250 4.875 0.210 0.238 0.140 

R1,3,5 6.563 5.188 4.844 0.197 0.202 0.147 

R1,4,5 6.719 5.313 4.875 0.190 0.204 0.147 

R2,3,4 6.781 5.125 4.844 0.200 0.205 0.147 

R2,3,5 6.969 5.250 4.938 0.197 0.197 0.137 

R2,4,5 6.656 5.125 4.969 0.200 0.202 0.140 

R3,4,5 6.750 5.250 4.875 0.200 0.209 0.153 



 

 

Chapter 4: A New Pressure Dependent EPANET Extension Algorithm 
 

 

 

98 
 

Fig. 4.16 shows the norm of the energy and mass balance at successive iterations for the 

arbitrarily selected four unbiased sample simulations (EPSs) of EPANET-PDX (0.2) 

based on Example 3. Each EPS comprises 31 steady state simulations. The two EPSs 

represent the endpoints of the network performance curve indicated in Fig. 4.7, while the 

remaining two denote intermediate points in the curve.  

 

 

(a)  

  

(b)  

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

N
o

rm

Iterations

Supply nodes heads = 130 m, DSR = 100%

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

N
o

rm

Iterations

Supply nodes heads = 115 m, DSR = 99.78%



Chapter 4: A New Pressure Dependent EPANET Extension Algorithm 

 

 

99 
 

   

(c)  

       

(d)   

Figure 4.16 Norm at successive iterations for 31 steady state simulations of an 

extended period simulation for Example 3 
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the supply nodes were 95 m and 115 m and the corresponding network DSRs were 53% 

and 99.78%. Overall, the norm values decreases as the iteration progresses. At the 6
th

 

iteration, the norm values for all simulations were below 0.01. It is worth mentioning 

that the norm values shown in Fig. 4.16 are the sum of the mass and energy balance and 

are based on the imperial unit, i.e. cfs and ft for mass and energy balance respectively. 

Thus, the corresponding values in SI units (m
3
s

-1
 and m) would be much smaller. It was 

noted that for network DSR = 0.01% (Fig. 4.16d), the norm increased at the 2
nd

 iteration 

and continued to decrease at the consecutive iterations. The result is consistent with the 

algorithm procedure described in Section 4.3. In such circumstances, the algorithm 

improves convergence by updating nodal head using the available Newton step and 

continues solving the system of hydraulic equations iteratively until the convergence 

criteria of the algorithm are fulfilled.  

 

4.5. Conclusions 

 

A new line search and backtracking algorithm for integrating the logistic nodal head-

flow function into the system of hydraulic equations in the global gradient algorithm is 

proposed to enable pressure dependent modelling. The proposed algorithm performed 

consistently well when simulating two benchmark networks and a real-life network that 

comprises multiple operating conditions. A total of 66 EPSs (31 hour duration) and 8 

steady state simulations were carried out assuming various required nodal residual heads 

and considering source head variations and pipe closure conditions. The algorithm has 

no convergence issues and proves to be robust while simulating the full range of 

pressure operating conditions effectively.  

 

Comparison between results generated by the model and EPANET-PDX demonstrated 

that the two models produce exactly the same hydraulic results for both normal and 

pressure deficient conditions. From a numerical perspective, a significant reduction in 

numbers of iterations to complete a simulation has been obtained for all pressure 
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operating conditions. Also, for extremely pressure deficient conditions an average of 

26% reduction in computational time has been achieved in comparison to EPANET-

PDX.  

 

Overall, the obtained results indicated that the proposed line search and backtracking 

algorithm would appear to be successful. The results further highlight suggestion for 

future work on using the algorithm for WDSs optimization. 

 

The next chapter presents water quality modelling of WDSs using PDA for various 

pressure operating conditions. 
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Chapter 5 

 

Pressure-Dependent Network Water Quality 

Modelling  

 

 

5.1  Introduction 

 

Water distribution networks (WDNs) are designed and operated to provide water that is 

wholesome to consumers at an adequate pressure. However, a major challenge in the 

operation of WDNs today arises from pressure-deficient conditions caused by events 

such as pipe breaks, pump failures or large increases in demand (e.g. for firefighting 

purposes). These situations affect not only the hydraulic performance but also the quality 

of the water. Several studies have been conducted to evaluate the performance of WDNs 

under pressure-deficient conditions. These studies have focused on hydraulic analysis 

and addressed issues such as hydraulic reliability and design optimisation 

(Germanopoulos et al., 1986; Giustolisi et al., 2008; Tanyimboh and Kalungi, 2009; 

Siew and Tanyimboh, 2012b) without considering water quality. 

 

Pressure deficiency plays a major role in the deterioration of water quality in WDNs. 

The problems caused by lack of pressure include low velocities, which result in long 

water travel and detention times that contribute to the loss of disinfection residual. This 
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may lead to bacterial regrowth (Clark and Haught, 2005) and, ultimately, water-borne 

diseases. Previous studies (Ghebremichael et al., 2008; Rodriguez et al., 2004) have also 

indicated that long detention times are a significant contributing factor in the formation 

of disinfection by products (DBPs). DBPs are formed when the disinfectant reacts with 

organic and inorganic substances in water. They can cause reproductive and 

developmental problems in humans and are thought to be carcinogenic (Nieuwenhuijsen, 

2005; Richardson et al., 2002). Therefore, given the self-evident deleterious effects of 

subnormal pressure on water quality, urgent action is required to integrate the hitherto 

separate water quality and pressure-dependent hydraulic analysis models. 

 

Hydraulic and water quality analysis of WDNs can be performed under time-varying 

conditions by employing extended period simulation (EPS) models. The models include 

important time-varying features such as water levels in tanks, nodal demands and the 

scheduling of pumps. Conventional EPS models are demand driven and thus assume that 

all demands are fully satisfied even if a network is in a pressure-deficient condition. 

Consequently, EPS models based on demand-driven analysis (DDA) cannot simulate the 

performance of a pressure-deficient network realistically. EPANET 2 and EPANET-

MSX are DDA-based EPS models whose use is widespread throughout the world. 

EPANET 2 (Rossman, 2000) is public domain software that can model non-reactive 

tracer materials, chlorine decay, DBPs growth and water age. Also in the public domain, 

EPANET-MSX (Shang et al., 2008) is an extension of EPANET 2 that can simulate 

multiple chemical species concurrently.  

 

In this chapter, the pressure-dependent analysis (PDA) model, EPANET-PDX (Siew and 

Tanyimboh, 2012a) is investigated and discussed with particular reference to water 

quality. In Chapter 4, an alternative implementation of the line search procedure for 

integrating the nodal head-flow function into the system of hydraulic equations is 

proposed to enhance the computational efficiency of EPANET-PDX. The EPS in 

EPANET-PDX consists of successive time intervals in which pressure-dependent 

steady-state analyses are performed that account for changes in nodal demands, water 
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levels in tanks, the operation of pumps and the status of valves (Siew and Tanyimboh, 

2010b). EPANET-PDX is thought to have preserved the EPANET 2 modelling 

functionality in full. Thus, EPANET-PDX performs both hydraulic and water quality 

modelling under both normal and low-pressure conditions entirely seamlessly. The 

overriding objective here is to demonstrate this.  

 

To assess EPANET-PDX, hydraulic and water quality analyses were conducted on two 

water supply zones of a network in the UK for a range of simulated operating conditions 

including normal and subnormal pressure and pipe closures. The performance of 

EPANET-PDX has also been assessed using a network in the literature. The properties 

considered are temporal and spatial variations in water age, chlorine and trihalomethane 

(THM) concentrations under various hydraulic conditions. EPANET 2 and EPANET-

MSX results (for operating conditions with sufficient pressure) are also included for 

comparison and verification purposes. Given that EPANET 2 and EPANET-MSX are 

demand driven analysis (DDA) based models, they are unsuitable for pressure-

dependent water quality investigations. They are, however, included in this study to 

verify that EPANET-PDX water quality results for operating conditions with sufficient 

pressure are accurate. 

 

Pressure-dependent demand functions are used in pressure-dependent WDN models to 

achieve realistic estimates for operating conditions with insufficient pressure and these 

functions require calibration for each demand node. When there is insufficient pressure, 

the flow delivered will be less than the demand. It has been shown that if the PDA 

predictions are accurate, then the PDA predictions of the nodal flows if used as demands 

in a DDA model will result in identical pipe flow rates, nodal flows and nodal heads in 

the DDA model (Ackley et al., 2001).  

 

The aim of this chapter is to demonstrate that, given identical hydraulic conditions of 

flow and pressure, EPANET-PDX yields essentially the same results for water quality as 

EPANET 2 and EPANET-MSX. Furthermore, by establishing that EPANET-PDX 
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provides accurate hydraulic analyses for PDA and DDA subject to the pressure-

dependent demand function imposed, it is demonstrated that EPANET-PDX can carry 

out both normal and pressure-deficient water quality modelling. In other words, given a 

set of demands for which the actual WDN pressure is insufficient, PDA identifies the 

feasible set of demands for which the available pressure would be sufficient that is 

‘closest’ to the specified demands. Accordingly, these reduced demands can be modelled 

entirely satisfactorily using DDA (as stated above). It is thus sufficient here to show that 

EPANET-PDX yields accurate PDA predictions and that its water quality results are 

essentially the same as EPANET 2 and EPANET-MSX under normal operating 

conditions. A secondary aim is to demonstrate that, during pressure-deficient operating 

conditions, spatial and temporal variations in water quality can be very different from 

those in operating conditions with fully satisfactory pressure. The third aim of the 

chapter is to illustrate the water quality modelling difficulties when low pipe flow 

velocities prevail due to excessive pressure reduction. As previous research (Tzatchkov 

et al., 2002) indicates, advection-driven models such as EPANET 2 may yield 

inconsistent water quality results if dispersion is significant due to low flow velocities.  

 

5.2 Water Quality Modelling 

 

A literature review on water quality models and the computational solution procedures 

has been presented in Chapter 2. This chapter provides an overview of the EPANET 2 

water quality model. The water quality model in EPANET 2 is dynamic and includes 

relevant fate processes such as transport (mainly advection) and various transformation 

processes (e.g. chlorine decay). In addition to pipe flow, some of the processes 

considered are mixing at pipe junctions, mixing in storage facilities, pipe wall reactions 

and a range of bulk flow reactions. Several modelling approaches for the chemical 

reactions are available, such as first- and second order reaction models. The first-order 

reaction models are summarised briefly here. For chlorine decay 
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in which clC  is chlorine concentration, bk  is a reaction rate constant in bulk flow and tis 

time. For THM production, the limited first-order model used is  

 

)( thmLb

thm CCk
t

C
−=

∂

∂
                                                                                                                     (5.2) 

 

where thmC  is THM concentration and LC is the ultimate THM concentration. For 

dissolved substances in water that react with materials at the pipe wall such as biofilm, 

the first-order model used is 
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where wk  is the wall reaction rate constant, fk  is the mass transfer coefficient that 

represents the rate of dissolved substances transported between the bulk flow and the 

pipe wall, hr  is the hydraulic radius of the pipe and C is the reactant concentration in 

bulk flow.  

 

The system of equations for conservation of mass that constitutes the water quality 

model can be set up by superposition of the relevant transport and transformation 

equations. For a pipe, for example, the equation that results is  
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in which u = mean flow velocity, x is distance along the pipe and r(C) is rate of reaction 

(e.g. Eq. (5.1)-(5.3)).  

 

5.3  Case Studies 

 

Three network examples have been used to investigate the spatial and temporal 

distribution of water quality in WDNs under various pressure operating conditions. The 

examples are based on a simple network in literature (Network 1; see Fig. 5.1) and two 

large real-life networks. The two real-life networks that are named here as Networks 2 

and 3 (Fig. 5.6 and 5.13 respectively) are water supply zones of a network in the UK. 

The water quality analyse for these networks were conducted based on demands the 

water utility provided for the purposes of hydraulic design optimisation. Network 2 has 

previously been described in Chapter 4 to demonstrate PDA modelling. A brief 

description on the network has also been provided in this chapter for completeness. 

 

Both Networks 2 and 3 obtain water entirely from neighbouring water supply zones 

through supply nodes (i.e. nodes R1–R5 in Fig. 5.6 and nodes R1–R4 in Fig. 5.13). The 

network and dynamic operational data for Networks 2 and 3 used for the hydraulic 

analyses were taken from calibrated EPANET models and a geographical information 

system (GIS) database. The EPANET models contain node data that include elevations 

and demands for individual nodes and the relevant demand categories. The demand 

categories in Network 2 that comprise domestic demand, 10-hour ‘commercial’ demand 

and unaccounted for water are shown in Fig. 5.6(b)-5.6(d). Network 2 also has 29 

different fire demands of 1 hour each. These are applied at the 29 fire hydrants located at 

different positions in Network 2. Network 3 has domestic demand, 10-hour and 16-hour 

‘commercial’ demands and unaccounted for water as shown in Fig. 5.13(b)-5.13(e). For 

all these demand types, demand multipliers are available every 15 minutes for 24 hours 

total duration. 
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Also in the EPANET models are link data, including pipe lengths, diameters and 

roughness values; the Darcy–Weisbach pipe friction head loss formula was used for the 

hydraulic analyses. The information in the GIS database includes data on the pipes such 

as age, material, diameter, length, renewal and/or rehabilitation year, burst rate and other 

data of a geospatial nature. The calibrated hydraulic models notwithstanding, due to 

difficulties in obtaining up-to-date operational water quality data, some typical or 

limiting values from the literature were assumed, as explained later. More 

fundamentally, this initial assessment, under artificially controlled operating conditions, 

is in fact a prerequisite to the fieldwork and subsequent parameter calibration that will 

be required subsequently to address even more realistic and network-specific conditions 

that are inherently more complex and for which exact solutions will not be available. 

Collectively, the subset of assumed modelling (i.e. reaction rate constants) and 

operational (i.e. chlorine concentration) values, when taken together with mandatory 

values stipulated in a selection of leading international standards for drinking water, are 

intended to represent the ‘most favourable’ scenario. 

 

Accordingly, values of bk  = 0.5/day and wk = 0.1 m/day (Carrico and Singer, 2009; 

Helbling and Van Briesen, 2009) were used. To achieve a detectable chlorine residual of 

0.2 mg/l (WHO, 2011) at remote points in the system, the chlorine concentration at each 

supply node was assumed constant at 1 mg/l. Moreover, World Health Organization 

guidelines on drinking water quality (WHO, 2011) recommend a minimum residual 

chlorine concentration of 0.2 mg/l at the point of delivery; no minimum concentration 

value is stipulated in UK and EU drinking water standards. Also, the UK and EU 

standards do not specify a maximum concentration for chlorine; however, the values 

given in the WHO guidelines (WHO, 2011) and the US Safe Drinking Water Act, 1996 

(USEPA, 1996) are 5 mg/l and 4 mg/l respectively (see e.g. Twort et al., 2000). It is 

recognised here that the taste and/or odour threshold is much lower; it may be noted that 

the typical concentration in most disinfected drinking water is 0.2–1.0 mg/l (WHO, 

2011). A maximum total THM concentration of LC  = 100 µg/l was adopted in Eq. 5.2 
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based on EU and UK drinking water standards (EC, 1998; HMG, 2001, 2010); with a 

maximum concentration of 80 µg/l, the US EPA regulations are more stringent. Indeed, 

the EU and US standards advise that, where possible, a lower value should be aimed for 

without compromising disinfection. One of the drawbacks of the EPANET 2 THM 

model is that it requires modellers to specify the limiting THM concentration in 

advance. Sohn et al. (2004) suggested an alternative model for THM that avoids the 

need to pre-specify a limiting concentration (see e.g. Seyoum and Tanyimboh, 2013). 

The same water quality operational data and reaction rate constants as Networks 2 and 3 

were used (assumed) for Network 1 as well. For all the three networks, 5-minute water 

quality time step and 0.01 mg/l concentration tolerance were used for water quality 

analysis. Also, the initial THM concentration at all nodes were assumed zero.  

 

For modelling the pressure deficient networks, the head below which the nodal flow is 

zero was taken as the nodal elevation while the head above which the demand is 

satisfied in full was taken as the elevation plus the minimum required residual head.  

 

5.3.1 Network 1  

 

The first example (Fig. 5.1) is a simple two-loop network taken from Fujiwara and 

Ganesharajah (1993) for demonstration purposes. The network consists of a single 

source, eight pipes of length 1000 m with the Hazen-Williams roughness coefficient of 

140 and six demand nodes with the desired pressure heads of 60 m.  The network was 

considered to be at steady state condition where the nodal demands were not varied with 

time.  A total duration of 24 hours was specified to run water quality analysis. Details of 

nodes and pipes are listed in Table 5.1. 
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Figure 5.1 Layout of Network 1  

 

Table 5.1 Node and pipe data for Network 1 

Node Elevation (m) Demand (m
3
/s) Pipe Diameter (mm) 

1 50 0.0471 1 500 

2 50 0.0471 2 400 

3 45 0.0778 3 400 

4 45 0.0471 4 400 

5 55 0.0556 5 250 

6 55 0.0889 6 250 

   7 250 

   8 250 

 

The source head was fixed at 90 m for normal pressure condition with full demand 

satisfaction. Various source heads (60 m, 65 m and 70 m) were considered for pressure 

deficient conditions. All simulations were carried out on an Intel Xeon workstation (2 

processors of CPU 2.4 GHz and RAM of 16 GB).  Fig. 5.2 shows that both EPANET-
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PDX and EPANET 2 provide essentially identical water quality results when the 

pressure in the system is sufficient. 

 

 

 

 

(a) Water age 

 

 
             (b) Chlorine residual 

 

 (c) THM 
       

Figure 5.2 Comparison of water quality results for normal pressure 
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For pressure deficient network simulations, the source water level was reduced from 90 

m to 70 m, 65 m and 60 m for which the network satisfied only 92%, 81% and 64% of 

the total demand respectively. Rather unsurprisingly, EPANET 2 provided identical 

water quality results to normal pressure conditions in which there is enough pressure to 

satisfy all demands. In practical terms, a pressure-deficient network cannot satisfy 

demands in full. In this regard, EPANET 2 results are unrealistic. This limitation is 

attributable to the underlying DDA modelling approach. By contrast, EPANET-PDX 

that has PDA functionality provided different water quality results that reflected the 

actual pressure in the network (Fig. 5.3). It was observed that when the pressure in the 

system decreases, the THM concentration and water age increase while the chlorine 

residual decreases. This evidently reveals the fact that when the pressure in the network 

is low, the flow will correspondingly be low (Fig. 5.4) and the hydraulic residence time 

(water age) will be greater. An increase in residence time will enable the THM 

concentration to increase and the chlorine concentration to decrease. It is worth noting in 

Fig. 5.3 that the differences in the model results for the normal and pressure deficient 

conditions are significant at the distant nodes (e.g. Nodes 5 and 6) from the source 

during high-pressure deficiency with low demand satisfaction condition. In general, 

nodes that are far from the sources have long residence time in the network and thus 

require accurate model prediction.  

 

A confirmation test was carried out on the PDA results as described in Section 5.1 

(Ackley et al., 2001; Tanyimboh and Templeman, 2010; Siew and Tanyimboh, 2012a) 

based on 41 source heads from 40 m to 80 m in equal steps of 1 m. Nodal heads 

obtained from EPANET 2 were compared with those of EPANET-PDX. A correlation 

between the heads gives R2 value of 0.9999995 (i.e. 1-R2 = 5x10-7) as it is shown in Fig. 

5.5. This clearly confirms that EPANET-PDX results are accurate.  
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(a) Water age 

 

(b) Chlorine residual 

 

(c) THM 

Figure 5.3 EPANET-PDX water quality results for normal and subnormal pressure. The 

percentages refer to the percentages of total demand satisfied under conditions of normal 

and low pressure. 
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Figure 5.4 EPANET-PDX pipe flow results for pressure deficient conditions. The 

percentages refer to the percentages of total demand satisfied under conditions of normal 

and low pressure. 

 

 

  
 

Figure 5.5  Hydraulic feasibility check for source heads 40 m-80 m 
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5.3.2 Network 2  

 

Extended period simulations (EPSs) were conducted on Network 2 (Fig. 5.6) on an Intel 

Core 2 Duo personal computer (CPU = 3.2 GHz, RAM= 3.21 GB). The network consists 

of 251 pipes of various lengths, 228 demand nodes (including fire hydrants), five 

variable-head supply nodes (R1 to R5) and 29 fire hydrants at various locations; pipe 

diameters are 32-400 mm. Each variable-head supply node has an average level of 155 

m along with head level multipliers at 1–hour intervals for duration of 96 hours as 

presented in Appendix B (Fig. B-1.1). The range of variation in the head levels at each 

supply node is insignificant. Hence, the supply nodes were modelled here as constant-

head nodes with water levels of 155 m each. The residual head for full demand 

satisfaction is 20 m. To allow for the observed inconsistencies in the water quality 

results at the start of the simulations, the chosen EPS duration was 93 hours. The water 

quality results become stable after sufficient time has elapsed. The results reported here 

are for the last 30 hours.  

 

Both normal and low-pressure conditions were considered. Pressure-deficient conditions 

were created artificially by setting the water levels at the supply nodes to satisfy, in turn, 

only 90%, 75%, 50% and 30% of the total demand. A demand satisfaction ratio (DSR) 

of 30% is included to investigate water quality modelling in EPANET 2 under low-flow 

conditions with significant dispersion likely. The effects of closing individual pipes were 

also investigated. Results are highlighted for two typical demand nodes that represent 

the nodes closest to the supply nodes and the remote points in the networks. Node 1 is 

close to Supply node R3 while Node 2 represents a remote point in the network (Fig. 

5.6). Results for the other demand nodes are not shown explicitly for brevity. 

Additionally, variations in water age in the whole of the network are included for two 

different operating conditions – normal pressure (DSR = 100%) and a pressure deficient 

condition (DSR = 75%). For all the EPSs 1-hour hydraulic time step was used. 
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Considering various operating scenarios, 1,838 EPSs of 93 hours were carried out (see 

Table 5.2). 

 

   

 

(a) Layout with diameters and elevations                     (b) Domestic demand factors 

 

         

(c) Unaccounted for water factors                       (d) 10-hour commercial demand factors 

 

Figure 5.6 Network 2: layout and demand factors 
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5.3.2.1 Normal  Pressure  

 

For the initial verification purposes, water age, chlorine residual and THM were 

simulated using the EPANET 2, EPANET-MSX and EPANET-PDX under normal 

pressure (i.e. DSR = 100%), with the supply node heads fixed at 155 m. The three 

models provide essentially identical results, as shown in Fig. 5.7, and the results are 

consistent with the demand fluctuations. An increase in the residence time due to a 

reduction in the demand is accompanied by a reduction in the concentration of chlorine 

and an increase in the water age and concentration of THMs. The chlorine residual at 

Node 1 is effectively constant due to its proximity to a supply node, where the 

Table 5.2 Number of EPSs  for Network 2 

  
EPANET 

2 

EPANET-

PDX 

EPANET-

MSX 

Normal pressure  

      Water age 1 1 1 

   Chlorine 1 1 1 

   THM 1 1 1 

   Water age, chlorine and THM concurrently NA
a
 NA 1 

Pressure-deficient conditions
b
 

      Water age 4 4 NA 

   Chlorine 4 4 NA 

   THM 4 4 NA 

   Water age, chlorine and THM concurrently NA NA 4 

Pipe closures 

      Water age 251 251 NA 

   Chlorine 251 251 NA 

   THM 251 251 NA 

Supply-node head variations
c  

( Fig. 5.12(a)) 81 81 NA 

PDA confirmation tests
 
 66 66 NA 

Total 915 915 8 

 a Not applicable  
b One each for DSR= 90%, 75%, 50% and 30% 
c Identical demands and supply-node heads used for both EPANET 2 and EPANET-PDX 
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concentration is kept constant. Taking water age as an example, the correlation 

coefficients between EPANET-PDX and EPANET 2 were R
2
 = 1 for Node 1 and R

2
 = 1 

for Node 2. Similarly, the correlation between EPANET-PDX and EPANET-MSX was 

R
2 

= 1 for Node 1 and R
2
 = 0.99 for Node 2 (See Appendix B (Fig. B-1.2 and B-1.3)). 

EPANET-MSX provides the water age, chlorine residual and THM concentration in a 

single simulation, while EPANET 2 and EPANET-PDX can simulate only one species at 

a time.  

 

The nodal heads and pipe flows from EPANET-PDX and EPANET 2 for the entire 93-

hour EPS were compared. The data points plotted were 21,204 for the nodal heads (228 

demand nodes × 93 hydraulic time steps) and 23,343 for the pipe flow rates (251 pipes × 

93 hydraulic time steps). The correlation coefficients were R
2
 = 1 for the nodal heads 

and R
2
 = 1 for the pipe flow rates (See Appendix B (Fig. B-1.4)). This further 

strengthens previous evidence (Siew and Tanyimboh, 2012a) that the results from the 

two models are essentially identical when there is sufficient pressure in the network.  

 

To complete the 93-hour EPS, EPANET 2 and EPANET-PDX respectively required an 

average of 0.7 seconds and 1.0 seconds for chlorine, 1.0 seconds and 1.4 seconds for 

THM and 0.6 seconds and 1.0 seconds for water age. Corresponding values for 

EPANET-MSX were 10.5 seconds for chlorine, 2 seconds for THM and 2 seconds for 

water age. The longer simulation time for chlorine is due to the simulation time 

associated with the wall reaction component of the chlorine decay. To simulate chlorine, 

THM and water age concurrently, EPANET-MSX required an average of 13 seconds 

(Table 5.3). 
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(a) Node 1            (b) Node 2 

 

Figure 5.7 Water quality variations in Network 2 
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    Table 5.3 CPU times for Network 2  

  
Mean CPU time per EPS (seconds) 

  
EPANET 2 

EPANET-

PDX  

EPANET-

MSX  

   Chlorine  0.7 1.0 10.5 

   THM 1.0 1.4 2.0 

   Water age 0.6 1.0 2.0 

   Chlorine, THM and Water age concurrently NA
a
 NA 13.0 

aNot applicable 

 

 

5.3.2.2  Pressure-Deficient Conditions 

 

Simulations were carried out for several pressure deficient conditions using EPANET-

PDX. The constant heads at the supply nodes were reduced from 155 m to 105 m, 100 

m, 95 m and 90 m to achieve network DSRs of 90%, 75%, 50% and 30% respectively.  

Fig. 5.8 shows EPANET-PDX provides different values of water age, chlorine residual 

and THM concentrations for the different low-pressure conditions. Similar explanations 

to Network 1 can be made that the greater the pressure deficiency the greater the water 

age and THM concentration and the smaller the chlorine residual concentration. For 

Node 1, it can be seen that there are large fluctuations in the water age and chlorine and 

THM concentrations for DSR values of 50% and 30% for which the flow velocities are 

low in general. These fluctuations are consistent with previous results of the advection-

driven EPANET 2 model, under conditions in which velocities are low (Tzatchkov et al., 

2002). Tzatchkov et al. (2002) demonstrated that an advection-dispersion model reduces 

the fluctuations and consequently provided more realistic EPS results. 
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         (a) Node 1            (b) Node 2 

Figure 5.8 Water quality in Network 2 under normal and pressure deficient conditions 

(EPANET-PDX). The percentages refer to the percentages of total demand satisfied 

under conditions of normal and low pressure. 

 

Fig 5.8 also shows that, from a water quality perspective, the effects of low pressure are 

more significant at remote points (Node 2) than in an area close to a supply node (Node 

1). This is a direct consequence of the spatial distribution of the water age. When DSR = 

30%, the majority of the nodes in Network 1, including Node 2, have very little or zero 
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nodal flow. The results for Node 2 when DSR = 30% would appear to reveal an 

anomaly.  Zero- and low-flow nodes require special care and may indicate the need for 

more improvements in the underlying (EPANET 2) water quality model in the context of 

PDA. EPANET 2 and EPANET-MSX, however, provided the same results as the normal 

pressure condition shown previously in Fig 5.7 because they lack PDA functionality. 

This is illustrated in Fig 5.9, which shows EPANET 2 and EPANET-PDX predictions of 

water age throughout the network at 93 hour for DSR values of 75% and 100%. 

 

 

(a) EPANET 2 (DSR = 75%) 

 

 

 

(b) EPANET-PDX (DSR = 75%) 

 

 

 (c) EPANET 2 (DSR = 100%) 

 

(d) EPANET-PDX (DSR = 100%) 

Figure 5.9 Water age at 93 hour in Network 2. The EPANET 2 results for DSRs of 75% 

and 100% are the same. 
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The effects of closing pipes one at a time were also investigated, with the heads at the 

supply nodes maintained at the normal level of 155 m. Fig 5.10 shows EPANET-PDX 

estimates of the shortfall in the flow delivered (i.e. 1 − DSR). Whereas Fig 5.10 

represents the entire network, the effects of low pressure can be greater in areas near 

closed pipes.  

 

Fig. 5.11 depicts the water quality for EPANET 2 and EPANET-PDX for the individual 

pipe closures. The results are comparable, apart for some slight differences in the 

chlorine residuals. Fig 5.10 shows that overall the pressure in the network is mostly 

satisfactory, with the DSR close or equal to 1. This explains the similarity between 

EPANET 2 and EPANET-PDX in Fig. 5.11. In practice, it may not be possible to isolate 

individual pipes. Where multiple pipes must be taken out of service, it can be expected 

that any discrepancies due to the DDA modelling errors (i.e. in EPANET 2 for example) 

would be greater. 

 

 

Figure 5.10 EPANET-PDX: pipe closure effects on the flow supplied in Network 2 

 

The computational efficiency of EPANET-PDX was assessed also with reference to 

EPANET 2 for the above-mentioned water quality simulations. Fig 5.12 (a) shows the 
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was 1.048 seconds per 93-hour EPS simulation for EPANET-PDX and 0.640 seconds 

for EPANET 2 based on water age. Fig. 5.12 (b) shows the results for pipe closures. The 

average CPU time per 93-hour EPS simulation for water age was 1.037 seconds for 

EPANET-PDX and 0.641 seconds for EPANET 2. The results here together with the 

CPU times for the normal operating conditions that are based on a real system are an 

indication that EPANET-PDX is somewhat slower than EPANET 2. It is worth 

reiterating, however, that EPANET-PDX provides realistic results for pressure deficient 

conditions whereas EPANET 2 does not. A confirmation test was carried out on the 

PDA results based on 66 constant supply-node heads from 90 m to 155 m in equal steps 

of 1 m for all the supply nodes. Siew and Tanyimboh (2012a) have previously tested the 

accuracy of EPANET-PDX. Therefore (unlike the test in Section 5.3.2.1 that included 

all hydraulic time steps), only the results of the last hydraulic time steps in each of the 

EPSs were included in the present test. The correlation coefficients obtained were R
2
 = 

0.999996 (or more simply 1-R
2
 = 4×10

-6
) for nodal heads and R

2
 = 0.996 for pipe flow 

rates based on 15,048 demand-node heads (66 supply-node heads × 228 demand nodes) 

and 16,566 for pipe flow rates (66 supply-node heads × 251 pipes) as presented in 

Appendix B (Fig. B-1.5). This confirms the accuracy of the EPANET-PDX hydraulic 

analysis results for subnormal pressures. 

 

In Section 5.3.2.1, the accuracy of the EPANET-PDX water quality results was 

investigated. It was shown that the EPANET-PDX results are essentially the same as 

those produced by EPANET 2 and EPANET-MSX, for identical regimes of flow and 

pressure. Therefore, confirmation here of the accuracy of the PDA results of EPANET-

PDX also confirms the accuracy of the EPANET-PDX water quality results for 

operating conditions with subnormal pressure. 
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(a) Node 1                                                   (b) Node2 

 

Figure 5.11 Pipe closure effects on water quality in Network 2 
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(a)  supply-node head                                      (b) pipe closure 

 

Figure 5.12 CPU times for Network 2 based on water age 

 

5.3.3 Network 3 

 

Network 3 (Fig. 5.13) consists of 416 pipes of various lengths, 380 demand nodes and 4 

supply nodes (R1 to R4). The pipe sizes range from 50 mm to 500 mm in diameter. R2, 

R3 and R4 are constant-head supply nodes with a water level of 133 m. R1 is a variable-

head supply node. The head level multipliers for R1 are available at 15-minute intervals 

(see Appendix B (Fig. B-2.1)). R1 was modelled here as a constant-head supply node 

using its average water level of 133 m (as explained previously for Network 2). Nodes 3 

and 4, respectively, were selected to represent nodes close to a supply node and remote 

points in the network. Network 3 has no hydrants or fire-fighting flows. 
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(a) layout with diameters and elevations 

 

    

b) Domestic demand factors                               (c) Unaccounted for water factors 

 

(d) 10-hour commercial demand factors          (e) 16-hour commercial demand factors 

Figure 5.13 Network 3:  layout and demand factors 
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Extended period simulations (EPSs) were conducted on an Intel Core 2 Duo personal 

computer (CPU = 3.2 GHz, RAM = 3.21 GB) considering normal and pressure-deficient 

conditions. For all the EPSs, 15-minute hydraulic time step and 240 hours duration were 

used. The residual head for full demand satisfaction is 20 m. The results reported here 

are for the last 24 hours. In total, 2,534 EPSs of 240 hours were performed (see Table 

5.4).  For the chlorine, total THM concentration and water age, the agreement between 

EPANET 2, EPANET-MSX and EPANET-PDX was excellent for normal operating 

conditions with sufficient pressure. As in Network 2, the heads at the supply nodes were 

assumed constant. They were then reduced from 133 m to 112 m, 107 m, 102 m and 97 

m, in turn, to obtain DSRs of 90%, 75%, 50% and 30% respectively. The daily demand 

and nodal flow variations at Nodes 3 and 4 can be seen in Fig. 5.14.  

 

 Table 5.4 Number of EPSs for Network 3 

  EPANET 2 
EPANET-

PDX 

EPANET-

MSX 

Normal pressure  

 

  

    Water age 1 1 1 

   Chlorine 1 1 1 

   THM 1 1 1 

   Water age, chlorine and THM concurrently NA
a
 NA 1 

Pressure-deficient conditions
b
 

      Water age 4 4 NA 

   Chlorine 4 4 NA 

   THM 4 4 NA 

   Water age, chlorine and THM concurrently NA NA 4 

Pipe closures 

      Water age 416 416 NA 

   Chlorine 416 416 NA 

   THM 416 416 NA 

Total 1263 1263 8 
a Not applicable  
b One each for DSR= 90%, 75%, 50% and 30% 
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(a) Daily demand variations at Nodes 3 and 4 

  

(b) Nodal flow variations at Node 3 for normal and low pressure conditions 

 

(c) Nodal flow variations at Node 4 for normal and low pressure conditions 

 

Figure 5.14 Network 3: Daily demand and nodal flow variations at Nodes 3 and 4. The 

percentages refer to the percentages of the total demand satisfied under normal and 

pressure-deficient conditions. 
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Fig. 5.15 provides a graphical summary of the water quality results for EPANET-PDX.  

 

 

 

 

 

 

 

(a) Node 3                                               (b) Node 4 

 

Figure 5.15 Water quality in Network 3 under normal and pressure-deficient conditions 

(EPANET-PDX). The percentages refer to the percentages of the total demand satisfied 

under normal and pressure-deficient conditions. 
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In general the effects of pressure deficiency (from water quality perspective) are greatest 

at the extremities of the network; the severity increases as the shortfall in pressure 

increases and temporal variations track the overall demand pattern (see, for example, 

Fig. 5.13 (b)-5.13 (e)). Unlike Node 2 in Network 2 for DSR = 30% that has almost zero 

flow, the water quality results at the remote node (Node 4) follow the demand pattern. 

Also, the individual pipes were closed to simulate pipe failures. Results are presented in   

Appendix B (Fig. B-2.2). The obtained results were very similar to the corresponding 

results for Network 2 shown in Fig. 5.11. Table 5.5 compares the computational speeds 

of EPANET-PDX, EPANET 2 and EPANET-MSX for the water quality analyses under 

normal pressure conditions for the 240-hour EPS. Based on these results, EPANET 2 is 

fastest and EPANET-MSX is slowest. Considering that the EPS covers a period of 240 

hours (with a relatively small time step of 15 minutes), the results suggest that 

EPANET-PDX may be fast enough for regular use. 

 

Table 5.5 CPU times for Network 3 

  
Mean CPU time per EPS (seconds) 

  
EPANET 2 

EPANET-

PDX  

EPANET-

MSX  

   Chlorine  8.8 12.8 116.0 

   THM 12.6 16.5 23.0 

   Water age 9.1 12.5 17.0 

   Chlorine, THM and water age concurrently NA NA 146.0 
aNot applicable 
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5.4 Conclusions 

                                                                                        

Besides water age, water quality modelling for low-pressure conditions in water 

distribution systems has been addressed in this chapter. The approach is an extension of 

EPANET 2 that integrates pressure dependency with hydraulic and chemical analyses 

while preserving the modelling functionality of EPANET 2. Convergence difficulties or 

failures were not experienced with EPANET-PDX for the various cases considered in 

this study. The accuracy of the model has been verified using a hydraulic consistency 

test for pressure deficient conditions, along with EPANET 2 and EPANET-MSX for 

normal operating conditions. 

 

Sample results based on a simple network in literature and two water supply zones in the 

UK are included. In total 4,372 EPSs were performed for the two water supply zones 

using EPANET 2, EPANET-MSX and EPANET-PDX. The results show that, if 

pressure is low, the conventional demand driven modelling approach can provide 

misleading results that in turn can lead to inappropriate water quality policy decisions. 

An important corollary worth stating is that, under conditions of low pressure, poor 

demand-driven analysis estimates of the spatial distribution of the water age could 

mislead efforts intended to identify the source of accidental or intentional contamination.  

 

Finally, the results here have highlighted the need for more PDA related work including 

the incorporation of dispersion in the water quality model and the collection of field data 

under conditions of low pressure, low flow rates and low velocities. 
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Chapter 6 

 

High Performance and Parallel Computing for 

Complex Water Distribution Systems Design 

Optimisation Problems 

 

 

6.1 Introduction 

 

Water distribution systems (WDSs) are key components of public infrastructures and it 

is essential to design and rehabilitate them in a cost effective manner without 

compromising the required performance and regulatory standards. Evolutionary 

algorithms (EAs) are a commonly applied optimisation approach. EAs such as genetic 

algorithms (GAs) are popular in providing optimal or near optimal solutions to WDSs 

optimisation problems (Simpson et al., 1994). A review on the current developments in 

GAs for WDSs optimisation is presented in Chapter 3 (Section 3.3.) 

 

One of the main issues in GAs is that the algorithms are time consuming when applied 

to large optimisation problems such as real life networks with large numbers of pipes 

and multiple operating conditions (VenZyl et al., 2004). For example, in the 

optimisation of large water distribution systems, a single optimisation run may involve 

thousands of hydraulic and water quality simulations (see e.g. Ghebremichael et al., 

2008; Seyoum and Tanyimboh, 2014) and that may take many days on modern 
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computers such as workstations. Such computational time, however, is usually 

unacceptable for water utilities applications. One way to address this difficulty is by 

utilising high performance and parallel computing techniques.   

 

The aim of this chapter is twofold. The first aim is to assess a multi-objective 

evolutionary algorithm introduced by Siew and Tanyimboh (2012b) that is based on the 

Non-dominated Sorting Genetic Algorithm II (Deb et al., 2002). EAs for WDSs often 

use penalties to assess the merits of infeasible solutions when solving optimization 

problems that have constraints. By contrast, the penalty-free multi-objective 

evolutionary algorithm (PF-MOEA) proposed by Siew and Tanyimboh (2012b) uses 

pressure-dependent analysis that accounts for the pressure dependency of the nodal 

flows and thus avoids the need for penalties to address violations of the nodal pressure 

constraints. The pressure-dependent analysis that PF-MOEA uses is the pressure-

dependent extension of EPANET 2 (EPANET-PDX) described in Chapter 4 and 5 (Siew 

and Tanyimboh, 2012a). EPANET-PDX simulates WDSs with insufficient flow and/or 

pressure more realistically.  

 

PF-MOEA has been discussed previously in terms of the least-cost solution and the 

smallest number of function evaluations achieved on some standard test problems (Siew 

and Tanyimboh, 2010a, 2011b, 2012b). However, operators used in genetic algorithms 

(e.g. mutation) are probabilistic in nature. Thus, a statistically more robust assessment is 

used here that reflects the stochastic nature of the algorithm. New solutions that are 

hydraulically feasible and cheaper than the current best solution in the literature were 

found, for the Kadu et al. (2008) network that represents one of the challenging 

benchmark problems in the literature. An improvement in cost of almost 5% was 

achieved.  

 

The second aim of this chapter is to implement the high performance and parallel 

computing approach to solve real-life network design problem.  The 251-pipe network 
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described in Chapter 4 and 5 was considered. The network comprises multiple sources, 

multiple demand categories, many fire flows and involves extended period simulation. 

Due to the size and complexity of the optimisation problem, a high performance 

computer that comprises multiple cores was used for the computational solution. 

Multiple optimisation runs were performed concurrently using PF-MOEA. Overall, the 

algorithm performs well; it consistently provides least cost solutions that satisfy all the 

system requirements quickly. The least-cost design obtained was significantly cheaper 

than (48%) the existing network in terms of the pipe costs. Also, the computational 

performance of PF-MOEA has been enhanced by parallelising the algorithm using a 

Message-Passing Interface parallel programming model. The controller-worker 

parallelisation approach has been implemented in this chapter.  The primary aim of this 

work is to demonstrate the computational performance that can be achieved by using a 

simple and straightforward parallel implementation approach. Results in general 

indicated that the parallel algorithm consistently outperforms the serial algorithm with 

respect to computational time while providing comparable solutions. The average 

speedup achieved by the parallel algorithm is 15 on an eight- core workstation. A review 

on the most common parallelisation approach that has been applied in WDS literature is 

provided in Chapter 3 (Section 3.3.7). 

 

In the remainder of this chapter, the PF-MOEA approach and its application is described 

in Section 6.2. In Section 6.3, the application of high performance and parallel 

computing of EAs for multi-objective optimization of WDSs is presented. Two network 

examples were considered for this chapter. The results achieved are discussed in Section 

6.4. 
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6.2 Penalty-Free Multi-Objective Evolutionary Optimization  

Approach 

 

Evolutionary algorithms (EAs) by nature start with a randomly generated set of solutions 

that may include both feasible and infeasible solutions. To address the node pressure 

constraints, penalty methods have been applied widely (Savic and Walters, 1997; 

Vairavamoorthy and Ali, 2000; Broad et al., 2005; Ostfeld and Tubaltzev, 2008). The 

major drawback of the penalty-based approach is that additional case-specific 

parameters are required whose calibration is generally challenging (Siew and 

Tanyimboh, 2012b; Siew et al., 2014; Saleh and Tanyimboh, 2013; Prasad and Park, 

2004).  A review on different constraint handling techniques for EAs is provided in 

Chapter 3 (Section 3.3.4). 

 

In an attempt to alleviate the difficulties on handling the node pressure constraints, Siew 

and Tanyimboh (2012b) proposed a penalty-free multi-objective evolutionary algorithm 

(PF-MOEA) that eliminates the use of penalty method. The approach allows all the 

feasible and infeasible solutions generated to compete in a way that is fundamentally 

bias-free with respect to constraint violation. PF-MOEA uses pressure-dependent 

analysis to assess each individual in the population of solutions. Unlike the conventional 

demand-driven analysis approach, pressure-dependent analysis takes proper account of 

the relationship between the flow and pressure at a node. By definition, feasible 

solutions satisfy all nodal demands in full. Conversely, infeasible solutions do not and 

the shortfall in the water they supply represents a real measure of the infeasibility of the 

water distribution system. In this way, pressure-dependent analysis addresses the node 

pressure constraints as an integral part of the hydraulic analysis. PF-MOEA employs the 

pressure-dependent extension of EPANET 2 (Siew and Tanyimboh, 2012a) to carry out 

pressure-dependent analysis seamlessly. A full description on the pressure dependent 

model (EPANET-PDX) is provided in Chapter 4 and 5. 
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6.2.1 Previous Applications of PF-MOEA 

 

PF-MOEA has been previously applied to various aspects of WDSs optimization that 

include design, operation and long-term rehabilitation and upgrade of WDSs (Siew and 

Tanyimboh, 2011; Siew and Tanyimboh, 2012b; Siew et al., 2014). The algorithm used  

to solve the three well-known optimization problems in literature, i.e. the design of the 

Two-Loop (Alperovits and Shamir, 1977) and Hanoi (Fujiwara and Khang, 1990) WDSs 

and the expansion of the New York Tunnels. Also, it was utilised for the phased whole-

life design and rehabilitation of WDSs using the real life network Wobulenzi (Siew et 

al., 2014). The algorithm used to address WDSs optimisation problems that involve 

multiple loadings, storage tanks and pumps of the benchmark “Anytown” network. 

Overall, PF-MOEA generated superior results for all the optimization problems solved 

in terms of cost, hydraulic performance and computational efficiency compared to other 

solutions in literature. 

 

6.2.2 PF-MOEA Formulation 

 

Minimising the total network cost (capital and operation) and maximising the network 

hydraulic performance are the two conflicting objectives of PF-MOEA. The network 

hydraulic performance ensures that all nodal demands are satisfied by maximising the 

total available flow of the most critical node in the network. The conflicting objectives 

produce a set of non-dominated solutions where no one solution in the set can be 

considered superior to the others. The objective functions are expressed by equations 

below. 

 

Minimise     2

1 )(CRF =
  
          (6.1) 

 

Maximise  4

2 )(DSRF =           (6.2) 
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where F1 and F2 represent the first and second objective functions respectively. CR is the 

cost ratio i.e. the ratio of the cost of a particular solution to the cost of the most 

expensive solution in the whole population within a single generation. DSR is the 

demand satisfaction ratio i.e. the ratio of the available flow to the required flow and 

measures the feasibility of a solution. Both objective functions are thus normalised and 

have values between zero and one. A solution that has a DSR value that is less than one 

is infeasible and cannot satisfy the demands in full. The objective functions in Eq. 6.1 

and 6.2 focus the search around the frontier between feasible-infeasible solutions where 

optimal solutions are commonly found. PF-MOEA seamlessly couples the widely used 

Non-dominated Sorting Genetic Algorithm II (Deb et al., 2002) with the hydraulic 

analysis model EPANET-PDX. A description on the NSGA II procedure is provided in 

Chapter 3 (Section 3.3.5). The decision variables in PF-MOEA are represented using 

binary coding. Single-point crossover, single-bit mutation and binary tournament 

selection are the genetic operators used in the algorithm.  

 

6.3   High Performance  and Parallel Computing of  Evolutionary  

  Algorithms 
 

The utilisations of high performance computing techniques are increasingly becoming 

important to solve computationally intensive applications. High performance computing 

is a computing system where multiple computers connected together as a cluster to solve 

large-scale problems that are difficult or impossible to execute on standard desktop 

computers (Wilkinson and Allen, 2004). In parallel computing large problems are often 

divided into several smaller ones that can be solved simultaneously on parallel 

processors in a shorter time (Trobec et al., 2009). EAs are one of the areas that can 

benefit from parallel computing. EAs such as genetic algorithms work with a population 

of independent solutions. This makes the algorithms suitable to be implemented in 

parallel computing architectures effectively (Cantú-Paz and Goldberg, 2000). 
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Evolutionary operators such as crossover, mutation and fitness evaluation can be 

executed in parallel across different processors. In this chapter, a controller-worker 

approach is applied to parallelise PF-MOEA. Controller-worker is the widely used 

application of parallel EAs where a single controller processor executes the routine 

operation of the algorithm and employs the workers to carry out fitness evaluation. It is 

the most straightforward approach with a potential of improving computational 

performances significantly (Nowostawski and Poli, 1999; Cantú-Paz and Goldberg, 

2000).  

 

Fitness evaluation is the most computationally expensive operator in EAs (Alba and 

Tomassini, 2002; Schutte et al., 2004). Other evolutionary operators such as selection, 

crossover and mutation by far require small CPU time. In this work, the fitness 

evaluation of the child population is parallelized. It is worth noting here that fitness 

evaluation in this parallel implementation context refers to the evaluation of solutions 

using the second objective function described in Eq. 6.2. This involves extended period 

simulations and fitness calculation over generations. The task is divided equally among 

all the processors. The controller processor retains a portion of the population to carry 

out evaluation in parallel with the worker processors. In addition, the controller 

processor is in charge of evolutionary operators such as selection, crossover and 

mutation. It also performs all the remaining tasks in PF-MOEA.  

 

Fig. 6.1 shows a flowchart that illustrates the implementation of the controller-worker 

approach for parallelizing PF-MOEA. The proposed parallel program is written in C++ 

by using Message Passing Interface (MPI) communication routines. Microsoft HPC 

pack 2008 is used to run the program in Microsoft Visual Studio (version 2010). 

Parallelization of fitness evaluation was done by assigning equal portion of the child 

population to each of the participating processors. Communication among processors 

takes place when each worker processers receives the individuals to evaluate and when 

the workers send the fitness value to the controller. As can be seen in the flowchart, after 
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generation of child population via crossover and mutation, the controller sends 

individuals to worker processes for evaluation and fitness calculation. Subsequently, 

both the controller and worker processors evaluate their portion of population. The 

workers return the evaluations to the controller as soon as they finish. After the 

controller processor receives all the fitness values for the child population, it combines 

the parent and child solutions (each of which has size NP) to perform non-domination 

ranking and crowding distance calculation for the combined solutions. Based on the non-

domination ranks and crowding distances, NP solutions are then selected for the next 

generation. Finally, the algorithm stops and terminates the MPI execution environment 

when the maximum number of generations is reached. It is worth mentioning that in a 

situation where the number of solution in the best non-dominated front exceeds the 

population size (NP), 30% of the best feasible solutions (least cost-feasible solutions) 

from the front are retained in each generation in the PF-MOEA procedure. The 

remaining solutions (70%) are selected based on crowding distance.   
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Figure 6.1 Flowchart of the parallelized PF-MOEA 
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6.4    Case Studies 

 

Two network examples have been used in this chapter. Both examples are design 

optimisation problems where their objectives were to obtain the cheapest possible 

combination of pipe sizes that satisfy all the system requirements. The first example 

(Network 1) was taken from Kadu et al. (2008) that has the details of the optimization 

problem. In this example, extensive statistical investigation on the performance of PF-

MOEA was conducted. The second example (Network 2) is one of the water supply 

zones of a network in the UK that was described in full in Chapter 4. The network is 

used as a case study to implement the high performance and parallel computing 

approach to solve real-life network design problem that comprises multiple loadings and 

supply sources. It involves extended period simulations that take into account the 

demand variation in time.  

 

The design optimization problem of Network 2 is executed both sequentially and in 

parallel. For the sequential computing, the high performance facility at the University of 

Strathclyde was used to perform multiple serial optimisation runs concurrently. The 

parallelised version of PF-MOEA was implemented on a workstation to execute parallel 

optimisation runs. The effectiveness of the parallelised algorithm was evaluated 

considering both the quality of solution and speedup together in reference to results from 

sequential computing.  

 

6.4.1 Network 1  

 

Network 1 (Fig. 6.2) is fully looped and consists of 24 demand nodes, 34 pipes and 9 

loops. There are two reservoirs with constant water levels of 100 m and 95 m, 

respectively. The network data including the minimum required nodal heads can be 

found in Appendix C (Table C-1.1). Fourteen candidate pipe sizes are available for this 
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network. The diameters and costs of these pipes can be referred in Appendix C (Table 

C-1.2). Therefore, with 34 pipes and 14 pipe sizes, there are 1434 
≈ 9.3×1038 feasible and 

infeasible solutions. The Hazen-Williams equation with parameters as shown was used.

 

ee

e

ijij

ijij

ij

DC

QpL
h

βα

α
ω

=                                                                     (6.3) 

 

where ijijijij CQpLh ,,, and ijD represent the head loss, length, flow rate, roughness 

coefficient and diameter of pipe ij  respectively; ω is a dimensionless conversion factor 

for the units used; eα  and eβ  are exponents. The values for ijC , ,eα eβ  and ω used are 

130, 1.85, 4.87 and 10.68 respectively.   

 

 

Figure 6.2 Layout of Network 1  
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The initial populations were generated randomly. The maximum number of function 

evaluations (i.e. hydraulic simulations) permitted per optimization run was 500,000 and 

the crossover probability was 1=cp in all cases. Other parameters, including the 

population size, mutation rate and number of optimization runs were as shown in Table 

6.1. A total of eight cases were considered. One case (out of 8) had the default values of 

the coefficients of the Hazen-Williams formula in EPANET 2 (i.e. =eα 1.852, =eβ

4.871, ω = 10.667). Summarised results are shown in Table 6.1 based on sample sizes 

(i.e. the total number of optimization runs) of 100 (in 6 cases out of 8) and 30 (in 2 cases 

out of 8) as the initial results suggested the smaller sample size might also be statistically 

satisfactory. 

 

The cheapest solution obtained was 125,460,980 Rupees (i.e. with Np = 500, pm = 0.05 

in Table 6.1), within 436,000 function evaluations. Other researchers have not found this 

solution previously and it is the cheapest hitherto. Also, the minimum-cost solutions 

found in the eight cases considered were close to the smallest minimum-cost. The means 

of the minimum-cost differ from the smallest minimum-cost achieved here by only 

2.31–4.15%. The average number of function evaluations to obtain convergence (within 

the specified maximum of 500,000 function evaluations) ranged from 354,160 to 

397,083. The average CPU time to achieve convergence was 1.11–1.25 hours. To 

complete a single optimisation run consisting of 500,000 function evaluations, due to 

differences in the number of iterations per hydraulic simulation, the average CPU time 

required was 1.57 hours and the standard deviation was 0.10 hours on a personal 

computer (Intel Core 2 Duo with 2.5 GHz CPU and 1.95 GB RAM).  

 

Further limited sensitivity analysis was also conducted to check the influence of the 

mutation rate. Nine different additional mutation rates spread approximately evenly in 

the range pm = [0.01, 0.7] were used; pm = 0.05 and pm = 0.07 that feature in Table 6.1 

were excluded. The population size was Np = 200 and the maximum number of function 

evaluations permitted was 500,000. Only five optimization runs were executed for each 
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mutation rate. Therefore, with only five trials per mutation rate for the limited sensitivity 

analysis, a fixed set of five different initial populations (each with Np = 200) that were 

generated randomly was used for all the mutation rates considered. The minimum-cost 

feasible solution for the nine mutation rates ranged from 126,035,000 to 129,832,000 

Rupees. For the nine mutation rates, the average minimum-cost (based on 5 

optimization runs per mutation rate) ranged from 127,615,000 to 131,353,800 Rupees. 

Based on the results in Table 6.1, it can be expected that a population size of Np = 500 

would provide even better results. Overall, for the mutation rates and population sizes 

attempted, the performance of the optimization algorithm was consistently reliable and 

satisfactory.  

 

Kadu et al. (2008) proposed a critical path concept to reduce the number of candidate 

diameters for each pipe as mentioned in Chapter 3 (Section 3.3.3). In this way, they 

reduced the solution space to 8.65×1020 feasible and infeasible solutions. PF-MOEA was 

also tested as summarised in Table 6.2 using the same reduced solution space of size 

8.65×10
20 

solutions as in Kadu et al. (2008). The reduced candidate pipe diameters can 

be referred in Appendix C (Table C-1.3). The minimum cost achieved for a feasible 

solution was 125,826,425 Rupees within 82,400 function evaluations. This is only 

0.29% more costly than the smallest cost that was achieved for the full solution space of 

size 14
34 
≈ 9.3×10

38
 solutions. Overall, the values of the cost and function evaluations 

are improved, on average, by reducing the size of the solution space. On average, 

approximately 27% fewer function evaluations, i.e. hydraulic simulations, were required 

to find a near-optimal solution when the solution space was reduced, in comparison to 

the full solution space.  

 

Haghighi et al. (2011) also solved the same optimization problem using a hybrid 

approach consisting of a genetic algorithm and integer linear programming as stated in 

Chapter 3 (Section 3.3.6). A comparison between the PF-MOEA and the best results 

reported previously in the literature is shown in Table 6.3. For the full solution space, 
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the solution obtained by Kadu et al. (2008) was 131,678,935 Rupees, within 120,000 

function evaluations. This is 4.96% more expensive than the new best solution of 

125,460,980 Rupees. Haghighi et al. (2011) achieved 131,312,815 Rupees, within 4,440 

function evaluations. This is 4.66% more expensive than the new best solution. For the 

reduced solution space, Kadu et al. (2008) obtained a solution of 126,368,865 Rupees, 

within 25,200 function evaluations. This is 0.72% more expensive than the new best 

solution.  

 

However, the feasibility of the Kadu et al. (2008) and Haghighi et al. (2011) solutions is 

questionable. Based on EPANET 2, the Kadu et al. (2008) and Haghighi et al. (2011) 

solutions were deemed infeasible (as shown in Table 6.4). The Kadu et al. (2008) 

solutions violate the minimum node-pressure requirement at Nodes 12, 24 and 25 (for 

the full solution space) and Node 26 (for the reduced solution space). Similarly, the 

Haghighi et al. (2011) solution violates the minimum node-pressure requirement at 

Nodes 13, 24 and 25. By contrast, the new solutions of PF-MOEA are all feasible. 

 

 

 

 



Chapter 6:  High Performance and Parallel Computing for Complex Water Distribution Systems Design Optimisation Problems 

  

 

147 
 

       Table 6.1 Computational characteristics of PF-MOEA for Network 1 for the full solution space 

Full solution space 

Maximum number of function evaluations allowed  500x103 

Number of GA runs
d
 100a 30a,d 30b,d 

Population size 200 500 

Mutation rate 0.005 0.05 0.07 0.05 

Cost (Rupeesx10
6
)   

   Minimum 
 

126.740 

(1.02)c 

126.067 

(0.48) 

125.461 

(0.00) 

125.820 

(0.29) 

125.551 

(0.00) 

   Maximum 
134.243 

(7.00) 

133.005 

(6.01) 

132.986 

(6.00) 

131.797 

(5.05) 

128.222 

(2.13) 

   Mean 
130.662 

(4.15) 

129.479 

(3.20) 

128.623 

(2.52) 

128.363 

(2.31) 

127.019 

(1.17) 

   Median 
130.904 

(4.34) 

129.391 

(3.13) 

128.588 

(2.49) 

128.253 

(2.23) 

127.054 

(1.20) 

   Standard deviation 1.707 1.689 1.506 1.43 0.716 

Number of better solutions from the best run than previous solutions   

   Cheaper than Haghighi et al. (2011) 19 31 30 29 16 

   Cheaper than Kadu et al. (2008) 20 32 30 30 17 

Number of function evaluations to achieve convergence   

   Minimum 140,000 198,500 112,000 195,500 204,500 

   Maximum 497,800 498,500 498,000 497,500 500,000 

   Mean 354,160 396,505 395,515 397,083 370,483 

   Median 364,500 413,000 418,750 402,750 402,250 

   Standard deviation 101,000 80,000 95,000 82,000 98,000 

aHazen Williams parameters: =eα  1.85; =eβ  4.87; and ω  = 10.68           

bBased on the default EPANET 2 Hazen Williams parameters: =eα  1.852; =eβ  4.871; and ω  = 10.667 
cThe deviations from the least cost achieved for the full solution space are shown in the parentheses (%) 
d30 optimisation runs were carried out in two tests after six preceding tests with 100 optimisation runs revealed highly consistent results 
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     Table 6.2 Computational characteristics of PF-MOEA for Network 1 for the reduced solution space 

 

 

 

Reduced solution space 

Maximum  number of function evaluations allowed  500x10
3
 

Number of GA runs 100
a
 

Population size 100 200 

Mutation rate 0.005 0.05 

Cost (Rupeesx10
6
) 

   Minimum 
125.919 (0.36)

b
 125.826 (0.29) 125.826 (0.29) 

   Maximum 
130.868 (4.31) 127.281 (1.45) 127.322 (1.48) 

   Mean 
127.435 (1.57) 126.182 (0.57) 126.007 (0.44) 

   Median 
127.244 (1.42) 126.112 (0.52) 125.883 (0.34) 

   Standard deviation 1.035 0.328 0.291 

Number of better solutions from the best run than previous solutions 

   Cheaper than Haghighi et al. (2011) 30 32 31 

   Cheaper than Kadu et al. (2008) 30 32 31 

Number of function evaluations (FEs) to achieve convergence 

   Minimum 32,000 43,400 54,600 

   Maximum 497,100 499,000 493,800 

   Mean 278,145 285,998 269,554 

   Median 293,000 293,600 265,700 

   Standard deviation 130,000 124,000 125,000 

aHazen Williams parameters: =eα  1.85; =eβ  4.87; and ω  = 10.68       
bThe deviations from the least cost achieved for the full solution space are shown in the parentheses (%) 
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Table 6.3. Comparison of alternative solutions for Network 1 

 

 

 

Pipe 

 ID  

Diameter (mm) 

Full Solution Space (FSS) Reduced Solution Space (RSS)  

Kadu et al. 

2008  

Haghighi et al. 

2011 
PF-MOEA 

Kadu et al. 

2008  
PF-MOEA 

1 1000 1000 900 1000 900 

2 900 900 900 900 900 

3 400 400 350 350 400 

4 350 350 300 250 250 

5 150 150 150 150 150 

6 250 250 250 250 200 

7 800 800 800 800 800 

8 150 150 150 150 150 

9 400 400 450 600 600 

10 500 500 500 700 600 

11 1000 1000 900 900 900 

12 700 700 700 700 700 

13 800 800 500 500 500 

14 400 400 500 450 500 

15 150 150 150 150 150 

16 500 500 500 450 500 

17 350 350 350 350 350 

18 350 350 400 400 350 

19 150 150 150 450 450 

20 200 150 150 150 150 

21 700 700 700 600 600 

22 150 150 150 150 150 

23 400 450 450 150 150 

24 400 400 350 400 350 

25 700 700 700 500 600 

26 250 250 250 200 250 

27 250 250 250 350 300 

28 200 200 300 250 300 

29 300 300 200 150 200 

30 300 300 250 300 300 

31 200 200 150 150 150 

32 150 150 150 150 150 

33 250 200 150 150 150 

34 150 150 150 200 150 

Cost 

(Rupees) 
131,678,935 131,312,815 125,460,980 126,368,865 125,826,425 

 

Function 

evaluations 

120,000
a
 4,440

a
 436,000 25,200

a
 82,400 

a 
Infeasible solutions (based on EPANET 2 with =eα  1.85; =eβ  4.87; ω  = 10.68 ) 
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Table 6.4. Comparison of nodal heads from alternative solutions of Network 1 

Node 

ID 

Required 

head 

(m) 

Available head (m) (based on EPANET 2 with =eα 1.85; =eβ 4.87; ω  = 10.68 ) 

Full Solution Space (FSS) Reduced Solution Space (RSS) 

Kadu et al. 

2008
a 

Haghighi et al. 

2011
a PF-MOEA 

Kadu et al. 

2008
a 
 

PF-MOEA 

1
b 

100.00 100.00 100.00 100.00 100.00 100.00 

2
b 

95.00 95.00 95.00 95.00 95.00 95.00 

3 85.00 98.95 98.96 98.28 98.98 98.26 

4 85.00 95.65 95.66 95.04 95.76 94.98 

5 85.00 90.85 90.85 87.47 88.79 90.68 

6 85.00 89.40 89.41 85.63 85.28 85.07 

7 82.00 87.75 87.73 85.83 87.99 82.95 

8 82.00 89.99 89.96 88.82 91.62 89.35 

9 85.00 91.77 91.79 91.12 91.83 91.05 

10 85.00 89.05 89.08 88.30 88.88 88.22 

11 85.00 88.85 88.88 86.42 87.1 86.38 

12 85.00 84.98
*
 85.01 85.13 85.13 85.12 

(0.02) 

13 82.00 82.02 81.88
*
 83.25 86.73 84.85 

(0.12)     

14 82.00 94.49 94.49 94.14 94.13 94.15 

15 85.00 88.44 88.46 87.97 87.11 87.92 

16 82.00 84.53 84.81 83.11 82.05 83.04 

17 82.00 90.88 90.88 90.69 90.29 90.04 

18 85.00 85.46 85.47 85.39 85.24 85.39 

19 82.00 85.11 85.24 86.14 85.93 83.82 

20 82.00 82.1 83.78 83.15 83.72 82.07 

21 82.00 87.39 87.38 87.37 83.98 87.00 

22 80.00 86.45 86.55 80.69 84.8 85.50 

23 82.00 82.09 82.07 82.96 82.17 83.05 

24 80.00 79.94
*
 79.89

*
 80.28 83.63 80.86 

(0.06) (0.11)     

25 80.00 79.96
*
 79.77

*
 81.10 80.15 80.54 

(0.04) (0.23)     

26 80.00 82.87 84.04 80.04 78.38
*
 80.39 

          (1.62)   

Total shortfall in 

head (m) 
0.12

 a
 0.46

 a
 0.00 1.62

 a
 0.00 

Cost (Rupees) 131,678,935 131,312,815 125,460,980 126,368,865 125,826,425 

Function 

evaluations 
120,000 4,440 436,000 25,200 82,400 

a
 Infeasible solutions; the asterisk indicates a shortfall in head (shown in parentheses) 

b 
Reservoir (i.e. source with constant head) 
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Barlow and Tanyimboh (2014) have also solved Network 1 using a memetic algorithm 

that combines a genetic algorithm with a local improvement and cultural learning 

operators, which is described in Chapter 3 (Section 3.3.6). They used the default 

EPANET 2 Hazen–Williams head loss parameters that are less restrictive than the 

parameters used by PF-MOEA to obtain the best solutions (see Table 6.1 and 6.2). Both 

memetic algorithm and genetic algorithm (i.e. without the local and cultural 

improvement operators) were used to solve the network. Each algorithm carried out 100 

optimisation runs. For each optimisation runs, 10 million function evaluations (i.e. 

hydraulic simulations) were allowed. A least cost solution of 124,690,000 Rupees within 

142,000 function evaluations for the memetic algorithm and within 2,572,200 for the 

genetic algorithm was reported.  As can be seen in Table 6.1, PF-MOEA has also solved 

the network using the EPANET 2 standard head loss parameters by carrying out 30 

optimisation runs. The least-cost solution obtained was 125,551,000 Rupees within 

500,000 function evaluations. This is only 0.7% costlier than the best solution by Barlow 

and Tanyimboh (2014) s’ best solution. Barlow and Tanyimboh (2014) have also 

assessed their algorithm in terms of the number of function evaluations required to find a 

feasible solution within 1% of the solution reported by Haghighi et al. (2011). 

Accordingly, the memetic algorithm required 84,000 function evaluations while the 

genetic algorithm required 665,600 function evaluations. The corresponding number of 

function evaluations required by PF-MOEA was 86,567.  However, it is worth noting 

here that the network performance in the Barlow and Tanyimboh (2014) approach is 

measured based on the total nodal pressure deficit throughout the network. A drawback 

of this approach is that it generates only the least cost feasible solution. The approach is 

not capable of recognising other feasible solutions. By contrast, PF-MOEA, which uses 

demand satisfaction ratio as a performance indicator of a solution, is efficient in 

providing ranges of feasible and infeasible solutions that provides more flexibility in 

choosing a particular solution. Additionally, Barlow and Tanyimboh (2014) method 

utilised many operators (e.g. random mutation, creeping mutation, local and cultural 
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improvement operators) and user-specified parameters (e.g. frequency of applying local 

and cultural improvement operators, number of individuals selected for cultural 

improvement, percentage of non-dominated front available for local improvement, etc.), 

which affect the efficiency and effectiveness of the algorithm. The PF-MOEA approach 

is by far simple and straightforward to implement. It utilised the most basic operators 

such as single point crossover and single bit wise mutation.  

 

Fig. 6.3 shows the pipe velocities of the best PF-MOEA designs that were obtained 

based on the full and reduced solution spaces. Although velocity constraints were not 

required in the original problem specification, the pipe velocities for the two optimised 

best designs were checked. The minimum and maximum pipe velocities in both designs 

were 0.1 m/s and 2.7 m/s respectively.  

 

Fig. 6.4 (a) illustrates the progress of PF-MOEA for the best solutions achieved for both 

the full and reduced solution spaces. For the full solution space, a cost reduction from 

294,152,000 Rupees at the start of the optimization to (131,003,000 Rupees and 73,500 

function evaluations) was achieved. The algorithm converged at (125,460,980 Rupees 

and 436,000 function evaluations). Also, fast reductions in cost from 175,535,000 

Rupees at the start, i.e. at zero function evaluation, to (131,184,000 Rupees and 8,000 

function evaluations) and then (127,850,000 Rupees and 25,000 function evaluations) 

were achieved for the reduced solution space. The algorithm finally converged at 

(125,826,425 Rupees and 82,400 function evaluations).  

 

It is worth emphasizing, also, that the algorithm found dozens of feasible solutions that 

are cheaper than the solutions found by Kadu et al. (2008) and Haghighi et al. (2011) as 

summarised in Table 6.1 and 6.2. For example, for the full solution space and a 

population size of Np = 500, each of the mutation rates i.e. pm = 0.005 and pm = 0.05 

achieved 30 solutions that are cheaper than Kadu et al. (2008) and Haghighi et al. (2011) 

in a single optimization run.  For the total 705 optimization runs executed, the PF-
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MOEA discovered more than 4,000 individual solutions approximately (with mean, 

median and standard deviation of 129,125,871 Rupees, 129,195,000 Rupees and 

1,523,810 Rupees, respectively) that are feasible and cheaper than the previous best 

solution of 131,678,935 Rupees by Kadu et al. (2008). The distribution of these new 

solutions is shown in the Fig. 6.5. These results illustrate clearly the high evolutionary 

sampling efficiency of the PF-MOEA. In other words, the number of solutions evolved 

and analysed on average before finding a near-optimal solution is small in comparison to 

the size of the solution space. Also, the small distance between the graphs in Fig. 6.4(a) 

for the full and reduced solution spaces is worth a mention, considering that the reduced 

solution space is approximately a factor of 10
18

 smaller than the full solution space.  

 

The Pareto-optimal fronts for the best optimization runs are shown in Fig. 6.4(b) for 

both the full and reduced solution spaces. In the full solution space, all permissible pipe 

sizes were included. However, in the reduced solution space, for each pipe, the pipe 

sizes that are unlikely to be feasible and/or competitive were excluded, leaving only 3–5 

options in each case (see Appendix C (Table C-1.3)). It can be seen in Fig. 6.4(b) that 

the front for the full solution space (in which Np = 500) has a higher density of solutions 

than the front for the reduced solution space (in which Np = 200), and some solutions 

with the smallest and largest cost values are missing in the front for the reduced solution 

space.  

 

It is worth mentioning that the solutions shown in Fig. 6.5 include the solutions found in 

the 30 optimisation runs with the default values of the coefficients of the Hazen-

Williams formula in EPANET 2. Approximately 20-25 solutions in total (out of 4135) 

may be considered theoretically borderline in terms of feasibility due to modelling and 

unit conversion errors including minor differences between EPANET 2 and EPANET-

PDX. For these theoretically borderline solutions, the shortfall in the residual head at the 

node with the smallest pressure may be up to about 2 cm approximately. 
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Figure 6.3 Pipe velocities of the best PF-MOEA designs for Network 1 
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35

V
e

lo
c
it
y 

(m
/s

)

Pipe ID

Full Solution Space Reduced Solution Space

1.2

1.6

2.0

2.4

2.8

3.2

0 100 200 300 400 500

B
e

s
t 

G
e

n
e
ra

ti
o

n
 c

o
s
t 

(x
1
0

8
R

u
p

e
e
s
)

Function evaluations (x103)

Reduced Solution Space Full Solution Space



Chapter 6:  High Performance and Parallel Computing for Complex Water Distribution 

Systems Design Optimisation Problems 

 

 

155 
 

 
(b) Pareto-optimal fronts 

 

Figure 6.4 Network 1: Progress graphs and Pareto-optimal fronts  for the best runs  

 

 

Figure 6.5 Distribution of the individual solutions found (4135 in total) in 705 

optimisation runs that are feasible and cheaper than the previous best solution 
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6.4.2 Network 2  

 

Network 2 is a water supply zone of a network in the UK that was described in Chapter 

4 and 5. The network consists of 251 pipes of various lengths, 228 demand nodes 

(including the fire hydrants), 5 variable-head supply nodes, 29 fire hydrants at various 

locations and 3 demand categories. The network layout and the demand categories are 

presented in Chapter 5. The minimum pressure requirement to be fulfilled was 20 m at 

all demand nodes. Also, the minimum residual pressure requirement at all fire hydrants 

(with a fire flow of 8 l/sec) was 3 m. A maximum velocity of 1 m/s is also additional 

requirement that needs to be satisfied. However, referring to British Standard for Water 

supply-Requirements for Systems and Components outside buildings (BS EN 805:2000) 

the 1 m/s maximum velocity requirement is too conservative. According to the standard, 

the velocity range between 0.5 m/s and 2 m/s may be considered appropriate; and in 

special circumstances (e.g. fire flow), velocities up to 3.5 m/s can be acceptable. It is 

worth noting here that velocity constraints were not implemented in PF-MOEA 

procedure. Nevertheless, a post optimisation analysis was carried out to assess the pipe 

velocities of the optimised designs based on the maximum velocity constraint of 3.5 m/s 

to account for the fire flow conditions based on British Standards.  

 

Extended period simulation (EPS) was used to cover all the 29 different fire demands 

and the normal demands. It is worth mentioning here that for the purposes of comparison 

of results with the existing network, both the network and dynamic operational data that 

were taken from a calibrated EPANET model were used without making any changes in 

the original data. Accordingly, the EPS adopted covered a period of 31 hours based on a 

1-hour hydraulic time step. At each hour of the EPS period, except at the first and last 

hours, one fire demand is operational. The Darcy–Weisbach pipe head-loss formula was 

used for the hydraulic analysis. The pipe roughness coefficients range from 0.01mm to 

3mm.  
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Network 2 needed rehabilitation and upgrading. Rehabilitation of the network was 

previously carried out using genetic algorithm based commercial optimisation software 

(Optimizer™). In this chapter, the network was optimised as a new design using PF-

MOEA and results were compared with the existing network. The network and pipe unit 

cost data were supplied by a water utility. The complete network data is presented in 

Appendix C (Fig. C-2.1 and Table C-2.1). The pipe unit cost data consists of 28 pipe 

sizes with their respective unit cost. With 28 candidate pipe sizes, the solution space is 

huge (28
251

) where computer cannot handle. In this work, some of the historical pipe 

sizes that are not commercially available anymore were removed. By doing this, not 

only the solution space can be reduced but also comparison of results with other optimal 

solutions can be possible. This can also help to implement the optimised design. 

Accordingly, 10 commercially available pipe sizes were selected based on the existing 

network pipe diameters that range from 32 mm to 400 mm. This has provided a massive 

reduction in solution space. The commercial pipe sizes utilised along with their cost can 

be found in Appendix C (Table C-2.2).  The 10 candidate pipe sizes provide 10
251

 

feasible and infeasible solutions in total. A four-bit binary string was used to represent 

the discrete candidate pipe sizes. This provided 2
4
 i.e. 16 four-bit combinations of which 

six were redundant. The redundant codes were allocated one each to the two smallest 

and two largest candidate pipe sizes; and one each to the two middle candidate pipe 

sizes. Alternative approaches for dealing with redundant code are available in the 

literature (e.g. Saleh and Tanyimboh, 2014). Since the network is composed of 251 

pipes, a chromosome that has a 1004-bit binary string represents each design. The 

crossover and mutation probability used were 1 and 0.005 respectively for all the 

optimisation runs conducted on Network 2.  

 

It will be recalled in Eq. 6.2 that the second objective function (F2) of PF-MOEA is 

based on the DSR of the worst performing node as used in Network 1. Nevertheless, due 

to the complexity of Network 2, the objective function considered for optimising 

Network 2 is based on the DSR of the entire network (i.e. maximising the DSR of the 
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network). Network 2 has a solution space that is in big order of magnitude in 

comparison to Network 1. Also, the spatial and temporal variation of the demand in 

Network 2 is huge in addition to its size. It is, therefore, realistic to consider a 

performance measure that assesses the entire network. This can provide a baseline for 

future work to assess the network further in order to have a complete understanding of 

its performance. 

 

Network 2 is a computationally intensive optimisation problem. It was thus solved using 

a high performance computer (HPC) sequentially. In addition, the parallel algorithm was 

employed to solve the network.  

 

6.4.2.1 Sequential Computing Using a High Performance Computer  

 

In total, 30 PF-MOEA runs were executed in serial mode using the HPC facility at the 

University of Strathclyde.  In serial (sequential) computing, independent optimization 

runs are performed in different processors concurrently. The high performance 

computing facility has 276 compute nodes; each has dual Intel Xeon 2.66 GHz CPU (six 

cores each) and 48 GB RAM running Linux operating system. The 20 optimization runs 

were performed using a population size of 200 and PF-MOEA was allowed to progress 

through 2500 generations i.e. a maximum of 500,000 function evaluations. The 

remaining ten runs were carried out based on a population size of 1000 and the 

algorithm was permitted to progress through 1000 generations i.e. a maximum of 

1,000,000 function evaluations. The initial populations were generated randomly. 

Summarized results are shown in Table 6.5.  The minimum-cost solution obtained was 

£419,514 within 985,000 function evaluations for population size of 1000 and £419,900 

within 499,000 function evaluations for population size of 200. The average, median and 

maximum value of the minimum cost for the 20 optimization runs were £439,311, 

£436,129, £478,356 respectively. The corresponding values for the 10 optimization runs 
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were £421,938, £420,408 and £432,643 respectively. The standard deviation and 

coefficient of variation of the minimum cost for the 20 runs were 15,074 and 0.034 

respectively while the respective values for the 10 runs were 4,038 and 0.01. A smaller 

coefficient of variation in both sets of runs demonstrates the consistency of results.  

 

On average, the number of function evaluations and the CPU time to achieve 

convergence within the specified maximum of 500,000 and 1,000,000 function 

evaluations were (493,190, 6.7 hours) and (981,000, 12.81 hours) respectively. To 

complete a single optimisation run consisting of 500,000 function evaluations, the 

average CPU time required was 6.7 hours and the standard deviation was 0.4 hours. The 

average CPU time required to complete a single optimisation run consisting of 

1,000,000 function evaluations was 13.17 hours and the standard deviation was 0.94 

hours. It is worth emphasising that a single optimization run, with 500,000 function 

evaluations allowed, which takes approximately 15 days on a workstation (with two  

quad-core 2.4 GHz CPU and 16 GB RAM ) was performed in less than seven hours  

using HPC facility. Also, a single optimization run, with 1,000,000 function evaluations 

allowed, which takes about 30 days on the workstation was performed in about 13 hours 

using the HPC. As can be seen in Table 6.5, the deviations of the smallest and average 

minimum-costs based on population size of 200 are 0.09% and 4.72% respectively from 

the minimum-cost (£419,514) obtained using population size of 1000. Results in general 

shows that population size of 1000 provided a better result. Nevertheless, in a situation 

where time is limited or when quick design is needed, population size of 200 (maximum 

allowed function evaluations of 500,000) may be appropriate to use. 

 

The Pareto-optimal fronts of the 20 runs (population size = 200) were combined from 

which the final set of non-dominated solutions (199 solutions in total) was selected. In a 

similar manner, the final set of non-dominated solutions (1083 solutions in total) was 

selected by combining the Pareto–optimal fronts of the 10 runs (population size = 1000). 

Fig. 6.6. compares the final set of the non-dominated solutions obtained from the two 
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sets of runs. The similarity of the fronts illustrated the consistent performance of the 

algorithm in different independent runs and population sizes. The non-dominated fronts 

of the individual run from the two sets of optimisations runs can be found in Appendix C 

(Fig. C-2.2 and C-2.3). The small distances among the fronts re-confirm the reliability of 

the algorithm.     

 

 

Figure 6.6 Non-dominated solutions from the union of 20 optimisation runs and from the 

union of 10 optimisation runs for Network 2 
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Table 6.5 Computational characteristics of PF-MOEA for Network 2 

Mutation rate 0.005 (%  deviation in
 
cost from the minimum 

cost solution of  £419,514)
*
 

Maximum function evaluations allowed 500,000 1,000,000 

Number of GA runs 20 10 

Population size 200 1000 200 1000 

Cost (£)     

Minimum 419,900 419,514 0.09 0.00 

Maximum 478,356 432,643 14.03 3.13 

Mean 439,311 421,938 4.72 0.58 

Median 436,129 420,408 3.96 0.21 

Standard deviation 15,074 4,038   

Coefficient of variation (CV) 0.034 0.01   

Number of function evaluations (FEs) to achieve  convergence     

Minimum 476,209 960,000   

Maximum 500,000 994,000   

Mean 493,190 981,000   

Median 497,000 982,000   

Standard deviation 7,544 9,557   

Coefficient of variation (CV) 0.015 0.01   

CPU time  to achieve convergence ( hours)     

Minimum 5.2 (5.2)
**

 11.20 (11.37)   

Maximum 7.2 (7.3) 13.43 (13.72)   

Mean 6.7 (6.7) 12.81 (13.17)   

Median 6.7 (6.8) 13.13 (13.58)   

Standard deviation 0.4 (0.4) 0.82 (0.94)   

Coefficient of variation (CV) 0.058 (0.059) 0.064 (0.072)   
 

* The percentage deviation in cost of solutions obtained using population sizes of 200 and 1000 from the minimum cost solution of £419,514  
**values in parentheses show the CPU time required to complete a single optimisation run 
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Fig. 6.7 shows the evolution of the cost of the cheapest feasible solution obtained from 

the optimisation runs for population sizes of 200 and 1000. A rapid cost reduction from 

£1,682,340 at the start of the optimisation to (£798,653 and 25,200 function evaluations) 

was achieved for the best solution based on population size of 200. The algorithm 

converged at (£419,900 and 499,000 function evaluations). In a similar observation, a 

cost reduction from £1,641,210 at the start of the optimisation to (£792,874 and 34,000 

function evaluations) was obtained for the best solution based on population size of 

1000. The algorithm converged at (£419,514 and 985,000 function evaluations). The 

progresses of the minimum-cost solutions of the individual optimisation runs based on 

population sizes of 200 and 1000 are presented in Appendix C (Fig. C-2.4 and C-2.5).  It 

is worth noting the similarity of the progress graphs.  

 

 

Figure 6.7 Progress of the best optimisation runs for Network 2. The maximum numbers 

of function evaluations allowed per run were 500,000 (population size = 200) and 

1,000,000 (population size = 1000) 

 

The optimisation results have been evaluated with reference to the existing network cost 

(£809,700). On average, 45.7% cost reduction was achieved for population size of 200 

and 47.9% for population size of 1000. Also, comparison of the cheapest feasible 
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solutions with the existing network design shows a cost reduction of 48.1% and 48.2% 

for population size of 200 and 1000 respectively. The cheapest solutions were also 

simulated using EPANET 2 to confirm their feasibility. The pipe diameters, pipe 

velocities and nodal heads of the existing network and the optimised designs are 

compared in Fig. 6.8. It can be observed in Fig 6.8(a) that the PF-MOEA solutions in 

general consist of smaller pipe sizes compared to the existing network. Conversely, Fig. 

6.8(b) shows that in general the PF-MOEA solutions have lower residual pressures than 

the existing network. It may be noted that the existing network has some pipe sizes that 

are not commercially available any more. Also, the minimum pressure requirements at 

all demand nodes and fire hydrants were fulfilled for the entire operating cycle. Fig. 

6.8(b) shows that the pressures at all demand nodes including fire hydrants for all time 

steps of EPS are above 20 m. It is worth emphasizing that the pressures at fire hydrants 

were not close to 3 m (the minimum pressure requirement) due to the proximity of the 

fire hydrants to the demand nodes. The pipe velocities of the optimised designs and the 

existing network were evaluated in reference to the maximum velocity constraint of 3.5 

m/s. The maximum velocity in the existing network is 1.1 m/s. However, in the 

optimised designs, 28 pipes have violated the maximum velocity constraint. It was noted 

that the velocity violation occurred in short pieces of pipes (about 1.0 m length each) 

located at the network junctions. Although fittings details of Network 2 were not 

provided by the water utility, these short pieces of pipes might be installed for 

connecting fittings with the distribution pipes. The average velocity violation in the 

network was calculated as follows. 

 

exceedanceofdurationTotal

exceedanceofduration
violationVelocity

∑ >−
=

*);( maxmax νννν
                         (6.4) 

 

where v is pipe velocity and vmax is the maximum permissible velocity. Duration of 

exceedance refers to the number of times a pipe exceeded the maximum velocity limit in 

the extended period simulation. For the whole system over 31-hour operation cycle, the 
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average velocity violation for the optimised designs were only 1.1 m/s (population size 

= 1000) and 1.2 m/s (population size = 200) by giving each pipe the same importance in 

terms of length. These results seem realistic given that the pipe length is not taken into 

effect. However, velocity constraint handling is an area for future work. 

 

 

(a) Existing and optimised pipe diameters 

 

(b) Nodal pressures for all time steps of the extended period simulation 
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(c) Pipe velocities for all time steps of the extended period simulation 

 

Figure 6.8 Network 2: Pipe diameters, nodal pressures and pipe velocities of the existing 

network and optimised designs (serial runs)  

 

6.4.2.2 Parallel Computing 

 

The parallelized version of PF-MOEA has been applied to Network 2 using a 

workstation that comprises dual Intel Xeon 2.4 GHz CPU (four cores each) and 16 GB 

RAM running Windows operating system. The workstation has eight cores in total and 

all were utilized for parallel computing. Ten randomly generated optimization runs were 

carried out. All runs have a population size of 1000 given that for the serial algorithm 

population size of 1000 provided better result in comparison to population size of 200.  

The maximum numbers of function evaluations allowed per run were 1,000,000. The 

performance of the parallelized algorithm is evaluated in terms of computational 

efficiency and quality of solution with reference to the serial PF-MOEA results (for 

population size of 1000). The computational efficiency was assessed based on CPU time 
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(process time) required to complete a single optimization run (maximum allowed 

function evaluations = 1,000,000) using the serial PF-MOEA on the same workstation. 

Also, the quality of the solution of the parallel algorithm was evaluated in terms of the 

serial PF-MOEA results that was discussed in Section 6.4.2.1 based on 10 random runs. 

It is worth mentioning here that each pair of optimization runs (serial and parallel) 

started from the same initial population. Also, for proper comparison of the serial and 

parallel algorithms, the same genetic parameters (i.e. crossover and mutation rates and 

population size) were used.  

 

Table 6.6 shows the comparison of the minimum–cost solutions and the number of 

function evaluations for convergence for the parallel and serial PF-MOEA algorithm. 

The smallest minimum-cost obtained from the parallel algorithm is £418,685 within 

975,000 function evaluations. This is the cheapest solution obtained for Network 2. The 

solution is 0.2% cheaper than the smallest minimum-cost that was obtained from the 

serial algorithm (£419,514 and 985,000 function evaluations). Also, the means of the 

minimum-cost of the parallel algorithm (£425,334) differ from the means of the 

minimum-cost of the serial algorithm (£421,938) by only 0.8%. The average number of 

function evaluations to obtain convergence (within the specified maximum of 1,000,000 

function evaluations) is 981,000 and 973,700 for serial and parallel algorithms 

respectively. The consistency of the results of the parallel algorithm has been 

demonstrated in Table 6.6 in which the values of the coefficient of variations of the cost 

and function evaluations (0.024 and 0.014 respectively) are small and comparable with 

the serial algorithm (0.01 and 0.01 respectively).  

 

The consistent performance of the parallel algorithm is described in Fig. 6.9 in which the 

non-dominated fronts of the 10 random parallel runs are similar with the corresponding 

serial runs. Fig. 6.10 provides a graphical comparison on the progress of the cost of the 

serial and parallel runs over a generation. It is worth observing the similarity of the 

graphs for all the optimisation runs.  
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Table 6.6 Serial and parallel PF-MOEA results for Network 2 

 

Maximum  number of function evaluation allowed 

 

 

1,000,000 

 

Number of optimisation runs 

 

10 serial and 10 parallel runs 

Population size 1000 

Mutation rate 0.005 

  

Cost (£x10
6
) 

 

Number of function evaluations to 

achieve convergence 

 

Parallel Serial Serial Parallel 

Minimum 418,685 419,514 960,000 951,000 

Maximum 453,643 432,643 994,000 998,000 

Mean 425,334 421,938 981,000 973,700 

Median 422,265 420,408 982,000 972,000 

Standard 

deviation 
10,139 4,038 9,557 13,849 

Coefficient of 

variation 

 

0.024 0.01 0.01 0.014 
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Figure 6.9 Consistency of the non-dominated fronts from the parallel and serial runs for 

Network 2 
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Figure 6.10 Progress of the cost of the serial and parallel runs. Each pair of runs 

started from the same initial population
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The computational efficiency of the parallel algorithm is evaluated in terms of the ratio 

of the computational time the serial algorithm takes to complete a single run by using a 

single processor of the workstation to the computational time the parallel algorithm 

required to complete a single run by using all the eight processors of the workstation 

concurrently. To complete a single optimization run of 1,000,000 function evaluations, 

the serial PF-MOEA required an average CPU time of 30 days while the parallel 

algorithm requires only 2 days. The use of parallel algorithm, therefore, leads to a 

considerable improvement in execution time. The speedup that was achieved from the 

ten parallel runs ranges from 10.96 to 17.15 as shown in Fig. 6.11. Speedup refers to the 

ratio of serial algorithm execution time to that of the parallel algorithm to complete a 

single optimization run. On average, the parallel algorithm has achieved a speedup of 

15.  In another word, the average parallel computing time is equal to 1/15 of the serial 

computing time.  

 

 

Figure 6.11 CPU time required to complete a single run using parallel PF-MOEA and 

the speedup achieved from each run for Network 2 
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Also, in Fig. 6.11 the computational time the parallel algorithm required to complete a 

single run ranges from 1.75 to 2.74 days. Overall, the parallel result is encouraging and 

more improvement in computational efficiency can be achieved by implementing the 

algorithm on HPC facilities. Fig 6.12 compares pipe diameters, nodal pressures and pipe 

velocities of the best design of the parallel algorithm (£418,685) with the best design of 

the serial algorithm (£419,514) and the existing network. The best design of the parallel 

run is fully feasible and does not violate the minimum pressure requirement at all nodes 

for all operating conditions. It provides smaller pipe sizes in comparison to the existing 

network. The maximum velocity constraint was violated in 27 pipes; and the average 

velocity violation for the 31-hour operation cycle is 1.2 m/s. 

        

 

(a) Existing and optimised pipe diameters 
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(b) Nodal pressures for all time steps of the extended period simulation 

 

   

(c) Pipe velocities for all time steps of the extended period simulation 

 

Figure 6.12 Network 2: Pipe diameters, nodal pressures and pipe velocities of the 

existing network and optimised designs (serial and parallel runs) 
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6.4.2.3 Performance Assessment of PF-MOEA for Convergence to the Pareto 

Front 

 

In total, 40 optimisation runs were performed for Network 2 as discussed earlier. In the 

previous sections, the PF-MOEA results were analysed statistically. The efficiency of 

the algorithm was assessed in terms of CPU time and number of function evaluations to 

achieve convergence. Also, the progress of PF-MOEA over generations has been 

analysed to understand the algorithm’s behaviour well. In this section, the algorithm’s 

convergence to the set of solutions close to the global Pareto front has been assessed. 

Generational distance that was proposed by Veldhuizen and Lamont (1998) was taken 

into account as a performance measure to quantify the distance between a given set of 

non-dominated solutions and the Pareto front. The generational distance (GD) is 

expressed as follows: 
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where NS = number of non-dominated solutions and di  = is the distance in the objective 

space between the i
th

 non-dominated solution and the nearest solution of the optimal 

Pareto set. A value of GD = 0 indicates that all solutions are placed on the Pareto front. 

Any other value will indicate how far the solutions are from the Pareto front. 

 














=








−= ∑

=

NPkffMind
m

k
m

i

mi ,...,1;)(

2/1
2

1

2)()(                                                               (6.6) 

 
)( i

mf  = value of the m
th objective function for the i

th non-dominated solution; )( k

mf = 

value of the m
th

 objective function for the k
th

 Pareto optimal solution; NP = number of 

solutions in the Pareto front.  
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The approximation to the Pareto front has been found by combining all the non-

dominated solutions obtained from the 40 PF-MOEA runs (24,000 solutions). The final 

set of non-dominated solutions (989 solutions) was then selected as Pareto optimal 

solutions. The coordinates of the solutions in the objective space (i.e. cost and DSR) 

were normalised and have values between 0 and 1. Fig. 6.13 visually illustrates the PF-

MOEA performance by plotting each of the non-dominated fronts of the 40 runs and the 

Pareto front (reference front). The first 20 fronts in Fig. 6.13 were based on population 

size of 200 (Fig. 6.13 (a1-a20)) while the other 20 fronts (Fig. 6.13 (b1-b10): parallel 

and Fig. 6.13 (b11-b20): serial) were based on population size of 1000.  From the plots, 

it can be seen that the non-dominated fronts are close in distance to the Pareto front in 

general. In particular, the non-dominated fronts based on population size of 1000 Fig. 

6.13 (b1-b20) provided smaller distances from the Pareto or reference front. 

  

In addition to the visual inspection, the performance of PF-MOEA for convergence to 

the Pareto front has been evaluated in terms of GD in Fig. 6.13. The Pareto front 

comprises 989 non-dominated solutions (i.e. NP = 989). The number of non-dominated 

solutions in each of the 20 fronts in Fig 6.13 (a1-a20) is 200 (i.e. NS = 200). The 

remaining 20 fronts in Fig. 6.13 (b1-b20) consist of 1000 non-dominated solutions in the 

individual fronts (i.e.  NS = 1000). The minimum, average, median and maximum values 

of GD for the 40 fronts were 0.000049, 0.000487, 0.000469 and 0.001623 respectively. 

It is worth noting here that the maximum GD between any two solutions in Fig. 6.13 

would be 2 . Overall results show that PF-MOEA provided consistently small GDs that 

demonstrate how close the algorithm has come to the Pareto front. Also, uniform 

distribution of solutions along the Pareto front has been obtained.  
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(a1) Run 1                                                       (a2) Run 2 

 

 
(a3) Run 3                                                      (a4) Run 4 

 

 
  (a5) Run 5                                                              (a6) Run 6 

 
                               (a7) Run 7                                                      (a8) Run 8 

 
                                     

         (a9) Run 9                                                       (a10) Run 10 
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        (a11) Run 11                                                  (a12) Run 12 

 
        (a13) Run1 3                                                 (a14) Run 14 

 
        (a15) Run15                                                (a16) Run 16 

 
        (a17) Run 17                                               (a18) Run 18 

 
           (a19) Run 19                                               (a20) Run 20 
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         (b1) Run 21                                                (b2) Run 22 

    
         (b3) Run 23                                                (b4) Run 24 

 

 
        (b5) Run 25                                                (b6) Run 26 

 
        (b7) Run 27                                                (b8) Run 28 

 
        (b9) Run 29                                                (b10) Run 30 
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        (b11) Run 31                                               (b12) Run 32 

 
        (b13) Run 33                                                (b14) Run 34 

           
 (b15) Run 35                                                (b16) Run 36 

 
        (b17) Run 37                                                (b18) Run 38 

 
        (b19) Run 39                                                (b20) Run 40 

 

Figure 6.13 Performance assessment of PF-MOEA for convergence to the Pareto front 
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6.5 Conclusions 

 

This chapter assesses the penalty-free multi-objective evolutionary optimization 

approach for the design optimisation of water distribution systems. The approach uses 

pressure-dependent analysis that accounts for the pressure dependency of the nodal 

flows and obviates the need for penalties to address violations of the nodal pressure 

constraints. Results for two network examples show the algorithm is stable and finds 

optimal and near-optimal solutions reliably and efficiently. The results also suggest that 

the evolutionary sampling efficiency is very high. In other words, the number of 

solutions evolved and analysed on average before finding a near-optimal solution is 

small in comparison to the total number of feasible and infeasible solutions.  Only one 

solution in every 10
33 

solutions for Network 1 and in every 10
245

 solutions for Network 2
 

was assessed.  

 

In total, 705 optimization runs were executed for Network 1 for which there were 352.5 

million hydraulic simulations. Thousands of solutions that are both fully feasible and 

cheaper than the best-known solutions in the literature were found. The cheapest 

solution obtained was 4.96% cheaper than the least cost solution published in literature 

(Kadu et al. 2008). Results for the reduced solution space demonstrated a significant 

reduction in the number of function evaluations needed to find optimal solutions. This 

strongly suggests a need for further research to develop an efficient solution space 

reduction technique that is capable of selecting appropriate candidate pipe sizes 

dynamically. It is encouraging, also, that the algorithm seems reasonably stable with 

respect to the mutation rate. This suggests that fine-tuning of the mutation rate may not 

be essential.  

 

The optimisation algorithm PF-MOEA performed well for the real-life optimisation 

problem (Network 2) that involves multiple supply sources, multiple demand categories 
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and extended period simulations. The algorithm provides a least cost design that satisfies 

the pressure requirements. The least cost design obtained was significantly lower in cost 

compared to the existing design (i.e. 48% reduction approximately). In total 30 million 

extended period simulations of the network were carried out in PF-MOEA (using the 

serial and parallel versions). In all cases, the algorithm performs reliably well. The 

pressure dependent analysis algorithm EPANET-PDX (Siew and Tanyimboh, 2012a) 

that is embedded in PF-MOEA performed reliably well also. 

 

Also, the developed parallel algorithm based on a controller-worker approach has been 

successful. With respect to computational time, the algorithm consistently outperforms 

the serial algorithm significantly. The average speedup achieved was 15 on an eight-core 

workstation. In terms of quality of solution, the performance of the parallel algorithm is 

very satisfactory in which comparable results were obtained in reference to the serial 

algorithm. Overall, the parallel results are encouraging and further studies on other 

parallel implementation approaches (e.g. Island model) can be beneficial to evaluate the 

improvement on the computational performance. 

 

In PF-MOEA, only node pressure constraints were explicitly considered. Given that the 

algorithm is efficient and robust in finding optimal/near optimal solutions, it would be 

beneficial to address other constraints (e.g. maximum and minimum velocities, water 

quality etc.) to widen the algorithm’s application in real world optimisation problem. 
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Chapter 7 

 

Conclusions and Recommendations for Future 

Work 

 

 

7.1 Introduction 

 

Water distribution systems (WDSs) are an invaluable component of urban infrastructure. 

Thus, the systems need to be designed and managed in a cost effective way while 

ensuring that the required performance and regulatory standards are satisfied. In WDSs 

optimisation, simulation models are usually coupled to evolutionary algorithms (EAs) to 

evaluate the hydraulic and water quality performances of solutions to the problem. 

However, EAs by nature are stochastic and generate a large number of infeasible 

designs, which are pressure-deficient. Previous studies on constraint or infeasible 

solutions handling approaches demonstrated the benefits of explicitly maintaining 

infeasible solutions (pressure deficient designs) in full. An accurate network 

performance assessment of infeasible designs is therefore extremely essential in order to 

guide the evolutionary search towards the optimal solution effectively and efficiently. 

Unfortunately, the conventional demand-driven analysis (DDA) method is invalid to 

evaluate the both the hydraulic and water quality performances of WDNs under 

pressure-deficient conditions. When predicting the behaviour of a pressure-deficient 

system, results produced by DDA are highly unreliable and misleading. The 

performance of WDNs can only be assessed accurately by considering demands to be 
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pressure dependent. This method of analysis that is called pressure dependent analysis 

(PDA) measures the performances of pressure-deficient networks more realistically.  

 

Another issue of EAs in WDSs optimisation problem is that the algorithms require huge 

computational time when applied to large optimisation problems such as real-life 

networks with large numbers of pipes and multiple operating conditions. This has 

limited the algorithms’ potential for practical applications to solve real-life WDSs 

optimisation problems. 

 

In an attempt to address the aforementioned issues, the present research has proposed a 

robust PDA model that enhances greatly the computational properties for low-pressure 

conditions. The model has been successfully applied to analyse ranges of normal and 

pressure-deficient operating conditions for extended period simulations. The research 

has thoroughly investigated the water quality performance of WDNs under all pressure 

operating conditions. Also, a parallel multi-objective evolutionary algorithm has been 

proposed to solve computationally intensive WDSs design problems. The focus in this 

chapter is to provide an overall summary and general conclusion of the research carried 

out herein. This is followed by several recommendations for future works.  

 

7.2 Summary of the Present Research 

 

7.2.1 Pressure Dependent Network Analysis Model 

 

A computationally efficient and robust PDA model has been proposed in the current 

research. The model is an enhanced version of the pressure-dependent extension of 

EPANET i.e., EPANET-PDX (Siew and Tanyimboh, 2012a). EPANET-PDX has an 

embedded logistic nodal head-flow function (Tanyimboh and Templeman, 2010) 

coupled with a line search and backtracking procedure. The line search and backtracking 
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is a deterministic approach that optimises the size of the Newton step iteratively to 

ensure both the head loss and flow continuity functions are improved progressively. The 

line search implementation in EPANET-PDX, however, deviates from the classical line 

search implementation in an attempt to exploit the excellent computational properties of 

EPANET 2. The approach intermingles the line search procedure with the global 

gradient algorithm (GGA) and very often the algorithm makes progress using the full 

Newton step size and avoids the line minimisation. An alternative implementation of the 

line search and backtracking procedure for integrating the logistic nodal head-flow 

function into the system of hydraulic equations is proposed in Chapter 4. This has 

increased the robustness of the algorithm by enhancing greatly the computational 

properties for low-pressure conditions and increasing the algorithm’s consistency over a 

wider range of operating conditions. The new implementation has a clear separation 

between the line search procedure and GGA. It provided more scope for the line search 

procedure to change the course of the algorithm.  

 

The proposed PDA model has been demonstrated to be efficient, robust and accurate in 

analysing ranges of normal and pressure-deficient operating conditions. Several 

extended period simulations were executed for a real-life network that comprises 

multiple supply sources and various demand categories. Comparison between results 

generated by the model and EPANET-PDX demonstrated that the two models produce 

exactly the same hydraulic results for both normal and pressure deficient conditions. 

From a numerical perspective, a significant reduction in numbers of iterations to 

complete a simulation has been obtained for all pressure operating conditions using the 

proposed model. Also, a considerable reduction in computational time has been achieved 

for extremely pressure deficient conditions in comparison to EPANET-PDX.  
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7.2.2 Water Quality Modelling of Pressure Deficient Networks 

 

Water quality models are increasingly being routinely used to help ascertain the quality 

of water in drinking WDSs for design and operational management purposes. 

Conventional water quality models are demand driven and consequently do not 

incorporate the effects of any deficiency in pressure on the water quality throughout the 

distribution network. Chapter 5 has addressed water quality modelling of WDSs under 

pressure-deficient conditions. EPANET-PDX has been investigated and discussed with 

particular reference to water quality. The model is thought to have preserved the 

EPANET 2 modelling functionality in full. Thus, EPANET-PDX performs both 

hydraulic and water quality modelling under both normal and low-pressure conditions 

entirely seamlessly. This has been demonstrated in Chapter 5 by carrying out hydraulic 

and water quality analyses for a range of simulated operating conditions including 

normal and subnormal pressure and pipe closures based on two water supply zones in 

the UK and a network in literature. Temporal and spatial variations of water age, 

chlorine and trihalomethane (THM) concentrations were evaluated under various 

hydraulic conditions. Convergence difficulties or failures were not experienced with 

EPANET-PDX for the various cases considered. The accuracy of the model has been 

verified using a hydraulic consistency test (Ackley et al., 2001) for pressure deficient 

conditions, along with EPANET 2 and EPANET-MSX for normal operating conditions.  

 

7.2.3 High Performance  and Parallel Computing for Complex Water  

Distribution Systems Design Optimisation Problems 

 

 

High performance and parallel computing techniques were utilised to solve 

computationally intensive WDSs design problems. In Chapter 6, a controller-worker 

parallel algorithm based on the penalty-free multi-objective evolutionary algorithm 

(Siew and Tanyimboh, 2012b) was proposed. The penalty-free multi-objective 

evolutionary algorithm (PF-MOEA) uses pressure-dependent analysis (EPANET-PDX) 

that accounts for the pressure dependency of the nodal flows and thus avoids the need 
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for penalties to address violations of the nodal pressure constraints. In the proposed 

controller-work parallel algorithm, a single controller processor executes the routine 

operation of the algorithm and employs the worker processors to carry out fitness 

evaluation. 

 

Two network optimisation problems were used in Chapter 6 as case studies where their 

objectives were to obtain the cheapest possible combination of pipe sizes that satisfy all 

the system requirements. Extensive statistical investigation on the performance of PF-

MOEA was conducted using the first network (Kadu et al., 2008). Thousands of 

solutions that are both fully feasible and cheaper than the best-known solutions in the 

literature were found. The second network is a real-life network that involves multiple 

supply sources, multiple demand categories and extended period simulations. The 

network was optimised both sequentially and in parallel. For the sequential computing, a 

high performance computer (HPC) was used to perform multiple serial optimisation runs 

concurrently. The parallel algorithm was applied to execute parallel optimisation runs. 

The effectiveness of the parallel algorithm was evaluated in reference to results from 

sequential computing. The least cost design obtained for the network was significantly 

lower in cost compared to the existing design (i.e. 48% reduction approximately). In 

total 30 million extended period simulations of the network were carried out using the 

serial and parallel versions of PF-MOEA. In all cases, PF-MOEA performed reliably 

well. The pressure dependent analysis algorithm EPANET-PDX that is embedded in PF-

MOEA performed reliably well also. The developed parallel algorithm has been 

successful. With respect to computational time, the algorithm consistently outperforms 

the serial algorithm significantly. The average speedup achieved was 15 on an eight-core 

workstation. In terms of quality of solution, the performance of the parallel algorithm is 

very satisfactory in which comparable results were obtained in reference to the serial 

algorithm.  
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In conclusion, 

 

1. The proposed PDA model has consistently performed well while simulating the full 

range of pressure operating conditions effectively. The new implementation of the 

line search and backtracking procedure has greatly enhanced the computational 

properties for low-flow conditions and increased the algorithm’s consistency over a 

wider range of operating conditions.  

 

2. It has been shown that operating conditions with subnormal pressures, if severe and 

protracted, can lead to spatial and temporal distributions of water age, 

concentrations of chlorine and disinfection by-products that are significantly 

different from operating conditions in which the pressure is satisfactory.  

 

3. The present research has demonstrated that under conditions of low-pressure, the 

conventional demand driven modelling approach can provide misleading results that 

in turn can lead to inappropriate water quality policy decisions. 

 

4. The application of PF-MOEA for the design optimisation of a real-life network and 

a network in literature demonstrated that the algorithm is stable and finds optimal/ 

near-optimal solutions reliably and efficiently. The developed parallel algorithm 

based on a controller-worker approach has been successful. In terms of 

computational time, the algorithm consistently outperforms the serial algorithm 

significantly while providing comparable quality of solutions. 

 

7.3 Scope for Future Work 

 

Various issues related to WDSs modelling and optimisations have been addressed in the 

present research. However, some aspects of the research require further investigations 

and enhancements. This section summarises potential areas for further research.  
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EPANET-PDX has been extensively used in this research to perform water quality 

analyses under normal and low-pressure conditions entirely seamlessly. However, 

EPANET’s water quality model is single-species and does not allow simulation of 

multiple interacting species concurrently. The first order kinetic model depends on the 

concentration of only one reactant. This prevents the model from including other 

potential reactants. Hence, it is essential to improve the model in order to solve real-life 

water quality problems that involve multiple reactive substances. This can be achieved 

by integrating the PDA hydraulic simulator into EPANET-MSX (Shang et al., 2008) 

water quality solver. 

  

The water quality modelling difficulties when low-flow velocities prevail due to 

excessive pressure reduction in WDSs has been illustrated in Chapter 5. Previous 

research indicated that advection-driven models such as EPANET 2 might yield 

inconsistent water quality results if dispersion is significant due to low flow velocities 

(Tzatchkov et al., 2002; Rossman et al., 1994). Low-flow velocities are a common 

occurrence in WDSs. These situations, therefore, require special care and may indicate 

the need for more improvements in the underlying (EPANET 2) water quality model in 

the context of PDA. This includes incorporation of dispersion in the water quality model 

and the collection of field data under conditions of low pressure, low flow rates and low 

velocities. 

 

With respect to WDSs optimisation, PF-MOEA has proven to be efficient and robust in 

finding optimal/near optimal solutions.  However, the algorithm needs to be improved 

further to widen its application in real-world optimisation problem. In its current form, 

the algorithm considers only node pressure constraints explicitly. Other important 

constraints such as maximum and minimum velocities and water quality were not 

addressed. Given that the integrated PDA model (EPANET-PDX) has both hydraulic 

and water quality modelling functionalities, the suggestion of implementing other 

important WDSs constraints seems to be highly feasible.  

 



Chapter 7:  Conclusions and Recommendations for Future Work 

 

188 

 

Research has shown the effectiveness of reducing the size of the search-space on the 

performance of the genetic algorithm. As illustrated in Chapter 6 limiting the number of 

candidate pipe sizes for each link results in a significant reduction in the number of 

function evaluations needed to find optimal solutions. These results are encouraging and 

suggest further research in developing an efficient search-space reduction technique that 

is capable of selecting appropriate candidate pipe sizes dynamically. 

 

The parallel algorithm developed in this research based on the controller-worker 

approach has demonstrated to be computationally very efficient. The results obtained are 

encouraging and further studies on other parallel implementation approaches (e.g Island 

model) are beneficial to evaluate the improvement of the computational performance.  

 

The proposed PDA model in the current research has proven to be efficient and robust as 

detailed in Chapter 4. Given that the model has achieved significant improvement in 

computational performances for extremely pressure-deficient conditions and the 

multiple use of PDA in PF-MOEA, integrating the proposed model into PF-MOEA is 

beneficial. Also, further study is needed to assess the performance of the integrated 

water quality model in the proposed PDA model. 
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Appendix A 

 

Network Data for Case Studies in Chapter 4 

 

A-1 Input Data for Network in Example 2 

 

Table A-1.1  Node data for network in Example 2 

Node Elevation (m) Demand (l/s) 

1 6.1 31.57 

2 15.2 3.15 

3 15.2 12.64 

4 15.2 3.15 

5 24.4 3.15 

6 24.4 37.89 

7 24.4 37.89 

8 24.4 25.25 

9 36.6 3.15 

10 36.6 3.15 

11 36.6 25.25 

12 15.2 3.15 

13 15.2 31.57 

14 15.2 31.57 

15 15.2 3.15 

16 36.6 25.25 

17 36.6 63.14 

18 15.2 31.57 

19 15.2 63.14 

20 6.1 0.00 

21 15.2 0.00 

22 36.6 0.00 
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Table A-1.2  Reservoir data for network in Example 2 

Reservoir Head (m) 

40 3.0488 

 

 

Table A-1.3  Tank data for network in Example 2 

Tank 
Elevation 

(m) 

Initial level 

(m) 

Minimum 

level (m) 

Maximum 

level (m) 

Diameter 

(mm) 

41 65.5 3.0 3.0 10.7 829.3 

42 65.5 3.0 3.0 10.7 829.3 

 

 

Table A-1.4  Pipe data for network in Example 2 

Pipe Length (m) Diameter (mm) Roughness 

1 3658.54 305 120 

2 3658.54 305 70 

3 3658.54 406 70 

4 30.49 762 130 

5 1829.27 254 120 

6 2743.90 254 120 

7 2743.90 305 70 

8 1829.27 254 120 

9 1829.27 254 120 

11 3658.54 203 120 

12 1829.27 254 120 

17 3658.54 203 120 

18 1829.27 254 120 

19 1829.27 203 120 

20 1829.27 203 120 
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21 1829.27 203 120 

22 1829.27 203 120 

23 1829.27 254 120 

24 1829.27 203 120 

26 1829.27 254 120 

27 1829.27 203 70 

28 1829.27 305 70 

29 1829.27 305 70 

30 1829.27 254 70 

31 1829.27 305 70 

32 1829.27 254 70 

33 30.49 305 120 

34 1829.27 254 70 

35 1829.27 254 70 

36 1829.27 203 120 

37 1829.27 305 70 

38 1829.27 254 70 

39 1829.27 203 120 

40 30.49 305 120 

41 1829.27 254 70 

142 0.30 305 120 

143 0.30 305 120 

10 1829.27 305 130 

13 1829.27 305 130 

14 1829.27 305 130 

15 1829.27 305 130 

16 1829.27 305 130 

25 2743.90 305 130 
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Fig A-1.1 Demand factor for network in Example 2 
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Appendix B 

 

Additional Network Data and Results for Case 

Studies in Chapter 5 

 

B-1 Network 2 
 
 

  
(a) R1                                                                           (b) R2 

 
(c) R3                                                             (d) R4 

 
 
                          (e) R5 

 

Figure B-1.1 (a)-(e) Variable-head supply nodes R1-R5 
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(a)                        (b)  

Figure B-1.2 Water age consistency check for normal pressure using EPANET 2 and 

EPANET-PDX: (a) Node 1; (b) Node 2 

 

  

(a)       (b)  

Figure B-1.3 Water age consistency check for normal pressure using EPANET-MSX 

and EPANET-PDX: (a) Node 1; (b) Node 2 

 

  

(a)                                                                    (b) 

Figure B-1.4 Hydraulic feasibility check for normal pressure: (a) nodal heads; (b) 

pipe flows 
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(a)                                                             (b) 

Figure B-1.5 Hydraulic feasibility check for supply node heads 90 m-155 m (a) nodal 

heads; (b) pipe flows 

 

B-2 Network 3 
 

 

Figure B-2.1 Supply node R1 
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(b)  

Figure B-2.2 Pipe closure effects on water age: (a) Node 3; (b) Node 4 
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Appendix C 

 

Network Data and Results for Case Studies in 

Chapter 6 

 
C-1 Network 1 
 
 

Table C-1.1 Pipe and node data for Network 1 

Pipe details   Node details 

Pipe Length (m) 
 

Node 

Minimum 

required nodal 

head (m) 

Demand 

(m3/min) 

1 300 1 100 _ 

2 820 2 95 _ 

3 940 3 85 18.4 

4 730 4 85 4.5 

5 1620 5 85 6.5 

6 600 6 85 4.2 

7 800 7 82 3.1 

8 1400 8 82 6.2 

9 1175 9 85 8.5 

10 750 10 85 11.5 

11 210 11 85 8.2 

12 700 12 85 13.6 

13 310 13 82 14.8 

14 500 14 82 10.6 

15 1960 15 85 10.5 

16 900 16 82 9 

17 850 17 82 6.8 

18 650 18 85 3.4 

19 760 19 82 4.6 
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20 1100 20 82 10.6 

21 660 21 82 12.6 

22 1170 22 80 5.4 

23 980 23 82 2 

24 670 24 80 4.5 

25 1080 25 80 3.5 

26 750 26 80 2.2 

27 900 

28 650 

29 1540 

30 730 

31 1170 

32 1650 

33 1320 

34 3250         

 

 

Table C-1.2 Commercial pipe sizes and unit costs for Network 1 

Pipe diameter (mm) Unit cost (rupees) 

150 1,115 

200 1,600 

250 2,154 

300 2,780 

350 3,475 

400 4,255 

450 5,172 

500 6,092 

600 8,189 

700 10,670 

750 11,874 

800 13,261 

900 16,151 

1000 19,395 
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Table C-1.3 Pipe candidate diameters for reduced search space for Network 1 

Pipe Candidate diameters (mm)* 

 

1 

 
800, 900, 1000, 1000, 1000 

2 750, 800, 900, 1000, 1000 

3 300, 350, 400, 450, 500 

4 150, 200, 250, 300, 350 

5 150, 150, 150, 200, 250 

6 150, 150, 200, 250, 300 

7 700, 750, 800, 900, 1000 

8 150, 150, 150, 200, 250 

9 450, 500, 600, 700, 750 

10 500, 600, 700, 750, 800 

11 750, 800, 900, 1000, 1000 

12 500, 600, 700, 750, 800 

13 400, 450, 500, 600, 700 

14 350, 400, 450, 500, 600 

15 150, 150, 150, 200, 250 

16 400, 450, 500, 600, 700 

17 250, 300, 350, 400, 450 

18 250, 300, 350, 400, 450 

19 350, 400, 450, 500, 600 

20 150, 150, 150, 200, 250 

21 450, 500, 600, 700, 750 
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22 150, 150, 150, 200, 250 

23 150, 150, 150, 200, 250 

24 250, 300, 350, 400, 450 

25 400, 450, 500, 600, 700 

26 150, 200, 250, 300, 350 

27 150, 200, 250, 300, 350 

28 150, 200, 250, 300, 350 

29 150, 150, 150, 200, 250 

30 250, 300, 350, 400, 450 

31 150, 150, 150, 200, 250 

32 150, 150, 150, 200, 250 

33 150, 150, 150, 200, 250 

34 150, 150, 200, 250, 300 

*
Candidate diameters used by Kadu et al. (2008) for reduced search space 
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C-2 Network 2  
 

 

 

(a) Node elevation 

 

(b) Base demand  

 

(c)  Pipe diameter  
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(d) Pipe roughness 

  

 

(e) Pipe length 

Figure C-2.1 Pipe and node data for Network 2 

 

 

       Table C-2.1 Supply nodes data for Network 2 

Supply nodes Head (m) 

 

R1 

 

130.33 

 

R2 129.94 

R3 129.85 

R4 129.88 

R5 130.32 
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        Table C-2.2 Commercial pipe sizes and unit costs for Network 2 

Pipe diameter (mm) Unit cost (£) 

32 33.73 

50 37.99 

75 44.77 

100 52.86 

150 73.54 

200 102.15 

250 142.12 

300 197.74 

350 275.11 

400 382.64 

  

 

 

 

Figure C-2.2 Pareto optimal fronts for Network 2 (population = 200) 
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Figure C-2.3 Pareto optimal fronts for Network 2 (population = 1000) 

 

 

Figure C- 2.4 Progress of optimisation runs for Network 2 (population = 200) 
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Figure C- 2.5 Progress of optimisation runs for Network 2 (population = 1000) 
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