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Abstract

The cost of wind energy has decreased over the last decade as technology has matured

and the industry has benefited greatly from economies of scale. That being said, oper-

ations and maintenance still make up a significant proportion of the overall costs and

needs to be reduced over the coming years as sites, particularly offshore, get larger

and more remote. One of the key tools to achieve this is through enhancements of

both SCADA and condition monitoring system analytics, leading to more informed

and optimised operational decisions.

Specifically examining the wind turbine generator and highspeed assembly, this

thesis aims to showcase how machine learning techniques can be utilised to enhance

vibration spectral analysis and SCADA analysis for early and more automated fault

detection. First this will be performed separately based on features extracted from

the vibration spectra and performance data in isolation before a framework will be

presented to combine data sources to create a single anomaly detection model for early

fault diagnosis. Additionally by further utilising vibration based analysis, machine

learning techniques and a synchronised database of failures, remaining useful life pre-

diction will also be explored for generator bearing faults, a key component when it

comes to increasing wind turbine generator reliability. It will be shown that through

early diagnosis and accurate prognosis, component replacements can be planned and

optimised before catastrophic failures and large downtimes occur. Moreover, results

also indicate that this can have a significant impact on the costs of operation and

maintenance over the lifetime of an offshore development.
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Chapter 1

Introduction

1.1 Thesis Background

In order for wind energy to continue to compete with traditional methods of generating

electricity such as fossil fuels, the levelised cost of energy (LCOE) must be reduced in

the coming years to meet ambitious targets set, for example, in the latest round of UK

offshore leasing auctions. Costs associated with the operation and maintenance (O&M)

of a wind farm makes up a significant proportion of total lifetime costs. In fact, up to

30% of the total energy cost can be spent on O&M for some large offshore developments

[9]. With wind farms moving into harsher environments further offshore, this value is

only expected to increase in the future. As more money is spent on O&M, innovations

surrounding asset management have the potential to greatly influence the overall LCOE.

According to a study found in [10], innovations associated with operations, maintenance

and service are anticipated to reduce the LCOE by approximately 2% between 2014 and

2025. Generator faults can contribute significantly to the overall downtime experienced

by a wind farm due to component failure, with around 1 failure per year in state of the

art offshore wind turbines (WT) [4,8, 11–14].

One of the areas in which significant improvement can be made is through the

introduction of turbine condition-based maintenance [10]. All large utility scale WTs

have supervisory control and data acquisition (SCADA) systems as standard, which

are primarily used for performance monitoring [6], however developers are now opting
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for more sophisticated condition monitoring (CM) systems to gain better insight into

WT condition. The most widely developed and adopted CM systems are based on

vibration analysis, with sensors placed throughout the nacelle to gain insight into the

dynamic performance of WT sub-systems, and in turn identify any potential issues or

faults. However, with SCADA systems currently fitted to every turbine installed in the

last 10-15 years, it is also imperative to extract as much information from this data as

possible, especially in cases in which CM systems are not readily available.

Wind turbine technology is continuously evolving, with operators now having the

potential to own diverse sets of generation fleets located globally, all of which could

be at very different stages of their design life. This creates a difficult situation where

assets need to be monitored closely to ensure maximum availability across the entire

portfolio. With today’s rapid advances in automation and big data analytics, the in-

dustry is well placed to realise the potential operational expenditure (OPEX) savings

associated with more complicated asset management strategies through the use of in-

telligent data acquisition, storage, processing and analysis. With increased wind farm

capacity and asset portfolios growing in size there is a growing need for automated

fault detection, which can utilise proven techniques and flag issues in real time across

an entire fleet. With so much data now being gathered across multiple systems and

platforms, understanding how to best use the data both in isolation and together is be-

coming increasingly important, having the potential to reduce O&M costs significantly

if leveraged correctly.

The current chapter will first of all introduce the research question, the motivation

behind this thesis and novelty of output. It will also give a high level approach and

provide all important definitions required in the context of this research.

Chapter 2 will provide an extensive literature review of wind turbine drivetrains,

associated reliability and cost of operations and maintenance. An overview will also

be provided of state of the art condition monitoring systems, machine learning (ML)

theory and applications of data driven diagnostics and prognostics used in wind energy

research.

Chapter 3 will discuss how a range of machine learning techniques can be leveraged
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to augment wind turbine diagnostics through normal behaviour modelling and fault

classification. This chapter will first of all provide insight into utilising vibration based

condition monitoring to detect a range of faults with high levels of accuracy. Secondly

the use of SCADA temperature modelling will be explored to detect generator bearing

faults.

Chapter 4 will present an enhanced methodology based on normal behaviour mod-

elling to detect generator bearing faults, first of all by analysing SCADA data only, with

a particular emphasis on how multiple error metrics can be used to detect faults earlier

and more consistently than existing methods. Building on this same methodology it

will then consider an example in which both SCADA and vibration data are available,

presenting an approach to combine both analysis methods into a single fault detection

model.

Chapter 5 will discuss how additional WT’s and examples of similar failures can be

used to further increase confidence in the diagnosis, while providing some insight into

remaining useful life. A two-stage methodology will be presented to first of all cluster

wind turbines by multiple operating conditions building on traditional binning tech-

niques. Features from vibration data are then extracted in order to classify the turbine

as ‘healthy’ or ‘unhealthy’, predicting failure within 1-2 months before occurrence.

Chapter 6 will then move on to looking at the costs of wind farm operation and

maintenance in relation to different available condition monitoring and maintenance

strategies. In particular this chapter will focus on modelling offshore wind farms,

providing insight into how costs can be saved through early intervention and repair to

reduce large component failures and major replacements.

Finally, Chapter 7 will present any conclusions that can be drawn from the re-

search, discussing the findings, key advantages of the methodologies presented and the

limitations surrounding the data sets used and any future work.

1.2 Research Question

The aim of the research is to provide insight into the following research question:
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“How can machine learning techniques be leveraged to improve wind turbine gener-

ator diagnostics and prognostics, and what impact can using such approaches have on

the overall wind farm O&M cost?”

To answer this primary research question several areas of wind turbine condition

monitoring must be first explored individually. Using several case studies, the research

will focus on applying techniques on known faults and failures associated with wind

turbine doubly fed induction generators (DFIGs), with the overall aim of providing a

broad understanding of real world application, practicalities and benefits. With that

being said, this thesis will be broken down into 4 key research questions:

1. How best can SCADA and vibration based condition monitoring systems be used

in isolation to diagnose a range of common DFIG faults, and which machine

learning techniques and decision metrics provide the most favourable results?

2. What are the benefits of having both SCADA and vibration data, and can they ef-

fectively be combined into a single anomaly detection model for fault diagnostics?

3. To what extent can previous experience of failure be used to predict remaining

useful life in similar machines based on purely data-driven approaches, and how

do different site operational conditions affect prediction accuracy?

4. How can implementing advanced monitoring and predictive maintenance strate-

gies affect O&M costs throughout the life of a wind farm?

These secondary research questions are answered throughout each chapter of this

thesis and map onto Chapters 3, 4, 5 and 6 respectively. The beginning of each chapter

will set out the research question to be answered, present the research and draw its own

unique conclusions. These will then be brought together in the context of the primary

research question in the final chapter.
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1.3 Novelty of Research

By carrying out the literature review, a novel area of research was determined with few

publications in the following areas:

1. Comparison of different machine learning techniques to detect generator faults

with the use of real world SCADA and vibration data, with a focus on how

different data sources, techniques and decision metrics can affect fault detection

ability and times.

2. Insight into how SCADA and vibration analysis can be used together through

synchronised data sets to increase confidence in a particular diagnosis, comparing

this to existing methods of completing each analysis in isolation.

3. Understanding which features can be identified and extracted in the latter stages

leading up to failure. The ability to compare failure prediction times and thresh-

olds to provide a platform on which to build a robust approach to predicting

failure and remaining useful life across similar machines at different stages of

their design life.

4. Analysis of the extent that different maintenance strategies can affect the O&M

costs of wind farms over the entire operational life.

1.4 Approach to Research

There are several steps in predicting failure using SCADA and vibration analysis,

changing with the techniques and data set being used. In depth methodologies will

be described throughout Chapters 3, 4 and 5, in which a variety of analysis and ML

techniques will be applied as necessary. Figure 1.1 however shows a high level approach

to this research, which forms the grounds for the layout of chapters throughout this

thesis. When considering fault diagnostics (highlighted in green in Figure 1.1), at the
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Fault diagnosis
model

Failure prognosis
model

Decision analysis
model

SCADA based fault detection

Vibration based fault detection

Comparison & combination of techniques

Comparison with other failures

Maintenance 
recommendation

Added value

Figure 1.1: Approach to overall research chapters.

most basic level of analysis both SCADA and vibration analysis can be treated com-

pletely in isolation, making use of any available data streams. If leveraged correctly,

these data sources can also be analysed, results compared and combined together to

build confidence in any particular diagnosis, as will be described in Chapter 4. To

develop these techniques for fault prognosis (highlighted in blue in Figure 1.1) and gain

insight into remaining useful life, information is also required for similar faults in other

identical machines in order to compare and classify accordingly, as will be discussed

in Chapter 5. Finally, these methods can then be adapted further to provide insight

into maintenance recommendations through a decision support or analysis model (high-

lighted in grey in Figure 1.1), which will be discussed in Chapter 6 as part of a cost

analysis of different maintenance strategies. The more information is learned about a

particular fault, moving up the pyramid, more value can be added and extracted to

assist with asset management and O&M strategies.

1.5 Important Definitions

To avoid any confusion there are several key definitions which must first be introduced

and understood before explaining any techniques, case studies, methodologies and re-

sults. These definitions are specific to this thesis and may differ from other definitions

observed in literature. These definitions can be found in Table 1.1.
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Table 1.1: Important definitions

Phrase Definition

Fault Fault or anomaly within a system which has the potential
to develop into a failure

Failure Failure of a component due to a single or multiple faults
which causes the wind turbine to cease operation

Failure mode Specific point and type of failure which causes the wind tur-
bine to cease operation

Root cause Underlying reason which leads to a particular failure mode
with either single or multiple root causes for a single failure
mode.

Diagnostics Ability to determine if a fault is present in a system with ei-
ther known or unknown fault location, severity or remaining
useful life

Prognostics Ability to determine fault severity and predict failure mode
and remaining useful life

Feature Used synonymously with predictor/input

Target Used synonymously with response/output

1.6 Research Output

Published peer reviewed journal and conference articles:

1. “Investigation of the relationship between main-bearing loads and wind field char-

acteristics”, Journal of Physics, 2017 [15]

2. “Prediction of wind turbine generator bearing failure through analysis of high-

frequency vibration data and the application of support vector machine algo-

rithms”, Journal of Physics, 2018 [16]

3. “Prediction of wind turbine generator failure using 2-stage cluster-classification

methodology”, Wiley Wind Energy, 2019 [17]

4. “Wind turbine main-bearing loading and wind field characteristics”, Wiley Wind

Energy, 2019 [18]

5. “Combining SCADA and vibration to predict wind turbine component failure”,
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Wiley Wind Energy, 2020 [19]

6. “Effect of time history on normal behaviour modelling to predict wind turbine

failure”, Energies, 2020 [20]

7. “Cost benefit of implementing advanced monitoring and predictive maintenance

strategies for offshore wind farms”, Energies, 2021 [21]

Presentations:

1. “Prediction of wind turbine generator bearing failure through analysis of high-

frequency vibration data and the application of support vector machine algo-

rithms”, IET RPG, 2017

2. “Wind turbine main-bearing loading and wind field characteristics”, Deepwind,

2018

3. “Comparison of anomaly detection techniques to predict generator bearing failure

using SCADA data”, WESC, 2019
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Literature Review

2.1 Wind Turbine Generator Technology

Wind turbine generator and drivetrain technology has developed rapidly over the last

decade as utility-scale wind turbines have increased in size and contributed to a greater

share of the electricity market [3, 22, 23]. This fundamental shift in the energy mix

requires wind turbines to cope with greater flexibility in generation, with wind farms

now operating more like traditional power plants to meet changing electricity grid

conditions. The generator and wider drivetrain configuration has adapted with both

grid requirements and the constant need to increase reliability and decrease downtime

due to unplanned maintenance [24].

When describing a wind turbine drivetrain configuration it is typically expressed as

a series of assemblies and components required to convert the kinetic energy in the rotor

to electrical energy needed for a stable grid connection. In modern utility-scale wind

turbines there are 4 major categories as described in [25] and [24]. Figure 2.1 shows

these generator types and configurations in relation to key drivetrain components. The

following list provides details of each configuration in relation to generator type. Note

type A and B have been excluded from this review due to a focus on current utility-scale

technology that meets modern grid requirements [26,27].

• Configuration 1 (Type C). Doubly-fed induction generator (DFIG). Partial power

converter is used to control the electrical current in the generator’s rotor. Since
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Figure 2.1: Drive train arrangements usually employed in commercial wind turbines [1]

the power converter is connected only to the rotor of the generator, the rated

power of the converter is much lower (around 30% of the rated power of the WT),

keeping costs of electronics down while enhancing response to grid requirements.

• Configuration 2 (Type D). Full power converter enables the decoupling of the

generator and the grid frequency. This means that the frequency on the generator

side can be fully controlled allowing for enhanced grid services and the use of a

gearbox can be avoided. A synchronous electrical generator (which can be either

an electrically excited synchronous generator (EESG) or a permanent magnet

synchronous generator (PMSG)) is directly coupled to the main shaft of the rotor

which operates at a rotational speed around 5-40 rpm, depending on the wind

turbine size.

• Configuration 3 (Type E). Gearbox-equipped wind turbine with a full power

converter and medium/high-speed synchronous generator, which can be EESG

or PMSG. In this arrangement, it is possible to choose between a relatively small

gearbox (with moderate gear ratios) at the expense of using a large medium

speed (about 500 rpm) synchronous generator. On the other hand, it is possible

to assemble a gearbox with a higher gear ratio in order to reduce the size of the
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Figure 2.2: Generator topology classification with respect to configurations types.
Adapted from [2]

generator (high-speed configuration with synchronous generator).

• Configuration 4 (Type F). Gearbox-equipped wind turbine with a full power con-

verter and high-speed asynchronous generator. As the full power converter en-

ables the speed to be controlled by modifying the operating frequency, a squirrel

cage induction generator (SCIG) is generally employed in this configuration.

Figure 2.2 shows more clearly how each of these drivetrain configurations relate to

the generator types mainly observed in industry. More broadly, Type C corresponds

to geared multistage highspeed wind turbine, Type D is a direct drive machine, while

type E and F are hybrid models. In terms of market share, geared turbines continue to

dominate the global market, as shown in Figure 2.3, with the vast proportion of these

turbines onshore made up of a DFIG arrangement below 3MW rated power output.

This is particularly true across Europe, Asia and North America. Further analysis

presented in [3] shows the evolution of configuration types with geographical location,

with Type F more prevalent in North America and Types D and E having more market

share in Europe and Asia. If we look offshore across Europe, DFIG models dominated

the early market predominately close to shore. This has vastly changed over the last

5-7 years with direct drive and hybrid models now making up a significant proportion.

PMSGs have seen an explosion in the Asian market in particular, while EESGs are

typically more common in European waters. Having said this, PMSGs have been
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Figure 2.3: Evolution of drive train configuration in onshore wind turbines by geo-
graphical zone (Source: JRC Wind Energy Database. “NA” represents Not Available
records in the Joint Research Centre (JRC) Wind Energy) [3]

gaining more traction in Europe as turbines increase beyond 5-6MW [22,25,28–31]. The

technological shift towards PMSGs over other types of generator is predominately due

to the increased reliability that can be achieved with less components and importantly

no gearbox. The next section will discuss reliability of the systems described above.

2.2 Wind Turbine Reliability

Understanding component reliability is a fundamental part of engineering design, par-

ticularly when considering the design lifetime of critical products and infrastructure

when costs of failure are at a premium. Due to wind farms being located in increas-

ingly more remote locations better reliability is one of the most critical drivers for

decreasing the O&M costs for wind energy. Reliability is often described as the proba-

bility that a product or a system will perform its intended functions satisfactorily. This

means operating without failure and within specified performance limits, for a specified

length of time, when operating under specified environmental and usage conditions.

One of the most common ways in which to present failure rates is the number of

failures per turbine per year.

λ =

∑I
i=1

∑K
k=1

ni,k

Ni∑I
i=1

Ti
8760

(2.1)

where λ is failure rate per turbine per year, I is the number of intervals for which the
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data is collected, K is the number of sub-assemblies, ni,k is the number of failures, Ni is

the number of turbines and Ti is the total time period in hours. Other such terms used

to describe reliability are mean time to failure (MTTF), mean time to repair (MTTR)

and mean time between failures (MTBF), all having simple relationships as follows:

MTTF =
1

λ
(2.2)

MTTR =
1

µ
; (2.3)

MTBF = MTTF +MTTR (2.4)

where λ is failure rate per turbine per year as stated previously and µ is the repair

rate, which is simply the transition rate from the failed to operational state [32,33].

There have been several studies to date investigating the reliability of wind turbines

and their sub assemblies, and it remains a crucial aspect of research to continuously

update records for new WT technology. One such study in 2007, which shows failure

rates and associated downtime are obtained from analysing 1,500 German turbines over

a 15 year period [4]. It should be noted that while this is a large population the majority

of turbines are rated under 1 MW, which is relatively small when compared to the 10-

12 MW machines being installed offshore today. With regards to failure rate, Figure

2.4 shows that although the generator may not fail the most regularly in comparison

to other sub-assemblies, it actually has the largest average down time per failure at

over 7 days. It is the product of failure rate and downtime per failure which will effect

total wind turbine availability and is what makes generators a valuable component to

consider.

Another study worth mentioning by Spinato in 2009, [13], consists of a dataset of

more than 6000 wind turbines in Denmark and Germany over an 11 year period. It

calculates a generator failure rate of between 0.05 and 0.135 failures per turbine per

year, with the range reflecting different ages and sizes of turbines studied. In general

lower failure rates are associated with smaller turbines, while the higher end of the scale

is associated with larger turbines, including direct drive machines, which are known to

have higher rates of generator failure [11].
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Figure 2.4: Wind turbine sub-assembly failure rates and downtimes [4]

In 2010 a similar study from Reliawind, [14], calculates a failure rate of 0.14. Con-

sidering the fact that this investigation includes larger, more modern wind turbines to

those used in Spinato’s study, the failure rate is remarkably consistent with the top end

of the scale found in [13].

In 2015 Carroll, [11], considers a dataset of 2222 wind turbines, each of similar

power rating between 1.5 and 2.5 MW. They differ only by their generator and drive-

train configuration and have been categorised into two groups for the study. The first

configuration in the analysis is a doubly fed induction generator (DFIG), with the sec-

ond being a permanent magnet generator (PMG) with fully rated converter (FRC). All

turbine generators and converters are in their first 5 years of operation and located in

wind farms throughout Europe. This provides a unique insight into failure rates with

a large population of very similar machines. The DFIG configuration showed a failure

rate of 0.123 while the PMG population was calculated at 0.076. Table 1 provides a

comparison between each study, which suggests that the rate of generator failure in-

creases with turbine size, leading to lower reliability in larger machines. However, it

should be noted that no such reliability study currently exists which considers turbines

beyond approximately 3 MW, which can verify if past trends still hold for such large
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Table 2.1: Generator failure rates study comparison

Study failure rate

Spinato [13] 0.135

Reliawind [14] 0.14

Carroll, DFIG [11] 0.123

Carroll, PMG [11] 0.076

and increasingly complex wind turbines.

When comparing DFIG and PMG configurations, the PMG has a failure rate 40%

lower to that of the DFIG, which actually could be lowered further if minor failures

related to its cooling and lubrication system were not included in [11]. Spinato’s study

[13], also suggests that direct drive machines are not necessarily more reliable when

compared to their geared counterpart. In fact if you take into consideration aggregated

failure intensity of the generator and converter in the DD machine, it is greater than

that of the gearbox, generator and converter in geared drive wind turbines.

Finally in a more recent study in 2018 [34], Artigao identified thirteen reliability

studies in scientific literature to review. This work made an effort to unify the vari-

ous studies to obtain comparable results. Failure rates are normalised and it is shown

that the control system, gearbox, electric system, generator and hub & blades are the

most critical assemblies with regards to wind turbine condition monitoring. Taking

into account the top-three contributors to failure rates for each study, the most re-

current ones across all studies are the electric, control and yaw systems, and hub and

blades categories; for downtime these are the gearbox, generator, and braking and elec-

tric system. Mechanical and electrical/control components show similar failure rates.

However, mechanical components cause higher amount of downtime when compared to

electrical/control ones, reaching more than 75% of the total downtime.

With failure rates of this magnitude leading to high levels of downtime it is clear

that improvements must be made during the design stage to increase the reliability of

wind turbine generators. However, with the current rate of wind farm development

both onshore and offshore, it is expected that these numbers will only increase in the

near future. It is therefore imperative that assets are managed intelligently through
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the use of condition monitoring systems to allow operators to effectively and efficiently

plan maintenance work which minimises turbine downtime, or alternatively provides

reliable information in the case that power must be limited or turbine shut down to

avoid serious or dangerous failure.

2.3 Wind Turbine Condition Monitoring

2.3.1 Classes of Monitoring Systems

There are several systems and approaches which exist to determine how a particular

wind turbine is operating and perhaps more importantly performing.

The first class of system is the Supervisory Control and Data Acquisition (SCADA)

system, which is used to determine and record basic functionality and health. This

typically involves storing 10-minute averaged signals along with the associated standard

deviation of active power output, measured wind speed, gearbox bearing and lubrication

oil temperatures, generator winding and bearing temperatures, as well as phase currents

and power factor. Every wind turbine currently installed has a SCADA system installed

as standard.

The second class of system is the structural health monitoring (SHM) system, which

is typically interested in (but not limited to) the structural integrity of the tower,

support structure and foundations. As these faults are typically driven by blade-passing

frequency low frequency sampling of below 5Hz can be used.

The final class of system, which is most applicable to generator failure, is condition

monitoring (CM) and diagnostic systems. These systems can be used to provide reliable

information on the performance and operational health of a wind turbine power train

to detect early signs of any anomalies that may exist within subassemblies. Once

an anomaly is detected, these systems have the potential to diagnose specific faults,

severities and locations depending on the particular issue. This information can then

be used to schedule repair work and calculate any losses or required downtime.
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Figure 2.5: Typical positions of accelerometers used for a condition monitoring based
on vibration analysis [8].

2.3.2 Condition Monitoring and Diagnostic Tools

Most condition monitoring systems used in wind turbines have been developed from

traditional methods applied to rotating machinery, which are primarily based on drive-

train vibration analysis. This typically involves placing accelerometers at key locations

on the main bearing(s), gearbox and generator bearings, as shown in Figure 2.5. The

sampling frequency used to measure the vibration signal is usually variable, but typi-

cally has a maximum of between 40 and 50kHz (although a higher sampling frequency

of up to 96kHz is available in some products) [35]. Analysis of these signals is typically

done both in the time domain and frequency domain.

More sophisticated systems now look beyond traditional methods of analysing me-

chanical vibration by also considering electrical signals. This may involve high fre-

quency current signature analysis to gain further insight into how the generator is

performing and operating, as performance is ultimately linked to power output [36,37].

Due to the high volume of data generated with such high sampling frequency, CM

systems tend to work alongside SCADA systems logging data periodically. It can then

be used for investigative purposes if a fault is suspected or detected.

One other technique worth mentioning is oil debris analysis, which can be done

periodically by taking oil samples during routine inspections or maintenance work, or

by having an inline system fitted to the gearbox oil inlet. These types of systems can

count oil particles (both ferrous and non-ferrous) of different sizes and provide live
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remote access to the data through the CMS system network [38].

This thesis focuses on data driven methods for condition monitoring using both

SCADA and vibration data, the two most widely used techniques in industry. Oil

particle counting or debris analysis, although useful for overall drivetrain condition

monitoring, is more applicable to gearbox faults and will not be considered as part of

this thesis. Although applicable, unfortunately no high frequency current data could

be obtained.

2.4 Applying Machine Learning Techniques to Wind Tur-

bine Condition Monitoring

A range of data driven techniques have been published in relation to wind turbine

condition monitoring. This section provides an overview of techniques and approaches

observed in literature with regards to SCADA and vibration monitoring.

It is worth explicitly mentioning that fault prognostics considers individual turbine

component health, as opposed to a population-based assessment when considering more

conventional reliability analysis. Depending on the techniques and data source it is

important to consider the capabilities of modelling approaches in relation to what

the model can achieve. Broadly speaking there are two key aspects to data-driven

modelling, the first of which is fault detection (diagnostics) and the second of which

is failure prediction (prognostics). With regards to fault diagnosis there are several

levels of capabilities, which are often used together but can sometimes cause confusion.

The first level, usually performed first, is anomaly detection, which aims to identify

any deviation from normal operating conditions. These models will typically not have

capabilities to explicitly locate fault position within a specific assembly, sub-system

or component. To do this we need to have some level of fault classification, which

can be used to narrow down or identify the source of the problem to component/sub-

component level, or even down to the failure mode itself depending on the model inputs

and capabilities. Once a fault has been detected and classified, we move through to

the failure prognostics stage, where fault severity must be established and degradation
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Figure 2.6: Typical condition monitoring work flow.

measured. This stage is the most difficult which, for purely data-driven models, is

achieved by utilising known examples of faults and/or failures. A typical condition

monitoring workflow is shown in Figure 2.6 highlighting where the key steps described

above fit into the overall process.

The aim of any condition monitoring system is to aid decision makers in their

operations and maintenance strategy. For this reason a decision support system must

have the ability to create insight from various amounts of data across different data

sources. On a fundamental level machine learning can be thought of as a process of

building a model automatically from data. How the model learns from the data depends

on the algorithm, but in all cases it is the underlying structure and relationships in the

data that are of importance and hence is what the algorithm is trying to understand.

Machine learning can be categorised as either supervised learning, which predicts an

output variable from labeled inputs, and unsupervised learning, which deduces a desired

output from data inputs without labeling. For supervised learning there is a distinction

between models that predict a numeric variable (regression model) or a categorical

variable (classification model).

Machine learning techniques are increasingly being applied to wind turbine diag-

nostics and prognostics, with multiple review papers now having been published in the

area over the last few years which can be found in [6, 39,40]. According to [41] almost

two-thirds of methods published in research used classification algorithms with the rest
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relying on regressive based approaches.

Machine learning algorithms can be categorised further into parametric and non-

parametric models. Parametric models estimate parameters to learn a function which

relates the training inputs and outputs. Once an algorithm is trained predictions can

be made without the need for the original training dataset. In contrast, non-parametric

models cannot be categorised by a fixed set of parameters. The interested reader can

find more about the fundamentals of these methods in [42] and how to apply them

in [43], although some techniques will be explained in further detail in the following

sections.

2.4.1 Supervised Learning

Supervised learning algorithms require input data to be labeled in in order to learn the

structure and relationships between input and output variables or classes. Depending

on the required output supervised learning techniques are categorised into regression

or classification problems.

Classification models learn to classify data into discrete classes, which can be binary

(2 classes) or multi-class (3+ classes). To do this they learn from input data which is

labeled into categories. This process of labelling data is done prior to training, and

is typically achieved by assigning a category to training samples by human or expert

judgement. It is important to try and produce a balanced set of labeled data with a

similar number of instances in each class, however the problem of unbalanced classes can

be addressed by under-sampling (remove instances belonging to the majority class for

training) or over-sampling (sample more instances from minority class for training) [44].

Later on in this thesis we will see examples of under-sampling to balance training sets

for classification.

Unlike classification models, regression models predict an independent numerical

output using a set of independent input variables. A simple example of this could be

to predict power output based upon wind speed and generator speed.

The terms ‘bias’ and ‘variance’ are often used in literature (and will be throughout

this thesis) in relation to supervised model performance. In general high variance is
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Figure 2.7: Difference between underfitting (bias) and overfitting (variance).

proportional to overfitting, while high bias is proportional to underfitting, which can

be explained through Figure 2.7. The first example on the left shows a model that

is underfitting, therefore does does correctly split the data into each discrete class

producing a high number of misclassifications. On the right is an example of a model

which is overfitting, meaning that although the data is split into the correct classes, any

new data that that is marginally outside of the current trained behaviour risks being

misclassified. In practice a compromise between the two is usually desirable. In the

context of training machine learning models, variance is a measure of the variability

(or consistency) of the model prediction for classifying a particular example if the

model was retrained multiple times. If a model has high variance we can say that it

is sensitive to randomness (noise) in the training data. Conversely, bias is a measure

of the difference between model predictions and correct values if the model is rebuilt

multiple times on different training datasets. If a model has bias we can treat this

as the systematic error that is not due to randomness or noise. Understanding model

bias and variance is an important part of model validation and can be achieved through

training and evaluating subsets using cross-validation, however this will be explained in

greater detail in later chapters. Some common algorithms will now be briefly described.

K-nearest Neighbours (kNN)

The kNN algorithm belongs to a subcategory of non-parametric models described as

instance-based learning. This is different to all other models described later as they

work by memorizing the entire training dataset. The algorithm is relatively straight-
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Figure 2.8: Example of kNN and SVM algorithm.

forward and can be summarised as follows:

1. Define the number of k points and a suitable distance metric, where k is the

number of neighbours the algorithm will use to calculate an output.

2. Calculate the distance d between the unseen observation xobs and each observation

used for training.

3. Determine the k number of closest observations and create a subset to analyse.

4. Probability of xobs belonging to each class is calculated and assigned to the class

of the highest probability.

The most important hyperparameter here is k and can have a large impact on the

model performance. A small value for k provides the most flexible fit, which typically

means low bias but high variance. Larger values of k will have smoother decision

boundaries meaning lower variance but increased bias. The kNN algorithm can be

applied to classification or regression problems and is one of the simplest models to

apply and visualise, as shown in Figure 2.8(a). As stated previously this is a non-

parametric model meaning it requires the entire dataset to be stored, which in practice

can lead to storage and computational efficiency problems. That being said, one of the

key advantages of using a memory-based approach is that the classifier can immediately

adapt when new data is collected.
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Support Vector Machines (SVM)

SVM’s are more widely used in classification problems, and work by defining a decision

boundary that can separate classes in multi-dimensional space (ie can deal with a large

number of features). SVM’s goal is to not only find a decision boundary but to optimise

the hyperplane between classes. For a n-dimensional space the hyperplane will be an (n-

1)-dimensional subspace which creates the largest margin between training points of the

different classes. If we first consider the simplest case of two linearly separable classes,

the margin is simply the maximum distance perpendicular to the hyperplane that has

zero interior data points, as demonstrated in Figure 2.8(b). For the simple linear

example as shown in Figure 2.8(b) shows the linear decision boundary, wTx = 0, with

the margin separating the positive and negative hyperplane represented as wTx = 1 and

wTx = −1 respectively, where w is the SVM weight parameter, or coefficient. Support

vectors are defined as the data points that are closest to the hyperplane supporting

the decision boundary. In practice minimising 1
2‖w‖

2 is used to solve the problem of

maximising the margin with the use of quadratic programming. The full mathematical

formulation behind the SVM algorithm is relatively simple and for the interested reader

further details can be found in several references including [45], [46] and [43]. By

maximising the margin the classes are separated by a greater distance leading to better

algorithm performance by having lower generalisation error and less problems with

overfitting.

There are two other scenarios worth mentioning with regards to SVM classification,

each requiring a more complex solution than previously described. The first is used

when dealing with nonlinearly separable cases for which the slack variable, ζ, was

introduced by Vladimir Vapnik in 1995. This was initially introduced because linear

constraints were not suitable for nonlinearly separable data and needed to be relaxed

to allow for optimisation in the presence of misclassifications. To do this of course

required appropriate cost penalties to be put in place for any misclassification. For

these cases the new objective function to be minimised is as follows, where ζ is the

slack variable and C is the penalty cost parameter:
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1

2
‖w‖2 + C

(
ζ(i)
)

(2.5)

The second scenario is regarding the use of a kernel SVM to solve nonlinear prob-

lems. The fundamental approach behind kernel methods is to create nonlinear com-

binations of the original features to project them onto a higher-dimensional space via

a mapping function, φ, to then train a linear SVM to classify the data in this new

feature space. The same mapping function, φ, can then be used to transform new data

to be classified. In order to save expensive computational time mapping and training

through quadratic programming a so-called kernel trick is implemented in practice.

This is where a kernel function is defined, the most common of which is the radial basis

function (RBF), or Gaussian kernel as it is otherwise known. Again, the interested

reader can find more details surrounding the mathematics behind this in [45].

Decision Trees

Decision tree classifiers provide an approach that can be very easily interpreted and

visualised regardless of model dimensionality (number of features). Starting with a root

node, a decision tree is a hierarchical structure with a series of learned questions that

splits the data based on the feature that provides the largest information gain. This

splitting process is repeated for each child node until all leaves are considered pure,

meaning that all training examples at each node belong to the same class.

The downside of a decision tree is that it can easily lead to the model overfitting if

a tree is too deep. Tree depth can be limited by setting a maximum number of splits,

a minimum leaf size and a minimum parent size; an act known as pruning. In order to

split nodes efficiently at the most informative inputs an objective function we want to

optimise must be defined. For example if we want to maximise the information gained,

IG, at each split we can define the objective function as follows:

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj

Np
I(Dj) (2.6)

where, f is the feature to perform the split, Dp and Dj are the datasets of the parent
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Figure 2.9: Example of Decision Tree and Random Forest algorithms.

and jth child node, I is the chosen impurity measure, Np is the total number of training

examples of the parent node, while Nj is the total number of samples of the jth child

node. There are three common impurity measures used in simple decisions trees; Gini

impurity, entropy and classification error. As an objective function the Gini impurity

aims to minimise the probability of misclassification while entropy aims to maximise

the mutual information in the tree. In practice both of these impurity measures yield

similar results when growing a tree [43]. Classification error is more suited to assessing

the tree for pruning rather than initially designing the tree. A simple representation of

a decision tree splitting process is shown in Figure 2.9(a).

Random Forests

Ensemble methods in machine learning utilise multiple algorithms to gain more accurate

and stable predictions than could be achieved with a single algorithm. Random forests

can be considered an ensemble of decision trees, which aims to overcome some of the

limitations of a single decision tree of overfitting and high variance. The random forest

algorithm is summarised with the following steps:

1. Take a random bootstrap sample of size n, which is randomly chosen.

2. Grow a decision tree from the data sample taken, splitting the nodes in accordance

with the objective function as described in the above section on decision tree

algorithms.
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Figure 2.10: ANN algorithm example diagram.

3. Repeat steps 1-2 k times, with k being the number of decision trees in the forest.

4. Assign a class by majority vote considering each tree prediction.

In theory this process provides a more robust, generalised model which is less sus-

ceptible to overfitting. Like decision trees, the random forest algorithm can be adapted

to both classification and regression problems. Again, a simple representation of a

random forest prediction process is shown in Figure 2.9(b).

Artificial Neural Networks (ANN)

The ANN algorithm has become incredibly popular in research with regards to wind

turbine condition monitoring, likely due to ease of application and adaptability to both

regression and classification problems. An ANN has three distinct layers, as depicted

in Figure 2.10 - an input layer, hidden layer(s) and an output layer. The input layer

is made up of a number of nodes, which are connected to a series of neurons in the

hidden layer. The inputs and the connectivity with the internal neurons are computed

and learned in a iterative process to determine weight parameters. Each neuron has

a nonlinear transfer function to determine its own unique inputs and outputs with an

activation function to provide an output limit. Further reading on ANN theory and

practice can be found in [47] and [48].
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Semi-Supervised Models

The most notable of the semi-supervised category of models is the single class classifier.

Unlike supervised models these algorithms learn patterns in a data belonging to a

single class, with the goal of detecting outliers that do not match the original learned

behaviour. With regards to wind turbine condition monitoring, this means that any

deviation from the trained behaviour will indicate an anomaly and flag as not belonging

to the class describing normal operation. This could then indicate a possible system

fault. Several types of single class classifiers exist and can be based on several of

the techniques already discussed including decision trees, neural networks and SVMs.

Taking SVM as an example, instead of finding the maximum margin of the hyperplane

between two or more classes of features, single class classifiers determine the boundary

which encloses the outermost support vectors. Single class SVMs seem to be the most

used semi-supervised model in literature, likely due to ease of model visualisation, with

a wide range of applications including wind turbine bearing fault detection [49,50].

2.4.2 Unsupervised Learning

The key difference when it comes to unsupervised learning is that models do not require

labelled data in order to find underlying patterns. As labelling is often a time consuming

and manual task, removing this step has obvious benefits, however these approaches

come with limitations which should also be understood. The main applications of

unsupervised learning is to segment groups by some shared attributes, detect anomalies

that do not fit to any group, or to simplify datasets by aggregating variables with similar

attributes.

The two types of unsupervised learned that will be discussed in this section are;

grouping data through clustering techniques and reducing dimensionality through prin-

ciple component analysis (PCA).

Clustering

Clustering techniques utilise similar properties of data points to cluster data into spe-

cific groups. Some of the most common clustering algorithms are k-means clustering,
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Figure 2.11: Clustering basic principle.

hierarchichal clustering and Gaussian clustering models (also described as distribution

based clustering). Figure 2.11 shows the basic idea of clustering to define set clusters

or groups, and the interested reader can find more details of a range of clustering tech-

niques in [51] and [52]. The simplest algorithm (and most widely used to due ease

of application and low computational effort) is k-means clustering, which determines

the distance between datapoints, with closer data points more likely to belong to the

same cluster. The most common distance to use in k-means clustering is the squared

Euclidean distance, which can be described as the distance between two points x and

y in m-dimensional space as follows [53]:

d(x, y)2 =
m∑
j=1

(xj − yj)2 = ‖x− y‖22 (2.7)

where j is the jth dimension or feature in the context of machine learning. The

k-means algorithm works by minimising the cluster inertia factor, which is simply the

sum of the squared errors within the cluster calculated as follows:

CI =

n∑
i=1

k∑
j=1

w(i,j)‖x(i) − µ(j)‖22 (2.8)

where µ(j) is the centroid for cluster j and w(i, j) is the cluster number (ie. if

sample x(i) is in cluster j, w = 1). To cluster the data the algorithm performs the

following steps:

1. Number of clusters, k, is chosen in which to split the data

2. k centroid locations are chosen at random
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3. Each data point is assigned to the nearest centroid using the euclidean distance

4. Cluster inertia is calculated from each data point and centroid location

5. New centroid locations are determined by calculating the minimum quadratic

error of the data points to the centre of each cluster, moving the centroid towards

that point

6. Repeat step 3, 4 and 5.

An important consideration when implementing the k-means algorithm is the num-

ber of clusters and hence centroids to generate. This value can be achieved through

domain knowledge, however if an analytical solution is required the elbow method is

often implemented to make the decision, which works by plotting the ascending values

of k versus the total error obtained for that k value. Other hyperparameters to consider

are the maximum number of iterations to run the algorithm (steps 3-5 above), and the

number of times the full algorithm will run with different random initial centroid posi-

tions (or seeds). It should be noted that the output of k-means clustering will not be

the same each time the algorithm is run even with a fixed dataset and hyperparameters

due to the random initiation of centroid positions.

Another clustering method worth discussing in a little more detail is hierarchical

clustering, which in contrast to k-means, allows the number of optimum clusters to

be determined by the algorithm. The ability to visualise the cluster relationships by

dendogram plots is also an attractive reason for choosing hierarchical clustering. Finally

Gaussian Mixture Models (GMM), belonging to a group of soft clustering techniques

allow for a probabilistic approach to clustering by assigning a likelihood of a data point

belonging to any particular cluster based on its closeness. For those interested, more

detail on clustering techniques and the mathematics behind the algorithms can be found

in [51].

Principal Component Analysis

Principal component analysis (PCA) is a unsupervised technique that can be used in

order to reduce the dimension of a dataset. When considering model dimensionality
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the number of training samples (N) should not exceed the number of features (L), with

different N/L ratio required based on the specific application, features available and

underlying assumptions [54]. PCA can be performed with the following steps, which

provides the orthogonal transformation of possibly correlated variables into a set of

linearly uncorrelated ones (principal components) [55]:

1. The mean of each data feature (dimension) is calculated and subtracted from the

original dataset

2. Covariance matrix is calculated

3. Eigenvalues and unit eigenvectors of the covariance matrix are calculated

4. Eigenvectors are sorted from highest to lowest eigenvalue.

5. N number of features is chosen based on explained variance complexity trade-off

and a feature vector is obtained by combining the first n eigenvectors

6. The post-PCA dataset matrix is obtained by multiplying the transpose of the

feature vector by the transpose of the the adjusted dataset matrix

In terms of dimension reduction, the optimum number of principal components is a

trade off between gaining the maximum reduction in dimensionality while maintaining

as much explained variance as possible. This will limit the amount of information lost

from the original dataset while reducing the number of features.

2.4.3 Techniques Used Throughout this Thesis

Most of the data driven models and techniques described in the previous sections will

be utilised at some point during this thesis. Where possible models will be compared,

however different models can be chosen to perform the same task and it is not possible

to compare all eventualities. Models may be chosen at times in reflection of the best

perceived model based on both literature and experience at the time of the specific

research or analysis. When implementing machine learning models both MATLAB’s

Machine Learning Toolbox and Python based Scikit-learn and Tensorflow packages

have been utilised at different points in the thesis.
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2.4.4 Existing Research in Applying Data Driven Methods to SCADA

and Vibration Analysis

In an effort to optimise CMS activities, machine learning techniques are increasingly

being used to enhance wind turbine diagnostics and prognostics, with extensive publi-

cations and multiple review papers now having been published over the last few years

which can be found in [6, 39, 40]. In a review by Stecto et.al in 2018 [41] models were

classified by typical ML steps, including data sources, feature selection and extraction,

model selection (classification, regression), validation and decision-making. Findings

showed that most models use SCADA or simulated data, with almost two-thirds of

methods using classification and the rest relying on regression.

Focusing on SCADA data only, one comprehensive review [6], splits up the general

approaches to data driven fault detection into three main categories; trending, clus-

tering, and normal behaviour modelling. Initial research into trending involved using

regressive techniques to develop simple relationships between 2 variables, for example

power against component temperature, or increasing this to three variables by includ-

ing ambient temperature [56]. A technique using correlations among relevant SCADA

data is investigated in [57], which used power binning to track changes across operating

conditions through time. Temperature trending as a function of power output over dif-

ferent time scales was investigated in [58]. Principle Component Analysis can also be

utilised for trending purposes using an auto-regressive neural network as shown in [59].

Building upon these techniques research began to focus on clustering algorithms, which

could more easily be applied to online systems due to the ability to automatically set

thresholds and classify observations. Initial attempts used k-means clustering to mea-

sure anomalies based on the Euclidean distance from cluster centroid positions [60].

ANN self organising maps were later used to visualise large datasets in [59] and [61].

These techniques were then later applied in [62] where examples were presented to

detect gearbox failure by comparing the quantisation error.

Research involving normal behaviour models has been widely published in recent

years across various condition monitoring applications. The full process of developing

NBMs will be discussed throughout Chapters 3 and 4, however the main principle is
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very similar to previous methods whereby normal operation is used as a basis for which

to base anomaly detection. The key difference for NBMs is that they rely on empirically

modelling a measured parameter during a training phase to set the boundaries of what is

considered normal behaviour. The residual of the measured parameter minus modelled

parameter is used as a fault indicator, with normal behaviour having residual values

of approximately zero (± expected noise). [6] differentiated NBMs into two distinct

categories; Full Signal ReConstruction (FSRC) and AutoRegressive with eXogenous

input modelling (ARX). The former uses only signals other than the target variable to

predict the target variable, while the latter also makes use of the historical values of

the target variable.

Models range from simple linear and polynomial fits such as [5], which used a lin-

ear ARX model to detect generator bearing failure by modelling bearing temperature

and [62], which developed higher order polynomial FSRC models of drive train temper-

atures. Similar approaches have also been shown to detect faults of other wind turbine

components such as transformers in [63]. To improve upon these modelling techniques

ANNs were introduced to capture non-linear relationships between observations and

increase model dimensionality, as demonstrated in [64] through detection of bearing

damage in offshore wind turbines. In [65], it was demonstrated how ANNs could be

used to detect main bearing damage three months before the turbine was stopped due

to overheating by modelling main bearing temperature. ANNs adaptability to differ-

ent data was also shown in [66], where high frequency SCADA data was successfully

used to detect bearing faults. Two back propagated Neural Networks (BPNNs) were

used in [67], one to select relevant features, and the other to detect anomalies based

on the RMSE between the measured and modelled target parameter. Other presented

techniques include [68], which used a kNN algorithm to detect incipient failure in two

turbines up to 6 months before failure. Nonlinear auto-regressive neural networks with

exogenous inputs (NARX) models have recently been used in [69–71] to detect a range

of gearbox component faults. Other research into fault detection using SCADA data

include [72], which used a non-linear state estimation technique to model gearbox be-

haviour, while probabilistic based methods were presented in [73].
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Research involving data driven methods and high frequency vibration data has also

been published extensively over the last decade in relation to wind turbine diagnos-

tics. Unlike SCADA analysis, vibration signal analysis can make use of component

kinematics and fault signatures to make a specific diagnosis. Much of the early work

focused on wind turbine gearboxes due to reliability issues and contribution to turbine

downtime, however this has since extended to other drivetrain components such as gen-

erators, main bearings and blades. It was shown in [74] that diagnosis of gearboxes can

be performed using time, frequency or time-frequency methods to analyse vibration

signals.

Methods to analyse the signal in the time domain have been proposed and are

often based on statistical analysis methods to describe the time waveform such as peak

value, RMS, kurtosis, mean, standard deviation and skewness. In lab conditions this has

proven to be a successful approach for both gearboxes [75] and generator bearings [76].

To apply these simple techniques in real world applications however does not prove

useful due to variable loads, non-stationary signals and additional noise.

There are many techniques using the frequency domain that have been proposed

across different components and assemblies depending on specific fault signatures. The

simplest of these is using Fast Fourier Transform, which looks at either the whole spec-

trum or specific frequency bands to extract features as demonstrated in [77]. When

it comes to bearing diagnosis, Fast Fourier Transform is typically inadequate and re-

quires more advanced signal processing techniques such as envelope analysis as shown

in [78]. Regardless of the method used, once features have been extracted from the

raw vibration signal, machine learning methods have proven to be a useful method

of automatically classifying and detecting faults as shown in [16], which employed an

SVM classifier to successfully detect generator bearing faults. Gaussian Mixture Mod-

els (GMMs) were used in [79] to detect low speed bearing faults using both frequency

and time domain features. A comparison of wind turbine gearbox vibration analysis

algorithms based on feature extraction and classification can be found in [80,81].
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2.5 Cost of Operations & Maintenance

The costs of wind energy can be broken down into Capital Expenditure (CAPEX)

and Operational Expenditure (OPEX). The CAPEX includes all one-time expenditure

associated with wind farm development, deployment and commissioning. This typically

includes all turbine hardware and installation costs, electrical infrastructure costs, civil

works, SCADA and monitoring systems as well as all required permits and licensing.

OPEX includes all ongoing expenditure to operate and maintain the wind farm.

The most important OPEX costs include the costs of running the site, including land

and sub-station rental, insurance and taxes, management and administration, scheduled

O&M activity costs as well as some allowances for unplanned maintenance to repair

any unexpected failures. According to several studies including [9], technical reports

by wind industry specialists and UK government experts [82, 83] the costs of OPEX

can be up to 40% of total costs for some offshore developments.

Not much literature exists when it comes to quantifying the impact of predictive

maintenance strategies on wind farm OPEX. A review on reliability and its impact on

cost of energy for wind is given in [84]. One attempt to quantify the impact of both costs

and revenue can be found in [85]. The influence of extending potential-to-functional

failure intervals has on offshore wind turbine availability is explored in [86].
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Chapter 3

Wind Turbine Fault Diagnostics

using machine learning to

enhance vibration and SCADA

based analysis

3.1 Chapter Contribution

Vibration analysis is widely used within the wind industry for early detection of a

range of mechanical and electrical faults associated with both the generator and gear-

box highspeed (HS) assembly. As described throughout the literature review, the most

common of these component faults are typically associated with the bearing assem-

blies, with faults located on either the inner race, outer race or/and rolling element

itself. The fault type within each bearing assembly can be determined by the unique

frequencies associated with each damage type, with a turbine typically consisting of

several different bearing assembly configurations. To determine which bearing assem-

bly a particular fault type is located within, the exact bearing design and kinematics

must first be understood. Although detecting these faults through vibration analysis

is well understood, the wind industry poses a difficult dilemma when it comes to large

offshore wind farms, when inspection is not easily and cheaply available, requiring ev-
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ery wind turbine to be remotely monitored and analysed individually with specialist

engineering knowledge. Reducing engineering hours spent analysing these types of sites

offers a huge challenge to operators, however by taking specialist engineering knowledge

and allowing classification algorithms to help detect and locate faults offers a scalable

approach with great potential of driving down costs.

Using SCADA systems to analyse WT performance has become standard industry

practice over the last decade, with SCADA systems installed as standard in all modern

machines currently in operation. With so much data readily available, operators are

now looking at how SCADA data can be used to enhance and augment more traditional

vibration based WT condition monitoring. To understand fully how SCADA data can

be leveraged to detect generator and high speed faults, data must be made available

leading up to catastrophic failure; something that is rarely available to researchers but

would allow more models to be tested, validated and compared. In doing so could lead

to standardisation of approaches and further understanding of what data is actually

required for operators to reap optimal benefits. Based on the literature review in

Section 2, the majority of research to date in this area has focused on gearbox faults,

with comparatively less using WT generator case studies. As Section 2 also shows, the

reliability of WT generators and HS assemblies is only marginally better than that of

the gearboxes, therefore understanding how models can be used on such faults can still

add great value to operators.

This chapter aims to answer the following research questions:

“How best can SCADA and vibration based condition monitoring systems be used

in isolation to diagnose a range of common DFIG faults, and which machine learning

techniques and decision metrics provide the most favourable results?”

The contributions of this chapter are as follows:

1. Provide an understanding of the most effective vibration analysis techniques to

diagnose bearing faults and other issues associated with the generator and high-

speed assembly.
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2. Demonstrate how classification algorithms can be used to determine component

health, fault type and location.

3. Convey how data selection, feature engineering and model selection can signifi-

cantly influence results when using normal behaviour models for fault detection

using SCADA data

4. Provide insight into the importance of correctly setting thresholds when evaluat-

ing the effectiveness of SCADA temperature-based normal behaviour models to

detect faults

3.2 Bearing Diagnosis through Vibration Analysis

This chapter will primarily focus on bearing faults associated with the highspeed as-

sembly and generator which, for the type of wind turbine used in this study gave a

total of 5 different bearing locations. Three of these were located on the HS shaft of

the gearbox, while the final two were located on either side of the generator. For the

purposes of this chapter, these were; 1) Upwind HS bearing, 2) Downwind rotor side

HS bearing, 3) Downwind gen side HS bearing, 4) Drive end generator bearing and 5)

Non-drive end generator bearing. Figure 3.1 shows the HS bearing locations in relation

to the generator and gearbox.

3.2.1 Bearing Fault Types

When a fault is present somewhere in the bearing assembly, frequencies will be in-

troduced into the spectrum, which occur due to shock loading at the fault location.

This loading will excite high frequency resonance in the surrounding structure that

can be picked up by any transducers if positioned closely enough to the source. The

characteristic fault frequency will ultimately depend on the fault location, and can be

determined from the following equations:

BPFI = f
N

2

(
1 +

B

P
cosθ

)
(3.1)
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Figure 3.1: Location of bearings on the highspeed assembly where: 1) Upwind HS
bearing, 2) Downwind rotor side HS bearing, 3) Downwind gen side HS bearing, 4)
Drive end generator bearing and 5) Non-drive end generator bearing.

BPFO = f

(
1− B

P
cosθ

)
(3.2)

BSF = f
P

2B

(
1 +

(
B

P
cosθ

)2
)

(3.3)

FTF =
f

2

(
1 +

B

P
cosθ

)
(3.4)

where BPFI and BPFO are ball passing frequencies at the inner and outer races

respectively, BSF is the rolling element ball passing frequency and FTF is the funda-

mental train, or cage frequency. N is the number of bearings, P is the radius of rotation,

B is the bearing diameter and θ represents the bearing contact angle. Depending on

the fault type and severity, different combinations of these fault frequencies may be

observed in the spectra, along with fundamental shaft frequencies and harmonics.

There are several techniques that can be used to give insight into component vi-

bration by analysing acceleration measurements, mainly surrounding time-domain and

frequency-domain analysis. Although more information will be provided in upcom-

ing sections, an interested reader can find more detail on vibration based analysis for
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rotating machinery in literature such as [87–90].

3.2.2 Time Domain Analysis

The vibration signal can be analysed in a number of ways, the simplest of which is in the

time domain. Basic statistical analysis techniques can provide important information

about the signal and although it is not sufficient to actually detect fault frequencies

and diagnose faults, it is certainly a useful method in which to detect any obvious

irregularities or signal interference.

3.2.3 Frequency Domain Analysis - Fourier Transform

The frequency domain is one of the most commonly used methods to analyse vibration

in rotating equipment. Fourier analysis is a technique widely used to convert an input

signal in the time domain to an output in the frequency domain using a fast Fourier

transform (FFT) algorithm. The FFT algorithm samples a signal over a specific time

period and divides it into its frequency components, with each sinusoidal component

having a unique frequency with its own amplitude and phase. The two most important

factors for consideration when performing any frequency based analysis are the time

signal sample rate and sample length, which will influence the range of frequencies that

can be analysed in the frequency domain.

It is important to focus on the range of frequencies which are associated with the

mechanical rotation of the generator shaft, which will allow any indicators of a fault to

be detected. In general, this frequency range will be the mean generator shaft rotational

frequency and associated harmonics, along with fundamental bearing fault frequencies

described previously.

3.2.4 Order Tracking

During each vibration sample, the generator shaft speed can vary, often significantly,

meaning that the signal is not stationary. This can produce a smearing effect on the

FFT spectrum which is somewhat proportional to the range of shaft speeds experi-

enced over the sample. The Fourier transform can therefore be adapted for a sliding
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Figure 3.2: Speed signal and tachometer pulses over example vibration sample

time window by using the short-time Fourier transform, where a spectro-temporal rep-

resentation of the signal is obtained. This is used for order analysis and allows the

spectral values to be tracked in time [91,92]. Order analysis can therefore be described

as a re-sampling technique which is effective when analysing non-stationary signals.

When a signal is re-sampled using this technique it moves from a variable shaft speed

and constant sampling rate, to constant shaft speed and variable sample rate. When

computing the frequency-RPM map it is important that a sensible resolution band-

width is chosen to capture all the desired features of the signal therefore losing as little

information as possible. Order tracking relies on tachometer/encoder pulses which are

synchronised with the accelerometer measurements and can therefore track the shaft

speed over the vibration sample. Figure 3.2 shows an example of the variation in shaft

speed over the vibration sample along with the associated tachometer pulses.

3.2.5 Envelope Analysis

When a defect is present in the bearing assembly (regardless of fault type) there are

two fundamental ways in which to detect the change in vibration. The first is in detect-

ing the impacts directly, as described in Section 3.2.3 with frequency domain analysis

looking for specific fault frequencies. The second is through modulation of the fault fre-
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quencies at high frequency ranges corresponding to the structure’s resonance frequency

which acts as a carrier signal. This modulation can be determined through envelope

analysis, which removes the high-frequency components and focuses on lower-frequency

repetitive behaviour, extracting this information from the signal and representing it on

an envelope spectrum. Envelope signals reveals more diagnostic information than the

analysis of raw signals because the signal is bandpass filtered in a high frequency band

where the fault impulses are amplified by structural resonances [93].

Envelope analysis offers the opportunity to detect bearing faults earlier than oth-

erwise possible using a standard Fourier transform. This is because high noise levels

can conceal the harmonics associated with bearing fault frequencies in the standard

spectrum. As well as this, heightened random noise can be a sign of bearing damage

deterioration, therefore it can sometimes be hard to distinguish fault frequencies. Due

to the nature of rotor loading this is certainly the case for wind turbine applications

meaning envelope analysis is an extremely powerful tool.

It should be noted that while envelope analysis may be the best technique in diag-

nosing high speed bearing faults, it cannot be used as the only tool if gauging vibration

levels or if an assessment of component condition is required. As bearing damage pro-

gresses and the number of defects increases, the envelope signal will not necessarily

correlate accordingly. For high levels of bearing damage the standard FFT spectrum

still needs to be used to capture changes in amplitude of the fundamental frequencies

of vibration.

3.3 Generator Diagnostics through Vibration Analysis

Other common issues considered in this chapter are misalignment between the high-

speed shaft and generator, and rotor imbalance within the generator assembly.

3.3.1 Misalignment

Misalignment occurs between the highspeed and generator shaft when the centre-lines of

the coupled shafts do not coincide with each other. This can occur in two fundamental
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Figure 3.3: Misalignment of coupling between highspeed shaft and generator.

ways causing either angular or parallel misalignment.

Angular misalignment occurs when the shafts meet but are not parallel, as demon-

strated in Figure 3.3. From a mechanical loading perspective, this sort of misalignment

will produce a bending moment on the shaft, which in turn causes increased vibration at

shaft frequency. This can be detected in both the radial and axial direction depending

on the angular misalignment.

Parallel misalignment occurs when the shafts are parallel but not coincident, as

Figure 3.3 again demonstrates. This form of misalignment causes increased vibration

in the radial direction at both 1 and 2 times shaft frequency.

When detecting real life cases of misalignment there is usually a combination of

both angular and parallel misalignment, therefore any indicators can be made up of 1

and 2 times shaft speed in both the radial and axial direction.

3.3.2 Rotor Imbalance

Rotor imbalance fundamentally occurs when the centre of mass and axis of rotation do

not align. This can occur for a variety of reasons including manufacturing tolerances,

mechanical damage, electromagnetic imbalances in the generator etc, however all have

the same dominant fault frequency when analysing and detecting a fault of this nature.

For clarity Figure 3.4 shows a simple representation of static rotor imbalance, with the
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Figure 3.4: Static imbalance in generator.

Table 3.1: Diagnostic Method Summary

Component Fault Type Method

Bearing Outer Race damage Envelope Analysis

Bearing Inner Race damage Envelope Analysis

Bearing Rolling Element damage Envelope Analysis

HS Coupling Misalignment FFT with Order Tracking

Generator Rotor Imbalance FFT with Order Tracking

centre of mass offset from the centre of rotation, which is the simplest form of imbalance

found on the generator rotor assembly. Vibration will increase at shaft frequency if rotor

imbalance is introduced to the assembly, which can typically be picked up on the radial

sensor.

3.3.3 Analysis Techniques

Both misalignment and imbalance are detected using FFT with order analysis as de-

scribed in Sections 3.2.3 and 3.2.4. Table 3.1 summarises the diagnostic indicators used

for the faults detected in this Section.

3.4 Feature Extraction

There are several steps to extract features from vibration data in order to diagnose

a fault. First of all the time series signal must be converted to the desired spectrum

using the range of techniques in Sections 3.2 and 3.3. The spectrum chosen should
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Table 3.2: Parameters to Consider for Feature Extraction

Parameter Description

Sensor channel Vibration sensor channel to take vibration data - determines
the location and direction of installed vibration sensor

Frequency range Range of frequencies in the computed frequency spectrum

Resolution Resolution of spectrum determined by frequency range and
number of lines on spectrum. Sensor will have limitations
on maximum resolution.

Fmin Minimum required frequency in spectrum or envelope

Fmax Maximum required frequency in spectrum or envelope

No. of Harmonics Number of harmonics desired to capture in spectrum

Search Range Percentage around fault frequency to determine vibration
peak or energy

reflect the range of frequencies that will change if a fault is present in the system.

Once the spectrum has been computed there are also other parameters which should

be considered that can influence the component health indicator calculated for feature

classification. Table 3.2 lists key parameters that must be chosen for feature extraction

using vibration data in order to calculate a component health diagnostic indicator.

It is worth noting that many of these parameters were already set prior to this

research study during installation and commissioning of the CMS hardware and could

not be altered. For clarity, the sensor channel could be chosen from several installed

sensors (the closest sensor to the known fault location was chosen in each case), while

frequency range, resolution, Fmin and Fmax were all pre-determined based on estab-

lished industry practices on data-acquisition and sensor capabilities. The number of

harmonics and search range could be chosen exclusively as long as the value was within

the limits set by the other parameters described above. The number of harmonics was

chosen in each case to cover all expected changes in vibration, while accounting for

other component frequencies that may coincide or interfere with the harmonic ranges.

This ultimately depended on the type of turbine, drivetrain and associated kinematics.
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3.5 Feature Classification

Once health indicators for each fault type have been calculated through the feature

extraction process, data needed to be labelled for classification. For this application,

classification can be binary, for example when the component is healthy or unhealthy,

or multi class. If a multi class system is chosen, a measure of damage is required in

order to differentiate between different stages of fault progression. This could poten-

tially be achieved through endoscope inspections or analysis of different data depending

on the fault type (oil debris for example for gearbox health), however it is difficult to

distinguish between stages of fault progression and will always ultimately rely on some

element of expert opinion or subjectivity. Figure 3.5 highlights the differences between

binary and multi-class systems using a typical progression of a bearing health indica-

tor over time. Throughout this chapter, diagnostics are used to indicate component

health, however no attempt is made to estimate any remaining useful life or classify

damage severity. To do this additional information is required to determine failure or

replacement dates, which will be discussed in much more detail throughout Chapter 5.

Classification algorithm types were discussed in depth throughout the literature

review, with multiple tested and compared in this chapter. The classifiers chosen for

this chapter were Simple Decision Trees, K-nearest Neighbour and Support Vector

Machines.

3.6 Case Study

The case study used for this chapter was chosen to best showcase how classification

algorithms can be used to detect the range of faults discussed in Section 3.3 with a high

degree of accuracy. No information was known about the level of damage at the time

of each vibration sample, nor were the turbine faults run to failure. As the components

were proactively inspected and exchanged, no information could be inferred in terms of

remaining useful life. Once exchanged no inspection report was available to classify the

damage at the time of replacement. As this is the case a binary classification system

was chosen, as described in Figure 3.5, which ultimately aims to simply determine if
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Figure 3.5: Classification: two-class vs three-class.

a component is healthy or unhealthy (specific fault type) with the highest degree of

accuracy possible.

3.6.1 Dataset Description

Data was gathered across two different classes, with class A being defined as a healthy

component with no fault present operating as expected under normal loading condi-

tions. Class B was defined as the component having a known fault of a particular fault

type. Multiple examples of each fault type were found across different turbines on the

same wind farm. Vibration samples for each class were taken for each fault type, with

features calculated as described in Section 3.4.

Requirements were put in place for data acquisition which limited the operating

range at which the vibration samples were taken to a single power bin of greater than
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Table 3.3: Data Description

Parameter Fault Type Fault Type Fault Type Fault Type

1 2 3 4

Fault Type HS Bearing Gen Bearing Imbalance HS Coupling

No. Turbines 3 4 2 3

Power Range >90% Pr >90% Pr >90% Pr >90% Pr

No. Data Samples:

Class A 100 130 70 90

Class B 100 130 70 90

90% of rated power. This was done to try and limit the effects of operating conditions

on drive train loading which will in turn affect vibration amplitude. Studies have shown

that this can have a large impact on classification accuracy, and will be discussed in

more depth throughout Chapters 4 and 5 in cases for which using data from a single

bin was not possible.

The turbine used for this study was between 1 and 2 MW Rated Power, asyn-

chronous generator with fully rated converter and a 3 stage gearbox. For confidentiality

reasons the exact type and model cannot be stated explicitly. Table 3.3 summarises

the data used throughout this chapter.

3.6.2 Overall Methodology Framework

The overall methodology consisted of building and training four separate classification

models based on fault type. Using the feature extraction process detailed in Section 3.4,

diagnostic health indicators were first of all calculated, producing a dataset consisting

of a single row of features describing each vibration data sample. Full description of the

features used is described in Section 3.6.3. Once the individual datasets for each fault

type were calculated, they were then labelled based on the binary classes ‘Healthy’ or

‘Unhealthy’ from known fault health states. Classifier models were then trained and

validated using cross-fold validation techniques, as described in Section 3.6.4, to assess

model accuracy. Once trained, the model could then be used on previously unseen

data to make predictions on component health. Figure 3.6 shows a block diagram
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Figure 3.6: Methodology for Component Health Classification.

of methodology used to go from feature extraction on raw training data through to

assessing component health predictions.

3.6.3 Model Setup

For this analysis fault types were grouped by component, however this analysis did not

distinguish between fault mode. For example, Fault type 1 was considered to be any

bearing fault on the HS Gen side bearing detected on the HS generator side sensor.

Health indicators were developed to pick up any fault mode within this fault group,

and did not distinguish between an inner race fault, outer race fault or fault to the

rolling element itself. Damage could be located at 1 or more of these locations with the

bearing component still classed as ‘Unhealthy’, or Class 1 for training purposes, with

‘Healthy’ being Class 0. Power Output at the time the vibration sample was also taken

and used as an indicator, although due to the restrictions in data acquisition this was

not a significant factor. Table 3.4 describes the diagnostic health indicators used for

model inputs, while Table 3.5 shows an example of the training data structure.

3.6.4 Validation

Validation of each classifier was achieved separately during the training and validation

phase using 5-fold cross validation. This was done in order to determine the overall
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Table 3.4: Diagnostic Health Indicator Description

Fault Type Sensor Indicator No. Harmonics

1 HS Gen side BPFO, BPFI, BSF 3

2 Gen DE BPFO, BPFI, BSF 3

3 Gen DE HSS Frequency 2

4 HS Gen side HSS Frequency 0

Table 3.5: Training Data Structure

Sample No. Diagnostic Indicator Power Outputa Class

1 0.0124 0.96 0

2 0.026 0.91 0

... ... ... ...

100 0.045 0.92 1
a Power Normalised based on Rated Power = 1

accuracy of each algorithm. As discussed previously, this method involves partition-

ing the data into subsets of a predetermined ratio, one of which is then omitted from

training and used to test the algorithm. For this example using 5-fold, 20% of the data

was used for cross validation purposes. The process is then repeated using different

sup-populations and an average accuracy calculated to use as a performance indica-

tor. The prediction process can then be evaluated using a confusion matrix giving

correct/incorrect classification and the likelihood of false positives/ negatives. Four

common metrics that are used to evaluate model performance are shown in equations

3.5 - 3.8, where TP is the number of true positives and TN is the number of true

negatives, FP is the number of false positives and FN is the number of false negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

Specificity =
TN

TN + FP
(3.6)

Precision =
TP

TP + FP
(3.7)

Recall =
TP

TP + FN
(3.8)
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Table 3.6: Classification Results - Model Accuracy Comparison

Fault Type Classifier Type Model Accuracy (%)

1 Decision Tree 89.5

1 SVM 91.5

1 kNN 91.0

2 Decision Tree 92.7

2 SVM 94.6

2 kNN 94.2

3 Decision Tree 93.6

3 SVM 90.7

3 kNN 92.9

4 Decision Tree 88.3

4 SVM 87.2

4 kNN 86.7

3.7 Case Study Results

First of all results will be presented using absolute values of the diagnostic health

indicator using a Confusion matrix to showcase algorithm accuracy and likelihood of

false positives and negatives. These results will then be discussed and refined to increase

accuracy by identifying key areas of improvement and sources of training confusion.

Finally, new data will introduced to the model to generate predictions, in which some

of the limitations to fault identification and automatic classification will be presented

and discussed.

3.7.1 Initial Results

Several classification algorithms were tested and compared for each fault type, with

varied results. Out of the 3 algorithms presented in Table 3.6, accuracy results were

quite similar indicating that algorithm type was not a significant factor. In fact there

was less than 3% between algorithms across all fault types, averaging just 2.1% differ-

ence. For fault types 1 and 2 Support Vector Machines proved to be the most accurate,

while for faults 3 and 4 Decision Trees were marginally better. The kNN algorithm was
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Figure 3.7: Confusion Matrix - Results Set 1.

consistently 2nd place, proving its flexibility for simple applications such as this.

Using the cross validation process described in Section 3.6.4, a confusion matrix

was produced for each trained classification model. Figure 3.7 shows the validation

and testing results for each of the 4 fault types described in Table 3.3 in the form of a

confusion matrix. For each individual Fault Type these matrices show the true class on

the y-axis and predicted class on the x-axis, with the average percentage of entries in

each class over the cross fold validation sub data sets. Each row of the confusion matrix

sums to 100%. When true class is equal to predicted class, this is known as the true

positive rate of a particular class, while the false negative rate is described as when the

true class does not equal the predicted class. Fault 1 for example could be described

as having a 91% true positive rate of predicting when a highspeed bearing is healthy,

with a 9% false positive rate. It also has a 92% accuracy when detecting an unhealthy

highspeed bearing with an 8% false positive rate. This logic can be used to describe

each of the 4 fault types, and will be the chosen metric throughout this chapter when
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Figure 3.8: Diagnostic Health Indicator Variation.

evaluating classification accuracy.

3.7.2 Analysis of Classifier Results

To understand the the observed spread in algorithm accuracy the health diagnostic

indicators can be analysed in further detail. Figure 3.8 shows a boxplot of diagnostic

values used as classifier inputs for each fault type, separated into binary health states

‘Healthy’ and ‘Unhealthy’. For each boxplot, the central mark indicates the median,

and the top and bottom edges of the box indicate the 75th and 25th percentiles respec-

tively. The whiskers extend to the most extreme data points. What is immediately

obvious is the significant overlap between health states in all fault types. Of course,

some variation is expected due to the nature of turbine operation conditions, however

there are also other factors which could contribute to the disparity. One reason could
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be intermittent problems on site during data acquisition that may negatively effect sig-

nal quality. Other key reasons could include varying operating conditions at the time

of vibration signal (Power Output and Rotor Speed) although this has been accounted

for to some extent by limiting data acquisition and using instantaneous Power Output

values as a model input. Different wind speeds and loading experienced throughout the

drivetrain at Rated Power will also contribute, however without further information on

rotor speed and wind speed to better model the operating conditions, the effects of

this cannot be considered or analysed. The final key contributing factor is likely to be

related to differences present in each wind turbines used to train, test and validate the

classifier. To study the effects of individual turbines a baseline was calculated for each

diagnostic turbine pair. The relative net amplitude was then determined by:

Abaseline =

max∑
n=1

An/nmax (3.9)

Anet = An/Abaseline (3.10)

where Abaseline is the turbine baseline diagnostic amplitude, An is the data sample

diagnostic amplitude, nmax is the number of samples for that turbine fault type pair

and Anet is the relative net amplitude for each individual data sample.

A plot of this new net amplitude, as shown previously with the absolute value is

presented in Figure 3.9. If we first of all take a look at the healthy data across all

diagnostics, it can be seen that it is now centred around zero, with amplitudes both

positive and negative as the turbine mean is subtracted in each sample. The relative

position of the unhealthy samples in comparison to the healthy ones also appears to

have increased. Of course there is still some overlap due to aforementioned reasons,

however it provides a major step forward in accuracy when transferring knowledge and

experience from one turbine to another for diagnostics.

54



Chapter 3. Wind Turbine Fault Diagnostics using machine learning to enhance
vibration and SCADA based analysis

Figure 3.9: Net Diagnostic Health Indicator Variation.

3.7.3 Results including Turbine Baseline

The net diagnostic amplitude for each sample was calculated and used with the nor-

malised power measurement to train the same classifiers for comparison. Results show

that by taking into consideration a vibration baseline for each individual turbine accu-

racy can be increased. Table 3.7 shows the percentage increase for each algorithm across

all trained models, while Figure 3.10 shows the new confusion matrices associated with

each fault type. All three algorithms had a similar performance when comparing model

accuracy, with just 3.6% difference across all classifiers and fault types averaging 95.0%.

The kNN algorithm actually performed marginally better than both decision tree and

support vector models when considering maximum accuracy, however did prove to be

the most inconsistent. Decision tree models were consistently high with a range of only

1.3% while maintaining an average of 94.75%.
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Table 3.7: Classification Results - Model Accuracy with Baseline

Fault Type Classifier Type Model Accuracy (%) Delta (%)

1 Decision Tree 94.5 +5.0

1 SVM 95.0 +3.5

1 kNN 96.0 +5.0

2 Decision Tree 94.6 +1.9

2 SVM 96.5 +1.9

2 kNN 96.5 +2.3

3 Decision Tree 94.3 +0.7

3 SVM 93.6 +2.9

3 kNN 92.9 +0.0

4 Decision Tree 95.6 +7.3

4 SVM 95.6 +8.4

4 kNN 95.6 +8.9

3.7.4 Fault Diagnostics Indicator Dependencies

So far throughout this chapter all results have considered classifier performance of each

of the four fault types individually. Real time applications of such systems however,

would involve assessing all health indicators in parallel as data is recorded through the

CMS platform. To replicate this one month of data was taken from both the highspeed

shaft sensor and generator drive-end sensor (either side of the generator and highspeed

shaft coupling) for one example of each fault type. In each case all four diagnostic

health indicators were calculated as previously and passed through the decision tree

trained algorithms. A total of 5 test cases were used, one for each fault type plus one

test case with no known faults, as described in Table 3.8, where as previously 0 is a

healthy component state and 1 is an unhealthy component state.

Ideally results would show a high percentage of correct predictions across all in-

dicators. For example when considering fault type 1, diagnostic health indicator 1

would predict an unhealthy fault class, while the remaining 3 indicators would predict

a healthy class. This would mean that each indicator is insensitive to other faults on

the drivetrain, and will not produce a high number false alarms.
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Figure 3.10: Confusion Matrix - Results Set 2.

Figure 3.11 shows results for the 5 test cases described in Table 3.8. These are shown

through a stacked bar plot, with one bar per diagnostic for each test case. Healthy

predictions are shown in yellow, while unhealthy predictions are shown in purple. Test

case 1 had no known faults, with all 4 trained classifiers having an overall accuracy

of 95.8%, and only 4 out of the 96 samples producing a false positive results. Similar

levels of accuracy were achieved in the second (highspeed bearing) and third (generator

bearing) test cases, with an overall accuracy of 95.5% and 97.15% respectively.

Fault types 3 and 4 produced varying results, which delivers key insight into how

issues with similar fault frequencies and load paths can manifest into false alarms when

looking across the drivetrain in real time. Considering only fault types 3 and 4 now,

which were imbalance and rotor coupling damage respectively, we can see that in either

case produces a high level of false positive results. This could be down to two main

reasons, the first is that the fault has been classified as a single fault type in the

operations and maintenance log, however there are several real issues being detected.
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Table 3.8: Test setup demonstrating real time application

Test Case Diagnostic True State No. Samples

No. d1 − d2 − d3 − d4 per Diagnostic

1 0-0-0-0 24

2 1-0-0-0 28

3 0-1-0-0 26

4 0-0-1-0 23

5 0-0-0-1 26

Figure 3.11: Prediction results for each diagnostic for test cases

The second explanation is due to the crossover of fault frequencies and proximity of

sensors. Imbalance and rotor coupling damage show up in the fundamental shaft speed

and for the former, some harmonics of the fundamental shaft speed. The highspeed

and generator shafts, connected through the coupling, are rotating at the same speed.

Diagnostics were calculated from the closest sensor in each case, however in reality due

to the load path of the faults, either sensor may pick up changes in vibration due to

either fault. This is the most likely explanation for the high levels of false positives

observed in either case. Taking this into consideration, algorithm performance for these

cases were still high in line with previous results for detecting some issue is present. In

order to distinguish between these similar fault types conclusively turbine inspection

may be required.
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3.8 Diagnosing Problems with SCADA Data

The use of SCADA data for anomaly detection in wind turbines has been widely re-

searched and published, with literature covering a range of machine learning and sta-

tistical based techniques to detect faults and under-performance. Similar to vibration

analysis, most of the SCADA based fault detection has focused on gearbox oil and

temperature modelling. This section will apply some of these established techniques

to wind turbine generator faults, to both showcase their effectiveness in comparison

to vibration analysis and to lay foundations for building on these techniques in later

chapters.

3.8.1 Data Pre-processing

It is important to adopt a consistent approach to data pre-processing in order to fairly

and objectively compare anomaly detection model results. The ultimate goal of pre-

processsing is to be left only with data which describes normal operating conditions of

the WT, filtering out any data in which the WT is operating outside normal operating

parameters and hence does not fit the expected relationships. First of all, data points

using basic logic were removed based on the known operating strategy and control

system of the WT. More specifically, this involved removing all data from when the

wind turbine had been shut-down during any periods of planned maintenance, when

the wind speed was below the required cut-in wind speed of that particular turbine

model (typically around 4m/s), or when the wind speed was above cut-out wind speed,

meaning that the wind turbine was actively shut down or idling.

The most challenging operating condition to account for is if a WT undergoes

periods of curtailment, which is when the generator power output is actively decreased

from what it could produce given the available incoming wind speed. This could be

done for a variety of reasons including noise reduction, reducing loads due to known

faults or lower total wind farm power output due to grid restrictions. If blade pitch

angle is known in relation to wind speed and power output this can be made a relatively

simple exercise in data filtering, however in cases such as this when blade pitch angle is
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Table 3.9: Data pre-processing summary

Criteria Description Method

1 WT shut-down Pout < 0

2 Wind speed below cut-in speed Uwind < Ucut−in

3 Wind speed above cut-out speed Uwind < Ucut−out

4 Wind speed curtailment Euclidean distance

not available it becomes a more complicated affair. Many methods have been proposed

to get around this based on multivariate outlier detection. Since all of the examples

used in this study have very little issues with curtailed periods, the analysis simply

uses the Euclidean distance from each data vector mean to establish outliers. It should

be noted that this part of the pre-processing was only done on the training dataset,

therefore outliers due to curtailment could still be detected as false flags while testing

the anomaly detection model with new data.

Finally, due to confidentially agreements between data owners and researchers, all

power and torque measurements throughout this report have been normalised. A sum-

mary of the pre-processing criteria and methods used can be found in Table 3.9, while

an example of a power curve before and after pre-processing can be found in Figure

3.12.

3.8.2 A Note on Trending

Trending offers a simple approach to monitor SCADA parameters and their relation-

ships over time. WT’s by design operate under constantly changing conditions, react-

ing to short-term stochastic load cycles caused by varying wind speed. As discussed

throughout the literature review, this means that many relationships monitored through

the SCADA system can be considered highly non linear, changing with operating con-

ditions and control strategies. Looking at longer time frames WT’s also react to diurnal

and seasonal temperature cycles, which is especially important when considering tem-

perature distributions throughout the nacelle. Developing simple trends under such

variable conditions is therefore extremely difficult, and just because there is a long or

short term change in a single parameter or relationship does not necessarily mean a
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Figure 3.12: Data cleaning

fault exists within the system. Trending methods have however been proven to detect

long term degradation of drive-train components and also allow for a baseline to be

established in which to compare other more complex methodologies. Trending for con-

dition monitoring purposes involves developing a relationship between parameters over

a training period which can describe the normal operating of a particular component,

for example generator bearing temperature and power output. This relationship can

then be monitored and changes in the relationship evaluated through time. Thresholds

can then be set to establish how far the trend can deviate from the original before it

is considered anomalous. Although a useful starting point, trending results will not be

presented in this chapter due to the amount of literature already existing in this area,

with a comprehensive review found in [6].

3.9 Normal Behaviour Model

As discussed in the literature review, NBM’s have become a focal point in both aca-

demic research and industry with regards to SCADA based wind turbine fault detection.

As alluded to in previous sub section, simple trending is typically not suitable to de-
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tect faults within the generator and highspeed assembly as any relationships between

parameters are multivariate and highly non-linear. To create higher dimensional rela-

tionships requires more complex modelling techniques, which can be achieved through

a range of regressive based machine learning models.

3.9.1 Model Types

As highlighted in the literature review, regressive based NBM’s can fundamentally be

either parametric or non-parametric based. The type of NBM considered throughout

this section is the Random Forest model, a non-parametric model geared for handling

large datasets of high dimensional nonlinear relationships.

3.9.2 Modelling Process

Although different machine learning algorithms could be utilised, the overall model

framework remained the same, as shown in Figure 3.13. Historical SCADA data which

can adequately describe normal operating conditions without any faults is first required

to train the NBM. The underlying principle of this approach is that once a fault is

introduced in to the system, the temperature diagnostic which describes a particular

fault or component health, will significantly deviate from expected behaviour. This

deviation will manifest when analysing the model error.

The NBM works by empirically modelling the diagnostic based on a set of input

parameters. The process is summarised in more detail in Figure 3.14, where u(t)

are the input variables at timestep t, Ĝ(t) represents the data-driven NBM to predict

target variable, ŷ(t) while G(t) constitutes the process of obtaining the measured target

variable y(t) through the required in field sensor. Finally, e(t) represents the error

between the predicted and measured value.

The threshold set to distinguish normal behaviour from an anomaly is determined

from the training phase, in which statistical analysis can be used to calculate upper

and lower boundaries.
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Figure 3.13: NBM anomaly detection process.

3.9.3 Feature Selection

Feature selection is an important aspect to consider when building an anomaly de-

tection or normal behaviour model, especially when working with high dimensional

datasets such as SCADA. A number of techniques were used to assess feature im-

portance throughout this thesis beyond expert system operational knowledge, which

in itself is a very useful approach. Other techniques included univariate analysis, for

which we examine each feature individually to determine the strength of the relationship

with the response variable. This can be useful to disregard irrelevant features which

are noisy or uncorrelated, however the metrics used are typically quite restricting and

not applicable for ranking high dimensional non-linear relationships. For example, one

common metric to understand the relationship is the Pearson correlation coefficient,

which measures the linear correlation between two variables. This could produce a low

score based on linear correlation but is actually very correlated though a higher order

non-linear relationship.
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Figure 3.14: Model based monitoring based on NBM. Adapted from [5], [6]

To navigate this issue another useful way to rank features is through a model based

approach. For ease of application a tree based model was most often utilised throughout

this thesis and involves training a random forest model and assessing feature importance

based on the average decrease in impurity across all decision trees in the forest. As this

is automatically computed during the training phase, it offers a convenient approach

to assessing feature importance for multiple reasons. Crucially, as these models are

logic based, they do not require input normalisation and can deal with non-linear

relationships. One drawback can be overfitting therefore the depth of the tree should

be limited and cross-validation should be applied to ensure generalisation.

3.9.4 Training and Validation

As previously discussed, validation of all models was achieved through cross-validation.

The number of folds used was dependant on the data used for training. Figure 3.15

shows the breakdown of training, validation and testing with regards to the data leading

up to component replacement. The data is initially divided into a training and testing

dataset. The initial testing dataset is used for testing how the trained algorithm behaves

detecting alarms leading up to component replacement. The initial training dataset is

used to validate and test the algorithm inputs and tune hyperparameters. As clarified in

Figure 3.15, this training dataset is further reduced down into training and test subsets

for performing cross-validation. In this example 10-fold cross-validation is utilised with

75% of initial training data.
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Figure 3.15: Breakdown of dataset for model testing and validation.

3.10 Case Study - Generator Bearing Fault Detection

This case study will present results from 4 generator bearing replacements, each utilising

the same temperature NBM to detect anomalous behaviour and generate alarms. Each

case study will present results utilising two different ratios to initially split the data

into training to testing sets. Data utilised for each turbine can be found in Table

3.10, which describes the relationship and breakdown of raw data to data used for

testing and training. Each raw data sample represents all SCADA channels at an

individual timestamp, while cleaned data represented data available after pre-processing

as described in Section 3.8.1.

3.10.1 Data Description, Visualisation and Feature Analysis

One year of SCADA data was gathered for each turbine prior to generator bearing

replacement. A full description of the available channels can be found in Table 3.11,

which included 10 minute measurements of power output, rotor and generator speeds,

wind speed, ambient temperature and in the nacelle, as well as temperatures of key

generator components including the bearing, slip ring and windings for phases 1, 2 and

3.

In order to make informed decisions surrounding feature selection SCADA variables

can first be visualised and correlations established. Figure 3.16 shows these relation-
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Table 3.10: Analysis cases

Case Wind Train:Test Raw Cleaned Data

Study Turbine ratio data data (Train:Test)

1 1 1:1 52704 44609 22304:22304

2 1 1:2 52704 44609 14870:29738

3 2 1:1 40096 23824 11192:11192

4 2 1:2 40096 23824 7941:15882

5 3 1:1 52233 36248 18123:18124

6 3 1:2 52233 36248 12083:24164

7 4 1:1 52630 42550 21274:21274

8 4 1:2 52630 42550 14183:28366

ships between variables. Figure 3.16 (a) shows the generator bearing temperature in

relation to operational parameters, which includes the power output, wind speed, rotor

speed and generator speed. Figure 3.16 (b) shows the temperature distributions asso-

ciated with the generator and surroundings, which includes bearings, slip ring, phase

windings (A, B and C) components, along with average nacelle and ambient tempera-

ture. Note that the data shown in both of the figures described above represents the

raw data before cleaning and pre-processing. A scatter plot is shown for each pair

of SCADA variables along with a histogram describing the distribution divided into

10 equal bins. These plots highlight the variability of generator bearing temperature

over each of the operational parameters. Looking more closely at the correlation, as

previously stated we can calculate the linear dependence between each pair of features

using the Pearson correlation coefficient, r:

r =

∑n
i=1[(x

i − µx)(xi − µx)]√∑n
i=1(x

i − µx)2
√∑n

i=1(y
i − µy)2

=
σxy
σxσy

(3.11)

where µ denotes the mean of the corresponding variable, σx and σy are the standard

deviations of feature x and y, while σxy is the covariance between features. The Pearson

correlation can be calculated as the covariance between two features divided by the

product of their standard deviation as shown above. Figure 3.17 shows the Pearson
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Table 3.11: Available SCADA channels

Channel No. Feature Description

1 Pout Average power output

2 Urotor Average rotor speed

3 Ugen Average generator speed

4 Uwind Average wind speed

5 Tambient Average ambient temperature

6 Tnacelle Average nacelle temperature

7 Tslipring Average generator slip ring temperature

8 Tphase1 Average generator phase 1 temperature

9 Tphase2 Average generator phase 2 temperature

10 Tphase3 Average generator phase 3 temperature

11 Tbearing Average bearing temperature over

correlation coefficient for each pair of features described in Table 3.11. The r value has

a range of between -1 and 1, with two feature showing total positive correlation if r=1

and true negative correlation when r=-1. Two features will be completely uncorrelated

if r=0.

Next to the correlation heatmap in Figure 3.17 is a barplot highlighting feature

importance as calculated by the random forest regressive model, as described in section

3.9.3. Pairs of features for which r=1/-1 (such as between rotor speed and generator

speed) were removed from this analysis as only one of the pair is required to describe

the relationship, with the other being redundant. Analysis shows that generator speed

is the most important feature to predict generator bearing temperature, which is fol-

lowed by wind speed and power output. Other temperatures such as generator phase

temperature and slip ring temperature have less impact on the model prediction. These

two contrasting plots highlight the difficulties when assessing the correlation between

SCADA variables. Feature analysis requires careful consideration to capture complex

relationships between variables that cannot be represented by r values alone.
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(a) Operational parameter relationships & distribution

(b) Temperature relationships & distribution

Figure 3.16: Visualisation of SCADA relationships to target variable.

3.10.2 Model Setup Detail

The model used for this case study was a random forest regressive model, with the model

predictors and response features highlighted in Table 3.12 for clarity. Features were

chosen based on the analysis described in the previous section. Model hyperparameters

were determined through model testing and validation processes. Key hyperparameter

values included; max tree depth of 4, number of tree estimators of 10, minimum samples
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Figure 3.17: Correlation heatmap (left) and Feature Importance (right) of selected
SCADA variables.

Table 3.12: SCADA features used in model

Feature No. Feature Model Training

1 Pout Predictor

2 Ugen Predictor

3 Uwind Predictor

4 Tnacelle Predictor

5 Tslipring Predictor

6 Tphase1 Predictor

7 Tbearing Response

per split of 2 with the quality of split measured by the mean squared error (MSE).

3.10.3 Model Testing & Validation

Cross validation scores across all 8 case studies (described in Table 3.10) can be found

in Figure 3.18, for which the same pre-processing and features engineering pipeline was

applied. In each case the model was setup as detailed in the previous section, with

6 features to predict generator bearing temperature. For each case study the average

coefficient of determination (R-squared score) of the 10-fold cross validation is plotted

along with the maximum and minimum score. The R-squared score is closely related

to the variance and MSE and can be described as the the proportion of the variance in
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Figure 3.18: Cross validation error.

the dependent variable that is predictable from the independent variable(s):

MSE =
1

N
(yi − xi)2 (3.12)

R2 =
SSreg
SStot

(3.13)

where SStot refers to the total sum of squares (proportional to the variance) and

SSreg refers to the sum of squares of residuals. An ideal fit would give an r-squared score

of 1. There is a clear disparity in accuracy between wind turbine fault cases, ranging

from close to 0.88 for wind turbine 1 to 0.72 for wind turbine 4. This showcases the

variability of predictability of bearing temperature between turbines highlighting the

difficulty in producing one technique or model that is applicable to SCADA data across

a site.

Now considering different train:test ratios we can analyse the effect of the number of

training samples has on accuracy across each turbine. The key observation is that the

mean r-squared score does not change significantly in each case, however the variation
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Figure 3.19: Model validation.

is consistently larger when a smaller training set is used. This can be explored further

through a training curve, shown in Figure 3.19 (c) for case study 1, which highlights the

problem with overfitting when the number of training samples is reduced. This pattern

was consistent when looking at all case studies. Figure 3.19 plot (a) and (b) show

validation curves of key model hyperparameters used for training. These curves formed

the bases of tuning and choosing the values described in the previous section, and show

the importance, particularly of tree depth, of correctly validating and optimising the

chosen model.

Finally, Figure 3.19 plot (d) shows the error residuals of the training period, which

are not only used to assess model accuracy, but to set alarm limits that can detect

anomalous behaviour. Here the upper and lower limits are set to the mean +/- two

times the standard deviation.
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3.10.4 Results

Results will be presented for each case study considering the number of alarms raised

each month based on a consistent set of rules. The upper alarm threshold was deter-

mined by the standard deviation of the training residuals as described above. As we

move through time, to limit false positives we don’t want an alarm to be raised at

every point above the threshold due to expected variability in the data. It is consistent

anomalous behaviour that is required to be detected. To achieve this there are two

main approaches that will be used throughout this work when dealing with SCADA

data; rolling average and hysteresis. The rolling average simply takes the rolling aver-

age of the data, which can be weighted towards most recent data, based on a chosen

set number of points. Alternatively, a hysteresis will require a set number of points

to be continuously above a threshold. For example, if the applied hysteresis is 5 and

3 points in row cross the threshold followed by one below, the hysteresis value would

reset to zero.

The results presented in Figure 3.20 have a hysteresis of 12 (two hours) applied, with

an alarm threshold calculated as the mean plus two standard deviations. Firstly, results

show a clear increase in the number of alarms for each case study, which is particularly

true for the final 2-3 months before replacement. Results also show a similar pattern of

alarms for each of the train:test ratios in all cases, suggesting that 3 months of SCADA

data, for these test fault cases is seemingly enough. This reiterates what is observed

by the learning curve shown in Figure 3.19 (c), which shows a levelling off of accuracy

after approximately 6000 data samples. This gives confidence that the model is picking

up true anomalies rather than a problem associated with overfitting.

3.11 Conclusions & Discussion

This chapter has shown real world applications of how classification algorithms can be

used to detect and classify fault types across the generator and highspeed assembly. To

achieve this, the most effective vibration analysis techniques have been demonstrated

to create effective diagnostic health indicators for a particular fault by extracting am-

72



Chapter 3. Wind Turbine Fault Diagnostics using machine learning to enhance
vibration and SCADA based analysis

Figure 3.20: Monthly alarms.

plitudes at key frequencies. These diagnostics were then fed through a classification

algorithm, of which several were compared and tested, to detect and classify the fault.

Results show that by using a binary classification of ‘healthy’ and ‘unhealthy’ com-

ponents, several different faults could be classified with an average accuracy of over 95%.

This level of accuracy is achieved by using data from the closest sensor when consider-

ing the load path of a particular fault type in isolation. When comparing performance

between the three chosen algorithms (Decision Tree, kNN and SVM), decision trees

were the most consistent across all fault types, with difference in accuracy of only 1.3%

while maintaining an average of 94.75%. When considering multiple health indicators

across the drivetrain simultaneously, this chapter has also shown that interdependen-

cies between fault frequencies and sensors do exist. When this occurs it becomes more

difficult to determine the fault type and location conclusively, however still provides

evidence of a fault within a particular assembly, which can then be further investigated

through inspection or additional analysis. This chapter has provided evidence of inter-

dependencies across generator and coupling issues when making a diagnosis, however,

bearing faults across the highspeed and generator could be diagnosed independently.

This is explained due to different bearing types having distinct fault frequencies pro-

ducing accurate health indicators. For cases in which bearing types or fault frequencies
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were a closer match, it would be harder to isolate the fault location producing higher

levels of dependency between diagnostics. Finally with regards to vibration diagnostics,

this chapter has helped shine some light on some of the difficulties when training an

algorithm for fault detection across similar turbines of different loading and vibration

levels. A simple turbine baselining method has been described to help negate these

effects, which has been shown to increase algorithm accuracy by up to 8.9%.

In terms of SCADA temperature analysis of generator bearings, it has been shown

that normal behaviour modelling can be a powerful technique when it comes to detect-

ing changes in operating behaviour, which has already been widely shown in literature

across other components of the drivetrain. Due to the complex nature of the relation-

ship between operating conditions, loading and temperatures, more advanced machine

learning techniques that can handle these non-linear high dimensional relationships are

more suitable. Results show that Random Forest models can model these relation-

ships, with generator rotor speed being by far the most important variable to predict

and model generator bearing temperature. All four fault cases showed a significant

increase in alarms 2-3 months prior to component replacement, at which point the

turbine was shut down. It is not known if the turbine in question was shut down for

scheduled repair, breached an upper warning limit initiating an unplanned shut down

or due to component failure.

In a recent paper published by McKinnon, Turnbull et.al, [20], similar case stud-

ies were used to study the effects of time history on model accuracy in greater detail.

These findings are worth discussing in the context of the results presented in this chap-

ter. In [20] the effects of the training time period on model performance are explored

by considering models trained with both 12 and 6 months of data, with 12 months of

training providing the best performance over the two case studies presented. These find-

ings differ from results presented in this chapter, where a sensitivity study on training

samples showed limited accuracy model increase beyond 6000 training samples, which

equates to approximately 3 months of SCADA data. This may indicate a limiting fac-

tor on autoregressive models with exogenous inputs (ARX), for which it was proven

provide more accurate modelling approach when compared to full signal reconstruction
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(FSRC) models, however this may be at the cost of requiring more training data. It also

suggests a variability in required training periods for turbines in different geographical

conditions where seasonality effects may be stronger. Further work is required to un-

derstand the true underlying reason for this observed variation before any attempt to

standardise an approach can be made. For now each optimised trained model remains

case specific.

3.12 Future Work

3.12.1 Vibration Diagnostics

Future work could be completed to further investigate dependencies of diagnostics

across multiple drivetrain components and assemblies, an area which could help de-

crease uncertainty of diagnostics. This would reduce time and effort required to in-

spect and confirm any diagnosis before potential replacements, particularly useful in

an offshore environment when technician time up a turbine is at a premium.

Another key area of improvement would be related to turbine environmental loading

and scaling. This chapter has shown that, even at similar turbine operating conditions,

vibration differs between identical turbine types. In order to train accurate classifiers

to detect faults across different turbines, or indeed different operating conditions over

different sites, more information may be required to assist with classification, increasing

model dimensionality, which in turn requires more thoughtful feature engineering and

model selection.

3.12.2 SCADA Temperature Diagnostics

Normal behaviour modelling for specific components is now well understood and has

been shown to detect a range of faults by modelling key operational attributes for each

turbine. Optimising turbine level models is a difficult task and requires understanding

of individual turbine behaviour, loading, expected noise and effects surrounding season-

ality. There is still a lack of understanding to what extent models can be transferred

between components and turbines of the same type on the same wind farm, as well
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as how well models and thresholds scale with turbine size. Although this chapter has

helped shine some light on these issues for a particular turbine model and fault mode,

access to better quality data across different models and sites (with varying condi-

tions) is required to make breakthroughs with regards to a sustainable and automated

approach.

To what extent any alarms produced by NBM’s can be used to actually diagnose

an unknown issue for a turbine in operation is also up for debate. SCADA analysis

is more likely to be useful in practice in an attempt to lower false alarm rates and

give more diagnostic certainty in conjunction with vibration analysis, which will be

discussed throughout the next chapter.

76



Chapter 4

Combining SCADA and

Vibration Data into a Single

Anomaly Detection Model

4.1 Chapter Contribution

As alluded to in previous chapters, operators can now rely on multiple sources of

data to help effectively monitor wind turbine condition, to make informed operational

decisions which can minimise downtime, increasing availability and profitability of any

given site. Two such approaches are SCADA temperature and vibration monitoring,

which have both been discussed in detail throughout Chapter 3, and are typically

performed in isolation and compared over time for both fault diagnostics and in some

cases prognostics. This requires analysis and interpretation of two individual models,

perhaps even by two separate specialist engineering teams, looking at SCADA data

and vibration data respectively. Data sources may not be stored in the same location,

or indeed analysed by the same engineer, team or even company for a particular site

depending on the asset management and O&M contracts in place.

That being said, as the wind industry continues to make strides towards improved

digitalisation, new sites are being installed with greater importance placed on good data

management to provide a platform for analysis. This allows different data sources to

77



Chapter 4. Combining SCADA and Vibration Data into a Single Anomaly Detection
Model

be more easily accessed at an improved cost. Combining data sources where applicable

would allow for one single governing component health status to be established which

can detect deviations in both vibration and temperature.

This chapter aims to answer the following research question:

“What are the benefits of having both SCADA and vibration data, and can they

effectively be combined into a single anomaly detection model for fault diagnostics?”

The contributions of this chapter are as follows:

1. Highlight the key difficulties, challenges and opportunities of combining data

sources with respect to WT condition monitoring

2. Provide a framework in which to combine different data sources into a single

anomaly detection model

3. Demonstrate an automated approach to effectively establish a single decision

boundary to detect an anomaly based on multiple normal behaviour models

4. Give insight into the benefits and drawbacks of combining data sources and anal-

ysis techniques.

4.2 Understanding the Problem

Before describing the modelling framework it is first important to understand the key

problems and motivations associated with combining multiple models and data sources

into a single anomaly detection model. While this chapter will focus on vibration and

temperature models, it is equally applicable to other condition monitoring techniques

involving oil particle counting (OPC) or current signature analysis. The key issue is a

very simple one on the surface, and surrounds the fact that data resolution and sample

rates of such systems are inherently different.

Considering temperature and vibration again, temperature data will likely come

from the WT SCADA system. This typically consists of 10 minute averaged data,
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Figure 4.1: Example data acquisition rate for different data sources.

with potentially some limited information about the variation of temperature within

that 10 minute period. The frequency of acquisition will not change unless there is a

problem with the SCADA system preventing data being recorded. The vibration data

on the other hand will be acquired at a much higher frequency of up to approximately

25kHz for a sample time of over 25s depending on the component being monitored.

Slower rotating components will likely have longer sample times in order to capture

the full shaft rotation for frequency domain analysis. Sample rates may also change

depending on turbine operating state in order to maximise efficiency of data storage.

Furthermore, companies that offer vibration data acquisition tend to implement decay

rates to reduce the volume of older data being stored in the system. This means that

if looking at examples of failure in the past, unless careful with data management

there may be less frequent vibration samples as you go further back in time. A typical

example of acquisition rates of both data streams is demonstrated using example (a)

of Figure 4.1.
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4.2.1 Up-sampling vs Down-sampling

The obvious solution would be to either up-sample or down-sample the raw data in order

to align each data sample rate with the other. There is a variety of issues associated

with either case which is worth explaining in detail.

First of all let us consider up-sampling vibration data using example (b) shown

in Figure 4.1. This poses a particular challenge due to the variable nature of wind

turbine loading. Relationships between operating conditions, loading throughout the

drivetrain and hence, vibration are also highly nonlinear. SCADA data is captured

every 10 minutes regardless of operating condition, or in other words, over the full

range of the power curve. Taking a broad view of up-sampling, relationships would

have to be understood between the vibration and temperature diagnostic for all values

you would want to predict over. This is not a trivial task in itself, however it is

further complicated by fluctuations within the 10 minute period you are up-sampling

to. For example, an instantaneous value of power at the time of vibration measurement

may be known, which can be mapped to a 10 minute mean temperature measurement

encompassing the same time period as when the vibration sample was taken. Wind

speed can change significantly within the 10 minute time period leading to differences

between the SCADA based mean power and vibration based instantaneous power.

Additionally, there will always be some level of uncertainty with regards to timestamps

of different systems not being synced accurately. In other words, we cannot say with

absolute certainty we are comparing like for like when up-sampling data, which can

lead to model uncertainty and prediction inaccuracy.

Down-sampling data offers similar challenges with regards to the differences between

operating states within the 10 minute averaged SCADA sample and 10 second vibration

sample taken within this larger time window. It also has the additional drawback of

losing information for the diagnostic model as you remove data in line with example (c)

shown in Figure 4.1. That being said, it does put a stop to any additional uncertainty

being introduced to modelling by up-sampling. The choice will ultimately depend on

the dataset in question, and may involve a hybrid of the two approaches described

above.
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Figure 4.2: Example data showing variation within a series of 10 minute periods.

4.2.2 Expected Variation

To provide insight into the extent of the problem it is important to first understand

the expected variation over time. Figure 4.2 shows variations in wind speed, power

output and generator rotor speed over a typical 12 hour period over which we would

want to build an anomaly detection model. The plot shows the 10 minute average value

for each operational parameter along with the maximum and minimum recorded value

during each 10 minute period. Data has been normalised to the maximum value of

each parameter (excluding wind speed) experienced over the 12 hour window.

This plot shows evidence of two factors described above: first of all it shows sub-

stantial variation within the 10 minute averaged data, with variation of up to approxi-

mately 90% when considering changes in both wind speed and associated power output.
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Figure 4.3: Framework for combining data streams.

It also highlights the problems which could occur if timestamps of acquisition systems

are not synced, with an offset of just 1 hour producing over 20% difference in operating

parameter, a value which could likely increase over a different 12 hour period.

4.3 Modelling Framework

The previous section discussed some of the limitations surrounding up-sampling and

down-sampling raw data, highlighting why it is important to have a robust approach

to fuse data sets. With that in mind, to protect as much information as possible in

the combined model, individual normal behaviour models were first created and later

combined when assessing error. Figure 4.3 provides a step by step diagram of the

framework used for creating a single anomaly detection model from multiple sources.

The overall aim of this is to create a single anomaly detection model for a particular

component, which encompasses more than one data source. To make this possible,

each data source needs to add value to the model when detecting damage within the

component through anomalous behaviour. For this reason each data source must be

able to sustain its own diagnostic health indicator in isolation.

A normal behaviour model is first developed for each diagnostic indicator to model
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expected behaviour using that particular data source. An example of this can be seen

in Figure 4.3 as NBM 1 to NBM X, where X is the maximum practical number of

models for a particular component depending on the monitoring systems. The specific

inputs and error used for making and assessing predictions will be discussed in detail

when describing each case study. The important point to note at this stage is that each

individual NBM has its own unique inputs, predictions and associated error with dif-

ferent data sample rates. These trained models are saved and used to make predictions

on new data using the same input features.

Error metrics are then calculated over a set time resolution to consider all trained

NBM’s. This new dataset will now contain error metrics at the same timestamp re-

gardless of original data source to use in the anomaly detection model. This anomaly

detection element is achieved by applying a single class Support Vector Machine (SVM)

classifier.

4.3.1 Normal Behaviour Model

As discussed in the literature review and previous chapter, the NBM works by empiri-

cally modelling the diagnostic health indicator value based on a range of input param-

eters unique to each data source. The process is summarised in Figure 4.4, where u(ti)

are the input variables at timestep t, Ĝ(ti) represents the data-driven NBM to predict

target variable, ŷ(ti) while G(ti) constitutes the process of obtaining the measured tar-

get variable y(ti) through the required in field sensor. Finally, e(ti) represents the error

between the predicted and measured value. Error metrics, e(tc) can then be calculated

at the chosen timestep for the combined model.

There are multiple regressive base machine learning algorithms which could be

chosen to create the NBM’s, all of which are discussed extensively in the literature

review. Throughout this chapter both Random Forest and Neural Networks are utilised.

4.3.2 Combined Anomaly Detection Classifier

Anomaly detection is achieved using a single class SVM classifier to assess error distri-

bution by creating a complex decision boundary based on multiple error statistics over
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Figure 4.4: NBM diagram

a given time period. This means that RMSE is no longer used in isolation, in theory

allowing any observed change in error distribution to be detected which lies outside the

decision boundary. It also provides a useful metric when assessing the anomaly as to

how far outside the boundary a point lies, which can be use to infer how anomalous

the data sample is.

4.4 Assessing Error through Classification

To assess the robustness of the outlined approach the methodology was first of all

tested on SCADA data only. This allows a direct comparison to be made with simpler

techniques to showcase and prove the broader concept prior to combining data streams.

4.4.1 Case Study Description

The first failure mode used for this study is associated with the high speed shaft (HSS) of

the gearbox. The initial point of failure was the HSS, however on inspection noticeable

damage was also observed to the gears, with the gearbox also needing to be replaced.

Root cause analysis suggested that the failure occurred due to misalignment causing out

of plane loads both on the shaft and through the gearbox. For confidentiality reasons

the exact type and model cannot be explicitly stated, however the WT in question has

a doubly fed induction generator (DFIG) and is of between 500 kW and 1 MW at rated

power. It has a pitch regulated variable speed control strategy, and had been operated

onshore for over 15 years prior to failure.

Once the failure date was determined from the O&M log, 10 minute averaged
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Figure 4.5: Methodology for Case Study 1

SCADA data for 18 months leading up to failure was collected. The WT in ques-

tion had no CM systems installed therefore the fault type could not be analysed or

confirmed through spectral analysis of vibration.

4.4.2 Methodology

The adapted methodology for this case study is described in Figure 4.5. The first step in

the process is to develop the NBM using a neural network (see Section 4.4.4 for model

details), which takes a variety of input features to predict gearbox oil temperature.

Input features were chosen through feature analysis (as described in earlier sections)

which could adequately describe WT performance, as well as relevant temperatures

throughout the nacelle and components related to the gearbox and generator. Once

the error had been minimised through the training and validation process (as described

in Section 4.4.5), the error between model prediction and measured temperature is then

calculated for each time step.

The second stage of the process is to evaluate the error output and determine a

threshold which can adequately distinguish between normal and anomalous behaviour.

To achieve this, error metrics were first calculated to describe the error distribution over

a chosen time period, which for this case study daily metrics were calculated. For the
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Table 4.1: Case study 1 - Summary of data

Model Raw data Coverage Averaged Cleaned

Phase (10 min) (%) data data

Model development 48096 92 8016 6974

Training (70%) - - - 4882

Validation (15%) - - - 1046

Testing (15%) - - - 1046

Model implementation 26634 94 4439 3695

same training dataset used for the NBM, a single class SVM classifier was trained using

the error metrics to develop a decision boundary, as described in Section 4.3. Whilst

other classifiers could have been chosen, an SVM model was deemed well suited to this

specific application, mainly due to the models inherit ability to establish a continuous,

complex decision boundary in which a spatial representation can easily be visualised.

Once both models have been trained and validated they could then be used on new

data points to detect anomalies. This is done by using the NBM to first predict tem-

perature based on the same inputs, assessing the error between predicted and measured

value, before finally feeding those error metrics into the classifier to determine if the

new data point was normal or anomalous. The purpose of presenting the first case

study is to prove the methodology with a single data source, showcasing how it can

outperform simpler approaches to evaluate NBM error such as using RMSE as a single

metric.

4.4.3 Summary of Data

A summary of the data used in this case study can be found in Table 4.1, which

distinguishes the amount of raw data available in comparison to the data available for

each development phase after cleaning. Data coverage is also stated, which specifies the

percentage of data available for modelling compared to how much data is theoretically

possible if the acquisition system recorded 100% of data without issue.
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Table 4.2: Case study 1 - model features

Feature No. Feature Description Layer

1 Pout Power output Input layer

2 Uwind Wind speed Input layer

3 Uhss High speed shaft speed Input layer

4 Tnac Nacelle temperature Input layer

5 Tgen Generator phase temperature Input layer

6 Tbear Bearing temperature Input layer

7 Tgb Gearbox oil temperature Output layer

4.4.4 NBM Specification

A two-layer feed-forward neural network was utilised for the NBM which had an input

layer consisting of 6 WT operational parameters to predict a single output (Feature

No. 7), as described in Table 4.2. Model input features include parameters to describe

the operating conditions (Features No. 1-3) and temperature distribution throughout

the nacelle (Features No. 4-6). As previously stated, the model output parameter used

for anomaly detection was the gearbox oil temperature. Additional model parameters

for the neural network were chosen to reflect the number of input and output features

required [94] which in this case utilised a single hidden layer with 7 neurons. This

provided a balance between the accuracy of prediction and computational time for

training, and although this wasn’t a restricting factor due to the relatively small dataset,

there was no need to go beyond 7 neurons for this application due to the accuracy

achieved. Figure 4.6 shows a diagram of a two-layer feed-forward neural network used

for this case study.

Of the 18 months of SCADA data that was gathered prior to failure, the initial 12

months (which we know had no serious faults through analysing the O&M logs) was

used for training and validating the NBM, with the final 6 months used to test and track

error leading up to failure. From the initial data set consisting of continuous 10 minute

mean values the data was cleaned to remove any periods of curtailment or downtime

due to scheduled maintenance. The process behind this has been discussed throughout
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Figure 4.6: Schematic of two-layer feed forward neural network.

the previous chapter. The hourly averages were then calculated to remove some of the

higher resolution fluctuations which can decrease model accuracy, allowing the model

to be more tailored towards longer term behavioural trends. Once this process had

been completed, this left a total of 6974 samples for training and validating the model,

with an additional 3695 samples left for testing and tracking the error prior to failure.

4.4.5 NBM Training and Validation

Out of the 3695 samples in the 12 months training data set, 70% was used for training

and 15% for validation, with the remaining 15% used to test the model independently

as described in Table 4.1. From experience this provides a good balance between the

number of samples required for training, validating and testing the model based on the

volume of data used in this study. During the training phase, the training and validation

samples are chosen at random and then fed into the neural network, which is adjusted

in line with the error between predicted and known values of the target variable. It

is then validated with the validation samples and mean square error is calculated for

the new data points. This process is repeated until the mean square error no longer

increases for the validation data set, indicating that the neural network generalizes well

and is no longer over-fitting to the training set. Once this has been achieved the model

is then independently tested with the testing dataset (the 15% of data leftover after

randomly selecting training and validation data) to ensure generalisation.
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Figure 4.7: Distribution of error from 12 month training period

To get a sense of the error distribution for this particular model, a histogram can

be observed in Figure 4.7, showing the model error over the 12 month training pe-

riod, broken down into the phases described above. The mean squared error over the

training, validation and testing phases were 2.364, 2.254 and 3.075 respectively, with

correlation coefficient (r) values of 0.859, 0.859 and 0.832. With r-values deviating ap-

proximately 3.2% between data sets, this model generalises relatively well, which sets

a good foundation when trying to detect anomalies leading up to failure.

4.4.6 Single Class SVM Model

Once a baseline expected error has been established from the training period there

are several ways in which to then compare residuals moving forward. Typically this

is achieved by comparing the daily or weekly RMSE with the RMSE of the training

period to give an indication of whether the temperature (or other chosen parameter)

is acting as predicted. This approach however does come with limitations, stemming

mainly from the fact that only one parameter is used to describe an error which,

over any particular time period is multi-faceted and has a unique error distribution

associated with it. More than one parameter can be looked at in isolation, or indeed

the entire distribution could be described and tracked in time, however this introduces

a different problem; how to robustly set thresholds which will indicate the fault. Using
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Table 4.3: SVM error model feature

Feature No. Feature Description

1 erms RMSE

2 emin Min error

3 emax Max error

4 estd Standard deviation of error distribution

5 ekurtosis Kurtosis of error distribution

a single class support vector machine aims to address these limitations, first of all by

considering multiple parameters which can effectively describe the distribution of error

over a chosen time period, and secondly to set more complex boundaries which can

more precisely describe the threshold to indicate a fault.

A single class SVM model was developed to evaluate the error distribution each day

based on the NBM output. For each daily error distribution the parameters stated in

Table 4.3 were calculated and used as inputs to the SVM model.

To begin with let us consider a single class SVM model with only 2 features as an

example. Using RMSE and maximum error, the model can be trained with the cleaned

12 month data set, giving a total of 290 samples. Figure 4.8 shows each observation

in the trained model, with support vectors (which influence the decision boundaries)

circled in red. On the right hand side of Figure 4.8 there is a scale which corresponds to

the contour line boundaries indicating an anomaly. In the model shown, any score below

zero would constitute an outlier or anomaly, which lies outside the decision boundary.

The more negative a score the further away from the central cluster the observation

is. This process was then repeated with all parameters which describe the daily error

distribution as shown in Table 4.3. Although these models could not be visualised in

the same manner, the scoring system remained the same, and could be used to detect

outliers in new observations leading up to failure. The model was trained to recognise

1% of data as anomalies in the training period, therefore a similar percentile would be

expected moving forward if no fault was present in the system.
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Figure 4.8: Trained SVM model with only 2 features; 1) RMSE and 2) Max error

4.4.7 Anomaly Detection Results

Using the models described in Sections 4.4.5 and 4.4.6 the error over the 6 months

leading up to failure was evaluated. For every 1-hour time step the error output was

determined and the daily statistics shown in Table 4.3 calculated. If features fed into the

single class SVM model were considered part of the same class (of normal behaviour),

it resulted in a positive score and was assigned an anomaly score of zero. If the model

output score was below zero, this was considered an outlier. In order to create a

heatmap, this score was then inverted to give a positive anomaly score which provides

an indication of fault severity, or distance from the determined frontier which defined

the class.

Figure 4.9 shows a heatmap of the daily anomaly score leading up to failure. A

total of 154 days are shown, which accounts for all 24 hour periods in each month

while the turbine was operating under normal operating conditions. If the WT was

curtailed, shut down due to planned maintenance activities or the wind was below

cut in speed or above cut out speed for an entire 24 hours, data was removed during

the cleaning process described in the previous sections. If during the 24 hour period

the WT partially experienced normal operating conditions, this data was still used to

calculate the daily error metrics.

Table 4.4 gives a breakdown of anomalies detected per month along with associated
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Table 4.4: Anomaly rate using single class SVM apprach.

Month Number of Percentage of Turbine active days per month

anomalies anomalies (Days of month in data)

May 0 0% 22 (22)

June 2 8% 25 (30)

July 1 3% 30 (31)

August 4 13% 31 (31)

September 7 24% 29 (30)

October 6 25% 30 (31)

November 1 14% 7 (7)
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Figure 4.9: Heatmap of anomalies leading up to failure

percentages taking into consideration the number of active days. In general, results

show that anomalies increase towards failure, with a maximum of 8% per month in the

4-6 months before failure, increasing to 25% in the 2 months directly before failure. In

terms of detection time, the first meaningful and consistent anomalies are observed in

August, giving approximately 3 months lead time. A slight decrease in anomalies are

reported in November just before failure, however this could be down to the signifi-

cantly less active days (1 week) in the month to assess and detect anomalous behaviour

before failure occurred. There could also be a physical explanation to fluctuations in

anomalies, with anomaly rate correlating with time of damage progressing within the

highspeed assembly. There is no way of knowing with confidence without corresponding

inspections on site.

4.4.8 Comparison of Results with Other Methods

It is important to compare results obtained using this methodology with standard

approaches as found in literature such as [6, 95, 96], as discussed in depth throughout
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Table 4.5: Anomaly rate using standard RMSE approach

Date Number of anomalies Percentage of anomalies

(threshold 1, 2, 3) (threshold 1, 2, 3)

May 8 , 1 , 0 36% , 4.5% , 0%

June 11, 1, 0 44% , 4% , 0%

July 9, 0, 0 30% , 0% , 0%

August 11, 2, 0 35.5% , 6.5% , 0%

September 14, 6, 2 48% , 20.7% , 6.9%

October 23, 2, 0 76.6% , 6% , 0%

November 4, 1, 0 57% , 14.3% , 0%

the literature review. To do this the RMSE and standard deviation were first calculated

over the entire training period, which could then be compared to the daily RMSE for

the 6 months prior to failure. Three different thresholds were used to compare the daily

RMSE with the training period; the first threshold was simply the RMSE, the second

was 1 standard deviation above the RMSE, while the third threshold was 2 standard

deviations above the RMSE. This gave error thresholds of 1.57, 3.15 and 4.72 degrees

Celsius respectively, whereby any new observation with a daily RMSE of above these

limits was deemed an anomaly. Results using all 3 thresholds individually are shown

in Table 4.5.

The first threshold shows a clear increase in anomalies leading up to failure, however

with such large proportion of errors across the entire 6 months, in practice this would

lead to a large amount of false alarms. The second threshold actually performs relatively

well, with an average of less than 5% of anomalies detected over the first 2 months.

Moving closer to failure also results in a clear increase in anomaly rate using this

threshold, however it does not perform as well as the SVM model presented earlier in

the chapter. This is best observed through Figure 4.10, which shows a direct comparison

of results. By plotting a simple linear regression of each set of results it becomes obvious

that the SVM model not only detects on average more anomalies per month, but is

also more consistent over the final two months. It is also important to note that both

models have a very low anomaly detection rate in May, with the SVM model actually
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Figure 4.10: Comparison of SVM classification approach to RMSE

detecting less anomalies than the threshold based on the RMSE and standard deviation,

giving confidence that increase in anomaly rate actually relates to the fault. Using the

third threshold, anomalies were only detected for a short spell 2 months prior to failure,

indicating that the limit was set too high to track progression, however does offer an

insight into the largest changes in behaviour, albeit for a short period of time.

Results here have demonstrated that single class SVM models are a successful

method to evaluate errors output by a NBM, which in this case used a two-layer feed

forward neural network. Using a SVM model acts as an improvement to existing tech-

niques by first of all allowing multiple parameters to be used which can effectively

describe the error distribution over a chosen time period. Secondly it allows for a more

complex decision boundary to be formed which can detect and distinguish anomalous

behaviour from normal behaviour. For this first case study results showed anomalies

in gearbox oil temperature can be detected up to 3 months before the HSS failure. It

also shows a larger and more consistent increase when compared to simple thresholds

based on RMSE alone. As stated previously, the decrease in anomaly rate observed in

November could be attributed to the fact there was only 7 days, therefore less data in

which to make the calculation, or perhaps related to some physical phenomena regard-

ing damage progression.
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Figure 4.11: Damage to Generator bearing and shaft at time of replacement.

4.5 Combining SCADA and Vibration for Fault Detection

4.5.1 Case Study Description

The second case study focuses on generator bearing failure, which in this case stems

from raised bearing temperatures leading to bearing inner ring growth resulting in the

bearing inner ring spinning on the generator rotor shaft at the drive end, with Figure

4.11 showing damage that can occur over time from a fault of this nature. In order

to ensure confidentiality again the exact power output and wind turbine and bearing

type used is not provided, however it can be stated that it was a doubly-fed induction

generator (DFIG) with a rated power of between 2 and 4 MW, again utilising a variable

speed, pitch regulated control strategy.

Once the failure was identified in the wind turbine OEM O&M event log, both

SCADA data and vibration data were retrieved for the year leading up to failure. To

ensure dates collected were correct SCADA data was checked directly after the failure

date to ensure wind turbine downtime occurred as stated in the events log. SCADA

data consisted of 10-minute mean values taken continuously over the entire year, while

vibration data samples were taken 1 week apart at both the drive end and non-drive

end of the generator. Each vibration sample consisted of approximately 10 seconds of

data taken with a sampling frequency of approximately 25 kHz. A summary of SCADA

and vibration data available for the second case study can be found in Table 4.6 and

4.7 respectively.
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Figure 4.12: Methodology showing 2 data sources combined into single anomaly detec-
tion model; SCADA and Vibration.

The methodology for this case study, which can be found in Figure 4.12 (adapted

from Figure 4.3), builds upon the first case study described in Section 4.4 by encompass-

ing two data sources. NBM 1, which is based on SCADA analysis, predicts generator

bearing temperature relying on multiple operational parameters and temperatures as

inputs using a random forest regressive model (see Section 4.5.2 for details), and com-

pares these predictions with observed temperature measurements. NBM 2, which is

based on vibration analysis, predicts a summation of fault frequency amplitudes and

relies on a variety of spectral features and operating conditions as inputs. Error is

evaluated for both models and metrics describing the error distribution are calculated

for the same weekly time resolution in each case. These error metrics are then used as

inputs features to train a single class SVM model for anomaly detection.

4.5.2 Normal Behaviour Model

For the second case study both SCADA and vibration are used, however for the NBM

independent analysis was performed for each data source following the same methodol-

ogy as used previously. Again, Figure 4.4 illustrates the process of using these types of
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Table 4.6: Summary of SCADA data

Model Raw data Coverage Averaged Cleaned

Phase (10 min) (%) data data

Total 52104 99 8785 5275

Model development 26052 - 4391 2634

Model implementation 26052 - 4394 2641

Table 4.7: Case study 2 - Summary of Vibration data

Sensor location No. Samples Frequency Sample time

Generator drive end 56 (1 week apart) Approx. 25kHz Approx. 10 sec

Generator non-drive end 56 (1 week apart) Approx. 25kHz Approx. 10 sec

models to detect faults, with the residual error, e(t), this time between either measured

temperature or vibration, y(t), and model prediction ŷ(t) used as an indicator for a

potential fault.

Although a neural network was used in the first case study, in reality there are many

supervised regressive machine learning models that could be chosen to represent normal

behaviour of the target variable. To highlight this fact, a Random Forest algorithm was

selected for the second case study. More detail can be found in the literature review,

but as a short recap random forests are ensemble learning models that build multiple

decision trees and merge them together to get a more accurate and stable prediction.

Using ensemble methods allows for overall better performance and reduces the risk of

over-fitting, which can be an issue when utilising solitary decision trees. Figure 4.13

shows a diagram of this type of Random Forest Regressive model in relation to model

input features, prediction output and how these relate to the number of decision trees

used.

SCADA NBM Description

The SCADA channels available for this analysis are stated in Table 4.8. Like the pre-

vious study, data describes the operating conditions and power output at each times-

tamp, as well as a range of temperatures throughout the nacelle at selected locations,
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Figure 4.13: Schematic of Random Forest Regressive model - input features and output
dependant on model.

this time to give a representation of overall generator performance and condition at

each instance. Feature importance was determined through a combination of a model

based approach and expert knowledge, with this having been discussed in more detail

throughout Chapter 3.

As with the first case study, data cleaning is a crucial component in producing any

normal behaviour model which can detect anomalies effectively. For this case study data

was cleaned to remove times in which the wind turbine was operating in conditions out

with the normal torque speed operating strategy. Primarily this was any sustained

periods of shutdown or power de-rating, which could occur for a number of reasons

including maintenance work or grid constraints.

Vibration NBM Description

Unlike the SCADA data, in which features can be taken directly, features must first

of all be identified and extracted from the vibration signal. The features which are

extracted depend on the failure mode which is trying to be detected, with different

failures having different markers, or fault identifiers, within the signal. As discussed

in detail in Chapter 3, the raw time domain signal is not sufficient to extract these

identifiers, therefore frequency domain analysis is required, where the time domain
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Table 4.8: Case study 2 - SCADA model features

Feature No. Feature Model Description

1 Pout Predictor Average power output

2 Urotor Predictor Average rotor speed

3 Ugen Predictor Average generator speed

4 Uwind Predictor Average wind speed

5 Tambient Predictor Average ambient temperature

6 Tnacelle Predictor Average nacelle temperature

7 Tslipring Predictor Average generator slip ring temperature

8 Tphase1 Predictor Average generator phase 1 temperature

9 Tphase2 Predictor Average generator phase 2 temperature

10 Tphase3 Predictor Average generator phase 3 temperature

11 Tbearing Response Average bearing temperature over

signal is converted into the frequency domain using a fast Fourier transform (FFT)

while also implementing order analysis techniques. Table 4.9 highlights the input and

output parameters used for the vibration based NBM. Input predictors consisted of

the power output at the time the vibration sample was taken, along with vibration

amplitudes at shaft frequency and two harmonics. The output response, or diagnostic,

was the sum of vibration amplitudes at known fault frequencies, which in this case

was the ball passing frequency of the inner race (BPFI) together with two harmonics

and associated side bands at shaft frequency. All amplitudes were identified and values

extracted in the order domain.

4.5.3 Single Class SVM Model

Features describing the error from both the SCADA and vibration NBM’s were used

for the classification model. The features used for the second case study are described

in Table 4.10 alongside those used in the first. The key difference in case study 2 being

the fact that weekly stats were used instead of the daily features used in the first case

study. This is in line with the lowest data resolution of the vibration samples, therefore

only a single feature could be used to train the classifier from the vibration NBM. For
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Table 4.9: Case study 2 - vibration model features

Feature Feature Model Description

No.

1 A1 Predictor Amplitude of peak at order number 1

2 A2 Predictor Amplitude of peak at order number 2

3 A3 Predictor Amplitude of peak at order number 3

4 Pout Predictor Generator power output at time of vibra-
tion sample

5 Adiagnostic Response Sum of amplitude peaks at fault frequen-
cies

Table 4.10: SVM error combined model features

Feature No. Feature Description Input

1 erms RMSE SCADA

2 emin Min error SCADA

3 emax Max error SCADA

4 estd Standard deviation of error distribution SCADA

5 ekurtosis Kurtosis of error distribution SCADA

6 eabs Absolute error Vibration

this particular case study sample size was deemed more important than the number

of features per sample, which could be increased for example, if monthly metrics were

used instead.

Figure 4.14 shows an example of the trained SVM classifier for the 6 months of data

using the weekly SCADA RMSE and vibration absolute error. This was again extended

to include all features described in Table 4.10 in order to get a more comprehensive

understanding of weekly error distribution. It should be noted that although the scale

on Figure 4.14 ranges from 2 to -1.5, zero remained the learned frontier, with 1 data

point from the training data in this example outside this threshold.
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Figure 4.15: Heatmap of anomalies leading up to failure

4.5.4 Anomaly Detection Results

Results show that anomalies were detected consistently 16 weeks prior to failure, with

errors associated with the highest anomaly score appearing between 10 and 12 weeks

before failure. As with the previous case study, if the new observation was deemed

normal behaviour it was simply given a score of zero, with anomalies given a higher

score the further from the decision boundary they stray. Figure 4.15 shows the heatmap

of anomalies for approximately 10 months leading up to failure.

4.5.5 Comparison with Single Models

For completeness the results from Section 4.5.4 have been compared with each NBM

individually using a single threshold based on the RMSE and standard deviation of

the training period (see threshold 2 in Section 4.4.8 for details). Figure 4.16 shows
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Figure 4.16: Plot of weekly errors leading up to failure for individual NBM’s

the weekly error for each model along with the calculated threshold. Results shows

an initial step change in vibration levels at approximately 14 weeks to failure, with an

increase in temperature actually occurring in the 3 weeks prior to this. The heatmap

shown in Figure 4.15 demonstrates that the SVM model captures changes in both

temperature and vibration. This rise is then followed by a slight decrease in average

vibration and temperature in the 7 weeks directly before failure, which is again in line

with Figure 4.16.

Results show that an SVM classifier is an effective method in evaluating the error

from two different NBM’s that can describe bearing failure, each with a different data

source and analysis techniques. Figure 4.14 shows that the decision boundary can be

modelled to account for each error, and allows for anomalies to be detected for new

observations in which the temperature error, vibration error, or indeed both, deviate

from expected levels.

The decrease in vibration and temperature levels which occur approximately 7 weeks

directly before failure could be attributed to the type of failure used in this case study.

Bearing faults can see increases in temperature or vibration due to pitting (in this case
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on the inner race) which can smooth over time due to further wear. This can often then

be followed by additional step changes as more pitting or damage to the inner race and

bearing assembly occurs, or in this case, failure. As this analysis focuses on detecting

the bearing fault at the end of life the step changes in vibration and temperature are

quite apparent. To see any initial changes in vibration due to early fault onset more

vibration samples would have to be taken going further back in time as it likely occurred

prior to this data set. These samples were not made available for use in this study.

As highlighted previously the main benefit for using the SVM classifier is to combine

models into a single threshold, which in this case produces consistent anomalies 14

weeks prior to failure. If looking at temperature and vibration in isolation this is not

the case, with each model dropping below the anomaly threshold at some stage in the

final weeks. In terms of early fault detection or failure prediction, this study does

not show substantial improvements to actual lead time from first anomaly detection to

failure.

4.6 Conclusions

This chapter has highlighted the key issues surrounding fusion of multiple raw data

sources to detect WT faults. A framework has been presented which aims to navigate

around some of these potential sources of uncertainty by combining data streams when

assessing NBM error. This is useful as it allows for individual NBM’s to be first set

up and trained without any loss of information. This has been demonstrated by 2 case

studies, the first of which allows a direct comparison to be made of assessing error

using a single class SVM classifier to simpler threshold techniques observed in litera-

ture. The second study then combines temperature and vibration models to detect a

generator bearing fault. As shown, this fault had progressed quite substantially and

could therefore be detected in both temperature and vibration. By using a combined

classifier, a single anomaly boundary can be established to use as a single health indi-

cator capable of detecting changes in either parameter. It should be highlighted that

these conclusions have been drawn based on the small amount of case studies presented
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in this chapter. Without applying these techniques on more data across different case

studies it is difficult to say conclusively if the SVM classifier offers a better alternative

to simpler thresholds.

4.7 Future Work

Future work is required to validate this approach on further generator faults through

temperature and vibration monitoring. Additionally, by introducing oil debris analysis

this methodology could be adapted for gearbox related issues through monitoring of oil,

temperature and vibration. This would allow for a single holistic health indicator to

be established for any component throughout the drivetrain, reducing duplicate alarms

being generated from multiple sources. This may ultimately reduce time spent by

condition monitoring engineers clearing alarms, allowing more focus to be applied to

real faults or issues.
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Chapter 5

Failure Prognosis using

Classification of Vibration

Features under Varying

Operating Conditions.

5.1 Chapter Contribution

Up until this point Chapters 3 and 4 have utilised different machine learning, data

analysis and signal processing techniques to detect, and some cases locate, a range of

faults across the generator and high speed assembly. In order for prognostic models to

be developed, wind turbines must be analysed during conditions of catastrophic failure.

Only once these examples are gathered can any sort of data-driven remaining useful

life be determined.

This chapter aims to answer the following research question:

“To what extent can previous experience of failure be used to predict remaining useful

life in similar machines based on purely data-driven approaches, and how do different

site operational conditions effect prediction accuracy?”
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The contributions of this chapter are as follows:

1. Demonstrate how classification algorithms can be used to determine remaining

useful life of generator bearings using vibration based condition monitoring sys-

tems and historical examples of failure.

2. Provide insight into how operating conditions at the time of vibration measure-

ment affect diagnostic features and classification results which estimate remaining

useful life.

3. Present a framework which relies on clustering methods to group historical data

based on operating conditions to more accurately estimate remaining useful life.

5.2 Background Information

5.2.1 Prognosis vs Diagnosis

This chapter will focus on wind turbine prognostics using vibration based analysis sup-

plemented by machine learning techniques. As discussed in depth throughout Chapter

3, there are a number of well established and proven techniques using vibration analysis

to detect faults in such systems, traditionally based around Fourier analysis, envelope

analysis and order analysis techniques, which can all be used to identify and extract

features from the signal based on rotational frequencies [77].

The key differentiation between a diagnosis and prognosis is as follows; prognosis

aims to estimate remaining useful life before failure of a component with an existing

fault whereas diagnosis only aims to diagnose the fault itself. A diagnosis may also be

very specific to an exact component and fault type. When dealing with prognostics of

failure, the initial fault type may or may not be the eventual point of failure. There

could be a single concentrated area of damage or it may have spread to multiple ar-

eas across the component or assembly at the point of failure. The following analysis

throughout this chapter is based on known generator bearing failures, however it is

not known with absolute certainty if the points of failure and specific failure mode in

question were identical.
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Figure 5.1: Key differences between Diagnosis and Prognosis used in this Thesis.

5.2.2 Vibration Based Indicators

Now that the difference between diagnostics and prognostics has been defined it is

equally important to distinguish the difference between required features. When making

a diagnosis, the ultimate goal is maximising prevention time by detecting a fault as

early as possible, which can then be monitoring more closely and appropriate proactive

maintenance carried out that minimises lost production. This is expressed visually in

Figure 5.1, where early detection indicators are used to detect the fault as close to fault

onset as possible. These indicators were described in detail throughout Chapter 3 when

performing fault diagnosis.

As a fault progresses the same indicators used for diagnosis may not be suitable to

successfully predict failure. Take generator bearings as an example (for which the case

study in this chapter will later center around), where envelope analysis techniques are

widely used to detect fault frequencies modulated at carrier frequency. This method
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works well for early detection, however as damage worsens, modulation at these higher

carrier frequencies becomes less distinct and harder to track. This may be simply due

to signal processing of a now noisier signal, or it could be due to physical effects of com-

ponent wear as initial sharp edges become more rounded, or more likely a combination

of the two. What this means is that increases in amplitude in the envelope spectrum

cannot be correlated to fault progression once significant damage has occurred. This

phenomenon requires additional indicators that are capable of detecting changes in fre-

quencies which occur before component failure, as described in Figure 5.1 as end of life

indicators. Features used for this will be described in detail later as the case study is

presented.

5.3 Introduction to Case Study

5.3.1 Failure Case

This chapter will focus on generator bearing failure. From discussions with industry

partners, it is believed that this failure case stems from raised bearing temperatures

leading to bearing inner ring growth resulting in the bearing inner ring spinning on

the generator rotor shaft at the drive end. It should be noted that this was deter-

mined by assessing only some of the failure examples used throughout this chapter,

therefore it cannot be known if every failure was a result of the same issue described

above. Root causes sometimes stem from design and manufacturing issues such as

imperfections in material grade, out of tolerances, poor shaft alignment and improper

installation methods. Other causes include operational and maintenance issues such

as high loading, unbalanced electromagnetic forces, damage while in transit or exac-

erbated by inadequate cooling and inspection strategies [97]. Again, exact root cause

can not be stated conclusively, or indeed if each example of failure used in the study

had the same root cause.
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5.3.2 Dataset

In order to track and compare component condition, vibration data was retrieved at

different points in time leading up to a generator bearing failure. To achieve this, events

associated with generator bearing failure from a wind turbine OEM were analysed until

multiple examples of the same failure mode were identified. This was then cross checked

with SCADA data to ensure dates were correlated by checking failure dates with down

time experienced by the wind turbine. To ensure best results possible all examples

were from an identical generator and drivetrain configuration. In order to guarantee

confidentiality the exact power output, wind turbine specification and bearing type

used is not provided, however it can be stated that it was a doubly-fed induction

generator (DFIG) with a rated power of between 2 and 4 MW. Each turbine utilised a

variable speed, pitch regulated control strategy. Generator rotor speed at rated power

was partly determined by grid frequency, where examples were found for both 50 and

60 Hz.

A total of 15 different wind turbines from eight wind farms were used in the study,

in each of which between 4 and 10 vibration samples were gathered a week apart 1

year, 5-6 months and 1-2 months before failure. In most cases data was gathered from

each of the three groups described above. In some cases however not every group could

be provided, in which case data was used where available. This is clarified in Table

5.1. Each sample consisted of approximately 10 seconds of data taken with a sampling

frequency of approximately 25 kHz at both the drive end and non-drive end generator

bearing (see Figure 5.2 for clarification).

Once the population of failure examples had been identified, data was gathered

prior to occurrence and labeled based on the time to failure. A binary classification

system was used, with samples labeled ‘satisfactory’ taken at more than 2 months prior

to failure and labeled ‘unsatisfactory’ if the sample was taken between failure and 2

months prior to failure. This gave a total of 306 vibration samples, consisting of 204

in class 0 (satisfactory) and 102 in class 1 (unsatisfactory) for both the drive end and

non-drive end sensor. In relation to component prognostics, unsatisfactory conditions

would likely lead to immediate action being required on site to deal with the issue.
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Figure 5.2: Diagram showing estimated positions of accelerometers used to measure
generator bearing vibration.
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Figure 5.3: Vibration sample acquisition conditions

5.3.3 Variation in Operating Conditions

Vibration samples were stored and gathered 1 week apart across all WT operating

conditions. Figure 5.3 shows the spread and frequency of power output at the time

each vibration sample was taken, grouped into the three times outlined in Table 5.1.

This shows the majority of vibration samples were collected while the WT was operating

below 50% of rated power, with a small proportion actually at rated power. With the

exception of one power and time bin combination (1-2 months, 50-60% Rated Power),

all other combinations have at least one corresponding sample, allowing for a full spread

of operational conditions at various times to failure to be analysed.
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Table 5.1: Pool of data available for analysis

Wind Turbine At least 1 year 5-6 months 1-2 months

No. before failure before failure before failure

1 10 samples 9 samples 7 samples

2 None None 4 samples

3 9 samples 7 samples 8 samples

4 8 samples 7 samples 8 samples

5 10 samples 10 samples 7 samples

6 9 samples 8 samples 8 samples

7 8 samples 7 samples 7 samples

8 8 samples 8 samples 8 samples

9 9 samples 9 samples 6 samples

10 None 9 samples 7 samples

11 None 9 samples 7 samples

12 9 samples 9 samples 5 samples

13 8 samples 8 samples 6 samples

14 None None 7 samples

15 7 samples 9 samples 7 samples

Total 95 samples 109 samples 102 samples

5.4 Modelling Framework

As alluded to earlier, the research presented in this chapter draws upon synchronised

databases of generator bearing vibration time series and failure events from a wind

turbine OEM. This allows multiple vibration signal examples of the same failure mode

in different turbines at a number of time intervals leading up to failure to be analysed

and compared.

Previous studies have shown that operating parameters at the time of vibration

measurement can have a substantial effect on vibration spectra, and hence the features

which are extracted to detect the fault [98,99]. To help mitigate these issues vibration

samples can be binned based on power output at the time of measurement, a technique

widely adopted by developers of condition monitoring software today. Expanding on

this idea of grouping vibration data, this paper presents a two-stage methodology to

predict generator bearing failure 1-2 months before occurrence. The first stage will use

111



Chapter 5. Failure Prognosis using Classification of Vibration Features under
Varying Operating Conditions.

Figure 5.4: Overall framework for predicting failure

k -means clustering to group data by operating conditions, which will act as an advance-

ment to existing power binning techniques by considering more parameters to define

measurement sample bins. The second stage uses decision trees and support vector ma-

chines for feature classification. K -means clustering separates data based on Euclidean

distance from a set number of cluster centroids, therefore does not discriminate clusters

based on sample size. Both Decision Trees and SVMs are well established techniques,

with the former scaling well to larger groups and the latter known to perform better

with smaller groups [41,100].

112



Chapter 5. Failure Prognosis using Classification of Vibration Features under
Varying Operating Conditions.

Table 5.2: Time-domain features

Feature No. Feature Formula

1.1 Maximum xmax = max{x(t)}
1.2 Minimum xmin = min{x(t)}
1.3 Mean ux = 1

T

∫ T
0 x(t)dt

1.4 RMS xrms =
[
1
T

∫ T
0 x2(t)dt

]1/2
1.5 Standard deviation σx =

√
1
T

∫ T
0 [x(t)− ux]2dt

1.6 Kurtosis β = 1
T

∫ T
0 [x(t)− ux]4dt

5.5 Feature Extraction

As with diagnostics, most of the experience to draw upon to analyse vibration in

generators and other rotating machinery for prognostics purposes comes from industries

which utilise large, fixed speed synchronous machines. Modern wind turbines employ

variable speed control strategies and, along with the stochastic nature of the wind,

produce load patterns that are far more varied than traditional generators. The analysis

of such vibration signals is therefore more challenging and as such, makes diagnosing

faults and making a prognosis in wind turbine generators more difficult. Although

spoken about previously, it is worth mentioning some of the techniques in the context

of prognostics.

5.5.1 Time Domain Analysis

Time domain analysis offers a simple method of leveraging basic statistical analysis

techniques to provide important information about the signal. When it comes to de-

tecting high levels of abnormal vibration which may be the case in cases of severe

damage it can be particularly useful. Although not suitable to diagnose any particu-

lar issue, it can certainly be useful information when used alongside other features of

vibration. Table 5.2 shows the features that were extracted and used to analyse the

signal, where x(t) is the acceleration at time t, xmax and xmin are the maximum and

minimum measured acceleration, ux, xrms, σx and β are the mean acceleration, RMS,

standard deviation and kurtosis over signal length T .
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5.5.2 Fourier & Order Analysis

Again the fastest and most widely used technique for analysing vibration signals is

through the Fourier Transform, which represents the signal in the frequency domain,

in which spectral peaks and signal energy can be analysed as approaching failure [101].

As with previous diagnostics, the vibration spectra gathered for this analysis had

non-stationary raw time-domain signals, meaning the generator shaft speed varied dur-

ing acquisition. To mitigate the spectral smearing that this produces order tracking was

again utilised, which was discussed in Section 3.2.4. Table 5.3 shows the features that

were extracted and used to analyse the signal using this technique. The spectral peak

frequencies were chosen to reflect amplitude gains expected for a bearing fault such

as this when severe damage is present causing relative movement within the internal

assembly of the generator [97,99,102,103].

Although all WTs in the dataset were the same size and topology, they did not

all use the same bearing manufacturer and model. This meant that the ball passing

frequency for the inner and outer races (BPFI and BPFO), as well as the rolling element

deterioration frequency (BSF) could not be calculated consistently for each WT. For

this reason only frequencies which were common to all WTs were used in the analysis,

which included synchronous vibration at rotor speed fundamental frequency (Order

No. 1) along with the 1st (Order No. 2) and 2nd (Order No. 3) harmonics. Non-

synchronous vibration indicators were also extracted at order numbers 0.5, 1.5 , 2.5

and 3.5. While a simpler approach could have been taken such as calculating the

RMS of a broadband frequency range, using separate amplitudes allowed individual

frequencies to be isolated and used as individual features.

5.5.3 Operational Characteristics

Operational characteristics are used as a method of understanding the loading con-

ditions at the time of vibration measurement. The features that were extracted to

represent this are shown in Table 5.4 and were used in two instances; first of all in

the baseline model to assist with training the classification algorithms, and secondly in

two-stage model used independently from classification during the clustering stage. A
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Table 5.3: Order-domain features

Feature No. Feature Description

2.1 A0.5 Amplitude of peak at order number 0.5

2.2 A1 Amplitude of peak at order number 1

2.3 A1.5 Amplitude of peak at order number 1.5

2.4 A2 Amplitude of peak at order number 2

2.5 A2.5 Amplitude of peak at order number 2.5

2.6 A3 Amplitude of peak at order number 3

2.7 A3.5 Amplitude of peak at order number 3.5

Table 5.4: Operational characteristics

Feature No. Feature Description

3.1 Pout Average electrical power out during 10s signal

3.2 Ωgen Average shaft speed during 10s signal

3.3 τgen Average electromagnetic torque during 10s sig-
nal, τgen = Pout/Ωgen

3.4 Uwind Average wind speed during 10s signal from wind
turbine anemometer

wind turbine control strategy is defined on a torque-speed curve while the operating

performance is indicated by the power output in relation to wind speed. By considering

these 4 features a representation of both relationships can be achieved.

5.6 Classification Models and Prediction Algorithms

5.6.1 Baseline Classification Model

The baseline classification model was trained using classification algorithms with all

available data regardless of turbine and operating conditions at the time of vibration

measurement. Both support vector machine (SVM) and decision tree classifiers were

tested, with decision trees proving to be best suited to the baseline model, likely due

to their ability to scale easily to large data populations. Once algorithms were trained

they could be validated using 5-fold cross validation (see Section 3.6.4 for further details

from previous study). This provided a baseline to which the two-stage methodology
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could be fairly compared to evaluate the effectiveness of clustering data by operating

conditions to produce sub-populations of data.

5.6.2 Two-stage Classification Model

For the two-stage model, as shown in Figure 5.4, features were clustered using k -means

clustering to create groups containing vibration samples taken at similar operating con-

ditions. The same two classification algorithms as described above were then trained on

features within each cluster, with the best algorithm chosen based on performance. The

final algorithm used for each cluster therefore changed with the number and spread of

samples in that particular group. Once algorithms were trained they could be validated

using 5-fold cross validation, before the chosen algorithm was exported for each cluster.

Once exported the chosen algorithm could be used for any unseen data belonging to

any particular cluster. Testing SVM’s and decision trees provided the opportunity for

high levels of accuracy across clusters containing both small and large quantities of

data, which will be discussed in more detail when presenting results in Section 5.7.

5.6.3 Prediction Algorithms

The classification algorithms described in this Section are used across both the baseline

and two-stage model, while clustering is only required in the latter. All algorithms

are widely known techniques and can be readily applied, as discussed throughout the

literature review. There are many types of common clustering algorithms which can find

hidden patterns in large data sets including hierarchical clustering, k -means clustering,

hidden Markov models and gaussian mixture models, however for this chapter k -means

clustering was chosen due to its ease of application, fast computational speed and ability

to manually choose the number of clusters [94].

Once features were successfully grouped, classification algorithms were then trained

and tested based on the validation process outlined in Section 4.6.4, with the best

chosen and applied to the set of features specific to that cluster. There are a variety

of classifiers available that use supervised learning processes to classify data. For this

research decision trees and support vector machines with polynomial kernel were chosen.
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Decision trees scale well making them suitable for datasets with a large number of

samples, while SVM’s typically are more suitable for datasets with a smaller number of

samples. In such cases however, they provide an opportunity for more complex decision

boundaries to be established [94]. It is worth quickly reiterating the importance of

model validation and correctly setting hyperparamters to limit overfitting, especially

when it comes to decision trees. This has been well documented in both the literature

review and throughout Chapter 3, therefore will not be expanded upon in this chapter,

however for the interested reader more information found about their application in

[41,90].

5.6.4 Validation of Results

Similar to previous chapters, final model inputs were chosen by examining and refining

the available features in different ways; first of all by expert knowledge, secondly by a

model based approach (such as using random forest impurity score), and thirdly by an

iterative method of using different permutations of features to discover which could best

be used to produce the greatest overall accuracy. For each labeled vibration sample

leading up to failure the features described in Tables 5.2 to 5.4 were extracted and used.

These were then clustered with data in each cluster according to Table 5.5. To ensure

the algorithm is trained in a balanced manner, the same number of data points were

chosen from each class, with random samples chosen for the class with more samples

in any particular group. For example, if one cluster contained 40 healthy samples and

32 unhealthy samples, 32 samples for each health class were used to train the model.

Cross-validation was used to determine the overall accuracy of the algorithm. This

method involves partitioning the data into subsets of a predetermined ratio, one of

which is then omitted from training and used to test the algorithm. For this example

20% of the data was used for validation purposes. The process is then repeated using

different sup-populations and an average accuracy calculated to use as a performance

indicator. The prediction process can then be evaluated using a confusion matrix giving

correct/incorrect classification and the likelihood of false positives/ negatives.
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5.7 Results & Discussion

5.7.1 Baseline Classification Model

The baseline model using all available data had a maximum classification accuracy of

67% using a decision tree classifier. The confusion matrix is presented in Figure 5.5,

which shows the likelihood of false positives or negatives when classifying the bearings

as being of satisfactory condition or requiring action by having an expected RUL of

1-2 months before failure. The data population used for both training and validation

was limited only by the number of available class 1 examples. The results shown

here used 100 random vibration samples from each health class and regardless of the

random population of data used, the accuracy never increased beyond 67%, with the

mean accuracy just over 64% for this particular classification algorithm. The fact that

accuracy changes with training data highlights the limitations of this approach and

suggests that a more robust methodology is required to choose data more carefully for

supervised training.

The results above used all order domain features described in Table 5.3, along with

the time series RMS, standard deviation and kurtosis (features 1.4-1.6) in Table 5.2. For

the baseline model, operational characteristics outlined in Table 5.4 were also utilised

for classification.

5.7.2 Two-stage Classification Model

Clustering Results

K -means clustering partitions data using an iterative process initiated with a random

guess of centroid positions. This means that although the number of clusters can remain

constant, different data clusters are obtained every time the algorithm is run with a

different seed. A sensitivity study performed using 10 random seeds with 5 clusters

showed that 96% of the data points were consistently grouped into a particular cluster.

Results will focus on 5 clusters, chosen to provide a balance between separating the

vibration samples based on operating conditions while still having enough data in each

cluster to perform classification and validation. Using 5 clusters also manages to cover
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Figure 5.5: Confusion matrix of trained algorithms for all data (100 class 0 and 100
class 1 samples).

all parts of the torque-speed operating curve including important transition points.

The effect of number of clusters on classification accuracy will be explored in greater

detail throughout the results section.

Samples were clustered based on three properties which describe the operating

conditions at the time the signal was taken; average electromagnetic torque (feature

3.3), wind speed (feature 3.4) and generator speed (feature 3.2). The average shaft

speed and torque gives a good indication of loading conditions on the generator shaft

at the time of measurement, while using wind speed allows for an understanding of any

de-rating or adjustments from the normal torque speed curve operating points. Only 3

out of the 4 parameters described in Table 4 were required due to the direct relationship

between power and torque. For this analysis using electromagnetic torque provided

more consistency in the clustering process. The clusters are described qualitatively

in Table 5.5, while Figure 5.6 shows the data clustered into the 5 groups to assist

with visualisation. Each point in Figure 5.6 represents the coordinates of the chosen

operation characteristics used for clustering for a single vibration sample. Note that

these characteristics are common to both the drive-end and non drive-end sample. The

centroid position is also given in Table 5.5, which describes each cluster quantitatively

with respect to the normalised wind speed, electromagnetic torque and generator speed.
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Table 5.5: Cluster descriptions

Cluster Data in Centroid position Cluster description

No. cluster (%) (τgen, Uwind, Ugen)

1 15.0 (0.093, 0.19, 0.61) low torque, low wind
speed, low gen speed

2 4.2 (0.23, 0.25, 0.72) low-med torque, low-
med wind speed, low-
med gen speed

3 20.5 (0.27, 0.31, 0.87) medium torque,
medium wind speed,
medium gen speed

4 41.0 (0.38, 0.38, 0.99) medium torque, rated
wind speed, high gen
speed

5 19.3 (0.83, 0.63, 0.99) rated torque, rated
wind speed, high gen
speed

Table 5.6: Results for 5 clusters

Cluster Algorithm Overall accuracy Difference from

No. (%) base model (%)

1 Decision Tree 61 -6

2 SVM 70 +3

3 Decision Tree 81.6 +14.6

4 Decision Tree 78.6 +11.6

5 Decision Tree 65.2 -1.8

Classification Results

The results presented first of all for the two-stage classification model use the 5 clus-

ters of data shown in the previous section. Each cluster goes through a training and

validation process for each of the classification algorithms as described in Section 5.6.3.

Table 5.6 presents the best algorithm and accuracy for each of the clusters, along with

the percentage accuracy difference from the baseline model described in Section 5.7.1,

for which all data was taken and classified without any clustering.

Two of the groups showed a significant increase in accuracy with a maximum of

up to 81.6% for group 3. These two groups (3 and 4) accounted for 61.5% of all data,
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Figure 5.6: Plot of clusters based on three chosen variables, normalised to ensure
confidentiality. ’X’ represents each cluster centroid position.

while group 2, which saw a comparatively modest rise of 3% in accuracy accounted

for a further 4.2%. Interestingly, the two groups (1 and 5) which underperformed

in comparison to the baseline model had the 2 extreme datasets of either very high

operating conditions or very low. This suggests that if the operating conditions are too

low at the time the vibration sample is taken it becomes more difficult to distinguish

high levels of damage as the bearing fault progresses. Alternatively, if the WT is

operating at rated power with rated torque, shaft speed and wind speed, this also

holds true. This indicated that optimal operating conditions may exist to identify

faults and monitor progression. The algorithms perform much better using features

from mid-range operating conditions, with the highest accuracy when in and around

rated wind speed. Figure 5.7 shows the overall accuracy of the algorithms for each

group in comparison to the baseline, with the groups ordered based on the extremity

of operating conditions at the time the vibrations sample was taken.

In terms of features analysis, the dominant frequency (the point at which the most

increase in amplitude was observed to indicate the fault) changed between turbines,

therefore all order domain features were used in every case. The RMS, standard devi-

ation and kurtosis proved to be the most significant of the time domain features, with

accuracy generally increasing if at least one of these three features was used.

To compare absolute accuracy of both approaches, an overall weighted accuracy for
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Figure 5.7: Plot of accuracy for each cluster ordered by extremity of operating condi-
tions at time of vibration sample.

the two-stage model can be calculated by;

γoverall =
n∑
i

γiδi (5.1)

where γoverall is the overall weighted accuracy, γi is the cluster accuracy and δi is

the percentage of data in cluster i for n number of clusters. For the 5 clusters in this

analysis this gives an overall weighted accuracy of 73% for the two-stage methodology

considering all data. If groups 1 and 5 are excluded, the weighted accuracy of the

remaining groups increases to 79%, and represents all data in mid-range operating

conditions.

Looking at the best performing algorithms in Table 5.6, decision trees consistently

outperformed SVMs in the 4 groups with the highest number of data samples. As

expected, SVMs performed better in group 2, which had significantly less data. Having

the option of both algorithms proved to be a useful method to ensure the highest

accuracy was achieved for each group of varying size.

Considering now the top two performing groups in more detail, Figure 5.8 shows

the confusion matrix for each training and validation phase. Results indicate a balance

between predicting false-positives and false-negatives, with each group having slightly

less misclassifications for class 1 samples to that of class 0. Fault propagation times

will differ for every wind turbine used in the study, therefore the features extracted

as fault indicators will also change in time leading up to failure. Classifying all data

1-2 months before failure into a single class is one of the limitations surrounding this
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Figure 5.8: Confusion matrix of trained algorithms for group 3 (left) and group 4
(right).

type of classification process, which considers multiple examples without making an

allowance for the fact each bearing has its own unique propagation time and failure

threshold.

Effect of Number of Clusters on Classification Accuracy

Earlier results showed the two-stage classification model with 5 clusters as this provided

a balance between the number of clusters and number of data within each cluster. For

completeness, results for other cluster numbers will also be provided to showcase the

variation and importance of correctly choosing this value. If 3 or 4 were chosen an in-

crease in accuracy at mid range operating conditions still occurred, however the same

level of improvements were not observed. Tables 5.7 and 5.8 show the breakdown of

clusters and accuracy along with the associated cluster centroid positions and algo-

rithms used. Considering the weighted accuracy described in equation 5.1 this can be

calculated for 3 clusters as 69.8% and 69.1% for 4 clusters. If 6 or more clusters were

chosen, groups started to get too sparse to perform classification on every cluster, (as

even with 5 clusters group 2 consisted of only 4.2% of the data) and accuracy gener-

ally decreased. If more data was available, it would be worth revisiting the number of

clusters to determine the optimal range.
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Table 5.7: Results for 3 clusters

Cluster Data Centroid Algorithm Overall accuracy

No. (%) (%)

1 31.1 (0.13, 0.21, 0.64) Decision Tree 62

2 50.1 (0.34, 0.36, 0.96) Decision Tree 78.2

3 18.8 (0.81, 0.62, 0.99) SVM 60.4

Table 5.8: Results for 4 clusters

Cluster Data Centroid Algorithm Overall accuracy

No. (%) (%)

1 30.3 (0.13, 0.20, 0.63) Decision Tree 62.5

2 43.6 (0.31, 0.35, 0.95) Decision Tree 79.7

3 14.5 (0.60, 0.48, 0.99) SVM 63.0

4 11.6 (0.90, 0.68, 0.99) SVM 53.6

Comparison of Clustering and Power Binning

Up to this point clustering has been compared only to the baseline model, which consid-

ers all available data. Clustering offers the opportunity to group vibration data using

a variety of operating parameters, and results have shown improved accuracy in doing

so, however, it is also important to compare this approach to standard power binning

practices. A similar methodology was used as previously describe in Figure 5.4, but

instead of clustering in stage 1 data was divided into 5 even bins based on power output

only. Each bin was then classified individually, with results showing again an improve-

ment to the baseline model, but not reaching the level of accuracy achieved through

clustering. Results are presented in Table 5.9, where mid-range operating conditions

again provide the highest prediction accuracy.

5.8 Conclusion

Predictive maintenance strategies that use previous failures to learn and predict failure

and remaining useful life of components in different wind turbines have the potential

to make substantial savings to costs associated with O&M. This research indicates
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Table 5.9: Results by power binning

Bin Power range Data in bin Algorithm Overall accuracy

No. (%) (%) (%)

1 0-20 18.3 Decision Tree 63.6

2 20-40 45.8 Decision Tree 68.2

3 40-60 15.8 Decision Tree 71.1

4 60-80 5.9 SVM 67.1

5 80-100 14.2 SVM 55.2

that machine learning classification algorithms can be applied to specific features to

successfully predict generator bearing failure 1-2 months before occurrence with an

accuracy of up 81.6%. To achieve this level of accuracy operating conditions at the time

each vibration sample was taken must be considered independently of classification, as

accuracy falls significantly to 67% without it, as shown in the baseline model. This

finding suggests that an optimal condition monitoring zone may exist in which to more

accurately track faults for prognostic purposes, with the same logic also applying to

diagnostics. A simple approach to improve baseline accuracy is manual or rule-based

removal of data at extremes of the power curve, however it is difficult to do this robustly

and fairly. Binning vibration samples by power output to create groups which can be

fairly compared is standard practice, however this paper has demonstrated that k -means

clustering is a more successful method by considering more operating parameters prior

to classification.

This work shows that the operating conditions at the time of vibration measurement

can greatly influence the ability to detect a fault, with mid-range operating conditions

leading to highest accuracy when predicting remaining useful life based on vibration

analysis for this particular wind turbine and failure mode. The examples shown find a

balance between false-positives and false-negatives, meaning that equal weight is given

to either case however from a commercial perspective it may be worth refining the

model to either minimise or maximise false-positives, which could be further explored

through cost-benefit analysis.

The two-stage methodology described in this paper provides a scalable prediction
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model which could be applied to a range of faults across the drivetrain. By considering

different features of vibration that can effectively describe high levels of damage of a

particular fault, which could also rely on different vibration measurements and analysis

techniques to those used in this paper, the model could be adapted accordingly.

Furthermore, this chapter only uses vibration features common to all bearing spec-

ifications. Improvement in accuracy could be made by bringing in additional fault

frequencies specific to each bearing type if all bearing kinematic details are known.

Conversely, in practice keeping kinematic details up to date is time consuming for en-

gineers and often details are not known as wind turbine components are replaced and

wind turbines move between owners and asset managers. Providing accurate failure

prediction without requiring this specific information is hugely valuable as a site gets

older.

5.9 Future Work

There are several areas that future work could be done to enhance the research presented

in this chapter. First of all, more specific bearing fault frequencies could be used in

conjunction with rotational frequencies to assess damage and predict failure. It would

be interesting to understand to what extent this increases accuracy or allows for earlier

prediction as more specific indicators of the fault progression are modelled. Getting

more continuous timestamps of vibration data leading up to failure would also allow

for a more robust prognosis and model validation. This would allow for a much more

granular look at how vibration features develop through to failure.

Furthermore, if SCADA data is also gathered over the same time period leading up

to failure, identifying and comparing other metrics to classify or predict failure would

be an interesting study. For example cumulative energy yield or time at rated power

before failure could be used instead of a basic measure of time. This may act as a

better metric as it takes into consideration operational condition as well as time, which

is more closely related to experienced vibration and fatigue.
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Chapter 6

Analysis of the Cost Impact of

Maintenance Strategies Enabled

by Modern CMS for Offshore

Wind Farms

6.1 Chapter Contribution

Modern condition monitoring systems and data analytics enable wind farm owners

and operators the opportunity to gain further insight into wind turbine operation and

component health. Emerging predictive and condition-based maintenance strategies

could potentially reduce the LCOE by reducing money spent on wind farm O&M.

That being said, there is actually very little research that attempts to quantify such

strategies over the lifetime of a wind farm. This chapter will focus on offshore wind

farms, where it is believed that the largest gains can be made by employing improved

maintenance strategies. More specifically, this chapter will explore the cost associated

with different replacement strategies once a fault has been detected. Analysis will take

into consideration potential consequential damage if an asset is kept running longer

while a fault is present, as well as the costs associated with early repair.
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This chapter aims to answer the following research question:

“How can implementing advanced monitoring and predictive maintenance strategies

affect O&M costs throughout the life of a wind farm?”

The contributions of this chapter are as follows:

1. Provide insight into the cost associated with minor repairs and major replace-

ments of the generator and gearbox for large offshore wind farms.

2. Determine the costs associated with implementing both predictive and condition-

based maintenance strategies in comparison to a more reactive maintenance strat-

egy.

3. Weigh up the cost benefit between reaching maximum achievable design life and

replacing a component too early when implementing such strategies.

6.2 Maintenance Strategies

Maintenance strategies have evolved over the last 2 decades in line with increased

turbine size and reduction in technology costs. With sites now reaching for higher

average wind speeds in more remote geographical locations (particularly offshore), it is

imperative that O&M costs are as low as possible to keep the LCOE down. One aspect

of achieving this is employing more optimal maintenance strategies, made possible with

increased monitoring capabilities, improved digitalisation and more in depth analysis

of data. This allows engineers and operators to assess asset performance, understand

reliability and make informed maintenance decisions that can drive down costs over the

lifetime of the site.

6.2.1 Types of Maintenance Strategies

There are several terms observed in literature to describe the different maintenance

strategies, which are not always exactly the same. For clarity Table 6.1 defines each

strategy, as used in this chapter with respect to component replacement. Four strategies
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Table 6.1: Maintenance strategy definitions

Maintenance Strategy Description

Preventative Routine maintenance to minimise the risk of
faults developing.

Reactive Maintenance performed retrospectively after
component failure.

Predictive Prognosis is performed after fault is detected
with replacement scheduled accordingly based
on availability of resources and site conditions.

Condition-based Ongoing assessment performed once a fault has
been detected and maintenance is performed
when condition has worsened to a set threshold.

are described including preventative, reactive, predictive and condition-based, however

it will be the latter two that will form much of the analysis.

Preventative maintenance is the act of performing routine maintenance that will

minimise the risk of faults developing in the first place. This type of strategy is inef-

ficient, does not utilise a components full design life and is wasteful of both materials

and technician time performing the work. It allows for a less hands on approach to con-

dition monitoring, meaning costs can be saved by not requiring advanced monitoring

hardware and associated ongoing monitoring.

Reactive maintenance allows components to run to failure, making use of there entire

design life, but risking other components health at failure. This type of strategy reduces

cost of routine O&M while providing a hands off approach to condition monitoring,

however, means more expensive replacements and downtime while waiting for spare

parts and access delays.

Predictive maintenance and condition-based maintenance are similar in nature.

They both require condition monitoring to detect faults and engineers to assess compo-

nent condition and make a prognosis to some extent. Predictive maintenance involves

acting on that prognosis, and perhaps reassessing if the condition does worsen. The

goal of this is to perform maintenance activity at as low a cost as possible within a suit-

able time frame. Some design life will be compromised for minimising risk of extended

periods of downtime.
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Figure 6.1: Cost of repair in relation to maintenance strategy

Condition-based maintenance aims to get extra life out of the component by con-

tinuously monitoring component health and setting hard upper limits for maintenance.

Fault and hence damage progression is not always predictable, therefore there is added

risk here of further damage to additional components or even assemblies within the

drivetrain. This can increase the cost of maintenance activities further down the line.

Figure 6.1 shows the relationship between asset condition and cost of repair for the

four strategies outlined above.

6.2.2 O&M Decision Making

Decision makers have multiple factors to consider when assessing maintenance which

include, but are not limited to: wind turbine availability contracts, weather forecasts,

component lead times, technician availability, other work on site, turbine scheduled

maintenance, O&M contracts, fault severity and prognosis recommendation.

Figure 6.2 shows a typical decision flow for making a diagnosis and prognosis of a

major component. Note depending on asset management, O&M and condition moni-

toring contracts in place the decision maker may be different. This flow chart provides

a general high level overview. From the initial alarm (vibration or SCADA), assum-

ing it is not a false alarm, a diagnosis is made of fault type. Depending on the fault

type and what conclusions can be drawn from the data, an inspection may be required
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for clarification of damage level and location. If an inspection is required it will be

planned and performed over a suitable timeline and inspection report used to validate

observations in the data. From here prognosis will be performed with or without the

inspection report depending on if it was deemed necessary. As discussed in previous

chapters, prognosis can be made based on previous examples of faults and failures in a

number of ways looking at vibration and temperature of the current fault in relation to

similar historical cases. However, another factor to consider is the cost of different ap-

proaches, something that is often overlooked in industry as decisions are made without

insight into how this may be affected over the lifetime of the asset. This analysis aims

to address and provide insight into the costs associated with deciding whether an in-

tervention (or replacement) should be planned and performed at this stage, or whether

owners would be better served waiting and getting more life out of a component at the

risk of further damage or running the turbine at lower loads.

For the purposes of this analysis, predictive maintenance would aim to plan for

replacement at this stage, while a condition-based approach would seek to continue

monitoring through higher set alarms. In order to fully appreciate these decisions cost

must be analysed, taking into consideration all factors discussed at the beginning of

this section. This chapter however will attempt to make a start at this by considering

the effects of running a fault for longer through a condition-based maintenance scheme

over earlier replacement when employing predictive maintenance.

6.3 Methodology and Model Overview

To ensure a robust analysis of availability and O&M costs for different maintenance

strategies a number of hypothetical offshore sites were analysed with varying distances

from shore and size (number of turbines). This allows changes in downtime, vessel

costs, total repair costs and times to be analysed and compared. Data used for both

wind and sea state was assumed to be the same for all hypothetical sites.
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Figure 6.2: Flow diagram of engineering decision process.

6.3.1 Methodology

Figure 6.3 shows the step by step approach taken in this chapter to perform the analysis.

As the quality of results obtained was highly dependent on setting the correct inputs

for each case, time was first taken to become familiar with the model and adjustable

parameters (the cost model utilised is described in more detail in Section 6.3.2). From

here the baseline model parameters were chosen for each hypothetical site, as described

in Section 6.3.3. Test cases were then defined that could synthesise each of the mainte-

nance strategies. These are detailed in Section 6.3.4. Finally the models could be run,

outputs analysed for each maintenance strategy across different sites and conclusions

formed.

132



Chapter 6. Analysis of the Cost Impact of Maintenance Strategies Enabled by
Modern CMS for Offshore Wind Farms

Figure 6.3: Overall approach to chapter analysis.

6.3.2 O&M Cost Model Description

The benchmarked O&M cost model used throughout this analysis was developed by

the University of Strathclyde and is a time based simulation of operations of an offshore

wind farm over its lifetime. To provide an overview, a Monte Carlo Markov Chain is

used to model failure behaviour, with maintenance operations simulated based on both

site conditions and available resources. Model input parameters are used to determine

these constraints used over the lifetime of the asset operations. The model has the ca-

pability to calculate availability, turbine downtime, power production and maintenance

resource allocation of the simulated wind farm, along with associated costs. Lost rev-

enue is determined from the power produced at each simulated wind speed time step.

Losses associated with electrical transmission and wind farm arrays are represented by

efficiency coefficients, with the value of power produced determined by a combination

of the market price of electricity and the value of UK support mechanisms. A con-

stant price of electricity was therefore used throughout the simulation of 90 £/MWh.

It should be noted that these costs may not reflect current prices, however are still

valid to give a good indication of changes in price with differing strategies. The lost

revenue cost due to maintenance is calculated using availability of the wind farm, which
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is defined as the number of operational turbines divided by the total number of tur-

bines. Wind distribution is characterised by a two parameter Weibull curve, however

climate data more broadly consisted of wind speed, wave height and wave period, each

of which had its own seasonal variability which influenced both generation capacity and

accessibility over the year. The expected repair cost of each intervention category was

provided by the industrial partner for the three-stage PMG FRC wind turbine configu-

ration. This chapter will focus on analysing costs for both operations and maintenance

of theoretical sites, however will discuss results in relation to overall availability, down-

time and power production. A diagram describing model inputs and outputs, as well

as the key features of the simulation loop can be found in Figure 6.4. Full details of all

model input parameters and interdependencies can be found in [7, 104].

6.3.3 Theoretical Site Characteristics

Four different offshore wind farms were simulated of different sizes and distances from

shore. Three distances of 25km, 50km and 100km were chosen to represent “near”,

“mid” and “far” offshore sites. To then understand the effect of wind farm size on costs

two different sizes of 50 and 100 turbines were also chosen to represent “medium” and

“large” sites. A three-stage PMG FRC turbine was utilised throughout the analysis,

for which representative failure rates were gathered and used based on [105]. Although

this technology is not representative of some of the larger turbines currently being

installed offshore, it does offer an opportunity for more trusted reliability rates to be

used calculated over a larger population of operational turbines. For all sites modelled

it was assumed that each had the same weather and climate characteristics as per

FINO climate data from an offshore research platform. The site chosen to represent

the climate of all cases was located 45km offshore in the North Sea, and corresponds to

both existing and future wind farms currently being developed. Although different sea

state data may improve analysis authenticity by avoiding this assumption, having the

same sea states allows for a direct comparison between distances and sizes to be made.

The same wind speed is also used across each site, which as found in [105], is a valid

assumption based on the observed mean wind speeds across 60 offshore wind farms in
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Figure 6.4: Simplified cost model structural overview, adapted from [7]

operation ranging from 1km to just over 200km from shore, which showed less than

2% deviation. Each wind farm simulated utilised a modern multi MW offshore wind

turbine, however the exact power rating cannot be provided for confidentiality reasons.

6.3.4 Analysis Cases

Analysis cases have been designed in an attempt to synthesis scenarios to represent

the maintenance strategies described above. Before describing how this is achieved,

Table 6.2 details how intervention types are categorised for a generator and gearbox
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Table 6.2: Intervention Categories

System Intervention Intervention Jack-up

Category Example Required?

Generator Major Replacement Full generator replacement HLV

Generator Major Repair Slip-ring replacement CTV

Generator Minor Repair Re-alignment CTV

Gearbox Major Replacement Full gearbox replacement HLV

Gearbox Major Repair Highspeed assembly replacement CTV

Gearbox Minor Repair Oil system flush CTV

within the cost model. Each intervention type has distinctive constraints and resource

requirements which must be met when looking for suitable windows to perform the

work. It should be noted that a major replacement requires a heavy lift vessel (HLV)

in either case, while both major and minor repairs only require a crew transfer vessel

(CTV). This is key, as by intervening earlier HLV costs can be avoided by performing

a major repair rather than a major replacement.

The premise of this analysis is the underlying assumption that, as certain faults are

left unaddressed, through time damage has the potential to worsen and spread through-

out a component or assembly. This leads to more expensive repairs or replacements

along with additional inspections over the life of the fault progression. There may also

be higher refurbishment costs if the component is to be re-used. Conversely, leaving

the component running fundamentally extends the useful life of the component, reduces

the risk of premature replacement or repair with little to no observed damage or change

after intervention. This will ultimately increase the mean time between failures for a

turbine and site. In other words, each strategy has its own unique opportunity cost

that must be considered. It should be noted that this analysis does not attempt to take

into consideration O&M and asset management contracts (such as warranty periods)

that may affect decision making.

First of all a baseline is determined for each of the scenarios described in Table

6.3 by using assembly level failure rates established in [105]. The assemblies used

were ‘Generator’, ‘Gearbox’, ‘Converter’ and ‘Rest of Turbine’, each broken down into

intervention categories ‘Major Replacement’, ‘Major Repair’ and ‘Minor Repair’. The

136



Chapter 6. Analysis of the Cost Impact of Maintenance Strategies Enabled by
Modern CMS for Offshore Wind Farms

Table 6.3: Analysis cases

Scenario No. Distance Percentage Percentage

No. Turbines Offshore Failures RUL

1 100 25km 10-40% 30-90%

2 50 25km 10-40% 30-90%

3 200 25km 10-40% 30-90%

4 100 50km 10-40% 30-90%

5 100 100km 10-40% 30-90%

failure rates per turbine per year for both the generator and gearbox were adjusted

from the baseline as per the following equations:

MajorReplacement : λadjusted = (1− Pf )λbaseline (6.1)

MajorRepair : λadjusted = (1 + Pf )
λbaseline
PRUL

(6.2)

where λbaseline is the baseline failure rate representing a reactive maintenance strat-

egy, λadjusted is the adjusted failure rate representing the predictive or condition-based

strategy, Pf is the percentage of failures per turbine per year that are diagnosed and

repairable in line with the explanation of repair categories above, and PRUL is the per-

centage of component remaining useful life that is utilised prior to repair (but before

failure when major replacement is required). It is difficult to set a definitive number

for Pf as it is impossible to understand the root cause of every major replacement and

determine if the failure could have been avoided with better condition monitoring prac-

tices and earlier intervention. A range of Pf values between 10% and 40% are therefore

used to account for this uncertainty. With regards to PRUL, the baseline assumes a

value of 100% as the component was run to failure for all major replacements as per

the reactive maintenance strategy. For a predictive maintenance strategy, the lower the

percentage the earlier the repair took place, ultimately leading to a higher rate of major

repairs. Values of 30%, 50%, 70% and 90% were used for each scenario to understand

the effects of earlier repair on the cost of maintenance activities, as described for each

analysis case in Table 6.3. This gave a total of 16 different wind farms to be simulated

137



Chapter 6. Analysis of the Cost Impact of Maintenance Strategies Enabled by
Modern CMS for Offshore Wind Farms

Figure 6.5: Adjusted failure rates.

per scenario along with the scenario baseline simulation.

Figure 6.5 shows the adjusted failure rate in relation to the baseline failure rate and

PRUL (for which λadjusted/λbaseline = 1). For the range of Pf values described above,

the major replacement rate is reduced as per equation 6.2, and is not dependent on

PRUL. Conversely, the major repair rate increases as per equation 6.1, with lower PRUL

values causing a larger increase in repair rate.

6.3.5 Baseline Failure Rates

The baseline failure rates used for the model can be found in Table 6.4, taken from [8],

which provides the rates as the number of expected failures per turbine per year for each

category. Although these were the categories used when setting up the model parame-

ters, only gearbox and generator failures were considered and adjusted for the purposes

of this analysis. This was done for both major replacements and major repairs as de-

scribed above, with minor repairs remaining constant for every component/assembly

category.
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Table 6.4: Baseline failure rates [8]

Failure Category Gearbox Generator Converter Rest of Turbine

Major Replacement 0.154 0.095 0.005 0.11

Major Repair 0.038 0.321 0.081 0.622

Minor Repair 0395 0.485 0.076 5.222

Table 6.5: Baseline costs overview

Costs Category £/MWh

Lost Revenue 13.14

Transport Costs 13.93

Staff & Repair Costs 3.80

Total O&M Costs 30.87 ± 0.15

Total Direct O&M Costs 17.73 ± 0.098

6.4 Results

6.4.1 Baseline Cost

First of all the baseline costs are considered, which for this analysis will form the

reactive maintenance strategy described previously in Table 6.1 to compare against.

Presented in Table 6.5 are costs, in £/MWh, of the total O&M costs broken down

into lost revenue, transport, staff and repair costs. Total direct O&M costs are also

given, which is the combination of transport, staff and repair costs. The uncertainty

provided in the table is determined through running 5 Monte Carlo simulations with

the same failure rates inputs, each made up of 25 random simulations and converging

with approximately 0.15% accuracy.

6.4.2 Effects of Predictive and Condition-based Maintenance Strate-

gies

The direct O&M costs with the failure rate adjustments can be found in Figure 6.6,

which shows the costs in relation to the percentage RUL utilised as a percentage change

from the baseline costs. Disregarding percentage RUL utilised for a moment, overall

it can be seen that by taking a proactive approach to maintenance between 2% and

139



Chapter 6. Analysis of the Cost Impact of Maintenance Strategies Enabled by
Modern CMS for Offshore Wind Farms

Figure 6.6: Percentage cost reduction of predictive maintenance strategies.

12.5% can be saved by repairing a component early before major replacement is required

depending on the percentage of faults detected and acted upon. For the baseline case

used this equates to a saving of approximately £0.355 - 2.128 per MWh over the lifetime

of the wind farm. With regards to changes in lost production, also found in Figure 6.6,

between 3.6% and 15.75% less energy is lost across the range of simulations.

If we now think about strategies in more detail, results suggest that by utilising as

much component life as possible before repair an extra 1-2% can be saved on average

in direct O&M costs over the lifetime of the wind farm. Over the lifetime of the wind

farm this equates to approximately £0.177 - 0.355 per MWh when using the baseline

rates presented in Table 6.5. There also appears to be a closer correlation between lost

production and utilised life of the component, suggesting that a higher energy yield

can be obtained over the site life by running components for longer before replacement

(assuming a HLV is not required).

6.4.3 Analysis of Wind Farm Size and Location

To consider the effect wind farm size and distance from shore has on O&M cost reduc-

tion Scenarios 2-4 (see Table 6.3) were simulated. For each scenario a baseline cost was

again calculated by running 4 Monte Carlo simulations with identical input parameters.

As with scenario 1, baseline failure rates were used with each simulated site made up
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Figure 6.7: Baseline direct O&M costs and lost production, Scenarios 2-4.

of 25 random simulations. Figure 6.7 shows the baseline direct O&M costs for wind

farms located 25km, 50km and 100km (Scenarios 2, 3 and 4 respectively), along with

the expected lost revenue. Each Monte Carlo simulation had a convergence of below

0.1%. For each baseline we see a modest rise in direct O&M costs from approximately

28.6 at 25km to 31.1 £/MWh at 100km. The lost production however increases more

substantially as the wind farm is located further offshore increasing on average from

10.7 to 17.7 £/MWh when moved from 50km to 100km offshore. This phenomenon

was also found in [8], and can be explained through a restriction of resources applied

in the cost model. This constraint meant that as the site is moved further offshore not

enough technicians and CTVs are available to complete all repairs increasing overall

downtime. The number of resources can be optimised to reduce this, however a relative

comparison of strategies is then not possible due to higher base O&M costs.

Concentrating on direct O&M costs for each scenario the cost reduction in rela-

tion to the percentage RUL utilised was plotted in Figure 6.8, with (a), (b) and (c)

representing scenarios 2, 3 and 4 respectively. As a whole, the calculated reduction in

direct O&M costs are remarkably consistent across the different sites, suggesting that

distance from shore has little impact on direct O&M costs savings for a medium sized

wind farm. As a percentage of the baseline, results also suggest that similar savings

can be made per MWh when compared to larger sites.
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Figure 6.8: Percentage cost reduction of predictive maintenance strategies - comparison
of sites (Direct O&M Costs).

Looking at lost production now in Figure 6.9 (a), (b) and (c), results show more

deviation in potential savings with respect to distance from shore when compared to

direct O&M costs, with values ranging from approximately 1.5% to 12% depending on

PRUL and Pf . One interesting observation is that results indicate cost reductions are

not monotonic as a function of PRUL, however, the notable increase at PRUL = 0.7 can

likely be attributed to stochastic variability in the simulation.

The notable decrease in saved lost production at 100km from shore, presented in

Figure 6.9 (c), is due to the substantial increase in absolute lost production (see Figure

6.7), meaning that the percentage decrease relative to the absolute value will be lower.

There is also stronger correlation between PRUL and lost production in comparison to

direct O&M costs, with greater values of PRUL on average producing less lost production

over the wind farm’s 20 years operation. This trend is more obvious with lost production

due to the direct link between turbine downtime and increased major repair rate. For

direct O&M costs any additional CTV time due to increased major repair rate may

not show as strongly due to the dominant effect of offsetting the cost of a HLV with a

CTV.
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Figure 6.9: Percentage cost reduction of predictive maintenance strategies - comparison
of sites (Lost Production Costs).

6.5 Discussion

The choice facing operators and owners with regards to O&M strategies is complex,

and is often a reflection of the technology, monitoring capabilities and contracts in place

at a particular wind farm. Regardless, this analysis aims to provide insight into how

OPEX can be reduced over a wind farm life with alternative maintenance strategies

assuming that advanced monitoring is possible to gain the required insight.

6.5.1 The Cost Impact of Advanced Maintenance Strategies

Two key parameters were analysed for a variety of sites; Pf to simulate a range of

additional failures per turbine per year that are diagnosed early and are repairable

without using a HLV, and PRUL to simulate how early the component was repaired in

relation to the expected remaining useful life before failure, at which time a HLV would

be required. Considering direct O&M costs (transport, staff and repair costs), results

indicate that identifying more faults and repairing them earlier is more important than

utilising more of the component life, for which comparatively lower gains can be made.

This highlights the importance of making informed maintenance decisions, as analysis

shows that the risk of failure and requiring a HLV is much greater than repairing a

component too early and compromising some design life. Due to the much higher cost

of HLVs over CTVs, this is true even if statistically it means the same component
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needs to be repaired several times over the wind farm life. In relation to maintenance

strategies, this suggests that predictive maintenance may be the optimal solution for

offshore wind farms under the conditions that an optimal weather window can be

chosen to limit lost revenue and a HLV can be avoided by the early repair. Having

said this, results also show that lost production can be further reduced over the wind

farm operation lifetime by increasing PRUL through a more condition-based approach,

however gains are limited, therefore a trade-off between further cost savings and the

risk of failure will have to be considered carefully. This decision will ultimately be fault

case specific and require prudent diagnostics and prognostics.

6.5.2 Result Limitations

As with all results presented, it is important to reflect on limitations and the major

causes of uncertainties within the analysis. To reduce uncertainty, failure and repair

rates for the baseline reactive maintenance strategy have been taken from [8], for which

rates were obtained with a population of offshore wind turbines over a number of

years. Other studies do however exist with varying observed rates across different

wind turbine models which would affect calculated costs. Vessel, staff and component

repair costs were taken from the original cost model, and reflect costs at the time the

model was created in 2016, which may not reflect current rates. Another key source of

uncertainty when trying to understand costs is Pf , which as stated previously was set to

values of between 10% and 40%. This range has been chosen to reflect the uncertainty,

as it will ultimately be specific to each site and turbine with various impact factors

such as differing loading patterns, ambient conditions, manufacturing and installation

tolerances and levels of routine maintenance. Future work should attempt to better

define this number in relation to each component and fault type. Results also do not

take into consideration the reliability and extra cost associated with the CMS system

and network infrastructure, which may have some impact on failure rates and overall

costs of implementing predictive and condition based strategies.

144



Chapter 6. Analysis of the Cost Impact of Maintenance Strategies Enabled by
Modern CMS for Offshore Wind Farms

6.6 Conclusion

In conclusion, this chapter has presented analysis in an attempt to bring much needed

clarity on the impact advanced monitoring strategies can have on lifetime O&M costs.

The key findings of this research are as follows:

• With the input parameters described, results showed a potential cost reduction

of up to 12.5% in direct O&M costs (transport, staff and repair costs) and up to

15% reduction in lost production by utilising advanced monitoring strategies.

• Results showed that the major driving factor of realising these savings is through

early intervention to avoid failure and major component replacement, and hence

avert the need to use a HLV and instead use a CTV for a simpler repair.

• If weighing up the risk of component failure and replacing a component too early,

results suggest that it is more cost effective to intervene earlier if HLVs can be

avoided, even if that means more major repairs over the lifetime of the site.

• Using a more condition based approach and pushing component design life closer

to the end of its RUL can further reduce costs, however results suggest that this

could be due to increased availability through reduced lost revenue, rather than

decreasing direct O&M costs.

• As a percentage of total costs potential savings are consistent across wind farm

size and distance from shore up to 50km. Beyond 50km we see a percentage drop

due to increased lost production, however the reasons for this phenomenon are

due to modelling constraints and has been discussed previously.

6.7 Future Work

Future work in this area would be to further validate the results with more sites and

resource allocation. In line with new proposed offshore sites it would also be useful to

increase wind farm size to beyond 200 wind turbines to see if results presented for below

100 hold true for very large sites. This was not completed during this study due to
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CPU limitations. With regards to this methodology specifically, future work could also

involve more accurately choosing values for Pf through analysis of failure records and

root cause analysis (RCA) reports to understand how many major component failures

could on average be prevented. Finally, condition based approaches may involve the

requirements of additional inspections to ensure components do not fail as damage

worsens. The cost of these additional inspections could be explored further through

the introduction of an additional intervention category with specific resource constraints

and requirements.
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Overall Conclusions & Future

Work

The aim of the research is to provide insight into the following research question:

“How can machine learning techniques be leveraged to improve wind turbine gener-

ator diagnostics and prognostics, and what impact can using such approaches have on

the overall wind farm O&M cost?”

Each chapter has presented research to provide insight into a series of smaller re-

search questions, however it is now important to discuss these findings in the context

of the original primary research question above. The conclusions below will attempt to

bring out the pertinent findings of each chapter, however full detail along with all un-

certainties, assumptions and discussion can be found in each individual chapter. This

chapter will conclude by outlining future work, and provide an overview of how the

research and conclusions presented will contribute to the wind industry.

7.1 Conclusions

The conclusions from each chapter are summarised in this section and some overall

discussion points are highlighted.
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7.1.1 Chapter 2 Summary

The literature review first of all provided an overview of wind turbine generator reli-

ability rates, showing that while the generator may not have the highest failure rate,

it does have one of the highest impacts on overall downtime and repair costs of any

drivetrain assembly. This highlights the importance of advanced condition monitoring

and the opportunity to reduce O&M costs through effective and automated methods.

There has been lots of literature published to date on using both SCADA and vibration

data to more accurately and automatically diagnose a range of wind turbine faults, with

techniques and methodologies presented across data processing, feature extraction and

the application of machine learning techniques. This research however has tended to

focus on gearbox faults due to the slightly higher failure rates and cost of repair when

compared to generators. Studies applying techniques to diagnose and isolate a range

of generator faults are not as readily available. The literature review also found that,

although attempts have been made, there are also not enough studies that estimate

remaining useful life of generators and their components, or indeed make any effort to

quantify the O&M cost savings associated with advanced monitoring strategies. This

thesis aims to address these shortcomings.

7.1.2 Chapter 3 Summary

Chapter 3 dealt with wind turbine generator fault diagnostics and more specifically how

using machine learning can enhance traditional vibration and SCADA based analysis.

With regards to vibration analysis, classification algorithms were applied to determine

whether a particular component had a fault by classifying known fault-specific vibration

based features. Results were promising highlighting a real opportunity for practical

applications that can reduce expert engineering hours spent manually classifying faults.

Limitations do however exist due to differing vibration baselines between turbines,

varying operating conditions between sites and similarities between vibration indicators

of different fault types. This required thought and expertise when setting up models

to avoid a large number of false positive predictions.

With regards to SCADA data, there is a large opportunity to monitor wind turbine
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health in a cost effective manner, especially in those turbines that do not have any active

vibration based condition monitoring system. It has been shown that normal behaviour

modelling can be a powerful technique when it comes to detecting changes in operating

behaviour, which has already been widely shown in literature across other components

of the drivetrain. For practical in field applications however SCADA based NBM’s

should be approached with caution. It was demonstrated in this chapter that models

can be case specific, meaning that a different amount of training data and features are

required for each turbine or fault, which could lead to high costs associated with setting

up models and storing data. It is also very difficult to locate the fault without further

analysis or inspection. That being said, SCADA data may still be under utilised in

industry and does offer a cost efficient way of gaining some insight into component

health, if used correctly.

7.1.3 Chapter 4 Summary

Leading on from Chapter 3, Chapter 4 aimed to provide insight into how SCADA and

vibration data could be used together to create a single anomaly detection model for

fault diagnosis, as well as highlight some of the challenges in doing so. A framework

was presented to combine different data streams by building individual NBMs and

assessing the error through a SVM classifier. It was shown that by doing so faults

can be detected more consistently than using an individual model only relying on one

source of information on component health. Models such as this are very specific to

each fault case however, and would be challenging to implement in practice. More

work is required to understand the entire benefits of combining models like this across

different fault types, components, wind turbines and monitoring data sources.

7.1.4 Chapter 5 Summary

Vibration analysis is the most commonly used method of assessing component life and

making a diagnosis. Chapter 5 looked at how data driven methods can be used to take

this one step further and estimate component remaining useful life. Looking at exam-

ples of similar bearing failure across multiple turbines and sites, results showed that
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vibration signatures can vary significantly across sites and operating conditions. This

can be detrimental to classification accuracy when making a prognosis on component

RUL. To navigate this issue a clustering methodology was presented to group vibration

samples by a range of operating conditions including shaft speed, instantaneous torque,

power output and wind speed to give a clear understanding of where each turbine was

on the operating curve when the vibration sample was measured. By doing so prognosis

accuracy was increased. Results also suggests that optimum operating conditions may

exist in which to detect faults and estimate RUL, with accuracy increasing in operating

conditions just before reaching rated power. This could have implications in practice

on setting the parameters for data acquisition for both better performance and opti-

misation of data storage. That being said, with regards to the overall approach and

supervised models in general, the amount of historical failure example data required

could be a major barrier for large scale implementation.

7.1.5 Chapter 6 Summary

One of the key areas with limited publications is quantifying potential cost savings

with regards to predictive maintenance strategies. Chapter 6 aimed to understand

this important element in more detail. Analysis in this chapter looked specifically at

offshore wind farms, where major component failures have the largest impact on both

direct O&M costs and lost production. Results suggest that significant savings can

be made by implementing predictive maintenance strategies, as by intervening earlier

costs associated with HLVs can be reduced. Analysis also indicates that if weighing

up the risk of component failure and replacing a component too early, it is more cost

effective to intervene earlier if HLVs can be avoided, even if that means more major

repairs over the lifetime of the site.

7.2 Discussion

Machine learning can be an effective method to enhance vibration and SCADA analysis,

and provide an automated solution for setting much needed turbine specific thresholds.
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Wind turbines operate under varying speed and loads, which results in differences in

vibration and performance parameters, making one size fits all approaches to alarm

threshold setting sub-optimal by causing false alarms. Additionally, if thresholds are

not set correctly it can cause underlying faults and issues to be missed, leading to

component failure at a substantial cost to owners through extensive repair work and

additional lost production.

Data driven techniques require careful application and rely on expertise in both data

science and wind turbine operation, performance and condition monitoring. Wind farm

data is starting to be much more readily available to operators through careful storage

and digitalisation tools and platforms. The most challenging element in realising the

potential savings of predictive maintenance is most likely down to the assumptions of

what constitutes normal behaviour and if models can be developed with high enough

dimensionality at scale to cope with the varying load conditions and modes of operation

without increasing manual effort dealing with false alarms. Getting relevant examples

of failure on which to base estimates of RUL is also not without its own challenges at

scale, whether that be storing the right data efficiently or simply having confidence in

exact fault types and failure modes after replacement. How transferable examples of

failure are as turbines scale up and new drivetrain designs are installed is also difficult

to know.

With so much variation possible throughout the training and validation processes,

providing a suitable benchmark to assess model performance is also problematic. A

true understanding of model performance in comparison to other techniques can only be

achieved by assessing both the alarms generated by any particular model over time, and

the efficiency of the training process. For the the former, evidence of component health

is required to match any alarms generated with fault progression, a condition which

requires a carefully planned dataset. With regards to the latter, training efficiency

would have to consider multiple criteria such as training length, data quality, number

of features, as well as the ability to handle key operating constraints such as curtailment.

In practice, models that can successfully predict component health while being scaled

across an entire fleet covering all operating zones may be preferable to highly accurate,

151



Chapter 7. Overall Conclusions & Future Work

turbine specific models that require specific training regimes. This trade-off between

model accuracy and scalability is currently not well documented in literature.

Another point worth discussing in relation to the larger research question is with

regards to model retraining. As maintenance is performed operational characteris-

tics change over time, whether that is due to general wear, component replacements,

weather and loading patterns or new control strategies. In real time applications this

means that data driven models require retraining in order to reflect current behaviour

and minimise false alarms. What constitutes an allowable change in normal behaviour

and what constitutes a fault is often a grey area. Again this requires careful considera-

tion by experienced engineers until such time that data driven methods can rely further

on reinforcement learning to make these decisions without risking failure.

7.3 Future Work

Future work has been discussed in detail for each of the four chapters representing

secondary research questions. In terms of importance to industry needs, the focus of

academic study should centre on areas that can aid decision makers and save engineering

time. The first area that can make a difference is through combining data sources for

prognostic purposes, as fault progression is rarely linear and engineers in practice rely

on multiple system parameters to understand component condition and the extent of

any damage before estimating RUL.

Another area is through hybrid-modelling (relying on both physics-based and data-

based modelling) to assist with fault prognosis to more accurately model damage pro-

gression and degradation. This will be particularly useful when trying to use proven

techniques on larger wind turbines with newer drivetrain technology. This could save

time and effort in transferring knowledge with sites or turbines with no data or failure

history.

Finally, the true cost of predictive maintenance needs to be further explored in not

only the context of reliability, direct O&M costs and lost production, but also taking

into consideration the cost associated with increased digitalisation. This could include

such things as increased storage and other IT infrastructure, monitoring contracts,
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software etc. This may be especially important for not only new sites, but for lifetime

extension scenarios when advanced monitoring may be most crucially required.
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