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Abstract

Local Search is a simple and effective approach for solving complex
constrained combinatorial problems. To maximise performance, Local
Search can utilise problem-specific information and be hybridised
with other algorithms in an often intricate fashion. This results in
algorithms that are tightly coupled to a single problem and difficult
to characterise; experience gained whilst solving one problem may
not be applicable in another. Even if it is, the translation can be a
non-trivial task offering little opportunity for code reuse. Constraint
Programming (CP) and Linear Programming (LP) can be applied
to many of the same combinatorial problems as Local Search but do
not exhibit these restrictions. They use a different paradigm; one
where a problem is captured as a general model and then solved by
a independent solver. Improvements to the underlying solver can be
harnessed by any model. The CP community show signs of moving
Local Search in this direction; Constraint-Based Local Search (CBLS)
strives to achieve the CP ideal of “Model + Search”. CBLS provides
access to the performance benefits of Local Search without paying the
price of being specific to a single problem.

This thesis explores whether information to improve the performance
of CBLS can be automatically extracted and exploited without com-
promising the independence of the search and model. To achieve
these goals, we have created a framework built upon the CBLS lan-
guage COMET. This framework primarily focusses on the interface
between two core components: the constraint model, and the search
neighbourhoods. Neighbourhoods define the behaviour of a Local
Search and how it can traverse the search space. By separating the
neighbourhoods from the model, we are able to create an independent
analysis component. The first aspect of our work is to uncover infor-
mation about the interactions between the constraint model and the



search neighbourhoods. The second goal is to look at how informa-
tion about the behaviour of neighbourhoods—with respect to a set
of constraints—can be used within the search process. In particular,
we concentrate on enhancing a form of Local Search called Variable
Neighbourhood Search (VNS) allowing it to make dynamic decisions
based upon the current search state. The resulting system retains
the domain independence of model-based solution technologies whilst
being able to configure itself automatically to a given problem. This
reduces the level of expertise required to adopt CBLS and provides
users with another potential tool for tackling their constraint problems.



A visual representation of this thesis’ contents generated by Wordle™ at http:
//www.wordle.net.
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Chapter 1

Introduction

Work as if you live in the early
days of a better nation.

Alasdair Gray
Writer & Artist

The Cubist artist Pablo Picasso once dismissed computers as useless because “they
can only give you answers”. A noble sentiment, and certainly a pithy sound-bite,
but Picasso seems to do answers a disservice. The natural inquisitiveness of
humans means the world is unlikely to be left in want of questions; answers,
however, are a rarer and more valuable commodity. Computers can answer
problems that are impractical, or even impossible, to calculate manually.

The term Artificial Intelligence (AI) has gripped the public’s imagination
since the field’s mainstream inception in the early 1960s through the media’s
endless depictions of a future filled with human-like robots and despotic computers.
The failure of ambitious early projects, like automatic machine translation or
natural language generation, to live up these overhyped ideals has created the
perception that AI remains more science-fiction than actual science. The reality
is that whilst prestige projects, like domestic robots, remain a way off, the less
glamorous—but ultimately more practical—applications are all around us. From
the facial recognition in modern digital cameras to the shift rosters of hospital
staff, AI can discreetly appear in them all.

Of the issues currently facing the world, the control of energy consumption—
and its related environmental consequences—seem the most pressing. Making
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Chapter 1. Introduction

effective use of resources—be that of energy, capital, time, or labour—will always
be of practical economic interest. These resource assignment problems appear in
many forms such as: staff rostering, production scheduling, timetabling, delivery
routing, etc. When resources are plentiful, solving these problems is relatively
easy; as resources become scarcer finding solutions that respect these tight re-
strictions becomes far more challenging. The problems that we are interested in
have two defining characteristics: firstly, they are combinatorial in nature (i.e.
there are many potential configurations / decisions); secondly, there exists a set of
limitations that determine whether a given configuration is acceptable or not (i.e.
they are constrained). These constrained combinatorial problems can be formally
represented as Constraint Satisfaction Problems (CSPs). This provides a language
for expressing problems that abstracts away the specifics and instead focusses only
on the common elements: the decision variables, their potential assignments, and
the constraints upon those assignments. A solution to a CSP can be checked to see
if it is acceptable in a small amount of time; however, searching through the vast
numbers of potential candidates to find a feasible solution can take exponential
time if done in a naïve, brute-force fashion. Solving CSPs efficiently requires a
more measured use of computational power.

A number of techniques can be used to solve CSPs; we have chosen to focus
on one of the most successful and widespread: the class of iterative-improvement,
neighbourhood search algorithms known as Local Search. The design of Local
Search algorithms usually incorporates domain-specific knowledge and prior ex-
perience. This results in algorithms that perform well in a single setting but are
difficult to reuse and transfer to other problems. Alternative solution techniques
for CSPs, such as Constraint Programming (CP), do not have such limitations.
In CP the search process is entirely independent of the problem definition. The
Constraint-Based Local Search (CBLS) movement has arisen in an attempt to
bring Local Search more in line with CP. The ultimate goal of CBLS is summarised
by the slogan “Local Search = Model + Search”. CBLS provides a modelling
language that allows problems to be captured as generic constraint models; these
CP-style models provide information to guide the search component.

1.1 Research Goals and Contributions

This thesis supports the ideals of CBLS and aims to further separate the Model
and Search components. To apply CP to a problem, a user needs to create a

2



Chapter 1. Introduction

model of their problem in the appropriate language; the search is effectively a
black-box that they do not need to alter. Experienced users, with an understanding
of the solver’s internal processes, may use their knowledge to find solutions more
quickly, however this is not a requirement; CP has a low barrier of entry for
novice users. In CBLS the search component remains the user’s responsibility;
they need to be familiar with the mechanics of the Local Search process and
know how to implement neighbourhoods—the functions that define how a search
will progress. CBLS still requires prior experience to apply successfully; it is
our aim to reduce this prerequisite knowledge and potentially open up CBLS
to a wider audience. Reducing the level of human intervention in Local Search
introduces the risk of removing the very element that has been integral to Local
Search’s success—human intuition. We want reusable search neighbourhoods
for newcomers whilst still allowing more experienced users to supply their own
problem-specific neighbourhoods. To compensate for the potential absence of user
information the system has to be capable of making its own deductions about the
relationships between the search neighbourhoods and a generic constraint model.

The central hypothesis of this work is that relationships between generic
constraint models and search neighbourhoods can be detected automatically and
subsequently used to inform a search procedure.

For the purposes of this thesis, we focus our investigation on two main questions:

• Can useful information be found from a generic model and search neigh-
bourhood?

• If so, how can this information be used within a search to improve perfor-
mance?

The first raises further questions:

• How can the CSP problem definition be connected with the search behaviour?

• Will this require any modelling changes?

• What kind of framework is needed to create a generic reusable system?

• How can the behaviour detection be automated?

The second main question will also require several subquestions:

• Can the neighbourhood information be used to choose a neighbourhood to
search?

3
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• Do the modelling changes allow for more flexibility?

• Can the information provide the user feedback?

The work in this thesis has two related themes: the extraction of behavioural
information, and its subsequent utilisation within a search. The major contribu-
tion of this work is the exploration of the relationship between constraints and
neighbourhoods, and also the creation of a system for automatically uncovering
these connections. This should ultimately reduce the amount of domain-specific
knowledge needed to use Local Search to solve CSPs. This will, hopefully, make
the adoption of Local Search solutions easier and provide another tool that can
be used to more efficiently solve the complex problems. It should also stimulate
research into the design of Local Search neighbourhoods. This is an area that, at
present, is lacking any real guidelines instead preferring to rely on prior experience
and rules of thumb.

Caveats

As well as stating the objectives of this work, it is useful to explicitly set down
the caveats. For the information extraction phase of the work, the intention was
to produce a workable system that could uncover usable relationships between
the model and search. The study of interactions between these components was
not meant to be exhaustive. It is possible that there are certain relationships
(between constraint models and search neighbourhoods) that our system cannot
uncover or classify. There was no intention that this analysis would outperform
human analysis; merely that it was no longer a prerequisite. The detection phase
is not necessarily the most efficient means of acquiring additional information; its
only aim was to prove the concept’s technical feasibility.

For the exploitation of the extracted information, the objective was to show
some of the potential ways that it could be incorporated into a search. We chose to
primarily focus on Variable Neighbourhood Search (VNS) style searches, but there
could be equally valid applications of this reasoning in other metaheuristics. The
hope was that this procedure would be applicable to any problem representable
as a CSP; however, it may not provide any benefits for some problems. We
envisage it being of most use in problems with a variety of different restrictions; we
would not expect it to perform well on problems that have homogenous constraint
models. Finally, we did not set out to compete with, or replace, highly-tuned
problem-specific algorithms; our intention was always generality over specificity.
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1.2 Thesis Outline

This section provides short summaries of the contents of subsequent chapters.
Chapter 2 shows the background literature. Chapters 3 and 4 contain the ex-
perimental work; each contains its own setup, results and discussion. The final
two chapters reflect on the work covered in the preceding chapters; they explore
whether it achieves the goals set out in Section 1.1 and where potential future
extensions exist.

Background and Related Work

Chapter 2 provides an introduction to the core ideas and summarises the previous
work that this thesis builds upon. It starts by introducing the basic Graph
Theory concepts needed to define what is meant by the term neighbourhood. The
Travelling-Salesman Problem (TSP) is used as a sample problem to ground the
examples. There is some discussion of the classical graph search algorithms, tree
search, and the properties of search algorithms in general. After tree search, we
introduce Local Search and its evolution by looking at its application to the TSP.
We outline the elements common to all Local Search algorithms, and explore
the strengths and weaknesses of a simple hill-climbing strategy. Metaheuristics
arose as a response to the inherent deficiencies of Local Search, so the major
algorithms—and their central contributions—are described along with related
nature-inspired search techniques. Special prevalence is given to VNS as it forms
one of the central components of the work in Chapter 4. The focus of this thesis
is on constraint problems, so there is a section introducing CSPs and also the field
of CP. After exploring CP, which behaves like the aforementioned tree search
algorithms, we cover existing work which is situated in a similar area to our own;
the application of Local Search to CSPs. The final section of the chapter outlines
the libraries, frameworks and languages that have been developed to promote
Local Search usage. By the end of the Background and Related Work the reader
should understand what differentiates neighbourhood searches from other graph
searches; what constrained problems are, how they have been solved, and how
Local Search has been applied to them; and our interpretation of the direction
in which the community is moving—towards reusable components exhibiting the
problem / search delineation found in CP.
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Detecting Constraint-Neighbourhood Interactions

Chapter 3 covers the first main theme of this thesis: automatically detecting
the relationships between the neighbourhoods used by a Local Search and the
constraints within a CSP. Previous approaches have required either the manual
classification of these relationships or the use of a specialised modelling language.
The chapter starts with some formal definitions to capture what we mean by
constraint-neighbourhood interactions. We outline the ways that current modelling
practice needs to be altered to achieve these goals; experimental results show that
the proposed changes do not adversely affect performance. To create a reusable
component we cover the design and some implementation details of a framework
in the COMET language. With the necessary architecture in place (to create a
non-problem-specific system) we outline a component for uncovering constraint-
neighbourhood interactions. For the remainder of the thesis the Timetabling
Problem serves as our central example and so we introduce the particular variant
used as part of the International Timetabling Competitions (ITCs). A series of
experiments show that the Interaction Detector is effective and can find relation-
ships for multiple constraints, neighbourhoods, and a variety of model setups. The
first implementation has a weakness for situations where no relationships exist.
We enhance the Interaction Detector (via some additional reasoning) to handle
these scenarios more efficiently. Finally, we look at the reusability and applica-
bility of interaction information and present a caching system to allow off-line
usage of the system. At the conclusion of this chapter the reader will understand
what constraint-neighbourhood interactions are, what the Post-enrolment Based
Timetabling Problem is, and how structural information about this problem can
be extracted automatically with no problem-specific connections.

Exploiting Interaction Information

Continuing from Chapter 3, Chapter 4 investigates how constraint-neighbourhood
interaction information could be used during the search process. The first ex-
periment looks at how a VNS could incorporate interaction information into its
transitions. The chapter then moves on to the ways that a VNS could use the
interactions to create more dynamic neighbourhood ordering that alters depending
on the current search state. We introduce a new search algorithm, Constraint
Directed Variable Neighbourhood Search (CDVNS), that expands upon the idea
of a dynamic VNS. This chapter should have shown the reader some—though by
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no means all—of the ways that interaction information could be applied during
search.

Conclusions and Future Work

The final chapter revisits the major points from Chapters 3 and 4. It connects
the principal themes of each chapter with the research goals from Section 1.1. It
provides a discussion relating sections of work to the objectives that they achieve.
It also comments on the limitations of certain design decisions. By the end of
this chapter the reader should be convinced that this thesis has satisfied all the
intended outcomes.

A thesis cannot hope to cover every aspect or implication of an idea and
as such the final chapter sets out some of the directions that could warrant
continued investigation. Neighbourhoods are a central element of this thesis,
but we do not claim to provide any guidance for creating these functions. We
treat them as black-boxes that can be analysed and exploited automatically; it
would be interesting to explore the the automatic creation of neighbourhood
functions. Similarly, we would like to look at groups of neighbourhoods and
whether collections of neighbourhoods could treated algebraically. The Interaction
Detector from Chapter 3 has some limitations regarding completeness and it would
be desirable to investigate whether other complete techniques could be applied
to overcome these restrictions. Finally, we look at some preliminary work that
tries, using constraint-neighbourhood interactions, to automatically partition a
multi-phase search.

Bibliography

The bibliography lists the full references for all the citations made in this thesis.
Wherever possible the Digital Object Identifier (DOI) for each reference is provided.
DOIs are a way of uniquely identifying documents on the internet. Unlike
Uniform Resource Locators (URLs) which can change, or become broken, DOIs
provide a permanent static reference to a document. To resolve a DOI visit
http://www.doi.org. In the electronic version of this thesis all the DOI links
are active and can be clicked to open up a web browser and take you directly to
the referenced document. Some references will require access to online collections
such as SpringerLink.
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Appendices

Neighbourhoods Summary

This appendix provides detailed information about the neighbourhoods used in
the experiments from Chapters 3 & 4. It starts with a description of the seven
basic types that any subsequent neighbourhood must extend. These abstract
neighbourhoods define what type of moves can be represented within our system
and supply many of the underlying methods needed to create a usable neighbour-
hood. The second section looks at the concrete neighbourhoods; these are the
classes that can be instantiated and used within a search. Some of the concrete
neighbourhoods are termed generics; that is they contain no references to any
problem-specific information. The remaining concrete neighbourhoods are con-
nected to the timetabling application used in Chapters 3 & 4. The final part of
the appendix describes the role of candidate lists and how they can be used at
run-time to customise neighbourhoods’ behaviours.

Additional Data

The final appendix contains extra information relating to the experiments in
Chapters 3 and 4. Results are predominantly conveyed as graphs, however, there
are certain situations where a table may prove more convenient. In cases where
the tabular data was deemed too large or too disruptive to the flow of the text it
appears in this appendix. All the discussion and analysis of the data remains in
the main chapters.

Glossary

The glossary provides short definitions for many of the technical terms and
abbreviations used throughout this thesis. The electronic edition has active links
allowing the reader to select any unfamiliar term or acronym and jump to its
definition in the glossary.

1.3 Usage Notes

This thesis uses a variety of typesetting conventions. References to programmatic
concepts such objects, classes or variables are written in monospaced fonts (e.g.
class A); syntax highlighted in a boldface sans serif font indicates the keywords
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of the language (e.g. forall (i in 1..10)). Web addresses, the names of specific
problem instances, and source code files are displayed as monospaced fonts (e.g.
http://www.strath.ac.uk/cis/, ~/data/problem01.txt). Wherever possible
the names of particular systems are written in the style used by their original
authors (e.g.MAX –MIN Ant System, COMET, EasyLocal++, EasyGenetic).
British English spellings are used unless referring to a concept, or system, that
already has an American English spelling (e.g. taboo vs. Tabu Search). The
electronic version of this thesis has links from the code extracts to their original
files1. This is why the line numbers in the margins of code listings do not usually
start from one; they refer to the line number in the source file that the extract is
from.

1.4 Publications

During the course of the work covered in this thesis a number of publications were
made:

• Alastair Andrew, John Levine, and Derek Long. Constraint Directed Vari-
able Neighbourhood Search. In Yehuda Naveh and Andrea Roli, editors,
Proceedings of the 4th International Workshop on Local Search Techniques
in Constraint Satisfaction, Providence, Rhode Island, USA, September 2007

• Alastair Andrew. Automatically Detecting Neighbourhood Constraint Inter-
actions using Comet. In Kostas Stergiou and Roland Yap, editors, Proceedings
of the CP 2008 Doctoral Programme, pages 7–12, September 2008

• Alastair Andrew and John Levine. Automatically Detecting Neighbourhood
Constraint Interactions using Comet. In Yehuda Naveh and Pierre Flener,
editors, Proceedings of the 5th International Workshop on Local Search
Techniques in Constraint Satisfaction, Sydney, Australia, September 2008

• Alastair Andrew. Exploiting Constraint-Neighbourhood Interactions. In
Frank Hutter and Marco A. Montes de Oca, editors, Proceedings of the Doc-
toral Symposium on Engineering Stochastic Local Search Algorithms (SLS-DS
09), TR/IRIDIA/2009-024, pages 41–45, Université Libre De Bruxelles, Av
F. D. Roosevelt 50, CP 194/6, September 2009

1The code is hosted online so you will require internet access.
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The work presented in Andrew et al. [2007] represents an early iteration of the
ideas that evolved into the first half of Chapter 4. Similarly, the work from Andrew
[2008] and Andrew and Levine [2008] went on to form Chapter 3.
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Background and Related Work

No one should approach the
temple of science with the soul of a
money-changer

Sir Thomas Browne (1605–82)
English Physician & Author

The work presented in this thesis investigates how constrained problems can
be solved by exploiting the relationships between a problem’s constraints and
the neighbourhoods explored by Local Search algorithms. This chapter provides
the necessary background to understand the contribution of this work. Firstly
there is an introduction to the concept of neighbourhoods along with basic graph
terminology. To put Local Search algorithms into context, there is a discussion
of other traditional graph search algorithms. This is followed by a look at the
evolution of Local Search, its main features, and its strengths and weaknesses.
The weaknesses of the basic Local Search approach motivated the development
of another class of algorithms called metaheuristics; a selection of which are
investigated along with other related search strategies such as Genetic Algorithms
(GAs) and Ant Colony Optimisation (ACO). The penultimate section of this
chapter will cover CSPs, CP and how there has been an increasing movement to
combine Local Search with the latter. Finally there will be an overview of some
of the software systems that have been created to ease the implementation and
adoption of Local Search.
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2.1 What are Neighbourhoods?

Everyone will have encountered the concepts of neighbourhoods and neighbours
in their day-to-day lives. These terms are usually associated with geographical
areas and human society. Our neighbours are the people who stay nearby us and
our neighbourhood is the area which surrounds where we live. While we are all
familiar with these terms they contain a lot of ambiguity; does a friend who stays
two streets away qualify as a neighbour? What defines a neighbourhood? Is it an
area with the same post code or telephone prefix? As is so often the case with
natural language there are no right or wrong answers to these questions—they
can be interpreted in multiple ways. To achieve definitions of neighbourhood and
neighbour which are unambiguous we must instead describe them in mathematical
terms. The particular branch of mathematics which can be applied is called Graph
Theory.

In 1736 Swiss mathematician Leonhard Euler laid the foundations for what was
to become Graph Theory. At the time he was residing in the city of Königsberg in
Prussia1. Two branches of the Pregel River2 meet in the town centre where they
create three distinct areas and surround a small island, Kniephof. Fig. 2.1 shows the
layout of Königsberg and its seven bridges as they would have appeared in Euler’s
day. According to legend, one of the popular pastimes for the Königsberg locals
was hypothesising about whether it was possible to walk around the town crossing
each of the bridges only once. The story may be apocryphal but what is certain is
that this puzzle attracted Euler’s interest and he set about trying to find a solution.
Euler proved that for the bridge configuration of Königsberg it was impossible
in his paper “Solutio problematis ad geometriam situs pertinentis” Euler [1736]3,
but more importantly, in doing so he provided a new mathematical notation for
expressing the problem concisely and unambiguously.

In his solution each of the land masses became represented by a single point
known as a vertex. The bridges between the sections of town were abstracted
into edges that connected vertices. The resulting structure is a graph and can be
drawn as shown in Fig. 2.2. This graph conveys the same information as Fig. 2.1
but no longer retains the same layout; the graph is described in terms of its
connections rather than the layout. Instead of representing graphs pictorially they
can be concisely written as sets of vertices and edges. A set is a mathematical

1Now Kaliningrad, Russia
2Russian: Pregoyla
3An English translation of the original Latin text appears in Biggs et al. [1976]
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Figure 2.1: Map of Königsberg in 1652 by Merian-Erben. The bridges are
highlighted in green.

collection of distinct objects. The number of items in a set is its cardinality,
conventionally denoted by surrounding the set’s name with vertical bars on either
side. Membership of an object within a set uses the symbol ∈ and an empty set
can be indicated using ∅.

Definition 1 Formally a graph can be described as follows:

• A graph, G, is comprised of two sets: one of vertices, V (G), and one of
edges, E(G).

• A valid graph must have at least one vertex, |V (G)| ≥ 1 or V (G) 6= ∅;
however, the edge set may be empty, |E(G)| ≥ 0.

• An edge, e = {j, k}, is a connection between two vertices, j and k.

• Vertices connected by an edge are described as being adjacent.

• adjacent(j, k) ⇐⇒ ∃ e ∈ E(G) where e = {j, k}.

Sometimes it is desirable to use graphs to capture scenarios where relationships
only exist in a single direction, e.g. a one-way traffic system within a city. In this
case another type of graph, the directed graph, is used.
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East Königsberg

North Königsberg

South Königsberg

Kniephof

Grün Bridge

Krämer Bridge

Holz Bridge Schmiede Bridge

Honig BridgeKöttel Bridge

Höhe Bridge

Figure 2.2: Graph of the Königsberg bridge layout.

Definition 2 A directed graph (or digraph) is defined as:

• A digraph, D, is almost identical to an undirected graph except that it has a
set of arcs, E(D), instead of edges.

• An arc, a = 〈j, k〉, is a directed edge between two vertices, oriented from j

to k.

Definition 3 Given the Definitions 1 and 2 we can now formally describe neigh-
bourhoods and neighbours:

• Let a vertex v ∈ V (G) have the neighbourhood N(v) which is the set of all
vertices that are adjacent to v.

• N(v) = {x ∈ V (G) : x 6= v ∧ adjacent(x, v)}.

• A vertex n where n ∈ N(v) is called a neighbour of v.

Given that we now have mathematical definitions for graphs and neighbourhoods,
how can these actually be used? In Euler’s solution the vertices replaced the areas
of Königsberg and the edges were the bridges between them. Graphs provide
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Figure 2.3: A graph highlighting the neighbourhood of S, N(S), in green.

a language with which we can express a large variety of physical and abstract
relationships, e.g. telephone network configurations, social circles, and scientific
collaborations etc.

2.2 Operations Research

Operations Research (OR)1 is a branch of applied mathematics concerned with
solving real-world optimisation and logistics problems. The advent of World War
II focused many mathematicians’ research onto practical topics. Cryptography and
the “code-breakers” at Bletchley Park often get the better part of the recognition,
however numerous other equally important problems were tackled; finding the
most efficient configurations for the Atlantic supply convoys and coordinating
anti-aircraft batteries to name just two. After the war the solution techniques
arising from this research were applied to problems which appeared in civilian
industrial settings and in the late 1940s and early 1950s OR started to take off
as a serious research field. The placement of chips on circuit boards, scheduling
of manufacturing processes, rostering staff, routing deliveries and many other
problems fall within the field of OR. These still garner significant research effort
because they remain crucial for businesses; anywhere that time, labour or resource
consumption can be reduced provides businesses with the scope for real cost
savings.

1In Europe Operations Research (OR) is called Operational Research.
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The Travelling-Salesman Problem

The Travelling-Salesman Problem (TSP) is one of OR’s classic optimisation prob-
lems, if not the classic optimisation problem. The premise is that a door-to-door
salesman needs to visit a series of cities. He must visit each only once and return
to his starting point. This style of cyclical graph traversal is known as a tour.
The objective of the TSP is to find a tour which visits all the cities in the short-
est distance possible. In Graph Theory the term for a tour which visits all the
vertices only once (except the start and end) is called a Hamiltonian cycle. It
is similar to the Königsberg Bridge problem discussed in Section 2.1 but rather
than being a decision problem—where the task is to determine whether or not all
bridges can be crossed—it is an optimisation problem. Definition 4 shows the TSP
expressed formally as an optimisation problem. The difference between decision
problems and optimisation problems is minimal. A decision problem can always
be converted into an optimisation problem by rephrasing it from “Does a solution
exist?” to “Does a solution exist with an f(x) < k?” where f(x) is an objective
function being minimised and k is the previous best value.

Definition 4 Given a set of cities C = {c1, c2, c3, . . . , cn} and a matrix of dis-
tances D [n, n] the objective is:

minimise
n−1∑
k=1

D[ck, ck+1] (2.1)

Far from being an academic curio, the TSP occurs in numerous real-world ap-
plications. The most obvious scenario is of a logistics company delivering packages
to customers, but it has been applied to other diverse problems such as circuit
design, robotics control, and Internet Protocol (IP) packet routing. The challenge
of combinatorial optimisation problems is handling the growth of alternatives: for
a TSP problem with n cities there are n factorial, n!, possible configurations to
consider. The evolution of the TSP as well as Combinatorial Optimisation is dealt
with in Schrijver [2005]. A thorough covering of the development of the TSP and
related solution methods can be found in Johnson and McGeoch [1997].

2.3 Graph Search Algorithms

When trying to solve combinatorial problems, like the TSP, there are a variety of
approaches. The simplest technique would be to perform an exhaustive search by
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generating every possible combination of assignments and assessing the resultant
solutions’ quality and feasibility. Visiting every option means that this strategy
is complete. Completeness is an important property for search algorithms; it
guarantees that a solution will be found—if one exists—and, for decision problems,
failure to find a solution is irrefutable proof that the problem was not solvable.
As we mentioned in Section 2.2 for the TSP this would result in n! states being
explored. Consider a 10 city instance: if we wanted to explore an 11 city problem
(i.e. only a 10% size increase) the resulting factorial number of states would be
11×10! (i.e. a 1000% increase). This rapid growth relative to small input increases
is described as the combinatorial explosion. It can cause problems to quickly
become unsolvable within useful time scales. They are computationally intractable.
Aside from the time taken to evaluate every possible alternative, storing all the
solutions in a naïve fashion would require factorial space in memory. To ensure
completeness it is not necessary to store the enumerated solutions, though a
systematic scheme of search exploration is required. Treating the search progress
as a tree allows to solutions to be condensed into paths within the tree. A tree is
a graph which has the properties described in Definition 5. Various metaphors are
used to when describing trees; some making the analogy with physical trees (e.g.
the root node, branches, leaves, etc.) and some drawn from the abstract notion of
a family tree (e.g. parents, children, siblings).

Uninformed Strategies explore the graph in a methodical manner by performing
tree search. A tree is a directed graph that contains no cycles. One vertex is
designated as the root node. Any adjacent vertices are known as children of a
node, it being known as their parent. Any node that has no children is a leaf
node. The depth of a node refers to how many edges away it is from the root.

Definition 5 A tree is a specific type of digraph with the following characteristics:

• the root node is a vertex which has no incoming edges @e ∈ E(G) : ek = root.

• the adjacent vertices to a node are its children.

• vertices with no outgoing edges are called leaf nodes, i.e. they occur at the
end of the branches in a tree.

• the depth, d, of a node is how many steps it is from the root node.

• the branching factor, b, is the number of children from a given node.
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• a tree contains no cycles; that is, there is only a single path from the root to
each node.

Whilst a tree provides a concise structure to capture the search process it does
not give any guidance on how the search should be conducted. Tree traversal and
the more general Graph Search algorithms define the order the trees and graphs
are explored in. They can be split into two main categories: uninformed and
informed (or heuristic).

2.3.1 Uninformed Strategies

Breadth-First Search

Breadth-First Search (BFS) Moore [1959] operates by expanding all the nodes at
the same depth in the tree before exploring any deeper. Fig. 2.4a shows the order
that BFS will visit the nodes in a simple tree. A pleasing property of BFS is that
it is optimal for unweighted graphs (e.g. ones where all decision branches have
the same cost). That is to say, BFS will find the solution at the earliest point in
the tree. There are downsides, though; BFS must keep track of which vertices
have been visited and which still require consideration. In the worst case this can
result in a space complexity of O(bd) when b is the branching factor and d is the
layer of the tree where the optimal solution occurs. The time complexity is also
O(bd), so whilst BFS is optimal and complete it is unlikely to be the most efficient
algorithm applicable.

Depth-First Search

Depth-First Search (DFS) [Russell and Norvig, 2003, p. 75] behaves in a slightly
different fashion and instead of exploring each layer, it expands a chain of children
until no successor can be found. The search then backtracks, retracing its steps
until it reaches a parent which still has unexplored children. Fig. 2.4b shows the
order in which DFS explores a tree. This results in a time complexity, which is
potentially worse than BFS, of O(bm), where m is the maximum depth of the
tree, but a much improved linear space complexity of only O(bm). DFS fails to
perform when searching an infinitely large tree. To compensate for this weakness,
a common variant called Iterative Deepening Depth-First Search (IDDFS) [Russell
and Norvig, 2003, p. 78] has been developed. It works by performing a DFS up
to a specified depth limit. If no solution is found then the limit is increased and
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the search restarts. There is an upper bound after which the whole search will
terminate. IDDFS is complete on finite graphs and (as with BFS) will find the
optimal solution on unweighted graphs.

Dijkstra’s Algorithm

The eponymous algorithm by Dijkstra [1959] is one of the most well-known
uniform-cost search algorithms. Whereas BFS, DFS and their variants explore
nodes without reference to any cost value, Dijkstra’s algorithm adds the notion
of distance. This allows it to find the best solution in a weighted graph. Rather
than following a preset exploration schedule, it selects the nearest node to expand
at each step. The distance to each node, denoted g(x), is updated to reflect the
shortest known path found so far. Once all the neighbours of a node have been
found it is never reassessed. Dijkstra’s algorithm is capable of finding the shortest
path to a goal state; however, the distance metric does not provide an indication
of which nodes are likely to be nearer the goal, only which are nearer the start.

2.3.2 Heuristic Strategies

The Oxford English Dictionary, Soanes [2002], definition for heuristic is:

heuristic /hyuu-uh-riss-tik/ •adj. allowing a person to discover
or learn something for themselves.
- origin Greek heuriskein ‘to find’.

A heuristic in the context of a search algorithm does not allow learning or discovery
per se but does provide the search with additional information for deciding upon
a promising direction. Heuristics are a way of differentiating between nodes for
expansion. In the uniformed strategies, all the potential nodes are equivalent; the
order of discovery determines the order of exploration. High branching factors, or
infinite tree depths, can put many problems beyond BFS, DFS, and IDDFS. This
does not mean that all is lost; just that exhaustive approaches will struggle. Using
additional information in the form of heuristics allows algorithms to prioritise
their search effort and hopefully find solutions faster. The trade-off is an increased
investment in time computing heuristic scores to—hopefully—produce a shorter
overall search run-time.
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(a) The order of node exploration made by
BFS.
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(b) The order of node exploration made by
DFS.

Figure 2.4: Examples of the different tree traversals made by BFS and DFS. The
root node is shown with a double circle and the leaf nodes are shaded green.

Best-First Search

Best-First Search [Russell and Norvig, 2003, pp. 94–95] takes a greedy approach
to node expansion. It uses a heuristic function, h(n), to assign each potential
successor node a score, then chooses the best score for expansion. The heuristic
will depend upon the particular problem being solved, as will the definition of
what qualifies as the best score. The behaviour is similar to a DFS because the
search will continue following child nodes if they provide a heuristic improvement.
When it reaches a leaf node (which is not the goal) then it will backtrack and
revise an earlier decision. Typically all states will eventually be visited; it is
possible to sacrifice completeness by discarding heuristically poor candidates
(rather than delaying their exploration until later). To provide useful information
for an algorithm a heuristic has to encapsulate some problem-specific knowledge.
As a result, heuristics are tightly coupled to particular applications and the
search effectiveness depends upon the heuristic’s accuracy. If a heuristic can be
guaranteed never to overestimate the true distance to the goal state then it is
described as being admissible.
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A* (A-star)

The A* algorithm of Hart et al. [1968] expands upon Dijkstra’s algorithm with
the addition of a heuristic distance-to-goal estimate. The heuristic function, f(x),
in A* is composed of the addition of two sections: g(x), the distance required to
reach the current node (which is the same as Dijkstra’s) and h(x), the estimate of
the distance to the goal state. If the heuristic is admissible then A* is optimal.
Also A* can be converted into Dijkstra’s by returning the same h(x) for every
node. This effectively removes any guidance meaning the search has no way to
decide between future directions.

Branch & Bound

In the OR terminology A* is described as a form of Branch & Bound search. This
approach has two main concepts: the decision points (where the search branches),
and a pruning function which it uses to avoid provably useless subtrees. If the
cost to reach a node is greater than a previously seen node’s cost plus its distance
to the goal, then that path can be pruned. Regardless of how far the node is to
the goal the path is already longer than a point that has been encountered. By
retaining bounds and pruning infeasible branches the search can be made more
efficient whilst retaining completeness.

Graph search algorithms appear in the undergraduate syllabuses of Computer
Science degrees across the globe. Their ubiquity is testament to their importance
for practical problem solving. Search algorithms have been well studied for decades
and can be applied to numerous problems. Self-styled algorist1 and author of “The
Algorithm Design Manual” Professor Steven Skiena volunteers the advice “design
graphs, not algorithms” Skiena [2008, p. 222]. By this he means when faced with
a problem rather than trying to come up with a completely new algorithm it is
often more fruitful to cast the problem into a form that an existing technique can
be used with. For example, BFS can be used to find all the connected components
of a graph or decide whether it is two-colourable.

2.3.3 Algorithm Properties

We have already seen that completeness is an important property for search
algorithms. Another is whether their behaviour is deterministic or stochastic. An

1an algorithm designer
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algorithm which is deterministic will give the same output for the same state each
time. In some situations this is desirable (e.g. when implementing a mathematical
function it seems sensible to always return the same answer for a given input).
For search algorithms determinism is not always such a useful property. A fixed
order of exploration can force the search into repeatedly making poor decisions.
Algorithms which make some random choices are stochastic. Making stochastic
choices reduces the likelihood of the same poor decisions being made repeatedly.

2.3.4 Approximation Algorithms

There are several approaches to deal with the combinatorial explosion and sub-
sequent intractability issues. The simplest would be to give up, admit defeat,
and declare that some problems are just too difficult; where would that leave
science? A second option is to slacken our definition of a solution; approximation
algorithms sacrifice optimality for speed. For optimisation problems, searching for
the optimal solution in a useful time scale may be infeasible—but searching for
high quality solutions may be achievable. This trade-off is not always possible.
Consider a decision problem: either a valid solution has been found, or it has not.
Individual circumstances will dictate how appropriate using an approximation
algorithm is. In many everyday situations a near optimal solution delivered quickly
will suffice. The downside of approximation algorithms is that, unlike the general
Graph Search algorithms, they are only applicable to specific problems. To achieve
their performance they rely on problem properties.

For the TSP a popular approximation strategy is called Nearest Neighbour
Next. This constructs a tour by selecting the nearest city which has not already
been visited. It will quickly produce reasonable solutions; however, their quality
will be dependent on the properties of the particular instance being solved. Another
notable approximation algorithm is the First Fit Decreasing (FFD) scheme used
for the Bin Packing Problem (BPP). In the BPP there are a series of packages
with fixed sizes that must be placed into bins of fixed capacity. The problem is to
fit the packages into the bins such that no bin’s capacity is exceeded and as few
bins as possible are used. The FFD algorithm orders the packages by decreasing
size and then attempts to place the largest unassigned object into the first free bin
with enough space to accommodate it. This means that the algorithm will only
use a new bin when the item will definitely not fit in any of the existing bins. It
has been proven that this approach will produce solutions that use—in the worst
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case—at most 11
9 optimal + 6

9 bins Dósa [2007]. If we do not want to preclude the
option of finding the optimal solution whilst retaining acceptable run times, then
there is a third option: Local Search.

2.4 The Origins of Local Search

In 1958, G. A. Croes, a researcher working for the Exploration and Production
Research Division of the Shell Development Company, submitted a paper to the
journal Operations Research detailing his approach for tackling the TSP (Croes
[1958]). This marked one of the first times that an iterative improvement neigh-
bourhood search was applied to the TSP. The major lasting contribution was the
use of the 2-opt neighbourhood and an iterative improvement strategy. The 2-opt
had in fact appeared nearly three years earlier in a previous Operations Research
article by Flood [1956]. In the context of the TSP the 2-opt neighbourhood is
a function that permutes an existing solution by swapping the positions of two
locations within the current tour to create a selection of successor solutions (the
neighbours). Fig. 2.5 shows an example of this move.

All the graph search algorithms encountered so far have operated in a tree
search manner, starting from a root node and expanding the search out until a
complete solution has been constructed. Iterative improvement algorithms takes
a different approach. They start from a complete solution and then attempt to
optimise it by making a series of small improvements. The idea that problems can
be solved by repeatedly making changes to a candidate solution and then choosing
the best improved successor to replace the candidate is the crux of Local Search.

Providing the initial solution was Hamiltonian then any neighbours generated
by the 2-opt will also remain so. By only creating valid neighbours the search

A CB ED GF

(a) A linear tour of cities A..G for the TSP.

A CB ED GF

(b) A permutation generated by the 2-opt swap-
ping D and G.

Figure 2.5: Example tours for the TSP.
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only evaluates neighbours which could potentially be better. It does not waste
time evaluating neighbours that are infeasible. Seven years later Lin expanded
upon Croes’ work by adapting the 2-opt into the 3-opt. Instead of exchanging the
position of two cities on the tour now three cities were swapped. It took another few
years before Lin and Kernighan expanded Lin’s approach by generalising the 3-opt
neighbourhood into the k-opt neighbourhood. As the values of k increase there
are diminishing search improvement returns versus the increased computation
cost to create the neighbourhood (typically a k value will be 3 or 4 at max). The
real benefit of the k-opt scheme is the flexibility it allows in dynamically switching
between schemes.

The success exhibited by Lin and Kernighan on a well-known hard problem
which had thwarted other more traditional mathematical solution techniques
helped expose and popularise neighbourhood search algorithms. Owing in no
small part to its simplicity, the technique arose a number of times and gath-
ered a variety of names: hill-climbing, local-improvement, neighbourhood search,
iterated-Lin-Kernighan to name a few. Whilst there are some differences in these
algorithms they are all forms of heuristic neighbourhood search and in a bid to
simplify and clarify the terminology we will use the generally accepted term Local
Search to refer to this class of algorithm.

2.5 Overview of Local Search

Local Search covers two distinct approaches, perturbative and constructive; both
operate with the same basic principle of arriving at an improved solution by
making changes to an existing solution. Perturbative starts from a fully assigned
solution which it attempts to alter by creating a number of slight variations and
selecting a new, better solution from amongst them. The perturbative style is the
one most commonly associated with the term Local Search, and when we speak
about Local Search we mean the perturbative style. The constructive style starts
from an empty solution and then at each stage assigns a value to the problem
variables, growing the solution in a similar manner to the tree searches covered
in Section 2.3. A comprehensive exploration of all forms of Local Search can be
found in Hoos and Stützle [2005].

Local Search is a delightfully simple algorithm which can come in a variety
of “flavours” but they all share the same basic ideology and structure (see
Algorithm 1).
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Algorithm 1: Local Search
1 begin
2 S ←− createInitialSolution()
3 while ¬stagnated do
4 for S ′ ∈ exploreNeighbourhood(S) do
5 if acceptanceFunction(S ′) then
6 S ←− S ′

7

Initial Solution

The Initial Solution is the candidate set of assignments that the Local Search
algorithm permutes in the attempt to find a better solution. There are no
restrictions on how this is created. It could be a random assignment of the
problem’s variables or it may be the result of an approximation algorithm or
heuristic scheme.

Neighbourhood

In Section 2.1 we encountered the concept of a neighbourhood in the context
of Graph Theory. The neighbourhood used within a Local Search algorithm is
similar; instead of representing the set of adjacent vertices the neighbourhood
represents the set of adjacent candidate solutions. The term neighbourhood is
usually used to refer to both the function which permutes an existing solution to
generate the set of neighbouring solutions and the resultant set of solutions.

Given that neighbourhoods are central to the operation of Local Search, finding
advice on what properties make a good neighbourhood is surprisingly difficult.
The process has few guidelines or rules that can be followed when implementing
an algorithm. This is partially because the neighbourhood is tightly coupled to
the problem representation being searched over. Retaining what is known as
connectedness is usually advised. This means that from any solution there will
(given enough applications of the neighbourhood) be a path from the current
solution to the optimal configuration.

How the neighbourhood function actually generates the candidate solutions
depends upon the problem representation being searched over. The simplest
possible neighbourhood is created by changing the value of a single variable to a
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new value. We describe this as an atomic neighbourhood because the permutation
it creates cannot be synthesised from any smaller moves. Atomic neighbourhoods
can be used as the basis of larger compound moves. Other researchers such as Di
Gaspero and Schaerf [2003a] and Ågren [2007, p. 33] also promote the idea that
neighbourhoods can be composed from a series of atomic moves. The 2-opt can
be viewed as a compound of two atomic assignment operations.

One of the key characteristics of a neighbourhood is its size, that is, how many
neighbouring solutions it is capable of producing from any given point. Some
neighbourhoods have a fixed size, others are a function based on the size of the
instance being searched. The 2-opt is quadratic in nature and given n variables
generates at most n2−n

2 neighbours (which is equivalent to an
(

n
2

)
binomial choice).

Different problems have given rise to specialised neighbourhoods exploiting
structural properties which have been later generalised to different applications.
One example of this is the Kempe Chain neighbourhood. It started out being
applied to Graph Colouring problems but has spread to other related problems like
Timetabling. Kempe Chains are a compound neighbourhood strategy in which the
neighbourhood size is not fixed, but rather depend upon the configuration being
permuted. A Kempe Chain builds a maximally connected subgraph containing all
the variables with two distinct value assignments. The permutations can then be
generated by swapping the values between the two groups of variables. Another
advanced neighbourhood structure, described by Glover [1996], are Ejection Chains.
They can be thought of as a sequence of moves in which values are ejected from
other variables until a stable state is reached.

Some neighbourhood sizes are connected to the problem instance size—as
problems become larger, the number of states in the neighbourhoods can grow
rapidly. This introduces various problems: chief among them, the traditional
strategy of enumerating all the neighbours and selecting between them may either
be infeasible or undesirable. A simple way of handling this, which requires close
cooperation between the Neighbourhood and Acceptance Functions, involves
assessing each neighbour as it is created, ceasing neighbour generation as soon
as one is found which meets the Acceptance Function’s criteria. Ahuja et al.
[2000, 2002] present techniques for handling what they term very large scale
neighbourhoods. In particular, they highlight how graph solving techniques such as
Network Flows can be used to keep neighbourhood exploration within acceptable
time limits.

Exploring the neighbourhoods in this linear fashion is not the only option.
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Variable Depth Search (VDS) operates by combining single steps from neigh-
bourhoods into one complex move—Lin Kernighan’s famed TSP algorithm used
this approach. Work by Mautor [2002] proposes the concept of Intensification
Neighbourhoods which are a parameterised VDS scheme. A tree of neighbours is
created by applying different neighbourhoods to generate a predefined number of
children at each step. These neighbourhoods can also incorporate cycle detection
to prevent wasteful re-exploration of the same solutions. The Intensification
Neighbourhoods concept also incorporates Mautor and Michelon’s earlier work in
the MIMAUSA neighbourhoods [1997]. Dynasearch by Congram et al. [2002] is
another VDS strategy, using Dynamic Programming to explore neighbourhoods
efficiently. Dynamic Programming is a strategy for obtaining optimal solutions
to problems which can be split into overlapping subproblems and for which the
optimal solution is comprised of optimal subproblem solutions.

Acceptance Function

The Acceptance Function has two main roles: assessing the quality of the solutions
returned by the neighbourhood and deciding which of these neighbours (if any)
should be selected. Assessing the quality of solutions depends upon the specific
problem being solved, some of which (such as the TSP) already have predefined
objectives.

Delta Calculations

In the field of Computer Architecture there is an accepted design principle: “Make
the common case fast” Hennessy and Patterson [2003, p. 39]; the same principle
can be applied to Local Search algorithms. The evaluation of neighbours is the
most common operation in a Local Search and any efficiency gain made here will
lead to a noticeable performance increase. Most neighbours will only differ in
relatively minor ways (though the particular neighbourhood function will define
this), so it follows that their evaluations will not be vastly different either. In this
case recomputing each solution’s fitness from scratch seems wasteful. Instead, it
would be more efficient to just calculate how much they have changed from the
previous solution. This is the principle behind delta calculations: only a minimal
amount of computation is required to evaluate neighbouring solutions. The snag
is that actually implementing this functionality can be challenging. It is tightly
coupled to the neighbourhood and problem.
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Selection Strategy

The most basic selection strategy is to accept the first solution which improves on
the current solution’s fitness—this is known as First Improvement or Hill-Climbing.
The advantage of First Improvement is that it is fast; it only requires exploration
until an improving candidate is found. In the worst case the whole neighbourhood
will have been enumerated. The drawback of First Improvement is that it is
dependent on the order in which the neighbours are traversed. To implement this
strategy there needs to be coupling between the neighbourhood function—it would
be inefficient to generate all the neighbours and then assess them. The other
most popular alternative to First Improvement is known as Best Improvement.
This involves evaluating all the neighbouring solutions and then selecting the one
that has the greatest improvement over the current solution. Best Improvement
guarantees that the search will select the most improving move. However, it does
mean that the neighbourhood needs to be fully explored at each iteration. If the
neighbourhood is large this can seriously limit performance. If the search finds
itself in a situation where none of the neighbouring solutions are improvements
then it is said to have reached a local optima. The question of whether it is
better to choose First or Best Improvement depends on a variety of factors such
as the problem size and the neighbourhood being searched. Work by Hansen and
Mladenović [2006] on the TSP using the 2-opt strategy gives results indicating
that First Improvement is the better choice.

Intensification vs. Diversification

The acceptance function is responsible for balancing two conflicting forces: in-
tensification and diversification. Intensification relates to how aggressively the
search moves towards local optima. A Best Improvement acceptance strategy
is focused on moving to the optima as quickly as possible. This is not always
desirable; the more intense a search is, the more likely it is to become trapped at
the nearest local optima. Diversification counteracts the effect of intensification.
The more diverse a search is, the more widely it samples from the search space
and the more likely it is to find areas of high quality solutions. Diversification can
be achieved in several ways: exploring larger neighbourhoods (which allows more
of the search space to potentially be visited), and accepting non-improving—or
even random—moves.
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Search Landscape

In the terminology of Local Search geographical metaphors are used as a way of
conceptualising the abstract nature of the search behaviour. Indeed, Hill-Climbing
has become synonymous with Local Search in some quarters. The majority of
these metaphors are a result of describing the search space as the search (or fitness)
landscape. The landscape is a product of two components: the neighbourhood
being explored and the heuristic evaluation of the neighbours. Changing either
of these elements can alter the landscape. The landscape is usually depicted
as a two-dimensional graph, where the y-axis indicates the fitness of states and
the x-axis shows the proximity of neighbouring solutions. The resulting image,
such as Fig. 2.6, shows a cross-section of a landscape’s topography. The peaks
in the landscape are local optima, the highest peak is the global optimum. If
the search accepts only improving neighbours then it will become trapped at the
optima nearest the starting solution. Plateaux are another important landscape
feature that are regularly encountered. These are regions of the search space
where all the neighbouring solutions have the same fitness evaluation. For greedy
heuristically guided algorithms such as Local Search, plateaux can cause problems:
Local Search relies on the changing of the solution fitness gradient. In plateaux
there is no heuristic information with which to disambiguate potential successors.
Local Search can become trapped exploring plateaux due its memoryless nature.
Allowing the acceptance of non-worsening moves lets a search wander through a
plateau.

The performance of Local Search depends in part upon the variability or
ruggedness of the search landscape. Local Search is more suited to landscapes
which have smoother profiles. Larger numbers of local optima mean the search is
likely to become trapped more quickly. Another contributor to the success of the
improvement strategies is the idea of a Fitness-Distance Correlation (FDC). This
basically expresses the notion that a solution with a higher fitness will be closer to
the optimal solution than a lower fitness solution and that there will be a higher
density of local optima near the global optima. Related to the FDC is the idea
that the search landscape contains basins (of attraction). A basin is the collection
of all the neighbours from which following the gradient will lead to the same
optima. In the labelling of Fig. 2.6 the image is shown as a maximisation problem;
in this case the basins of attraction are actually upwards (their naming seems
more intuitive when dealing with minimisation). Depending on which basin the
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search is in determines which of the optima it can reach. Hoos and Stützle [2005,
Chp. 5, p. 203] covers the theoretical and practical aspects of search spaces for
Local Search in some depth. They expand upon some more advanced landscape
concepts (such as the characterisation of search positions and plateau connection
graphs) which are beyond the scope of this thesis.

Plateau

Global Optimum

Local Optima

F
it
n
es
s

Search Landscape

Figure 2.6: An example search landscape highlighting optima (both local and
global) as well as a plateau.

30



Chapter 2. Background and Related Work

2.6 Strengths and Weaknesses of Local Search

Strengths

Simple Structure Perhaps one of the main contributors to the widespread
adoption of Local Search (other than its problem solving performance) is its
conceptual simplicity. Take a solution, make some alterations; if they improve
the solution, keep them. Otherwise, discard them. Iterative improvement is
easy to understand and has a compact structure; Algorithm 1 shows the main
elements in only a few lines of pseudo code.

Small Memory Usage Because Local Search does not try to retain the
entire search tree, it can be applied to problems which are far larger than
exhaustive techniques could manage.

Any-time Behaviour As a Local Search progresses it retains the best solu-
tion it has encountered so far. This means that the search can be stopped
at any point and the best solution encountered so far can be returned. For
constructive algorithms the search needs to have been allowed to finish before
a complete solution could be returned. The any-time property means that
Local Search can be easily combined with other techniques. A specialised
construction algorithm could be used to find a solution which is then passed
to a Local Search to optimise.

Fast Evaluations By using delta calculations, Local Search can reduce the
computational expense of exploring the search space and consequently can
visit more solutions than other techniques.

Weaknesses

Of course Local Search is not without its drawbacks. Foremost among these are
its tendency to become trapped at local optima. By only selecting improving
neighbours, the search intensifies around a single local optima. Most likely this
will not be the global optimal. The other main issue is that it is not complete.
Local Search algorithms traverse the search space by exploring the surrounding
neighbours from a particular point and due to their memoryless nature the same
solution may be reached multiple times whilst others are never reached. The fact
that not all solutions are explored means that Local Search algorithms in their
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basic form are incomplete. Even techniques that are complete will no longer be so
if they are halted before they have reached their termination state.

When Local Search algorithms make stochastic choices then they can treated as
Probabilistically Approximately Complete (PAC) [Hoos and Stützle, 2005, p. 155].
Although in most practical situations the algorithm will still be incomplete, PAC
means that due to the random nature of the search—and given an unlimited
amount of time—completeness will be achieved. Work by Fang and Ruml [2004]
presented a method of creating a complete Local Search (for solving Satisfiability
problems). They achieve this by using (in the worst case) an exponential space to
store learnt clauses (which act as a form of memory).

2.7 The Rise of Metaheuristics

Beginning in the 1980s and reaching critical mass in the 1990s, a series of algorith-
mic techniques were developed which became collectively known as metaheuristics.
In Section 2.3.2 we encountered the notion of heuristics, which are schemes for
estimating the quality of solutions to problems. In keeping with the naming
conventions of Computer Science, the prefix meta was used to denote that these
new techniques were somehow beyond and more abstract than problem-specific
heuristics. These techniques combine the basic Local Search idea of iterative
improvement with a variety of behaviours to overcome some of the weaknesses
inherent in a simple first-improvement Local Search.

Iterated Local Search

In Lourenço et al. [2003] they describe a strategy called Iterated Local Search
(ILS) which runs multiple Local Searches and uses random disruption to prevent
the search becoming trapped at the same local optima repeatedly. The four
main components of ILS (as shown in Algorithm 2) are: the Initial Solution, the
subsidiary Local Search, the Perturbation Function, and the Acceptance Function.
The Initial Solution fulfils exactly the same role as within a normal Local Search.
The Local Search in an ILS optimises the current solution until no improvements
can be made and it stagnates at a local optima. In a Local Search search the
assumption would be that this is the best state available. Unfortunately this
is unlikely to be true. Different types of search could replace the subsidiary
Local Search. However, the fact that just a simple hill-climbing Local Search will
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converge quickly on an optima allows for a larger number of ILS iterations.

Algorithm 2: Iterated Local Search
1 begin
2 S ←− createInitialSolution()
3 S ←− localSearch(S)
4 while canContinue do
5 S ′ ←− perturbationFunction(S)
6 S∗′ ←− localSearch(S ′)
7 if acceptanceFunction(S∗′) then
8 S ←− S∗′

9

10 else
11 S ←− S ′

The Perturbation Function takes a solution and disrupts it in some way to
create a new solution. The hope is that this perturbation will place the search into
a new basin where it can reach new—potentially better—optima. Local Search
is applied to this new solution. If the search stagnates at a state better than
previously reached then it becomes the point future perturbations are made from.
If the state reached proves to be worse than previously encountered the previous
solution is restored and another perturbation is made from there. The Acceptance
Function within the ILS makes the decision regarding whether the current local
optima should be adopted as the best solution.

The form of the disruption or perturbation is important for the effectiveness
of the ILS. Too small an alteration to the stagnant solution, and there is a higher
chance the search will become trapped at the same optima again. Too large
a disruption, and the search will lose the ability to intensify around a suitable
optima. Typical schemes for creating this new move are simply selecting a random
compound move from a neighbourhood larger than the one being explored by the
Local Search component. Any move which cannot be “undone” by a single Local
Search step is likely to be useful.

Simulated Annealing

When making high quality steel it is important to cool the molten alloy slowly
in a series of stages. This allows the atoms within the steel to settle into a
crystalline structure mirroring the minimal energy configuration, thus producing a
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Algorithm 3: Simulated Annealing
1 begin
2 S ←− createInitialSolution()
3 T ←− setInitialTemperature()
4 aS ←− createAnnealingSchedule()
5 while time do
6 for S ′ ∈ exploreNeighbourhood(S) do
7 if acceptanceFunction(S ′) || acceptAtTemperature(S ′, T)

then
8 S ←− S ′

9 T ←− updateTemperature(aS)

strong and flexible end product. The process is known as annealing. Initially the
connection between search algorithms and metallurgy may seem fairly incongruous
but both are concerned with achieving stable optimal configurations—be that
of atoms within steel or value-to-variable assignments. Simulated Annealing
(SA) Kirkpatrick et al. [1983] works by introducing an element of randomness into
the acceptance function. Improving states are always accepted but as shown in
Algorithm 3, non improving solutions can be accepted with a probability.

The key feature is that as the search continues the likelihood of accepting
a non-improving solution is decreased, so the search “settles” around a single
optima. Controlling the decrease of the acceptance probability is the annealing
or cooling schedule which specifies what the temperature (which in turn controls
the acceptance rate) is at each stage of the search. The actual acceptance
criteria at each temperature is based on work by Metropolis et al. [1953] into the
simulation of energy configurations within molecules. The Metropolis calculation
is an exponential function which is relatively expensive to compute so it is not
uncommon to find SA implementations which cache a selection of these values as an
optimisation. In addition to defining an annealing schedule, SA requires the setting
of an initial temperature which determines the starting level of diversification.

Simulated Annealing Variants

A variant of SA called Threshold Accepting (TA) was proposed in Dueck and
Scheuer [1990]. Rather than performing the expensive Metropolis calculation,
worsening solutions are always accepted provided they are within a certain bound
which is decreased over time. The later work of Dueck [1993] adapted the TA
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algorithm and created two variants: the Great Deluge Algorithm (GDA), and
the Record-to-Record Travel (RRT) algorithm. For the GDA they added a
“rain” parameter which determines by how much the acceptance threshold, or
(in their parlance) the “water level”, increases after every worsening acceptance.
The original TA algorithm required the specification of a full threshold decrease
schedule. The “rain” parameter removes the need for this. The RRT algorithm
is an alternative which replaces their water-based metaphor with the concept of
deviation. Any solution whose quality is greater than the best current solution
minus a deviation parameter will be accepted. If the quality is better than the
best so far found then it replaces the best solution.

The insight behind SA and the related algorithms is that initially they allow
diversification but over time this is gradually reduced, forcing the search to
intensify around a single (and hopefully global) optima. The initial diversification
overcomes Local Search’s propensity to become trapped at the nearest local optima.

Tabu Search

Algorithm 4: Tabu Search
1 begin
2 S ←− createInitialSolution()
3 T ←− initialiseTabuList()
4 while time do
5 for S ′ ∈ exploreNeighbourhood(S) do
6 if acceptanceFunction(S ′) && ¬isTabu(S ′) then
7 S ←− S ′

8 updateTabuList(S)

One of Local Search’s strengths is its small memory usage compared with
complete tree search algorithms. By dispensing with a complete record of all the
solutions explored, Local Search leaves itself open to revisiting states. Tabu Search
(TS) Glover [1989, 1990], Glover and Laguna [1997] offers a solution—a short-term
memory of recently visited states. As a TS progresses then the solutions are added
to a structure known as the tabu list. Typically the simplest form of tabu list
is implemented as a fixed length queue and as new solutions are added, older
solutions are removed. Whilst searching, any neighbours which appear in the tabu
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list are ignored to prevent fruitless re-exploration. TS chooses the best non-tabu
neighbour it can find. It may be that due to the restrictions placed by the contents
of the tabu list that this solution may be a worsening step. The number of search
iterations solutions are designated as taboo for is known as the tabu tenure. This
introduces design issues of how long the tabu tenure should be; too large becomes
prohibitively expensive and negates the small memory advantage of Local Search;
too small and the search can unwittingly find itself caught within cycles.

Whilst initially Glover used only a short-term memory, later expansions of TS
added a longer-term memory. Remembering a collection of high quality solutions
which have been previously encountered is the idea behind the elite candidate
solutions strategy. The search can choose to restart from a member of the elite
pool. However, the previous tabu restrictions are lifted, allowing the search to
progress in a different direction than was possible when the state was initially
encountered. The elite solutions allow the search to intensify around potentially
fruitful areas of the search space. ILS operates like a restricted form of this,
having only a single elite solution. Another common feature found in TSs is the
aspiration criterion, which allows states that may have been designated tabu to
still be selected if they will lead to a fitness improvement.

TS is a dissuasion based search where the algorithm is attempting to create
a larger diversity by forcing the search towards unexplored areas. The elite
candidates mean that when promising regions are found they can be returned to
later and hopefully improved upon.

Dynamic Local Search

The term dynamic is used in various contexts when discussing Local Search.
In Hertz et al. [1997] they argue that TS can be viewed as a dynamic neighbourhood
search. For a given state S, the neighbourhood of candidate solutions no longer
solely depends upon those returned by the neighbourhood function, N(S), but
is also influenced by the contents of the tabu list (which changes during the
search process). Dynamic Hill Climbing by de la Maza and Yuret [1994] is an
optimisation technique which performs a trajectory based search through a 2-d
cartesian space and shares more in common with LP than Local Search. However,
neither of these techniques are what are classified as Dynamic Local Search (DLS),
which encompasses a range of algorithms who operate by applying weightings to
the individual components of solutions in a bid to penalise undesirable aspects.
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Probably the most well-known example of a DLS is Guided Local Search (GLS)
by Voudouris [1997], Voudouris and Tsang [1995, 2003]. Algorithm 5 shows the
structure of the GLS algorithm. When the search reaches a local optima this is
with respect to the current objective function, the weightings within the objective
function are changed and the Local Search is repeated. The key factor is that
the best solution is maintained with respect to the original evaluation function,
not subject to any penalty weightings. DLS strategies highlight how artificial and
malleable the search landscape is. It need not be a rigid structure; by manipulating
its characteristics it is possible to create a topography more amenable to Local
Search.

Algorithm 5: Guided Local Search
1 begin
2 S ←− createInitialSolution()
3 P ←− initialisePenalties()
4 while time do
5 for S ′ ∈ exploreNeighbourhood(S) do
6 if acceptanceFunction(S ′, P) then
7 S ←− S ′

8 updatePenalties()

Adaptive Iterated Construction Search

Greedy Randomised Adaptive Search Procedures (GRASP) by Feo and Resende
[1989] is a constructive Local Search algorithm which uses a greedy heuristic to
build a solution which is then passed to a Local Search. Each potential assignment
is given a heuristic score and the initial constructive phase selects components
based upon their heuristic ranking. When it has assembled a complete solution
this is used as the starting point for a Local Search. When the Local Search
becomes trapped at a local optima, a new candidate solution is constructed and
the process begins again. The important part of the GRASP system is that there
is an element of randomness in the construction heuristic, it does not always
choose the best component; this allows a diverse selection of initial solutions to
be constructed.

Starting from an already promising initial solution means that the Local Search
component will typically reach a local optima faster than if it were starting from
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a completely random point. The adaptive element of the search refers to the fact
that a component’s heuristic evaluation depends upon the existing decisions.

A slight variant on the GRASP idea is that of Adaptive Iterated Construction
Search (AICS). In addition to the construction and Local Search phases AICS
has an operation which updates the weightings given to the components in the
next constructive phase. “Squeaky Wheel” Optimization (SWO) by Joslin and
Clements [1999] is an example of an AICS. Possibly inspired by (and certainly
named after) the old adage that “the squeaky wheel gets the grease”, SWO operates
by making a greedy constructive solution. The construction section attempts
to assign the variables based upon their priority. Once a complete solution is
constructed the algorithm identifies variables which it classifies as trouble makers.
These are the variables that increase the objective function or cause constraints
to remain unsatisfied. The priority of these trouble makers is increased so that at
the next iteration they will be assigned earlier in the construction process.

AICS’s interleaving of construction and search is similar to the ILS and TS
strategy of retaining elite solutions to restart further Local Searches from. The
difference being that rather than uncovering these high quality starting locations
during search, AICS algorithms try to explicitly construct them first.

Random Restarts

It is debatable whether random restarts are technically a metaheuristic; they do
not manipulate the heuristic function of the Local Search algorithm. However,
random restarts are a strategy which can be used to enhance the performance of
Local Search algorithms and mitigate against some of the weaknesses, and in that
sense they require discussion alongside SA and TS and the other more canonical
metaheuristic techniques. Random restarts work as follows: after a given iteration
limit has been exceeded (or when the search reaches an optima) the search is
restarted. In a constructive Local Search situation the search will start from an
empty state. In the more common perturbative Local Search, the search will start
from a randomly initialised solution.

This technique has been widely used and occurs even in the early Local Search
literature such as Lin [1965]. In Lin’s case the restart strategy was being used to
try to gain some notion of whether a solution was indeed optimal. The idea was
that if from a large number of random runs the search only reached a small set of
the solutions then the best of those solutions was likely to be the global optimum.
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This does not constitute a proof of optimality but in keeping with the theme of
heuristics it offers a rough rule of thumb.

Many of the interesting combinatorial problems exhibit what is known as a
heavy-tailed distribution. Informally this means that the longer a search progresses
for the more likely it is that it will not find a solution. This property can actually
be exploited and in Gomes et al. [1997] they show there is a median point after
which the probability of finding a solution by stopping the search and restarting
is higher than by continued search. If the search has not terminated by reaching
this point then it should be restarted.

Random Walks

As with random restarts, random walks are a strategy or component—rather
than fully fledged metaheuristic algorithm—for allowing a GLS to escape from
local optima. They first gained widespread attention as part of the WalkSAT
(WSAT) algorithm by Selman and Kautz [1993]. Boolean Satisfiability (SAT) is
another of the classic NP-complete problems. It was the first problem which was
proved to be NP-complete by Cook [1971]. This allowed the complexity of many
other problems, such as the TSP, to be established via reduction to SAT. The
conventional form of SAT is 3-SAT because it is the simplest variety which the
more general k−SAT can be converted into whilst also remaining NP-complete.

Definition 6 SAT can be defined as:

• a finite set of variables known as literals, V, {x1, x2, x3, . . . , xi} where i ∈ N.

• the literals are boolean and can only be either true (>) or false (⊥).

• literals can be negated, denoted by the ¬ operator.

• a clause is a disjunction of literals of the form (x1 ∨ ¬x2 ∨ x4).

• the number of literals in the clauses identifies the form of SAT. 3-SAT is
most widely used, though 2-SAT1 and the more general k−SAT are also
common.

• SAT problems are expressed in Conjunctive Normal Form (CNF) which
means all the disjunctive clauses are connected by conjunctions e.g. (x1 ∨
¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4).

1Note that 2-SAT is no longer NP-complete.

39



Chapter 2. Background and Related Work

• the aim of SAT is to find a set of variable assignments such that all the
clauses evaluate to true.

• a slight variant is MAX-SAT where the goal is to find the maximum number
of clauses that can be satisfied.

One of the earliest Local Search SAT solvers was the GSAT algorithm also
by Selman et al. [1992]. For the previous 30 years the backtracking tree search
Davis Putnam Logemann Loveland (DPLL) algorithm was the state of the art for
SAT solvers; however, GSAT showed that other approaches could be competitive.
The GSAT algorithm operates by starting from a random assignment of truth
values to the literals and then alternates (or “flips”) the literal which leads the
largest increase in the number of satisfied clauses. At each iteration it will only
change a single literal. Where multiple literals would cause the same increase
then it selects one them randomly. There are two main parameters, described
as MAX-FLIPS and MAX-TRIES. The former puts an upper bound on the
number of assignments that should be tried before restarting the search. The
latter limits the number of restarts that occur. GSAT’s success paved the way
for subsequent Local Search SAT solvers and in particular the WSAT family of
algorithms also developed by Selman and Kautz [1993], Selman et al. [1994]. WSAT
randomly selects an unsatisfied clause and then chooses either a random variable
within that clause to flip or the variable which causes the largest improvement
(as in GSAT). WSAT also weights the unsatisfied clauses in a similar fashion to
AICS algorithms. Random walks enhance the diversification of a search allowing
unrestricted movement through the search space. A random walk is like a less
extreme restart. A restart can place the search at any position in the landscape;
each random walk step will only alter the solution by a fixed amount.

2.8 Nature-inspired Algorithms

Iterative improvement methods such as Local Search and metaheuristics can
be applied to a wide variety of problems, but they are not the only possible
algorithms. No discussion of Local Search would be complete without mentioning
nature-inspired algorithms. In many respects these techniques can be viewed
as forms of Local Search but for historical reasons they tend to be thought of
as distinct. So far the techniques covered have focused on improving only a
single solution at a time (though there may be multiple elite candidates stored).

40



Chapter 2. Background and Related Work

Nature-inspired techniques tend to have a pool of solutions from which multiple
candidates are being improved at any one time. Having multiple explorations
allows a greater diversity to be maintained.

Genetic Algorithms

At the same time as the early groundwork of AI was being researched there was the
initial work on Genetic Programming (GP) being performed by the likes of Fogel
et al. [1966]. GP attempts to evolve programs by manipulating their structure.
This approach is typically applied to languages which have tree structures such as
Lisp. However, it was Holland [1975] and his group’s work into Genetic Algorithms
(GAs) which proved more influential. GAs are a class of evolutionary algorithms
directly inspired by the way in which living species adapt to their environments
and problems.

The terminology of GAs is strongly influenced by biology—potential solutions
are represented by arrays of variables called genotypes or chromosomes. The
individual variables within these genotypes are genes and the position of a gene
within the genotype is its locus. The values which a gene can be assigned are
called its alleles. The canonical form of GAs has binary alleles of 0 or 1 but larger
domains are possible. Whilst there is a divergence in expressing basic concepts
there has also been cross-fertilisation of ideas. Several important developments
such as that of the fitness landscape or the FDC covered in Section 2.5.3 were
assimilated from the GA field (the former actually being taken from earlier work
by biologist Sewell Wright in the 1930s [Mitchell, 1998, p. 8]).

Algorithm 6: Genetic Algorithm
1 begin
2 P ←− createInitialPopulation
3 while time do
4 best←− selectFittestIndividuals(P)
5 new ←− applyMutationAndCrossover(best)
6 P ←− replaceIndividuals(P,new)

The novelty of GAs is the combination of this simplistic biological represen-
tation with a simulated evolutionary process shown in Algorithm 6. Darwinian
evolution contained the principles of “natural selection” and the so-called “survival
of the fittest”. In a Darwinian sense fitness is measured in terms of success at
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reproducing—an organism which manages to reproduce is “fit”. In the context of
a GA the fitness of a chromosome is dictated by a fitness function. GAs maintain
a population of multiple solutions. To ensure that future populations contain
promising solutions, GAs use a mechanism called selection to retain a specific
number of the top scoring chromosomes.

Where GAs differ from Local Search (other than their increased solution pool)
is in their neighbourhoods. New solutions are created by recombining parent
solutions using cross-over. Cross-over is the process by which two “parent” solutions
have part of their chromosomes exchanged to create a new “child” solution. A locus
within the chromosome is selected and the genes before the locus from one parent
replace those in the other parent. More advanced cross-over methods can of course
be applied which have multiple cross-over loci. In nature, children are not exact
copies of their parents. Random variations in their genes occur. Environmental
factors can also alter our DNA, such as exposure to radiation etc. Mutation within
GAs is created by the random alteration of genes within a chromosome. This
random manipulation fills a similar role to the perturbation functions within an
ILS or random walks in WSAT adding diversity to the population.

Evolutionary algorithms are classified using a µ + λ notation where µ is the
number of parents and λ is the number of children in the population. The
simplest evolutionary strategy is known as a 1 + 1 strategy. This means that
from a population of a single parent there is a single offspring. Exactly the same
dynamic is found within Local Search algorithms—a candidate solution being
permuted to produce a new solution which can either be selected or not. A good
introductory text covering the background and application of GAs can be found
in Mitchell [1998]. As well as covering the main features of GAs there is also
some comparison of GAs against Local Search techniques. Specifically, Chapter
4 expands upon ideas introduced in an earlier paper by Mitchell et al. [1993]
which aims to investigate when a GA will outperform a simple Hill-Climbing Local
Search. They highlight that GAs have the advantage of an inherent parallelism
due to a population of solutions. However, they make the narrow assumption
that a Local Search will only be able to alter a single bit in the solution. Local
Searches employ a wide variety of neighbourhoods capable of transitioning between
solutions in more complex ways than single bit alterations.
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Algorithm 7: Ant Colony Optimization
1 begin
2 P ←− initialisePheromoneMatrix()
3 while time do
4 S ←− createAntsSolutions()
5 foreach s ∈ S do
6 s′ ←− runLocalSearch(s)

7 updatePheromoneMatrix()

Ant Colony Optimization

The second nature-inspired algorithm which warrants discussion is Ant Colony
Optimisation (ACO), introduced by Dorigo et al. [1991]. ACO takes its inspiration
from the way that real ants behave. Biologists noticed that ants are capable of
finding efficient paths to food and other important resources. As ants travel they
leave a scent trail of pheromones that other ants can detect and follow. In a
scavenging situation, the ants will leave their nests and search out food. The ant
which returns first will have left the most intense trail (since its return journey will
have increased the amount of pheromones present). Subsequent ants can choose
to either forge off in their own directions or follow the existing (and appealing)
trail. The strength of the pheromone trails decay over time and so paths which
are not in frequent use become less attractive to other ants.

ACO uses virtual ants to construct solutions. A pheromone matrix is connected
to the values which the ants assign. During each path construction, the ants can
choose either to follow the directions of the pheromone matrix or randomly assign
their own values. The amount of pheromone determines how likely an ant is to
follow an existing choice. This is a constructive style of Local Search which is
closely related to the AICS scheme. The pheromone trails play the same role
as the penalty weightings in the AICS search. The main difference is that the
penalty weighting within an AICS algorithm does not decay. Algorithm 7 shows
the structure of an ACO implementation. More information about the design and
application of ACOs can be found in Dorigo and Stützle [2004].

Observations

The metaheuristics and related techniques which we have covered in the previous
sections have attempted to address the problem of the search becoming trapped at
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local optima through several core ideas: accepting non-improving moves, making
random moves, starting from multiple regions in the search space. Most commonly,
the acceptance function is manipulated so that worsening (or non-improving)
solutions can be selected. These worsening steps can either be explicitly selected
or the heuristic can be weighted so that they appear to be improving steps. The
effect of these manipulations is to make the landscape seem smoother and easier
to traverse. Following random moves or randomly disrupting from local optima
aids diversification. Rather than trying to explicitly control the nature of the
landscape, adding increasing randomness into the search ignores the constraints
of the landscape. The addition of memory can both steer the search away from
previously visited solutions and suggest the inclusion of desirable attributes.
Memory prevents the search from repeatedly making the same mistakes and
can be used to prune out attractive yet familiar areas, forcing the search in
new directions. Retaining good properties means that search will explore more
intensively around existing high quality solutions and, if the FDC assumption
holds, other high quality solutions should be nearby. Searching from multiple
diverse starting locations can allow a greater coverage of the search space. If the
search is too focused on a single area it may never encounter the global optima
because the current solution requires too many changes. By having multiple
disjoint search locations it reduces the need for any one solution to be vastly
altered. These multiple search locations can either be maintained in parallel as a
pool or, in the case of ILS, are achieved via the disruptions of the perturbation
function.

2.9 Parameterisation

Whilst the metaheuristics and associated technologies have overcome many of the
weaknesses that were present in a basic first-improvement Local Search strategy,
they have not come without a cost. There has been a large increase in the number
of parameters upon which an algorithm’s performance depends. ILS requires
some stagnation threshold and a perturbation threshold; SA requires an annealing
schedule and initial temperature; TS needs a tabu list length and a tabu tenure;
GLS requires the definition of a weighting scheme; GAs need a mutation rate,
population size, cross-over likelihood, etc. In papers describing applications of
these techniques the authors will invariably include some discussion about their
parameter settings and some justification as to why their particular settings were
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chosen. This does not mean that these settings are transferable to other problems
(or even instances of the same problem). Getting strong performance from these
techniques requires a large amount of manual parameter tuning which is tedious at
best and introduces the possibility that sub-optimal performance is being reported.

2.9.1 Automatic Algorithm Configuration

The multi-tac system by Minton [1996] was developed to configure the heuristic
used in CSP solvers. Choices about what strategy to use for assigning variables
or how much pruning to do are defined as parameterised decisions, allowing
the system to alter the configuration to solve a given problem. A more general
parameter tuning system is F-Race by Birattari et al. [2002] which evaluates
potential parameter configurations using a tournament strategy. As with GAs,
the population needs to be pruned. If a configuration becomes statistically worse
than competing alternatives it is removed. Another approach is the ParamILS
family by Hutter et al. [2006, 2009] which tries to tune algorithm parameters
via—appropriately enough—a Local Search. The improvement gained after finding
the correct parameter configuration for an algorithm can be significant. Hutter
et al.’s tuning of the Spear SAT solver took it from being competitive (in terms
of number of problems solved) yet slow, to being the state-of-the-art and winning
at subsequent SAT competitions.

2.9.2 Reactive Search

The work of Battiti et al. [2008] into Reactive Search takes a different approach to
dealing with the increasing parameterisation of algorithms. Rather than trying to
optimise a set of parameters offline—as with F-Race and ParamILS— Battiti et al.
propose adjusting the search parameters as the search progresses. The search
effectively tunes itself to the instance being explored. Battiti has distilled this
paradigm over the last decade starting from his work on Reactive Tabu Search
in Battiti and Tecchiolli [1994] where the tabu tenure of an item was altered
during the search.

2.9.3 Hyper-heuristics

Taking the metaheuristic concept even further results in hyper-heuristics as
described in Burke et al. [2003]. If metaheuristics are general solution techniques
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which can be applied to various problems, then hyper-heuristics are a higher level
approach which looks at the problem structure and attempts to determine which
metaheuristic strategy will be most successful. In the 2008 AI planner and CSP
solver competitions there were strong entries (PbP planner by Gerevini et al. [2009]
and the CPhydra system of O’Mahony et al. [2008]) using a hyper-heuristic
approach; both examples were comprised of a portfolio of lower level solvers. The
earlier SATzilla system by Xu et al. [2008] proved similarly successful at the
SAT competitions. The scope for this composition is flexible; the hyper-heuristic
may simply be a ruleset which is consulted only once for the most appropriate
sub-solver for a given problem. Alternatively it may make more complex decisions.
The hybridisation may be dynamic with the hyper-heuristic running multiple
sub-solvers and allocating appropriate run-times for each one and exchanging
solutions between the subcomponents. In Phan et al. [2002] they present a
black-box system which combines multiple metaheuristics, Local Searches and
exhaustive algorithms in a general framework. During the search the system can
decide to change strategy.

2.10 Variable Neighborhood Search

Algorithm 8: Variable Neighborhood Search
1 begin
2 S ←− createInitialSolution()
3 i←− 1
4 while time do
5 for S ′ ∈ exploreNeighbourhood(Ni, S) do
6 if acceptanceFunction(S ′) then
7 S ←− S ′

8 i←− 1
9 else

10 i←− i + 1

Mladenović and Hansen [1997] were the first to formalise the use of multiple
neighbourhoods in a Local Search which they describe as Variable Neighbourhood
Search (VNS). Algorithm 8 shows the structure of a classic VNS algorithm.
Sometimes the term Variable Neighbourhood Descent (VND) is used to refer to
this algorithm, although strictly speaking VND refers to VNSs that immediately
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return to their first neighbourhood upon finding an improving solution. VNS is
often collected in with the metaheuristics, but we have chosen to give it a separate
section to highlight that it is not a heuristic (i.e. concerned with the evaluation
of fitness functions) so much as a general Local Search framework. Key to the
success of VNS are the three observations stated in Hansen and Mladenović [2003,
p. 146]:

• a local optimum is only a local optimum with regard to the current neigh-
bourhood; it may not be one in a different neighbourhood.

• the global optimal will be a local optimum in every neighbourhood.

• local optima in multiple neighbourhoods have been empirically shown to be
relatively close (in terms of shared variable assignments).

The approaches covered in Section 2.7 attempt to overcome the Local Search’s
tendency to become trapped at local optima by manipulating the heuristic evalua-
tion of neighbouring solutions. By making “worse” solutions look more attractive
they can lead the search away from a purely intensifying behaviour and allow a
wider exploration. The random walks strategy is an extreme version of this when
no guidance is applied and the search is pure diversification.

From an algorithm design perspective the VNS framework still allows for
hybridisation with other metaheuristic algorithms. For instance, no stipulation
is made about the type of acceptance function that should be used, and so VNS
can be combined with an SA based acceptance function or could be extended to
utilise a tabu list or perturbation component. The core simplicity and flexibility
of Local Search is retained.

Individual vs. Collective Connectedness

Another advantage of a VNS style configuration is that it removes the need for
neighbourhoods to be connected. A connected neighbourhood is one in which it
is possible to reach the global optima. If your search algorithm is using a single
neighbourhood to traverse the search space then using a connected neighbourhood
seems like the most logical choice. However, connected neighbourhoods are
typically larger in size and deal in smaller changes than more problem-specific
neighbourhoods. Job Shop Scheduling is one application area where the design of
neighbourhoods has become increasingly specialised and disconnected, yet high
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quality solutions are found using Local Search algorithms. In particular the work
by Nowicki and Smutnicki [1996] set the benchmark for many years. An empirical
investigation by Jain et al. [2000] showed that the neighbourhood employed
by Nowicki and Smutnicki (the NS neighbourhood) was the most constrained
and explored fewer alternatives than competing algorithms. This tightly focused
neighbourhood reduces the exploration of worsening solutions. Though Jain et al.
note the NS approach still spends over 99.7 % of its time exploring non-improving
neighbours.

If the neighbourhood used can never generate the assignment of values corre-
sponding to the optimal solution then, regardless of the acceptance function, the
search will never be able to find the optimal solution. The acceptance function
cannot accept a solution that it never encounters. This overlooks the chance that a
perturbation function may create the optimal solution, but basing an algorithm on
the premise that a random perturbation is required not just for diversification but
for completeness seems unwise. Individual neighbourhoods—which are themselves
disconnected—can achieve connectedness as a collection within a VNS.

Neighbourhood Ordering

The traditional setup of a VNS algorithm is to have the neighbourhoods ordered
linearly by increasing size, the theory being that the most intense neighbourhood
should be explored first, and only when the search is unable to find an improvement
should a more diverse neighbourhood be explored. The linear ordering ensures
that the neighbourhoods explored are the least diverse required (since all tighter
neighbourhoods will have been explored first).

VNS provides a framework for the utilisation of multiple neighbourhoods.
A more application-specific version of this is often described as a Multi-phase
Algorithm. As the name suggests, the algorithms operate in a series of sections
using problem dependent decompositions. The initial phase will typically be
a constructive component that attempts to find a feasible assignment which
provides an acceptable (but suboptimal) solution. The subsequent phases attempt
to optimise a function and improve the solution from the first phase. Phases can
consist of different types of search but will usually just explore different sets of
neighbourhoods.
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2.11 Constraints

Constraints represent a set of restrictions or limits that should be respected in
valid solutions. Every problem is subject to some form of constraints—in fact the
constraints really define what it means to be a problem. Imagine the scenario
when you have been asked to provide a solution to a Vehicle Routing Problem
(VRP). You have an infinite amount of time, an unlimited number of vehicles at
your disposal and no stipulation about the quality of your solution. Does this
really constitute a problem at all? A completely random assignment of values to
variables would be as valid as one which tries to minimise the time and resources
required. Unfortunately, in the real world problems are subject to a large variety
of constraints. These constraints make them challenging, but they also provide a
set of clues as to the characteristics of an optimal solution.

Constraint Satisfaction Problems

Constraints can be used to capture the structure of a problem in a form known as
a Constraint Satisfaction Problem (CSP).

Definition 7 Formally a CSP is specified as:

• a tuple, CSP = 〈V, D, C〉, comprising of finite sets of variables, V , domains,
D, and constraints, C.

• a variable, vi ∈ V , can only be assigned values from its corresponding domain,
di ∈ D.

• variables and domains are typically integer values, though floats, enumerated
types, and sets are becoming more common.

• constraints specify restrictions over the values that variables can take from
their domains.

The objective is to find an assignment of values to variables so that all the
constraints are satisfied. Usually only a single solution is required; however,
sometimes all satisfying assignments are desired. Another variant of CSPs are
Constraint Optimisation Problems (COPs) which have the same basic structure
except that the constraints are split into two categories, Chard and Csoft. The
hard constraints represent all the constraints which must be satisfied for a solution
to be considered valid. The remaining soft constraints form an objective function
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which must be optimised, as many of the soft constraints as possible should be
satisfied.

Constraints come in various forms: a constraint over a single variable is known
as unary, e.g. ci = (x < 5). If a constraint has two variables it is a binary
constraint, e.g. ci = (x1 ≤ x3). Global constraints can restrict multiple variables.

CSPs are similar to SAT problems but rather than being restricted to just
boolean values CSPs allow the variables to take discrete values from a finite
set of potential values. This allows for a more compact modelling of problems.
For example, imagine the situation where a variable, v, has to take a value
from the domain of colours, Dv = {red, green, blue}. To capture this in a SAT
representation requires three variables, vred, vgreen and vblue, one for each of the
possible colour assignments. The first clause needed is one which expresses that
at least one of the variables must be true, (vred ∨ vgreen ∨ vblue). This however
is not sufficient because a valid solution would allow more than one variable to
be true which does not make sense in a situation when we are trying to choose a
single colour. To force only a single variable to be selected, we need to add three
additional clauses (¬ vred ∨ ¬ vgreen) ∧ (¬ vred ∨ ¬ vblue) ∧ (¬vgreen ∨ ¬ vblue).
This simple example should hopefully highlight that, whilst SAT solvers are
undeniably powerful, the models they use to represent problems can quickly
become large and obfuscated. A wide array of CSPs can be found at the CSPLib1

which serves as a repository for interesting and challenging CSP problems (in
much the same way the OR-Library assembled by Beasley [1990] functions in the
OR community).

Constraint Programming

The acceptance of CSP problems occured in parallel with the growth of the
Constraint Programming (CP) paradigm. Unlike Object Oriented, Imperative,
or even Functional Programming, CP is really a technique for solving CSPs
rather than a general purpose programming methodology. One of the offshoots
of AI was the field of Logic Programming, probably best exemplified by Alain
Colmerauer’s Prolog language developed in the early 1970s. CP evolved from the
Logic Programming community and is still sometimes referred as Constraint Logic
Programming (CLP), though this is increasingly rare. The aim of CP is succinctly
captured by the belief that “CP = Search + Inference”. The constraints provide

1CSPLib homepage http://www.csplib.org
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information regarding the potential valid solutions to a CSP. It would therefore
seem logical to try to harness this information. It is worth mentioning that in
the terminology of the CP community there is special significance attached to the
concept of a solution. In Local Search a solution is merely an assignment of values
to variables—a random assignment is still a solution (though not necessarily a
valid or feasible one). The CP community only classifies a complete assignment of
values to variables which satisfies all the constraints of the problem as a solution.
Throughout the course of this thesis the former convention is used. The search
component makes a decision about a variable’s assignment and after each decision
the inference component attempts to propagate the implications of this assignment.
The structure which facilitates this propagation is known as the Domain Store.
This is an object which maintains the constraints and the domains of the problem
variables. The various consistency and propagation algorithms interact solely
through the changes they make to the variables’ domain. This modular framework
allows new constraints to be added extremely easily as there is no interdependence
between constraints.

At its core CP is usually a tree-search (like DFS covered in Section 2.3.1) with
a number of important additions. Firstly, unlike DFS, CP can use heuristics to
choose which variable to assign a value to, and in which order to try the values.
Various heuristics exist; First-Fail is one of the most famous: a variable is chosen
with the objective of finding an inconsistency as quickly as possible. This may
seem counter-intuitive: surely the search should make the decisions which are
most likely to find a solution? Actually, it is more useful to know whether a
subtree will lead to a solution before too much effort has been invested. First-Fail
exploits the second major addition of CP—backtracking.

CP has a more advanced notion of backtracking than DFS. In DFS backtracking
occurs when the search reaches a leaf node which is not a solution. In CP
backtracking can also be triggered at any point by the detection of an inconsistency
between the constraints and the remaining values in the domains. CP backtracking
is like the search equivalent of an “undo” button; rescinding a decision, returning
the domains of the variables to their previous state, and (potentially) adding a new
constraint enforcing the negated inconsistency. The search progresses by assigning
values to variables, whenever the search reaches an inconsistent state, such as
a variable having no valid values left, it backtracks. The search continues from
the last variable which still has unexplored values in its domain. By effectively
pruning the search space in this fashion, large subtrees can be avoided as soon

51



Chapter 2. Background and Related Work

as one inconsistency has been found. Merely reactively retracting conflicting
assignments does not exploit the full potential that the constraint representation
has. The CP community has developed many extensions to backtracking, such as
back-jumping (where the search returns to a decision higher in the tree than just
the previous decision).

The third major enhancement used within CP solvers is known as propagation.
CP constraints use propagation algorithms (or just propagators) to remove incon-
sistent values from their variables’ domains. There are several levels of consistency
that can be achieved: Node Consistency, Arc Consistency and Generalised Arc
Consistency. When an assignment is consistent then every value remaining in a
domain will potentially be part of a valid solution. Any values that are not part
of a valid solution are pruned.

Node Consistency

Node consistency is the simplest form of inference and is used for unary constraints.
It can be performed even before a value assignment has occurred. If we had a
variable, x, with the domain {1, 2, 3, 4, 5} and a constraint (x < 3) then using by
node consistency we could prune out {3, 4, 5} because none of these values could
appear in a valid solution. The propagator would not select a value for x; this
would still require a search decision. Only when the domain has a single value left
will a propagator make a definite assignment.

Arc Consistency

Arc consistency applies to binary constraints. If we have two variables, xi and
xj, with the domains di = {1, 2, 3, 4} and dj = {2, 3, 4, 5} respectively and the
constraint, xi > xj then there are a number of reductions which we can make
automatically: e.g. {4, 5} can be dropped from xj ’s domain because no assignment
of xi could satisfy the constraint if xj were assigned those values. A value can
remain in the domain of a variable if it has support from another value in the
other variable’s domain. Support indicates that there exists a value in the other
domain which would allow the choice of a value to satisfy the constraint. This
process of pruning inconsistent values from the domains must be done iteratively
to propagate changes through the arc, i.e. a pruned value may have provided
support in an earlier constraint which needs to be re-evaluated to ensure it remains
consistent. As domains of variables change it triggers events within the CP solver.

52



Chapter 2. Background and Related Work

The propagation algorithms run until they reach the fix-point where no changes
are made (or they encounter an inconsistency and a backtrack occurs).

Generalised Arc Consistency

The final form of consistency is Generalised Arc Consistency (GAC) which provides
greater power than just simple Arc Consistency. GAC is also known as Hyper
Arc Consistency or Domain Consistency. The classic example highlighting where
basic arc consistency fails is a scenario with three variables x, y and z. Each
variable has the domain {1, 2} and the constraints are x 6= y, y 6= z and x 6= z.
By using just arc consistency this would appear valid because each variable can
find a supported value in its neighbours’ domains. This is incorrect, since there
are only two distinct values and three variables; to spot this flaw all the variables
must be considered.

Global Constraints

Global constraints operate on a number of variables and can enforce more complex
conditions than can be neatly captured using just unary and binary constraints.
Returning to a similar example to the one highlighting the weakness of arc
consistency, imagine a situation with three variables, x, y and z. Each variable
can be assigned a value from the domain {1, 2, 3}. This could be modelled
as a series of disjunctions to ensure that all the variables take different values
(similar to the SAT example in Section 2.11.1), i.e. (x 6= y), (y 6= z) and (x 6= z).
However, a more concise and powerful way would be to use the alldifferent
global constraint to pose this constraint as alldifferent(x, y, z). The strength
of the alldifferent constraint is that it maintains the consistency by phrasing
the problem as a bipartite graph matching instance. Global constraints typically
have their own propagation algorithms which can be used to efficiently maintain
consistency. The availability of global constraints depends largely upon the
particular CP system being used; many constraints such as alldifferent are
ubiquitous. The Global Constraints Catalogue1 provides a comprehensive listing
of constraints and their properties. For the interested reader, a useful introductory
guide to CP can be found at Barták [1998]. For a more in-depth treatment of
the subject then we would recommend “Constraint Processing” by Dechter [2003]

1Global Constraints Catalogue homepage: http://www.emn.fr/x-info/sdemasse/gccat/
index.html
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or the earlier standard text “Foundations of Constraint Satisfaction” by Tsang
[1993].

2.12 Local Search for Constrained Problems

Given that Local Search has been successfully applied to hard combinatorial
problems like the TSP, and SAT problems (using the GSAT / WalkSAT family of
algorithms), it should come as no surprise that Local Search techniques have also
been applied to CSPs and other constrained problems. Even before CSPs and CP
had become firmly established. Fox [1983, 1990] was investigating using constraints
to guide a heuristic search within a Job Shop Scheduling domain. Minton et al.
[1992] provided one of the first applications of Local Search to general CSPs and
helped popularise the term repair method. The min-conflicts heuristic is a strategy
which attempts to repair constraint violations by selecting the assignment which
causes the most violations, and replacing it with the assignment which minimises
the number of violations. This strategy allowed Minton et al. to solve large
instances of the N -queens problem several orders of magnitude faster than a
backtracking search. Another technique developed at roughly the same time was
the Breakout method by Morris [1993] which shares many similarities to DLS
algorithms. Selman and Kautz acknowledge the resemblance of Morris’s work to
their own WalkSAT ideas [1993, p. 3].

Despite the success of the repair methods, many of the early efforts to combine
Local Search and CSPs came from members of the CP community who intended
to incorporate Local Search into CP rather than retaining it as a separate entity.
Pesant and Gendreau [1996] describe one of first concerted attempts to achieve
this by exploring a neighbourhood using a complete Branch & Bound style
tree search. Jussien and Lhomme [2002] propose using a constructive form of
TS coupled with CP’s propagation and consistency techniques; Vasquez et al.
[2005] also add consistency algorithms to a TS. Prestwich [2002c] uses Forward
Checking (which is effectively a propagation algorithm) to enhance neighbourhoods
for Graph Colouring. Codognet and Diaz [2001] developed what they describe
as an Adaptive Search, which is an extension of Minton et al.’s min-conflicts
heuristic. Rather than focusing on the particular assignment which causes the
most violations, the Adaptive Search strategy monitors the violations of each of
the problem constraints. It tries to apportion “blame” onto each variable. The
blame of variable is a function of the number of unsatisfied constraints that it
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appears in. This has parallels with Joslin and Clements’s notion of trouble maker
variables in SWO.

One final comment is that any integration of CP and Local Search must be
aware that not all the concepts will be transferable. In a CP model, symmetries
in the solution space hinder progress by increasing the number of equivalent states
to explore. Research into breaking these symmetries and reducing the amount
of redundant exploration is an active topic in the community. Initially, it would
seem sensible that performing symmetry breaking in Local Search would yield
similar benefits; however, the opposite is actually true. Prestwich and Roli [2005]
shows that breaking the symmetries for Local Search can significantly reduce
performance. Symmetry breaking makes local optima less distinct and reduces
the size of the basin of attraction. They do note that there may be other ways for
Local Search to exploit symmetries rather than trying to remove them.

Large Neighbourhood Search

Shaw [1998] developed Large Neighbourhood Search (LNS) which is a remarkably
simple hybridisation of the Local Search and CP paradigms. In LNS a complete CP
search is used as a neighbourhood within a Local Search to optimise a subpart of
the problem. At each iteration elements from an existing solution are removed and
then reinserted into the solution using a CP search. The benefit of this approach is
that the pruning and consistency techniques of CP can be used whilst the limited
size of the reinsertion prevents the tree-based approach from being overwhelmed.
Shaw developed LNS for the VRP and it has since proved effective for other
constrained problems such as Steel-Mill Slab Scheduling and Nurse Rostering.
The idea of using a complete search technique to optimise subcomponents of a
problem was also covered by Glover and Laguna, although they describe this
process as Referent-Domain Optimization (in Section 10.7 of Glover and Laguna
[1997, p. 355]). The MIMAUSA neighbourhoods of Mautor and Michelon [1997]
and POPMUSIC by Taillard and Voß [2002] explore a similar approach; solving
subsections of a problem with the aim of optimising the complete problem. These
are sometimes described as Local Optimisations (LOPT), though the term LNS is
more prevalent in the literature.

One aspect that can be somewhat confusing is the origin of the titular term
Large Neighbourhood, especially as the neighbourhood appears to be a restricted
tree search. Large refers not to the number of neighbouring solutions it contains

55



Chapter 2. Background and Related Work

but instead to the fact that the moves generated can cause large steps through
the search space. The reassignment of potentially multiple variables leads to more
powerful moves than found in atomic neighbourhoods.

Constraint-Based Local Search

Rather than trying to use a tree-based CP style search, CBLS retains the behaviour
of a conventional Local Search. CBLS aspires to CP’s elegant decoupling of problem
from solver by allowing high level constraint models to be created and searched
over using generic Local Search algorithms. COMET is a complete language
designed for expressing CBLS algorithms. It evolved from the earlier language,
Localizer by Michel and Van Hentenryck [2000], which had formed the basis
of Michel’s PhD thesis [1998]. Localizer was also a language for creating Local
Search algorithms which had a syntax similar to the Optimization Programming
Language (OPL)—a previous language for optimisation problems. An overview
of OPL can be found in Van Hentenryck [1999]. Localizer transformed into a
C++ library called Localizer++ (detailed in Michel and Van Hentenryck [2001])
which ultimately grew into COMET. Initially COMET was solely for expressing
Local Search algorithms but this became only one section with current versions
supporting CP, LP, Mixed Integer Programming (MIP) and various scheduling
specific modules. COMET changed from being a purely academic language into a
commercial product marketed by Dynamic Decision Technologies Inc (Dynadec),
a company founded by Van Hentenryck. Dynadec closed for business in mid-2013
with COMET’s copyright reverting to Brown University. At the time of writing
COMET is not available to directly download. As the language has matured the
syntax and features have changed, and as a result the “Constraint-Based Local
Search” book no longer accurately reflects COMET in its present state. Fortunately,
an extensive tutorial is distributed amongst the software’s documentation (see Dyn
[2010]). The syntax of the language looks similar to conventional Object-Oriented
Programming (OOP) languages such as C++ or Java. There are some syntactic
shortcuts which allow the concise expression of fairly complex constructs.

Differentiable Objects

Although on first inspection CBLS (as exemplified by COMET) appears to use
constraints in the same way as CP, this is not the case. In CP, constraints (and
their propagators) are used to prune the variable domains whilst maintaining
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consistency. In CBLS constraints perform no pruning, or propagation, and are
not used to restrict the assignments explored. Instead, they are used as a form
of search heuristic where the number of constraint violations act as an objective
function providing guidance to the Local Search. Nareyek [2001] also proposed
using global constraints within Local Search for heuristic information, though
appears unaware that this was already present within Localizer.

The key feature of constraints within CBLS is their differentiability. In
Section 2.6.1 we highlighted that delta calculations can substantially boost the
performance of Local Search algorithms. In mathematics, differentiating a function
calculates the rate of change at a given point. In CBLS, differentiating a constraint
returns the delta change of applying a potential assignment. Implementing delta
functions correctly is a time consuming and challenging endeavour. COMET

provides delta functions for all its built-in constraints and objective functions,
significantly reducing the effort required to create efficient Local Search algorithms.

Invariants

Another important feature of CBLS algorithms is the use of invariants. Invariants
are incrementally calculated variables that are used to maintain useful information
about the search or problem. For example, whilst solving the TSP problem it is
important to know what the current variable assignment’s tour length is. The tour
length itself can be simply stated as being the summation of the distances between
all the locations (plus the distance between end and start), as was shown in
Definition 4. As the search progresses, and assignments are changed, we want the
tour length to reflect these changes; an invariant allows the expression to be stated
once and then effectively forgotten about. COMET guarantees the invariant will
be correctly maintained during the search and internally uses efficient incremental
algorithms to update only the altered sections. This means that invariants are a
powerful modelling tool for the algorithm designer, freeing them of handling the
low level issues required to maximise efficiency.

Using constraints to guide a Local Search turns out to be an effective way of
solving CSPs; Schaus et al. [2011] show that CBLS dominates CP and LNS when
solving the Steel Mill Slab Design Problem. The Steel Mill Slab Design Problem
arose from a real industrial problem at a steel manufacturer; it is concerned with
satisfying a series of orders for different sizes of steel sheets whilst reducing the
wastage as much as possible. For many years it provided a challenging benchmark
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in the CP community (where it appears as prob038 in the CSPLib). Schaus
et al.’s CBLS approach performs so well that they rendered the original instance
trivial and were obliged to create a set of 380 new, harder instances.

Constraint-Oriented Neighborhoods

Whilst LNS uses a CP backtracking search as a neighbourhood, there have been
other attempts to exploit the connections between conventional neighbourhoods
and the problem constraints. The work of Viana et al. [2005] on the Unit Commit-
ment Problem (UCP) proposes the concept of Constraint-Oriented Neighborhoods
(CON). This represents the first direct assertion that neighbourhoods can alter the
violations of the problem constraints in differing fashions and that this property
can be intentionally exploited.

Previously, this had always been implicitly used. For example, the prevalence
of the 2-opt neighbourhood in the TSP literature is due in no small part to the
nature of its permutations. The 2-opt is incapable of creating neighbours which
violate the Hamiltonian constraint. Viana et al. motivate their work by citing
increasing parameterisation of other applicable algorithms (see Section 2.9). They
also highlight that decision makers’ reluctance to use metaheuristics for real-world
problems is due to the performance relying on obscure parameters and the lack of
a rigid mathematical foundation.

They introduce the notion of hard recovering constraints. These are problem
constraints which, once violated, may be difficult to satisfy again. These hard
recovering constraints must be detected manually in a pre-analysis phase. For
problems exhibiting these constraints the authors believe that defining more
elaborate neighbourhoods, which quickly return the search to feasibility rather
than exploring the infeasible space, will lead to a smoother search trajectory. All
possible combinations of constraint violations for the hard recovering constraints
must be considered, with a neighbourhood created for each situation. The same
neighbourhoods may be applicable to multiple scenarios, but in the worst case a
problem with n hard recovering constraints will require the consideration of an
exponential 2n neighbourhoods.

The structure of the CON is given in Algorithm 9. An initial feasible solution
is created via a constructive algorithm after which the search iterates, altering
the assignments of one or more variables. If this change has led to an infeasible
solution, then the constraint violation state is compared against the pre-computed
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hard recovering constraint analysis to return an appropriate neighbourhood to
hopefully return feasibility. The neighbourhood is explored leading to a new
solution which can either be accepted or rejected as the new candidate.

In later work Viana et al. [2008] extend the analysis and run comparisons
against various forms of GAs and a GRASP algorithm. The hybridisation of
GRASP and CON provides substantially better results for the UCP in a fraction
of the time.

Algorithm 9: Constraint-Oriented Neighborhoods
1 begin
2 S ←− createFeasibleInitialSolution()
3 while ¬stopping do
4 changeVariableState(S)
5 violatedConstraints←− checkConstraintViolations(S)
6 N ←− selectNeighbourhood(violatedConstraints)
7 S ′ ←− selectNeighbour(N, S)
8 if acceptanceFunction(S) then
9 S ←− S ′

Constraint-Directed Neighbourhoods

Fox [1983] introduced the term Constraint-Directed Search, where it was used
to describe a Beam Search selecting moves in a Job Shop Scheduling problem
to resolve constraint violations. This represented one of the first times that the
constraints themselves became the central focus of the search. Ågren [2007], Ågren
et al. [2009] have developed the concept of Constraint-Directed Neighbourhoods
(CDN). In Section 2.11 we saw how constraints could be utilised to infer additional
information, in that case by using consistency and propagation techniques. Ågren
et al. propose that the constraints themselves can be used to generate sets of
potential neighbours to explore. Furthermore the neighbours are partitioned into
three sets based upon whether they increase, decrease or maintain the current
violations of a constraint. This happens before they are ever evaluated. CDN
forms Chapter 6 of Ågren’s doctoral work (in earlier work Ågren et al. [2007a]
this technique is known as Constraint-Oriented Neighbours, but we shall use CDN
to avoid confusion with Viana et al.’s CON).

The main thesis promotes the use of set variables for Local Search. This
approach uses Existential Monadic Second-Order logic (∃MSO) to allow the cre-
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ation of generic differentiable functions for global constraints. Ågren’s system has
various built-in constraints including Partition, MaxWeightSum, AllDisjoint
and MaxIntersect for which differentiable implementations are given. However,
the flexibility of the ∃MSO approach means that if a required constraint is not
present, the incremental penalty and differentiation functions can be automatically
generated. Admittedly these might not measure the constraint in exactly the
same fashion as a human’s implementation, but in terms of reducing effort and
increasing the extensibility of the system it is a desirable feature. Problems need
to be modelled using set constraints, which is unusual as set variables are not well
supported in most CP or Local Search systems.

The generic creation of the CDNs uses five basic moves: add(S,v) inserts
a value v into set S, drop(S,u) removes a value u from set S, flip(S,u,v)
replaces u in set S with v, transfer(S,u,T) removes u from set S and inserts
it in set T, and swap(S,u,v,T) swaps u from set S with v in set T. The add
and drop neighbourhoods are the atomic neighbourhoods that are combined
to form the remaining three moves. The limitation of this representation is
that it is incapable of expressing neighbourhoods based upon what they term
as value-directed neighbours Ågren [2007, p. 170]. This mean that fairly simple
concepts such as exchanging a violated value to another variable within a range
cannot be captured.

Aside from providing the set formalism required to generate differentiable
constraints and neighbourhoods, Ågren explores the generation of Multi-phase
algorithms. As covered in Section 2.10, Multi-phase algorithms partition the
search into a number of phases in which various subsets of the problem constraints
are satisfied. Ågren considers only a two-phase approach in which an initial set
of constraints are satisfied, and then remain so whilst the rest of the constraints
are fixed in the second phase. To identify the constraints to be partitioned into
these phases they take an approach similar to those used for automatic parameter
tuning in Section 2.9.1. Potential partitionings are generated and the time to solve
the problem—in this case the Progressive Party Problem (PPP)—is measured.
Ultimately the partition which allows the most instances to be solved in the
shortest time is selected. Ågren concedes that it may be possible to generate
partitionings via an offline static analysis approach, though this is left as an open
research question.
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2.13 Assisting Local Search Implementation

As seen in the preceding sections there are a wide variety of algorithms which fall
under the general “umbrella” of Local Search. These algorithms have been applied
to a diverse range of combinatorial, constraint and optimisation problems with
much success. Even though one of their greatest strengths is their simplicity and
general applicability, this does not easily translate into writing non-problem-specific
implementations. End users are invariably forced to recode their algorithms for
each new problem they wish to apply Local Search to. Anyone familiar with the
software development process may not be that surprised by this lack of reusability
in existing code. However, given that CP and LP solvers have managed to retain
a clear delineation between their problem model and the actual search techniques,
there seems no reason why Local Search should remain so tightly coupled.

In the late 1990s there began a series of projects which aimed to ease the
adoption of Local Search and related technologies by providing tools and support
for users. These took several forms: primarily as frameworks for existing program-
ming languages such as the C++ and Java; others as libraries as part of alternate
systems; a few more were fully fledged languages.

Frameworks

OpenTS a Java TS by Harder [2001]1.

HotFrame a C++ heuristic search framework by Fink and Voß [2002]2.

Searcher an OOP Local Search framework by Andreatta et al. [2002].

EASYLOCAL++ a C++ framework for Local Search by Di Gaspero and
Schaerf [2003c].

Compose a C++ CBLS framework containing global constraints (with a
particular emphasis on scheduling constraints) by Bohlin [2004]

HSF a Java Heuristic Search Framework (HSF) by Dorne and Voudouris
[2004].
1OpenTS homepage http://www.coin-or.org/Ots/
2HotFrame available from http://www1.uni-hamburg.de/IWI/hotframe/hotframe.

html
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HeuristicsLab a C# framework for GA and Local Search development
by Wagner and Affenzeller [2005].

MDF the Metaheuristics Development Framework (MDF) a C++ framework
for rapid hybridisation of metaheuristics by Lau et al. [2007].

TMF a Templatized Metaheuristics Framework (TMF) by Watson [2007].

METSlib a C++ metaheuristics framework by Maischberger [2009]1 which
is part of the Coin-OR project like OpenTS.

or-tools a collection of CP and LP components (with some Local Search
support) developed at Google by former ILOG staff2.

OscaR a Scala framework for CP, LP, MIP with some CBLS features devel-
oped by OscaR Team [2012]

Many of the earlier frameworks for developing Local Search algorithms are
covered in Fink et al. [2003], though most of the examples focus on the authors’
own HotFrame work. Of the frameworks available, EasyLocal++ has had
the most sustained development. The project has remained active for the best
part of a decade. EasyLocal++’s core is a C++ framework which provides the
skeleton functionality for developing Local Search algorithms. Further extensions
have included automating the creation of neighbourhood stubs with EasySyn++
by Di Gaspero and Schaerf [2007] and adding features to support the development
of GAs with EasyGenetic by Benedettini et al. [2009].

Libraries

ECLiPSe repair The repair library allows the ECLiPSe project (described
in Apt and Wallace [2007]) to support Local Search.

ECLiPSe tentative largely supersedes the older repair library.

ILOG Solver added in version 5.0, ILOG Solver has Local Search features
covered in Shaw et al. [2002].

ParadiseEO a C++ framework for metaheuristics and population based
Local Search is in the MO library metaheuristics in Cahon et al. [2004].
1METSLib homepage https://projects.coin-or.org/metslib/
2Google’s or-tools are available from https://code.google.com/p/or-tools/
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The libraries add support for Local Search to systems which were not initially
designed with Local Search in mind. The ECLiPSe project (which is a Prolog
style language) is one of the longest running CP systems. Since September 2006
ECLiPSe has been open-source (after its purchase by Cisco Systems). ILOG
Solver is the CP counterpart to their MIP optimisation suite, CPLEX. Within
the Solver package Local Search support has been added so that it supports LNS
as well as more general Local Search algorithms.

Languages

SALSA a language for expressing both Local Search and tree searches using
the same constructs by Laburthe and Caseau [2002].

Localizer an OPL style language for the Local Search by Michel and Van
Hentenryck [2000].

Comet an OOP language building upon Localizer to support CBLS as well
as CP, LP and MIP by Van Hentenryck and Michel [2005]

Of the languages, COMET was most recently active. The initial focus on solely
CBLS was broadened to include other search paradigms and more effort was
placed on making COMET a robust and usable language rather than solely an
academic byproduct. Ultimately the failure of the majority of these systems was
not due to any inherent technical problem, but rather the lack of general uptake
and the development of any significant user base outside the original authors.

As well as languages, libraries and frameworks there have also been moves
to formalise the study of Local Search algorithms through the development of
the Generalised Local Search Machine (GLSM) model by Hoos and Stützle [2005,
Chp. 3, p. 113]. Hoos and Stützle use representations which are a form of
non-deterministic Finite State Machines (FSMs). Motivated by the fact that
most high performance Local Search algorithms are actually hybridisations of
multiple Local Search and metaheuristic components the GLSM allows these
complex structures to be captured succinctly. The states within the GLSM are the
Local Search component being explored, and the transitions between states can
be conditional or unconditional and can be either probabilistic or deterministic.
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2.14 Summary

This chapter has given an overview of various types of combinatorial problems
and the techniques which exist to solve them. In particular it has focused on the
development of Local Search based solutions. We have covered the structure and
properties of Local Search and how the weaknesses of a simplistic first-improvement
approach fuelled the creation of the metaheuristic strategies. We gave an overview
of the main metaheuristic strategies and saw how they operate by altering the
acceptance function criteria of the search in a bid to escape local optima. We
also looked at VNS which uses multiple neighbourhoods to diversify the search
without manipulating the heuristic values of solutions. We have outlined what
CSPs are, their relationship to CP, and how there has been a movement to bring
Local Search and CP closer together. Finally we looked at some of the languages
and frameworks which have sought to increase the adoption of Local Search.

This move towards a clean CP style model separation raises some interesting
issues. Traditionally Local Search has been tightly coupled to the particular prob-
lem being solved—can problem information be extracted in a non-problem-specific
fashion? Ågren [2007] and Viana et al. [2005] investigate the connection between
the problem constraints and the search neighbourhood movements. Both use
either specialist representations (such as a complex ∃MSO model) or require
human domain analysis to extract the behaviour of neighbourhoods. Can these
be incorporated into one of the existing CBLS frameworks so that problem infor-
mation can be extracted without either complex modelling or user intervention?
The next chapter investigates this quandary and presents a method for achieving
this using the COMET language.
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Detecting

Constraint-Neighbourhood

Interactions

A wise man is strong; yea, a man
of knowledge increaseth strength.

Proverbs 24:5
King James Bible

The previous chapter charted the emergence of Local Search from the OR
community and its application to a variety of optimisation problems including
CSPs. It also covered how Local Search had been adapted to make it more
amenable to solving constrained problems starting from early work like the min-
conflicts strategy of Minton et al. [1992] through to later advances like CON
by Viana et al. [2005] and CDN by Ågren [2007]. Finally, there was an overview
of the technologies which aimed to make the adoption of Local Search easier;
COMETbeing the most stable and well-supported (though ultimately defunct) of
these. Both Viana et al. and Ågren’s work require that the search neighbourhoods
are annotated with additional information about which of the problem constraints
they affect. In Viana et al. this analysis is done manually; Ågren’s specialised
∃MSO constraint model implicitly captures some of this interaction information.
This chapter covers how this neighbourhood behaviour information can be ex-
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tracted automatically in COMET without any specialised modelling alterations or
human intervention.

The first section of this chapter formalises what we mean by neighbourhood
behaviour information and introduces what we term constraint families and
constraint-neighbourhood interactions. These provide a way of capturing the
relationships between neighbourhoods and groups of constraints. Maintaining
constraint families in COMET requires a slightly different approach to modelling
problems. The second section of this chapter details some experiments to ascertain
whether these modelling changes are efficient enough to be practicable. The next
section provides a discussion of the COMET framework we created to allow flexible
models that are decoupled from generic search neighbourhoods. The fourth
section describes the Interaction Detector: a problem-independent component
for automatically identifying constraint-neighbourhood interactions. Section five
introduces the Post Enrolment-based Timetabling Problem which serves as a
recurring example throughout the remainder of this thesis. The sixth section
contains the experimental evaluation of the Interaction Detector.

3.1 Defining Constraint-Neighbourhood Interac-
tions

First, it is important to clarify exactly what is being detected. To do this we
introduce the concept of families of constraints. Grouping constraints into related
families allows us to study the different effects that neighbourhoods have on them
(i.e. the families as a whole). Recall that the definition of a CSP from Section 2.11.1
was the tuple 〈V, D, C〉. We can expand upon this description using the notation
found in Dechter [2003, Sec. 1.3, p. 12].

• In this notation C is the set, {c1, . . . , cn}, containing all the constraints over
the variables in V .

• A relation R is a subset of the Cartesian product of the variables’ domains,
Ri ⊆ D1 × · · · ×Dn. The variables within a relation are known as its scope,
Si = {x1, . . . , xn}.

• A scope S is a subset of the problem variables V , S ⊆ V .

• A constraint ci is a tuple comprised of a scope Si and a relation Ri, ci =
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〈Si, Ri〉. The relation Ri is the set of partial assignments that satisfy the
constraint.

• An instantiation of a set of variables is an assignment of a value to each
variable in the set, {〈xi1, ai1〉, . . . , 〈xik, aik〉}.

• A projection πa is a set formed by the restriction of the instantiation tuples
to just the desired attributes.

• An instantiation ā satisfies a constraint ci if and only if (iff) it contains a
projection of values which appears in the Ri of the constraint, πvalue(ā) ∈ Ri.

To illustrate these terms consider a problem with three variables: x1, x2,
and x3. The domains for the variables are Dx1 = {1, 2, 3}, Dx2 = {2, 3, 4},
and Dx3 = {5, 6}. There is one constraint c1 = x1 ≥ x2 comprised of the
scope S1 = {x1, x2} and relation R1 = {〈2, 2〉, 〈3, 2〉, 〈3, 3〉}. An assignment
ā = {〈x1, 3〉, 〈x2, 2〉, 〈x3, 6〉} projected over the variables in S1 results in the set
〈3, 2〉. This is a satisfying assignment because it occurs within R1. The value of
x3 does not appear in the projection because it is not part of the scope of c1 and
is, therefore, irrelevant.

Constraint Families

In COPs C is actually the union of the sets of hard and soft constraints, C =
Chard ∪ Csoft. In our terminology the hard constraints, Chard, and soft constraints,
Csoft, are families of constraints. These families are exactly the same as the
traditional definition of C except that they only contain a subset of the constraints,
(i.e. C ⊆ C). The total number of constraints remains the same regardless of
whether a problem is represented as a single family or as multiple families.

Definition 8 For a problem with n constraint families, C, the set of all constraints,
C, can be stated as:

C =
n⋃

i=1
Ci where n > 0 (3.1)

|C| =
n∑

i=1
|Ci| (3.2)
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Definition 9 The violations of a constraint family C and the set of all constraint
families C for an assignment ā can be found by the following functions:

violations(C, ā) = |{ci ∈ C : πSi
(ā) /∈ Ri}| (3.3)

violations(C, ā) =
∑

Ci∈C

violations(Ci, ā) (3.4)

The problem definition of a COP will explicitly state the family that each
constraint belongs to. When trying to define constraint families for CSPs it
becomes more challenging as there is no guidance. To provide an example to
ground this discussion we shall consider the Progressive Party Problem (PPP)
which appears as a COMET model in Michel and Van Hentenryck [2002] and Van
Hentenryck and Michel [2005, p. 185], a Composer model in Bohlin [2004] and as
set-based model in Ågren [2007], Ågren et al. [2005, 2007a,b, 2009]. The PPP was
first studied by Brailsford et al. [1996] and Smith et al. [1996] where it was used to
compare the modelling power of Integer Programming (IP) and CP. The problem
revolves around scheduling a social event at a yacht club. There are 39 yachts,
each with between one and seven crew members on-board. The idea is that some
of the yachts will be hosts and hold parties for the other crews. The event is split
into six half hour periods during which the crews of the host boats remain on their
own yachts to cater for the other visiting guest crews. To make the gathering
interesting the guests should only visit a host boat once and they should meet any
other group of guests at most once. The guest crews move around as inseparable
units all evening. The size of the yachts constrains how many guests and hosts
can be accommodated on each vessel. The version of the PPP appearing in Smith
et al. [1996] is phrased as an optimisation problem where the aim is to reduce the
number of hosts needed. Our formulation is closer to that of Van Hentenryck and
Michel [2005] in that it is cast as a decision problem; can the event be scheduled
with a fixed number of hosts? To model the problem the four required constraints
are:

c1 Each guest boat must attend a party at every period.

c2 The capacity of each boat must be respected.

c3 Each guest has a unique host for every period.

c4 Guests should meet at most once.
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Each of these constraints represents a form of template, or schema, with which
to instantiate lower-level constraints. All of these lower-level constraints will be in
some way related; they are imposing the same type of restrictions but on different
variables.

Definition 10 Given a set of guest boats, G, hosts, H, and periods, P , and a
variable matrix, xg,p, storing a guest boat’s unique host vessel assignment at each
period:

C3 =
⋃

∀ g ∈ G, ∀ p ∈ P, ∀ q ∈ P : p < q

c = 〈S, R〉 where

S = {xg,p, xg,q}

R = {xg,p 6= xg,q}
(3.5)

The resulting set, C3, will contain all the disjunction constraints required to
restrict the valid assignment of a guest at each period to be unique. However, it
would have been equally valid to define c3 as:

Definition 11

C3 =
⋃

∀ g ∈ G

c = 〈S, R〉 where

S = {xg,p : ∀ p ∈ P}

R = {alldifferent(S)}
(3.6)

Listing 3.1 shows an extract of a COMET model for the PPP. Only the
constraints c2 to c4 are explicitly modelled. The first constraint—that each guest
boat is assigned a host for every period—is satisfied at the initialisation stage.
In COMET constraints are instantiated by posting them into a container class;
most commonly an instance of ConstraintSystem<LS>. The contents of that
ConstraintSystem<LS> are what we would term a family. In subsequent sections
we will explore whether this model could have been stated as multiple families
(more closely reflecting the problem description).

Neighbourhoods’ Behaviours

In the previous section we looked at how constraints could be collected into families.
This section investigates how the properties of neighbourhoods can be categorised
by the different effects they have on groups of constraints. Previously reasoning
about the behaviour of neighbourhoods has been done implicitly. Multi-phase
algorithms have their neighbourhoods partitioned based on the understanding
that the later neighbourhoods will not introduce violations in the constraints
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9 Solver <LS > m();
10 UniformDistribution distr(Hosts);
11 var { i n t } boat[Guests , Periods ](m,Hosts) := distr.get ();
12 ConstraintSystem <LS > S(m);
13 f o r a l l (p in Periods ){
14 S.post (2 * multiknapsack ( a l l (g in Guests ) boat[g,p],crew ,cap)

);
15 }
16 f o r a l l (g in Guests ){
17 S.post (2 * a l l d i f f e r e n t ( a l l (p in Periods ) boat[g,p]));
18 }
19 f o r a l l (i in Guests , j in Guests : j > i){
20 S.post( atmost (1, a l l (p in Periods )(boat[i,p] == boat[j,p])));
21 }
22 S.close ();
23 m.close ();

Listing 3.1: A COMET PPP model excerpted from ppp-model.co showing
constraints being posted to single ConstraintSystem<LS>.

satisfied in the initial phases. At its most basic level a neighbourhood is a function
which can generate permutations of assignments. What we have described as the
behaviour is a product of the interplay between the relation, Ri, of a constraint,
ci, and the projection of all the neighbours.

Definition 12 If N is a function which maps an assignment (or solution) A to
a set of alternate assignments, N(A), then the closure of N , Nclosure(A), can be
defined as follows:

N0 = {A}
N1 = N(A)
N2 =

⋃
{N(ā) : ā ∈ N1}

Ni =
⋃
{N(ā) : ā ∈ Ni−1}

Nclosure =
∞⋃

i=0
Ni

The closure represents all solutions that could be reached from an assignment
through applications of N . The corresponding projection for a scope Si would
be πSi

(N (A)) = {πSi
(ā) : ∀ ā ∈ Nclosure(A)}. If this projection is a subset of the

constraint’s relation, Ri, then any move within N will satisfy ci. Conversely, if
Ri and πSi

(N (A)) are completely disjoint then no move within N could ever
satisfy ci. The final alternative is that there is some overlap between the sets,
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|Ri ∩ πSi
(N (A))| ≥ 1, meaning a mixture of violating and satisfying assignments

is possible. This would determine a neighbourhood’s property with regard to a
single constraint. Unioning multiple constraints’ relations together would allow
this to be applied to a family of constraints.

Consider a simple instance of the PPP where there are four guests, G =
{1, 2, 3, 4}, four hosts, H = {1, 2, 3, 4} and four periods, P = {1, 2, 3, 4}. The
decision variables representing which host a guest is visiting at each time period will
be the same as the one used for Equation 3.5 resulting in sixteen xg,p variables each
with the domain Dg,p = H. If we express c3 using four alldifferent constraints
then we would produces the following scopes and relations:

S1 = {x1,1, x1,2, x1,3, x1,4} R1= {〈1, 2, 3, 4〉 , 〈1, 2, 4, 3〉 , 〈1, 3, 2, 4〉 , 〈1, 3, 4, 2〉 , 〈1, 4, 3, 2〉 ,

〈1, 4, 2, 3〉 , 〈2, 1, 3, 4〉 , 〈2, 1, 4, 3〉 , 〈2, 3, 1, 4〉 , 〈2, 3, 4, 1〉 ,

〈2, 4, 3, 1〉 , 〈2, 4, 1, 3〉 , 〈3, 2, 1, 4〉 , 〈3, 2, 4, 1〉 , 〈3, 1, 2, 4〉 ,

〈3, 1, 4, 2〉 , 〈3, 4, 1, 2〉 , 〈3, 4, 2, 1〉 , 〈4, 2, 3, 1〉 , 〈4, 2, 1, 3〉 ,

〈4, 3, 2, 1〉 , 〈4, 3, 1, 2〉 , 〈4, 1, 3, 2〉 , 〈4, 1, 2, 3〉}

S2 = {x2,1, x2,2, x2,3, x2,4} R2 = . . .

S3 = {x3,1, x3,2, x3,3, x3,4} R3 = . . .

S4 = {x4,1, x4,2, x4,3, x4,4} R4 = . . .

All the constraints have the same relations but differing scopes. For brevity
only R1 is enumerated; R2, R3, and R4 would be identical. Now let us consider a
neighbourhood, N1, which only operates over the variables in scope S1. Neighbour-
hood N1 is a 2-opt operator which tries to swap the assignments of the variables
in S1. From the starting projection πS1(ā) = {〈1, 2, 3, 4〉} the resultant closure of
N1 would be the same as the relation R1. Since πS1(N1(ā)) ⊆ R1 all the moves
would satisfy the alldifferent constraint. If the starting projection had been
πS1(b̄) = {〈1, 2, 1, 4〉} then πS1(N1(b̄)) would be:

{〈2, 1, 1, 4〉 , 〈1, 2, 1, 4〉 , 〈1, 2, 4, 1〉 , 〈1, 1, 2, 4〉 , 〈1, 4, 1, 2〉 , 〈1, 2, 4, 1〉}

None of the six assignment permutations feature within R1. To illustrate the
third situation—where there is some overlap between the neighbourhood closure
and the constraint’s relation—we need to introduce a second neighbourhood
N2. This neighbourhood considers assigning new values to the variables in
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S1. Assuming the same starting assignment from the previous example the
neighbourhood’s projection would be:

{〈2, 2, 1, 4〉 , 〈3, 2, 1, 4〉 , 〈4, 2, 1, 4〉 , 〈1, 1, 1, 4〉 , 〈1, 3, 1, 4〉 , 〈1, 4, 1, 4〉
〈1, 2, 2, 4〉 , 〈1, 2, 3, 4〉 , 〈1, 2, 4, 4〉 , 〈1, 2, 1, 1〉 , 〈1, 2, 1, 2〉 , 〈1, 2, 1, 3〉}

The resultant set contains two assignments 〈x1,1, 3〉 and 〈x1,3, 3〉 that create
the projections 〈3, 2, 1, 4〉 and 〈1, 2, 3, 4〉 which do feature in the relation R1. The
remaining ten assignments do not feature in R1, so the choice of assignment
determines whether N2 will satisfy the constraint.

Constraint-Neighbourhood Interactions

In the previous section we saw how the neighbours generated by a neighbourhood
may (or may not) appear within the relation of a constraint. This allows us to
define what we term a constraint-neighbourhood interaction. If a neighbourhood
contains a move which can alter the violation state of a constraint, it is said to
interact with that constraint; Definition 13 states this idea in formal terms:

Definition 13 For a neighbourhood, N , (generating neighbouring assignments
ā), an initial solution, A, and a constraint family, Ci, a constraint-neighbourhood
interaction exists iff:

∃ ā ∈ Nclosure(A) | violations(Ci, A) 6= violations(Ci, ā)

In the model from Listing 3.1 all the constraints are being posted into a single
instance of the ConstraintSystem<LS>; there is effectively only one constraint
family. Regardless of neighbourhoods used in any subsequent search component
there is no way to differentiate between the violations of constraint families easily.
The reason for posting all the constraints to a single ConstraintSystem<LS> is
primarily historical. In CP all the constraints must be registered with the same
Domain Store so that the propagation algorithms can prune the domains of the
variables to maintain consistency. The constraints have no communication with
each other except via the domains of the variables within their scope. In CBLS
no pruning is performed; the constraints provide heuristic guidance. Posting
constraints to separate ConstraintSystem<LS>s does not reduce any potential
information. Modelling differences between CP and CBLS are not unprecedented.
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We have already highlighted that Prestwich and Roli [2005] found applying the
conventional CP modelling strategy of symmetry breaking was detrimental to
the performance of Local Search. Even though all the constraints are posted
to a single Domain Store in a CP system, they may still be treated differently
internally. Early work, such as Wallace and Freuder [1992], provided guidance
on constraint-ordering heuristic strategies. Enforcing arc consistency for some
constraints (such as alldifferent) is more costly than for other simpler constraints
and there is no guarantee that this increased computational investment will result
in substantially better pruning. Schulte and Stuckey [2004] cover the benefits of
separating constraints into different constraint propagation queues with various
levels of prioritisation. So, whilst all the constraints interact via the same interfaces
and can have the same domain pruning effects, they may be grouped together
based upon some prioritisation decisions made by the designer.

3.2 Modelling Requirements to Represent Con-
straint Families

The following section investigates whether it is actually feasible to maintain
multiple constraint families using COMET. In particular it focuses on whether
having multiple constraint families is detrimental to the speed or memory usage
of the system. Van Hentenryck and Michel [2007] introduced modelling extensions
which increase the level of abstraction provided by COMET to the point that the
search and model can be completely decoupled. They provided a new syntax for
defining models which encapsulated all the variables and constraints required and
allowed these to be passed to generic search components as a single Model<LS>
object. There are a two main restrictions: constraints can only be tagged using an
enumerated value, and the user cannot specify which container type the constraints
are stored in. More accurately, the user can specify the constraint container type
but they cannot retrieve constraints other than via ConstraintSystem<LS>s.
As of version 2.1.1 of COMET the only valid tag values are: init, soft, hard,
min, max, and minmax. The generic search procedures provided are: TabuSearch,
VNSearch and a MinConflictSearch. Support for these appears tentative and
only TabuSearch is listed in the documentation.

Listing 3.2 shows the syntax of Van Hentenryck and Michel’s model and
generic search components. The constraints themselves are prefaced with a tag
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indicating their type and also an optional constraint weighting. The tag is used to
determine which ConstraintSystem<LS> the constraints are posted to. Unlike in
Listing 3.1, the constraint posting is hidden from the user and limits the potential
families to just two types: hard and soft. For the purposes of our work this scheme
is too restrictive as we require the ability to store each constraint family in its own
ConstraintSystem<LS>. What the system does provide is an example of how it
would be possible to allow the definition of families using this neat syntax. There
would need to be a way of allowing user-defined enumerated types as tags. Also
the “getter” methods of the Model<LS> class, which at present return only the
hard and soft constraints, would require parameterisation so that tagged families
could be retrieved.

1 import cotls;
2 i n c l u d e " genericLocalSearch ";
3

4 range Guests = 1..4;
5 range Periods = 1..4;
6 range Hosts = 1..4;
7 i n t cap[Hosts] = [4 ,3 ,2 ,1];
8 i n t crew[ Guests ] = [1 ,1 ,1 ,1];
9

10 model m {
11 var { i n t } boat[Guests , Periods ]( Hosts);
12 f o r a l l (g in Guests ){
13 s o f t (2): a l l d i f f e r e n t ( a l l (p in Periods ) boat[g,p]);
14 }
15 f o r a l l (p in Periods ){
16 s o f t (2): multiknapsack ( a l l (g in Guests ) boat[g,p],crew ,cap)

;
17 }
18 f o r a l l (i in Guests , j in Guests : i < j){
19 s o f t : atmost (1, a l l (p in Periods )(boat[i,p] == boat[j,p]));
20 }
21 }
22

23 TabuSearch search (m);
24 search .apply ();

Listing 3.2: A COMET PPP model, ppp-model-ls.co, showing the Model<LS>
syntax and the use of a generic search procedure.

Potential Problems

The additional information gained by maintaining the constraint families as
separate ConstraintSystem<LS>s must be offset against the increased computa-

74

http://personal.cis.strath.ac.uk/a.andrew/files/chapter3/code/ppp-model-ls.co


Chapter 3. Detecting Constraint-Neighbourhood Interactions

tional effort. If this technique is to be of practical use, the overhead of multiple
ConstraintSystem<LS>s should be minimal. To ascertain the cost of this ap-
proach we replicated the experiment detailed in Van Hentenryck and Michel [2005,
Sec. 10.1.4, pp. 196–204]. In Van Hentenryck and Michel they run their algorithm
on the PPP trying 21 different configurations of host vessels and period lengths.
The objective of their experiments was to compare the effect of using combinations
of intensification and random restart components on the percentage of runs solved
and the runtimes and iterations required. As well as these properties, we also
monitored the memory usage of the solver to investigate what effect a different
constraint posting has. Our experiment used two versions of the PPP algorithm:
one that posted all the constraints into a single ConstraintSystem<LS> and the
other that maintained the constraints as three separate families. Listing 3.3
shows the constraint model being posted to a single ConstraintSystem<LS>. The
decision about how to post the constraints is described by us as the model’s
constraint partitioning.

1 void setupConstraintSystems (){
2 ConstraintSystem <LS > constraintSystem ( _solver );
3

4 f o r a l l (g in Guests ){
5 constraintSystem .post (2 * a l l d i f f e r e n t ( a l l (p in Periods )(

boat[g,p])));
6 }
7 f o r a l l (p in Periods ){
8 constraintSystem .post (2 * knapsack ( a l l (g in Guests )(boat[g

,p]),crew ,cap));
9 }

10 f o r a l l (i in Guests , j in Guests : j > i){
11 constraintSystem .post( atmost (1, a l l (p in Periods )(boat[i,p]

== boat[j,p])));
12 }
13 addConstraint ( constraintSystem , " allConstraints ");
14 populateInvariants ();
15 _solver .close ();
16 }

Listing 3.3: An extract from the single ConstraintSystem<LS> version of the
COMET model for the PPP defined in the class ProgressiveParty, ppp.co.

Listing 3.4 shows the entire multiple ConstraintSystem<LS> version of the
model. The MultiConstrainedPP class inherits from the ProgressiveParty
class. The only method which differs is the setupConstraintSystems method
that defines how the model is posted; the remainder of the code is identical in both
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versions. The original model used in Van Hentenryck and Michel [2005] served as
the basis for the ProgressiveParty model but, to make it more reusable, it was
rewritten in an OOP style. The search component remains the same as the one
found in Van Hentenryck and Michel’s model.

1 c l a s s MultiConstrainedPP extends ProgressiveParty {
2

3 MultiConstrainedPP (Solver <LS > m): ProgressiveParty (m){
4 // Empty constructor
5 }
6

7 void setupConstraintSystems (){
8

9 ConstraintSystem <LS > hostsAllDifferent ( _solver );
10 f o r a l l (g in Guests ){
11 hostsAllDifferent .post (2 * a l l d i f f e r e n t ( a l l (p in Periods )

(boat[g,p])));
12 }
13 addConstraint ( hostsAllDifferent , " hostsAllDifferent ");
14

15 ConstraintSystem <LS > boatCapacity ( _solver );
16 f o r a l l (p in Periods ){
17 boatCapacity .post (2 * knapsack ( a l l (g in Guests )(boat[g,p])

,crew ,cap));
18 }
19 addConstraint ( boatCapacity , " boatCapacity ");
20

21 ConstraintSystem <LS > guestsMeetAtmostOnce ( _solver );
22 f o r a l l (i in Guests , j in Guests : j > i){
23 guestsMeetAtmostOnce .post( atmost (1, a l l (p in Periods )(boat[

i,p] == boat[j,p])));
24 }
25 addConstraint ( guestsMeetAtmostOnce , " guestsMeetAtmostOnce ");
26

27 populateInvariants ();
28 _solver .close ();
29 }
30 }

Listing 3.4: The multiple constraint PPP model, MultiConstrainedPP, from
myppp.co. Only the setupConstraintSystems method required overriding.

The experiment consisted of 100 runs for each configuration. Tables 3.1 and
3.2 show the results relating to the search iterations, I, and runtime, T (in ms).
There are six different configurations that define which of the boats are designated
as hosts. These are listed in Table 3.3. The upper limit for search iterations was
fixed at 1,000,000. The results for the memory usage, Tables 3.4 and 3.5, use the
same column notation but this time detail the amount of system memory, Mem,
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Table 3.1: The solution times in iterations I and CPU Time (ms) for the
ProgressiveParty solver. For a given configuration, C, problem instances can
have a range of periods P. The third column, %S, shows the percentage of runs in
which the search was able to find a solution that satisfied all the constraints. The
columns describe the minimum m, maximum M, mean µ, and standard deviation
σ of the runs’ iterations I or runtimes T.

C P %S m(I ) M (I ) µ(I ) σ(I ) m(T ) M (T ) µ(T ) σ(T )

1 6 100 62 100088 1079.21 10000.89 324 64672 986.92 6432.85
7 100 82 128123 3489.65 18895.38 388 85685 2687.09 12655.49
8 100 116 100225 13307.83 33748.26 476 71936 9667.84 23486.89
9 100 164 800379 32075.32 97097.33 604 568807 22957.38 68417.91

10 99 566 1000000 85586.05 167627.07 944 714012 62027.55 120304.03

2 6 100 76 229 122.80 30.08 336 444 374.40 21.07
7 100 120 100190 6211.04 23858.93 412 69440 4595.68 16252.74
8 100 202 200900 13643.72 39279.34 540 136196 9673.28 26609.20
9 100 741 409313 42877.75 91133.46 1024 287566 30371.69 63682.38

3 6 100 77 283 126.18 27.32 336 484 375.16 21.02
7 100 107 100220 2224.69 14065.90 396 69164 1846.36 9345.06
8 100 210 106724 6964.50 24096.30 552 70612 5136.20 16271.85
9 99 861 1000000 87259.22 142725.79 1108 688018 60633.97 98143.23

4 6 100 94 2279 192.94 222.21 348 1752 420.48 142.82
7 100 161 100298 1288.12 10001.50 468 68904 1244.52 6834.63
8 100 247 201222 12199.95 34674.32 596 130928 8543.60 22908.16
9 100 1268 940418 44169.25 108455.70 1384 644532 30842.52 74268.07

5 6 100 139 111948 4989.34 20294.06 372 72640 3567.40 13270.11
7 100 486 218013 33716.73 58728.38 704 143296 22688.14 38768.42

6 6 99 177 1000000 76452.62 165741.71 416 657093 50693.87 109356.35
7 85 1255 1000000 302583.87 355913.05 1200 683686 203300.50 238848.90

in megabytes consumed during the runs. The experimental runs were conducted
using COMET version 2.1 on a PC running Kubuntu 8.04 with a 3.4 GHz processor
and 2 GB of RAM.

Fig. 3.1 shows the average time spent on each iteration for both partitionings.
The curves are similar, although myPPP—the multiple constraint version—is skewed
to the right. As would be expected the additional computational effort does incur
a performance penalty. The difference between the means is only 0.047 ms, so
we conclude that using different constraint posting strategies does not markedly
increase the average iteration time. This experiment involves trebling the number
of ConstraintSystem<LS>s but the difference in average iteration times does not
reflect this. The iteration time may not have increased; however, it is possible
that the memory consumption might have grown unreasonably. The memory
usage of each posting scheme is shown in Fig. 3.2. Both plots exhibit the same
distinctive bimodal shape and again the myPPP results are slightly skewed to
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Table 3.2: The solution times in iterations I and CPU Time (ms) for the
MultiConstrainedPP solver.

C P %S m(I ) M (I ) µ(I ) σ(I ) m(T ) M (T ) µ(T ) σ(T )

1 6 100 57 100081 1078.77 10000.23 348 69604 1068.40 6922.81
7 100 80 100134 6129.88 23863.73 432 72412 4730.64 16890.73
8 100 114 200201 8267.66 30728.51 528 147973 6529.05 22589.01
9 100 200 200247 13501.38 39330.43 676 148425 10476.62 28989.05

10 98 469 1000000 95502.65 183052.98 936 766467 72806.16 138529.13

2 6 100 84 100127 2133.38 14069.48 372 69504 1809.28 9693.12
7 100 112 100182 1215.43 9996.87 468 71896 1261.92 7134.93
8 100 205 200606 10152.72 32466.08 584 142680 7755.10 23241.32
9 100 464 401291 38350.17 68293.69 908 294586 28528.89 49942.36

3 6 100 88 252 130.59 28.06 392 524 429.56 21.29
7 100 130 100192 2230.94 14063.21 484 71884 1943.16 9731.51
8 100 220 102325 9883.92 28720.55 624 73716 7417.88 20151.45
9 100 844 804599 68029.14 127952.66 1156 574339 49756.68 91077.16

4 6 100 82 100148 1176.44 9997.37 368 67440 1131.52 6698.04
7 100 151 100598 4325.60 19704.38 504 71204 3349.96 13423.67
8 100 246 102918 10304.19 28741.07 652 75328 7766.64 20352.52
9 100 1129 230853 37909.95 58059.44 1356 166494 27913.75 41860.70

5 6 100 141 100124 1828.39 10100.38 444 68296 1600.04 6856.07
7 100 277 126130 20848.97 37838.16 596 86953 14897.01 26266.81

6 6 98 250 1000000 85634.12 172884.53 504 686642 59211.44 118696.13
7 84 459 1000000 318136.93 369284.56 712 711172 223456.45 258634.94

Table 3.3: The Host Boats available for each of the configurations of the PPP.

Config. 1 2 3 4 5 6
Hosts 1–12, 16 1–13 1, 3–13, 19 3–13, 25, 26 1–11, 19, 21 1–9, 16–19

the right. Examining the tables relating to the experiment’s memory use shows
that the left peak is caused by the configurations which have only six periods.
These particular runs consistently use less memory than others regardless of the
host configuration or constraint partitioning used. The difference in means for
the memory use is 0.356 MB (MB and 29.96 MB); given that this represents only
0.000 17 % of the test machine’s total system memory it would seem fair to conclude
that storing the constraints in separate ConstraintSystem<LS>s does not incur
any significant memory overhead. Partitioning models into individual constraint
families offers the possibility of more expressive, or informative, heuristics with
minimal additional expense.
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Table 3.4: The memory usage (in MB) of the ProgressiveParty solver.

C P %S m(Mem) M (Mem) µ(Mem) σ(Mem)
1 6 100 26.45 29.89 26.50 0.34

7 100 27.22 37.98 27.49 1.51
8 100 28.17 38.85 29.60 3.45
9 100 29.42 39.43 31.60 3.82

10 99 30.98 39.27 35.24 3.47
2 6 100 26.47 26.59 26.50 0.03

7 100 27.18 38.41 27.80 2.38
8 100 28.25 39.16 29.62 3.18
9 100 29.94 39.50 33.94 3.45

3 6 100 26.46 26.64 26.50 0.02
7 100 27.18 38.38 27.35 1.15
8 100 28.27 38.82 29.16 2.41
9 99 30.05 39.49 36.56 3.15

4 6 100 26.48 27.68 26.56 0.12
7 100 27.18 36.85 27.31 0.97
8 100 28.29 38.87 29.57 3.02
9 100 30.39 39.42 35.18 3.19

5 6 100 26.52 37.55 27.16 1.85
7 100 27.30 39.10 30.80 3.82

6 6 99 26.55 39.43 29.46 4.10
7 85 27.95 39.48 35.20 4.25

Compositional Heuristics

When CSP solving with the min-conflicts strategy the heuristic score of a solution
is the summation of the violations of all the constraints. Similarly, in SAT the
GSAT / WalkSAT algorithms maintain the count of unsatisfied clauses. Each of
these algorithms evaluates the fitness of neighbourhood moves based upon their
potential to reduce the number of violated constraints / clauses. The presence of
plateaux—areas where all the neighbouring solutions return the same score—causes
problems for simple improvement algorithms. To the algorithm all the solutions
appear equally valid and there is no way of distinguishing them, although the
underlying characteristics of the solutions may be quite different. Sutton [2007]
investigated the causes of plateaux (or as they term it, landscape neutrality) in
scheduling problems. They identify that the one major cause is the range of
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Table 3.5: The memory usage (in MB) of the MultiConstrainedPP solver.

C P %S m(Mem) M (Mem) µ(Mem) σ(Mem)
1 6 100 26.91 37.97 27.10 1.10

7 100 27.54 38.39 28.12 2.31
8 100 28.58 39.17 29.36 2.60
9 100 30.26 39.28 31.46 2.76

10 98 31.75 39.17 35.60 3.03
2 6 100 26.82 38.10 27.11 1.51

7 100 27.56 38.48 27.76 1.08
8 100 28.66 39.22 29.79 2.85
9 100 30.50 39.46 34.83 3.26

3 6 100 26.82 26.99 26.89 0.04
7 100 27.58 38.33 27.88 1.48
8 100 28.67 39.06 29.90 2.81
9 100 30.85 39.46 36.54 2.92

4 6 100 26.82 38.10 26.98 1.12
7 100 27.59 38.57 28.08 1.83
8 100 28.69 39.32 30.16 2.86
9 100 31.09 39.41 35.97 2.80

5 6 100 26.81 30.08 27.02 0.59
7 100 27.71 38.83 30.56 3.53

6 6 98 26.81 39.37 30.27 4.28
7 84 27.87 39.45 35.22 4.20

potential objective values (e.g. the makespan or tardy jobs) may be considerably
smaller than the number of neighbouring solutions. Roberts et al. [2005] found
that removing neutral moves from the neighbourhood of a satellite scheduling
problem harmed performance. Neutrality has also been debated extensively in
the Evolutionary Algorithm community. Knowles and Watson [2002] noted that a
large fraction of real-life DNA mutations result in neutral changes. This in turn
had stimulated researchers to look at artificially adding neutrality into fitness
landscapes to potentially aid performance. Ebner et al. [2001] showed neutrality
improved diversification by increasing the connectedness of the search space.
Knowles and Watson [2002] contradicted this, showing that for evolving Random
Boolean Networks (and with a proper mutation rate) redundant mappings actually
have no discernible effect on the final solutions’ fitness values. For CSPs, many
different assignments may result in the same unsatisfied constraints heuristic value.
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Figure 3.1: The average iteration time (in ms) for each of the constraint parti-
tionings.

We propose that stating a model with multiple ConstraintSystem<LS>s gives
the potential to disambiguate between these heuristically equivalent solutions.

Number Theory allows us to get an indication of how many violation configu-
rations would result in the same heuristic value. In Number Theory composition
describes how an integer n could be created by the summation of other positive
integers. This does not quite match our situation; it is possible—and indeed
desirable—that some of the constraints composing the heuristic will be satisfied
(and add zero to the total violations). In this case we need to use what is known
as weak composition which allows the summation to contain zero values. A valid
weak composition of 5 could be 2 + 1 + 1 + 1 + 0; however, this still does not
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Figure 3.2: The memory usage (in MB) for the different constraint postings.

exactly match our problem because the number of constraint families limits the
number of integers the heuristic can be composed from. The answer is to use a
tighter form of composition, weak k-composition, which restricts the summation
to containing exactly k elements. For a given heuristic value, n, and k problem
constraint families, then the weak k-composition, C∗

n,k, could be calculated using
Equation 3.7. We add the caveat that this value represents an upper bound
on the number of different constraint violations which could result in a given
heuristic value. Not all configurations may be possible (depending upon the
relationships between the constraints). Also, this figure only gives the number of
violation configurations; there may be multiple assignments which result in the
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same violations score. If the model contains symmetries there will be at least the
number of symmetric solutions for each violation configuration.

C∗
n,k =

(
n + k − 1

k − 1

)
= (n + k − 1)!

(k − 1)!((n + k − 1)− (k − 1))! (3.7)

It does remain useful though to consider that whilst two solutions may be
heuristically identical, this does not mean they are the same and in fact there
could be potentially C∗

n,k different violation configurations which would appear
identical. By retaining the individual violation information, it is theoretically
possible to differentiate between these C∗

n,k solutions.

3.3 Creating a Reusable, Generic Infrastructure
for Detecting Constraint-Neighbourhood In-
teractions

Given that maintaining multiple ConstraintSystem<LS>s does not cause any
substantial resource overhead and can provide additional information regarding
differentiating plateaux neighbours the next question is how to implement a system
that allows portable models to be analysed by a problem agnostic Interaction
Detector. Most COMET programs described in the literature, or provided as
examples with the language, do not make use of the OOP features (such as
interfaces or classes). This is, in part, because COMET can succinctly express
many problems without them; however, to create a system that allows models to
be passed for analysis to a non-problem specific component requires a decoupling of
various components. This can be conveniently accomplished using an OOP design.
Fig. 3.3 shows a Unified Modelling Language (UML) class diagram highlighting the
interfaces and abstract classes which form the core of the Interaction Detector’s
support framework. The interfaces are coloured light yellow, the abstract classes
are green, and the concrete classes are blue. Using COMET as the basis for a
higher-level framework is not unprecedented. The Be-Cool Belgian Constraints
Group at the Université Catholique de Louvain have fielded many applications
including: AEON the scheduler solver synthesis system by Monette et al. [2009],
the Constraint-Based Graph Matching of le Clément et al. [2009], and LS(Graph
& Tree) by Dung et al. [2009].
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Model

As noted in Section 3.2, COMET’s own Model<LS> class does not allow users total
freedom when posting constraint families. The existing Model<LS> interface only
permits partitioning models into hard or soft constraints (and objective functions).
The constraints are all posted to a ConstraintSystem<LS>; there is no way of
specifying an alternative constraint container. These limitations motivated the
creation of a new Model interface which is shown is Listing 3.5. It was designed
to allow models to contain an arbitrary number of constraint families and for
those families to be stored in any container the user desires. When developing
this system we made the decision to focus solely on the integer components
of COMET. The language supports integer Z (var{int}), real R (var{ float }),
boolean (var{bool}) and integer set (var{set{int}}) decision variables; the
majority of the inbuilt constraints only apply to integer variables. Our framework
could easily be extended to cover float, boolean, and set models through the
addition of the appropriately-typed methods.

Constraint Container Choice

Allowing constraints to be posted to classes other than just ConstraintSystem<LS>s
can have efficiency benefits. A specialised form of ConstraintSystem<LS> is the
DisequationSystem<LS> class. It is limited to maintaining only binary con-
straints of the form: x[i] != x[j] (i.e. inequalities). The advantage of using this
more limited container is that the differentiation calculations can be performed in
constant time [Van Hentenryck and Michel, 2005, p. 111].

To investigate whether the choice of constraint container had an appre-
ciable effect on the model efficiency, we compared two implementations of a
Graph K-Colourability problem; one using a ConstraintSystem<LS>, the other
a DisequationSystem<LS>. Our hypothesis was that a DisequationSystem<LS>
model would be better in terms of differentiation time (i.e. the time it takes
COMET to assess the change caused by an assignment). We also wanted to explore
whether this speed benefit affected the memory usage and the model’s instantiation
time. The Graph K-Colourability problem seemed an ideal test problem because
the only constraints required are binary inequalities between decision variables
that represent the colour of the vertices. The problem—sometimes called the
Chromatic Number problem—is known to be NP-hard and appears as [GT4]
in Garey and Johnson [1979, p. 191]. The Graph Colouring problem can be defined
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1 enum InitialisationMethod = { Random , Permutation , Constructed };
2

3 i n t e r f a c e Model{
4

5 Solver <LS > getLocalSolver ();
6

7 bool hasConstraints ();
8 ConstraintSystem <LS >[] getConstraints ();
9 s e t { i n t } getConstraintIds ();

10 s e t { i n t } getWeightedConstraintIds ();
11

12 bool hasDisequations ();
13 DisequationSystem <LS >[] getDisequations ();
14 s e t { i n t } getDisequationIds ();
15

16 bool hasObjectives ();
17 Function <LS >[] getObjectives ();
18 s e t { i n t } getObjectivesIds ();
19

20 var { i n t }[] getViolations ();
21 var { i n t }[] getEvaluations ();
22

23 i n t [] getSizes ();
24 s t r i n g [] getNames ();
25

26 var { s e t { i n t }} getSelectedConstraints ();
27 var { i n t } getSelectedConstraintViolations ();
28

29 var { s e t { i n t }} getPreservedConstraints ();
30 var { i n t } getPreservedConstraintViolations ();
31

32 var { s e t { i n t }} getSelectedObjectives ();
33 var { i n t } getSelectedObjectivesEvaluations ();
34

35 bool hasInvariantDependencies ();
36 d i c t { int -> var { i n t }[]} getInvariantDependencies ();
37

38 void initialiseSolution ( InitialisationMethod m);
39 void initialiseSolution ();
40

41 void populateInvariants ();
42 Boolean getLookaheadFlag ();
43 bool isWeighted ();
44

45 void print( ostream os);
46 }

Listing 3.5: The Model interface, model.co, that enables a specific problem to be
detached from the other system components.
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as:

Definition 14 Given a graph, G, a |V (G)| sized array of colour assignments,
colour, and a set of colours K where |K| ≤ |V (G)|:

minimise |K| while ∀ e = {v1, v2} ∈ E(G) : colour[v1] 6= colour[v2] (3.8)

Between 1992 and 1993 The Center for Discrete Mathematics and Theoret-
ical Computer Science (DIMACS) organised the second of its Implementation
Challenges to stimulate research into NP-hard problems (specifically Maximal
Clique finding, Graph Colouring, and Satisfiability solving). The input format
that DIMACS developed has become the standard for Graph Colouring problems.
The instances we used for our experiment were obtained from Michael Trick’s
repository of DIMACS graph colouring instances1. The repository contains a
mixture of plain text and compressed binary instances; however, our experiment
only used the 57 plain text instances.

The experiment was conducted using COMET 2.1 running on a MacBook
Pro operating under Mac OS X 10.6.3 with a 2.16 GHz CPU and 3 GB of RAM.
Table B.1 in Appendix B provides the results for every instance. Figs. 3.4 and 3.5
show that memory usage and time to state the constraints is less, in the majority
of cases, for a model implemented using the DisequationSystem<LS> class. There
also appears to be a relationship between the memory usage of a model and the time
taken to instantiate that model. Fig. 3.6 shows that the differentiation times were
evenly matched. This contradicted our expectations, as in Van Hentenryck and
Michel [2005, p. 111] they promote the use of DisequationSystem<LS>s precisely
due to their constant-time differentiation. Nevertheless, this result highlights that
retaining control over the containers used to manage the constraints can have
implications for the efficiency of any model.

Differentiation Options

The final argument in favour of posting constraints to containers other than
just ConstraintSystem<LS>s relates to the differentiation methods available. All
constraints (defined over integer variables) inherit from COMET’s Constraint<LS>
interface. This interface specifies five differentiation methods (as shown in List-
ing 3.6) which can be used to assess the impact of potential assignments on that

1The full instance set can be found at: http://mat.gsia.cmu.edu/COLOR/instances.html
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Figure 3.4: Comparing the memory usage (in MB).
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Figure 3.5: Comparing the time (in ms) to state the models.
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Figure 3.6: Comparing the time (in ms) to differentiate 1000 random swaps.
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constraint; these methods are one of the language’s major features. Differentiation
is a way of efficiently evaluating potential moves without actually committing
to them. The getAssignDelta(var{int} x, int v) method is the most basic,
returning an integer representing the violation change that would have resulted
from the call, x := v. COMET uses a special operator, :=, to make assignments
to decision variables. Whenever a decision variable is assigned it causes COMET’s
underlying machinery to automatically update the appropriate invariants1. This
process has been made as efficient as possible via the use of incremental algorithms,
but it is not without cost. Repeatedly updating invariants is not desirable when
searching many neighbours.

1 i n t getAssignDelta ( var { i n t } x, i n t v);
2 i n t getAssignDelta ( var { i n t }[] xa , i n t [] va);
3 i n t getAssignDelta ( var { i n t } x1 , i n t v1 , var { i n t } x2 , i n t v2);
4 i n t getSwapDelta ( var { i n t } x, var { i n t } y);
5 i n t getSwapDelta ( var { i n t } x1 , var { i n t } y1 , var { i n t } x2 , var {

i n t } y2);

Listing 3.6: The differentiation methods provided in COMET’s Constraint<LS>
interface.

The array parameterised version of the getAssignDelta method (getAssignDelta
(var{int}[] xa, int[] va)) is the most powerful differentiation method. It
allows the evaluation of moves that reassign multiple variables in a single opera-
tion. Without this method it would not be possible to work efficiently with any
but the simplest of assignments. The multiple getAssignDelta can also be used
to recreate the effects of all the other differentiation methods. In addition to
assignments, COMET also supports exchanges between decision variables (denoted
by the :=: operator). Exchanges could be replicated using assignments; however,
this would require the creation of a temporary variable to hold the value of one
of the variables during the process. The swap operator conveniently solves this
problem leading to more concise code.

The ConstraintSystem<LS> class implements the Constraint<LS> interface
thus allowing a collection of constraints to be treated exactly like a single con-
straint. The downside of this uniformity is that the differentiation possibilities
are restricted to only these methods. Some constraints provide other, more
specialised, differentiation methods; most notably those that implement the

1The atomic and delay blocks can be used to postpone the invariant propagation until the
end of several assignments.
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SequenceConstraint<LS> interface. In some situations it is more natural to
consider potential neighbourhood moves in terms other than assignments or swaps.
Problems that depend on precedences or orderings such as Job Shop Scheduling
use neighbourhoods that treat the variables as items in a list. Permutations can be
created by inserting values at new positions or exchanging the positions of values.
As with the swap operation earlier, these permutations are equivalent to a series
of assignments, but it is more convenient for the user to have access to a richer
set of methods. The SequenceConstraint<LS> interface provides four additional
differentiable methods (see Listing 3.7). Posting SequenceConstraint<LS>s into
a conventional ConstraintSystem<LS> hides these new methods, instead the
SequenceConstraintSystem<LS> should be used. The Model class developed for
our framework allows the user control of these decisions.

1 i n t getAssignDelta ( i n t x, i n t v);
2 i n t getReverseDelta ( i n t x, i n t y);
3 i n t getShiftDelta ( i n t x, i n t y);
4 i n t getSwapDelta ( i n t x1 , i n t x2);

Listing 3.7: The differentiation methods in the SequenceConstraint<LS>
interface.

As well as just constraints, COMET also supports objective functions using the
same conventions. All integer objectives in COMET inherit from the Function<LS>
interface that, like its counterpart Constraint<LS>, defines the available differ-
entiation methods. These are limited to single assignments, swaps, and boolean
flips (where the truth value of a logical variable is inverted). The Model interface
of our framework supports Functions<LS>s in the same ways as constraints. The
similarity of the constraint and function interfaces means it requires only minimal
additional effort to allow both in our framework.

Implementing our Model interface is an abstract class, AbstractModel, which
provides various helper methods to make implementing user-defined problems as
simple as possible. The example in Listing 3.4 shows the creation of a model with
three ConstraintSystem<LS>s. The modeller can use as many containers as they
wish and post their model in any way they see fit. The addConstraint method
from the AbstractModel class handles the collation of the individual families into
a single array for each of the supported container types.
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Invariant Dependencies

When modelling problems, there can be a variety of choices of what to use as
the decision variables. In CP it is common to use multiple decision variables
to represent the same information from several viewpoints. For example, our
model of the Graph K-Colourability problem had a colour value variable for
each vertex in the graph; another view could have been to create a set variable
for each colour and store the indices of the vertices assigned that colour. The
idea of alternate formulations also occurs in Mathematical Programming models
where it is described as a dual. LP techniques exist which convert between the
original—primal—model and the dual to solve problems more effectively. In the
case of the dual it refers to a specific recasting of the primal model; alternate
viewpoints are not necessarily as restricted in their definitions. In CP and CBLS
it can be easier to express certain problem constraints in one particular viewpoint.
To ensure that these multiple viewpoints are kept synchronised there needs to be
a series of channelling constraints (as detailed in Hnich et al. [2004]).

COMET’s Local Search module does not directly support viewpoints or chan-
nelling constraints. It is, however, possible to maintain a dual viewpoint by using
invariants. As invariants are automatically updated after decision variable assign-
ments channelling constraints are not needed to keep the viewpoints consistent.
The limitation is that, unlike in a CP dual model, the relationship only exists in a
single direction. It is not valid to manually assign a value to an invariant variable,
so bi-directional communication between viewpoints is not possible. Invariant
variables appear identical to any other incremental decision variable and can be
used within any constraints or functions. When the original decision variables
are changed the invariants will update, and so too will the evaluation of any
objective or constraint. The problem comes when attempting to differentiate a
potential move. The original decision variables are not present in a constraint
defined over invariants; any queries based on these will be treated as having no
effect. To COMET they are unrelated and it does not recognise there could be
any dependency relationship. If the designer is aware of this behaviour then it is
possible to use invariants to emulate a dual model. We describe a constraint that
is declared on variables other than the decision variables as having an invariant
dependency.

Our framework is flexible enough to support this non-standard use of the
language. When posting the constraints via the addConstraint method it is also
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possible to pass in an additional set of variables to indicate that the constraint
depends upon these.

Neighbourhoods

Aside from the model hierarchy, the framework also provides support for easily
creating modular neighbourhoods. Neighbourhoods are key to Local Search’s
effectiveness and as such any Local Search framework should allow the user as
much freedom as possible to create suitable functions for their particular problem.
The generic search component work in Van Hentenryck and Michel [2007] does
not provide any means for the user to specify their own neighbourhoods. The
choice is limited to what Van Hentenryck and Michel describe as linear and
quadratic neighbourhoods. The linear neighbourhood equates to straightforward
assignments and the quadratic neighbourhood is the exchange of values between
variables. As the focus of that work was the development of black-box style Local
Search search components, it would be churlish to complain about the omission of
user-defined neighbourhoods.

COMET supports neighbourhoods with two main features: the neighbor block
and the Neighborhood interface. The neighbor block is a syntactic feature that
masks the creation of closures. Closures are advanced programming constructs
not commonly found in mainstream OOP languages. Essentially, they are first
class expressions (i.e. they can be assigned to variables and passed to / from
functions) which store a computational state. To execute the code within a closure
it needs to be explicitly called. Individual neighbourhood moves can be stored as
closures which are only executed once the algorithm has made a decision. The
neighbor block creates these neighbourhood closures and associates them with a
heuristic score (found using the appropriate differentiation method). It then passes
the resultant closure and value into a class that implements the Neighborhood
interface.

The Neighborhoods act as closure containers and perform different behaviours
regarding which moves they will retain. For example, the MinNeighborSelector
only stores the closure with the best evaluation. This system of placing moves
into a Neighborhood makes it easy to compose neighbourhoods by placing moves
from a variety of different sources into a single selector. The downside is that it is
only the enumerated form of the neighbourhood that is easily transferable. The
neighbor block must be in the same scope as the decision variables being altered
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and the differentiable object being used to calculate the fitness.
Our framework attempts to reduce the coupling between the problem, neigh-

bourhood, and search procedure. At the top level is the interface Neighbourhood<LS>
which defines a number of methods that neighbourhoods must provide. As with
the Model interface, the majority of these are supplied by an abstract class—
AbstractNeighbourhood<LS> in this case. In Fig. 3.3 there is a noticeable differ-
ence between model and neighbourhood elements; beneath AbstractNeighbourhood<LS>
are several other abstract classes. These additional classes reflect the various forms
of differentiation methods available (as part of the Constraint<LS> interface).

From the user perspective, this means that when they are developing their
own neighbourhood they need to subclass the appropriate abstract class. If
the neighbourhood they intend to create makes multiple assignments (i.e. it
would require differentiation with the getAssignDelta(var{int}[] xa, int[]
va)) then they would extend the MultiAssignment<LS> class. Each abstract
class provides access to a differentiable method which transparently handles the
differentiation of multiple constraint families.

The neighbourhoods support three different search methods: full exploration,
first improvement and best improvement. In full exploration mode the neigh-
bourhood creates all the neighbouring solutions and adds them along with their
evaluations into the Neighborhood for consideration. This is the slowest way to
search a neighbourhood and is rarely used within our system. The first improve-
ment exploration only enumerates the neighbourhood until it reaches a point
where an improving solution is found. The order of exploration is generated ran-
domly; this should prevent a bias towards moves altering early occurring variables
or values. The best improvement method uses COMET’s selectors to attempt a
min-conflicts style move. The most violated variable is chosen and assigned to
the value that causes the largest decrease. As with the first improvement method,
the best improvement contains some randomness. COMET selectors can be given
a certain greed factor. Instead of choosing the best assignment, it can opt for any
of the top n options (where n is positive integer that can be varied).

Dynamic Scoping

Another important feature of our neighbourhood system is that the scope of
the differentiation functions are not static. In a single ConstraintSystem<LS>
scenario a move can only be differentiated with respect to that one container.
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Our Model allows constraints to be posted into multiple containers. When as-
sessing a move, we could call the differentiating method of every container in the
Model. However, it would be more elegant if moves could be differentiated against
only a subset of the available containers (i.e. a dynamic differentiation scope).
Each neighbourhood maintains a set containing the indices of the containers
that it will include in any differentiation call. These are what we term as the
selected constraints. The selected constraints actually also encompass any dise-
quations and objective functions. Each container in the Model has a unique—and
contiguous—array index; this is one of the useful functions that happens in the
background of the AbstractModel. COMET allows arrays to have any range of
indices, not just the conventional zero-indexed range. Even though internally
the ConstraintSystem<LS>s, DisequationSystem<LS>s, and Function<LS>s are
stored as separate arrays to the neighbourhood, they appear as a single array. The
default behaviour is to assess the impact of a potential move on all the containers,
but the scope can be reduced to any subset of the containers at any point during a
search. This offers more flexibility than the existing static differentiation methods.

Lookahead

Even though all the constraints subscribe to the same interface, they may—for var-
ious reasons—not support the same differentiation methods. Support for methods
beyond the basic getAssignDelta and getSwapDelta is not guaranteed for all
containers and can be buggy; for any classes extending Function<LS> it does not
exist. Sometimes a constraint has an invariant dependency and therefore cannot
be differentiated easily. COMET provides a way around this problem in the form of
simulation [Van Hentenryck and Michel, 2005, Sec. 8.4, p. 151]. The lookahead
block allows any arbitrary assignment (or series of assignments) to be executed,
returns the effect to a specified incremental variable and then—crucially—rescinds
the assignment. By using lookahead any unsupported differentiation methods
can be simulated; this does incur a larger computational overhead. Listing 3.8
shows a simple example of how lookahead could be used to mimic a differenti-
ation method. On line 10 the ConstraintSystem<LS> S is being differentiated
to find out the effect of assigning variable x the value 4. Line 11 shows the
alternative way to achieve the same effect using lookahead. In this case, it is
only the Solver<LS> and variable v, which stores the violations of S, that are
supplied. The block following the lookahead contains the explicit assignment of
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4 to x. The result of the lookahead call returns the new value of v, not just the
change (hence the need for the additional subtraction). Neither method commits
the change, so if we examined the value of x after either method it would be 5.

1 import cotls;
2 Solver <LS > _solver ();
3 var { i n t } x(_solver , 1..10) := 5;
4 ConstraintSystem <LS > S( _solver );
5 S.post(x != 5);
6 S.close ();
7 var { i n t } v = S. violations ();
8 _solver .close ();
9

10 cout << S. getAssignDelta (x, 4) << endl;
11 cout << lookahead (_solver , v){ x := 4; } - v << endl;

Listing 3.8: Comparison of using the lookahead construct versus differentiation.

The problem with the existing form of lookahead is that it is restricted to
returning only a single value. Even though any assignment can be simulated, the
effect can only be assessed against a single constraint family. The simplest solution
would be to use the same approach as with the differentiation methods and call
lookahead for each of the containers in the selected constraints set. Bearing in
mind that each lookahead assigns all the variables, propagates all the invariants,
and calculates the values of all the constraints, this seems needlessly inefficient.
A more effective method would be to only call lookahead once and calculate
all the changes in a single step. The lookahead block does not allow this, tied
as it is to a single return value; lookahead is a wrapper around a lower-level
COMET feature. The Solver<LS> object—which is responsible for maintaining
all the variables, invariants, and constraints—contains an undocumented method
called lookah(bool enable). This can be used in the same fashion as atomic
and delay blocks allowing lookahead to occur within a brace delimited scope.
The difference between the explicit lookah usage and the lookahead feature is
that primitive assignments between the lookah calls are not undone.

Using lookahead raises one more potential performance issue: if the collection
of constraint families being differentiated contains a mixture of those which
can be differentiated and those which require lookahead, then the framework
only performs a single lookahead operation. Whenever a change is made to
the neighbourhood’s selected constraints set the neighbourhood re-evaluates its
lookahead policy. This ensures that simulation is only used when it is absolutely
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necessary.

Candidate Lists

In Glover and Laguna [1997, Chp. 3, p. 61] they outline a feature of TS that
they call candidate lists. Some neighbourhoods may have too many potential
neighbours to make a full exploration feasible. Or, alternatively, the process
of evaluating those neighbours could be prohibitively expensive. A candidate
list is a way of restricting the number of neighbours to some subset of the full
neighbourhood via the application of a set of simple rules. Within our framework,
candidate lists are classes which implement an interface and provide a method,
getRestrictedList(int index), that can return a set of values for a given
parameter. An existing neighbourhood can be customised by supplying a candidate
list instance. This makes it straightforward to create multiple neighbourhoods
with different properties by supplying different candidate lists to one general
neighbourhood.

3.4 The Interaction Detector

In the preceding section we outlined the framework that allows the detector to
operate in an entirely problem-independent fashion. This section will describe
the system we developed to identify interactions between constraint families and
search neighbourhoods. Definition 13 specified what constituted a constraint-
neighbourhood interaction; a neighbourhood can be said to interact with a con-
straint family if it contains a move which can alter the violation state of that
constraint family. We make no stipulations about whether this change in state
is positive or negative. The rationale behind this decision is that, within Local
Search, it is the acceptance function’s role—not the neighbourhood’s—to make
choices relating to the heuristic evaluation of states. The neighbourhood exists
to provide alternative states for the acceptance function to consider. Given this
definition of constraint-neighbourhood interactions, identifying them becomes
simple; any observed examples of a violation state change demonstrate that an
interaction exists.

The basic structure of the Interaction Detector is shown in Algorithm 10. The
algorithm iterates across all the constraint families in the problem model and for
each family looks at each neighbourhood. It initialises a random solution as the
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Algorithm 10: The structure of the Interaction Detector.
input : An array of constraints and an array of neighbourhoods
output : Interaction relationships for each constraint, cInteractions

1 begin
2 C ← {1 . . . |constraints|}
3 N ← {1 . . . |neighbourhoods|}
4 foreach c ∈ C do
5 cInteractions[c]← ∅
6 foreach n ∈ N do
7 setSelectedConstraint(c, neighbourhood[n])
8 try
9 firstImprovement(neighbourhood[n])

10 catch valueChangeEvent(violations(constraints[c]))
11 cInteractions[c]← cInteractions[c] ∪ {n}

starting point and then proceeds to explore the selected neighbourhood. If any of
the moves cause a change to the violation state then the relationship is noted and
the search investigates the next constraint-neighbourhood pair. If, after exploring
all the neighbouring states from the initial random solution, the detectors finds
no evidence of a violation change it assumes no interaction exists. The starting
solution must exhibit two properties: the constraint under investigation must be
violated and the neighbourhood must have a non-zero amount of moves. The
second requirement ensures that any neighbourhood is actually allowed to generate
neighbours and receives a fair exploration. Some neighbourhoods, especially those
which depend upon invariant information, can change in size, from zero moves to
many hundreds depending on the current candidate solution configuration.

Due to the flexibility of our framework (especially its treatment of neigh-
bourhoods and constraints as first-class objects), the actual interaction detector
algorithm is straightforward. It seems apt to use what is effectively a Local Search
to identify properties of another Local Search algorithm. The ParamILS work
of Hutter et al. [2009] successfully uses Local Search to tune the parameters of
other algorithms, so applying Local Search in this fashion is not unprecedented.

In Equation (3.3) the violations for a constraint family are defined as the
number of unsatisfied constraints within that family. Constraints in COMET can
report their violations in a number of different forms. For example, an alldifferent
constraint uses a variable-based representation; the violation score reflects how
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many variables would need to be altered to satisfy the constraint. Constraints can
also have a weighting applied to their violations (as appears in the PPP models
in Listings 3.1, 3.2, 3.3, and 3.4). Weighting the violations may be a feature of
the search strategy (e.g. GLS, SWO) but it can pose problems for the detector.
In COMET the violation score maintained by each container incorporates any
weightings and so cannot be guaranteed to match Equation (3.3). Under these
circumstances a change in violation score may not be proof that the total number
of violated constraints has changed. In situations where the model has weighted
constraints the detector manually counts the numbers of satisfied constraints. It
only identifies an interaction when it detects a violation change that also alters
the count of currently satisfied constraints.

The complexity of the detector is O(|C| · |N |); where C is the set of constraint
families and N is the set of neighbourhoods. The cardinality of C is determined by
both the problem specification and the designer’s constraint posting decision; we
expect this to be somewhere between one and ten. The number of neighbourhoods
depends on how many the designer requires (or is willing) to implement. In the
literature where Local Search is being used it is unusual to find more than five or six
neighbourhoods. Even in papers using VNS the actual number of neighbourhoods
is restricted; Burke et al.’s work with VNS uses 23 neighbourhoods which is
notably large [2010].

Minor Caveats

Before proceeding to introduce the test domain and the evaluation of the Inter-
action Detector it would seem prudent to state a few caveats up front. Firstly,
and most significantly, failure to detect an interaction does not constitute proof
that none exists. The detector is not complete. Just as Local Search cannot
definitively prove SAT instances are unsolvable, it cannot conclusively rule out the
existence of a constraint-neighbourhood interaction. The object of this aspect of
the work was to see if it was possible to automatically annotate neighbourhoods
with information about the constraints they affect. It was never intended to be
an exhaustive investigation uncovering all possible interactions.

The second caveat is that the detector makes no attempt to classify the exact
nature of an interaction. As mentioned earlier, any change in the number of
violations—regardless of the direction—is evidence of an interaction. For most
neighbourhoods this will not be a problem, as they will be capable of creating
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solutions which decrease violations and solutions which increase them. It becomes
more of an issue in the situation where a neighbourhood can only ever change the
violations in a single direction. It is possible that a neighbourhood contains only
either improving or worsening moves (with neutral moves in both); one example
is the overlapRemover neighbourhood used in the upcoming experiments (in
Section 3.6) and summarised in Section A.2.2 of Appendix A. The neighbourhood
removes overlapping assignments by setting the undesired allocations to currently
empty choices. This neighbourhood will only ever remove overlaps; it cannot
introduce new overlaps. This is another reason why the starting solution should
contain some violations; some neighbourhoods are able to reduce constraint
violations, but if starting from a satisfied position will appear to do nothing.
Trying to automatically identify interactions of this nature would be useful but is
not possible with the current detection scheme and / or definition of an interaction.

The complexity is O(|C| · |N |), so for larger sets the process can take some time.
Especially if there are a lot of combinations where no relationship exists. The final
caveat is that the detector is not intended to be used before each solving run. The
idea is to use the interaction detector once for a particular problem—independent
of a specific instance—and set of neighbourhoods; the results uncovered can be
cached and loaded later rather than redoing the detection.

To test the effectiveness of the detector we chose to use a variant of the Uni-
versity Timetabling problem. Timetabling problems are challenging combinatorial
problems with rich problem constraints where the most successful state-of-the-
art solvers are variants of Local Search that implicitly use information about
constraint-neighbourhood interactions. It, therefore, seemed that timetabling was
an entirely appropriate test domain.

3.5 The Post Enrolment-based Course Timetabling
Problem

Timetabling is a classic real-world constraint problem which appears in a variety
of settings though is typically situated at educational institutions. The problem is
concerned with allocating a series of classes, or events, into locations at predefined
time periods. The possible allocations are subject to a series of restrictions; the
exact nature of which depends upon the particular timetabling variant. Most of the
research has been focused on the problems arising in universities, although other
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domains include scheduling various types of schools (e.g. Primary, Secondary).
The challenging—and repetitive—nature of timetabling means that even from
the early days of computing there was research focused on trying to automate
the process. There are a number of companies offering commercial timetabling
software (such as the UniTime system of Müller [2009] and TimeTabler by Johnson
and Johnson [1998]) for use in schools, colleges and universities. Most of these
systems operate in a semi-interactive / mixed-initiative fashion; they present a
range of potential solutions to the user and allow them to select the most suitable
one or reinforce desirable attributes.

The timetabling problem has also been the subject of two international compe-
titions for completely automated timetablers. The particular variant of timetabling
used for the first International Timetabling Competition (ITC) is known as Post
Enrolment-based Course Timetabling (or sometimes Event Timetabling or Course
Timetabling). This reflects the situation where students have already been as-
signed to classes; the challenge is to schedule these classes into time-slots in such
a way that students are never required to attend more than one class at any given
time. There can only be a single class in each room during a time period and the
room must have enough space for the class assigned to it. Any solution which can
satisfy these basic requirements is deemed feasible. There are a set of additional
constraints which indicate desirable attributes in solutions. Students should not
be required to attend more than two consecutive classes without a free period.
Classes should not be in the final time period of a day and a student should not
have any days that contain only a single class.

Definition 15 A Post Enrolment-based Course Timetabling problem consists of:

• a set of m events, E = {e1, e2, . . . , em}

• a set of n students, S = {s1, s2, . . . , sn}

• a set of p rooms, R = {r1, r2, . . . , rp}

• a set of q room features, F = {f1, f2, . . . , fq}

Also provided in the problem instances are:

• a list of room capacities, C =
{
Cr1 , Cr2 , . . . , Crp

}
• an m by n attends matrix indicating whether a student takes a particular

event.
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• a p by q roomFeature matrix indicating whether a room has a feature.

• a q by m eventFeature matrix storing whether an event needs a feature.

From the basic information supplied with the problem instance, it is possible to
create a more compact, set-representation of some variables. The attends matrix
can be used to calculate the set of classes that each student is enrolled on:

∀s ∈ S SEs = {∀e ∈ E : attendss,e > 0}

From the studentsEvents (SE) set it is straightforward to create a complimen-
tary structure, eventsStudents (EvS), where each event has a set containing the
students registered with that class:

∀e ∈ E EvSe =
⋃

∀s∈S

{s : attendss,e > 0}

The features are supposed to represent particular pieces of equipment either re-
quired by a class or present in a room, e.g. an overhead projector, or a white-board.
From a practical standpoint, this information can be preprocessed to provide a
list of the rooms that meet each event’s feature demands. This list can be further
reduced by removing any rooms whose capacity is less than the cardinality of the
event’s student set. The set of all the events that clash with a given event (eC)
can be obtained by unioning the events attended by its students.

∀e ∈ E eCe =
⋃

∀s∈EvSe

SEs \ e

The clashing events graph can be augmented with an additional observation: if an
event only has one valid room, vR, then it will necessarily clash with any other
event which can only be assigned to that same room.

∀e ∈ E eCe =
 ⋃

∀s∈EvSe

SEs \ e


∪ {f ∈ E : f 6= e ∧ |vRe| = 1
∧ |vRf | = 1
∧ |vRe ∩ vRf | = 1}

103



Chapter 3. Detecting Constraint-Neighbourhood Interactions

Listing 3.9 contains an excerpt from the OriginalParser class which shows
how this preprocessing is actually implemented.

1 studentsEvents = new s e t { i n t }[s in students ] = s e t o f (e in
events )( studentEvents [s,e]);

2 eventsFeatures = new s e t { i n t }[e in events ] = s e t o f (f in
features )( eventFeatures [e,f]);

3 eventsStudents = new s e t { i n t }[e in events ] = s e t o f (s in
students )( member (e, studentsEvents [s]));

4

5 eventsRooms = new s e t { i n t }[e in events ] = s e t o f (r in rooms)
(and(f in eventsFeatures [e])( roomFeatures [r,f]) && ( roomSizes [
r] >= card ( eventsStudents [e])));

6 clashingEvents = new s e t { i n t }[e in events ] = union (s in
eventsStudents [e])( studentsEvents [s]) \ {e}

7 union c o l l e c t (f in events : e != f && card ( eventsRooms [e])
== 1 && card ( eventsRooms [f]) == 1 && card ( eventsRooms [e]
i n t e r eventsRooms [f]) == 1)(f);

Listing 3.9: An excerpt of the OriginalParser class, OriginalParser.co,
showing the creation of the set-based representation.

Definition 16 The hard constraints for the ITC [2002] problem are:

h1 no student has to attend more than one event at each time period.

h2 an event’s room is large enough to accommodate its students and has the
required features.

h3 only one event is in each room at any given time-slot.

Definition 17 The soft constraints, which form an objective to be minimised,
are:

s1 a student should not have a class in the last time period of a day.

s2 a student should not have more than two events consecutively.

s3 a student should not have only a single event on a day.

Within the model (and the subsequent experimental results) the constraints
have more expressive names. The hard constraints, h1, h2, h3, are referred to
as eventClashes, roomValid, and overlaps. Similarly, the soft constraints, s1,
s2, s3, are named finalTimeslot, threeInARow, and singleEvent. The roomValid
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constraint is an example of a constraint that has been specified in one form by the
competition organisers but could easily be separated into two distinct constraints:
an event’s room should have enough capacity, and an event’s room should have the
requested features. In the ITC formulation of the problem there are 45 time-slots;
five days, each with nine time periods. This is equivalent to having classes from
9 am until 6 pm, Monday to Friday.

Trying to find to a feasible timetable is closely related to the Graph Colouring
problem encountered in Section 3.3. The colours in this case are the time periods,
the graph to be coloured is the event clash graph (i.e. any classes sharing students
cannot be at the same time). In Graph Colouring the objective is to minimise the
number of colours being used; for timetabling it is sufficient to find an assignment
which uses, at most, the number of feasible time-slots (i.e. forty).

Timetabling can be neatly modelled as a COP with the problem specification
clearly delineating the hard and soft constraints. Listing 3.10 gives an excerpt
from the OriginalModel class showing the methods responsible for instantiating
the constraints eventClashes and overlaps. Each of the constraint families has its
own method where it receives a constraint container as an argument. By making
each of the families responsible for posting themselves means that it is easy to
create any partitioning desired. For the single partition each constraint family
receives the same ConstraintSystem<LS>; for multiple families then each family
is passed a unique container and so forth.

1 void postClashingEventsConstraints ( ConstraintSystem <LS > S){
2 f o r a l l (e in events , f in clashingEvents [e]:f > e){
3 i f ( _isWeighted ){
4 S.post( eventTimeslots [e] != eventTimeslots [f], card (

eventsStudents [e] i n t e r eventsStudents [f]));
5 } e l s e {
6 S.post( eventTimeslots [e] != eventTimeslots [f]);
7 }
8 }
9 }

10

11 void postOverlapsConstraints ( ConstraintSystem <LS > S){
12 S.post( a l l d i f f e r e n t ( a l l (e in events ) couple ( eventTimeslots [

e], eventRooms [e])));
13 }

Listing 3.10: An excerpt of the OriginalModel class (from OriginalModel.co)
showing the eventClashes and overlaps constraints being posted.
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Experimental Problem Model

The problem model we decided to use has a decision variable for each event’s room
and time-slot assignment. An alternative approach is to a have a decision variable
for each time-slot room combination (where the domain would be the range of
events). The benefit of the second approach is that it prevents overlaps implicitly;
each time-slot room variable can only take on a single event assignment. The
downside is that it makes modelling the threeInARow constraint more demanding.
Dynadec provide a demonstration timetabling application as one of their COMET

examples in Dyn [2010, Sec. 19.4, p. 373]1. This model uses a time-slot / room
formulation and takes its input in the ITC format but does not fully capture
the ITC problem. Several of the constraints (finalTimeslot, singleEvent, and
threeInARow) are omitted. The finalTimeslot constraint would be fairly trivial to
encode in this model; just remove all the events from the domains of any of the
final time-slot / room variables.

The remaining constraints—threeInARow and singleEvent—are the hardest
to model; both are violated on a per student basis. The most elegant way
to capture the threeInARow constraint is using the SequenceAtmost<LS>. The
SequenceAtmost<LS> is COMET’s Local Search version of the CP sequence global
constraint introduced by Dincbas et al. [1988] to model car production-line
problems. This requires a representation that maintains each student’s timetable
explicitly. To use the SequenceAtmost<LS>, we need access to each student’s daily
timetable (or a count of the events they have at each time-slots during that day).
Having a decision variable for every time-slot in each student’s timetable is not
feasible; the search process would become unworkable. However, automatically
maintaining each student’s timetable as invariant is possible. COMET allows
users to extend the Invariant<LS> interface to efficiently update any custom
invariants they want. Ordinarily, invariants should not be used in constraints,
however, in the case of the threeInARow (and singleEvent) constraints it seemed
the neatest option (and motivated our desire to handle invariant dependencies in
the framework).

1The source file is timetableLS.co which can be found in the docs/codes/cbls folder
which is located within the COMET installation directory.
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Additional Instances

The ITC provided twenty instances created by Ben Paechter which were guaranteed
to have perfect solutions, i.e. where all the hard and soft constraints could be
satisfied. In addition to the public instances the organisers also held three private
instances in reserve that they could use to independently verify the performance
of submissions. After the competition Lewis (using Ben Paechter’s problem
generator) released another sixty instances1 designed to be harder than the
original competition ones [2006, Sec. 4.3, p. 59]. Not all of these instances are
known to be soluble to the lower bound; they may not have perfect solutions.

Previous Approaches

The original competition resulted in a number of approaches; the overall win-
ner Kostuch [2004] used SA hybridised with constructive components. The second
placed entry of Cordeau et al. [2003] used a TS with several neighbourhoods.
Third placed Bykov [2003] expanded upon the earlier work of Burke et al. [2001]
and used the Great Deluge Algorithm (GDA). Fourth place was awarded to Di
Gaspero and Schaerf [2003a,b, 2006] who used their EasyLocal++ framework
to create a VNS based algorithm. As part of the rules of the competition each
entrant had to supply a short technical report detailing their algorithm; the papers
for Bykov [2003], Chiarandini et al. [2003], Cordeau et al. [2003], Di Gaspero and
Schaerf [2003b], Kostuch [2004] can be obtained from the ITC results page at
http://www.idsia.ch/Files/ttcomp2002/results.htm.

The most effective algorithm was actually a submission by the competition
organisers (and thus ineligible to win). For details, check their original technical
report in Chiarandini et al. [2003] or the later, more expansive article in Chiarandini
et al. [2006]. Their approach used a combination of different metaheuristic
components. The first phase used a constructive algorithm coupled with a TS to
find a feasible solution. Once a feasible solution was found, a VNS was executed
trying to optimise the soft constraints; this was passed to a final SA phase to try
to reduce any remaining constraint violations.

All the successful entries used some kind of metaheuristic algorithm. It may
be just because the ITC was organised by the Metaheuristics Network, but it is
interesting that no CP or LP solutions featured. Whilst the specific approaches

1The harder instances are available from http://www.dcs.napier.ac.uk/~benp/centre/
timetabling/harderinstances.htm
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varied between submissions, a common theme between them all was taking
a multi-phase approach and partitioning the problem into the hard and soft
constraints. The best algorithms actually used several phases and were non-linear
in their construction (e.g. they could move between several phases in a non-trivial
fashion).

Work presented in Lü et al. [2010] also uses the timetabling problem—albeit
the Curriculum-based rather than Post-enrolment based variant—as the setting for
neighbourhood analysis. Their work investigates four neighbourhoods and focuses
on three properties unrelated to the constraints: the strength of moves, the percent-
age of improving neighbours and the number of search steps. The neighbourhoods
they use are SimpleMove, SimpleSwap, KempeMove, and KempeSwap. The first
three are equivalent to moveToEmptySlot, eventsTimeslotAndRoomSwaps, and
kempeChainWithMatching in our framework. We do not have a neighbourhood
with the same behaviour as their KempeSwap.

3.6 Evaluating the Interaction Detector

To test the effectiveness of the Interaction Detector we experimented using the
timetabling problem with 41 neighbourhoods and three different constraint par-
titionings. Table 3.6 summarises the neighbourhoods and their properties; a
full description of each neighbourhood can be found in Appendix A. To try and
keep the strength and size formulas concise we use the following abbreviations.
Definition 15 covers the abbreviations that are properties of the problem instances.

D the set of days in a week.

tPD the number of time-slots per day (i.e. 9).

Finals the set of time-slots that are the last on each day.

fE the set of events that are assigned to time-slot in Finals.

ES the empty slots, those which contain no event assignments.

eSODd the empty slots on a particular day d.

eODd the set of events on a day d.

ERr the set of events in room r.
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Eti
the set of events at time-slot ti.

OE the set of overlapping events, i.e. those in the same time-slot and room.

cl the chain length for an Ejection Chain neighbourhood.

vR the set of valid rooms that satisfy an event’s size and feature requirements.

eCe all the events that clash with an event, e; i.e. those with which it either
shares students or has the same single valid room.

Ce the current clashes for an event e; i.e. a subset of eCe that are assigned
the same time-slot as e.

Listing A.1 in Appendix A contains an excerpt from the OriginalModel class
where many of these invariants are declared.

We manually identified the interactions of every constraint-neighbourhood
pair and used that as an answer scheme against which the detector’s effectiveness
could be compared. The first partitioning has all of the constraints posted into
a single container; this is in line with a traditional CP style model. The second
partitioning separates the hard and soft constraints into their own containers;
this is using the COP style of partitioning. The final partitioning gives each of
the six problem constraint families a separate container. We used four different
problem instances: competition01.tim and competition02.tim from the ITC
set; small_1.tim and small_2.tim from the harder set. The experimental results
were gathered by distributing the runs across a laboratory of 30 PCs each running
64 bit Ubuntu 10.04 with a dual core 3.2 GHz processor and 8.0 GB of RAM.
COMET version 2.1.1 was used. The Interaction Detector has the ability to display
a visualisation of the detection process occurring; a screenshot can be found in
Fig. 3.12. During the experimental runs the GUI was not enabled.

Results Charts

Figs. 3.7, 3.8, and 3.9 show the results of the detector on the three different model
partitionings. The figures are designed to emulate the Consumer Reports car
frequency-of-repair comparison chart found in Tufte [2001, p. 174]. They can be
thought of as a type of Hinton Diagram [1986]. Each chart shows a matrix of
neighbourhoods and constraints. The green circles represent relationships that
should be detected. If the detector uncovers a relationship where none exists
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(analogous to a statistical type I error, i.e. a false positive) then it would be
displayed in the matrix as a red triangle. The amount of fill within the shapes
represents the proportion of the test runs which generated that result; for shapes
that are not completely filled the exact ratio is displayed as a fraction to the right.
If the detector is 100 % accurate the results matrix would show only filled green
circles. The fill of the circles is scaled so that in the event of an interaction never
being detected the chart would still show a circle with a thin, green outline. We
call the set of constraints that a neighbourhood interacts with its signature.

Single Partition Results

The results (in Fig. 3.7) where all the constraints are grouped into a single
ConstraintSystem<LS> show that all the neighbourhoods have the same number
of interactions. This should perhaps come as no surprise. If a neighbourhood did
not interact with at least one of the constraints in the composite allConstraints
system then it would not be useful for solving timetabling problems.

Fig. 3.8 shows the results from partitioning the constraints into the families
covered in Definitions 16 and 17. Differences between the neighbourhoods can
now start to be seen. From the two-phase partition there could be at most
four unique interaction signatures. This is because the interaction property is
binary; either there is an interaction or not. With two partitions there are
two binary variables giving 22 potential outcomes. The first neighbourhood,
allEventsTimeslotSwaps, only interacts with softConstraints. There are four
neighbourhoods (roomAssignments, roomMatching, consistentRoomSwaps, and
validRoomAssignments) that are limited to just the hard constraints. Five of
the neighbourhoods only interact with the soft constraints. As with the single
partition results, the detector is able to find all the expected interactions in every
run and does not misclassify any interactions.

Full Partition

For the final partition scheme the results in Fig. 3.9 uncover more differences
between the neighbourhoods. These results give the finest granularity and al-
low disambiguation between neighbourhoods which still appeared identical un-
der the two-phase partition. The additional constraint families means there
could be a maximum of 26 (i.e. 64) distinct signatures; only 26 actually ap-
pear. Out of the 41 neighbourhoods there are only 9 that affect only a single
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Figure 3.7: Interaction detections found in a single partition model.
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Figure 3.8: Interaction detections found in a two-phase model.
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of the constraint families in the two-phase partition. Moving to the full parti-
tion model shows that the other 32 neighbourhoods can be separated further;
amongst the previously identical neighbourhoods there emerge 19 distinct signa-
tures. Ten signatures are unique, i.e. they appear for only one neighbourhood.
The remaining 22 neighbourhoods are distributed across 9 signatures. The maxi-
mum number of indistinguishable neighbourhoods is now four; ejectionChain,
moveTimeslotAndRoom, moveToEmptySlot, and overlapRemover affect all six con-
straint families. The quartet of neighbourhoods consistentClashDirectedSwaps,
consistentClashedDirectedSwapsInterDay, consistentInterDaySwaps, and
consistentTimeslotSwaps all have the signature eventClashes, threeInARow, and
singleEvent. The detector’s accuracy remains reliable; it makes no misclassifica-
tions, and only kempeChainInDayMatching and kempeChainInDayMinusFinalsMatching
fail to uncover their relationship with the finalTimeslot constraint in all cases.

Both of these neighbourhoods are compound neighbourhoods that really represent
two distinct moves: the Kempe Chain itself and a secondary graph matching
operation. If the second component fails to find a valid matching no move is
returned. Depending on the solution that it starts from, the matching component
may not find a feasible room assignment. In this case it will not return any
candidate solutions to the detector. This behaviour mirrors the N4 neighbourhood
in Chiarandini et al. [2003] where they intentionally discarded infeasible matchings
to ensure the neighbourhood would preserve the hardConstraints. The result for
the detector is that if there are no moves to execute, it cannot find interactions,
because the detector relies on the events being thrown when a solution is assigned.
This kempeChain / matching hybridisation is unusual but does not prevent the
detector from correctly identifying its relationships in the majority of cases.

A Visual Comparison of Interaction Signatures

Whilst Figs. 3.7, 3.8, and 3.9 provide an overview of all the interactions for a
particular partitioning, they make it more challenging to chart the way that
a neighbourhood’s interaction signature changes across the three partitionings.
Figs. 3.10 & 3.11 provide an alternative viewpoint of the data by only focusing on
the relationships discovered for two neighbourhoods: moveTimeslotAndRoom and
consistentSingleDaySwaps. To make for a more concise diagram the universal
quantifier symbol, ∀, is used to represent allConstraints, H for hardConstraints,
and S for softConstraints. The remaining node names correspond to those
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Figure 3.9: Interaction detections found in a fully partitioned model.

found in Definitions 16 & 17. Each layer in the tree is a constraint partitioning,
and a node’s truth value should be the conjunction of its children. The edges
indicate where relationships exist; a disconnected node has not been uncovered
as an interaction. Both neighbourhoods appear identical in the first two layers
(i.e. under the single and two-phase partitioning schemes). It is only when the
final partition is reached that it becomes clear that the neighbourhoods differ
substantially. All of the constraints can be changed by moveTimeslotAndRoom
whereas consistentSingleDaySwaps only has interactions with the eventClashes
and threeInARow constraints.
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∀

H S

h3h2h1 s3s2s1Full

Two-Phase

Single

Figure 3.10: Tree of the detection results for moveTimeslotAndRoom.

∀

H S

h3h2h1 s3s2s1Full

Two-Phase

Single

Figure 3.11: The detection results for consistentSingleDaySwaps displayed as
a tree. The absent paths from moveTimeslotAndRoom are superimposed in blue.

Potential Efficiency Improvements

The results in Figs. 3.7, 3.8, and 3.9 show that automating the constraint in-
teraction detection process is both achievable and accurate. Aside from the
effectiveness it is worthwhile considering the efficiency of the detection process.
Fig. 3.13 displays the time taken, in ms, to check each interaction. The results
are split into two categories depending on whether or not an interaction was
found. The time axis is displayed as a logarithmic scale due to the large range of
values. At the lower times—those less that 102 ms—the results are grouped into
clear bands. Timing in COMET, via the System.getCPUTime() method, is only
accurate down to one millisecond. This exhibits itself as the distinctive banding
when many runs map onto a relatively small range of potential times. Fig. 3.13
shows there is a clear difference between those runs where interactions were found
versus those where none could be found. The found runs have a lower mean time
of 2 s (to 169.6 s). There is tighter spread of times for the found runs as evidenced
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Figure 3.13: A box plot of the detection times of individual runs grouped and
coloured by their detection outcome.

118



Chapter 3. Detecting Constraint-Neighbourhood Interactions

Figure 3.14: A comparison of the cumulative time spent searching for both
expected and non-existent interactions.
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by the standard deviation, σ, of 8.5 s versus 1120.4 s for the inconclusive runs.
As we stated in the Minor Caveats section, the Interaction Detector is incom-

plete; if it finds no evidence of an interaction it cannot conclusively state that
none exists. This leads to situations where the detector is forced to exhaustively
search a neighbourhood looking for non-existent interactions. Fig 3.14 shows
that by far the largest part of the total detection time is spent searching for
absent interactions. Out of all the runs 70.2 % are looking for existing interactions;
however, these take only 2.64 % of the total detection time. To try to avoid, or
at least reduce, this wasted effort we added an extra level of reasoning into the
detector that allows it to recognise certain situations where interactions definitely
cannot exist.

Detecting Absent Interactions

As covered earlier in the Neighbourhoods’ Behaviours subsection of Section 3.1,
we stated that there are three potential situations for the relationship between
neighbourhoods and constraints: the projection of the closure of a neighbourhood’s
moves, πS(N (A)), is contained entirely within the constraint’s relation, R; there
is no intersection between R and πS(N (A)), or there is some overlap. To actually
instantiate the relation of a constraint family would require creating the Cartesian
product of each variable in the constraint’s scope’s domain. For a typical ITC
instance with 200 events and 45 time-slots this would create 45200 states. Similarly,
trying to create the closure of the neighbourhood would be impractical. The current
detector operates by sampling both the closure and relation; this works well for
identifying where relationships exist. However, the detector cannot recognise when
no interaction exists because the closure is a subset of the constraint’s relation.
The same is true for when the closure and relation are disjoint except in one
specific case: they are disjoint because the scopes are disjoint (i.e. the constraint
is defined across different variables from those changed by the neighbourhood).
This is the case that the detector extensions cover.

In COMET each incremental decision variable has a unique ID. Every Constraint
<LS> (or Function<LS>) object allows the user to retrieve its scope (i.e. the
variables it is defined across). Efficiently collecting the variables altered by a
neighbourhood is less straightforward. We use the full exploration method but
bypass the differentiation and neighbor sections, and instead set a boolean flag
noting which variables had been selected. Since we are not exploring the neigh-
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bourhood with the intention of actually executing the move, it would be wasteful
to invest time performing the delta calculations or creating and storing the move
closures. Another minor optimisation is that the exploration prematurely stops
when all the variables have been altered; after this point no additional information
would actually be gained. When the full exploration is finished we can collect the
IDs of those variables that were noted as having been changed.

If the set intersection of the constraint and neighbourhood variables is empty
then it is a good indication that there could be no interaction between them.
We cannot conclusively state that no interaction exists until we have checked
for invariant dependencies. It may be that the constraint and neighbourhood
variables are disjoint because the constraint has been defined in terms of an
invariant. Figs. 3.15, 3.16, and 3.17 show the interactions uncovered by the
enhanced detector; as with the original detector, there are no false positive
detections and few situations where the detector fails to uncover interactions
in all cases. In Figs. 3.16 and 3.17 only the hybrid Kempe Chain matching
neighbourhoods have less than perfect detection rates.

The new spread of times—with additional possible outcome No—can be seen
in Fig. 3.18. The new No runs have a mean time of 134 ms with a σ of 892.3 ms.
The mean times for the found and inconclusive runs (1.9 s and 260.3 s respectively).
The cumulative time investment for each classification is shown in Fig. 3.19; the
No result is so small in comparison with the Found and Inconclusive runs that it
appears as a thin line at the bottom. Out of the 17905 runs which did not result
in an interaction being found, 35.4 % were proven not to have an interaction. This
had the effect of reducing the total time taken to find inconclusive interactions by
0.66 % from 2 242 864.99 s to 2 228 065.62 s. The cost reduction is rather meagre,
and it seems as if the additional time taken to collate the variable ids and check
for invariant dependencies nullifies most of the efficiency gained by avoiding a full
exploration.

Fig. 3.20 shows the distribution of the sum of the times for each constraint
neighbourhood pair being investigated. The results were divided into two groups:
those where an interaction exists, and those with no interaction. The no interaction
results have a noticeably lower frequency than the interaction distribution. Also,
there are two distinct small groups of outlying results at each end of the spectrum.
Table 3.8 displays the top 20 constraint interaction pairs ordered by decreasing
cumulative investigation time. Out of the 369 pairs the top 3 account for 94.9 %
of the total experimental runtime. They are all two orders of magnitude greater
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Figure 3.15: Enhanced interaction detections for a single partition model.
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Figure 3.16: Interaction detections for a two-phase model.
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Figure 3.17: Interaction detections for a fully partitioned model.
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Figure 3.18: Detection times for the enhanced detector displayed by possible
outcome.
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Figure 3.19: A comparison of the cumulative detection times.
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Table 3.7: Comparing the Original and Enhanced Detector’s performance over
three model partitions with four metrics.

Original Enhanced
single Accuracy 1.0000 1.0000

Precision 1.0000 1.0000
Recall 1.0000 1.0000
Specificity

hard-soft Accuracy 1.0000 0.9996
Precision 1.0000 1.0000
Recall 1.0000 1.0000
Specificity 1.0000 1.0000

full Accuracy 0.9992 0.9988
Precision 1.0000 1.0000
Recall 1.0000 1.0000
Specificity 1.0000 1.0000

than those pairs from fourth onwards. All three neighbourhoods are variants of
the EjectionChain<LS>. In Table 3.6 the size of these neighbourhoods is shown
as polynomial in the chain length, cl. For the experiments, all the chains were set
to length three; hence, the neighbourhoods are cubic. If we omit the top three
neighbourhoods from the calculations then the enhanced detector provides an
improvement of 8.18 % reducing the total time to determine inconclusive results
from 53 524.46 s to 49 146.43 s.

Assessing the Accuracy

The charts provide a clear visual way of displaying the detector’s effectiveness at
a constraint / neighbourhood level; however, they remain a somewhat subjective
measure. For a more objective method of evaluating the detector, we turn to
the tests used for Information Retrieval and Categorisation systems: precision,
recall, specificity, and accuracy. Each constraint neighbourhood detection result is
identified as one of four types: either true positive, true negative, false positive or
false negative. True positive (tp), is where an interaction exists and was identified
by the Detector. A true negative (tn) is where no interaction exists and none was
detected. A false positive (fp) is where an interaction was identified where none
exists. Finally, a false negative (fn) is where an interaction exists and was not
found by the Detector. The formal equations for each of the assessment criteria
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Figure 3.20: A density plot showing the log time distribution of all the constraint
/ neighbourhood pairs.

are:

Precision = tp

tp + fp
(3.9)

Recall = tp

tp + fn
(3.10)

Specificity = tn

tn + fp
(3.11)

Accuracy = tp + tn

tp + tn + fp + fn
(3.12)
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Table 3.8: The top 20 neighbourhood / constraint pairs (in terms of time used).

Constraints Neighbourhoods Time (s) Interaction % of Total Time
1 singleEvent ejectionChainInDay 873453.52 No 38.16
2 finalTimeslot ejectionChainMinusFinals 792267.23 No 34.62
3 singleEvent ejectionChainInDayMinusFinals 507413.95 No 22.17
4 eventClashes kempeChainMinusFinalsMatching 8792.42 No 0.38
5 eventClashes kempeChainWithMatching 6675.50 No 0.29
6 finalTimeslot ejectionChainInDayMinusFinals 5784.49 No 0.25
7 softConstraints kempeChainMinusFinalsMatching 4265.10 Yes 0.19
8 allConstraints kempeChainMinusFinalsMatching 4124.10 Yes 0.18
9 hardConstraints kempeChainMinusFinalsMatching 4061.50 Yes 0.18

10 finalTimeslot kempeChainMinusFinalsMatching 4034.27 No 0.18
11 overlaps kempeChainMinusFinalsMatching 3813.53 Yes 0.17
12 overlaps ejectionChain 3146.27 Yes 0.14
13 eventClashes kempeChainMinusFinals 2937.95 No 0.13
14 eventClashes kempeChain 2765.19 No 0.12
15 overlaps ejectionChainMinusFinals 2436.36 Yes 0.11
16 eventClashes moveTimeslotAndRoomMinusFinals 2310.51 Yes 0.10
17 hardConstraints moveTimeslotAndRoomMinusFinals 2289.08 Yes 0.10
18 overlaps moveTimeslotAndRoomMinusFinals 2282.20 Yes 0.10
19 allConstraints moveTimeslotAndRoomMinusFinals 2280.74 Yes 0.10
20 softConstraints moveTimeslotAndRoomMinusFinals 2279.23 Yes 0.10

The precision of the detector (Equation 3.9) is a measure of how many of the
detected interactions were valid and should have been uncovered. The recall or
true positive rate (Equation 3.10) quantifies how likely the detector is to misclassify
an interaction. The specificity or true negative rate (Equation 3.11) indicates how
many of the situations where no interaction exists were correctly identified. The
accuracy (Equation 3.12) is the proportion of results that were correct. Table 3.7
compares these four measures across all three model partitionings for both the
original and extended detector. Because none of the detection runs generated
any false positives, the precision and recall results remain fixed at 1.0. The false
negatives introduced by the hybrid Kempe Chain matching neighbourhoods can
be seen affecting the accuracy slightly in the hard-soft and full partition results.
However, even with these false negatives the accuracy remains above 99 %.

3.7 Reusing Detections

The interaction detection process can be automated but may require a significant
investment of time. The relationships that are uncovered from analysing one
instance are transferable to any other instance of the same problem. We are
assuming that for most problems there is not a significant change in their properties.
For example, a timetabling instance could have events with no registered students,
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thus would not cause clashes when moved between time-slots; however, this seems
unrepresentative of real-world problems. If detections are transferable then the
detection process can be performed off-line and the results cached for future
reference. The detection results can be written to simple flat text file format
(shown in Fig. 3.21). The benefit of a plain-text format is that it still allows the
user to provide detection information if they wish.

<# of Constraints>
<# of Functions>
// One line per Constraint
<constraint id> <constraint name> <list of the interacting neighbourhood ids>
// One line per Function
<function id> <function name> <list of the interacting neighbourhood ids>
// One line per neighbourhood
<neighbourhood id> <neighbourhood name> <size>

Figure 3.21: The syntax used to cache the detection results.

3.8 Conclusions

This chapter set out to describe how information about which constraints a neigh-
bourhood could affect could be detected automatically. We defined this concept as
constraint-neighbourhood interactions. Previous approaches required either human
intervention or used a specialist problem representation. Our system is built on
top of the CBLS language, COMET, and uses a model representation that should
be familiar to anyone who has used other common CP systems (such as OPL or
ILOG Solver). We have described the creation of a framework that allows the
interaction detection process to be performed in an entirely non-problem-specific
manner. We assessed the technical feasibility of this and found that the runtime
and memory costs were negligible. We have also introduced several combina-
torial problems: the PPP, Graph K-Colourability, and Post Enrolment-based
Timetabling. The constraint-neighbourhood interaction detector was evaluated
on the timetabling problem. The results were accurate and uncovered all the
relationships. We also investigated whether some basic reasoning could improve
the system’s efficiency and how we can cache the detection results for future runs.

We have reached the stage where we can automatically uncover information
about how search neighbourhoods will behave against a particular constraint model
/ partitioning. This is an important step towards bringing CBLS closer to other
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AI disciplines such as Automated Planning. Currently, Local Searches apply a
function to an existing configuration, assess the quality of the resulting neighbours
and then select from amongst them to progress the search. The neighbourhood
appears as a black-box to the algorithm; the designer may understand its behaviour
but the algorithm does not. Central to AI planning is the idea that goals can be
satisfied by altering the world through the application of predictable actions. Each
action has a clearly defined set of preconditions and effects. If the current state of
the world satisfies an action’s preconditions then the application of that action
will cause the effects. Our constraint-neighbourhood interaction analysis moves
CBLS towards being able to view neighbourhoods as actions (in the planning
sense) that have definite behaviours. The partitioning of the constraint model
into families gives a set of facts about the state of the world against which we can
classify the behaviour of a neighbourhood.

The next chapter investigates some of the ways that we could potentially
use the partitioned models and interaction information to create more dynamic
searches.
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Exploiting Interaction

Information

Every man is wise when attacked
by a mad dog; fewer when pursued
by a mad woman; only the wisest
survive when attacked by a mad
notion.

Samuel Marchbanks’ Almanack
W. Robertson Davies

Chapter 3 introduced the concept of constraint-neighbourhood interactions and
presented a framework written in COMET for detecting these interactions in an
automated, problem-independent fashion. This chapter explores how the increased
information provided by constraint partitionings and constraint-neighbourhood
interactions can be used within search procedures.

Decision making could be described as a spectrum. At one extreme is Local
Search which makes short-term decisions based upon the current search position
and the surrounding neighbours; from the incumbent solution it generates some
neighbours, evaluates them, and then selects the best according to some criteria—
which may be manipulated (as in SA, TS, etc.). CP represents the other end of
the spectrum; the repercussions of each search decision are explored. The level
of consistency enforced on the constraints determines how much information is
propagated. However, CP remains a methodical approach that tries to reason
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about the effects of each selection, “CP = Search + Inference”. CBLS augmented
with constraint-neighbourhood interaction information has the potential to sit
somewhere between these two schemes. At its core, CBLS still retains Local
Search’s short-term selection policy; it could, however, take a more informed view
and include some reasoning over higher-level search direction decisions such as
which neighbourhood to select at a given point. It is this variety of inference that
we hope to give CBLS with the extraction of constraint-neighbourhood interaction
information.

Section 4.1 investigates whether interaction information can be used within
a VNS to reduce unnecessary exploration. To achieve this we represent the
internal dynamics of a VND algorithm as a Generalised Local Search Machine
(GLSM). Using a GLSM allows for a more dynamic and reactive control flow; one
where the configuration of a VNS responds to the current search state. In VNS
the neighbourhood ordering is static and increasing in size; Section 4.2 explores
whether there is any benefit in retaining a linear increasing ordering that is updated
at each iteration to reflect changes in neighbourhood sizes. Section 4.3 expands
further upon the idea that the neighbourhood ordering can change at runtime by
introducing an algorithm, CDVNS, where the neighbourhood ordering is derived
from a constraint ordering. Lastly, Section 4.4 looks at how interaction information
can provide modelling and search configuration feedback. The aim of this chapter
is to cover a broad selection of the ways in which constraint-neighbourhood
information can be applied in a search context.

4.1 Enhancing VNS with Optional Transitions

In Section 2.10 we covered Mladenović and Hansen’s VNS framework where a
search has multiple neighbourhoods at its disposal. The neighbourhoods are
explored in a linear order (in the case of VND, the most common form of VNS).
This order is defined before the search is initiated and typically arranges the
neighbourhoods by increasing size. As a VND search progresses, if it fails to
find an improving solution the next neighbourhood in the sequence is explored.
When an improving solution is discovered the search continues from the first
neighbourhood in the ordering.

GLSMs are a formalism developed by Hoos and Stützle [2005, Chp. 3, p. 113]
to concisely describe the interactions between the components of hybrid search
algorithms. Each component becomes a node within a Finite State Machine (FSM);
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the transitions between the states can be either: unconditionally deterministic
(DET); unconditionally probabilistic (PROB(p)), where p is a given probability;
conditionally deterministic (CDET(C )), where C is a logical condition; or, lastly,
conditionally probabilistic (CPROB(C, p)). The logical conditions used for CDET
and CPROB take the form of simple predicates. Table 3.1 in Hoos and Stützle
[2005, Chp. 3, p. 126] lists some recurrent examples. The GLSM notation was
intended for describing high-level couplings between abstract search components
(e.g. constructive phase, disruption phase, random walk, etc.); however, it is also
well suited for describing the low-level configuration of neighbourhoods within VND
algorithms. In Fig. 4.1 there is an example VND configuration for an algorithm
with five neighbourhoods, N1, . . . , N5. The transition between one neighbourhood
and its successor is conditionally deterministic and occurs when no improving
solution is found. Using Hoos and Stützle’s conditions, this would be equivalent
to their predicate CDET(noimpr(k)) with k = 1, henceforth denoted CDET(I )
for brevity. If at any stage an improving solution is found the search returns to
the first neighbourhood, i.e. the conditionally deterministic transition CDET(¬I ).
The GLSM succinctly describes the behaviour of the VND algorithm; it bears a
strong resemblance to a transitive closure graph.

N1start N3N2 N5N4
CDET(I )

CDET(¬I )

CDET(I )

CDET(¬I )
CDET(¬I )

CDET(I ) CDET(I )

CDET(¬I )

Figure 4.1: A basic VND represented as a GLSM.

The disadvantage of a linear search progression is that each neighbourhood
has to be explored—and shown to be non-improving—before moving to the next
in the sequence. What this assumes is that all the search neighbourhoods have
the same effects and that there is no way to determine the current state of search.
However, as we saw in the previous chapter this is not necessarily the case; it
is possible to efficiently maintain information about the violations of multiple
constraint families and accurately predict the effects of neighbourhoods on those
families. Constraint-neighbourhood interaction information can be used to identify
when a neighbourhood will not interact with unsatisfied constraints. Rather than
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exploring the initial neighbourhoods repeatedly, the interaction information could
be used to bypass provably useless neighbourhoods. Fig. 4.2 shows the new
configuration of the algorithm with additional transitions (drawn with dashes)
that can be used when the current neighbourhood is not applicable. The transition
condition is denoted as CDET(¬A).

Curtois et al. [2006] make similar alterations to a VNS where neighbourhoods
can be omitted at run-time. Their work attempts to balance the intensification
and diversification of a VNS by creating a mathematical model of a neighbour-
hood’s behaviour and using this model to identify what they describe as bad
neighbourhoods. The model is updated as the search progresses and attempts
to predict whether a neighbourhood will lead to an overall improvement before
searching it. Their notion of the behaviour of a neighbourhood makes no reference
to the actual properties of its permutations or the structure of the problem.

4.1.1 VNS as a GLSM

Creating a VNS from a GLSM is relatively straightforward given that our frame-
work treats neighbourhoods as first-class objects (e.g. they can be function argu-
ments or return values). As outlined in Section 3.3 neighbourhoods are objects,
sharing a common interface, that are collected together into a contiguous array.
A search does not require neighbourhoods to be hard-coded into it; they can be
passed as an argument at run-time. The behaviour of a VNS algorithm can be
described as the manipulation of an index variable. If exploring the neighbourhood
at a given index does not yield an improvement then the index is incremented for
the next iteration. When an improving solution is found the index is reset to its
starting value. Listing 4.1 shows the COMET code used to express the VNS in
our experiments. The code only expresses the transition rules for a VND; there
are no explicit references to any particular neighbourhood, nor is there a fixed
ordering. The ordering is stored as a graph where nodes correspond to the indices
of neighbourhoods within the framework’s array. This means that the VNS in
Listing 4.1 can be used for a collection of neighbourhoods; indeed, during the
evaluation five different sets of neighbourhoods are used.

4.1.2 Experimental Evaluation

To ascertain whether these additional transitions can aid search performance (by
reducing wasted exploration), we conducted an experiment using the timetabling
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475 void searchVNS ( bool useRestarts , bool skipInvalid ) {
476 cout << " searchVNS : " << _iterations << endl;
477 _useRestarts = useRestarts ;
478 _skipInvalid = skipInvalid ;
479 assert ( hasNeighbourhoodOrdering ());
480 updateNeighbourhood ( getFirstNeighbourhood ());
481 position = new Integer (1);
482 i f ( useRestarts ) {
483 setupRestartThresholds ();
484 }
485 setupVNSSearchFails ();
486 i f ( _searchStart == 0) {
487 // If VNS is a component the outer search sets this.
488 _searchStart = System . getCPUTime ();
489 }
490 whi le (! _shouldStop && hasTimeLeft ()) {
491 i f ( _refreshSizes ) {
492 updateNeighbourhoodSizes ();
493 _scheduler . setNeighbourhoodSizes ( _neighbourhoodSizes );
494 setNeighbourhoodOrdering ( _scheduler .

getLinearNeighbourhoodOrdering ( true ));
495 }
496 Neighbourhood <LS > n = getNeighbourhood ();
497 i f ( shouldSearchNeighbourhood ()) {
498 cout << " Exploring " << getNeighbourhoodName () << " (" <<

getNeighbourhoodSize () << ") via " << _strategy << endl;
499 i n t pre = System . getCPUTime ();
500 search (n, N);
501 moveTime := System . getCPUTime () - pre;
502 i f (N. hasMove () && shouldAccept (N. getIntMin ())) {
503 cout << " Executing : " << N. getIntMin () << endl;
504 c a l l (N. getMove ());
505 displayProgress ();
506 // If found move , snap back to the first Nhood
507 i f (! isFirstNeighbourhood ()) {
508 resetVNS ( position );
509 }
510 } e l s e {
511 updateStagnantIterations ();
512 i f ( hasExhaustedVNS ()) {
513 cout << " Exhausted neighbourhoods and restarts " << endl

;
514 _shouldStop := true ;
515 } e l s e {
516 vnsFailedSearch ++;
517 advanceToNextNeighbourhood ();
518 }
519 }
520 } e l s e {
521 vnsOmits ++;
522 cout << " Omitting fruitless neighbourhood " << endl;
523 advanceToNextNeighbourhood ();
524 }
525 }
526 }

Listing 4.1: The VNS code from OriginalSearch.co.136

http://personal.cis.strath.ac.uk/a.andrew/files/chapter4/code/OriginalSearch.co


Chapter 4. Exploiting Interaction Information

N1start N3N2 N5N4
CDET(I )

CDET(¬A)

CDET(¬I )

CDET(I )

CDET(¬A)

CDET(¬I )
CDET(¬I )

CDET(I )

CDET(¬A)

CDET(I )

CDET(¬A)

CDET(¬I )

Figure 4.2: The GLSM for a VND where irrelevant neighbourhoods can be
bypassed.

problem from the previous chapter. The performance of a VNS for a given
problem will be dependent upon the neighbourhoods available to it. For the
detection experiments we created 41 neighbourhoods; far beyond the typical set
of between four and six that other timetabling solvers use. The largest collection
of neighbourhoods that we are aware of appears in the Nurse Rostering Problem
work of Burke et al. [2010]. They have a collection of 23 neighbourhoods from
which they select a subset using a GA.

Selecting the “best” set of neighbourhoods for the Timetabling Problem is not
the focus of this work; however, any experimental results will be biased by that
selection decision. To counter this we created five distinct sets of neighbourhoods
(nhoods1.txt,. . . ,nhoods5.txt) that are shown in Table 4.1 (page 143). We
do not make any claims about the particular effectiveness of any of these sets.
The union of the interactions for each set comprises the full set of constraints
(i.e. each configuration can affect all the constraints). The neighbourhoods were
ordered linearly by increasing size (based upon their size at an instance’s initial
solution). These linear orderings were given to the VND algorithm in Listing 4.1
that searched each neighbourhood with a first improvement acceptance strategy.
For each configuration (i.e. omitting neighbourhoods or not), we ran the search 10
times on each of the 20 ITC problem instances. To ensure a fair comparison, every
run for a given instance started from the same initial configuration. Table B.2
(page 232) shows the quality of each starting solution. The interaction information
was loaded from a cached file rather than being detected before each run. The
experiment was distributed using GNU Parallel [Tange, 2011] across 55 PCs. All
the machines were running COMET 2.1.1 on Ubuntu 12.04. Thirty machines had
2-core 3.2 GHz CPUs and 8.0 GB of RAM; the remaining 25 machines had 4-core
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3.2 GHz CPUs and only 4.0 GB of RAM. Whilst using GNU Parallel we shared the
configurations such that the 2-core machines would only have a single configuration
running at any given time; we allowed two concurrent experiments to run on the
4-core machines. We only investigated two different model partitionings: the hard
and soft constraints, and the full partition. Having only a single constraint family
provided no information that would allow the search to omit neighbourhoods;
every neighbourhood displays the same interactions (as evidenced in Figs. 3.7 &
3.15).

Each run was subject to two restrictions: the total run-time should not exceed
seven minutes, and when the search reaches a local optimum it terminates (i.e.
there is no disruption phase or SA-style acceptance of worsening moves). The best
solution reached when a run completed was passed to the ITC solution validator.
The violation scores plotted in the results are those returned by the official
validator. Using the validator’s result creates a static benchmark against which
our solutions would be consistent with those generated by any other competitor;
it also means that the CSP model does not need to exactly match the problem
definition. The seven minute time cut-off was determined by running the ITC
machine benchmarking application on one of the experimental machines. At the
time of the competition the limit was intended to be around fifteen minutes;
however, the increase in power of modern machines has brought this down. A
minor caveat is that the neighbourhood exploration phase of the search is not
interruptible. If the time limit expires whilst the search is in the midst of an
exploration, it will continue until either it finds a solution, or has to switch
neighbourhoods. At this point it will realise the time has expired and stop any
further searching.

Presentation of the Results

The results of the experiments in this chapter are all displayed in the same format
that warrants some discussion. After reaching the termination criteria—and
being processed by the solution validator—a run has a violation value associated
with each of the six constraint families. For the initial experiments only the
total violations (e.g. the summation of the families’ violations are shown). In
later plots which display the result on a constraint family basis then the six
families appear as separate facets (e.g. sub-plots) that are arranged vertically.
There are typically two (though occasionally three) columns of constraint facets.
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Primarily the columns show the partitioning of the model (e.g. Hard-Soft, or Full).
Some later experiments use only a single partitioning, in which case the columns
represent the search type or some other configuration choice. These are clearly
labelled on the figures and also in the text discussing the results in the relevant
sections. At the bottom of each column is a plot showing the total violations (e.g.
the sum of all the violations from the families in that particular partition).

The x-axis of each plot shows the remaining violations at the point at which
the run terminated. The y-axes display the individual problem instances. The
leftmost column shows the instance name; to allow for ease of scanning (and to
save space) the subsequent columns omit this. Each row has a prominent red ‘x ’
marking the starting violations for that instance.

The main visual cues used in the plots are colour and symbol shape. The
colour designates the variable under investigation; for example, in the experiments
for Section 4.1.2 the colour indicates whether or not bypassing non-applicable
neighbourhoods is allowed. The symbol shape displays which of the neighbourhood
configurations (shown in Table 4.1) the run used. Each plot has a legend at the
top specifying what the colours and shapes represent (though the shape’s meaning
is effectively constant). The colours are opaque to make dense areas of values
clearer and mitigate against over-plotting.

One aspect of the column structure that should be kept in mind is that whilst
the constraint families are displayed individually, the search may not be able to
“see” such a fine-grained distinction. In the hard-soft partitions the top three
constraints (eventClashes, overlaps, and roomValid) will only be visible to the
search as a single hardConstraints family (similarly the bottom three facets are
the softConstraints). This can produce some potentially unexpected results. Any
reasonable search should be able to find solutions that distribute points closer to
the x-axis origin than the initial starting solution (e.g. to the left of the red ‘x ’).
However, points falling to the right of the initial value do not mean the search
has actively degraded that constraint; the search is not aware of the changes it
causes to the constraint violations at a separate family level. We already touched
on the disparity between the information gained from different granularities of
partitionings in Section 3.2 of Chapter 3 (and represented it visually in Fig. 3.10).
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Statistical Tables

The plots aim to provide a clear visual representation of the results for the various
searches. Whilst it is possible to see trends and clusters emerging, only a statistical
test can determine whether these are significant. There are numerous statistical
tests available, but for assessing our results we use the Wilcoxon Sign Rank Test
(also known as the Mann-Whitney test). The Wilcoxon Sign Rank Test allows
us to compare two different sets of results and decide whether the differences are
statistically significant. The Sign Rank Test is non-parametric which means that
(unlike other tests such as the paired t-test) it does not make any assumption about
the distribution of the results. The paired t-test requires the data to be normally
distributed (i.e. in a Gaussian distribution). The Wilcoxon Sign Rank test is
paired; this makes it appropriate for the situations where multiple samples (under
the same conditions) are made for both techniques under comparison. We show
the results of the Wilcoxon Sign Rank Test for each experiment in their own table.
Each table shows the p value, the Wilcoxon Sign Rank test statistic value, W ,
and the confidence interval. We used the standard 95 % level of confidence; any p

values of less than 0.05 indicate a significant result. Values that fall below the 99 %
and 99.9 % levels are also highlighted. If the p value is beneath the significance
threshold then we can reject the Null Hypothesis, H0. This allows us to say that
(with a 95 % confidence) that the results do not come from the same distribution.
However, for our tests we use the slightly stronger one-tailed assumption, H1.
This expands upon H0 by adding a direction; for example, not only are the results
A and B not from the same distribution, but the mean value of A is greater
than B. This allows us to test whether one algorithm (or configuration) offers
a statistically significant improvement over another. We only display the lower
bound of the confidence interval x̄− E; the upper bound is not shown because
(for the one-tailed test) it does not have any meaning (and is assumed to be
positive infinity). The test statistic W value is what you would use to look up
the significance value in a statistical test table (though the p value makes this
unnecessary). Another verifier of statistical significance is if 0 does not appear
between the lower confidence interval and infinity; for example, x̄ − E = −25
would not be significant (because −25 < 0 <∞) whereas x̄− E = 85 would be.

Using a linear neighbourhood ordering has implications for the number (and
distribution) of failures (i.e. explorations where the neighbourhood did not find
an improving solution). To reach a later neighbourhood an earlier one must have
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failed. Consequently, the initial neighbourhood has more failures than the second
and so on. There can only be a single failure in the final neighbourhood; if the last
neighbourhood fails to find an improving solution then the search concludes that it
has reached an optima and terminates. The earlier neighbourhoods will experience
more failures, but they will also be smaller. Whether multiple failures of small
neighbourhoods are more costly than fewer failures of larger neighbourhoods is
not clear. Our expectation is that the early failures will cumulatively represent a
significant time cost. However, the relative sizes of the neighbourhoods in a given
configuration are bound to influence this.

4.1.3 Results

The results of the experiment are shown in Fig. 4.3. The intention was to evaluate
whether allowing the omission of neighbourhoods improved performance. We
quantify performance by using the total number of violations in the best solution
the search returns. We hypothesise that bypassing non-applicable neighbourhoods
will reduce redundant exploration and allow further exploration within a given
amount of time. However, simply allowing the search more iterations is not in
itself interesting unless that also translates into finding better solutions. Therefore,
we chose to represent the performance using the number of violations in the best
solution found.

Figure 4.3 displays several interesting properties of the experiment’s results.
Firstly, all the runs appear to the left of the initial starting solution. This means
that the search was always able to move towards an improving solution. However,
none of the results manage to reach the optimal solution (of zero violations).
Runs do reach around 300 violations in many instances. It is also apparent
that the neighbourhood set used in a run strongly influences the quality of the
solution where search terminates; the plot clearly shows clusters of the same
symbol shape (i.e. the same neighbourhoods). What fails to emerge is any real
distinction between the solutions reached when bypassing neighbourhoods or
not. The clusters all contain a mixture of colours. This holds between the two
partitioning schemes. Results in the fully partitioned model do appear to be
more separated between those which find large improvements and those that only
improve slightly.

We applied the one-tailed Wilcoxon Sign Rank test to results provide a more
empirical analysis of the data in the plot. These results are displayed in Table 4.3.
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Figure 4.3: Comparing the effect of allowing additional transitions in the VNS on
the competition instances.
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Table 4.1: Five neighbourhood configurations used to compare the searches.

Neighbourhood nhoods1 nhoods2 nhoods3 nhoods4 nhoods5

allEventsTimeslotSwaps 3 3

allEventsTimeslotSwapsInDay 3

clashDirectedAssignmentsMinusFinals 3

consistentClashDirectedSwapsInDay 3

consistentClashDirectedSwapsInterDay 3

consistentInterDaySwaps 3 3

consistentRoomSwaps 3 3

consistentSingleDaySwaps 3

consistentTimeslotSwaps 3

ejectionChainInDayMinusFinals 3

eventsTimeslotAndRoomSwaps 3

kempeChainInDayMinusFinalsMatching 3

kempeChainWithMatching 3

moveTimeslotAndRoom 3

moveToEmptySlotInDay 3

overlapRemover 3 3

roomAssignments 3

roomMatching 3

singleDayAllEventsTimeslotSwaps 3 3

singleDaySwaps 3

timeslotAssignments 3

validRoomAssignments 3

They reiterate what emerges from Fig. 4.3: no statistically significant improvement
is gained from allowing the bypassing of non-applicable neighbourhoods.

Further Investigation

Allowing the search to avoid exploring provably redundant neighbours would
seem like it should be beneficial. However, the results do not support this. The
solutions reached do not differ significantly in terms of quality. To try to address
why this may be the case we performed some additional analysis of the runs.
Figure 4.3 shows that all the runs find improving solutions, so the search is
definitely progressing through the search space. The search always starts from the
same initial solution for a given instance, and that starting solution will have an
associated level of constraint violations. The pattern of which constraint families
are violated (and which are satisfied) is the signature which determines whether or
not a particular neighbourhood is applicable. During the course of the search as
constraints are satisfied we expect the signature to change (and consequently allow
different neighbourhoods to be bypassed). From the experimental log files we
identified the violation signature at every iteration of each run. We then used this
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Table 4.2: Results of the one-tailed Wilcoxon Sign Rank test evaluating whether
skipping non-applicable neighbourhoods lets a VNS reach significantly better
solutions.

Hard-Soft Full
p value W x̄− E p value W x̄− E

total 0.873 231192.500 -3.500 0.528 228608.000 -1.000
nhoods1 0.3 10275.500 -5.500 0.678 6890.500 -0.500
nhoods2 0.942 8491.500 -10.500 0.364 10336.500 -5.500
nhoods3 0.967 8105.500 -5.500 0.833 8703.000 -3.500
nhoods4 0.214 10387.000 -3.500 0.49 9970.500 -6.000
nhoods5 0.735 9061.000 -3.500 0.291 9990.000 -1.000

information to calculate how many times the signature changed during each run.
Figure 4.4 displays the runs’ final number of iterations plotted against the number
of signature changes that occurred. The colours represent whether the search
could bypass non-applicable neighbourhoods or not. We have also separated out
the two partitioning schemes.

For the hard-soft partition it is clear that our assumption about the behaviour
of the search did not hold. Irrespective of the number of iterations the search
made during the course of a run it did not cause any signature changes. However,
for the Full partition runs this is not the case. Those results are more in line with
what we had expected; there appears to be a relationship between the number of
iterations and the number of signature changes. Runs with more iterations saw
more signature changes. Perhaps in retrospect these findings are not so surprising.
In the Two-phase COP Partition results discussion in Section 3.6 we noted that
there were only four potential signatures. The hard-soft partition runs do find
improving solutions, but none ever reach the point of having solved a constraint
and therefore they never encounter a signature change.

The Full partition results exhibit a relationship between the iterations and
signature changes and also show a difference between the two strategies. The
most visually obvious separation is between the nhoods1 configuration results
(shown as the filled squares). The runs where no bypassing occurs (in green)
use more iterations than those where bypassing is used (in blue). For the other
neighbourhood configurations the plot is not as clear. Table 4.3 shows the results
of the one-tailed Wilcoxon Sign Rank test comparing the iterations used by both
strategies. We only performed the test on the runs from the Full partition; the
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plot shows that all the hard-soft runs are the same. The test results confirm that
in addition to the nhoods1 configuration, there are also significant differences
between the nhoods2 and nhoods4 configurations. These results are strong enough
to indicate that regardless of the neighbourhood configuration the iterations are
significantly different. We can then conclude that (for the full partition) the
neighbourhood bypassing scheme allows the search to reach a local optima using
fewer iterations.

Table 4.3: Results of the one-tailed Wilcoxon Sign Rank test evaluating whether
the enhanced VNS on the Full partition uses significantly fewer iterations

p value W x̄− E

total < 0.001 390213.500 168.500
nhoods1 < 0.001 19900.000 1984.500
nhoods2 < 0.05 11431.500 0.500
nhoods3 0.917 8732.500 -53.500
nhoods4 < 0.001 20059.000 249.000
nhoods5 0.383 10091.500 -22.000

We have established that bypassing non-applicable neighbourhoods uses fewer
iterations (in a fully partitioned model), but does this also translate into using
less time (i.e. does the search reach optima quicker)? Table 4.4’s results from
the Sign Rank test evaluating the time difference are less conclusive. Only for
neighbourhood configuration nhoods5 is there a significant time saving. The
number of iterations the search manages are plotted against the time taken in
Fig. 4.5. The search procedures are disambiguated by the colours and the symbol
shapes (which represent which neighbourhood set was used). The horizontal line
on the y-axis is the time-limit. Some of the points are opaque; these denote
runs that reached a local optima before the time-limit elapsed. The runs plotted
with a solid colour were terminated because the time-limit expired. Out of the
1995 runs, only 9.12 % (182) reached an optima before the time-limit. Fig. 4.5
shows that all of these runs used neighbourhood configuration nhoods2. Most
of the configurations time out slightly before the hard cut-off point. This is
because the time limit includes the time taken to parse the problems, build up the
constraint model, etc. These slightly reduce the amount of time the search has.
Some runs exceed the time limit. This is because the search does not interrupt
a neighbourhood exploration that is in progress. Only when the search tries to
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Figure 4.4: Plot of iterations against the number of signature changes
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Figure 4.5: Plot showing the time taken (s) against the number of iterations
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start the next iteration does it recognise that the time has expired.

Table 4.4: Results of the one-tailed Wilcoxon Sign Rank test evaluating whether
the enhanced VNS uses significantly less time

p value W x̄− E

total 0.345 251364.000 -132.000
nhoods1 0.088 11049.000 -20.000
nhoods2 0.562 9923.000 -9764.500
nhoods3 0.835 9065.500 -498.000
nhoods4 0.686 9652.500 -384.000
nhoods5 < 0.05 11221.000 8.000

4.2 Dynamic Neighbourhood Orderings

For VNS / VND it is conventional to have a fixed neighbourhood ordering based on
the neighbourhoods’ sizes. To order neighbourhoods by size one first needs a way
of assessing (or at least upper bounding) the number of moves a neighbourhood
will consider. Each class which implements Neighbourhood<LS> can be queried
for its size. Defining what the size of a neighbourhood is depends upon two
factors: the particular problem instance, and the neighbourhood’s properties.
Some neighbourhoods have a fixed size (for a given problem instance). Consider
the neighbourhood SwapEventTimeslotNeighbourhood; for it to visit all the
swaps there will be potentially

(
events

2

)
moves. Other neighbourhoods have sizes

which can vary during the search procedure. For example, the overlapRemover
neighbourhood selects an event from amongst those scheduled in the same time-slot
/ room and then attempts to move it to a free time-slot / room space. If there
are no overlapping assignments then the neighbourhood will have no moves. Its
upper bound occurs when all the events are placed in a single time-slot / room.

The dynamic nature of neighbourhood sizes also raises questions regarding
how they should best be represented within the framework. Normally in COMET

a value that changes during the course of the search (and is dependent upon
other invariants) would be a strong candidate to be an invariant itself. At present
the neighbourhood sizes are not invariants; they are recalculated by explicitly
calling each neighbourhood’s getSize() method. Invariants can be created and
registered with the Solver<LS> instance at any point of a COMET program. Once
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a model is closed COMET calculates the update schedule necessary to ensure that
invariants are only refreshed when required. However, there is a considerable
performance penalty when creating an invariant after the model has been “closed”.
To avoid this, all the neighbourhoods’ size invariants would need to be declared at
the same time as the problem models. This would introduce a cyclic dependency
where a Neighbourhood<LS> required a Model instance at construction time but
the Model could not be fully instantiated until the neighbourhood had been
instantiated. By not using a size invariant, we avoided this potential problem and
retained a clear separation between models and neighbourhoods (at the cost of
some repeated calculations).

Given that neighbourhood sizes can change dynamically, we sought to explore
whether there was any benefit to refreshing the VND neighbourhood ordering to
reflect the current sizes of each of the neighbourhoods. Non-interacting neighbour-
hoods will still be bypassed. Instead of being a static sequence, the control flow
behaviour becomes more akin to Abstract Data Structures such as heaps or priority
queues; the first or top element should always be the smallest. This reordering
process is also reminiscent of how a CP labelling strategy (such as first-fail) will
consider the variable with the fewest remaining values for allocation first. The
previous section highlighted Curtois et al. [2006] who omitted neighbourhoods
based on some expected reward. A similar idea was applied to neighbourhood
ordering in Hu and Raidl [2006]. Their Self-Adaptive VND rearranges neighbour-
hoods based upon previously observed benefits. To reduce the effects of a single
particularly good (or bad) exploration, the actual reordering does not happen
immediately but waits until the observed benefit passes a threshold.

4.2.1 Experimental Evaluation

The experimental setup was identical to the one described in the previous section
(4.1.2). The runs were subject to the same termination conditions and time
restrictions.

The results for the twenty ITC instances are displayed in Fig. 4.6. In the
figure, some of the same trends from the previous experiment emerge. Again, the
fully partitioned model has a clearer delineation between those runs that improve
substantially and those that do not. It is also clear that no particular ordering
strategy is visually better; the results cluster into groups with a mixture of colours.
In the hard-soft partitioned runs the static orderings (in green) consistently appear
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Figure 4.6: Comparing the effect of dynamically reordering the neighbourhood
sequence at run-time on the competition instances.
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marginally better. This suggests that the reordering is actually slightly detrimental
to performance. For the full partitioned runs there appears to be stronger results
achieved with neighbourhood reordering, but this only brings them closer to the
statically ordered runs rather than giving any distinct advantage. It does not give
a clear indication of the benefit gained from reordering neighbourhoods.

Table 4.5: Results of the one-tailed Wilcoxon Sign Rank test evaluating whether
dynamically reordering the neighbourhoods offers an improvement over a static
ordering.

Hard-Soft Full
p value W x̄− E p value W x̄− E

total 1 178958.000 -14.500 1 201174.500 -4.000
nhoods1 0.842 9136.500 -28.000 1 5014.500 -2.500
nhoods2 1 1853.500 -62.000 1 5327.500 -34.000
nhoods3 0.545 9177.500 -2.500 0.051 10632.000 -0.000
nhoods4 0.871 8664.500 -10.000 0.06 10998.000 -0.500
nhoods5 0.579 9496.000 -3.000 0.997 7507.000 -5.500

The results of the Wilcoxon Sign Rank test (in Table 4.5) also highlight
that there is no evidence of any significant benefit gained by reordering the
neighbourhood sequence. The previous experiment failed to find any advantage
to bypassing non-applicable neighbourhoods (in the two partition case) due to
the limited number of unique signatures. For an n item list there are n factorial
possible orderings, so a lack of diversity is not likely to be the case. However,
just because these orderings can exist does not necessarily mean that they will
be encountered. A neighbourhood ordering change requires two things: the
neighbourhoods need to vary in size, and this variation is large enough (relative
to the size of another neighbourhood in the sequence) to result in a change of
position.

Figure 4.7 plots the size of the neighbourhoods at each iteration from one of
the 2000 runs. This confirms that the neighbourhood sizes do vary during the
search; only one neighbourhood from the nhoods1 configuration had a constant
size. The problem seems to be that whilst the neighbourhood sizes do change, the
size of these changes are not large enough to affect the relative ordering. There is
only one occasion where two neighbourhoods change enough to actually switch
position within the sequence. These neighbourhoods are in third and fourth place
respectively; the impact of this change will only become relevant if the search fails
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to find an improvement in (or bypasses) the prior two neighbourhoods.
For each of the 1996 runs that could reorder their neighbourhoods we calculated

how often this actually happened. Figure 4.8 displays a table showing the ordering
changes broken down by each neighbourhood configuration and model partition. A
number of interesting properties are evident. Five of the configurations encounter
no situations where the neighbourhood ordering differs from the starting ordering.
The runs using the nhoods2 set have only 5 and 8 changes in the two-phase and
full partitions respectively. The remaining plots show most runs experience few
ordering changes; out of the nhoods4 runs 67.17 % saw fewer than 10 ordering
changes. One reason we are not seeing any improvement from dynamically
reordering the sequences is that the neighbourhoods orderings do not actually
change in most cases. Whilst the neighbourhood sizes do change these fluctuations
in size are not large enough to result in position changes.

4.3 Constraint Directed VNS

Even with the amendments to VNS seen in the previous two sections the search
progress remains primarily driven by the configuration of the neighbourhoods. In
this section we propose shifting the focus onto the constraint families rather than
the neighbourhoods. We believe that the neighbourhoods available for selection
by the search should be dictated by the constraints that remain unsatisfied; we
call this Constraint Directed Variable Neighbourhood Search (CDVNS). At any
point during the search the violation state of the constraint families is known,
and—for any particular constraint family—the constraint-interaction information
tells us the potential set of neighbourhoods that could be used. For the Dynamic
VNS the search neighbourhood ordering reconfigured itself to reflect the current
neighbourhood sizes. In the CDVNS the selected neighbourhoods (and their
ordering) will change dynamically depending upon the current constraint violations.
No longer will non-interacting neighbourhoods have to be bypassed; they will
simply not be selected to start with. Adopting this constraint-directed strategy
does raise a new issue: what order should the constraints be solved in?

4.3.1 Greedy Orderings

We propose starting with a simple greedy approach: the constraints should be
organised in order of increasing violations. The first constraint family that should
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Figure 4.7: Trace of the neighbourhood sizes during execution on instance
competition01.
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Figure 4.8: The distribution of ordering changes against the model partition and
neighbourhood sets.
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be used to determine the selected neighbourhoods is the one that is already closest
to satisfaction. Once a constraint family is completely satisfied, the search will
transition to the next most satisfied family. If, during the course of solving the
current selected family, another family appears closer to satisfaction than the
selected constraint then it will become the selected family. The intuition behind
this style of greedy reactive search is that it will result in a search which focuses
intensely on trying to satisfy the constraints that are almost satisfied. These
families require the fewest improving moves to reach satisfaction, which in turn
means less time between signature changes. If violations are reintroduced to
previously satisfied families then the search will attempt to rectify these before
continuing.

As an alternative to selecting the least violated constraint family, we propose
another greedy search that does the opposite. It selects the most violated family.
The search behaviour is the same, except that the conditions are reversed; if a
family is moved closer to satisfaction than another family the focus switches to
the more violated group. If the expectation when selecting the least violated
family is a search that focuses on maintaining satisfaction then for this variant we
would predict that the search would rapidly improve the commonest constraints.
The families with most violations have most scope for improvement. This gradual
tightening of violations, bringing the largest family down until it surpasses another
family, should lead to a gradual convergence (akin to SA’s annealing schedule).

Once again the GLSM formalism provides a concise way of representing
the control structure of our algorithm. In this instance, the states represent the
constraint families and the transitions occur when there are no violations remaining
in a family, or when a previously satisfied family is violated. The implementation
of these Greedy Strategies is shown in Listing 4.2. The only difference between
the two searches is which invariant set is passed as an argument; one monitors
the least violated families, the other the most violated families.

Experimental Evaluation

We compared the performance of the two Greedy variants of CDVNS using the same
experimental setup and under the same conditions as the previous experiments.
Figure 4.9 displays the results from the twenty ITC instances. The first noticeable
trend is that the strategies form clear coloured bands. In both partitionings
focusing on the most violated constraints first outperforms concentrating on the
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626 void minGreedyOrdering () {
627 _violatedConstraints = _leastViolatedConstraints ;
628 greedyOrdering ();
629 }
630

631 void maxGreedyOrdering () {
632 _violatedConstraints = _mostViolatedConstraints ;
633 greedyOrdering ();
634 }
635

636 void setupViolatedConstraintChanges () {
637 whenever _violatedConstraints@insert ( i n t i) {
638 i f (! _lookaheadFlag ) {
639 _shouldStop := true ;
640 cout << " Pulling the plug on internal VNS" << endl;
641 }
642 }
643

644 whenever _violatedConstraints@remove ( i n t j) {
645 i f (! _lookaheadFlag ) {
646 _shouldStop := true ;
647 cout << " Pulling the plug on the internal VNS" << endl;
648 }
649 }
650 }
651

652 void greedyOrdering () {
653 i n t previousNhood = initialNeighbourhood ;
654 i n t previousConstraint = initialConstraint ;
655 setupViolatedConstraintChanges ();
656 _searchStart = System . getCPUTime ();
657 whi le (! _shouldStop && _totalViolations > 0 && hasTimeLeft ()) {
658 s e l e c t (c in _violatedConstraints ) {
659 assert ( card ( _violatedConstraints ) == 1);
660 notifyChangeConstraint ( previousConstraint , c);
661 _scheduler . setValidNeighbourhoods ( _cInteractions [c]);
662 setNeighbourhoodOrdering ( _scheduler .

getLinearNeighbourhoodOrdering ( true ));
663 i n t startVNS = System . getCPUTime ();
664 searchVNS ( _neighbourhoodOrdering , f a l s e , true );
665 cout << " Internal VNS phase finished after " << System .

getCPUTime () - startVNS << " ms" << endl;
666 resetProgressVariables ();
667 previousConstraint = c;
668 }
669 onFailure {
670 cout << " Failed to find a constraint c in {" <<

getConstraintNames ( _violatedConstraints ) << "}" << endl;
671 _shouldStop := true ;
672 }
673 }
674 }

Listing 4.2: The Greedy Ordering code from OriginalSearch.co.
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least violated constraints. The hard-soft results are the stronger than those from
the full partition. In the latter partitioning there are few runs that reach below
the 1000 violation mark. The hard-soft results are somewhat better with more
runs falling between the 500 and 1000 violations range, but when compared to
the VNS with bypassing and the dynamically reordered VNS (Figs. 4.3 & 4.6
respectively) they are decidedly inferior. The earlier experiments routinely have
runs that have less than 500 violations. The Greedy CDVNS runs have a tighter
distribution displaying none of the large gaps evident in the VNS experiments.
Another troubling observation is that for many of the runs in the full partition
their final solution quality is worse than their starting solution.

To investigate the reasons for these poor results we need a more accurate picture
of the final optima that the runs reach. Fig. 4.9 displays the total violations of each
terminal solution, however, each search strategy operates over the violations of the
constraint families (visible in a given partitioning). For the hard-soft partitioned
runs the search can choose to focus on one of two families; in the full partition
the search has six choices. Fig. 4.10 displays just the hard-soft partitioned runs
but this time split into the final hard and soft violations. Where the previous
figure failed to display any clear difference between the search strategies that is no
longer the case in Fig. 4.10. In both the hard constraints and the soft constraints
plots the runs form clusters by search focus.

The top hard constraint plot shows that the runs where the most violated
constraints were tackled first (shown in green) finish closer to satisfaction than
those runs where the least violated constraints were tackled first. All the runs using
the max violation strategy improved the hard constraints. The hard constraint
results for the minimum violation strategy are not as strong. Some runs do
improve from the starting position, but there are others that finish considerably
worse. Those using nhoods4 (the diamond) are consistently the poorest.

For the bottom soft constraints plot the situation is reversed. The minimum
violation focus strategy performs best. A divide is apparent between the two
strategies with the blue runs almost reaching satisfaction across several problem
instances. By contrast the maximum violation strategy improves the soft con-
straints in only a small number of runs. In the majority of cases the maximum
violation strategy ends up introducing more soft constraint violations.

The reason for the stark divide between strategies and the reversal between
constraint families becomes apparent when you consider the starting violations.
The maximum constraint focus performs best on the hard constraint families
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because at the starting solution for each instance the hard constraints are the
more violated of the two families and consequently are focused on first. Similarly,
the minimum constraint strategy performs better on the soft constraints because
they start closer to satisfaction and will be selected first.

Figs. 4.11 & 4.12 expand Fig. 4.9 to display the full partition results with each
constraint family visible. To keep them readable each plot only shows ten instances.
As with Fig. 4.10 the two strategies exhibit clear differences. By exposing the most
detailed information about the violations we can see several interesting properties
that are not visible in the hard-soft results. Firstly, the initial solutions all satisfy
the overlaps and finalTimeslot constraints. The starting solution generation code
and a detailed table of their violation values are in Appendix B. These two families
highlight the distinct behaviours of the strategies. The minimum focus approach
manages to keep the overlaps family satisfied in 811 of the 930 runs; the other 119
runs had only a single overlaps violation. Although it is not immediately apparent
from the plot the finalTimeslot family results are slightly better with 851 runs
remaining unviolated. However, the remaining runs are further from satisfaction
than with the overlaps.

This behaviour is what we would expect to see. These families started with
the fewest violations and (as new violations are introduced) become the first
that the search attempts to repair. The plot shows that the minimum strategy
performs well on the singleEvent family too. The results for each family become
weaker as the number of starting violations increase. By the most violated family,
eventClashes, the maximum strategy has become the more effective strategy.

4.3.2 Specified Constraint Precedence

The first two configurations of the CDVNS algorithm took a greedy approach
to selecting the ordering based on the violation state at run-time. In prior
applications of Local Search to constraint solving, this high-level search direction
is explicitly made by the algorithm designer. Multi-phase algorithms split the
search into distinct sections where the partitioning is explicitly enforced via the
neighbourhood selection. The flexibility of our framework using GLSMs as the
control structure is that this partitioning is now parameterised. The partitioning
decision could be seen as analogous with CP solver’s variable (or value) selection
heuristics.

Rather than just reacting to the search state, we propose allowing the CDVNS
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Figure 4.9: Greedy CDVNS focusing on the constraints with the Min and Max
Violations.
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Figure 4.10: Greedy CDVNS results plotted at the constraint family granularity.
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Figure 4.11: Greedy CDVNS full partition results for instances 1–10.
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Figure 4.12: Greedy CDVNS full partition results for instances 11–20.
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algorithm to be supplied with an ordering of constraints to solve. The search can
only transition to focusing on other constraints once it has solved the current set.
Introducing violations into previously satisfied constraints requires the search to
transition back into those phases.

Listing 4.3 shows the implementation of the CDVNS algorithm. Most of the
code handles creating the Event Listeners that COMET uses to detect when the
current constraint set has been satisfied (or a previous one violated). The actual
search procedure uses the VNS from Listing 4.1. The Constraint-Directed part
wraps around the internal VNS and provides meta control. The internal VNS
only operates on neighbourhood orderings. It is unaware of the higher-level search
decision to concentrate on a particular constraint-family.

CDVNS takes the constraint ordering (defined by the user) then uses that to
determine which neighbourhoods are applicable. From those neighbourhoods an
ordering is created (using the same method as the VNS). The VNS proceeds as
normal, trying to improve the violations of the selected constraints. The listeners
in the CDVNS procedure are triggered whenever the violated families change and
prevent further iterations of the internal VNS (by using a boolean flag). A change
in the violated constraints can trigger one of three outcomes: all the constraints
from the current partition are satisfied, a subset of the current partition are
satisfied, or some previously satisfied constraints are violated.

In the first case the CDVNS search transitions to the next partition (if it has
one). The second case does not trigger a transition, but the selected constraint
set is updated to contain the remaining violated constraints. The final case causes
the search to change the selected constraint set to that of the previously satisfied
partition. At each iteration, before starting the VNS, the search refreshes the valid
neighbourhoods and the ordering of those neighbourhoods. This means that the
applicable neighbourhoods can change during a phase as elements of the selected
constraints are satisfied.

Experimental Evaluation

For this experiment we use five distinct constraint orderings. For the hard-soft
partition there are only two possible constraint orderings (shown in Figs. 4.13 &
4.14); with six constraint families the full partitioning allows for a wider range of
potential orderings (seen in Figs. 4.15, 4.16, & 4.17). For the orderings with groups
of equivalent nodes the transitions are shown going to a specific node within those
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576 void searchCDVNS (){
577 assert ( hasConstraintOrdering ());
578 currentConstraints = getFirstConstraints ();
579 previousConstraints = new s e t { i n t }();
580

581 notifyChangeConstraint ( currentConstraints );
582 _searchStart = System . getCPUTime ();
583

584 whenever _violatedConstraints@remove ( i n t j){
585 i f (! _lookaheadFlag ){
586 cout << " _violatedConstraints@remove (" << j << ")" <<

endl;
587 i f ( currentConstraints . contains (j)){
588 notifyChangeConstraint (( currentConstraints i n t e r

_violatedConstraints )\ {j});
589 }
590

591 _shouldStop := true ;
592 }
593 }
594

595 whenever _violatedConstraints@insert ( i n t j){
596 i f (! _lookaheadFlag ){
597 cout << " _violatedConstraints@insert (" << j << ")" <<

endl;
598 i f ( currentConstraints . contains (j) && !

selectedConstraints . contains (j)){
599 notifyChangeConstraint ( currentConstraints i n t e r

_violatedConstraints );
600 }
601

602 _shouldStop := true ;
603 }
604 }
605

606 whi le (! _shouldStop && hasTimeLeft ()){
607 i f (! hasSatisfiedCurrentConstraints ()){
608

609 _scheduler . setValidNeighbourhoods (
getConstraintInteractions ( selectedConstraints ));

610 bool orderBySize = ! hasArgument (" - - ByEffect ");
611 setNeighbourhoodOrdering ( _scheduler .

getLinearNeighbourhoodOrdering ( orderBySize ));
612 searchVNS ( _neighbourhoodOrdering , f a l s e , true );
613 cout << " Internal VNS phase finished " << endl;
614 resetProgressVariables ();
615 } e l s e {
616 i f ( hasSuccessorConstraints ()){
617 advanceToNextConstraints ();
618 } e l s e {
619 cout << "No constraints remaining in the ordering " <<

endl;
620 _shouldStop := true ;
621 }
622 }
623 }
624 }

Listing 4.3: The CDVNS code from OriginalSearch.co.
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clusters. This is a limitation of diagram format rather than our system. The
full1 configuration expresses the same constraint ordering as hard-soft1 but in
a fully partitioned model. Although the constraint ordering is the same, the search
behaviour will not necessarily be so. The fully partitioned model allows the search
to recognise when some of the families are satisfied (and update its neighbourhood
choice accordingly). Configurations full1 and full2 are partially ordered. There
are precedences between groups of constraints, but within the groups there is no
fixed order. The transition condition for these multiple constraint phases are the
satisfaction of all the constraints. We use the notation CDET(c1∩c2) to indicate
that constraints c1 and c2 must both be satisfied. We denote the return transitions
in a similar fashion using CDET(¬(c1∪ c2)).

CDVNS can be seen as akin to what Glover and Laguna [1997, Sec. 10.7,
p. 354] call Referent-Domain Optimization. Glover and Laguna characterise
Referent-Domain Optimization as the process of restructuring a problem (or
neighbourhood) with the intention of focusing on a particular heuristic goal. This
will typically be achieved by creating some restriction on a neighbourhood that
either reduces its size or controls the exploration through that space. For CDVNS
the problem is being restructured with the intention of solving the constraints in
a particular order, which in turn determines which subset of the neighbourhoods
will be used.

Other search strategies try to maintain desirable properties through a variety
of means (e.g. elite solution pools, GA population, ACO pheromone matrix, TS
inclusion memory). CDVNS tries to retain the desirable aspects of a solution (i.e.
satisfied constraints) through the use of complementary neighbourhood structures.
In Loudni et al. [2010] they outline an interesting hybridisation of VNS, LNS
and CP applied to Weighted Constraint Satisfaction Problems. They propose a
generic neighbourhood heuristic for CSPs that takes into account the topology
of the constraints graph (e.g. a graph with nodes for variables and edges where
variables appear in constraints). What they term a neighbourhood is actually
a LNS reassignment of a selection of randomly chosen conflicting variables. By
neighbourhood heuristic they mean something like the original min-conflicts scheme
from Minton et al. [1992]; that is, a strategy for selecting which variables to reassign.
The neighbourhoods in their VNS refer to an increasing number of relaxed variables
(i.e. those chosen for reassignment) rather than distinct neighbourhood functions.
By performing the reassignment with LNS / CP they lose the ability to make
predictions about the reassignment (which our work seeks to exploit).
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Hstart S

CDET(H )

CDET(¬H )

Figure 4.13: The GLSM for a CDVNS using configuration, hard-soft1.txt.

Sstart H

CDET(S)

CDET(¬S)

Figure 4.14: The GLSM for a CDVNS using configuration, hard-soft2.txt.
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s2s1 s3

start

CDET(¬(h1 ∩ h2 ∩ h3)) CDET(h1 ∪ h2 ∪ h3)

Figure 4.15: The GLSM for a CDVNS using configuration, full1.txt.
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CDET(h3) CDET(h1 ∪ h2)

Figure 4.16: The GLSM for a CDVNS using configuration, full2.txt.
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The ordered CDVNS experiment used the same setup as the prior experiments.
The results are displayed in Fig. 4.18 and upon initial inspection do not appear
substantially different to those from Fig. 4.9. The hard-soft runs are slightly
stronger than those from the full partitioning, but no one ordering appears clearly
better than any other. As with the two greedy strategies in the fully partitioned
experiment some of the runs are actually worse than the starting point.

Expanding out the hard-soft partition results (in Fig. 4.19) gives a similar
picture to Fig. 4.10; the differences between the two orderings (hard-soft1 &
hard-soft2 exhibit the same trend as the difference between the two greedy
strategies. Each performed well on only one of the constraint families. In this
experiment the orderings were dictated by a predefined user input, but the outcome
was actually the same as that generated by the greedy strategy. In the hard-soft1
ordering the search tried to satisfy the hardConstraints family first and would
only focus on the softConstraints once the former were feasible. The maximum
focused greedy strategy also tried to solve the hardConstraints first, but because
they were the more violated constraints rather the due to any external prompting.
Though the initial impetus was different, the focus, behaviour and results ended
up the same.

Whilst the hard-soft orderings ended up mirroring the behaviour of the greedy
strategies, the full partition orderings should be capable of more nuanced search
behaviour. The detailed full partition results are shown in Figs. 4.20 & 4.21.
Again the most noticeable factor is that no single ordering emerges as substantially
better than the others. The full2 ordering maintains the overlaps feasibility
well, because this is first family in its ordering (see Fig. 4.16). Compared with
Figs. 4.11 & 4.12 the user-directed search is also more effective on the eventClashes
constraints. Again this family occurs is amongst the first constraints tackled in
all three orderings. Technically full2 will start with the overlaps, but these
will be satisfied in the initial solution, so should be skipped immediately. The
performance on the threeInARow constraint is worse than in the greedy strategies.
The majority of runs end up with more of these violations than they started
with. The finalTimeslot results are the same, although they start from feasibility
so we would expect some violations to be introduced. The finalTimeslot family
are always last in the three orderings, so any violations that are introduced by
neighbourhoods used in other phases are never a priority.

The other factor contributing to some runs’ poor performance is that the search
acceptance is based solely on the selected constraints. A move will be accepted if it
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Figure 4.18: CDVNS following user constraint orderings.
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Figure 4.19: CDVNS ordering displaying just the hard-soft partition.
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improves (or does not degrade) the violations of the constraints within the selected
constraints set. This can, and does, lead to situations where whilst the desired
aspect is improved the constraints outside the search’s immediate attention are
violated more. We experimented with applying a further restriction that a move
would only be accepted if it did not degrade the selected constraints and it did not
increase the summation of the non-selected constraints. So, the other constraints’
violations could alter (and increase) as long as the overall effect was neutral. This
did not lead to any substantial alteration in the search performance. The main
difference was that the search would become trapped at optima earlier.

4.4 Providing Modelling Feedback

The final potential use for constraint-neighbourhood interaction information that
we present is to allow feedback to be given to the user regarding their choice of
model or selection of neighbourhoods. There exist numerous static code analysis
tools for mainstream languages which can provide a programmer with information
on best practises or spot potential coding errors. The PMD project1 for Java
allows source files to be scanned and makes warnings based on a flexible rule-set
of potential bugs. Most compilers will produce warnings informing the user that
there are issues like unused variables or unsafe type casts. Modelling problems well
as CSPs requires experience and an understanding of the relationship between the
model and the search. In Van Hentenryck and Michel [2005, Chp. 4, p. 45] they
introduce a model for the Magic Square Problem which is missing one constraint
stating that all the values must be different. They acknowledge this omission but
because their construction procedure maintains the all different property and the
subsequent search neighbourhood is a 2-opt swap scheme they reason the explicit
constraint would have been redundant. This is an example of where a constraint
model has been simplified by understanding the behaviour of the search procedure
against that model. An inexperienced user may not necessarily be aware of this
sort of optimisation. By reducing constraints the user can save both memory and
time (certainly in the initial instantiation stage).

Detecting redundant constraints could be automated given only the constraint-
neighbourhoods interactions graph (and the list of selected neighbourhoods). It
is essentially analogous to detecting the connected components in a graph. Any

1http://pmd.sourceforge.net/
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Figure 4.20: CDVNS full partition results on instances 1–10.
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Figure 4.21: CDVNS full partition results on instances 11–20.
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of the tree-searches from Section 2.3.1 would work. Disconnected vertices are
redundant and can be flagged to the user. Providing modelling feedback may
not seem as important a contribution as improving an algorithm’s performance,
but it does play a role in increasing the accessibility of CBLS. The easier-to-use
and more user-friendly a system is, the more likely it is to achieve widespread
adoption.

4.5 Conclusions

In this chapter we have explored several ways that constraint-neighbourhood
interaction information can be incorporated into Local Search algorithms. We
have suggested improvements to the uninformed VNS / VND strategies that
allow them to harness information about neighbourhood behaviours. We have
investigated whether restructuring the neighbourhood sequence to reflect the
changes to neighbourhood sizes is beneficial. We presented a new algorithm,
CDVNS, that behaves like a VNS which orders neighbourhoods according to the
constraint situation. We experimented with two forms of this algorithm: one that
greedily reacts to the current violation state, and one that is guided by a user
ordering of constraints.

What emerged from these experiments was that none of our proposed uses of
the interaction information we had extracted in Chapter 3 provided any statistically
significant improvement over not using any information. The initial premise that
using interaction information as a means of avoiding redundant exploration during
a VNS seemed plausible; however, what transpired was that the violation state
of the problem was too coarse and changed less than we had expected. This, in
turn, restricted the opportunities for altering the neighbourhood ordering and
each run effectively had a fixed ordering (though not necessarily the same as the
full sequence).

Our second experiment—allowing the neighbourhood ordering to change at
each iteration to reflect the current neighbourhood sizes—also failed to demonstrate
any significant improvement. Upon further investigation we discovered that whilst
the neighbourhoods did alter in size these changes were not large enough to trigger
a change in the overall order. In the situations where the sequence order did
change the differences were between later neighbourhoods that were only accessed
infrequently.

The third set of experiments looked at using the constraints’ violation state to
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derive a neighbourhood ordering (rather than having some predefined notion of a
neighbourhood sequence). Our first two approaches were greedy and chose to focus
on either the most or least violated constraint family. These produce results where
clearer behaviours emerged than in prior experiments. Upon investigating the
results at the constraint family level of granularity what became apparent was that
the division between the strategies was chiefly influenced by the starting solution.
The minimum violations approach arrived at solutions where those constraints
that started with fewest violations were improved most. Conversely, the maximum
violations approach did the exact opposite. The families that started with most
violations were improved whilst those families initially nearest satisfaction were
degraded.

The last experiments continued with the idea of the neighbourhood ordering
resulting from a constraint ordering but, instead of being dynamic, this constraint
ordering should be specified by the user. For the hard-soft runs the limited
constraint orderings available meant that these were unintentionally the same
as the earlier greedy strategies (and exhibited the same results). For the full
partition runs richer constraint orderings were possible, but none of them emerge
as substantially better. The families that the user-directed CDVNS performs best
on are those that appear earlier in the constraint ordering (and also where it has
an effective neighbourhood for that type of violation).

In the next chapter we summarise all the work from this—and the preceding—
chapter, and evaluate whether we achieved the objectives set out in the introduc-
tion. It also explores some of the directions in which we envisage our work being
extended and continued.
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Conclusions and Future Work

There is time enough for
everything, in the course of the
day, if you do but one thing at
once; but there is not time enough
in the year, if you will do two
things at a time

Letters to His Son, April 14, 1747
Philip Stanhope, 4th Earl of

Chesterfield

The previous two chapters contained all the experimental work of this thesis.
Chapter 3 was concerned with the identification of constraint-neighbourhood
interactions. The subsequent chapter explored how the constraint-neighbourhood
interaction information could be applied in search procedures. This chapter looks
at whether the work in Chapters 3 and 4 met the goals set out in Section 1.1
of the Introduction. It reviews each of the targets, recaps on the relevant work,
and discusses whether it satisfied the goal. The first section of this chapter
focuses on the constraint-neighbourhood interaction detection segment of the work.
The following section looks at the utilisation of the constraint-neighbourhood
interactions. The final section provides some closing remarks about our work and
its intended aims.

The hypothesis that we set out was that relationships between generic constraint
models and search neighbourhoods can be detected automatically and subsequently
used to inform a search procedure.
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5.1 Conclusions

5.1.1 Extracting Interaction Information

The central question motivating the work in Chapter 3 was: can useful information
be found using a generic model and search neighbourhoods? The first step towards
answering this was to investigate how a model and neighbourhood could be related
to each other. Specifically, we sought to determine the following: How can the
CSP problem definition be connected with the search behaviour?

We proposed the concept of constraint-families, which are groupings of the
constraints within a CSP. The notion of constraint-families allowed us to produce
a concise definition of what we termed a constraint-neighbourhood interaction.
Any neighbourhood that can alter the violation state of a family of constraints is
said to have an interaction with that family. The families that a neighbourhood
interacts with are termed its constraint signature.

The second question was: will this require any modelling changes? The conven-
tional modelling practice in CBLS, inherited from CP, is to have all the constraints
in a single constraint store (e.g. a COMET ConstraintSystem<LS>). Maintaining
multiple constraint families requires moving to an arrangement where the con-
straints in each family are collected in independent ConstraintSystem<LS>s. We
investigated whether this would cause any appreciable time or memory overheads.
The results at the end of Section 3.1 show that the time and memory increases
were minimal. Content that implementing constraint families was technically
feasible, we also investigated some other potential benefits. We found that using
constraint stores other than ConstraintSystem<LS> could be more efficient; they
can also provide access to a wider range of differentiation methods (which allow
for more expressive neighbourhoods).

COMET provides useful features—like differentiable invariants, neighbors, and
continuations—that make developing CBLS algorithms concise. Van Hentenryck
and Michel [2007] extended COMET with a generic model system that allowed
a generic constraint model to be treated as a first-class expression. Our third
question asked: What kind of framework is needed to create a generic reusable
system? The model is limited to only two constraint families: hard constraints,
and soft constraints; Van Hentenryck and Michel’s model cannot represent ar-
bitrary partitionings and as a result we had to create our own generic Model
architecture. The model syntactic shortcuts do show how this could be achieved
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neatly. Section 3.3 outlines our design for a framework built atop COMET that
includes a Model section and new Neighbourhood architecture. As of version
2.1.1 of COMET, neighbourhoods remain coupled to their respective models; this
dependency is caused by the need for a reference to the constraint store being
differentiated to appear in the neighbourhood. Our framework addresses this
problem by allowing neighbourhoods to be completely disjoint from the models
they will be used with. However, this separation is not mandatory; it is still
possible to create neighbourhoods that rely on a specific model (e.g. see the
timetabling neighbourhoods described in Appendix A.2.2).

The role of the framework is to create the environment where an independent
analysis component can operate. The last subquestion we sought to answer was,
given decoupled models and neighbourhoods, how can the behaviour detection be
automated? The Interaction Detector accepts a model and a set of neighbourhoods
as arguments and can then uncover the constraint-neighbourhood interactions
that exist between them. The detector employs a simple strategy whereby it starts
from a random solution, makes random moves within a neighbourhood, and uses
an Event Listener to capture any situation when the violation state changes. To
verify its efficacy we performed a number of experiments using the Timetabling
Problem as a test bed. The results found in Section 3.6 confirm that this policy
does perform well. The detector was able to uncover all the interactions for all
neighbourhoods across three different constraint partitionings.

Having reviewed the initial information extraction goals it would seem reason-
able to conclude that the work in Chapter 3 did fulfil them. Whilst the chapter
does describe a generic way of extracting information from models and search
neighbourhoods, it does not prove that this information is useful. To resolve the
utility of the interaction information required a study of potential applications
during the search process.

5.1.2 Exploiting Interaction Information

Chapter 4 contains the second half of the work in this thesis. It starts from the
position that for a given constraint model and set of neighbourhoods we have access
to the constraint-neighbourhood interactions information. The main question
that this chapter sought to answer was: how can this [constraint-neighbourhood
interaction] information be used within a search procedure with the aim of improving
performance?
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As part of that question we started by looking at how neighbourhoods are used
within an existing VNS context. At present neighbourhoods have to be explored
and found to contain no improving solutions before the search can transition to
the next neighbourhood in the VND sequence. Given that interaction information
can indicate situations where a neighbourhood will never be able to alter the
violation state we experimented with using this knowledge to bypass non-applicable
neighbourhoods. The hypothesis was that avoiding provable redundant exploration
would increase performance, however, we failed to find any strong support for
this. Further investigation showed that was because what we termed the violation
signature (i.e. those constraint families that remained unsatisfied) did not change
often. In the simpler two family partition there were no situations where the
signature changed, so the same neighbourhoods remained applicable and no
bypassing opportunities arose. In the richer full partition model we did encounter
signature changes and more bypasses occurred. This did not lead to higher quality
solutions, instead we discovered the search reached equivalent local optima but in
fewer iterations.

As part of the structure of our system we chose to represent the sequence
of neighbourhoods to explore as a GLSM. Rather than being fixed the order of
neighbourhoods were simply transitions within a state machine that could be
altered dynamically at run-time. This configuration allowed us to experiment with
reordering the sequence of neighbourhoods during the search to keep it sorted
linearly by increasing size. Maintaining the neighbourhood ordering in a strict size
failed to give any significant performance benefits. Whilst the neighbourhoods
were displaying sizes that varied during the course of a search these changes were
not large enough in most cases to cause a change in the sequence order.

Rather than manipulating a linear ordering of neighbourhoods, we explored al-
lowing the neighbourhoods to be selected based upon the violation signature of the
search at that point. Only neighbourhoods applicable to the current violation state
would be chosen (removing the need to bypass non-applicable neighbourhoods).
We tried two different policies for determining which neighbourhoods should be
selected: one guided by a greedy rule, the other following user direction. The
greedy approaches selected neighbourhoods by first selecting either the most (or
least) violated constraint families and then using only their interacting neighbour-
hoods. What emerged from these strategies is that resulting optima were likely to
be determined by the relative starting violations. This was particularly evident in
the hard-soft partitioning. For the user constraint orderings the simpler hard-soft
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pair essentially replicated the effect of the greedy rules. The full partition showed
a more nuanced behaviour. Constraint families could be prioritised through the
user decision about their position with the ordering. None of the user-specified
orderings generated great results.

Having recapped the work in Chapter 4 overall we think we only partially
met our objective of proving the relationships between generic constraint models
and search neighbourhoods can be detected automatically and subsequently used to
inform a search procedure. The first element around formalising the relationships
and creating a way of automatically detecting them was successful. We created
a definition of one potential relationship between constraint models and neigh-
bourhoods (in the form of constraint-neighbourhood interactions). It should be
noted (as we set out in the Caveats in Section 1.1) the intention was not to claim
that constraint-neighbourhood interactions are the only relationship—only one
example of such. Our other main contribution was the Interaction Detector (and
the work establishing the modelling changes and framework to support it) which
showed that uncovering these relationship automatically (and accurately) was
feasible. Again though the intention was to prove its feasibility and we offer no
claims that the Interaction Detector as it stands is necessarily the most efficient
way of uncovering such connections. For the second section of our hypothesis we
put forward several ways of using the interaction information with a search. None
of the methods we experimented with resulted in great performance, so in that
respect this aspect of the work was not successful.

5.2 Future Work

The remainder of this chapter covers some of the directions in which our work
could be extended in the future. Neighbourhoods—and their role within Local
Search—have been central to this thesis; however, they remain ill-defined structures
primarily shaped by prior experience. The next two subsections look at potential
strategies to rectify this. Section 5.2.1 presents some ways that the neighbourhood
design process could be automated (or at least vaguely formalised via guidelines).
In the earlier chapters we focused on the connections between neighbourhoods
and constraints; Section 5.2.2 proposes investigating the relationships between
the neighbourhoods themselves. The third subsection returns to the Interaction
Detector from Chapter 3 and looks at how it could be made more efficient. The
final subsection outlines another potential use of the constraint-neighbourhood
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interaction information and the GLSM structures: the automatic inference of
multi-phase algorithm structures.

5.2.1 Neighbourhood Design

In the following quote from Papadimitriou and Steiglitz [1998, Chp. 19, p. 455]
they set out what they consider to be the fundamental decisions when adopting a
Local Search approach:

. . . [W]e must choose a “good” neighborhood for the problem at hand,
and a method for searching it. This choice is usually guided by
intuition, because very little theory is available as a guide. One can see
a clear trade-off here, however, between small and large neighborhoods.
A larger neighborhood would seem to hold promise of providing better
local optima but will take longer to search, so we may expect fewer
of them can be found in a fixed amount of computer time. Do we
generate fewer “stronger” local optima or more “weaker” ones?

These and similar questions are usually answered empirically, and the
design of effective local search algorithms has been, and remains, very
much an art.

The size and quality of the optima are important in neighbourhood design;
so too is a neighbourhood’s interaction signature. The ideal neighbourhood—for
the purposes of our work—is one that interacts with as few constraint families as
possible. A neighbourhood with few interactions will behave in a more predictable
fashion. In Chapter 3 we were only concerned with identifying the interactions of
pre-existing neighbourhoods. The neighbourhoods were assumed to already be
available from some unspecified source (e.g. from previous experience, part of a
library, described in the literature, etc.). Rather than relying on the properties of
these neighbourhoods, one approach could be to actively create neighbourhoods
with desirable interaction signatures for a given problem.

Rather than just considering the creation of a single neighbourhood it may be
more instructive to consider creating a set of neighbourhoods with complementary
properties (i.e. the ability to collectively interact with all the constraints). This
would be appear to be a similar problem to that of Set Packing (described in Skiena
[2008, Sec. 18.2, pp. 625–627]). Potentially generative techniques like GP could
be used “evolve” neighbourhoods. The Interaction Detector could evaluate the
resulting candidates to uncover their behaviour.
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Integrating CP techniques with Local Search neighbourhoods has been ex-
plored in Vasquez et al. [2003, 2005]. Prestwich looks at the same issue of using
Forward Checking [2002c], maintaining Arc Consistency [2002b], and generally
hybridising Local Search with pruning techniques [2002a]. This topic is also
covered independently in Dechter [2003, Sec. 7.3, pp. 198–205] where the focus
is on using Local Search to make decisions that result in problems which are
resolvable via consistency techniques. A cycle-cutset is the collection of variables
(in a constraint network) that—once assigned—allow the remaining variables’
values to be determined solely via arc-consistency. Dechter describes interleaving
a Local Search phase (where cutset variables are assigned) with a propagation
phase.

5.2.2 Relationships between Neighbourhoods

In the previous section we discussed creating neighbourhoods (and groups of
neighbourhoods) with desirable interaction properties. This section proposes
focusing on the relationships between neighbourhoods themselves, without refer-
ence to interaction properties. By relationships, what we really mean are the set
relationships (e.g. subset ⊆, strict subset ⊂) between the collections of neighbours
that neighbourhoods generate. If from a given starting assignment, a, two neigh-
bourhoods, N1(a) and N2(a), produce the neighbourhood sets {a1, a2, a3} and
{a1, a2, a3, a4}, then we could conclude that N1(a) ⊂ N2(a). These associations are
evident in some of our framework’s neighbourhoods (e.g. validRoomAssignments
⊂ roomAssignments). More complex relationships also exist; in Appendix A we
note that ConsistentAllSwaps<LS> = ConsistentSingleDayAllSwaps<LS> ∪
ConsistentInterDayAllSwaps<LS>.

As the neighbourhood designer, identifying these relationships is relatively
straightforward. However, as we have been promoting treating neighbourhoods as
reusable components it would be desirable to be able to detect the relationships
between neighbourhoods automatically. Some of the techniques used in the
Interaction Detector would be reusable. For example, querying a neighbourhood
for its variables could quickly identify unrelated neighbourhoods.

Classification of the nature of a neighbourhood’s permutations may also prove
useful. By nature we mean the type of assignment being performed (e.g. is it
an exchange, a reassignment, or multiples thereof?). In our current scheme a
neighbourhood is a black-box that operates as a function over a collection of
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variables; we can query its size, but the nature of its permutations is hidden
and only revealed to us via their effect on the violation state of the constraint
families. In Ågren et al.’s work on CON there are five operators that can be
combined (using set operators) to describe a neighbourhood. The nature of a
neighbourhood can be captured precisely but it does require a more structured
approach to neighbourhood construction than systems like COMET provide.

Whilst uncovering structure within collections of neighbourhoods is pleasing
(in a purely academic sense), there could also be important practical considera-
tions. When operating with multiple neighbourhoods, ideally each neighbourhood
should create distinct sets of neighbours. It is inefficient to have more than
one neighbourhood generating each neighbour. Neighbourhood relationship in-
formation could be used to perform neighbourhood replacements. In CP the
Tailor system by Rendl [2010] automatically reformulates existing constraint
models to remove common subexpressions (which lead to less efficient models and
primarily arise from naïve modelling decisions). Our work could be viewed as the
inverse of common subexpression removal; rather than exploring a single large
neighbourhood, a search could choose to explore the equivalent conjunction of
smaller neighbourhoods.

5.2.3 Improving the Interaction Detector

In Section 11 of Chapter 3 we set out the limitations of the Interaction Detector.
The chief of these is that, in most situations, the Interaction Detector is incomplete.
It would be desirable to mitigate this weakness, especially if we were potentially
using it during the neighbourhood creation phase. The empirical results showed
that it rarely made misclassifications; however, it would be better if its failure to
find an interaction could be taken as definitive. The Interaction Detector uses the
same neighbourhoods (and exploration method) as any subsequent Local Search
procedure. How to guarantee completeness using the current architecture remains
an open question. It is not obvious how one could explore the neighbourhoods
and guarantee completeness without sacrificing their black-box nature. It may
be that techniques from the SAT / CP fields such as clause-learning, nogoods or
explanations could be incorporated.

Another aspect of the Interaction Detector that would be beneficial to improve
is its sensitivity to the direction of the interactions it uncovers. Any change of
violations is classified as an interaction. If a neighbourhood can only reduce
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violations, then this potentially useful information is lost. Using the current
detection strategy it would be possible to determine the direction of the interactions.
The unresolved issue would be how to determine if the interaction is only in a
single direction. The simplest strategy would be to perform multiple detections for
each constraint-neighbourhood pair. If the Detector encountered an interaction
(in a direction) that differs from its previous observations then you could safely
conclude the neighbourhood was capable of both violating and satisfying that
constraint. If all the discovered observations are in a single direction then the
default position could be to assume that the relationship is also just in that
direction.

At present the Interaction Detector operates as an independent pre-processing
step. The model feedback (described in Section 4.4) is also a stand-alone component
(which depends on the interaction information from the Interaction Detector).
These could both be more tightly connected so that user gets modelling feedback
as part of the interaction detection process. We envisage that this could behave in
a similar manner to the compiler warnings generated whilst developing software.

5.2.4 Creating Multi-phase Algorithms

In Ågren et al. [2007a, Sec. 5] they explore potential distributions of constraints
to phases in the Progressive Party Problem via an empirical series of experi-
ments. They hypothesise that such an automatic phase partitioning may be
possible, via static analysis, but offer no advice on how this could be performed.
Their work builds upon the earlier work of Minton [1996] who produced the
multi-tac system for the configuration of CSP solvers. We hypothesise that the
constraint-neighbourhood interaction information could be used for this purpose.

The constraint-neighbourhood interactions form a bipartite graph. A bipartite
graph is a graph with the property that all its nodes can be divided in two
distinct sets; none of the nodes within one group have any edges connecting them
to any other node within the same group. Bipartite graphs can be found in a
number of real-world situations, typically recognising some association between
two differing classes of objects e.g. linking keys to the locks they open. In
the constraint-neighbourhood interaction bipartite graph one set of nodes are
neighbourhoods and the other set are constraint families; Fig 3.12 showed a
visual representation of these connections. In CSPs the relationship between
variables and their domains forms a bipartite graph. It was this bipartite property
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that allowed the creation of efficient pruning techniques for the alldifferent
constraint by Régin [1994]. Finding a feasible solution for the alldifferent
constraint is equivalent to finding a maximum matching in the variable-value
bipartite graph. A matching is a set of edges that do not share any common
vertices. A maximum matching is a matching that contains the largest possible
number of edges. Finding maximum matchings in bipartite graphs is a well-studied
problem for which there are efficient algorithms.

One way to find a maximum matching is by treating the bipartite graph as
a network flow graph. The bipartite graph can be converted to a network flow
by creating a source node that is connected to all the nodes in the first group.
Similarly, all the other nodes are connected to a single sink node. These additional
nodes allow the matchings to be found by calculating the maximum flow. The flow
graph also allows the identification of Strongly Connected Components (SCCs). A
directed graph is strongly connected if it is possible to find a path from every node
to every other node. By identifying the Strongly Connected Components (SCCs)
(which can be done using DFS in polynomial time) then replacing each SCC in the
graph with a single node—whilst retaining the edges between components—creates
a Directed Acyclic Graph (DAG). In the context of the alldifferent constraint,
the edges which cross between SCCs can be pruned because they represent
assignments which reduce the possible choices from a self-contained subsection.
Directed Acyclic Graphs (DAGs) occur naturally in scheduling applications where
they are used to capture the precedences between jobs. Any valid schedule must
have an acyclic precedence graph (otherwise it would indicate that somewhere
a task is required to be its own predecessor). Each job becomes a vertex and
an edge represents that the source job must be completed before the destination
job. Constructing a feasible ordering of a DAG’s vertices (that respects all the
precedence constraints) can be done by performing a polynomial time topological
sort. The DAG formed from the constraint-neighbourhood interaction graph
represents a partitioning of the search into phases. Each vertex in the DAG is
matching between a subset of the neighbourhoods and constraints. The edges
between vertices in the DAG reflect that some neighbourhoods interact with
constraints in other connected components. By topologically sorting the DAG
to respect the precedence constraints, the resulting phase ordering means that
earlier phases will not introduce violations in the earlier phases.

In a conventional COP situation the user will choose to partition the search
such that the hard constraints are optimised before the soft constraints. The
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Constraints

Neighbourhoods

N1N3 N2N5 N4N6

c2c3 c1c4

Figure 5.1: A constraint-neighbourhood interactions graph.

soft constraint optimisation phase should retain feasibility. That means that
the soft constraint phase cannot contain any neighbourhoods that interact with
any of the hard constraints (i.e. the precedence graph must be acyclic). The
benefit of this strict two-phase strategy is that once the search finds a feasible
solution any subsequent improvements will still be feasible. However, this artificial
ordering may not be the most efficient way to solve the problem. Our search
partitioning creates an ordering that more accurately reflects the relationships
between neighbourhoods and tries to structure the search so that it progresses in a
smooth fashion. The most disruptive neighbourhoods are used at the start before
switching to more focused neighbourhoods to optimise the remaining constraints
without undoing the previous search effort.

The GLSM structure at the core of the CDVNS algorithm in Chapter 4 means
that any DAG resulting from this process would be directly executable. The
transitions between each phase are guarded by the conditions that all the previous
constraints are satisfied. This structure also opens up several interesting questions
about the behaviour when reaching plateaux or optima. Should the search use the
existing strategies of disruption, dissuasion, and heuristic manipulation? Could
tree search strategies prove useful? For instance, if the search has plateaued,
could back-tracking to a previous phase widen the scope of the search and allow
progress? Alternatively, maybe some form of limited dives into successor phases
(like TS’s strategic oscillation) would lead the search in a more fruitful direction.
This would be almost like an inversion of LNS. In LNS subsections of a problem
are chosen by a Local Search and then optimised by a CP tree search; in this
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SCC #1SCC #1SCC #1 SCC #2SCC #2SCC #2SCC #2SCC #2SCC #2

N1

S

N3N2 N5 N4N6

c2 c3c1 c4

T

Figure 5.2: The interaction graph from Fig. 5.1 as a flow graph highlighting the
SCCs. The residual edges are denoted in red with edges between SCCs marked in
blue.

situation a tree search is being used to control multiple VNS / Local Searches
each focusing on satisfying a subset of the constraints.

Using the 41 neighbourhoods and their interaction signatures from Chapter 3,
no distinct structure emerged from the SCC identification. Once the bipartite
graph had been converted to a maximal matching problem only one connected
component emerged containing all the constraints. Using a subset of the neigh-
bourhoods results in usable partitions, but raises the problem of identifying the
appropriate neighbourhoods. Alternatively, the neighbourhoods can have their
interactions artificially suppressed (via the preserved constraints), but neither
strategy reached a satisfactory level of development to properly evaluate the
multi-phase generation.

5.3 Final Remarks

This chapter has revisited the objectives set out in the Introduction and connected
those to the work carried out in Chapters 3 and 4. It has also explored some
potential directions in which we could envisage this work being expanded.

The central theme has been about exploring the connection between the neigh-
bourhoods used by a Local Search and CSPs’ constraints. CBLS’s incorporation of
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Figure 5.3: The ordering resulting from treating Fig. 5.2’s SCCs as nodes in a
DAG.

a model structure into Local Search has brought it closer to other search technolo-
gies like CP and MIP. Previously, Local Search algorithms were typically tightly
coupled to the individual model being solved; CBLS provides an opportunity
to relax that coupling and create more reusable systems where the same solver
can be applied to multiple problems. However, Local Search’s effectiveness on
CSPs has been due to its ability to exploit problem structure effectively. We have
explored how generic information about the behaviour of neighbourhoods can be
extracted and subsequently exploited in that CBLS context.

The extraction aspect of the work (from Chapter 3) created definitions of
what we sought to uncover, described a framework that allowed it to operate,
proposed a detection method and showed its effectiveness. This was the more
successful component of our work. The second theme about how to use the
extracted information failed to uncover any strong benefits to the approaches
we tried. We looked at using the constraint-neighbourhood information to avoid
futile exploration and also guide the overall search direction. Our experiments
did not show that either provided any significant advantages.

Ultimately, we hope that this work contributes to the further study of CBLS
and will aid its continued formalisation and adoption. Mathematical Programming
techniques have been around since the early days of OR. CP has been a practical
problem-solving tool since its emergence from the AI field in the 1980s. Both have
active communities that ensure they continue to be refined, improved, and most
importantly used. CBLS is a newer addition to the problem-solver’s arsenal, but
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there is every reason to believe it can and will achieve the same level of maturity
and recognition as its counterparts.
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Appendix A

Neighbourhoods Summary

“Acceptable at a dance and
invaluable at a shipwreck”

First Headmaster of Stowe School,
J. F. Roxburgh’s response to a

parent’s enquiry about the type of
pupils he aimed to produce.

Neighbourhoods play a central role within any Local Search algorithm and
consequently feature heavily in this thesis. This appendix describes the different
types of neighbourhoods that are part of our framework. The first section of this
appendix describes the seven abstract neighbourhood classes that form the basis
of any neighbourhood implemented within our framework. The abstract classes
act as wrappers around COMET’s differentiation methods and provide much of
the binding between a user’s neighbourhood and the logistics of differentiating a
move against possibly multiple constraint containers. An abstract neighbourhood
acts as a template defining the type of move a neighbourhood could have; it is the
concrete neighbourhoods that actually specify the behaviour of a neighbourhood.
The second section of this chapter gives a synopsis of the concrete neighbourhoods.
The concrete neighbourhoods extend from the abstract neighbourhood classes
and can actually be used in applications. The final section of this chapter covers
the Candidate Lists used to restrict some neighbourhoods and provide different
behaviours from the same basic classes.
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A.1 Abstract Neighbourhoods

One of COMET’s main strengths is the efficient differentiation methods which
it provides for constraints and functions. To evaluate the effect of a potential
move you must call the appropriate method from the Constraint<LS> interface;
these functions are covered in Listing 3.6 from Chapter 3. The differentiation
methods can calculate the effect of any neighbourhood move. Currently, there
are two problems when trying to use the system for multiple constraint families.
Firstly, moves can only be differentiated against a single constraint container, and
secondly the user must have collated the data needed to differentiate the move
manually.

One of the key aspects of our framework is its ability to handle multiple
constraint systems (and other constraint and objective containers). Section 3.3
detailed the framework’s dynamic scoping of constraints and the automatic looka-
head handling. The abstract classes manage both of these features so user
neighbourhoods need no alterations to work with multiple constraint containers;
the abstract classes also take care of the preserved constraints.

A.1.1 Assignment<LS>

Assignment<LS> is the simplest of the abstract neighbourhoods. It provides the
template for any neighbourhood that is based upon a single variable reassign-
ment, (i.e. one which would be differentiated with getAssignDelta(var{int} x
, int v)). As well as ConstraintSystem<LS>s it supports Function<LS>s and
DisequationSystem<LS>s. Figure A.1 provides a diagram illustrating this type of
move. Any neighbourhood that extends Assignment<LS> will be an atomic neigh-
bourhood; it would be impossible to simulate the effect of an Assignment<LS> with
a simpler neighbourhood. The maximum size of an Assignment<LS> neighbour-
hood operating over an array of n decision variables would be

(∑n−1
i=0 Domaini

)
−1.

The final subtraction of one is because we make the assumption that a neighbour-
hood will never offer the current state as a potential neighbour.

A.1.2 MultipleAssignment<LS>

MultipleAssignment<LS> works for moves that require two assignments (i.e. getA
ssignDelta(var{int} x1, int v1, var{int} x2, int v2)). Figure A.2 shows
the effect of this neighbourhood pictorially. The MultipleAssignment<LS>’s ef-
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Initial Solution:

New Solution: 23

23

18

18 5

22 10

10

12

12 · · ·

· · ·

Figure A.1: An example of an Assignment<LS> move where variable 3 takes on a
new value.

fects could be recreated using two Assignment<LS>s. MultipleAssignment<LS>
does not allow the differentiation of Function<LS>s or DisequationSystem<LS>s
because their interfaces do not provide access to the underlying getAssignD
elta(var{int} x1, int v1, var{int} x2, int v2) method which MultipleA
ssignment<LS>s wrap around. This does not mean that Function<LS>s or
DisequationSystem<LS>s cannot be used in conjunction with a MultipleAssignment
<LS> neighbourhood; only that instead of using the efficient differentiation method,
it has to fall back to the more costly lookahead simulation.

Initial Solution:

New Solution:

23

23

18

21

5

11

10

10

12

12

· · ·

· · ·

Figure A.2: A MultipleAssignment<LS> move where both variables 2 & 3 are
altered.

A.1.3 MultipleVariableAssignment<LS>

The MultipleVariableAssignment<LS> is an alternate form of the MultipleA
ssignment<LS> that takes two arrays of variables and can perform moves which al-
ter two variables (one from each input array). The MultipleVariableAssignment<LS>
neighbourhood is designed to operate on models where the two variable arrays
are disjoint and distinct yet related by common indices (e.g. in the timetabling
model, the time-slots and rooms variables are both indexed by the same events).
All neighbours will be at most two atomic changes from the current solution. The
maximum number of moves within a MultipleVariableAssignment<LS> neigh-
bourhood will be

(∑n−1
i=0 Domainx1i

+ Domainx2i

)
− 1. In this case we assume

that a move will differ by at least one change but we do not enforce that both
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variables need to change values.

Initial Solution:

New Solution:

23

1

23

1

18

3

18

3

5

0

5

0

10

2

43

4

12

7

12

7

· · ·

· · ·

· · ·

· · ·

Figure A.3: A MultipleVariableAssignment<LS> move changing the values of
two variables at index 4.

A.1.4 MultiAssignment<LS>

The MultiAssignment<LS> class is the most powerful of the abstract classes
because it allows multiple assignments to be performed as one operation. It
uses the getAssignDelta(var{int}[] x, int[] v) differentiation method. The
MultiAssignment<LS> class can be used to recreate the effect of any other neigh-
bourhood (even the Assignment<LS>). It does not support Function<LS>s or
DisequationSystem<LS>s for the same reasons as MultipleAssignment<LS>s
and MultipleVariableAssignment<LS>s; chiefly, the limited differentiation meth-
ods available to non-Constraint<LS> classes and the incomplete implementation
of these methods for containers other than ConstraintSystem<LS>s. Figure A.4
shows a diagram of this move where three variables are being altered. For an array
of size n this neighbourhood could alter all n variables. A MultiAssignment<LS>
could potentially be factorial in size (because the size of the effect is in the range
1 to n).

Initial Solution:

New Solution:

23

23

18

16

5

5

10

40

12

7

· · ·

· · ·

Figure A.4: An example of a three variable MultiAssignment<LS> move.
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A.1.5 Swap<LS>

Swap<LS> is the superclass for any neighbourhood that would ordinarily be differ-
entiated using the getSwapDelta(var{int} x, var{int} y) method. Figure A.5
shows a swap operator exchanging the values between the variables at indices 2
& 4. The getSwapDelta(var{int} x, var{int} y) method is available for all
differentiable objects (probably due to COMET’s support for the swap operator,
:=:). Any neighbourhood implementing Swap<LS> will be at most

(
n
2

)
− 1 in

size and the resulting solutions will be two atomic assignments from the original
solution.

Initial Solution:

New Solution:

23

23

18

10

5

5

10

18

12

12

· · ·

· · ·

Figure A.5: An example of a Swap<LS> between variables 2 & 4.

A.1.6 MultipleVariableSwap<LS>

The MultipleVariableSwap<LS> class is to Swap<LS> what MultipleVariableA
ssignment<LS> is to Assignment<LS>; two swaps performed on two separate yet
connected arrays of decision variables. Figure A.6 shows a diagram of this move.
This class wraps around the getSwapDelta(var{int} x1, var{int} y1, var{
int} x2, var{int} y2) method. Function<LS>s are not supported; however,
DisequationSystem<LS>s are. This is because DisequationSystem<LS>s can
differentiate multiple assignments and a multiple assignment can be used to em-
ulate the effect of a multiple swap; Function<LS>s only have single assignment
and swap methods and consequently cannot emulate this class. A neighbour from
within MultipleVariableSwap<LS> will be at most four atomic assignments from
the starting solution. As with Swap<LS> the neighbourhood could contain up to a
maximum of

(
n
2

)
− 1 neighbours.

A.1.7 MultipleSwap<LS>

The final abstract neighbourhood is MultipleSwap<LS> that, like MultipleV
ariableSwap<LS>, is an extension of the basic Swap<LS>. MultipleSwap<LS>
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Initial Solution:

New Solution:

23

1

23

1

18

3

10

2

5

0

5

0

10

2

18

3

12

7

12

7

· · ·

· · ·

· · ·

· · ·

Figure A.6: A MultipleVariableSwap<LS> exchanging the values of both arrays
at the 2nd and 4th indices.

is actually closer to a MultipleAssignment<LS> than a true swap operator. It
allows two groups of multiple variables to be assigned two values. The genesis of
the operation came from the Timetabling Problem where it is desirable to swap
all the events at one time-slot with those at another. So, whilst conceptually
the variables are having their values swapped, it is actually represented (and
differentiated) internally as a multiple assignment. This is also because there is no
array parameterised getSwapDelta method; only the getAssignDelta method
has the flexibility to differentiate such a move.

Initial Solution:

New Solution:

10

27

18

18

10

27

27

10

27

10

· · ·

· · ·

Figure A.7: A MultipleSwap<LS> move exchanging the values of two groups.
Those with the value 10 and those assigned 27.

A.2 Concrete Neighbourhoods

This section covers the neighbourhoods that provide actual instantiatable imple-
mentations of the abstract classes from Section A.1. The concrete neighbourhoods
are split into two categories: those that are generic to any problem expressible in
COMET and those that rely on information from a particular problem model.
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A.2.1 Generic Neighbourhoods

The generic neighbourhoods operate solely on the information available from the
COMET variables. They have no dependencies on information or invariants from the
problem model. They only require an array of var{int}s and a Model instance. By
supplying different arrays of variables as parameters, at construction time different
instances of the same generic neighbourhood classes can behave as completely differ-
ent neighbourhoods. This can be seen in Table 3.6 where validRoomAssignments
and timeslotAssignments are both DomainAssignment<LS>s.

DomainAssignment<LS>

The DomainAssignment<LS> class is an implementation of the Assignment<LS>
class. It operates by selecting values from a variable’s domain. Integer decision
variables in COMET are associated with domains (just as variables within CSPs
have domains). The domain of a var{int} is static and does not change during the
search process (unless the user explicitly manipulates it); this is different from CP
where the domain of a variable is pruned as the search progresses. If the problem
being tackled has some static disequations, (e.g. an event cannot be placed in
a certain room) then the unwanted values can be removed from the variables’
domains prior to the search. This would result in the DomainAssignment<LS>
neighbourhood only exploring feasible neighbours (with regard to that particular
constraint).

SetAssignment<LS>

SetAssignment<LS> is another implementation of Assignment<LS>. Unlike the
DomainAssignment<LS> it takes a set of integer values as an argument from
amongst which variables must select values. Completely pruning values from a
variable’s domain may be undesirable; especially if the restrictions in question are
from a soft constraint which may not be satisfiable. SetAssignment<LS> allows
you to supply a separate set to act as a common domain rather than restricting
the variables’ individual domains. The drawback is that this single domain is
common for all variables.
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DomainMultipleVariableAssignment<LS>

DomainMultipleVariableAssignment<LS> takes two arrays of variables (that
share the same indices), selects an index and then reassigns both variables at
the chosen index to new values. The values are chosen from amongst the do-
mains of the variables (as was the case for the DomainAssignment<LS> class).
DomainMultipleVariableAssignment<LS> takes the basic operation of the D
omainAssignment<LS> and by inheriting from MultipleVariableAssignment<LS>
extends it to operate on two variables. The neighbourhood always causes a change
of two assignments and has the size of

(∑n−1
i=0 (|Dx1i

| − 1) + (|Dx2i
| − 1)

)
AllSwaps<LS>

The AllSwaps<LS> class extends Swap<LS> and implements a neighbourhood
which tries all the possible exchanges between variables in the supplied array. It
restricts the swaps to those where the first selected index is strictly less than the
second. This removes symmetric swaps and brings the number of moves down
from n2 to the more manageable

(
n
2

)
(i.e. at least a 50 % saving). Swaps where

both variables are currently assigned the same value are also omitted.

23 518 1210

Figure A.8: A diagram showing the values that AllSwaps<LS> would consider
exchanging.

ConsistentAllSwaps<LS>

ConsistentAllSwaps<LS> is another child of Swap<LS> by extension from AllS
waps<LS>. The consistency aspect comes from its use of a second set of variables.
The ConsistentAllSwaps<LS> limits the swaps to those that share a common
value at the same indices in the second array. A simple way of achieving this
would be to select the potential swaps exactly as in the AllSwaps<LS> and then
discard those that do not have identical values in the second array. We choose
the more complicated—but efficient—option of using an invariant, Indices<LS>.
This maintains a mapping between the values of the second array and the indices
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which are assigned those values. Figure A.9 has a diagram illustrating the two
decision variable arrays and the invariant. The values that are not assigned to
any variable in B result in

Variables A:

Variables B:

Indices of B Values:

23

7

18

3

5

7

10

7

12

1

{5} ∅ {2} ∅ ∅ ∅ {1, 2, 4}

· · ·

· · ·

Figure A.9: An example of the pairs of decision variables along with the invariant
maintained by Indices<LS> class. The domain of Variables B is assumed to be
limited to the integers one to seven.

AllMultiVariableSwaps<LS>

AllMultiVariableSwaps<LS> is the concrete implementation of the MultipleV
ariableSwap<LS> class. Like the AllSwaps<LS> and ConsistentAllSwaps<LS>
it chooses two indices from the input array’s range and swaps the values; where
AllMultiVariableSwaps<LS> differs from these neighbourhoods is that it has
two arrays of decision variables and exchanges the values in both arrays from the
selected indices.

A.2.2 Timetabling Neighbourhoods

The following neighbourhoods have been collected together as timetabling neigh-
bourhoods but this does not necessarily mean they are only applicable to timetabling,
merely their implementations rely on some information from our timetabling model.
Even then the information they need may not actually be problem dependent; for
example, the KempeChain<LS> requires knowledge about the clashing events but
this is supplied as a generic graph (represented as a set{int} array) and could just
as well be the connected vertices in a K-Colouring Problem. Listing A.1 shows the
section of the OriginalModel where the relevant invariants are declared. Some of
the neighbourhoods perform generic moves that are subject to restrictions derived
from the structure of the Timetabling problem (e.g. the number of time-slots in a
day, or the number of days). These neighbourhoods are interesting because they
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demonstrate how the insight and intuition of the algorithm designer can still fit
into a decoupled search framework.

1 roomIndices = new Indices <LS >( eventRooms );
2

3 clashingEvents = p. getClashingEvents ();
4 eventsStudents = p. getEventsStudents ();
5 studentsEvents = p. getStudentsEvents ();
6 timetables = new StudentSchedule (m, eventTimeslots ,

studentsEvents , p. getEventsStudents (), times);
7 m.post( timetables );
8

9 studentTimetables = timetables . getStudentTimetables ();
10 i f (times. noOfDays > 1){
11 studentsEventsPerDay = timetables . getStudentsEventsPerDay ()

;
12 }
13

14 var { s e t { i n t }}[] tI = timeslotIndices .get ();
15 var { s e t { i n t }}[] rI = roomIndices .get ();
16 actual = new var { s e t { i n t }}[r in rooms , t in times. timeslots

]( _solver ) <- rI[r] i n t e r tI[t];
17 clashes = new var { s e t { i n t }}[e in events ]( _solver ) <- s e t o f (

f in clashingEvents [e])( eventTimeslots [e] == eventTimeslots [f
]);

18 occupancy = new var { i n t }[r in rooms , t in times. timeslots ](
_solver ) <- card ( actual [r,t]);

19 emptyRooms = new var { s e t { i n t }}[t in times. timeslots ]( _solver
) <- s e t o f (r in rooms)( occupancy [r,t] == 0);

20 emptyTimes = new var { s e t { i n t }}( _solver ) <- s e t o f (t in times
. timeslots )( card ( emptyRooms [t]) > 0);

21 eventsOnDay = new var { s e t { i n t }}[d in times.days ]( _solver ) <-
union (t in times. timeslotsPerDay )(tI[t + (d * times.

noOfTimeslotsPerDay )]);
22

23 var { i n t } timeCount [t in times. timeslots ]( _solver ) <- sum(r
in rooms)( occupancy [r,t]);

24 overfilledRooms = new var { s e t { i n t }}[t in times. timeslots ](
_solver ) <- s e t o f (r in rooms)( occupancy [r,t] > 1);

25 overfilledTimes = new var { s e t { i n t }}( _solver ) <- s e t o f (t in
times. timeslots )( card ( overfilledRooms [t]) > 0);

26 overfilledTimeslots = new var { s e t { i n t }}( _solver ) <- f i l t e r (
t in overfilledTimes )( timeCount [t] > noOfRooms );

27 emptyTimeslots = new var { s e t { i n t }}( _solver ) <- f i l t e r (t in
overfilledTimes )( timeCount [t] == 0);

Listing A.1: An excerpt of the OriginalModel class (from OriginalModel.co)
showing the instantiation of the model’s invariants (that the neighbourhoods
require).

220

http://personal.cis.strath.ac.uk/a.andrew/files/appendix1/code/OriginalModel.co


Chapter A. Neighbourhoods Summary

EjectionChain<LS>

The EjectionChain<LS> neighbourhood is an implementation of Glover’s Ejection
Chain strategy 1996. The neighbourhood extends the MultiAssignment<LS>
abstract class as it allows for the reassignment of several events’ room and
time-slot positions. EjectionChain<LS> selects an event and then places at the
same position as another event. This second event is chosen and placed at a new
location displacing another event. This series of displacements occurs until the
chain reaches a specified length; in our experiments this was fixed at three. The
final move in the chain tries to choose a location that is empty and will not overlap
other events. If this is not possible the event is placed at the same location as
another, but no further displacement occurs.

KempeChain<LS>

KempeChain<LS> is a version of the Graph Colouring neighbourhood: the Kempe
Chain. Kempe Chains are often used in timetabling solvers because of their ability
to take a solution without any event clashes and create other solutions that are
always feasible. By extending MultiAssignment<LS> it can reallocate the time
assignments of events occurring at two time periods. A Kempe Chain is created by
selecting two time-slots and collecting all the events at these times. One event is
selected as a starting point. A BFS from the starting vertex across clashing events
graph (restricted to just those events currently within the two selected time-slots)
builds up the chain. Each event visited by the BFS is assigned an alternating time
(e.g. the chain is being 2-coloured). Once the chain has been constructed the times
can be swapped to generate a new solution. The KempeChain<LS> neighbourhood
tries all pairs of times and for each pair tries to create a chain starting from every
event at those times.

RoomMatching<LS>

RoomMatching<LS> differs from the other neighbourhoods in that it is a wrapper
around a sub-solver rather than a neighbourhood function in its own right. The
sub-solver performs a Bipartite Graph Matching by formulating the problem as a
Network Flow. The Push-Relabel algorithm is used to calculate the maximum flow
in the graph from which a maximal matching can be extracted. This matching
indicates a valid set of room assignments such that all events’ domains are respected
and there are no overlapping events. RoomMatching<LS> is binary in nature; if it
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finds a matching it will return that to the search as a neighbour. If it finds no
matching then no neighbour will be returned. The other neighbourhoods are all
capable of returning multiple neighbouring solutions and allowing the search to
choose between them. A RoomMatching<LS> can be supplied as an argument to
a KempeChain<LS> neighbourhood. In this situation, after the KempeChain<LS>
has created a time-slot reassignment it uses the RoomMatching<LS> to verify that
this this new configuration has a valid room assignment. If no matching can
be found the KempeChain<LS> discards its move. This particular behaviour was
added to emulate the N4(a) neighbourhood of Chiarandini et al. [2003, 2006]
which performs a Kempe Chain move followed by a bipartite room matching to
ensure that feasibility is retained in neighbours.

MoveToEmptySlot<LS>

MoveToEmptySlot<LS> is a good example of how invariants can be used to make
neighbourhoods more efficient. The neighbourhood selects an event and assigns it
to a new empty time-slot room position. To create this behaviour one could choose
a new time-slot room location for a selected event then check all the other events
for any duplication, but this would be tedious and wasteful. Instead we can utilize
the emptyRooms and emptyTimeslots invariants (shown in Listing A.1). Rather
than using a trial-and-error approach to finding empty time-slot room pairs, the
invariants provide us their exact locations. Using invariants in this fashion means
that the MoveToEventSlot<LS> neighbourhood’s size will be dependent upon the
number of empty slots in the particular starting configuration being searched
from. The smallest the neighbourhood could be is if there were no overlapping
assignments, in which case there would only be the final time-slots empty giving
a sizes of events · (rooms · days). In the worst-case scenario all the events have
been assigned to a single time-slot room location meaning the neighbourhood
would be events · (time− slotsinaday · rooms · days). Other than the dynamic
size, the use of the invariants also means it will be guaranteed to have one-way
relationship with overlaps constraint; a move within this neighbourhood can only
ever remove overlaps violations, not introduce them.

OverlapRemovingAssignment<LS>

The OverlapRemovingAssignment<LS> neighbourhood is a MultipleVariableA
ssignment<LS> move that expands upon the MoveToEmptySlot<LS> basic tem-
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plate. Like the MoveToEmptySlot<LS> neighbourhood, OverlapRemovingAssignment<LS>
places events into time-slot room positions where there are currently no other
events. The difference is that OverlapRemovingAssignment<LS> only chooses
from amongst those events which are in the same time-slot room location as
another event. It uses the overfilledTimes and overfilledRooms invariants
from the OriginalModel to efficiently focus on the events that need reallo-
cation. It there are no overlapping events in a given configuration then the
OverlapRemovingAssignment<LS> has no moves to explore.

SwapAllEventsTimeslots<LS>

SwapAllEventsTimeslots<LS> is a powerful neighbourhood that extends Multiple
Swap<LS>. This neighbourhood selected two time-slots (which both contain at
least one event) and then exchanges the times for the events. It does not alter the
room assignments of the events thus it does not interact with roomValid constraint.
The second major behavioural property is because the internal composition of
the times is not altering (e.g. the groups of events at the timeslots are not being
manipulated). This means that the neighbourhood does not interact with event-
Clashes or overlaps. The SwapAllEventsTimeslots<LS> neighbourhood has a
strict upper bound of

(
timeslots

2

)
moves (i.e. 990 neighbours in the ITC instances).

SingleDaySwapAllEventsTimeslots<LS>

SingleDaySwapAllEventsTimeslots<LS> extends the SwapAllEventsTimeslots
<LS> neighbourhood. SwapAllEventsTimeslots<LS> explores swapping the time-
slots of all events at non-empty time-slots. It still interacts with the singleEvent

constraint because as it transfers events in and out of days it can violate and
satisfy the constraint. The SingleDaySwapAllEventsTimeslots<LS> restricts
the swaps to just between times in the same day. This means that no events
are entering or leaving the day they are currently in and consequently any move
in this neighbourhood cannot affect the singleEvent constraint. This neigh-
bourhood is a good example of where restricting moves to a subset of a more
general neighbourhood can enforce specific desirable interaction properties. The
SingleDaySwapAllEventsTimeslots<LS> neighbourhood has a maximum size of
days ·

(
tP D

2

)
where tPD is the timeslots per day; for the ITC formulation there

could be at most 180 neighbours.
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ValidRoomAndTimeslotSwaps<LS>

The ConsistentAllSwaps<LS> neighbourhood tightly controlled potential swaps;
an index could only be swapped with another that it shares a secondary value with
(i.e. events exchange times with others assigned to the same room). ValidRoomA
ndTimeslotSwaps<LS> relaxes the restriction that the secondary values need to
be the same. It allows swaps to exchange rooms as long as the exchanged values
are valid in each other’s domains.

SingleDayAllSwaps<LS>

SingleDayAllSwaps<LS> is a subset of the general AllSwaps<LS> neighbourhood.
It selects an event and then only considers exchanging it with events which occur
in same day. The implementation uses the eventsOnDay var{set{int}} (from
Listing A.1) to quickly limit the search to only those events which share the same
day.

ConsistentSingleDayAllSwaps<LS>

ConsistentSingleDayAllSwaps<LS> is another Swap<LS> that inherits from
ConsistentAllSwaps<LS>. It restricts its swaps to those events which are
both assigned the same room and occurring in the same day. As with the
SingleDayAllSwaps<LS>, it uses the eventsOnDay invariant but in this case
takes the intersection with the room indices (as in the ConsistentAllSwaps<LS>
neighbourhood).

ConsistentInterDayAllSwaps<LS>

ConsistentInterDayAllSwaps<LS> is the complement to ConsistentSingleD
ayAllSwaps; it considers only those swaps that exchange events between separate
days. ConsistentInterDayAllSwaps<LS> produces a neighbourhood of moves
that is the set difference between ConsistentAllSwaps<LS> and ConsistentSingleDayAllSwaps<LS>.
Another way to look at this relationship is that instead of searching ConsistentAllSwaps<LS>
the same effects could be achieved by searching both ConsistentSingleDayAllSwaps<LS>
and ConsistentInterDayAllSwaps<LS>.
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ClashDirectedAssignment<LS>

The ClashDirectedAssignment<LS> neighbourhood is an Assignment<LS> that
uses information about the clashing time-slot assignments to guide its deci-
sions. The neighbourhood uses a combination of two invariants (the time-slot
Indices<LS> and the clashes) and the clashing events sets. The neighbourhood
selects an event which conflicts with others at its current time-slot. A new time
for the event is selected using the criteria that this new time contains fewer event
clashes as the current time.

ClashDirectedAllSwaps<LS>

ClashDirectedAllSwaps<LS> extends Swap<LS> and expands the basic idea of
ClashDirectedAssignments<LS> to work for a swap exchanges. An exchange
will be allowed if it does not increase the number of clashes in both time-slots.

A.3 Candidate Lists

Candidate Lists were outlined as part of Section 3.3 in Chapter 3; they provide
a simple pruning ruleset to reduce the potential neighbours generated by a
neighbourhood.

A.3.1 TimesRestrictor<LS>

The only implementation of CandidateList<LS> presently in the framework is
TimesRestrictor<LS>. Amongst the neighbourhoods listed many names share
common prefixes and suffixes (e.g. singleDay, MinusFinals, InDay, etc). You
may have noticed that in the preceding section there were only nineteen instantiable
neighbourhoods listed; less than half the number of neighbourhoods appearing
in Chapter 3’s interaction detection experiments. This apparent discrepancy can
be explained through the use of TimesRestrictor<LS>’s. Many neighbourhoods
are identical other than the TimesRestrictor<LS> that has been supplied to
them. The TimesRestrictor<LS> has two configurable parameters: time and
day. The time restrictor can be assigned one of two enumerated values, and the
day restrictor has three possible values. By varying these arguments it is possible
to create six different candidate lists. The time argument can be set to:

Valid returns only those time-slots which are not at the end of a day.
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All returns all the time-slots.

The day choice has three value (two of which use a time-slot as an argument):

None returns all time-slots.

Single takes a time-slot as argument and returns only those slots on the same
day.

Different takes a time-slot as an argument and returns those slots on all the
other days.

The TimesRestrictor<LS>’s rules were only designed to be coherent for the
timetabling problem, but the CandidateList<LS> interface is generic enough that
any ruleset could be captured. Internally, the TimesRestrictor<LS> caches the
valid sets for a given configuration. The valid sets could be recalculated at each
iteration but this would be less efficient.
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Additional Data

. . . one of the main causes of the
fall of the Roman Empire was that,
lacking zero, they had no way to
indicate the successful termination
of their C programs

Dr Robert Firth

This appendix contains data tables or code listings that were too large or
disruptive for the main body of the thesis. The first section provides supplementary
material from the Graph Colouring experiment in Chapter 3. This experiment
formed part of the argument for allowing flexibility with regard to constraint
container choice. The second section describes the procedure used to create
the starting solutions for each ITC instance and provides a table detailing their
associated violations.

B.1 DIMACS data

In Section 3.3 there was an experiment comparing the resource usage of two
separate DIMACS Graph Colouring models. Table B.1 provides more detailed
results for each instance amongst the data set. The results capture the time to
instantiate the model, i.e. the time taken to create the Solver<LS> and all the
variables, post all the constraints, and then close the model. The memory use was
recorded once the model had been closed (using COMET’s System.getGCUsage()
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method). The final column represents the average time taken to differentiate a
move in the container.

Table B.1: Comparison of the instantiation time T (ms), allocated memory
M (a) (MB) and heap memory M (h) (MB) requirements of modelling using a
ConstraintSystem<LS> versus a DisequationSystem<LS> for DIMACS Graph
Colouring

Instance |V | |E|
DisequationSystem<LS> ConstraintSystem<LS>

T M (a) M (h) T M (a) M (h)
(ms) (MB) (MB) (ms) (MB) (MB)

anna 138 986 61 11.38 16 17 8.70 16
david 87 812 25 9.28 16 14 8.49 16
fpsol2.i.1 496 11654 811 52.53 128 493 27.30 64
fpsol2.i.2 451 8691 668 45.28 64 335 23.09 32
fpsol2.i.3 425 8688 593 41.58 64 364 23.08 32
games120 120 1276 45 10.48 16 20 9.05 16
homer 561 3258 1020 64.30 128 58 12.64 32
huck 74 602 19 8.78 16 12 8.19 16
inithx.i.1 864 18707 2645 140.57 256 915 42.29 64
inithx.i.2 645 13979 1439 82.58 128 630 33.40 64
inithx.i.3 621 13969 1333 77.69 128 628 33.38 64
jean 80 508 21 9.06 16 9 8.17 16
le450_5a 450 5714 660 44.56 64 228 18.92 32
le450_5b 450 5734 659 44.57 64 254 18.95 32
le450_5c 450 9803 727 45.26 64 395 24.56 32
le450_5d 450 9757 728 45.25 64 431 24.50 32
le450_15a 450 8168 668 44.94 64 300 24.08 32
le450_15b 450 8169 669 44.95 64 300 24.09 32
le450_15c 450 16680 690 46.36 64 692 38.52 64
le450_15d 450 16750 689 46.39 64 740 38.66 64
le450_25a 450 8260 671 44.95 64 306 24.29 32
le450_25b 450 8263 673 44.96 64 291 24.30 32
le450_25c 450 17343 694 46.43 64 717 39.76 64

Continued on next page
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Table B.1 - continued from the previous page

Instance |V | |E|
DisequationSystem<LS> ConstraintSystem<LS>

T M (a) M (h) T M (a) M (h)

le450_25d 450 17425 695 46.47 64 711 39.93 64
miles250 128 774 51 10.92 16 16 8.48 16
miles500 128 2340 52 11.08 16 38 11.80 16
miles750 128 4226 63 11.28 16 76 13.29 32
miles1000 128 6432 62 11.51 32 105 15.74 32
miles1500 128 10396 64 11.93 32 215 17.71 32
mulsol.i.1 197 3925 132 15.57 32 128 16.23 32
mulsol.i.2 188 3885 121 14.67 32 129 16.13 32
mulsol.i.3 184 3916 115 14.44 32 127 16.20 32
mulsol.i.4 185 3946 116 14.50 32 130 16.25 32
mulsol.i.5 186 3973 117 14.57 32 126 16.30 32
myciel3 11 20 2 7.76 16 1 7.80 16
myciel4 23 71 2 7.86 16 3 7.89 16
myciel5 47 236 9 8.17 16 8 8.10 16
myciel6 95 755 30 9.59 16 22 9.22 16
myciel7 191 2360 118 14.63 32 81 13.80 32
queen5_5 25 320 3 7.96 16 5 8.02 16
queen6_6 36 580 7 8.03 16 10 8.24 16
queen7_7 49 952 8 8.35 16 16 8.66 16
queen8_8 64 1456 14 8.64 16 20 9.23 16
queen8_12 96 2736 32 9.78 16 50 11.93 32
queen9_9 81 2112 26 9.24 16 32 9.47 16
queen10_10 100 2940 34 9.93 16 50 12.07 32
queen11_11 121 3960 48 10.80 16 67 13.03 32
queen12_12 144 5192 69 12.12 32 86 14.43 32
queen13_13 169 6656 98 13.54 32 103 15.98 32
queen14_14 196 8372 131 15.72 32 143 16.75 32
queen15_15 225 10360 180 17.90 32 225 17.70 32
queen16_16 256 12640 225 21.46 32 237 20.87 32
school1 385 19095 560 37.94 64 878 42.68 64
school1_nsh 352 14612 457 32.74 64 658 34.49 64

Continued on next page

229



Chapter B. Additional Data

Table B.1 - continued from the previous page

Instance |V | |E|
DisequationSystem<LS> ConstraintSystem<LS>

T M (a) M (h) T M (a) M (h)

zeroin.i.1 211 4100 161 16.50 32 151 16.01 32
zeroin.i.2 211 3541 159 16.42 32 133 15.23 32
zeroin.i.3 206 3540 142 16.09 32 128 15.23 32

B.2 ITC Starting Solution Quality

To try to ensure a fair comparison of search enhancements, each run (against a
particular instance) was initiated from a fixed starting solution. These solutions
were created with a basic constructive algorithm (in Listing B.1) that iterated
over all the events and placing them in a unique time-slot / room location. If the
selected location is a final time-slot and there are still free locations remaining
another selection will be made.

Table B.2 shows each instance from the ITC (and harder) datasets. Each
column records the violations reported by the validator for the solution constructed.
The final three columns are summations of the appropriate constraints. All the
starting solutions were free of overlap violations (h2) and the majority of instances
we also free of finalTimeslot (s1) violations.

Table B.2: The quality of the starting solutions for each problem instance.

Instance h1 h2 h3 s1 s2 s3 H S ∀

big_20 10318 0 902 0 4578 65 11220 4643 15863
big_19 9204 0 857 0 3518 84 10061 3602 13663
big_18 10704 0 858 0 4591 69 11562 4660 16222
big_17 12634 0 785 0 5618 92 13419 5710 19129
big_16 6013 0 795 0 2545 234 6808 2779 9587
big_15 6733 0 923 0 2555 202 7656 2757 10413
big_14 4105 0 917 0 1652 471 5022 2123 7145
big_13 4452 0 894 0 1436 433 5346 1869 7215
big_12 3978 0 928 0 1302 483 4906 1785 6691
big_11 4420 0 1009 1835 1420 408 5429 3663 9092
big_10 4128 0 991 1737 1515 369 5119 3621 8740
big_9 3190 0 955 1351 1236 268 4145 2855 7000
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big_8 3989 0 952 1835 1615 391 4941 3841 8782
big_7 6965 0 1004 2235 2482 215 7969 4932 12901
big_6 5092 0 1015 1992 1923 246 6107 4161 10268
big_5 4079 0 1003 1919 1512 352 5082 3783 8865
big_4 3540 0 956 1429 1225 327 4496 2981 7477
big_3 3255 0 925 0 1133 473 4180 1606 5786
big_2 3429 0 924 0 1446 515 4353 1961 6314
big_1 2991 0 941 0 930 698 3932 1628 5560
med_20 8931 0 246 2285 4176 81 9177 6542 15719
med_19 8434 0 219 2577 4328 36 8653 6941 15594
med_18 9854 0 208 0 5019 86 10062 5105 15167
med_17 4684 0 252 0 2309 135 4936 2444 7380
med_16 8816 0 198 0 4148 104 9014 4252 13266
med_15 2126 0 238 955 841 194 2364 1990 4354
med_14 3073 0 203 0 1562 569 3276 2131 5407
med_13 4847 0 246 0 1624 198 5093 1822 6915
med_12 3079 0 254 0 1274 276 3333 1550 4883
med_11 2725 0 216 0 1040 491 2941 1531 4472
med_10 1680 0 205 0 593 281 1885 874 2759
med_9 3385 0 347 0 1546 38 3732 1584 5316
med_8 2040 0 318 0 1016 92 2358 1108 3466
med_7 2975 0 359 0 1446 46 3334 1492 4826
med_6 2147 0 357 0 903 118 2504 1021 3525
med_5 1815 0 335 821 789 155 2150 1765 3915
med_4 1508 0 333 733 727 165 1841 1625 3466
med_3 1732 0 321 0 728 161 2053 889 2942
med_2 1310 0 322 0 512 221 1632 733 2365
med_1 1336 0 343 0 478 215 1679 693 2372
small_20 2767 0 114 1890 1545 912 2881 4347 7228
small_19 7289 0 86 2433 3660 72 7375 6165 13540
small_18 5384 0 116 2348 2313 214 5500 4875 10375
small_17 8100 0 84 0 4633 55 8184 4688 12872
small_16 3525 0 78 0 2440 232 3603 2672 6275
small_15 3796 0 86 0 1831 248 3882 2079 5961
small_14 3213 0 68 1872 1539 235 3281 3646 6927
small_13 3287 0 141 1887 1514 284 3428 3685 7113
small_12 1675 0 168 1207 415 1133 1843 2755 4598
small_11 3149 0 125 0 1101 698 3274 1799 5073
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small_10 5281 0 148 2053 2730 176 5429 4959 10388
small_9 4814 0 109 1964 2943 107 4923 5014 9937
small_8 3665 0 146 1811 1591 276 3811 3678 7489
small_7 2829 0 123 0 1198 386 2952 1584 4536
small_6 1360 0 94 0 662 1112 1454 1774 3228
small_5 1934 0 110 0 1028 175 2044 1203 3247
small_4 1604 0 104 0 675 191 1708 866 2574
small_3 2711 0 86 0 1225 73 2797 1298 4095
small_2 1310 0 113 0 606 248 1423 854 2277
small_1 599 0 94 0 259 124 693 383 1076
competition20 1134 0 237 0 382 190 1371 572 1943
competition19 987 0 234 0 369 153 1221 522 1743
competition18 642 0 334 0 255 103 976 358 1334
competition17 1016 0 306 0 392 169 1322 561 1883
competition16 811 0 313 0 303 105 1124 408 1532
competition15 950 0 274 0 368 134 1224 502 1726
competition14 1071 0 241 0 465 193 1312 658 1970
competition13 809 0 308 0 331 132 1117 463 1580
competition12 647 0 321 0 246 92 968 338 1306
competition11 750 0 313 0 286 126 1063 412 1475
competition10 694 0 268 0 270 102 962 372 1334
competition09 674 0 333 0 270 121 1007 391 1398
competition08 844 0 270 0 354 107 1114 461 1575
competition07 965 0 244 0 559 190 1209 749 1958
competition06 1104 0 232 0 356 131 1336 487 1823
competition05 1036 0 280 0 387 160 1316 547 1863
competition04 986 0 305 0 430 153 1291 583 1874
competition03 655 0 259 0 225 104 914 329 1243
competition02 564 0 329 0 270 104 893 374 1267
competition01 714 0 324 0 299 108 1038 407 1445
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371 void initialisePermutationSolution (){
372 range slots = times. timeslots . getLow () ..( noOfRooms * times.

noOfDays * (times. noOfTimeslotsPerDay )) -1;
373 RandomPermutation P(slots);
374 i n t resets = 0;
375 with atomic ( _solver ){
376 f o r a l l (e in events ){
377 i n t location = P.get ();
378 whi le (( location / noOfRooms ) % times. noOfTimeslotsPerDay

== times. noOfTimeslotsPerDay - 1 && slots. getSize () - resets >
events . getSize ()){

379 location = P.get ();
380 resets ++;
381 }
382

383 eventTimeslots [e] := location / noOfRooms ;
384 eventRooms [e] := location % noOfRooms ;
385 }
386 }
387 }

Listing B.1: The solution construction routine from OriginalModel.co.
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Glossary

Ant Colony Optimisation (ACO) a constructive search technique which
is inspired by the way ants use pheromone trails to find food sources.

Adjacent indicates that two vertices are connected by an edge or arc.

Artificial Intelligence an area of Computer Science which attempts to use
computers to solve problems using intelligent processes.

Adaptive Iterated Construction Search (AICS) a family of construc-
tive Local Search strategies which includes GRASP, SWO and ACO.

Arc a directed edge between two vertices found in digraphs.

Breadth-First Search (BFS) a complete tree search algorithm which works
by exploring all the nodes at one level before expanding to the next layer of
the tree.

Bin Packing Problem (BPP) an optimisation problem where items of
varying sizes must be assigned to as few fixed-capacity containers as pos-
sible.

Constraint-Based Local Search (CBLS) a movement in the Local Search
community towards a CP style declarative modelling of problems in terms of
constraints, allowing for more loosely coupled algorithms.

Constraint-Directed Neighbourhoods (CDN) a technique by Ågren [2007]
which generates neighbourhoods from a set based model of a problem’s con-
straints.

Constraint Directed VNS (CDVNS) a form of VNS proposed by us.
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Conjunctive Normal Form (CNF) a series of clauses containing the dis-
junction of literals that are joined by conjunctions, e.g. (x1 ∨ x2)∧ (x1 ∨¬x3 ∨
x4) ∧ (¬x2 ∨ x4).

Constraint-Oriented Neighborhoods (CON) a technique introduced by
Viana et al. [2005] which uses specialised neighbourhoods to achieve moves
which respect certain problem constraints.

Constraint Optimisation Problem (COP) similar to CSPs with addi-
tional soft constraints that form an objective function to be optimised.

Constraint Programming (CP) a search technique which uses constraints
to guide a backtracking DFS search combined with propagation and consistency
algorithms to filter out inconsistent values.

Constraint Satisfaction Problem (CSP) a problem where a set of vari-
ables must be assigned values from domains which respect the limits imposed
by a set of constraints on their feasible values.

Directed Acyclic Graph (DAG) a restricted form of directed graph with
no cycles.

Depth-First Search (DFS) a complete tree search which explores all nodes
by delving to the deepest node and then recursing back visiting the next
deepest unexplored node.

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)
a collaborative academic and industrial research institute based at Rutgers Uni-
versity in New Jersey. It has sponsored various challenges to focus algorithm
research on specific open problems.

Dynamic Local Search (DLS) a metaheuristic strategy which applies penal-
ties to solution components, the most widespread example is the GLS algorithm
of Voudouris and Tsang [1995].

Digital Object Identifier (DOI) a system for uniquely (and persistently)
identifying content on a digital network.

Davis Putnam Logemann Loveland (DPLL) a complete backtracking
search algorithm used for solving SAT problems which was introduced by
(and named after) Davis et al. [1962].
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Edge a connection between two vertices in a graph.

Fitness-Distance Correlation (FDC) captures the notion that solutions
with high fitness should be close to the optimal solution.

First Fit Decreasing (FFD) an approximation algorithm for the BPP.

Finite State Machine (FSM) an abstract mathematical model used to
represent the behaviour of a stateful logic system.

Genetic Algorithm (GA) a form of search algorithm inspired by natural
evolution. Solutions are encoded as strings of characters which can be combined
with other solutions or mutated to provide new generations of solutions.

Generalised Arc Consistency (GAC) a form of domain consistency where
for every value within a variables’ domain there exists values in the other
variables’ domains which satisfy the constraint.

Great Deluge Algorithm (GDA) a metaheuristic by Dueck [1993] which
behaves like a simplified SA.

Guided Local Search (GLS) a metaheuristic which operates by manipu-
lating the acceptance function of the search.

Generalised Local Search Machine (GLSM) a FSM model of Local Search
algorithms to formalise their study by Hoos and Stützle [2005, Chp. 3, p. 113].

Genetic Programming (GP) an AI strategy where (rather than directly
finding a solution to a problem) programs are evolved to solve the task.

Greedy Randomised Adaptive Search Procedures (GRASP) a form
of stochastic, constructive Local Search introduced by Feo and Resende [1989].

Iterative Deepening Depth-First Search (IDDFS) a variant of DFS which
imposes a limit for the search depth. If no solution is found then this limit is
increased and the search is restarted. An upper bound is usually placed on
the limit’s potential expansion.

Iterated Local Search (ILS) a metaheuristic which couples repeated Local
Search runs with perturbation to escape from local optima.
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Integer Programming (IP) a form of LP in which variables can be re-
stricted to solely integer values.

International Timetabling Competition (ITC) a series of competitions
held to unify research into automated timetabling.

Large Neighbourhood Search (LNS) a Local Search strategy introduced
by Shaw [1998] which uses a CP search as a neighbourhood.

Local Search a term referring to a class of iterative improvement neighbour-
hood search algorithms.

Linear Programming (LP) an optimisation tool where problems are for-
mulated as linear equations and solved using mathematical techniques.

Mixed Integer Programming (MIP) a form of LP and IP which can
model expressions containing both integer and real variables.

Neighbour a member of a neighbourhood.

Neighbourhood in Graph Theory the set of vertices that are adjacent to the
current vertex. In the context of Local Search a neighbourhood is the function
which permutes the current solution to create the new solutions.

Object-Oriented Programming (OOP) a programming paradigm which
uses the concept of objects to encapsulate data (and methods which manipulate
it) in a single place.

Optimization Programming Language (OPL) a language for expressing
CP and mathematical programming models by Van Hentenryck [1999].

Operations Research (OR) a branch of applied mathematics focused on
solving practical optimisation problems.

Probabilistically Approximately Complete (PAC) due to sufficient ran-
domness in the search the probability of exploring all solutions tends to 1 as
the running time increases towards infinity.

Portable Document Format (PDF) an open standard for documents orig-
inally developed by Adobe Systems. Usually referred to by its file extension,
.pdf.

237



Glossary

Progressive Party Problem (PPP) an assignment problem based around
organising a social gathering at a yacht club.

Simulated Annealing (SA) a heuristic which escapes local optima by ac-
cepting non-improving states with a probability that is steadily decreased as
the search progresses.

Boolean Satisfiability (SAT) a classic NP-complete problem in which a
series of boolean variables must be assigned values to cause the conjunction of
clauses containing these variables (in CNF) to become true.

Strongly Connected Component (SCC) a directed graph where there is
a path from each Vertex to every other.

Set a mathematical collection of distinct objects usually denoted using curly
braces e.g. {1, 2, 3, 4}, {red, blue, green}.

Squeaky Wheel Optimization (SWO) a greedy constructive search which
identifies constrained variables and then adjusts their priority for earlier as-
signment in subsequent construction iterations.

Tabu Search (TS) a metaheuristic which has a short-term memory of pre-
viously explored states to try to avoid wastefully revisiting the same solutions.

Travelling-Salesman Problem (TSP) a classic optimisation problem where
the objective is to complete a Hamiltonian tour of cities in the shortest distance
possible.

Unit Commitment Problem (UCP) a problem concerned with satisfying
a forecasted energy demand by switching on and off various power generation
systems over a time horizon.

Unified Modelling Language (UML) a general-purpose language for cap-
turing software system designs.

Uniform Resource Locator (URL) a system for addressing locations, chiefly
known as the way sites on the internet are described.

Variable Depth Search (VDS) a search technique where search moves are
composed by applying several steps from different neighbourhoods to create
one single larger move.
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Vertex a node within a graph.

Variable Neighbourhood Descent (VND) the most prevalent VNS strat-
egy whereby neighbourhoods are explored in order of expanding size until an
improvement is found at which point the search returns to the first neighbour-
hood.

Variable Neighbourhood Search (VNS) a Local Search strategy which
alters the neighbourhoods in a systematic fashion. It was first codified by Mlade-
nović and Hansen [1997].

Vehicle Routing Problem (VRP) a problem similar in nature to the TSP
in which a series of deliveries must be made using a finite fleet of vehicles.
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