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Abstract
Science

Department of Physics

Doctor of Philosophy

Dynamical models for novel diffraction techniques in SEM

by Elena PASCAL

The scanning electron microscope is a powerful nanocharacterisation tool for a
variety of materials including semiconductors and metals. Less known for its diffrac-
tion abilities than its transmission counterpart, scanning electron microscopy (SEM)
can be used in a number of diffraction modalities to provide information on crystal
imperfections at the nanoscale level. This comes with the added benefit of SEM re-
quiring minimal sample preparation. Models for diffraction in the SEM are still being
developed and improved, hence in this work I explore the physics and implementa-
tions of such models. I focus on the two main branches of SEM diffraction techniques:
incident beam channelling, or diffraction in, powerful when it comes to resolving in-
dividual dislocations close to the surface; and back(/forward)scattering diffraction,
or diffraction out, which provides a variety of information about grain distribution,
orientation and strain. Both of these diffraction modalities involve the same physical
processes, so it makes sense to use the same models, namely dynamical scattering in
the column approximation. I use the two beam Bloch waves approach for electron
channelling contrast imaging (ECCI) of threading dislocations (TDs) normal to the
surface in wurtzite group-III nitride materials. I also introduce and use the notion
of ECC-strain to study crystal features and to predict the behaviour of TDs contrast.
For the electron back(/forward)scatter modality, I show the first application of the
new energy-weighted dynamical scattering capabilities of EMsoft to study the novel
transmission mode (TKD) of the SEM.
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1 Introduction

1.1 The big picture

Without microscopy, there is no modern science.
End of story.

Dr. Alan Finkel, opening the 19th

International Microscopy Congress [Aus]

Alan went on to point out that a simple Google search of the word scientist returns
two activities: people pouring coloured solutions into beakers and people looking
down microscopes. Since Google recently improved the diversity of said people, the
results make up a decent overview of the position microscopy has in science overall.
The truth value of his statement can be quantified not only by the engagement it
received on Twitter late last year, but also by the plethora of examples that back this
claim.

Every high resolution image of bugs, cells, viruses you ever wondered at? Mi-
croscopy. Forensic science? Microscopy. Environmental scientists monitoring parti-
cles in air, water or soil? Microscopy. Identification of bacteria in food along its entire
life cycle? Microscopy [Mic]. Weather scientists understanding the complicated be-
haviour of snow? Microscopy [LHH96].

And it doesn’t stop at science. The art history world had been stuck for a while
with four almost identical copies of a 16th century painting of “Christ Driving the
Traders from the Temple” in various galleries around Europe [Cul19]. Three too many
for unambiguously declaring one as the original. In 2009 an interdisciplinary research
project was established with the purpose of applying, you guessed it, microscopy to
characterise the pigments used, how they were ground and then how were applied
to the wood. They use a combination of polarised microscopy to look at the pigments
and stereomicroscopy to analyse the brushwork [Her12]. Unfortunately, they found
that the copy in Glasgow, signed Hieronymus Bosch, appears to have been painted
eighty years after his death.
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Then, there is the world of nanotechnology including, at one end of the spectrum,
the manufacturing of smaller and smaller devices and, at the other, the engineering
at smaller and smaller scale of materials. No matter what quality control entails for
a specific sub-field the task is the same: to characterise these materials. For instance,
group-III nitrides are a type of very promising and exciting semiconductors, used in
lights emitting diodes (LEDs) among others. In these materials dislocations reduce
the luminescence output. Of course we want to improve the bang for our buck. The
obvious way to understand and overcome the defect impact is, if you’ve been pay-
ing attention so far, by doing some microscopy. We will cover the details of this in
Chapter 4.

But, just like there will likely not be one single cure for cancer, microscopy, this
“cure” for many of our scientific problems, is in truth an umbrella term for quite a
wide range of physical phenomena. From light polarisation to scattering and diffrac-
tion, all these different behaviours need then to be well understood if we are to apply
them to probe nature. In the age of fast computers it becomes a no-brainer that we
can afford to create numerically demanding models in order to increase the accuracy
of our predictions.

The two main results chapters of this thesis are focused on developing models for
two different characterisation techniques in the scanning electron microscope (SEM)
based on diffraction. Chapter 4 will talk about electron channelling contrast imaging
(ECCI) and Chapter 5 about transmission Kikuchi diffraction (TKD). I call both of
these microscopy techniques novel, partly because they are relatively young (we will
see in the respective chapters how that is something more of a stretch for ECCI), but
more importantly because the physical mechanism behind these imaging techniques
is not yet well understood. My definition of well understood involves having access to
a model that predicts quantitatively the experiments, matching intensity values for
all pixels and all conditions. We are probably at least a few PhDs away from that.

A question useful to look at when using ECCI is: What does the dislocation contrast
tell us? Like many things in science the answer is “it’s complicated”. In Chapter 4 I try
to unpack that and talk about the two main contributions: on one hand the electron
beam–sample geometry and on the other the type of dislocation. Clearly this is an
excellent problem to tackle with a model since one (me) can easily change a number
of parameters and see how the results are affected. It turns out that tilting the sample,
a tactic quite standard in the world of ECCI, increases the strain observed by the
incident electrons for the specific type of dislocations common in group-III nitrides
and, as a result, the contrast in the image and our chances to observe the defect.

Now, the relationship between dislocation type and how the contrast looks in the
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ECCI, has become along the years a sort of holy grail of the field. A small one but
a sacred one nevertheless. If this relationship would be undeniably established one
could characterise dislocations in the SEM. This would be cheaper, faster with less
work, with fewer doubts about sample integrity and better statistics for defect den-
sities than the standard method used at the moment (TEM). Almost too good to be
true. Perhaps, but it does look great on grants.

Like all good problems, answering it involves isolating a cause and effect from
a number of possible causes; in this case the dislocation type and the (possibly un-
known) diffraction condition will both affect the contrast features of the dislocation.
Since there are no suggestions on how one would separate these effects with a back-
wards engineering approach, we are left with comparing against a number of possible
features predicted by a forward model. I did not solve this problem, but I did make
a dent in it. In this thesis, I proposed that the modelled strain profile of the limited
number of possible dislocations in these materials will predict the observed contrast.
Armed with this theory I went on to predict what affects the contrast more: the type
of dislocation or the diffraction condition.

Talking of holy grails in the field of scanning electron microscopy, another inter-
esting question is which backscattered electrons contribute to electron backscattered
diffraction patterns. There are generally two schools of thought here: either a very
narrow subset of electrons are allowed to diffract on the way out [Win+07], or all elec-
trons are given a nonzero chance to do so [CDG13]. It might not sound so, but the dif-
ference becomes quite substantial especially when very small changes in the Kikuchi
bands are being used as a method of strain characterisation. In Chapter 5 I show the
predictions of EMsoft, an implemented model based on the second approach, where
Monte Carlo models are used to estimate the statistical effect of electron scattering.

There are a number of electron diffraction modalities in the SEM, and each has
its relative strengths and weaknesses. Transmission Kikuchi patterns, also known
as transmission electron backscattering diffraction (t-EBSD) (to emphasise that the
physics is similar for these transmitted diffracted electrons as it is for the more con-
ventional backscattered ones) is a new addition to these modalities and the topic of
Chapter 5. The interest in this novel technique is fuelled by the promise of high spatial
resolution due to its geometry which allows for a smaller interaction volume.

Unlike the first type of models which ignore the backscattered electron source dis-
tribution, with our approach we can study the physics of these sources. We also show
that the escape position actually changes with the thickness of the sample. Addi-
tionally, we can predict the energy and angular distribution of the electrons on the
detector. All of these important details about the image ought to be well understood
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if characterisation techniques reliant on small changes in images are to be developed.
Which seems to be a trend not going away any time soon.

If you want to have a look at any of the code used in this thesis, you should; it’s
all on GitHub (https://github.com/elena-pascal/). One thing I am pleased about is
that I employed coordinate reference frames as objects, using a nifty SciPy library in
Python [JOP+01], to make sense of them. Easy to read as well. Super important when
you have about five of them to track during one computation. How does your local
commercial software track reference frames? You probably don’t know and that is a
problem. In the best case scenario there is documentation, or even an actual paper
about it. But can anyone be sure the implementation matches the documentation if
no one but the vendor has access to the code? I vote no. I return to this in Section 6.1.
For now let us come back to microscopy.

1.2 Diffraction and the SEM

The Venn diagram of electron diffraction and scanning electron microscopy (SEM),
shown here in Fig. 1.1, is showing a very small overlap. Diffraction in general, and
particularly that of electrons, which we will discuss in more details in Chapter 3 from
page 54, is a mature and well understood subject. So is the now ubiquitous materials
investigation tool that is the SEM, which we will briefly cover on page 6.

The group of people engaged in studying both these fields is a very select one. The
techniques based on electrons diffraction in the SEM either do not have a dedicated
conference such as the channelling family; this includes electron channelling patterns
(ECPs) and electron channelling contrast imaging (ECCI) – which we will explore
in Chapter 4 from page 93–, or do have dedicated conferences; this is the case for
the backscattered/fore-scattered diffraction family which includes electron backscat-
tered diffraction (EBSD) and, more recently, transmission Kikuchi diffraction (TKD),
which will be described in Chapter 5 from page 130, but are dominated by material
scientists interested more in understanding the materials rather than the physics of
the characterisation technique.

Some of these techniques are more novel than the others, but all of them carry
mysteries about aspects of the underlying physical processes. These unanswered
questions are enticing not only from the aspect of fundamental physics, but also as a
promise of more information that could be derived from these measurements. Build-
ing and implementing models that accurately predict these behaviours is, therefore,
an important aspect of the field.

https://github.com/elena-pascal/
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FIGURE 1.1: Venn diagram showing how many Google scholar re-
sults contain the keywords: diffraction (yellow), electron diffraction
(orange) and SEM (blue). The small overlap summarises the topics ad-
dressed in this Thesis. The area of the circles is proportional to the

number of search results.

In Chapter 4 I talk about ECCI, a SEM diffraction method well suited for the char-
acterisation of threading dislocations (TDs) in nitrates. Then, in Chapter 5 I talk about
TKD, a SEM diffraction technique optimised for the study of truly nano-crystalline
materials.

1.2.1 Diffraction

Starting with page 54, I will spend the entire chapter 3 on the powerful characterisa-
tion technique that is diffraction. There are only handful more elegant ideas out there
than the power of observing the reciprocal space of an ordered arrangement of atoms,
taking us very quickly to the conundrum of why is maths such a good description of
reality. But let us not digress.

The geometry of diffraction is beautifully simple in the form of Bragg’s law. Per-
haps less intuitive is the fact that Braggs law being satisfied is not a guarantee of
non-zero diffracted intensity. This behaviour is going to depend not only on the crys-
tal system as Bragg law does, but instead it is going to be a map of the space group
symmetry of the material under investigation.

It is important to understand the basic diffraction behaviour in a material system
before trying to derive information from a diffraction based technique applied to that
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material system. I will show, in Chapter 3, theoretical predictions for electron diffrac-
tion relating parameters, such as scattering and structure factor, for a few group-III
nitride materials: AlN, GaN and InN.

While all particles diffract in the same way, electrons interact more strongly with
matter and simplifications that can be done in the more established case of X-ray
diffraction predictions are not acceptable when it comes to electrons. In the rest of
that Chapter 3 I will review the dynamical model of electron diffraction and show
how it incorporates the diffraction parameters mentioned above.

Because we cannot talk about diffraction without some solid knowledge of crystal-
lography, I cover extensively the basics of crystallography and crystallographic com-
putations in Chapter 2. Since diffraction is the map of the crystal symmetry I examine
in Appendix C on page 167 the full P63mc symmetry of the wurtzite system.

1.2.2 The scanning electron microscope

The phenomena described in the previous section occur at a scale too small to be mea-
sured by the naked eye. Luckily, development of science had brought us two main
extensions to the range of scales we can study. On one hand, the telescope brings very
distant objects closer and is optimised to collect as much light as possible and, on the
other, the microscope makes very close objects appear many times larger. Interest-
ingly, both these aids can be traced back to a 17th century event: the development
of glass lenses used in spectacles. Fundamentally, both these visual extensions are
governed by the same optics laws.

While modern light microscopes can commonly1 showcase a magnification of
about 2000×, their spatial resolution is limited by the wavelength of visible light,
which is of the order of hundreds of nanometers, through Abbe’s equation. One way
around it is to use different imaging particles, for instance, X-rays or electrons which
have significantly smaller wavelengths (see Table 3.1 for wavelength comparison be-
tween X-ray photons and electrons).

We will explore further the electron microscope, excellent detailed descriptions
of which can be found in ref. [HSC72] and ref. [Rei98]. There are various ways of
generating an electron beam. For instance, in our (FEI now Thermo Fisher) SEM,
a field enhanced thermionic emission Schottky gun is used to generate a beam of
electrons. This beam is then focused through a series of condenser lenses onto the
surface of a sample such that the beam spot size on the sample can go down to 1 nm

1 Developments in super resolution optical microscopy show that certain applications can overcome
Abbe’s limit.
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in diameter in practice. After the beam is focused on the sample, scanning coils are
used to deflect the beam on a set of orthogonal directions in a predefined manner.

Depending on the geometry of imaging2 we can loosely classify electron microscopy
into transmission electron microscopy (TEM) on one hand, where the image is formed
by electrons which have travelled through a very thin sample, and scanning electron
microscopy (SEM), where the imaging electrons come from the same, top surface of
the sample with which the incident beam interacts3. Both of them have advantages
and disadvantages. The TEM geometry minimises the lateral spread of the electron-
sample interaction volume providing therefore higher spatial resolution, but it also
limits its field of view. Additionally, thinning the sample to the sizes required by this
geometry can be cumbersome, time consuming and irremediably damaging to the
sample. There is also the additional question the microscopist must answer, whether
the features observed are intrinsic to the sample or were introduced during the pol-
ishing process. On the other hand, for non-biological materials, the SEM requires
minimal sample preparation since the thickness of the sample does not limit its capa-
bilities. The downside, as we will see, is that the SEM is not optimised for diffraction
contrast in the same way the TEM is.

Since electrons interact strongly with matter they can generate a plethora of sig-
nals for one to measure in the SEM using the right, specialised detector:

• Most commonly, low-energy (<50 eV) secondary electrons (SE) are ejected by
those atoms with which the primary beam electrons have inelastically scattered.
With such low energies these electron cannot come from very deep in the sam-
ple, which means the interaction volume is narrow enough to provide a tool
for high resolution surface imaging. These electrons are collected by attract-
ing them to an electrically biased grid and then further accelerated towards a
phosphor screen or scintillator, in what is know as a Everhart-Thornley detec-
tor [ET60].

• In addition to secondary electrons, excited atoms will also emit a variety of elec-
tromagnetic radiation such as characteristic X-rays which can provide informa-
tion on the distribution of different elements in the sample as long as the SEM
is equipped with wavelength dispersive X-ray spectrometers (WDS) or energy-
dispersive X-ray spectroscopy (EDS).

2 But also electron beam energy and sample preparation procedure.
3 Advances in both worlds make this distinction imperfect. There is an exception to the rule above,

in the form of transmission SEM. To make things even harder to classify there is also scanning TEM.
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• As the atoms relax back to their ground state after the encounter with the high
energy electrons, they can generate light which can provide useful optical infor-
mation in a technique known as cathodoluminescence (CL) [EM11].

• The primary beam electrons will also escape the sample, after having a range of
energies through inelastic scattering. This implies, that, at some point in their
trajectory, the incident electrons suffered a large angle elastic scattering event
such that they turn back to the surface of entry. All the incident electrons that
suffer an elastic scattering event and manage to escape through the entry sur-
face are collectively known as backscattered electrons (BSE) and can be detected by
a scintillator or a solid state detector. Since heavier atoms will elastically scatter
electrons more strongly, BSEs can be used to detect contrast due different chem-
ical compositions. Additionally, if the detector is not collecting a symmetric
radial distribution of BSEs, then the image will also contain strong topographic
contrast (for instance, think shadowing).

FIGURE 1.2: Schematic energy spectrum of secondary and backscat-
tered electrons in an SEM [after [BE12]].

• Figure 1.2 shows the energy distribution of electrons reaching the BSE detector
for an incident beam of energy E. Superimposed on the BSE energy curve are
a few other signals but we will only talk here about the elastic peak as it it at
the core of this work. A subset of BSEs will lose almost no energy before reach-
ing the detector, either because they have been backscattered by the top layer of
the sample, or, more likely, because they underwent diffraction, a case in which
inelastic scattering processes are reduced (see the discussion on channelling on
page 95). We will call these the elastically BSEs. This signal can provide informa-
tion on the crystallographic orientation of a small region of the sample or about
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small changes in local strain. More on this in Chapter 4 and Chapter 5. One
could use energy sensitive detectors to select only this signal [Ves+15].

We will be concerned in this Thesis only with elastically scattered BSEs (in Chap-
ter 5 we will also talk about forward scattered electrons (FSE)). The sample geometry
optimised for this signal is shown below in Fig. 1.3. The sample is tilted with respect
to the incident beam and the detector is positioned such that it can collect the solid
angle of the backscattered electrons that provides the highest intensity. We call this
geometry forward-scattering.

The method of operation of the SEM is
shown Figure 1.3. A collimated beam of
electrons is focused on the surface of a
tilted sample. The beam is then scanned
in a raster manner over the area of interest
on the sample. The detector collects one
pixel worth of BSEs intensity at a time. The
beam is moved by the deflector coil to the
next position on the sample defined by the
step size. The resulting image is made up
of the ordered collected pixels, and, at the
end of the scan, has as many pixels as steps
used in scanning.

FIGURE 1.3: SEM schematics in
forward-scattering geometry.

The tilt of the sample in the forward-scattered geometry in the SEM ensures that
enough electrons reach the detector. It also makes the geometry of diffraction very
different from that in the TEM. The sample’s z-direction in the SEM is not the same as
the beam direction which is the case for the TEM sample geometry. This means that
if we are to use the diffraction models developed for TEM, they must be generalised
for the sample tilt. More about this in the next chapter.

References [HSC72; Rei98] discuss the electron optics and we will not delve into
here. We will however mention that the tilt of the sample affects the “squareness” of
the scanned area. The trapezoidal area being scanned will produce a distorted image,
which can be corrected to some degree using the tilt correction function (see page
50 in ref. [CG84] for tilt correction artefacts). The tilt can also change the shape of
the beam on the sample which not only affects the imaging but also the diffraction
interaction volume.

Let us briefly address relativistic corrections and the correction factor, γ, for elec-
trons used in electron microscopy. The de Broglie equation for the relativistic electron
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wavelength, λ, in Å, can be approximated in terms of the accelerating voltage V given
in keV (equation 2.4 in [GH88]) as4:

λ ≈
√

150
V + 10−6 V2 (1.1)

where the second term in the denominator is due to Lorentz factor and only becomes
important for voltages greater than 20 keV as we can see in Table 1.1. For SEM appli-
cations discussed in this work we will focus on 20 keV incident electrons, and discard,
quite acceptably, relativistic effects.

TABLE 1.1: Corrected and uncorrected electron wavelengths for volt-
ages used in electron microscopy.

Voltage [keV] Lorentz factor γ
Wavelength λ [Å]

Uncorrected Corrected

20 1.04 0.086 0.086
100 1.20 0.039 0.037
1000 2.93 0.012 0.009

1.3 ECCI and the characterisation of TDs in nitrides

Over the past thirty years there has been no shortage of interest in electronic and
light emitting devices based on semiconductors and, as a result, their impact on mod-
ern technologies has become notable. Brighter, more efficient and more reliable light
sources have been developed. Specifically, the group III-nitride material systems and
their alloys have been intensely studied due to a number of promising properties.
We have witnessed an ever increasing span of emerging applications: from ultravio-
let light water purification and hydrogen production, to high power electronics and
novel optical communication systems [Kne+10]. The bottleneck of developing the
next generation devices remains the material science of improving even further the
efficiency for these devices.

The large difference in covalent bondings of the elements in these systems trans-
lates to greatly varying physical properties, including different lattice parameters and
energy band gaps. The latter means that nitride alloy systems can offer a wide range

4Note that this is the result of an empirical fit and the dimensions of the parameters have not been
taken into account. Changing the voltage units must be done with caution.
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of direct energy-band gaps, i.e., high intensity luminescence at a wide range of wave-
lengths (e.g. the band gap of InAlGaN systems ranges from infra-red to the ultraviolet
region). In addition, their structural stability at high temperatures and good thermal
conductivity make them ideal candidates for the fabrication of high power transis-
tors. GaN is a binary system belonging to this material group and together with its
cousins, InN and AlN, and their ternary and quaternary alloys are one of the semicon-
ductors on top5 of material scientists minds, due to their many applications in optical
and electrical devices.

Nevertheless, unlike Si and Ge, the group III-nitrides epitaxial growth is chal-
lenging due to the lack of a suitably lattice matched material. The lattice mismatch
can be significant and the usual compromise between cost and growth impairment is
sapphire (Al2O3), which at room temperature and along the r-plane has a lattice mis-
match of ∼ 1.1% even on a coincident lattice [Amb98] with GaN grown in the [0 0 0 1]
direction. The epitaxial layers will be further strained during the cooling down stage,
such that, at the end of the growth process, a thick layer can relax through the forma-
tion of dislocations along the interface of lattice mismatched materials.

An interface misfit dislocation introduces a discontinuous strain in the crystalline
lattice, and the way to resolve the discontinuity is through the generation of thread-
ing dislocations (TDs) which run from the layer interface through the crystal up to its
surface. Dislocations and line defects of crystalline solids can strongly affect the prop-
erties of the material and the performance of the devices we would like to use these
materials for.

Surprisingly, the blue emitting devices based on III-nitrides are able to function
even in the presence of TD densities of the order of 1011cm−2, due to carrier local-
isation effects [Gra+05]. However, for a great number of devices, TDs prove to be
problematic as they tend to be associated with impaired optical and electrical per-
formances. For example, TDs correlate with increased leakage currents in green and
blue light emitting diodes (LEDs) [Fer+07] and overall reduction in efficiency in near-
UV LEDs [Kam+02]. Moreover, TDs can be blamed for reducing the lifespan of laser
diodes as well as decreasing the electron mobility in high electron mobility transis-
tors [Bou+05]. TDs can cause premature junction breakdowns as well as inhibiting
high current gains in GaN based UV avalanche photodiodes [Lim+06]. They are also
connected to the current collapse in GaN field-effect transistors [DSB06] and the gen-
eral degradation in performance of high power GaN based devices. Therefore, the
need to study the origin, development and impact of TDs becomes apparent if we are
to optimise growth methods aimed at reducing the TDs density.

5After the big ones like Si and Ge and the more established systems of arsenides and phosphides
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FIGURE 1.4: Transversal TEM
imagea of an AlGaN on sap-
phire showing threading disloca-

tions reaching an interface.

aTaken at the Kelvin Nanocharacterisation
Center, University of Glasgow. By permission
of David Thomson, University of Strathclyde

FIGURE 1.5: Plan view ECCIa of a
[0 0 0 1] GaN on sapphire showing
black-white contrast around thread-

ing dislocations.

aBy permission of Allehiani Nouf Mohammad,
University of Strathclyde

Electron diffraction is one mechanism that is sensitive to the presence of strain
due to dislocations in the crystal, facilitating therefore dislocation imaging. Trans-
mission electron microscopy (TEM) has established itself as the default technique for
the study of lattice deformations and for identifying defect types. We will talk more
about dislocations in the next section but for now it is useful to know that two ex-
treme [0 0 0 1] threading dislocation characters can be distinguished: pure screw type
(or c-type) where the Burgers vector (b) is aligned along the c-axis and pure edge dis-
location (or a-type) when the Burgers vector is confined to the (0001) basal plane. If
neither of these conditions is strictly met, the dislocation is called mixed, or a+c type.

TEM is especially reliable as a dislocation characterisation method as it can un-
ambiguously identify the c and a components of a dislocation line running parallel to
the imaged surface. This is achieved through the application of certain relationships
between the diffraction vector g, Burgers vector b and the direction of the dislocation
line ul (g · b = 0 and g · b× ul = 0), known as the invisibility criteria, for which no
contrast associated with c or a components can be observed. This method has been
applied broadly in the study and characterisation of dislocations in cross sectional
GaN samples (e.g. [Hin+00]). For TDs which penetrate the sample surface normally
(or almost normally) high resolution TEM (HRTEM) can provide direct observation
of the Burgers vector direction of a type TDs. However, as the images are usually
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acquired in plan view, the c components are invisible. The destructive TEM sam-
ple preparation and its limited field of view can also restrict the number of defects
that can be observed and hence may impact the statistical limits on estimating defect
densities, particularly for materials with lower numbers of dislocations.

There are characterisation methods which do not share TEM’s requirements for
sample preparation. These include atomic force microscopy (AFM), which can offer
information on TDs associated with surface pits [Cra+02] (often after an etching or
decoration treatment) or when terminating step edges. However, AFM can be sensi-
tive to surface debris and may require extended periods of time to image even rela-
tively small areas [KB97]. Alternatively, for larger area measurements, X-ray diffrac-
tion (XRD) [Hei+00] or cathodoluminescence [Ros+97] can provide information on
the global material defect densities but can have serious limitations in terms of re-
solving individual dislocations, especially XRD.

An alternative to the above methods is the use of the electron channelling contrast
imaging (ECCI) technique which can be employed within generally available field
emission scanning electron microscopes (FE-SEMs). This approach can image defects
with resolution of a few nanometers with a micrometer scale field of view, and is
neither destructive nor based on direct sample contact. However, in order to obtain
the maximum amount of information from these images, a thorough understanding
of the contrast mechanisms is required.

Trager-Cowan et al. [TC+07] showed that using ECCI in the characterisation of
nitrides is an excellent idea. ECCI has been used in the forescatter geometry to re-
veal extended defects and morphological features of GaN samples while also deliver-
ing information about crystallographic orientation [Pic+07]. The electron channelling
contrast images obtained in the SEM can provide structural information on dislo-
cations interacting with the sample surface, particularly when obtained in highly
diffracting channelling conditions [NK+12]. This information is shown in the form
of variation in the electron backscattered contrast intensity around a dislocation – or
dark-bright signal contrast on the micrograph. Because it can resolve individual dis-
locations while imaging larger areas (e.g. Nouf-Allehiani et al. [NA+rt] for material
with TDs having a mean separation of≈ 200 nm), ECCI is an ideal candidate for both
precise and accurate number estimates for a wide range of TD densities (106 cm−2 –
1010 cm−2 ).
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1.3.1 Modelling of diffraction-in

In this work I continue on the path of analysing the ECCI as a TD characterisation
technique. In Chapter 4 I look at the theoretical models that could be applied to
predict the TD contrast in ECC images of [0 0 0 1] grown GaN. It was clear that the
contrast predictions methods used for TEM will be inappropriate when considering
contrast in bulk samples. If a TD dislocation in a thin TEM sample will introduce two
opposite, and cancelling in effect, surface relaxations on the top and bottom surface,
a beam in ECCI will only image the top surface and therefore be far more sensitive
to the top surface relaxation. A model for ECCI contrast should therefore take into
account the surface relaxation, to begin with. The questions I followed were What can
a suitable model predict about the behaviour of the TD contrast? and What can we then learn
from this predicted behaviour?.

Since diffraction conditions in the SEM are more challenging to pinpoint then in
the TEM, I wanted to remove this hard to determine variable from the predictions and
look, qualitatively, at the behaviour of a property that causes the contrast in the first
place: the strain flavoured parameter that quantifies the correction to the deviation
parameter β due to the dislocation. I give it the name of ECC-strain.

By looking at isosurfaces of this newly minted ECC-strain for different types of
dislocations in different conditions, I can make a few observations regarding the ef-
fect of geometry, the effect of dislocation type and the effect of diffraction condition on
the imaged contrast. For instance, I predict that the contrast profile will depend firstly
on the type of dislocation and its geometry and only secondly on the diffraction con-
dition. These predictions could then be turned into recipes for contrast optimisation
on one hand and dislocation characterisation on the other.

1.4 TKD and the study of truly nanostructured materials

Kikuchi patterns are another representation of the diffracting behaviour of electrons
in the form of a variation in the angular distribution of escaping electrons undergoing
diffraction, as we will see on page 133. We have already established that real materials
are not perfect crystals. Dislocations are not the only imperfections that can dictate
the properties of a carefully engineered material. The material structure can show
features sometimes even at the nano scale level, in the form of crystal grains with
more or less different crystal orientations from their neighbouring grains – what we
call polycrystals.
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The investigation and characterisation of the micro structure of new materials is
a core aspect of materials science in particular but also fundamental science in gen-
eral. Kikuchi diffraction became a widespread SEM technique, in the form of electron
backscattered diffraction (EBSD), able to provide quantitative microstructural infor-
mation about most inorganic crystalline materials. The history of Kikuchi diffraction
patterns is almost ninety years old as we have seen on page 57, and the most applied
version of it is in the form of EBSD.

However, recently, stimulated by the increased attention to nanostructured ma-
terials, which promise new and enhanced properties when compared to their larger
scale counterparts, the interest in improving the resolution of established character-
isation techniques has also expanded. The use of forward-scattered electrons (FSEs)
through a thin sample as diffraction signal collected from the bottom of the foil has
been shown to improve the lateral spatial resolution to below 10 nm [KG12; Tri12a];
this technique is commonly known as transmission Kikuchi diffraction (TKD) or trans-
mission EBSD (t-EBSD).

1.4.1 Modelling of diffraction-out

The work described in Chapter 5 was the outcome of a collaboration with Prof. Marc
De Graef’s group from Carnegie Mellon University. The CMU group developed a
vast, open-source software called EMsoft [DGG13] aimed at modelling a variety of
diffraction techniques in the SEM including EBSD.

The aim of our particular project was to add a TKD modality implementation in
EMsoft. Since EMsoft comes with energy filtering abilities we showed that it pro-
vides more accurate indexing of patterns than the commercially available software
can achieve. But, more importantly, being an open software, it also give us large data-
set of information from which we can learn about the physics of electron scattering.

In the resulting published paper [Pas+18b] we compare the energy distributions
of the different diffraction modalities of the SEM: ECP, EBSD and TKD. While Kikuchi
like lines in ECPs are the result of electrons with a energies very close to the incident
energy diffracting, in EBSD the relatively large interaction volume causes a spread of
electron energies which in turn contributes to a blurring of the lines. On the other
hand, for TKD we can predict that, in a sense, the sample thickness acts as an en-
ergy filtering mechanism. For samples thinner than the EBSD interaction volume the
model predicts an increase in resolution of the Kikuchi bands which is observed ex-
perimentally.
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2 Background and Basics

I often made the mistake to start talking about diffraction assuming the audience
knows exactly what I mean. I’d like to rectify that here and introduce the concept and
physics of diffraction in the SEM. I wrote this chapter as an introduction to theory the
first year PhD me would have liked to have read, assuming the wisdom of today.

In this introductory chapter I will first lay out some key crystallography concepts
such as the Bravais lattice (page 20), indices notations (page 24) and the reciprocal
space (page 26). All these concepts will be illustrated by examples using the hexago-
nal lattice. In this way I can cover some basic physics concepts, introduce language
and notations commonly used in this field but also evidence where some of the com-
putations used in the later chapters come from.

Since we will make use of quantum mechanical notions such as the wavefunction
I’ll briefly lay out on page 30 what is meant by it in this document. Similarly, another
useful concept used in diffraction, that of plane waves is outlines on page 32. I will
remind the reader, on page 32, the condition for elastic coherent scattering along a set
of crystal lattice planes or, more concisely, Bragg’s law.

Next, starting with page 35, I will painstakingly go through the core algebra used
in crystallography, both in the real and reciprocal space, covering notions such as the
metric tensor and structure matrix. I will give examples from the hexagonal lattice to
highlight the implications of these computations.

We cannot make a single dent in diffraction without a working knowledge of sym-
metry in crystallography, which is why I will take a few pages to explore crystal sym-
metry and point group analysis in Appendix C. Here I also will limit the examples to
the wurtzite system to keep it relevant. On page 47, I go over the defining symmetry
operation of wurtzite space group derived in this Appendix. These operations are
defining the relative positions of the atoms in the unit cell and will be used in next
chapter for computations of electron scattering factors.
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2.1 Primer

But first things first. We need to define terms and notions that we’ve both seen be-
fore but maybe are not quite as within reach as they ought to be in order to com-
fortably embark on this journey. Better accounts of the basics covered here can be
found in many textbooks [Hir+65; WC96; Rei98]. The following is only my attempt
inspired in large parts by Structure of materials: an introduction to crystallography, diffrac-
tion and symmetry [DGM12] and Introduction to Conventional Transmission Electron Mi-
croscopy [DG03].

2.1.1 Crystal structure

At the atomic level many solids can be described as periodic and rigid arrangements
of atoms. It is this periodicity that, as we will see, gives rise to diffraction phenomena
which in turn allow us to observe and study very small features in solids. The peri-
odic arrangements of atoms or molecules also constitutes the loose definition of a crystal
structure.

The rigorous definition involves the mathematical construct of crystal lattice which
characterises its translational symmetry. Figure 2.1 (b) shows an example of a lattice
in 2D space (technically known as a net). Every point is identical to any other point.
When the lattice is populated uniformly by the same fixed structure, or motif, we
generate the periodic arrangement we mentioned previously. We show in Fig. 2.1 (a)
a 4× 4 square motif which, when applied to every point in the 2D lattice, generates
the tessellation or regular structure in Fig. 2.1 (c)1. If the motif is a unit cell made up
of atoms or molecules then we can talk about making up a crystal structure.

2.1.2 Debye-Waller correction factor

When we say that a crystal is a rigid structure, we mean that over time the average
positions of the atoms/molecules does not change. However, even at room tempera-
ture, the atoms exhibit thermal motion, small oscillations around their average “real
values”. While this motion does not affect the crystal structure description (i.e., we
can ignore small thermal effects when describing the crystal structure), it must be
taken into account when the the diffraction measurement is to be interpreted.

1If you want to give 2D tessellation design a play here is a fun website:
http://gwydir.demon.co.uk/jo/tess/tess.htm.

http://gwydir.demon.co.uk/jo/tess/tess.htm
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FIGURE 2.1: A periodic structure (c) showing copies of a 2D motif (a)
at every lattice point on a 2D lattice. The translation vector tuv moves

the lattice to a position indistinguishable from the original one.

Due to these small vibrations, the electron cloud will spread over a larger space
than a frozen atom would, which will reduce the electron density, and, for our pur-
pose, will reduce or dampen the electron-electron scattering process. An adequate
approximation when accounting for atomic thermal vibration is the Debye-Waller
(DW) factor B(T). If we assume the scattering probability for a certain set of planes
is f0 when the lattice is frozen in place, i.e., at 0 K, then we can use the DW factor to
correct the scattering probability fT at temperature T:

fT = f0e−B(T)s2
, with s =

sin θB

λ
(2.1)

where s is half of the inverse of interplanar distance dhkl . We will see in the next
chapter that f is commonly known as the scattering factor and how we can calculate
its value. From dimensional analysis we can see that B is proportional to the mean
square displacement of the atom in the direction normal to the Bragg plane. We can
also read from this equation that the intensity of the diffracted beam is reduced by
a factor e−B(T)s2

with respect to the intensity of the same beam interacting with the
sample at 0 K.

A good approximation, and the one we will use here, is to assume that for close-
packed structures the atomic vibration amplitude is isotropic, such that we only re-
quire one DW parameter for each element in the crystal structure. This is not a
generally valid assumption, however, first principles phonon density calculations for
wurtzite-type III-V semiconductors by Schowalter et al. [Sch+09a] showed that these
materials have only small anisotropies of their Debye-Waller factors.
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TABLE 2.1: Debye-Waller fitting parameters for cubic elemental crys-
tals from [GP99] and the calculated DW values at 300K.

Element a0(Å
2
) a1(Å

2
K−1) a2(Å

2
K−2) a3(Å

2
K−3) a4(Å

2
K−4) ME(%) B(Å

2
)

Al 0.19 0.16e−2 0.25e−5 −0.26e−8 0.10e−11 1.31 0.83
Ga 0.11 0.40e−3 0.66e−5 −0.18e−7 0.19e−10 0.05 0.49
In 0.08 0.77e−2 0.48e−5 −0.12e−7 0.11e−11 0.08 0.43

Gao and Peng [GP99] used a fourth degree polynomial regression fit to determine
the temperature dependent DW factor for elemental cubic crystals from experimental
data. These fit parameters (ai) are shown in Table 2.1 for the metal elements Al, Ga
and In together with their estimated maximum error (ME) values. The form of the
polynomial fit function is shown below:

B(T) = a0 + a1T + a2T2 + a3T3 + a4T4

where the temperature is measured in Kelvin and B has units of Å
2
.

We must note here that the assumption of isotropic vibrations is made for atoms
in cubic elemental crystal. For non-cubic system we will depart from this approxima-
tion significantly. Not only this, but the measured Debye-Waller factors for defective
materials will be different from that of perfect crystals since defects also scatter elec-
trons. For this reason and the fact that first principles calculations can only be trusted
if they predict experimental values, it is always a good rule to use experimental values
wherever possible.

This being said, the literature on DW factors for nitrogen is limited and we must
turn to theoretical predictions. Schowalter et al. [Sch+09a] calculated these values for
a number of wurtzite structures. We show below, in Table 2.2, the values predicted
for the DW factor of N in AlN, GaN and InN2.

The Debye-Waller factor of an element, B(el.), is related to the electron static cor-
relation function, 〈uα(el.)〉, which is the average displacement of an atom of el. in the
direction α by:

B(el.) =
8π2

3
(
2
〈
u2

11(el.)
〉
+
〈
u2

33(el.)
〉)

.

2 We will see later, that since N scatters electrons significantly less then the heavier metallic elements
in the system, its DW factors will not carry great importance. However, we did include the computations
here for completeness.
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TABLE 2.2: Static correction functions for N in wurtzite materials from
DFT LDA calculations [Sch+09a] at 300K and the predicted DW factor.

N in Material
〈
u2

11(N)
〉
(Å

2
)
〈
u2

33(N)
〉
(Å

2
) B(Å

2
)

AlN 0.0036 0.0034 0.28
GaN 0.0039 0.0037 0.29
InN 0.0065 0.0062 0.51

The computations that generated the values in the tables in this section can be
conveniently found in the Jupyter Notebook titled Debye-Waller.ipynb.

2.1.3 hP Bravais lattice and the hexagonal crystal system

There are as many lattices as there are possible regular arrangements of lattice points
and there are as many possible arrangements as variety of crystal forms observed in
nature. In the example above we placed the motifs such that its four corners coincide
with four lattice points. In this case the motif maps exactly to one lattice point. In
3D space, we would have had the option to map a 3D motif on one, two or tree
lattice points, defining lattices known as primitive (P), either body-centred (I) or base-
centred (C), and face-centred (F), respectively. It is also easy to see that a motif with
a very different shape will need a different arrangement of lattice points in order
to cover the entire space neatly with no gaps or overlaps. We need, therefore, to
unambiguously define both the lattice arrangement and the motif that define a crystal
structure.

A specific arrangement of lattice points displays a unique translational symmetry
which, in turn, can be characterised by a set of basis vectors usually denoted a, b, c for
a 3D lattice. Fig. 2.1 (b) shows the two basis vectors a, b of the 2D lattice we used. We
can think of them as having their origin in one of the corners of the motif structure
and running along its edges. Together with the angle between them, the basis vectors
can be used to define both the shape of the motif and lattice it can tessellate. We
commonly define a unique 3D lattice by its lattice parameters {a, b, c, α, β, γ} where
a, b, c are the lengths of the vectors a, b, c, α is the angle between b and c, β is the angle
between a and c and γ is the angle between a and b, respectively.

The volume described by the lattice parameters is known as the unit cell of the
lattice. While, for any given lattice, we can always find a primitive unit cell, whose
volume contains only one lattice point, in practice working with a high symmetry
cell which reflects the point group symmetry of the crystal structure is preferred. We
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will talk more about point and translation symmetry as applied to crystallographic
symmetry in Appendix C on page 167.

We can now also identify the position of any point on the lattice with the help
of the basis vectors. Let us introduce the translation vector, defined as the distance
between any two points on the lattice. We can write it as tuv = ua + vb in 2D (shown
in Fig. 2.1 (b)), and tuvw = ua + vb + wc in 3D, where u, v, w are integers. Every
point on an infinite lattice is equivalent to any other point, such that if one would
be to move the structure by tuv while we weren’t looking, we would not be able to
tell anything had changed when we looked back. This means that all lattice points
are identical and we can choose any of them as the origin. Such that, the position of
any lattice point is an integer linear combination of basis vectors independent on the
chosen origin.

If the lattice parameter values are chosen
with no restriction, the resulting lattice has
low symmetry. Conversely, let us select a
2D lattice with the two basis vectors equal
in length, |a1| = |a2| = a3, and the an-
gle γ between them of 120◦, as shown in
Fig. 2.2. It is easy to notice that rotating
this lattice by 60◦ around a lattice point
picked as origin would produce the same
lattice. Another way of saying this is that
the lattice is invariant under a 2π/6 rota-
tion and by definition hexagonal. Notably,
we could have chosen γ to be 60◦ and we
would have ended up with the exact same
lattice.

FIGURE 2.2: Hexagonal 2D lattice
with basis vectors {a1, a2, c}. The lat-
tice parameters can be chosen to be

{a, a, 2π/3} or {a, a, π/3}.

For every lattice with unique symmetry to be decorated with atoms, we talk about
a specific crystal system. We’ve seen that the hexagonal 2D crystal system can be de-
scribed in at least two ways. Similarly, we can construct a 2π/6 rotation invariant lat-
tice in 3D by selecting the following special values for the lattice parameters: |a| = |b|,
α = β = 90◦ and γ = 120◦ as shown in Fig. 2.3 (a). Here all we did was to add a c
axis normal to the 2D hexagonal lattice and set it as the rotation axis. This is easy to

3 A note about notation consistency. The general basis vectors of a lattice are {a, b, c}. Whenever two
or more vectors have the same magnitude we use the same letter and employ indices to differentiate
between them such that the hexagonal lattice basis vectors are {a1, a2, c}.
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see when comparing the 2D and 3D hexagonal crystal system.
We defined our unit cell as having the edges at lattice points but we did not yet

specified which lattice points. It is convenient to opt for a unit cell that is simple and
describes the point symmetry of the underlying lattice. It is also useful to work with
a small volume and, in practice, the smallest cell that reflects the full symmetry of the
system is used. When the unit cell is small enough such that it only contains one full
lattice point, i.e., primitive cell, it is denoted by P as we have done in the choice of
hexagonal unit cell shown in Fig. 2.3 (b) where h stands for hexagonal. Otherwise,
the choice of unit cell is somewhat arbitrary, so much so that the Wigner-Seitz cell,
which is centred on a lattice point and defined as the region of space closer to that
lattice point than any other one, does not have edges aligned with lattice points.

FIGURE 2.3: 3D hexagonal crystal system with lattice parameters {a, a,
c, 90◦, 90◦, 120◦} (a) and the 3D hexagonal primitive lattice (b).

The same crystal system can be populated with lattice points in different manners
such that it ends up describing different lattices. However, the number of choices of
unique lattice points arrangements is limited to 5 for 2D lattices and 14 for 3D lattices.
These unique lattice generators are known as Bravais. The cubic crystal system (c),
for instance, can be populated by a different number of lattice points: one to form the
primitive cubic Bravais lattice (cP), two in the body centred lattice (cI) 4 or three for
the face centred one (cF). The hexagonal Bravais lattice (h) comes only in one type:
primitive (hP), as shown in Fig. 2.3 (b).

We can also write out now, from geometry, the volume of a primitive hexagonal
lattice Ωhex which will become useful later:

Ωhex = a2 sin 60◦c (2.2)

4 The label I comes from the German word for body centred Innenzentriert. See ref. [DW+85] for more
information on lattice labels nomenclature.



Chapter 2. Background and Basics 23

With the notion of a hexagonal crystal system and its cell parameters well laid
out, in the following section we will look at how we commonly label a certain plane
or direction in this system.

2.1.4 Lattice planes and directions in the hexagonal system

There are in fact two ways we can refer to a given plane or direction in a hexagonal
crystal. The usual, or Miller notation which applies to all the crystal systems, or the
hexagonal symmetry friendly Miller-Bravais indexing method. The first is defined by
three indices while the latter by four. For planes indexing, going from the four index
notation to the three index one means dropping the redundant third index. However,
for directions notations things are slightly more involved.

Miller indices

Miller wrote and taught extensively about a way to label crystal planes in terms of
their intercepts with the crystal reference axes. It was because of this and his choice
of h, k, l letters that the indexing method now bears his name: Miller indexing. The
method is beautiful in its simplicity: find the intercept with the three basis vectors,
invert the intercepts, and last but not least reduce to smallest relative primes. One can
also obtain all the equivalent planes belonging to the same family by even permuta-
tions of the indices h, k, l. For the hexagonal system the (h k l) indices correspond to
the {a1, a2, c} basis vectors.

For directions, usually labelled [u v w], the process is simpler; find the coordinates
in the crystal frame of the vector pointing in that direction and reduce them to small-
est relative primes. It is this latter step which prompts us to raise an important obser-
vation. The Miller notation for direction does not carry vector length information and
should not be used for finding length information. This might sound obvious, yet the
temptation to understand direction [u v w] as vector tuvw is significant. The difference
between the two becomes more apparent in the hexagonal system.

While the Miller indices notation is tremendously helpful when looking at families
of planes in a cubic system, its powers become limited when tackling lower crystal
symmetry. For instance in a system with lower than cubic symmetry, the family of
planes for a given (h k l) plane is no longer made up of all possible permutations of
the Miller indices h, k and l.
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Miller-Bravais indices

The hexagonal system indexing is a very different story. Usually treated as a special
case in itself, the hexagonal system can keep the permutation equivalence property
of Miller indexes as long as an extra, redundant basis vector is added. The new set of
basis vectors, {A1, A2, A3, C}, introduces 4-dimensional type vectors [Fra65] in what
is called Miller-Bravais indexing [Nic66]. This notation replaces the rhombic prism
primitive unit cell with a hexagonal one made up of three primitive hexagonal Bravais
lattices (hP), as seen in Fig. 2.4. We show here the three-vectors basis set together with
the four-vector one.

Three of the Miller-Bravais basis vectors are the Miller basis vectors: A1 = a1,
A2 = a2 and C = c. The extra basis vector is co-planar with the first two and, there-
fore, linearly dependent on them:

A3 = −(a1 + a2) = −(A1 + A2). (2.3)

A vector p in this system is defined as p = p1A1 + p2A2 + p′A3 + p3 C. When coor-
dinates {p1, p2, p3, p′} are integers, p becomes the translation vector t which shows a
common direction in the crystal system. If we take this a step further and reduce the
coordinates to relative primes then we obtain the reduced vector tuvtw where indices
u, v, t, w form the Miller-Bravais notation.

FIGURE 2.4: Hexagonal prism
unit cell and the Miller-Bravais

basis vectors {A1, A2, A3, C}.

FIGURE 2.5: Directions belong-
ing to the 〈2 1 1 0〉 family. The
yellow line shows the formation

of the vector t[1 1 2 0].

Directions in the four-index notations are of the form uA1 + vA2 + tA3 + w C and
written as [u v t w], where u, v, t, w ∈ Z and are relative primes. Comparing this ex-
pression to the same direction written with the three Miller basis vectors, Ua + Vb +

Wc, yields the following true relations:
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U = 2u + v, V = 2v + u, W = w, (2.4)

and also

t = −(u + v).

Because the first three basis vectors are not linearly independent, writing out their
Miller-Bravais indices is somewhat awkward as seen in Fig. 2.5. The three co-planar
vectors ensure that any given direction will have at least two non-zero components,
and the Ai basis vectors themselves have three non-zero components. While the
Miller direction vectors corresponding to the basis vectors directions have the same
lengths as the basis vectors themselves, this is not the case in the Miller-Bravais no-
tation, see vector t[1 1 2 0]. Nevertheless, we can find families of directions through the
usual permutations which would not be possible using the Miller notation as we can
see from Table 2.3.

TABLE 2.3: Some common directions in hexagonal system given in
Miller and Miller-Bravais notation.

Family Miller-Bravais Miller

〈2 1 1 0〉

[2 1 1 0] [1 0 0]
[1 1 2 0] [1 1 0]
[1 2 1 0] [0 1 0]
[2 1 1 0] [1 0 0]

Family Miller-Bravais Miller

(cont...)

〈2 1 1 0〉 [1 1 2 0] [1 1 0]
[1 2 1 0] [0 1 0]

〈0 0 0 1〉 [0 0 0 1] [0 0 1]

A plane description in the new basis set will be of the form (h k i l) where i can be
found from i = −(h + k) and, bearing no unique information, can be omitted from
the notation: (h k . l). A family of planes is then given by the permutations of the first
three Miller-Bravais indices including their negative values:

{h k i l} = {(h k i l), (i h k l), (k i h l) (h k i l), (i h k l), (k i h l)}.

Table 2.4 shows a list of commonly used families of planes in a hexagonal system.
A graphical representation of these planes is shown in Fig. 2.6. The Miller indices are
counter-intuitive in this system and often the Miller-Bravais notation is preferred. We
also mention the polarity of each family of planes but we will postpone the explana-
tion of polarity for the point group discussion on page 178.
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TABLE 2.4: Common planes in hexagonal system given in Miller and
Miller-Bravais notation.

Family Miller-Bravais Miller

m-plane
(non-polar)

(1 1 0 0) (1 1 0)
(0 1 1 0) (0 1 0)
(1 0 1 0) (1 0 0)
(1 1 0 0) (1 1 0)
(0 1 1 0) (0 1 0)
(1 0 1 0) (1 0 0)

a-plane
(non-polar)

(1 1 2 0) (1 1 0)
(1 2 1 0) (1 2 0)
(2 1 1 0) (2 1 0)
(1 1 2 0) (1 1 0)

Family Miller-Bravais Miller

(cont...)
a-plane
(non-polar)

(1 2 1 0) (1 2 0)
(2 1 1 0) (2 1 0)

r-plane
(semi-polar)

(1 1 0 2) (1 1 2)
(0 1 1 2) (0 1 2)
(1 0 1 2) (1 0 2)
(1 1 0 2) (1 1 2)
(0 1 1 2) (0 1 2)
(1 0 1 2) (1 0 2)

c-plane (polar) (0 0 0 1) (0 0 1)

FIGURE 2.6: Common planes in hexagonal crystal structures.

We can also expand the zone axis definition, which tells us what (h k l) planes be-
long to direction or zone, [u v w], given in Miller indices as hu + kv + lw = 0 to the
Miller-Bravais notation:

hu + kv + it + lw = 0 (2.5)

2.1.5 The reciprocal space

We have all the Bravais lattice basis set mathematical framework of dealing with vec-
torial quantities in a crystal frame and yet we had to introduce Miller and Miller-
Bravais indices which don’t really fit in this vector space. This leads us to why crystal-
lographers like to employ a very different vector space to ease computations, namely
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the reciprocal space. So then, any vectorial quantities in a crystal (i.e., position, direc-
tion, strain) can be defined in real space in terms of the basis vectors of its Bravais
lattice, {a, b, c}, or, conversely, in the reciprocal space in terms of a new set of basis
vectors defined such that the components of a direction vector are the Miller indices,
(h k l), of the plane normal to that vector, {a∗, b∗, c∗}. To be on the safe side we usually
denote vectors defined in the reciprocal space with g and the translation vector in
reciprocal space by ghkl :

ghkl = ha∗ + kb∗ + lc∗ , (2.6)

where it must be true that: a∗ =
b× c

Ω
, b∗ =

c× a
Ω

, c∗ =
a× b

Ω
. (2.7)

with Ω being the volume of the unit cell, Ω = a · (b × c). Note, that both the dot
and the cross products here must be generalised to non-Cartesian crystal frames and
I show how to do that in next section, Section 2.2 on page 35.

A few observations can be made straight away at this point:

• From dimensional analysis we can tell that the length of a reciprocal space vec-
tor, |g|, will be measured in units of < length−1 >.

• The reciprocal lattice parameters are going to be {a∗, b∗, c∗, α, β, γ} with the same
angle definition as before.

• The dot product of a real space basis vector with its reciprocal space basis vector
will yield zeros except for: a · a∗ = b · b∗ = c · c∗ = 1 or:

ai · a∗j = δij (2.8)

A less intuitive observation on this different perspective of the crystal space leads
to some upside-down-world-like properties. If we consider a distance vector with
components known in relation to a real space basis set, and want to transform it to
another real space basis with basis vectors smaller in magnitude, in order to keep the
magnitude of the vector we must increase its components values. This property of
some vector to counter-vary the change in basis with an inverse change in their com-
ponents we call contravariance. If for the same vector which tells a distance in real
space, we do the same exercise in reciprocal space, we find that that a decrease of
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the basis set gives smaller vector components. This vector behaviour is called covari-
ance. The fact that the same vector can have opposite properties in these two different
vector spaces tells us that the spaces themselves are reciprocal to each other.

You’re welcome reader, you’re now almost a crystallographer. The missing bit of
information for being a full-fledged one is the Bragg diffraction condition which will
be discussed on page 32. It is because the Bragg’s diffraction condition depends on the
lattice plane orientation with respect to the incident beam and the distance between
the set of planes under scrutiny, that having an easy way of find the normal to a plane
(h k l) in the reciprocal space vector ghkl becomes valuable in crystallography. Not
least due to the vector ghkl property of having its length equal to the inverse of the
distance between the set of planes {h k l}:

dhkl =
1
|ghkl |

. (2.9)

The reciprocal hexagonal lattice

I will have to just state for now the form of reciprocal basis vectors for the hexagonal
lattice. We will suspend the disbelief until page 41 of Crystallographic Computations
sections, where I show how one could get the general form of the cross product. Let
us then assume that we can find the reciprocal lattice vectors {a∗1, a∗2, c∗} to be in terms
of the real space hexagonal lattice basis set, {a1, a2, c} to be:

a∗1 =
4

3a2 a1 +
2

3a2 a2, a∗2 =
2

3a2 a1 +
4

3a2 a2, c∗ =
1
c2 c. (2.10)

Where the reciprocal hexagonal lattice translational vector is, from Eq. 2.6:

hexghkl = ha∗1 + ka∗2 + lc∗. (2.11)

Another noteworthy property of the reciprocal space is that the reciprocal crystal
lattice must also be one of the 14 Bravais lattices. We have already seen in the dis-
cussion of Fig. 2.2 that the hexagonal lattice can be mapped by two lattice parameters
sets. It turns out that the reciprocal hexagonal lattice has the same symmetry as the
real space hexagonal lattice mapped by the other set of lattice parameters. Fig. 2.7 (a)
shows the reciprocal 2D lattice with parameters {a∗, a∗, 60◦} which is comparable to
Fig. 2.2. The 3D reciprocal hexagonal system is the same hexagonal prism as in the real
space with the lattice parameters {a∗, a∗, c∗, 60◦, 90◦, 90◦} as can be seen in Fig. 2.7 (b).
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FIGURE 2.7: Reciprocal 2D hexagonal lattice with basis vectors {a∗1 , a∗2}
and lattice parameters {a∗, a∗, 60◦} (a) and the 3D reciprocal hexago-
nal crystal system with lattice parameters {a∗, a∗, c∗, 60◦, 90◦, 90◦} over-

imposed on the real space one while keeping the same origin (b).

The first two vectors in both the real and reciprocal hexagonal system basis sets,
{a1, a2} and {a∗1, a∗2}, respectively, do not align with each other as Fig. 2.7 indicates and
Fig. 2.8 emphasises. This is the case for the 3-index notation. When the fourth index is
added to form the reciprocal basis set {A∗1, A∗2, A∗3, C∗} defining a lattice with param-
eters {A∗, A∗, A∗, C∗, 120◦, 120◦, 120◦, 90◦, 90◦, 90◦ } things get even more confusing.
While the Miller-Bravais real and reciprocal co-planar hexagonal basis vectors, {Ai}
and {A∗i }, are parallel to each other, the two reciprocal basis sets, {a∗i } and {A∗i }, are
not. Figure 2.8 should make that somewhat more clear.

The four reciprocal basis vectors can be
found in terms of the four real space basis
vector to be:

A∗1 =
2

3a2 a1, A∗2 =
2

3a2 a2

A∗3 =
2

3a2 a3, C∗ =
1
c2 c. (2.12)

Where the four index reciprocal space
translation vector is:

hexghkil = hA∗1 + kA∗2 + iA∗3 + lC∗ = hexghkl .

FIGURE 2.8: Relationship
between real and reciprocal
space hexagonal system basis

sets.

The crystallographer must always be extra careful if using both notations. The two
reciprocal basis vectors notations are not even describing exactly the same lattice. A
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closer inspection of Eq. 2.10 and Eq. 2.12, tells us that the four-index reciprocal lattice
is three times more dense than the three-index reciprocal one. Nevertheless, all the
discussion about Miller-Bravais index notation still hold, i.e., Eq. 2.3 is still valid, and
the reciprocal space properties, including Eq. 2.8, still apply.

We will explore, in more depth, crystallographic computations in the hexagonal
system, both in the real and the reciprocal space in Section 2.2 on page 35.

2.1.6 Wavefunctions and physical observables

In the language of quantum mechanics, physical quantities are described via oper-
ators. The allowed values of the physical quantities are then eigenvalues of these
operators. One must find the eigenfunctions of the corresponding operator in order
to compute the value of a certain physical observable (i.e., one must solve the equation
f̂ |Ψ〉 = f |Ψ〉).

For a free particle the momentum operator is p̂ = ih̄∇ where h̄ is the reduced
Planck’s constant (h̄ = h/2π). The eigenvalues p and eigenfunctions |Ψ〉 of the mo-
mentum operator are defined by the equation:

−ih̄∇ |Ψ〉 = p |Ψ〉 .

Which has solutions of the form:

Ψ(r) = Ce
i
h̄ p·r,

where C is a normalisation constant. We can now use Louis de Broglie’s relationship
to relate momentum p of a particle to a wavelength λ: λ = h/p. If the wave number
k is introduced, k = 1/λ, then we can write in vector form p = hk.5 Using this we
can rewrite the wave function of a particle as a linear superposition of momentum
eigenfunctions:

Ψ(r) = ∑
k

ψke2πik·r, (2.13)

where the C has been absorbed into the coefficients ψk.
We will see in the next chapter that this expansion of the wave function in terms

of plane waves makes the foundation of electron diffraction modelling.

5 It is a consequence of the de Broglie formula that the momentum space is equivalent to the recipro-
cal space, apart from a scaling factor h.
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2.1.7 Plane waves

Let us explore further the equation 2.13 above where k is the wave vector denoting
the direction of travel of the wave and r is the position vector a point P (see Fig. 2.9).
Applying dimensional analysis for the exponent, one can show that, if the position
vector r has components {r1, r2, r3} with respect to the real space basis vectors {a, b, c}:

r = r1a + r2b + r3c,

then the components of the wave vector k must be given with respect to the reciprocal
basis vectors and, therefore, k must be a reciprocal space vector:

k = k1a∗ + k2b∗ + k3c∗.

We will use this opportunity to quickly introduce a useful shorthand notation
that allows crystallographers to be economic with their symbols. For this we have to
slightly adjust the basis vector notation 6:

r = r1a1 + r2a2 + r3a3 =
3

∑
i=1

riai ≡ riai

Since most of crystallography happens in 3D space we will always assume that the
sum goes from i = 1 to i = 3 even when the limits are not written and the sum
symbol, ∑ , is dropped altogether. This is known as the Einstein summation convention
and its rule is that summation is implied over every pair of subscripts which appears
on the same side of the equation. Using the Einstein summation convention the dot
product k · r can be written as:

k · r = (kia∗i ) · (riai) = kirjδij = kiri,

where we made use of the definition of the reciprocal lattice: ai · a∗ j = δij.

6 Another note on basis vector notation. Unfortunately, the letter a is overused in crystallography
and can bear different meanings. Here we are using ai to denote one component from a generic basis set
in which all vectors are labelled with the same symbol but different subscripts. Real space basis in this
notation is {ai, i ∈ (1, 2, 3)} and reciprocal space basis vectors are {a∗ i, i ∈ (1, 2, 3)}.
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If we now ask the question of where in the real
space is the wave going to have constant phase we
can easily spot the required condition to be:

k · r = k1r1 + k2r2 + k3r3 = const.,

∀ r = r1a1 + r2a2 + r3a3

Which looks a lot like the equation of a plane:

k(r− r0) = 0

where r0 is the position vector of the origin of
the wave vector k as shown in the figure to the
right. The distance between consecutive planes
with same phase will be given by λ = 1/|k|.

FIGURE 2.9: Schematic
drawing of plane waves
and the vectors consid-

ered in this section.

We can then say that the totality of points with the same phase form an infinite
plane in the real space. Another way to say this is that the particle wave will exhibit
in the real space planar surfaces of same phase, oriented normal to the travelling
direction k̂. Hence the name of plane waves which we will use from now on to refer to
expressions of the form:

e2πik·r (2.14)

2.1.8 Bragg’s law in real space

Consider the drawing in Fig. 2.10. A plane
wave of wavelength λ and wave vector
k is incident with incidence angle θ on a
set of parallel plane with Miller indices
(h k l). The planes are partially transpar-
ent and partially reflective, such that the
reflected beam together with the incident
one and the normal vector to the planes
are co-planar. We ask the question: “What
is the condition that two reflected plane waves
(1) and (2) will be in phase?”.

FIGURE 2.10: Geometrical repre-
sentation of Bragg’s equation in
real space. The path difference
of the reflected plane wave (2)
with respect to (1) is shown in

orange.
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The answer is straightforward. The path difference between waves (1) and (2),
shown in orange, must equal an integer number of wavelengths [BB13]:

2dhkl sin θ = nλ.

Do note that Fig. 2.10 is a planar section of the diffraction geometry. The diffracted
beam k′ will travel in a direction contained by a conical surface of opening angle
π/2− θ centred around the plane normal. For every plane (h k l) in a crystal there
will be a conical surface of diffracted beams, with parameters determined by the inter-
planar spacing dhkl and the radiation wavelength λ.

In common practice we will only consider first order diffraction; instead of talk-
ing about n order diffraction from planes (h k l) we will talk about first order diffrac-
tion from planes (nk nh nl). The reader will recall that the planes with Miller indices
(nk nh nl) are parallel to the planes (k h l) but with an inter-planar spacing given by
dnh nk nl = dhkl/n. The version of Bragg law used in diffraction is then:

2dhkl sin θB = λ. (2.15)

The angle θ for which constructive interference occurs is known as Bragg angle,
θB. Table 2.5 shows the Bragg angles for 20 keV electrons diffracting from common
wurtzite crystal planes (shown in Fig. 2.9). Recall that the formula for inter-planar
spacing in hexagonal unit cells is given in Eq. 2.30.

TABLE 2.5: Bragg angles for the most common planes in wurtzite ma-
terials for 20 keV incident electrons.

planes (hkl) dhkl
AlNθB

GaNθB
InNθB

m-plane (100)
√

3a/2 2.74◦ 2.67◦ 2.42◦

c-plane (001) c 0.49◦ 0.47◦ 0.43◦

a-plane (110) a/2 1.58◦ 1.54◦ 1.39◦

Note that while the Bragg equation describes the geometric condition for diffrac-
tion as constructive interference to occur, it does not, however, provide any infor-
mation on the intensity (if any) of the diffracted beam. The real space form of this
equation is only useful in determining the Bragg angles for a given wavelength and
crystal structure as we have done here. More useful is the study of the direction of
the diffracted beam for a given crystal structure which requires the expression of some
reference frame. In order to tackle this problem, it is common to express the Bragg
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equation to the reciprocal reference frame and introduce the Ewald sphere, as we will
do in the next section.

2.1.9 Fourier analysis

We have introduced the notions of crystal lattice and talked about its translational
invariance under a translation vector t = ue1 + ve2 +we3 where u, v, w are constants.
We have also introduced the reciprocal space and that of plane waves. What is left
is to tie everything together through the introduction of Fourier transform which in
turn will lead us to the mathematical formulation of diffraction.

Considering the wave function description of a particle as a superposition of mo-
mentum eigenfunctions described by vector k, we now want to ask the question:
“What is the relative contribution of a specific wave vector to the total function Ψ(r)?”. This
is a very similar question to “What is the contribution of the basis vector e1 to a given vec-
tor t = ue1 + ve2 + we3?”. We know the answer to that to be u; easily derived from
the dot product t · e1. Similarly, we can use the dot product for continuous functions
of the plane wave form Φ = e2πik·r and Φ′ = e2πik′·r. In the bra-ket notation this is
defined as:

〈
e2πik·r

∣∣∣e2πik′·r
〉
=
∫∫∫

e2πi(k′−k)·rdr = δ(k′ − k)

where the integral is over all 3D space. The delta function form underlines the fact
that Φ and Φ′ are orthogonal functions whenever k′ 6= k leading to the scalar product
of plane wave functions to be zero.

Then, the contribution of a wave vector k to the wave function Ψ(r) is the projec-
tion of the wave function on the momentum eigenfunction corresponding to k. This
also happens to be the definition of the direct Fourier transform:

Ψ(k) =
〈

e2πik·r
∣∣∣Ψ(r)

〉
=
∫∫∫

Ψ(r)e−2πik·rdr ≡ F [Ψ(r)] (2.16)

The Fourier Transform F allows us to transform a wave function from the real
space, Ψ(r), to the momentum space, Ψ(k), by using the equation above.7 The recip-
rocal relationship is defined by the inverse Fourier transform:

7 Note on the sign convention chosen: the sign of Fourier function in Eq. 2.16 is due to the order
chosen in the bra-ket and it is opposite from the crystallographic sign convention. Also note on the
wave vector definition convention used here lacking the factor of 2π (|k| = 1/λ) which shows up
sometimes in solid state physics. Consistent with this choice, the Fourier transform definition used here
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Ψ(r) = F−1[Ψ(k)] ≡
∫∫∫

Ψ(k)e 2πik·rdk (2.17)

While the general analytical form of Eq. 2.16 does not look overly complicated, it
does involve, somewhat inconveniently, a triple integral over the entire space. In the
special case when the function to study is periodic, we can simplify this expression
and reduce it to a discrete sum, or what is known as a Fourier series. Any physical
property of the crystal, such as charge density, carries the property of translational
invariance under t, which means the function for the entire crystal is periodic and
can be written as an expansion of complex functions weighted by their Fourier coef-
ficients. For instance, the direct space crystal potential can be written as the discrete
inverse Fourier transform version of Eq. 2.17 :

V(r) = ∑
k

Vke 2πik·r, (2.18)

and we will show that the Fourier coefficient Vk are related to the diffracted wave
amplitudes.

2.2 Crystallographic computations in the hexagonal system

In the previous Section we covered the hexagonal crystal system (page 20) together
with its basis vectors in both real (page 23) and reciprocal space (page 26). We should
be ready now to tackle vectorial computations in these reference frames except for
one difficulty. None of the seven crystal systems have Cartesian basis vectors and the
hexagonal system is certainly not the exception. Even the cubic system is defined by
non-unitary vectors. Therefore none of the usual vector identities applies.

In the following we will use the direct metric tensor to generalise the dot product
for a given (non-Cartesian) crystal system both in the real and reciprocal space. We
will then cover the equations for distances and angles between directions in a hexag-
onal system. For a good number of derivations shown here I follow the microscopy
friendly textbooks [DG03] and [DGM12].

On page 40 we discuss the real to reciprocal space and inverse transformations.
These are useful manipulations when it comes to combining information defined in

is missing the 1/2π pre-factor and reader should pay attention to the convention used when comparing
with the form of these formulas with literature.
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the reciprocal space, like the diffraction condition, with information defined in real
space, like position vectors in the sample. This applies, indeed, to computations of
highly position-dependent diffraction information, like in the case of a polycrystalline
material or defected crystal.

The alternative to using the metric tensor is to transform the parameters of interest
from the crystal frame to Cartesian frame and perform the computations in the usual
manner and, only after, translate the result back into the crystal frame if needed. We
will use this latter approach for rotation operations which we define in the Carte-
sian frame on page 42. There is another reason, besides reduction in abstraction, for
wanting to move computations to a Cartesian frame or at least orthogonal frame. Re-
gardless of the sample information we are interested in computing, the sample, the
SEM geometry and the detector are all rectangular.

2.2.1 The direct metric tensor

Let us start by considering a vector p defined in a crystal frame with basis vectors
{a1, a2, a3} by coordinates {p1, p2, p3}:

p = p1a1 + p2a2 + p3a3

Back to the vector p this time defined in a crystal system with basis vectors {ai, i ∈
(1, 2, 3)} and angles {α, β, γ} (the list of six lattice parameters). If we are interested in
finding its length we know we can use the dot product definition:

p · p = |p|2 cos (θ = 0)

∴ |p| = √p · p =
√

piai · pjaj =
√

pi pj ai · aj

If we were in a Cartesian frame {e1, e2, e3} we would have known that the result
of the last dot product is non-zero only when i 6= j, i.e., ai · aj = ei · ej = δij, and

therefore p =
√

p2
1 + p2

2 + p2
3. But we are not and we don’t (I didn’t). Which is why

we need to introduce a more general result for the dot product between two vectors.

ai · aj = |ai| |aj| cos θij ≡ gij,
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where θij is the usual angle between basis vectors ai and aj and we introduced com-
ponent ij of the the direct metric tensor g. The full 3× 3 matrix form of the metric tensor
can be written in terms of the six lattice parameters of a triclinic system as follows:

g =

a1 · a1 a1 · a2 a1 · a3
a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3

 =

 a2
1 a1a2 cos γ a1a3 cos β

a2a1 cos γ a2
2 a2a3 cos α

a3a1 cos β a3a2 cos α a2
3

 . (2.19)

For a system with higher symmetry, like the hexagonal Bravais lattice, hP, with
lattice parameters {a, a, c, 90◦, 90◦, 120◦}, the form above reduces to:

hexg =
a2

2

 2 −1 0
−1 2 0
0 0 c2/2a2

 . (2.20)

We are finally ready to calculate the magnitude of a vector, p, defined in a hexag-
onal crystal system, p = p1a1 + p2a2 + p3c:

|p| =
√

pi
hexg ij pj =

√
(a2(p2

1 − p1 p2 + p2
2) + c2 p2

3), (2.21)

the general dot product between two vectors, p and q, defined in the same hexagonal
crystal system, q = q1a1 + q2a2 + q3c :

p · q = pi
hexg ij qj, (2.22)

and the angle θ between the same two vectors:

cos θ =
pi

hexg ij qj

|p| |q| =
a2 (p1q1 + p2q2 − 1

2 (p1q2 + p2 p1)
)
+ c2 p3q3

|p| |q| . (2.23)

It is common to ask about angles between directions rather than specific vectors.
In this case it is just a matter or replacing the components pi, qi with the reduced
prime integers of the Miller indices of the given directions [u v w].

What about the Miller-Bravais indexing? I hear you ask. Not to worry, we can apply
an identical derivation for the four index notation hexagonal basis set {A1, A2, A3, C}.
We will denote the four-index metric tensor with G and follow ref. [OT68] to write:
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hexG =


A1 ·A1 A1 ·A2 A1 ·A3 A1 · C
A2 ·A1 A2 ·A2 A2 ·A3 A2 · C
A3 ·A1 A3 ·A2 A3 ·A3 A3 · C
C ·A1 C ·A2 C ·A3 C · C

 =
a2

2


2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 2c2/a2

 (2.24)

The magnitude of the same vector p this time with components {P1, P2, P′, P3}
corresponding to the four-vector basis, p = P1A1 + P2A2 + P′A3 + P3C is:

|p| =
√

Pi
hexG ij Pj =

√
(3a2(P2

1 + P1P2 + P2
2 ) + c2P2

3 ), (2.25)

which is similar but not the same as Eq. 2.21, note the sign difference. For the same
vector the coordinates in four-vector basis are going to be smaller than the coordinates
in the three-vector basis, since there are more vectors to contribute. A word of advice
for the reader, don’t be tempted to apply the vector length derivation to the Miller
and Miller-Bravais notation of directions, remember the discussion on page 23.

The angle between two vectors, p = PiAi and q = QiAi, defined using the four-
vector basis of a hexagonal lattice is then, similarly to Eq. 2.23:

cos θ =
Pi

hexG ij Gj

|p| |q| =
a2 (3(P1Q1 + P2Q2) +

3
2 (P1Q2 + P2P1)

)
+ C2P3Q3

|p| |q| . (2.26)

2.2.2 The reciprocal metric tensor

On page 28 we covered, to some extent, the reciprocal hexagonal lattice and its basis
vectors in both the linearly independent form of {a∗1, a∗2, c∗} and the linearly dependent
{A∗1, A∗2, A∗3, c∗}.

The reciprocal metric tensor, can be derived in much the same way as the real space
one, by doing the dot product between all the pairs of basis vectors: g∗ij = a∗i · a∗j . It is

also, quite conveniently, the inverse of the real space metric tensor: g∗ij = (gij)
−1, such

that for the reciprocal hexagonal lattice with parameters {a∗, a∗, c∗, 90◦, 90◦, 60◦} can
easily be written out to be:

hexg∗ =

a∗1 · a∗1 a∗1 · a∗2 a∗1 · c∗
a∗2 · a∗1 a∗2 · a∗2 a∗2 · c∗
c∗ · a∗1 c∗ · a∗2 c∗ · c∗

 = (hexg)
−1

=
2

3a2


2 1 0

1 2 0

0 0 3a2/2c2

 (2.27)
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The lattice parameters are inverted with respect to the real metric tensor given in
Eq. 2.20, as expected, and we also gained a normalisation factor of 1/3 from the de-
terminant. But more notably, the form of the matrix is different to all the other hexag-
onal metric tensors. The minus signs present in 1) Eq. 2.20, 2) Eq. 2.24 and, as we
will see, in 3) Eq. 2.29 are missing here. This observation is consistent with the com-
ments made for Fig. 2.8 on page 29, namely that the hexagonal reciprocal space lattice
defined by three basis vectors is different 1) the real space hexagonal lattice defined
with three basis vectors 2) the one defined with four basis vectors and 3) the recipro-
cal hexagonal lattice defined with four basis vectors. Just to reiterate, interchanging
between basis sets needs a bit of thought.

We can write out, similarly to equation 2.21, the length of a generic reciprocal
space vector g = g1a∗1 + g2a∗2 + g3a∗2 (written conveniently for Einstein summation)
from the dot product with itself:

|g| =
√

gi g
∗
ij gj (2.28)

In terms of the four index notation, the reciprocal metric tensor G∗ is:

hexG∗ =
2

9a2


2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 9a2/2c2

 (2.29)

Which looks very similar to the real space four-index notation metric tensor hexG in
Eq. 2.24 with inverse lattice parameters; as expected, since the real and reciprocal
four-basis vectors are parallel to one other.

2.2.3 The interplanar spacing

We now have all the tools to calculate the length of the translation vector in the hexag-
onal system reciprocal lattice, ghkl = ha∗1 + ka∗2 + lc∗ defined in Eq. 2.6. The identity
in Eq. 2.28 reduces to:

|ghkl | =
√

4
3a2 (h

2 + k2 + hk) +
1
c2 l2)

Such that we could, finally, derive the expression for the distance between a set of
planes {h k l} in a hexagonal system defined in Eq. 2.9:
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hexdhkl =
1√

4
3a2 (h2 + k2 + hk) + 1

c2 l2
(2.30)

We can also find the distance between a set of hexagonal system planes {h k i l} given
in Miller-Bravais notation:

hexdhkil =
1√

4
3a2 (h2 + k2 + i2 + hk + ki + ih) + 1

c2 l2
(2.31)

Table 2.6 shows a few examples of calculated interplanar distances for common
families of planes in wurtzite nitride systems (see Fig. 2.6). Spot that the distance
between consecutive c-planes is the lattice parameter c while the one between a-planes
is half the lattice parameter a.

TABLE 2.6: Calculated interplanar distances in wurtzite nitrides.

Interplanar spacing for set of planes {h k l} [Å]

System (a[Å], c[Å]) a-plane {1 1 0} r-plane {1 1 2} m-plane {1 0 0} c-plane {0 0 1}

AlN (3.11, 4.98) 1.56 1.83 2.69 4.98
GaN (3.19, 5.19) 1.60 1.89 2.76 5.19
InN (3.53, 5.70) 1.77 2.08 3.07 5.70

2.2.4 To the reciprocal space and back

While the equivalence between reciprocal vector absolute value and inverse of the
distance between planes is clear, other transformations between the two vector spaces
require a bit more work. Let us start with a vector p with components {pi, i ∈ (1, 2, 3)}
in the real space, p = piai. This vector must exist independent of the reference frame,
so let us give it components {p∗i , i ∈ (1, 2, 3)} in the reciprocal space: p = p∗i a∗i such
that:

p = piai = p∗i a∗i . (2.32)

If, in the latter equality, we dot product both sides by aj and use both the property
of the reciprocal lattice, given in Eq. 2.8, and the definition of the direct metric tensor,
gij = ai · aj then we find that:
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p∗j = pigij (2.33)

Which tells us how to find the components of the vector in the reciprocal space.
Alternatively, if we know the components of the vector in reciprocal space and

want to define it in the real space, we dot product the right side of the last equality
in Eq. 2.32 by a∗j , and use the definition of the reciprocal metric tensor this time, g∗ij =
a∗i · a∗j , to find:

pj = p∗i g
∗
ij (2.34)

Similarly, if are interested in finding the reciprocal basis vectors, a∗i , knowing the
real space basis vectors ai, we replace pi with the identity in Eq. 2.34 to find:

a∗i = g∗ijaj, (2.35)

and, inversely,

ai = gija∗j . (2.36)

Notice the difference in position of the metric tensor in equations 2.33 and 2.36.
Another way to remember this is that the rows of the metric tensor are the compo-
nents of the direct basis vector in terms of the reciprocal basis vectors, as explained in
Introduction to CTEM pg. 17 [DG03], and the columns of the metric tensor contain the
reciprocal components of a vector in terms of the real space components.

The reciprocal lattice basis vectors

On page 28 I made a promise to show where the form for the hexagonal reciprocal
basis vectors (Eq. 2.10) comes from. Let us finally apply the reciprocal space vector
definition in Eq. 2.7 to the hexagonal lattice. If we now make an attempt at writing
out the cross products between two basis vectors of a crystal lattice, ap and aq

8:

ap × aq = Ω εijk ap,i aq,j a∗k

8 The index notation is going to be a bit crazy in this section; we are trying to annotate both different
basis vectors and components of said vectors. The Einstein summation rules discussed on page 31
continue to apply.
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where Ω is the volume of the unit cell. We have used a new symbol, εijk, known as
the normalised permutation symbol which can take three values depending on the order
of indices {h, k, l}:

εijk =


+1, if i, j, k are an even permutation of 123,
−1, if i, j, k are an odd permutation of 123,
0, otherwise.

ap,i is the component i of the basis vector ap and surely can only take the value 1
when p = i, i.e., ap,i = δpi. In the same manner, aq,j = δqj.

Since the cross product of two basis vectors points in a direction normal to both
vectors, and since in a non-Cartesian system this will not necessary coincide with
the direction of the third basis vector, we had to use a different trick. Namely, the
definition of the reciprocal basis vectors (Eq. 2.7) which is the reason why we ended
up with a reciprocal vector component in the equation above in the first place anyway.
Nevertheless, the equation above does not lead us very far in the attempt to write out
the reciprocal basis vectors in terms of the real space one. We can however fix that
by converting the components of this vector to the real space using Eq. 2.35 derived
above.

Finally, we can write:

ap × aq = Ω εpqk g∗kmam.

For the hexagonal lattice basis set we just replace the reciprocal metric tensor with
the form given in Eq. 2.27. This would lead us end up with the reciprocal lattice
vectors in on page 28.

2.2.5 Rotations in Cartesian frame

It is common in crystallographic calculations to want to express a tensor parameter
known in one reference in a different reference frame; assuming we can figure out the
position of the new reference frame in the old reference frame. For instance, mapping
the electron beam scan in the sample frame (a task made especially challenging by
the high sample tilt used in electron diffraction techniques, which the SEM is not
very well designed to account for [Nol07]), involves moving electron scan positions
between the beam frame and the sample frame. Assuming the scanning directions x
and y are truly perpendicular, that the x scanning direction is indeed parallel to the



Chapter 2. Background and Basics 43

tilt axis of the sample and that the magnification and spot size are not significantly
affected by the tilt (i.e., parallel beam at high magnification) then the relationship
between the basis vectors of two frames is a simple rotation. A similar transformation
must be done for translating the escaping electron beam positions from the sample
frame to the detector frame [Bri+16].

Unfortunately, simply calling an action “rotation” suffers from many ambiguities.
In crystallography, when we talk about rotation we refer to a very well defined trans-
formation. In a right handed system9 – first source of ambiguity – a rotation of the
coordinate system (CS) around a given axis is the clockwise rotation in the plane nor-
mal to that axis as the viewer looks in the direction pointed by the axis. Another way
of describing the clockwise rotation is the right hand rule, i.e., holding the thumb in
the direction of the chosen axis of rotation, the rest of the fingers point in the direction
of rotation.

If you just looked at your right hand fingers going, in fact, anti-clockwise then
you’ll understand why I call rotations confusing. It matters where the rotations axis,
or finger is pointing – second source of confusion. You do need to align your viewing
direction with the direction of the rotation axis, that is you need to awkwardly turn
your right hand such that the thumb points to were you are looking. Voilà, clockwise
rotation. Also, my activity for months during my PhD.

Another possible ambiguity is whether we refer to a active or a passive rotation:

• A passive, or alias transformation, like the one above, acts on the coordinate sys-
tem. It rotates the CS clockwise around a given axis while keeping the position
of the object of interest fixed.

• An active, or alibi transformation acts on the object. More explicitly, the active
rotation affects the position vector of the object whose coordinates are described
in a fixed CS. The direction of rotation is opposite to the passive one and there-
fore anticlockwise.

It should be obvious that a passive rotation of an object by an angle θ around a
given axis is equivalent with a passive rotation of its coordinate frame by an angle
−θ around the same axis.

The mathematical form of these transformations in 3D can be written as 3 × 3
matrices,R. In the case in which the axis of rotation is one of the basis vectors we call
the transformation a basic rotation.

Yet another source of ambiguity is the manner in which we apply the rotation
matrix. Through this work we pre-multiply the rotation matrix with the position

9 (x, y, z) follow the thumb, index and middle fingers of the right hand
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column vector: v′ = R(θ)v. This leads us to the unambiguous definition of rotation
we will use:

The anticlockwise rotation of a position vector in column form, v, given in a right handed
CS, around the rotation axis n leads to a new position which can be calculated by pre-multiplying
the rotation matrixRn by the position vector: Rnv .

We will use the passive version of it when rotating reference frame, in which case
we will also flip the definition of the axis of rotation (v = −v) such that we can use
the same definition still. For any property in this definition changed, the rotation
direction flips. For instance, post-multiplying the rotation matrix with row vector
leads to a clockwise rotation. The tree passive rotation matrices for a right handed
Cartesian frame are given in Appendix B.

A useful property of the rotation matrix is that the inverse of a rotation can be
calculated by simply transposing the matrix (RRᵀ = I). Another property is that
the product of rotation matrices is yet another rotation matrix. Even in the case in
which the rotation axis is not just a basis vector, the rotation can be broken down in
maximum tree basic rotations.

This latter scenario describes another rotation formalism known as Euler rotation
in terms of Euler angles; the rotation is given as a set of three angles which describe
three successive rotations around a combination of the axes {x, y, z}. Since matrix
multiplication is not commutative, the order of the chosen axis is important and a
lack of knowledge of the chosen convention makes the Euler notation ambiguous, in
a yet different way. EBSD orientation mapping uses, for instance, the Bunge conven-
tion [Bun82], which orders the Euler angles as: (φ1, φ2, φ3) around (z, x, z), such that
the total rotation is given by:

BungeREuler(φ1, φ2, φ3) = Rz(φ3)Rx(φ2)Rz(φ1).

This series of rotations for a coordinate system from one position to another can be
read as a rotation of φ1 around the basis vector z followed by φ2 around x and, finally,
φ3 around z.

There are application for which neither the rotation matrix nor the Euler angle
formalism are fully adequate, not least due to the ambiguities that need to be ironed
out. One alternative is the quaternion representation. Quaternions are four-dimensional
vectors, or can be seen as complex numbers with two extra non-real parts of the from
q̂ = qii+ qjj+ qkk+ qr =

[
qi, qj, qk, qr

]
. A quaternion of this form describes a rotation

around a rotation axis n =
[
nx, ny, nz

]
by an angle θ such that qi = nx sin (θ/2),

qj = ny sin (θ/2), qj = nz sin (θ/2) and qr = cos (θ/2). Quaternion maths will be
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faster on a computer compared to rotation matrices since the trigonometric functions
are absent and it requires fewer operations per transformation.

Rowenhost et al. [Row+15] worked out the complete conversions between the
rotation formalisms used in material science (including the Rodrigue-Frank vectors
and homochronic vectors) and provided extensive open source Fortran-90 libraries
with the implementations. The GitHub repository of Prof. De Graef [DGG14] contains
Fortran95, IDL, MatLab, and C++ implementations for the rotations and conversions
as well.

Now that we covered how to do rotations in a Cartesian frame we will go over
transformations to and from the crystal frame.

2.2.6 Crystal to Cartesian frame and the structure matrix

While computations in the crystal frame conserve the symmetry of the crystal and
keep the equations somewhat intuitive, there are undeniable benefits to bringing
the calculations into the Cartesian frame as well. If only because implementing non
Cartesian vectorial manipulation requires extra work, but ultimately because we want
to project the information on a square detector or screen. We are interested in writing
out the path of transforming from both the real and reciprocal hexagonal space to the
Cartesian system.

The easiest and most common way of defining a Cartesian frame with basis vec-
tors ei with respect to the crystal frame with basis vectors ai and corresponding recip-
rocal space vectors a∗i is as follows:

• e1 is the unit vector parallel to a1:

e1 =
a1

|a1|
(2.37)

• e3 is the unit vector parallel to a∗3 :

e3 =
a∗3
|a∗3 |

(2.38)

• and e2 completes the right handed Cartesian reference frame:

e2 = e3 × e1. (2.39)
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Let us consider a vector p = piai, whose components in the Cartesian frame are xp
i .

Since p = piai = xp
i ei it means that we could find a coordinate transformation matrix

aij which relates the components pi and xp
i :

xp
i = aijpi (2.40)

The components of the matrix aij can be found by rewriting the lengths of the
lattice vectors in Eq.’s 2.37 to 2.39 in terms of the direct and reciprocal matrix tensors.
For instance, |a1| =

√
g11 (see Eq. 2.19). For the rest of the beautiful derivation we

send the reader to page 140 of ref. [DGM12]. The final matrix will have elements
containing both the direct and reciprocal metric tensor. We give here the form of
matrix aij, also known as the direct structure matrix, for a hexagonal lattice:

hexaij =

a −a
2 0

0
√

3a
2 0

0 0 c

 (2.41)

If we want to translate a reciprocal space vector to the same Cartesian frame, we
have to introduce a second matrix bij known as the reciprocal structure matrix. We start
now with a vector g with components gi in the reciprocal space: g = gia∗i . The same
vector will have components xg

i in the Cartesian frame: g = xg
i ei = gia∗i such that

xg
i = bijgi. We can use the reciprocal structure matrix g∗ij (Eq. 2.35) to rewrite the

reciprocal basis vectors a∗i in terms of the real ones aj such that:

g = xg
i ei = gi g

∗
ij aj,

where we can now use the direct structure matrix aij (Eq. 2.40) to relate the quantities
xg

i and gl g
∗
lj:

xg
i = aij gl g

∗
lj = aij g

∗
jl gl .

We can now define the reciprocal structure matrix for a hexagonal lattice, hexbij:

hexbij =
hexaij

hexg∗jl =


1
3a 0 0
√

3
3a

2
√

3
3a 0

0 0 1
c

 . (2.42)
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2.2.7 Metric tensor implementations

I took the time to write out a good number of equations in this section. While these are
well established and, probably, well understood vectorial manipulation in the world
of X-ray diffraction, electron microscopists don’t often incorporate basis transforma-
tion language in their work. I make this claim based on the observation that, while
the implementation would be trivial, there is a lack of mature, accessible and easy
to plug-and-play (ideally open) software out there to answer some of the crystallo-
graphic questions the material scientists might ask when using an SEM as a charac-
terisation tool.

Until a Python library is available and documented for crystallographic basis set
computations, I leave the reader with a web tool10, albeit limited in capabilities, writ-
ten by Albes Koxhaj, an excellent summer project student in the SSD department who
implemented a few of the equations here, and revised by me. The last two blocks of
calculators in this tool were written to find the coordinates, in the crystal frame, of the
normal direction on a given plane (h k l) or (h k i l). For a hexagonal plane, we show
that there are two special conditions in which the normal to a plane can be reduced
to Miller indices [u v w]. The first case is when the c-direction is parallel to the plane
(l = 0) such that the lattice parameters can be removed from the indices and we are
left with integer numbers. The second case is when the c-direction is normal to the
plane (h = l = 0 or h = l = i = 0), when the normal is along c in both the real
and reciprocal space. Any other case will keep coordinates dependent on the lattice
parameters a, c which would make them unlikely to be reduced to integers.

I also wrote a few Python lines in the Jupyter notebook grainNormal.ipyb, show-
ing the steps needed to calculate the surface normal in the crystal frame of individual
grains from the Euler angles of an EBSD map by applying the identities in this section.

EMsoft [SRDG17] contains Fortran90 implementations of the metric tensor ten-
sor formalism. The source code can be found in the crystal.f90 and symmetry.f90

modules in Source/EMsoftLib path on the GitHub page [DGG13].

2.3 Wurtzite symmetry

I wrote a somewhat comprehensive introduction to symmetry in the wurtzite system
in Appendix C. This is aimed at a complete novice to crystallography which I was at

10 Link address is: http://ssd.phys.strath.ac.uk/resources/crystallography/crystallographic-
direction-calculator/ .

http://ssd.phys.strath.ac.uk/resources/crystallography/crystallographic-direction-calculator/
http://ssd.phys.strath.ac.uk/resources/crystallography/crystallographic-direction-calculator/
http://ssd.phys.strath.ac.uk/resources/crystallography/crystallographic-direction-calculator/
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the beginning of this journey. I tried to keep it at textbook level by following the Sym-
metry chapter in Structure of Material: An Introduction to Crystallography, Diffraction and
Symmetry [DGM12] and focusing on the symmetry operations relevant for this crystal
system. Though it can look daunting and dry, I was told, I would recommend the
reader to venture a look though it if they want to understand were the symmetry in-
formation in this section comes from. I believe it makes for a decent read and I added
a lot of supporting figures and beautiful Rayshade11 3D renderings. I wrote my own
input files for these renderings based on the input *.ray files12 developed by Marc De
Graef [DG98] with the purpose of teaching crystallography group symmetry [DG08].
My scripts can be found at this GitHub repository13.

On page 181 of the same Appendix, I also describe how to decipher the symbols
in the International Tables for Crystallography, Volume A [Hit88], a skill indispensable to
any crystallographer. Specifically, pages 584-858 of the Tables, covering space group
P63mc, are explained in detail.

In the following section I will assume the reader has working knowledge of crys-
tallographic language. You have been warned!

2.3.1 The P63mc space group

We talked in Appendix C about how one can determine the full symmetry of a space
group by adding the point group operators to a compatible Bravais lattice. Indeed, the
space group symbol itself is made up of the Bravais lattice information to which the
point-group Hermann-Mauguin notation is added. Let us consider the space group
P63mc. If we start with the primitive hexagonal Bravais lattice hP and add the 6mm
point group (see page 178) at every lattice point we obtain the P6mm space group. But
we can generate a new group with a different symmetry if we replace the 6 symbol in
the point group with a 63 screw axis operation (see page 174) and the second m with
a glide plane c in the direction of basis vector c. The resulting symmetry group, 63mc,
is shown in Fig. 2.11. The blue planes are the mirror planes with normal {1 0 . 0} and,
in between them, the grey planes represent the glide planes with normal {1 2 . 0}.

As before, the generating files can be found in 6_3mcPNG.ray for the *.png image
and 6_3mcGIF.ray for the *.gif animation.

Note that this combination does not make up a point group as it does not present a
unique symmetry. However, when adding the 63mc symmetry at the lattice points on
a hexagonal primitive Bravais lattice, it generates the brand new space group P63mc.

11 Link is https://sourceforge.net/projects/rayshade/.
12 Link is http://som.web.cmu.edu/frames2.html.
13 Link is https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry.

https://sourceforge.net/projects/rayshade/
http://som.web.cmu.edu/frames2.html
https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry/
https://sourceforge.net/projects/rayshade/
http://som.web.cmu.edu/frames2.html.
https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry
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FIGURE 2.11: Graphical 3D representation of the 63mc symmetry com-
bination. Blue planes represent the mirror planes and the grey ones the
glide planes. See Appendix C for discussion on squiggly objects. The
2D projection is shown in the bottom right corner. Filled circles indi-
cate the object is in the plane of the drawing, open circles indicate the
object is above the plane at the indicated height. Dotted lines represent
a glide plane with translation normal to the drawing plane and solid

lines are mirrors.
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FIGURE 2.12: Top view construction of space group P63mc from the
Bravais lattice hP combined with the symmetry combination 63mc.

[Right image taken taken from ref. [Hit88].]

TABLE 2.8: The P63mc space group with its corresponding number
and crystallographic point group.

Space group # Point group Space group symbol

186 6mm P63mc

This is illustrated in Fig. 2.12, where the last image is taken from the Tables and shows
the top view projection of the symmetry operators of this space group.

One can find the corresponding point group of a space group containing glide
planes or screw axes (non-symmorphic) by simply replacing the glide planes by mir-
rors and the screw axes by regular rotations. We show in Table 2.8 the corresponding
crystallographic point group together with the space group number as it is indexed in
the International Tables for Crystallography. The important difference to keep in mind
when comparing the space group P63mc with the corresponding point group 6mm
is that the space group symmetry includes translational vectors. And in this case,
we are not only talking about the Bravais lattice translational vectors, but also about
symmetry operators of the second kind, like screw and glide, that include translation.
In mathematical language, this means that the point symmetry matrices D(x) are not
sufficient for describing the symmetry of the the space group and we must turn to
the 4× 4 matrices, W, which contain translation information as well. We showed on
page 173 (Eq. C.4) how to write these matrices using the Seitz symbols: W= (D|τ).
The values of the relevant matrices Dx are given explicitly in Appendix C.

In Appendix C we derived the 12 symmetry operations of this space group. We
also mentioned that these can also be found as a list in the Tables. We will need these
symmetry operations in order to determine the equivalent positions of an atom in the
unit cell, i.e., for a given atom position apply all symmetry operations of the space
group to this position and note all unique new coordinates inside the unit cell.

With the help of Appendix C we can read all the symmetry operations symbols in
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TABLE 2.9: List of generators for wurtzite crystal structure.

Operation #
in Tables

Representation
in Tables Description (page discussed) Graphical Seitz symbol

(1) 1 identity (D(a)|0)
(2) 3+ 0, 0, z 3 fold rotation @[0 0 1] (168) � (D(n)|0)
(4) 2(0, 0, 1

2 ) 0, 0, z 21 screw axis @[0 0 1] (174) � (D(b)|τ(0,0,1/2))

(7) m x, x̄, z (1 1 0) mirror plane (173) (D(k)|0)

the right image of Fig. 2.12. Especially we can recognise the 4 group generators listed
in the Tables (shown on page 183). Table 2.9 describes these generators and points to
the Appendix pages were they are discussed. The table also gives us the matrices we
need to apply to a position (x, y, z) when looking its symmetry equivalent places in
the unit cell.

2.3.2 Wurtzite crystal structure

On page 20 we mentioned that a crystal structure is described by its space group,
lattice parameters and atom positions in the asymmetric unit cell. We have covered
group symmetries so far, and it is therefore time to place atoms on the lattice.

Unfortunately, some ambiguity about the positions of the wurtzite atoms in the
unit cell exists. Figure 2.13 a) shows the common representation of a wurtzite unit
cell. This is a didactically useful way to visualise the hexagonal close packing (hcp)
structure that wurtzite exhibits. For this unit cell we can place an atom at (0, 0, 0)
and another, identical one at (1/3, 2/3, 1/2). A pair of atoms of a different species
can then be displaced by a value x in the c-axis direction with respect to the first two.
For the perfect wurtzite structure x = 3/8. This unit cell will have the translational
symmetry of the primitive hexagonal Bravais lattice, hP.

Nevertheless, this representation does not carry the symmetry of the space group
P63mc to which wurtzite belongs. Figure 2.13 b), on the other hand, shows the unit
cell of a P63mc space group structure exhibiting the full symmetry of this group. The
atoms are now placed at the 2b Wyckoff positions given as fractional coordinates of
the basis vectors:

Ga1 : (1/3, 2/3, z = 0) (2.43)
N1 : (1/3, 2/3, z + x = 0 + x) (2.44)
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FIGURE 2.13: 3D render of: a) hexagonal unit cell representation of
hcp structure of wurtzite, not respecting group symmetry; b) wurtzite
crystal structure hexagonal primitive cell (hP) enclosed by blue edges
and the tetrahedral asymmetric unit cell enclosed by glass faces. The 4

highlighted atoms are the ones contained by the primitive unit cell.

where x = 3/8 for the ideal wurtzite structure as before.
These two atoms are enough to define the asymmetric unit cell highlighted here by

the tetrahedrally shaped grey box. Looking closer at the symmetry of the asymmetric
cell we can recognise the glide, or, equivalently, screw symmetry we have seen in
the 63mc symmetry group render in Fig. 2.11. The mirror planes pass through the
tetrahedral cells indicating the unit cell exhibits mirror symmetry, i.e., we replace the
pair of squiggly orange objects with the asymmetric unit cell. Any atom or group of
atoms in the unit cell in 2.13 b) will satisfy all the symmetry operations of the space
group shown in Fig. 2.12. Note that this is not the case for the unit cell in a).

The positions of the other atoms in the fundamental, hexagonal prism unit cell
shown in Fig. 2.11 b) can be determined by applying the list of 12 symmetry opera-
tions of the space group to the positions inside the asymmetric unit cell given above.
It turns out that we only need one operation to generate two new positions inside the
unit cell. A number of operations can produce the two new positions, for instance the
21 screw operation with entry (4) in Table 2.9 with the origin the middle of the cell or
a 63 screw with the origin at the origin of the cell.
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Ga2 : W�Ga1 = (2/3, 1/3, z′ = 1/2) (2.45)

N2 : W�N1 = (2/3, 1/3, z′ + x = 1/2 + x) (2.46)

where x = 3/8 for the ideal wurtzite structure. The hexagonal unit cell is populated
by the same 4 atoms as the one in Fig. 2.13 a). The two cells can generate the same
structure, a) by translation only and b) by applying the generators of the space group.
We will be using in this work exclusively the latter representation of this cell since the
diffraction properties we are interested in are the result of the group symmetry.

The files used to render the ∗.png and ∗.gi f versions of the images shown in this
section are: wurtzite_commonGIF.ray for the first version of the cell shown in a) and
wurtzite_cellGIF.ray for the latter.

2.3.3 Nitrides lattice parameters

Finally, the lattice parameters can be calculated from first principles and/or from
diffraction experiments. I am showing in Table 2.10 the currently accepted lattice pa-
rameters for the three wurtzite systems we tackled in this work. The last entry shows
the volume of the fundamental cell calculated using Eq. 2.2 derived on page 22.

TABLE 2.10: Lattice parameters and unit cell volume, Ω, for some com-
mon nitrides with wurtzite crystal structure.

Wurtzite compound a [Å] c [Å] Ω [Å
3
]

AlN [Gol+01] 3.11 4.98 41.71
GaN [Les+94] 3.19 5.19 45.74
InN [Zub+01] 3.53 5.70 61.51
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3 Diffraction in a perfect crystal

In the previous chapter we have dusted off the tool-kit required to tackle diffraction.
The current chapter deals with the theoretical formalism of electron diffraction and
shows the explicit path of applying this formalism to group-III nitride compounds.

Since I believe some insight into the theory comes from the chronological develop-
ment of the current accepted models, I’ll treat my reader to the historical background
of diffraction on page 55. Historically, diffraction is associated with X-rays, and we
will end up using parts of the theories developed for X-ray diffraction when talking
about electron diffraction.

While the phenomenon is described by the same physics regardless of the type
of particles used, the way individual diffracting particles interact with matter can
differ. While X-rays diffract from the electron density in the crystal, electrons are scat-
tered elastically by the Coulomb potential. The latter is related to the electron density
via the Poisson equation and, additionally, it also includes the nuclear contributions.
Similarly, neutrons interact mainly with the nuclear potentials in the crystal sample.
Table 3.1 shows the properties of the most common types of particles used in diffrac-
tion experiments together with their scattering sources.

TABLE 3.1: Particles used in diffraction experiments together with
their scattering properties.

Particle λ [nm] Charged? Scattering object

X-ray photon 0.01− 1.0 no electron density distribution
neutron ∼ 0.1 no atomic nuclei distribution
electron 0.001− 0.1 yes atomic potential distribution

Compared to X-rays, electrons have significantly shorter wavelengths and are
scattered much more strongly by matter. This means that electrons convey infor-
mation about much smaller crystal volumes than conventional X-ray microscopy, in
other words, they promise better spatial resolution. It also means that effects which
are negligible when it comes to the interaction of X-rays with matter, cannot be swept
under the carpet and ignored when it comes to electrons. While we can use the geo-
metrical, i.e., kinematical, model for predicting X-ray diffraction intensities, we need
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to take into account the fact that electrons will lose energy and coherence on their
paths through the sample and that electron waves are more strongly coupled to each
other. To do this we must turn to the dynamical theory for the prediction of scattered
electrons intensities. More on that on page 61.

I have already made the note that diffraction is chiefly related to the wave be-
haviour of small particles like photons, electrons or neutrons. This behaviour is math-
ematically written in the form of a Bloch wave ψ(r) whose squared amplitude, |ψ(r)|2,
describes the probability density of finding the particle at position r. We will see on
page 81 that these wavefunctions satisfy the Schrödinger’s equation inside a crystal
described by a periodic potential VC(r). Finding this crystal potential is the journey
we will explore in the first part of this section.

In layman terms, diffraction is the phenomena of directional scattering arising as
constructive interference along certain directions and destructive interference along
others. From the intensity of the interfering waves one can derive information on the
spatial distribution of the scattering centres and we will see how that relates to direc-
tional elastic scattering. We will talk chiefly about the crystal planes which dictate the
Bragg scattering direction. I will also talk about the interaction of the electrons with
the unit cell, which affects the intensity of the diffracting beam along chosen direc-
tion through the parameter known as the scattering factor. There are always these two
conditions to take into account when figuring out the diffraction intensity along a cer-
tain direction. And both of these parameters (scattering angle from lattice plane and
scattering factor) can have values for which the diffraction beam intensity vanishes.
Which is why we divide the following sections into Diffraction geometry on page 62
and Diffraction intensity on page 65.

We will be covering some of the theoretical aspects of diffraction in this section.
For a thorough and in-depth description of diffraction and it’s application in crystal-
lography we suggest the reader find a copy of the International Tables of Crystallography
Volume B: Reciprocal space [Aut06; Cow+06].

3.1 Historical background

Soon after systematically experimenting with generating what will end up being
known in the English languages as X-rays, the German physicist Wilhelm Röntgen
used this new form of high energy radiation to “take a picture” of his wife’s hand.
To everyone’s amazement the picture taken in 1895 showed the bones of her hand
wearing her wedding ring. While the medical applications of X-rays are impressive
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in their own right, a material scientist will claim that the best application of X-rays
was yet to come.

Not even twenty years later, another German physicist, Max von Laue, decided
to use this new radiation, which he’d probably called Röntgen rays, to “take a pic-
ture” of a crystal. He actually had a good reason to try that. Von Laue expected the
wavelength of these radiations to be of the same order of magnitude as the distance
between atoms in matter. If this criterion is met then the wave behaviour of the radia-
tion will suffer constructive interference along directions dictated by the crystal lattice
planes and we would call it diffraction. What he observed in his image was a series
of ordered spots which would end up telling a story about the particular ordered ar-
rangement of the crystal atoms. From here on things move rather quickly. Table 3.2
shows a quick overview over about a hundred years of historical events building to
the development of electron diffraction techniques.

It is interesting to notice the interplay between experimental observations and
theoretical predictions in the development of diffraction as a field. The observation of
X-ray diffraction supported, first of all, the controversial wave-like behaviour of par-
ticles narrative, and, second of all, the description of crystalline materials as periodic
lattice structures. It also led to the development of Bragg’s law. Moreover, since the
theory of space group symmetry had already been developed by the Russian crystal-
lographer E. S. Fedorov, X-ray diffraction quickly became the structure analysis tool
of choice of crystallography.

While Bragg’s law was good enough to explain the geometry of the diffraction
spots, it proved inconsistent in predicting experimental X-ray diffraction intensities.
This lead C. G. Darwin to develop a first form of dynamical diffraction theory. He
took into account the interaction of X-rays with matter as partially transmitted and
partially reflected amplitudes at each lattice plane. His theory predicted correct val-
ues for the reflected intensities. Later, in 1917, P. P. Ewald introduced a new form of
dynamical theory in which he considered the crystal to be a periodic distribution of
dipoles excited by the incident wave. The new theory predicted both transmitted and
reflected intensities. We will talk in the next section on page 61 on how the dynam-
ical model can be reduced to the kinematical approximations when it is reasonable
to assume independent direct and diffracted beams (for instance in cases where there
would be maximum one inelastic coherent scattering event leading to the diffraction
pattern).

There were still limitations in the dynamical theories. In 1930, J. A. Prins [Pri30]
modified Darwin’s theory to take into account the fact that the crystal is an absorbing
medium. Just a year later, in 1931, von Laue showed that the interaction in Ewald’s
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TABLE 3.2: Partial chronology of the history of diffraction.

Year Event

1912 First X-ray diffraction experiments by W. Friedrich, P. Knipping and
M. von Laue

1913 Bragg family derives their name bearing law [BB13] to describe the ge-
ometry of diffraction spots.

1914 C. G. Darwin [Dar14] derives the first dynamical theory for the intensi-
ties of the diffraction spots.

1924 L. de Broglie hypothesises that particles should also behave as waves.

1927 Independently, G. P. Thomson [TR27] at the University of Aberdeen and
C. J. Davisson and L. H Germer [DG27] at the Bell Labs, observe low
energy electron diffraction spots through thin films.

1928 H. Bethe [Bet28] uses eigenvalue equations to explain and predict in-
tensities in electron diffraction images.

1928 First electron diffraction patterns are recorded by S. Nishikawa and
S. Kikuchi [NK28] from grazing incidence geometry and are described
as “black and white lines in pairs due to multiple scattering and selec-
tive reflection”.

1931-4 E. Ruska and M. Knoll build the first electron microscope (EM), later
known as a direct or transmission EM (TEM).

1935-8 M. Knoll suggests the idea of a scanning EM (SEM). M. von Ar-
denne [Ard38] constructs the first one.

1961 A. Howie and M. J. Whelan [HW61] expands Darwin’s theory to de-
velop a simultaneous differential equation form for electron diffraction
applicable for predicting diffraction contrast.

1960-5 P. B. Hirsch and co-workers at Cambridge [HHW60; Hir+65] develop
the theory of electron diffraction contrast which can be used to identify
line and planar defects in thin films in TEM images.

1967 D. G. Coates [Coa67] observes electron diffraction patterns in
the SEM; later labelled electron channelling patterns (ECPs). G.
R. Booker [Boo+67] provides a theoretical interpretation for the phe-
nomena based on the Darwin-Howie-Whelan theory.

1973 J. A. Venables and C. J. Harland [VH73] describe another diffrac-
tion technique capable of providing local crystallographic informa-
tion termed electron backscattering patterns (EBSP) or latter electron
backscattered diffraction (EBSD).

1977-9 5 and 7 years, respectively, after Spencer et al. [SHH72] predicted from
dynamical simulations that individual dislocation could be visible in a
highly optimised SEM, Pitaval and Morin et al. [Mor+79] actually ob-
served individual dislocations, developing a new technique of its own
known as electron channelling contrast imaging (ECCI).

2012 The latest diffraction technique in the SEM with improved spatial reso-
lution compared to EBSD is reported as transmission EBSD (t-EBSD) by
R. R. Keller and R. H. Geiss [KG12] and Transmission Kikuchi Diffrac-
tion (TKD) by P. W. Trimby [Tri12a].
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theory can be described by solving Maxwell’s equations in a continuous medium with
dielectric susceptibility distributed periodically in three dimensions. It is in this form
that the dynamical diffraction theory is most used today and also the one we will use
in this work.

The inverse effect, theory driving experimental observation this time, was trig-
gered by de Broglie’s doctoral thesis where he speculated that all particles ought to
also behave as waves. Indeed, in just a couple of years, in 1927, G. P. Thomson [TR27]
in UK pointed high energy electrons (10–60keV) at a thin film and recorded the results
on a fluorescent screen placed underneath the sample. Not only did they observe a
diffraction pattern which would confirm the wave like nature of electrons, but the
diffraction behaviour obeyed the familiar Bragg law, albeit for a very small Bragg
angle. Davisson and Germer [DG27] in US observed electrons diffraction using a re-
markably different set up (and rather mechanically complex). They used low energy
electrons (30–600 eV) which scattered, and diffracted from only the top layer of atoms
of a crystalline sample. This approach placed the basis of what will become low en-
ergy electron diffraction (LEED) microscopy.

These observations provided the experimental means for the development of quan-
tum mechanics, but more, more applicable to our story, marked the dawn of elec-
tron microscopy. Similarly to X-ray diffraction crystallography, electrons, with a wide
range of energies and therefore wavelength, as we have seen, could now be used
to study crystal structures. Electrons show a number of advantages over X-rays in-
cluding the obvious smaller wavelengths meaning potential higher spatial resolution.
From Thomson’s experiment it becomes readily apparent also the fact that electrons
are diffracted much more strongly than X-ray, requiring only small interaction vol-
umes which means electron microscopy would easily lend itself applicable to the
characterisation of micro-structures.

Before that would happen in practice, it became apparent that the diffraction the-
ory must again be expanded to accommodate for this stronger and more complex
interaction with matter of charged electrons. Indeed, a number of dynamical theo-
ries for electrons have been developed over the years all carrying the legacy of X-ray
diffraction theoretical interpretations.

Electrons diffracting through crystals gives access to a plethora of information
and diffraction signals. When, in 1928, Shoji Nishikawa and Seishi Kikuchi directed
a beam of 50 keV electrons on a calcite sample at a grazing incidence of 6◦ diffraction
was a phenomena associated with spots. But they have seen “... black and white lines
in pairs due to multiple scattering and selective reflection” which we now recognise
as diffraction patterns.
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A number of studies quickly followed the investigation of these band features in
electron diffraction. Notable here is that in 1937 Boersch [Boe37] (paper in German) al-
ready proposed that these observations could be explain using von Laue’s dynamical
theory of electron diffraction. By 1948, a number of models have already been pro-
posed to explain the full range of features in the Kikuchi patterns. Artmann [Art48]
(paper in German) used the reciprocity law and solved the Schrödinger equation for
bound electrons in the three dimensional crystal potential to predict with good accu-
racy the intensity profile and geometry of Kikuchi bands.

While a beautiful physics experiment, electron diffraction would have lacked prac-
tical application before the development of the electron microscope; first the direct
mode, where electrons penetrated through a sample and the image was collected on
the other side (TEM) and, a few years later, the scanning mode, in which the incident
electron beam scans over the sample in a raster manner and the backscattered elec-
trons are recorded one “pixel” at a time to form an image (SEM). More insights could
be derived now from the electron signal. The diffraction spots observed in the TEM
or when at a grazing incidence angle in the SEM1 were identified to be closely related
to the crystal structure.

In 1967, yet another crystal structure signal was observed in the SEM by Coates [Coa67]:
the dependence of the backscattered electron yield on the orientation of the crystal
with respect to the incident beam; what future microscopists will label as electron
channelling patterns (ECP). The same year Booker et al. [Boo+67] gave an qualitative
explanation of the phenomenon, comparing the “bands of contrast” with fringes ob-
served from bent thin foils in TEM. It was, nevertheless, clear that this measurement
could provide information on the bulk crystal structure and orientation and expand
the toolkit for material characterisation.

The timely development of models and computer-aided indexing solutions for
patterns from all seven crystal systems meant that fully automated EBSD could re-
place X-ray pole figure measurements for texture analysis avoiding the limitation that
come with X-ray analysis where the sample is tilted through large angles. The model
developed by Howie and Whelan for electron diffraction intensity predictions in the
TEM could be easily be modified and implemented on a computer, as Hirsch had
shown, to account for dislocations displacement fields and therefore predict disloca-
tion contrast in transmission mode open the world of defect characterisation.

However, it was not immediate that the spatial resolution of the SEM overtook
that of the optical microscope; it was only in the late 1970 that we can talk about

1 Both conditions in which the crystal volume with which the electron beam interacts is small enough
to approximate the behaviour to kinematical diffraction.
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high resolution SEM (HR-SEM) equipped with a field emission gun that could reach
the same resolution as the TEM. Both of these developments were instrumental in
achieving experimentally what Booker [Boo+67] predicted, namely the detection of
individual dislocation in the SEM. We will talk more about the short history of ECCI
in the next chapter.

It transpires that even for far from perfect crystals, electron diffraction can provide
great insight. By scanning over a micro-granular crystal in the SEM and recording the
EBSD image for each pixel, one can pick up the orientation of individual grains using
orientation indexing techniques. In the world of material science this is extremely
powerful as a tool for mapping the quality of a new material in terms of its grains.
If the detector is placed in the SEM such that mostly forward scattered electrons are
collected, then one can obtained Kikuchi lines (EBSD) from a very small crystal vol-
ume or, in the language of microscopy, high spatial resolution. We will talk more in
Chapter 5 about the novel Kikuchi diffraction technique, known as TKD, that can in-
crease the spatial resolution even further allowing the study of truly nano-structural
materials.

By the late 80s and early 90s, with the development of computers, we start talking
about pattern indexing software systems. A number of companies have focused on
developing modern EBSD systems packaged with indexing software appeared and
experienced reasonable success catering to the industry’s requirements. Unfortu-
nately, it also marked the steady decline of academic interest in open electron diffrac-
tion software. In Chapter 5 I describe one such unicorn, and how the TKD modality
was implemented and what the models are predicting.

In about the same time when EBSD was becoming popular in the world of ma-
terial science, a new SEM diffraction technique was also gaining traction. If the ge-
ometry was such that the incident beam was close to a Bragg condition, high contrast
around small crystallographic defects could be observed in the recorded images, sim-
ilar to the case in TEM. This technique which will be known as electron channelling
contrast imaging (ECCI). Since Booker already hinted at theoretical interpretation of
these effects in relationship with the available Darwin-Howie-Whelan model, the next
obvious step is to extend and implement the dynamical model such that it takes into
account such small phase perturbations and can predict contrast profiles for disloca-
tions observed in SEM. This is exactly what I endeavour to do in Chapter 4.
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3.2 Kinematical versus dynamical theory

The geometrical or kinematical diffraction theory, developed for X-rays, assumes that
each incident wave is scattered only once in the sample and all other interactions can
be ignored. This, in turn, implies that 1) the amplitude incident on each of the diffrac-
tion centres is the same and 2) the sum of the diffracted amplitude is the sum of in-
dividual amplitudes diffracted by each diffraction centre. Therefore, the geometrical
phase difference between diffracted beams is the main contributor to the diffraction
pattern and the distribution of diffracted amplitudes in reciprocal space is the Fourier
Transform of diffraction centres in real space.

The integrated elastically scattered intensities predicted by the kinematical theory
are proportional to the square of the structure factor and also with the crystal vol-
ume with which the incident wave interacts. Because no loss of amplitude is taken
into account, the kinematical theory predicts that as the interaction crystal volume
increases to infinity so would the intensity of the diffracted beam. This is obviously
nonsensical for anything but very small crystals. We can conclude that the kinemati-
cal approach holds well only for relatively weak interactions (X-ray interaction with
matter) and/or small crystals. Darwin [Dar22] extended this theory and showed it
can also be applied to large but defected crystals. Additionally, there is no phase in-
formation tracked in the kinematical theory and this becomes important for multiple
reflections.

TABLE 3.3: Kinematical vs. dynamical diffraction theories.

Kinematical theory Dynamical theory

weak interaction strong interaction
small crystal OR large defected crystal infinite crystal
single scattering multiple scattering “pendellösung”
assumes no loss takes loss into account
no phase information carries information about phase
intensity ∝ |Fhkl |2 intensity ∝ |ψg|2

Electrons manifest wave properties similar to those of X-rays and their diffraction
behaviour in crystals is in many ways analogous to that of X-rays. Nevertheless, it
should be obvious by now to the careful reader that the single scattering approxima-
tion of the kinematical theory will not be suitable for the strong interactions of elec-
trons in crystals composed of more than a few layers. For these reasons the dynamical
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diffraction theory for fast electrons has been developed and applied to quantitatively
interpret electron diffraction patterns.

3.3 Diffraction geometry

Having set the context of diffraction as a means of identifying the crystal structures of
elements and compounds, we will now explore further the governing rule of the phe-
nomena, that of the Bragg’s law. On page 32 I reminded the reader of the geometrical
conditions for constructive interference to occur. The condition was given in terms of
real space parameters which is why this form is also known as the real space Bragg’s
condition.

But we can translate the diffracted beam in Fig. 2.10 such that it has the same
origin as the incident beam as shown in Fig. 3.1. Here we label the incident beam
wave vector by k0 and the diffracted beam wave vector by kg. Their origin is denoted
by C. From the definition of elastic scattering processes, we know that the length of
wave vectors k0 and kg must be the same: |k0| = |kg| = 1/λ. It is interesting to write
out the distance OG between the endpoints of these vectors:

OG = |k0| sin θB + |k0| sin θB =
2 sin θB

λ
=

1
dhkl

= |ghkl |.

where we made use of Bragg’s law in the penultimate equality.

3.3.1 Bragg’s law in reciprocal space – Ewald sphere

Now that we have reviewed all the relevant physical names we can rewrite the Bragg’s
law in terms of parameters defined in the reciprocal space:

kg = k0 + g. (3.1)

With this equality Ewald showed that we can rephrase Bragg’s equation to say: If
we consider a sphere of radius |k0| = 1/λ centred at the origin of the incident beam vector,
then a plane (h k l) will diffract the beam if the reciprocal lattice point ghkl lies on that sphere.
This reciprocal space geometrical construction is known as the Ewald sphere. Even
though we will relax this diffraction condition very soon, the Ewald sphere remains
a core tool when talking about diffraction.

For instance, when we rotate or tilt the sample with respect to the incident beam
until we hit a diffraction condition, we move the incident beam wave vector with
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FIGURE 3.1: Ewald sphere construction in the exact Bragg condition.

respect to the lattice, and with it the Ewald sphere, until a reciprocal space lattice
points lies on the the sphere. Note that this is a 3D construction and we only show in
the figure above a 2D projection of it.

The lengths in Fig. 3.1 are also grossly exaggerated. For high energy electrons
the wave vectors are long with respect to a much denser lattice than shown here.
Drawn to scale, the portion of the Ewald sphere showing first order diffraction will
be almost flat and the likelihood of multiple lattice points lying on the sphere would
be somewhat increased.

Knowing all its parameters we can also write out the equation of the Ewald sphere.
If we set the origin, O, to be to be the endpoint of the incident beam wave vector, then
the centre of the sphere is at position −k. For any reciprocal lattice vector q, we can
tell if it lies on the Ewald sphere if the following is true:

q · (2k0 + q) = 0.

When we enforce g to be on the Ewald sphere and use Eq. 3.1, the above becomes:

g · (2k0 + g) = g · (k0 + kg) = 0. (3.2)

This is known as the Bragg equation in reciprocal space and it tells us that the vector
k0 + kg must be on the plane normal to g for the exact Bragg condition to be met (see
Chapter 2 in ref. [DG03] for more details).

As useful as the reciprocal space description of the diffraction condition is, we
need to introduce a real space parameter which will prove essential: the normal to
crystal sample surface.
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3.3.2 Diffraction geometries

FIGURE 3.2: Scattering geometry cases relevant in electron diffraction.
The angles have been grossly exaggerated.

Let us introduce two new angles: θ0 as the angle between the incident beam direc-
tion and the sample normal, n, and, reversely, θg as the angle between the diffracted
beam direction and the sample normal (see Fig. 3.2). Depending on the general di-
rection of the diffraction planes with respect to the crystal sample surface, electron
microscopists differentiate between:

• symmetric Bragg case (Fig. 3.2 a)) : when the diffracted beam escapes the sample
through the same surface the incident beam entered. This geometry is defined
by the film normal being also the normal to the diffracting planes {h k l}. The
relationship between the angles is:

θ0 = θg = π/2− θB.

• symmetric Laue case (Fig. 3.2 b)) : when the diffracted beam escapes from the bot-
tom of the sample. This geometry is defined by the film normal being parallel
to the diffracting planes {h k l}. The relationship between the angles is:

θ0 = θg = θB.

• non-symmetric Laue case (Fig. 3.2 c)) : is a generalised form of the one above.
There is now a nontrivial angle between the diffracting planes and the surface
normal. The only relationship we can write between the three angles is:
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θ0 + θg = 2θB.

The form of dynamical theory commonly used in TEM diffraction contrast de-
scription is based on the symmetric Laue case [HW61]. This geometry is assumed
valid for a large range of diffraction conditions that deviate from the perfect sym-
metric case. Whelan and Hirsch [WH57] showed that the angle of a stacking fault2

introduced in a perfect crystal does not affect two beam dynamical calculations of
diffraction intensities. Furthermore, Saldin et al. [SWR78] showed that the Darwin
equations predict very small errors for a wide range of incident angles when the non-
symmetric Laue case is approximated to a symmetric one. A good summary of this
discussion was published by Sheinin and Jap [SJ79] who also took the conversation
further. They used a Bloch wave formalism to test the limits of this approximation
and concluded that for strong beams3 there is no significant difference between the
predictions in the symmetric and non-symmetric Laue cases.

3.4 Diffraction intensity

We have explored so far the geometrical conditions for constructive interference, i.e.,
diffraction, to occur in a crystal. But, as we will see on page 73, while a necessary
condition, Bragg’s law being satisfied is not sufficient for non zero intensity along
a given direction. This is because Bragg’s law gives us information only about the
lattice orientation with respect to the incoming beam direction. However, we are free
to decorate this lattice in more than one way, and the motif can end up scattering out
of phase with the planes.

It therefore becomes important to understand the probability of scattering first
from a single atom. Bragg’s law remains the same for photons, electrons or neutrons
even though the Bragg angles can vary greatly, depending, as they are, on the energy
of the incoming beam. But the scattering physics and resulting intensity is dependent
on the type of incident particle. We have seen in Table 3.1 on page 54 that while X-rays
interact only with the electron cloud, electrons are scattered by both the cloud and the
atom nuclei. In the next pages we will see how to calculate scattering probabilities,
i.e., scattering factors, for a number of common directions in binary group-III nitride
systems.

2A stacking fault is a planar defect telling us that for a given set of planes of atoms there is an error
in their stacking structure.

3 Strong beams as opposed to weak beam conditions where the deviation from the exact Bragg con-
dition is quite large. More about this on page 79.
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Next, on page 73 we put all atoms on a unit cell and calculate the total scatter
probability as a sum of all their contributions for a given direction. In the process
we will introduce the useful mathematical concept of structure factor which describes
how the positions of the atoms in the unit cell affect the intensity of the diffracted
beam.

The high energy of the incoming beam simplifies the crystal to the behaviour of
isolated spherical point scatterers. The parameters discussed in this sections are im-
portant because they constitute the only information we track about the crystal struc-
ture when we model electron diffraction. On page 77 we discuss how to calculate
a crystal electrostatic potential that takes into account all this directional scattering
information.

Finally, on page 75, we calculate the structure factors for a few nitride systems and
discuss the systematic absences present in wurtzite.

3.4.1 X-ray scattering by electron charge density and the X-ray scattering
factor

When a linearly polarised, monochromatic plane-wave X-ray beam is incident upon
a stationary atom of atomic number Z, each of its Z electrons will scatter the X-ray
waves. The oscillating electric field of the incident X-ray beam excites the individual
electrons of mass m and charge e causing them to oscillate at the same frequency as the
incident radiation. In turn, the individual electrons, now in the form of accelerated
charge, will become a source of spherically radiated X-rays of frequency equal to the
incident one. Multiple scattering processes can occur including incoherent scattering
or Compton processes but for now we will only consider coherent scattering.

The intensity of a scattered radiation at a distance r from the scattering site of the
individual electrons in terms of the incident radiation intensity I0 and the scattering
angle θ is well described by Thomson’s equation:

I = I0
K
r2 sin2 θ, (3.3)

which highlights the high directionality of coherent scattering. That is to say, most of
the intensity of scattered X-rays will be in the forward direction. In the above equation
K is a very small constant given by:

K =
( µ0

4π

)2
×
(

e4

m2

)
= 7.9× 10−30m2
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indicating that in practice scattering effects can become measurable only when a large
number of electrons (> 1023) are scattering.
In the forward direction, each of the Z
electrons will scatter the X-rays beam
with an identical phase change of π

and no destructive interference (see
Fig. 3.3 a)). Scattering in any other
direction, θ 6= 0, will result in path-
way differences between X-rays scat-
tered by different electrons. The loss
of intensity due to destructive interfer-
ence will translate to a reduced scat-
tered intensity when compared to the
forward scattered case (see Fig. 3.3 b)).

FIGURE 3.3: Schematic dia-
gram of a) forward scatter-
ing and b) scattering by an
angle θ. Note the pathway
difference marked by thick

blue line in b).

It is now time to introduce the atomic scattering factor, f X, for a given direction
θ and wavelength λ as the ratio of amplitude scattered by an entire atom to the am-
plitude scattered by only one electron in the same direction. Equivalently, the atomic
scattering factor can be thought of as the probability amplitude that the atomic po-
tential of an atom will scatter an incident wave with wave vector k0 into the direction
k′. But this probability is the Fourier transform of the atomic potential that does the
scattering, which in the case of incident X-rays is the electron charge density. The
International Tables of Crystallography [Aut06] contain tabulated calculated scattering
intensity values for all atoms. Since it would be tedious to list the scattering factor
values for all possible θ and λ, it is often more convenient to list them as curve fit-
ting parameters. The scattering factor fitted function as a function of the variable
s = sin θ/λ is then given by:

f X(s) = Z− 41.78214[Å
2
] s2

N

∑
i=1

aie−bis2
(3.4)

Table 3.4 lists the dimensionless Doyle-Turner [DT68] ai, bi parameters values (N =

4) for a few group III-nitrides semiconductor elements: N, Al, Ga and In. Note that
the values in the table are given assuming s is expressed in Å

−1
and λ is expressed in

Å.
The behaviour of the X-ray scattering factor, f X

el., is shown in Figure 3.4 for N, Al,
Ga and In. The coloured, vertical lines indicate the s values for the most common
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TABLE 3.4: Doyle & Turner atomic scattering parameters [DT68] for
a few elements. These values were calculated assuming that s is ex-

pressed in Å
−1

.

Element Z a1 b1 a2 b2 a3 b3 a4 b4

N 7 0.572 28.847 1.043 9.052 0.465 2.421 0.131 0.317
Al 13 2.276 72.322 2.428 19.773 0.858 3.080 0.317 0.408
Ga 31 2.321 65.602 2.486 15.458 1.688 2.581 0.599 0.351
In 49 3.153 66.649 3.557 14.449 2.818 2.976 0.884 0.335

planes in wurtzite materials (see Fig. 2.6). For instance, the first vertical line (orange),
reaching the In line, corresponds to the s value for the c-plane in InN. The scattering
factor for θ = 0 is the atomic number, and as expected, the curve decreases rapidly
with increasing scattering angle (or decreasing wavelength) or, increasing interplanar
distance, dhkl . The code used for these plots and the interactive images can be found
in the Jupyter notebook scatterFactor.ipynb.

We can observe that the light N atom will scatter fewer X-rays compared to the
heavier elements, but at a rate that is consistently comparable to that from Al atoms.
We can already conclude that the two species of atoms in AlN will scatter X-rays at
comparable rates ( f X

A l/ f X
N = 1− 2) and that this ratio depends only lightly on the

crystal direction as the two curves are almost parallel. In the scatterFactor.ipynb I
also plotted the scattering factors relative to f X

N to make these ratios more readable.
In contrast, with the increase in mass of the group-III element (MAl < MGa <

MIn), the rate of scattering becomes significantly different, with Ga scattering X-rays
4-5 times more efficiently than Al, such that we can expect most of the signal to have
scattered from the heavy element. Not only this, but for these heavier group-III el-
ements compounds, the more closely packed the planes are (larger s) the more the
scattering from the heavier element dominates when compared to scattering from N.

Note that I only show the curves here for for values of s ≤ 0.5 Å
−1

(dhkl ≥ 1 Å)
which is large enough for some of the more common first order reflections. Bear in
mind that if we were interested in scattering rates from the higher order reflections
we would have to look further to the right on this graph (for AlN s220 = 0.64 Å

−1
).

3.4.2 Electron scattering by a single atom and the electron scattering factor

As far as the incoming electron beam is concerned, the electrostatic potential Vatom(r)
of one atom in the specimen is related to its spherically symmetric charge distribution
through Poisson’s equation:
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FIGURE 3.4: Atomic X-ray scattering factors for In, Ga, Al and N with
superimposed vertical lines indicating the s-value for the most com-
mon planes in nitrides. The vertical line extend to the group III ele-
ment curve which makes up the IIIelN compound (i.e., InN, GaN and

AlN in this order) for which shkl was computed.

∆Vatom(r) = −
|e|
ε0

(ρn(r)− ρe(r)) , (3.5)

where ∆ is the Laplacian (second order differential) operator. It will contain a contri-
bution from the point charge nucleus ρn and a contribution from the electron cloud
charge distribution ρe.

This does not take us very far since analytical solutions for the electron charge
density can only be written for hydrogen. Luckily, the X-ray scattering amplitude cal-
culated on the previous page (Eq. 3.4) is the Fourier transform of the electron charge
density ρr(r) so all that is left to do is to calculate the inverse Fourier transform of the
X-ray diffraction amplitude.

We are now ready to define the atomic scattering factor for an electron beam f e(∆k),
similarly to the case of an incident X-ray beam, as the probability that an incident
plane wave with wave vector k0 is scattered by the atomic potential Vatom(r) in the
direction k′. Where we introduced the momentum transfer vector ∆k = k′ − k0.
Or, equivalently, we can write the probability as the Fourier transform of the atomic
potential distribution Vatom(r):
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f e(∆k) ≡
∫∫∫

Vatom(r)e−2πi∆k·rdr (3.6)

Since the atoms studied are part of crystals we can use Bragg’s condition, k′ =
k0 + g. We will again make use of the useful variable transformation s = sin θ/λ,
which at the Bragg angle has the magnitude:

|s| = sin θ

λ
=
|ghkl |

2
=

1
2dhkl

. (3.7)

Making the approximation that the nuclear charge density can be mathematically
written as a delta function of weight Z, we are now ready to inverse Fourier transform
all the quantities in Eq. 3.5 to obtain:

f e(s) =
|e|

16π2ε0

1
|s|2

[
Z− f X(s)

]
. (3.8)

The reader might recognise equation 3.8 to be the Mott-Bethe formula. The use
of the variable s defined in Eq. 3.7 means that for a given crystal structure the atomic
scattering factor is only “sampled” at scattering vectors corresponding to half the
reciprocal lattice vectors ghkl . It also means that, since for a given crystal structure the
magnitude of s is independent of the wavelength of electrons, the electron scattering
factor is independent on the experimental conditions.

If we use the convenient Doyle-Turner parametrised form of the X-ray scattering
factor given in Eq. 3.4 we can rewrite the Mott-Bethe formula to be:

f e(s) = 0.04787801[VÅ
3
]

N=4

∑
i=1

aie−bis2
, (3.9)

where we wrote the electron scattering function in units of VÅ
3

in this form.
This expansion is accurate for values of s up to 20 nm−1. Values for the electron

scattering factors in a large number of different materials can also be found in the
International Tables for Crystallography [WP99]. Care must be taken when comparing
values from different sources since the factor 0.0478701 can be present or not in the
version of Mott-Bethe equation. Additionally, it is also possible for the pre-multiplier
factor to be given in units ofVnm3 resulting in the function having the same units.



Chapter 3. Diffraction in a perfect crystal 71

FIGURE 3.5: Atomic electron scattering factors for In, Ga, Al, N with
superimposed coloured lines indicating the most common planes for

nitrides (see Fig. 2.6).

The derivation of Eq. 3.9 made the assumption that the atom is completely still
(or at temperature of 0 K). Nevertheless, we have already covered in Section 2.1.2
on page 17, that this is a very gross assumption and for any true attempt of under-
standing scattering we ought to take into account atomic vibrations. We therefore use
Eq. 3.10 to correct the scattering factor for isotropic, thermal atomic vibrations so we
can rewrite the corrected Mott-Bethe formula as:

f e
T(s) = 0.04787801

N=4

∑
i=1

aie−bis2
e−Bel.s2

, (3.10)

where Bel. is the Debye-Waller factor for the given element which we calculated on
page 17 for some of the nitride elements.

Figure 3.5 plots electron scattering factors (Eq. 3.9) for Al, Ga, In and N in con-
tinuous lines together with the DW corrected versions (Eq. 3.10) at 300 K in dashed
lines. We can see the overall behaviour is not completely dissimilar from that of X-ray
scattering in Fig. 3.4. See the description for that figure on how to read the verti-
cal lines. The code used for this plot can be found, as well, in the Jupyter notebook
scatterFactor.ipynb.
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FIGURE 3.6: Relative atomic electron scattering factors for In, Ga, Al
in terms of scattering from N atoms. The superimposed coloured lines
indicating the most common planes for nitrides are the same as before.

As discussed on page 54 and showcased in Table 3.1, electron beams scatter sig-
nificantly more in matter compared to X-rays which also transpires when comparing
the values on the y-axes. This is due both to their smaller wavelengths and the fact
that they interact with the entire atom not just the electric field. The added delta
function-like nucleus potential makes the electron scattering factor much more sensi-
tive to the direction of scattering and we can see the curve decays more rapidly than
in the X-rays case.

The DW corrections become significant the more the interplanar distances are re-
duced. That is to be expected since the more comparable the interplanar distance be-
comes to the spatial range of the atom potential the more the point average position
approximation breaks apart. The correction continues to become more significant as
we go to higher values of reciprocal interplanar distances (shkl), e.g. for higher order
reflections. The other factor that affects the correction factor is the size of the atom in
the first place, with heavier atoms requiring larger correction factors. We can see that
for the chosen range of s-values, the correction factor for N is about 1% and therefore
almost indistinguishable in these figures. For In, however, it becomes close to 10%
especially on the right side of the x-axis.

In Fig. 3.6 I show the same electron scattering factors from Al, In and Ga but this
time relative to the scattering factor for N atoms in order to highlight how the rate of
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scattering changes for different planes in binary compounds. For AlN the electrons
scatter 1-3 times more frequently from the Al atoms than from the N atoms. This
rate is highly sensitive to the direction of scattering such that for larger interplanar
distances (c-plane) the scattering intensity is made of up two parts from the group-III
element scattering and one part from N. At smaller interplanar distances the scatter-
ing from N and Al is almost equal.

Because the electron scattering factor for N decays faster with s than that for Ga
and In, the relative scattering for these heavier group III elements goes up after about
s = 0.2 Å. Such that at small interplanar distances, e.g. higher order reflections, scat-
tering from the heavier element in the compound dominates 3-7 times that from N
atoms.

3.4.3 Scattering by the unit cell and the electron structure factor

Now that we know how charged particles scatter from a single atoms and from lattice
planes, we can tackle a full unit cell by taking into account the relative positions of all
the atoms in it. More practically, we need to address how we account for the relative
phase of scattering from two atoms not belonging to the same family of planes. I’ll
show here the derivation from Structure of Materials ... [DGM12] pg. 298 which uses,
as a working example, an atom places in between two planes.
Let us revisit Fig. 2.10, which I up-
date here in Fig. 3.7. Beams 1) and
2), in blue, are scattered in phase
since the incident angle θ = θB sat-
isfies Bragg condition. Let this set of
planes be (1 0 0). If we now add an
atom at position r such that it lives
on the orange plane, let it be (2 0 0),
in between the (1 0 0), let us inves-
tigate how much destructive inter-
ference will it contribute to the scat-
tered signal when a beam 3), in or-
ange, scatters from it.

FIGURE 3.7: What happens to
the Bragg’s law when we add an
atom in between planes? [Based

on Fig. 12.4 in [DGM12]]

To answer this, section 2.1.8 on page 32 already prepared us to think about the
difference in phase between beams 1) or 3) and beam 2). The path difference between
the coherent scattered beams 1) and 2) is a full wavelength λ. It turns our that the
difference in phase between beam 1) and 3) is independent on where on plane (2 0 0)
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the atoms sits, all that matters is the distance to the planes (1 0 0). For plane (2 0 0) the
extra atom sits at a distance dhkl/2 from planes (1 0 0). This distance can be written as
the projection of vector r onto g100, i.e., g100 · r. We can then transform this distance to
a phase by multiplying by 2π:

φ1→3 = 2πr · g100 = π

This means the scattered beam 3) will be out of phase with 1) and 2), resulting in
destructive interference. And this despite the fact that the Bragg condition is geomet-
rically satisfied for (1 0 0) planes!

The phase equation above can be generalised to scattering from any atom at posi-
tion r = (x, y, z) living outside a set of planes (h k l):

φ = 2π r · ghkl = 2π(hx + ky + lz)

We are now ready to write out the full unit cell to the total scattering from planes
(h k l) as the sum over the contributions of all the atoms:

Fhkl =
N

∑
j=1

f e
j (s) eiφj =

N

∑
j=1

f e
j (s)e

2πirj·ghkl =
N

∑
j=1

f e
j (s)e

2πi (hxj+kyj+lzj) (3.11)

where the index j in the sum goes over all the N atoms in the unit cell and s = θhkl
λ .

We can generalise the sum over all the atoms in the fundamental unit cell, to be
the sum over the atoms in the asymmetric unit cell, Na, times a sum over all the
equivalent positions of those atoms in the fundamental unit cell (i.e., orbit)[DG03].
We can write the second sum with the help of the Seitz symbol (D|t) (see page 172 in
Appendix C):

Fhkl =
Na

∑
j=1

f e
j (s) ∑

(D|t)
e2πighkl ·(D|t)[rj] (3.12)

This sum is known as the structure factor and, as we have seen in Table 3.3 it is
used in the kinematical model to predict the intensity of diffracted electrons. We will
talk about its prediction for nitrides in the following section.
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3.4.4 The structure factor in wurtzite nitrides

It is finally time to fill in Eq. 3.12 or Eq. 3.11 the position of the atoms in a wurtzite
unit cell, Eq. 2.43 to Eq. 2.46 (given on page 51), and derive some structure factors for
a few ghkl vectors:

wurtziteFhkl = f e
I I Iel

[
(−1)2( h

3+
2k
3 ) + (−1)2( 2h

2 + k
3+

l
2 )
]

+ f e
N

[
(−1)2( h

3+
2k
3 + 3l

8 ) + (−1)2( 2h
3 + k

3+
7l
8 )
]

= (−1)
2h
3 (−1)

4k
3

(
f e
I I Iel

+ (−1)
3l
8 f e

N

) [
1 + (−1)(

2(h−k)
3 +l)

] (3.13)

where f e
I I Iel

is the scattering factor of the group-III element and we made use of the
identity e−iπn = (−1)n in the second step.

Table 3.5 shows computed values of Fhkl for the three nitride systems discussed so
far in a number of orientations. These values are in general complex and I show them
here in the Euler notation form Fhkl = |Fhkl |eiφ where |Fhkl | is the absolute value and
φ the phase. If the reader is interested in calculating the structure factors for different
directions, my script can be found in structureFactor.ipynb and it is just a matter
of changing the h, k, l values. In the kinematical diffraction theory, often used in X-ray
diffraction predictions, the diffracted intensity is simply:

Ig = FgF∗g = |Fg|2 (3.14)

It is important to acknowledge the limitations of these values since many assump-
tions were made to obtain them, not the least that the crystals in questions are perfect.
If this were the case, perfect semiconductor crystals being a common phenomenon,
this entire project would be less worthwhile. The numbers in this tables are to be
read as general behaviour, remembering that a different parametrisation would yield
slightly different numbers (see chapter 7 in ref. [TC39] for longer discussion).

Another observation is that the phase remains the same for a family of planes
of the same crystal structure regardless of the atoms that populate it and only the
magnitude of the structure factor changes. This observation remains true for different
multiplicities as well (see (1 1 . 0) and (2 2 . 0)).

A first observation is that with the increase in the atomic mass of the group-III
element, for the same set of planes, the structure factor increases, as we would expect
from the scattering factor behaviour.
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TABLE 3.5: Structure factors, Fhkl = |Fhkl |eiφ, for a few different planes
in wurtzite nitride systems.

Structure factor Fhkl [VÅ
3
]

AlN GaN InN

(h k . l) |Fhkl | φ |Fhkl | φ |Fhkl | φ

(0 0 . 0) 774.67 0 891.01 0 1209.21 0
(0 0 . 1) 0 0 0 0 0 0
(0 0 . 2) 155.62 0.69 275.01 0.38 491.09 0.22

(2 1 . 0) 207.82 0 324.81 0 505.58 0

(1 0 . 0) 193.10 3.14 261.85 3.14 386.70 3.14
(2 0 . 0) 85.63 3.14 138.85 3.14 218.61 3.14

(2 0 . 1) 118.03 -1.08 201.02 -1.28 327.02 -1.37
(2 2 . 1) 118.03 2.07 201.02 -1.28 327.02 -1.37
(2 0 . 1) 118.03 -2.07 201.02 -1.86 327.02 -1.78

(1 1 . 2) 52.57 -2.34 105.50 -2.76 194.67 -2.92

(3 0 . 1) 0 0 0 0 0 0

Another observation would be that the scattering factor for planes belonging to
the same family is not required to be the same. We can see that for (2 0 . 1) and (2 0 . 1)
planes which have the same absolute scattering factor value but do display different
phases. This makes sense because for different planes, even those belonging to the
same lattice symmetry, the atoms can be arranged at different positions.

A more subtle observation is that the interplanar distances are no longer a good
indicator of the behaviour of the diffraction intensity behaviour (see Eq. 3.14). In
this case, the a-plane (1 1 . 0) yields a higher scattering factor then r-plane (1 1 . 2) with
lower interplanar distance. This is because some of the scattering on the r-planes leads
to destructive interference as discussed in the previous section.

An important note we will address here is the symmetry of the structure fac-
tor. For this we will invoke Friedel’s law and its application to non-centrosymmetric
systems [Ser+73]. It is straightforward that Fg = F∗−g which can be rewritten as
FgF∗g = F∗−gF−g or Ig = I−g. This is Friedel’s law and it tells us that the intensity
calculated as proportional to the structure factors absolute value will always show
inversion symmetry. This is the behaviour seen for planes (2 0 . 1) and (2 0 . 1). Nev-
ertheless, for non-centrosymmetric systems, like the ones discussed here, this is not
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what we expect. More generally, this kinematical description of the diffracted inten-
sity, while suitable for predicting the scattering behaviour from a centrosymmetric
system, fails to predict the break in symmetry of the non-centrosymmetric ones. This
is yet another reason why we have to talk in the following sections about dynamical
models for the wurtzite systems.

The last observation we will discuss here is that the structure factor is exactly zero
for some of these planes ((0 0 . 2) and (3 0 . 1)) even if we are strictly respecting their
Bragg condition. We will talk more systematic absences rules below.

Systematic absences

Looking at the last form of the equation and keeping in mind that h, k, l ∈ Z we
can find the rules for vanishing scattering factors, i.e., extinction criterion. The square
bracket in Eq. 3.13 tells us that there is exactly one condition for the values h, k, l for
which the value of the structure factor is zero, namely:

2(h− k)
3

+ l = 2n + 1 (= uneven)

For this sum to be uneven the first factor must be an integer, and can only be an
even integer and, therefore, the second term must be even. We can then conclude that
even when the Bragg condition is satisfied if the following relationships are satisfied
simultaneously between the values h, k, l the diffraction intensity will be zero:

h− k = 3n AND l = 2m + 1

where m, n ∈ N. In Table 3.5 we have seen that these conditions are met for (0 0 . 1)
and (3 0 . 1).

Alternatively, we can say that for any departure from these conditions the struc-
ture factor will be non-zero, i.e., reflection criteria:

h− k = 3n + 1 OR h− k = 3n + 2 OR l = 2m

These are, reassuringly, the same conditions given in the Tables for the space group
P63mc (see page 183).

3.4.5 Scattering by an infinite crystal

We have previously talked about the interaction of a beam of high energy electrons
with a crystalline sample as being mathematically represented in the Schrödinger’s
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equation by the electron interaction with the sample’s electrostatic Coulomb potential
V(r). Finding the correct potential for a given crystalline structure is a fundamental
problem in solid-state physics usually tackled by so-called first principles methods.
These methods are notoriously expensive when solving even small systems since they
aim to provide a solution for the many body problem that is the electron-electron in-
teraction of the crystal structure. Fortunately for electron microscopists, the high en-
ergy of the incoming beam simplifies the crystal to the behaviour of isolated spherical
point scatterers, where each scatterer is a the potential of a single unit cell.

Since the unit cells live on the lattice, one way to write out an infinite lattice in
maths form is as a set of unit-weight delta functions located at the lattice points:

L(r) = ∑
u,v,w

δ(r− tuvw) =

{
1 if ∃ u, v, w ∈ Z such that r = tuvw

0 otherwise
(3.15)

where tuvw = ua + vb + wc is the translational lattice vector. The lattice points them-
selves correspond to single unit cells and their own potential is described by the N
atoms in the unit cell located at positions ri:

Vunit cell(r) =
N

∑
i=1

Vatomi(r− ri) (3.16)

The full lattice potential of an infinite crystal is an instance of the unit cell potential
at each lattice point. This can be written as the convolution4 of the single unit cell
potential with the area of delta functions potential of the crystal lattice:

VIC(r) = Vunit cell(r)~L(r) (3.17)

By construction, VIC(r) has the periodicity of the underlying Bravais lattice:

VIC(r) = Vunit cell(r + tuvw), ∀ Bravais lattice vectors tuvw = ua + vb + wc. (3.18)

This allows us to conveniently expand the potential as a discrete Fourier series.

4 Convolution with a delta function means “copying" the unit cell potential at the position of the
delta function which, here, is every lattice site.
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VIC(r) = ∑
g

Vg e 2πig·r (3.19)

where Vg are the Fourier coefficients of the electrostatic lattice potential correspond-
ing to each set of planes ghkl in the crystal.

It is reasonable to choose Vg to be proportional to Fg since the structure factor
carries the information about directional scattering we want the potential to have (see
Appendix A.1 in Ref. [Rym70] for demonstration of the reasons):

Vg =
Fg

Ω
=

0.04787801
Ω

Na

∑
j=1

e−Bel.s2
N=4

∑
i=1

aj
ie
−bj

i s
2

∑
(D|t)

e2πighkl ·(D|t)[rj] (3.20)

where Ω is the usual unit cell volume and we made use of Eq. 3.10 and Eq. 3.12. This
implies the units for the Fourier coefficient will be <V>.

3.4.6 Scattering by finite crystal

In practice crystals are not infinite, in fact they usually come in rather small sizes.
This affects the form of the crystal potential. Mathematically this can be written as
multiplication by a shape function which has non-zero value only inside the crystal.
The reciprocal lattice points can no longer be represented by delta functions centred
at the points but rather should be approximated to be three dimensional objects. It
also means that the diffraction conditions become more relaxed as we can observe
diffraction behaviour even when slightly off the Bragg angle.

The deviation parameters sg

It, therefore, becomes important to quantify the deviation from the Bragg condition
since it is a core parameter in diffraction. For a thin foil the shape of the reciprocal
lattice point becomes that of a relrod with one dimension of interest: s = sn. If
we redraw Fig. 3.1 and allow a lattice point at distance s from the Ewald sphere in
the direction of the lattice normal to contribute to diffraction we would end up with
Fig 3.8. We can rewrite the Bragg condition ( Eq. 3.1 on page page 62) as:

kg − k0 = g + s, (3.21)

such that the vector g + s is now on the Ewald sphere. Rewriting Eq. 3.2 with this bit
of information:
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FIGURE 3.8: Ewald sphere construction for a positive deviation param-
eter s. n is the normal to the foil.

(g + s) · (2k0 + g + s) = 0

From this we can obtain the length of the vector s which is usually repackaged in
the following form:

s +
s2

2|k0 + g| cos θg
=
−g · (2k0 + g)
2|k0 + g| cos θg

= sg

where sg is known as the deviation parameter and θg is the angle between the normal
to the plane and kg. I will rewrite sg in a final form that would become useful later:

sg =
k2

0 − k2
g

2|kg| cos θg
. (3.22)

3.4.7 Treatment of absorption

The discussion so far applies to perfectly elastic events. However, in real applications,
electrons will have non-zero probability to lose energy during scattering events, what
we call inelastic scattering processes. These electrons will not travel in the direction
predicted by Bragg’s equation but contribute to the image in the form of background
instead.
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In the absence of absorption the potential of the crystal will be a real value. In
order to account for loss of electrons from the diffraction signal to inelastic scattering
processes a complex optical potential can be introduced [GBA66]:

Vc(r) = V + iW = ∑
g

Vg e 2πig·r + i ∑
g

Wg e 2πig·r (3.23)

where the absorption Fourier coefficient, Wg, can be shown to have a form similar to that
of Vg in Eq. 3.20 where the scatter factor f e(s) is replaced by an absorptive factor f ′(s).
The absorptive factor can also be parametrised, this time using the Weickenmeier and
Kohl’s parametrisation [WK91]. This formula I did not implement, but it can be found
as part of EMsoft [DGG13] in CalcUcg.f90.

3.5 Darwin-Howie-Whelan equations

In this chapter we have alluded a few times at the limitations of the kinematical model
and promised to explore a more robust model: the dynamical model. The dynamical
model has, in fact, a long history and diverged into versions optimised for different
applications. A few of these are given in Table 3.6.

TABLE 3.6: Various dynamical models used in electron diffraction.

Model Based on Application

Bethe’s [Bet28] eigenvalue equation
intensity of diffraction
patterns

Cowley-Moddie’s [CM57] multi-slice approach single crystal TEM

Howie-Whelan [HW61]
simultaneous differ-
ential equations diffraction contrast

Van Dyck [VD80] real space approach improved accuracy on
the multi-slice method

For my intents and purposes, i.e., diffraction intensity and contrast predictions,
I will explore only the Howie-Whelan method (HW) in this work since the addition
of dislocation strain is more straightforward than in the other models. For now we
will focus on its predictions in a perfect crystal. Howie and Whelan followed Bethe’s
approach developed for the Bragg case in a perfect crystal with no absorption and
generalised it. For this they needed to find the form of the wavelength of the diffract-
ing particles as they travel in the crystal potential, i.e., solve Schrödinger equation.
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The time independent Schrödinger equation can be written for an electron wavefunc-
tion Ψ of energy eE in a periodic crystal potential V(r) in the form known as the
Helmholtz equation as:

∆Ψ(r) +
8π2me

h2 [E + V(r)]Ψ(r) = 0, (3.24)

where m, e, h are the usual constants and ∆ is the Laplace operator standing for:

∆Ψ =
∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

∂2Ψ
∂z2 .

The meaning of Ψ is taken here to be that the value ΨΨ∗dτ is the probability of finding
the electron in the volume dτ.

Outside the crystal, where the potential term can be taken to be zero, the solution
to the equation above will be in the form of a plane wave (see page 30): ψ0(r) =

e2πik0·r. Inside the crystal, the electrons are diffracted and follow a direction kg =

k0 + g for every reciprocal lattice point g on the Ewald sphere. The general solution
to the equation above must then be a superposition of plane waves, one for each
direction predicted by Bragg’s law.

Ψ(r) = ∑
g

ψge2πikg·r, (3.25)

where ψg is the complex amplitude of the Bragg plane wave g and is the unknown to
be determined.

The crystal potential V(r) can be taken to have the form in Eq. 3.23. It is useful at
this point to separate the zero-frequency real component V0 out of the Fourier series
as it represents the crystal’s mean inner potential and a constant independent of the
diffracting planes. This positive potential accelerates the electrons as they enter the
crystal in a phenomenon known as refraction5.

V(r) + iW(r) = V0 + ∑
q 6=0

Vqe2πiq·r + i ∑
q

Wqe2πiq·r. (3.26)

In the above we have changed the label of the general reciprocal lattice vector g to q
in order to differentiate it from the reciprocal space lattice vector g in Eq. 3.25.

We can also write out the wave vector of the incident electron beam corrected for
refraction by the mean inner potential V0:

5 This is equivalent to the decrease in the speed of light as it enters a medium with a refractive index
larger than that of vacuum.
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|k0|2 = k2
0 = 2me(E + V0)/h2 (3.27)

In preparation for the substitution of Eq. 3.26 in Eq. 3.24 we separate the term V0

using the above identity and add the following shorthand notation:

U(r) + iU′(r) =
2me
h2

{
∑

q 6=0
Vqe2πiq·r + i ∑

q
Wqe2πiq·r

}
(3.28)

Using the 3.25 solution form in the master equation 3.24 and and making substi-
tution 3.26 we get the following:

∑
g

{
∆ψg + i4πkg · ∇ψg − 4π2|kg|2ψg +

8π2me

h2 (E + V0)

}
e2πikg·r

= 4π2 ∑
q 6=0

Vqe2πiq·r + i4π2 ∑
q

Wqe2πiq·r (3.29)

Van Dyck [VD76] has shown that the second order derivative of the complex am-
plitude ψg is negligible for high energy electrons and we can dropped it here. This is
known as the high-energy approximation and Van Dyck showed that it holds for pen-
etration depths up to a few hundred nanometres, depending on the average atomic
number of the atoms in the crystal. For TEM high energy electrons, Howie [HW61]
ignores the first derivative, ∇ψg as well, but we will keep it. Rewriting the equation
above with all these assumptions and using substitution 3.27 we finally obtain:

∑
g

{
ikg · ∇ψg + π

(
k2

0 − |kg|2
)

ψg
}

e2πikg·r = −π ∑
q

∑
g
[Uq + iU′q]ψge2πi(q+kg)·r

(3.30)

Let us have a closer look at the kg · ∇ψg term in the Eq. 3.30 above. This term
can be read as the directional derivative of the Bloch wave g in the direction kg when
in perfect Bragg condition. This means we can reduce the grad operator to only one
derivative with no loss of information. We will assign zbeam to be the electron beam
propagation direction and can be write the dot product as:

kg · ∇ψg =
∣∣kg
∣∣ dψg

dzbeam
cos θB.
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We have to make one final substitution in Eq. 3.30, a trick one. In the second term
of this equation q stands for a general reciprocal vector which could be replaced by
q = g′ − g for instance. This has the effect of changing the variable of the sum from

∑q to ∑g′ . The right hand side in Eq. 3.30 becomes:

RHS = −π ∑
g

∑
g′
[Ug′−g + iU′g′−g]ψg′e2πi(kg)·r

where we also interchanged the variables g and g′.
Both terms look now like a Fourier expansion with the same basis and the same

number of terms. From the properties of Fourier series (see page 34) we know that
the the only way this is true is if the individual terms are equal to each other. Writing
the equation above for every g term in the sum and after some reordering we end up
with:

dψg

dzbeam
− 2πi

k2
0 − k2

g

2|kg| cos θB
ψg = iπ ∑

g′

Ug−g′ + iU′g−g′

|kg′ | cos θB
ψg′ .

This form already tells us that that the change in amplitude of a diffracted wave,
ψg, with penetration depth in the crystal, zbeam, depends on its current value, ψg, but
also the amplitudes of all the other waves, ψg′ , that satisfy the Bragg condition. The
complex electrostatic potential on the right hand side determines how strongly the
excited waves are coupled to each other.

The second term on the left hand side in the equation above reminds us of the
form of the deviation parameter, sg, given in Eq. 3.22 on page 80. The different angle
showing up here ties in the discussion on page 3.2. Only for a symmetric Laue geome-
try we can replace θB = θg. Nevertheless, the error in approximating a non-symmetric
Laue case to a symmetric Laue case is not significant for strong beams.

2πi
k2

0 − k2
g

2|kg| cos θB
ψg = 2πisgψg

Tilting or rotating the sample moves the Ewald sphere and with it the distance be-
tween the reciprocal lattice point and the sphere in the direction normal to the sample,
i.e., sg. For a set of diffracted waves only two non-collinear deviation parameters are
independent of each other. But these independent parameters, which affect directly
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the diffraction behaviour, are experimental variables set by the microscope operator
and while easy to determine in a TEM, are, unfortunately, complete unknowns to the
SEM operator.

Extinction distance and absorption length

We will introduce one final substitution. Dimensional analysis tells us that since
the first term in the equation has units of reciprocal length so must have the last term.
Whenever a term in an equation ends up having simple units, physicists will go and
give it a name. In this case they split it in two and named the first term extinction
distance, ξg−g′ , and the second term absorption length, ξ ′g−g′ , defined in terms of the
Fourier coefficients of the real and imaginary parts of the lattice potential as follows:

1
ξg−g′

≡
|Ug−g′ |
|kg′ | cos θB

(3.31)

1
ξ ′g−g′

≡
|U′g−g′ |
|kg′ | cos θB

(3.32)

where we used the fact that the complex Fourier coefficients of the electrostatic lattice
potential can be written in terms of their modulus and phase angles, θg and θ′g:

Ug′−g = |Ug′−g|eiθg−g’ ; U′g′−g = |U′g′−g|e
iθ′g−g’ . (3.33)

With the help of all these substitutions, we can finally write out the general form of
the multibeam Darwin-Howie-Whelan equations [HW61] which describe the change
in amplitude of electron diffracted beam with distance travelled inside the crystal:

dψg

dzbeam
− 2πsgψg = iπ ∑

g′

(
eiθg−g’

ξg−g′
+ i

eiθ′g−g’

ξ ′g−g′

)
ψg′ . (3.34)

3.5.1 The two beam case

In the previous section, we started with a form of the Schrödinger’s equation describ-
ing the electron wavefunction in a periodic, crystal potential. Using Bragg’s law we
expanded the wavefunction in plane waves and, separately, we Fourier expanded the
complex crystal potential. The high energy approximation was applied. We equated
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the individual harmonics terms in the Fourier expansion. We argued that the non-
symmetric Laue geometry can be approximated with good confidence to the sym-
metric Laue case. We introduced the deviation parameter and the extinction distance
and absorption length in the equations. Finally, we ended up with the multi beam
form of the Howie-Whelan equations.

We will look now at the two beam case, when there is only one strong diffracted
beam dominating diffraction behaviour, namely ψg in addition to the incident ψ0.
Equation 3.34 becomes:

dψ0

dzbeam
= − π

ξ ′0
ψ0 + iπ

(
eiθ−g

ξ−g
+ i

eiθ′−g

ξ ′−g

)
ψg

dψg

dzbeam
− 2πisgψg = iπ

(
eiθg

ξg
+ i

eiθ′g

ξ ′g

)
ψ0 − π

ξ ′0
ψg

(3.35)

On the left hand side there two terms: the first is the contribution from the direct
beam and the second is the contribution form the diffracted beam. Every beam equa-
tion has a contribution from all the beams, but the weighting factors will be different.
On the right side of these equations there is a real term that depends on the normal
absorption length, ξ ′0, and a complex term telling us about the interaction with the
other beam. For a centrosymmetric system ξg and ξ−g are equal, but there we cannot
expect this to hold for a non-centrosymmetric system, like wurtzite for instance. The
round brackets can be simplified by introducing yet anther parameter:

1
qg

=
1
ξg

+ i
ei(θ′g−θg)

ξg
.

This has the benefit of simplifying the form of these equations and can be interpreted
physically as the probability of scattering from one beam to the other.

It is common at this point to use the Ansatz that the solutions to these equations
must be of plane wave form, for instance:

ψ0 = S0(zbeam) e−πzbeam/ξ ′0

ψg = Sg(zbeam) eiθg e−πzbeam/ξ ′0
(3.36)
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where we made use of the fact that the inner potential U0 is real and therefore θ0 = 0.
This substitution has the advantage of eliminating the ξ ′0 term.

The intensities of the direct and diffracted beam are then the square modulus of
the direct and diffracted wavefunctions:

direct beam: I0(zbeam) = |ψ0|2 = |S0(zbeam)|2 e−2πzbeam/ξ ′0

diffracted beam: Ig(zbeam) = |ψg|2 = |Sg(zbeam)|2 e2iθg e−2πzbeam/ξ ′0
(3.37)

The equations 3.35 become6:

dS0

dzbeam
=

iπ
q−g

Sg

dSg

dzbeam
= 2πisgSg +

iπ
qg

S0

(3.38)

There are a number of equivalent forms of these equations, but this is particularly
useful one to generalise to imperfect crystals as we will see in the next chapter. The
task is now to solve these coupled differential equations. There are a number of ways
to do this. In the next pages we will cover the scattering matrix formalism and the
analytical form.

The scattering matrix

There is another benefit to writing the equations in the form in Eq. 3.38. Namely, we
can rewrite them in matrix form:

dS
dzbeam

= iAS (3.39)

6 Here we made use of the identity ei(θg+θ−g) = 1 which can be generalised to ei ∑g θg , if ∑g g = 0.
This later statement can be verified using the definition of θg from Eq. 3.33:

Ug =
2me
h2σ ∑

j
f e
j e2πig·rj = Ugeiθg
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where S is the column vector S =

(
S0

Sg

)
, andA is called the scattering matrix and is of

the form:

A(sg) =

(
0 π

q−g
π
qg

2πsg

)
(3.40)

Computers are very good at dealing with matrices. Especially, if we were to con-
sider many beams, the calculations time will scale up in a sensible manner, as apposed
to the next approach we will be considering. But more important, the simple form of
Eq. 3.39 is easy to solve. The amplitude of the scattering beam at distance zbeam inside
the sample along the incident beam is the solution to this matrix equation:

S(zbeam) = eiAzbeam S(zbeam = 0) ≡ S(zbeam)S(0) (3.41)

Where we can take at the entry in the sample, the direct beam amplitude to be 1

and the diffracted beam amplitude to be 0: S =

(
1
0

)
. Here we have introduced the

definition of the scattering matrix S . The scattering matrix can then be approximated
using Taylor expansion:

S(zbeam) = eiAzbeam =
∞

∑
n=0

inAn

n!
zn

beam (3.42)

Knowing that for a very small z the Taylor expansion converges only after a few
terms we can write out zbeam = mε where ε is a very small value.

S(zbeam) = S(mε) = [S(ε)]m (3.43)
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The procedure is then to split the total penetration depth into m small enough seg-
ments that the Taylor expansion converges to a set threshold. The lower the threshold
the more accurate the calculations.

This approach had already been successfully applied to predictions of electron
channelling contrast imaging of TDs coming at an angle to the surface [Pic+14].

Bloch wave formalism

The alternative path to finding a solution is analytically. Starting with Eq. 3.38 we can
rewrite them, by substituting one in the other, in the form of a harmonic oscillator
equation in S0:

d2S0

dz2
beam
− 2πisg +

π2

q2
g

S0 = 0 (3.44)

which will have solutions of the plane wave form, e2πiγzbeam , provided that

−γ2 + sgγ +
1

4q2
g
= 0

This characteristic equations is satisfied by any of the two values::

γ(1) =
sg −

√
s2

g +
1
q2

g

2

γ(2) =
sg +

√
s2

g +
1
q2

g

2

There are two independent solutions for the wave amplitudes:

S0(zbeam) = C(1)
0 exp

{
(2πiγ(1)zbeam)

}
S0(zbeam) = C(2)

0 exp
{
(2πiγ(2)zbeam)

}
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From substitution we get the two solutions of the diffracted beam amplitude:

Sg(zbeam) = C(1)
g exp

{
(2πiγ(1)zbeam)

}
= 2C(1)

0 qgγ(1) exp
{
(2πiγ(1)zbeam)

}
Sg(zbeam) = C(2)

g exp
{
(2πiγ(2)zbeam)

}
= 2C(2)

0 qgγ(2) exp
{
(2πiγ(1)zbeam)

}
From which,

C(i)
g

C(i)
0

= 2qgγ(i)

where C(i)
0 and C(i)

g are constants to be determined from the boundary conditions:

S0(0) = C(1)
0 + C(2)

0 = 1

Sg(0) = C(1)
g + C(2)

g = 0

We find:

C(1)
0 =

γ(2)

γ(2) − γ(1)
(3.45)

C(2)
0 =

γ(1)

γ(1) − γ(2)
(3.46)

But this derivation can be used for a slightly different interpretation of diffraction
and it has to do with the periodicity of the crystal and the steady state solutions of the
electron wavefunction inside a periodic potential which are known as Bloch waves
{ψ(r)}. For a two beam equation we can write out two Bloch waves:

φ0(r) = C(1)
0 ψ(1)(r) + C(2)

0 ψ(2)(r) (3.47)

φg(r) = C(1)
g ψ(1)(r) exp(ig · r) + C(2)

g ψ(2)(r) exp(ig · r) (3.48)

with the boundary conditions:
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φ0(0) = ∑
i=1,2

φ(i)C(i)
0 = 1 (3.49)

φg(0) = ∑
i=1,2

φ(i)C(i)
g = 0 (3.50)

The first Bloch wave (ψ0) is defined such that its maxima are at interstices, while
the second Bloch wave’s (ψg) maxima occur on atom columns. We can also offer
a more intuitive picture of the anomalous absorption in this frame since it is to be
expected that the electrons from the second Bloch wave, that spend more time near
the atomic nuclei will be more readily scattered than the ones contained in the first
Bloch wave. And the best thing is that this description is equivalent to the one in
Eq. 3.38 [Hir+65].

FIGURE 3.9: Thickness fringes for the direct and diffracted beams for a
perfect centrosymmetric crystal.

Let us review what we have achieved so far. The dynamical theory solves the
Schrödinger equation for the high energy electrons inside a crystal. The electrons see
the perfect crystal as a periodic potential and their wavefunction is perturbed in such
a way that if we consider a direct electron wavefunction and diffracted one, the ampli-
tude will be dynamically transferred between these two waves as they travel through
the crystal in a manner similar to the transfer of energy in the coupled pendulum
oscillations.

Figure 3.9 shows exactly this periodic variation in the direct wave intensity (or-
ange) and the diffracted beam (blue) with penetration depth in a film of Ni crystal. In
the TEM world this plot is known as thickness fringes, since if one would be to measure
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the transmitted or diffracted intensity through a wedge shaped crystal and plot it as
a function of sample thickness the same image would result; the oscillations being
a direct result of the change in crystal thickness. In the SEM case we can think of it
as variation in the beams intensity as they travel inside the crystal. This plot can be
achieved using any of the descriptions above. See Task3.ipynb for implementation
details.

FIGURE 3.10: Rocking curves for the direct and diffracted beams for a
perfect centrosymmetric crystal. Here, on the x-axis, I replaced the sg

with the dimensionless parameter w = sg · ξg.

A similarly oscillatory behaviour can be observed if we were to plot the intensity
of the two beams as a function of deviation from the Bragg angle (“rocking”) as I did
in Fig. 3.10. Notice that the diffracted beam contributes only when very close to the
Bragg angle.
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4 Electron diffraction in an
imperfect crystal – ECCI

In this chapter we will explore the application of SEM electron diffraction to the study
of imperfections in crystals, such as threading dislocation (TD) lines in the technique
known as Electron Channeling Contrast Imaging (ECCI).

Back on page 10, I already covered why ECCI is a particularly interesting tech-
nique to apply to the relatively new world of group III-nitrides where defects tend to
directly affect the efficiency of opto-electronic devices. Dislocation densities and dis-
tributions are particularly relevant when it comes to light emission since they seem
to directly influence the incorporation of point defects and thus the parasitic defect
luminescence [Kus+15]. It is known from the more established III-arsenide and phos-
phide materials that dislocations can act as non-radiative recombination centres for
carriers in LEDs [Pen+05] as well as current leakage paths in power electronics. While
dislocations in nitrides prove to be less effective centres of non-radiative recombina-
tion [Les+95], it is predicted that their density still ought to be reduced to below ≈
107 cm−2 [KM02].

In the previous chapter we covered how to solve the HDW equations for a per-
fect crystal and predict incident and diffracted beams intensities. These equations
can easily accommodate crystallographic information for an introduced dislocation
in the form of a strain profile. In this case, the crystal is subject to a deformation that
moves an atom from the point r to a point r + R(r) and we expect the potential of the
crystal to be changed by a factor {exp(−2πig ·R(r))}. We will briefly talk about the
derivation of the displacement field for threading dislocations normal to the surface
on page 101.

In practice, this means that the diffraction condition is locally changed close to a
crystal imperfection. One way to add this information in the Howie-Whelan equation
is to correct the deviation from the Bragg angle, sg to contain also the dislocation
displacement field. We will see how we can do that on page 106.

I will explore then what I have learned from looking at this correction factor, or
what I call ECC-strain, including contrast relationship to the forescatter SEM geometry



Chapter 4. Electron diffraction in an imperfect crystal – ECCI 94

(page 108), TD contrast behaviour dependence on diffraction condition and disloca-
tion type (page 114), as well as predictions of TD contrast in GaN and comparisons
with experimental results (page 122). Part of the results shown in this chapter have
previously been presented at the International Extended Defects in Semiconductors
Conference 2016, and published as a proceedings paper [Pas+18a].

Before everything else, on page 95, I want to make very sure the reader is on board
with the the fact that every time we say channelling it should be read as diffraction,
specifically, diffraction of the electron beam on the way into the sample.

But first, a bit of background.

4.1 Background

In the overview of diffraction related advancements on page 55, we left the story of
ECCI development as a technique at Morin et al. [Mor+79] who were able to observe
a individual dislocations in Si using a cold field emission gun (FEG) attached to the
SEM. Fast forward to 1990, FEG-SEM became commercial and also came with efficient
BSE detector making ECCI less of a cutting edge technique and more of an integral
capability of the standard SEM. This enabled Czenuszka et al. [Cze+90] to publish
the first characterisation of individual dislocation in bulk material (Si) with ECCI.

Shortly after, Wilkinson [Wil+93] used ECCI to investigate clusters of misfit dislo-
cations lying more than 1 µm underneath the surface at the interface of Si-Ge layers
grown on Si. They noted that at this depth the spatial resolution is too low to resolve
individual dislocations. However, they still concluded that the g · b = g · b× u = 0
invisibility criteria can be applied similarly to TEM. These pioneering ECCI investiga-
tions were made on highly tilted samples (40◦-70◦), with side mounted BSE detectors,
similarly to the EBSD set up.

When applied to metals ECCI tended to be used in a low tilt (< 10◦) configura-
tion [SC99]. This set up offers a number of advantages: the standard Si-diode detector
can be mounted on the pole piece offering a large BSE signal collection angle and the
interaction volume is minimised granting higher spatial resolution. The downside
to this geometry is the reduction in BSE signal which, for metals, is less of an issue
than for semiconductors due to higher atomic numbers. A comprehensive overview
of the applications of ECCI for metallic materials has been made by Weidner and
Biermann [WB15].

From 2006 Trager-Cowan group [TC+06] showed that using ECCI in the char-
acterisation of nitrides is an excellent idea. Since then ECCI has been used in the
forescatter geometry to reveal extended defects and morphological features of GaN
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samples [Pic+07]. Picard et al. [Pic+09] also argued that the g · b dislocation type
identification criterion can no longer be applied due to surface relaxation. They used
simulations instead to determine the Burgers vectors of dislocations instead, laying
the grounds for a non-destructive dislocation characterisation method.

Literature continues to call ECCI a new technique even though it has been around
for almost forty years. There are a number of reasons for this including the fact that it
resisted being standardised such that every group has their own method of acquiring
ECC-images depending on the material studied, the SEM abilities and the available
detectors. Different groups proposed flavours of ECCI to distinguish between proce-
dures. Gutierrez-Urrutia et al. [GUZR09] and Zaefferer and Elhami [ZE14] coined the
term controlled ECCI (cECCI) for a low tilt geometry ECCI aided by crystallographic
information obtained form EBSD maps acquired at 70◦ tilt. Similarly, Mousour et al.
[Man+15] used low tilt ECCI together with high resolution selected area channelling
patterns to characterise dislocations in fine-grained Si steel and labelled it accurate
ECCI (aECCI).

4.2 A word on channelling

Centuries after the decline of the Western Roman Empire, the allure of power and
honour brought by the title of Roman Emperor was undiminished. While Irene of
Athens, a female, was occupying the Roman throne, the pope crowned the king of
Franks, Charlemagne, as Holy Roman Emperor – a new title Charlemagne found
nifty enough to add to his already significant collection. But, as Voltaire reflected
later on, the title, while maintained for an impressive span of a thousand years, had
little practical significance: “[...] the Holy Roman Empire was neither holy, nor Roman,
nor an Empire”. The title persisted even though the territory was not unified in re-
ligion and one of the emperors was even excommunicated by the pope. Rome was
not by any stretch of imagination the centre of the Holy Roman Empire, in fact Italy
eventually stopped being part of the empire with no effect on the Empire designa-
tion. While its border continued to change, the Holy Roman Empire was consistently
made up of Germanic nations. Additionally, Latin was not a popular language across
the territories. Finally, unlike the Roman Empire, the Holy Roman Empire was hardly
an empire in the sense of a unitary legal entity and the absolute power the emperor
would hold over its territories. Yet, the name prevailed, despite it being a gross mis-
nomer1, perhaps even an anachronism.

1Here is another classic example: the Jerusalem artichoke is the root of a North American plant, in
the sunflower family – the name is probably a corruption of the Italian for “sunflower”, girasole.
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When it comes to the SEM techniques, their labels are also not terribly accurate.
Some keep insisting calling the transmission diffraction mode in the SEM - trans-
mission electron backscattered diffraction (t-EBSD), apparently oblivious to the oxy-
moron in the association. But, perhaps even more confusing, is the fact that, while
some techniques carry in their name the type of electron interaction that generates the
signal, EBS-Diffraction, TK-Diffraction, others do not. Electron channelling patterns
(ECP) and electron channelling contrast imaging mislead the inexperienced reader to
assume that the source of signal is fundamentally different, that in fact channelling
might be the type of interaction to blame. These labels are the “Holy Roman Empire”
of electron microscopy.

FIGURE 4.1: a) Open “channels” between rows of atoms along the
main direction [0 0 1] in GaN – not responsible for what is sometimes
called electron “channelling”. b) Artist’s impression of channelling of

heavy charged particles, from [Bra68] .

These two SEM techniques carry the word channelling for historical reasons. In
early 1960s, before electrons became widely used in high resolution microscopy, ions
were used in much the same way as electrons are in the scanning electron micro-
scope. It was observed that the scattered secondary electron intensity depended on
the ions’ incident direction [Dav83]. This was in sharp contradiction with the theory
of scattering at the time which assumed the distribution of atoms in samples can be
approximated to a dense gas. It became apparent that an incident ion beam aligned
along any of the major axes of the crystal would yield longer penetration depths,
would loose energy slower and would generate fewer secondary electrons close to
the surface [Pie+63]. This was initially explained as simple geometrical transparency,
i.e., columns of empty space along major axes as shown in Fig. 4.1 a), such that the
ions would simply suffer less scattering on their path as shown in the beautiful artist
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render in Fig. 4.1 b) hence the name channelling.
Based on these observations, Linhard [Lin65] developed a classical mechanics ex-

planation for incident particles with small and incoherent wavelengths such that ef-
fects such as interference patterns can be ignored. He defined the condition for the
validity of this classical treatment through the requirement that the number of bound
states in the atom string potential to be large compared to unity (νs � 1). The full
explanation of channelling is somewhat more involved then a simple geometrical
transparency. The heavy particles, when incident at a direction close to a major crys-
tallographic direction, behave as if focused by the total sum potential of the strings
of atoms. Correlated deflection by the atoms in the strings protect the incident beam
from penetrating close to the core of the atoms and suffer scattering. The resulting
effect is that, in these special conditions, the incident particles can travel deeper in
the sample and lose less energy, channelling, protected as they are by the potential
of the string of atoms. Linhard then went on to establish an upper limit for stable
channelling for the incidence angle relative to a major direction he called the critical
channelling angle:

θchan ≤
√

2Ze2

Ed
(4.1)

where Z is the atomic number and E is the energy of the incident particle, e is the
usual elementary charge and d is the distance between atoms in the string.

Not only strings of atoms but also lattice planes can channel a beam of incident
charged particles. In Notes on Channeling, Andersen [And14] explains the qualitative
image of planar channelling analogous to the string of atoms channelling. The pla-
nar potential can be thought of as a superposition of string potentials, allowing the
incident beam particles to sneak in between two strings and still be protected by the
deflection of correlated atom scattering. The dark spot in the centre of the angular
flux distribution in Fig. 4.2 a) is due to lower scattering rates along the direction par-
allel to the [0 0 1] axis, or string channelling. The dark lines are the result of planar
channelling in the family of planes {1 0 0} and {1 1 0}.

It was soon observed that the channelling extends to other charged particles like
high energy protons [Dea+68] or alpha particles. For electrons and positrons, the first
indications of crystal lattice influence on the scattering directions was given by ob-
serving emission yields from samples doped with β+ emitters [UA68]. It appeared
that the scattered yield increased when electrons were travelling along a lattice direc-
tion. These observations were later confirmed by Rutherford scattering experiments
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FIGURE 4.2: a) Flux distribution of heavy ions scattered from a trans-
mitted beam through [0 0 1] Si crystal, from [Ass+99]. b) Simulated
ECP pattern of [0 0 1] GaN using EMsoft [DGG13]. While the observed
features are similar, a) is an effect of channelling and b) of diffraction.

of fast electrons incident on a sample [UF69]. It was only natural to make the parallel
with ion scattering experiments and the so called phenomenon of channelling.

Mysterious is the fact that Coates had already published, two years previously,
his observation of Kikuchi like patterns in the SEM [Coa67] – bright lines of increased
electron backscatter intensity associated with lattice planes, yet the connection be-
tween the two phenomena was not made. By the time Joy wrote his significant con-
tribution to the description and understanding of directional dependence of scatter-
ing in the SEM [JND82], the name of channelling had already gained traction and the
phenomenon was known as an electron channelling pattern. When comparing the
angular distribution of scattered ions (Fig. 4.2 a) ) with that of electrons (Fig. 4.2 b) ),
the similarities are indeed indisputable. The contrasting lines in both cases are due
to the lattice planes. In the first case the lines are dark indicating a lower scattering
rate of ions when close to lattice directions and planes. However, in the electron case,
the lines are bright, indicating an increase in scattering when electrons are close to the
planes or directions.

For a polycrystalline sample, the contrast in intensity from one grain to the other
seems similar when using ions [Fra+88] and electrons. Since for ions it was attributed
to channelling it only made sense to blame channelling for a change in electron yield
(contrast) for different orientated grains (Electron Channelling Contrast Imaging).
When we say electron channelling we only mean channelling in the sense of a stable
trajectory close to atoms and planes. Nevertheless, the underlying physics is differ-
ent.

For MeV ions, with short wavelengths, the interference effects can be safely ig-
nored since mean free path for inelastic scattering is as short as a few lattice spacings.
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TABLE 4.1: Critical channelling angle θchan and Bragg angle θB for
heavy ions and electrons travelling along (0 0 1) planes in a GaN sam-
ple. The number of bound states for strings νs and planes νs indicate

the validity of the classical description of channelling.

Particle Energy [MeV] νs (classical?) νp (classical?) θchan [◦] θB [◦]

C ion 1 > 10 (yes) > 10 (yes) ≤ 1.2 ≤ 10−4

electron 1 ≈ 4 (uncertain) < 1 (no) ≤ 0.1 < 0.1
electron 0.02 < 1 (no) < 1 (no) ≤ 0.9 0.5

Meanwhile, for fast electrons we cannot ignore that at Bragg angles their scatter am-
plitude will interfere constructively, which is what gives the strong, sharp peak in
the scattered yield. The legitimacy of a classical description, such as channelling, for
explaining these peaks is, nevertheless, doubtful.

In Table 4.1 I calculated the number of bound states, for both strings of atoms (νs)
and planes (νp), for electrons at 1 MeV and 20 keV scattered along (0 0 1) planes in
GaN. For electrons, the number of bound states in the string potential can be reduced
from [Lin65] to:

νs ≈
1√

1− v2

c2

Z1/3 4a0

d

and the number of bound states in a planar potential to:

νp ≈
0.4

(1− v2

c2 )1/4

where Z is the atomic number of the target material, a0 is the Bohr radius, d is the
distance between atoms in a string and v is the speed of the incident particle [UF69].

Diffraction and channelling are two separate but competing phenomena [Cha70].
They are defined by the Bragg and channelling angle, respectively, and looking at
the range of these parameters we can decide which of these events dominates. For
electrons with energies below 1 MeV the classical description is not appropriate, and
the critical channelling angle is meaningless, which is why I wrote it in italics. But,
for very high energy electrons, with energies above 1 MeV, channelling can become a
relevant phenomena and will compete with the Bragg angle. We can see the situation
is reversed for heavy ions, which are highly localised with numerous bound states,
both in the string potential and the planar potential. However, the Bragg angle is
vanishingly small for these heavy particles and therefore diffraction effects can be
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ignored.
For SEM electron energies we are comfortable in the non-channelling range. Nev-

ertheless, we will continue to use Holy-Roman-Empire-names of Electron Channelling
Pattern and Electron Channelling Contrast Imaging and understand that the word
channelling in these cases is different from the effect of ions channelling, referring
instead to stable trajectories close to atomic nuclei for the electron Bloch waves.

Winkelmann and Vos [WSPW13] describe in detail the mechanism of channelling
in means for ECPs and channelling out for EBSD.

4.3 Electron channelling contrast model

Dislocation contrast is a term coined for transmission electron microscopy. Defect
characterisation in TEM is relatively well established. Both qualitative models such
as the kinematical theory [HHW60], and more quantitative models in the form of
the dynamical theory [HW61; CH71; SHH72] have been developed and successfully
applied to predict dislocation contrast.

We have mentioned before that TEM samples must be prepared to be very thin.
This is usually required in order to maximise the number of electrons that will es-
cape from the bottom side of the sample. It is these very thin samples that minimise
the interaction volume of the electrons that make the approximations in the original
version of the dynamical theory pertinent.

For thicker samples than the ones used for TEM, inelastic scattering of electrons
becomes impossible to ignore. When electron paths become long enough, a signifi-
cant number of them are removed or “absorbed” from the diffracted beam through
inelastic scattering. This loss becomes important when we take into account the dy-
namical pendellösung of intensities between the the direct and diffracted beams. We
will, therefore, always take into account absorption through the optical lattice poten-
tial discussed on page 80.

Otherwise, we will follow the path paved by TEM contrast simulations. This in-
volves, simply correcting the deviation from the Bragg condition for the existence of
a dislocation nearby. This correction, which we will call β, is, to a first approximation
the directional derivative of the dislocation displacement field along the diffraction
vector g. We will see in Section 4.5 on page 106 that we will add a second order
correction.

We then start again from the general Darwin-Howie-Whelan equation (Eq. 3.34),
but this time we add the dislocation correction:
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dψg

dzbeam
− 2π(sg + β)ψg = iπ ∑

g′

(
eiθg−g’

ξg−g′
+ i

eiθ′g−g’

ξ ′g−g′

)
ψg′ . (4.2)

These equations, now become too complicated for an analytical solution and, as
we will see in Section 4.7 on page 120, we need to use a computer to solve numerically.

Let us, in the following pages, talk about how to calculate the corrections needed
for the DHW equations from the displacement field of dislocations.

4.4 TDs displacement field for ECCI

We are now tasked to calculate the displacement field introduced by a dislocation in
a perfect crystal and for this we turn to elasticity theory.

Even one dislocation will disturb every single one of the ≈ 1011 atoms in one
micrometer cube of the sample in a non trivial manner, the effects of this distortion
can then affect the phase of the diffracting electrons and can be resolved in the SEM.
In order to simulate this complex multi body problem it is not unwise to turn to a
model that would strip down all unessential details to the bare physical properties
that drive these interactions.

This branch of continuum mechanics developed specifically for the description
of dislocations brings many elegant simplifications to the treatment of dislocations,
but also some limitations. In the following subsections we are to direct our attention
towards the derivation of strain fields produced by threading dislocations running
normal to the surface of a sample using this mathematical formulation.

4.4.1 Elasticity theory

As part of continuum mechanics, elasticity theory ignores the fact that matter is made
out of discrete particles and instead approximates it to be continuous and uniform
even at the microscopic level. This conveniently enables us to ignore the very com-
plicated interaction between the many atoms as well as any discontinuing properties
at the microscopic level (including the actual dislocations!) simplifying the treatment
a great deal. Instead, it entertains the more intuitive idea that matter fills the entire
region of space it occupies in a continuous and homogeneous manner and that this
holds true for any infinitesimal region of space. While this is not a rigorous descrip-
tion at the microscopic scale, for the micrometer level study of structural effects of
dislocations, these crude assumptions will hold fully.
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In this model all the specific physical properties of the continuum are exactly the
same for any infinitesimal selected region. This facilitates the substitution of what
would otherwise be discontinuous quantities with single valued, smooth fields rep-
resenting the average value over that infinitesimal region of space of the property we
would want to study.

In continuum mechanics we are concerned with the stress field applied to a ma-
terial and the strain response of said material. Notice the word field in the previous
statement. Many material properties are not simple scalars. In this case, both the
strain and stress are tensors of rank 3 as shown in Fig. 4.3. Not all of the 3× 3 matrix
components are necessarily unique. In fact, it turns out that these entities are intrin-
sically symmetric2 for a system at equilibrium, resulting therefore in only 6 unique
components.

FIGURE 4.3: Stress distribution on an infinitesimal volume.

Within the framework of continuum mechanics we also make the assumptions
of linearity and perfect elasticity. The final approximation we will introduce is that of
elastic isotropy. We provide below the implications of these assumptions:

1. If a body returns to its original form completely after any deformation force is
applied, we say that object possesses the property of perfect elasticity. Mathemat-
ically this is achieved by keeping the forces that produce the deformation below
the plasticity region of the structural material of interest, or in other words very
small (small enough).

2Onsager’s Principle of Microscopic Reversibility [Cas45] can be used to show that principal trans-
port properties are symmetrical tensors.
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If we define σij as the ith component of the stress (force per unit area) on a plane
whose normal is in the xj direction as shown in Figure 4.3, and then consider
that when acted upon by stress a body deforms such that the displacement at
point r is u with component ui we can define strain as:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.3)

2. In the equation above we have assumed the distortions are small enough that
we can ignore all but first terms in the expansions of individual displacement
components. This is also known as linearity and also produces a linear relation
between stresses and deformations (Hooke’s law):

σij = cijklεkl (4.4)

where the coefficients cijkl form a rank 4 tensor and are the elastic constants. For
the most general case form a 6× 6 matrix relating the six unique elements of σij

to the six elements of εkl .

3. The final assumption we make here is to state that our material can be reduced
to elastic isotropy without impairing greatly the accuracy of the results. This is
the property of a material whose elastic properties are independent on the ori-
entation we study it in. This, in general, is not the case for none but a handful
of cubic structures. For the wurtzite structure, Neumann’s rule predicts all the
symmetries of its point group. Additionally, since wurtzite is not that far crys-
tallographically from zinc blende, it can be shown [Mar72] that one can reduce
the wurtzite elastic constants to an effective cubic zinc blende tensor. This re-
duces the number of independent variables to three and we can rewrite Eq. 4.4
as:



σ11
σ22
σ33
σ23
σ13
σ12

 =



2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





ε11
ε22
ε33

2ε23
2ε13
2ε12

 (4.5)
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with µ known as the shear modulus and λ the Lamé constant. We can introduce
another useful constant: the Poisson ratio, ν:

ν =
µ

2(µ + λ)

However, no crystal structure is truly isotropic with the wurtzite crystal system show-
ing an anistropy factor of 0.86 (compared to 1.0 for an isotropic system). Nevertheless,
physics is all about approximating a complex system to a simple system and then
adding corrections. This is exactly what the Voigt formula [HL82] achieves. In Ta-
ble 4.2 I give the elastic parameters for GaN if we are to approximate it to be isotropic.

Elastic constant Symbol Voigt approximation

Shear modulus µ 121 GPa
Lamé constant λ 129 GPa
Poisson ratio ν 0.26

TABLE 4.2: Voigt approximation of elastic constants for isotropic
wurtzite GaN.

4.4.2 Semi-infinite screw dislocation

A screw dislocation is a shear in the crystal with the edge of shear being the disloca-
tion line itself. The amount of shear is quantified in terms of lattice parameters and is
a vector along the dislocation line. This vector quantifying displacement is known as
the Burgers vector, b.

Let us work out the displacement introduced by a screw dislocation in a perfect
crystal. The screw dislocation, let’s say aligned with the z-axis, introduces displace-
ment only along the dislocation line, as comprehensibly explained in Theory of dislo-
cations [HL82]:

uz =
b

2π
arctan

y
x

(4.6)

From Eq. 4.3 we can conclude that the only strain components produced by this dis-
placement must be εxz and εyz. If we were now to consider a surface on which the
dislocation is normal, both these strains will act on the surface and the surface itself
will have an effect on the displacement field of the dislocation.

Saint-Venant’s principle [Tou65] tells us that the forces exercised by a surface on an
elastic body are equivalent to replacing the surface by an object impacting the same
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force as long as the object is far away. So far this is not particularly unsettling. The
beautiful approach based on this concept is that we can talk of the effect of surface re-
laxation around a dislocation as being derivable, similarly to the electrostatics world,
by adding an imaginary field that ensures the surface “feels” zero strain.

In our case, for a screw dislocation normal to a surface, it is the out of plane stress
that must be relaxed. The relaxation displacements in Cartesian coordinates was cal-
culated by Eshelby and Stroh [ES51] to be simply:

ui
x =

b
2π

y
r− z

(4.7)

ui
y =− b

2π

x
r− z

(4.8)

In the end, the total displacement introduced by a TD normal to a surface is made
up of the real + imaginary displacement fields. In Appendix D, Fig. D.1 I show the
elastic strain tensor components as contour plots for a screw TD in GaN using Eq. 4.3
with the displacements shown here.

4.4.3 Semi-infinite edge dislocation

An edge dislocation is the result of introducing an extra plane of atoms in a perfect
crystal. The displacement field introduced is in plane and is given in Cartesian coor-
dinates in the notation from [IL12] as:

ux =
b

2π

[
arctan

y
x
+

xy
2(1− ν)(x2 + y2)

]
(4.9)

uy =− b
2π

[
1− 2ν

4(1− ν)
ln(x2 + y2) +

xy
4(1− ν)(x2 + y2)

]
(4.10)

The surface relaxation is more involved in this case, but Yoffee derived an elegant
solution [Yof61] for a dislocation interacting with a surface at a general angle:
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ui
x =

νb
4π(1− ν)

[
2xyz

r(r− z)2 + (1− 2ν)
xy

(r− z)2

]
(4.11)

ui
y =

νb
4π(1− ν)

[(1− 2ν) log(r− z)− (3− 2ν)
z

r− z

+ (3− 2ν)
y2

(r− z)2 −
2y2

r(r− z)
] (4.12)

ui
z =

νby
2π(1− ν)

[
1
r
+ (1− 2ν)

1
r− z

]
(4.13)

Such that the total displacement components are: ut
x = ux + ui

x, ut
y = uy + ui

y,
ut

z = ui
z. In Appendix D, Fig. D.2 I show the elastic strain tensor components as

contours plots for an edge TD in GaN using Eq. 4.3 with the displacements shown
here.

4.5 TD ECC-strain

The image of a single crystal surface in high magnification mode should consist of
a constant backscattered electron yield as the near parallel beam is scanned over a
small area. Around a dislocation line the crystal structure is distorted, which in turn
affects the diffraction of the electron beam. The shift in diffraction behaviour close
to the dislocation is observed as a change in the number of backscattered electrons
originating from the distorted crystal region and provides direct information about
departures from the perfect crystal structure in the ECCI micrograph. Similarly to the
contrast mechanism in TEM described by Hirsch et al. [HHW60], the lattice curvature
directly affects the distance by which the diffracting reciprocal lattice points deviate
from the Bragg condition and is quantified by the deviation parameter sg. The cor-
rection needed to account for the distortion introduced by a lattice defect is then the
change in the direction of the incident electron beam, rinc, of the component of the
displacement field, u, which is parallel to the reciprocal vector, g, defining the diffrac-
tion condition. Tunstall et al. [THS64] showed geometrically that there is a second,
smaller correction term which accounts for the change in lattice parameters close to
the dislocation:

s′g = sg + β = sg + r̂inc · ∇(u · g) + θB r̂g · ∇(u · g) (4.14)
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where θB is taken to be the Bragg angle and r̂g = rg/|rg| is the coordinate in the
dislocation frame parallel to g.

The new variable β, which I will also call ECC-strain, is the sum of all corrections
to the deviation parameter due to the defect. If defined in an orthogonal coordinate
system it can also be written as:

β =
∂ug

∂rinc
+ θB

∂ug

∂rg
(4.15)

where ug is the displacement field in the direction of g.
If the displacement field is defined in a Cartesian reference frame in which g is

parallel to one of the axes then the corrections terms above can be considered as strain-
like components since they measure displacements field gradients. Due to the θB

weighting factor, the second strain-like term introduced by Tunstall is negligible and
can be ignored whenever the first term is non-zero as we will see later. It is these
strain-like components that disturb the electron diffraction as compared to a perfect
crystal and generate the dark-bright contrast features associated with dislocations in
ECCI images.

Note that the magnitude of β will be left as arbitrary more often than not since a
one-to-one comparison against experimental results cannot be (yet) made. The com-
parisons I do make is against backscattered electron intensity, which in turn is also of
arbitrary magnitude. What we are interested in instead, is how the change in strain
compares with the change in contrast which I will investigate using contour plots.

4.5.1 The failure of the invisibility criterion for ECCI

We mentioned a few times that transmission electron microscopy has established it-
self as the default technique for the study of lattice deformations. It is especially
reliable as a dislocation characterisation method as it can identify unambiguously the
c and a components of a dislocation line running parallel to the imaged surface. This
is achieved through the application of certain relationships between the diffraction
vector g, Burgers vector b and the direction of the dislocation line ul (g · b = 0 and
g · b × ul = 0), known as the invisibility criteria, for which no contrast associated
with c or a components, respectively, can be observed. This method has been ap-
plied broadly in the study and characterisation of dislocations in cross sectional GaN
samples, e.g. [Hin+00].

Let us briefly discuss why, unlike the case for cross-section TEM, the invisibility
criterion is not appropriate for dislocation identification in the forescatter geometry



Chapter 4. Electron diffraction in an imperfect crystal – ECCI 108

of ECCI especially in the absence of high resolution electron channelling patterns
(ECPs).

The displacement in an infinite lattice due to a dislocation line of type a or c can
be derived from elasticity theory in the linear regime (see for example Ref. [Rea53]).
If the dislocation line interacts in any way with the free surface of the layer, the non-
zero stresses at the interface have to be relaxed in order to obtain the full strain picture
of the dislocation line. This relaxation in turn introduces extra displacements such
that the total displacement at any point in the lattice is a sum of the “infinite-lattice”
displacement and that due to the surface relaxation. Yoffe [Yof61] has calculated these
surface relaxations due to general dislocations intersecting the surface at an arbitrary
angle.

The importance of surface relaxation in the simulation of the electron channelling
contrast micrograph has already been discussed by Wilkinson et al. [WH95] for dis-
locations running parallel to a nearby surface. Even for the diffraction conditions
where the infinite-lattice model gives no ECCI strain-like components, the non van-
ishing surface strain terms ensure that the net contrast will never be truly zero. This
effect will only increase for dislocation lines which penetrate the surface where the
non-vanishing surface terms become even more significant. Even in the case where
the Burgers vector is perpendicular to the g direction, the ECCI sampled strain will
be smaller but still not zero.

This reduction in dislocation contrast at the invisibility criteria had been already
used in literature [Mor+79; CSN01] to show that, at least phenomenologically, the
same principle can be applied to ECCI. In practice care is advised when using this
approach for the characterisation of dislocations. Unlike TEM which allows reason-
able dislocation contrast to be acquired for a significant range of deviations from the
Bragg condition, the contrast in ECC images is optimised at the exact Bragg condi-
tion, sg = 0, and can change drastically on small variation from that condition. This
can determine whether a dislocation is visible or not, even for diffraction conditions
where we would expect to see good contrast (see also the discussion in Ref. [Cri06]).

4.5.2 ECC-strain profile for the forward scattering geometry

From Eq. 4.15 we can see that the strain profile imaged by ECCI, β, of the a character
of a TD normal to the surface is sensitive to variations in the angle of incidence of
the electron beam, rinc. This is indeed the case for the forward-scattering SEM geom-
etry; I show what I mean by this schematically in Fig. 4.4. This effect is especially
strong for edge TDs because they introduce elastic displacement mostly in the plane
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FIGURE 4.4: a) Schematic of forward-scattering geometry in the SEM.
b) The geometry of the incident beam with respect to a tilted sample.
The rectangular box shows the plane zs which is considered in Fig. 4.6.

normal to the dislocation line and present almost no variation along a normally inci-
dent beam. Shown schematically in Fig. 4.5, the strain-like component only contains
surface terms and anisotropy effects. Titling the sample (or the beam) translates to
rotating the coordinate system in which the ECC-strain is defined, which means the
tensor element in the new system will have to contain components from the plane
normal to the dislocation line.

FIGURE 4.5: 2D diagram of rotation transformation in ECC-strain ten-
sor. A θ anticlockwise rotation of the sample is equivalent to the same
rotation of the coordinate system in which the strain components are

defined.

The diagram in Fig. 4.6 illustrates this in two dimensions in the case when b is
parallel to g. For a passive rotation of the sample around a direction normal to both
the dislocation line and its b, the first term of Eq. 4.15 in the new coordinate system
will be:

∂u′g
∂r′inc

= cos2 θ
∂ug

∂rg
+ sin θ cos θ

∂ug

∂rinc
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where the terms measuring the variation of the displacement field in the beam di-
rection are ignored as they are very small. The first part in the equation above is the
variation of the displacement field along b (or g in this case) and for reasons discussed
above will be the dominant term in this strain expression. More about transformation
of coordinates will be addressed in next subsection.

It is to be expected, then, that tilting the sample will improve the observed contrast
of edge dislocations significantly. Fig. 4.6 a) to c) show how a small tilt can signifi-
cantly change not only the intensity of the sampled strain but also the orientation of
its high-low profile. This second effect has to do with the fact that our definition of
β (Eq. 4.15) contains two strain-like components. Since the variation of displacement
field along the line direction (the first term of Eq. 4.15) for the a character of a thread-
ing dislocation is negligibly small, what we observe in Fig. 4.6 a) is purely the second
strain-like component introduced by Tunstall. This strain profile closely resembles
TEM bright field intensity maps for an edge dislocation normal to the foil surface
computed by Tunstall et al. [THS64] with the high-low “butterfly” lobes oriented on
each side of the Burgers vector.

However, Tunstall’s component is orders of magnitudes less significant than the
first term of β, ∂ug

∂rg
. This means that when the foil is tilted, Tunstall’s strain profile

will be replaced by the profile of the first term. It is remarkable that, in the case
when the diffraction vector is aligned parallel with the Burgers vector, any amount
of sample tilt will change the direction of the minimum-maximum strain direction
from being perpendicular to b to being parallel. When the full three dimensional
displacement field is considered it becomes apparent that the variation of the field
along the extra plane of atoms introduced by the edge dislocation dominates all other
factors and this function has its maxima and minima along the Burgers vector. This
contrast alignment was observed experimentally and reproduced by simulations for
threading dislocations inclined to the surface by Picard et al. [Pic+07].

The images in Fig. 4.6 also highlight the ability of forescatter geometry ECCI to
access the TD strain profile for cases where plan view imaging might produce low
signal to noise features. In general, the higher the tilt, the better the expected contrast
of edge TDs will be.

4.5.3 General coordinate transformation

Eq. 4.14 contains mathematical objects specified in various reference frames and are
therefore described using different basis sets. The g vectors are described in the re-
ciprocal crystal frame, the displacement field is defined in the dislocation frame and
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the incident beam and sample orientation are usually given in lab coordinates. The
first component of β in Eq. 4.14 for instance, can be written to show explicitly the re-
lationship between reference frames, following the notation used by De Graef [DG03]
as:

du(r) · g
drinc

= (rinc)
d
i

∂ud
j

∂xi
T ds

js Blmgm (4.16)

where Einstein summation convention is used for repeating subscript indices. The
superscripts indicate the reference frame in which the expression of the vector is
known. B is the reciprocal structure matrix for the unit cell of the material. T ds

js is
the coordinate transformation matrix which can be applied to a vector described in
the dislocation frame (d) in order to be translated in the sample frame (s).

Fig. 4.7 shows the relationship between the lab frame, the sample frame and the
dislocation frame as well as the rotations required to orient one with respect to the
others. For instance, the sample is rotated anticlockwise with the angle αrot about the
x axis direction with respect to the lab frame.

If we define the coordinate frames used as meeting the following requirements:

• the sample tilt axis is aligned with its x axis as well as the lab x axis;

• the crystal is non polar so that the crystallographic Cartesian z can be aligned
with the sample’s z;

• the anticlockwise rotation from the sample frame to the Cartesian crystal frame
along z is given by αrot;

• the dislocation line frame is defined as the right handed counterpart of the dis-
location frame defined by Tunstall [THS64], such that its z axis is anti-parallel
with the crystal frame and the sample frame z axis,

then the transformation matrix from the dislocation reference frame to the sample
reference frame can be written as:

Tds = Rz(αrot)Rx(π)Rz(3π/4) (4.17)

where Rw(θ) is the passive anticlockwise rotation in a right handed coordinate sys-
tem looking along w by an angle θ as discussed on page 42.

These transformations are implemented in this work using the ReferenceFrame
class from Python’s sympy.physics.vector module [Meu+17] which proved useful in
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FIGURE 4.7: a) Tilted sample Cartesian frame (denoted by (s) and in-
cident beam direction in the lab frame used here as a reference frame.
b) Relationship between the dislocation reference frame (denoted by
d) and the sample reference frame. The crystal frame is defined as an

anticlockwise rotation along zs by αrot and is not shown here.

keeping track of the frames in which vectors and fields are defined as well as the set
of rotations between them. The total ECCI strain-like object is saved as a numerical
function of x, y, z position in a Python generated Fortran routine that will used later
in the Howie-Whelan equations to calculate contrast.

For these plots I had to split the work in multiple files and all can be found in the
“ecci-model” folder on the GitHub repository:

• geometry.py contains crystallographic calculus for a cubic or hexagonal crystal.

• coordinates.py contains the relationship between the different reference frames.

• calculateBeta2.py calculates the beta function as an object dependent on the
position from the dislocation, the tilt and rotation of the sample, the diffraction
condition.
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• generateBetaModules.py uses previous function to create Fortran callable mod-
ules containing the beta function.

• plotField.py is used to the displacement field.

• plotStrain.py is used for a number of plots for the strain profile.

4.5.4 β isosufaces insights

So far we have discussed the way to generate the strain components that affect the
channelling contrast in the expression given in Eq. 4.15. Since this parameter has
the form of strain (∂u/∂x), and, like the strain, it is dimensionless, I’m calling it here
ECC-strain. Since we also covered the grounds of calculating this value in different
coordinate system it is useful now to observe its behaviour more closely.

For the following calculations and plots I am considering a [0 0 1] grown GaN sam-
ple containing TDs coming normal to the surface. The sample is tilted with respect
to the incident beam. I am plotting isosurfaces, that is surfaces of constant β value.
Since it is common in this geometry for the ECC-strain to change sign around the
dislocation (otherwise we would not have TD contrast), I plot both a positive β value
isosurface, analogous to compressive strain, in red and a negative value, analogous to
tensile strain, in blue. In their absolute, the positive and negative β values are chosen
to be equal; I call them equidistant. Since the aim of this analysis is to observe the
qualitative change in behaviour for different condition, for a series of images the β

values are the same. The off-white isosurfaces show the zero value positions.

Screw versus Edge TD isosurfaces

There is insight that can be gained by looking at the shape of the strain components
introduced by the threading dislocation in the Howie-Whelan two beam equations. I
did that in Fig. 4.8 for an edge dislocation and Fig. 4.9 for an screw dislocation in a
GaN sample tilted at 50 degree. Because strain is a three dimensional function it can
be difficult to visualise, so what I did here is to plot only surfaces of constant strain
component values (isosurfaces) both for a positive value (compressive strain) in red
and a negative one (tensile strain) in blue, where the negative and positive values
have the same absolute values. The isosurface values chosen are the same for the edge
and screw dislocation. The white cylinder in the middle indicates the position of the
dislocation line which runs along the z direction. The red rod shows the projection of
the diffraction condition vector g. The grey rod indicates the direction of the Burgers
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vector b, which is normal on the dislocation line for an edge dislocation and along
the dislocation line, and here invisible, for a screw dislocation.

A first observation to draw here is that in a highly tilted sample, the ECC-strain
introduced by an edge TD will generally be larger than that introduced by a screw
dislocation far away from the surface. This relates back to the discussion we had in
Section 4.5.2 on page 108 and has to do with unlocking larger strain components for
an edge dislocation when tilting the sample.

FIGURE 4.8: Edge TD ECC-strain
field equidistant isosurfaces.

FIGURE 4.9: Screw TD ECC-strain
field equidistant isosurfaces.

Another observation is that the surface relaxation affects ECC-strain of the two
dislocation lines differently. At this high tilt there is little out of plane strain to relax
for an edge dislocation and we can see the isosurfaces only curve a little at the top
where the surface would be. The story is rather different for the screw dislocation
in this specific diffraction condition. This time the isosurfaces make up large lobes
close to the surface of the sample. Not only this, but we can observe an inversion of
tensile-compressive strain as we follow the dislocation line to the surface.

Since in the end we must integrate the two beam equations downwards in the
sample, what we could take home from this comparison is that it will be probably
more likely to observe edge dislocation contrast in the SEM. The screw dislocation
ECC-strain becomes comparable in effect only close to the surface, therefore we expect
the TD contrast to be comparable only when we are confident the diffracting beam
penetration depth is only a few nanometers.

Mixed TD isosurfaces

I want to quickly touch on how to predict mixed type dislocations. A mixed dislo-
cation, in terms of continuum mechanics, is simply a linear combination of edge and



Chapter 4. Electron diffraction in an imperfect crystal – ECCI 116

screw displacement fields. It will come as no surprise that the ECC-strain will also
look like a linear combination of screw and edge ECC-strain. This can be seen in
Fig. 4.10.

FIGURE 4.10: Top view of equidistant dimensionless ECC-strain iso-
surfaces for a pure screw dislocation, a mixed and a pure edge disloca-
tion, respectively in GaN. The sample is tilted at 49.6◦ and rotated by

49.6◦ such that g=[7 5 3] is available.

The large surface relaxation is inherited from the screw dislocation displacement
field, however the profile is complicated by the edge TD components. For a deep
diffracting beam penetration depth we would expect the ECC-contrast to resemble
mostly the edge dislocation since it has the dominant strain contribution.

Next, there is a critical question the channelling contrast literature is interested in:
Is the orientation of the dark-white contrast affected first by the diffraction condition or by the
Burgers vector?

Dependence on g

In Fig. 4.11 I show the top of the sample view of the ECC-strain isosurfaces for an
edge dislocation in three different diffraction conditions. The red rods indicates the
projection of the g vector and the grey rod shows the Burgers vector, b. I kept the set
of planes, and therefore the magnitude of g the same, the red rods are projections and
vary in size.

Relating to the size of the projection of the g vector on the surface of the sample,
the surface relaxation strain is larger or smaller. But the general geometry of the
tensile-compressive strain, looking at the blue and red surface relaxation strain, does
not seem terribly affected by which direction the reciprocal vector g points to.
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FIGURE 4.11: Top view of equidistant ECC-strain isosurfaces for a pure
edge dislocation in different diffraction conditions given by the diffrac-

tion vector g (red rod).

To emphasise this point in practice, Gunnar Kusch took two ECC images, Fig. 4.12,
from the same area of AlN in two different diffraction conditions shown in the bottom
corner. While the directions of the projected g vectors is different the black-white
dislocation contrasts direction remains the same if only fainter.

FIGURE 4.12: Forward geometry ECC image of AlN in two diffraction
conditions shown by the ECPs inserts in the bottom corners.

Dependence on b

In Fig. 4.13 I show the top of the sample view of the ECC-strain isosurfaces for an
edge dislocation in four different orientations of its Burgers vector. The red rods, like
before, indicate the projection of the g vector and the grey rods show the Burgers
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vector, b. The diffraction condition remains the same in the first three panels and for
the last panel is flipped to -g. The off-white sections indicate the zero strain isosurface
which looks complicated in the first panel.

FIGURE 4.13: Top view of equidistant ECC-strain isosurfaces for a pure
edge dislocation in different orientations indicated by the Burgers vec-

tor direction (grey rod).

Comparing the first two panels, where the Burgers vector, and essentially the dis-
location, is rotated by about 120◦ in plane, we can observe that the tensile-compressive
strain lobes rotate with b. Rotating the dislocation by 180◦, what I did in panels two
and three, perfectly flips the tensile and compressive strain. This is unlike rotating the
sample, but, somehow, not the dislocation, by 180◦ in a system with mirror symmetry
such that we can hit -g. I show this operation in panels three and four and while the
tensile-compressive strain lobes do flip, their shape is slightly changed.

It is safe, therefore, to conclude that for the same diffraction condition the Burgers
vector of an edge dislocation will dictate the ECC-strain geometry. This has been
previously proposed by Naresh-Kumar et al. [NK+12].

4.6 Backscattering event model

For the backscattering process we follow the assumption made by Twigg et al. [TP09]
that the contrast carrying signal comes from those electrons that leave the sample
as soon as they suffer their first large angle scattering event, having previously suf-
fered diffraction on their way in. The rest of the scattered electrons (making up the
vast majority) will inelastically scatter multiple times on their way back out of the
sample losing the contrast position information and only contributing to a uniform
background.
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Twigg et al. [TP09] follows Rossouw et al. [Ros+94], analogously to the simu-
lation of Kikuchi bands by Winkelmann et al. [Win+07], and integrates the beams
wavefunctions over depth to determine the probability of forward scattering at a cer-
tain penetration depth. Rossouw et al. [Ros+94] approximate the cross-section for
localised scattering events, σ, for independent partial Bloch waves φi to be:

σ ≈ A ∑
n

Z2
n ∑

i
|φi(τn)|2 exp{(−Bn} (4.18)

where the term A is:

A =
2πN
a2

0k4

cos β1 − cos β2

(1− cos β1)(1− cos β2)
(4.19)

where β1 and β2 determine the minimum (β1) and maximum (β2) scattering angles
allowed by the solid angle of the detector.

The BSE cross-section is proportional then to PnZ2
n over all the atom sites in the

volume of interaction, where Pn = ∑i |φ(i)(τn)|2 is the probability density of electron
backscattering from atom site τn smeared out by the Debye-Waller term Bn.

The trick now is to calculate the Bloch waves contributions in the equations above.
Luckily we have the two beam differential equations 4.2 from which we could (we
will see in next section how) calculate the intensities in the direct and diffracted
beams. The columns approximation electron beams and electron Bloch waves are
equivalent descriptions of the electron wavefunction in the crystal [HW61]:

Ψ(r) =∑
i

α(i)φ(i) = ∑
i

α(i) ∑
g

C(i)
g exp

(
2πi (k(i) + g) · r

)
=∑

g
ψg(rinc) exp(2πi ( ˆrinc + g) · r)

(4.20)

The first line is the electron wavefunction inside the crystal as superposition of
Bloch waves of amplitudes α(i) and partial Bloch waves components φ(i), and the
second line is in terms of beams for every diffraction condition g. Note that in the
equation above the wavefunction is given in terms of the position vector r which
needs to be replaced by the atoms positions τn for the probability computations.

The probability distribution function in terms of two beams is then:
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|Ψ(r)|2 = |ψ0 exp(2πi rinc · r) + ψg exp(2πi (rinc + g) · r)|2 (4.21)

Note that both the direct and diffracted beam(s) contribute to the contrast and their
backscattered cross sections and probabilities must be computed separate and added
together thorough the equation above to calculate the total BSE contribution.

Twigg and Picard [TP09] used a slightly different approach, yielding very similar
contrast predictions results. They assumed that the localisation of the backscattering
process is implicit in the imaginary potential used to treat absorption. Therefore, they
integrate the beam intensities along their path in order to calculate the probability of
backscattering.

4.7 Numerical simulation of electron diffraction model

The dislocation line is placed in the centre of a square mesh. The pixels on the mesh
are populated by columns aligned parallel to the incident beam and of length equal
to the electron beam penetration depth. The HWD differential equations are then
solved numerically step-wise for each column taking into account the variation of the
displacement field along the column calculated previously. We use the Runge-Kutta
algorithm available in the zvode library [Hin85] for the numerical integration which,
even for stiff equations, can calculate the entire mesh in seconds when using a modern
computer.

With the electron beam wavefunction numerically solved, I then “integrate along
the beam” by summing up their squared values for the decided penetration depth. I
then calculate for all the species in the sample the BSE cross section and the total BSE
contribution for a pixel. After the backscattering event the electrons heading towards
the detector are projected by yet another coordinate transformation on its surface.

The full code I used can be found in the “ecci-model” folder on the GitHub reposi-
tory. The Howie-Whelan two beam integration is not particularly easy to read, neither
is the backscattering process. I hope one day to make it readable, but until then, the
schematics of it is shown in Fig. 4.14. I calculate the ECC-strain for each specific ge-
ometry and diffraction condition using Python and generate the long, unsimplifiable
three dimensional numerical β function. These functions are turned to Fortran read-
able modules using the codegen function. Eventually, the β functions are fed into the
Howie-Whelan ODEs, which are then integrated column-wise on a 2D mesh using
the zvode library. There is an option to compare a TEM prediction to the ECCI one.
The main file is doHW.f90 which also contains all the hard-coded GaN parameters, the
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FIGURE 4.14: The code structure schematics for predicting TD contrast
in ECCI .

depth of integration and the sample area considered. I wrote a MAKEFILE to control
all of this. In the end, I obtain a file containing a two dimensional contrast function
which could be plotted, for instance using more Python.
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4.8 Contrast predictions in GaN

Dislocation analysis of GaN cross sections in TEM shows that the TDs predominantly
show pure edge character with the dislocation line lying along the crystallographic c
axis and the Burgers vector pertaining to the family 1/3〈1 1 2 0〉 [Hin+00].

The ECC images of these types of TDs in the forescatter geometry, with the film
tilted at a high angle, will sample strain components which are not parallel to the
dislocation line. While the plan view TEM images show TD black-white contrast be-
ing aligned perpendicularly to the Burgers vector of the dislocation, the geometry of
the ECCI highlights a different set of strain components which can align the contrast
direction along the Burgers vector.

In Fig. 4.15 I show possible strain profiles sampled in a plane 10 nm below the
surface (similar to Fig. 4.5 for three geometries of orientation of an edge dislocation.
The dislocation geometry is represented by the rotation of the vector b with respect
to g. In Fig. 4.15 a) and c) the maximum variation in strain is somewhat aligned with
the direction of the Burgers vector.

The image in Fig. 4.15 b) shows the invisibility criterion used in TEM, ie the case
when vector g is perpendicular to the Burgers vector b. Note that the strain here is
not exactly zero; in fact the maximum strain value is about a quarter of the value
in the other two cases. Taking into account the exponential radial decay, this could
be enough to suggest this geometry would be challenging to observe. But there is
something else that contributes to the quasi-invisibility: there is a four dipole of strain
variation, with alternating signs making it extra difficult to resolve the contrast.

Nevertheless, this is not the full picture of the contrast due to an edge TD. At
10 nm below the surface, we are sampling mostly infinite-lattice dislocation strain
components. For a complete dislocation contrast picture, one would integrate over
depth the relevant effect of the strain components.
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Two beam plan view ECC images were acquired by Naresh-Kumar [NK+12] us-
ing a 50◦ sample tilt together with electron channelling patterns from the same area
for two different crystal rotation: ga =[5 7 3] and gb =[7 5 3]. This was achieved by
tilting the crystal in plane with about 3◦. The electron beam energy was 30 keV. The
same small area from the two images is shown on the left in Fig. 4.16 a) and b) with
the predicted dislocation contrast for three different possible Burgers vectors shown
on the right. From the qualitative comparison we can determine which dislocations
show similar behaviour to the model cases and assign Burgers vectors.

The modelling parameters used here are shown in the Table 4.3. The extinction
distances are calculated numerically from the Fourier coefficient of the electrostatic
potential of the crystal. The scattering factors of this potential are calculated us-
ing Weickenmeier-Kohl parametrisation as implemented in EMsoft [DGG13]. For
the beam penetration depth calculation needed for the estimation of the diffraction
columns integration depth we made use of a continuously slowing down inelastic
scattering Monte Carlo model [Dro+07].

Parameter Symbol Value

Extinction distance ξg 29.6 nm
Beam penetration depth rmax

inc 80 nm

TABLE 4.3: Modelling parameters for edge TDs in wurtzite GaN for
the channelling conditions given in the text.

The predicted contrasts shown are plotted as variation from the perfect crystal
BSE yield. Namely, the calculated BSE intensity is normalised with respect to the BSE
yield far away from the dislocation. Normalisation is not used when comparing with
the experimental contrast images. The intensity is plotted using the BuPu multi-hue
colour scheme with white showing the highest intensity, blue - intermediate values,
and dark purple the lowest intensity.

A very similar behaviour to the strain field profile in a plane is observed: the
darker-lighter intensity appears to follow the Burgers vector direction. This points
towards the fact that a qualitative prediction of TD behaviour can be achieved from a
bare strain model correctly “sampled”. In order to reduce the characterisation uncer-
tainty a larger number of different diffraction conditions should be acquired.
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4.8.1 Equivalence between contrast and ECC-strain

In the end, the only change in the crystal is the dislocation displacement field, which
will locally affect the phase of an incident electron beam. The β correction term is
what tells the dynamical equations to locally change the position of the reciprocal lat-
tice point closer to the Ewald sphere, resulting in an increase in intensity, or further
from it, resulting in a decrease in intensity. This is what we see in the SEM micror-
graph as TD contrast.

FIGURE 4.17: Comparison between ECC-strain (bottom left) and con-
trast (top left) for a screw TD in two different diffraction conditions g1
and g2 (given on the bottom right). On the top right two TDs from ECC

images taken in the same conditions as the simulations are shown.

In the left columns of Fig. 4.17 and Fig. 4.18 I want to show that if I plot the ECC-
strain isosurfaces and compare them to the two-beam dynamical simulation predic-
tion of TD contrast they show the exact same geometry of features. Again, I compare
the contrast prediction to selected TDs in ECC images taken in the same diffraction
conditions as the simulations shown in the right column. The ECCIs were taken by
Naresh-Kumar and can be found in this paper [NK+12].

Fig. 4.17 shows the top surface view strain isosurfaces (bottom) of a screw TD in
two different diffraction conditions g1 and g2, whose projections on the viewing plane
is shown as red rods. Like before the modelled material is [0 0 1] GaN and red strain
isosurface indicated compressive strain (positive) while blue isosurface indicates ten-
sile strain (negative). As discussed on page 115, for a screw TD in forward-scattering
geometry the ECC-strain will be significant close to the surface.
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The calculated dynamical contrast (top figures) follows very closely the surface re-
laxation isosurface profile, with high intensity mapping the tensile strain introduced
by the dislocation, and low intensity matching the compressive part. This matching
behaviour is not straightforward to generalise. Looking back at the rocking curves
on page 92, Fig. 3.10, and remembering that the contrast in the SEM has contribu-
tions from both the incident and diffracted beam, we can see that small variations
in intensity occur with deviation from Bragg condition in a complex manner. Addi-
tionally, the rocking curves will look different for different diffraction conditions and
integration depths. My argument here is that the “proportionality factor” between
ECC-strain and intensity is non-trivial and simulations are required in order to pre-
dict the correct contrast.

A very similar behaviour is observed for an edge TD and is shown in Fig. 4.18.
This time the surface relaxation is not as prominent and we mostly see the infinite
dislocation strain components. Nevertheless the features of these strain components
can be rediscovered in the contrast simulations. The TDs in the experimental images
show the same contrast geometry, perhaps with higher intensity than my predictions.
Note that my simple simulations do not take into account any texture on surface of
the sample, or perhaps more problematic, low angle grains between which the dislo-
cations are commonly found. I will discuss more about this in Chapter 6 on page 159.

I conclude from these comparisons that it is the ECC-strain that gives the features
of the contrast profile we observe in the SEM. If we are interested in understanding
what the ECCI TD contrast tells us about the dislocation observed then we “sim-
ply” need to simulate the ECC-strain. The simulation involves juggling a number of
different frames as we have seen on page 110 which, in turn, requires a good under-
standing not only of coordinates transformation calculations which we covered in the
introductory chapter, but also of the diffraction condition and exact beam-sample-
detector geometry. Unfortunately, none of these are obvious in an SEM since the SEM
is not optimised for diffraction, especially not for channelling in the same way the
TEM is. Everything from the small and controlled interaction volume designed for
TEM to the detector position optimised to maximise diffraction signal in diffraction
mode are incongruous with the SEM.
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FIGURE 4.18: Comparison between ECC-strain (bottom left) and con-
trast (top left) for an edge TD in two different diffraction conditions g1
and g2 (given on the bottom right). On top right two TDs from ECC

images taken in the same conditions as the simulations are shown.

FIGURE 4.19: Comparison between vanishing ECC-strain (bottom left)
and vanishing contrast (top left) for an edge TD in two different diffrac-

tion conditions g1 and g2 (given on the bottom right).
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We can also see that for certain dislocation geometries like the one in Fig. 4.19
where the strain isosurfaces come very close to the core of the dislocation, i.e., re-
duced ECC-strain, the contrast predicted will become faint. We do expect, then, that
some dislocation can appear faint in the ECC images. If we were interested in a good
approximation of their density, we would have to acquire multiple images in different
diffraction conditions.

4.9 Conclusions

ECCI can be used as an alternative to, or jointly with, the established defect charac-
terisation techniques. Since the usual defect identification procedure developed for
TEM is not entirely appropriate for looking at TDs in ECCI, modelling the contrast
predictions becomes critical.

The forescatter ECC images provide TD contrast features as cumulative sampled
strain components defined in the Cartesian frames selected by the imaging diffrac-
tion condition. While the characterisation is more involved than in TEM, which ben-
efits from the applicability of the ’invisibility criteria’, simulations of ECCI disloca-
tion strain profile can predict the observed dislocation contrast. As these features are
unique for different dislocation characters, this technique can be used to identify the
type of imaged dislocations by comparison between measured and simulated TDs.
We propose that the ECCI dislocation contrast is uniquely predicted by the ECCI
strain profile. The equivalence between ECCI strain and ECCI contrast can aid not
only the physical understanding of the observed images but can predict the behaviour
of the contrast. For instance, we can predict that the contrast profile will always fol-
low the edge component of the Burgers vector and that the diffraction condition will
not affect its symmetry.

Finally, I show qualitative agreement between predictions of TD contrast in ECC
images for two different diffraction conditions and the experimental images. These
types of calculations can be used to unambiguously identify the type of dislocation
observed in ECCIs.

If you can, reader, take an ECP before trying to find dislocation contrast in the
SEM, even if it is poor quality you can use it to navigate towards a band, close to a
Bragg condition and increase your chances of success.
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5 Electron diffraction in an
imperfect crystal – TKD

In the previous chapters we have established that the electron channelling (diffrac-
tion) contrast technique in the scanning electron microscope is a great tool to inves-
tigate dislocations close to a surface in crystalline materials. In this chapter we will
explore different diffraction techniques used for the study of different kind of crystal
imperfections.

So far, we have focused mostly on elastic, coherent scattering. We treated inelastic
scattering as a channel of intensity loss in the diffraction beams and approximated
its effect through the complex optical crystal potential. Since Kikuchi patterns are
not only formed by electrons of incident energy, we need to take a closer look, on
page 137, at models used to predict energy loss for high energy electrons.

While the physics of EBSD is somewhat well understood, the question explored in
this chapter is whether the existing models can accommodate for the new geometry
of the transmission-EBSD modality. In the following pages the implementation of
diffraction pattern predictions of EMsoft software [SRDG17] is described (page 139).
Then, I will talk about the difference in electron escape distances between the EBSD
and TKD modalities, as predicted by Monte Carlo simulations, and why that matters
on page 141.

The work I will show in this chapter was the outcome of a collaboration with Prof.
Marc De Graef’s group and parts of the results were published in Energy-weighted
dynamical scattering simulations of electron diffraction modalities in the scanning electron
microscope [Pas+18b].

In section 5.2 on page 139 we describe the typical geometries for EBSD, TKD and
ECP data acquisition and formulate a general expression for the thickness integrated
back-scattered electron intensity that is applicable to all three diffraction modalities.
We describe the particulars of the Monte Carlo trajectory simulations in section 5.2.2,
along with the resulting differences between the modalities. Master patterns for the
three modalities are described and compared in section 5.3.1.
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5.1 Introduction

5.1.1 How does it work?

Let us cover the grounds of the technique first. What we need for an electron backscat-
ter pattern (EBSP) is a sample with a flat surface placed at a shallow angle of about
20◦ with respect to the incident electron beam as schematically shown in Fig. 5.1 a).
The location where the 10 keV to 30 keV stationary beam is incident on the sample
surface also marks the source of the spherically generated EBSD pattern.

FIGURE 5.1: (a) and (b) EBSD geometry, with the sample inclined at
70◦ and 50◦; the detector is indicated by a thick line and is inclined by
10◦ with respect to the vertical direction. (c) and (d) show typical TKD
geometries with a horizontal sample, and one inclined at−20◦. (e) and
(f) show typical ECP geometries with two different sample tilt angles.

Adapted from [Pas+18b].

An example of this is shown in Fig. 5.2 for a 20 keV electron beam incident on a
Ni sample. The simulation was done using EMsoft [DGG13] and shows all possible
independent exit directions in the Northern hemisphere as a stereographic projection
(see ref. [CDG13]).

Primary beam electrons that have lost little energy on their way in the sample,
have a chance to suffer diffraction at crystal planes on their way out of the sample.
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FIGURE 5.2: Simulated stereographic projection of the entire Northern
hemisphere EBSD pattern of Ni using 20 keV incident electrons. The
90◦ represents the north pole and the 0◦ circle the equator and the ge-
ometry of the crystal is shown in the bottom left corner (see also Fig.
5.4 for coordinate frames geometry). The blue rectangle shows the area

plotted in Fig. 5.13. Adapted from [Pas+18b].

The Kikuchi lines in the EBSD pattern tell us about the crystal planes in the sample
we are probing with the electron beam.

If a phosphorous screen is placed close to the sample, on the path of the diffract-
ing out electrons, then we can record a small solid angle of the pattern shown here.
Nevertheless, with the help of careful analysis it will provide enough information to
learn about the crystallography of this sample.

For a polycrystalline sample, using the scanning setting of the SEM one could
record EBSD patterns for every single pixel and then analyse them to obtain texture
information, misorientation or strain variation from one grain to the other. Auto-
mated pattern indexing software established this diffraction modality as one of the
conventional tools of orientation mapping, phase identification and/or relative lat-
tice strain estimation in crystalline materials [Sch+09b]. A better descriptions of this
can be found in textbooks such as Chapter 2 in [MS07].
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5.1.2 Kikuchi patterns – three ways

We can distinguish a number of different SEM modalities making use of the Kikuchi
diffraction mechanism. If the recorded electrons are the backscattered ones (see Fig. 5.1
a), b)), then the technique is known as electron backscatter diffraction (EBSD) and the
Kikuchi patterns obtained are called electron backscatter patterns (EBSP). In order
to increase the diffraction signal in this mode, the popular approach has been to tilt
the sample to about 70◦ from horizontal towards the detector, which guarantees a
maximum backscattered electron yield. However, the high tilt will also spread out
the information volume (or interaction volume) of the electrons within the sample,
limiting the achievable spatial resolution.

The idea of questioning instead the electrons transmitted through a thin sample
for diffraction information, as a method of improving the lateral spatial resolution,
has attracted considerable attention in recent years [Tri12a; KG12]. In this case the de-
tector is placed on the other side of a thin sample and transmission Kikuchi diffraction
patterns are collected as seen in Fig. 5.1 c) and d).

The modalities above are sometimes referred to as “channelling out” diffraction
techniques [Joy94] to suggest that the diffraction information has been sampled by
electrons on their way out of the sample and that the volume from which the signal is
collected is located close to the exit surface. The SEM can also be used in “channelling
in” mode when electron channelling patterns (ECPs) are acquired [Coa67; JND82].
The usual set-up geometry is shown in Fig. 5.1 e) and f). In this case, Kikuchi-like
diffraction patterns can also be obtained by varying the incident beam direction with
respect to the crystal. Typically, those patterns have a smaller solid angle compared
to their EBSD counterparts. Nevertheless, the physical scattering mechanisms that
produce EBSPs and ECPs are related through the reciprocity principle [Rei98].

5.1.3 Interaction volume

As a SEM based technique, EBSD is limited in its spatial resolution by the SEM elec-
tron optics. When we talk of high resolution imaging of nano-grains, we imply the use
of a high performance FE-SEM, short working distances, which in turns require small
samples and small interaction volumes. We will see on page 136 that the latter argu-
ment motivates the need for the transmission mode of EBSD, namely transmission-
EBSD or transmission Kikuchi diffraction (TKD). In conventional EBSD geometry the
signal carrying electrons are the backscattered ones. These are electrons which can
travel a significant distance before escaping the sample, “sampling” a rather broad
interaction volume.
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The difference in interaction volume is shown in Fig. 5.3 as KDE plots [Sco92].
The position of escaping electrons is assumed to be the last scattering event before
exiting the sample. The data was produced from Monte Carlo simulations using
Casino [Dro+07] software for an incident beam of 30 keV on a 70◦ (EBSD – top figure)
and a 20◦ (TKD – bottom figure) tilted sample of thin Si. I used different sample thick-
nesses in order to produce the same total number of backscattered and transmitted
electrons. More about the description of the Monte Carlo method used on page 141.

5.1.4 TKD geometry

Following the EBSD experimental geometry described by Callahan [CDG13] we can
derive the TKD sample-detector coordinates transformation.

For a translation vector t which moves the ori-
gin of the detector frame Od to the origin of the
sample frame Os defined as:

~t = (xPC, yPC, L),

the coordinates of a point P(xP, yP) on the de-
tector in the reference frame of the sample can
be derived geometrically:

~OsP = Rds( ~OdP−~t)

where Rds is the coordinate transformation
from the sample frame to the detector frame.
Such that finally the direction cosines of a pixel
on the screen in the sample frame is:

Ps =

 − cos α(yd − yPC) + L sin α
−(xPC − xd)

− sin α(yd − yPC) + cos α(zd − L)

 ,

where α = π/2 + θS + θD.

FIGURE 5.4: Schematics of
TKD set-up geometry. PC de-
notes the pattern centre and
L is the distance between the

detector and the sample.

For a given crystallographic orientation the direction cosines can be converted to
the possible channelling out directions the pixels on a detector will register. This can
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be done for all grains in a sample and the information can be stored in a look up table.

5.1.5 Why do we need a new model?

The geometry of the Kikuchi patterns is dictated by the unit cell of the crystal and
its orientation. Other features, such as the width of the bands, for instance, are nev-
ertheless influenced by the spatial distribution of diffracted electrons in the sample
and their energy distribution. In the end, Kikuchi patterns offer a variety of informa-
tion about the crystal structure of the material under investigation which is why they
are widely used in the study of new materials. For a more complete discussion see
ref. [Win+17].

Theoretical models have been developed and successfully applied to retrieve this
wealth of information by taking into account the full dynamical behaviour of elec-
tron diffraction [Win+07; Pic+14; SDG16]. Electron diffraction calculations commonly
handle inelastic scattering in a phenomenological way through the introduction of a
complex optical crystal potential approximation. This assumption implies that inelas-
tically scattered electrons, once they lose even a small amount of energy, will cease to
contribute to the diffraction pattern. The predicted diffraction patterns based on this
simplified model remain meaningful [How63] but, understandably, are lacking quan-
titative precision. Due to the strong interaction of incident beam electrons at SEM
energies with matter, the inelastic cross section is always comparable to the elastic
one, and a portion of inelastically scattered electrons will reach the detector and con-
tributes to the imaged pattern.

Depending on the types of inelastic channels allowed, these electrons can suffer
diffraction after losing a small amount of energy, contributing then to the diffuse-
ness of the Kikuchi patterns. This process is especially relevant for “channelling out”
modalities where electrons with energies lower than the incident energy can still con-
tribute to the diffraction pattern. Alternatively, if electrons are scattered at a large
angle multiple times such that memory of their original direction is lost, they will
also contribute to the background intensity. This is the case for both channelling
modalities. We call the later type of inelastically (back/forward-)scattered electrons
(B/F)SE2 in order to differentiate them from (B/F)SE1 electrons carrying diffraction
information.

It is therefore essential to explicitly consider inelastic scattering and its effects on
the signal contributing electrons, such as their energy and spatial distributions [CDG13;
Win+16]. This is especially important if finer features of the Kikuchi bands (size, ab-
solute intensity relative to background, band edges) are to be correctly predicted. A
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full account of the inelastic channels in electron diffraction poses a challenging prob-
lem. While general Schrödinger equation solutions for inelastic scattering in perfect
crystals have been proposed by Yoshioka [Yos57] and solved for various electron mi-
croscopy applications (see Howie [How63] for small angle plasmon scattering and
Forbes et al. [For11] for single thermal diffuse scattering events), to our knowledge,
readily implementable solutions relevant for SEM electron energies have yet to be
proposed.

In this work, we assume inelastic scattering events to be stochastic and that Monte
Carlo (MC) technique can estimate both the trajectories of electrons that suffered such
events as well as their energy distribution. Such models have been proposed and
widely used to correctly predict distributions of backscattered electrons [Joy95]. The
assumption that the distribution of escape energies and the trajectories of electrons
carrying diffraction information can be estimated from the last elastic event predicted
by MC models has already been successfully applied both for EBSPs [CDG13] and
ECPs [SDG17].

The energy of the electron at the last elastic event before escaping the sample, is
considered to be the energy for which the diffraction occurs. Similarly, the distance
to the exit surface from the last elastic event, also known as the escape or exit dis-
tance, is used as the diffraction distance (electron path length over which coherence
is not lost). Dynamical diffraction modelling is then applied for the full MC predicted
electron energy and path distributions. Here, we extend this model to TKD patterns
by considering the geometry of a thin film sample where the entry (top) and escape
(bottom) surfaces are different such that the incoherent events acting as sources of
diffracting electrons are scattering in a forward direction.

While this approach may not take into account the full extent of inelastic scattering
effects on diffracted electrons proposed by the Yoshioka equations, it leads to a model
of manageable complexity which is straightforward to implement and whose predic-
tions are easily understood. Most importantly, it represents a step forward in taking
into account the full physics of electron diffraction in matter by considering the full
distribution of energies of channelling electrons and produces accurate predictions
when compared to experimental patterns, as shown in section 5.3.1 on page 152.

5.1.6 Electron scattering

So far we have only talked about one type of electron scattering: the coherent, elastic
type that is also known as diffraction. But electrons can scatter in a variety of ways.
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Classically, the collision of particles is fully defined by their velocities and interac-
tion parameters. However, high energy electrons are quantum mechanical objects.
The notion of defined path for a particle with known velocity is meaningless in the
Copenhagen interpretation of the quantum mechanical world1. In any interpretation
of quantum mechanics a version of the uncertainty principle limits us from knowing
both the precise position and velocity of a particle, making the classical approach of
predicting particle behaviour unfeasible at the scale of the very small. Instead, we are
interested in defining the probability that, as a result of the collision, the particle will
deviate by a given angle. This is what we mean by scattering.

For practical considerations it is common to classify the interaction of electrons
with a crystal in two distinct processes:

• Elastic scattering, defined as a process which does not change the state of the
crystal. Mostly made up by interactions with the nucleus. Rutherford scattering
is the model commonly used to predict this behaviour and it does that by taking
into account just Coulomb forces between the charged electron and the nucleus.

Let’s say an elastic event will deviate the trajectory of an electron by a polar an-
gle φ from its original trajectory. The probability of the electron being scattered
in the solid angle dΩ is given by the angular differential form of the screeened
Rutherford cross section [RK76]:

dσ

dΩ
=

(
e2

4πε0

Z
4E

)2 1

sin2 φ
2 + α

(m−2)

where E is the energy of the electron in keVand α is a screening factor accounting
for the fact that some of the atomic charge is “screened” by the orbiting electrons
from the perspective of the incident electrons.

As a result, it is common to assume that this scattering mechanism accounts
for the bulk of angular scattering of electrons including the behaviour we call
backscattering.

• Inelastic scattering, defined as the process in which the state of the crystal is
modified by the interaction. An important contribution here is made by the
electron-electron scattering which causes the incident beam electron to loose
small amounts of energy to the crystal. The angular deflections caused by these
events is relatively small allowing us to use, what is known as, the continuously

1Note that in the Bohmian interpretation this is allowed [CMD18].
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slowing down approximation (CSDA) to predict this particular type of inelastic
scattering processes. We simply assume the electrons are carrying on the same
path but slowly and continuously lose energy. The Bethe’s theory describes elec-
trons as a system of oscillators that lose energy due to excitations caused by the
crystal and can predict a stopping power of inelastic events [JL89]:

dE
ds

= −2πe4NA
Zρ

AE
log
(

1.166E
J

)
(eV/Å) (5.1)

where E is the incident energy in units of eV, s is the path length along the
trajectory (in Å), NA is Avogadro’s number, ρ is the density (in g/cm3), Z is
the atomic number and A is the atomic weight of the target. J is an empirical
parameter representing the mean ionisation potential, has units of eV and rep-
resents the effective average energy loss of the incident electron in the material.
πe4 is a common constant appearing in inelastic scattering cross sections and
used in Gaussian units:

πe4 = π(a0Eh)(cm2eV2)

where a0 is the Bohr radius and Eh is the Hartree constant. The pre-multiplying
factors are sometimes written out explicitly as:

2πe4NA = 784(eV2cmÅ/mol). (5.2)

In order to predict the probability of electrons scattering in a certain direction and
reach a certain energy, one has to combine the two scattering processes. When it
comes to probability prediction, Monte Carlo methods are the answer as we will see
on page 141.

5.2 Theoretical Model

This section will review the energy weighted dynamical theory implemented by EM-
soft [DGG13].
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5.2.1 Energy and diffraction distance integrated electron intensity

The simulation of the (back/forward-)scattered electron distribution emerging from
a sample illuminated with a fine, nearly-parallel, electron probe can be achieved in
general by integrating over both the energy range of the exiting electrons and the
distance travelled in the sample between the scattering site and the sample surface.
The probability of a (B/F)SE emerging from the sample in the direction k̂ (the hat
indicates a unit vector) can be written as follows:

P(k̂) = ∑
n∈A.U.

Pn(k̂), (5.3)

where A.U. stands for asymmetric (primitive) unit and the index n runs over all posi-
tions in the asymmetric unit. The probability Pn is defined as:

Pn(k̂) = ∑
j∈Sn

σj

∫ Emax

Emin

dE
∫ t0(E)

0
dt λ̄k̂(E, t)|Ψk̂(rj; E, t)|2. (5.4)

Here, σj = Z2
j Dj (with Z the atomic number and D the Debye-Waller factor) is the

Rutherford scattering cross section for atom j in the set of equivalent positions Sn;
Emax is the maximum energy (potentially the incident beam energy E0) and Emin the
lowest energy considered in the calculation; t is the distance between the scattering
site and the sample surface, measured along the exit direction; t0(E) is the maximum
distance to be considered; λ̄k̂(E, t) is a weighting function describing the fraction of
incident electrons (per unit energy and per unit length) of energy E, originating a dis-
tance t from the sample surface and travelling in the direction k̂; the wave function Ψk̂

is evaluated for the equivalent atom positions rj and the parameters E and t. For the
latter, one can use either the Bloch wave approach or the scattering matrix formalism.
The weighting function λ̄ is defined as:

λ̄k̂(E, t) ≡
λk̂(E, t)

Nt0(E)(Emax − Emin)
, (5.5)

where λk̂(E, t) represents an energy-depth-direction distribution obtained from Monte
Carlo (MC) simulations, to be discussed in the following section, and N is the total
number of incident beam electrons. The normalisation factor in the denominator ren-
ders the integrations in equation 5.4 dimensionless.

Equation 5.4 is valid for all (B/F)SE diffraction modalities, including EBSD, ECP
and TKD. The differences between them lie in the nature of the sample (bulk vs. thin
foil), the geometry of the scattering process (back-scattering vs. forward scattering),
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and the subset of electrons carrying the coherent diffraction signal (all backscattered
electrons vs. (B/F)SE1 electrons). These differences will be encoded in the geometry
dependent weighting function λ̄ for each of the modalities.

The Monte Carlo model enables us to predict how any of these system parameters
influence the form of the weighting function. For instance, in the next section we dis-
cuss the impact of different sample geometries on TKD patterns, while in Section 5.2.4
the effect of foil thickness is investigated. Then, in Section 5.2.5 the sample-detector
geometry is considered as a useful system parameter that can identify special cases
for which the numerical solution of the scattering process can be simplified dramati-
cally via the use of so-called master patterns.

5.2.2 Monte Carlo Trajectory Simulations

As we have seen in Section 5.1.6 on page 137, the information about scattering angles,
direction and distances comes as a stochastic package. If we are to combine a number
of scattering processes it would become cumbersome to keep track of all these prob-
abilities and their predictions. Instead, it is more useful to use a random sampling
approach with which we can run many simulations of the same process to predict its
outcomes, like the Monte Carlo method.

The use of Monte Carlo simulations in predicting energy and spatial distribu-
tion for the incoherent electron sources is a field of great interest [Ren+98; TE04].
Its integration with the dynamical diffraction model has been described before for
EBSPs [CDG13] and ECPs [SDG17] on bulk samples. These simulations employ Joy
and Luo’s [JL89] modified version of Bethe’s continuous slowing down approxima-
tion (CSDA) as an empirical estimation for a sum of inelastic scattering processes
probabilities. The probabilities of elastic scattering events are determined from the
Rutherford scattering cross section in the single scattering approximation. Therefore,
the loss of energy is uniquely determined by the CSDA while the angular deflections
from the original direction are defined by the elastic scattering events. For further
details on this simulation approach we refer to the book by Joy [Joy95].

In this work a similar approach is applied for the TKD modality with the modi-
fication that the sample is now a thin film and the escape surface is not the same as
the entry one. A collimated beam of electrons with primary beam energy enter the
top surface of a sample and start both losing energy and scattering away from their
original trajectory. Eventually they will suffer one final forward-scattering event after
which they will diffract on their way out of the bottom sample surface and reach the
detector. The energy and depth distributions for each scattering direction of this last
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event is predicted using the MC model since all events leading to it can be assumed
to be stochastic. These distributions are then binned for easy storage and used as
estimated values of the weighing function λ̄k̂(E, t).

Additionally, the Monte Carlo model can be used to predict general electron trajec-
tories inside the sample and the system parameters that might affect them. In Fig. 5.5
we show angular (directional) distributions of escaping electrons predicted by the MC
model for the TKD modality. The intensities are shown as stereographic projections
(SPs) in the sample’s southern hemisphere for a beam of 20 keV electrons incident on
a 200 nm thick Ni foil. By binning the energy values of the electrons escaping from
the bottom of the foil into high loss energy electrons (escape energy (Ee) < 17.5 keV),
medium loss electrons (17.5 keV 6 Ee < 18.5 keV) and low-loss energy electrons
(Ee > 18.5 keV) we can show the effect of energy filtering and observe the behaviour
of different energy electrons.

(a)

(b)

FIGURE 5.5: Directional distributions of transmitted electrons inten-
sity in TKD geometry for two sample tilts (shown in the first column):
0◦ (a) and -30◦ (b). The intensities are shown here as stereographic pro-
jections where the intersection of the horizontal and vertical lines indi-
cate the middle of the space (vertical line is the semicircle in the sketch).
The first three images in each case are showing “energy filtered” elec-
tron intensities (reversed contrast) while the last column displays the

total intensity distribution. Image adapted from [Pas+18b].

Fig. 5.5 (a) shows projections for the case when the sample is horizontal and the
electron beam normal. Here we can observe, as expected, that higher energy transmit-
ted electrons are much more focused in the middle of the southern hemisphere, which
happens to coincide with the direction of the incident beam. With increased energy
loss we can observe an increase in trajectory randomisation or diffuseness. This can be
explained by considering the possible trajectories of electrons inside the sample and
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their corresponding energy loss. Electrons escaping the sample with energies close
to the incident beam will not have deviated far from the incident direction. Relative
to this, high loss electrons are more likely to escape at large angles to their incident
direction. High energy loss electrons appear to have no preferred escape direction
and we can expect these electrons to only contribute to image background (FSE2).

In Fig. 5.5 (b) we investigate the effect of tilting the sample on the angular distribu-
tion of exiting electrons from the bottom surface. Similarly, the high energy electrons
will not deviate far from their incident trajectories. However, in this case, the incident
direction does not correspond to the centre of the stereographic projection space and
we observe that the directional distribution of the low loss electrons clusters 30◦ be-
low the SP horizon. The trajectories of higher loss electrons start to be randomised
in the entire SP space. We can also observe in these images how the radial symmetry
of electron scattering is broken by the tilt angle of the sample. Finally, the angular
distribution of the highest loss electron distribution will look the same as for the flat
sample as their “memory” of the incident direction is lost.

The outline in the rightmost column of Fig. 5.5 (a) and (b) depicts a typical detector
projected onto the stereographic disk. The detector has dimensions 24× 36 mm2 and
is inclined by 10◦ from the vertical direction. The perpendicular distance from the
exit point on the bottom of the sample to the detector is 20 mm, and the top edge
of the detector lies in the sample plane for the 0◦ orientation. The detector bottom
is closest to the centre of the stereographic projection. For 0◦ sample tilt, most of
the scattered electrons miss the detector surface; for a −30◦ sample tilt, the intensity
maximum moves upwards onto the lower part of the detector and at the same time
the detector projection moves closer to the centre of the stereographic disk, indicating
that a significantly larger number of electrons will reach the scintillator. It should also
be noted that a typical raw TKD pattern will display a rather steep intensity gradient
from top to bottom, in agreement with the intensity distribution inside the detector
outline in Fig. 5.5 (b) (rightmost image).

It becomes apparent that the sample geometry constitutes an important parame-
ter in the formation of the Kikuchi patterns. Similarly to the EBSD case, where the
sample tilt determines the preferred trajectories of electrons of different energies scat-
tering back from the sample [CDG13], the tilt of the thin film in TKD will directly
influence the angular distribution of transmitted electrons suffering diffraction at dif-
ferent energies. In the following section we will carefully review the effect of another
system parameter, the sample thickness, on the TKD diffraction patterns.
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5.2.3 Non uniform sampled MC

Joy’s Monte Carlo model [Joy95], as described in the previous section, is nothing more
than an empirical fit for the energy and direction of backscattered electrons. This, in
turn, makes a good start model for the prediction of energy and directions distri-
butions of backscattered electron. The assumption we have made in incorporating
the MC model with the dynamical simulations, is that the exit distances of electrons
can also be predicted from the MC model. In the absence of a better model it seems
adequate to use this approach and experimental results seem to agree to a first ap-
proximation [DHE08].

What I want to do in this section is to explore a different approach of sampling
the MC predictions of escape distances. I will start by assuming the position in the
sample of the primary electrons is well represented by the elastic events predicted by
the MC model. I then run a large MC simulation of electron scattering in a Si sample
and store energy, position and direction information for every elastic scattering event.
I consider these events my data points.

FIGURE 5.6: Visualisation of 10 keV primary electrons distribution in a
Si sample tilted at 70◦. The scatter points are elastic scattering positions
as predicted by the MC model and the pink background is the KDE
distribution plot with darker colours indicating higher probability in a

linear manner as indicated by the legend in arbitrary units.

Fig. 5.6 shows a xz plane projection of primary electron positions. The scatter
points plot is made up of random subset of about 1000 points taken from a simulation
on 10.000 electrons. The MC simulation used here is the same as described in the
previous section. Over-imposed on the scatter plot is a kernel density estimate map
using the full data set and showing the areas with highest points density.
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In the following I integrate the KDE map and use that as a weight in sampling,
such that I sample more often from places with more points than from places with
fewer points. The jupyter notebooks TKD_distribution.ipynb and EBSD_distribution.ipynb

show all the steps described here for sampled MC for a TKD geometry case and a
EBSD case, respectively.

I then define the probability of incoherent scattering to be proportional to the dis-
tance travelled by the electron until that point. This is in line with the continuous
slowing down approximation for inelastic scattering which also scales with travelled
distance. Fig. 5.7 is showing a weighted sample of 5000 positions and indicates the
probability of incoherent scattering with different sized circles.

FIGURE 5.7: Probability of incoherent scattering of primary electrons
on their trajectory in the sample. The probability scales with the size of

the circle.

Not all these electrons will have the same chance to escape the sample without
suffering significant loss of energy. The last bit of weighting that I introduce is an
exponential distribution depending on distance to the exiting surface, z, where z is
taken to be negative. In this case I’m considering the EBSD geometry where the ex-
iting surface is also the entry surface. In effect, the exponential depth weighting is
giving more weight to the positions closer to the surface than to those deeper in the
sample. This is similar to the weighting factor proposed by Winkelmann et al. for lo-
calised BSE [WSPW13], defined as large angle scattering events followed by less than
nie inelastic events, where nie is a user defined value.

The last two weighting procedures are competing with each other, the first one
favouring data points deeper in the sample and the latter giving more weight to
points closer to the surface. This explains why the resulting spatial distribution shown
in Fig. 5.8 is significantly more localised than the original one in Fig. 5.6. More inter-
estingly, it indicates a mean z of about 100-150 nm for 10 keV electrons incident at 70◦
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on a Si sample, significantly larger than the original model.

FIGURE 5.8: Estimated spatial distribution of “sources” of diffracting
out electrons shown as KDE map. Like before, darker colours corre-

spond to higher probability linearly for the colours in the legend.

5.2.4 Sample thickness in TKD

While for the EBSD and ECP modalities one only needs to run a single Monte Carlo
simulation to obtain the energy-depth-direction histogram λ̄k(E, t) for a bulk sample,
for the TKD case, the MC simulation results depend on the thickness, t, of the sample.
The larger the thickness, the more energy an electron will lose on its way to the exit
surface, and this will shift the entire exit energy distribution to lower energies for
increasing sample thickness.

This behaviour is shown in Fig. 5.9 as kernel density estimate (KDE) distribu-
tions [Sco92] of electron escape energy versus escape distance predicted information
for two different Ni thin foil thicknesses, 100 nm and 200 nm respectively, in the TKD
geometry. Darker colours show that more electrons are likely to escape the sample
with the corresponding parameters. The likelihood across the two distributions has
been normalised to the maximum value in Fig. 5.9 (a) such that the intensity across
images can be compared. We also show the escape energy and distance region where
90% of electrons are expected to come from, which is indicated by the thick line. Com-
paring the two figures, 5.9 (a) and 5.9 (b), it is clear that the thickness of the thin
sample strongly influences the shape of the distributions. Considering the y-axis, the
energy range of the electrons exiting the sample broadens and the energy decreases
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FIGURE 5.9: KDE plots of electron energy versus escape distance dis-
tributions as predicted by the MC model for TKD geometry for two
sample thicknesses (a) 100 nm and (b) 200 nm. The area enclosed by

the thick line contains 90% of events. See text for further details.

to significantly lower values as the thickness of the film increases. These observations
already indicate that we should expect more diffuse diffraction patterns from thicker
samples when compared to thinner ones. In general, the greater the interaction vol-
ume of electrons with the sample, the more energy will be lost by electrons before
diffraction and the greater the diffuseness of the Kikuchi patterns; as supported by
literature [RKS14].

Considering the x-axis, we observe that the escape depth profile resembles the
usual power-law distribution [Win+16] with the bulk of the electrons carrying diffrac-
tion information originating from a few nm below the escape surface. It should be
noted, that the MC model used in this study does not aim to predict the full depth
of diffracting electrons or interaction volume. Instead, we make the assumption that
the mean value of the full diffraction depth distribution can be estimated to be of the
same order as the electron mean free path. Due to the power-law distribution rule, we
can be confident that the vast majority of escape depths is considered in this model.

By comparing the two images in Fig. 5.9, we can see that the thickness of the
samples impacts very directly the energy distribution of the escaping electrons. This
linear correlation is shown more clearly as energy distributions of escaping elec-
trons from a series of different thickness samples in Fig. 5.10. For very thin sam-
ple the energy distribution is narrow and we can expect sharp features while for
thicker films energy absorption becomes more prominent and distributions will be-
come broader with diffraction lines suffering blurring. The peak of the energy dis-
tribution is strongly influenced by sample thickness underlining the requirement for
uniform thickness samples in TKD.
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FIGURE 5.10: Energy distributions versus sample thickness for elec-
trons exiting a 20◦ tilted Ni sample for a 20 keV primary beam. Image

adapted from [Pas+18b].

It should be clear that accounting for the effect of sample thickness is essential
when predicting accurate electron transmission diffraction patterns. In this model this
is achieved by sampling the above likelihood distribution bin-wise and constructing
the λ̄k(E, z) weighting function as discussed in Section 5.2.1 on page 140.

In the next section, we will investigate special geometries for which electrons
reaching different regions of the detector can be described by the same λk̂(E, t) func-
tion, simplifying the calculations significantly.

5.2.5 Special sample-detector geometries and the master pattern

Let us consider again the sample and detector geometries shown in Fig. 5.1 (a-f) back
on page 131 where the lighter region on the samples depicts the volume in which elec-
trons suffer scattering events. Different k directions are indicated for which energy-
distance KDEs distributions are shown in Figure 5.11. The top row shows two po-
tential EBSD geometries, one with the sample tilted at the standard 70◦ angle with
respect to the horizontal plane, the other with the sample tilted at 50◦. As previously
discussed, the sample geometry will determine the manner in which the radial sym-
metry of scattering will be broken. Nevertheless, the region of SP space sampled by
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the position of the detector will also influence the uniformity (or lack thereof) of the
electron energies and diffraction distances distributions. In Fig. 5.1 (a), the electrons
that reach the top and bottom of the detector (thick line on the left, inclined at 10◦

from vertical) ought to have travelled approximately the same length inside the sam-
ple before channelling out; in Fig. 5.1 (b) on the other hand, the electrons that reach the
bottom of the detector have travelled a significantly larger distance inside the sample.

FIGURE 5.11: KDE plots of electron energy versus escape distance dis-
tributions as predicted by the Monte Carlo model for TKD geometries
and directions ki shown in Figure 5.1 (c) and (d). The area enclosed by

the thick line contains 90% of the events.

In TKD, the situation is similar: in Fig. 5.1 (c) the sample is horizontal and elec-
trons that reach the top of the detector have travelled a much larger distance inside
the sample before diffracting than electrons that reach the bottom. In the top row
of Fig. 5.11, the escape energy-escape distance distributions are shown as KDE plots
for electrons reaching the top (a) and the bottom (b) of the detector. We can observe
qualitative differences in these distributions, especially for the escape energies. The
electrons that travelled larger distances before diffracted lost more energy and there-
fore their energy distribution is shifted towards lower values. On the other hand, a
small sample tilt of −30◦ shown in (d) reduces these differences. Fig. 5.11 (bottom
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row) shows that the energy-distance distribution of electrons reaching the top of the
detector (c) and the distribution of those reaching the bottom of the detector (d) is
qualitatively the same. Note that figures 5.11 (b), (c) and (d) show similar distribu-
tions since all possible trajectories k2, k3, k4 have similar lengths in the sample.

FIGURE 5.12: TKD electron escape path length (top) and electron exit
energy (bottom) dependence on exit angle. Purple line shows the run-
ning mean values for more data points than shown. The pink coloured
area indicated the solid angle of the detector as shown in the top left

insert.

The conclusion we draw here is that in standard TKD geometry the path lengths
and energies of electrons that reach the detector do not show strong dependency on
the exit angle. To illustrate this even further, in Fig 5.12 I show another, more classical
way to show this data, in the form of scatter plot, even though it now contains fewer
data points. These are Monte Carlo results for 50000 electrons with incident energy
of 30 keV travelling out of a 100 nm Si sample. Note, that I am showing a random
sub-sample of 100 points. The angular dependence of both the exit energy (bottom)
and the escape path length (top) shows a constant for the predicted solid angle of a
detector (between 37◦ and 60◦ from the z-axis direction.)

Finally, for the ECP case illustrated in Fig. 5.1 (e) and (f), a small sample tilt does
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not significantly change the distribution of path lengths inside the sample, and most
trajectories have about the same path length.

This observation has consequences for the numerical approach to be used to ob-
tain high quality simulated patterns. For special geometries, we can now approximate
the weighting function λ̄ by an effective (averaged) weighting function,

λ̄k̂(E, t)→ λ̄(E, t), (5.6)

which no longer depends on the electron direction k. This has significant advantages
numerically, since one can now pre-compute the probabilities P(k) for a spherical
sampling of incident beam orientations and store the resulting BSE yields in a master
pattern (MP) that can be used to generate individual EBSD/TKD patterns by means
of bi-linear interpolation, a fast and efficient way to compute many patterns in a short
amount of time.

For EBSD and TKD simulations and sample orientations that deviate significantly
from the standard orientations, one cannot apply the above approximation, since the
range of distances travelled inside the sample is quite broad; thus, in these cases one
must carry out the integrations of Eq. 5.4 for each individual EBSD/TKD pattern,
which results in a slow computational tool.

For ECPs, the situation is quite different, since only BSE1 electrons carry coherent
diffraction information; all other (BSE2) electrons only contribute to the background
intensity. A BSE1 electron has nearly the same exit energy as the incident electron
since the Rutherford backscatter event is the first major scattering event after entering
the sample. Therefore, nearly all BSE1 electrons have the same exit energy and the
energy integration can be eliminated, leading to the following expression which is
valid for the ECP case only (with E0 the incident electron energy):

PECP
n (k̂) = ∑

j∈Sn

σj

∫ t0(E0)

0
dt λ̄(t)|Ψk̂(rj; E0, t)|2, with λ̄(t) ≡ λ(z)

Nt0(E0)
. (5.7)

Therefore, the master pattern approach is quite well suited for the ECP case as well.
For standard geometry EBSD/TKD patterns and ECPs the master pattern is com-
puted only once for a given crystal structure and microscope voltage, and can be
used to compute individual patterns by interpolation.

TKD master pattern simulations proceed along lines similar to the previously pub-
lished EBSD [CDG13] and ECP [SDG17] modelling approaches. A uniform grid of
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points is generated on a spherical surface surrounding a hypothetical spherical crys-
tal located at the centre; each sampling point represents one outgoing beam direction
k, and the radius of the sphere is the maximum integration depth t0(E). The sampling
scheme employs the modified Lambert projection introduced in [Ros10; CDG13] in
which a uniform grid on a square is mapped onto the sphere by means of an equal-
area projection. For each beam direction, and for a given sample thickness, one carries
out the integrals of equation 5.4, using the Monte Carlo λ(E, t) weighting function de-
termined for that sample thickness. In the following section, we show example TKD
master patterns and compare them to similar patterns for the EBSD and ECP modali-
ties.

5.3 Results

5.3.1 Comparison between EBSD, ECP, and TKD master patterns

The master pattern expression in Eq. 5.4 reveals that EBSD, ECP, and TKD master
patterns have a lot in common; in particular, the dynamical scattering process that
underlies the generation of Kikuchi bands is identical for the three diffraction modal-
ities. The only differences occur in the directional, depth, and energy distributions of
the B/FSEs that contribute to the patterns. To illustrate the similarity of the master
patterns, Fig. 5.13 shows a portion of the upper right quadrant (centred on the [111]
pole) of the energy-weighted silicon master patterns for (a) ECP, (b) and (c) TKD for
two different foil thicknesses (50 and 250 nm) and (d) EBSD. The microscope volt-
age is 20 kV for all patterns, with a specimen tilt angle of 70◦ for EBSD, 0◦ for ECP,
and −20◦ for TKD. The patterns are very similar but differ in small details. The TKD
master patterns are plotted with added colour in order to highlight subtle differences.

Fig. 5.14 (a) shows line scans through each of the master patterns, slightly verti-
cally offset to make the profiles more clearly visible. The differences in details across
the patterns is seen here distinctly. The scan across the ECP pattern in Fig. 5.13 (a) dis-
plays significantly better resolved peaks compared to the EBSD one Fig. 5.13 (d), sup-
porting the better resolution observed in the ECP master pattern. Since the main sig-
nal in the ECP case consists of BSE1 electrons which have lost only a small amount of
energy in the sample before being backscattered, one can consider ECPs to be energy-
filtered versions of EBSPs.

The line scans across the TKD patterns for different thickness films are more simi-
lar to each other, except for the shift in peaks in the zone axis (highlighted by the grey
box). It is rather apparent that both the peak positions and the sharpness of the thin
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FIGURE 5.13: Portion of the stereographic projection shown in Fig. 5.2,
centred on the [111] pole, of a master pattern for silicon for (a) ECP, (b)
and (c) TKD for sample thicknesses of 50 and 250 nm and (d) EBSD.

Image adapted from [Pas+18b].

film (50 nm) TKD pattern are more similar to the ECP pattern, while the peaks and
blurriness of the thick film TKD pattern are closer to those of the EBSPs. In effect,
the Master Pattern for TKD on very thin samples is very similar to the ECP MP in
similar geometry. If the sample is thicker, the blurriness in the MP for TKD reaches
asymptotically the EBSD one.

We explain this behaviour by considering the energy loss of electrons contributing
to the patterns in each case. The Monte Carlo predicted energy loss spectra for all four
cases described above are shown in Fig. 5.14 (b) as fitted Poisson distribution curves.
Thin film TKD patterns are produced by electrons with an energy range very close
to the ECP case. Similarly, increasing the sample thickness causes the electron exit
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FIGURE 5.14: The profiles in (a) represent the intensity along the cen-
tral line (marked as a dashed line in Fig. 5.13 (a)), for all four cases; the
profiles have been offset vertically for clarity. The energy loss distri-
bution estimated by the MC model for all four cases is shown in (b) as

Poisson distribution fitted curves. Image adapted from [Pas+18b].

energy distribution to become wider and shift to lower energies, which corresponds
to a broadening and slight blurring of the Kikuchi bands due to the increased Bragg
angles; these phenomena are common to EBSPs and thick films TKD patterns.

It becomes apparent that the sample thickness can be seen as an energy filtering
mechanism in TKD as we have seen in Fig. 5.10 on page 148. In terms of the tradi-
tional Hough-based indexing approach, one must thus select a butterfly mask of the
appropriate width, depending on the sample thickness and incident electron energy.
For the dictionary indexing approach [Mar+17], used by EMsoft, the pattern dictio-
nary must be computed using the appropriate Monte Carlo and master pattern data,
to ensure accurate matches between experimental and simulated patterns.
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xPC (pixels) yPC (pixels) ρ (µm/pixel) L (µm)

6.4406 264.1950 0.292 23471.48

TABLE 5.1: Pattern centre position (xPC, yPC) (given in the reference
frame of the detector with origin in the middle as shown in Fig. 5.4),
detector pixel size ρ and distance from sample to detector L for the

TKD pattern shown in Fig. 5.15.

The EBSD master pattern is an energy-weighted average of individual master pat-
terns and the integration over the electron energy gives rise to a continuous range of
Bragg angles and, thus, a general blurring of the master pattern features compared to
the ECP case. This will also be the case for individual diffraction patterns that are ex-
tracted from the master patterns via bilinear interpolation, as explained in [CDG13].

5.3.2 TKD patterns comparison with experiments

Patrick G. Callahan at University of California, Santa Barbara, acquired a number of
experimental TKD patterns, an example of which is shown in Fig. 5.15 a) for a nano-
crystalline Aluminum sample, acquired at 30 kV with a sample tilt of −18◦ in a FEI
Teneo field emission scanning electron microscope, using the TSL Hikari EBSD detec-
tor system. The sample foil is approximately 150 nm thick. The calibration parameters
are given in Table 5.1. I added axes showing the radial distance components from the
pattern centre, rx and ry, respectively :

rx = tan(θx) =
(x− xPC)ρ

L

ry = tan(θy) =
(y− yPC)ρ

L

Fig. 5.15 b) shows the dictionary indexing simulations with this model and we can
see that it matches the experimental patterns well. The dot product values between
normalised patterns are equal to 0.881 which indicates a satisfactory match. For more
details about the parameters that go into the simulation see the paper [Pas+18b].

Note that the only adjustments to the simulated patterns were brightness and
contrast changes to maximise the visual agreement between the simulated and ex-
perimental patterns. The overall intensity gradient (from bright at the bottom of the
pattern to dark at the top) follows directly from the use of the direction-dependent
Monte Carlo statistical data, and is in good agreement with the intensity gradients
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FIGURE 5.15: (a) Experimental TKD patterns for Al at 30 keV; bright-
ness and contrast of the simulated patterns have been adjusted to bet-
ter match the experimental patterns. The axes are showing the ra-
dial distance components from the pattern centre rx and ry. (b) Cor-

responding simulated patterns. Image adapted from [Pas+18b].

of the experimental patterns. The satisfactory agreement between simulated and ex-
perimental patterns indicates that the energy-weighted dynamical scattering model
employed in the pattern simulations is sufficient to obtain realistic pattern simula-
tions.

Next, he generated a TKD master pattern with the energy filtering model for an
Al sample as shown in the paper. For all of the experimental patterns of an acquired
TKD map of a nano-crystalline Al sample the dictionary indexing approach finds the
simulated patterns from the MP that best matches it.

Fig. 5.16 a) shows an orientation similarity map. The dictionary indexing ap-
proach produces a list of the top N best matches (dictionary patterns with the N
highest dot products, where N is typically set to 30). For each sampling point, the ori-
entation similarity is computed by determining the average number of top matches
that this sampling point has in common with its four nearest neighbours; this value
is then displayed as a grey scale image. Since sampling points near grain boundaries
will have fewer best matches in common with their neighbours, the orientation sim-
ilarity map (OSM) provides an easy overview of the microstructure in which grain
interiors have a uniform intensity level and all grain boundaries have lower intensity.

The [0 1 0] inverse pole figures in Fig. 5.16 b) and c) were obtained by the standard
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FIGURE 5.16: (a) Orientation similarity map (see text for details); (b)
[010] inverse pole figure (IPF) obtained with the commercial OIM-8
indexing software; and (c) [010] IPF obtained using the dictionary in-

dexing approach. Image adapted from [Pas+18b].

commercial OIM-8 indexing package and the dictionary indexing approach, respec-
tively. The dark regions near the top of the field of view in Fig. 5.16 b) correspond to
surface contamination from the XeF2 etching step and result in clusters of incorrectly
indexed or unindexable points in both indexing approaches; patterns were deemed
to be unindexable when the Image Quality was low (according to the commercial
software analysis package). However, overall, the dictionary indexing approach with
the energy-weighted model has fewer undindexable or incorrectly indexed points, in
particular near grain boundaries.

5.4 Discussion and conclusions

Inelastic scattering, a phenomenon usually discarded in diffraction simulations, has
direct influence on the energy distribution of diffracting electrons and, consequently,
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on the imaged Kikuchi patterns. The broader the energy distribution of diffracting
electrons, the more diffuse the Kikuchi band edges. Using a Monte Carlo model we
can observe that the length of electron trajectories before diffraction is a determining
factor in the broadening of the energy distribution. This factor, in turn, can be con-
trolled in the Transmission Kikuchi Diffraction modality through the thickness of the
sample, acting effectively as an energy-filtering mechanism. Another determining
factor for the energy distribution is the sample-detector geometry which influences
both TKD and EBSD modalities.

We should note that the Monte Carlo model used in this work explicitly describes
the lower escape distance values for the signal carrying electrons. A subset of elec-
trons reaching the detector will, nevertheless, carry a probability of channelling over
longer trajectories. Depending on their travel direction inside the crystal, these elec-
trons are expected to give rise to contrast inversion of one or more Kikuchi bands
(observed as dark instead of bright lines). This will occur when the distance travelled
is of the order of, or larger than, the extinction distance for a particular plane. Contrast
inversions are thus expected to occur for both EBSD and TKD modalities when the
sample is tilted such that long electron trajectories are possible; in addition, the sam-
ple should have a crystal structure that gives rise to short extinction distances. For the
ECP modality, contrast inversions are not expected to occur unless very large sample
tilt angles are used, which is not practical due to the possibility of the sample hitting
the back-scatter detector. Similarly, when the TKD detector if mounted horizontally,
below the sample, the electron trajectories inside the sample will have a narrow range
of escape distances, so that contrast inversions are also not expected to occur. A statis-
tical model more sensitive to the outlier cases of long distance channelling electrons
is therefore necessary if we are to correctly predict band contrast inversion.

The energy-weighted scattering model is shown to correctly predict Kikuchi bands
sharpness (defined as signal to noise intensity) for the different SEM modalities. When
used for the dictionary indexing approach it was shown to produce indexed TKD pat-
terns with fewer incorrectly indexed points compared to commercial Hough trans-
form based indexing software.
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6 Summary, discussion and further
work

In Chapter 3 I covered everything electron diffraction, including describing where
the values of important diffraction parameters, like the structure factor, come from.
I also took it upon myself to show graphs for scattering factors for group-III nitride
systems (AlN, GaN and InN) and explain the insights they provide. Not only intuitive
ones like the fact that the atoms in AlN will elastically scatter fewer electrons and,
therefore, give a poorer signal to noise when it comes to ECC imaging, but also less
intuitive aspects, such as families of planes that are more densely packed (such as the
a-plane) scatter fewer electrons then their less packed counterparts (such as c-plane).
This is somewhat unfortunate for the study of [0 0 1] wurtzite nitrides in the forward
scatter geometry in the SEM.

I calculated the wurtzite structure factor in these systems and commented on their
predictions, including the failure of Friedel’s law for non-centrosymmetric systems
and the systematic absences we can expect. Embarked with all these information I
spend the rest of the chapter applying the Howie-Whelan dynamical model to the
ECCI geometry. I make the argument the equations should still hold even if we re-
place the dependence on depth in the sample of the Bloch waves with that on the
distance travelled by the primary beam.

Having the two beam dynamical equations laid out, in Chapter 4 I go over adding
the displacement field introduced by a threading dislocation and using this model to
predict the observed dislocation associated contrast in ECCI which I call ECC-strain.
I spend some effort emphasising the importance of setting out the correct reference
frame transformations. In the end, I argue, the contrast profile of a dislocation ob-
served in ECCI is nothing more than a map of the strain projection selected by the
diffraction conditions. Having worked out the complex relationship between the
many frames involved, looking at the physics predicted by the strain profile of dislo-
cations becomes a piece of cake.

For instance, I show how the sample tilt affects dramatically the surface relaxation
of the ECC-strain and that, in turn, will enhance the contrast. I then interrogate the
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ECC-strain for forward model geometry about whether the diffraction condition or
the Burgers vector dominates the contrast profile. I conclude that edge TDs ECCI
contrast profile generally follows the Burgers vector while the diffraction condition
mostly affects its magnitude. I also compare these predictions with experimental data
to confirm the behaviour.

All this analysis was done for a two beam dynamical model. This approach is
a valid prediction of a strong two beam diffraction condition. This, in turn, is a
likely condition to achieve for SEM electron energies which describe a smaller Ewald
sphere, which will likely intersect a few reciprocal lattice points, as opposed to the
large sphere the TEM electron energies correspond to. It would be interesting in fu-
ture work, as already suggested by Prof. De Graef, to compare the two beam model
prediction to the multi-beam one and assess how correct these assumptions are.

For a fact, the strong beam is not always fulfilled in ECC images either by chance
in the absence of ECP navigating, or by choice since weak beam diffraction will
give higher resolution as we know from TEM. It is my inkling that, in fact, ECC
images showing only bright intensity at dislocation positions, mostly in metals, e.g.
steel [GUZR09] or Al [BWV10], are obtained closer to weak beam conditions where
the deviation from the Bragg angle, sg is large. In this case, instead of bright-dark
contrast, the dislocation moves locally the reciprocal lattice point closer to the Ewald
sphere, showing as higher diffracted intensity on the micrograph. This is an interest-
ing case especially because the Laue geometry approximation will become less feasi-
ble. To my knowledge, literature is yet to address the physics and possible models of
predictions for, what is a common representation of ECCI, high intensity at disloca-
tion positions in the SEM.

The fact of the matter is that ECCI models are nowhere near mature and here
are two more points that I can think of where they are lacking. In terms of the TD
displacement predictions, I approximated the anisotropy of wurtzite system to an
isotropic one plus corrections. It would be more accurate to consider full anisotropy
and models for that exist [BS71]. But this would make a small difference compared
to introducing grains in the continuum model [RS50]. Dislocations on grain bound-
aries are ought to introduce a very different displacement field that is incomparable to
that introduced by dislocations in a true continuous medium [VS02]. And we know
plenty of dislocations lie on the grain boundaries. Grain boundaries facilitate dislo-
cation pile-ups and influence directly the hardness of a material. Since TEM requires
sample to be as thin as the size scale of grains, the sample preparation will introduce
relaxation that will affect the grain structure. ECCI is therefore the only possible non-
invasive imaging technique of dislocations at boundaries. Unfortunately, due to the
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limited number of investigations we don’t yet know how to use it precisely.
The other point of improvement is related to the Monte Carlo discussion in Chap-

ter 5. I approximate the incident coherent beam penetration depth using Monte Carlo
models that do not take into account diffraction whatsoever. I use the escape depth of
low loss electrons, but the model does not know that diffracting electrons suffer less
inelastic scattering and can travel further. Since the values I obtain are on the same
scale as the literature offers, I think the values should be in the right ballpark, but it
would be a worthwhile effort to quantitative study of how deep in the sample the
ECC signal comes from.

Chapter 5 discusses the importance of taking into account multiple electron en-
ergies when modelling EBSD/TKD patterns. It shows that for the TKD geometry,
the low side of the energy distribution of the low loss electrons contributing to the
Kikuchi patterns will be highly anisotropic on the detector. In other words, not tak-
ing into account an energy distribution for the low loss electrons will fail to predict
not only the intensity distribution along the Kikuchi lines, but also the their width
variation as well as details.

We also show how the sample thickness acts in effect as an energy filtering mecha-
nism for the diffracting electrons in TKD. In terms of comparing the Kikuchi patterns
in all the diffraction mechanism in the SEM discussed in this Thesis, Fig. 5.13 on
page 153 is an insightful one. Comparing the energy distribution of electrons con-
tributing to ECP, TKD and EBSD patterns, and with it the resulting sharpness and
details of the simulated Kikuchi lines on the MP, we conclude that the TKD modality
is bridging the gap between the very narrow energy window of the ECPs and the
broader energy range of EBSD.

6.1 Epilogue – Science as an incremental, open process

The history of science is all too often taught as a chronological list of discoveries.
There is undeniable value in this approach as it reflects the arrow of complexity of
notions. However, it leads to a very simplified image of the development of scientific
knowledge: one big idea bringing over the next and so on. On page 57, I too show
the history of diffraction as a table of chronological events. These are big shift events,
which radically and permanently changed the way future science was to be done in
this area. A good number of names in this table were awarded for their significant
contribution with Nobel prizes. Nevertheless, the table is clearly a gross simplifica-
tion of history, omitting, due to lack of space, the incremental refinement and main-
tenance work that supported and propelled the bigger ideas. It is quite common for
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important work of individual voices to be wiped away from science history as we
associate a breakthrough to a single name or even to a small group of people. Seeing
the bigger picture is, undeniably, worthwhile, but we must not mistake it for the full
picture.

The “unremarkable” work done by the rest of the community, not awarded presti-
gious prizes, is not less important for the advancement of science. Quite the opposite.
Neither science nor culture truly advance in big steps. In a recent study published in
Nature, Miu et al. [Miu+18] looked at the way pieces of software get improved by a
community of developers in a simulation of cumulative cultural evolution. One of the
observations was that the vast majority of advances are of an incremental type and
not, as the scientific community expect, leaps in knowledge. Observing the strong
positive breakthrough bias of scientific publishing, one would find it hard to assume
that enough credit is given to the “tweakers”.

Another critical observation was that big changes in the paradigm are more likely
to turn out unsuccessful than smaller tweaks. Remember the Nobel prize in medicine
awarded for the “discovery” of brain lobotomies1? Thankfully, neuroscience moved
away from this particular scientific breakthrough. And it did that with small, incre-
mental improvements on the understanding of the brain. Any sort of conversation
about the development of science focused only on the leaps of knowledge must ulti-
mately be misrepresenting the scientific process.

In this paradigm of scientific value misrepresentation, scientific code suffers per-
haps even more. The philosopher Daniel C. Dennett, in his latest book From bacteria
to Bach and back [Den17] makes the case that evolution is not only a good protocol for
developing fit biological organisms but can, in fact, be successfully applied to a vari-
ety of concepts, perhaps, he argues, consciousness, the human mind and even code
development. The latter analogy I find compelling. Similarly to adaptable organ-
ism having emerged from surviving a variety of conditions, the power of good code
stands in the number of iterations it went through. Of course, we cannot wait around
for functional code to “occur” as the results of tens of millions of years of iterations,
and, after all, we expect developers to be somewhat wiser than the random processes
occurring in nature. Nevertheless, in the end, each iterative step has the chance to
rectify errors or limitations in the code, weed out unnecessary/old lines and replace
them with new, more optimised, features. Established software tends to be software
reviewed by many pairs of eyes. Yet, scientific software continues to be developed

1 “for his discovery of the therapeutic value of leucotomy in certain psychoses”– The Nobel Prize in
Physiology or Medicine 1949 [Nob49].
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and maintained by small groups and destined to see the light of only a handful of
iterations.

To add insult to injury, scientific code is rarely developed to be open and even
more rarely made easily accessible. Here is another example of anecdotal evidence
of why I think this a counter-intuitive way of following the scientific method. Two
condensed matter groups set out, independently, to predict the behaviour of super-
cooled water, and, even though they implemented the same method, their results
contradicted each other for seven straight years [Sma18]. During this time, while
the groups were in contact with one another, the actual lines of code never changed
hands. When it finally did, a bug was discovered by the “competing” team in just a
few months. I’m pointing out that we could have known in a few months, not seven
long years, that water is predicted to change phase when supercooled. When scien-
tific groups working in the same field do not collaborate with each other for whatever
reason, it is science that suffers.

In the light of all these, I want my thesis work to make a positive tweak in the
endeavour of making electron diffraction in the SEM a well-understood phenomena
in the electron microscopy community. I aim for this work to aid the understanding
of why we can observe and how we can study dislocations in the SEM and I do not
expect it to be the definitive attempt. For these reasons I tried to make this document
as accessible as possible for whoever wants to continue on this journey. I tried to
explain in depth the building blocks I used and why I chose them, I provide access
to whatever code I ran or wrote and I offer a small collection of extra materials. May
your code and science be even a little bit better than mine!
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A Implementations

I refer throughout this document to supplementary pieces of code, most in Python and
some in Fortran95. I tried to describe in detail what they do, sometimes I included
pseudocode and other times I just statet the relevant equations. They can all be found
on my, otherwise rather pristine, public GitHub repository [Pas15].

The Python scripts have been written in Python 2 which can be easily installed on
Ubuntu machines (or most Linux flavours) from the package manager or by typing
in 18.04 or later:

$ apt install python-minimal

Files containing Python script can be easily recognised from the .py file type and
can be run with with:

$ python filename.py

To run Fortran code on a Ubuntu machine use the gfortran compiler, which again
can be found in the package manager or can be installed via:

$ apt install gfortran

For the Fortran files I wrote a Makefile that compiles the dependencies in the cor-
rect order. It can be run by simply typing make in the command line. Once everything
is compiled it iss just a matter of running the executable.

For the smaller scripts I use Jupyter [PG15] notebooks written in Python. I will
assume the reader has Python 2.7 or greater installed. The Anaconda Python distribu-
tion [Ana] ships with Jupyter among other packages useful for scientific computation.
However, if you have Python already installed then you can use the package manager
pip to add new libraries:

$ pip install jupyter

To start a Jupyter notebook kernel you just type:

$ jupyter notebook

http://jupyter.org
https://anaconda.org/
https://pypi.org/project/pip/
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And navigate to the desired script file. Individual cells are compiled with Shift +
Enter.

In some notebooks I use the plotly package [Inc15] for plotting. These figures
are interactive but do require an account on the plotly website1.

In Chapter 5 I talk about the open software implementation of electron and optical
microscopy models EMsoft [SRDG17], which can be found on Prof. Marc De Graef’s
GitHub [DGG13] page where installation instructions are also given.

1 Plotly website url is https://plot.ly/.

https://plot.ly/
https://plot.ly/
https://plot.ly/
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B Passive rotation matrices in the
3D Cartesian frame

As described in the main text, these are just the transpose of the active 3D rotations.

The passive, anticlockwise rotation of
a Cartesian reference frame around the
axis x is given in the pre-multiplication
matrix form as:

Rx(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


Basic rotation around x.

The passive, anticlockwise rotation of
a Cartesian reference frame around the
axis y is given in the pre-multiplication
matrix form as:

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Basic rotation around y.

The passive, anticlockwise rotation of
a Cartesian reference frame around the
axis z in the pre-multiplication matrix
form is:

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Basic rotation around z.
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C Symmetry in crystallography

Many objects in nature exhibit symmetry of some sort. The human body has approx-
imate mirror symmetry. A shamrock (the species of clover or trefoil used as the sym-
bol of Ireland) has three-fold rotational symmetry (trefoil), and here’s a bit of trivia
to make you a star at the next British party, not four-fold symmetry as U.S. advertise-
ments sometimes wrongly represents it. The reader might have noticed that the way
we talk about object symmetry involves a motion action, which made upon the object
would leave it unchanged. Indeed, the symmetry of an object will be defined by its
symmetry operations that map the object onto itself. While for any motion one can find
an object for which this is a symmetry motion, if we start with the object it is easy to
start with these three basic actions to test its symmetry1:

1. rotate

2. reflect

3. translate

If, after any one or a combination of 1, 2 and 3, the object looks the same as it
originally looked than we talk about the object as being symmetric. There is a nu-
anced distinction between these operations since 1 and 3 can be physically realised
and known as proper or first kind operations. Operations that involve 2 are improper
or of second kind. Inversion is yet another improper operation that can be reduced in
three dimensions to a rotation plus a reflection.

We will see that all this can be written in mathematical form with only minor
adjustments. First, operation 3 can only truly be a symmetry operator for infinite
objects which are not very common in everyday life. Second, the identity operator
is also introduced as symmetry operator, such that, in the mathematical sense, all
objects hold at least one symmetry property. Now there’s nothing stopping you from
being the soul of the party.

We will spend some time exploring a subset of symmetry operations chosen such
that when combined can generate the entire symmetry of a wurtzite crystal. We

1 Assuming we are to leave the metric properties of space undisturbed, i.e., no stretching, bending,
twisting, which should be easy to achieve in the physical world.
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will follow closely the notation used in International Tables for Crystallography, Vol-
ume A [Hit88] described in some detail on page 181. We will use the two most com-
mon shorthand notations to write down symmetry operations: the Hermann-Mauguin
notation also known as the international notation which is the standard one, and the
Schoenflies notation which is widely used in Physics and Chemistry. We will also show
the graphical symbols for the operations discussed.

C.1 Symmetry operations

The set of symmetry operations of a given object have noteworthy properties:

1. the application of two symmetry operations results in a third symmetry opera-
tor of that object

2. the inverse of an operation is also an operation of that object

3. all objects exhibit the identity operation

4. the associative law is valid when combining three or more operations.

These four properties are also the group axioms and tell us that the set of symmetry
operations of a given object form a mathematical group. This will come in handy in
the next section. For now it is worthwhile to look at how to write these operation in
mathematical form.

In the following we will explore a non-exhaustive list of symmetry operations. We
choose our examples such that they are relevant for generating the wurtzite crystal
structure symmetry. Note that the basis vectors of a hexagonal lattice do not form a
Cartesian frame. This means that the usual algebraic formulas used for transforma-
tion operations must be revised. We do expect the form of rotation, translation and
reflection matrices to be therefore not as familiar, which is why we take the time to
explore them here.

C.1.1 Operation of first kind: pure rotation

A pure rotation is fully determined by a rotation axis and a rotation angle which is
chosen to be positive in the counter-clockwise direction. The rotation axis is given as a
vector [u v w] and the rotation angle is given as fraction of 2π. For instance a rotation
of order three or three-fold rotation is a rotation by angle 2π/3. In general an n-fold
rotation is represented by symbol n (Cn) and Table C.1 shows examples for three-fold
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TABLE C.1: Examples of pure rotation symbols.

Name Graphical Hermann-Mauguin Schoenflies

Three-fold rotation � 3 C3

Six-fold rotation � 6 C6

FIGURE C.1: Rendered 3D graphical representations of a) three-fold
and b) six-fold pure rotations. The circles in the bottom right of the

images represent the stereographic projections of the operators.

and six-fold rotations together with their graphical symbols which are filled polygons
with n sides.

3D representations of the rotation operator are shown in Figure C.1 for rotations of
order 3 in (a) and 6 in (b), respectively. The images have been rendered with the pub-
lic domain software Rayshade 4.0.9 software2. The input files I used are very closely
based on the input *.ray files3 developed by Marc De Graef [DG98] with the purpose
of teaching the crystallography group symmetry[DG08]. My scripts can be found at
this GitHub repository4. The relevant files for this example are 3FoldPureRotationPNG.ray
and 6FoldPureRotationPNG.ray and can be compiled on a Linux machine after the
installation of Rayshade software (and making sure ImageMagick is available on the
machine) by typing:

rayshade [filePNG].ray > [filePNG].mtv

convert [filePNG].mtv [file].png

2 Link is https://sourceforge.net/projects/rayshade/.
3 Link is http://som.web.cmu.edu/frames2.html.
4 Link is https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry.

https://sourceforge.net/projects/rayshade/
http://som.web.cmu.edu/frames2.html
https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry/
https://sourceforge.net/projects/rayshade/
http://som.web.cmu.edu/frames2.html.
https://github.com/elena-pascal/SEM-diffraction/tree/master/Wurtzite_symmetry
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where [file] is the name of the file used. *.mtv files can also be converted to *.png or
*.gif with ImageMagick. All the input scripts and resulting images and animated files
can be found in the extra materials. To render the *.gif s one need more patience and
has to do:

rayshade [fileGIF].ray > [fileGIF].mtv

convert [fileGIF].mtv [file].gif

The small helix object used by Marc De Graef in these images (made up of a helical
string of spheres) was chosen such that it holds no rotational symmetry. The object
also exhibits handedness and its mirror reflection will look different from the original
object. Despite this, the entire system, the three objects in Fig. C.1 (a) or six objects
in Fig. C.1 (b), looks indistinguishable from original when rotated 2π/3 = 120◦ and
2π/6 = 60◦, respectively, around the rotation axis. Similarly, a triangle prism will
look the same after being rotated around the central axis by 120◦ and a hexagonal
prism will look indistinguishable after being rotated 60◦, respectively.

It is common for the axis of rotation to be the third basis vector i.e., parallel to the
crystallographic c-axis and, in those cases, the rotation axis to not be explicitly stated.
In any other case, the rotation axis must be given, either in vector form [u v w] or as
the equation of the line coinciding with the axis. The latter notation method is the
one used in the International Tables for Crystallography. As an example we can look at
Symmetry operation (2) of a hexagonal lattice point group shown in Fig. C.7. 3+(0, 0, z)
is a three-fold pure rotation around the [0 0 1] direction given here in line equation
form. The + sign informs us that the position of the point is elevated with respect to
the drawing plane.

A three-fold symmetry of a lattice tells us that for every “motif” at position (x, y, z)
we will find the same motif at the equivalent position (x′, y′, z′) obtained through a
120◦ rotation around the central axis, here ez. In order to represent the rotation oper-
ation in mathematical form we must turn to rotation matrices. Unlike the somewhat
intuitive form when used in an everyday orthonormal system, as seen on page 166,
when derived for a general, non-orthonormal lattice the rotation matrices can become
cumbersome and will obscure the symmetry (see ref. [Dav73]). Luckily, we can avoid
that by considering the passive rotation of the system instead of the active rotation of
the motif.

We want to find the rotation matrix D(θ) which, when applied to a set of (not
necessary orthonormal) basis vectors (ex, ey, ez) rotates them once around ez by an
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angle θ to a new configuration (e′x, e′y, e′z). This passive rotation is defined in crystal-
lography by the right hand rule5. It should be clear that this is equivalent to an active
rotation (i.e., rotating a vector defined in this basis) by the same angle anticlockwise
around ez when looking in the direction of ez.

If the set of basis vectors describes a hexagonal
lattice6 and the angle of rotation is 120◦ then the
matrix Dhex(120◦)[001] ≡ D(n) is a three-fold ro-
tation and can be derived by geometry as shown
in Fig. C.2.

(
e′x e′y e′z

)
=
(
ey −ex − ey ez

)
=
(
ex ey ez

)
D(n)

Which completely determines the matrix D(n) to
be:

D(n) =

0 −1 0
1 −1 0
0 0 1

 (C.1)

FIGURE C.2: Three-fold
rotation around the third
axis of a hexagonal basis

set.

It is not only rotations that can be expressed in matrix form, reflections as well
as any combination of reflection and rotation can be written down as matrix opera-
tions. Every possible symmetry operation a crystal holds, if it excludes translation,
will be part of a finite and well determined group of 3×3 matrices. Only a subset of
these matrices is really necessary to determine the entire group and these are known
as generators. There are only 14 matrices D(x) that can act as generators, where (x)
spans from (a) to (n). Talking in detail about groups and space groups is beyond
the purpose of this thesis, but a good introduction to crystallography for the electron
microscopist can be found in Structure of Materials; an introduction to crystallography,
diffraction and symmetry [DGM12] while an in-depth overview is given in the intro-
duction to the International Tables for Crystallography, Volume A [Hit88] both of which
we will reference throughout this section.

5 The right thumb points towards the direction line and the fingers indicate the positive rotation.
6 We have not explicitly shown that the hexagonal lattice is compatible with this symmetry operation

but perhaps the reader will not be too suspicious of a hexagon showing three fold rotation symmetry.
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C.1.2 Operation of first kind: pure translation

A pure translation is fully determined by translation vector t = u1e1 + u2e2 + u3e3.
The lattice translation vector was introduced on page 20 and to it we can be add the
lattice centring vectors if present. The latter are useful for describing non-primitive
lattices where lattice points exists not only at the corners of the crystal structure. The
international symbol for translation is t(u1, u2, u3) as can be observed in the represen-
tation of the basis vectors given in the Generators list in Fig. C.7: t(1, 0, 0), t(0, 1, 0),
t(0, 0, 1).

Mathematically, a translation is just a vector addition:

r′ = r + t. (C.2)

However, we want to integrate this into the matrix formulation we developed for the
rotation operation. To achieve this we introduce a 4D vector. By adding a trivial equa-
tion in the form of a fourth component which is just: 1 (x1, x2, x3)→ (x1, x2, x3, 1). We
also upgrade the Einstein notation to go from i = 1 to i = 4, such that Eq. C.2 be-
comes: x′i = xi + ui or in matrix form:


x′1
x′2
x′3
1

 =


1 0 0 u1
0 1 0 u2
0 0 1 u3
0 0 0 1




x1
x2
x3
1

 (C.3)

The 4× 4 matrix consists of the 3× 3 rotation matrix D
(i)
ij in the upper left corner, a

3× 1 column vector containing the translation vector components on the right and a
1× 4 row at the bottom, (0 0 0 1), containing no useful information. We will introduce
the symbol W for the 4× 4 matrix such that:

x′i = Wijxj.

In practice, it is more useful to denote the rotation matrix and translation vector
that are implied, which is why the Seitz symbol, written as (D|t), is more commonly
used. For instance, the Wmatrix in Eq. C.3 has the Seitz symbol (E|t), where E is the
identity matrix D. The Wmatrix for a rotation plus translation is:
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W= (D|t) =


D11 D12 D13 u1
D21 D22 D23 u2
D31 D32 D33 u3

0 0 0 1

 . (C.4)

The pure rotation in Eq. C.1 has the Seitz symbol (D(n)|0) and as a 4× 4 matrix
becomes:

W� =


0 −1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 .

C.1.3 Operation of second kind: pure reflection

A pure reflection operation, more commonly known as a mirror, is characterised by
the reflection plane. When it does not coincide with the plane of drawing, the mirror
plane is schematically indicated by a solid line, as shown in Table C.2. The interna-
tional notation for mirror plane provides also information on the orientation of the
plane, usually by writing down the equation of the plane. For instance, the mirror
plane parallel to (1 1 0) is written as m(x, −x, z). We can find this symmetry opera-
tion at number (7) on page 584 of the Tables, shown in Fig. C.7.

TABLE C.2: Example of pure reflection symbols.

Name Graphical Hermann-Mauguin Schoenflies

Mirror plane m σ
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Mirror operations can be represented by a ma-
trix D(m), which, analogous to the rotation ma-
trix, can be determined from geometry. For the
reflection operation in Fig. C.3:

(
e′x e′y e′z

)
=
(
−ey −ex ez

)
=
(
ex ey ez

)
D(m)

From which we find the set operation
Dhex(m(x,−x,z)) ≡ D(k) to be:

D(k) =

 0 −1 0
−1 0 0
0 0 1

 . (C.5)

FIGURE C.3: m(x, −x, z)
mirror plane operation in

a hexagonal basis set.

Which, in turn, completely determines the matrix Wm with Seitz symbol (D(k)|0).

C.1.4 Combination of rotation and translation

Combining translation with rotation yields a new type of symmetry operation, known
as a screw axis. While applying a pure rotation of order n to an object we recover the
original position after n successive operations, the extra translation operation in the
screw axis renders this observation invalid. During a screw axis operation, the object
is translated after every rotation step by a certain vector τ parallel to the rotation axis.
We can see that in Fig. C.4. Input files used are 2_1PNG.ray and 6_1PNG.ray (see how
to use them in the Pure Rotation subsection on page 169 ). For a 21 screw axis shown
in Fig. C.4 a), after a two-fold (2π/2 = 180◦) rotation, the object is also translated
by a vector τ from point 0 to point 1. After n = 2 rotations it is translated 2τ in the
direction of the screw axis to the point 2. This position is identical to the original one
except for a translation vector mt where t is the smallest possible translation vector in
the given direction and, in this case, m = 1. This is where the subscript 1 comes from
in the notation 21.

Generally, the notation for a screw axis is nm where nτ = mt, which tells us that
after n screw axis operations the original point is translated m lattice translation vec-
tors in the direction of the screw axis. One screw axis operation involves an n-fold
rotation plus a τ = mt/n translation. Table C.3 shows the graphical and notation
symbols for the relevant screw axis operations of the wurtzite crystal: 21 and 63. The
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FIGURE C.4: Rendered 3D graphical representations and (sequentially
numbered) operations involved in the construction of screw axis a) 21
and b) 63. Standard 2D graphical projections are included at the bot-

tom.

63 operation, shown in Fig. C.4 b), involves a τ = 3t/6 = t/2 translation after each
six-fold rotation, which takes the object on which it operates from point 0 to point 1.
After two 63 operations the object has been translated by a total vector equal to the
lattice translation vector t. To obtain the next points, 3, 4 and 6, we must leave the unit
cell in which we started. Because all unit cells must be the same, the screw rotation in
the cell below dictates equivalent points in this cell corresponding to the position of
points 3-6.

The bottom of the images in Fig. C.4 contain standard graphical representation of
the corresponding symmetry operations such that the axes of rotation are normal to
the page. The open circles indicate that the objects are above the plane of drawing
and the numbers next to the circle refer to the height of their positions.

TABLE C.3: Examples of screw axis symbols.

Name Graphical Printed Screw vector τ in units of t

Two-fold screw axis � 21 1/2
Six-fold screw axis ? 63 1/2

The International Tables for Crystallography denote the screw axis operations by the
order of the rotation together with the translation vector τ: n(τ). The axis of rotation
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is also added as it can be seen in the symmetry operations list on page 183. Operation
(4), for instance, denotes a 21 screw axis around the c-axis in a hexagonal unit cell.

Mathematically, we can write this operation
from geometry (see Fig. C.5) as:

(
e′x e′y e′z

)
=
(
−ex −ey ez

)
=
(
ex ey ez

)
D(b)

From which we find the set operation D(b) to be:

D(b) =

−1 0 0
0 −1 0
0 0 1

 . (C.6) FIGURE C.5: 21 screw
axis operation in a hexag-

onal basis set.

Which completely determines the matrix W� with Seitz symbol (D(b)|τ(0, 0, 1/2)):

W� =


−1 0 0 0
0 −1 0 0
0 0 1 1/2
0 0 0 1

 .

Now that we have written out the mathematical framework necessary for studying a
number of different symmetries we can take a closer look at how to describe a crystal
structure starting from the symmetry it manifests. More importantly, we want to
answer the question “What is the minimum number of symmetry operations from which a
specific structure can be recovered?”.

C.2 Point groups

It turns out maths already has the answer to that question and it can easily be ap-
plied to crystallography. If we forget for a moment about translations, then any
of the remaining symmetry operators can be applied to an object and leave exactly
one point invariant, namely the origin. For all the symmetry operations we talked
about, the choice of the origin (a plane for reflection, an axis for rotation . . . ) was
non-ambiguous. Another way of saying this is that all symmetry operators except
translation overlap in exactly one point. All these operators can be expressed as 3× 3
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matrices D and carry the name of point symmetries. The total point symmetries of an
object must also form a group with the properties given on page 168. If the object un-
der consideration is a crystal structure, then those symmetry operations are selected
such that they are compatible with the translational periodicity of its lattice. Starting,
then, from a point one can derive 32 sets of consistent symmetry operations compati-
ble with the Bravais lattices also known as crystallographic point groups (see Chapter
9 in [DGM12]).

Groups have several useful properties, including the fact that one can generate all
elements of a group starting with a list of operations and constructing a multiplication
table. The minimum symmetry operations needed to construct a full point group is
known as a set of generators. There are only 14 total generators, a subset of which will
produce any possible crystal symmetry. We have encountered three of them so far,
denoted as D(b), D(k) and D(n). The matrices D(i) form the set of generators where (i)
can go from (a) to (n), D(a) being the identity matrix, which, as previously discussed,
describes the symmetry of all systems and is always implied.

We keep on following the Hermann-Mauguin and Schoenflies notations for crys-
tallographic point groups, with the latter shown in brackets. The Hermann-Mauguin
notation for point groups has a maximum of three symbols, each corresponding to
a particular direction in the Bravais lattice. Since the choice of origin is very specific
when we consider the possible symmetries a crystal would exhibit, the possible axes
of symmetry for a given crystal will be the directions used to describe the point group
of a particular system.

Table C.4 shows the three directions for the three possible set of symbols describ-
ing the point group of a hexagonal crystal system. For instance, we can consider a
group made up of only the identity operation and all powers7 of the rotation oper-
ator, we talked about rotation operations on page 168. The notation of this simple
group will follow the notation of the operators, therefore, a six-fold rotational point
group (also known as cyclic) is 6 or C6 (C for cyclic).8 If a hexagonal crystal is known
to be part of the crystallographic point group 6 then we can conclude it has six-fold
rotational symmetry and can read from Table C.4 that the rotation axis must be [0 0 . 1].

Now that we set the rules with the simplest of examples let’s take a look at some-
thing a bit more involved. (1) What happens if we combine the proper rotation group with
reflection operations? and (2) How do we generate the full symmetry of such a group?

7 An operator to power 2 simply means applying that operator twice in succession.
8 Note that we use the Sans Serif font for operators symbols and the Bold font for group notation.
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TABLE C.4: Primary, secondary and tertiary symmetry directions
(Miller-Bravais) for the hexagonal crystal.

Crystal system Primary[u v . w] Secondary[u v . w] Tertiary[u v . w]

Hexagonal [0 0 . 1] {1 0 . 0} {1 2 . 0}

C.2.1 6mm point group from generators

If we give a mirror plane (m) a six-fold rotation axis (6) then we end up with the point
group shown in Fig. C.6. Notice the change of handedness (chirality) of the orange
object as an indication of the reflection symmetry. The generating file is 6mmPNG.ray.
It turns out that, for even rotation orders, an extra mirror symmetry appears. One
can easily see that in the stereographic projection at the bottom of the image. Ev-
ery second mirror is not generated by the rotation operation, however the structure
clearly displays the extra reflections. This is why the group 6mm has two ‘m’s in its
notation. From Table C.4 we can read that the first set of mirrors have the normals
{1 0 . 0} while the second set of mirrors have the normals {1 2 . 0}. Similarly, the v in
the Schoenflies notation C6v indicates the vertical orientation of the mirror planes.

FIGURE C.6: Graphical 3D representation of 6mm point group to-
gether with its stereographic projection in the bottom corner right.
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The generators matrices of 6mm point group are: D(a), D(b), D(k), D(n); where
we denoted the identity operator with the label D(a). Conveniently, we have already
derived the three 3× 3 matrices corresponding to the last three of these operators: D(b)

(Eq. C.6), D(k) (Eq. C.5), D(n) (Eq. C.1). We can find these matrices in the International
Tables for Crystallography, Volume A [Hit88] in the Generators list of the space group
(pages 584-585 shown here on page 183) as operations (1), (2), (4), (7). In order to
find the full list of symmetry operators of the space group, we can read the Symmetry
operations section from the Tables or we can multiply the generators among themselves
until we find the full list of 12. We’ll show here the hard way for the reader to use as
a reference but also to somewhat demystify the origin of these matrices.

Before that we want to add a few notes on point group characteristics. The num-
ber 12 represents the size of the set of points in this group which have equivalent
position. That is to say, if we start with an arbitrary position (x, y, z) how many new
positions are generated when the full set of symmetry operations are applied. This is
also known as the order of the group. We can then say that the 6mm point group has
order 12. Another point group property is that of centrosymmetry. If we define polarity
as the property of a group in which directions t and −t are not related to each other
by any symmetry operation, then we can note that this group is only polar along the
rotation axis. We can also conclude that this point group is not centrosymmetric.

To find the full symmetry of a point group starting with the list of generator ma-
trices, we multiply each operator with itself and the others, remembering that ma-
trix multiplication is not commutative. For every resulting matrix that is not the
identity matrix we check if we already have it in the set. If not then we can add
it and start the matrix multiplications again. When we did all the possible opera-
tions in a set without finding any new matrices we can stop looking and declare we
found the full symmetry operations group. The Python style pseudocode for this is
shown below in Algorithm 1. This function is implemented in the Jupyter notebook
Symmetry_matrices.ipynb.

Using this implementation9 we find the following 12 symmetry matrices of the

9 Luckily, there is a good selection of mature or novel open software available to do these type of
computations as well. Here are a few examples:

• GAP - provides an extensive computational group theory algebra library and tools.

• Mantid - available as a Python package, can handle crystallographic point and space group maths.

• spglib - another Python package, can do symmetry computations.

• EMsoft - the routine CalcPositions in the module symmetry.f90 should do a generalised version
of the implementation shown here.

www.gap-system.org
http://docs.mantidproject.org/v3.7.1/concepts/PointAndSpaceGroups.html
https://atztogo.github.io/spglib/python-spglib.html
https://github.com/marcdegraef/EMsoft
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def findSymMat(knownMat, *newMat):
input : List of 3× 3 generator matrices
output: Entire list of symmetry operators as 3× 3 matrices

while still finding new matrices do

for matrix_i in newMat do
for matrix_j in knownMat do

isThisNew = matrix_i × matrix_j

if isThisNew is not Identity Matrix and is not in knownMat then
add isThisNew to newMat

add isThisNew to knownMat

else
stop looking

end
end

end

if new matrix is found then
findSymMat (knownMat, newMat)

end
end

end

ALGORITHM 1: Recursive function to find the symmetry matrices of a space group
starting from the list of generators.

6mm point group: D(a), D(b), D(k), D(n), D(nn), D(nb), D(nk), D(kn), D(kb), D(bnk), D(nkk),
D(knk) (not necessary in the same order as in the Tables). Here we used the notation:
D(nb) = D(n) × D(b) to represent a combination of operations applied in a specific
order. For instance, D(nn) is a 3-fold rotation applied twice and it should come as no
surprise that a 3-fold rotation applied tree times is the identity operator: D(nnn) = D(a).
Similarly, D(kk) is a double reflection and, again, equals to the identity operator.

The equivalent positions in the space group can then be easily determined by
simply applying these operators to a general position (x, y, z).

C.3 Space groups

So far we have explored some possible symmetries of a system (motif) that are com-
patible with the hexagonal Bravais lattice of a crystal structure. It is time to add these
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point group symmetries to the crystal lattice points and observe what new symme-
tries emerge. This simply involves combining the point group operators with the
Bravais lattice translational vectors of a given crystal system. Every time this com-
bination yields a new unique system then we can talk about a different symmetry
group this time known as a space group.

There are 230 three dimensional space groups which might sound like a formidable
result when we considered that we only combine 32 point groups with 14 Bravais lat-
tices. However, bear in mind that there are more than one way of adding the point
group symmetries at the lattice points. Additionally, combining symmetry opera-
tion can yield extra symmetries, just like the extra mirror planes “popped up” in the
6mm point group. Screw axes and glide planes10 are symmetry operators containing
a translation vector and therefore not forming point groups. However, when used
to point group symmetries, in combination with Bravais lattices, these operators will
form new space groups.

The space group symbol is formed by combining the centring information of the
Bravais lattice with the point group Hermann-Mauguin notation symbol. The in-
formation about the symmetry of the crystal system can be dropped since it will be
implied in the point group symmetry. One can predict extra symmetry operations de-
scribing a unique space group by replacing one or more operations in the Hermann-
Mauguin point group notation with a screw rotation or glide plane. It is entirely pos-
sible to end up with a situation in which the point group of a space group contains
operations which do not occur in the space group at all.

Depending on whether or not the space group contains any glide planes or screw
axis symmetry operations we differentiate between non-symmorphic and symmorphic
space groups. Symmorphic space groups contain then only the point group opera-
tions and are easy to spot from their Hermann-Mauguin symbols.

C.3.1 The International Tables for Crystallography, Volume A

The series of volumes constituting the International Tables for Crystallography are a com-
prehensive database of crystallographic information relevant in the studies of the
structure or properties of materials. Volume A [Hit88], specifically tackles the space
groups. We have already referenced a few times to a specific page in Volume A which
shows all the information needed for the study of the space group symmetry P63mc

10 We haven’t explicitly talked about glide planes, but these are symmetry operations obtained by
combining a mirror plane with translation over half the lattice vector parallel to the mirror plane. The
symbol for a glide plane is a, b or c if the glide vector is a/2, b/2 or c/2, respectively.
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in tabulated form. It is a useful skill for a crystallographer to be able to read these
pages.

• The top of the page holds the crystal system (hexagonal), the Patterson symme-
try definition11, the point group symmetry (6mm), the Schoenflies symbol (C4

6v),
the complete space group symbol (P63mc), the space group shorthand symbol
P63mc and the space group number (186).

• Below, there is a drawing of the relative positions of the symmetry elements in
the group, projected along the main direction (c), on the right. On the left, the
equivalent positions are shown in the same projection.

• While the Origin of the group can be chosen arbitrarily, it is customary to choose
the position with the highest symmetry of the group; here 63mc12. The symme-
try is given in the usual point group notation following the system’s symmetry
directions (seen in Table C.4). To clarify the ambiguity a second set of sym-
metries is given 3m1, where the 1 is a place-holder for no more than identity
symmetry for this direction, to establish the origin in the upper left corner of
the unit cell.

• The Asymmetric unit is the smallest volume of the unit cell that will completely
and exactly fill the space when the group’s symmetry operators are applied to
it. It is defined in terms of the sides and vertices containing the volume, which
in turn are the result of the intersecting symmetry planes bounding the cell. The
volume of the asymmetric cell has the property of being the volume of the full
unit cell divided by the product of the order of the point group, n, (for 6mm

n = 12 ) and the number of centring operations plus one. For P63mc then, the
volume of the asymmetric cell is Va = V/(12× 1) = V/12.

• Below, the full list of Symmetry operations together with their positions is given
and we have already shown how to read some of these operations. There are a
total of 12 symmetry operators including the identity operator.

• From these operators only 4 make it to the list of Generators, (1), (2), (4), and (7),
together with the basis translation vectors. Starting with these list of 4 operators
the full previous list can be generated by matrix multiplication.

11 The Patterson function is a mathematical construct of higher symmetry than the electron density
function which it replaces in order to solve the phase problem in X-ray crystallography.

12 Note that, while the notation is point group like, the origin position symmetries do not need to
form a group and we do not keep the point group symbol notation.



Appendix C. Symmetry in crystallography 183

FIGURE C.7: Pages 584-585 (compressed here) of International Tables for
Crystallography, Volume A [Hit88] describing the space group P63mc.
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• The Position tables contain the symmetrically equivalent points in the crystal
system divided between the general positions in the first block followed by the
special positions blocks underneath. The general position is left invariant by the
identity operator but no other symmetry operation of the space group, while the
special positions are left invariant by at least one other symmetry operation in
addition to the identity. All the symmetry operations that map a point onto itself
form together a site symmetry group for that position given in the third column
of the table. The coordinates for the general position, (i)x′, y′, z′, are the result
of a symmetry operation (i) on the most general position x, y, z. These can also
be viewed as a shorthand notation of the symmetry matrices of the group. The
numbers in the first column indicate the number of equivalent points per unit
cell or the multiplicity of the position. For the general position the multiplicity is
the number of symmetry operators, while for the special positions each added
site symmetry reduces the multiplicity by the order of symmetry. For instance,
the second positions entry shows a mirror site symmetry which halves the mul-
tiplicity of the point to 6. The Wyckoff letters are labels for the Wyckoff positions,
which in turn are a way of describing the positions of the atoms in the asym-
metric unit. The last column in this table, entitled reflection conditions, is a list of
diffraction information given as requirements for the structure factor to not be
zero (conditions of occurrence) for the given position.

• The last section shown here is the Symmetry of special projections which contains
two dimensional projection information of the unit cell along lattice directions.
If the wurtzite unit cell is projected along the [1 0 0] direction, then the resulting
2D object will have p6mm plane group symmetry and will be defined by the
unit vectors a′ and b′ which in general are expected to be fractions of linear
combinations of the original basis vectors. The origin of the 2D unit cell is also
specified.

An account of crystal symmetry would be incomplete without referencing the In-
ternational Tables for Crystallography. Now that we know how to read the Tables we can
just read out the results of many of the derivations we have done in this Appendix.
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D TD strain tensor with surface
relaxation

The strain tensor of a semi-infinite threading dislocation normal to a surface, εij, is
shown below as contour plots for each strain tensor component. I’m showing these
images in the strain tensor matrix form:

εij =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 .

Where the dislocation line is along z or index 3 in this notation. The elastic strain
has the following property : εij = εji making these matrices symmetric with respect to
their diagonal, which is why there are only maximum 6 plots per image, i.e., diagonal
terms plus 3. Fig. D.1 shows the top view of strain components as contour plots for a
screw threading dislocation and Fig. D.2 for an edge TD.

The colour map for all the plots in a matrix has the same limits for comparison.
The ε31 and ε32 are the biggest components for the screw TD (Fig. D.1). This is per-
haps not very easy to see because I choose I narrow colour range in order to pull out
some features in the other images but it did mean, unfortunately that the peak in val-
ues in ε31 and ε32 is outside the colour range and shown here as white. Another way
to read this matrix is to say that most of the strain of the screw threading dislocation
in a semi-infinite medium is the shear strain normal to the plane xy. Nothing new so
far.

Similarly, for the edge TD, shown in an identical manner in Fig. D.2, where I
choose better colour map limits, the main components are ε11, ε12, ε22, i.e., all the
strain contained entirely in the plane xy.
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