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g gCost p  GenCo g’s cost corresponding to its supply for Financial 

Bilateral Transactions 

 FBT FBT

l lCost p  LSE l’s cost corresponding to its load met by Financial 

Bilateral Transactions 

 ,I I

l l lCost p  LSE l’s cost corresponding to its price-inelastic load 

 Sa S

g gCost p  GenCo g’s actual cost corresponding to its price-sensitive 

supply 

 ,S S

l l lCost p  LSE l’s cost corresponding to its price-sensitive load 

 Sr S

g gCost p  GenCo g’s reported cost corresponding to price-sensitive 

supply 

 Sr S

GCost p  Sum of all GenCos’ reported costs corresponding to their 

price-sensitive supplies 

Total

gCost  GenCo g’s total cost corresponding to its all supplies 

Total

lCost  LSE l’s total cost corresponding to its all loads 

 g

lCR t  Price control ratio of GenCo g, based on estimated 

maximum strategic price of LSE l in round t. 

S

lc  Coefficient of LSE l for price-sensitive demand [$/MWh] 

GD  Set of standard deviations of LMPs at GenCo nodes 

S

ld  Coefficient of LSE l for price-sensitive demand [$/MW
2
h] 

act

sk  The difference in actual LMPs at source node s and sink 

node k [$/MWh]. 

exp

sk  The difference in overall expectation of LMPs at source 

node s and sink node k [$/MWh]. 
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1  Reference Node-1 voltage angle (in radians)  

n  Voltage angle (in radians) at node n = 2, . . . ,N 

  Price interval between discrete price values of negotiable 

and strategic price sets [$0.1/MWh]. 

e   Index referring to ending node of a transmission line. 

( )gE   Overall expectation of LMP at local node of GenCo g 

[$/MWh] 

( )iE   Overall expectation of LMP at node i [$/MWh] 

( )kE   Overall expectation of LMP at sink node k [$/MWh] 

( )lnE   Overall expectation of LMP at local node ln [$/MWh] 

( )sE   Overall expectation of LMP at source node s [$/MWh] 

( )daaE r , daaE  Expected return from day-ahead auction daa 

( )skE r  Expected return from FTR between nodes s and k 

( )gE r  Overall expected return from power trading options of 

GenCo g. 

( )iE r , iE  Expected return from Financial Bilateral Transaction with 

market participant (GenCo/LSE) at node i 

( )kE r  Overall expected return from FTRs for LSE at node k 

( )lE r  Overall expected return from power trading options of LSE 

l. 

( ),lb lbE r E  Expected return from local Financial Bilateral Transaction 

lb 

E  Expected return from a trading option   out of the total 

N+1 trading options. 

ISOFARF  Feasible ARR reduction factor of ISO. 

capacity

oeFl  Maximum power flow capacity of transmission line that 

has origin node o and end node e [MW]. 

over

oeFl  Over flow of power on transmission line that has origin 

node o and end node e [MW]. 
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kFQIF  FTR quantity increase factor of LSE at node k 

,price

,max

bid

skFTR  Upper limit of decision variable for bid price optimization 

between nodes s and k [$/MW]. 

,price

,min

bid

skFTR  Lower limit of decision variable of LSE for bid price 

optimization between nodes s and k [$/MW]. 

,pricebid

skFTR  Price of FTR bid from source node s to sink node k 

[$/MW]. 

,bid quantity

skFTR  Quantity of FTR bid from source node s to sink node k 

[MW]. 

,cleared price

skFTR  Price of FTR cleared in auction from source node s to sink 

node k [$/MW]. 

,cleared quantity

skFTR  Quantity of FTR cleared in auction from source node s to 

sink node k [MW]. 

,held quantity

iFTR   Financial Transmission Right held by LSE between local 

node and GenCo node i 

,held quantity

jFTR   Financial Transmission Right held by LSE between local 

node and GenCo node j 

revenue

ISOFTR  ISO’s total annual FTR auction revenue 

total

sGC  Total generation capacity at source node s [MW]. 

G   Total number of GenCos 

kG  Set of Generators located at node k  

,minS

gGn  Minimum real power price-sensitive generation limit for 

GenCo g [MW]. 

,maxS

gGn  Maximum real power price-sensitive generation limit for 

GenCo g [MW]. 

ln   Flat-rate agreed by an LSE with end-consumers at local 

node ln  

h   The index refers to a hypothesis in Bayesian learning 

during bilateral negotiations. 

H   Total number of GenCo hypothesis for an LSE’s privately 
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held maximum strategic price 

i   Index referring to one of N nodes. 

j   Index referring to a node other than i. 

k  Index referring to a sink node. 

K   Total number of sink nodes in power system 

base

kLd  Base load at sink node k [MW]. 

L   Total number of LSEs  

,minS

lLd  Minimum real power price-sensitive load limit for LSE l  

,maxS

lLd  Maximum real power price-sensitive load limit for LSE l 

kL   Set of LSEs located at node k  

kLR  Load ratio for load at sink node k. 

g  Random variable of LMP at node of GenCo g, irrespective 

of trading interval z 

i  Random variable of LMP at node i, irrespective of trading 

interval z 

j  Random variable of LMP at node j, irrespective of trading 

interval z 

k  Random variable of LMP at sink node k, irrespective of 

trading interval z 

l  Random variable of LMP at node of LSE l, irrespective of 

trading interval z 

ln  Random variable of LMP at local node ln of a market 

participant, irrespective of trading interval z 

s  Random variable of LMP at source node s, irrespective of 

trading interval z 

,i z  LMP at node i in trading interval z 

,j z  LMP at node j in trading interval z 

,k z  LMP at sink node k in trading interval z 

,ln z  LMP at local node ln in trading interval z 
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,s z  LMP at source node s in trading interval z 

oe 
 Lagrange multiplier of constraint on forward flow of power 

through transmission line that has origin node o and end 

node e. 

oe 
 Lagrange multiplier of constraint on reverse flow of power 

through transmission line that has origin node o and end 

node e. 

 ,

g

l h t  A parameter of GenCo g based on hth hypothesis of LSE l 

in current round t 

N   Total number of nodes in power system 

,max

g

lnp  GenCo g’s maximum negotiable price for bilateral 

transaction with LSE l 

,min

g

lnp  GenCo g’s minimum negotiable price for bilateral 

transaction with LSE l 

g

lN  GenCo g’s valid negotiable price set for bilateral 

transaction with LSE l 

,max

l

gnp  LSE l’s maximum negotiable price for bilateral transaction 

with GenCo g 

,min

l

gnp  LSE l’s minimum negotiable price for bilateral transaction 

with GenCo g 

l

gN  LSE l’s valid negotiable price set for bilateral transaction 

with GenCo g 

o  Index referring to origin node of a transmission line. 

oe   A transmission line (if one exists) with origin node o and 

end node e, where o < e  

p  Index referring to a discrete price in a negotiable or 

strategic price set. 

ISOPFRF  Power flow reduction factor of ISO. 

FBT

gp  Power sold by GenCo g against already agreed Financial 

Bilateral Transaction (FBT) [MW] 

local

gp  Maximum generation capacity reported to an LSE by its 
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local GenCo [MW] 

max

gp  Maximum real power generation capacity of GenCo g 

[MW] 

min

gp  Minimum real power generation capacity of GenCo g 

[MW] 

,max

FBT

ip  Maximum simultaneous feasibility constrained  power flow 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node i [MW] 

,max

FBT

jp  Maximum simultaneous feasibility constrained  power flow 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node j [MW] 

,

FBT

i optp  Optimal power quantity allocation for non-local bilateral 

trade with market participant (GenCo/LSE) at node i [MW] 

,

FBT

j optp  Optimal power quantity allocation for non-local bilateral 

trade with market participant (GenCo/LSE) at node j [MW] 

,i zp  Unknown power quantity (that will be allocated by market 

participant) for bilateral transaction with market participant 

at node i , in trading interval z [MW] 

I

lp  Price-insensitive real power load of LSE l [MW] 

,max

FBT

lbp  Maximum available power quantity for local bilateral 

transaction [MW] 

,

FBT

lb optp  Optimal power quantity allocation for local bilateral 

transaction [MW] 

base

lp   Total base load real power requirement of LSE l [MW] 

local

lp   Maximum load requirement reported to a GenCo by its 

local LSE l [MW] 

,lb zp  Unknown power quantity (that will be allocated by market 

participant) for local bilateral (lb) trading in trading 

interval z. [MW] 

,max

DAA

lnp  Maximum possible power quantity allocation of a market 

participant for day-ahead auction at local node ln  [MW] 
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,

DAA

ln optp  Optimal power quantity allocation of a market participant 

for day-ahead auction at local node ln  [MW] 

FBT

lp  Load requirement of LSE l met by already agreed Financial 

Bilateral Transaction (FBT) [MW] 

,ln zp  Unknown power quantity (that will be allowed and cleared 

by ISO) in trading interval z at local node (ln). [MW] 

  ,

,|
g

t l bid

g l hPr sp t sp  Conditional probability of hypothesis. 

  ,

, |
g

t l bid

gl hPr sp sp t  Posterior probability of hypothesis. 

 ,

g
t

l hPr sp  Prior probability of hypothesis. 

l

GPrDv  LSE l’s price deviation of price bids to all GenCos 

g

LPrDv  GenCo g’s price deviation of price bids to all LSEs 

S

gp  Price-sensitive real power generation (MWs) supplied by 

GenCo g 

S

lp   Price-sensitive real power load (MWs) demanded by LSE l  

,oe skPTDF  Power transfer distribution factor for line that has origin 

node o and end node e when power flows from source node 

s to sink node k. 

i  Assumed price of bilateral contract with market participant 

(GenCo/LSE) at node i , irrespective of trading interval z 

[$/MWh] 

,i z  Assumed price of bilateral contract with market participant 

(GenCo/LSE) at node i , in trading interval z [$/MWh] 

lb  Assumed price of local bilateral lb contract, irrespective of 

trading interval z [$/MWh] 

,lb z  Assumed price of local bilateral lb contract, in trading 

interval z [$/MWh] 

,

g

l TOTALQ  Total strategic reward of GenCo g from bilateral trade with 

LSE l. 
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 ,

g

l retainedQ t  Retained strategic of GenCo g in round t from bilateral 

trade with LSE l. 

 ,

,

g essential

l retainedQ t  Essential retained strategic of GenCo g in round t from 

bilateral trade with LSE l. 

 ,

,

g premium

l retainedQ t  Premium retained strategic of GenCo g in round t from 

bilateral trade with LSE l. 

,

,

g prior

l retainedQ  Prior retained strategic reward of GenCo g at previous 

price for bilateral trade with LSE l. 

 ,

g g

l retained lQ sp  Retained strategic reward of GenCo g at price 
g

lsp  from 

bilateral trade with LSE l. 

,

l

g TOTALQ  Total strategic reward of LSE l from bilateral trade with 

GenCo g. 

 ,

l

g retainedQ t  Retained strategic reward of LSE l in round t from bilateral 

trade with GenCo g. 

 ,

l l

g retained gQ sp  Retained strategic reward of LSE l at price  l

gsp  from 

bilateral trade with GenCo g. 

daar  Return of day-ahead auction daa 

ir   Return of bilateral contract with market participant 

(GenCo/LSE) at node i 

lbr  Return of local bilateral transaction 

skr  Return from FTR between nodes s and k 

s kr   Return from FTR between nodes s  and k 

l

gRfPr  LSE l’s reference price for bilateral transaction with 

GenCo g 

g

lRfPr  GenCo g’s reference price for bilateral transaction with 

LSE l 

FBT

gRevenue  GenCo g’s revenue corresponding to its supply for 

Financial Bilateral Transactions 

 ,S S

g g gRevenue p  GenCo g’s revenue corresponding to its price-sensitive 

supply 
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Total

gRevenue  GenCo g’s total revenue corresponding to its all supplies 

FBT

lRevnue  LSE l’s revenue corresponding to its load met by Financial 

Bilateral Transactions 

 ,I I

l l lRevnue p  LSE l’s revenue corresponding to its price-inelastic load 

 ,S S

l l lRevnue p  LSE l’s revenue corresponding to its price-sensitive load 

Total

lRevnue  LSE l’s total revenue corresponding to its all loads 

s  Index referring to a source node. 

s   Index referring to a different source node from the source 

node s. 

S  Total number of source nodes in power system 

oS  Base apparent power (in three-phase MVAs)  

 ,l bid

gsp t  Strategic energy price bid sent by LSE l to GenCo g in 

round t [$/MWh]. 

 ,l bid

gsq t  Strategic power quantity bid sent by LSE l to GenCo g in 

round t [MW]. 

 ,g offer

lsp t  Strategic energy price offer sent by GenCo g to LSE l in 

round t [$/MWh]. 

 ,g offer

lsq t  Strategic power quantity offer sent by GenCo g to LSE l in 

round t [MW]. 

,max

g

lsp  Maximum value in GenCo g’s strategic price set for LSE l 

[$/MWh]. 

,min

g

lsp  Minimum value in GenCo g’s strategic price set for LSE l 

[$/MWh].  

 ,max

g

lsp t  
GenCo g’s estimate of maximum strategic price of LSE l in 

round t [$/MWh]. 

,

g

l hsp  
GenCo g’s hth hypothesis for maximum strategic price of 

LSE l. 

 g

lsp t  Strategic price determined by GenCo g for LSE l in round t 

[$/MWh]. 

g

lsp  A valid strategic price of GenCo g out of its strategic price 
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set for bilateral transaction with LSE l l

gS  [$/MWh]. 

g

lS  GenCo g’s valid strategic price set for bilateral transaction 

with LSE l 

,max

l

gsp  Maximum value in LSE l’s strategic price set for GenCo g 

[$/MWh]. 

,min

l

gsp  Minimum value in LSE l’s strategic price set for GenCo g 

[$/MWh].  

l

gsp  A valid strategic price of LSE l out of its strategic price set 

for bilateral transaction with GenCo g l

gS  [$/MWh]. 

l

gS  LSE l’s valid strategic price set for bilateral transaction 

with GenCo g 

 S S

l lSurplus p  The gross surplus of LSE l corresponding to its price 

sensitive demand bid 

 S S

LSurplus p  Sum of gross surplus for all LSEs corresponding to their 

price sensitive demand bids 

2 ( )k   Variance of LMP at sink node k 

2 ( )s   Variance of LMP at source node s, 

2 ( )i   Variance of LMP at node i 

2 ( )ln   Variance of LMP at local node ln 

( )g   Standard deviation of LMP at local node of GenCo g 

( )i   Standard deviation of LMP at node i 

( , )i j    Covariance of LMP between nodes i and j 

( , )ln i    Covariance of LMP between local node ln and node i  

( , )ln j    Covariance of LMP between local node ln and node j 

( , )k s     Covariance of LMP between nodes k and s  

( , )k s    Covariance of LMP between nodes k and s,  

( , )s s     Covariance of LMP between nodes s and s  
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2 ( )kr  Variance of return from all FTRs to LSE at node k 

2 ( )skr , 
2

sk  Variance of return from FTR between nodes s and k 

2 ( )gr  Overall variance of return from power trading options of 

GenCo g 

2 ( )lr  Overall variance of return from power trading options of 

LSE l 

2

  Variance of return from trading option    

2 ( )daar , 
2

daa  Variance of return from day-ahead auction daa 

2 ( )ir , 
2

i  Variance of return from Financial Bilateral Transaction 

with market participant (GenCo/LSE) at node i 

2 ( )lbr , 
2

lb  Variance of return from local bilateral contract 

,    Covariance between returns from trading options   and    

( , )i jr r , ,i j  Covariance between returns from Financial Bilateral 

Transaction with market participants (GenCo/LSE)at 

bilateral contracts at nodes i and j 

( , )lb ir r , ,lb i  Covariance between returns from Financial Bilateral 

Transactions with market participants (GenCo/LSE) at 

local node (local bilateral lb) and at node i 

( , )daa ir r , ,daa i  Covariance between returns from day-ahead auction 

Financial Bilateral Transaction with market participants 

(GenCo/LSE) at node i 

( , )sk s kr r  , ,sk s k   Covariance of returns from FTR between nodes s and k and 

FTR between nodes s and k 

t  Index referring to current round of negotiation, where 

1 gt T   or 1
lt T   

  Index referring to one of N+1 trading options. 

    Index referring to a trading option other than . 

kTA
 Positive target allocations for LSE at sink node k. 

totalTA
 Total positive target allocations for all LSEs. 
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kTCC  Transmission congestion credit from ISO for LSE at sink 

node k. 

DAM

ISOTCR  ISO’s monthly transmission congestion revenue from day-

ahead market 

FTR

ISOTCR  ISO’s total monthly transmission congestion revenue from 

Financial Transmission Rights 

total

ISOTCR  ISO’s total monthly transmission congestion revenue 

gT  Maximum number of rounds for which GenCo g is willing 

to negotiate  

lT  Maximum number of rounds for which LSE l is willing to 

negotiate  

TL   Set of all physically distinct transmission lines, a 

transmission line oe has origin node o and end node e, 

where o < e  

 ,S S S

G LTNC p p  Total net cost corresponding to price-sensitive demand bids 

and reported price sensitive supply offers 

 ,S S S

G LTNS p p  Total net surplus corresponding to price-sensitive demand 

bids and reported price sensitive supply offers 

kU  Utility function or objective function of FTR bid price 

optimization for LSE at node k 

gU  Utility function or objective function of portfolio 

optimization of GenCo g 

lU  Utility function or objective function of portfolio 

optimization of LSE l 

U   Utility of local bilateral transaction option lb , based on 

portfolio optimization results 

iU  Utility of bilateral transaction option with market 

participant at non-local node i , based on portfolio 

optimization results 

lbU  Utility of local bilateral transaction option lb , based on 

portfolio optimization results 
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,min( )g g

l lU sp  Utility of GenCo g from bilateral trade with LSE l at 

minimum value of GenCo’s strategic price for LSE l. 

( )g

lU   Utility of GenCo g from bilateral trade with LSE l at price 

 . 

,max( )l l

g gU sp  Utility of LSE l from bilateral trade with GenCo g at 

maximum value of LSE’s strategic price for GenCo g. 

( )l

gU   Utility of LSE l from bilateral trade with GenCo g at price 

 . 

nV  Voltage magnitude (in kVs) at node n  

oV  Base voltage (in line-to-line kVs)  

 g

l t  Reward withholding factor of GenCo g for LSE l in round 

t. 

,max

FBT

ix  Upper limit on portfolio optimization’s decision variable 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node i 

,

FBT

i optx  Optimal value of portfolio optimization’s decision variable 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node i 

,max

FBT

jx  Upper limit on portfolio optimization’s decision variable 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node j 

,

FBT

j optx  Optimal value of portfolio optimization’s decision variable 

for non-local bilateral trade with market participant 

(GenCo/LSE) at node j 

,max

FBT

lbx  Upper limit on portfolio optimization’s decision variable 

for local bilateral (lb) trade 

,

FBT

lb optx  Optimal value of portfolio optimization’s decision variable 

for local bilateral trade 

,max

DAA

lnx  Upper limit on portfolio optimization’s decision variable 

for day-ahead auction at local node ln 

,

DAA

ln optx  Optimal value of portfolio optimization’s decision variable 
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for day-ahead auction at local node ln 

oex  Reactance (ohms) for transmission line oe with origin at 

node o and end at node e, oe TL   

x  Decision variable of portfolio optimization for fractional 

allocation of GenCo’s Capacity / LSE’s Base Load 

Capacity to trading option .  

x   Decision variable of portfolio optimization for fractional 

allocation of GenCo’s Capacity / LSE’s Base Load 

Capacity to trading option  .  

,maxx   Maximum value for fractional allocation of GenCo’s 

Capacity / LSE’s Base Load to trading option  . 

,maxx    Maximum value of for fractional allocation of GenCo’s 

Capacity / LSE’s Base Load to trading option   . 

z   Index referring to a trading interval 

Z   Total number of trading intervals in a decision period for 

portfolio optimization and historical period for statistical 

analysis of LMPs. 
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Abstract 

An intelligent agent-based computational approach combined with traditional 

optimization techniques forms a powerful simulation platform to investigate 

performance of a wholesale electricity market and behaviour of its participants. 

Modern deregulated wholesale electricity markets consist of centralized auctions as 

well as decentralized bilateral transactions. An agent-based system is well suited to 

model the decentralized aspect of modern electricity markets because various market 

participants can be represented by autonomous agents.  Each market participant has 

its own private goals and it must learn to survive in a dynamic market environment 

with incomplete information about other participants. 

Majority of existing agent-based simulation models deal with day-ahead auctions but 

not bilateral transactions. On the basis of available mathematical modelling details 

for bilateral transactions, agent-based models that can simulate combination of day-

ahead auction and bilateral transactions are categorized into simplified models and 

proprietary software. Although complete mathematical and implementation details of 

bilateral transactions are publicly available for simplified models, they only represent 

bilateral transactions facilitated by brokers or bulletin-boards. By comparison, 

mathematical details of bilateral transactions’ models used in proprietary software 

are not publicly available because of commercial value.  

This thesis provides accurate and in-depth understanding of decentralized bilateral 

transactions by presenting detailed mathematical modelling that includes: (i) match 

making for bilateral transactions by a systematic direct-search approach and (ii) 

bilateral negotiations between participants with incomplete information about each 

other but capability to learn from interactions. The thesis also facilitates wholesale 

electricity market simulation including the newly developed model for bilateral 

energy transactions as well as previously existing models of day-ahead energy 

auction and financial transmission instruments. 
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1 Introduction 

1.1 Research Context 

Agent-based modelling is a useful tool to simulate markets to evaluate their 

performance and behaviour of market participants. Before deregulation, conventional 

simulation models were adequate representations of centralized decision making for 

overall optimal operation of an electricity market. Since deregulation, agent-based 

simulation models have become useful tools for analysing decentralized decision 

making processes of autonomous market participants. Thus, in agent-based 

simulation models, generators and demand are modelled as autonomous market 

participants that have private preferences and goals. In general, an autonomous 

market participant engages in a number of decentralized decision making processes 

and this includes securing bilateral transactions as well as determining offers/bids 

submitted to organized day-ahead auction. 

Power Generation Companies and large loads, including Load Serving Entities, 

participate in a deregulated wholesale electricity market which is managed by an 

Independent System Operator (ISO). The independent system operator is a non-profit 

public body whereas the wholesale market participants are private profit-seeking 

entities. Although both large loads and Load Serving Entities are demand side 

participants, the focus of this thesis is on Load Serving Entities. In addition, for 

simplicity it is assumed that each power Generation Company has a single thermal 

generation unit, while renewable energy resources are not included in modelling.  

The independent system operator organises a day-ahead energy auction in order to 

enable competition among market participants. It has been expected that such 

competition will help keep wholesale prices in check. The wholesale prices are 

publicly observable and used as reference for other types of energy trades, including 

bilateral transactions. However, it is difficult to achieve perfect competition in the 

electricity market. Thus, the Load Serving Entities face risks of volatile wholesale 

prices due to imperfect competition and dynamic nature of organised day-ahead 
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energy auction. Similarly, a Generation Company faces risk of potential revenue loss 

if independent system operator does not find its bids more economical than those of 

other generators. As a consequence, Load Serving Entities and power Generation 

Companies may find it beneficial to secure bilateral energy transactions, in advance 

of day-ahead auction, for hedging risks of price volatility and revenue uncertainty.  

In deregulated wholesale electricity markets of USA, bilateral transactions are useful 

in complementing day-ahead auction because they enable market participants to 

hedge against uncertain prices and revenues.  Since bilateral transactions in USA use 

historic prices of day-ahead auction as reference, it is helpful to incorporate a model 

of day-ahead auction for simulation of bilateral transactions in electricity markets of 

USA. 

Bilateral energy transactions can be secured in mainly three ways: (i) through online 

bulletin-board; (ii) through broker; and (iii) through direct-search, without a bulletin-

board or broker. Decision making for bilateral energy transactions consists of two 

distinct phases. First phase in the decision making is called match making and 

determines suitable trading partners for bilateral energy transactions. In the absence 

of an organized bulletin-board or broker, each market participant needs to use some 

kind of a decentralized match making mechanism to conduct a direct-search for 

suitable trading partners. Second phase in the decision making consists of multi-

round bilateral negotiations for bilateral energy transactions. A successful bilateral 

negotiation leads to a contract specifying agreed quantity and price of energy as well 

as duration of the contract.  

While Generation Companies and Load Serving Entities are free to enter into any 

trades they wish, a deregulated wholesale electricity market has an underlying 

physical power system with limited transmission resources to meet dynamic loads. 

Namely, transmission lines have physical limitations on maximum energy that can 

flow through the lines from power Generation Companies to Load Serving Entities, 

while voltages at each of the network buses has to be maintained within specified 

limits. Therefore, independent system operator must ensure that the power flows, 

including bilateral energy transactions, do not exceed the maximum limits called 
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transmission constraints. In addition to the limited transmission resources, 

underlying physical power system has limited generation resources at any node and 

total load requirements are less than total installed generation capacity. As a result of 

these three limitations, trading opportunities for both Load Serving Entities and 

Generation Companies are limited. While allowing bilateral energy transactions, the 

independent system operator must ensure that each market participant has a ‘fair and 

equitable’ access to limited system resources. To this end, the independent system 

operator can announce preliminary maximum levels of simultaneously feasible 

bilateral transactions that do not violate the ‘fair and equitable’ access criterion. 

These maximum levels are preliminary because unforeseen failures of generation or 

transmission resources and unpredictable load demands can force an independent 

system operator to curtail bilateral transactions, even if all transactions comply with 

the preliminary upper limits. Nevertheless, market participants can incorporate the 

publicly known preliminary upper limits into their decision making for bilateral 

transactions to reduce risks of curtailments. 

If a transmission line happens to carry its maximum possible power flow then 

transmission congestion occurs. In addition, transmission losses occur because some 

power is inevitably wasted as heat while flowing through transmission lines. Due to 

transmission congestion and transmission losses, organised day-ahead energy auction 

of a deregulated wholesale electricity market in North America leads to different 

market clearing prices at different locations, typically referred to as Locational 

Marginal Prices. ISO calculates Locational Marginal Prices by solving optimal 

power flow problem. Locational marginal prices of power source nodes depend on 

supply offers of Generation Companies and economic scheduling by ISO. Locational 

marginal prices of power sink nodes depend on congestion of transmission network. 

Locational marginal price at a sink node increases if a transmission line transferring 

power to the node experiences congestion. Load serving entities are responsible for 

payment of transmission congestion costs to independent system operator for power 

traded by bilateral transactions and in organised day-ahead auction. Transmission 

congestion costs of a Load Serving Entity due to participation in day-ahead auction 

are included in Locational Marginal Price at the sink node. Transmission congestion 
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costs of a Load Serving Entity for a bilateral transaction depend on power quantity 

and difference between Locational Marginal Price at source and sink nodes of the 

bilateral transaction. Consequently, Load Serving Entities face unpredictable 

transmission congestion costs due to volatile Locational Marginal Prices of 

organised day-ahead energy auction.  

Since the independent system operator is a non-profit public body, it provides a 

financial instrument so that Load Serving Entities can hedge against their 

transmission congestion costs. The financial instrument that can hedge transmission 

congestion costs of Load Serving Entities, due to participation in organised day-

ahead energy auction as well as engaging in bilateral transactions is known as 

Financial Transmission Rights. The independent system operator holds an organised 

annual Financial Transmission Rights auction and Load Serving Entities bid for the 

Financial Transmission Rights. In addition, the independent system operator provides 

another financial instrument, Auction Revenue Rights, so that Load Serving Entities 

can hedge against the uncertain cost of acquiring the Financial Transmission Rights 

at unknown auction clearing prices. The Financial Transmission Rights and Auction 

Revenue Rights are collectively called financial transmission instruments. Both 

financial transmission instruments are necessary to hedge risks of participation in 

deregulated wholesale electricity markets. Therefore, when analysing decisions of 

market participants, it is important to simulate the financial transmission instruments 

in combination with organized day-ahead energy auction and bilateral energy 

transactions. 

Majority of existing agent-based simulation models (including open-source models 

like [1]) deal with day-ahead auctions but not bilateral transactions. On the basis of 

available mathematical modelling details for bilateral transactions, agent-based 

models that can simulate combination of day-ahead auction and bilateral transactions 

are categorized into simplified models and proprietary software. For simplified 

models, such as reported in [2], [3] and [4], complete mathematical and 

implementation details of bilateral transactions’ modelling are publicly available in 

literature. However, without further elaboration, realistic representation of bilateral 

transactions is acknowledged as future work in [4]. Nevertheless, based on features 
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that are not included in the bilateral transactions model in the referenced paper, this 

thesis interprets the term “realistic” as follows. Realistic representation of bilateral 

transactions means match making for direct-search bilateral transactions by a 

systematic approach and bilateral negotiations between participants with incomplete 

information about each other. Mathematical details of bilateral transactions’ models 

in proprietary software are not made publicly available because of commercial value. 

Only an overview of implementation techniques is reported for proprietary software, 

as in [5], [6] and [7].  

This thesis aims to build on open-source agent-based software presented in [1] to 

achieve combined simulation of bilateral energy transactions, day-ahead energy 

auction and financial transmission instruments. Detailed mathematical modelling of 

bilateral transactions is provided in this thesis to facilitate accurate and in-depth 

understanding of implemented model. As an additional advantage, the open-source 

implementation encourages further extensions in software capabilities by future 

researchers.  

Known simulation techniques for match making in electricity markets assume one or 

more of the following: (i) bilateral transactions are organized; (ii) transmission 

constraints do not exist; (iii) participants have complete information about other 

participants; or (iv) match making is a random process. One or more of the following 

deficiencies exist in most previous simulations of bilateral negotiations. Use of 

heuristics, without additional support, can be simplistic or prone to failure of bilateral 

negotiations. Some learning techniques ignore dynamic (varying according to market 

conditions) prices of organized electricity markets. In case of estimation errors in 

learning, some learning-dependent adaptation methods can lead to failure of bilateral 

negotiations.  

This research work attempts to achieve simulation of match making for direct-search 

bilateral transactions, without requiring any of the assumptions mentioned in above 

paragraph. Moreover, it demonstrates a new simulation technique for bilateral 

negotiations that can overcome all three deficiencies mentioned in above paragraph. 

Our research objectives and contributions are outlined in the next two subsections. 
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The thesis overview and a list of associated publications are presented at the end of 

this chapter. 

1.2 Research Objectives 

The overall aim of this research is to improve modelling of decision making for 

bilateral transactions in deregulated wholesale electricity markets. The overall aim 

will be achieved through the following set of main and secondary objectives. 

1.2.1 Main Objectives 

 Design two innovative annual planning methods (one for a Generation 

Company and the other for a Load Serving Entity) for match making in 

direct-search bilateral transactions 

 Develop two new computational methods (one for a Generation Company 

and the other for a Load Serving Entity) to determine optimal dynamic 

strategies for bilateral negotiations; dynamic strategies depend on dynamics 

of organized day-ahead market during previous year 

 Support the computational method of a Generation Company with a novel 

learning based adaptation method to adjust its dynamic strategies for bilateral 

negotiations; adjustment of dynamic strategies leads to adaptive strategies 

that depend on observations of opponents’ behaviours during current annual 

bilateral negotiations 

1.2.2 Secondary Objectives 

 Design a new method for a market participant to determine its optimal bids 

for submission to Financial Transmission Rights auction 

 Use existing models of Financial Transmission Rights auction and Auction 

Revenue Rights allocation, to manage transmission related risks of Load 

Serving Entities due to engaging in bilateral transactions and day-ahead 

auction for energy 

 Achieve combined simulation (in an agent-based computational framework) 

of new decision making models for bilateral transactions and optimization of 
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bids for transmission rights with existing models for: Auction Revenue Rights 

allocation; Financial Transmission Rights auction; and organized day-ahead 

auction for energy 

1.3 Research Contributions 

In order to meet the above objectives, this research has made following contributions 

to existing knowledge pool of agent-based modelling and simulation for deregulated 

wholesale electricity markets. 

 Two new portfolio optimization procedures (one for a Generation Company 

and the other for a Load Serving Entity); the procedures take into account 

upper limits, due to transmission constraints, on bilateral transactions and 

availability of Financial Transmission Rights 

 Two innovative match making algorithms (one for a Generation Company 

and the other for a Load Serving Entity); the algorithms are capable of 

systematic match making in a decentralized market  

 Two new dynamic strategies (one for a Generation Company and the other 

for a Load Serving Entity) for optimal bilateral negotiations; the novel 

strategies use combination of bilateral transactions’ utilities (determined by 

match making algorithms) and time dependent strategies (determined by 

current round of multi-round bilateral negotiations)  

 A novel adaptive strategy to support the dynamic strategy of a Generation 

Company for bilateral negotiations; adaptive strategy depends on estimation, 

by Bayesian learning, of an opponent’s ultimate price based on interactions 

during current multi-round bilateral negotiations  

 A new method to determine optimal bids of a market participant for 

submission to Financial Transmission Rights auction 

 Achieved agent-based combined simulation of annual Financial Transmission 

Rights auction and annual Auction Revenue Rights allocation along with 

annual bilateral transactions and organized day-ahead market for energy 
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1.4 Thesis Overview  

The rest of the thesis chapters have following layout. 

Chapter 2 – this chapter presents a review of wholesale electricity markets in North 

America and the Europe. It highlights overall common characteristics of wholesale 

electricity markets in both continents. The chapter also explains differences in details 

of market designs for both continents. The market comparison covers five 

dimensions: common characteristics, general aspects, generation scheduling, 

transmission arrangements and bids processing.  

Chapter 3 – presents a review of simulation models and techniques for wholesale 

electricity markets. This chapter discusses some game-theoretic equilibrium models 

followed by a review of agent-based simulation models for electricity markets. It also 

explores learning and optimization techniques for specific operational problems of 

individual market participants which can contribute to overall simulation of an 

electricity market. 

Chapter 4 – this chapter presents a summary description of simulated electricity 

market in this thesis. It outlines model of the simulated electricity market with 

reference to market operations in real world electricity markets. This chapter 

discusses sequence of events in the simulated electricity market. Reasons for 

choosing specific simulation and machine learning techniques for the simulated 

electricity market are also discussed in this chapter. 

Chapter 5 – presents Auction Revenue Rights allocation and Financial Transmission 

Rights auction in details. Complete mathematical models of Auction Revenue Rights 

allocation and Financial Transmission Rights auction are provided. The chapter also 

includes a new risk-constrained method to optimize bidding prices of Load Serving 

Entities in Financial Transmission Rights auction. 

Chapter 6 – this chapter discusses portfolio optimization procedures of Generation 

Companies and Load Serving Entities. Complete mathematical models of portfolio 

optimization procedures are explained in detail.  
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Chapter 7 – this chapter discusses how portfolio optimization procedures are used in 

match making algorithms of Generation Companies and Load Serving Entities for 

direct-search bilateral transactions. It also explains how results of portfolio 

optimization procedures are used to determine utilities of bilateral transactions over a 

range of prices. 

Chapter 8 – a bilateral transaction protocol for direct-search bilateral transactions is 

described in this chapter. Furthermore, the chapter discusses how Generation 

Companies and Load Serving Entities use results of match making algorithms to 

develop dynamic strategies for bilateral negotiations over a range of prices. In 

addition, it is explained how Generation Companies use Bayesian learning to 

develop adaptive strategies to adjust their responses during bilateral negotiation.  

Chapter 9 – simulation results for aspects covered in Chapter 5 to Chapter 9 are 

provided within respective chapters. This chapter presents main conclusions of this 

research and offers insights into future research dimensions.  

1.5 Associated Publications 

 K. Imran and I. Kockar, "A technical comparison of wholesale electricity 

markets in North America and Europe," Electric Power Systems Research, 

vol. 108, pp. 59-67, 2014. 

 K. Imran, Y. Zhao, and I. Kockar, "Simulation of Portfolio Optimization by 

Electricity Trading Participants in a Multi-agent System," accepted for 

presentation at the European Energy Market (EEM), 2014 11th International 

Conference on the, 2014. The paper could not be presented due to visa delays 

and has now been submitted to 12
th

 Intelligent Systems Applications to 

Power Systems Conference 2015. 

 K. Imran and I. Kockar, "A risk-constrained bid optimization method for 

Financial Transmission Rights auction," Power Systems, IEEE Transactions 

on, in preparation for submission in 2015. 
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 K. Imran and I. Kockar, "A portfolio optimization method for generators in 

electricity markets," Power Systems, IEEE Transactions on, in preparation for 

submission in 2015. 

 K. Imran and I. Kockar, "A portfolio optimization method for loads 

considering Financial Transmission Rights," Power Systems, IEEE 

Transactions on, in preparation for submission in 2015. 

 K. Imran and I. Kockar, "Decentralized match making for bilateral 

transactions between generators and loads by direct search," Power Systems, 

IEEE Transactions on, in preparation for submission in 2015. 

 K. Imran and I. Kockar, "Utility-based bilateral negotiations between 

generators and loads supported by Bayesian learning," Power Systems, IEEE 

Transactions on, in preparation for submission in 2015. 
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2 Wholesale Electricity Markets: A Technical 

Comparison of North American and European 

Market Designs 

 

2.1 Introduction 

It is imperative to know characteristics of real world market operations which can 

serve as criteria to determine suitability of existing simulation models and techniques 

for wholesale electricity markets. These will be referred to as criteria characteristics 

of wholesale electricity market simulation. Secondly, it is critical to examine the 

extent of implementation differences in wholesale electricity markets’ mechanisms in 

North America and Europe. This examination will determine whether simulation 

models of markets in one continent, e.g. North America, can be used for simulation 

of markets in the other continent, i.e. Europe. This chapter seeks to establish criteria 

characteristics and extent of implementation differences in wholesale electricity 

market mechanisms of the two continents. However, since this thesis restricts to 

current wholesale electricity markets, study of retail electricity markets and 

comprehensive history of wholesale markets’ restructuring is beyond its scope. An 

account of lessons learned from electricity market liberalization in various parts of 

the world is reviewed in [1]. 

As discussed in Chapter 1, power Generation Companies (GenCos) and Load 

Serving Entities (LSEs) participate in a deregulated wholesale electricity market. An 

independent system operator has overall control of the deregulated market but allows 

bilateral transactions between participants. Participants can privately agree on energy 

prices of their bilateral transactions. In addition to allowing bilateral transactions, the 

independent system operator arranges organized energy trades for market 

participants. For the organised trades, independent system operator collects energy 

offers from power Generation Companies and demand bids from Load Serving 

Entities to conduct an auction of energy. The independent system operator also 
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receives power quantities of bilateral transactions agreed between market 

participants. On the basis of information submitted by market participants, the 

independent system operator clears the auction for organised energy trades and 

determines power quantities of bilateral transactions that can be transferred by 

available transmission resources. Purposes and methods of bilateral transactions and 

organized trades are described as follows. 

Participants of organized markets face risks of price volatility and revenue 

uncertainty. However, participants can hedge these risks by securing bilateral energy 

transactions in advance of the organized markets. It is crucial to note that energy 

prices in day-ahead markets serve as reference prices for Financial Bilateral 

Transactions in electricity markets of USA [2] and EU [3]. In addition, bilateral 

transactions are highly preferred by market participants because they avoid exposure 

to pool liquidity risks [4]. Following classification and discussion on bilateral 

transactions is neither absolute nor exhaustive. However, it reasonably elaborates 

meanings and types of bilateral transactions for the purposes of this thesis. 

Bilateral transactions can be reached through brokers, online bulletin-boards or by 

direct-search that does not need a broker or a bulletin-board. Bilateral transactions by 

direct-search and through broker are secured in two phases. The first phase is called 

match making and the second phase is called bilateral negotiations. However, online 

bulletin-board facilitates bilateral transactions by match making only. 

According to mode of delivery of energy, bilateral transactions can be divided into 

physical and financial bilateral transactions. A physical bilateral transaction is a 

contract for transfer of energy (by the physical flow of energy) between a buyer and 

a seller. A financial bilateral transaction is a contract for transfer of financial 

responsibility for energy (not the physical flow of energy) between a buyer and a 

seller. Physical and financial bilateral transactions are further discussed in this 

Chapter in next sections.  

Bilateral transactions of long duration (from five to ten years) are used to support the 

development of new energy resources. Bilateral transactions of medium duration 
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(from six months to five years) are useful to hedge risks of price volatility and 

revenue uncertainty. Both long and medium duration bilateral transactions are 

privately reached by direct-search in a decentralized manner. Decentralized decision 

making for both long and medium duration bilateral transactions involves two 

distinct phases called match making and bilateral negotiation. Long and medium 

duration bilateral transactions are customized for private needs of participants. Both 

types of bilateral transactions depend on long term load forecast and can involve 

hundreds of MWh of energy.  

In addition to hedging risks of price volatility and revenue uncertainty, bilateral 

transactions of short duration (from one month to six months) are useful to make up 

for any medium term bilateral transactions that could not be agreed due to 

negotiation failure. Short duration bilateral transactions are also helpful in adjusting 

trading requirements in view of short term load forecast. Short duration bilateral 

transactions take place in an organized manner through broker or via online bulletin-

board. Match making phase of decision making for short duration bilateral 

transactions is organized by a human broker or software underlying online bulletin-

board. Bilateral negotiations may be necessary in case of match making by a broker. 

However, match making by online bulletin-board is binding on participants and does 

not require subsequent bilateral negotiations. Short duration bilateral transactions can 

involve tens of MWh of energy and are standardized contracts for different peak and 

off peak times of a day and/or week. 

In general, bilateral transactions are based on load forecasts that may not match with 

actual load requirements and unpredictable faults may cause a generating unit to shut 

down or curtail its output in real time. Furthermore, participants may not be able to 

secure bilateral transactions for their full forecasted loads or generation capacities. 

Independent system operator is responsible for balancing generation with demand in 

real time. Organized trades allow Load Serving Entities to fulfil their actual load 

requirements and Generation Companies to competitively offer their full generation 

capacities. Moreover, organized trades enable the independent system operator to 

balance generation and demand in real time and consequently maintain reliability of 

power system operation. 
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Therefore, since the deregulation of electricity sector, a number of approaches to 

organization of electricity markets, trading and charging methodologies emerged. 

Comparing these approaches is often difficult due to new developments, as well as 

the practice in which details about market design are often embedded in a multitude 

of documents on various websites of system operators. This chapter is adopted from 

our research paper [5] which was written to help researchers looking into the 

different approaches. The paper presented a comparison of prevailing market design 

of the USA with market in Nordic countries as well as emerging market coupling in 

Europe. The market in Nordic countries, Nord Pool, is separately considered in the 

comparison because it shares some characteristics of markets in the USA and others 

of the remaining European markets. As mentioned above, the comparison in [5] 

fulfils one aim of this chapter, i.e. to establish extent of implementation differences 

in wholesale electricity market mechanisms of the two continents. Here the 

comparison presented in [5] is supplemented by discussion which aims to establish 

criteria characteristics. The next two paragraphs are devoted to the markets to be 

compared in this review.  

North American electricity markets are among the most mature electricity markets in 

the world today. Types of energy markets, ancillary services for balancing and 

reserves markets, bilateral trades and financial transmission instruments of a number 

of electricity markets in North America are compared here including those in the 

states of New York (NYISO), New England (ISONE), California (CAISO) and 

Texas (ERCOT). Pennsylvania-Jersey-Maryland (PJM) Interconnection and 

Midcontinent Independent System Operator (MISO), two other important markets in 

North America that cover multiple states, are included in the comparison. An 

overview of status of wholesale markets in the rest of the USA is also included in 

this comparison. 

Evolution of electricity markets in Europe is leading to emerging electricity market 

coupling of day-ahead markets of different countries. Wholesale electricity markets 

of sixteen European countries including Norway, Sweden, Finland, Denmark, 

Estonia, Germany, France, Spain, Portugal, Britain, Ireland, Netherlands, 

Luxembourg, Belgium, Austria and Italy are covered here. In addition, power 
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exchanges of Nord Pool (Nordic Countries and Estonia), N2EX (Britain), MIBEL 

(Spain and Portugal), GME (Italy), APX-ENDEX (Netherlands and Belgium), 

Powernext (France), EEX (Germany), EPEX (France and Germany) and EXAA 

(Austria) have been compared and explored for existence of physical markets 

(auction or continuous trading) and financial markets (futures for base or peak load). 

In addition, bilateral trades are supported to complement above mentioned organized 

markets. 

Rest of this chapter is structured as follows. First, prevailing design of wholesale 

electricity markets in the USA is discussed in Section 2.2, while Section 2.3 covers 

emerging electricity market coupling in the EU. Overview, energy trading 

mechanisms and transmission arrangements of the two market designs are presented 

under the respective headings in Sections 2.2 and 2.3. Section 2.4 is divided into two 

parts that correspond to the two aims of this chapter. Section 2.4.1 discusses criteria 

characteristics of wholesale electricity markets in both continents, while Section 

2.4.2 covers extent of implementation differences in mechanisms used in wholesale 

electricity markets of the two continents. It includes a detailed comparison of market 

designs of the USA and the EU. Three aspects are covered in the section including (i) 

general comparison, (ii) energy trading mechanisms and (iii) transmission 

arrangements. Details of the three aspects covered in Section 2.4.2 are presented in 

the next paragraph. 

Firstly an overall general comparison of prevailing wholesale electricity market 

designs in Europe and North America includes aspects like market model, asset 

ownership, interaction of transmission and market operators and relative volumes of 

day-ahead auction market and forward bilateral trades. Secondly, a comparison of 

energy trading mechanisms in both continents is provided. This includes nature of 

generators operations, structure and data involved in generator bidding and extent of 

self-scheduling of generation in the two continents. It also covers optimization 

procedures and underlying concepts used in processing of bids and resulting 

zonal/nodal or linear/non-linear pricing. Finally a comparison of transmission 

arrangements discusses degree to which network constraints are taken care of. The 



 

17 

 

comparison also covers transmission capacity allocation and calculation methods for 

forward bilateral trades and day-ahead market.  

2.2 Prevailing Design of Electricity Markets in the USA 

2.2.1 Overview  

Federal Energy Regulatory Commission (FERC) of USA issued a standard market 

model called Wholesale Power Market Platform in 2003 to be commonly adopted by 

all wholesale power markets in the USA. Accordingly, this model has been adopted, 

with some subtle differences, by a majority of Independent System Operators (ISO) 

and/or Regional Transmission Operators (RTO) in the USA. In essence, Wholesale 

Power Market Platform consists of a number of markets run by an ISO/RTO. These 

markets include organized energy markets, ancillary services markets (for balancing 

and reserves) and Financial Transmission Rights markets (for hedging transmission 

congestion costs). In addition, bilateral energy transactions are allowed between 

market participants. Wholesale Power Market Platform includes some mechanisms 

such as capacity markets to ensure resource adequacy for future by ensuring 

investment in new generation. However, resource adequacy measures or capacity 

markets greatly vary among different regions and are not part of discussion in this 

chapter.  

Energy markets have two components: a real-time market called Spot, and a day-

ahead market called Forward. In the case of ancillary markets for balancing and 

reserves, real-time market and day-ahead market are typically called Regulation and 

Reserve respectively. However, there are some differences in precise names of 

markets which are dealing with balancing and reserves for different regions. It is 

important to point out that Financial Transmission Rights can hedge market 

participants against risks of transmission congestion and resulting costs. The 

Financial Transmission Rights are useful to hedge against transmission congestion 

costs arising from energy trading through both organized energy markets and 

bilateral energy transactions. 



 

18 

 

ISOs/RTOs of North America are shown in a map in Figure 2.1 whereas Table 2.1 

(modified  from [6]) gives an overview and comparison of market structures in these 

ISOs/RTOs. It is important to note that most of the West of the USA (excluding 

California) and the South East do not have ISO or RTO. In fact, in both of these 

regions, energy is traded by bulk decentralized bilateral transactions that are 

complemented by some centralized real time balancing. Southwest Power Pool (SPP) 

is in transition from purely bilateral trades to some version of Wholesale Power 

Market Platform. Electric Reliability Council of Texas (ERCOT) has implemented 

nodal pricing system that replaced the previous zonal pricing regime so it has also 

adopted Wholesale Power Market Platform [7]. 

 

Figure 2.1  A Map of ISOs/RTOs of North America (Source: ISO/RTO Council, Copyright © 

ISO/RTO Council, all rights reserved) 
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Table 2.1  Overview of Wholesale Electricity Markets of North America 
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 These markets have a real time central balancing mechanism to complement decentralized bilateral 

trades 
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2.2.2 Energy Trading Mechanisms 

In the USA, market participants have a number of options for interacting in ISO 

organized pools that follow Wholesale Power Market Platform. For example, energy 

trading mechanisms in MISO, described in [8], allow market participants to have a 

number of options for participating in the day-ahead energy market. Before 

describing the trading options it is important to define a few relevant terms here. A 

physical schedule is an option to participate in day-ahead market to transfer the 

energy (by the physical flow of energy) between a buyer and a seller. For a physical 

schedule, GenCo and LSE can bilaterally settle energy price but need a prior 

confirmation of physical transmission reservation between GenCo (source) and LSE 

(sink) node. A financial schedule is an option to participate in day-ahead market to 

transfer the financial responsibility for energy (not the physical flow of energy) 

between a buyer and a seller. The independent system operator considers GenCos’ 

price-sensitive supply offers and LSEs’ bids to determine most economical (on the 

basis of data provided in offers) operating schedules of generation units - offer-based 

economic schedules. A self-schedule is an option to participate in day-ahead market 

which allows a generator to run at least at the self-schedule level as a “price-taker”. 

In addition, a GenCo (LSE) can hedge against changes in LMP between the day-ahead 

and real-time energy markets by submitting a virtual demand bid (virtual supply offer) 

that is not necessarily supported by any physical load demand (generation resource). MISO 

participants can use any combination of the following trading options. 

i. Physical schedules to fulfil requirements of physical bilateral transactions 

ii. Financial schedules to fulfil requirements of Financial Bilateral Transactions.  

iii. Power generation bids for selling energy in day-ahead auction at variable 

market clearing prices by offer-based economic schedules or self-schedules.  

iv. Power demand bids for buying energy in day-ahead auction at variable 

market clearing prices or at “not-to-exceed” prices. 

v. Virtual supply offers and demand bids to fulfil required hedge against the 

LMP changes 
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In MISO different types of physical and Financial Bilateral Transactions are allowed. 

Grandfathered Agreement Carve Out Transactions are physical bilateral transactions 

that are allowed within MISO. They existed before creation of MISO and were 

allowed by Federal Energy Regulatory Commission to be carved out of MISO 

markets [9]. Grandfathered Agreement Carve Out Transactions can be achieved as 

follows. After GenCo and LSE declare a physical bilateral transaction, GenCo 

requests a physical schedule from the system operator, and LSE directly pays GenCo 

for energy. Since LSE holds a non-billable (free of cost) transmission service 

reservation, it avoids payment to ISO for the physical schedule of energy over 

transmission network [9].  

On the other hand, in the case of Financial Bilateral Transactions in MISO, GenCo 

and LSE declare a Financial Bilateral Transaction and GenCo requests a financial 

schedule. The GenCo is allowed to inject power into transmission network so that it 

can at least provide energy for the financial schedule but LSE has to pay ISO for 

transmission congestion and losses, according to difference of LMPs at sink and 

source nodes of the financial schedule. ISO may reduce financial, physical and self-

schedules under exceptional circumstances; some examples of the exceptional 

circumstances are discussed in coming paragraphs. The energy price of the financial 

schedule is bilaterally settled out of MISO. Moreover, if LSE holds FTRs then the 

transmission congestion cost can be fully hedged.  

When a generator submits its whole generation for offer-based economic schedules 

by MISO, it can be “price-setter” for the Locational Marginal Price at its local node. 

However, when a generator chooses to self-schedule its whole generation then it only 

operates as a “price-taker” [10]. As a middle case, generator may self-schedule part 

of its generation and offer the remaining capacity for offer-based economic schedule 

by MISO. In this case, the generator is allowed to run at least at the self-schedule 

level but ISO determines price paid to the generator for the self-schedule. MISO may 

choose offer-based economic schedule for remaining capacity of the generator if its 

offer is considered more economical than other generators.  
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A generator may find whole or partial self-schedule beneficial for a number of 

reasons. For example, a market design may not allow out of market settlement for 

energy traded by bilateral transactions. In such a case a self-schedule will allow a 

GenCo to participate in market as a “price-taker”. After market settlements with ISO 

at market clearing prices, GenCo and LSE will be able to settle their differences 

according to a bilaterally agreed contract-for-difference. If an LSE can fully hedge 

congestion risk by holding FTR to cover the agreed transaction volume then a self-

schedule and contract-for-difference combination works as a perfectly hedged 

bilateral transaction [4] [11].  

However, a generator may be forced to self-schedule due to mechanical or other 

reasons. For instance, a generator may have a take-or-pay fuel contract such that it 

has to pay for fuel even if it does not take its fuel supply. In this case a generator may 

opt for self-schedule to avoid loss of fuel payment. Sometimes, parent company of a 

generator may also be serving some own loads and may choose to self-schedule the 

generator to cater for own loads (self-supply). 

After receiving offers of generators and bids of loads, the MISO runs a pool clearing 

algorithm which automatically accepts physical schedules, financial schedules and 

self-schedules subject to transmission constraints. Then, the ISO issues all accepted 

schedules including offer-based economic schedules as well as feasible physical 

schedules, financial schedules and self-schedules. According to [8], MISO may have 

to reduce accepted self-schedules for power system management under certain 

circumstances. For example, the reduction may be necessary to manage 

unpredictable transmission failures or maintain system reliability. MISO may also 

need to reduce accepted physical schedules and financial schedules due to similar 

reasons.  

There are conflicting opinions regarding relative volumes of bilateral transactions 

and organized markets in the deregulated electricity markets of USA. For example,  

[12] claims that bilateral transactions exceeded 90% of real-time energy market load 

of PJM in 2006. However, the claim is contested in [2] as explained next. In addition 

to GenCos and LSEs, energy marketers also participate in PJM who purchase energy 



 

23 

 

in wholesale market and sell it to some LSEs in the retail market. While some LSEs 

directly purchase from the real-time energy market, others buy from the marketers. 

Only if an LSE directly buys from the real-time energy market then it is classified as 

a non-bilateral transaction by [12]. However, if a marketer buys from the real-time 

energy market then it is categorized as a bilateral transaction by [12], whereas it is 

not a wholesale bilateral transaction between a GenCo and a marketer. It is claimed 

in [2] that relatively few bilateral transactions are used in deregulated wholesale 

electricity markets. However, according to [4] most trading in deregulated wholesale 

electricity markets, indeed, occurs bilaterally. This view is supported by data for 

NYISO where bilateral trades make-up 50% of scheduled energy whereas 48% is 

traded in day-ahead market and only 2% in real-time market [13].  

Due to confidential nature of bilateral transactions, it is not easy to determine the 

overall volume of bilateral transactions as compared to organized markets in the 

deregulated electricity sector of USA. According to the 2010 annual market report 

for ISONE [14], out of total cleared supply, 60% were self-schedules, 26% were 

price-sensitive supply offers, 4% were virtual supply offers and 10% were imports. 

The 26% trading by price-sensitive supply offers must be counted as organized 

market trading. On the other hand, imports make up 10% that are clearly physical 

bilateral transactions between participants located in different markets. The self-

schedules and virtual supply offers add up to 64% of the total trades. Some self-

schedules and virtual supply offers may be serving bilateral transactions but the 

annual reports do not provide any further breakup of these two types of trades. In fact 

limited data is publicly available on bilateral transactions [2], for instance, generators 

self-schedule to fulfil some bilateral transactions but they do not have to declare such 

bilateral transactions. 

2.2.3 Transmission Arrangements 

A Financial Transmission Right (FTR) is a financial instrument that does not entitle 

its holder to a physical right for power delivery. Financial Transmission Rights can 

be obligation FTRs or option FTRs. An obligation FTR holder can be either entitled 

to a payment for congestion credits or liable to a payment of congestion charges. On 
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the other hand, an option FTR holder may be entitled to congestion credits but not 

liable to congestion charges. Difference between LMPs at the sink and source nodes 

of an FTR determines whether FTR holder gets credits or incurs charges. If LMP at 

the sink node is higher than LMP at the source node then obligation/option FTR 

holder gets congestion credits. Otherwise, obligation FTR holder incurs congestion 

charges but option FTR holder avoids any congestion charges. An FTR payment 

equals the product of the MW amount for which FTR is obtained (through auctions) 

and the differences in the congestion component of LMPs at the agreed source and 

sink points [15], [16]. Annual and monthly auctions of FTRs or equivalent 

instruments exist in all markets that now follow some version of Wholesale Power 

Market Platform. However, number of auction rounds and percentage transmission 

capacities sold in annual and monthly auctions vary among these markets. Financial 

instruments equivalent to FTRs are called Congestion Revenue Rights (CRR) in 

CAISO [17] and ERCOT [18], whereas in NYISO, the financial instruments are 

known as Transmission Congestion Contracts (TCCs) [19].  

Auction Revenue Rights (ARRs) are another category of financial instruments that 

allow holders to get a share of revenue from Annual FTR Auction. ARRs are used in 

addition to FTRs in PJM [16], MISO [20] and ISONE [15]. In fact ARRs are 

allocated, unlike FTRs that are auctioned, to participants on the basis of their 

historical usage of the transmission network. In addition, Incremental ARRs are 

allocated to those participants who fund network upgrades or build new/replacement 

resources for network [20]. Consequently, Incremental ARRs act as a crucial 

instrument that ensures adequate upgrading and expansion of transmission grid. 

Alternatively, ISO can undertake appropriate grid expansions/upgrades and can 

allocate costs to market participants. In 2011 Federal Energy Regulatory 

Commission issued Order 1000 as a final rule on transmission planning and cost 

allocation. The Order stipulates that transmission owning and operating public 

utilities are responsible for transmission planning and cost allocation. It requires 

regional transmission planning should consider and evaluate possible alternatives and 

then fairly allocate cost of chosen transmission solution among beneficiaries [21].  
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Annual allocations of ARRs or equivalent instruments exist in all markets that now 

follow some version of Wholesale Power Market Platform. However, number of 

stages or procedures of allocations vary among these markets. 

2.3 Emerging Electricity Market Scenario in the EU 

2.3.1 Overview 

European Regulator’s Group for Electricity and Gas (ERGEG) launched the 

‘Electricity Regional Initiatives’ in 2006 and established seven regional initiatives in 

Europe, shown in Figure 2.2. The Electricity Regional Initiatives were designed with 

the ultimate goal of a pan-European electricity market. This envisioned Europe-wide 

market is termed Electricity Market Target Model in this chapter and it revolves 

around the idea of Market Coupling. 

 

Figure 2.2  A Map of Electricity Regional Initiatives of Europe (Source: Edited from online 

blank map and inspired by Electricity Market Coupling Company) 

There are two basic types of market coupling called volume coupling and price 

coupling. If power exchanges have volume coupling then they forward received bids 
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and offers to a central coupling algorithm that calculates trading volumes but leaves 

price calculations for power exchanges. In case of price coupling, the coupling 

algorithm determines both prices and volumes of trades. It is possible to achieve 

volume coupling by coordinated utilization of available interconnection capacity. On 

the other hand, price coupling is more comprehensive because it combines price and 

volume coordination across borders [22] and [23].  

Most Electricity Regional Initiatives have made some progress in integrating markets 

within region covered by each Electricity Regional Initiative. For example, in the 

Electricity Regional Initiative for Northern region, Nord Pool Spot (NPS) was 

established in 2002 as a separate company to cover Denmark, Norway, Sweden and 

Finland. Then, in November 2009, volume coupling was launched by Electricity 

Market Coupling Company that linked Nord Pool Spot with the European Power 

Exchange (EPEX) in Germany.  

As another example, Tri Lateral Coupling of markets in France, Belgium and the 

Netherlands was established in 2006 (by price coupling) within the Electricity 

Regional Initiative for Central-West Europe. In November 2010, price coupling was 

achieved throughout the Electricity Regional Initiative for Central-West Europe that 

covered France, Belgium and the Netherlands (previously Tri Lateral Coupling) as 

well as Germany, Luxembourg and Austria.   

The next phase to progressively couple these Electricity Regional Initiatives together 

is already underway. In November 2010, at the same time as introduction of price 

coupling throughout Central-West Europe, volume coupling was initiated between 

Central-West Europe market and Nordic market. The volume coupling was termed 

Interim Tight Volume Coupling because of following reasons. It was called interim 

coupling because it was a temporary arrangement and all participants agreed to 

eventually achieve price coupling. It was known as tight coupling because the market 

coupling algorithm accurately simulated clearing processes of the linked power 

exchanges [24]. It is important to note that day-ahead markets have been coupled as a 

first step as discussed above. However, work is also in progress to couple intraday 
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markets and on some borders, like France-Germany and Netherlands-Belgium, the 

intraday markets have already been coupled [25].  

Electricity Market Target Model consists of four basic components, as presented in 

[26], namely forward market, day-ahead market, intraday market and balancing. It is 

important to note that forward market and balancing are run by Transmission System 

Operators (TSOs) whereas day-ahead market and intraday market are organized by 

power exchanges. In addition, power exchanges arrange futures market which is 

financial counterpart of forward market. Electricity market participants can obtain 

transmission capacity for their trades in two ways. If a TSO exclusively holds an 

auction for transmission capacity then it is termed explicit auction. It is anticipated 

by Electricity Market Target Model that forward market will continue to use explicit 

auction held by TSOs for transmission capacity. When a power exchange clears its 

auction for energy then transmission capacity for cleared energy trades is 

automatically allocated – implicit auction. In Electricity Market Target Model, power 

exchanges will use implicit auction in day-ahead market and implicit continuous 

trade in intraday market. In some European power exchanges, intraday continuous 

trading can be categorised as spot or prompt. Spot trading covers blocks of half 

hourly, hourly, two hourly and four hourly trades and their combinations whereas 

continuous prompt trading includes trades like peak hours, base load, weekend and 

overnight. Balancing will be achieved on the basis of a common merit order by 

trading between neighbouring TSOs [25].  

An overview of power exchanges in the Europe is presented in Table 2.2. 

Interestingly, Britain is the only country to have as many as three power exchanges 

simultaneously operating with overlapping physical and financial markets. In the rest 

of Europe, a maximum of two power exchanges are operational and even these cater 

for either physical or financial trading. Developments due to Electricity Regional 

Initiatives have led to mergers, joint ventures and cooperation among countries in the 

same region often resulting in a financial market in one country and its physical 

counterpart in the neighbouring country. In case of Spain-Portugal, joint power 

exchange MIBEL runs two markets called OMIE and OMIP; OMIE (Spain) handles 

physical trades and OMIP (Portugal) deals with financial trades for both countries. 



 

28 

 

As another example, EPEX (Germany) caters physical trading and EEX (France) 

facilitates financial trading for both France and Germany. 

In addition to above described markets for energy, some power exchanges offer 

trading of financial instruments to manage costs of transmission congestion and 

carbon emissions. Contracts for Difference in Nord Pool  are financial instruments, 

like commonly used FTRs in the USA markets, for hedging against risk of 

transmission congestion. Moreover, introduction of EU Emissions Allowances has 

resulted in carbon markets in EEX Germany and NASDAQ OMX in Nord Pool. It is 

anticipated that more power exchanges will offer carbon trading as EU moves from 

free allocation to auctioning of the emissions allowances. 

Table 2.2  Overview of Wholesale Electricity Markets of the Europe 

Country Power 

Exchange 

Markets Physical Trading Financial 

Trading 

Day-

ahead 

Intra Day 

Continuous 

Futures 

Auction Spot Prompt Base Peak 

Britain APX-

ENDEX 

APX Power 

UK 
     

ENDEX 

Power UK 
     

N2EX N2EX     

ICE ICE      
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Country Power 

Exchange 

Markets Physical Trading Financial 

Trading 

Day-

ahead 

Intra Day 

Continuous 

Futures 

Auction Spot Prompt Base Peak 

Nordic 

Countries
2
 

NP NPS     

NASDAQ 

OMX 
    

France and 

Germany 

EPEX EPEX Spot 
3
     

EEX  EEX Power 

Derivatives 
    

Netherland 

and 

Belgium 

APX-

ENDEX 

APX Power 

NL 
    

ENDEX 

Power NL 
     

Belpex     

ENDEX 

Power BE 
     

Spain and 

Portugal 

MIBEL OMIE Spain     

OMIP 

Portugal 
    

                                                 

 

2
 Estonia is also included in the electricity market of Nordic Countries 

3
 Also covers Austria and Switzerland 
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Country Power 

Exchange 

Markets Physical Trading Financial 

Trading 

Day-

ahead 

Intra Day 

Continuous 

Futures 

Auction Spot Prompt Base Peak 

Italy GME MPE
4
     

IDEM IDEX     

 

2.3.2 Energy Trading Mechanisms  

Forward market handles agreements of bilateral trades many months or years in 

advance of actual physical delivery time. These bilateral agreements can be reached 

by direct-search for suitable partners, through electronic bulletin-boards or by 

facilitation of a broker as discussed earlier. In addition, futures market is a financial 

counterpart of forward market that allows trading of standardized forward contracts, 

for all hours of a day or distinctly divided into base or peak loads (see Table 2.2), 

without any obligation of physical delivery. Interestingly, participants in futures 

markets can also include speculators who do not actually consume or produce 

electricity but trade in hope of making profits. Presence of speculators may 

contribute to greater market liquidity because they increase the number of 

participants who are likely to buy or sell electricity. Trading in forward market is 

based on long term load forecast that may not match with actual load requirements 

and unpredictable faults may cause a generating unit to shut down or curtail its 

output. Furthermore, participants may not be able to secure bilateral contracts to 

fulfil their complete trading requirements.  

                                                 

 

4
 MPE is additionally responsible for the ancillary services market (MSD) 
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Therefore, forward and future markets alone are not sufficient to maintain reliability 

of power system and organized markets are also necessary. On the other hand day-

ahead market and intraday market fall in this category of organized markets. Day-

ahead market conducts a double blind auction for energy on a day-ahead basis by 

collecting bids from market participants until a set time and then running market 

clearing algorithm. Although Day-ahead market uses a short term load forecast for 

next day (more accurate than long term load forecast for forward market), actual load 

conditions can vary considerably. This is where intraday market plays its role and 

facilitates continuous trading to bridge any gaps between already agreed 

arrangements (through forward market or day-ahead market) and varying energy 

requirements during the actual delivery day.  

Continuous trading in intraday market differs from auction in day-ahead market 

because it requires bids to be executed immediately or as soon as appropriate price 

becomes available. Sometimes continuous trading is distinctly divided into two types 

called spot and prompt (see Table 2.2) that are defined in Section 2.3.1. Finally 

balancing ensures that energy production balances transmission losses and actual 

consumption for every moment of real time operation.  

Flow-based Market Coupling is planned for day-ahead electricity market in Europe 

as a whole. In Flow-based Market Coupling, a number of power exchanges collect 

bids and offers from their respected areas and then submit these to a central company, 

like Electricity Market Coupling Company, that runs a market clearing algorithm. 

Within the overall electricity market coupling scenario, Nord Pool implements 

market splitting in its region which consists of multiple price zones. This market 

splitting is similar to LMP because transmission network is used without any 

simplification while calculating Security Constrained Optimal Power Flow (SCOPF) 

The SCOPF guarantees minimum generation cost, power balance at each node, line 

flows within transmission capacities as well as system security even if a transmission 

line fails. However, there is a difference in market splitting and LMP because market 

splitting ensures equal price at all nodes in a zone [27] whereas LMP allows different 

prices at all nodes of a power system. 
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2.3.3 Transmission Arrangements  

 Flow-based Market Coupling is considered a suitable way to deal with transmission 

arrangements because it can be implemented without undertaking a major 

restructuring of current power exchanges. Although, Flow-based Market Coupling  

uses a simplified model of transmission grid  as compared to LMP and MS, 

according to [4]  Flow-based Market Coupling should be ‘equivalent’ to Security 

Constrained Economic Dispatch. In Flow-based Market Coupling, a central company 

runs a MC algorithm that ignores any intra-zonal transmission congestion and all 

nodes within a zone are aggregated into a single node. Even the inter-zonal 

transmission lines between two neighbouring zones are aggregated into a single 

interconnector for each border. Meanwhile, all TSOs cooperate to calculate available 

transmission capacities and provide it to the market coupling company. The company 

runs market coupling algorithm is run to achieve an overall optimal solution which 

considers inter-zonal loop flows and transmission capacity constraints [4]. 

There is a major problem because Flow-based Market Coupling has not been 

implemented in practice yet so there is no uniform formulation for it such as, for 

example, SCOPF. There are many political conceptual market coupling proposals but 

an agreeable implementation model is yet to emerge. After admitting that applying 

network constraints to auction problem in power exchanges is not straightforward, 

design of a market coupling algorithm for Europe has been presented in [28]. 

Detailed mathematical formulation is provided but it is not quite clear whether it is 

flow based or not. However, mathematical models of congestion management under  

Flow-based Market Coupling are presented in [29] and [30].  

Officially, details of actual market coupling are still emerging and will need to be 

worked out and then implemented. This has been made clear in a report [31] by EU’s 

Directorate General of Internal Policies on “EU Energy Markets in Gas and 

Electricity - State of Play of Implementation and Transposition”. The report admits 

that, “In short, there are advances in price coupling and building spot markets in 

many regions, but while these developments take place, a clear vision of how the 

regional markets should be built is not yet in place.” Further along the report it is 
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stated that, “Whether the existing power exchanges consolidate into regional or EU 

level operators and/or a reference model for further integration emerges through this 

development is unclear.” Although, brief Framework Guidelines on Capacity 

Allocation and Congestion Management [32] are now available, detailed Network 

Codes are still under preparation. It is expected that exact implementation details of 

market coupling will emerge when the Network Codes become readily available. 

Power exchanges handle day-ahead and intraday trading by implicit allocation of 

transmission capacity made available by TSOs. On the other hand, TSOs are 

responsible for running a balancing market or a balancing mechanism in their control 

zone in real time. In addition, TSOs coordinate at each border to explicitly allocate 

transmission capacity of interconnector for inter-zonal forward bilateral contracts 

that are directly agreed between market participants. 

A simulation of market coupling for European day-ahead market can be found in 

[33] and it concludes that MC gives better results than a single power exchange for 

whole Europe operating on the principle of market splitting. However, [34] casts 

serious doubts on the adequacy of the intraday market design in Electricity Market 

Target Model, favouring a real time market like PJM. Wind power capacity in 

Europe is expected to reach a very high level by the end of this decade, but its 

intermittent nature presents considerable challenges to balancing power system in 

real time. It is felt that well-functioning balancing markets are essential for large 

scale integration of wind power in European power system [35]. 

2.4 Comparison of Market Designs of the USA and the 

EU 

This chapter seeks to establish criteria characteristics and extent of implementation 

differences in wholesale electricity market mechanisms of the two continents. 

Discussion in sections 2.2 and 2.3 shows that deregulated wholesale electricity 

markets designs of the USA and the EU have a number of differences. It is critical to 

examine the extent of implementation differences in wholesale electricity markets’ 

mechanisms in North America and Europe. This is examined, in Section 2.4.2 below, 
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to determine whether simulation models of markets in one continent, e.g. North 

America, can be used for simulation of markets in the other continent, i.e. Europe. 

Despite different market designs, there are a number of common characteristics in 

the two market environments. In order to determine suitability of existing simulation 

models and techniques for wholesale electricity markets, it is imperative to know 

criteria characteristics of real world market operations. The criteria characteristics of 

the market environments are discussed in Section 2.4.1. 

2.4.1 Criteria Characteristics of Market Environments 

The criteria characteristics of the market environments in deregulated wholesale 

electricity markets of North America and Europe are summarized as follows. This 

summary of the criteria characteristics only examines day-ahead markets and annual 

decision making processes for bilateral transactions and FTRs. Day-ahead market is 

dynamic because of two reasons. First, each GenCo and LSE can modify its hourly 

offers and bids for energy auction on daily basis. Consequently hourly LMPs of the 

day-ahead energy market can vary on daily basis. This shows how dynamic 

individual decisions by autonomous participants can have unpredictable dynamic 

market-wide consequences.  

At the time of annual decision making, GenCos and LSEs are fully aware of prices in 

the past year but do not know for sure what prices will occur throughout the coming 

year. Annual decision making includes deciding energy prices for annual bilateral 

transactions and bidding prices for annual FTRs auction. However, GenCos and 

LSEs can undertake statistical analysis of prices in the past year to determine 

expectation, variance and covariance of prices for the next year. Furthermore, 

GenCos and LSEs can use the annual results of prices’ statistical analysis while 

deciding energy prices for annual bilateral transactions for the next year. GenCos and 

LSEs can also use the annual results of prices’ statistical analysis while deciding 

bidding prices for annual auction of FTRs for the next year. The annual results of 

prices’ statistical analysis can vary from year to year due to dynamic nature of day-

ahead market. Consequently, annual decision making by GenCos and LSEs, for 
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deciding prices of bilateral transactions and bidding prices for annual Financial 

Transmission Rights auction, takes place under dynamic market conditions.  

A real world power system has transmission constraints because its transmission 

network has physical limitations to maximum power flows through transmission 

lines. Therefore, a transmission operator has to manage transmission network and all 

market operations are performed in a market environment that has transmission 

constraints.  

Day-ahead market for energy is arranged by an independent system operator and a 

market operator in the USA and the EU respectively. Annual market for FTRs is 

arranged by an independent system operator and a transmission operator in the USA 

and the EU respectively. Therefore, both day-ahead market for energy and annual 

market for FTRs are organized markets. Decision making for bilateral transactions 

can involve two phases; match making and bilateral negotiations. Short duration 

bilateral transactions are usually organized bilateral transactions because match 

making for such transactions takes place through broker or via online bulletin-board. 

However, medium and long duration bilateral transactions are normally direct-search 

bilateral transactions because participants conduct private search for match making 

with suitable partners. In general, match making for bilateral transactions is not a 

random process but rather depends on some systematic procedures, such as portfolio 

optimization.  

In multi-round bilateral negotiations for price and amount of energy, GenCos and 

LSEs can have mixed tasks that are both competitive and cooperative. A GenCo or an 

LSE has a cooperative task when it concedes from its previous-round offer or 

demand in an attempt to secure a bilateral transaction. The cooperative task stems 

from the fact that if a GenCo and an LSE can agree on a bilateral transaction then 

both participants can avoid risk of uncertain prices in day-ahead market. Besides the 

cooperative task, a GenCo or an LSE can also have a competitive task. A GenCo has 

a competitive task when it concedes in a restrained way in an attempt to secure a 

bilateral transaction at as high a price as possible. As a mirror image, an LSE has a 
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competitive task when it concedes in a restrained way in an attempt to secure a 

bilateral transaction at as low a price as possible.   

Participants in both annual Financial Transmission Rights auction and day-ahead 

market’s energy auction mostly have competitive tasks because all participants 

compete for a market share. Both of these auctions are prone to collusion in 

participants and exercise of market power by one or more participants. However, 

collusion in participants and market power aspects are not considered in this research. 

 Market participants have incomplete information about each other during all market 

operations. For example, participants are unaware of private risk preferences or 

profits of other participants. Furthermore, market participants can observe overall 

market outcomes but do not know details of underlying market operations. For 

instance, market operator only announces clearing prices and amounts in auctions but 

does not publicly release data submitted in participants’ bids. As a matter of fact, 

even the market operator does not know actual cost of a GenCo or actual benefit to 

an LSE but only knows data submitted in their bids. Therefore, each market 

participant and the market operator have incomplete information about others. 

2.4.2 Detailed Comparison of Both Market Designs 

A comparison of general aspects of prevailing wholesale electricity market designs in 

Europe and North America is presented in Table 2.3. Although there are considerable 

differences among markets within each continent, Wholesale Power Market Platform 

is considered to be the prevailing design for North America and Electricity Market 

Target Model to be the one for Europe in this chapter. Interestingly, Nord Pool has 

some peculiar features but also shares some characteristics of both designs so it is 

included in the comparison as a special case. Both the prevailing USA markets and 

most European markets have bulk bilateral forward trades followed by lesser day-

ahead trading. Until a few years ago, it was also true for Nord Pool but it is no longer 

the case now. 
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Table 2.3  General Comparison of Wholesale Electricity Market Designs of Europe and North 

America 

 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Model Wholesale Power 

Market Platform 

Nord Pool Electricity Market 

Target Model 

Interaction of 

Transmission 

and Market 

Operators 

ISO and RTO are 

combined into a 

single entity 

Power Exchange 

and TSOs are 

essentially 

independent 

organizations 

Power Exchanges 

and TSOs are 

essentially 

independent 

organizations 

Market 

Operator 

Single Power Pool  Single Power 

Exchange  

Multiple Power 

Exchanges  

Transmission 

Operator 

Single Transmission 

Operator 

National 

Transmission 

Operators 

National 

Transmission 

Operators 

Market 

Participation 

Mandatory or 

incentive-based  

Voluntary or open  Voluntary or open  

Ownership Public Public Private Power 

Exchanges, Public 

TSOs 

Volume of 

Day-ahead 

Auction 

Market & 

Forward 

Bilateral Trade 

More Bilateral Trade 

and Less Auction 

Market  

More Auction 

Market and Less 

Bilateral Trade 

More Bilateral 

Trade and Less 

Auction Market 
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Energy trading mechanisms and transmission arrangements in markets of the two 

continents are compared in Table 2.4 and Table 2.5 respectively. In preparation of 

these tables, research presented in [4] and [28] has been found particularly interesting 

and useful. Energy trading mechanisms in the two continents are compared in Table 

2.4. First three rows of Table 2.4 cover generator bidding and generation scheduling. 

In this regard, Nord Pool is same as other markets in the EU which are all distinctly 

different from the USA markets. In the USA markets, absence of blocks means 

generators express their no-load and start-up costs and consequently generators are 

incentive compatible. In the European markets, generators are unable to directly 

express their fixed costs but blocks allow expression of multi-period cost structures 

[28]. So both systems facilitate some means of recovering start-up and no-load costs 

of generation, one way or the other. 

Last four rows of Table 2.4 cover bids processing and its results in terms of nature of 

pricing. It is suggested in [27] that the objective function of overall cost 

minimization in the USA markets is synonymous, despite being mathematically 

different, to social welfare or surplus maximization in the European markets. 

Although, optimization procedures and underlying solution methodologies are not 

the same in the three cases discussed here, it appears that they have some similarities. 

However, despite the apparent similarities, there are striking differences among the 

three cases that become increasingly crucial, when actually implementing any 

particular type of auction for simulation purposes. 

Table 2.4  Comparison of Operations of Generators in Wholesale Electricity Markets of Europe 

and America 

 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Generator 

Hourly Bids in 

Day-ahead 

Market 

Cost-based Multi-part 

bids containing Fuel 

cost, No load cost 

and Start-up cost 

Price-based Single-

Part bids containing 

Price and Energy 

Volume 

Price-based Single-

Part bids containing 

Price and Energy 

Volume 
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 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Generator 

Data with Bids 

for Day-ahead 

Market 

Detailed generator 

data including 

operating and ramp 

limits and minimum 

up and down times 

Operating limits are 

implicit in the bid. 

No ramp limits or 

minimum up and 

down times are 

provided. 

Operating limits are 

implicit in the bid. 

No ramp limits or 

minimum up and 

down times are 

provided. 

Generator 

Block bids 

No block bids Multi-hour block 

bids 

Multi-hour block 

bids 

Generator 

Scheduling 

Partially Self-

Scheduling with 

centralized Unit 

Commitment 

Fully Self-

Scheduling without 

centralized Unit 

Commitment 

Fully Self-

Scheduling without 

centralized Unit 

Commitment 

Objective 

Function 

Overall Cost 

Minimization 

Social Welfare 

Maximization  

Social Welfare 

Maximization 

Optimization 

Procedure 

SCOPF  The optimization 

method is similar to 

SCOPF 

Optimization by 

Flow Based Market 

Coupling  

Underlying 

Programming 

Concept 

Mixed Integer 

Programming 

Not Known Mixed Integer 

Quadratic 

Programming or 

Mixed Integer 

Linear 

Programming 

variants of Mixed 

Integer 

Programming 
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 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Zonal/Nodal 

Pricing 

Nodal Pricing called 

Locational Marginal 

Price (LMP) 

Zonal Pricing by 

aggregating nodes 

into Zones 

Zonal Pricing called 

Market Clearing 

Price 

Linear/Non-

Linear Pricing 

Pay-as-Bid/Nonlinear 

consisting of an 

hourly reference 

price and an extra 

payment 

Uniform/Linear, 

only hourly price 

Uniform/Linear, 

only hourly price 

 

A comparison of transmission operation in the two continents can be seen in Table 

2.5. Transmission capacity allocation method for forward bilateral trades is not the 

same in all three markets but it will become effectively the same if only obligation 

FTRs are adopted for all interconnectors in Electricity Market Target Model. It will 

be so because Contracts for Difference in Nord Pool are financial instruments for 

hedging against congestion risk like FTR that are commonly used in the USA 

markets. However, unlike FTR that are issued by ISOs, Contracts for Difference are 

futures traded on NASDAQ OMX to cover congestion charge for inter-zonal 

bilateral trades due to price differential between neighbouring zones. In fact, use of 

FTRs as obligations in Electricity Market Target Model is put forward as the most 

important recommendation by a comprehensive recent report [4]. It is clear that if 

FTRs are introduced then it will be an important step towards reducing differences 

between electricity markets in Europe and North America. Furthermore, it is 

proposed that either type of transmission rights must be allocated through 

coordinated explicit auctions by TSOs of neighbouring zones. Intra-zonal physical 

bilateral trades take place subject to applicable transmission tariffs but without 

participating in implicit auction by power exchange. On the other hand, inter-zonal 

transmission capacity allocation method for day-ahead market is implicit auctioning 
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by market operator in all three cases discussed in Table 2.5. In Electricity Market 

Target Model, implicit auctioning for inter-zonal transmission capacity is proposed 

to be carried out via a single price coupling algorithm [32]. In the European day-

ahead markets, congestion rents are charged as per applicable tariffs for intra-zonal 

transmission capacity. In Nord Pool, like the USA, no simplifications to the 

transmission network are made when checking for flow feasibility. On the other hand, 

in Electricity Market Target Model, whole zone is modelled as a single node and all 

inter-zonal transmission lines for two adjacent zones are aggregated into a single 

interconnector for modelling [4]. It is sensible to model many real interconnectors by 

a single aggregated interconnector because a single control centre in each zone 

manages total available transmission capacity between two neighbouring zones. It 

can also be necessary to aggregate interconnectors because of commercially sensitive 

nature of data about individual interconnectors. 

Table 2.5 Comparison of Operation of Transmission in Wholesale Electricity Markets of Europe 

and America 

 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Transmission 

Capacity 

Allocation 

Method for 

Forward 

Bilateral 

Trades 

Financial 

Transmission Rights 

(FTR) are explicitly 

auctioned in a 

separate FTR market 

by RTO. 

Special Contracts 

for Difference are 

used for inter-zonal 

bilateral trades.  

Physical 

Transmission Rights 

as Options. OR 

Financial 

Transmission Rights 

(FTR) as options or 

obligations. 
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 Prevailing Design in 

North America 

Current Design in 

Nordic Countries  

Emerging Design 

for whole Europe 

Transmission 

Capacity 

Calculation 

Method for 

Day-ahead 

Market 

Locational Marginal 

Pricing 

Market Splitting Flow Based Market 

Coupling 

Transmission 

Capacity 

Allocation 

Method for 

Day-ahead 

Market 

Implicit Auction of 

all Transmission 

Capacity along with 

Energy traded 

through pool 

Implicit Auction of 

Inter-zonal 

Capacity. 

Congestion rent for 

Intra-zonal 

transmission 

Implicit Auction of 

Inter-zonal 

Capacity. 

Congestion rent for 

Intra-zonal 

transmission  

Transmission 

Network 

Constraints 

Fully taken into 

account and reflected 

in location based 

prices which can 

differ for each node 

Both inter-zonal and 

intra-zonal 

constraints are fully 

considered. 

Intra-zonal 

constraints are 

ignored and Inter-

zonal constraints are 

simplified. 

  

2.5 Conclusions 

In general, wholesale electricity markets have transmission constraints and dynamic 

environments. Both day-ahead market for energy and annual market for FTRs are 

organized markets. Decision making for bilateral transactions can involve two 

phases; match making and bilateral negotiations. Short duration bilateral transactions 

are usually organized bilateral transactions but medium and long duration bilateral 

transactions are normally direct-search bilateral transactions. The match making 

phase for deciding suitable trading partners is not a random process but rather 
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depends on some kind of systematic procedures. In multi-round bilateral 

negotiations phase for deciding price and amount of energy, GenCos and LSEs can 

have mixed tasks that are both competitive and cooperative. By comparison, 

participants in both annual Financial Transmission Rights auction and day-ahead 

market’s energy auction mostly have competitive tasks. Each market participant and 

the market operator interact among themselves with incomplete information about 

others. 

Despite initial reservations, all electricity markets in the USA with a day-ahead 

auction have already implemented (MISO, PJM) or are set to adopt some version of 

Wholesale Power Market Platform (SPP, ERCOT) in near future. In contrast, 

decentralized forward bilateral transaction along with centralized real time balancing 

is used in the rest of the USA. In EU, over the last few years, although electricity 

markets have gradually achieved market coupling over greater areas and with 

increasing sophistication, exact implementation details of Electricity Market Target 

Model are yet to emerge.  

A general comparison of electricity markets in the two continents reveals that they 

are overwhelmingly different. This implies that in general aspects Nord Pool is 

similar to the Electricity Market Target Model. However, Nord Pool has higher 

volume of bilateral trades as compared to auction market which is contrary to the 

general trend in Electricity Market Target Model. In addition, unlike private power 

exchanges in the rest of Europe, complete power market is in public sector in Nord 

Pool. While comparing operations of generators and results of bids processing in the 

two continents, it becomes clear that markets in the two continents are completely 

different. However, in terms of transmission management the Nord Pool mostly 

resembles Wholesale Power Market Platform, with the exception that for day-ahead 

market it uses implicit auction of inter-zonal capacity and congestion rent for intra-

zonal transmission in the same way as the Electricity Market Target Model. The 

process of bids handling has apparent similarities in all three markets as far as 

objective function is concerned but mathematical details of each approach are 

different from each other. 
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3 Review of Simulation Models and Techniques 

for Electricity Markets 

 

3.1 Introduction 

Emergence of competitive electricity markets and subsequent adjustments in market 

designs have encouraged market modelling for analysis and research. Overall models 

for electricity markets, composed of explicit modelling for both generation and load 

sides, can be broadly divided into game-theoretic equilibrium models and agent-

based simulation models. This chapter discusses some game-theoretic equilibrium 

models followed by a review of agent-based simulation models for electricity 

markets. In addition, it is highlighted that learning and optimization techniques for 

specific operational problems of individual market participants can contribute to 

overall simulation of an electricity market.  

Common characteristics of wholesale electricity market environments, discussed in 

the last chapter, are summarized as follows. In general, wholesale electricity markets 

have transmission constraints and dynamic environments. Both day-ahead market for 

energy and annual market for FTRs are organized markets. Decision making for 

bilateral transactions can involve two phases; match making and bilateral 

negotiations. Short-duration bilateral transactions are usually organized bilateral 

transactions but medium and long duration bilateral transactions are normally direct-

search bilateral transactions. Long-duration bilateral transactions are useful to secure 

investments for new generation resources. Further discussion of long-duration 

bilateral transactions is beyond the scope of this chapter.  

This chapter restricts discussion of bilateral transactions to organized short-duration 

and direct-search medium-duration bilateral transactions because these transactions 

hedge against uncertainty of day-ahead market prices and this thesis aims to achieve 

combined simulation of bilateral transactions and day-ahead market. These two types 

of bilateral transactions hedge risks of price fluctuations in day-ahead market. The 
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match making phase for deciding suitable trading partners is not a random process 

but rather depends on some kind of systematic procedures. In multi-round bilateral 

negotiations phase for deciding price and quantity of energy, GenCos and LSEs can 

have mixed tasks that are both competitive and cooperative. By comparison, 

participants in both annual Financial Transmission Rights auction and day-ahead 

market’s energy auction mostly have competitive tasks. Each market participant and 

the market operator interact among themselves with incomplete information about 

others. Suitability of simulation models/techniques reported in literature will be 

examined and discussed on the basis of criteria characteristics (written in italics) in 

this paragraph. 

Prior to further discussion on agent based modelling, it is vital to define the meaning 

of agent and environment in context of wholesale electricity market simulations. A 

market participant can be represented by a software agent in simulation. Simulated 

environment of an agent has two distinct parts; other agents and overall market. A 

simulation may model behaviours of agents in the environment as stationary, 

dynamic or adaptive strategies. It is critical to differentiate among stationary, 

dynamic and adaptive strategies for the purposes of this thesis. An agent has a 

stationary strategy if it shows deterministic behaviour that does not change after 

repeated interactions with the environment. An agent has a dynamic strategy if it 

modifies its behaviour after experiencing overall dynamics of its environment. An 

agent has an adaptive strategy if it adjusts its behaviour in reaction to an opponent’s 

responses during interactions with that individual opponent.  

Moreover, a simulation may consider conditions of overall market environment, for 

instance prices of organized market, to be stationary or dynamic. Some simulations 

assume that each market participant and/or the market operator interact among 

themselves with complete information about others. In addition, some simulations 

ignore transmission constraints on bilateral transactions. 

In a simulation, market participants may have purely cooperative or purely 

competitive or both cooperative as well as competitive tasks. Tasks that have 

cooperative as well as competitive elements are called mixed tasks. Game theoretic 
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concepts are necessary to understand and describe behaviours of participants in 

simulations of electricity markets. Since game theory is useful for mathematical 

modelling of participants’ strategic behaviours, some necessary game theoretic 

concepts are presented here.  

In team efforts, participants are cooperative with each other because they have a 

common goal. Therefore team games are known as common-payoff games. By 

comparison, participants of a two-player game will be very competitive if there is no 

draw and only the winner gains $1000 and the loser loses that $1000. If gain of one 

participant is exactly the same as the loss of the other participant then it is called a 

zero-sum game.  

In multi-round bilateral negotiations phase for deciding price and quantity of energy, 

GenCos and LSEs can use mixed behaviours. If a GenCo and an LSE can secure a 

bilateral transaction then it is a win-win scenario because both parties gain some 

utility and reduce their risks. Such a win-win scenario is called a general-sum game 

because utility gains of GenCo and LSE add up to some general non-zero number.  

3.2 Approaches for Overall Modelling of Bilateral 

Transactions in Electricity Markets 

It is crucial to model both generation and load to gain better insight into bilateral 

transactions. Overall models for electricity markets, composed of explicit modelling 

for both generation and load, can be broadly categorized as game-theoretic 

equilibrium models and agent-based simulation models. This section discusses three 

game-theoretic equilibrium models followed by a review of agent-based simulation 

models for electricity markets, with emphasis on modelling of bilateral trades. 

3.2.1 Game Theoretic Equilibrium Models 

Game-theoretic equilibrium models lead to optimal solutions but these are based on 

an assumption that each participant has complete information about strategies of 

other participants [1]. Stakelberg equilibrium solution has been used for match 

making in [2] and [3]. Nash Equilibrium and Nash Bargaining are two game-
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theoretic models that have been used in simulation of bilateral negotiations for 

bilateral electricity trades.  

An application of Stakelberg equilibrium solution for match making in [2] and [3] 

assumes that all buyers are cooperative with each other and represented by a single 

decision maker. The same is assumed for all sellers. However, the two representative 

decision makers are assumed to be mutually competitive. It further assumes that both 

decision makers have complete information about desires and objectives of all 

market participants.  

Limitations of Nash Bargaining are that it can only involve two players and it is a 

fully cooperative game that ignores competition. For bilateral transaction between 

two players at the same node (and therefore with no need to consider transmission 

constraints) it was assumed in [4] that each player has complete information of 

other’s private utility function.  

Nash Equilibrium can involve two or more players but it assumes complete 

information about equilibrium strategies of other players. Furthermore, it is a fully 

competitive game that has been applied to bilateral negotiation for electricity trades 

in a system consisting of three generators and two loads [5]. However, work in [5] 

has been criticized in [6] by proving that the suggested Nash equilibria are 

inconsistent with the Nash Equilibrium. In consequence, Nash Equilibrium has not 

yet been proved suitable for representation of bilateral electricity trades.  

Therefore, the weakness of the game-theoretic models for simulation of bilateral 

transactions among multiple participants with incomplete information is that they 

assume complete information. In contrast, agent-based models allow agents to keep 

their information private and therefore better suit bilateral interaction of multiple 

participants with incomplete information. Advantages of agent-based models are 

discussed in the following subsection. 
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3.2.2 Agent-based Simulation Models 

Merits of agent based simulation vis-á-vis traditional methods are discussed in [7], 

[8] and [9]. These merits include private goal-directed learning and self-

determination by market participants [9]. Another merit of this approach is ease of 

modelling complex behaviour of a variety of system participants in large scale 

systems [8]. Bilateral transactions are an important aspect of the electricity markets 

that can perhaps best be represented in agent based simulation models [7] because of 

following reasons. Agent-based models facilitate analysis of distributed decision 

making such as match making for direct-search bilateral transactions and bilateral 

negotiations. Furthermore, participants have incomplete information about others 

because each participant is modelled as a separate agent with private information. As 

a result, agent-based simulation models can cater competitive, cooperative or mixed, 

behaviours among multiple participants. 

Comprehensive literature reviews of a large number of agent-based simulation 

models of electricity markets are available in [7], [8], [10], [11] and [12]. For 

instance, a comparison table in [12] lists fifty papers that report agent-based 

simulation models for wholesale electricity markets. However, research presented in 

this thesis focuses on models that are suitable for combined simulation of day-ahead 

auction and bilateral transactions. Consequently, only following three categories of 

agent-based simulation models are discussed here: (i) agent-based simulation models 

which are capable of the combined simulation; (ii) open-source agent-based 

simulation models, with a potential of extension for the combined simulation and (iii) 

agent-based simulation model developed by this research.  

Table 3.1, adapted from a table in [12], presents a comparison of only these three 

categories of agent based simulation models. In addition to the models that were  

presented in the table in [12], Table 3.1 also includes two other, well known, models 

EMCAS [13] and NEMSIM [14]. Furthermore, Table 3.1 includes Provenzano’s 

model [15] as well as updates in capability of MASCEM [16].  

As mentioned earlier, bilateral transactions can be direct-search or organized. 

Decision making for bilateral transactions consists of two phases called match 
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making and bilateral negotiations. The first four models in Table 3.1, PowerACE, 

Marketecture, Provenzano and Bower&Bunn are non-commercial and not useful for 

medium-duration direct-search bilateral transactions because they model short-

duration organised bilateral transactions, as discussed in the next two paragraphs. 

In Marketecture model presented in [17], match making of buyers and sellers is 

determined randomly or by the software user. Then, bilateral negotiation is 

simulated in a single software module that has complete information of generators 

cost functions and consumers demand functions. On the other hand, PowerACE is 

reported to use a bulletin-board facilitator in [18] for match making of organised 

bilateral transactions. Buyers and sellers continuously post their bids to the bulletin-

board and match making is unpredictable because it takes place whenever a buyer’s 

bid matches a seller’s bid. PowerACE achieves match making for organised bilateral 

transactions by a systematic approach. Furthermore, since PowerACE achieves exact 

match making by a bulletin-board, there is no need for bilateral negotiations. As 

suggested in [18], “the realistic representation of bilateral transaction and 

matchmaking in forward trading is still subject to further research”. The term 

“realistic” can be interpreted to mean match making for direct-search bilateral 

transactions by a systematic approach. In addition, it can mean bilateral negotiations 

between participants with incomplete information about each other. In Bower&Bunn 

[19], bids for short-duration bilateral transactions during next day and day-ahead 

auction are collectively cleared by market operator. Therefore, market operator has 

complete information of bid prices and quantities of all market participants. 

In Provenzano [15], each agent constructs its own weighted tree of desired attributes 

like price and energy quality. Then, assuming complete information of all agents’ 

attributes, an algorithm determines a similarity measure for every agent with its 

opponent agents. After match making, every agent lists its opponent agents in 

decreasing order of similarity. Each agent solely relies on time-dependent strategy 

and starts negotiation with the first opponent in the list. If negotiation fails with the 

first opponent in the list then second opponent is chosen and so on. However, a 

drawback of this negotiation approach appears if buying and selling agents do not 

have each other at the same level in their lists, assuming same negotiation time 
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preferences for both agents. This means that if the level is not the same then when a 

buyer is interested in a particular seller, the seller may be interested in another buyer. 

At a later time, that seller may become interested in the earlier buyer but since the 

buyer has already exhausted its option of engaging with the particular seller, the 

buyer is no more interested in the seller. A sophisticated negotiation approach can 

solve this problem if it facilitates simultaneous negotiations with a number of 

opponent agents for different power quantities and prices. However, in that case a 

negotiating agent will have to decide how much of power quantity to trade with 

which particular agent and at what price.  

The subsequent three models in Table 3.1 are EMCAS, NEMSIM and MASCEM 

which have been marketed as commercial software. Overviews of these three models 

are presented in [13], [14] and [16] respectively. These overviews indicate that 

bilateral transactions are included in these models. For instance, use of private risk 

aversion factors, price expectations and price volatility is mentioned for EMCAS 

[13]. Similarly, feedback loops between day-ahead auction and bilateral transactions 

market representing hedging decisions are mentioned in [14] for NEMSIM. Agents 

in MASCEM use time-dependent and behaviour-dependent negotiation strategies 

[16]. Full mathematical models of match making or bilateral negotiations are not 

publicly available to research community for commercial and proprietary software 

like EMCAS, NEMSIM and MASCEM.  

It is important to note that compared to above-discussed agent based simulation 

models, AMES lacks modelling of bilateral transactions and is the only open source 

software. Advantages and some issues of open source software development for 

electricity markets research are discussed in [20]. There are some general design and 

development issues with all open source software. Nevertheless, open source 

software provides free access and detailed understanding of implemented model as 

compared to proprietary software. This makes it possible to modify and extend the 

open source software for specific research and training needs. AMES already models 

a day-ahead market for auction of energy. Because of that, this research has 

developed new software that builds on AMES by incorporating models of bilateral 

transactions and financial transmission instruments. The new software is named 
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“Financial transmission instruments, energy Auction and Bilateral transaction 

Simulator for wholesale electricity markets”, abbreviated as FABS. AMES and 

FABS are described in the following subsections respectively.  

Table 3.1 Comparison of New and Previous Agent-based Simulation Software for Wholesale 

Electricity Markets 

Model DP UP LMP ARR FTR TC BTM DAM RTM COS OSS 

PowerACE [18]            

Marketecture [17]            

Bower&Bunn [19]            

Provenzano [15]            

EMCAS [13]             

NEMSIM [14]            

MASCEM [16]            

AMES            

FABS            

DP = Discriminatory Price, UP = Uniform Price, LMP = Locational Marginal Price, TC = 

Transmission Constraints, ARR= Auction Revenue Rights, FTR = Financial Transmission Rights, 

BTM = Bilateral Transactions Market, DAM = Day-ahead Market, RTM = Real-Time Market, COS = 

Commercial Software, OSS = Open Source Software  

3.2.2.1 AMES Software 

In 2003, a Wholesale Power Market Platform (WPMP) was proposed for USA-wide 

adaption by Federal Energy Regulatory Commission (FERC). AMES was developed 

for systematic experimental testing of the WPMP design proposed by the FERC [21]. 

In [22], AMES is described as a computational laboratory for research, teaching and 

training. A number of ISOs, including Midcontinent ISO (MISO) and ISO New-

England (ISONE), have adapted some version of the WPMP design. Architecture of 
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AMES is based on business practice manuals for MISO/ISONE [23]. Main features 

of AMES are described in [22] and outlined as follows. 

AMES models a transmission network managed by an ISO. A number of energy 

traders are distributed across the nodes of transmission network. The energy traders 

include GenCos that are bulk-energy sellers and LSEs that are bulk-energy buyers. 

The objective of ISO is maximization of total net benefits subject to generation and 

transmission constraints. Therefore, ISO conducts a day-ahead auction for energy 

settled by LMP.  

The objective of each LSE is to secure energy for loads that it serves and thus, each 

LSE submits a demand bid to ISO for day-ahead auction. The model assumes that 

LSEs do not have learning capabilities and submit user-defined hourly demand bids. 

The objective of each GenCo is to secure maximum possible profits every day. Each 

GenCo submits an hourly supply offer to ISO for day-ahead auction. In contrast to 

LSEs, each GenCo has learning capability to modify its supply offers in order to 

meet its objective.  

ISO receives demand bids for LSEs and supply offers from GenCos, and then clears 

day-ahead auction by hourly DC Optimal Power Flow described in [24]. ISO 

publicly declares auction results including GenCos’ energy supply commitments and 

LMPs. After announcement of daily market clearing results by ISO, each GenCo 

reviews its performance and uses reinforcement learning, described in [25], to 

improve its supply offers for the next day.  

AMES was developed as agent-based and open-source software to facilitate future 

extensions in its capabilities. In [26], AMES architecture is graphically illustrated 

and it is indicated that bilateral and FTR markets need to be incorporated in future 

software. 

3.2.2.2 FABS Software 

AMES models a day-ahead energy auction but no bilateral transactions or financial 

transmission instruments. Building on AMES, this research has developed FABS 

that incorporates models of bilateral transactions and financial transmission 
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instruments. As pointed out in previous chapter, despite some common 

characteristics, market designs of the EU and the USA are overwhelmingly different. 

Since day-ahead market in AMES follows model of the USA markets, FABS also 

models operations in the wholesale electricity markets of the USA. Like AMES, 

FABS is also based on information in business practice manuals and training 

materials for MISO/ISONE. However, in the same way as AMES, FABS is not 

intended to model or test market design of any particular ISO, including MISO and 

ISONE.  

The main contribution of FABS is to model bilateral transactions and financial 

transmission instruments in wholesale electricity markets of USA in general. In 

addition, FABS has integrated the models of bilateral transactions and financial 

transmission instruments with day-ahead auction model that existed in AMES. 

Therefore, FABS is capable of combined simulation of financial transmission 

instruments, bilateral transactions and day-ahead auction for energy. Complete model 

of FABS is presented in Chapter 4.  

Features of FABS are also compared with previously existing agent based simulation 

software in Table 3.1. The table shows that only FABS includes financial 

transmission instruments (Financial Transmission Rights and Auction Revenue 

Rights). 

The following three sections include reviews of simulation techniques for match 

making, bilateral negotiations and financial transmission instruments in wholesale 

electricity markets of the USA. These literature reviews focus on match making and 

bilateral negotiations because this thesis aims to model decentralized medium-

duration bilateral transactions. In addition, the review includes financial transmission 

instruments because this thesis intends to model these along with bilateral 

transactions. 

3.3 Simulation Techniques for Match Making 

Before exploring simulation techniques for match making, it is essential to note the 

following criteria characteristics (written in italics) for determining suitability of a 
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technique. As mentioned earlier, short duration bilateral transactions are usually 

organized bilateral transactions but medium-duration bilateral transactions are 

normally direct-search bilateral transactions. The match making phase for deciding 

suitable trading partners is not a random process but rather depends on some kind of 

systematic procedures. Simulation techniques for match making of organized 

bilateral transactions and direct-search bilateral transactions are now discussed in 

following two subsections. 

3.3.1 Organized Match Making 

In [2] and [3], each agent has a tree structure of electricity attributes for bilateral 

transaction, where each branch of the tree represents a specific attribute of electricity, 

such as price or quantity. An agent assigns weights, which add up to 1.0, to the 

branches of its tree. The values of weights represent importance of corresponding 

attributes for the agent. It is assumed that sellers are cooperative with sellers and the 

same trend prevails among buyers. Because of this, all sellers are represented by a 

single sellers’ decision maker. Similarly, all buyers are represented by a buyers’ 

decision maker which runs an algorithm, from buyers’ point of view, to determine a 

similarity measure for every buyer agent with all seller agents. The sellers’ decision 

maker runs another algorithm, from sellers’ point of view, to determine a similarity 

measure for every seller with all buyer agents. Both algorithms require complete 

information about private weights of electricity attributes for all buyer and seller 

agents.  

Then, the two decision maker agents sequentially use “leader-follower” concept of 

Stakelberg game solution, to get best matched seller-buyer pairs. Decision makers of 

buyers and sellers assume role of “leader” and “follower” respectively. Once a seller-

buyer pair is matched, both are eliminated from the sequential match making 

process. In the subsequent iteration of the match making process, the two decision 

makers match most suitable seller and buyer agents among the remaining agents. The 

iterations continue until either all buyer or seller agents have been matched. It is 

argued that use of collective decision makers avoids decision conflict and hence 

gives optimal results.  
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In addition to [2] and [3], organized match making is also used in [15] and [27]. 

Instead of any systematic approach, randomly organized match making is modelled 

in [27] whereas organized match making in [15] has already been explained in sub-

section 3.2.2. 

Above discussion shows that match making in [2], [3], [15] and [27] is not suitable 

for direct-search bilateral transactions because it is based on organized match 

making. Simulation of match making for direct-search bilateral transactions is 

described below. 

3.3.2 Match Making by Direct-search 

Day-ahead auction involves risks like sudden price spikes and entering into 

appropriate bilateral transactions can hedge such risks. As a consequence, decision 

making for entering into bilateral transactions can be improved by proper risk 

management. In electricity markets, each GenCo and LSE can do its match making 

by determining its own optimal engagements by portfolio optimization. A portfolio is 

a range of engagements held by a GenCo or an LSE. The portfolio optimization 

enables a participant to explore all available engagement options for bilateral 

transactions throughout the market in a systematic way. Participants can use private 

portfolio optimization, instead of some random process, for match making in direct-

search bilateral transactions.   

Markowitz [28] is pioneer of modern portfolio theory which is widely used to 

determine an optimal portfolio as a remedy for uncertainty so that risk can be 

constrained below a desired level. “The portfolio theory consists of principles 

underlying analysis and evaluation of rational portfolio choices based on risk-return 

trade-offs and efficient diversification” [29]. Portfolio optimization methods 

determine how much energy, if any, should be traded through each of the bilateral 

transactions, and at what price. These methods also evaluate utility of proposed 

bilateral transactions.  

Portfolio optimization methods of GenCos [29], [30] and LSEs [31] are neither used 

in agent-based systems nor accommodate transmission constraints. However, the 
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portfolio optimization methods could be modified to accommodate transmission 

constraints as well as used in agent-based systems. In that case, portfolio 

optimization methods will be helpful in match making for direct-search bilateral 

transactions.  

3.4 Simulation Techniques for Bilateral Negotiation 

Different parts and stages of negotiation are presented in [1] and [32] in general 

terms, and they are helpful in understanding the whole phenomenon of bilateral 

negotiations. Four negotiation protocols are discussed in [32]: (i) Nash demand; (ii)  

ultimatum; (iii) alternating offers and (iv) monotonic concession. In case of Nash 

demand both participants make simultaneous moves. In ultimatum protocol, one 

participant makes a “take it or leave it” offer to the other participant. Consequently, 

the other participant has only two options: accept or refuse. Alternating offers is a 

more flexible protocol that facilitates multi-round bilateral negotiations. Participants 

cannot insist on their position in the last round and they are forced to make 

concessions in each round or quit. Monotonic concession protocol assumes that both 

participants make simultaneous moves. For a maximum of two consecutive rounds, 

each participant is allowed to insist upon its position. However, a participant has to 

concede in every third round, at the least. In consequence, participants can hold onto 

their position for at least two consecutive rounds and do not have to make 

concessions in each and every round. 

Before exploring simulation techniques for bilateral negotiation, it is important to 

recall following criteria characteristics (shown in italics) for determining suitability 

of a technique. As mentioned earlier, GenCos and LSEs can use mixed behaviours in 

multi-round bilateral negotiations. If a GenCo and an LSE can secure a bilateral 

transaction then it is a win-win scenario because both sides gain some utility and 

reduce their risks. Such a win-win scenario is called a general-sum game because 

utility gains of GenCo and LSE add up to some general non-zero number. 

Furthermore, prices of organized markets are dynamic and market participants 

interact among themselves with incomplete information about others. Heuristic and 
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Learning techniques have been widely used by researchers for simulation of bilateral 

negotiation because of reasons discussed next. 

3.4.1 Heuristic Techniques 

Heuristic techniques give good (though not optimal) results while using an 

environment of incomplete information about other participants [1]. Heuristic 

techniques for multi-round bilateral negotiations are normally based on a time-

dependent strategy, a behaviour-dependent strategy or a resource-dependent strategy 

[33] and [34]. Two or more strategies can be combined and applied all the time [35], 

can be assigned relative weights that may vary with time [36] or can be interchanged 

with the passage of time [37]. According to [37], the range of strategies and policies 

defined in [33] and [34] are “borrowed from good behavioural practice in human 

negotiation” so that agents can generate offers and evaluate proposals. 

Agent behaviours in multi-round bilateral negotiations can be divided into three 

broad categories; yielding, contending and linear. An agent shows yielding behaviour 

if it makes big concessions in successive rounds. If an agent makes little concessions 

in successive rounds then it has contending behaviour. An agent shows linear 

behaviour if it shows uniform concessions in successive rounds.  

If an agent has a deadline to complete multi-round bilateral negotiations then it can 

use time-dependent strategy. An agent can use yielding, contending and linear 

behaviours for time-dependent strategy. Three types of time-dependent strategies are 

discussed as follows. In first type, agent uses yielding behaviour in the initial rounds 

and contending behaviour in the final rounds. In second type, agent uses contending 

behaviour in the initial rounds and yielding behaviour in the final rounds. In third 

type, agent uses linear behaviour in each round of multi-round bilateral negotiations.  

An agent using behaviour-dependent strategy for bilateral negotiations imitates its 

opponent’s behaviour as a tit-for-tat. Such an agent uses linear or yielding behaviour 

if its opponent shows linear or yielding behaviour respectively. However, if both 

agents use behaviour-dependent strategy and contending behaviour then there is risk 

that agent positions may not converge quickly. If their positions do not converge by 
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the last round then bilateral negotiation will fail. In bilateral negotiations for a 

resource, an agent may use a resource-dependent strategy by using contending 

behaviour if the resource is in plenty and yielding behaviour if resource is in short 

supply. 

A broker agent simultaneously mediates between all buyer and seller agents for 

multiple attributes in [38]. The broker ensures that private preferences of agents are 

hidden from each other. Time constrained and organised negotiations are simulated 

between the seller and buyer agents; preferences of agents can vary over time for 

multiple attributes. All agents use time-dependent strategy for negotiations; at 

different time steps, agents can choose different degrees of concessions for opponent 

agents. After match making as shown in [3], agents use a combination of time-

dependent strategy and behaviour-dependent strategy for bilateral negotiations in 

[35]. 

If negotiating agents only depend on their behaviour-dependent strategies and resort 

to contending behaviour then there is risk that agent positions may not converge and 

consequently bilateral negotiation may fail. However, time-dependent strategy is a 

simple method that can lead to successful bilateral negotiations. In [39] and [40], 

time-dependent strategy is combined with an assumed measure of bilateral 

transaction reward that depends on energy prices in a specific price range. 

3.4.2 Learning Techniques 

Learning techniques allow market participants to discover, over a course of repeated 

interactions, private intentions of others and accordingly adapt their negotiation 

strategies for greater financial gains. Four classes of learning techniques are listed in 

[1] as common choices of negotiators. These broad classes include principle-based or 

didactic learning; learning by feedback or via information revelation; learning by 

analogy or analogical learning and observational learning or imitation. A number of 

learning techniques can also be used for simulating negotiation among intelligent 

agents [32]. Some of the most promising learning techniques for bilateral 

negotiation are discussed as follows.  
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3.4.2.1 Reinforcement Learning 

In reinforcement learning, if an action leads to favourable results then tendency to 

implement that action should be reinforced, otherwise the tendency should be 

reduced [41]. An agent using reinforcement learning develops association between 

states and actions in the form of “if-then”: behavioural rules which decide what 

action has to be taken in a particular state. After execution of a particular “if-then” 

rule its outcome is used to record whether it was a good decision and this determines 

probability of choosing the “if-then” rule in future.  

It is important to differentiate between single-agent and multi-agent reinforcement 

learning. Single-agent reinforcement learning is formally modelled as the Markov 

decision process. The Markov decision process is defined for a discrete finite set of 

environment states and a discrete finite set of agent’s actions. The definition also 

includes a state transition probability function and agent’s expected reward function 

[42] [43]. The state transition function and agent’s reward function (the dynamics of 

the system) remain stationary (the same) and do not vary over time. Therefore the 

Markov decision process has a basic property of being stationary [43]. Single-agent 

reinforcement learning assumes that the agent environment remains stationary 

because single-agent reinforcement learning is based on the Markov decision process. 

Furthermore, proof of convergence for single-agent reinforcement learning is based 

on the assumption that environment remains stationary.  

The assumption of stationary environment does not remain valid in the case of multi-

agent reinforcement learning. In a multi-agent system, environment of an agent 

contains other autonomous agents that are able to learn and adapt. If an agent 

environment contains even one other autonomous learning agent then the 

environment is dynamic and can undergo unpredictable changes over time. Therefore, 

multi-agent reinforcement learning must consider dynamic nature of an agent’s 

environment. Kinds of multi-agent reinforcement learning are discussed after single-

agent reinforcement learning. 
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Single-agent Reinforcement Learning for Multi-agent Systems 

Single-agent reinforcement learning can be extended to multi-agent systems if each 

agent assumes that its environment is stationary. However, such an extension can fail 

if an opponent learns from history of interactions and adapts its actions accordingly. 

Extensions of single-agent reinforcement learning for zero-sum and common-payoff 

games have shown more conclusive results than extensions for general-sum games 

[44]. For instance, extensions of single-agent reinforcement learning for common-

payoff games have shown good results in robotic domains [45] and [46]. Authors of 

[47] provide insights into how single-agent reinforcement learning works for 

common-payoff games. However, [47] does not offer similar discussion for zero-sum 

or general-sum games. 

A number of research papers report attempts of extending single-agent reinforcement 

learning for general-sum scenario of bilateral negotiations in multi-agent systems. In 

particular, genetic algorithms, Q-learning and Erev & Roth types of single-agent 

reinforcement learning (see Figure 3.1) have been tried. Some of the attempted uses 

of genetic algorithms, Q-learning and Erev & Roth learning for bilateral negotiations 

in multi-agent systems and differences between evolutionary, anticipatory and 

reactive reinforcement learning are discussed as follows. 

 

Figure 3.1  Types of Single-Agent Reinforcement Learning 
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Genetic Algorithms 

In general, evolutionary reinforcement learning is useful if an agent is unable to 

accurately sense the state of its environment [41]. However, it has at least two main 

limitations. Firstly, evolutionary approach is only effective if the environment has a 

sufficiently small number of states [41] [48]. Secondly, an agent using evolutionary 

reinforcement learning does not learn while interacting with its environment [41] and 

delays learning until it has finished its interaction with the environment [48]. 

Methods that can capture and utilize behaviour of individual interactions can be 

highly efficient as compared to evolutionary methods in many applications [41], such 

as multi-round bilateral negotiations. 

Genetic algorithms are a specific kind of evolutionary reinforcement learning as 

shown in Figure 3.1. A number of research papers are listed in [32] and [49] that use 

genetic algorithms for simulation of bilateral negotiations. For instance, [49] uses a 

genetic algorithm to simulate multi-round bilateral negotiation in a two agent system 

consisting of a seller and a buyer.  The agents have incomplete information but 

dynamic market conditions, for instance history of dynamic prices in organized 

market, are not mentioned. Furthermore, only seller agent uses the genetic algorithm 

and buyer agent uses a stationary strategy during multi-round negotiation. In brief, 

seller agent has used genetic algorithm as a single-agent reinforcement learning in a 

stationary agent-based environment. Therefore, [49] is not suitable for simulation of 

bilateral negotiations in a dynamic environment like electricity market. 

Q-Learning 

Some problems are simple because agent is only concerned with immediate rewards. 

However, in other problems, like bilateral negotiations, it is also important to 

consider future consequences or rewards of current actions [50] in addition to 

immediate rewards. Therefore, an anticipatory reinforcement learning technique, 

such as Q-learning, looks promising for bilateral negotiation because agent wants to 

know the effects of its actions on future. 

Q-learning was presented by Christopher Watkins in 1989 as a result of his PhD 

research [51] at the University of Oxford. The single-agent Q-learning is an iterative 
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method to estimate values of environment states stored in an arbitrarily initialized 

table. The table is called Q-table and can represent a finite number of possible states 

for a particular environment. Values of visited states in the Q-table are updated after 

an iteration of Q-learning. The single-agent Q-learning is useful for stationary 

systems with finite states if all states can be represented in the form of a Q-Table. 

The single-agent Q-learning is not intended for environments that have infinite 

number of states or dynamic environments. Therefore, application of single-agent  

Q-learning is not suitable for environments with very large number of states because 

of prohibitively large storage space required for Q-table values.  

A number of research papers, including [52], [53] and [54] have reported use of Q-

learning for bilateral negotiation problem. In [52], a Q-learning algorithm is 

proposed for multi-round bilateral negotiation in e-commerce. The Q-learning 

algorithm is tested in a two agent system consisting of a seller and a buyer.  Both 

seller and buyer agents use the Q-learning algorithm for dynamic strategies during 

multi-round bilateral negotiation. However, dynamic market conditions, for instance 

history of dynamic prices in organized market, are not considered. Furthermore, no 

details of Q-table implementation are available in [52]. Therefore, both agents have 

used the Q-learning algorithm as single-agent reinforcement learning in a partially 

dynamic environment. Since [52] does not consider dynamic market conditions, such 

as history of dynamic prices in organized market, it is not suitable for simulation of 

bilateral negotiations in a dynamic environment like electricity market. 

A simplified Q-table is presented in [53] for bilateral negotiation of short duration 

transactions for only next week. A number of seller and buyer agents are included in 

the simulation and only seller agents learn dynamic strategies by single-agent Q-

learning. The Q-table of a seller agent includes possibility of only four environment 

states and four actions are available to the seller agent. A seller agent determines 

state of the environment from percentage of its previously accepted offers for 

bilateral transactions. One of the available actions considers history of dynamic 

prices in organized market to set new bilateral transaction offers. Authors of [53] 

acknowledge that there can be many other ways of implementing Q-learning and do 

not claim an optimal implementation. Although [53] considers dynamic environment, 
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proposed Q-table is only useful for single-round decision of repeated short-duration 

transactions. The Q-table cannot be helpful for multi-round bilateral negotiations for 

medium-duration transactions.  

A relatively larger Q-table is presented in [54] that considers ten states of 

environment and ten actions available to an agent in a two agent system. The Q-table 

has been used for only simulating repeated multi-round bilateral negotiations in a 

market context. In general, both bilateral negotiations and organized trading exist in 

markets and affect each other.  However, the Q-table does not capture the history of 

dynamic prices in organized trading on subsequent bilateral negotiations. In fact, the 

Q-table only considers dynamic interaction between a seller and a buyer agent during 

multi-round bilateral negotiations. The Q-table assumes that market conditions, such 

as prices of organized market, remain stationary throughout the simulation. 

Therefore, both agents have used the Q-learning algorithm as single-agent 

reinforcement learning in a partially dynamic environment. Since [54] does not 

consider history of dynamic prices in organized market, it is not suitable for 

simulation of bilateral negotiations in electricity markets. 

Erev & Roth Learning 

As a side note, Q-learning is compared with another learning algorithm known as 

Erev & Roth in [54]. Figure 3.1 shows that Erev & Roth is a kind of reactive 

reinforcement learning whereas Q-learning is a type of anticipatory reinforcement 

learning. It is shown in [54]  that Erev & Roth based agents cannot learn consistent 

behaviour and fail to achieve sequential bargaining. In fact, Erev & Roth mostly 

resulted in a single-round negotiation. The single-round negotiation is analogous to 

use of Erev & Roth for learning to improve daily submission of hourly bids in day-

ahead market simulation in AMES [25]. It is acknowledged in [25] that the use of 

single-agent learning in a multi-agent system does not guarantee convergence due to 

system dynamics. Therefore, Erev & Roth algorithm is not suitable for bilateral 

negotiations because these negotiations are multi-round endeavours.  

 From the above discussed applications of single-agent reinforcement learning it can 

be concluded that such approaches fail to capture effect of dynamic prices in 
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organized market on subsequent medium-duration bilateral transactions. In addition, 

some of the discussed applications fall short of simulating medium-duration bilateral 

transactions by multi-round bilateral negotiations. In general, applications of single-

agent reinforcement learning in multi-agent systems do not have solid theoretical 

foundations because these applications ignore the assumption of a stationary 

environment. Suitability of multi-agent reinforcement learning for simulation of 

bilateral negotiations is discussed as follows. 

Multi-agent Reinforcement Learning 

A number of multi-agent reinforcement learning techniques are presented in [42] for 

competitive, cooperative and mixed tasks. For each kind of task, the techniques are 

further divided in terms of static and dynamic environments in [42]. Discussion in 

this chapter restricts to mixed tasks in dynamic and general-sum scenarios. Figure 3.2 

shows the multi-agent reinforcement learning techniques that are applicable to mixed 

tasks in dynamic and general-sum scenarios.  

  

Figure 3.2  Types of Multi-Agent Reinforcement Learning Techniques for Mixed Tasks, 

Dynamic Environments and General-Sum Scenarios 
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None of the techniques shown in Figure 3.2 is reported for simulation of bilateral 

negotiations in [42]. Suitability of agent-independent, agent-aware and agent-

tracking methods, in general, is discussed below for simulation of bilateral 

negotiations. 

Agent-Independent Methods 

These methods do not require an agent to be aware of other agents or track intentions 

of other agents. For that reason, these are called agent-independent methods. Agent-

independent methods use game-theoretic solvers, with complete information about 

all agents, to evaluate state values and policies for all agents [42]. As a result, agent-

independent approaches are not suitable for bilateral negotiations between agents 

that have incomplete information about each other.  

Agent-Aware Methods 

Agent-aware methods use heuristics to adapt to other agents but without guarantee of 

convergence [42]. For instance, an agent-aware method can use heuristic behaviour-

dependent strategy for bilateral negotiations. As discussed in subsection 3.4.1 on 

Heuristic Techniques, if both agents use behaviour-dependent strategy and 

contending behaviour then there is risk that agent positions may not converge and 

consequently bilateral negotiation may fail. Use of an agent-aware method is not 

recommended, without support of additional techniques, because of non-convergence 

risks. 

Agent-Tracking Methods 

Agent-tracking methods estimate strategies of other agents to adapt appropriate 

responses [42]. For instance, an agent can estimate ultimate price of its opponent 

from interactions in multi-round bilateral negotiations by Bayesian learning, 

discussed in next section. The learning agent can then adapt its offers to get a more 

favourable outcome from bilateral negotiations. This example shows that agent-

tracking methods can facilitate bilateral negotiations between agents having 

incomplete information about each other. 
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3.4.2.2 Supervised Learning 

In supervised learning, an agent generally learns from examples in a set of training 

inputs and outputs provided by an intelligent supervisor. For example, Neural 

Networks that are composite models of supervised learning (see Figure 3.3) are 

useful for supervised learning in pattern recognition etc. However, an agent with 

incomplete information may itself learn from examples of its interaction with an 

opponent by supervised learning. For instance, a supervised learning agent can 

estimate types or intentions of its opponents in bilateral negotiations. Bayesian 

classifier and Bayesian learning are basic and advanced models (see Figure 3.3) of 

supervised learning that are useful for simulating bilateral negotiations in multi-

agent systems. These two techniques are discussed in the following two subsections. 

 

Figure 3.3  Kinds of Supervised Learning 
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In [40], an agent uses a simplified Bayesian classifier to classify opponent behaviour 

in multi-round bilateral negotiations. In each round, the Bayesian classifier 

determines if opponent behaviour is yielding, contending or linear. Then, agent uses 

latest information about its opponent to adapt its own behaviour while bilateral 

negotiation is in progress.  

Bayesian Learning  

Before discussing applications of Bayesian learning, it is important to differentiate it 

from belief networks (Bayesian networks) or learning belief networks. Belief 

networks are also called Bayesian networks because belief networks can represent a 

particular assumption of Bayesian learning. A belief network is an acyclic directed 

graph constructed by a diagnostic expert. Belief networks can be used for reasoning 

under uncertain circumstances to diagnose faults or disease etc. However, belief 

networks may not provide accurate models. Learning belief networks can be used 

instead of belief networks to avoid inaccurate models. In addition, a learning belief 

network is useful to learn a network from diagnostic data.   

Like Bayesian classifiers, Bayesian learning is also based on Bayes’ rule. However, 

Bayesian learning uses Bayes’ rule for more sophisticated applications as compared 

to Bayesian classifiers. For instance, Bayesian learning can estimate private 

intentions of opponents from information revealed during interactions. By 

comparison, a Bayesian classifier can simply determine type of opponent’s behaviour. 

ultimate price of negotiating opponent is estimated by Bayesian learning in  [49] and 

[55]. In each round of multi-round bilateral negotiation, experience of interacting 

with opponent is used to update estimated belief of its ultimate price.  

3.5 Simulation Techniques for Financial Transmission 

Instruments  

This discussion is limited to simulations of FTR auction or risk constrained FTR 

bidding because no research paper was found on simulation of ARR allocation. 

Agent-based simulation of FTR bidding and auction is presented in [56] and [57]. 
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Both [56] and [57] provide detailed modelling of simulated FTR markets that 

determine a market clearing price. FTR bid quantities are assumed to be fixed at 

specified levels without reasoning in [56] and [57]. Moreover, FTR bid prices are 

initialized equal to the difference between LMPs at source and sink of FTR in both 

[56] and [57]. In [57], however, simulation is repeated under stationary conditions 

and a naïve reinforcement learning method is used to adjust initial FTR bid prices by 

simple decision rules. 

In [58], FTR bid quantities are determined by maximum available FTR quantities 

posted by ISO. However, a method is presented for risk analysis of FTRs and FTR 

bid prices are chosen according to a risk-constrained bidding strategy and the 

difference between expectation of LMPs at source and sink of FTR. It is assumed 

that an FTR bidder has incomplete information models of its opponents but all 

opponents’ bidding strategies remain stationary. The bidder uses Bayesian Nash 

equilibrium to solve the incomplete information game. The game theoretic approach 

assumes that a bidder is optimizing its bids in a stationary environment. However, an 

appropriate risk analysis method can be developed and deployed in an agent-based 

environment to incorporate dynamic bidding strategies of all FTR bidding agents. 

3.6 Conclusions 

Due to assumption of complete information, game-theoretic models are not 

appropriate for simulation of bilateral transactions among multiple participants with 

incomplete information. Agent-based models allow bilateral interaction between 

multiple participants under incomplete information. Furthermore, open source 

software vis-á-vis proprietary software provide open-access and detailed 

understanding of implemented model. It is possible to modify and extend open 

source software for specific research and training needs. AMES is open source agent-

based simulation software that already models a day-ahead market for auction of 

energy. Therefore, this research work builds on AMES by incorporating models of 

bilateral transactions and financial transmission instruments. 
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Some match making simulation techniques ignore transmission constraints, assume 

complete information or work for organized bilateral transactions. However, existing 

portfolio optimization methods can be extended to accommodate transmission 

constraints and used in agent-based systems. The extended portfolio optimization 

procedures will enable simulation of match making for direct-search bilateral 

transactions under incomplete information. 

Heuristic techniques, like time-dependent strategy, are simple but useful for 

simulation of bilateral negotiation. However, if both agents use behaviour-dependent 

strategy and contending behaviour then there is risk that agent positions may not 

converge and consequently bilateral negotiation may fail. Applications of single-

agent reinforcement learning fail to capture effects of dynamic prices in organized 

markets on subsequent medium-duration bilateral transactions. Moreover, uses of 

single-agent reinforcement learning in multi-agent systems do not have solid 

theoretical foundations because of assuming a stationary environment. 

Agent-tracking methods are a kind of multi-agent reinforcement learning and 

suitable for dynamic environment. These methods estimate models of other agents’ 

dynamic policies and adapt some kind of best response to the estimated policies. 

Therefore, agent-tracking approach has potential to lead to successful bilateral 

negotiations between agents that have incomplete information about each other. In 

general, a supervised learning agent can estimate type or intentions of its opponents 

in bilateral negotiations. In particular, Bayesian learning type of supervised learning 

can estimate private intentions of opponents from information revealed through 

interactions during bilateral negotiations.  

Interestingly, Bayesian learning provides a way to respond to opponent behaviour 

while avoiding risks of behaviour-dependent strategy. Bayesian learning can play an 

auxiliary role by supporting a main negotiation strategy, like time-dependent strategy. 

Additionally, if Bayesian learning is followed by an appropriate response to 

opponent’s estimated strategy then it can also reap benefits of agent-tracking 

approach in multi-agent reinforcement learning.  
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In this thesis, existing portfolio optimization methods will be extended to 

accommodate transmission constraints and used in multi-agent systems. The 

extended portfolio optimization procedures will enable simulation of match making 

for direct-search bilateral transactions under incomplete information. Determination 

of a bilateral trade’s utility, over a range of negotiable prices, by match making 

algorithm will enable development of a utility-based bilateral negotiation strategy. 

Following Bayesian learning to discover an opponent’s estimated strategy, an 

appropriate response will be developed to support the utility-based strategy. 
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4 Model of Simulated Electricity Market 

 

4.1 Introduction 

In practical power systems, power flows over transmission network from sellers to 

buyers. In response, buyers transfer money to sellers through financial system. In 

addition, a number of data-flows and decision processes take place to support 

different operations in real world markets. By comparison, only decision processes 

and data-flows exist in simulated electricity market environments. This chapter 

outlines a brief description of electricity market model used in FABS. 

Decision processes are vital elements of the simulated market operations in FABS. In 

addition to decision processes, data-flows are crucial components of simulated 

market operations in FABS. A decision process allows a market participant or 

independent system operator (ISO) to determine best course of action in a simulated 

market operation. Market participants in FABS are of two types: Generation 

Companies (GenCos) who are sellers of bulk-energy; and Load Serving Entities 

(LSEs), who are buyers of bulk-energy. In this thesis, data-flows serve following 

purposes. A data-flow carries inputs to each decision process that is undertaken by 

ISO or a market participant. A separate data-flow carries outputs of each decision 

process of ISO or a market participant. Moreover, data-flows support communication 

among market participants and ISO to convey results of their decision processes.  

A flowchart (shown in Figure 4.1) indicates sequence of decision making processes 

of different market participants and ISO. In addition, the flowchart illustrates data-

flows that carry inputs and outputs of the decision processes as well as data-flows for 

communication between the market participants. Moreover, brief general 

descriptions of the data-flows are given in Table 4.1. Components of every data-flow 

are illustrated by a separate figure and the figure numbers are listed in Table 4.1. The 

simulated market operations are discussed with help of graphical representations of 

components in each data-flow. Use of outputs of one simulated market operation as 
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inputs in subsequent operations is highlighted to clarify sequence and links between 

market operations. Therefore, only inputs to and outputs of decision processes are 

presented in this chapter, while details of how inputs are processed to compute 

outputs are presented in chapters to follow.  

Legend of Figure 4.1 is explained in this paragraph. As indicated in the legend, data-

flows are represented by arrows and decision processes by boxes. Decision processes 

of ISO, individual decision processes of participants and bilateral decision processes 

of participants are represented by distinct shapes, as shown in the legend of  Figure 

4.1. Blue, red and green colours represent decision processes of GenCos, LSEs and 

ISO respectively. Data-flows have large number of components, making it difficult 

to list all these components on the flowchart. Therefore, alphabetical data-flow 

markers, listed in Table 4.1, are used in the flowchart. Naming convention of 

alphabetical order of data-flow markers is explained in the next paragraph.   

Each data-flow is designated with a capital alphabet alone or a capital alphabet with 

a subscript, as illustrated in Figure 4.1. The capital letter indicates order of the 

corresponding data-flow in the overall sequence of data-flows and decision 

processes. For instance, ISO’s decision process for annual ARR allocation takes 

place after data-flow A (inputs to ARR allocation decision process) and before data-

flow B (outputs of ARR allocation decision process). Moreover, a pair of data-flow 

markers containing same capital letter, e.g. Cg and Cl, represents a pair of concurrent 

data-flows. The subscript (g or l) in a data-flow marker indicates type of 

corresponding market participant; g for a GenCo and l for an LSE. For example, ISO 

simultaneously communicates results of annual ARR allocation to both types of 

market participants. Thus, data-flow Cg and data-flow Cl take place concurrently.  

FABS is developed in Java but Matlab functions are used for decision processes of 

Annual FTR Bids, Annual FTR Auction and Annual Match Makings (see Figure 

4.1). However, all other decision processes take place within Java environment. Input 

data for a decision process in Matlab environment is sent form Java to Matlab – 

indicated by data-flow markers with superscript J2M in Figure 4.1. After the decision 

process is over in Matlab, its output data is retrieved from Matlab environment to 
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Java based FABS – indicated by data-flow markers with superscript M2J in Figure 

4.1. 

 

Figure 4.1 Overall Graphical Representation of Decision Processes and data-flows in the Simulated 

Market Operations 
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Table 4.1  Purposes and References to Components of Data Flows for All Simulated Market 

Operations 

Data 

Flow 

Marker 

Purpose of Data Flow Figure 

Showing 

Components of 

Data Flow 

A ISO’s inputs to its decision process for annual ARR 

allocation 

Figure 4.2  

 

B ISO’s Outputs of its decision process for annual 

ARR allocation 

Figure 4.3 

Cl Communication of annual ARR allocation results 

from ISO to LSEs 

Figure 4.4 

Cg Communication of annual ARR allocation results 

from ISO to GenCos 

Figure 4.5 

D An LSE’s inputs to its decision process for optimal 

annual FTR bidding 

Figure 4.6 

E An LSE’s outputs of its decision process for 

optimal annual FTR bidding 

Figure 4.7 

F Communication of optimal FTR bids from LSEs to 

ISO 

Figure 4.8 

G ISO’s inputs to its decision process for annual FTR 

auction 

Figure 4.9 

H ISO’s outputs of its decision process for annual 

FTR auction 

Figure 4.10 

I Communication of annual FTR auction results 

from ISO to each LSE 

Figure 4.11 
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Data 

Flow 

Marker 

Purpose of Data Flow Figure 

Showing 

Components of 

Data Flow 

Jg A GenCo’s inputs to its portfolio optimization 

based match making decision process for annual 

Financial Bilateral Transactions  

Figure 4.12 

Jl An LSE’s inputs to its portfolio optimization based 

match making decision process for annual 

Financial Bilateral Transactions 

Figure 4.13 

Kg A GenCo’s outputs of its portfolio optimization 

based match making decision process for annual 

Financial Bilateral Transactions  

Figure 4.14 

Kl An LSE’s outputs of its portfolio optimization 

based match making decision process for annual 

Financial Bilateral Transactions 

Figure 4.15 

Lg A GenCo’s inputs to the decision process of annual 

bilateral negotiation with an LSE  

Figure 4.16 

Ll An LSE’s inputs to the decision process of annual 

bilateral negotiation with a GenCo 

Figure 4.17 

Mg A GenCo’s outputs of the decision process of 

annual bilateral negotiation with an LSE  

Figure 4.18 

Ml An LSE’s outputs of the decision process of annual 

bilateral negotiation with a GenCo 

Figure 4.19 

N A GenCo’s inputs to its decision process for 

optimal hourly price-sensitive supply offers 

Figure 4.20 

O A GenCo’s outputs of its decision process for 

optimal hourly price-sensitive supply offers 

Figure 4.21 
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Data 

Flow 

Marker 

Purpose of Data Flow Figure 

Showing 

Components of 

Data Flow 

Pl Communication of bids, and other data for day-

ahead energy market, from each LSE to ISO 

Figure 4.22 

Pg Communication of offers, and other data for day-

ahead energy market, from each GenCo to ISO 

Figure 4.23 

Q An ISO’s inputs to its decision process for clearing 

day-ahead energy market 

Figure 4.24 

R An ISO’s outputs of its decision process for 

clearing day-ahead energy market 

Figure 4.25 

Sl Communication of day-ahead energy market 

clearing results from ISO to LSEs 

Figure 4.26 

Sg Communication of day-ahead energy market 

clearing results from ISO to GenCos 

Figure 4.27 

T An ISO’s inputs to its decision process for market 

settlements of energy, FTRs and ARRs 

Figure 4.28 

U An ISO’s outputs of its decision process for market 

settlements of energy, FTRs and ARRs 

Figure 4.29 

Vl Communication of market settlements’ results of 

energy, FTRs and ARRs from ISO to each LSE 

Figure 4.30 

Vg Communication of market settlements’ results for 

energy from ISO to each GenCo 

Figure 4.31 

Wg A GenCo’s inputs to the decision process of 

monthly bilateral settlement with an LSE 

Figure 4.32 
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Data 

Flow 

Marker 

Purpose of Data Flow Figure 

Showing 

Components of 

Data Flow 

Wl   An LSE’s inputs to the decision process of monthly 

bilateral settlement with a GenCo 

Figure 4.33 

Xg   A GenCo’s outputs of the decision process of 

monthly bilateral settlement with an LSE 

Figure 4.34 

Xl An LSE’s outputs of the bilateral decision process 

of monthly bilateral settlement with a GenCo 

Figure 4.35 

 

Market operations in FABS repeat on annual, monthly or daily basis, as explained 

next. ARR allocation, FTR auction and decision making for Financial Bilateral 

Transactions are annual operations. A settlement of organized and bilateral electricity 

trades takes place monthly. Optimization of offers for day-ahead auction and clearing 

of day-ahead auction are daily operations. In FABS, each simulation year has 12 

months, each month has 30 days and each day has 24 hours. Annual operations take 

place at the beginning of each simulation year. Thereafter daily operations of day-

ahead market take place before start of actual day of delivering electricity. Contrary 

to annual and daily operations, monthly operations take place at the end of each 

month. Therefore, electricity market operations in FABS are discussed in order of 

annual, daily and monthly operations in Sections 4.2, 4.3 and 4.4 respectively. 

Conclusions of this Chapter are presented in Section 4.5. 

4.2 Annual Sequence of Simulated Market Operations 

Discussion of annually simulated market operations deal with bilateral trades and can 

be divided into two main parts: (i) operations for financial transmission instruments 

and (ii) operations for Financial Bilateral Transactions.  
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4.2.1 Annual Operations for Financial Transmission 

Instruments 

Financial Transmission Rights (FTR) and Auction Revenue Rights (ARR) are 

collectively called financial transmission instruments. The financial transmission 

instruments support energy trading because they provide hedges against specific 

risks in electricity markets. By definition, a Financial Transmission Right (FTR) is a 

financial instrument that can hedge transmission congestion cost of a market 

participant. An Auction Revenue Right (ARR) is defined as a financial instrument 

that can hedge the cost of acquiring a Financial Transmission Right.  

In FABS, annual sequence of market operations starts with ISO’s allocation of 

Auction Revenue Rights to LSEs. FABS restricts allocation of ARRs only to LSEs 

because in most practical markets only LSEs are eligible to bid for auctions of FTRs. 

It is important to note that no ARR payments are made to LSEs at the time of ARR 

allocation. Allocated ARRs are valued according to subsequent market clearing 

prices of FTR auction, as explained in Chapter 5. The following paragraph explains 

reasons of conducting ARR allocation before FTR auction in FABS. 

As mentioned in Chapter 2, practical electricity markets include multi-round annual 

and monthly auctions of FTRs, as well as multi-stage annual allocation of ARRs. In 

addition to buying FTRs in the initial round of annual auction, participants can also 

adjust their investments in FTRs by selling spare FTRs and buying additional FTRs 

in subsequent rounds of annual auction. Participants of real world markets can also 

adjust their investments in FTRs by buying or selling in monthly FTR auctions.  

This thesis focuses on optimal strategies of market participants for: (i) securing 

direct-search Financial Bilateral Transactions and (ii) competitively obtaining 

Financial Transmission Rights. Therefore, a detailed model of an LSE’s optimization 

of its FTR bids is included in FABS, as explained in 4.2.1.2. However, since ISO’s 

decision making for ARR allocation and FTR auction is not a primary concern of this 

research, extensive modelling and simulation of ARR allocation and FTR auction is 

beyond the scope of this thesis. Thus, FABS only includes simplified models of both 
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financial transmission instruments as explained next. The simplified models of 

financial transmission instruments are a single-round annual FTR auction and a 

single-stage annual ARR allocation. The single-round annual FTR auction in FABS 

allows a one-off purchase of required year-long FTRs, for the coming one year, but 

does not facilitate any subsequent sale or purchase of the FTRs. This inflexibility 

forces market participants to carefully choose their annual FTR bid quantities. Since 

ARRs can hedge the cost of acquiring FTRs, it is assumed that market participants in 

FABS use allocated ARRs to determine FTR bid quantities. For that reason, ARR 

allocation is carried out before FTR auction in FABS. 

Annual operations for financial transmission instruments take place at the beginning 

of each simulation year in FABS. The annual operations for financial transmission 

instruments involve the ten data-flows marked as A to I in Figure 4.1. Moreover, the 

figure shows that the annual operations include three decision processes: (i) 

allocation of ARRs by ISO; (ii) optimization of FTRs bids by LSE; and (iii) auction 

of FTRs by ISO. Sequence of these data-flows and decision processes is reflected by 

alphabetical order of the data-flow markers.  

4.2.1.1 Annual Allocation of Auction Revenue Rights by ISO  

Initiation of annual ARR allocation process by ISO is starting point of annual 

simulation in FABS, indicated by data-flow A in Figure 4.1. ISO needs components 

of data-flow A, illustrated in Figure 4.2, as inputs to its decision process for annual 

ARR allocation. All inputs, shown in Figure 4.2, are internally available to ISO in 

the form of system or market data. History of LMPs and peak load distribution in the 

previous year are market data. Generator capacities, line capacities, power transfer 

distribution factors and locations of source and sink nodes are system data of ISO.  
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Figure 4.2  Components of Data Flow A: ISO’s Inputs to its Annual Allocation of Auction 

Revenue Rights 

Details of a mathematical framework for the allocation of ARR by ISO are provided 

in Chapter 5. In addition to ARR allocation, this decision process determines upper 

limits of simultaneously feasible Financial Bilateral Transactions. Therefore, outputs 

of this decision process include allocated ARRs, simultaneously feasible Financial 

Bilateral Transactions and source and sink nodes of both decision variables. These 

three outputs of the decision process are components of data-flow B, shown in Figure 

4.3. Source and sink nodes represent local nodes of GenCos and LSEs respectively.  

ISO ensures that allocated annual ARRs are not only simultaneously feasible but also 

consistent with history of LSEs peak use of transmission system during the last year. 

Since ARR allocation inherently checks simultaneous feasibility, it is assumed that 

ISO announces allocated ARR quantities as maximum feasible Financial Bilateral 

Transactions.  

Annual 
Allocation of 

Auction Revenue 
Rights by ISO  

Historic LMP 
Data for Last 

Year 
($/MWh)  

Historic Peak 
System Load 
in Last Year 

(MW)  

Generator 
Capacities 

(MW)  

Transmission 
Line 

Capacities 
(MW)  

Power 
Transfer 

Distribution 
Factors  

Source nodes 
of GenCos 
and Sink 

nodes of LSEs 



 

91 

 

 

Figure 4.3  Components of Data Flow B: ISO’s outputs of its Annual Allocation of Auction 

Revenue Rights  

ISO communicates results of annual ARR allocation to LSEs and GenCos, indicated 

in Figure 4.1 as data-flow Cl and data-flow Cg, respectively. Figure 4.4 illustrates 

that data-flow Cl has three components: (i) allocated Auction Revenue Rights, (ii) 

maximum feasible Financial Bilateral Transactions and (iii) source and sink nodes 

for the revenue rights and the bilateral transactions. However, Components of data-

flow Cg, illustrated in Figure 4.5, only include maximum feasible Financial Bilateral 

Transactions and source and sink nodes of these transactions because, in FABS, ISO 

does not allocate Auction Revenue Rights to GenCos.  

Every LSE considers its allocated Auction Revenue Rights during its FTR bid 

optimization, as explained in section 4.2.1.2. ISO’s announcement of maximum 

feasible bilateral transactions is useful for both LSEs and GenCos in match making 

for Financial Bilateral Transactions, as discussed in section 4.2.2.1. Although 

announced Financial Bilateral Transactions are simultaneously feasible under normal 

operating conditions, ISO may have to reduce them in case of unforeseen generation 

and transmission failures. However, the methodology and tool proposed in this thesis 

does not model these additional bilateral trade reductions. 
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Figure 4.4  Components of Data Flow Cl: Communication of annual ARR allocation results 

from ISO to LSEs 

 

Figure 4.5  Components of Data Flow Cg: Communication of annual ARR allocation results 

from ISO to GenCos 
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4.2.1.2 Annual Optimization of its Financial Transmission Rights 

Bids by Every LSE 

Figure 4.1 shows that LSEs optimize their bids for FTR auction after annual 

allocation of ARRs. Optimization of FTR bid prices is crucial for an LSE because its 

FTR acquisition cost is not fully recoverable if its allocated ARRs are less than its 

FTR bid quantities. Difference between LMPs of day-ahead market at sink and 

source nodes determines value of FTRs held by LSEs. LMPs of day-ahead market 

can unpredictably fluctuate over a large range on daily basis. Therefore, an LSE’s 

revenue from holding an FTR can also vary from day to day. Research work to-date, 

presented in last chapter, used difference between expected LMPs of day-ahead 

market at sink and source nodes to calculate FTR bid price. In other words, only 

expected return for risky FTR investment was considered in the previous work. 

However, a new method of determining FTR bid price is used in this thesis for all 

risky FTR investments between the sink node of LSE and the source nodes of 

GenCos. The novel method incorporates variance and covariance of returns as well 

as private risk-aversion factor of an LSE. Incorporation of the additional data 

facilitates risk assessment based decision making for investment in year-long FTRs 

in FABS. 

An LSE needs inputs shown in Figure 4.6 to optimize its own FTR bids. It needs 

history of LMPs and self-determined private risk aversion factor, as well as ISO-

determined base load, allocated ARRs and source and sink nodes. Details of 

mathematical framework for optimization of its bids by an LSE, before submission to 

ISO, are provided in Chapter 5. Figure 4.7 shows three outputs of an LSE’s effort to 

optimize FTR bids: (i) source and sink nodes of FTRs, (ii) bid prices of FTRs and 

(iii) bid quantities of FTRs. An LSE determines its bid prices by above mentioned 

new method which incorporates a risk assessment of holding the FTRs. An LSE’s 

bid quantities of FTRs depend on its base load and allocated ARRs, as explained in 

Chapter 5. The three outputs of an LSE’s effort to optimize FTR bids, data-flow E, 

are communicated to ISO by data-flow F, as can be seen in Figure 4.1. As a result, 

data-flow F has the same three components (shown in Figure 4.8) as the above 

mentioned three components of data-flow E (shown in Figure 4.7). 
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Figure 4.6  Components of Data Flow D:  Inputs to Optimization of its Financial Transmission 

Rights Bids by an LSE  

 

Figure 4.7  Components of Data Flow E: Outputs of Optimization of its Financial Transmission 

Rights Bids by an LSE 

 

Optimization 
of Financial 

Transmission 
Rights Bids 
by an LSE 

Historic LMP 
Data for Last 

Year 

Risk Aversion 
Factor of LSE 

Base Load of 
LSE 

Auction 
Revenue Rights 

Allocated  to 
LSE  

Source nodes of 
GenCos and 
Sink node of 

LSE 

Optimization 
of Financial 

Transmission 
Rights Bids 
by an LSE 

Source and Sink 
nodes of Financial 

Transmission 
Rights submitted to 

ISO  

Bid Prices for 
Financial 

Transmission 
Rights submitted to 

ISO 
Bid Quantities for 

Financial 
Transmission 

Rights submitted to 
ISO 



 

95 

 

 

 

Figure 4.8  Components of Data Flow F: Communication of FTR bids from LSEs to ISO 

4.2.1.3 Annual Auction of Financial Transmission Rights by ISO 

As mentioned earlier, Financial Transmission Right is a financial instrument that can 

hedge transmission congestion cost of a market participant. Figure 4.9 shows ISO’s 
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for full capacity of transmission lines in a single-round. ISO tackles optimization 

problem of annual FTR auction by means of a linear programming solver in FABS. 

Mathematical details of FTR auction optimization by ISO are provided in Chapter 5. 
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Figure 4.9  Components of Data Flow G: ISO’s inputs to Optimization of Financial 

Transmission Rights Auction 

 

 

Figure 4.10  Components of Data Flow H: ISO’s outputs of Optimizing Financial Transmission 

Rights Auction 
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ISO communicates results of annual FTR Auction to LSEs, indicated in Figure 4.1 as 

data-flow I. Figure 4.11 shows three components of data-flow I: (i) source and sink 

nodes of FTRs awarded to LSEs, (ii) quantities of FTRs awarded to LSEs and (iii) 

prices of FTRs awarded to LSEs. 

 

Figure 4.11  Components of Data Flow I: Communication of annual FTR Auction results from 

ISO to LSEs 
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the annual operations include three types of decision processes: (i) math making by 

each LSE; (ii) match making by each GenCo; and (iii) bilateral negotiations between 

GenCos and LSEs. Note that sequence of these data-flows and decision processes is 

reflected by alphabetical order of the data-flow markers.  

4.2.2.1 Match Making for Financial Bilateral Transactions 

In modern electricity markets like MISO, annual ARR allocation and FTR auction 

follow a well-defined calendar. In FABS, it is assumed that allocated ARRs and 

auctioned FTRs come into effect ten business days after announcement of the FTR 

auction results. It can be expected that, even in a decentralized market, some kind of 

a bilateral transaction protocol becomes an industry wide standard over time. It is 

assumed that market participants of FABS have a consensus on a bilateral transaction 

protocol and according to the protocol LSEs start the negotiation process and 

GenCos respond. Since FTRs financially hedge uncertain congestion costs, results of 

annual FTR auction can influence LSEs’ yearly decision making for Financial 

Bilateral Transactions. Therefore LSEs undertake the yearly decision making after 

ISO announces results of annual FTR auction. According to the protocol in FABS, 

market participants have a prior agreement to restrict their offers and bids to publicly 

known negotiable price ranges. Furthermore, the protocol assumes that participants 

complete their decision making for Financial Bilateral Transactions within the ten 

business days after the announcement of the FTR auction results.  

Day-ahead auction carries risks like sudden price spikes and investment in 

appropriate Financial Bilateral Transactions can hedge such risks in advance. 

Therefore, decision making for investment in year-long Financial Bilateral 

Transactions can be improved by proper risk management. In FABS, each GenCo 

and LSE achieves decentralized match making by determining its own optimal 

investment portfolio. The portfolio optimization provides a systematic way of 

exploring all available investment options for Financial Bilateral Transactions 

throughout the market. Furthermore portfolio optimization achieves systematic 

decentralized match making, instead of some random match making process or 

match making by a centralized or organized broker/bulletin-board. As discussed in 
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chapter 3, Markowitz’s modern portfolio theory [1], is useful to find an optimal 

portfolio under uncertainty and keep risk at a desired level. In FABS, LSEs and 

GenCos use maximum simultaneously feasible bilateral transactions, determined and 

publicly announced by ISO, in their private match making decision processes. All 

GenCos and LSEs concurrently determine their own course of action depending on 

private goals and risk preferences as well as market history.  

Portfolio optimization procedures and resulting match making algorithms developed 

for both GenCos and LSEs have contributed to knowledge by modelling a 

transmission network with physical limitations on power flows through transmission 

lines. A match making algorithm enables a market participant to determine its private 

utility of each bilateral trade. Utility of a bilateral trade depends on its expected 

return, variance of return and risk aversion level of market participant.  

Use of portfolio optimization as a decentralized match making tool for GenCos and 

LSEs is explained in detail in Chapter 6. However, a graphical overview of inputs 

and outputs of the match making algorithms of GenCos and LSEs is provided here. 

Components of data-flow Jg, illustrated in Figure 4.12, are inputs to a GenCo’s 

decision process of match making for Financial Bilateral Transactions. The inputs 

include: (i) mutually agreed transaction protocol; (ii) history of LMPs as market data; 

(iii) self-determined private risk aversion factor, generation capacity and fuel 

consumption coefficients; (iv) base load requirement furnished by local LSE and (v) 

ISO-determined maximum feasible Financial Bilateral Transactions between source 

and sink nodes. Figure 4.13 illustrates components of data-flow Jl that are inputs to 

an LSE’s decision process of match making for Financial Bilateral Transactions. The 

inputs include: (i) mutually agreed transaction protocol; (ii) history of LMPs as 

market data; (iii) self-determined private risk aversion factor, flat-rate agreed with 

retail loads; (iv) generation capacity furnished by local GenCo and (v) ISO-

determined base-load requirement of the LSE, maximum feasible Financial Bilateral 

Transactions and FTRs between source and sink nodes. Note that data-flow Jl 

contains FTRs held by an LSE whereas data-flow Jg includes no FTRs because 

GenCos hold none in FABS.  
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Figure 4.12  Components of Data Flow Jg: Inputs to Match Making by a GenCo  

 

Figure 4.13  Components of Data Flow Jl: Inputs to Match Making by an LSE  
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quantity offers for matched LSEs. Similarly, an LSE’s match making over negotiable 

price ranges finds utilities of its bilateral transactions and power quantity bids for 

matched GenCos. Outputs of an LSE’s decision process for match making are shown 

in Figure 4.15 as components of data-flow Kl.  

 

Figure 4.14  Components of Data Flow Kg: Outputs of Match Making by a GenCo 

 

Figure 4.15  Components of Data Flow Kl: Outputs of Match Making by an LSE 
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GenCos and LSEs use the utility and power quantity results of match making to 

engage in bilateral negotiations. A successful annual bilateral negotiation leads to an 

year-long contract specifying agreed power quantity in MW and agreed energy price 

in $/MWh. In the absence of a centralized/organized bulletin-board or broker, each 

market participant needs to use some kind of a decentralized match making 

mechanism to conduct a direct-search for suitable partners. Even in a decentralized 

market, a uniform transaction protocol will avoid haphazard behaviour of 

participants and keep bilateral negotiation process in order.  

4.2.2.2 Bilateral Negotiations for Financial Bilateral Transactions 

After match making on the same day as announcement of FTR auction results, 

market participants use the next ten business days to engage in a multi-round 

(maximum five rounds) bilateral negotiations process, in FABS. Portfolio 

optimization based match making by a market participant develops private 

knowledge about utility of feasible Financial Bilateral Transactions and thus paves 

way for the participant to develop its own private strategy for bilateral negotiations. 

Power quantities and prices of Financial Bilateral Transactions are privately 

negotiated between each matched pair of GenCo and LSE. Successful bilateral 

negotiations lead to Financial Bilateral Transactions which specify agreed energy 

prices and quantities. 

Two dynamic strategies are designed, one for a Generation Company and the other 

for a Load Serving Entity, for optimal bilateral negotiations. The novel dynamic 

strategies use utility based strategies and utilities of Financial Bilateral Transactions 

are determined by match making algorithms. A GenCo also has a novel adaptive 

strategy to support its dynamic strategy for bilateral negotiations. The adaptive 

strategy depends on Bayesian learning to estimate an LSE’s maximum energy price 

bid, based on interactions during current multi-round bilateral negotiations.  

Complete bilateral negotiation process and mathematical models of the negotiation 

strategies of a GenCo and an LSE are discussed in Chapter 8. Nevertheless, a 

graphical overview of inputs and outputs of bilateral negotiation process for market 

participants is presented next. Components of data-flow Lg (illustrated in Figure 
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4.16) are a GenCo’s inputs to annual bilateral negotiation with a matched LSE. A 

GenCo needs utilities of its feasible bilateral transactions and power quantity offers 

for a matched LSE, over negotiable price range, to engage in the bilateral negotiation 

with the LSE. By comparison, an LSE needs power quantity bids and utilities of its 

feasible bilateral transactions with a matched GenCo for bilateral negotiation over 

negotiable price range. Figure 4.17 illustrates an LSE’s inputs to annual bilateral 

negotiation as components of data-flow Ll. As a result of the decision making 

process of bilateral negotiations, GenCos and LSEs agree on prices and quantities of 

Financial Bilateral Transactions, if any, between specified source and sink nodes. 

Therefore outputs of the decision making, between a GenCo and an LSE, include 

agreed prices and quantities as well as source and sink nodes. Outputs of annual 

bilateral negotiation by a GenCo with an LSE are shown in Figure 4.18 as 

components of data-flow Mg. Figure 4.19 illustrates an LSE’s outputs of annual 

bilateral negotiation with a GenCo as components of data-flow Ml. 

 

Figure 4.16  Components of Data Flow Lg: A GenCo’s inputs to the decision process of annual 

bilateral negotiation with a Matched LSE 

Annual Bilateral 
Negotiations by 
a GenCo with an 

LSE 

Financial Bilateral 
Transactions Protocol 

Utilities of Feasible 
Financial Bilateral 
Transactions over 

Negotiable Price Range 
for Matched LSE 

Power Quantity Offers 
(MW) of Feasible 
Financial Bilateral 
Transactions over 

Negotiable Price Range 
for Matched LSE 



 

104 

 

 

Figure 4.17  Components of Data Flow Ll: An LSE’s inputs to the decision process of annual 

bilateral negotiation with a Matched GenCo 

 

 

Figure 4.18  Components of Data Flow Mg: A GenCo’s outputs of the decision process of annual 

bilateral negotiation with an LSE 
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Figure 4.19  Components of Data Flow Ml: An LSE’s outputs of the decision process of annual 

bilateral negotiation with a GenCo 
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Similarly, price-sensitive supply offers are processed by ISO to determine which 

ones are most competitive and should be allowed as offer-based economic schedules. 

In addition to the day-ahead auction, the day-ahead market can include financial 

schedules by market participants. ISO allows financial schedules so that sellers can 

supply and buyers can receive energy to fulfil their Financial Bilateral Transactions. 

A financial schedule is an option to participate in day-ahead market to transfer the 

financial responsibility for energy (not the physical flow of energy) between a buyer 

and a seller. Price-inelastic load demands and price-sensitive demand bids of LSEs 

remain fixed. However, GenCos can update their price-sensitive supply offers on 

daily basis. 

4.3.1 Daily Optimization of Price-Sensitive Supply Offers by 

every GenCo 

Graphical representation of inputs and outputs for daily optimization of GenCos’ 

price-sensitive supply offers is described here. A GenCo’s inputs to daily 

optimization of its price-sensitive supply offers are shown as components of data-

flow N in Figure 4.20. The inputs include: (i) GenCo’s calculated profit from its 

offers in previous day-ahead auction; (ii) fuel consumption based cost coefficients; 

(iii) generation capacity and (iv) agreed Financial Bilateral Transactions between 

source and sink nodes. Outputs of daily optimization of GenCos’ price-sensitive 

supply offers are shown in Figure 4.21 as components of data-flow O. 

LSEs and GenCos communicate their bids and offers to ISO for the day-ahead 

auction. In Figure 4.1, the communication of data from LSEs and GenCos is marked 

by data-flow Pl and data-flow Pg respectively. LSEs send hourly price-sensitive 

demand bids, hourly price-inelastic load demands and financial schedules to ISO, as 

illustrated in Figure 4.22 by components of data-flow Pl. The financial schedules 

indicate agreed Financial Bilateral Transactions between GenCos and LSEs. By 

contrast, GenCos only send financial schedules and price-sensitive energy offers to 

ISO, as shown in Figure 4.23 by components of data-flow Pg. 
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Figure 4.20  Components of Data Flow N: Inputs to each GenCo’s decision process for optimal 

hourly price-sensitive supply offers 

 

Figure 4.21  Components of Data Flow O: Outputs of each GenCo’s decision process for optimal 

hourly price-sensitive supply offers 
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Figure 4.22  Components of Data Flow Pl: Communication of bids and other data for day-ahead 

energy market, from LSEs to ISO 

 

Figure 4.23  Components of Data Flow Pg: Communication of offers and other data for day-

ahead energy market, from GenCos to ISO 
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4.3.2 Daily Optimal Clearing of Day-ahead Energy Market by 

ISO 

GenCo and LSE agents in FABS have following options, or any combination of 

these options, to participate in the day-ahead energy market:  

i. Price-sensitive supply offers of GenCos for selling energy in day-ahead 

auction at variable market prices through offer-based economic schedules 

determined by ISO;  

ii. Price-sensitive demand bids of LSEs for buying energy in day-ahead auction 

at variable market prices through bid-based economic loads determined by 

ISO; 

iii. Price-inelastic load demands of LSEs for buying energy in day-ahead auction 

irrespective of market prices; 

iv. Financial schedules to fulfil Financial Bilateral Transactions between GenCos 

and LSEs. 

In FABS, hourly profile of price-inelastic load demands remains fixed for each day 

of the simulation and ISO accepts all price-inelastic load demands of LSEs. 

Furthermore, ISO accepts all financial schedules because market participants limit 

their Financial Bilateral Transactions to simultaneous feasibility levels determined 

by ISO. In real world power systems, ISO may have to reduce accepted financial 

schedules for power system management under certain unforeseen circumstances. 

However, reductions in accepted financial schedules are not applicable in FABS 

because reliability and security constraints, including unforeseen transmission and 

generation failures, are not modelled.  

ISO’s daily inputs to the optimal clearing of day-ahead energy market are illustrated 

in Figure 4.24 as components of data-flow Q. The figure shows that ISO needs: (i) 

hourly price-sensitive supply offers; (ii) generator capacities; (iii) hourly price-

sensitive demand bids; (iv) hourly price-inelastic load demands; (v) transmission 

capacities; (vi) financial schedules and (vii) source and sink nodes. During market 

clearing by DC Optimal Power Flow (DC-OPF), ISO ensures that: (i) all price-
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inelastic loads and financial schedules are met; (ii) most competitive price-sensitive 

supply offers and demand bids are accepted and (iii) no transmission or generation 

capacity is violated. As a result of optimal market clearing, ISO finds: (i) offer-based 

economic schedules; (ii) bid-based economic loads; (iii) LMPs at all nodes and 

power flow through all transmission lines; (iv) allowed price-inelastic load demands 

and (v) allowed financial schedules. The ISO’s outputs of day-ahead market clearing 

are shown in Figure 4.25 as components of data-flow R. 

Every day ISO communicates results of market clearing to LSEs and GenCos, as 

indicated in Figure 4.1 by data-flow Sl and data-flow Sg respectively. Figure 4.26 

shows four components of data-flow Sl from ISO to LSEs: (i) bid-based economic 

loads, (ii) allowed price-inelastic load demand, (iii) LMPs at all nodes and (iv) 

allowed financial schedules. Data-flow Sg from ISO to GenCos has three components 

(illustrated in Figure 4.27): (i) offer-based economic schedules, (ii) LMPs at all 

nodes and (iii) allowed financial schedules. 

 

Figure 4.24  Components of Data Flow Q: Inputs to ISO’s decision process for optimal clearing 

of day-ahead energy market 
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Figure 4.25  Components of Data Flow R: Outputs of ISO’s decision process for clearing day-

ahead energy market 

 

Figure 4.26  Components of Data Flow Sl: Communication of day-ahead energy market clearing 

results from ISO to LSEs 
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Figure 4.27  Components of Data Flow Sg: Communication of day-ahead energy market clearing 

results from ISO to GenCos 
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Auction Revenue Rights. ISO has day-ahead energy market data of every hour in the 

previous month including LMPs, loads, economic schedules and financial schedules. 

Furthermore, ISO knows allocated ARRs, awarded FTR quantities and prices as well 

as source and sink nodes. As illustrated in Figure 4.28 by components of data-flow T, 

the aforementioned data serves as ISO’s inputs to decision process for market 

settlements. For market settlements of previous month, ISO calculates: (i) payments 

of energy costs by LSEs to ISO; (ii) payments of transmission congestion costs by 

LSEs to ISO; (iii) payments of FTR credits by ISO to LSEs; (iv) payments of ARR 

credits by ISO to LSEs and (v) payments of energy costs by ISO to GenCos. These 

five outputs of ISO’s decision process for market settlements are shown in Figure 

4.29 as components of data-flow U.  

 

 

 

Figure 4.28  Components of Data Flow T: Inputs to ISO’s decision process for monthly market 

settlements of energy, FTRs and ARRs 
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Figure 4.29  Components of Data Flow U: Outputs of ISO’s decision process for monthly 

market settlements of energy, FTRs and ARRs 
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By contrast with an LSE, data-flow Vg in Figure 4.31 shows that ISO only sends 

calculated payments for energy sold by a GenCo in day-ahead auction because 

GenCos are not responsible for any transmission related costs in FABS. 

 

Figure 4.30  Components of Data Flow Vl: Communication of monthly market settlements’ 

results from ISO to each LSE 

 

Figure 4.31  Components of Data Flow Vg: Communication of monthly market settlements’ 

results from ISO to each GenCo 
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4.4.2 Monthly Bilateral Settlements between Market 

Participants 

Monthly bilateral settlements allow market participants to make and receive 

payments for energy traded through financial schedules. ISO allows LSEs to directly 

pay GenCos for energy quantities traded by financial schedules. Consequently, 

energy component of financial schedules is bilaterally settled out of day-ahead 

market. Graphical representation for inputs and outputs of bilateral settlements 

process is described next. Components of data-flow Wg (illustrated in Figure 4.32) 

are a GenCo’s inputs to the bilateral settlement process with an LSE. A GenCo needs 

agreed power quantity and energy price with an LSE to calculate monthly payment 

for energy. Similarly, an LSE calculates its monthly payment to a GenCo on the 

basis of agreed power quantity and energy price with the GenCo. Figure 4.33 

illustrates an LSE’s inputs to monthly bilateral settlement with a GenCo as 

components of data-flow Wl.  

Output of monthly bilateral settlement between a GenCo and an LSE is the same for 

both entities. They determine monthly payment for energy by LSE to GenCo as 

shown in Figure 4.34 and Figure 4.35 by data-flow Xg and data-flow Ll respectively.  

 

Figure 4.32  Components of Data Flow Wg: A GenCo’s inputs to the decision process of monthly 

bilateral settlement with an LSE 
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Figure 4.33  Components of Data Flow Wl: An LSE’s inputs to the decision process of monthly 

bilateral settlement with a GenCo 

 

 

Figure 4.34  Components of Data Flow Xg: A GenCo’s outputs of the decision process of 

monthly bilateral settlement with an LSE 
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Figure 4.35  Components of Data Flow Xl: An LSE’s outputs of the decision process of monthly 

bilateral settlement with a GenCo 

4.5 Conclusions 
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5 Annual Auction Revenue Rights Allocation and 

Annual Financial Transmission Rights Auction 

 

5.1 Introduction 

In North America, a number of electricity markets have incorporated auctions of 

Financial Transmission Rights (FTRs) and some have also introduced allocations of 

Auction Revenue Rights (ARRs) [1]. An FTR is a financial hedging instrument to 

manage the risk of congestion cost in day-ahead energy markets. An ARR is another 

financial hedging instrument to manage the uncertain cost of obtaining FTRs, as 

described after following discussion on FTRs. Independent system operator (ISO) is 

a non-profit public body that conducts FTR auctions for profit-seeking market 

participants, mainly Load Serving Entities (LSEs). Since ISO is a non-profit public 

body, it is bound to distribute transmission congestion revenue, collected from LSEs 

as their congestion charges, among LSEs. By conducting an annual FTR auction, 

ISO facilitates distribution of transmission congestion revenue to LSEs to offset their 

congestion charges. An optimal FTR auction clearing facilitates a fair payback of 

ISO’s transmission congestion revenue to LSEs that receive transmission congestion 

credits for cleared FTR quantities. The payback is fair because it depends on FTRs 

obtained through a competitive auction clearing process that facilitates a fair 

competition among participants. 

An FTR specifies power quantity that will have Financial Transmission Right from a 

source node to a sink node. An FTR is a financial instrument that does not entitle its 

holder to a physical right for power delivery. Financial Transmission Rights can be 

obligation FTRs or option FTRs. An obligation FTR holder can be either entitled to a 

payment for congestion credits or liable to a payment of congestion charges. On the 

other hand, an option FTR holder may be entitled to congestion credits but not liable 

to congestion charges. Difference between LMPs at the sink and source nodes of an 

FTR determines whether FTR holder gets credits or incurs charges. If LMP at the 
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sink node is higher than LMP at the source node then obligation/option FTR holder 

gets congestion credits. Otherwise, obligation FTR holder incurs congestion charges 

but option FTR holder avoids any congestion charges. An FTR credit payment for 

one hour equals the product of the FTR quantity (MW) and the difference in LMPs 

($/MWh) at the agreed source and sink points [2], [3].  

In practical markets, like MISO, annual FTR auction is a multi-round process. Multi-

round FTR auctions allow market participants to adjust their FTRs according to their 

requirements. If they acquire some unwanted FTRs in initial round they can sell 

those FTRs in successive rounds. Furthermore, if they fail to fulfil their FTR 

requirements in the initial round then they can buy more FTRs in later rounds. In 

addition to being a multi-round auction, annual FTR auction is a multi-period market 

that caters for periodic seasonal and daily variations in load demands and energy 

prices. In each round, practical markets hold separate annual auctions for four 

seasons of a year. Furthermore, auction for each season can be multi-product auction 

consisting of both obligation and option FTRs.  

An ARR is another financial hedging instrument to manage the uncertain cost of 

obtaining FTRs. ISO conducts ARR allocations for market participants, like LSEs, 

that are liable to congestion charges and need to acquire FTRs to hedge against the 

congestion charges. As will be explained in 5.3, ISO calculates LSEs’ ARR 

allocations on the basis of (i) LSEs’ ratios of historical peak system load, (ii) 

maximum available capacities of GenCos, (iii) FTR requirements of LSEs, (iv) 

maximum capacities of transmission lines and (v) base load requirements of LSEs. 

ISO must distribute FTR auction revenue, collected from LSEs as their FTR 

acquisition costs, among LSEs because it is a non-profit organization. Annual ARR 

allocation, facilitates distribution of FTR auction revenue among FTR bidders to 

offset their annual FTR acquisition costs. An ARR holder is entitled to a payment out 

of ISO’s FTR auction revenue. ISO’s payment to an ARR holder equals the product 

of its ARR quantity (MW) and FTR price ($/MW) between the sink and source 

nodes of the ARR. It is crucial to realize that market participants do not have to hold 

FTRs or ARRs in order to schedule Financial Bilateral Transaction. Nor they are 
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forced to schedule Financial Bilateral Transaction just because of owning FTRs or 

ARRs.  

Previous work on simulation of FTR bidding and auction is presented in [4], [5] and 

[6], as discussed in detail in Section 3.3.3. Agent-based simulation of FTR bidding 

and auctions presented in [4] and [5], provides detailed modelling of simulated FTR 

markets that determine a market clearing price. Multi-round, multi-period and multi-

product auction models are used in [4] and [5]. These models assume that FTR bid 

quantities are fixed at specified levels, while initial values of FTR bid prices are set 

according to the difference between expectations of LMPs at source and sink of FTR. 

An annual FTR bid price is the difference between expectations of LMPs at source 

and sink of the FTR multiplied by the number of hours in a year. Both papers present 

a number of case studies for stationary conditions. Annual FTR auction is only 

conducted for one year in [4]. However, in [5], simulation of annual FTR auction is 

repeated under stationary conditions and a naïve reinforcement learning method is 

used to adjust, before each iteration, FTR bid prices by simple decision rules. 

In [6], ISO determines maximum available FTR quantities and FTR bidders choose 

those quantities as their bid quantities. Moreover, a risk-constrained bidding strategy 

and the difference between expectation of LMPs at source and sink of an FTR are 

used to determine the FTR bid price. It is assumed that an FTR bidder has 

incomplete information models of its opponents but all opponents’ bidding strategies 

remain stationary. The bidder uses Bayesian Nash equilibrium to solve the 

incomplete information game. Contrary to practical electricity market scenario, the 

game theoretic approach assumes that a bidder is optimizing its bids in a stationary 

environment. However, as shown in this chapter, an appropriate risk analysis method 

can be developed and deployed in an agent-based environment to incorporate 

dynamic bidding strategies of all FTR bidding agents. 

Since this thesis focuses on optimal operating strategies of market participants, each 

LSE’s optimization of its bids for FTRs is extensively modelled in FABS. As a 

reminder FABS stands for “Financial transmission instruments, energy Auction and 

Bilateral transaction Simulator for wholesale electricity markets”. However, only 
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simplified models are used for ARR allocation and FTR auction by ISO because of 

their secondary importance in FABS. For simplicity, ISO only conducts a single-

round auction for obligation FTRs and only awards FTRs as obligations because 

FTR obligations are mainly used for hedging congestion costs in practical LMP 

markets [7]. Since seasonal variations are not modelled in FABS, it does not need a 

multi-period FTR auction model. Among all market participants in FABS, only LSEs 

are allowed to bid in the FTR auction because only they are responsible for payment 

of congestion charges. The auction is intended for base load requirements of LSEs 

and speculative bidding is not allowed. Simulation of annual FTR auction follows 

simulation of annual ARR allocation.   

The rest of this chapter is organized as follows. Formulae for statistical analysis of 

past LMPs are provided in Section 5.2. Mathematical details of ARR allocation, FTR 

bid optimization and FTR auction are presented in Sections 5.3, 5.4 and 5.5 

respectively. Case studies and results are presented in Section 5.7 and Section 5.8 

respectively, whereas Section 5.8 concludes this chapter. 

5.2 Statistical Analysis of Past LMPs 

ISO and different market participants need statistical analysis of past LMPs during 

their decision making processes related to aspects of financial transmission 

instruments and Financial Bilateral Transactions. For instance, ISO needs to 

determine overall expectation of LMPs, while each LSE needs to know overall 

expectation, variance and covariance of LMPs for decision making related to 

financial transmission instruments, as described in this Chapter. ISO uses overall 

expectation of LMPs for allocation of Auction Revenue Rights. LSEs use overall 

expectation, variance and covariance of LMPs for decisions of investment in 

Financial Transmission Rights to hedge against transmission congestion costs.  

Moreover, as will be discussed in Chapter 6, each GenCo and LSE needs to do 

similar statistical analysis of LMPs from the previous year before carrying out 

portfolio optimization for the following year. Portfolio optimization involves 
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decisions of investment in Financial Bilateral Transactions to hedge against uncertain 

revenues/costs of electricity trading in day-ahead auction. 

Calculations of overall expectation ( )iE  , variance 
2 ( )i  , covariance ( ), ji    and 

standard deviation ( )i   of LMPs are discussed as follows. The calculations require 

LMP data for a historical period, consisting of a total of Z trading intervals in the past. 

A historical period may be a month, a year or any other length of time. Note that 

formulae in this section use i and j for indices of nodes and z is an index for a trading 

interval.  

Investment decisions for FTRs or bilateral transactions need careful evaluation of 

risk-return trade-off. An investment decision for FTRs or bilateral transactions is 

made for a specified period. The decision period can be a month, a year or any other 

length of time. An investment’s rate of return, in short return, is its benefit-to-cost 

ratio that is a measure of its financial performance. Benefit of an investment is 

determined by the difference between its revenue and cost. In this thesis, revenue, 

cost and return refer to a specific investment for a specified decision period. Thus, 

return is defined as,  

 1
Revenue Cost Revenue

Return
Cost Cost


    (5.1) 

If, instead of revenue or cost, only expected revenue or expected cost is known then  

only expected return can be determined. For each investment, a market participant 

needs to evaluate its expected return. These expected returns count towards the 

“return” aspect in the risk-return trade-off and depend on expectations of LMPs. 

Using LMP data of a historical period consisting of Z trading intervals, expectation 

of LMP at node i is given by, 

 ,z
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(5.2) 
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Compared to concise definition of return by equation (5.1), risk is a relatively 

abstract concept. The concept of risk represents a decision maker’s exposure to 

danger because of uncertainty [8]. Consequently, both exposure and uncertainty are 

essential components of risk. However, a practical decision maker only has its own 

perceptions of exposure and uncertainty that may not be true reflections of actual 

exposure and uncertainty. Therefore, for the “risk” aspect of the risk-return trade-off, 

the decision maker needs to evaluate some practical attributes of its perceived risk 

[9]. Following Markowitz approach [10], this thesis specifies variance of return as a 

risk metric of the perceived risk. The variance of return depends on variances of 

returns of investments as well as covariances between returns of investments.  

The decision maker has to evaluate variances of returns for its investments. The 

variances of returns depend on variances of LMPs. Using LMP data of a historical 

period consisting of Z trading intervals, variance of LMP at node i is calculated as, 
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(5.3) 

The decision maker also needs to evaluate covariances between returns of FTR 

investments and covariances between returns of bilateral transactions. Covariances 

between returns for investments depend on covariances of LMPs. Using LMP data of 

a historical period consisting of Z trading intervals, covariance between LMPs at 

nodes i and j, is given by, 
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(5.4) 

Standard deviation of an LMP is a measure of its spread around the expected value. 

As will be discussed in Chapter 7, each GenCo and LSE needs to know standard 

deviations of LMPs to determine a mutually acceptable range in which energy prices 

can be quoted during bilateral negotiation. Using LMP data of a historical period 

consisting of Z trading intervals, standard deviation of LMP at node i, is calculated as, 
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(5.5) 

5.3 Auction Revenue Rights Allocation 

Unlike FTRs that are awarded after a competitive auction, annual ARRs are allocated 

on the basis of (i) LSEs’ ratios of historical peak system load, (ii) maximum 

available capacities of GenCos, (iii) FTR requirements of LSEs, (iv) maximum 

capacities of transmission lines and (v) base load requirements of LSEs. A 

description of the overall allocation process is presented as follows. 

 Each LSE needs ARRs to hedge acquisition costs of FTRs from GenCos’ nodes to 

its local node. ISO is aware that maximum load flow from a source node to all sink 

nodes cannot exceed total generation capacity at the source node. Therefore, total 

FTR quantity, and hence total ARR quantity, from a source node to all sink nodes 

cannot exceed total generation capacity at the source node. ISO tentatively divides 

the total ARR quantity, from a source node to all sink nodes, among all LSEs 

proportionate to their ratios of historical peak system load, as discussed in Section 

5.3.1. 

LSEs do not need FTRs for bilateral transactions with GenCo at their local node 

because local bilateral transactions do not use transmission network. Therefore, ISO 

does not allocate an ARR to an LSE for a GenCo located at its local node. In addition, 

ISO does not allocate ARR between a source node and a sink node when it knows 

that LSE does not need corresponding FTR, for reasons explained in Section 5.3.2. 

Since ISO is responsible for overall operation of power system, it has to ensure that 

transmission system can simultaneously support all allocated ARRs. ISO tests 

simultaneous feasibility of ARRs by a load flow analysis and if ARR flows exceed 

transmission line capacities then proportionately reduces the ARRs, as described in 

Section 5.3.3. 
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In FABS, ISO allocates ARRs to LSEs that use them as hedge against their FTR 

acquisition costs. ISO auctions FTRs so that LSEs can hedge against transmission 

congestion costs of meeting their base load requirements. Therefore, if sum of an 

LSE’s feasible ARRs exceeds its base load requirement then ISO proportionately 

reduces the ARRs to eliminate the excess ARRs, as explained in Section 5.3.4. 

5.3.1 Initial Auction Revenue Rights based on Load Ratios and 

Generation Capacities 

Auction revenue rights of LSEs depend on their ratio of contribution to historical 

peak system load. Historical peak system load is the peak system load that occurred 

during the historical period under consideration. ISO calculates load ratio of LSE 

connected at sink node k, kLR , by taking into account LSE’s load at the time of 

historical peak system load, 
Pk

kLd , as well as the historical peak system load, 

1

K
Pk

k

k

Ld


 , i.e., 

 

1

Pk

k
k K

Pk

k

k

Ld
LR

Ld





 

(5.6) 

In general, power flows from a GenCo connected at a source node to an LSE 

connected at a sink node. Therefore, first letter of source, s, is used as index of a 

source node and last letter of sink, k, is used as an index of a sink node. Initial ARR 

between each source node s with a total generation capacity 
total

sGC and sink node k 

with load ratio kLR , is denoted by 
,initial quantity

skARR , and calculated as,  

 
,initial quantity total

sk s kARR GC LR   (5.7) 

As shown in (5.7), initial ARRs between source node s and sink node k are assigned 

on the basis of load ratio of LSE at node k and total available generation capacity of 

GenCo(s) at node s [11]. However, as their name suggests, initial ARRs are tentative 

and need to be scrutinized by ISO before ARR allocation to LSEs. Initial ARRs have 
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to pass through a number of checks and adjustments. Reasons and details of the 

checks and adjustments are explained in following steps of the overall ARR 

allocation process.  

5.3.2 Positive Auction Revenue Rights based on Financial 

Transmission Rights Requirements of Load Serving 

Entities 

Since ARRs are allocated to hedge cost of FTR acquisition, ISO must check that it 

only allocates ARRs to those source-sink combinations for which LSEs actually need 

FTRs. For instance, source and sink nodes are the same in case of local bilateral 

transactions that do not use transmission network. Consequently, LSEs do not need 

FTRs for local bilateral transactions and hence ISO should not allocate ARRs for 

source-sink combinations corresponding to local bilateral transactions. As another 

example, LSEs do not need FTRs if expectation of LMP at their local node is less 

than expectation of LMP at a GenCo node, due to reasons explained in following 

paragraphs. If LSEs do not need FTRs for a source-sink combination then ISO 

should not allocate ARRs for the source-sink combination. In FABS, ISO avoids 

these unnecessary ARR allocations, as explained next. 

Based on data of previous LMPs in the historical period, ISO forecasts average 

expectation of LMPs by (5.2). The difference between overall expectations of LMPs 

at each source node s and sink node k ,
exp

sk , is given by, 

 
exp ( ) ( )kk ss E E     (5.8) 

In case overall expectation of LMP at source node s is lower than overall expectation 

of LMP at sink node k, the difference in overall expectation of LMPs has a positive 

value, 
exp 0sk  . Otherwise, the difference in expectations of LMPs may have a zero 

or a negative value, 
exp 0sk  . Effects of values of 

exp

sk on auctioned FTRs and 

allocated ARRs are summarized in Table 5.1 and described as follows.  
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Table 5.1  Effects of Expectation of Difference in Locational Marginal Prices between Source 

and Sink Nodes 

Value of 
exp

sk  Expected Effect on 

Obligation FTR 

Effect on 
,positive quantity

skARR  

exp 0sk   Expected to get FTR 

credits 

, ,positive quantity initial quantity

sk skARR ARR  

exp 0sk   Expected to incur FTR 

charges 

, 0.positive quantity

skARR   

exp 0sk   Neither expected to 

incur FTR charges nor 

get FTR credits 

, 0.positive quantity

skARR   

 

If 
exp

sk corresponding to an obligation FTR is a positive value, then FTR holder is 

expected to get credits. However, if 
exp

sk corresponding to an obligation FTR is a 

negative value, then FTR holder is expected to incur charges. In case 
exp

sk

corresponding to an obligation FTR has a zero value, FTR holder is neither expected 

to incur charges nor get credits. Market participants only bid for an obligation FTR if 

its corresponding 
exp

sk has a positive value because they acquire obligation FTRs in 

expectation of earning credits instead of incurring charges.  

Note that even for some positive values of expected LMP differences, 
exp

sk , actual 

LMP differences, 
act

sk , may fall below zero due to extreme conditions of dynamic 

market during some periods in the day. For those periods, a market participant 

holding obligation FTR between source node s and sink node k will be liable to pay 

FTR charges to ISO, instead of receiving an FTR credit from ISO.  
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Since ARRs are allocated to hedge cost of FTR acquisition, ISO only allocates an 

ARR when source and sink nodes are different and corresponding 
exp

sk  is a positive 

quantity. Consequently, positive ARRs between each source node s and sink node k, 

,positive quantity

skARR , are determined by, 

 

, exp

,

exp

, 0

0 , 0

initial quantity

positive quantity sk sk

sk

sk

ARR
ARR





  
 

 
 (5.9) 

5.3.3 Load Flow Analysis of Positive Auction Revenue Rights as 

a  Simultaneous Feasibility Test 

Allocated ARRs must be simultaneously feasible to ensure that transmission system 

can support the allocated set of ARRs [11]. This is known as Simultaneous 

Feasibility Test or criterion. After determining positive ARRs, ISO conducts a load 

flow analysis for all positive ARRs, 
,positive quantity

skARR , to see if they are 

simultaneously feasible. Power flows through all transmission lines, resulting from 

the positive ARRs, are calculated using power transfer distribution factors. If power 

flows through transmission lines are less than transmission line capacities then 

positive ARRs satisfy simultaneous feasibility criterion. However, if power flow 

through any transmission line exceeds its capacity then positive ARRs are not 

simultaneously feasible.  

If power flows due to positive ARRs exceed capacities of more than one 

transmission line then it is necessary to identify transmission line oe (origin node o 

and end node e) that experiences highest percentage of overflow, 
over

oeFl , above its 

capacity, 
capacity

oeFl . Transmission line experiencing highest over flow indicates 

greatest violation of network flow constraints. It also indicates the violation that 

needs to be addressed to satisfy simultaneous feasibility criterion.  



 

131 

 

Those positive ARRs that cause network flow violations are proportionately reduced 

by ISO to satisfy transmission line constraints. For proportionate reduction, ISO 

calculates a power flow reduction factor, ISOPFRF , by,  

 

capacity

oe
ISO over

oe

Fl
PFRF

Fl
  (5.10) 

Proportionate reduction of positive ARRs, 
,positive quantity

skARR , according to power flow 

reduction factor, ISOPFRF , leads to calculation of feasible ARRs between each 

source node s and sink node k,
,feasible quantity

skARR , by, 

 
, ,feasible quantity positive quantity

sk sk ISOARR ARR PFRF   (5.11) 

5.3.4 Reductions of Feasible Auction Revenue Rights to Satisfy 

Base Load Limit on Financial Transmission Rights 

In FABS, ISO intends to allocate ARRs to LSEs so that they can hedge against their 

FTR acquisition costs. Moreover, ISO intends to auction FTRs for LSEs so that they 

can hedge against their transmission congestion costs. The auctioned FTRs are 

intended to provide a hedge up to a maximum of base load requirements of LSEs. 

Therefore, before allocating ARRs to LSEs, ISO has to make sure that an LSE’s sum 

of allocated ARRs does not exceed its base load requirement. This is termed base 

load limit on Financial Transmission Rights.  

When an LSE’s base load requirement, 
base

kLd , is more than its sum of feasible ARRs, 

,

1

S
feasible quantity

sk

s

ARR


 , then ISO allows allocation of feasible ARRs to the LSE. 

However, if an LSE’s sum of feasible ARRs, 
,

1

S
feasible quantity

sk

s

ARR


 , exceeds its base 

load requirement, 
base

kLd , then ISO proportionately reduces the feasible ARRs. For 
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proportionate reduction, ISO calculates a feasible ARR reduction factor, ISOFARF , 

by,  

 ,

1

base

k
ISO S

feasible quantity

sk

s

Ld
FARF

ARR





 

(5.12) 

ISO determines allocated ARR quantities of LSE at node k, 
,allocated quantity

skARR , by, 

 

,

, ,

1

, ,

1

,

,

allocated quantity

sk

S
feasible quantity feasible quantity base

sk sk k

s

S
feasible quantity feasible quantity base

sk ISO sk k

s

ARR

ARR ARR Ld

ARR FARF ARR Ld









 
  






 (5.13) 

In FABS, ISO publicly announces allocated ARR quantities. Moreover, ISO 

allows Financial Bilateral Transactions up to the allocated ARR quantities. 

GenCos and LSEs assume that, under normal operating conditions, Financial 

Bilateral Transactions up to the allowed ARR quantities do not risk reductions 

by ISO because they have passed a Simultaneous Feasibility Test.  

After annual ARR allocation, ISO invites bids for annual FTR auction. Next 

section explains how each LSE privately determines its FTR bids to suit its 

profit-seeking goals and risk-aversion preferences. 

5.4 Optimization of Bids for Financial Transmission 

Rights 

Bidding for FTRs is an investment decision that demands careful evaluation of risk-

return trade-offs of FTRs by LSEs. In FTR bid optimization process, an LSE seeks to 

determine optimal FTR bid prices that maximize return of FTRs as well as minimize 

associated risks. An LSE needs to evaluate its expected return for each FTR. These 

expected returns count towards the “return” aspect in the risk-return trade-off. For 
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the “risk” aspect of the risk-return trade-off, an LSE needs to evaluate risks of 

variance in return of each FTR as well as covariances between returns of all FTRs.  

FTR bids of an LSE consist of following data: 

i. the FTR source and sink nodes, s and k 

ii. the LSE’s bid quantity for FTR from s to k, 
,bid quantity

skFTR  in MW 

iii. the LSE’s bid price for FTR from s to k, 
,bid price

skFTR  in $/MW 

iv. the FTR duration (same as decision period of the annual FTR auction) 

In FABS, an LSE determines quantities and prices of its FTR bids, as explained in 

Sections 5.4.1 and 5.4.2 respectively. 

5.4.1 Determination of Possible FTR Bid Quantities  

In FABS, as mentioned earlier, ISO intends to auction FTRs for LSEs to use as 

hedge against their transmission congestion costs in meeting their base load 

requirements. In consequence, ISO requires that sum of FTR bids of on LSE, 

,

1

S
bid quantity

sk

s

FTR


 , should not exceed its base load requirement, 
base

kLd . As a result, 

during determination of its FTR bid quantities, an LSE has to satisfy the constraint as 

follows, 

 
,

1

S
bid quantity base

sk k

s

FTR Ld


  (5.14) 

When an LSE’s base load requirement, 
base

kLd , is equal to its sum of allocated ARRs, 

,

1

S
allocated quantity

sk

s

ARR


 , then LSE chooses its FTR bid quantities to be the same as its 

corresponding allocated ARR quantities.  

The LSE chooses these FTR bid quantities because ARRs allocated by ISO not only 

provide a perfect hedge to the LSE against acquisition cost of FTRs, but FTR bid 

quantities also satisfy constraint (5.14). An LSE’s allocated ARR quantity between 
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two nodes determines its maximum feasible bilateral transaction between the two 

nodes. However, LSEs are unaware of their actual Financial Bilateral Transactions 

before submitting FTR bids to ISO because LSEs agree on Financial Bilateral 

Transactions after announcement of FTR auction clearing results. Therefore, LSEs 

determine their FTR bid quantities depending on their known base loads and already 

allocated ARRs instead of unknown bilateral transaction requirements. LSEs have to 

pay transmission congestion costs to ISO for bilateral transactions that use 

transmission network. Since both FTRs and bilateral transactions have well defined 

source and sink nodes, if power quantity of a bilateral transactions is less than or 

equal to the corresponding FTR then LSE is perfectly hedged against the resulting 

transmission congestion costs because it receives equal FTR credits. 

Although an LSE that bids for FTRs is not guaranteed to secure any bilateral 

transactions, if it wins FTRs then it is not bound to undertake a Financial Bilateral 

Transaction, from source node to sink node of the FTR, to obtain an FTR credit 

payment from ISO. An LSE’s FTR credit payment is also independent of power 

flows, from source node to sink node of FTR, that result from trading decisions in 

day-ahead auction. Consequently, an LSE can use its FTR credit payments from ISO 

to offset, if not perfectly hedge against, transmission congestion costs of meeting its 

base load requirement through day-ahead auction, as explained next.  

For energy traded through day-ahead auction, LSEs pay ISO at the rate of LMPs at 

their local nodes. However, a component of LMP paid by an LSE covers 

transmission congestion costs of delivering energy to its node. Therefore, if an LSE 

holds FTRs then it should be able to offset the transmission congestion component of 

its payment to ISO. However, since an LSE that buys base load in day-ahead auction 

does not know what portions of its base load will flow from which source nodes in a 

particular trading interval, acquiring FTR bid quantities does not guarantee perfect 

hedge against the transmission congestion costs. 

If an LSE’s base load requirement is equal to its sum of allocated ARRs then, to 

avoid violation of constraint (5.14), the LSE should not increase its FTR bid 

quantities above the corresponding allocated ARR quantities. However, if an LSE’s 
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sum of allocated ARRs, 
,

1

S
allocated quantity

sk

s

ARR


 , is less than its base load requirement, 

base

kLd , then LSE can increase its FTR bid quantities, as far as constraint (5.14) is not 

violated. 

By increasing FTR bid quantities above allocated ARRs, an LSE is not hedged 

against FTR acquisition costs of its complete FTR bid quantities. Despite the 

imperfect hedge, an LSE increases the FTR bid quantities in FABS, due to following 

reasons. An LSE safeguards against the imperfect hedge by carefully evaluating risk-

return trade-off of FTRs during determination of FTR bid prices, as will be described 

in Section 5.4.2. FTR bids are increased above maximum feasible bilateral 

transactions because FTRs can not only provide perfect hedge against transmission 

congestion costs of Financial Bilateral Transactions but can also offset transmission 

congestion costs of energy traded in the day-ahead auction. Moreover, an LSE 

increases its FTR bid quantities in an attempt to hedge against transmission 

congestion costs of meeting its base load requirements because a more sophisticated 

solution is beyond the scope of this thesis.  

In FABS, an LSE increases its FTR bid quantities depending on its known base loads 

and already allocated ARRs instead of unknown bilateral transaction requirements. 

Since sum of allocated ARRs, 
,

1

S
allocated quantity

sk

s

ARR


 , is less than base load requirement, 

base

kLd , an LSE determines its FTR bid quantities, that sum up to its base load, by 

proportionately increasing the corresponding allocated ARRs. For the proportionate 

increase, LSE at sink node k calculates an FTR quantity increase factor, kFQIF , by,  

 ,

1

base

k
k S

allocated quantity

sk

s

Ld
FQIF

ARR





 

(5.15) 

Consequently, depending on whether an LSE’s sum of allocated ARRs, 

,

1

S
allocated quantity

sk

s

ARR


 , is less than or equal to its base load requirement, 
base

kLd ,  the 
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LSE determines its FTR bid quantity between source node s and sink node k, 

,bid quantity

skFTR , by 

 

,

, ,

1

, ,

1

,

,

bid quantity

sk

S
allocated quantity allocated quantity base

sk sk k

s

S
allocated quantity allocated quantity base

sk k sk k

s

FTR

ARR ARR Ld

ARR FQIF ARR Ld









 
  






 (5.16) 

 

5.4.2 Determination of Optimal FTR Bid Prices  

LSEs optimize their FTR bid prices and submit these to the ISO as the prices they are 

willing to pay. In FTR bid optimization process, an LSE seeks to determine optimal 

FTR bid prices that maximize return of FTRs as well as minimize associated risks. 

An LSE can calculate expected returns for holding FTRs on the basis of expected 

LMPs at source and sink nodes. Additionally, an LSE can use variances and 

covariances of LMPs at all nodes and private risk aversion factor to determine risks 

of holding FTRs. An LSE needs to optimize its FTR bid price to achieve best trade-

off between minimizing risk and maximizing return of an FTR. This section presents 

a new FTR bid price optimization method to achieve the risk-return trade-off. 

Return characteristics include expectation, E , variance, 
2 , and covariance,  , of 

returns for all risky FTR investments. For determining the return characteristics, an 

LSE needs to do statistical analysis of LMPs in the previous year, which involves 

determination of expectation, E , variance, 
2 , and covariance,  , of LMPs for all 

nodes, as shown in Section 5.2. Return characteristics of risky FTR investments are 

determined in Sections 5.4.2.1, 5.4.2.2 and 5.4.2.3. 

5.4.2.1 Returns and Expected Returns for Financial Transmission 

Rights  

Equation (5.1) is used to develop an expression of LSE’s return for an FTR. 

Assuming that decision period has a total of Z trading intervals, FTR revenue of LSE 
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is calculated as  ,

,z ,z

1

Z
bid quantity

sk k s

z

FTR  


  where ,k z  and ,s z  are LMPs, in 

trading interval z, at sink node s and source node s respectively and 
,bid quantity

skFTR  is 

FTR bid quantity. FTR acquisition cost of LSE, over all trading intervals, depends on 

FTR expenses as well as ARR credits, as calculated by, 

   Cost FTR Expenses ARR Credits   (5.17) 

Total FTR expenses for FTR bid quantity, 
,bid quantity

skFTR , and FTR bid price, 

,bid price

skFTR , between source node s and sink node k, are expressed as,

 
, ,bid quantity bid price

sk skFTR FTR  (5.18) 

where 
,bid price

skFTR  covers all trading intervals in the decision period. As a result, 

equation (5.18) does not require a summation over a total of Z trading intervals. 

Given that LSE holds allocated ARRs between sink node k and source node s, 

,

,max

allocated quantity

skARR , ARR credit payments from ISO to LSE are calculated as,  

 
, ,allocated quantity bid price

sk skARR FTR  (5.19) 

Using equation (5.17), formula for FTR expenses (5.18) and formula for ARR credits 

(5.19) as well as combining like terms yields following expression for FTR 

acquisition cost,  

  , , ,bid quantity allocated quantity bid price

sk sk skFTR ARR FTR   (5.20) 

Substituting the expressions for revenue and cost of local bilateral transaction into 

equation (5.1), gives following equation for return of FTR between sink node k and 

source node s, skr , 
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 

 

,z ,

,

,max z

1

, , ,
1

Z
bid quantity

sk

bid quantity allocated quantity bid price

s

k s

z

k k

s

s

k

sk

FTR

FTR ARR F
r

TR

 








 



 

(5.21)

  

Since an LSE can choose 
,bid quantity

skFTR  to be equal to 
,allocated quantity

skARR , 

(
, ,bid quantity allocated quantity

sk skFTR ARR ) can lead to division by zero in (5.21). For simplicity, 

this thesis assumes that an LSE’s operating costs of FTR bid optimization process 

offset ARR credits of 0.1% of 
,allocated quantity

skARR . As a result of the assumed operating 

costs, an LSE only takes into account ARR credits of the remaining 99.9% of 

,allocated quantity

skARR . Therefore, 
,allocated quantity

skARR  is reduced to 99.9% of its value before 

being used in equation (5.21), or any other equations derived from it. Consequently, 

above mentioned possibility of division by zero is eliminated. Moreover, note that an 

LSE’s FTR bid optimization determines optimal FTR bid price, 
,bid price

skFTR , as the 

maximum price that it is willing to pay if its FTR bid is cleared by ISO. Therefore, 

,bid price

skFTR  in the denominator of equation (5.21) is the decision variable for FTR bid 

optimization. Equation (5.21) is applicable over a total of Z trading intervals. At the 

time of FTR bid optimization, allocated ARR quantity, 
,allocated quantity

skARR , and FTR 

bid quantity, 
,bid quantity

skFTR , are assumed certain. However, values of ,k z  and ,zs are 

uncertain because they represent LMPs, in interval z, at sink node k and source node 

s respectively. Note that the values of both LMPs can vary between trading intervals. 

In this thesis, FTR bid optimization considers overall variations of LMPs, 

irrespective of trading interval of the decision period. However, it does not consider 

variations in LMPs at the same node between trading intervals that have different 

time-of-day or time-of-year characteristics, as explained next. According to time-of-

year, a trading interval may be defined as a winter or summer interval but seasonal 

variations are not modelled in FABS. Similarly, in terms of time-of-day, a trading 

interval can be defined as a peak or an off-peak interval but our FTR bid 

optimization model gives the same solution for all trading intervals in the decision 

period. Due to uncertain values of ,k z  ( ,zs ) in trading intervals of the decision 
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period in future, k  ( s ) is defined as a random variable to represent overall variable 

LMP, irrespective of trading interval, at sink node k (source node s). Values of these 

random variables are unknown until ISO determines LMPs as a result of DC-OPF for 

day-ahead auction. Since each GenCo independently increases/decreases its price-

sensitive supply offers in response to its private profit from the day-ahead auction in 

FABS, LMP values are uncertain and may randomly vary between limits applied by 

ISO. However, a nodal LMP’s random variable is not completely random but rather 

follows an approximately normal distribution – that can be adequately represented by 

expectation and variance of the LMP. Substituting k  ( s ) for ,k z  ( ,zs ) ,  in (5.21)  

yields, 

 
 

 

,

,max

,

1

, ,
1

Z
bid quantity

sk

bid quantity allocated quantity bid price

sk s

k s

sk

k

z

sk

FTR

FTR ARR FTR
r

 








 



 (5.22) 

Due to the uncertainty of random variables k  and s , expected return for an FTR is 

not the same as return of an FTR represented by (5.22). Expectation of the return, 

( )skE r , depends on expectation of LMP at sink node,  kE  , and source node, 

 sE  . Substituting  kE   and  sE   for k  and s   in (5.22) leads to, 

 

    

 

,

,max

, ,

1

,
( ) 1

Z
bid quantity

sk

sk sk bid quantity allocated quantity bid price

sk sk

k s

sk

z

FTR E E

FTR ARR F
r

TR
E E

 


 

 
 




 

1, , ,s S s k   

(5.23) 

An LSE needs to evaluate its expected return for each FTR, as explained above. The 

expected returns count towards the “return” aspect in the risk-return trade-off 

evaluated by FTR bid optimization, as discussed in introduction of this Chapter. 
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5.4.2.2 Variance of Returns from Financial Transmission Rights 

In addition to evaluating the “return” aspect in the risk-return trade-off, an LSE 

needs to evaluate the “risk” aspect. The risk evaluation involves calculation of 

variance in return of each FTR as well as covariance between returns of all FTRs.  

In order to develop equation for variance of return for an FTR, equation (5.22) is 

rearranged, to clearly see random variables and their coefficients as well as any 

constants, 

 
 

 

,

1

,max

, , ,
1

Z
bid quantity

sk

bid quantity allocated quantity bid price

sk sk sk

z
sk k s

FTR

FTR AR FTR
r

R
  

 

 
  

 
 
  


 (5.24) 

As equation (5.24) shows, random variables of LMPs at sink node k and source node 

s, k  and s , introduce uncertainty in return of the corresponding FTR. For that 

reason, buying FTRs is a risky endeavour that demands a careful risk assessment. 

Variance is a measure of risk that can be used for the risk analysis. Equation (5.24) is 

a function of two random variables and variance has following property for such 

functions of two random variables, 

          2 2 ,Var a X Y b a Var X Var Y Cov X Y      (5.25) 

where a and b are constants and X and Y are random variables. Applying the property 

of variance (5.25) to equation (5.24) results in following expression for variance of 

return for FTR between sink node k and source node s,  
2 ( )skr , 
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5.4.2.3 Covariance between Returns of Financial Transmission 

Rights 

In addition to variance of each return, covariance between returns of all FTRs can 

also contribute to risk. Therefore risk evaluation must explore covariance between 

returns of all FTRs, as discussed next.   

Return of FTR between sink node k and source node s is shown in equation(5.24). 

Similarly, return of FTR between sink node k and another source node s , s kr  , can 

be represented by, 
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(5.27) 

As equations (5.24) and (5.27) show, random variables of LMPs at sink node k as 

well as source nodes s and s  (i.e. k , s  and s  ) introduce uncertainty in returns of 

the FTRs. Consequently, both FTRs are risky and relationship between the two risks 

can be evaluated by covariance. Both (5.24) and (5.27) are functions of two random 

variables and covariance has following property for such functions of two random 

variables, 
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(5.28) 

where a, b, and c are constants and X, Y and Z are random variables. Applying the 

property of covariance (5.28) to (5.24) and (5.27)  results in following expression for 

covariance between returns of FTRs, ( , )ssk kr r  , 
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(5.29) 

5.4.2.4 Limits of Decision Variables 

In practical markets, ISO enforces upper and lower limits on FTR bid prices 

submitted by market participants [12]. Therefore, in FABS, LSEs can only submit an 

FTR bid price, 
,bid price

skFTR , within a range specified by ISO. In this thesis, the range 

of valid bid price for an FTR is specified in terms of a reference FTR price, as 

explained next. Given the number of trading intervals of day-ahead market for which 

an FTR acts as hedge, Z , and the difference between expectation of LMPs at the sink 

and source nodes of the FTR, 
exp

sk , the reference FTR price is 
exp

skZ  . For 

simplicity, this thesis assumes that the range of valid bid price for an FTR extends 

from half of the reference FTR price to twice the reference FTR price. However, it is 

possible to change the limits of the range to other values. LSEs calculate lower limits 

of their decision variables, ,

,min

bid price

skFTR , by 

 
, exp

,min 0.5bid price

sk skFTR Z     (5.30) 

and the upper limits, ,

,max

bid price

skFTR , as 
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, exp

,max 2bid price

sk skFTR Z     (5.31) 

5.4.2.5 Objective or Utility Function 

An investor can develop an overall utility function of its investments, with the 

objective of maximizing expected returns and minimizing perceived risks of 

investments. This thesis uses overall utility function taken from [10] and expressed 

as, 

 
1

2
U E A R     (5.32) 

where U  is overall utility of investments, A is risk aversion factor of investor, E  is 

overall expected return and R  is overall perceived risk of investments. In equation 

(5.32), expected return quantity adds value to utility whereas perceived risk quantity 

causes loss of utility. 

An investor can be risk neutral (A=0), or even a risk lover (A<0), but practical 

decision makers are normally risk averse (A>0). Following from [10], this thesis 

considers that A=3.0 is an average risk aversion factor of a market participant. In 

addition, this thesis assumes that A=4.0 is a high risk aversion factor. Based on a 

thumb rule explained in Appendix A, every market participant chooses its own risk 

aversion factor. Table A.4 lists risk aversion factors used by market participants at all 

nodes.  

For LSE at node k, overall expected return, ( )kE r , is sum of its expected returns 

from all FTRs and expressed as, 

 
1

( )k sk

s

S

E r E


  (5.33) 

where s is a source node out of total S source nodes, k is sink node that is LSE’s local 

node  and skE  is expected return for FTR between nodes s and k. 
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The LSE’s overall variance of return, 
2 ( )r , is determined by sum of its variance of 

returns for FTRs as well as covariance between returns of FTRs, as follows, 

 
2 2
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1 1 1 1 1
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s s
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      (5.34) 

where s  is a source node and s  is a different source node ( s s  ) out of total S 

source nodes, 
2

sk is variance of return for FTR from source node s and .sk s k   is 

covariance between returns of FTRs from source nodes s and s . 

Substituting expression of overall expectation from (5.33) and variance from (5.34) 

into overall utility function (5.32) leads to, 
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Equation (5.35) denotes overall utility of all FTRs of LSE at node k, kU . The overall 

utility depends on skE , 
2

sk  and ,sk s k   that are expressed in (5.23), (5.26) and (5.29) 

respectively.  

An LSE can obtain its optimal FTR bid prices by maximizing FTR utility (5.35) as 

follows,  
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(5.36) 

subject to following upper and lower limits on the decision variables 

 

, , ,

,min ,max

bid price bid price bid price

sk sk skFTR FTR FTR   
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The optimization problem (5.36)-(5.37) can be solved by any standard non-linear 

programming solver. Matlab function for constrained non-linear programming, 

fmincon, is used to solve the FTR bid optimization problem in this thesis. The 

fmincon function requires user supplied initial values of decision variables and has 

capability to find a local solution, instead of a global solution. However, following 

methodology was used to attempt search of a global solution. During 

experimentation, randomly initialized decision variables were repeatedly supplied to 

fmincon function to check for existence of multiple extrema. Two extrema were 

identified but solution mostly converged to the stronger extremum. Furthermore, it 

was verified that when decision variables are initialized as explained in Section 5.6, 

solution converges to the stronger extremum. 

5.5 Financial Transmission Rights Auction 

In FABS, LSEs submit obligation FTR bids to ISO consisting of following data: 

i. the FTR source and sink nodes, s and k 

ii. the LSE’s bid quantity for FTR from s to k, 
,bid quantity

skFTR in MW 

iii. the LSE’s bid price for FTR from s to k, 
,bid price

skFTR in $/MW 

iv. the FTR duration (same as decision period of the annual FTR auction) 

ISO has an objective of maximizing revenue of the FTR auction subject to 

transmission network constraints as well as FTR quantity and price constraints 

submitted by LSEs. ISO uses DC transmission network model to clear the annual 

FTR auction in FABS. The FTR auction clearing method presented here is taken 

from [6]. During optimization of annual FTR auction, ISO’s decision variable is FTR 

quantities (MW) to be cleared in the FTR market, 
,cleared quantity

skFTR . Based on FTR bid 

prices, 
,bid price

skFTR , submitted by LSEs, ISO determines its total revenue from cleared 

FTR quantities, 
,cleared quantity

skFTR , by summation over all bids, 
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, ,bid price cleared quantity

sk sk

sk

FTR FTR  (5.38) 

ISO has to maximize its objective function (5.38) subject to transmission network 

constraints, as described next. Each transmission line oe from origin node o to end 

node e, has a physically limited power flow capacity, 
capacity

oeFl . Power flow on 

transmission line oe, from origin node o to end node e, due to cleared FTR quantity 

between source node s and sink node k, 
,cleared quantity

skFTR , can be determined by power 

transfer distribution factor, ,oe skPTDF , as, 

 
,

,

cleared quantity

oe sk skPTDF FTR  (5.39) 

Sum of power flows from origin node o to end node e of transmission line oe, due to 

cleared FTR quantities between all combinations of source and sink nodes, sk, is 

given by 

 
,

,

cleared quantity

oe sk sk

sk

PTDF FTR  (5.40) 

Sum of the power flows caused by cleared FTR quantities (5.40) should not exceed 

the power flow capacity of transmission line oe, 
capacity

oeFl , 

 
,

,

cleared quantity capacity

oe sk sk oe

sk

PTDF FTR Fl   (5.41) 

Sum of reverse power flows through transmission line oe, from end node e to origin 

node o, due to cleared FTR quantities between all combinations of source and sink 

nodes, sk, should also be less than the power flow capacity of transmission line oe, 

capacity

oeFl , 

 
,

,

cleared quantity capacity

oe sk sk oe

sk

PTDF FTR Fl    (5.42) 

ISO’s cleared FTR quantities should be such that the power flows conform to 

constraints (5.41) and (5.42) for all transmission lines in power transmission network. 
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In addition to satisfying transmission network constraints, each cleared FTR quantity 

between source node s and sink node k,  
,cleared quantity

skFTR , must be between zero and 

the corresponding FTR bid quantity,
,bid quantity

skFTR , 

  
, ,0 cleared quantity bid quantity

sk skFTR FTR   (5.43) 

ISO solves annual FTR auction problem, to determine cleared FTR quantities, by 

maximizing its objective function (5.38) as follows, 

 
, ,Maximize bid price cleared quantity

sk sk

sk

FTR FTR  (5.44) 

subject to 

 

,

,

cleared quantity capacity

oe sk sk oe
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PTDF FTR Fl   

,

,

cleared quantity capacity

oe sk sk oe

sk

PTDF FTR Fl    

, ,0 cleared quantity bid quantity

sk skFTR FTR   

(5.45) 

The optimization problem (5.44)-(5.45) can be solved by any standard linear 

programming solver. Matlab function for linear programming, linprog, is used to 

solve the optimization problem in this thesis.  

The solution of optimization problem (5.44)-(5.45) determines cleared FTR 

quantities. In terms of payable FTR prices, this thesis categorises an FTR auction as 

a pay-as-bid or pay-as-clear auction. In pay-as-clear FTR auction, participants pay 

for FTR at the rate of cleared FTR prices whereas in pay-as-bid FTR auction 

participants have to pay at the same rate as their FTR bid prices. In FABS, ISO 

determines cleared FTR prices ($/MW) from s to k, 
,cleared price

skFTR , as, 

  ,

,

cleared price

sk oe sk oe oe

oe

FTR PTDF      
   (5.46) 
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where oe 
and oe 

are the shadow prices, also known as Lagrange multipliers, of 

transmission constraints (5.41) and (5.42) respectively. A transmission constraint’s 

shadow price is the rate of change in objective function value when the capacity of 

the constraint infinitesimally increases or decreases [12]. FTR cleared prices are less 

than or equal to FTR bid prices of LSEs. FTR cleared prices ($/MW) are paid by 

LSEs to ISO for FTR cleared quantities (MWs). In FABS, FTR cleared prices are 

payable in monthly settlements during the decision period, i.e. coming year. 

5.6 Case Studies 

In this Chapter, two case studies are used to explore FTR bid price optimization 

method’s potential to provide competitive advantage to an LSE, in terms of FTR 

cleared quantities, over its competitor LSEs. These case studies are also designed to 

show that if an LSE holds ARRs then its FTR acquisition costs are reduced. The two 

case studies are labelled as estimate FTR bidding and optimal FTR bidding. Status of 

every LSE in both case studies, in terms of holding ARRs and using the bid price 

optimization method, is listed as follows. The estimate FTR bidding represents the 

base case because it assumes that all LSEs have no ARRs or knowledge of the FTR 

bid price optimization method and only submit estimated FTR bid prices. By 

comparison, the optimal FTR bidding assumes that all LSEs use the optimization 

procedure and allocated ARRs to submit optimal FTR bid prices.  

Complete data of a five node test grid used for simulation in FABS is provided in 

Appendix A. Although this thesis has presented a generic FTR bid optimization 

procedure, it has only tested the procedure on the five node test grid. Moreover, 

testing of the optimization procedure on larger grids is identified as future work. 

Each LSE’s input data for its FTR bid price optimization is sent from Java 

environment of FABS to Matlab. The input data includes: (i) maximum allowed FTR 

bid quantities; (ii) available ARR hedge quantities; (iii) total number of trading 

intervals in the decision period; (iv) risk aversion factor of LSE; (v) upper and lower 

limits of decision variables; (vi) initial values of decision variables and (vii) 

expectations, variances as well as covariances of LMPs. Reference FTR prices were 

used as initial values of decision variables for all LSEs. An LSE’s FTR bid 
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optimization determines optimal bid prices for each FTR. The output of FTR bid 

optimization is retrieved from Matlab environment to Java based FABS. 

5.7 Results 

Only results of FTR bid price optimization by LSEs are discussed in this Chapter 

because this thesis does not focus on ISO’s FTR auction and ARR allocation 

processes. LSE’s allocated ARR quantities, FTR bid quantities and FTR reference 

prices, shown in Table 5.2, are required for discussing the results of FTR bid price 

optimization by LSEs. Note that three rows of Table 5.2 are blank because ISO does 

not allocate any ARRs for these three source-sink combinations, for reasons 

explained in 5.3.2. Table 5.2 shows that each allocated ARR quantity of LSE-1 

exactly matches its respective FTR bid quantity. By contrast, each allocated ARR 

quantity of LSE-2 and LSE-3 is less than its respective FTR bid quantity. For 

example, Table 5.2 shows that LSE-2 has only 37MW allocated ARR quantity 

compared to 48MW FTR bid quantity between source Node-1 and sink Node-3. As a 

result, LSE-2’s held ARR quantity is only 77% of the corresponding FTR bid 

quantity, between source Node-1 and sink Node-3. Similarly, LSE-2’s held ARR 

quantities for other source-sink combinations are also 77% of the corresponding FTR 

bid quantities. In comparison, LSE-3’s held ARR quantities for all source-sink 

combinations are only 62% of the corresponding FTR bid quantities.  

Figure 5.1 shows FTR bid prices of LSEs as multiples of the reference FTR prices 

for both case studies. In case of estimate FTR bidding, all LSEs submit FTR bid 

prices equal to ISO’s reference FTR prices because they are unaware of FTR bid 

price optimization procedure. By contrast, in optimal FTR bidding case study, 

possession of ARR quantities equal to FTR bid quantities enables LSE-1 to submit 

maximum allowed FTR bid prices, i.e. twice the reference FTR prices. However, 

LSE-2 and LSE-3 only submit reference FTR prices because they only hold 77% and 

62% ARRs, respectively, as compared to their FTR bid quantities. Note that 

reference FTR prices were used as initial values of decision variables for all LSEs. 

The optimization algorithm did not find any better solution than the initial values, for 

LSE-2 and LSE-3.  
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Table 5.2  LSEs’ Allocated ARR Quantities, FTR Bid Quantities and Reference FTR Prices 

LSE 

Name 

Source 

Node 

Sink 

Node 

Allocated 

ARR 

Quantity 

(MW) 

FTR Bid 

Quantity 

(MW) 

Reference 

FTR Price 

($/MW) 

LSE-1 

Node-1 Node-2 37  37  1,428,192  

Node-3 Node-2 92  92  270,432  

Node-4 Node-2 35  35  1,014,336  

Node-5 Node-2 106  106  1,354,752  

LSE-2 

Node-1 Node-3 37  48  1,157,760  

Node-3 Node-3 -    -    -    

Node-4 Node-3 35  46  743,904  

Node-5 Node-3 106  138  1,084,320  

LSE-3 

Node-1 Node-4 31  50  413,856  

Node-3 Node-4 -    -    -    

Node-4 Node-4 -    -    -    

Node-5 Node-4 88  144  340,416  

 

Figure 5.1  FTR Bid Prices of LSEs as multiples of the Reference FTR Prices 
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Cleared FTR quantities by ISO are shown in Figure 5.2. In case of estimate FTR 

bidding, sum of cleared FTR quantities of LSE-1, LSE-2 and LSE-3 is 164MW, 

232MW and 196MW respectively. With optimal FTR bidding, the sum of cleared 

FTR quantities increases from 164MW to 270MW for LSE-1, decreases from 

232MW to 181MW for LSE-2 but remains the same for LSE-3 because of following 

reasons. Supported by ARR quantities exactly matching respective FTR bid 

quantities, LSE-1 manages to submit competitive FTR bid prices compared to other 

LSEs. In contrast, FTR bid prices of LSE-2 are less competitive because LSE-2’s 

held ARR quantities are only 77% of the corresponding FTR bid quantities. 

Consequently, LSE-1 gains advantage over LSE-2 in terms of the sum of cleared 

FTR quantities.  

    

Figure 5.2  Cleared FTR Quantities by ISO 

Figure 5.3 presents comparison of FTR expenses, ARR credits and FTR acquisition 

costs of LSE-1. In absence of ARR credits in estimate FTR bidding, $217million 

FTR expenses account for FTR acquisition costs. Note that ARR credits reduce FTR 

acquisition costs because they offset expenses of buying cleared FTRs. Since LSE-1 

has sufficient ARR credits to completely offset FTR expenses in optimal FTR 

bidding case, FTR acquisition costs are reduced to zero, as illustrated by Figure 5.3. 

As a result, LSE-1 is completely hedged against uncertain FTR acquisition costs.  
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Figure 5.3  Comparison of FTR Expenses, ARR Credits and FTR Acquisition Costs of  

LSE-1 

Comparison of FTR expenses, ARR credits and FTR acquisition costs of LSE-3 are 

shown in Figure 5.4. Due to lack of ARR credits in estimate FTR bidding, FTR 

expenses of $69million account for FTR acquisition costs. However, for optimal case, 

since LSE-3’s $42million ARR credits are less than $69million FTR expenses, it has 

to pay the difference of $27million as FTR acquisition costs. Comparison of estimate 

and optimal FTR bidding cases shows that optimization procedure and allocated 

ARRs enable LSE-3 to reduce its FTR acquisition costs from $69million to only 

$27million. Note that in both cases cleared FTR quantities of LSE-3 remain 194MW, 

as illustrated in Figure 5.2. 

    

Figure 5.4  Comparison of FTR Expenses, ARR Credits and FTR Acquisition Costs of  

LSE-3 
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5.8 Conclusions 

Using information provided in training manual [11], a mathematical model of ARR 

allocation is obtained. As an original contribution, mathematical model of FTR bid 

optimization process is developed. During its FTR bid optimization, each LSE strives 

to find optimal FTR bid prices that maximize return of FTRs but minimize associated 

risks. However, mathematical model of FTR auction is taken from [6] and the three 

mathematical models, mentioned in this paragraph, are incorporated in FABS. 

If a market participant fails to develop a competitive FTR bid price then it faces risk 

of losing FTR cleared quantities to its competitors. The optimal FTR bidding method 

empowers a market participant to compete in the FTR market for more FTR 

quantities. If a market participant holds ARRs then it can hedge against the uncertain 

cost of FTR acquisition. 
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6 Portfolio Optimization Procedures for 

Generators and Loads 

 

6.1 Introduction 

In practical wholesale electricity markets of North America, decentralized bilateral 

transactions complement organized day-ahead auction. Market participants may find 

it beneficial to secure bilateral energy transactions, in advance of day-ahead auction, 

for hedging risks of price volatility and revenue uncertainty. However, organized 

day-ahead auction is necessary for two reasons: (i) system operator needs to ensure 

that generation balances transmission losses and load demands at time of delivery 

and (ii) market participants may not be able to fulfil their energy trading 

requirements through bilateral transactions alone.  

The markets of North America use Locational Marginal Price (LMP) where hourly 

price of day-ahead market at each node can be different from other nodes due to 

congestion and losses on transmission network. Each power Generation Company 

(GenCo) and Load Serving Entity (LSE) participates in the wholesale market as a 

seller and a buyer respectively. In addition, an LMP market must have an 

independent system operator (ISO) to organize day-ahead auction and regulate flows 

of power quantities due to decentralized bilateral transactions over transmission 

network. If power quantities of bilateral transactions, requested by market 

participants, are not regulated by ISO then there can be two problems: (i) power 

flows over transmission lines may exceed their normal operating capacities and lead 

to overloading of transmission system or (ii) some LSEs may be deprived of their 

full load demand to avoid the overloading of transmission system. ISO is responsible 

for secure operation of the overall power system while providing all participants with 

opportunities to benefit from physically limited transmission capacities.  
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As discussed in Chapter 5, ISO conducts a Simultaneous Feasibility Test as a part of 

its annual ARR allocation process in FABS - “Financial transmission instruments, 

energy Auction and Bilateral transaction Simulator for wholesale electricity markets”. 

The Simultaneous Feasibility Test inherently ensures that each Load Serving Entity 

has equitable access to physically limited transmission capacities. Equitable access of 

a Load Serving Entity is proportional to its share of previous peak system load. 

Based on the Simultaneous Feasibility Test, ISO announces maximum levels of 

simultaneously feasible Financial Bilateral Transactions. Despite the simultaneous 

feasibility check, ISO may have to reduce quantities of Financial Bilateral 

Transactions (requested by market participants) in case of unforeseen circumstances 

like transmission and generation failures. However, the Financial Bilateral 

Transactions are not reduced in FABS because it does not model power system 

failures. It is important to remember that only direct-search Financial Bilateral 

Transactions between market participants, at the same node or at different nodes, are 

modelled in FABS. 

Once ISO announces results of Simultaneous Feasibility Test, each seller and buyer 

undertakes individual decision making about how much power quantity to invest in 

which particular bilateral transaction and how much power quantity to allocate to the 

day-ahead auction. The participants are allowed to mutually agree on prices and 

quantities of bilateral transactions, subject to upper limits on transfer capacities, 

without any liability to disclose details of their private endeavours. This decision 

making involves portfolio optimization that is very crucial to successfully maximize 

own profits and constrain risks to personal risk aversion levels. 

For portfolio optimization, a market participant needs to evaluate its expected return 

for each trading option. These expected returns count towards the “return” aspect in 

the risk-return trade-off. For the “risk” aspect of the risk-return trade-off, a GenCo 

needs to evaluate risks of variance in return of each trading option as well as 

covariance between returns of all trading options.  

Since bilateral transactions are privately conducted, participants of practical 

deregulated electricity markets do not provide information on their decision making 
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practices for bilateral transactions. However, portfolio optimization can serve as a 

powerful tool for managers of GenCos and LSEs who can follow its reasoning, 

perhaps with slight variations, in their decision making processes. Portfolio 

optimization has been successfully applied for direct-search Financial Bilateral 

Transactions of GenCos in [1, 2] and LSEs in [3]. Since portfolio optimization is 

separately conducted by each market participating entity, it is highly suitable for self-

determining agents in agent-based developments. Although, applications of portfolio 

optimization in [1, 2] or [3] are not agent-based, research presented in this thesis has 

used portfolio optimization in agent-based software – FABS. Portfolio optimization 

model in [1] does not consider maximum levels of simultaneously feasible Financial 

Bilateral Transactions. The model in [1] is used as the basic portfolio optimization 

model of a GenCo in FABS. Moreover, maximum levels of simultaneously feasible 

Financial Bilateral Transactions are included in the basic portfolio optimization 

model of a GenCo to develop improved portfolio optimization model for FABS.  

Portfolio optimization model of LSE in [3] involves modelling of an LSE’s retail 

operations. However, portfolio optimization model of LSE in [3] is not useful 

because FABS focuses on wholesale electricity market and does not model retail 

operations. Therefore, a basic portfolio optimization model of an LSE is developed 

for FABS on the pattern of the basic portfolio optimization model of GenCo in [1]. 

Financial Transmission Rights and simultaneous feasibility constraints are 

incorporated in the basic portfolio optimization model of an LSE to design the 

improved portfolio optimization model of an LSE in FABS.  

The rest of the chapter is organized as follows. Section 6.2 presents both the basic 

and improved portfolio optimization models of a Generation Company. A summary 

of a Generation Company’s portfolio optimization procedure is presented in Section 

6.3. Section 6.4 presents both the basic and improved portfolio optimization models 

of a Load Serving Entity. A summary of a Load Serving Entity’s portfolio 

optimization procedure is presented in Section 6.5. Section 6.6 presents case studies 

of this Chapter, whereas results and conclusions are presented in Section 6.8 and 

Section 6.8 respectively. 



 

158 

 

6.2 Basic and Improved Models of Portfolio 

Optimization for a Generation Company 

Total power generation capability of a GenCo is called its Capacity. GenCo g can 

trade its Capacity, max

gp , through a number of trading options. In order to develop 

generic basic and improved portfolio optimization models, it is decided to consider 

as many bilateral transaction options as the number of nodes, N, in a power system. 

The generic basic and improved models are valid irrespective of the number or 

location of LSEs in the power system. Both models assume that a maximum of one 

LSE is connected to any node of the power system and can also accommodate nodes 

without LSEs. In addition, the option to trade by submitting price-sensitive supply 

offers in day-ahead auction is included in the generic models. As a result, both 

generic portfolio optimization models consider a total of N+1 trading options.  

Portfolio optimization of a GenCo determines optimal allocation of its Capacity 

among N+1 trading options. Decision or unknown variables of portfolio optimization 

by GenCo g are the fractions of its Capacity, max

gp , allocated to N+1 trading options. 

In order to solve its portfolio optimization problem, a GenCo must assume energy 

prices of its trading options and know upper limits of its decision variables. To find 

the upper limits of decision variables, however, a GenCo first needs to determine 

maximum feasible power quantity allocations for all trading options. The maximum 

feasible power quantity allocations are also required to evaluate expectation, variance 

and covariance of return (collectively termed return characteristics) for trading 

options. 

Calculation methods for maximum feasible power quantity allocations, upper limits 

of decision variables and return characteristics of all trading options are covered in 

Sections 6.2.1, 6.2.2 and 6.2.3 respectively. 
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6.2.1 Maximum Feasible Power Quantity Allocations to 

Trading Options  

Direct-search Financial Bilateral Transactions of a GenCo can be divided into two 

types: (i) bilateral transaction with LSE at local node and (ii) bilateral transactions 

with LSEs at non-local nodes. Since a GenCo is not responsible for transmission 

congestion costs, its non-local Financial Bilateral Transactions are free from risk of 

uncertain transmission congestion costs. Local Financial Bilateral Transactions are 

also risk-free because they do not use transmission network. The two types of a 

GenCo’s direct-search Financial Bilateral Transactions are termed risk-free non-local 

and risk-free local Financial Bilateral Transactions respectively.  

In addition to these two types of Financial Bilateral Transactions, a GenCo can trade 

energy by submitting price-sensitive supply offers in day-ahead auction. Price-

sensitive supply offers are submitted by GenCos and processed by ISO to determine 

which ones are most competitive (lowest priced) and should be accepted. Price-

sensitive supply offer of a GenCo represent its willingness to sell specified power 

quantities if it can get energy prices that are higher or equal to its specified energy 

prices. A GenCo’s participation in day-ahead energy auction is a risky option 

because market prices can fluctuate unpredictably and it has to compete with other 

GenCos in the market. ISO will not accept price-sensitive supply offers of a GenCo 

if it finds that energy prices offered by other GenCos are lower and thus more 

competitive.  

Discussion of maximum feasible power quantity allocations for risky day-ahead 

auction is covered in Section 6.2.1.1. If a bilateral transaction option is infeasible due 

to absence of any LSE at a particular node then maximum feasible power quantity 

allocation of the trading option is set to zero. Otherwise, maximum feasible power 

quantity allocations for risk-free non-local and local Financial Bilateral Transaction 

options are determined as discussed in Section 6.2.1.2 and Section 6.2.1.3 

respectively. 
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6.2.1.1 Risky day-ahead auction 

For day-ahead auction, although ISO has an upper limit on energy prices in price-

sensitive supply offers of GenCos, it does not enforce limits on power quantities that 

GenCos can offer. Therefore, if a GenCo cannot secure a bilateral transaction then it 

has an option to offer its Capacity, max

gp , in day-ahead auction. In both basic and 

improved portfolio optimization models, maximum feasible power quantity 

allocation for the day-ahead auction, 
,max

DAA

lnp , is set as, 

 
max

,max

DAA

ln gpp   (6.1) 

6.2.1.2 Risk-free non-local Financial Bilateral Transactions 

The basic model [1] ignores maximum quantities of simultaneously feasible 

Financial Bilateral Transactions announced by ISO for GenCo g. It assumes that 

GenCo g’s Capacity, max

gp , can be allocated to a non-local Financial Bilateral 

Transaction. In consequence, maximum feasible power quantity allocation to non-

local transaction with LSE at node i,
,max

FBT

ip , is set as follows, 

 
max

,max

FBT

i gpp   (6.2) 

However, the assumption of basic model is not valid for practical power systems, as 

ISO can reduce non-local bilateral transactions if they are not simultaneously feasible. 

These reductions are loss of bilateral transaction opportunity for market participants. 

If GenCo had adhered to simultaneous feasibility constraints announced by ISO then 

it could have allocated lost opportunity fraction of its Capacity to alternative bilateral 

transaction options. It is important to improve the basic portfolio optimization model 

of a GenCo to avoid the reductions by ISO and the consequent opportunity losses to 

GenCos.  

The improved model considers maximum quantities of simultaneously feasible 

Financial Bilateral Transactions announced by ISO for a GenCo. This quantity is 

used as maximum quantity of GenCo’s feasible Financial Bilateral Transaction, 
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publicly announced by ISO, with LSE at node i, denoted as 
,max

SFT

ip . The maximum 

feasible power quantity allocation for non-local transaction, privately determined by 

GenCo, with LSE at node i is denoted as 
,max

FBT

ip . A GenCo seeks to determine the 

value of its 
,max

FBT

ip by considering 
,max

SFT

ip  as shown in following equation, 

 

max max

,max

,max max

,max ,max,

, SFT

g g iFBT

i SFT SFT

i g i

p
p

p p

p

p

p 
 


 (6.3) 

6.2.1.3 A risk-free local Financial Bilateral Transaction 

The basic model ignores load requirement reported to GenCo g by its local LSE l, 

local

lp , and assumes that local LSE l can buy GenCo g’s Capacity, max

gp . In basic 

model, maximum feasible power quantity allocation for the local bilateral (lb) 

transaction, 
,max

FBT

lbp , is set as,  

 
max

,max

FBT

lb gpp   (6.4) 

In practical power systems, if load requirement of local LSE, 
local

lp , is less than 

GenCo g’s Capacity, max

gp , then assumption of basic model will not hold. In such 

case, if GenCo allocates max

gp to local transaction then it will face loss of opportunity. 

If GenCo had considered load requirement reported by local LSE, 
local

lp , then it 

could have allocated lost opportunity fraction of its Capacity to alternative trading 

options. Therefore, the basic portfolio optimization model of a GenCo must be 

improved for local bilateral transaction to avoid the loss of opportunity.  

The improved model considers maximum load requirement reported to GenCo g by 

its local LSE l, 
local

lp . As a result, maximum feasible power quantity allocation for 

the local bilateral transaction, 
,max

FBT

lbp , may be limited by 
local

lp and can be determined 

as, 
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max max

,max max,

, local

g g lFBT

lb local local

l g l

p p
p

p

p p p

 
 


 (6.5) 

6.2.2 Upper limits of Decision Variables for Power Allocations 

to Trading Options 

Once maximum feasible power quantity allocations are known for all trading options, 

it becomes possible to determine upper limits of decision variables for power 

allocations to the trading options. Decision or unknown variables of GenCo g’s 

portfolio optimization are the power allocation fractions of its Capacity, max

gp , to 

N+1 trading options. For both basic and improved models, methods of determining 

upper limits of power allocation fractions of Capacity for trading options are the 

same. These methods for risky day-ahead auction and risk-free local and non-local 

Financial Bilateral Transactions are discussed next.  

6.2.2.1 Risky day-ahead auction 

Upper limit of power allocation fraction of GenCo g’s Capacity, max

gp , for risky day-

ahead auction, 
,max

DAA

lnx , depends on value of maximum feasible power quantity 

allocation to the day-ahead auction,
,max

DAA

lnp . The upper limit is set as, 

 
max

,max ,max

DAA DAA

ln ln gpx p  (6.6) 

6.2.2.2 Non-risky non-local Financial Bilateral Transactions 

Maximum feasible power quantity allocation to risk-free non-local Financial 

Bilateral Transaction with LSE at node i, 
,max

FBT

ip , determines upper limit of power 

allocation fraction of GenCo g’s Capacity, max

gp , to the bilateral transaction,
,max

FBT

ix , 

 
max

,max ,max

FBT FBT

i i gx pp  (6.7) 
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6.2.2.3 A risk-free local Financial Bilateral Transaction 

Upper limit of power allocation fraction of GenCo g’s Capacity, max

gp , for risk-free 

local bilateral (lb) transaction, 
,max

FBT

lbx , depends on value of maximum feasible power 

quantity allocation to the bilateral transaction,
,max

FBT

lbp . The upper limit is set as. 

 
max

,max ,max

FBT FBT

lb lb gx pp  (6.8) 

6.2.3 Return Characteristics of Trading Options 

Return characteristics include expectation, E , variance, 
2 , and covariance,  , of 

return for all trading options. For determining the return characteristics, a GenCo 

needs to do statistical analysis of LMPs from the previous year, which involves 

determination of expectation, E , variance, 
2 , and covariance,  , of historical 

LMPs, as shown in Chapter 5. For determining the return characteristics, a GenCo 

also needs to calculate the quantities of the maximum feasible power allocations to 

all trading options, by formulae (6.1)-(6.5), presented in Section 6.2.1. For both basic 

and improved models, the return characteristics of day-ahead auction, as well as risk-

free non-local and local bilateral transactions are determined in the same way as 

described next.  

Equations for expected return from all N+1 trading options are derived first, and are 

followed by equations for variance and covariance of return. This order is followed 

because an expression for variance of return from a trading option depends on 

expression for expected return from the trading option. Similarly, an equation for 

covariance of returns depends on equations for expected return from all trading 

options. 

6.2.3.1 Returns and Expected Returns for Trading Options  

Each GenCo carries out its portfolio optimization for a specified decision period. The 

decision period can be a month, a year or any other length of time. A trading option’s 

rate of return, in short return, is its benefit-to-cost ratio that is a measure of its 
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financial performance. Benefit of a trading option is determined by the difference 

between its revenue and cost. In this section, revenue, cost and return refer to a 

specific trading option of a GenCo over a specified decision period. Return is defined 

by equation (5.1) that is used to develop expressions of returns for all trading options 

of a GenCo, as shown next.  

Risk-free Local Financial Bilateral Transaction 

Assuming that decision period has a total of Z trading intervals, revenue from local 

bilateral transaction with local LSE is calculated as , ,

1

lb z lb

Z

z

z

p 


  where ,lb zp  is power 

quantity and ,lb z is energy price for local bilateral (lb) transaction in trading interval 

z. Over all trading intervals, general expression for GenCo’s cost of power 

generation is a quadratic function of the following form 

   2

1

( ) ( )
Z

g g g

z

C a b c


       (6.9) 

where ga , gb  and gc  are actual fuel consumption based coefficients of GenCo g. 

Therefore, from (6.9) the total cost of local bilateral transaction over all trading 

intervals is calculated as   2

, ,

1

g lb z g l

Z

b z g

z

a p b p c


  , where ,lb zp  is power quantity 

allocated in trading interval z. Substituting the expressions for revenue and cost of 

local bilateral transaction into equation (5.1), gives following equation for return of 

local bilateral transaction, lbr , 

 

  

, ,

1

2

, ,

1

1
lb z lb z

z
lb

g lb z g lb z

z

Z

Z

g

p

r

a p b p c






 

 




 (6.10) 

Equation (6.10) is a general expression for return of local bilateral transaction over a 

total of Z trading intervals. GenCo g’s optimal allocation of power quantity to each 

trading option will be determined as a result of portfolio optimization. Note, a GenCo 
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will not be over committed because portfolio optimization constrains total power 

allocations of GenCo to its Capacity. Before carrying out portfolio optimization, 

GenCo g is interested in exploring the possibility of allocating maximum feasible 

power quantity to local Financial Bilateral Transaction, 
,max

FBT

lbp , in all trading 

intervals. Therefore, substituting ,lb zp  with 
,max

FBT

lbp  in equation (6.10) yields, 

 

  

,max

,max ,ma

,

1

2

x

1

1

Z
FBT

lb

Z
FBT FBT

lb lb

lb z

z
lb

g g g

z

p

r

a p b p c






 

 




 (6.11) 

Moreover, in this model a local bilateral transaction has same price, lb , irrespective 

of trading interval z. Therefore, substituting price of local bilateral transaction in 

trading interval z, ,lb z , with lb  in equation (6.11) leads to, 

 

  

,max

,max ,max

1

2

1

1

Z
FBT

lb

Z
FB

lb

z
lb

g g

T FBT

l g

z

b lb

p

r

a p b p c






 

 




 (6.12) 

where (6.12) is applicable to the basic as well as the improved model of portfolio 

optimization over a total of Z trading intervals. In equation (6.12), ga , gb , gc  and lb  

are assumed certain at the time of portfolio optimization. Moreover, local bilateral 

transaction does not carry transmission congestion risk because it does not use 

transmission network. Consequently, actual return of local bilateral transaction is the 

same as its expected return, ( )lb lbE r r .  

Risk-free Non-local Financial Bilateral Transactions 

Revenue from non-local bilateral transaction with LSE at node i is calculated as 

, ,

1

i z i z

Z

z

p 


 , where ,i zp  is power quantity and ,i z is energy price for non-local 

bilateral transaction in trading interval z. Total cost of non-local bilateral transaction 

with LSE at node i depends on power quantity ,i zp in each trading interval z, and from  
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(6.9) can be calculated as   2

, ,

1

g i z g i z g

z

Z

a p b p c


  .  Substituting the expressions 

for revenue and cost of the non-local bilateral transaction in equation (5.1) yields 

following expression for return of non-local bilateral transaction with LSE at node i, 

ir , 

 

  

, ,

1

2

, ,

1

1
i z i z

z
i

g i z g i z g

z

Z

Z

p

r

a p b p c






 

 




 (6.13) 

Equation (6.13) is a general expression for decision period return for non-local 

bilateral transaction with LSE at node i over a total of Z trading intervals.  GenCo g 

is interested in exploring the possibility of allocating maximum feasible power 

quantity allocation to the non-local Financial Bilateral Transaction, 
,max

FBT

ip , in all 

trading intervals. Therefore, substituting ,i zp  with 
,max

FBT

ip  in equation (6.13) leads to, 

 

  

,max

,max ,ma

,

1

2

1

x

1

Z
FBT

i

Z
FBT

i z

z

FBT

i

i

g g gi

z

p

r

a p b p c






 

 




 (6.14) 

Similar to local bilateral transaction, a non-local bilateral transaction with LSE at 

node i has same price, i , irrespective of trading interval z. Therefore, substituting 

price of non-local bilateral transaction with LSE at node i in trading interval z, ,i z  

with i  in equation (6.14) gives, 

 

  

,max

,max

1

2

,m

1

ax

1

Z
FBT

i

Z
FBT FBT

i i

i

z
i

g g g

z

p

r

a p b p c






 

 




 (6.15) 

The above expression (6.15) applies to both basic and improved models of portfolio 

optimization over a total of Z trading intervals. As before, ga , gb , gc  and ,i z  in 
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equation (6.15) are assumed certain at the time of portfolio optimization. Moreover, 

non-local bilateral transaction does not carry transmission congestion risk because it 

is assumed here that GenCo is not responsible for transmission congestion charges. 

For simplicity, the modelling of transmission congestion charges is not shown here 

for GenCo, however, in section 6.3 of this chapter, it is shown how transmission 

congestion charges are included in modelling for LSE. If GenCo are to be 

responsible for part of the transmission congestion charges, equations (6.14) can be 

similarly modified.  

Since here non-local bilateral transactions are risk-free, their actual returns are the   

same as their expected returns, i.e. ( )i iE r r  for 1, , ,i N i ln  . 

Day-ahead auction 

Decision period revenue of a GenCo from day-ahead auction is calculated as 

,z

1

,

Z

n zl ln

z

p 


 , where ,ln zp  and ,zln  represent unknown power quantity and price (that 

will be scheduled and cleared by ISO) in trading interval z at local node (ln). 

Similarly as before, cost of day-ahead auction over all trading intervals is calculated 

from (6.9) as   2

, ,

1

g ln z g l

Z

n z g

z

a p b p c


  . Substituting the expressions for revenue 

and cost of day-ahead auction in equation (5.1) gives the following return of day-

ahead auction, daar , 

 

  

, ,z

1

2

, ,

1

1
l ln

z
daa

g ln z g l

Z

n

n z g

z

Z

z

p

r

a p b p c






 

 




 (6.16) 

Equation (6.16) is a general expression for return of day-ahead auction over a total of 

Z trading intervals. Although GenCo g does not know ,ln zp , the power quantity that 

will be scheduled by ISO in trading interval z, it is interested in exploring the 

possibility of allocating maximum feasible power quantity allocation to the day-
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ahead auction, 
,max

DAA

lnp , in all trading intervals. Therefore, return for the day-ahead 

auction, daar , is obtained by substituting ,ln zp  with 
,max

DAA

lnp  in (6.16), so that, 

 

  

,max

,max ,ma

,z

2

1

x

1 1

Z
DAA

ln

Z
DAA DAA

ln ln

ln

z
daa

g g g

z

p

r

a p b p c






 

 




 (6.17) 

Equation (6.17) is applicable to both basic and improved models of portfolio 

optimization over a total of Z trading intervals. Again, ga , gb and gc  are assumed 

certain in (6.17), at the time of portfolio optimization,  however, value of ,zln  is 

uncertain because ,zln  represents LMP at local node in interval z. Note that the 

values of these LMPs can vary between trading intervals.  

In this thesis, portfolio optimization considers overall variations of LMPs at system 

nodes in all trading intervals of the decision period. However, it does not consider 

variations in LMPs at the same node between trading intervals that have different 

time-of-day or time-of-year characteristics, as explained next. According to time-of-

year, a trading interval may be defined as a winter or summer interval but seasonal 

variations are not modelled in FABS. Similarly, in terms of time-of-day, a trading 

interval can be defined as a peak or an off-peak interval but our portfolio 

optimization model gives the same solution for all trading intervals in the decision 

period. Due to uncertain values of ,ln z in trading intervals of the decision period in 

future, ln is defined as a random variable to represent overall variable LMP, 

irrespective of trading interval, at local node ln. Substituting ln  for ,ln z  in (6.17) 

yields, 
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(6.18) 
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Due to the uncertainty associated with random variable ln , expected return for the 

day-ahead auction is not the same as return of day-ahead auction represented by 

(6.18). Expectation of the return, ( )daaE r , depends on expectation of LMP at local 

node,  lnE  . Substituting  lnE   for ln  and ( )daaE r  for daar  in (6.18) leads to, 
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(6.19) 

Equation (6.19) shows that GenCo’s expected return for day-ahead auction, ( )daaE r , 

is directly proportional to overall expectation of LMP at local node, ( )lnE  , during 

the decision period.  

A GenCo needs to evaluate its expected return for each trading option, as explained 

above. The expected returns count towards the “return” aspect in the risk-return 

trade-off evaluated by portfolio optimization, as discussed in introduction of this 

Chapter. 

6.2.3.2 Variances of Returns for Trading Options 

In addition to evaluating the “return” aspect in the risk-return trade-off, GenCo needs 

to evaluate the “risk” aspect. The risk evaluation involves calculation of variance in 

return of each trading option as well as covariance between returns of all trading 

options. Equations for variance in return of each trading option are developed as 

follows.  

Risk-free Non-local and Local Financial Bilateral Transactions 

Since returns of all bilateral transactions of a GenCo are constant and variance of a 

constant is zero, variance of return for all bilateral transactions is set to zero, 

 

2 ( ) 0ir   

1, ,i N  

(6.20) 
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Risky Day-ahead Auction 

As shown in equation (6.19), random variable of LMP at local node, ln , introduces 

uncertainty in return of day-ahead auction. Consequently, day-ahead auction is a 

risky trading option that requires a risk assessment. Variance is a measure of risk that 

can be used for the risk analysis. Equation (6.19) is a function of a random variable 

and variance has following property for functions of random variables, 

    2Var a bX b Var X   (6.21) 

where a and b are constants and X is a random variable. Applying the property of 

variance (6.21) to equation (6.19) leads to following expression for variance of return 

for day-ahead auction, 
2 ( )daar , 
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 (6.22) 

6.2.3.3 Covariance between Returns from Trading Options 

In addition to variance of each return, covariance between returns of all trading 

options can also contribute to risk. Therefore risk evaluation must explore covariance 

between returns of all trading options, as discussed next.   

Covariance between Returns of Risk-free Local Financial Bilateral 

Transaction and Risk-free Non-local Financial Bilateral Transaction 

Since return of local bilateral transaction of a GenCo is a constant and covariance 

between a constant and another constant/variable is zero, covariance between return 

of a local bilateral (lb) and return of any non-local bilateral transaction is zero,  

 

( , ) 0lb ir r   

1, , ,i N i ln   

(6.23) 
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Covariance between Returns of Risk-free Local Financial Bilateral 

Transaction and Risky Day-ahead Auction 

Since return of local bilateral transaction of a GenCo is a constant and covariance 

between a constant and another constant/variable is zero, covariance between return 

of local bilateral transaction and return of day-ahead auction is zero,  

  ,( ) 0lb daar r     (6.24) 

Covariance between Returns of a Risk-free Non-local Financial Bilateral 

Transaction and another Risk-free Non-local Financial Bilateral 

Transaction 

Since return of a non-local bilateral transaction of a GenCo is a constant and 

covariance between a constant and another constant/variable is zero, covariance 

between returns of two non-local bilateral transactions is zero,  

 

( , ) 0i jr r   

1, , , , 1, , , ,i N i ln j N j ln j i      

(6.25) 

Covariance between Returns of a Risk-free Non-local Financial Bilateral 

Transaction and Risky Day-ahead Auction 

Since return of a non-local bilateral transaction of a GenCo is a constant and 

covariance between a constant and another constant/variable is zero, covariance 

between return of a non-local bilateral transaction and return of day-ahead auction is 

zero,  

 

( ) 0,i daar r   

1, , ,i N i ln   

(6.26) 
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6.2.4 Objective or Utility Function of Portfolio Optimization 

For GenCo g, overall expected return, ( )gE r , is sum of its expected returns from 

N+1 trading options, expressed as,  

 
1

1

( )
N

gE r x E 






  (6.27) 

where   is a trading option out of total N+1 trading options, x  is decision variable 

for power allocation fraction of Capacity to trading option τ  and E  is expected 

return for trading option τ. 

The GenCo’s overall variance of return, 2 ( )gr , is expressed by sum of its variances 

and covariances of returns from N+1 trading options, as follows, 
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where   is a trading option out of total N+1 trading options,    is another trading 

option (different from  , i.e.    ) out of total N+1 trading options, power 

allocation fractions of Capacity for trading option τ and    are denoted by decision 

variables x  and x   respectively, 
2

  is variance of return for trading option τ and 

,    is covariance between returns of trading options τ and   . 

Substituting expression of overall expectation from (6.27) and variance from (6.28) 

into overall utility function (5.32) leads to, 
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where gU  is GenCo g’s overall utility of portfolio optimization and A is risk aversion 

factor that shows how strongly the GenCo wants to avoid risk.  
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6.2.5 Optimal Portfolio of Trading Options 

A GenCo can obtain its optimal portfolio, i.e. optimal power allocation fractions of 

Capacity to trading options, by maximizing the utility function (6.29) as follows,  

 ,
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subject to 
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 (6.31) 

where x  represents power allocation fraction of Capacity to trading option  , out of 

total N+1 trading options, and ,maxx  denotes upper limit on power allocation fraction 

to trading option  .  

The optimization problem (6.30)-(6.31) can be solved by any standard non-linear 

programming solver. Matlab function for constrained non-linear programming, 

fmincon, is used to solve the optimization problem in this thesis.  

6.2.6 Optimal Power Quantity Allocations to Trading Options 

Optimal power allocation fractions of a GenCo’s Capacity are used to calculate 

optimal power quantities allocated to trading options. The calculation methods for 

risky day-ahead auction as well as risk-free local and non-local Financial Bilateral 

Transactions are described next.  

6.2.6.1 Risky day-ahead auction 

Optimal power allocation fraction to the day-ahead auction, ,

DAA

ln optx , determines 

optimal power quantity allocation to risky day-ahead auction,
,

DAA

ln optp ,  as, 
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  max

, ,

DAA DAA

ln opt ln opt gpp x     (6.32) 

6.2.6.2 Risk-free non-local Financial Bilateral Transactions 

Optimal power quantity allocation to the risky non-local Financial Bilateral 

Transaction,
,

FBT

i optp , depends on optimal power allocation fraction to bilateral 

transaction with LSE at node i, 
,

FBT

i optx ,  

 
max

, ,

FBT FBT

i opt i opt gx pp    (6.33) 

6.2.6.3 A risk-free local Financial Bilateral Transaction 

Optimal power allocation fraction to risk-free local bilateral (lb) transaction,
,

FBT

lb optx , 

determines optimal power quantity allocation to the local bilateral (lb) transaction,

,

FBT

lb optp , as, 

 
max

, ,

FBT FBT

lb opt lb opt gpp x   (6.34) 

6.3 Portfolio Optimization Procedure of a Generation 

Company 

As mentioned earlier, energy prices in day-ahead markets serve as reference prices 

for financial bilateral negotiations in electricity markets of USA [4]. Each GenCo 

needs to do statistical analysis of LMPs (by formulae presented in Chapter 5) in the 

previous year before portfolio optimization for the next year. GenCo is not 

responsible for transmission congestion charges because it sells energy to LSEs at its 

local node. Therefore, a GenCo sets overall expectation of LMP at local node ( )lnE   

as assumed prices for all bilateral transactions. Portfolio optimization procedure of a 

Generation Company consists of following steps. 
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1. If using Basic Portfolio Optimization Procedure then compute maximum 

feasible power quantity allocations to trading options by equations (6.1), (6.2) 

and (6.4).  

2. If using Improved Portfolio Optimization Procedure then compute 

maximum feasible power quantity allocations to trading options by equations 

(6.1), (6.3) and (6.5). 

3. Compute upper limits of decision variables for power allocations to trading 

options by equations (6.6), (6.7) and (6.8).  

4. Compute expected return for all trading options by equations (6.12), (6.15) 

and (6.19). 

5. Compute variance of return for all trading options by equations (6.20) and 

(6.22).  

6. Compute covariance of return for all trading options by equations (6.23)-

(6.26). 

7. Solve portfolio optimization problem defined by (6.30)-(6.31). 

8. Compute optimal power quantity allocations to trading options by equations 

(6.32), (6.33) and (6.34). 

6.4 Basic and Improved Models of Portfolio 

Optimization for a Load Serving Entity 

Permanent minimum load requirement of an LSE (during all hours) is called its Base 

Load. Base load of LSE l,
base

lp , can be met through a number of trading options. In 

order to develop generic basic and improved portfolio optimization models, it is 

decided to consider as many bilateral transaction options as the number of nodes, N, 

in a power system. The generic basic and improved models are valid irrespective of 

the number or location of GenCos in the power system. Both models assume that a 

maximum of one GenCos is connected to any node of the power system. However, 

the models can also accommodate a single node with two GenCos and any number of 

nodes without GenCos. In addition, the options to trade by submitting price-sensitive 

demand bids and price-inelastic load demands in day-ahead auction is included in the 
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generic models. As a result, both generic portfolio optimization models consider a 

total of N+1 trading options.  

Portfolio optimization of an LSE determines optimal allocation of its Base Load 

among N+1 trading options. Decision or unknown variables of portfolio optimization 

by LSE l are the fractions of its Base Load,
base

lp , allocated to N+1 trading options. In 

order to solve its portfolio optimization problem, an LSE must assume energy prices 

of its trading options and know upper limits of its decision variables. To find the 

upper limits of decision variables, however, an LSE first needs to determine 

maximum feasible power quantity allocations for all trading options. The maximum 

feasible power quantity allocations are also required to evaluate the expectation, 

variance and covariance of return (collectively termed return characteristics) for 

trading options.  

Calculation methods for maximum feasible power quantity allocations, upper limits 

of decision variables and return characteristics of all trading options are covered in 

Sections 6.4.1, 6.4.2 and 6.4.3 respectively. 

6.4.1 Maximum Feasible Power Quantity Allocations to 

Trading Options 

Direct-search Financial Bilateral Transactions of an LSE can be divided into two 

types: (i) bilateral transaction with GenCo at local node and (ii) bilateral transactions 

with GenCos at non-local nodes. LSEs’ non-local Financial Bilateral Transactions 

are risky because LSEs are responsible for transmission congestion costs. However, 

local Financial Bilateral Transactions of LSEs are risk-free because they do not use 

transmission network. The two types of an LSE’s direct-search Financial Bilateral 

Transactions are termed risky non-local and risk-free local Financial Bilateral 

Transactions respectively.  

In addition to these two types of Financial Bilateral Transactions, an LSE can trade 

energy by submitting price-sensitive demand bids and price-inelastic load demands 

in day-ahead auction. Price-sensitive demand bids are submitted by LSEs and 
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processed by ISO to determine which ones are most competitive (highest priced) and 

should be allowed. Price-sensitive demand bids of an LSE represent its willingness to 

buy specified power quantities if it can get energy prices that are lower or equal to its 

specified energy prices. An LSE’s participation in day-ahead energy auction is a 

risky option because market prices can fluctuate unpredictably and it has to compete 

with other LSEs in the market. ISO will not accept price-sensitive demand bids of an 

LSE if it finds that energy prices offered by other LSEs are higher and thus more 

competitive.  

Discussion of maximum feasible power quantity allocations for risky day-ahead 

auction is covered in Section 6.4.1.1. If a bilateral transaction option is infeasible due 

to absence of any GenCo at a particular node then maximum feasible power quantity 

allocation of the trading option is set to zero. Otherwise, maximum feasible power 

quantity allocations for risky non-local and risk-free local Financial Bilateral 

Transaction options are determined as discussed in Section 6.4.1.2 and Section 

6.4.1.3 respectively. 

6.4.1.1 Risky day-ahead auction 

If an LSE cannot secure a bilateral transaction then it has an option to bid for its Base 

Load, 
base

lp , in day-ahead auction. In both basic and improved portfolio optimization 

models, maximum feasible power quantity allocation for the day-ahead auction, 

,max

DAA

lnp , is set as, 

  
,max

DAA base

ln lpp     (6.35) 

6.4.1.2 Risky non-local Financial Bilateral Transactions 

The basic model ignores maximum quantities of simultaneously feasible Financial 

Bilateral Transactions announced by ISO for LSE l. It assumes that LSE l’s Base 

Load, 
base

lp , can be allocated to a non-local Financial Bilateral Transaction. In 

consequence, maximum feasible power quantity allocation to non-local transaction 

with GenCo at node i,
,max

FBT

ip , is set as follows, 
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 ,max

FBT base

i lpp   (6.36) 

However, the assumption of basic model is not valid for practical power systems, as 

ISO can reduce non-local bilateral transactions if they are not simultaneously feasible. 

These reductions are loss of bilateral transaction opportunity for market participants. 

If LSE had adhered to simultaneous feasibility constraints announced by ISO then it 

could have allocated lost opportunity fraction of its Base Load to alternative bilateral 

transaction options. Thus it is crucial to improve the basic portfolio optimization 

model of an LSE to avoid the reductions by ISO and the consequent opportunity 

losses to LSEs.  

The improved model considers maximum quantities of simultaneously feasible 

Financial Bilateral Transactions announced by ISO for an LSE. This quantity is used 

as maximum quantity of LSE’s feasible Financial Bilateral Transaction, publicly 

announced by ISO, with GenCo at node i, denoted as 
,max

SFT

ip . The maximum feasible 

power quantity allocation for non-local transaction, privately determined by LSE, 

with GenCo at node i is denoted as 
,max

FBT

ip . An LSE determines its 
,max

FBT

ip by 

considering 
,max

SFT

ip  as shown in following equation, 
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,max ,max,
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i l i
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 


   (6.37) 

6.4.1.3 A risk-free local Financial Bilateral Transaction 

The basic model ignores generation capability reported to LSE l by its local GenCo g, 

local

gp , and assumes that local GenCo can meet LSE l’s Base Load, 
base

lp . In basic 

model, maximum feasible power quantity allocation to the local bilateral (lb) 

transaction, ,max

FBT

lbp , is set as,  

 ,max

FBT base

lb lpp   (6.38) 
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In practical power systems, if generation capability of local GenCo g, local

gp , is less 

than LSE l’s Base Load, 
base

lp , then assumption of basic model will not hold. In such 

case, if LSE allocates 
base

lp to local transaction then it will face loss of opportunity. If 

LSE had considered generation capability reported by local GenCo g, local

gp , then it 

could have allocated lost opportunity fraction of its Base Load to alternative trading 

options. Therefore, the basic portfolio optimization model of an LSE must be 

improved for local bilateral transaction to avoid the loss of opportunity.  

The improved model considers generation capability reported to LSE l by its local 

GenCo g, local

gp . As a result, maximum feasible power quantity allocation for the 

local bilateral transaction, 
,max

FBT

lbp , may be limited by local

gp and can be determined as, 

  ,max

,

,

locbase base

l lFBT

lb local base

al

g

loca

g l

l

g

p p

p

p
p

pp

 
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
   (6.39) 

6.4.2 Upper limits of Decision Variables for Power Allocations 

to Trading Options 

Once maximum feasible power quantity allocations are known for all trading options, 

it becomes possible to determine upper limits of decision variables for power 

allocations to the trading options. Decision or unknown variables of LSE l are the 

power allocation fractions of its Base Load, 
base

lp , allocated to N+1 trading options. 

For both basic and improved models, methods of determining upper limits of power 

allocation fractions of Base Load for trading options are the same. These methods for 

risky day-ahead auction, risk-free non-local Financial Bilateral Transactions and 

risk-free local Financial Bilateral Transactions are discussed next.  
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6.4.2.1 Risky day-ahead auction 

Upper limit of power allocation fraction of LSE l’s Base Load, 
base

lp , for risky day-

ahead auction, 
,max

DAA

lnx , depends on value of maximum feasible power quantity 

allocation to the day-ahead auction,
,max

DAA

lnp . The upper limit is set as, 

 ,max ,max

DAA DAA base

ln ln lx pp  (6.40) 

6.4.2.2 Risky non-local Financial Bilateral Transactions 

Maximum feasible power quantity allocation to risky non-local Financial Bilateral 

Transaction with GenCo at node i, 
,max

FBT

ip , determines upper limit of power allocation 

fraction of LSE l’s Base Load, 
base

lp , to the bilateral transaction,
,max

FBT

ix , 

 ,max ,max

FBT FBT base

i i lx pp  (6.41) 

6.4.2.3 A risk-free local Financial Bilateral Transaction 

Upper limit of power allocation fraction of LSE l’s Base Load, 
base

lp , for risk-free 

local bilateral (lb) transaction, 
,max

FBT

lbx , depends on value of maximum feasible power 

quantity allocation to the bilateral transaction,
,max

FBT

lbp . The upper limit is set as, 

 ,max ,max

FBT FBT base

lb lb lx pp  (6.42) 

6.4.3 Return Characteristics of Trading Options 

Return characteristics include expectation, E , variance, 
2 , and covariance,  , of 

return for all trading options. For determining the statistical return characteristics, an 

LSE needs to do statistical analysis of LMPs in the previous year, which involves 

determination of expectation, E , variance, 
2 , and covariance,  , of LMPs, as 

shown in Chapter 5. For determining the return characteristics, an LSE also needs to 

calculate maximum feasible power quantity allocations to all trading options, by 



 

181 

 

formulae presented in Section 6.4.1. The return characteristics of day-ahead auction 

and risk-free local bilateral transaction are determined in the same way for both 

models. However, the return characteristics of risky non-local bilateral transaction 

are determined in different ways, as described next.  

6.4.3.1 Returns and Expected Returns for Trading Options  

Every LSE carries out its portfolio optimization for a specified decision period. The 

decision period can be a month, a year or any other length of time. A trading option’s 

rate of return, in short return, is its benefit-to-cost ratio that is a measure of its 

financial performance. Benefit of a trading option is determined by the difference 

between its revenue and cost. In this section, revenue, cost and return refer to a 

specific trading option of  an LSE over a specified decision period. Return is defined 

by equation (5.1) that is used to develop expressions of returns for all trading options 

of  an LSE, as shown next.  

Risk-free Local Financial Bilateral Transaction 

Assuming that decision period has a total of Z trading intervals, cost of local bilateral 

transaction with GenCo at local node over all trading intervals is calculated as 

, ,

1

lb z lb

Z

z

z

p 


 , where ,lb zp  is power quantity and ,lb z is energy price for local bilateral 

(lb) transaction in trading interval z. Total revenue from end-consumers served by 

LSE, with energy obtained from local bilateral transaction, is calculated as ,

1

lb z l

Z

n

z

p 


  

where ln  is flat-rate agreed with the end-consumers at local node (ln). Substituting 

the expressions for revenue and cost of local bilateral transaction in (5.1), gives 

following equation for return of local bilateral transaction, lbr , 
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 (6.43) 
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Equation (6.43) is a general expression for return of local bilateral transaction over a 

total of Z trading intervals. LSE l’s optimal allocation of power quantity to each 

trading option will be determined as a result of portfolio optimization. Note that an 

LSE will not be over committed because portfolio optimization constrains total 

power allocations of LSE to its Base Load. Before carrying out portfolio 

optimization, LSE l g is interested in exploring the possibility of allocating maximum 

feasible power quantity to local Financial Bilateral Transaction,
,max

FBT

lbp , in all trading 

intervals. Therefore, substituting ,lb zp  with 
,max

FBT

lbp  in equation (6.43) yields, 
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 (6.44) 

Moreover, in this model a local bilateral transaction has same price, lb , irrespective 

of trading interval z. Therefore, substituting ,lb z  with lb  in equation (6.44) leads to, 
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 (6.45) 

where (6.45) is applicable to both basic and improved models of portfolio 

optimization over a total of Z trading intervals. In equation (6.45), ln  and lb  are 

assumed certain at the time of portfolio optimization. Moreover, local bilateral 

transaction does not carry transmission congestion risk because it does not use 

transmission network. Consequently, actual return of local bilateral transaction is the 

same as its expected return, ( )lb lbE r r .  

Risky Non-local Financial Bilateral Transactions 

Cost of non-local bilateral transaction with GenCo at node i, over all trading intervals, 

is calculated as , ,

1

i z i z

Z

z

p 


 , where ,i zp  is power quantity and ,i z is energy price for 
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the non-local bilateral transaction in trading interval z. An LSE’s income from end-

consumers, served by LSE at its local node, contributes to its revenue. However, 

revenue of LSE is not the same as its income because of transmission congestion 

charges, over all trading intervals. Furthermore, if an LSE holds Financial 

Transmission Rights (FTRs) then FTR credits from ISO can reduce LSE’s 

transmission congestion charges. As a result, revenue of LSE over all trading 

intervals depends on (i) income from end-consumers, (ii) transmission congestion 

charges and (iii) FTR credits. LSE’s revenue from a non-local bilateral transaction is 

given by, 

    Revenue Congestion Charges FTRIncom i se Cred t    (6.46) 

An LSE’s total income from end-consumers served by LSE, with energy obtained 

from non-local bilateral transaction with GenCo at node i, is calculated as, 

  ,

1

i z ln

Z

z

p 


    (6.47) 

where ln  is flat-rate agreed with the end-consumers at local node (ln). Total 

transmission congestion charges are expressed as, 

  , , ,

1

Z

i z ln z i z

z

p  


  (6.48) 

where ,ln z  and ,i z  are LMPs, in trading interval z, at local node (ln) and node i 

respectively.  

If LSE holds Financial Transmission Rights (FTRs) between its local node (ln) and 

GenCo node i, 
,held quantity

iFTR , then FTR credit payments from ISO are, 

  ,

, ,

1

held quantity
Z

ln z i z

z

iFTR  


  (6.49) 

Substituting formulae for income from end-consumers (6.47), transmission 

congestion charges (6.48) and FTR credits (6.49) into equation (6.46) yields 
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following expression for revenue from non-local bilateral transaction with GenCo at 

node i,  

    , , , , , ,

1 1 1

,
Z Z

i z ln i z ln z i z

Z
held quanti

ln z i z

y

i

z z

t

z

Fp p TR    
  

      (6.50) 

Substituting the expressions for revenue and cost of local bilateral transaction in (5.1), 

gives following equation for return of non-local bilateral transaction with GenCo at 

node i, ir , 
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(6.51) 

Equation (6.51) is a general expression of return for non-local bilateral transaction 

with GenCo at node i over a total of Z trading intervals. LSE l is interested in 

exploring the possibility of allocating maximum feasible power quantity allocation to 

the non-local Financial Bilateral Transaction, 
,max

FBT

ip , for all trading intervals. 

Therefore, substituting ,i zp  with 
,max

FBT

ip  in equation (6.51) and combining terms 

containing  , ,ln z i z  leads to, 
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 (6.52) 

Similar to local bilateral transaction, a non-local bilateral transaction with GenCo at 

node i has same price, i , irrespective of trading interval z. Therefore, substituting 

,i z  with i  in equation (6.52) and rearranging the numerator gives, 
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 (6.53) 

Equation (6.53) is applicable over a total of Z trading intervals. At the time of 

portfolio optimization, ln and 
,held quantity

iFTR  is assumed certain in this equation. 

However, values of ,zln  and ,zi are uncertain because they represent LMPs, in 

interval z, at local node (ln) and GenCo node i respectively. Note that the values of 

both LMPs can vary between trading intervals. 

In this thesis, portfolio optimization considers overall variations of LMPs at system 

nodes in all trading intervals of the decision period. However, it does not consider 

variations in LMPs at the same node between trading intervals that have different 

time-of-day or time-of-year characteristics, as explained next. According to time-of-

year, a trading interval may be defined as a winter or summer interval but seasonal 

variations are not modelled in FABS. Similarly, in terms of time-of-day, a trading 

interval can be defined as a peak or an off-peak interval but our portfolio 

optimization model gives the same solution for all trading intervals in the decision 

period. Due to uncertain values of ,ln z ( ,i z ) in trading intervals of the decision 

period in future, ln  ( ,i z ) is defined as a random variable to represent overall 

variable LMP, irrespective of trading interval, at local node ln (node i). Substituting 

ln  and i , for ,ln z  and ,i z  in  (6.53)  yields, 
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 (6.54) 

Due to the uncertainty of random variables ln  and i , expected return for the non-

local bilateral transaction is not the same as return of non-local bilateral transaction 

represented by (6.54). Expectation of the return, ( )iE r , depends on expectation of  
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LMP at local node,  lnE  , and node i,  iE  . Substituting  lnE   and  iE   for 

ln  and i   in (6.54) leads to, 
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1, , ,i N i ln   

(6.55) 

Expression (6.55) is valid for both basic and improved models of portfolio 

optimization but 
,held quantity

iFTR  is set to zero in case of the basic model. 

Day-ahead auction  

Cost of day-ahead auction over all trading intervals is calculated as ,z

1

,

Z

n zl ln

z

p 


 , 

where ,ln zp  and ,zln  represent unknown power quantity and price (that will be 

allowed and cleared by ISO) in trading interval z at local node (ln). Total revenue 

from end-consumers served by LSE, with energy obtained from day-ahead auction, is 

calculated as ,

1

ln z l

Z

n

z

p 


  where ln  is flat-rate agreed with the end-consumers at local 

node (ln). Substituting the expressions for revenue and cost of day-ahead auction in 

equation (5.1) gives the following return of day-ahead auction, daar , 
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
 (6.56) 

Equation (6.56) is a general expression for return of day-ahead auction over a total of 

Z trading intervals. Although LSE l does not know ,ln zp , the power quantity that will 

be allowed by ISO in trading interval z, it is interested in exploring the possibility of 

allocating maximum feasible power quantity allocation to the day-ahead auction, 
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,max

DAA

lnp , in all trading intervals. Therefore, return for the day-ahead auction, daar , is 

obtained by substituting ,ln zp  with 
,max

DAA

lnp  in (6.56),  
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 (6.57) 

Equation (6.57) is applicable to both basic and improved models of portfolio 

optimization over a total of Z trading intervals. Again, ln is assumed certain in(6.57), 

at the time of portfolio optimization, however, value of ,zln  is uncertain because 

,zln  represents LMP at local node in interval z. Due to same reasons as already 

explained for non-local bilateral transaction, and the uncertainty of ,zln , ln  is 

defined as a random variable that represents LMP at local node, irrespective of 

trading interval. Substituting ln  for ,zln  in (6.57) yields, 
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(6.58) 

Due to the uncertainty of ln , expected return for the day-ahead auction is not the 

same as return of day-ahead auction represented by (6.58). Expected return, ( )daaE r , 

depends on expectation of LMP at local node,  lnE  . Substituting  lnE   for ln  

and ( )daaE r  for daar  in (6.58) leads to, 
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(6.59) 

Equation (6.59) shows that an LSE’s expected return for day-ahead auction, ( )daaE r , 

is inversely proportional to overall expectation of LMP at local node, ( )lnE  , during 

the decision period. 
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An LSE needs to evaluate its expected return for each trading option, as explained 

above. The expected returns count towards the “return” aspect in the risk-return 

trade-off evaluated by portfolio optimization, as discussed in introduction of this 

Chapter. 

6.4.3.2 Variances of Returns from Trading Options 

In addition to evaluating the “return” aspect in the risk-return trade-off, GenCo needs 

to evaluate the “risk” aspect. The risk evaluation involves calculation of variance in 

return of each trading option as well as covariance between returns of all trading 

options. Equations for variance in return of each trading option are developed as 

follows.  

Local Financial Bilateral Transactions 

Since return of local bilateral transaction of an LSE is constant and variance of a 

constant is zero, variance of return for local bilateral transaction is zero, 

  
2 ( ) 0lbr     (6.60) 

Non-local Financial Bilateral Transactions 

In order to develop equation for variance of return for non-local bilateral transaction, 

equation (6.54) is rearranged, to separate terms containing random variables and 

terms consisting of constants, as follows, 
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 (6.61) 

As equation (6.61) shows, random variables of LMPs at local node and GenCo node 

i, ln  and i , introduce uncertainty in return of non-local bilateral transaction. 

Consequently, non-local bilateral transaction is a risky trading option that requires a 

risk assessment. Variance is a measure of risk that can be used for the risk analysis. 
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Equation (6.61) is a function of two random variables and variance has following 

property for such functions of two random variables, 

          2 2 ,Var a b X Y c b Var X Var Y Cov X Y       (6.62) 

where a, b and c are constants and X and Y are random variables. Applying the 

property of variance (6.62) to equation (6.61) results in following expression for 

variance of return for non-local bilateral transaction with GenCo at node i, 
2 ( )ir , 
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1, , ,i N i ln   

(6.63) 

Expression (6.63) is valid for both basic and improved models of portfolio 

optimization but 
,held quantity

iFTR  is set to zero in case of the basic model. 

Day-ahead Auction 

In order to develop equation for variance of return for day-ahead auction, terms in 

both numerator and denominator of equation (6.58) are cancelled with each other and 

the equation is rearranged, to show that random variable is in denominator, 

 1ln
daa

ln

r



   (6.64) 

In equation (6.64), random variable of LMP at local node, ln , introduces uncertainty 

in the return of day-ahead auction. Since day-ahead auction is a risky trading option 

that requires a risk assessment, variance can be used for the risk analysis. Equation 

(6.64) is a function of a random variable in denominator and variance has following 

property for such functions, 
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where a is a constant, X is a random variable and  E X  is expectation of X. 

Applying property of variance (6.65) to equation (6.64)  results in following 

expression for variance of return for day-ahead auction, 
2 ( )daar ,  
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where ( )lnE   is expectation of ln , calculated by formula given in Chapter 5. 

6.4.3.3 Covariance between Returns from Trading Options 

In addition to variance of each return, covariance between returns of all trading 

options can also contribute to risk. Therefore risk evaluation must explore covariance 

between returns of all trading options, as discussed next.   

Covariance between Returns of Risk-free Local Financial Bilateral 

Transaction and Risky Non-local Financial Bilateral Transaction 

Since return of local bilateral transaction of an LSE is a constant and covariance 

between a constant and another constant/variable is zero, covariance between return 

of a local bilateral (lb) and return of any non-local bilateral transaction is zero, 

 

( , ) 0lb ir r   

1, , ,i N i ln   

(6.67) 

Covariance between Returns of Risk-free Local Financial Bilateral 

Transaction and Risky Day-ahead Auction 

Since return of local bilateral transaction of an LSE is a constant and covariance 

between a constant and another constant/variable is zero, covariance between return 

of local bilateral transaction and return of day-ahead auction is zero,  
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  ,( ) 0lb daar r     (6.68) 

Covariance between Returns of a Risky Non-local Financial Bilateral 

Transaction and another Risky Non-local Financial Bilateral Transaction 

In order to develop an equation for covariance among returns of non-local bilateral 

transactions, equation (6.61) for return of non-local bilateral transaction with GenCo 

at node i needs to be rearranged as, 

 
 

 
,,max

,max

,max ,m

1 1

ax

1 1

Z
FBT

FBT held quantityi
i i

i Z Z
FBT FB

ln

z
ln i

i i

z z

T

i i

p
p

r
R

p

FT

p

Z










 

   
      

     
   
   











 



 
 (6.69) 

Similarly, equation for return of non-local bilateral transaction with GenCo at node j 

can be represented by, 
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 (6.70) 

As equations (6.69) and (6.70) show, random variables of LMPs at local node as well 

as GenCo nodes i and j (i.e. ln , i  and j ) introduce uncertainty in returns of the 

non-local bilateral transactions. Consequently, both non-local bilateral transactions 

are risky trading options and relationship between the two risks can be evaluated by 

covariance. Both (6.69) and (6.70) are functions of two random variables and 

covariance has following property for such functions of two random variables, 
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(6.71) 

where a, b, c and d are constants and X, Y and Z are random variables. Applying the 

property of covariance (6.71) to (6.69) and (6.70) results in following expression for 
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covariance between returns of non-local bilateral transactions with GenCos at nodes i 

and j, ( ),i jr r , 
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1, , , , 1, , , ,i N i ln j N j ln j i      

(6.72) 

Expression (6.72) is valid for both basic and improved models of portfolio 

optimization but 
,held quantity

iFTR  and 
,held quantity

iFTR  are set to zero in case of the basic 

model. 

Covariance between Returns of a Risky Non-local Financial Bilateral 

Transaction and Risky Day-ahead Auction 

Since non-local bilateral transactions and day-ahead auction are both risky, 

covariance between return of a non-local bilateral transaction and return of day-

ahead auction need to be determined. Although covariance property (6.71) is known 

for finding covariance between two linear functions of random variables, no 

covariance property was found for a function with a random variable in denominator, 

such as (6.64).  Therefore, in order to determine covariance between return of a non-

local bilateral transaction and return of day-ahead auction by (6.71) , equation (6.64) 

need to be written in the form of a linear function. Moreover, first two terms of the 

Taylor Series can provide a linear function approximation of equation (6.64). The 

Taylor Series is a power series expansion of an infinitely differentiable function 

around some specified point. For instance, Taylor Series for a function  f X  of 

random variable X around specified point X  , is given as,  



 

193 

 

    
     

2

1! 2!

f X f X
f X f

   


  
     (6.73) 

where  f   is first derivative of f evaluated at  ,   f   is second derivative of 

f evaluated at  , and so on.  

Using Taylor Series expansion (6.73) for (6.64), up to the first two terms and around 

expectation of ln , ( )lnE  , yields, 
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Rearranging (6.74) to separate terms containing random variable ln  and terms 

consisting of constants gives, 
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For ready reference, equation for return of non-local bilateral transaction with GenCo 

at node i is reproduced below, 
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 (6.76) 

As shown in equations (6.75) and (6.76), random variables of LMPs at local node 

and GenCo node i (i.e. ln  and i ) introduce uncertainty in the returns. Consequently, 

both trading options are risky and relationship between the two risks can be 

evaluated by covariance. Both (6.75) and (6.76) are functions of random variables 

and covariance has following property for such functions of random variables, 

          , ,YCov a b X c d X Y bd Var X Cov X      (6.77) 
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where a, b, c and d are constants and X and Y are random variables. Applying the 

property of covariance (6.77) to (6.75) and (6.76) yields following expression for 

covariance between returns of day-ahead auction non-local bilateral transaction with 

GenCo at nodes i, ,( )daa jr r , 
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(6.78) 

Expression (6.78) is valid for both basic and improved models of portfolio 

optimization but 
,held quantity

iFTR  is set to zero in case of the basic model. 

6.4.4 Objective or Utility Function of Portfolio Optimization 

For LSE l, overall expected return, ( )lE r , is sum of its expected returns from N+1 

trading options, expressed as,  
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where   is a trading option out of total N+1 trading options, x  is decision variable 

for power allocation fraction of Base Load to trading option τ  and E  is expected 

return for trading option τ. 

An LSE’s overall variance of return, 
2 ( )lr , is expressed by sum of its variances and 

covariance of returns from N+1 trading options, as follows, 
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where   is a trading option out of total N+1 trading options,     is another trading 

option (different from  , i.e.    ) out of total N+1 trading options, power 

allocation fractions of Base Load for trading option τ and    are denoted by decision 

variables x  and x   respectively, 
2

  is variance of return for trading option τ and 

,    is covariance between returns of trading options τ and   . 

Substituting expression of overall expectation from (6.79) and variance from (6.80) 

into overall utility function (5.32) leads to, 
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where lU  is LSE l’s overall utility of portfolio optimization and A is risk aversion 

factor that shows how strongly the LSE wants to avoid risk.  

6.4.5 Optimal Portfolio of Trading Options 

An LSE can obtain its optimal portfolio, i.e. optimal power allocation fractions of 

Base Load to trading options, by maximizing the utility function (6.81) as follows,  
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subject to 
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where x  represents power allocation fraction of Base Load to trading option  , out 

of total N+1 trading options, and ,maxx  denotes upper limit on power allocation 

fraction to trading option  .  
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The optimization problem (6.82)-(6.83) can be solved by any standard non-linear 

programming solver. Matlab function for constrained non-linear programming, 

fmincon, is used to solve the optimization problem in this thesis.  

6.4.6 Optimal Power Quantity Allocations to Trading Options 

Optimal power allocation fractions of an LSE’s Base Load are used to calculate 

optimal power quantities allocated to trading options. The calculation methods for 

risky day-ahead auction as well as risk-free local and non-local Financial Bilateral 

Transactions are described next.  

6.4.6.1 Risky day-ahead auction 

Optimal power allocation fraction to the day-ahead auction, 
,

DAA

ln optx , determines 

optimal power quantity allocation to risky day-ahead auction,
,

DAA

ln optp ,  as, 

  
, ,

DAA DAA base

ln opt ln opt lx pp      (6.84) 

6.4.6.2 Risk-free non-local Financial Bilateral Transactions: 

Optimal power quantity allocation to the risky non-local Financial Bilateral 

Transaction,
,

FBT

i optp , depends on optimal power allocation fraction to bilateral 

transaction with LSE at node i, 
,

FBT

i optx ,  

 , ,
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i opt i opt lx pp    (6.85) 

6.4.6.3 A risk-free local Financial Bilateral Transaction: 

Optimal power allocation fraction to risk-free local bilateral (lb) transaction,
,

FBT

lb optx , 

determines optimal power quantity allocation to the local bilateral (lb) transaction,

,

FBT

lb optp , as, 

 , ,

FBT FBT base

lb opt lb opt lx pp    (6.86) 
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6.5 Portfolio Optimization Procedure of a Load Serving 

Entity 

Each LSE needs to do statistical analysis of LMPs (by formulae presented in Chapter 

5) in the previous year before portfolio optimization for the next year. An LSE is 

responsible for transmission congestion charges so it buys power from GenCos at 

their local nodes. As a result, an LSE sets overall expectation of LMP at local node 

( )lnE  as assumed price for local bilateral transaction and overall expectation of 

LMP at GenCo nodes ( )iE  as assumed prices for non-local bilateral transactions. 

Portfolio optimization procedure of a Load Serving Entity consists of following steps. 

1. If using Basic Portfolio Optimization Procedure then compute maximum 

feasible power quantity allocations to trading options by equations (6.35), 

(6.36) and(6.38).  

2. If using Improved Portfolio Optimization Procedure then compute 

maximum feasible power quantity allocations to trading options by 

equations(6.35), (6.37) and (6.39). 

3. Compute upper limits of decision variables for power allocations to trading 

options by equations (6.40), (6.41) and (6.42).  

4. Compute expected return for all trading options by equations (6.45), (6.55) 

and (6.59). 

5. Compute variance of return for all trading options by equations (6.60), (6.63) 

and (6.66). 

6. Compute covariance of return for all trading options by equations (6.67), 

(6.68), (6.72) and (6.78). 

7. Solve portfolio optimization problem defined by (6.82)-(6.83). 

8. Compute optimal power quantity allocations to trading options by equations 

(6.84), (6.85) and (6.86). 
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6.6 Case Studies 

Case studies of this chapter are used to explore advantages of the improved portfolio 

optimization procedures over the basic portfolio optimization procedures of GenCo 

and LSE. Results of the basic and improved portfolio optimization procedures of 

GenCo/LSE are compared with each other to demonstrate benefits of the 

improvement.  

Complete data of test grid used for simulation in FABS, provided in Appendix A, 

shows that five GenCos and three LSEs are connected to the five node test grid. 

Although the developed portfolio optimization models are generic, this thesis has 

only tested the portfolio optimization procedures on the five node test grid. 

Performance of the portfolio optimization procedures needs to be verified for larger 

test grids as future work. Each GenCo’s and LSE’s input data for its portfolio 

optimization is sent from Java environment of FABS to Matlab and the output data is 

retrieved back to FABS. The input data of every GenCo and LSE includes 

expectation, variance and covariance of return for its each trading option. Risk 

aversion factor and upper limits of decision variables are also part of the input data. 

A GenCo’s (LSE’s) portfolio optimization determines optimal power allocation 

fractions of Capacity (Base Load) to all trading options. 

6.7 Results 

Since all GenCos have similar portfolio optimization results, only results of GenCo-3 

are discussed here. GenCo-3 is chosen for the discussion because its results, shown 

in Figure 6.1, most clearly demonstrate all salient features of the improved portfolio 

optimization procedure. Since GenCo-3 has a total capacity of 520MW and generator 

outage is not included in our model, it is assumed that GenCo-3 makes power 

allocation decisions for a maximum of 520MW. The Figure 6.1 shows that, the basic 

portfolio optimization procedure allocates 173MW for trade with each LSE. The 

allocations to LSEs add up to the GenCo’s total 520MW generation capacity. Due to 

risk of uncertain market prices, basic portfolio optimization procedure does not 

allocate any power to the day-ahead auction. The next paragraph explains reasons for 
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equally dividing the total 520MW among LSEs by allocating 173MW for sale to 

each LSE. 

Since GenCo is not responsible for transmission congestion charges its bilateral 

transactions are risk-free and have zero variance and covariances. Moreover, as 

shown in equations (6.12) and (6.15), formulae for expected returns of all bilateral 

transactions have similar composition. Therefore, the basic portfolio optimization 

procedure determines that each bilateral transaction has an equally good expected 

return. Consequently, it equally divides the total 520MW among LSEs by allocating 

173MW for sale to each LSE.  

Figure 6.1 also includes results of GenCo’s improved portfolio optimization 

procedure. The improved model considers maximum quantities of simultaneously 

feasible non-local Financial Bilateral Transactions announced by ISO for a GenCo. 

For that reason, instead of allocating 173MW to LSE-1 like the basic procedure, the 

improved procedure limits the allocation to 93MW that ISO has announced to be 

feasible. Furthermore, the improved model considers maximum load requirement 

reported by the local LSE-2 and allocates 234MW instead of 173MW allocated by 

the basic procedure.  

For reasons explained in Chapter 5, ISO does not allow a bilateral transaction if 

expectation of LMP at LSE node is lower than expectation of LMP at GenCo node. 

Expectation of LMP at local node of LSE-3 is $78.9/MWh, whereas the expectation 

of LMP at local node of GenCo-3 is $165.0/MWh. Therefore, the improved 

procedure does not allocate any power for trade with LSE-3. Figure 6.2 shows that 

the improved procedure avoids over allocation to LSE-1 and under allocation to 

LSE-2. Consequently, the improved procedure of GenCo avoids loss of bilateral 

transaction opportunities by choosing power allocations that are feasible and within 

limits allowed by the ISO or reported by the local LSE. 
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Figure 6.1  Comparison of Power Quantity Allocations of GenCo-3 to LSEs by the Basic and 

Improved Portfolio Optimization Procedures 

Since all LSEs have similar portfolio optimization results, only results of LSE-3 are 

discussed here. LSE-3 is chosen for the discussion because its results, shown in 

Figure 6.2, most clearly demonstrate all salient features of the improved portfolio 

optimization procedure. Since LSE-3 has a base load of 195MW, it is assumed that 

LSE-3 is interested in bilateral trade of up to 195MW. Figure 6.2 shows that, the 

basic portfolio optimization procedure allocates bulk of its base load, 182MW out of 

the 195MW, for purchase from GenCo-4 because this purchase at local node is free 

of transmission congestion risk. Out of the remaining 13MW, the basic portfolio 

optimization procedure allocates 3MW, 2MW and 8MW to GenCo-1, GenCo-2 and 

GenCo-5 respectively. Due to transmission congestion risks, the basic procedure’s 

power allocations to non-local bilateral trades are negligible as compared to risk-free 

local bilateral trade.  

Figure 6.2 also shows results of LSE’s improved portfolio optimization procedure. 

The improved model considers available FTRs and maximum quantities of 

simultaneously feasible non-local Financial Bilateral Transactions announced by ISO. 

Since FTRs hedge uncertain transmission congestion costs for non-local bilateral 

trades, the improved procedure allocates the maximum feasible 16MW, 15MW and 

89MW to GenCo-1, GenCo-2 and GenCo-5 respectively, compared to the negligible 

allocations by the basic procedure. Therefore, instead of relying on a single local 
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bilateral trade suggested by the basic procedure, the improved procedure 

recommends local as well as non-local bilateral trades. Due to the reasons mentioned 

in discussion of results for GenCo-3, the LSE’s improved procedure does not allocate 

any power to bilateral trade with GenCo-3.  

 

Figure 6.2  Comparison of Power Quantity Allocations of LSE-3 to GenCos by the Basic and 

Improved Portfolio Optimization Procedures 

6.8 Conclusions 

Portfolio optimization model in [1], that does not consider maximum levels of 

simultaneously feasible Financial Bilateral Transactions, is used as the basic 

portfolio optimization model of a GenCo in FABS. Moreover, a basic portfolio 

optimization model of an LSE is obtained for FABS on the pattern of the basic 

portfolio optimization model of GenCo in [1]. Maximum levels of simultaneously 

feasible Financial Bilateral Transactions are included in the basic portfolio 

optimization models to develop improved portfolio optimization models for a GenCo 

and an LSE. Since LSE is responsible for transmission congestion charges, its 

improved portfolio optimization model also incorporates Financial Transmission 

Rights. Both basic and improved mathematical models of portfolio optimization for 

GenCo and LSE are included in FABS. 
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Risk-averse market participants prefer more bilateral transactions because these 

reduce risks associated with sudden and severe price fluctuations in day-ahead 

market. Use of basic portfolio optimization procedures by market participants and 

subsequent reduction of bilateral transactions by ISO can result in loss of opportunity 

for market participants. Research work presented in this Chapter has improved basic 

portfolio optimization procedures by incorporating Financial Transmission Rights 

held by market participants and taking care of maximum limits on bilateral 

transactions. Compared to the basic portfolio optimization procedures, improved 

portfolio optimization procedures of GenCos and LSEs recommend diversified 

portfolios of bilateral trades that are allowed by ISO because of simultaneous 

feasibility. Moreover, every GenCo and LSE can run its portfolio optimization 

procedure for a range of prices and use the results for match making and bilateral 

negotiations, as shown in the next two Chapters. 
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7 Matchmaking Algorithms for Generators and 

Loads 

 

7.1 Introduction 

Portfolio optimization procedures, presented in Chapter 6, were used to determine 

quantities of power allocations for Financial Bilateral Transactions. The portfolio 

optimization procedures assumed that bilateral transactions take place at prices equal 

to overall expectations of LMPs at GenCos’ nodes. Thus the portfolio optimization 

procedures assumed that bilateral transactions are agreed by match making for power 

quantities at fixed energy prices, i.e. without bilateral negotiations for power 

quantities or prices. Match makings and bilateral negotiations, explained in the 

following paragraphs, are two phases of practical market participants’ decision 

making for bilateral transactions.  

Match making can be organized through a bulletin-board/broker or can be achieved 

by direct-search for suitable bilateral transaction partners. Short-duration bilateral 

transactions, for less than six months, usually result from organized match making. 

However, direct-search match making is normally used for medium-duration 

bilateral transactions, typically lasting a year or more. This thesis is concerned with 

modelling the medium-duration direct-search bilateral transactions because market 

participants use them as primary hedge against uncertain outcomes of participating in 

day-ahead markets whereas the short-duration organized bilateral transactions serve 

as a secondary hedge. Day-ahead auction involves risks such as sudden price spikes 

and entering into appropriate bilateral transactions can hedge such risks. 

When match making is organized through a bulletin-board then there is no need for 

bilateral negotiations. However, if a broker organizes a match making between 

market participants then they usually need bilateral negotiations to reach agreements. 

In case of direct-search match making, each market participant individually 

evaluates its bilateral transaction options and determines optimal, risk-minimizing 
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and return-maximizing, energy prices and quantities for the trading options. 

Consequently, multi-round bilateral negotiations between matched market 

participants can potentially lead to agreements on power quantities and prices for 

bilateral transactions.  

Since FABS, “Financial transmission instruments, energy Auction and Bilateral 

transaction Simulator for wholesale electricity markets”, models medium-duration 

direct-search bilateral transactions, it also incorporates a bilateral negotiations model. 

In order to prepare for bilateral negotiations, each GenCo and LSE achieves its 

direct-search match making by conducting portfolio optimization over a range of 

negotiable prices, instead of a fixed price as shown in Chapter 6. This direct-search 

match making method enables each participant to systematically explore available 

trading options for bilateral transactions, over the entire range of negotiable prices 

and throughout the market.  

Even in a decentralized market scenario, it can be expected that some kind of a 

bilateral transaction protocol becomes an industry wide standard. Such a uniform 

protocol will avoid haphazard behaviour by participants and keep bilateral 

transaction process in order. In FABS, it is assumed that a bilateral transaction 

protocol has already been agreed between all participants prior to match making.  

Each market participant needs to know its negotiable price sets to undertake its 

private match making because match making results prepare it for bilateral 

negotiations in which it can only propose prices within the negotiable price sets. A 

market participant’s collection of negotiable price sets contains a negotiable price set 

for each of its bilateral transaction options. The three rules of the bilateral transaction 

protocol that govern validity of negotiable price sets are listed as follows and 

discussed in the next three paragraphs. 

1. Expectation of LMP at a GenCo node acts as reference price for bilateral 

negotiation between the GenCo and LSEs.  

2. Participants can propose prices that only deviate up to a certain extent, 

termed price deviation, from the reference price.  
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3. A valid negotiable price set is a set of discrete prices at price intervals of 

$0.1/MWh. 

It is important to remember that energy prices in day-ahead markets serve as 

reference prices for Financial Bilateral Transactions in electricity markets of USA [1]. 

In FABS, a GenCo is not responsible for transmission congestion charges because it 

sells energy to LSEs at its local node. An LSE is liable to pay transmission 

congestion charges for transfer of energy bought form GenCos at their local nodes to 

its own node. Since sale and purchase of energy takes place at a GenCo node, the 

bilateral transaction protocol fixes the expectation of LMP at the GenCo node as a 

reference price for bilateral trading between the GenCo and all LSEs. The reference 

price of a bilateral transaction option becomes the middle price in its negotiable 

price set. 

In addition to specifying a reference price for each bilateral transaction option, the 

bilateral transaction protocol mandates that, during their multi-round bilateral 

negotiation, offer prices of a GenCo and bid prices of an LSE can only deviate up to 

a certain extent, termed price deviation, from the reference price. Standard deviation 

of LMP at a node can be used as price deviation because it is a measure of the spread 

of LMP. Simultaneous consideration of all bilateral transaction options by private 

match making algorithm requires a market participant to explore each trading option, 

up to the same extent on either side of the option’s reference price. Furthermore, a 

market participant needs to use its private match making results for bilateral 

negotiation with other market participants. Therefore, bilateral transaction protocol 

requires that all market participants should use the same price deviation for all 

trading options. Since expectations of LMPs at GenCo nodes act as reference prices, 

only standard deviations of LMPs at GenCo nodes are considered for selection as the 

price deviation. Given the set of standard deviations of LMPs at GenCo nodes, the 

protocol has to specify one of the values as the price deviation for all trading options. 

The protocol chooses the minimum value in the set because LMPs at all GenCo 

nodes deviate by at least that value. The reference price and the price deviation of a 

bilateral transaction option determine the minimum and the maximum prices in its 

negotiable price set. 
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The protocol also requires that negotiable prices should have a maximum granularity 

of $0.1/MWh. It means valid negotiable price set for a trading option is a set of 

discrete prices, specified to one decimal place, at price intervals of $0.1/MWh. The 

difference between adjacent prices in each negotiable price set is termed price 

interval that remains fixed at $0.1/MWh. The reference price, the price deviation and 

the price interval are the three protocol rules that specify each price in a negotiable 

price set. It will be explained in Sections 7.2 and 7.3 that how a GenCo and an LSE 

uses the three rules to find its negotiable price sets. 

A detailed literature review of match making simulation techniques for bilateral 

transactions was presented in Chapter 3. However, a summary of the literature 

review is provided here. Match making of buyers and sellers is simulated as an 

organised but random process in works presented in [2] and [3]. However, organised 

and systematic match making is simulated in works presented in [4], [5], [6], [7] and 

[8]. In case of [4] and [5], match making organiser has complete information of 

energy prices and quantities submitted by all buyers and sellers. Whereas in [6], [7] 

and [8], match making organiser has complete information of private preferences of 

all buyers and sellers regarding energy prices and quantities. Techniques presented in 

[2], [3], [4], [5], [6], [7] and [8] are suitable for simulating match making of short-

duration organised bilateral transactions but not medium-duration direct-search 

bilateral transactions. 

EMCAS, NEMSIM and MASCEM are commercial software for simulation of 

electricity markets. Overviews of EMCAS, NEMSIM and MASCEM, presented in 

[9], [10] and [11] respectively, indicate that bilateral transactions are modelled in 

these software. Although it is not explicitly stated but these commercial and 

proprietary software may include models of medium duration direct-search bilateral 

transactions. However, full mathematical models of match making are not publicly 

available to research community for medium duration direct-search bilateral 

transactions. Work presented in this Chapter contributes to knowledge by presenting 

a mathematical model of match making for medium-duration direct-search bilateral 

transactions. 
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Portfolio optimization methods of GenCos [12] and LSEs [13] do not accommodate 

limits on bilateral transfer capacities or consider Financial Transmission Rights. 

However, the portfolio optimization methods were improved, as shown in Chapter 6, 

to accommodate limits on bilateral transfer capacities and Financial Transmission 

Rights. This chapter explains details of how the improved portfolio optimization 

methods are used in match making for direct-search bilateral transactions.  

Compared to above-mentioned previous works in simulation of match making for 

bilateral transactions, the match making algorithms in this Chapter have following 

salient features. Match making for decentralized bilateral transactions is achieved by 

direct-search without any organized bulletin-board/broker or match making organizer. 

Portfolio optimization provides a systematic way of considering available options for 

electricity trading throughout the market instead of some random match making 

process. Improved portfolio optimization of a market participant considers limits on 

bilateral transfer capacities and Financial Transmission Rights held by the participant. 

Each GenCo and LSE can independently determine its own course of action 

depending on private profit-seeking goals and risk-aversion preferences as well as 

market history. 

The rest of the chapter is organized as follows. Sections 7.2 and 7.3 present details of 

match making by a Generation Company and a Load Serving Entity respectively. 

Results and conclusions are presented in Sections 7.4 and 7.5 respectively. 

7.2 Match Making by Generation Company 

Each GenCo needs to know its negotiable price sets to undertake its private match 

making because match making results prepare it for bilateral negotiations in which 

GenCo can only make price offers within negotiable price sets. A GenCo’s 

collection of negotiable price sets contains a negotiable price set for each of its 

bilateral transaction options. Three protocol rules that govern validity of negotiable 

price sets are discussed in the introduction of this Chapter. A GenCo uses the three 

protocol rules to find its negotiable price sets as follows. 
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Since sale and purchase of energy takes place at a GenCo node, the bilateral 

transaction protocol fixes the expectation of LMP at the node as a reference price for 

bilateral trading between the GenCo and all LSEs. A GenCo has a set of reference 

prices that contains a reference price for each of its bilateral transaction options. 

Given that expectation of LMP at local node of GenCo g is  gE  , it sets its 

reference price for bilateral transaction with LSE l, 
g

lRfPr , by, 

  g

l gRfPr E   (7.1) 

The protocol chooses the minimum value in the set of standard deviations of LMPs 

at GenCo nodes because LMPs at all GenCo nodes deviate by at least that value. The 

set is denoted by   : 1,2, ,G g gD G   . According to the protocol, GenCo g 

sets the price deviation of its price offers to all LSEs, 
g

LPrDv , to the minimum value 

in the set,  GMin D , by,  

  g

L GPrDv Min D  (7.2) 

The protocol also requires that each negotiable price set of GenCo g must be a set of 

discrete prices at price intervals of $0.1/MWh. Therefore GenCo sets the price 

interval between discrete prices in all negotiable price sets,  , as, 

 0.1   (7.3) 

Reference price (7.1) of a bilateral transaction option becomes the middle price in 

negotiable price set of the option. A GenCo uses a reference price (7.1) and the price 

deviation (7.2) of a bilateral transaction option to determine the minimum and the 

maximum prices in its negotiable price set. Given reference price(7.1), 
g

lRfPr , and 

price deviation (7.2), 
g

LPrDv , GenCo g calculates its minimum negotiable price for 

bilateral transaction with LSE l, 
,min

g

lnp , as,  
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 ,min

g g g

l l Lnp RfPr PrDv   (7.4) 

Similarly, GenCo g calculates its maximum negotiable price for bilateral transaction 

with LSE l, 
,max

g

lnp , by, 

 ,max

g g g

l l Lnp RfPr PrDv   (7.5) 

Knowing the minimum negotiable price, 
,min

g

lnp , the maximum negotiable price, 

,max

g

lnp , and the price interval,  , GenCo g’s valid negotiable price set for bilateral 

transaction with LSE l, 
g

lN , is expressed as,  

 
,max ,min

,min : 0,1, ,

g g

l lg g

l l

np np
N np p p



  
    

  
 (7.6) 

Using equations (7.1)-(7.6), a GenCo finds a valid negotiable price set for its each 

bilateral transaction option.  

A GenCo has a natural desire to sell its energy at the highest feasible prices, i.e. at 

the maximum negotiable prices in the negotiable price sets. However, it is aware that 

LSEs would like to buy energy at the lowest feasible prices, i.e. at the minimum 

negotiable prices in the negotiable price sets. As a result, a GenCo has to engage in 

bilateral negotiations over the negotiable price sets. It explores the risk-return trade-

off of bilateral transaction options over the negotiable price sets to prepare for the 

bilateral negotiations. A GenCo starts the exploration of its bilateral transaction 

options from the maximum negotiable prices and continues the exploration steps, at 

price intervals,  , down to the minimum negotiable prices. At each step, the price 

interval,  , leads to a specific price in each negotiable price set. The GenCo 

evaluates risk-return trade-off of all trading options by conducting portfolio 

optimization at the specific prices. The portfolio optimization determines optimal 

power quantity allocation to each trading option.  

The sequence of exploration steps functions as a scan over the negotiable price sets. 

In addition to finding the optimal power quantity allocations, the scan involves 
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calculation of each bilateral transaction option’s utility. Knowing utility of bilateral 

transaction option with an LSE, and how it varies over the negotiable price set, 

enables a GenCo to develop its bilateral transaction offers to the LSE for multi-round 

bilateral negotiations. Method of developing the bilateral transaction offers, 

consisting of energy price offers and power quantity offers sent by the GenCo to the 

LSE, will be explained in the next Chapter. 

Utility calculation methods for Financial Bilateral Transaction options of a GenCo 

are explained in Section 7.2.1 and a GenCo’s match making algorithm is presented in 

Section 7.2.2. 

7.2.1 Utility Calculation Methods for Bilateral transaction 

Options of a Generation Company 

Using utility function defined by equation (5.32) for a single investment option, a 

market participant can calculate utility of a generic trading option  , U , by, 

 
1

2

,

1,

1

2

N

U E A    
  

  

 



 

 
   

 
  (7.7) 

where A is risk aversion factor, E  is expected return from the trading option  , 
2

  

is variance of return from the trading option  , ,    is covariance between returns of 

trading options   and   , N is the total number of nodes and N+1 are the maximum 

possible trading options – which include N bilateral transaction options as well as the 

option of trading by day-ahead auction. Equation (7.7) shows that a trading option’s 

utility depends on expectation, variance and covariances of return for the trading 

option. Consequently, equation for utility of a trading option can be determined if 

expectation, variance and covariances of return for the trading option are known.  

Before portfolio optimization, a market participant was interested in exploring the 

possibility of allocating maximum feasible power quantity allocation to a trading 

option. In consequence, maximum feasible power quantity allocation was used as 

tentative power quantity in equations, developed in Chapter 6, for expectation, 
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variance and covariances of return for the trading option. However, as a result of the 

portfolio optimization, a market participant finds optimal power quantity allocation 

for the trading option. Therefore, for this Chapter, maximum feasible power quantity 

allocation must be replaced with optimal power quantity allocation in equations, 

developed in Chapter 6, for expectation, variance and covariances of return for the 

trading option. 

The generic utility equation (7.7) will be used to develop equations for utilities of 

non-local and local Financial Bilateral Transaction options of a GenCo in Sections 

7.2.1.1 and 7.2.1.2 respectively. 

7.2.1.1 Risk-free non-local bilateral transaction options 

Equation (6.15) was developed in Chapter 6 for a GenCo’s expected return from 

non-local bilateral transaction option with LSE at node i, iE . The equation used 

maximum feasible power quantity allocation as a tentative quantity. Since optimal 

power quantity allocation is now known as a result of portfolio optimization, it must 

replace the tentative quantity in the equation. Replacing tentative quantity, 
,max

FBT

ip , by 

optimal quantity, 
,

FBT

i optp , in equation (6.15) yields, 
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 (7.8) 

where z is a trading interval out of total Z trading intervals, ga , gb  and gc  are actual 

fuel consumption based coefficients of GenCo and i is energy price for the non-

local bilateral transaction option. 

A GenCo’s variance of return from a non-local bilateral transaction option was found 

to be zero, as shown in equation (6.20). A GenCo’s covariances between return from 

a non-local bilateral transaction option and return from any other trading option were 

also determined to be zero, as shown in equations (6.23), (6.25) and (6.26). Since 

variance and covariances of return from a non-local bilateral transaction option are 
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all zero, utility of the trade only depends on expectation from the return. In 

consequence, substituting the expected return, iE , from equation (7.8) into generic 

utility equation (7.7), a GenCo’s utility of non-local bilateral transaction option with 

LSE at node i, iU , can be written as,  
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 (7.9) 

7.2.1.2 A risk-free local bilateral transaction option 

Equation (6.12) was developed in Chapter 6 for a GenCo’s expected return from 

local bilateral transaction option with LSE at local node, lbE . The equation used 

maximum feasible power quantity allocation as a tentative quantity. Since optimal 

power quantity allocation is now known as a result of portfolio optimization, it must 

replace the tentative quantity in the equation. Replacing tentative quantity, 
,max

FBT

lbp , by 

optimal quantity, 
,

FBT

lb optp ,  in equation (6.12) yields, 
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 (7.10) 

where z is a trading interval out of total Z trading intervals, ga , gb  and gc  are actual 

fuel consumption based coefficients of GenCo and lb is energy price for the local 

bilateral transaction option. 

A GenCo’s variance of return from a local bilateral transaction option was found to 

be zero, as shown in equation (6.20). A GenCo’s covariances between return from a 

local bilateral transaction option and return from any other trading option were also 

determined to be zero, as shown in equations (6.23) and (6.24). Since variance and 

covariances of return from a non-local bilateral transaction option are all zero, utility 
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of the trading option only depends on expectation from the return. In consequence, 

substituting lbE  from equation (7.10) into generic utility equation (7.7), a GenCo’s 

utility of local bilateral transaction option with LSE at local node, lbU , can be 

written as,  
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 (7.11) 

7.2.2 Match Making Algorithm of a Generation Company 

In FABS, a GenCo uses following match making algorithm that is based on 

improved portfolio optimization procedure, discussed in Chapter 6, and utility 

calculation methods, explained in this Chapter. Since the improved portfolio 

optimization procedure and the utility calculation methods are generic, the match 

making algorithm of GenCo is also generic. However, this thesis has only tested 

GenCo’s match making algorithm on the five node test grid and the algorithm is yet 

to be tested on larger grids. 

1) Set the maximum negotiable prices as assumed prices for bilateral transaction 

options. 

2) while assumed prices > minimum negotiable prices do 

a) Conduct improved portfolio optimization procedure of a Generation 

Company presented in Chapter 6.  

b) Compute individual utility of each non-local bilateral transaction option by 

equation (7.9). 

c) Compute utility of the local bilateral transaction option by equation (7.11). 

d) Decrease assumed prices for all bilateral transaction options by the price 

interval,  , set to $0.1/MWh by equation (7.3) 

3) end while 
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7.3 Match Making by Load Serving Entity 

Each LSE needs to know its negotiable price sets to undertake its private match 

making because match making results prepare it for bilateral negotiations in which 

LSE can only submit price bids within negotiable price sets. An LSE’s collection of 

negotiable price sets contains a negotiable price set for each of its bilateral 

transaction options. Three protocol rules that govern validity of negotiable price sets 

are discussed in the introduction of this Chapter. LSE’s method of determining the 

negotiable price sets, conforming to the protocol, is described as follows.  

Since sale and purchase of energy takes place at a GenCo node, the bilateral 

transaction protocol fixes the expectation of LMP at the node as a reference price for 

bilateral trading between the GenCo and all LSEs. An LSE has a set of reference 

prices that contains a reference price for each of its bilateral transaction options. 

According to the protocol, LSE l sets the expectation of LMP at local node of GenCo 

g,  gE  , as its reference price for bilateral transaction with the GenCo, l

gRfPr ,  

  l

g gRfPr E   (7.12) 

The protocol chooses the minimum value in the set of standard deviations of LMPs 

at GenCo nodes because LMPs at all GenCo nodes deviate by at least that value. The 

set is denoted by   : 1,2, ,G g gD G   . As specified by the protocol, LSE l 

sets the price deviation of its price bids to all GenCos, 
l

GPrDv , to the minimum value 

in the set,  GMin D , by,  

  l

G GPrDv Min D  (7.13) 

The protocol also requires that each negotiable price set of LSE l must be a set of 

discrete prices at price intervals of $0.1/MWh. Therefore LSE sets the price interval 

between discrete prices in all negotiable price sets,  , as, 

 0.1   (7.14) 
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Reference price (7.12) of a bilateral transaction option becomes the middle price in 

negotiable price set of the option. An LSE uses a reference price (7.12) and the price 

deviation (7.13) of a bilateral transaction option to determine the minimum and the 

maximum prices in its negotiable price set. Using reference price (7.12),  l

gRfPr , and 

price deviation (7.13), 
l

GPrDv , LSE l calculates its minimum negotiable price for 

bilateral transaction with GenCo g, 
,min

l

gnp , as,  

 ,min

l l l

g g Gnp RfPr PrDv   (7.15) 

Similarly, LSE l calculates its maximum negotiable price for bilateral transaction 

with GenCo g, 
,max

l

gnp , by, 

 ,max

l l l

g g Gnp RfPr PrDv   (7.16) 

Using the minimum negotiable price, 
,min

l

gnp , the maximum negotiable price, 
,max

l

gnp , 

and the price interval,  , LSE l’s valid negotiable price set for bilateral transaction 

with GenCo g, l

gN , is expressed as,  

 
,max ,min

,min : 0,1, ,

l l

g gl l

g g

np np
N np p p



  
    

  

 (7.17) 

Using equations (7.12)-(7.17), an LSE finds a valid negotiable price set for its each 

bilateral transaction option.  

An LSE has a natural desire to buy energy at the lowest feasible prices, i.e. at the 

minimum negotiable prices in the negotiable price sets. However, it is aware that 

GenCos would like to sell energy at the highest feasible prices, i.e. at the maximum 

negotiable prices in the negotiable price sets. As a result, an LSE has to engage in 

bilateral negotiations over the negotiable price sets. It explores the risk-return trade-

off of bilateral transaction options over the negotiable price sets to prepare for the 

bilateral negotiations. An LSE starts the exploration of its bilateral transaction 

options from the minimum negotiable prices and continues the exploration steps, at 
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price intervals,  , up to the maximum negotiable prices. At each step, the price 

interval,  , leads to a specific price in each negotiable price set. The LSE 

evaluates risk-return trade-off of all trading options by conducting portfolio 

optimization at the specific prices. The portfolio optimization determines optimal 

power quantity allocation to each trading option.  

An LSE starts the exploration from the minimum negotiable prices in negotiable 

price sets because it would like to buy energy at the lowest feasible prices. The LSE 

continues its exploration steps, in equal price increments, p , from the minimum 

negotiable prices to the maximum negotiable prices. In each exploration step, the 

equal price increment, p , leads to a specific price in each negotiable price set. The 

LSE evaluates risk-return trade-off of all trading options by conducting portfolio 

optimization at the specific prices. The portfolio optimization determines optimal 

power quantity allocation to each trading option.  

The sequence of exploration steps functions as a scan over the negotiable price sets. 

In addition to finding the optimal power quantity allocations, the scan involves 

calculation of each bilateral transaction option’s utility. Knowing utility of bilateral 

transaction option with a GenCo, and how it varies over the negotiable price set, 

enables an LSE to develop its bilateral transaction bids to the GenCo for multi-round 

bilateral negotiations. Method of developing the bilateral transaction bids, consisting 

of energy price bids and power quantity bids sent by the LSE to the GenCo, will be 

explained in the next Chapter. 

Utility calculation methods for Financial Bilateral Transaction options of an LSE are 

explained in Section 7.3.1 and an LSE’s match making algorithm is presented in 

Section 7.3.2. 
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7.3.1 Utility Calculation Methods for Bilateral transaction 

Options of a Load Serving Entity 

Using the generic utility equation (7.7), equations for utilities of non-local and local 

Financial Bilateral Transaction options of an LSE will be developed in Sections 

7.3.1.1 and 7.3.1.2 respectively. 

7.3.1.1 Risky non-local bilateral transaction options 

In Chapter 6, equations were developed for an LSE’s expectation, variance and 

covariances of return from non-local bilateral transaction option with GenCo at node 

i. The equations used maximum feasible power quantity allocation as a tentative 

quantity. Since optimal power quantity allocation is now known as a result of 

portfolio optimization, it must replace the tentative quantity in all those equations as 

discussed next.  

Equation (6.55) was developed in Chapter 6 for an LSE’s expected return from non-

local bilateral transaction option with GenCo at node i, iE . Replacing tentative 

quantity, 
,max

FBT

ip , by optimal quantity, 
,

FBT

i optp , in equation (6.55) leads to, 
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 (7.18) 

where z is a trading interval out of total Z trading intervals, ln  is flat-rate agreed 

with the end-consumers at local node, i is energy price for the non-local bilateral 

transaction option, 
,held quantity

iFTR  is Financial Transmission Rights (FTR) held by 

LSE between its local node (ln) and GenCo node i,  lnE   is expectation of LMP at 

local node and  iE   is expectation of LMP at GenCo node i. 
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In Chapter 6, equation (6.63) represented an LSE’s variance of return from non-local 

bilateral transaction option with GenCo at node i, 
2

i . Replacing tentative quantity, 

,max

FBT

ip , by optimal quantity, 
,

FBT

i optp , in equation (6.63) yields, 
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where 
2 ( )ln   is variance of LMP at local node, 

2 ( )i   is variance of LMP at 

GenCo node i and ,( )ln i    is covariance between LMPs at local node and node i. 

Equation (6.72) was developed for an LSE’s covariance between return from non-

local bilateral transaction option with GenCo at node i and return from non-local 

bilateral transaction option with GenCo at another node j, ,i j . Replacing tentative 

quantity, 
,max

FBT

ip , by optimal quantity, 
,

FBT

i optp , in equation (6.72) gives, 
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1, , , ,j N j ln j i    

(7.20) 

where ( , )ln j    is covariance of LMP at local node and node j and ( , )i j    is 

covariance between LMPs at nodes i and j. 

In Chapter 6, equation (6.78) represented an LSE’s covariance between return from 

non-local bilateral transaction option with GenCo at node i and return from day-
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ahead auction, ,daa i . Replacing tentative quantity, 
,max

FBT

ip , by optimal quantity, 
,

FBT

i optp , 

in equation (6.78) leads to, 
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  (7.21) 

where ( )lnE   is expectation of ln , calculated by formula given in Chapter 5. 

An LSE’s covariance between return from non-local bilateral transaction option with 

GenCo at node i and return from local bilateral transaction option was found to be 

zero, as shown in equation (6.67). 

Substituting iE , 
2

i , ,daa i  and ,i j , from equations (7.18), (7.19), (7.21) and (7.20) 

respectively, into generic utility equation (7.7), an LSE’s utility of non-local bilateral 

transaction option with GenCo at node i, iU , can be written as,  
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(7.22) 

7.3.1.2 A risk-free local bilateral transaction option 

Equation (6.45) was developed in Chapter 6 for an LSE’s expected return from local 

bilateral transaction option with GenCo at local node, lbE . The equation used 

maximum feasible power quantity allocation as a tentative quantity. Since optimal 

power quantity allocation is now known as a result of portfolio optimization, it must 

replace the tentative quantity in the equation. Replacing tentative quantity, ,max

FBT

lbp , by 

optimal quantity, 
,

FBT

lb optp ,  in equation (6.45) yields, 
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where z is a trading interval out of total Z trading intervals, ln  is flat-rate agreed 

with the end-consumers at local node and lb is energy price for the local bilateral 

transaction option. 

An LSE’s variance of return from a local bilateral transaction option was found to be 

zero, as shown in equation (6.60). An LSE’s covariances between return from a local 

bilateral transaction option and return from any other trading option were also 

determined to be zero, as shown in equations (6.67) and (6.68). Since variance and 

covariances of return from a non-local bilateral transaction option are all zero, utility 

of the trading option only depends on expectation from the return. In consequence, 

substituting lbE  from equation (7.23) into generic utility equation (7.7), an LSE’s 

utility of local bilateral transaction option with GenCo at local node, lbU , can be 

written as,  
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 (7.24) 

7.3.2 Match Making Algorithm of a Load Serving Entity 

In FABS, an LSE uses following match making algorithm that is based on improved 

portfolio optimization procedure, discussed in Chapter 6, and utility calculation 

methods, explained in this Chapter. Since the improved portfolio optimization 

procedure and the utility calculation methods are generic, the match making 

algorithm of LSE is also generic. However, since this thesis has only tested LSE’s 

match making algorithm for the five node test grid, its performance needs to be 

evaluated for larger test grids as a future work. 

1) Set the minimum negotiable prices as assumed prices for bilateral transaction 

options.  

2) while assumed prices < maximum negotiable prices do 
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a) Conduct improved portfolio optimization procedure of a Load Serving 

Entity, presented in Chapter 6. 

b) Compute individual utility of each non-local bilateral transaction option by 

equation (7.22). 

c) Compute utility of the local bilateral transaction option by equation (7.24).  

d) Increase assumed prices for all bilateral transaction options by the price 

interval,  , set to $0.1/MWh by equation (7.14) 

3) end while 

7.4 Results 

Most power allocation results of GenCos are similar and Figure 7.1 illustrates a 

typical power allocation result of a GenCo. It shows that for any price in the 

negotiable price set, between $18/MWh and $44/MWh, GenCo-1 allocates 

19.60MW to LSE-1. Note that ISO allows a maximum of 19.60MW for non-local 

bilateral transaction between GenCo-1 and LSE-1. By contrast, Figure 7.2 shows that 

GenCo-4 does not allocate same power quantity to LSE-3 for all prices in the 

negotiable price set between $65.9/MWh and $91.9/MWh. According to GenCo-4’s 

match making results in Figure 7.2, for any price above $78.9/MWh, GenCo-4 

should allocate 128.0MW to LSE-3. On the other hand, for any price below 

$78.9/MWh, GenCo-4 must reduce the power allocation below 128.0MW.  

The power allocation results of GenCo-1 and GenCo-4 are different because their 

trading prices, fuel cost coefficients and local nodes are different. In consequence, 

their return characteristics of bilateral trades and day-ahead auction are also different. 

Based on its return characteristics, each GenCo develops its overall utility function 

with an overall objective of maximizing returns and minimizing risks of its trades. 

For that reason, the power allocation results of GenCo-1 and GenCo-4, shown in 

Figure 7.1 and Figure 7.2 respectively, have different characteristics.  

GenCo-1’s match making finds that for bilateral transaction with LSE-1 at any price 

in the shown negotiable price set, GenCo-1 gets best overall utility by keeping its 

power allocation to the bilateral trade fixed at 19.60MW. By contrast, GenCo-4’s 
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match making finds that for bilateral transaction with LSE-3 at prices below 

$78.9/MWh, GenCo-4 gets best overall utility by reducing its power allocation to the 

bilateral trade below 128.0MW and allocating the reduced quantity to the day-ahead 

auction instead.  

 

Figure 7.1  Power Quantity Allocation of GenCo-1 to bilateral trade with LSE-1 

 

Figure 7.2  Power Quantity Allocation of GenCo-4 to bilateral trade with LSE-3 

Figure 7.3 illustrates that GenCo-1’s utility of bilateral trade with LSE-1 increases 

with trading price because the two quantities are directly proportional, as shown in 

equation (6.33), for negotiable price set between $18/MWh and $44/MWh. For the 

same reason, GenCo-4’s utility of bilateral trade with LSE-3 also increases with 
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trading price, as shown in Figure 7.4, for negotiable price set between $65.9/MWh 

and $91.9/MWh. Despite having the direct proportionately characteristics, the 

utilities of GenCo-1 and GenCo-4 have different values because their trading prices, 

fuel cost coefficients and allocated power quantities are different. 

  

Figure 7.3  Utility of GenCo-1 for bilateral trade with LSE-1 

 

Figure 7.4  Utility of GenCo-4 for bilateral trade with LSE-3 

Most power allocation results of LSEs are similar and Figure 7.5 illustrates a typical 
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all prices in the negotiable price set between $65.9/MWh and $91.9/MWh. 

According to LSE-3’s match making results in Figure 7.6, for any price below 

$78.9/MWh, LSE-3 should allocate 75.0MW to GenCo-4. However, for any price 

above $78.9/MWh, LSE-3 must reduce its power allocation below 75.0MW.  

The power allocation results of LSE-1 and LSE-3 are different because their trading 

prices, flat-rates agreed with end-consumers and local nodes are different. In 

consequence, their return characteristics of bilateral trades and day-ahead auction are 

also different. Based on its return characteristics, each LSE develops its overall 

utility function with an overall objective of maximizing returns and minimizing risks 

of its trades. For that reason, the power allocation results of LSE-1 and LSE-3, 

shown in Figure 7.5 and Figure 7.6 respectively, have different characteristics.  

LSE-1’s match making finds that for bilateral transaction with GenCo-1 at any price 

in the shown negotiable price set, LSE-1 gets best overall utility by keeping its power 

allocation to the bilateral trade fixed at 19.60MW. By contrast, LSE-3’s match 

making finds that for bilateral transaction with GenCo-4 at prices above $78.9/MWh, 

LSE-3 gets best overall utility by reducing its power allocation to the bilateral trade 

below 75.0MW and allocating the reduced quantity to the day-ahead auction instead.  

  

Figure 7.5  Power Quantity Allocation of LSE-1 for Bilateral transaction with GenCo-1 
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Figure 7.6  Power Quantity Allocation of LSE-3 for Bilateral transaction with GenCo-4 

Figure 7.7 illustrates that LSE-1’s utility of bilateral trade with GenCo-1 decreases 

with trading price because the two quantities are inversely proportional, as shown in 

equation (7.22), for negotiable price set between $18/MWh and $44/MWh. For the 

same reason, LSE-3’s utility of bilateral trade with GenCo-4 also decreases with 

trading price, as shown in Figure 7.8, for negotiable price set between $65.9/MWh 

and $91.9/MWh. Despite having the inverse proportionately characteristics, the 

utilities of LSE-1 and LSE-3 have different values because their trading prices, flat-

rates agreed with end-consumers and allocated power quantities are different.  

 

Figure 7.7  Utility of LSE-1 for Bilateral transaction with GenCo-1 
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Figure 7.8  Utility of LSE-3 for Bilateral transaction with GenCo-4 

7.5 Conclusions 

Compared to previous match making models for bilateral transactions, this Chapter 
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GenCo and LSE individually finds its match making results. The new match making 

algorithms for both GenCo and LSE are incorporated in FABS. 

Market participants use match making algorithms to discover, by direct-search in a 
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Market participants also determine quantities and utilities of power allocations for 

bilateral transaction over a set of negotiable prices. Depending on its private data like 

fuel cost coefficients, a GenCo may have to shift its power allocation, for prices in 

lower half of the negotiable price set, from a bilateral trade to the day-ahead auction 
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from a bilateral trade to the day-ahead auction for achieving the same objective in 

view of its private data like flat-rate agreed with end-consumers. Utility of a GenCo 

is directly proportional to bilateral transaction price that it gets from an LSE. 

Conversely, utility of an LSE is inversely proportional to bilateral transaction price 

that it pays to a GenCo. Since match making determines power quantities and trading 

utilities of possible bilateral trades, for all prices in the negotiable price sets, market 

participants use the data for bilateral negotiations.  
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8 Simulation of Utility based Bilateral 

Negotiation Strategy supported by Bayesian 

Learning 

 

8.1 Introduction 

This chapter describes how bilateral negotiation is achieved between GenCos and 

LSEs, in FABS - “Financial transmission instruments, energy Auction and Bilateral 

transaction Simulator for wholesale electricity markets”. All market participants have 

to agree on a bilateral transaction protocol prior to negotiation but every market 

participant can have a private strategy during negotiation rounds. An LSE develops 

its trading utility based negotiation strategy by using results of its match making 

algorithm, presented in the previous Chapter. Similarly, based on its match making 

algorithm in the previous Chapter, a GenCo develops its trading utility based 

negotiation strategy. In addition, a GenCo is enabled to support its trading utility 

based strategy by learning from interaction with negotiating partner and adapting its 

behaviour accordingly. Each market participant individually develops its negotiation 

strategy to fulfil private profit-seeking goals and risk-aversion preferences. 

In practical electricity markets, participants engage in multi-round bilateral 

negotiations and make gradual financial concessions in successive rounds to secure 

medium-duration bilateral transactions. Market participants take into account effects 

of historic prices in organized markets on future bilateral transactions. They need to 

consider the characteristics of market prices because they use bilateral transactions as 

hedge against uncertainty of the prices. Market participants have incomplete 

information about private profit-seeking goals and risk-aversion preferences of others. 

However, they can discover some information about others from responses during 

multi-round bilateral negotiations and must learn and adapt to dynamic scenarios. 

Characteristics of practical bilateral negotiations, described in this paragraph, will act 
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as suitability criterion of simulation techniques for bilateral negotiations, reported in 

literature and discussed as follows. 

Since a detailed literature review of simulation techniques for bilateral negotiation 

was presented in Chapter 3, only a summary is provided here. Heuristic as well as 

learning techniques are reported in literature for simulation of bilateral negotiations. 

Heuristic techniques are derived from human attitudes, including time-dependent and 

behaviour-dependent strategies, during practical negotiations. Agents using time-

dependent or behaviour-dependent strategies make financial concessions to each 

other in successive rounds that depend on remaining time or opponent behaviour 

respectively. Heuristic techniques are used for simulation of bilateral negotiation in a 

large number of papers including [1], [2], [3], [4], [5] and [6]. If negotiating agents 

only depend on their behaviour-dependent strategies and resort to contending 

behaviour then there is risk that agent positions may not converge and consequently 

bilateral negotiation may fail. However, time-dependent strategy is a simple method 

that can lead to successful bilateral negotiations. In [7] and [8] time-dependent 

strategy is combined with an assumed measure of bilateral transaction reward that 

depends on energy prices in a specific price range. 

A wide variety of learning techniques are used for simulation of bilateral 

negotiations, including single-agent reinforcement learning, multi-agent 

reinforcement learning and supervised learning. In reinforcement learning, if an 

action leads to favourable results then tendency to implement that action should be 

reinforced, otherwise the tendency should be reduced [9]. Single-agent reinforcement 

learning technique assumes that the agent environment remains stationary because 

this technique is based on the Markov decision process. The assumption of stationary 

environment does not remain valid in the case of reinforcement learning in a multi-

agent system because an agent’s environment contains other autonomous agents that 

are able to learn and adapt. Unlike single-agent reinforcement learning, multi-agent 

reinforcement learning techniques take into account dynamic nature of an agent’s 

environment. In supervised learning, an agent generally learns from examples in a set 

of training inputs and outputs provided by an intelligent supervisor. However, a 

supervised learning agent can also learn about other agents in the environment by 
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repeated interactions with them. A literature review of single-agent reinforcement 

learning, multi-agent reinforcement learning and supervised learning is presented in 

the following three paragraphs respectively. 

Applications of Q-learning, a particular type of single-agent reinforcement learning, 

are reported in [10], [11] and [12]. These applications either do not consider 

dynamics of historic prices in organized markets on subsequent negotiations or do 

not model multi-round bilateral negotiations that can lead to medium-duration 

bilateral transactions. Moreover, uses of single-agent reinforcement learning in 

multi-agent systems do not have solid theoretical foundations because of assuming a 

stationary environment. 

Multi-agent reinforcement learning falls into three categories (i) agent-independent, 

(ii) agent-aware and (iii) agent-tracking methods. Agent-independent methods use 

game-theoretic solvers that need complete information about all agents. Agent-aware 

methods use heuristics to adapt to other agents but carry a risk of non-convergence 

resulting in failure of negotiation. Agent-tracking methods estimate dynamic policies 

of other agents and adapt some kind of best response to the estimated policies [13]. 

Among the three multi-agent reinforcement learning methods, agent-tracking 

approach has potential to avoid non-convergence as well as lead to successful 

bilateral negotiations between agents that have incomplete information about each 

other.  

An agent can estimate types or intentions of its opponents in bilateral negotiations by 

supervised learning. Bayesian classification, a particular type of supervised learning, 

is used in [7] and [8] to classify opponent behaviour in multi-round bilateral 

negotiations. Bayesian learning, another kind of supervised learning, can estimate 

private intentions of opponents from information revealed through interactions 

during bilateral negotiations. In [14] and [15], Bayesian learning is used to estimate 

the price that opponent is likely to propose in the last round of bilateral negotiation. 

This thesis uses the Bayesian learning method of [14], presented in Appendix B. 

Bayesian learning can play an auxiliary role by supporting a main negotiation 

strategy.  
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Instead of using an assumed measure of reward like [7] and [8], this Chapter 

introduces a new way, based on utility results over a specified price set, of measuring 

reward of a bilateral transaction option. Moreover, every market participant has to 

rely on its perception of available negotiation time because it is not sure about 

private intentions of others. The trading reward and the perception of available 

negotiation time are combined to develop a main negotiation strategy termed utility 

based strategy. Furthermore, Bayesian learning is used to estimate the price that 

opponent is likely to propose in the last perceived round of bilateral negotiation. 

Bayesian learning is followed by a new method of adapting the main utility based 

strategy in response to opponent behaviour. Since Bayesian learning is followed by 

an appropriate response to opponent, the combination attains capabilities of agent-

tracking approach, in multi-agent reinforcement learning.  

The rest of the chapter is organized as follows. Section 8.2 describes bilateral 

transaction protocol used by market participants. Section 8.3 and Section 8.4 present 

utility based negotiation strategies of a Load Serving Entity and a Generation 

Company respectively. Section 8.5 outlines utility and Bayesian learning based 

strategy of a Generation Company. Case studies and results are presented in Section 

8.6 and Section 8.8 respectively, whereas  Section 8.8 concludes this Chapter. 

8.2 Bilateral Transactions Protocol 

As discussed in Chapter 7, a bilateral transaction protocol is anticipated to have 

become an industry wide standard, even in a decentralized market scenario. Such a 

uniform protocol avoids haphazard behaviour by participants and facilitates smooth 

functioning of bilateral transaction processes. In modern electricity markets of North 

America, annual Financial Transmission Rights auction follows a pre announced 

calendar. In view of that, it is assumed that participants undertake match making 

after ISO announces results of annual Financial Transmission Rights auction, in 

FABS. Match making is an individual decision making process that is completed by 

all market participants on the same day as announcement of the results.  
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FABS also assumes that after announcing the auction results, independent system 

operator leaves a period of ten working days before annual FTRs come into effect. 

Participants use these ten working days to engage in negotiation negotiations that can 

extend up to five rounds of two working days each. For bilateral negotiation between 

a GenCo and an LSE, the LSE initiates a round by sending an energy bid to the 

GenCo on first day of the round. The GenCo responds on the following day by 

sending an energy offer to the LSE. The LSE and GenCo continue bilateral 

negotiation until they agree, either one quits negotiation or they fail to reach an 

agreement in the five rounds. 

During bilateral negotiations, market participants can only exchange offer or bid 

prices in their negotiable price sets. A market participant’s negotiable price sets 

contain a negotiable price set for each of its bilateral transaction options. As 

explained in Chapter 7 for match making, a market participant determines its 

negotiable price sets that conform to the first three rules of the bilateral transaction 

protocol, presented in this section. The remaining eight rules, from 4 to 11, of the 

protocol exclusively deal with bilateral negotiations that are described in this Chapter. 

It is assumed that the bilateral transaction protocol contains following rules that have 

already been discussed, are self-explanatory or will become clear by discussion in the 

rest of the Chapter.  

1. Expectation of LMP at a GenCo node acts as reference price for bilateral 

negotiation between the GenCo and LSEs.  

2. Participants can propose prices that only deviate up to a certain extent, 

termed price deviation, from the reference price.  

3. A valid negotiable price set is a set of discrete prices at price intervals of 

$0.1/MWh. 

4. Bilateral transactions can be agreed for a minimum of 10MW quantity of 

power. It is assumed that bilateral transactions for less than 10MW are not 

worth resources exhausted in securing the transactions.  

5. LSEs start negotiation process in the first round 

6. Negotiation process has to be completed in a maximum of ten working 

days 
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7. Negotiation process can extend up to a maximum of five rounds of two 

working days each. However, a participant may privately choose a shorter 

negotiation time than five rounds. 

8. Unless a participant has exhausted its private negotiation time, it follows 

deadline of next working day to respond to each proposal of energy price 

and power quantity. 

9. LSEs can hold on to their price bids in the previous round but cannot 

decrease their price bids in the next round. 

10. GenCos can hold on to their price offers in the previous round but cannot 

increase their price offers in the next round. 

11. Unless a participant agrees or quits in earlier rounds, GenCos end 

negotiation process in the fifth round. 

8.3 Utility based Negotiation Strategy of a Load Serving 

Entity 

With match making algorithm, presented in Chapter 7, each LSE determines power 

quantities and trading utilities of its bilateral transaction options over negotiable 

price sets. This section explains how an LSE uses the results of match making 

algorithm to develop a utility-based strategy for multi-round bilateral negotiation.  

Description of the utility based strategy’s mathematical model for LSE is detailed in 

subsections 8.3.1 to 8.3.4. A brief outline of contents covered in each of these 

subsections is provided here. Based on its match making results, an LSE privately 

selects strategic price sets for bilateral negotiations with GenCos, as explained in 

Section 8.3.1. LSE decides that only the prices in strategic price set for a GenCo can 

be submitted as price bids to the GenCo. In Section 8.3.2, using strategic price set for 

a GenCo and utility results for prices in the set, LSE determines total strategic reward 

as a measure of its stake during multi-round bilateral negotiation with the GenCo. 

LSE makes compromises in successive rounds, to make negotiations a success, by 

deciding how much of the total strategic reward must me retained in a particular 
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round, as explained in Section 8.3.3. Section 8.3.4 explains how an LSE uses 

retained strategic reward value to select its price bid to a GenCo in each round.  

LSE’s negotiation algorithm for the utility based strategy is presented in Section 

8.3.5. An overview of steps in the negotiation algorithm is provided here.  In step 1 

of the algorithm, LSE calculates and stores total strategic reward as well as retained 

strategic reward at each price in its strategic price set. LSE needs the stored strategic 

reward results in all negotiation rounds. In step 2, LSE sets current round to the first 

round of bilateral negotiation. Step 3 consists of LSE’s actions while negotiation 

rounds are in progress. LSE carries out step 3-a for each GenCo before moving to the 

next round in step 3-b. In steps 3-a-i to 3-a-iv, LSE determines bid suggested by its 

own strategy for a GenCo. In step 3-a-v, LSE compares price bid suggested by its 

strategy with price offer received from the GenCo. If the self-suggested price bid is 

less than the received price offer then LSE submits strategic price bid to the GenCo 

and receives GenCo’s response. Otherwise, LSE accepts the GenCo’s offer, as 

shown in step 3-a-vi. 

8.3.1 Strategic Price Sets 

During bilateral negotiation, an LSE’s energy price bids must lie within publicly 

known negotiable price sets that conform to the bilateral transaction protocol. In 

addition, the transaction protocol does not allow bilateral transactions of less than 

10MW. It is assumed that bilateral transactions for less than 10MW are not worth 

resources required for securing the transactions. Although an LSE has match making 

power allocation results over negotiable price sets, the allocated power quantities 

may not be more than or equal to 10MW over the entire sets. Therefore, an LSE 

privately determines price sets over which its allocated power quantities are more 

than or equal to 10MW. An LSE only chooses energy price bids from its privately 

determined price sets, termed strategic price sets, by using a utility-based bilateral 

negotiation strategy.  

Negotiable price sets, used in match making algorithm, contain discrete prices at 

price intervals of $0.1/MWh. Consequently, power allocation and trading utility 

results of match making algorithm are available as discrete data at price intervals of 
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$0.1/MWh, over negotiable price sets. LSEs’ power and utility results were 

presented in Chapter 7 as continuous line graphs for simplicity. Nevertheless, if an 

LSE’s discrete power allocation and trading utility data is visualized as bar graphs 

then it is easier to understand utility-based negotiation strategy developed in this 

Chapter. Although data of actual results is available at price intervals of $0.1/MWh, 

an LSE’s hypothesized power and utility data for bilateral transaction with a GenCo, 

illustrated in Figure 8.1 and Figure 8.2 respectively, uses price intervals of $1/MWh 

for brevity. 

 

Figure 8.1  Hypothesised data of power allocated by an LSE for bilateral transaction with a 

GenCo 

LSE l’s hypothesized power allocation results for bilateral transaction with GenCo g 

are shown in Figure 8.1. The hypothesized results are shown over the negotiable 

price set, equally extending on both sides of the $50/MWh reference price, from 

$30/MWh to $70/MWh. The results assume that LSE l’s match making algorithm 

allocates 20MWh to the bilateral trade with GenCo g for prices lower than or equal 

to $55/MWh. Furthermore, the power quantity allocation gradually decreases from 

20MWh to 5MWh as price increases from $55/MWh to $70/MWh.  
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An LSE uses its power allocation results for bilateral transaction with a GenCo to 

graphically find its strategic price set, as explained next. According to the 

transaction protocol, minimum acceptable quantity of a bilateral transaction is 

10MW. In Figure 8.1, power allocation is above 10MW between $30/MWh and 

$65/MWh. However, it falls below 10MW at $65/MWh price and remains so up to 

$70/MWh. Therefore, LSE l selects $65/MWh as its maximum strategic price for 

bilateral transaction with GenCo g, 
,max

l

gsp . In addition, LSE l selects $30/MWh as 

its minimum strategic price for bilateral transaction with GenCo g, 
,min

l

gsp , because it 

would like to buy energy at lowest feasible price. Figure 8.1 covers entire negotiable 

price set but its bar graphs are shown filled for only strategic price set, from 

$30/MWh to $65/MWh.  

Knowing the minimum strategic price, 
,min

l

gsp , the maximum strategic price, 
,max

l

gsp , 

and the price interval,  , LSE l’s private strategic price set for bilateral 

transaction with GenCo g, l

gS , is expressed as,  

 
,max ,min

,min : 0,1, ,

l l

g gl l

g g

sp sp
S sp p p



  
    

  

 (8.1) 

8.3.2 Total Strategic Reward 

Using strategic price set for a GenCo and utility results for prices in the set, LSE 

determines total strategic reward as a measure of its stake during multi-round 

bilateral negotiation with the GenCo. LSE l’s hypothesized trading utility results for 

bilateral transaction with GenCo g are shown in Figure 8.2, for entire negotiable 

price set. The hypothesized results illustrate that utility gradually decreases from 

approximately 2.5 to 1.0 as price increases from $30/MWh to $70/MWh. Since LSE 

uses utility-based bilateral negotiation strategy to offer prices within its strategic 

price set, it should only consider the change in bilateral transaction utility that occurs 

over the strategic price set, shown as filled portion of bar graphs between $30/MWh 

and $65/MWh.  
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Figure 8.2  Hypothesized data of utility determined by an LSE for bilateral transaction with a 

GenCo 

In this thesis, an LSE’s total strategic reward of a bilateral trade is defined as reward 

that can be obtained by LSE if it secures the bilateral transaction at minimum 

strategic price. In other words, the total strategic reward is at stake during multi-

round bilateral negotiation. It is critical to note that, even if LSE pays maximum 

strategic price to avoid failure of negotiation then, despite losing total strategic 

reward, it secures a bilateral transaction that is recommended by portfolio 

optimization due to its utility. The total strategic reward of LSE l for bilateral 

transaction with GenCo g , 
,

l

g TOTALQ , represented by filled area in Figure 8.2, is 

calculated as,  

      
,max

,min

, ,max

l
g

l
g

sp

l l l l

g TOTAL g g g

sp

Q U U sp


 


      (8.2) 

where  ,max

l l

g gU sp  is utility at maximum strategic price,  l

gU   is utility at price   

that varies with price interval   over strategic price set. As discussed in Chapter 7, 

utility of a risky non-local bilateral trade and a risk-free local bilateral trade is 

calculated by equation (7.22) and equation (7.24) respectively. 
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Above described method of calculating total strategic reward in FABS is compared 

with another way [7] of estimating bilateral transaction reward. Development of 

equation (8.2) follows a graphical description of involved quantities but [7] does not 

offer any graphical insights. Moreover, although equation (8.2) for total strategic 

reward in FABS has similarity with the equation for estimated bilateral transaction 

reward in [7], the two equations are essentially different because (8.2) incorporates 

trading utility instead of price. In [7] total assumed reward only depends on energy 

prices in strategic price set whereas, considering quantities used in equation (7.22) 

and equation (7.24), in FABS total strategic reward also depends on optimal power 

quantity allocations to LSEs at energy prices in the set, flat-rate agreed with the end-

consumers at local node of LSE, Financial Transmission Rights held by LSE 

between its local node and GenCo nodes i and j as well as expectations, variances 

and covariances of LMPs at transmission system nodes. Therefore, total strategic 

reward, used in FABS, is a better measure of bilateral transaction reward as 

compared to total assumed reward used in [7]. 

8.3.3 Retained Strategic Reward 

LSE makes compromises in successive rounds, to make negotiations a success, by 

deciding how much of the total strategic reward must me retained in a particular 

round. If LSE insists on an extreme stance of obtaining its total strategic reward then 

it bids minimum strategic price in each round. However, if GenCo is not willing to 

accept minimum strategic price bid of LSE then bilateral negotiation fails. On the 

other extreme, if LSE relinquishes its total strategic reward then it bids maximum 

strategic price in each round. In such case, LSE may succeed in bilateral negotiations 

but at the cost of losing its total strategic reward. In practice, bilateral negotiation 

typically involves a number of rounds of concessionary price bids by LSE l and 

concessionary price offers by GenCo g. LSE l has a private limit on the maximum 

number of rounds for bilateral negotiation, lT , and if it fails to reach a bilateral 

agreement by round lT  then it withdraws from negotiation. Since LSE l does not 

have access to GenCo g’s private limit on the maximum number of rounds, it does 

not know the maximum number of rounds that can possibly take place between the 
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two of them. Based on its own private limit, lT , and current negotiation round, t, 

LSE l perceives that remaining negotiation time is 1 / lt T .  

LSE tries to secure a bilateral transaction by the end of its time limit while 

attempting to retain maximum possible strategic reward in each round. LSE 

calculates its retained strategic reward in round t,  ,

l

g retainedQ t , as a fraction of its 

total strategic reward, 
,

l

g TOTALQ , that is directly proportional to its perception of 

remaining negotiation time in round t, 1 / lt T , by 

     , ,1 /l l l

g retained g TOTALQ t t T Q     (8.3) 

8.3.4 Strategic Price and Quantity Bid 

An LSE uses retained strategic reward value to select its price bid to a GenCo in each 

round. An LSE can find strategic price bid in round t,  ,l bid

gsp t , corresponding to 

retained strategic reward in round t,  ,

l

g retainedQ t , if it knows a general mathematical 

relationship between a price, l

gsp , in strategic price set, l

gS , and retained strategic 

reward at that price,  ,

l l

g retained gQ sp . By rewriting equation (8.2), relationship 

between a price l

gsp  and retained strategic reward at the price,  ,

l l

g retained gQ sp , is 

expressed as, 

        
,max

, ,max

l
g

l
g

sp

l l l l l

g retained g g g g

sp

Q sp U U sp


 


     (8.4) 

Using equation (8.4), LSE l calculates  ,

l l

g retained gQ sp  for each price l

gsp  in the 

strategic price set, l

gS , and stores the calculated values in a table that is consulted in 

each negotiation round. In the table, LSE l looks up the price l

gsp  at which stored 

value of retained strategic reward,  ,

l l

g retained gQ sp , equals or most closely 

approximates retained strategic reward for round t,  ,

l

g retainedQ t , calculated from 
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equation (8.3). Consequently, LSE l selects the price l

gsp  as its strategic price bid to 

GenCo g in round t,  ,l bid

gsp t . After choosing the strategic price bid,  ,l bid

gsp t , LSE l 

looks up its power allocation results, like hypothesized results shown in Figure 8.1, 

and selects power quantity corresponding to the chosen price as its strategic quantity 

bid for bilateral transaction with GenCo g in round t,  ,l bid

gsq t .  

Based on transaction protocol discussed in Section 8.2 and mathematical model 

presented in this section, an LSE’s negotiation algorithm for utility based strategy is 

shown in Section 8.3.5. The step by step algorithm conforms to the protocol and 

refers to equations developed during discussion of utility based strategy’s 

mathematical model. Moreover, a summary of steps in the negotiation algorithm was 

provided at the beginning of Section 8.3. 

8.3.5 Negotiation Algorithm 

1) For each GenCo g Do 

a) Evaluate total strategic reward, 
,

l

g TOTALQ , by  (8.2). 

b) Using equation (8.4), calculate  ,

l l

g retained gQ sp  for each price l

gsp  in the 

strategic price set l

gS  and store the calculated values in a look-up table. 

2) Set round to one ( 1t  ) 

3) While round <= maximum rounds (
lt T ) Do 

a) For each GenCo g Do 

i) Compute retained strategic reward  ,

l

g retainedQ t by (8.3). 

ii) In the look-up table, find price l

gsp  at which stored value of retained 

strategic reward,   ,

l l

g retained gQ sp , equals retained strategic reward for 

round t,   ,

l

g retainedQ t  

iii) Choose l

gsp as strategic price bid  ,l bid

gsp t , for purchase of energy. 

iv) Determine strategic quantity bid  ,l bid

gsq t , corresponding to the strategic 

price bid  ,l bid

gsp t , for purchase of energy.  
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v) If it is round one ( 1t  ) Or strategic price bid < strategic price offer 

    , , 1l bid g offer

g lsp t sp t  Then 

(1) Convey strategic quantity bid  ,l bid

gsq t , and strategic price bid

 ,l bid

gsp t ,to GenCo g. 

(2) From GenCo g, receive strategic price offer  ,g offer

lsp t  and strategic 

quantity offer  ,g offer

lsq t . 

vi) Else 

(1) agreed price = strategic price offer   , 1l g offer

g lap sp t  and agreed 

quantity = strategic quantity offer   , 1l g offer

g laq sq t   

(2) Convey agreed price l

gap and agreed quantity l

gaq for purchase of 

energy to GenCo g. 

b) Increment round by one ( 1t t  ). 

8.4 Utility based Negotiation Strategy of a Generation 

Company 

With match making algorithm, presented in Chapter 7, each GenCo determines 

power quantities and trading utilities of its bilateral transaction options over 

negotiable price sets. This section explains how a GenCo uses the results of match 

making algorithm to develop a utility-based strategy for multi-round bilateral 

negotiation.  

Description of the utility based strategy’s mathematical model for GenCo is detailed 

in subsections 8.4.1 to 8.4.4. A brief outline of contents covered in each of these 

subsections is provided here. Based on its match making results, a GenCo privately 

selects strategic price sets for bilateral negotiations with LSEs, as explained in 

Section 8.4.1. GenCo decides that only the prices in strategic price set for an LSE 

can be submitted as price bids to the LSE. In Section 8.4.2, using strategic price set 

for an LSE and utility results for prices in the set, GenCo determines total strategic 

reward as a measure of its stake during multi-round bilateral negotiation with the 
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LSE. GenCo makes compromises in successive rounds, to make negotiations a 

success, by deciding how much of the total strategic reward must me retained in a 

particular round, as explained in Section 8.4.3. Section 8.4.4 explains how a GenCo 

uses retained strategic reward value to select its price offer to an LSE in each round.  

GenCo’s negotiation algorithm for the utility based strategy is presented in Section 

8.4.5. An overview of steps in the negotiation algorithm is provided here. In step 1 of 

the algorithm, GenCo calculates and stores total strategic reward as well as retained 

strategic reward at each price in its strategic price set. GenCo needs the stored 

strategic reward results in all negotiation rounds. In step 2, GenCo sets current round 

to the first round of bilateral negotiation. Step 3 consists of GenCo’s actions while 

negotiation rounds are in progress. GenCo carries out step 3-a for each LSE before 

moving to the next round in step 3-b. In step 3-a-i GenCo receives bid from an LSE. 

In steps 3-a-ii to 3-a-v, GenCo determines offer suggested by its own strategy for the 

LSE. In step 3-a-vi, GenCo compares the price offer suggested by its strategy with 

price bid received from the LSE. If the self-suggested price offer is less than the 

received price bid then GenCo accepts the bid. Otherwise, GenCo submits strategic 

price offer to the LSE, as shown in step 3-a-vii. 

8.4.1 Strategic Price Sets 

During bilateral negotiation, a GenCo’s offer prices must lie within publicly known 

negotiable price sets specified by bilateral transaction protocol. In addition, the 

transaction protocol does not allow bilateral transactions of less than 10MW. It is 

assumed that bilateral transactions for less than 10MW are not worth resources 

required for securing the transactions. Although a GenCo has match making power 

allocation results over negotiable price sets, the allocated power quantities may not 

be more than 10MW over the entire sets. Therefore, a GenCo privately determines 

price sets over which its allocated power quantities are more than or equal to 10MW. 

A GenCo only offers energy prices from its privately determined price sets, termed 

strategic price sets, by using a utility-based bilateral negotiation strategy.  

Negotiable price sets, used in match making algorithm, contain discrete prices at 

price intervals of $0.1/MWh. Consequently, power allocation and trading utility 



 

245 

 

results of match making algorithm are available as discrete data, at price intervals of 

$0.1/MWh, over negotiable price set. GenCos’ power and utility results were 

presented in Chapter 7 as continuous line graphs for simplicity. Nevertheless, if a 

GenCo’s discrete power allocation and trading utility data is visualized as discrete 

bar graphs then it is easier to understand utility-based negotiation strategy developed 

in this Chapter. Although data of actual results is available at price intervals of 

$0.1/MWh, a GenCo’s hypothesized power and utility data for bilateral transaction 

with an LSE, illustrated in Figure 8.3 and Figure 8.4 respectively, uses price 

intervals of $1/MWh for brevity. 

 

Figure 8.3  Hypothesized data of power allocated by a GenCo for bilateral transaction with an 

LSE 

 GenCo g’s hypothesized power allocation results for bilateral transaction with LSE l 

are shown in Figure 8.3. The hypothesized results are shown over the negotiable 

price set, equally extending on both sides of the $50/MWh reference price, from 

$30/MWh to $70/MWh. The results assume that GenCo g’s match making algorithm 

allocates 20MWh to the bilateral trade with LSE l for prices higher than or equal to 

$45/MWh. Furthermore, the power quantity allocation gradually decreases from 

20MWh to 5MWh as price decreases from $45/MWh to $30/MWh.  
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A GenCo uses its power allocation results for bilateral transaction with an LSE to 

graphically find its strategic price set, as explained next. According to the transaction 

protocol, minimum acceptable quantity of a bilateral transaction is 10MW. In Figure 

8.3, power allocation falls below the minimum quantity at $35/MWh price. 

Therefore, GenCo g selects $35/MWh as its minimum strategic price for bilateral 

transaction with LSE l, 
,min

g

lsp . In addition, GenCo g selects $70/MWh as its 

maximum strategic price for bilateral transaction with LSE l, 
,max

g

lsp , because it 

would like to get highest possible price for selling its energy. Figure 8.3 covers entire 

negotiable price set but its bar graphs are shown filled for only strategic price set, 

from $35/MWh to $70/MWh.  

Knowing the minimum strategic price, 
,min

g

lsp , the maximum strategic price, 
,max

g

lsp , 

and the price interval,  , GenCo g’s private strategic price set for bilateral 

transaction with LSE l, 
g

lS , is expressed as,  

 
,max ,min

,min : 0,1, ,

g g

l lg g

l l

sp sp
S sp p p



  
    

  
 (8.5) 

8.4.2 Total Strategic Reward 

Using strategic price set for an LSE and utility results for prices in the set, GenCo 

determines total strategic reward as a measure of its stake during multi-round 

bilateral negotiation with the LSE. GenCo g’s hypothesized trading utility results for 

bilateral transaction with LSE l are shown in Figure 8.4, for entire negotiable price 

set. The hypothesized results illustrate that utility gradually increases from 0.5 to 2.5 

as price increases from $30/MWh to $70/MWh. Since GenCo uses utility-based 

bilateral negotiation strategy to offer prices within strategic price set, it should 

consider bilateral transaction utility results in the strategic price set only. As a result, 

Figure 8.4 only shows filled bar graphs between $35/MWh and $70/MWh.  
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Figure 8.4  Hypothesized data of utility determined by a GenCo for bilateral transaction with an 

LSE 

In this thesis, a GenCo’s total strategic reward of a bilateral trade is defined as 

reward that can be obtained by GenCo if it secures the bilateral transaction at 

maximum strategic price. In other words, the total strategic reward is at stake during 

multi-round bilateral negotiation. Note that, even if GenCo has to accept minimum 

strategic price to avoid failure of negotiation then, despite losing total strategic 

reward, it secures a bilateral transaction that is recommended by portfolio 

optimization because of its utility. The total strategic reward of GenCo g for bilateral 

transaction with LSE l, 
,

g

l TOTALQ , represented by area of filled bars in Figure 8.4, is 

calculated as,  

      
,max

,min

, ,min

g
l

g
l

sp

g g g g

l TOTAL l l l

sp

Q U U sp


 


      (8.6) 

where  ,min

g g

l lU sp  is utility at minimum strategic price,  g

lU   is utility at price   

that varies with price interval   over strategic price set. As already discussed in 

case of LSE in Section 8.3.2, equation (8.6) for GenCo is also different from 

respective equation in [7]. Furthermore, note that equation (8.6) for total strategic 

reward of GenCo g is different from equation (8.2) for total strategic reward of LSE l. 
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Each term of the summation in equation (8.6) contains GenCo g’s utility at minimum 

strategic price,  ,min

g g

l lU sp  because that is its minimum utility, as illustrated in 

Figure 8.4. In contrast, every term in summation of equation (8.2) contains LSE l’s 

utility at maximum strategic price,  ,max

l l

g gU sp  because that is its minimum strategy, 

as shown in Figure 8.2. As a consequence, equations presented in Section 8.4.3 and 

Section 8.4.4 for GenCo are also different from similar equations developed in 

Section 8.3.3 and Section 8.3.4 for LSE. As discussed in Chapter 7, utility of a risk-

free non-local bilateral trade and a risk-free local bilateral trade is calculated by 

equation (7.9) and equation (7.11) respectively. 

8.4.3 Retained Strategic Reward 

GenCo makes compromises in successive rounds, to make negotiations a success, by 

deciding how much of the total strategic reward must me retained in a particular 

round. Above described method of calculating total strategic reward in FABS is 

compared with another way [7] of estimating bilateral transaction reward. In [7] total 

assumed reward only depends on energy prices in strategic price set whereas, 

considering quantities used in equation (7.9) and equation (7.11), in FABS total 

strategic reward also depends on fuel consumption based coefficients of GenCo and 

optimal power quantity allocations to LSE at energy prices in the set. Therefore, total 

strategic reward, used in FABS, is a better measure of bilateral transaction reward as 

compared to total assumed reward used in [7]. 

If GenCo insists on an extreme stance of obtaining its total strategic reward then it 

offers maximum strategic price in each round. However, if LSE is not willing to 

accept maximum strategic price offered by GenCo then bilateral negotiation fails. On 

the other extreme, if GenCo relinquishes its total strategic reward then it offers 

minimum strategic price in each round. In such case, GenCo may succeed in bilateral 

negotiations but at the cost of losing its total strategic reward. In practice, bilateral 

negotiation typically involves a number of rounds of concessionary price offers by 

GenCo g and concessionary price bids by LSE l. GenCo g has a private limit on the 

maximum number of rounds for bilateral negotiation, gT , and if it fails to reach a 
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bilateral agreement by round  then it withdraws from negotiation. Since GenCo g 

does not have access to LSE l’s private limit on the maximum number of rounds, it 

does not know the maximum number of rounds that can possibly take place between 

the two of them. Based on its own private limit, , and current negotiation round, t, 

GenCo g perceives that remaining fraction of total negotiation time is 1 / gt T .  

GenCo tries to secure a bilateral transaction by the end of its time limit while 

attempting to retain maximum possible strategic reward, in each round. GenCo 

retains a fraction of its total strategic reward that is directly proportional to its 

perception of remaining fraction of total negotiation time. GenCo calculates its 

retained strategic reward in round t,  ,

g

l retainedQ t , as a fraction of the total strategic 

reward, , that is directly proportional to its perception of remaining 

negotiation time in round t, , by,  

     , ,1 /g g g

l retained l TOTALQ t t T Q     (8.7) 

8.4.4 Strategic Price and Quantity Offer 

A GenCo uses retained strategic reward value to select its price offer to an LSE in 

each round. A GenCo can find strategic price offer in round t,  ,g offer

lsp t , 

corresponding to retained strategic reward in round t,  ,

g

l retainedQ t , if it knows a 

general mathematical relationship between a price, 
g

lsp , in strategic price set, 
g

lS , 

and retained strategic reward at that price,  ,

g g

l retained lQ sp . By rewriting equation (8.6), 

relationship between a price 
g

lsp  and retained strategic reward at the price, 

 ,

g g

l retained lQ sp , is expressed as, 

        
,min

, ,min

g
l

g
l

sp

g g g g g

l retained l l l l

sp

Q sp U U sp


 


     (8.8) 

gT

gT

,

g

l TOTALQ

1 / gt T
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Using equation (8.8), GenCo g calculates  ,

g g

l retained lQ sp  for each price 
g

lsp  in the 

strategic price set, 
g

lS , and stores the calculated values in a table that is consulted in 

each negotiation round. In the table, GenCo g looks up the price 
g

lsp  at which stored 

value of retained strategic reward,  ,

g g

l retained lQ sp , equals or most closely 

approximates retained strategic reward for round t,  ,

g

l retainedQ t , calculated from 

equation (8.3). Consequently, GenCo g selects the price 
g

lsp  as its strategic price 

offer to LSE l in round t,  ,g offer

lsp t . After choosing the strategic price offer, 

 ,g offer

lsp t , GenCo g looks up its power allocation results, like hypothesized results 

shown in  Figure 8.3, and selects power quantity corresponding to the chosen price as 

its strategic  quantity offer for bilateral transaction with LSE l in round t,  ,g offer

lsq t . 

Based on transaction protocol discussed in Section 8.2 and mathematical model 

presented in this section, a GenCo’s negotiation algorithm for utility based strategy is 

shown in Section 8.4.5. The step by step algorithm conforms to the protocol and 

refers to equations developed during discussion of utility based strategy’s 

mathematical model. Moreover, a summary of steps in the negotiation algorithm was 

provided at the beginning of Section 8.4.  

8.4.5 Negotiation Algorithm 

1) For each LSE l Do  

a) Evaluate total strategic reward 
,

g

l TOTALQ by (8.6) of bilateral transaction. 

b) Using equation (8.8), calculate  ,

g g

l retained lQ sp  for each price 
g

lsp  in the 

strategic price set 
g

lS  and store the calculated values in a look-up table 

2) Set round to one ( 1t  )  

3) While round <= maximum rounds (
gt T ) Do 

a) For each LSE l Do 

i) Receive strategic price bid,  ,l bid

gsp t , and strategic quantity bid,  ,l bid

gsq t , 

for purchase of energy. 
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ii) Compute retained strategic reward  ,

g

l retainedQ t by (8.7). 

iii) In the look-up table, find price 
g

lsp  at which stored value of retained 

strategic reward,   ,

g g

l retained lQ sp , equals retained strategic reward for 

round t,   ,

g

l retainedQ t   

iv) Choose 
g

lsp as strategic price offer  ,g offer

lsp t , for sale of energy. 

v) Determine strategic quantity offer  ,g offer

lsq t , corresponding to the 

strategic price offer  ,g offer

lsp t , for sale of energy.  

vi) If strategic price offer < strategic price bid     , ,g offer l bid

l gsp t sp t  Then 

(1) agreed price = strategic price bid   ,g l bid

l gap sp t  and agreed quantity 

= strategic quantity bid   ,g l bid

l gaq sq t  

(2) Convey agreed price 
g

lap and agreed quantity 
g

laq , for sale of energy 

to LSE l. 

vii) Else 

(1) Convey strategic price offer  ,g offer

lsp t  and strategic quantity offer 

 ,g offer

lsq t , for sale of energy to LSE l. 

b) Increment round by one ( 1t t  ). 

8.5 Utility and Bayesian Learning based Strategy of 

Generation Company 

In each round, LSE agents submit price and quantity bids recommended by the 

trading utility based strategy, presented in Section 8.3. Similarly, GenCo’s trading 

utility based strategy, presented in Section 8.4, suggests price and quantity offers for 

each round. However, depending on history of responses from a trading partner in 

successive negotiation rounds, Bayesian learning can discover private information of 

the trading partner in bilateral negotiation. In FABS, only GenCo agents are 

equipped with Bayesian learning capability to clearly demonstrate the advantage 

gained by a learning GenCo agent over a non-learning LSE agent. A GenCo agent 
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builds on its utility based strategy to develop a new utility-and-learning based 

strategy. Hereafter, GenCo’s utility based strategy, presented in Section 8.4, is 

referred as its old strategy and utility-and-learning based strategy, discussed in this 

Section, is referred as its new strategy. 

A GenCo agent uses Bayesian learning method to estimate the maximum price that 

an LSE agent will be willing to bid in last round of bilateral negotiation. After 

updating its estimate of the LSE’s private intention in a round GenCo anticipates that 

over the remaining rounds LSE will continue to increase its price bids up to the 

estimated value. According to the new strategy, GenCo opts for more controlled 

reduction of offer prices than proposed by the old strategy. GenCo hopes that the 

new strategy’s controlled reduction of offer prices will culminate in sale of energy at 

a higher price than would have been possible with the old strategy. Further details of 

the controlled reduction of offer prices are covered in the rest of this Section.  

Since a GenCo’s new utility-and-learning based strategy builds on its old utility 

based strategy, mathematical models of the two strategies are similar. For both 

strategies, a GenCo agent calculates total strategic reward in exactly the same way as 

shown in Section 8.4.1. Furthermore, in either strategy, a GenCo agent finds its 

strategic price and quantity offers from the retained strategic reward as explained in 

Section 8.4.1. However, the strategies differ in calculation of a GenCo’s retained 

strategic reward, as explained next. A GenCo’s strategic price offer and resulting 

retained strategic reward have a direct relationship, i.e. both increase or decrease 

together, as confirmed by equation (8.8). Therefore, compared to the old strategy, the 

new strategy’s controlled reduction of offer prices leads to a greater retained strategic 

reward.  

Description of the new strategy’s mathematical model is provided in subsections 

8.5.1 to 8.5.4. A brief outline of contents covered in each of these subsections is 

provided here. The estimated price, serving as foundation of the new strategy, must 

be treated with caution because of estimation errors in Bayesian learning. If the price 

estimated by GenCo is assumed to have the same value as the actual price, privately 

selected by LSE, then it can lead to problems discussed in subsection 8.5.1. 
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Subsection 8.5.2 explains upper and lower bounds that apply to the estimated price in 

a practical bilateral negotiation scenario. Based on the estimated price, a price 

control ratio and a reward withholding factor are calculated as shown in subsection 

8.5.3. According to the new strategy, GenCo’s retained strategic reward has two 

components that are termed essential and premium rewards. The essential reward is 

calculated in the same as the old strategy’s retained strategic reward. Conversely, the 

withholding factor determines premium component of retained strategic reward, as 

discussed in subsection 8.5.4.  

GenCo’s negotiation algorithm for the new utility-and-learning based strategy is 

presented in Section 8.5.5. An overview of steps in the negotiation algorithm is 

provided here. In step 1 of the algorithm, GenCo calculates and stores total strategic 

reward as well as retained strategic reward at each price in its strategic price set. 

GenCo needs the stored strategic reward results in all negotiation rounds. In step 2, 

GenCo sets current round to the first round of bilateral negotiation. Step 3 consists of 

GenCo’s actions while negotiation rounds are in progress. GenCo carries out step 3-a 

for each LSE before moving to the next round in step 3-b. In steps 3-a-i and 3-a-ii 

GenCo receives bid from an LSE and calculates essential reward respectively. Since 

GenCo only needs premium reward in intermediate negotiation rounds, it only 

carries out step 3-a-iii in those rounds. In steps 3-a-iv to 3-a-vii, GenCo determines 

offer suggested by its own strategy for the LSE. In step 3-a-viii, GenCo compares the 

price offer suggested by its strategy with price bid received from the LSE. If the self-

suggested price offer is less than the received price bid then GenCo accepts the bid. 

Otherwise, GenCo submits strategic price offer to the LSE, as shown in step 3-a-ix. 

8.5.1 Problems with Assuming that an Estimated Price has 

Same Value as the Actual Price 

Since estimation by Bayesian learning is prone to errors, a GenCo must not assume 

that GenCo g’s estimate of LSE l’s maximum strategic price in round t,  ,max

g

lsp t  

has same value as LSE l’s actual privately chosen maximum strategic price for 

GenCo g, 
,max

l

gsp . In fact, the LSE’s actual price, 
,max

l

gsp , may be different from the 
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estimated price,  ,max

g

lsp t  and if GenCo assumes they are the same then it can face 

following problems.  

It is possible that LSE’s actual price, 
,max

l

gsp , is higher than GenCo’s estimated price, 

 ,max

g

lsp t , but GenCo decreases its price offer down to  ,max

g

lsp t . In this case, 

GenCo faces a low-price sale problem because it ends up selling its energy at a lower 

price than it would have obtained by cautiously using the estimated price,  ,max

g

lsp t , 

for controlled reduction of offer prices. If LSE’s actual price, 
,max

l

gsp , is lower than 

GenCo’s estimated price,  ,max

g

lsp t  but GenCo assumes that the estimated price has 

the same vale as the actual price then GenCo decides to hold its price offer at 

 ,max

g

lsp t . As explained in Chapter 3, bilateral negotiations between GenCos and 

LSEs are both competitive and cooperative. If a GenCo holds its offer price to an 

LSE then it shows fully competitive behaviour that lacks any cooperative gesture. In 

reaction, if the LSE invokes a behaviour dependent strategy and chooses to hold its 

bid price then bilateral negotiation will fail.  

Note that successful negotiation is desired by both GenCo and LSE because each one 

benefits from utility of the bilateral transaction. If GenCo uses the estimated price as 

merely an indication and cautiously reduces offer prices in a controlled way then it 

can simultaneously minimize chances of low-price sale and negotiation failure.  

8.5.2 Practical Upper and Lower Bounds of an Estimated Price 

LSE’s maximum strategic price is the maximum price that LSE is willing to bid to 

GenCo g in the last round, 
,max

l

gsp . As already mentioned, GenCo’s estimation of an 

LSE’s maximum strategic price by Bayesian learning is prone to errors. If GenCo’s 

estimated price,  ,max

g

lsp t , is higher than its strategic price offer in the previous 

round,  , 1g offer

lsp t  , then the estimate is reduced to  , 1g offer

lsp t   because LSE 

cannot submit a higher price bid than an already known price offer,  , 1g offer

lsp t  . 
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On the other extreme, if GenCo’s estimated price,  ,max

g

lsp t , is lower than its 

minimum strategic price, 
,min

g

lsp , then the estimate is raised to 
,min

g

lsp  because GenCo 

cannot offer a lower price than 
,min

g

lsp . As a result, GenCo restricts its estimated price, 

 ,max

g

lsp t , to an upper bound equal to the previous offer,  , 1g offer

lsp t  , and a lower 

bound equal to the minimum strategic price, 
,min

g

lsp , i.e. 

   ,

,min,max1
g

g offer g

l llsp t sp t sp   .  

8.5.3 Price Control Ratio and Reward Withholding Factor 

This section explains how a GenCo uses its bounded estimate of LSE’s maximum 

strategic price,    ,

,min,max1
g

g offer g

l llsp t sp t sp   , to calculate a price control ratio, 

 g

lCR t , that determines a reward withholding factor,  g

l t . GenCo only calculates 

the withholding factor,  g

l t  for an intermediate negotiation round t, 1 gt T  , 

because of following reasons. In the first round, 1t  , GenCo cannot estimate LSE’s 

maximum strategic price by Bayesian learning because that requires knowledge of 

LSE’s price bids in at least two consecutive rounds. In consequence, GenCo is 

unable to determine its withholding factor for the first round. For the last round in its 

perception, 
gt T , GenCo is willing to lower its price offer to minimum strategic 

price, 
,min

g

lsp , to avoid negotiation failure. GenCo does not use any withholding 

factor in the last round because, as a last resort, it aims to secure a bilateral 

transaction that was recommended by portfolio optimization due to its utility.  

For an intermediate negotiation round t, 1
gt T  , GenCo’s calculation method for 

the price control ratio,  g

lCR t , is explained here. GenCo’s price holding margin 

equals the difference between its estimate of LSE’s maximum strategic price, 

 ,max

g

lsp t  and minimum strategic price, 
,min

g

lsp . GenCo’s price reduction margin 

equals the difference between strategic price offer in the previous round, 

 , 1g offer

lsp t  , and minimum strategic price, 
,min

g

lsp . For controlled reduction of offer 
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prices, GenCo divides the price holding margin by the price reduction margin to 

calculate a control ratio for round t,  g

lCR t , by, 

 

 

 
 

 
,min,max

,

,min

  

1  

g
g

llg

l g offer g

l l

price holding margin

price reduction mar

sp t sp
CR t

sp tg n spi


 

 
  

(8.9) 

Although equation (8.9) is an original work of this thesis, its concept is derived from 

[14]. The control ratio is dependent on practical bounds of estimated price, 

   ,

,min,max1
g

g offer g

l llsp t sp t sp   . In case of the upper bound, estimated price, 

 ,max

g

lsp t , is same as previous offer,  , 1g offer

lsp t   and as a result control ratio for 

round t,  g

lCR t , has a value of 1. The unity value of control ratio intimates that 

GenCo should hold its offer its offer price but that action may lead to negotiation 

failure. On the other extreme, at lower bound, estimated price,  ,max

g

lsp t , is same as 

minimum possible offer, 
,min

g

lsp , and control ratio for round t,  g

lCR t , becomes 0. 

The zero value of control ratio indicates that GenCo must reduce its offer prices 

according to the utility based strategy and should not control the reduction any 

further. But that course of action may result in low-price sale problem for GenCo.  

When determining a withholding factor based on the control ratio, GenCo wants to 

make sure that even in case of a Bayesian estimation error its withholding factor does 

not reach extremes of zero or one like the control ratio. GenCo avoids the both 

extremes, and the consequent problems, by limiting the withholding factor between 

0.25 and 0.75 as,  

   
 

0.25
2

g

lg

l

CR t
t     (8.10) 

Calculation of withholding factor,  g

l t , by equation (8.10) ensures that for any 

value of the control ratio,  g

lCR t , value of withholding factor,  g

l t , remains 

between 0.25 and 0.75 inclusive, in an intermediate negotiation round t, 1
gt T  .  
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8.5.4 Essential and Premium Components of Retained 

Strategic Reward 

For the new strategy, GenCo’s retained strategic reward has two components that are 

termed essential and premium. In each round, GenCo’s retained strategic reward by 

the old strategy is the essential reward that must be retained by the new strategy as 

well. Origin of the premium component of GenCo’s retained strategic reward by the 

new strategy is described as follows. GenCo’s retained strategic reward by the new 

strategy in the previous round is termed prior reward. Given that in each intermediate 

round GenCo holds the prior reward and has to safeguard the essential reward, 

GenCo pays attention to the difference between the two rewards. Based on the 

already determined withholding factor, GenCo’s new strategy establishes that the 

fraction of the difference that is directly proportional to the withholding factor must 

be retained as the premium reward. Mathematical formulations for the retained 

strategic reward are explained in the following paragraphs of this subsection. 

As shown in equation (8.7) for calculation of GenCo’s retained strategic reward by 

the old strategy, GenCo’s essential retained strategic reward by the new strategy, 

 ,

,

g essential

l retainedQ t , is given by, 

     ,

, ,1 /g essential g g

l retained l TOTALQ t t T Q     (8.11) 

Substituting GenCo’s strategic price offer for the previous round,  , 1g offer

lsp t  , in 

equation (8.8), GenCo’s prior retained strategic reward at the previously offered 

strategic price,   , ,

, 1g prior g offer

l retained lQ sp t  , is given by ,  

        
 ,

,min

1

, ,

, ,min1

g offer
l

g
l

sp t

g prior g offer g g g

l retained l l l l

sp

Q sp t U U sp


 




      (8.12) 

In each intermediate round t, using the essential reward,  ,

,

g essential

l retainedQ t , the prior 

reward,   , ,

, 1g prior g offer

l retained lQ sp t  , and the withholding factor,  g

l t , GenCo’s new 

strategy calculates premium retained strategic reward,  ,

,

g premium

l retainedQ t , as, 
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          , , , ,

, , ,1g premium g g prior g offer g essential

l retained l l retained l l retainedQ t t Q sp t Q t    (8.13) 

The new strategy’s retained strategic reward of GenCo g for bilateral transaction 

with LSE l,  ,

g

l retainedQ t , is calculated as, 

   

 

   

 

,

,

, ,

, , ,

,

,

, 1

, 1

,

g essential

l retained

g g essential g premium g

l retained l retained l retained

g essential g

l retained

Q t t

Q t Q t Q t t T

Q t t T

 


   
 

  (8.14) 

Due to the premium component of retained strategic reward in intermediate rounds, 

the new strategy selects a higher price, i.e. more beneficial sale price for GenCo, than 

one suggested by the old strategy. A GenCo’s retained strategic reward and 

corresponding strategic price offer have a direct relationship, as shown in equation 

(8.8). For either strategy, a GenCo agent finds its strategic price and quantity offers 

from the retained strategic reward as already explained in Section 8.4.1. 

8.5.5 Negotiation Algorithm 

1) For each LSE l Do  

a) Evaluate total strategic reward 
,

g

l TOTALQ by (8.6) of bilateral transaction. 

b) Using equation (8.8), calculate  ,

g g

l retained lQ sp  for each price 
g

lsp  in the 

strategic price set 
g

lS and store the calculated values in a look-up table 

2) Set round to one ( 1t  )  

3) While round <= maximum rounds (
gt T ) Do 

a) For each LSE l Do 

i) Receive strategic price bid,  ,l bid

gsp t , and strategic quantity bid,  ,l bid

gsq t , 

for purchase of energy. 

ii) Compute essential retained strategic reward  ,

,

g essential

l retainedQ t by (8.11). 

iii) If it is an Intermediate Rounds, 1
gt T  , Do 
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(1) After subjecting the estimated price to upper and lower bounds,  

   ,

,min,max1
g

g offer g

l llsp t sp t sp   , calculate control ratio,  g

lCR t  by 

equation (8.9). 

(2) Compute withholding factor,  g

l t , as shown in equation (8.10) 

(3) In the look-up table, find GenCo’s prior retained strategic reward at 

the previously offered strategic price,   , ,

, 1g prior g offer

l retained lQ sp t   

(4) Using equation (8.13), find premium retained strategic reward 

 ,

,

g premium

l retainedQ t  

iv) Compute retained strategic reward  ,

g

l retainedQ t by (8.14). 

v) In the look-up table, find price 
g

lsp  at which stored value of retained 

strategic reward,   ,

g g

l retained lQ sp , equals retained strategic reward for 

round t,   ,

g

l retainedQ t   

vi) Choose 
g

lsp as strategic price offer  ,g offer

lsp t , for sale of energy. 

vii) Determine strategic quantity offer  ,g offer

lsq t , corresponding to the 

strategic price offer  ,g offer

lsp t , for sale of energy.  

viii) If strategic price offer < strategic price bid     , ,g offer l bid

l gsp t sp t  

Then 

(1) agreed price = strategic price bid   ,g l bid

l gap sp t  and agreed quantity 

= strategic quantity bid   ,g l bid

l gaq sq t  

(2) Convey agreed price 
g

lap and agreed quantity 
g

laq , for sale of energy 

to LSE l. 

ix) Else 

(1) Convey strategic price offer  ,g offer

lsp t  and strategic quantity offer 

 ,g offer

lsq t , for sale of energy to LSE l. 

b) Increment round by one ( 1t t  ). 
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8.6 Case Studies 

This Chapter has two case studies that are termed productive bilateral negotiation 

and enhanced bilateral negotiation, as explained next. In case both negotiating 

partners use their utility based strategies, bilateral negotiations succeed in securing 

bilateral transactions – hence the case study is named productive bilateral negotiation. 

By comparison, in case of enhanced bilateral negotiation, GenCo’s utility based 

strategy is supported by Bayesian learning but LSE only uses its utility base strategy. 

The two case studies are designed to demonstrate that: (i) the utility based strategies 

of both negotiating partners are capable of securing bilateral transactions and (ii) 

GenCo can succeed in securing a more favourable bilateral transaction if its utility 

based strategy is enhanced by Bayesian learning but LSE has no learning capability. 

Although the developed negotiation strategies are generic, this thesis has only tested 

the negotiation strategies on the five node test grid. As future work, performance of 

the negotiation strategies needs to be evaluated for larger test grids containing more 

generators and loads. 

8.7 Results 

Difference in results of the Productive and Enhanced Bilateral Negotiations between 

GenCo-1 and LSE-1 are illustrated in Figure 8.5. The Productive Bilateral 

Negotiation between GenCo-1 and LSE-1 proceeds as follows. LSE-1 initiates each 

round and bids energy prices $20/MWh, $22.5/MWh and $25.7/MWh in rounds 1, 2 

and 3 respectively. In response, GenCo-1 offers energy prices $41.2/MWh, 

$38.1/MWh and $34.4/MWh in rounds 1, 2 and 3 respectively. Furthermore, since 

both are interested in trading 19.60MW at any price in their negotiable price set, they 

offer/bid for 19.60MW power quantity in all rounds. Note that both want to 

bilaterally trade 19.60MW of power in every hour of the coming year that has 360 

days in FABS. The bilateral negotiation succeeds in round 4 because LSE-1 bids for 

19.60MW at $30.4/MWh and GenCo-1 accepts the quantity and price. Consequently, 

$5,148,057 becomes payable by LSE-1 to GenCo-1 against the bilateral transaction. 
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Figure 8.5  Results of Productive bilateral negotiations and enhanced bilateral negotiations 

between GenCo-1 and LSE-1 

Bayesian learning enables a GenCo to estimate the maximum price that an LSE agent 

will be willing to bid in last round of bilateral negotiation. Consequently, GenCo 

reduces its offers prices to the LSE in a restrained way. The Enhanced Bilateral 

Negotiation between GenCo-1 and LSE-1 ensues as follows. Since LSE-1 is using 

utility based strategy as in case of the Productive Bilateral Negotiation, it still bids 

energy prices $20/MWh, $22.5/MWh, $25.7/MWh and $30.4/MWh in rounds 1, 2, 3 

and 4 respectively. As in case of Productive Bilateral Negotiation, GenCo-1 offers 

$41.2/MWh in round 1 because it needs at least two interactions with LSE-1 to start 

its Bayesian learning. However, due to Bayesian learning in rounds 2, 3 and 4, 

GenCo-1 reduces its offer prices in a restrained way as shown in Figure 8.5. Instead 

of offering $38.1/MWh, $34.4/MWh and $30.4/MWh, GenCo-1 offers $40.3/MWh, 

$38.9/MWh and $37.0/MWh in rounds 2, 3 and 4 respectively. The bilateral 

negotiation succeeds in round 5 when LSE-1 accepts GenCo-1’s round 4 offer of 

19.60MW at $37.0/MWh. In consequence, $6,265,728 becomes payable by LSE-1 to 

GenCo-1 against the bilateral transaction. Compared to the Productive Bilateral 
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Negotiation, GenCo-1 earns $1,117,671 more from bilateral transaction with LSE-1 

by the Enhanced Bilateral Negotiation. 

Difference in results of the Productive and Enhanced Bilateral Negotiations between 

GenCo-4 and LSE-3 are illustrated in Figure 8.6. The Productive Bilateral 

Negotiation between GenCo-4 and LSE-3 progresses as follows. LSE-3 initiates each 

round and bids for 75MW power quantity at energy prices $67.2/MWh, $68.7/MWh, 

$70.5/MWh and $72.9/MWh in rounds 1, 2, 3 and 4 respectively. In response 

GenCo-4 offers 128MW power quantity at energy prices $89.2/MWh, $86.1/MWh, 

$82.4/MWh and $77.6/MWh in rounds 1, 2, 3 and 4 respectively. In round 5, LSE-3 

agrees to GenCo-4’s price offer of $77.6/MWh in round 4. However, since LSE-3 

only wants to buy 75MW from GenCo-4, it only accepts 75MW out of GenCo-4’s 

offered quantity of 128MW in round 4. GenCo-4 agrees to the reduction in quantity 

and the bilateral negotiation succeeds for 75MW at $77.6/MWh. As a result of the 

bilateral transaction, $50,284,800 becomes payable by LSE-3 to GenCo-4 for 

bilateral trade of 75MW in every hour of the coming simulation year of 360 days. 

 

Figure 8.6  Results of Productive bilateral negotiations and enhanced bilateral negotiations 

between GenCo-4 and LSE-3 
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The Enhanced Bilateral Negotiation between GenCo-4 and LSE-3 advances as 

follows. Since LSE-3 is using utility based strategy as in case of the Productive 

Bilateral Negotiation, it still bids energy prices $67.2/MWh, $68.7/MWh, 

$70.5/MWh and $72.9/MWh in rounds 1, 2, 3 and 4 respectively. As in case of 

Productive Bilateral Negotiation, GenCo-4 offers $89.2/MWh in round 1 because it 

needs at least two interactions with LSE-3 to start its Bayesian learning. However, 

due to Bayesian learning in rounds 2, 3 and 4, GenCo-4 reduces its offer prices in a 

restrained way as shown in Figure 8.5. Instead of offering $86.1/MWh, $82.4/MWh 

and $77.6/MWh, GenCo-4 offers $8.4/MWh, $87/MWh and $85.1/MWh in rounds 2, 

3 and 4 respectively. In round 5, LSE-3 agrees to GenCo-4’s price offer of 

$78.8/MWh in round 4. Despite the agreement on price, LSE-3 only accepts 75MW 

quantity out of 128MW offered by GenCo-4. In response, GenCo-4 agrees to the 

reduction in quantity and the bilateral negotiation succeeds for 75MW at $78.8/MWh. 

As a result of the bilateral transaction, $51,062,400 becomes payable by LSE-3 to 

GenCo-4. Compared to the Productive Bilateral Negotiation, GenCo-4 earns 

$777,600 more from bilateral transaction with LSE-3 by the Enhanced Bilateral 

Negotiation. 

8.8 Conclusions 

Based on trading utility results of match making over a specified price set, this 

Chapter introduces a new way of measuring reward of a bilateral transaction option, 

instead of assuming the reward like [7]. Moreover, since a market participant is 

unsure about private intentions of others, it has to rely on a perception of remaining 

negotiation time. A main negotiation strategy, termed utility based strategy, is 

developed by combining the trading reward and the perception of remaining 

negotiation time for both GenCo and LSE. Furthermore, each GenCo is enabled to 

estimate the ultimate price of its opponent by Bayesian learning, followed by a new 

method to adapt its main utility based strategy in response to opponent behaviour. 

The new bilateral negotiation strategies for both GenCo and LSE are integrated in 

FABS. 
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Utility based negotiation strategies are productive for securing bilateral transactions 

between market participants. Bayesian learning enables a market participant to 

update estimates of negotiating partners’ ultimate prices during negotiation. A new 

method is presented in this Chapter to use the estimated prices and proceed with 

bilateral negotiations in a restrained manner. A Bayesian learning market participant 

gains advantage over a non-learning market participant and secures a more 

favourable bilateral transaction.  
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9 Conclusions and Future Work 

 

This Chapter concludes the overall thesis and presents some ideas for future work. 

9.1  Conclusions 

This thesis aimed to provide publicly available modelling of decision making for 

direct-search bilateral transactions in deregulated wholesale electricity markets. This 

thesis set the following main objectives.  

 First main thesis objective was to design annual planning methods for match 

making in direct-search bilateral transactions between Generation Companies 

and Load Serving Entities.  

 The second main thesis objective was to develop new computational methods 

to establish optimal dynamic strategies for bilateral negotiations between the 

market participants.  

 The third main thesis objective involved a novel learning based adaptation 

method to adjust dynamic strategies of Generation Companies during 

bilateral negotiations.  

As secondary objectives, the thesis aspired to optimize Financial Transmission 

Rights bids and achieve combined simulation of financial transmission instruments, 

bilateral transactions and day-ahead auction in a single agent-based computational 

framework. All main and secondary objectives of thesis have been achieved. 

This thesis has achieved simulation of match making for direct-search bilateral 

transactions, without assuming that bilateral transactions are organized, transmission 

constraints do not exist, participants have complete information about others or 

match making is a random process. Moreover, it has demonstrated that simulation of 

bilateral negotiations can utilize heuristics, accommodate dynamic prices of 

organized electricity markets and avoid estimation errors in learning.   
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This thesis presents agent-based modelling of decentralized bilateral transactions in 

electricity markets. The thesis also reports combined agent-based simulation of 

annual Financial Transmission Rights auction and annual Auction Revenue Rights 

allocation along with annual bilateral transactions and organized day-ahead market 

for energy. Previous agent-based simulation platforms for wholesale electricity 

markets existed as proprietary software or used simplified models. In case of 

proprietary software, mathematical modelling details of bilateral transactions were 

not available in public domain. For simplified models, some assumptions were not 

representative of real world bilateral transactions. In this thesis, detailed 

mathematical modelling of bilateral transactions is provided to facilitate accurate and 

in-depth understanding of implemented model.  

This research has made following contributions to existing knowledge pool. 

Improvements in portfolio optimization procedures of Generation Companies and 

Load Serving Entities have led to development of systematic match making 

algorithms. The new optimization procedures and algorithms accommodate upper 

limits on bilateral transactions and available Financial Transmission Rights. A novel 

application of bilateral transactions’ utilities has developed dynamic bilateral 

strategies for Generation Companies and Load Serving Entities. Moreover, dynamic 

strategy of a Generation Company is supported by new adaptive strategy for bilateral 

negotiations. 

9.2 Future Work 

Research work presented in this thesis can be extended in a number of ways. Some 

ideas for extending the research are as follows. Agent-based electricity market 

modelling and simulation tool developed for this thesis is currently being tested for 

anticipated release as open-source software in future. The open-source and agent-

based approach will ensure that additional market mechanisms can be incorporated 

by the software users to meet their specific research or training needs. Due to the 

combined simulation capability, it is anticipated that the platform will be useful in 

exploring mutual effects of individual market mechanisms and overall dynamics of 

deregulated wholesale electricity markets. 
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Monthly Financial Transmission Rights can be added to the simulation. Monthly 

short-duration bilateral transactions by broker or electronic bulletin-board can be 

included in the simulation. If DC Optimal Power Flow solution is infeasible for 

requested Financial Bilateral Transactions then ISO agent can be allowed to reduce 

the bilateral transactions to achieve a feasible solution. Unforeseen transmission 

failure and transmission security constraints can be introduced in optimal power flow 

and Simultaneous Feasibility Test of independent system operator. Market 

participant agents can be equipped with decision making for long-duration physical 

bilateral transactions. 
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A. Appendix A - Test Grid Data 

 

Test grid shown in Figure A.1 and originally proposed in [1], has been used in this 

thesis. Data of the smaller test grid is adopted from [2] and built in both AMES and 

FABS software. Capacities of transmission lines and characteristics of GenCos are 

listed in Table A.1 and Table A.2 respectively. Daily load profiles for fixed (price-

inelastic) demand are illustrated in Figure A.2. The load profiles show that peak 

loads at each node occur in hour 17 in the test grid. Base load of each LSE is chosen 

to be slightly below minimum points on the load profiles corresponding to hour 4. 

Peak and base loads of LSEs are listed in Table A.3. 

 

Figure A.1  One-Line Diagram of Test Grid 
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Table A.1  Transmission Line Capacities 

Source Location Sink Location 
Transmission Line 

Capacities (MW) 

Node-1 Node-2 250 

Node-1 Node-4 150 

Node-1 Node-5 400 

Node-2 Node-3 350 

Node-3 Node-4 240 

Node-4 Node-5 240 

 

Table A.2  Capacities of Generators 

Generation 

Company 

Capacity 

(MW) 
ag ($/MW

2
h) bg ($/MWh) cg ($/h) 

GenCo-1 110.0 0.005 14.0 0.0 

GenCo-2 100.0 0.006 15.0 0.0 

GenCo-3 520.0 0.010 25.0 0.0 

GenCo-4 200.0 0.012 30.0 0.0 

GenCo-5 600.0 0.007 10.0 0.0 
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Figure A.2  LSE Hourly Fixed Demands 

Table A.3 Peak Load and Base Load Data of LSEs 

LSE Peak Load (MW) Base Load (MW) 

LSE-1 448.62 272.80 

LSE-2 384.53 233.82 

LSE-3 320.44 194.85 

 

Input data of historical LMPs for FABS was obtained from AMES as explained here. 

AMES was first run with all existing settings but modified simulation stopping rules 

to ensure that day-ahead energy market continuously runs for one simulation year 

(12 months of 30 days each). This simulation of day-ahead energy market in AMES 

gave output of one year’s LMP data for the test grid. Consequently the LMP data 

was used as input in FABS to calculate overall expectations, variances, covariances 

and standard deviations of LMPs at all nodes, irrespective of trading intervals. The 

overall expectations, variances and standard deviations of LMPs at all nodes are 

shown in Table A.4, whereas the covariances of LMPs are listed in Table A.5 
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Although sometimes an investor can be risk neutral (A=0), or even a risk lover (A<0), 

practical decision makers are normally risk averse (A>0). After stressing that there is 

no authoritative data to describe risk preference of electricity market participants and 

based on a set of principles, [3] determines that A can lie in range of 2.89 and 6.1. 

According to [4], risk aversion factors of investors generally range between 2.0 and 

4.0. Following from [4], A=3.0 is considered an average risk aversion factor and 

consequently A>3.0 is assumed a high risk aversion factor in this thesis. In this thesis, 

if overall variance of LMP at market participant’s local node is greater than 1000 

then it chooses a high risk aversion factor of 4.0. Otherwise, a market participant 

uses average risk aversion factor of 3.0. Table A.4 also shows risk aversion factors 

used by market participants at all nodes. 

Table A.4  Results of Statistical Analysis of Historic Prices 

Node 

Overall 

Expectation of 

LMPs ($/MWh) 

Overall 

Variance of 

LMPs 

Overall Standard 

Deviation of LMPs 

($/MWh) 

Risk 

Aversion 

Factor  

Node-1 31.0 211.9 14.7 3.0 

Node-2 196.3 5119.4 82.2 4.0 

Node-3 165.0 3333.9 66.3 4.0 

Node-4 78.9 486.6 24.5 3.0 

Node-5 39.5 192.5 13.9 3.0 
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Table A.5  Results of Covariance of Historic Prices 

 Node-1 Node-2 Node-3 Node-4 Node-5 

Node-1 214.854 -188.512 -112.089 98.076 194.151 

Node-2 -188.512 6763.784 5446.573 1824.242 168.320 

Node-3 -112.089 5446.573 4393.406 1497.196 173.214 

Node-4 98.076 1824.242 1497.196 597.817 186.672 

Node-5 194.151 168.320 173.214 186.672 192.825 

 

Power transfer distribution factors were calculated by using AMES. This was 

achieved by removing all generators and loads from the system and only adding 

1MW generation unit at desired source node and 1MW load demand at desired sink 

node. The resulting power flows in transmission lines were noted as power transfer 

distribution factors. The distribution factors calculated by this method in column two 

of Table A.6, for transmission line between nodes 1 and 4 (Node-1-Node-4), were 

verified by comparison with those in [1]. 

Following optimization problems are solved in FABS: (i) FTR bid optimization by 

each LSE; (ii) FTR auction optimization by ISO; (iii) portfolio optimization by every 

GenCo and LSE. Each optimization problem is solved by a specific Matlab 

optimization tool that has been named in Chapter that discussed solution of 

respective optimization problem. Moreover, input data and output data of each 

optimization problem is also discussed in its respective Chapter. However, for all of 

the above-mentioned optimization problems, input data is sent from Java 

environment of FABS to Matlab and output data is retrieved back in FABS. 
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Table A.6  Power Transfer Distribution Factors 

Power Flow 

From Source to 

Sink 

Transmission line between Origin Node (upper row) and 

End Node (lower row)  

Source 

Node  

Sink 

Node 

Node-1 Node-1 Node-1 Node-2 Node-3 Node-4 

Node-2 Node-4 Node-5 Node-3 Node-4 Node-5 

Node-1 Node-2 0.67 0.18 0.15 -0.33 -0.33 -0.15 

Node-1 Node-3 0.54 0.25 0.21 0.54 -0.46 -0.21 

Node-1 Node-4 0.19 0.44 0.37 0.19 0.19 -0.37 

Node-3 Node-2 0.13 -0.07 -0.06 -0.87 0.13 0.06 

Node-3 Node-3 0.0 0.0 0.0 0.0 0.0 0.0 

Node-3 Node-4 -0.35 0.19 0.16 -0.35 0.65 -0.16 

Node-4 Node-2 0.48 -0.26 -0.22 -0.52 -0.52 0.22 

Node-4 Node-3 0.35 -0.19 -0.16 0.35 -0.65 0.16 

Node-4 Node-4 0.0 0.0 0.0 0.0 0.0 0.0 

Node-5 Node-2 0.64 0.10 -0.74 -0.36 -0.36 0.26 

Node-5 Node-3 0.51 0.17 -0.68 0.51 -0.49 -0.32 

Node-5 Node-4 0.16 0.36 -0.52 0.16 0.16 -0.48 
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B. Appendix B - Estimation of Maximum Strategic 

Price by Bayesian Learning  

  

Bayesian learning is a statistical learning method that is based on Bayes’ rule. As 

discussed in literature review in Chapter 3, Bayesian learning has been used for 

estimating ultimate price of negotiating partner in reviewed research papers. In 

FABS, each LSE determines its own maximum strategic price, 
,max

l

gsp , as explained 

in Chapter 8. Exact value of an LSE’s maximum strategic price is private 

information. However, GenCo g uses Bayesian learning method [1] to get an 

estimated maximum strategic price of LSE l in round t,  ,max

g

lsp t , where 1t  . The 

Bayesian learning method [1], presented in this Appendix, was programmed in Java 

language and incorporated in FABS for this thesis. 

A negotiable price set between GenCo g and LSE l was defined in Chapter 7. 

Knowing the minimum negotiable price, 
,min

g

lnp , and the maximum negotiable price, 

,max

g

lnp , GenCo g’s valid hypothesis set for maximum strategic price of LSE l, 
g

lH , is 

expressed as,  

  ,min ,max ,min: 0,1, ,g g g g

l l l lH np k k np np     (B.1) 

The hypothesis set contains H  hypotheses where 
,max ,min1 g g

l lH np np    and hth 

hypothesis for LSE l is denoted as ,

g

l hsp . It is assumed that initially the H  

hypotheses follow a uniform probability distribution. A uniform probability 

distribution means that initially each hypothesis is assumed to be equally likely. In 

this case, prior probability of each hypothesis is calculated as 1 H . 

The Bayesian learning method uses strategic price responses from LSE to get an 

updated estimate of LSE’s maximum strategic price in each round, after the first 

round ( 1t  ). This price estimation requires a series of computations in a certain 
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sequence presented in Section C.1 and discussed as follows. In the second round 

( 2t  ) of negotiation, strategic price bid received by GenCo from LSE l in the first 

round,  , 1l bid

gsp , and GenCo’s strategic price offer to LSE l in the first round,

 , 1g offer

lsp , are used to calculate ( 1) (1)g g

l lt   by (B.2). This initialization of 
g

l , 

for LSE l, is only required in the second round ( 2t  ) of negotiation. In each round 

after the second round, ( 1)g

l t  is always available from computation in the 

previous round. Bayesian learning method uses the history of strategic price bid 

responses from LSE to calculate ( )g

l t by using (B.3).  

    , ,(1) 1 1 / 1g l bid g offer

l g lsp sp    (B.2) 

  
 

 
,

,

1 ( 1)
( ) 1

1

g

lg l bid

l g l bid

g

t
t sp t

sp t




 
  


 (B.3) 

According to agreed bilateral transaction protocol, although an LSE can hold on to 

its strategic price, it cannot decrease it in subsequent rounds. This makes it possible 

to eliminate some of the hypotheses in view of the latest strategic price of LSE l. If 

hth hypothesis 
,

g

l hsp is greater than or equal to strategic price bid of LSE l  ,l bid

gsp t , 

then 
,

g

l hsp  remains valid. Otherwise 
,

g

l hsp  becomes invalid because due to already 

agreed bilateral transaction protocol, it is no longer possible for LSE l to propose a 

lower strategic price bid in the next round,    , ,1l bid l bid

g gsp t sp t  . If hth hypothesis 

,

g

l hsp  has become invalid then its prior probability is set to zero,  1

,
0

g
t

l h
Pr sp  . 

For each hypothesis of each LSE l,  
,l h

g t can be calculated by using (B.4). 

Calculation of  
,l h

g t  by GenCo, is based on an assumption that  ,l bid

gsp t of LSE l 

will gradually move closer to LSE’s ,max

l

gsp over successive negotiation rounds. 

Calculated values of  
,l h

g t are used in (B.5) for determining values of conditional 
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probability   ,

,|
g

t l bid

g l hPr sp t sp . It is assumed that conditional probability of hth 

valid hypothesis, 
,

g

l hsp , follows a normal distribution   
,

,1
l h

gN t .  

    
, , 1 ( )

l h

g
g g

ll ht sp t     (B.4) 

   

    

    

2
,

,

2
,

,

2

,

,

2

1

1

2
|

1

2

gl bid
g l h

gl bid
g l h

sp t t

g
t l bid

g l h
sp t t

H

h

e

Pr sp t sp

e





















 (B.5) 

If  ,

,

g
l bid

gl h
sp sp t then 

,

g

l hsp  is valid and Bayes rule is used in (B.6) to update belief 

about LSE’s maximum strategic price by determining posterior probability of each 

valid hypothesis,   ,

, |
g

t l bid

gl hPr sp sp t . Otherwise 
,

g

l hsp  is invalid and its posterior 

probability does not need to be calculated by (B.6) because the probability is zero, 

  ,

,
| 0

g
t l bid

gl h
Pr sp sp t  . At this stage, posterior probability in current round t, 

  ,

, |
g

t l bid

gl hPr sp sp t , is assigned as updated prior probability for round t,  ,

g
t

l hPr sp , 

by (B.7). In the coming round, the updated prior probability is referred as 

 1

,

g
t

l hPr sp  and used for calculations in (B.6). 

   
    
    

1 ,

, ,
,

,
1 ,

, ,

1

|

|

|

g g
t t l bid

gl h l hg
t l bid

gl h H g g
t t l bid

gl h l h

h

Pr sp Pr sp t sp

Pr sp sp t

Pr sp Pr sp t sp












 (B.6) 

     ,

, ,
|

g g
t t l bid

gl h l h
Pr sp Pr sp sp t  (B.7) 

Finally, updated belief about valid hypotheses is used to determine estimated 

maximum strategic price of an LSE in current round t,  ,max

g

lsp t , by (B.8). 
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     
max

,

,max , ,

min

|
g gg

t l bid

gl l h l h

h

sp t sp Pr sp sp t


   (B.8) 

A step-by-step Bayesian learning Method is presented as follows. 

1) For each LSE l in every intermediate round (1 gt T  ) Do 

a) If second round ( 2t  ) Then 

i) Determine H  hypotheses of LSE’s maximum strategic price. 

ii) Initialize prior probability,    0

, ,

g g
t

l h l h
Pr sp Pr sp , for all H  hypotheses. 

iii) Compute (1)g

l by using (B.2). 

b) Compute ( )g

l t by using (B.3).  

c) For each valid hypothesis of maximum strategic price Do 

i) Invalidate hth hypothesis, 
,

g

l hsp , if it is impossible, by setting its prior 

probability to zero,  1

,
0

g
t

l h
Pr sp  .  

ii) Compute  
,l h

g t  by using (B.4). 

iii) Compute conditional probability   ,
|

g
t g

l l h
Pr dp t sp by using (B.5). 

iv) Update posterior probability   ,
|

g
t g

ll h
Pr sp dp t by using (B.6). 

v) Update prior probability  ,

g
t

l hPr sp by (B.7) for next round. 

d) Estimate maximum strategic price of LSE,  ,max

g

lsp t , by using (B.8). 
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C. Appendix C - Daily Day-Ahead Market and 

Monthly Financial Settlements 

 

In FABS, after simulation of decentralized bilateral negotiations for annual bilateral 

transactions, day-ahead market commences. All market participants may not secure 

sufficient bilateral transactions to fully meet their energy trading requirements. 

Therefore, ISO operates the day-ahead market and participants get another 

opportunity to fulfil their remaining energy trading requirements. Day-ahead market 

and market settlement models of java based AMES software were extended for 

FABS to include Financial Bilateral Transactions (FBTs) as well as Financial 

Transmission Rights (FTRs) and Auction Revenue Rights (ARRs). Therefore, all 

mathematical formulation and market processes related to FBTs, FTRs or ARRs, in 

this Appendix, are contributions of this thesis. Moreover, if any formulation or 

market process of AMES is used without any extension in FABS then it is clearly 

mentioned in this Appendix. 

GenCos and LSEs submit their energy trading requirements to ISO as discussed in 

Section C.1. ISO determines optimal energy trading conditions for all market 

participants for each hour as described in Section C.2. Monthly market settlements 

for financial transmission instruments and energy are determined as discussed in 

Section 0. Overall results of electricity market, consisting of financial transmission 

instruments, Financial Bilateral Transactions and day-ahead market are presented in 

Section C.4. 

C.1 Submissions of GenCos and LSEs for Day-ahead 

Market 

The day-ahead market includes a day-ahead auction for energy and Financial 

Bilateral Transactions. Financial bilateral transactions are not considered a part of the 

day-ahead auction because their prices are not determined by clearing prices of the 
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auction. However, Financial Bilateral Transactions are a part of the day-ahead 

market because transmission congestion charges are payable according to hourly 

LMPs of the day-ahead market. For the day-ahead auction, GenCos and LSEs submit 

hourly price-sensitive energy offers and demand bids to ISO respectively. LSEs also 

submit hourly price-inelastic load demands to ISO for the day-ahead auction. 

GenCos and LSEs submit power quantities of agreed Financial Bilateral Transactions 

to ISO for the day-ahead market.  

Submissions of GenCos 

GenCo g’s actual cost parameters corresponding to price-sensitive supply:  

 
Sa

g ga a  (C.1) 

 2Sa FBT

g g g gb a p b     (C.2) 

GenCo g’s generation limits corresponding to price-sensitive supply:  

 
,max maxS FBT

g g gGn p p   (C.3) 

 
,min 0S

gGn   (C.4) 

Each GenCo uses reinforcement learning, described in [1], to improve its supply 

offers for next day. The reinforcement learning process in AMES is used without 

any modification in FABS. After reinforcement learning, GenCo g’s reported 

cost parameters corresponding to price-sensitive supply are denoted by Sr

ga , Sr

gb . 

GenCo g’s hourly reported price-sensitive supply offer to ISO for day-ahead auction 

consists of Sr

ga , Sr

gb , ,minS

gGn and ,maxS

gGn . In addition, GenCo g sends quantities of 

Financial Bilateral Transactions (FBT) with all LSEs and their sum FBT

gp  to ISO for 

the day-ahead market.  
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Submissions of LSEs 

LSE l’s hourly price-sensitive demand bid to ISO for day-ahead auction consists of 

S

lc ,
S

ld ,
,minS

lLd and
,maxS

lLd . LSE l also reports hourly price-inelastic demand 
I

lp to 

ISO for day-ahead auction. In addition, LSE l sends quantities of Financial Bilateral 

Transactions (FBT) with all GenCos and their sum 
FBT

lp to ISO for the day-ahead 

market.  

C.2 DC Optimal Power Flow Formulation for Day-ahead 

Market 

This section presents mathematical model of DC-OPF algorithm of AMES [2], that is 

used for this thesis. ISO uses all submissions of GenCos and LSEs and determines a 

DC Optimal Power Flow (DC-OPF) solution for each hour of the next day. In 

addition to calculating LMPs and line power flows, DC-OPF solution determines 

optimal generation schedules for GenCos and price-sensitive loads of LSEs. ISO 

publicly announces results of day-ahead auction for GenCos and LSEs.   

For each hour, ISO prepares for DC-OPF by determining total net surplus and cost 

using equations (C.5) to (C.12). 

GenCo g’s reported cost function corresponding to price-sensitive supply:  

    
2

Sr S Sr S Sr S

g g g g g gCost p a p b p     (C.5) 

The gross surplus of LSE l corresponding to its price-sensitive demand bid: 

    
2

S S S S S S

l l l l l lSurplus p c p d p     (C.6) 

Total net surplus corresponding to price-sensitive demand bids and reported price-

sensitive supply offers: 
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      ,S S S S S Sr S

G L L GTNS p p Surplus p Cost p   (C.7) 

where 

  1 2, , ,S S S S

G g g g Gp p p p    (C.8) 

  1 2, , ,S S S S

L l l l Lp p p p    (C.9) 

    
1

L
S S S S

L l l

l

Surplus p Surplus p


  (C.10) 

    
1

G
Sr S Sr S

G g g

g

Cost p Cost p


  (C.11) 

Total net cost function corresponding to price-sensitive demand bids and 

reported price-sensitive supply offers: 

    , ,S S S S S S

G L G LTNC p p TNS p p   (C.12) 

For a commonly used representation of DC-OPF problem with price-sensitive 

demand bids and supply offers, solution objective is to minimize total net costs 

corresponding to the price-sensitive supply and demand,  ,S S S

G LTNC p p , subject to 

various constraints. 

DC Optimal Power Flow Problem 

Minimize 

  ,S S S

G LTNC p p  (C.13) 
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with respect to  

real power price-sensitive generation, real power price-sensitive loads, and 

voltage angles  

 , 1, , ; , 1, , ; , 1, ,S S

g l np g G p l L n N    (C.14) 

subject to  

(i) Real power balance constraint for each node n = 1, ..., N:
 5

 

    
||

0
n n

S FBT S I FBT

g g l l l oe

g G l L oe TL oe TL

p p p p p Fl
   

         (C.15) 

alternatively 

  
||n n n n

S S I FBT FBT

g l oe l l g

g G l L oe TL oe TL l L g G

p p Fl p p p
     

          (C.16) 

where 

  2

oe o oe o eFl V B       (C.17) 

(ii) Real power thermal constraint for each transmission line oe ∈ TL:  

 
capacity

oe oeFl Fl  (C.18) 

                                                 

 

5
 For this thesis, real power injections and withdrawals for Financial Bilateral Transactions (FBTs) at 

each node are incorporated in the real power balance constraints in DC-OPF of AMES, as shown in 

equations (C.15) and (C.16). 
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(iii) Real power price-sensitive operating capacity constraints for each GenCo g 

= 1, .., G:  

 
,min ,maxS S S

g g gGn p Gn   (C.19) 

(iv) Real power price-sensitive load constraints for each LSE l = 1, .., L:  

 
,min ,maxS S S

l l lLd p Ld   (C.20) 

(v) Voltage angle setting at reference Node-1:  

 1 0   (C.21) 

Following information in quotation marks regarding the DC-OPF problem (C.13)

-(C.21) is adopted from [3]. “The DC-OPF problem  (C.13)-(C.21) can be solved 

as a strictly convex quadratic programming problem either by using the nodal 

balance constraints (C.15) to substitute out for voltage angles [4] or by using an 

augmented Lagrangian method [5] in which the objective function (C.13) is 

augmented with a quadratic penalty term for the sum of squared voltage-angle 

differences, as shown and explained later, to produce a strictly convex objective 

function with respect to all of the choice variables (C.14).” The former 

substitution method for voltage angle elimination prevents direct determination 

of solution values for LMPs because LMPs are the shadow prices for the nodal 

balance constraints (C.15). The latter augmented Lagrangian approach is taken 

by developers of AMES because it permits direct determination of optimal LMPs 

and voltage angle solutions. Therefore, augmented objective function in AMES 

includes a quadratic penalty term for the sum of squared voltage-angle 

differences,  
2

o e

oe TL

 


 , adjusted by penalty weight  , as shown in (C.22), 

    
2

,S S S

G L o e

oe TL

TNC p p   


   (C.22) 
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Apart from permitting direct determination of optimal LMPs and voltage angle 

solutions, the augmentation “provides a way to conduct sensitivity experiments on 

the size of the voltage angle differences that could be informative for estimating the 

size and pattern of AC-DC approximation errors” [2]. It is critical to note that the 

DC-OPF problem (C.13)-(C.21) is considered a valid approximation of underlying 

AC-OPF problem subject to a simplifying assumption, among others, that voltage 

angle difference across transmission lines remain small. Since this thesis has not 

developed the augmented DC-OPF objective function of AMES, further details of 

the augmentation are beyond the scope of this thesis but can be seen in [2]. 

C.3 Monthly Market Settlements 

In FABS, each simulation month consists of 30 days. Payments for energy and 

financial transmission instruments (FTRs and ARRs) take place on monthly basis. 

ISO conducts annual ARR allocation and FTR auction at the beginning of simulation 

in FABS. Formulae based on guidelines in [6], are provided in this subsection for 

monthly financial settlements of ARRs and FTRs respectively.  

ARR Settlements 

ISO determines its total annual FTR auction revenue by (C.23).  

 
, ,revenue cleared quantity cleared price

ISO sk sk

sk

FTR FTR FTR   (C.23) 

Clearing prices of the FTR auction determine tentative financial value of the ARRs. 

Thus ISO calculates total anticipated payable to LSEs due to annual ARR allocations 

by (C.24). 

 
, ,payable awarded quantity cleared price

ISO sk sk

sk

ARR ARR FTR   (C.24) 

Since ISO is a non-profit organization, it must ensure revenue neutrality in ARR pay-

outs. ISO uses (C.25) to calculate a revenue neutrality adjustment factor.  

 
revenue payable

ISO ISO ISORNAF FTR ARR  (C.25) 
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ISO defers ARR payments until the end of month and uses (C.26) to calculate 

auction revenue credit for LSE at sink k.  

 
, ,

1

S
awarded quantity cleared price

k ISO sk sk

s

ARC RNAF ARR FTR


    (C.26) 

FTR Settlements 

FTRs are tentatively valued according to difference in LMPs at source and sink 

nodes. So ISO calculates a target allocation (TA) against each FTR between s and k 

for each hour h by (C.27). 

  ,

, s,

h cleared quantity

sk sk k h hTA FTR      (C.27) 

Since obligation type FTRs are simulated, loads may be eligible for credits or may be 

liable to payments depending on the difference in LMP between the source and the 

sink. If 
h

skTA is positive then it is added to monthly positive target allocation of LSE 

at k, kTA
. Otherwise 

h

skTA  is added to monthly transmission congestion revenue 

(TCR) of ISO from FTRs, 
FTR

ISOTCR . This process is repeated for all hours of a day 

and for all days in a month.  

ISO also determines its overall monthly transmission congestion revenue from DAM, 

DAM

ISOTCR . This is calculated by subtracting total payments to GenCos from total 

income from LSEs over whole month. Then ISO calculates total monthly 

transmission congestion revenue (C.28). 

 
total FTR DAM

ISO ISO ISOTCR TCR TCR   (C.28) 

ISO also determines total positive target allocations, totalTA
, for all sink nodes k 

(C.29). 

 
1

K

total k

k

TA TA 



  (C.29) 
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ISO announces LMPs of day-ahead market on daily basis but FTR settlements are 

deferred until the end of each month. ISO has to ensure revenue neutrality in paying 

transmission congestion credits (TCCs) to loads for holding FTRs.  

If 
total

total ISOTA TCR   then (C.30) is used to assign TCCs to LSE at node k. 

 k kTCC TA  (C.30) 

However, if 
total

total ISOTA TCR  then (C.31) determines TCCs for LSE at node k. 

 
totalk

k ISO

total

TA
TCC TCR

TA




   (C.31) 

C.4 Hourly Cost and Revenues of GenCos and LSEs 

Hourly costs and revenues of GenCos and LSEs are calculated by formulae in this 

subsection. To get monthly values, the hourly costs and revenues of a market 

participant are added for each hour of a day and for each day of a month. The 

difference in monthly revenue and cost of a GenCo determines its monthly profit. 

However, monthly credits due to ARRs and FTRs are also added to the difference in 

monthly revenue and cost of an LSE to calculate its monthly profit.  

Hourly Costs of GenCos 

GenCo g’s actual cost function corresponding to price-sensitive supply:  

    
2

Sa S Sa S Sa S

g g g g g gCost p a p b p     (C.32) 

GenCo g’s actual cost function corresponding to supply for Financial Bilateral 

Transactions (FBT):  

    
2

FBT FBT FBT FBT

g g g g g gCost p a p b p     (C.33) 

GenCo g’s total hourly cost corresponding to all supplies:  
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    Total Sa S FBT FBT

g g g g gCost Cost p Cost p   (C.34) 

Hourly Revenues of GenCos 

GenCo g’s revenue function corresponding to price-sensitive supply:  

  ,S S S

g g g g gRevenue p p    (C.35) 

GenCo g’s revenue from supply for Financial Bilateral Transactions (FBT):  

 
1

L
FBT g g

g l l

l

Revenue ap a


   (C.36) 

GenCo g’s total hourly revenue from all supplies:  

  ,Total S S FBT

g g g g gRevenue Revenue p Revenue   (C.37) 

Hourly Costs of LSEs 

LSE l’s cost function corresponding to price-sensitive load:  

  ,S S S

l l l l lCost p p    (C.38) 

LSE l’s cost function corresponding to price-inelastic load:  

  ,I I I

l l l l lCost p p    (C.39) 

LSE l’s cost for load corresponding to Financial Bilateral Transactions (FBT):  

  
1 1

G G
FBT l l l

l g g g l g

g g

Cost ap a a   
 

       (C.40) 

LSE l’s total hourly cost for all loads:  
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    , ,Total S S I I FBT

l l l l l l l lCost Cost p Cost p Cost     (C.41) 

Hourly Revenues of LSEs 

LSE l’s revenue function corresponding to price-sensitive load:  

  ,S S S

l l l l lRevnue p p    (C.42) 

LSE l’s revenue function corresponding to price-inelastic load:  

  ,ln l

I I I

l l n lRevnue p p    (C.43) 

LSE l’s revenue corresponding to Financial Bilateral Transactions (FBT):  

 
FBT

l

F T

l ln

BRevnue p   (C.44) 

LSE l’s total hourly revenue corresponding to all loads:  

    , ,Total S S I I FBT

l l l l l l l lRevnue Revnue p Revnue p Revnue     (C.45) 
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Glossary 

ARR – See Auction Revenue Right 

Auction Revenue Right - A financial instrument that can hedge the cost of acquiring 

the Financial Transmission Right. Abbreviated ARR. 

bid-based economic loads – Most competitive price-sensitive load demands of Load 

Serving Entities, determined and allowed by independent system operator.   

bilateral negotiation – A terminal phase in decision making for bilateral transactions. 

If successful, it determines agreed amount and price for energy. 

bilateral transaction – A contract for transfer of energy or financial responsibility for 

energy between a buyer and a seller. 

competitive – A fully competitive task of electricity market participants. 

complete information – A simulated market environment which assumes market 

participants and/or the market operator interact among themselves with complete 

information about others. Compare with incomplete information. 

contract for difference – A financial instrument for hedging against congestion risk 

in North Pool. Abbreviated CfD. Compare with contract-for-difference. 

contract-for-difference – A bilaterally agreed contract to settle difference if market 

design does not allow out of market settlement for energy. Can be combined with a 

self-schedule to achieve an implicit Financial Bilateral Transaction. Compare with 

contract for difference. 

cooperative – A fully cooperative task of electricity market participants. 

day-ahead auction – ISO collects GenCos’ price-sensitive supply offers and LSEs’ 

price-sensitive demand bids as well as price-inelastic load demands to conduct a 

day-ahead auction for determination of offer-based economic schedules and bid-

based economic loads. Compare with day-ahead market. 

day-ahead market – A day-ahead market organized by ISO for energy trading 

between market participants. It includes a day-ahead auction for determination of 

economic schedules. It can also include self-schedules, physical schedules and 

financial schedules by market participants. Compare with day-ahead auction. 

dynamic – A market environment where prices or other conditions vary over time. 
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Compare with stationary. 

dynamic strategy – An agent has a dynamic strategy if it adopts its behaviour after 

interaction with the environment. Compare with stationary strategy. 

Financial Bilateral Transaction – A contract for transfer of financial responsibility 

for energy (not the physical flow of energy) between a buyer and a seller, to be 

fulfilled by a financial schedule. 

financial schedule – An option to participate in day-ahead market to transfer the 

financial responsibility for energy (not the physical flow of energy) between a buyer 

and a seller, to fulfil a Financial Bilateral Transaction. 

financial transmission instruments – A collective term for Financial Transmission 

Rights (FTR) and Auction Revenue Rights (ARR) from market participants’ 

perspective. A collective term for Financial Transmission Rights (FTR) auction and 

Auction Revenue Rights (ARR) allocation from ISO’s perspective. 

Financial Transmission Right - A financial instrument that can hedge transmission 

congestion cost of a market participant. Abbreviated FTR. 

FTR – See Financial Transmission Right 

GenCo – See Generation Company 

Generation Company – A Generation Company that produces and sells bulk-energy 

in any wholesale electricity market. Abbreviated GenCo.  

incomplete information – A market environment where participants are unaware of 

private risk preferences, bids data, actual costs or profits etc. of other participants. 

Compare with complete information. 

independent system operator – A non-profit organization which is responsible for 

managing both transmission network and electricity market in the wholesale 

electricity markets of USA. 

ISO – See independent system operator 

LMP – See Locational Marginal Price 

Load Serving Entity – A Load Serving Entity that buys bulk-energy from wholesale 

electricity market to serve retail loads. Abbreviated LSE. 

Locational Marginal Price – Total cost of meeting an additional unit of energy 

requirement at a particular location on transmission network, including costs of 
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congestion and losses in transmission network. Abbreviated LMP. 

LSE – See Load Serving Entity 

market operator – A private organization which organizes energy auction in the 

wholesale electricity markets of EU.  

market participants – GenCos as bulk-energy sellers and LSEs as bulk-energy 

buyers. 

match making – An initial phase in decision making for bilateral transactions which 

determines suitable negotiation partners 

mixed – A task of electricity market participants that has both competitive and 

cooperative characteristics. 

negotiable price ranges – Price ranges in which a market participant explores 

suitability of its trading partners during match making 

offer-based economic schedules – Most competitive price-sensitive supply offers of 

Generation Companies, determined and allowed by independent system operator.   

physical bilateral transaction – A contract for transfer of energy (by the physical 

flow of energy) between a buyer and a seller, to be fulfilled by a physical schedule. 

physical schedule – An option to participate in day-ahead market to transfer the 

energy (by the physical flow of energy) between a buyer and a seller, to fulfil a 

physical bilateral transaction. 

power exchange – See market operator. 

price-inelastic load demands – Load demands of Load Serving Entities that must be 

fulfilled, irrespective of market prices, by independent system operator.   

price-sensitive load demands – submitted by LSEs and processed by ISO to 

determine which ones are most competitive (highest priced) and should be allowed 

as bid-based economic loads. These represent willingness of LSEs to buy specified 

energy quantities if LSEs can get energy prices that are lower or equal to their 

specified energy prices. 

price-sensitive supply offers – submitted by GenCos and processed by ISO to 

determine which ones are most competitive (lowest priced) and should be allowed as 

offer-based economic schedules. These represent willingness of GenCos to sell 

specified energy quantities if GenCos can get energy prices that are higher or equal 
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to their specified energy prices. 

self-schedule – An option to participate in day-ahead market which allows generator 

to run at least at the self-schedule level and get paid at market price determined by 

ISO. 

stationary – A simulated market environment which assumes fixed market 

conditions. Compare with dynamic. 

stationary strategy –An agent has a stationary strategy if it shows deterministic 

behaviour that does not change after repeated interactions with the environment. 

Compare with dynamic strategy. 

strategic price ranges – Price ranges in which a market participant intends to 

negotiate with its matched trading partners 

systematic – The property of match making phase if it involves some non-random 

planning effort. 

transmission congestion – A condition when energy flow through a transmission line 

reaches its maximum limit. 

transmission congestion cost – A payment for congestion over transmission network. 

transmission constraints – Maximum energy flow capability of transmission lines 

due to their physical limitations 

transmission losses – Energy lost in transmission network because some energy is 

inevitably wasted as heat while flowing through transmission lines 

transmission operator – A public body which manages transmission network in the 

wholesale electricity markets of EU. 

virtual demand bids – energy demand bids by speculators who do not own any 

physical load demand 

virtual supply offers – energy supply offers by speculators who do not own any 

physical power generation capacity 

 

 


