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Abstract

The scope of the research contained in this thesis is to develop a new math-

ematical algorithm to model complex pump systems, capturing cavitation

and pump behaviour. The approach consists of the solution of the hyper-

bolic wave equation, including compressibility and multiphase conditions.

The second phase contains non-condensable gas and vapour formation, both

important in the density and speed of sound variation. The adopted solu-

tion scheme is a finite volume method with a Monotonic Upwind Scheme for

Conservational Law (MUSCL). This algorithm is second-order accurate in

time and space, with a total variation diminishing (TVD) scheme to prevent

spurious oscillation. In order to introduce a dissipation due to friction at the

wall in a quasi-steady formulation, a source term is solved with a splitting

method. To validate the code, the new simulation methodology was first

applied to transient flow in a straight pipe with water hammer. The re-

sults were compared with results from pre-existing methodologies available

in the literature. Thereafter, the algorithm was applied to a single cham-

ber positive displacement diaphragm pump and then to a triplex diaphragm

pump and the results compared with experimental data from an industrial

test rig for both single chamber pump and multiple triplex pump network.

The simulations coped with a wide range of working pump conditions and

were capable of giving information on pressure pulsation, mass flow rate

and volume fraction of the vapour formation inside the entire domain. The

results modelled correctly the main pump behaviour especially for low cav-
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itation formation, although cavitation was underestimated in same cases.

Moreover, differences were evident out in the case of high pump rotation

speed where the vapour formation also affected the discharge phase. For

that condition, the algorithm was not able to perform correctly, limiting the

use of the code. The algorithm may be easily extended to different positive

displacement pump configurations, including a diaphragm pump where dif-

ferent liquids are on the driven and driving sides of the diaphragm. Such a

hydraulically driven diaphragm pump requires an intermediate flow which

transfers the information from the piston to the membrane. This may be

embedded in the algorithm. The capability of the new algorithm to cope

with different design layouts to work as a pre-design tool has been high-

lighted as has its ability to simulate not only the pump behaviour but also

the system network response to which the pump is attached. From an in-

dustrial point of view, a reduction in terms of simulation effort with high

fidelity results permits a reduction in costs for the design process and an

improvement in the knowledge of a pump’s operating process. Moreover, it

is possible to include the practical operation characteristic, often neglected,

permitting a better estimate of the NPSHR by simulation.

ii



Acknowledgements

I would like to express my gratitude to my primary and secondary supervi-

sors for their help throughout my years at the University of Strathclyde: Dr

Matthew Stickland and Dr Bill Dempster. I am thankful to the European

Union for giving me the opportunity to be part of the Marie Curie fellow-

ship. Weir Group Netherlands, with Ralph van Rijswick always busy but

always helping and sharing experience. Stephan Hannot who helped during

the Wier experience and a special thanks to Geert Copper with whom I

shared the Brazilian experience and without whom the experimental test

would never have been performed. I would also like to thank those who

helped me throughout my PhD, especially in life, and who made the dif-

ference in the two places where I undertook my PhD studies: Glasgow and

Eindhoven. Marco Mannisi, who, no matter what, was always with me.

Andrea Dell’Isola a good friend and climbing partner. Alex Josifovic, a col-

league always with a good joke. Ashwin, who is still helping me. Alejandro,

the Mexican guy that shared with me the Netherlands’s life experience. My

family and Maria Luisa always with me to push me further to open my

mind. I am grateful to my old friends that are the proof that distance is

a matter of kilometres not of feeling. Professor Arris Tijsseling who kindly

invited me to the TUe University and gave me the possibility to work with

him. Thanks to all that I had the opportunity to know and work with over

this amazing PhD period.

iii



Contents

Abstract i

Nomenclature vii

1 Introduction 1

1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 5

2 Positive Displacement Pump 6

2.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Pump kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Pump Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Literature Review 18

3.1 Positive displacement pump: modelling behaviour . . . . . . . 19

3.1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Pump component . . . . . . . . . . . . . . . . . . . . . 26

3.2 Fluid transient model . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 One-Dimensional Analysis . . . . . . . . . . . . . . . . 31

3.2.2 Solution method . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Dissipation term . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Summary of fluid transient model . . . . . . . . . . . 39

3.3 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



CONTENTS v

3.3.1 Cavitation model . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Solution method . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Cavitation in positive displacement pumps . . . . . . 43

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Theory of pressure waves 46

4.1 One dimensional model . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 External force . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Linearised and characteristic form . . . . . . . . . . . . . . . 51

4.3 Water Hammer . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Source Term . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Frictional Term . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Lumped Parameter model . . . . . . . . . . . . . . . . . . . . 59

4.7 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7.1 Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7.2 Hydraulic dampener . . . . . . . . . . . . . . . . . . . 63

5 Numerical Modelling of pressure waves 67

5.1 One dimensional Numerical modelling . . . . . . . . . . . . . 67

5.2 Intro to Finite Volume method . . . . . . . . . . . . . . . . . 69

5.3 Ordinary Differential Equation . . . . . . . . . . . . . . . . . 74

5.4 Stability criteria . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Classic Water hammer formulation . . . . . . . . . . . . . . . 79

5.6 Valve: numerical solution . . . . . . . . . . . . . . . . . . . . 80

5.7 Pipe fluid transient structure code . . . . . . . . . . . . . . . 82

5.8 Pump modelling approach . . . . . . . . . . . . . . . . . . . . 87

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Validation of pressure waves model 90

6.1 Experiment comparison . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS vi

6.1.1 Compressibility . . . . . . . . . . . . . . . . . . . . . . 92

6.1.2 Comparison DGCM and DVCM . . . . . . . . . . . . 97

6.1.3 Influence of the initial dissolved gas value . . . . . . . 100

6.1.4 Influence of the grid size . . . . . . . . . . . . . . . . . 103

6.1.5 Influence of the Courant number . . . . . . . . . . . . 107

6.1.6 Influence of the advective term . . . . . . . . . . . . . 109

6.2 Comparison with other algorithms . . . . . . . . . . . . . . . 114

6.2.1 Developed model comparison with Zhou model and

MOC approaches . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Developed model comparison with Pezzinga approach 117

6.2.3 Developed model comparison with Daude approach . . 120

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Pump Simulation 123

7.1 One chamber pump description . . . . . . . . . . . . . . . . . 123

7.2 Multi chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Lumped Parameter model . . . . . . . . . . . . . . . . 139

7.3.2 Opitz Method . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.3 One-chamber pump developed model . . . . . . . . . . 145

7.3.4 Parametric study . . . . . . . . . . . . . . . . . . . . . 158

7.3.5 Three-chamber pump analysis . . . . . . . . . . . . . . 169

7.3.6 Pump Network effects . . . . . . . . . . . . . . . . . . 177

7.3.7 Design Rules . . . . . . . . . . . . . . . . . . . . . . . 198

7.3.8 NPSH . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8 Conclusion 207

8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

References 212



CONTENTS vii

A Matlab Code 1

A.1 Main Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.3 Suction Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.4 Suction Accumulator . . . . . . . . . . . . . . . . . . . . . . . 34

A.5 Valve Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.6 Fluids Characteristic . . . . . . . . . . . . . . . . . . . . . . . 38

A.7 Initialization Data . . . . . . . . . . . . . . . . . . . . . . . . 40

A.8 Valve dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.9 Valve Gap Mass flow rate . . . . . . . . . . . . . . . . . . . . 45

A.10 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.11 T Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.12 Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.13 Speed of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.14 Mesh Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.15 MUSCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.16 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.17 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B Non Dimensional formulation 75

C Friction non dimensional formulation 77



Nomenclature

Acronism

∂ partial derivative

APESA Advanced Pump Engineering for Severe Applications

API American Petroleum Institute

BDC Bottom dead centre

DGCM Discrete Gas cavity model

DNS Direct Numerical Simulation

DV CM Discrete Vapour cavity model

FV Finite Volume

LES Large Eddy simulation

LPM Lumped parameter method

MOC Method of Characteristic

MUSCL Monotone upwind scheme for conservative law

NCG Non condensible gas

NCGp Non condensible gas parameter

viii



NOMENCLATURE ix

NPSH Net positive suction head

ODE Ordinary differential equation

PD Positive displacement

PDE Partial differential equation

RANS Raynold Average Navier-Stokes

SPM Stroke per minute

TDC Top dead centre

TV D Total Variation diminishing

Greek

Λ Transformation matrix

∆ Variation

ηvol Volumetric efficiency

Γ Non dimensional friction function

Λ Eigenvalue

λ rod length and crankshaft radius ratio

µs friction factor between pipe and particles

ν Viscosity
[
m2

s

]
Ω Transformed variable

ω angular speed
[
rad
s

]
ωs Particle settling velocity

[
m
s

]
φh Hydraulic diameter



NOMENCLATURE x

Ψ Pressure force coefficient

ρ density
[
kg
m3

]
θ Crankshaft angle [deg]

ε roughness surface

ζ loss coefficient

Subscription

0 Initial condition

c Chamber value

d Discharge value

g gas

L Liquid

s Suction value

v Vapour value

Superscription

−1 Inverse matrix

L Left

n Time step

R Left

Variables

S Source term

u Fluid velocity
[
m
s

]



NOMENCLATURE xi

u̇ Fluid velocity time derivative [m
s2

]

A Area [m2]

C Lumped Capacitance

c Speed of sound
[
m
s

]
Cd Damping force coefficient of the valve

[
Ns
m

]
CR Courant Number

E Bulk Modulus [Pa]

f(U) Flux function

fn natural frequency [Hz]

g Gravity acceleration
[
m
s2

]
H Head pressure [m]

J Jacobian matrix

K Comprehensive coefficient

k Brunone friction term, decay factor

Ks Spring coefficient
[
N
m

]
L Lumped Inductance

l Rod length [m]

M Mach number

N Number of chambers, number of second phase

p pressure [Bar]

Q Volume flow rate
[
m3

s

]



NOMENCLATURE xii

R Lumped resistence

r Crankshaft radius [m]

rxy Cross correlation factor

Re Reynold Number

S Surface Tension

T Temperature [K]

t time [sec]

TD Time scale of radial diffusion [sec]

U Variables vector

V Volume [m3]

VC Volume compressible [m3]

VL Leakage volume [m3]

VBF Backflow volume [m3]

VS/P Piston or stroke Volume
[
m3

s

]
xp Piston displacement [m]



Chapter 1

Introduction

Fluids have always played an important role in the industrial world, where

they are employed to produce and transform energy or displace material.

Although the uses of fluids are wide spread, the understanding and the

prediction of their behaviour is non-trivial. In the mineral and Oil & Gas

industry, high-pressure fluid is employed to transport liquid, frequently con-

taining particles or ore material. This process is commonly performed by

heavy-duty pumps. Although there are a wide variety of these machines, in

size, design and working principle, for the considered applications only two

types are extensively used: the Volumetric Pump and the Hydraulic pump.

(a) Centrifugal pump (Hydraulic)
(b) Positive displacement pump (Vol-
umetric)

Figure 1.1: Example of pumps.
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CHAPTER 1 INTRODUCTION 2

The first one displaces pressurized fluid, after compressing it within a

specific volume, whereas the second one uses an induction motion to trans-

fer energy to the fluid. Two clear examples are shown in figure 1.1. The

configuration of these machines can change in relation to the application

and the required working pressure. Centrifugal pumps have a volumetric

efficiency that is pressure dependent and is typically optimized for one spe-

cific design point. Their application is commonly restricted to situations

where a high flow rate is required at modest pressure value. On the other

hand, volumetric pumps are more suitable to handle high-pressure fluid at

a constant flow rate. Ideally, a positive displacement pump’s volume flow

rate is independent of the pressure load. Although both types of pumps

are employed for heavy-duty performance, in this research, only the positive

displacement pump is considered and is shown in figure 1.2.

Positive displacement pumps with high-pressure performance are primar-

ily used in hydraulic fracturing, to break the rock in the subsoil and extract

natural gas and petroleum. Diaphragm configuration pumps are applied in

the minerals environment where they are employed mainly for [1]:

• long-distance pipeline transportation,

• process feed, and

• tailing disposal.

Therefore, it is commonly required to process slurry, mud or ore fluid,

and the presence of a membrane inside the machine creates two separate

working chambers. This configuration reduces the wear of the pump’s ma-

terial in contact with mineral particulates, improving the pump reliabil-

ity. Moreover, in cases of toxic, corrosive and aggressive environments (like

caustic or acid fluid), the diaphragm creates a hermetically sealed chamber

preventing possible contamination.
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Figure 1.2: Geho Diaphragm Pump.

Considering the historical pump industry trends, the extraction of raw

material has had a huge impact and improvement in the industry over the

last few decades [1].

The increase in transported mineral materials from mines was accom-

plished by increasing at the same time the vector fluid, normally water, to

keep the ratio fluid and suspended particle constant. The intention was

to increase mineral production but not also increase the wear effect due to

mineral concentration. However, the extraction industries have started to

increase the concentration of the particles in slurries due to the scarcity of

water where ores are typically produced. When the density changes, the fluid

rheology is modified and the energy required to pump the fluid increases.

The pump manufacturing industries responded to this variation by increas-

ing pump size. This approach is no longer feasible. Significant cavitation

phenomenon, erosion and fatigue failure appeared in these larger pumps.

These phenomena are still under study, as shown by this APESA project.

Therefore, a different approach must be adopted, requiring the redesign of

the pump with a more detailed knowledge of the fluid behaviour. To achieve

this goal an optimization procedure resulting from a better description of
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the pump phenomena must be embraced.

1.1 Motivation and objectives

This research study is part of the Horizon 2020, APESA Marie Sk lodowska-

Curie European project. The main purpose of this European funding is

to improve the connection between the industrial and the academic worlds.

Therefore, the purpose of APESA is to mitigate the gap between the in-

dustry and the academic environment. The APESA program, consists of

different areas of research dealing with different aspects of the diaphragm

pump such as fatigue and corrosion. The research developed in this the-

sis is focused on the simulation of the fluid dynamics and the cavitation

phenomenon.

The cavitation research requirement is due to the combination of a lack

of literature on the subject and industry needs. As is shown in the literature

review in section 3, there are no suitable algorithms available to cope at the

same time with modelling the pump fluid dynamics with high accuracy and

reasonable computational efficiency. Fluids in the pump interact with the

components, and in the case of multiple-chambers, the interaction with the

other chambers is crucial. Even more complicated is the interaction within

a system, where a multi-pump network is used. This aspect must be linked

with the changing fluid phase phenomenon. Bubble formation is an unde-

sirable effect that creates noise, vibration, pressure variation and potential

pump damage. In conclusion, the creation of a broad range of tools capable

of modelling cavitation in a one dimensional analysis, in a multi chamber

pump and in a complex pipe networks, is the challenge of this research. The

objective can be summarized as:

Development of one dimensional hydraulic modelling tools in a Matlab envi-

ronment and validated by experimental data, capable of predicting cavitation

www.apesaproject.eu
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in a PD pump.

1.2 Outline of the thesis

In chapter 2 a description of the positive displacement pump is given. The

description is focused on the diaphragm pump, although the idea can be

extended to all positive displacement pump configurations.

In chapter 3 the state of the art in positive displacement pump mod-

elling and simulation is presented. In the same context, the cavitation algo-

rithm used to simulate bubble formation is analysed. At the same time, the

methodology available for modelling the fluid dynamics in a one dimensional

analysis is presented.

In chapter 4 the mathematical theory for fluid simulation by the finite

volume method is presented. In addition, the pump components, as well as

pump models with cavitation is considered.

In chapter 5 the numerical algorithms used to evaluate the pump per-

formance are analysed. The focus is given to the finite volume solution of

partial differential equations as well as the ordinary differential equation

formulations. Furthermore, the stability conditions are introduced.

In chapter 6 the validation of the code for water hammer in a long pipe

is given. Comparison with experimental data taken from the literature is

performed.

In chapter 7 the main research objectives are explored. Positive dis-

placement pumps are simulated and validated with one chamber and three

chamber pumps. The algorithm is analysed to understand its benefits and

limitations. In addition, the model is used to analyse the pump character-

istics and compared with other algorithms.

In chapter 8 conclusions with recommendations for further improvement

work is given.



Chapter 2

Positive Displacement Pump

Pumps are machines widely employed in industry and their design is dif-

ferent depending on their application. Hydraulic pumps are machines that

displace a fixed amount of fluid contained in a closed volume. Their charac-

teristics can be classified by their working principle as rotary, reciprocating

or linear. In the rotary typology, where a rotating volume is used, examples

are given by vane or a screw pumps. Reciprocating pumps are subdivided

into piston, plunger or diaphragm pumps and work by alternately sucking

and discharging fluid. Meanwhile, linear pumps are machines where recti-

linear motion is performed to create the pumping action.

Depending on the pressure and the flow rate requirement, industries

use one of these categories. In detail, piston pumps are commonly used to

displace high-pressure flow with high efficiency. Limitations are imposed by

the motion of the seal connected to the piston and the piston stresses. For

higher pressure the plunger layout performs better. Referring to figure 2.1,

the seal for the plunger is much smaller and restricted to the plunger size.

The diaphragm pump is employed when the pumped fluid needs to be

separated from the moving parts of the pump. Membrane pumps can oper-

ate mechanically or hydraulically depending on the driving mechanism. In

the first case, the crankshaft is directly connected to the diaphragm by a

6



CHAPTER 2 POSITIVE DISPLACEMENT PUMP 7

Figure 2.1: Scheme of piston and plunger, where in red is highlight the seal
position.

rod, which transmits the movement and the forces directly to the diaphragm.

This configuration is commonly found in small pumps where the stresses on

the rubber components are small. In the case of a bigger pump, the di-

aphragm motion is generated by an intermediate fluid between the piston

and the diaphragm; called the propelling liquid. The advantage of the com-

bination of piston and diaphragm allows the pressure to be distributed to

the entire membrane, reducing the local stresses. Diaphragm pumps have

two separate volumes, hermetically sealed which allows the handling of a

large number of different fluids.

2.1 Working principle

As already mentioned, the applications of piston, plunger and diaphragm

pumps are different. However, their working principle is similar and the

description can be given only for a diaphragm pump. Therefore, taking as a

reference the cross-section of the diaphragm pump shown in figure 2.2, the

main components are:

1. Crankshaft, the mechanical part capable of transforming the rotating

motion given by an external engine to a linear reciprocating motion.

2. Connecting rod, the shaft that connects the crankshaft to a piston or

to the crosshead.
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3. Cross head, mechanical joint, capable of coupling the motion of the

piston and the connecting rod.

4. Connecting bar, if present, connect the piston to the crosshead.

5. Piston bar is the stem that moves into the chamber. It could be

considered as a single part when the diameter of the piston head is

constant for the entire part, creating the plunger pump configuration.

6. Piston head, part of the piston system, sealed within the chamber

during its motion.

7. Safety relief valve, a component that limits the pressure inside the

system and guarantees the right operating pressure.

8. Monitoring rod, a system for a diaphragm configuration which aligns

the membrane, avoiding asymmetric bending.

9. Diaphragm, rubber part that generates the displaced chamber volume.

It can be moved by the propelling liquid or a connecting bar in the

case of a mechanically driven configuration.

10. Accumulator, a hydraulic component capable of damping the pressure

variation.

11. Discharge valve.

12. Suction valve.

13. Air vessel, different to the the accumulator, is related to the atmo-

sphere.

14. Chamber, the variable volume, contained between the two valves, that

hosts the diaphragm or the piston.

15. Propelling liquid, normally a mineral oil, is the liquid that transmits

the forces from the piston to the diaphragm.
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Figure 2.2: Diaphragm positive displacement pump configuration [2].

16. Slurry fluid, the load fluid to be delivered.

Mechanically speaking the functionality of the pump takes place from

the crankshaft(1) moved by an electrical or internal combustion engine. Be-

tween these components, a gearbox is commonly interposed for reducing

the rotation speed and increasing the torque. The motion of the engine

is transmitted to the propelling liquid by a serial mechanical chain cre-

ated respectively by a connecting rod(2), crosshead(3), connecting bar(4),

a piston(5) and piston head(6). The propelling liquid(15), guided by the

piston head, transmits the pressure to the diaphragm(9) held in position by

the monitoring rod(8) that can move linearly into a specific bearing. At-

tached to the propelling liquid system, there is often a safety relief valve(7)

active only when the pressure increases over a safety value. The slurry

fluid(16) is pumped by the diaphragm displacement, and it is pushed into

the chamber(14) across the suction valve(12) and vented through the dis-

charge valve(11). Typically, two more hydraulic components are introduced

to reduce pressure fluctuations: the air vessel(13), and the accumulator(10).

This working principle can be extended to a piston or plunger pump when

the propelling liquid between the piston and the diaphragm is not present.
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Figure 2.3: Crank mechanism.

2.2 Pump kinematics

The pump cycle is driven by the motion of the crankshaft, schematically

represented in figure 2.3. The motion of the piston, considering a constant

rotation speed ω, is commonly described by a sinusoidal function. The piston

displacement, velocity and acceleration are given respectively by equations

2.1, 2.2, 2.3. The value of θ0 is the initial crankshaft angle, different for

each chamber of multi chambers pumps. Meanwhile, the parameter λ is the

ratio between the crank radius r and the rod length l. A typical value of λ

is restricted by the pump design and has values in the interval [0.1–0.2] [3].

xp = r
[
1− cos(ωt+ θ0)− λ

2
sin2(ωt+ θ0)

]
(2.1)

ẋp ≈ rω
[
sin(ωt+ θ0)− λ

2
sin(2ωt+ 2θ0)

]
(2.2)

ẍp ≈ rω2[cos(ωt+ θ0)− λcos(2ωt+ 2θ0)] (2.3)

The displacement of the piston is not significantly affected by the value

of λ, as shown in figure 2.4. However, it plays an essential role in the velocity

and the acceleration profile.

Figure 2.5 shows the piston velocity of one complete crankshaft rotation.
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Figure 2.4: Piston position for different λ.

The performance of the pump is directly dependent on the piston velocity.

As is shown in the next section, cavitation is also dependent on the piston

velocity profile. The piston forces are related to the fluid inertia, and thereby

its acceleration.
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Figure 2.5: Piston Velocity for different λ.

The acceleration profile of the piston is shown in figure 2.6, where the

pure sinusoidal function (λ = 0) shows minimum acceleration variation.
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Figure 2.6: Piston accelleration for different λ.

The effect of the parameter λ is crucial in defining the velocity profile

of the piston and consequently the fluid behaviour. The performance of the

pump and load stresses can be improved with this parameter. However,

λ has design constraints, namely rod length and crankshaft radius, that

strongly limits its value to lower than 0.2.

2.3 Pump Cycle

The PD pump discharges fluid from a suction pressure to a load pressure

value, theoretically with a regular and repetitive cycle. A typical pressure

history in the chamber for an entire crank rotation without cavitation is

shown in figure 2.7. Cavitation is a phenomenon in which the fluid changes

phase and is described in details in section 3.3.

For simplicity, the fluid cycle description starts from the suction phase,

where the piston position is at the maximum extension, defined as Top Dead

Centre (TDC). At that point, the motion of the piston increases the volume

size of the chamber and reduces the overall pressure. Ideally, the suction

valve opens immediately at the start of the cycle. However, due to the forces

and the fluid dynamics, there is an opening time delay. As soon as the differ-

ential pressure across the valve reaches the breakpoint value, the valve starts

to lift. When the valve opens, fluid from the suction line passes through the
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Figure 2.7: Pressure cycle in the chamber.

valve gap formed between the valve and the valve seat. The suction phase

continues until the piston reaches the other extreme, Bottom Dead Centre

(BDC). At that time, the piston changes its motion and decreases the vol-

ume of the chamber, starting the compression phase. However, the suction

valve is retarded by an inevitable closure delay. Therefore, it is possible

that part of the fluid sucked into the chamber is discharged again into the

suction line, creating a back-flow. This phenomenon is a drawback that af-

fects the volumetric efficiency. The fluid compression begins as soon as the

suction valve closes. When the pressure reaches the discharge breakpoint for

the discharge valve, the discharge phase occurs. However, the same issues

described for the suction valve occur in the discharge manifold and back-

flow can be created. The cycle is theoretically repeated in the same way

for every pump rotation. However, differences made by the accumulator or

external factors could slightly change the cycle. For instance, a dampener

superimposes a low-frequency pulsation that is commonly smaller than the

pump frequency. In the case of multi-chamber pumps, mutual interaction

between pump chambers affects each chamber. This phenomenon can be

seen in figure 2.8 and in detail in figure 2.7 around 330 degrees.
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The performance of a PD pump is defined by the volumetric efficiency,

given as the ratio between the ideal and the real discharged flow. The ideal

flow is equal to the piston volume displacement defined as the stroke volume

VS . The real flow is the ideal flow affected by all the losses. Therefore, the

drop-in discharge flow can be caused by:

• leakages,

• back-flow phenomenon,

• cavitation.

• compressibility

Leakages can occur all around the system, especially where a seal is in-

volved. The back-flow is related to the valves and their dynamics depending

on pump speed and the working pressure. Compressibility is always present

but becomes significant only for high-pressures or bigger pump sizes. Fur-

thermore, the pump can produce vapour due to the cavitation. When the

pump cavitates, the sucked volume flow rate does not vary (if not in a choked

condition); however the mass flow rate decreases due to the variation in den-

sity. In this condition, before the discharge of the fluid, compressibility will

be affected until the vapour is condensed. Thereby reducing the ideal dis-

charged fluid volume. However, for small cavitation conditions, this effect

is harmless. Summarising, the volumetric efficiency can be expressed with

the formulation in equation 2.4.

ηvol =
Qreal
QIdeal

= 1− VL + VBF + VC
VP

(2.4)

The compressibility of the fluid is related to the pressure by the equation

of the bulk moduls 2.5 (for non cavitating conditions):

K = −V ∂p

∂V
(2.5)
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Ideally, the fluid discharged is equal to the total volume of the pump

chamber. However, this condition is impossible to achieve due to engineering

restrictions. Therefore, a dead volume, V0 is formed. This volume is equal

to the remaining fluid trapped in the chamber at the end of the discharge

phase. The V0 has a parasite effect on the compressibility. Considering

equation 2.6 given by Tackett et al. [4], the overall volumetric efficiency can

be calculated.

ηvol = 1−
(∆p

K

VS + V0

VS
+ VL + VBF

)
(2.6)

Figure 2.9: Volumetric efficiency versus the Dead Volume.

In figure 2.9 the variation of the volumetric efficiency is shown. To

generate the curve, only the two compressibility terms, namely ∆p and

VS+V0
VS

of the equation 2.6 are used. The first parameter is dominant for

positive displacement pumps used for hydraulic fracking. For these pumps,



CHAPTER 2 POSITIVE DISPLACEMENT PUMP 17

Figure 2.10: Ideal flow rate cycle.

the pressure variation can reach several hundred bar, and the dead volume

is normally half the stroke volume size[3]. The volume effect is dominant in

the diaphragm pump configuration, where the dead volume size can be ten

times bigger than the stroke volume[1].

For multi-chambers pumps, the interaction with the chambers must be

included to calculate the flow rate, pressure pulsation and efficiency. The

theoretical mean flow rate displaced by a three-chamber pump is shown in

figure 2.10. The overall pump flow rate is the sum of the single chamber

behaviour.

However, in reality, the flow rate is affected by the fluctuation of the

pressure, given by the entire system. This is a significant limitation because

such a complex system is hard to model in its entirety.



Chapter 3

Literature Review

Positive displacement (PD) pumps are reciprocating machines that gener-

ate a controlled flow that is theoretically independent of the source and load

pressure. Although, mechanically they are simple and the working principle

is easily understood, from the perspective of the fluid dynamics their descrip-

tion is not trivial. PD pumps are influenced by fluid behaviour factors that

affect the volumetric efficiency such as leakage, back-flow, cavitation and,

in a minor way, by compressibility. They have been studied mostly with

simple models and only rarely with the complete 3D Navier-Stokes equa-

tions. Three-Dimensional analysis is only worthwhile in particular cases

where a detailed understanding of the fluid dynamics is required. For this

reason, there is limited information in the published literature regarding the

numerical simulation of fluid flow in a complete PD pump.

Following the logic of the tree structure shown in figure 3.1, the literature

was analysed considering three main topics: positive displacement pumps,

fluid transient model and cavitation. In the first case, the state-of-art in the

pump simulation is considered. At the same time a detailed description of

pump components such as valves and accumulators is given. In the second

and the third section, fluid behaviour and cavitation are analysed. In all

cases, the focus is directed at a one-dimensional description and the most

18
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Figure 3.1: Tree Structure of the literature review.

relevant solution methodology. At the end, only brief details are given for

the fluid rheology and multidimensional approaches.

3.1 Positive displacement pump: modelling be-

haviour

PD pumps are made of several different components that work cyclically to

displace fluid at a specific pressure. The mechanical complexity is not high,

and the overall fluid motion is easy to describe. However, locally in order to

understand the fluid behaviour an accurate model is required. This section

is subdivided considering the State of the art of the positive displacement

pump description and in details the main component.
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3.1.1 State of the Art

Research involving positive displacement pumps can commonly be sub-

divided into two categories; a complete three-dimensional analysis and a

lumped parameter method (LPM). The main reason for this large gap is

due to the pump’s size. In order to describe the overall pump phenomena a

fine numerical grid is required. This makes the three dimensional descrip-

tion computationally impracticable for big pumps. On the other hand, in

order to predict the main behaviour of a pump, a simple model can be used.

This method neglects important factors like wave reflection. In addition,

there is only a limited amount of information in the published literature

regarding one or two-dimensional analysis, especially with cavitation con-

ditions. Although, there were a significant number of studies of positive

displacement pumps published in the early nineties, in the last decade the

amount of research in this sector has reduced. With all of the available

commercial software and computational power, a three-dimensional analy-

sis is still far too expensive for an industrial application. On the other hand,

one-dimensional codes are restricted to pipe networks[5] and often neglect or

oversimplify the pump behaviour[6, 7]. The only available research involving

wave transfer formulation is given by Vetter and Schweinfurter[7]. In the

study, the ROLAST software with the method of characteristic solver was

performed, where some of the components were simulated with empirical

curves. The algorithm was one-dimensional isentropic flow, neglected the

fluid-structure interaction, and was used for understanding pump pulsation.

It was highlighted that the amplitudes of the higher pump harmonics in-

creased with decreasing the volumetric efficiency. Van Rijswick [8] instead,

studied the frequency of field pump response of double acting (duplex) and

single acting pump (triplex), simulated with the lumped parameter model.

The research involved the analysis of the frequency domain for both pump

types. The duplex configuration contains all the uneven and multiples of
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the fourth harmonics and the first harmonic is always present. Meanwhile,

the single acting pump has only multiples of the number of the pistons as

harmonics. In order to calculate the frequency response of each component,

Van Rijswick related all the parts with three characteristics behaviours:

• capacitance,

• inductance, and

• resistance.

In the capacitance term C, all of the effect caused by the compressibil-

ity of gas and liquid was simulated. In the inductive term L, the inertia

of the fluid was considered. Resistance simulated the friction and all the

losses inside the system. This method permits the calculation of the natural

frequency of the components with the equation 3.1.

fn =
1

2π

√
1

LC
(3.1)

The triplex pump has more advantages than the duplex pump with the

same flow rate. The lower harmonic of the triplex pump is three-times higher

than the duplex making it more difficult to reach resonance frequency. More-

over, Rijswick[8] analysed the beating behaviour, due to offset in frequency

of the waves interactions. The beat phenomenon occurs when two waves

with similar phases interact, creating a pulsation wave effect. An example

is shown in figure 3.2.

This behaviour occurs in a multi-pump network, where crankshaft syn-

chronization is performed to adjust and reduce this effect. For instance, two

pumps connected to a single discharge line with similar velocity create pres-

sure waves that interact producing the beat phenomenon. This effect is not

predicted by the LPM model. In the same investigation,[8], the limitation
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Figure 3.2: An example of the beat phenomenon, for two frequency wave of
10 and 11 Hz with 180 degrees of shift.

of the lumped and distributed parameter simulation was brought to light;

the two algorithms are unable to predict high-frequency fluid response.

Although for a different application, an explanation of why an even

number of chambers is worse than an odd number has been discussed by

Manring[9]. Considering an idealized flow, a pump with an even number of

chambers has pistons that simultaneously are at zero flow position, namely

zero and 180 degrees. That is not present for pumps with an odd number

of chambers that always have some pistons in a different phase. When an

even chamber pump is at zero or 180 degrees, only the N−2
2 chambers are

contributing to the net flow.

Considering a different technique for simulating the pump behaviour

Singh and Madavan[10], used the transfer matrix technique to calculate the

system in the frequency domain. The technique allowed the analysis of

the frequency spectrum of the pump and network, but only for the steady

condition. Interesting is the fact that the parameter λ = l
r affected the

fluctuations in the flow rate. When the value of the λ ratio goes to zero, the

piston displacement is a pure sinusoid. In this condition, the primary flow

harmonics are a multiple of the number of plungers. Mathematically the

incompressible flow with high λ creates only even multiple flow harmonics.
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When the connecting rod effect is included, odd multiples occur. A more

straightforward approach was applied to predict the amount of cavitation

in the pump by Opitz et al.[11]. The cavity calculation used the unsteady

energy equation and assumed that:

• the water level in the reservoir is constant,

• the static pressure in the chamber is equal to the vapour pressure, and

• the suction manifold has a constant area.

In other words, the velocity of the fluid in the reservoir can be neglected

while the velocity in the suction manifold is constant due to the constant

area. The energy function has the form as an inhomogeneous first order

non-linear ordinary differential equation 3.2.

u2 ρ

2

(fl
2

+

n∑
i

ζi + 1
)

+ ρl
du

dt
= ps − pv (3.2)

Equation 3.2 can be simplified by introducing loss, impedance and source

terms to equation 3.3, which is able to be solved analytically.

Au2(t) +Bu̇(t) = C (3.3)

The methodology compares the velocity of the fluid to the piston ve-

locity profile, for further information reference[11] is given. This algorithm

required as input the valve opening time delay. Figure 3.3 gives an example

of a guessed valve opening at 30 degrees crankshaft angle.

The main limitations of this method are:

• the guessing of the valve opening (required simulation or pump design

experience)

• the simple layout of the pump suction line, and
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Figure 3.3: Example of Opitz[11] algorithm result, where the blue line is the
piston velocity and the red line is the fluid velocity.

• the neglecting of pressure pulsation interaction.

Pei et al.[12] compared two different approaches, the approximation

equation and the U. Adolph Theory. These two methods are too simple

to be applied to the modern standards of the pump industry. As an exam-

ple, the first method assumes the valve to be massless, to have a constant

spring force and incompressible fluid. Therefore, these two methods can be

considered only as a first pump approximation. Although simple, Lee et

al.[13] described a positive displacement pump by following the assumption

of incompressible fluid behaviour with a constant rotation of the crankshaft.

As a further simplification, the suction valve was closed when the piston

reached the bottom dead centre (BDC). Meanwhile, the discharge was closed

when the piston reached the Top dead centre (TDC). The suction and the

discharge pressure were taken as a constant value, whilst the pressure in the

chamber was calculated using bulk modulus relation, with the equation 3.4.

dpc
dθ

= −E
ω

Qc

Vp
(3.4)
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The accumulator in the discharge line was simulated with a similar ex-

pression. Although the scope of the simulation was to compare the behaviour

of normal and abnormal working of the pump, this method of simulation

does not predict the behaviour of the fluid accurately. The simplification of

the pump description required the presence of tuning parameters that makes

this procedure impractical. A comparison between lumped and distributed

parameter models was performed by Shu et al.[14]. Both methodologies

could capture the main pulsation characteristic of the system. Even the

peak to peak amplitudes were comparable with the measurements. The

main drawback of lump parameter simulation is the neglect of the wave

propagation. The travel of the pressure wave and its reflection changes

the valve response as well as the chamber’s dynamics. That is one of the

reasons why this methodology loses the mutual interference between the dif-

ferent parts of the pump. However, as reported by Rijswick[8] the lumped

parameter model fails to predict the high-frequency oscillations although

they are better depicted in the distributed parameter model. Furthermore,

the inefficient simulation in a multi chambers condition was brought to light

. For an applied optimization purpose, Josifovic et al.[15] used a simple

transfer function to describe the pressure cycle, but the results were too

simple and not accurate. In order to cope with the simulation of a three-

dimensional multi chamber pump, Josifovic et al.[6] combined together two

different commercial codes. The combination of two software was used to

overcome the limitation given by using each one separately. The three-

dimensional analysis was used to calculate the steady valve coefficients, even

in back-flow. The one-dimensional algorithm was used to analyse the over-

all pump behaviour. The hybrid algorithm provided a better time solution

for multi-chambers than simple three-dimension analysis. PD pump simu-

lation strongly depends on the valve model and the extrapolation of data

created with three-dimensional software from a steady-state approach is not
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always accurate. Nevertheless, the algorithm agrees with the experimen-

tal result within a reasonable engineering approximation (rxy = 0.7474)

and in a reasonable time. However, the time required for the simulation

of the three-dimensional analysis of the steady valve condition should also

be considered. In this research, only PD pumps with a piston or plunger

were examined. Research covering the diaphragm pump was carried out by

van Rijswick et al.[16] and Blanco et al.[17]. The first based the research

on the fluid-structure interaction within the pump chamber, considering a

three-dimensional analysis and incompressible fluid. While, the second used

commercial software to describe the unsteady operation of a double acting

diaphragm pump. Van Rijswick[1] has developed a three-dimensional anal-

ysis with implicit large eddy simulation (ILES). He considered an immersed

boundary method, combining a finite volume method with a non-linear fi-

nite element analysis. From his research, the non-dimensional analysis could

be considered, thereby evaluating the importance of single fluid properties.

In a diaphragm pump, hydraulically driven, the slurry and the propelling

liquid can be treated as equal when their density and viscosity are compa-

rable. Although this is not common in the real application where a slurry

can cover a wide range of properties, the API 674/ ISO 13710 regulation for

pump test, only consider water as the operating fluid. Therefore, the pump

can be simulated as one fluid thanks to the similar properties of mineral oil

and water[18]. This approach permits the presence of the membrane to be

neglected[1, p. 2]. In conclusion, for an overview of the positive displace-

ment pump component and design, the research by Tackett et al.[4] is given

as a reference.

3.1.2 Pump component

To describe PD pumps correctly the interaction between all of the compo-

nents must be included which makes the resolution of the problem even more
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complicated. As an example, valves are influenced by the surrounding pipe

network which can affect the time delay of opening and closing. In addition,

PD pumps are often working in cavitation conditions that is numerically ex-

pensive to model. For that reason, some researchers focused their attention

only in a specific area where cavitation is mainly formed. Such is the case of

Iannetti[3], in which the fluid vapour around the valve was modelled. Fluent

ANSYS software was used, and the validation of the results was conducted

with a closed loop test rig. The performance and the accuracy achieved

with the three dimensional RANS method and k-ε turbulence model with

moving mesh agreed with the experimental results. This methodology could

be used as a potential tool in the design and optimization phase. However,

due to the immense amount of computational power required, it was only

feasible for limited parts of the pump. The motion of the valve was taken

into consideration with a User Defined interface function (UDF), which pro-

vided the actuating forces and dynamic numerical solution. Furthermore,

three main factors were highlighted:

• the importance of the mutual interaction between the chambers which

were neglected in the numerical modelling,

• the cavitation algorithm accuracy and,

• the introduction of the air-gas phase in the system.

The simulation required several days[19] to perform only the suction

phase for a single chamber, this makes the strategy impracticable for di-

aphragm positive displacement pumps, multi-chamber interaction or for a

multi-pump network. At the other extreme, Johnston[20] created a modu-

lar code to predict the behaviour of a reciprocating pump with a lumped

parameter method to obtain the working condition for the valve model.

His research also involved cavitation formation. Although the result was in
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Figure 3.4: Schematic flow path in the valve[22].

agreement with experiment, the research highlighted the weakness of multi-

chamber simulation. Empirical coefficients extrapolated from experimental

data were required to accurate simulate the valve dynamics. However, the

complete closure of the valve created numerical issues, due to the linear in-

terpolation of these coefficients, therefore a small gap was left, simulating a

small leakage. The same problem was faced and solved in a similar way by

Iannetti[21] where the valve gap was simulated with a few grid layers to per-

mit the creation of the moving mesh. With the same research, Johnston[20]

brought to light the extreme importance of a good cavitation model.

In addition, from an experimental point of view, Johnston et al.[22, 23]

considered the fluid response for different valve designs. Referring to figure

3.4 the experiment focused on:

• θ the cone angle of the valve,

• the seat area and

• the different shape of the valve.
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The range of Reynolds number considered was in the range of 2500 to

35000, much lower than the PD pump working range. The results of the

experiment provided a flow force coefficient, CF and its variation with the

valve variables. The coefficient can be used for a one dimensional empirical

description of the pressure force around the valve. Furthermore, the flow

pattern from the valve gap was studied. Figure 3.4 shows three main flow

paths, where the Coanda effect plays an essential role in the pattern defini-

tion. For a large conical angle and small valve opening the jet is attached to

the valve seat, pattern C. While, pattern A was dominant for a small valve

angle. The prediction of the flow direction cannot be easily guessed from the

valve design and position. Commonly, the jet takes a path in between the

two paths A and C. Although the description of the flow around the valve

is beyond the scope of this research, it is crucial for an accurate pump sim-

ulation. First and foremost, the one-dimensional analysis simplifies all the

information in an average axial direction description. Secondly, the valve

behaviour strongly depends on the shape characteristics that, in the one-

dimensional simulation, are challenging to introduce directly, unless with

coefficients. Therefore, these conditions must be taken into consideration to

evaluate the resulting accuracy. A numerical experiment of the same kind

was performed by Bernad and Resiga[24] where the ANSYS Fluent code was

used. The main achievement was given by the cavitation algorithms and the

evaluation of the vortex surrounding the valve chamber. Also, they high-

lighted the possibility of using three-dimensional analysis for a specific part

but not for the whole pump simulation. In conclusion, research focusing on

the pump dynamics were performed primarily for three reasons:

• to study the frequency response of the system,

• to study the main effect produced by cavitation, and

• to study the effect of pressure pulsation.
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To achieve these goal a good accuracy of all the components and their

dynamics must be embraced and properly modelled considering the intro-

duction of conveniently simplification.

3.2 Fluid transient model

For describing the velocity, the pressure and the energy of the fluid, a com-

plete fluid formulation is given by the Navier-Stokes equations. The solution

of these equations is still an open question, and even a simplified formulation

does not have a straightforward solution. However, for fluids that flow in

closed ducts, one-dimensional equations can be used to describe the average

behaviour and thereby simplify the problem. Considering the PD pump, its

function is given by the change of the chamber volume. The compressing

and the decompressing of the volume transfers the mechanical work to the

fluid trapped between the suction and discharge valves. The variation of

the volume size is generated by an actuating component and, mathemati-

cally it can be expressed as a velocity boundary condition. The variation

of one of the fluid properties such as velocity or pressure creates a wave

response in the fluid that travels at a specific speed. This type of system

is defined as hyperbolic[25] and it is described by the eigenvalue function

which provides the speed of the information update. This speed physically

corresponds to the speed of sound. Therefore, every time there is a varia-

tion in the properties of the fluid, a wave travelling at the speed of sound is

formed and propagated in the domain[26]. In PD pumps, each perturbation

is a wave which transfers information inside the domain which then diffused

due to dissipative phenomena. Similarly, the sudden open and closing of

the valve, creates a water hammer phenomenon which propagates through

the system. As a consequence, PD pumps can be described with hyperbolic

equations. In addition, since the fluid is mainly forced in a single direction,

a one-dimensional description can be used.
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3.2.1 One-Dimensional Analysis

The easiest set of equations capable of capturing the wave propagation are

the water hammer equations. Water hammer has been studied since the

early nineteen nineties due to the potential damage to hydraulic systems[27].

Water hammer is formed when a moving fluid is suddenly stopped, creat-

ing an increase of pressure inside the system. This is potentially harmful.

Also, wave reflection can be dangerous in terms of cavitation formation. The

reflecting wave could decrease the head pressure and reach the vapour pres-

sure. The water hammer equations described in the form of head pressure

and velocity are given in the system 3.5[27].


c2

g
∂u
∂x + ∂H

∂t = 0

∂u
∂t + g ∂H∂x = Sx

(3.5)

where c is the speed of sound, g the gravity’s acceleration, u the fluid

velocity, H the head pressure and Sx is the source term. The system of

equations 3.5 contains all the physics necessary to model the wave propa-

gation in a complex pipe system[28]. The dissipation term, Sx is included

in the momentum equation as a wall friction term. In the practical review,

Ghidaoui et al.[28] described the historical background and the numerical

methods, used to solved these equations, before the advent of the finite vol-

ume method. The Method of Characteristic (MOC), was the most popular

algorithm due to the simplicity and the limited numerical effort required.

This method converges to the analytical solution for the frictionless prob-

lem, and it is commonly used by one-dimensional transient fluid software.

In the same research[28], a software review found that eight of the eleven

commercial codes analysed were using the MOC algorithms and only two a

direct finite difference solver. More than a decade later, only one code had

introduced the finite volume algorithms: FluidFlow. Commercial software

http://fluidflowinfo.com/
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present drawbacks that are not easy to overcome in order to simulate positive

displacement pumps. A combination of cavitation and the variation of the

speed of sound are not processed at the same time. Furthermore, new stud-

ies show the limitations given by the MOC strategy within a complex system

compared to other methods that are available. Although water hammer is

commonly described with one-dimensional equations, some research dealt

with multi-dimensional approach. In the theoretical review made by Ghi-

daoui et al.[28] a two dimensional analysis was made. However, new research

has employed multi-dimensional approaches and Saeml[36] used commercial

software to study the two and three dimensional effect of the valve closure

phenomenon. It emphasised that the presence of dissipation phenomena

that involves all the directions due to the turbulence produced at the valve

was important. Therefore, one-dimensional analysis underestimates the dis-

sipation produced by the system. Pezzinga and Cannizaro[37] instead used

a two-dimensional analysis in cylindrical coordinates, to describe the radial

and the axial velocity in the transient flow. The result showed that a multi-

dimensional description is more accurate than a one-dimensional description.

However, these algorithms require a high computational effort[37], thereby

reducing the benefit of using a multi dimensional treatment. Not withstand-

ing the better properties of the finite volume methods, they are not applied

widely, and MOC is still the simplest model applied, even in a complex net-

work. For instance, Shin and Chen[5] was found to be the only application

the MOC methodology in a complex multi junction network system. The

research proved the feasibility of a one-dimensional description of a complex

system although with accuracy limitations. Therefore, new algorithms with

higher accuracy must be introduced.
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3.2.2 Solution method

MOC is a mathematical approach to solve partial differential equations

translating to a simpler ordinary differential equations taking advantages

from their characteristic propagation information[27]. The fixed grid MOC

scheme is the most accessible algorithm to be solved and requires a spatial

grid that fits equally in all of the system pipe lengths. In the majority of

cases, this is not possible due to the speed of sound and the stability con-

dition required. For this reason, interpolation schemes and speed of sound

adjustment have been used to improve computational efficiency at the cost

of a more dissipative scheme[28]. Different researchers have dealt with the

problem. Trikha[29] used a specific time step for each section of duct, inter-

polating only at the boundary. This approach can produce more inaccuracy

when rapid changes occur in the system. Wylie et al.[27] considered a flex-

ible method with a self-path adjustment calculated with the characteristic

information (characteristic grid) and interpolating when the domain was no

longer inside the physical boundary. This method is a combination of spatial,

boundary and time interpolation. The major drawback of this algorithm, as

with the Trikha methodology, is the simulation of dynamic components that

require information from the system, for instance, a safety valve. Different

methodologies were developed to improve water hammer simulation, and

implicit schemes were also studied. Wylie et al.[27] considered an implicit

finite difference method, solved with a sparse matrix and Newton-Raphson

procedure. Although the algorithm allows the use of larger time steps than

an explicit scheme, the computational effort to invert the matrix can re-

duce the numerical advantages. In addition, mathematically it seems that

wave propagation problems are better described by explicit schemes due to

the nature of updating the information[28]. The accuracy of the results

improved with the introduction of the finite volume (FV) method. Pioneer-

ing research was made by Guinot[30] who applied the finite volume scheme
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solving the Riemann problem with the first order accuracy method. The

first approach was similar to the linear interpolation scheme developed for

the MOC. Further steps were made only in recent years where more accu-

rate and computationally efficient methods were introduced with a higher

order scheme. The introduction of the latest numerical algorithms, such

as the Total Variation Diminishing (TVD) scheme, have also permitted an

improvements in the numerical stability. An example of second-order ac-

curacy in time and in space can be found in Zhou et al.[31, 32] where a

Monotonic Upwind scheme for Conservative Law (MUSCL) was used. The

MUSCL scheme has shown a significant benefit in terms of computational

efficiency and simplicity. This algorithm performes as well as the first-order

MOC when the Courant number (CR) is equal to one[31]. Meanwhile, for

CR < 1, MUSCL performed better than the MOC producing less numerical

dissipation phenomena. In addition, for frictionless simulation, the MUSCL

scheme converges to the analytical solution. Moreover, it has been shown

that for finer grids, the finite volume method avoids unrealistic pressure

spikes commonly present in water hammer simulations performed with the

MOC. A further advantage of the second order method is less storage mem-

ory required. Compared with the first order scheme, the accuracy is higher

and requires a less refined grid to converge[33]. Water hammer is a pressure

variation phenomenon that depends of the nature of the fluid, and in many

cases it is required a multi-phase treatment for the presence of different

component (particles, other liquid or gasses). Even in pure liquid phase,

a the second phase can be present in form non-dissolved gas (for instance,

air) or vapour or both and, depending on the algorithm, the simulated fluid

response can be different. The presence of the other phases affects the speed

of sound, making even more complicated the use of the interpolation scheme

or the MOC with constant time intervals. Wylie et al.[27] dealt with this

issue by considering the second-phase to be lumped at the computational
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section, considering the liquid within these grid points free of gas. With this

assumption the speed of sound can be considered constant in the system,

and the numerical stability of this scheme was demonstrated by Liou[34].

Although the algorithm performs fast and is easy to implement, it can only

consider a small amount of vapour and/or gas to be produced. Even more

researchers are moving in the direction of using finite volume solvers for mul-

tiphase flow. Guinot[35] compared the first-order and second-order approx-

imation of the Riemann invariants with the exact solution. Results showed

that the approximation of the Riemann problem solution was a reasonable

simplification for wave propagation in multiphase flow. Starting from that

point, further investigations were conducted[30], introducing the free gas

phase into the system. This result has allowed water hammer phenomenon

with cavitating conditions, to be solved with a finite volume method. The

application of a peer reviewed discrete vapour model was carried out by

Zhou et al.[31]. The researchers applied the discrete vapour cavity model

developed for MOC[27] in combination with a finite volume treatment. The

solution algorithm used a second order in time and space MUSCL scheme

with the TVD method. The same idea was applied to the water hammer

phenomenon with a Discrete Gas Cavity Model[31]. Further discussion of

second phase is given in the section 3.3.

3.2.3 Dissipation term

So far this section has only described the flow model and the dissipation term

was not discussed, although it plays an important role. The importance of

a correct dissipation model formulation was highlighted at the beginning of

the nineteen seventies. Since then, several types of research involving fluid

transient flow in ducts have been developed with different strategies. The

review of Ghidaoui et al.[28] evaluated the importance of the wall friction

term considering the system response. The research gave the equation 3.6,
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further details in the appendix C, where:

• L is the length,

• M the Mach number,

• TD the time scale of the radial diffusion of the vorticity,

• c the speed of sound,

• φ the diameter and

• ζ a real positive parameter used to adjust the formulation.

Γ =
ζLMf

2φ
+
ζTD
L
c

(3.6)

It has been highlighted that the correct friction term description is im-

portant when the non-dimensional value Γ becomes greater than unity. This

commonly happens when the simulation time exceeds the first wave reflec-

tion, namely for a long simulation. In addition, wall stress is a key factor

for a long pipeline or when the cross section area of the pipe is small. All

of these factors are usually present in a positive displacement pump or in

a pipe network. Therefore, different strategies for correctly interpreting the

unsteady dissipation term must be considered. Bergant et al.[38] listed the

mathematical formulation in relation to the formulations term. Six different

categories were defined:

• mean velocity,

• mean velocity and acceleration,

• mean velocity, instantaneous acceleration and convective acceleration,

• mean velocity and diffusion,

• mean velocity and previous time changing, and
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• cross-section distribution of the velocity.

For instance, the Brunone model[39] is a function of mean flow velocity,

the advective acceleration and a delay coefficient as shown in equation 3.7.

fB = fs +
kD

|u|u
(∂u
∂t
− c∂u

∂x

)
(3.7)

Research[38, 40, 41] dealt with the Brunone formulation showing a better

agreement with experiment. Shu et al.[42], to prevent the limitation given by

the method of characteristics, used a Galerkin finite element method applied

only to the spatial variable. Important was the formulation of the unsteady

friction dependency calculated as a variation of the Zielke formulation[43].

This approach differs from Brunone as it is required to store previous nu-

merical data and solve the friction term as a series of frequency factors.

Also Urbanowicz et al.[44] used the series expansion of the velocity his-

tory. However, these methodologies seem more computationally inefficient

and complex to be implemented compared to Brunone’s method. Moreover,

even from the friction point of view, in the earlier years, research has high-

lighted the drawbacks of using the method of characteristic rather than the

finite volume method[31, 32, 41, 45, 46].

Considering the fluid properties, the compressibility is a dissipation fac-

tor that is usually neglected or linearised in most of the cases. This approach

can be considered feasible if the pressure variation is of the order of a hun-

dred bar and the amount of any second phase does not affect the density

and the speed of sound. Daude et al.[47] introduced a compressibility model

in the study of water hammer, solving a set of equations similar to the Euler

system. The presence of the energy equation is a complexity that can be

neglected since the fluid transient can be considered isothermal in most of

the cases[27]. The same point can be seen by the result of Daude et al.[47],

where the temperature did not change drastically during a simulation with
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cavitation. This approach agrees nicely with the experimental results, also

allowing the computation of the dynamics of the bubble formation, growth

and collapse. On the other hand, the strategy is not easy to implement in

the case of a complex system where multiple T junctions are present. As

pointed out[48], it is necessary to solve a three-dimensional junction analysis.

Although modelling slurry is beyond the purpose of this research, it

seems reasonable to have an idea of the research that dealt with particles

suspended in the fluid. Positive displacement pumps work mainly with

slurry or fluidised ore, despite the fact that they are tested using water.

Suspended particles dissipate energy by friction with the wall and subtract-

ing energy from the fluid to be suspended. Wang et al.[49] studied the water

hammer effect in a slurry pipeline created by pump failure. Considering the

slurry’s formulation, equation 3.8 was added to the momentum equation.

Fslurry =
sign(u)

u0

(
KCv

ρS − ρM
ρM

gµsωs
)

(3.8)

Where K is a comprehensive coefficient to match the experimental data,

CV is the volume concentration of solids in the slurry, ρS is the density of

the particles, ρm is the density of the slurry, µs is the friction coefficient be-

tween particles and the pipe, ωs is the particle settling velocity. Given the

simplicity of this formulation it could be introduced in further to improve

the performance of the pump model. Considering, the slurry flow condition,

an important contribution of the slurry regime in transient flow was given by

Bbosa et al.[50]. The research described three main regimes and their impli-

cation: stable turbulent regime, the stable laminar regime and the unstable

regime. In the first regime, the suspension of the particles is guaranteed by

the high flow velocity and the eddy forces. This regime is the most appro-

priate to be treated as a homogeneous fluid. The second condition consists

of the suspension of the particle in the core of the fluid giving a heteroge-

neous flow (the most common regime). Whilst, the unstable regime occurs
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when there are no forces capable of suspending the particle and results in

the sinking of the particles. This regime is not constant in terms of particle

concentration, neither in time nor in space. The transition velocity was also

studied by Bbosa et al.[50] and gave critical values for particle deposition

and non-Newtonian fluid flow.

3.2.4 Summary of fluid transient model

Summarizing, this section dealt with the formulation and the fluid transient

description principally in the one-dimension formulation and the methodol-

ogy to reach a solution. Although different approaches were analysed, the

finite volume strategy seems to be the most efficient in terms of accuracy

and computational results. In addition, an improvement can be introduced

with the use of a TVD method avoiding numerical issues given by higher

order methods. The correct formulation of the friction term is a crucial

point to describe the dissipation phenomenon in the wave travel problem.

Compressibility research was also considered, and current studies on slurry

were identified.

3.3 Cavitation

Cavitation is a phenomenon of nucleation, growth and collapse of a bubble.

American Petroleum Institute (API) regulations define cavitation limits for

centrifugal pumps. The maximum flow rate in the pump performance must

be three per cent of the steady condition, the so-called NPSH3. However,

the same regulation defines that cavitation in the PD pump must be avoided

at any time. Unfortunately, this operating condition is almost impossible

to achieve. Therefore the real effect of the cavitation formation must be

known and predicted. The change of the liquid to the gas phase can be

caused by a variation in temperature (boiling) or pressure (cavitating) or
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Figure 3.5: Phase change diagram[51].

their combination as shown in figure 3.5. During the pump’s cycle, the

temperature of the fluid is almost constant while the pressure can change

drastically. Although, during the collapse of the cavity, the temperature can

locally reach thousands of degrees instantaneously[51], the time scale of the

phenomenon allows the cavity to be considered as isothermal.

3.3.1 Cavitation model

The description of single bubble dynamics is given by Rayleigh-Plesset. The

complete formulation can be seen in equation 3.9.

pB(t)− p∞(t)

ρL
= R

d2R

dt2
+

3

2

(dR
dt

)2
+

4νL
R

dR

dt
+

2S

ρLR
(3.9)

Each term plays an essential role in the dynamics and the time scale

of the bubble. The left-hand side of the equation is the driving term or

far field value, while the right-hand side is related to the bubble and fluid

characteristics. The formulation considers the viscosity effect νL, the bubble

surface tension S, and the variation of the size dR
dt . In this form, the Rayleigh-
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Plesset equation does not have an analytic solution[51] therefore a simplified

version is commonly used to evaluate the cavity formation. A useful review

of the theory and the description of the bubble dynamics can be found in

Brennen[51], who studied cavitation in depth.

Starting from equation 3.9 and making the assumption of constant tem-

perature and steady state conditions, it is possible to calculate the bubble

pressure value, pv(T ). In that condition, for the fluid system to be in bal-

ance requires that the external liquid pressure has a higher pressure than

the bubble. The reason for this difference is given by the surface tension as

seen in equation 3.10.

p∞(t) = pV (T ) +
2S

R
(3.10)

The fluid is generally in contact with an atmosphere where gas can be

trapped in solution in the liquid phase. This can happen even in a controlled

environment. The presence of the second component further increases the

far-field pressure of cavity formation, as highlighted in equation 3.11.

p∞(t) = pV (T ) + pg +
2S

R
(3.11)

Therefore, in the presence of a non-condensable gas, cavitation is pro-

duced at a higher pressure compared to the usual cavitation pressure. Thus,

to ensure a correct formulation of the cavity formation, the correct amount

of non-condensable gas must be included in the model. Here, the considera-

tions for the cavity nucleation are made considering homogeneous formation,

and all the bubbles are assumed to be spherical. However, more complex-

ities are introduced in the case of heterogeneous nucleation. For instance

on a flat hydrophobic surface. The presence of a cloud of bubbles makes

the analysis even harder, where there is also the interaction between the

bubbles, which is not included in the Rayleigh-Plesset equation.
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Different algorithms were developed for modelling cavitation formation.

However, all approaches can be categorized as either homogeneous treat-

ment or a two phase model[52]. The second method consists of describing

N phases (liquid and gas) with N Navier-Stokes equations and N-1 inter-

action functions. This approach is computationally expensive and requires

complex mathematical formulation. Two examples are given by Guillard

and Murrone[53], and Liuzzi[54]. On the other hand, the homogeneous de-

scription considers only one Navier-stokes system of equations. It averages

all phases as one overall fluid mixture and only one function is needed to

describe the fluid properties.

3.3.2 Solution method

The common description of the fluid dynamics is either described with a

discrete model or a continuum formulation. Discrete gas and vapour cavity

models are part of the discrete treatment. The continuum can be modelled

by the transport equation model (TEM) and the equation of state (EoS).

Dwelling on the transport equation, a further equation for the transport of

vapour is integrated into the Navier-Stokes system. The transportation of

the volume or the mass fraction is given by an inhomogeneous transport

equation where the source term performs the variation of the liquid phase.

Zwart et al.[55] described the transition of the vapour to liquid and vice

versa starting from a simplification of the Rayleigh-Plesset equation, ne-

glecting the second order and the surface tension terms. In addition, the

assumption of no bubble interaction was made, which is plausible only at

the beginning of the cavity phenomenon. With the same logic, Singhal et

al.[56] developed strategies to also include the non-condensable gas, keeping

constant the phase amount but evaluating its volume variation. Sumam et

al.[57] applied a variation of the source term in the transport equation for-

mulation to the water hammer phenomenon. The research has highlighted
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instability issues and the time step required to capture the cavity dynamics

is much smaller than the Courant stability value. These three algorithms

required two empirical coefficients (collapse and evaporation parameters)

to tune the liquid-vapour transformation phenomena. A comparison of the

transport equation models was made by Zhao et al.[52], where an overview

of the overall formulation was given. The majority of the formulations were

derived from thermodynamic behaviour or from a simplified description of

the Rayleigh-Plesset formulation. The first method has proportionality with

the pressure variation, while the second with the square root of the pres-

sure. Due to this difference, all the methodologies gave different results and

required carefully study for each application. The equation of state model,

consisted of evaluating the variation of the fluid properties with the fluid

pressure value. Goncalves et al.[58, 59] used an arcsine barotropic formula-

tion to model the fluid characteristics in the mixture regime, while Zheng

et al.[60] used an isentropic formulation.

3.3.3 Cavitation in positive displacement pumps

Cavitation in a positive displacement pump can occur during the valve open-

ing phase, where a small gap is formed making the fluid accelerate and at

the same time reducing the static pressure. This is not the only mechanism

for vapour cavity formation. Schlücker and Opitz[11] categorized the cav-

itation formation in relation to the pump cycle phase. In that research, a

PIV analysis of the cavitation was related to pressure measurement, record-

ing the bubble growth and collapses history. A classification related to the

pump condition and the water hammer effect was produced. Considering

the amount of vapour produced, cavitation could be categorize as:

• inception,

• partial,
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• full cavitation.

When the cavitation pressure is reached only for a small portion of time,

and at the beginning of the suction phase, the cavitation is referred to as

inception cavitation. The cause of this cavitation could be related to the

volume expansion in the chamber. When a constant pressure is established

for a more extended period, the cavity is defined as partial cavitation. If

the cavity occurs within the first half of the phase of the cycle, the cavity is

called incipient partial cavitation or advance partial cavitation. When the

cavitation reaches the second half of the suction phase, the cavitation takes

the name of distinctive partial cavitation. Full cavitation formation, occurs

when the cavitation occurs after the suction phase and extending into the

discharge cycle. The inception and partial cavitation seem to be harmless

in most cases[61]. Meanwhile, full cavitation significantly affects the vol-

umetric efficiency. An application of a cavitation algorithm in a positive

displacement pump was undertaken by Iannetti[3] who applied the Singhal

et al.[56] formulation in a three dimensional analysis to evaluate valve cav-

itation with good results. A different approach for a hydraulic system was

performed by Maiga et al.[62], where a multi-bubble model formulation was

used. The importance of an accurate bubble interaction model was pointed

out especially during the incipient cavitation. A cavitation model should

also consider the nature of the fluid. In PD pumps slurry application the

fluid can barely be considered Newtonian due to the suspended particles.

In the case of solid-liquid fluid, the presence of particles changes the fluid

response. In that field, Brujan[63] gave an example of the phenomenon for

the case of polymeric fluid. In conclusion, cavitation can be modelled with

several different approaches that have implications on complexity and com-

putational effort. For that reason, simulation of the cavity formation is still

an active field of research, although more and more accurate models have

been developed. The discrete cavity formulation is still the most suitable
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algorithm available which does not overload the numerical computational

capacity. This method produces a good balance of the simulation effort

required and the accuracy of the model.

3.4 Summary

As pointed out from the literature review, modelling a positive displace-

ment pump is still a challenge. Although there is considerable research

involving cavitation and positive displacement pumps, they are restricted

due to the computational time required. On the other hand, simulation of

a complete pump are difficult, and research to simplify the problem in or-

der to produce meaningful results is required. The research in this thesis

tries to fill this void, considering at the same time compressibility, transient

fluid description and cavitation. The path will include the MUSCL scheme

solver with TVD algorithm to produce accurate results without significant

computational effort thanks to its straightforward implementation. For the

cavitation phenomenon a base line of the Discrete Gas Cavity Method is

considered due to its simple solution even for complex network systems.

The scope of this thesis is therefore, to create an algorithm capable of pre-

dicting the behaviour of a pump within a reasonable computational time. In

addition, the algorithm should overcome the limitations in the commercial

software by including complex network simulation.



Chapter 4

Theory of pressure waves

The complete description of fluid transient behaviour is given by the Navier-

Stokes system of equations. The system consists of a continuity equation,

the vector momentum equation and the energy equation. Solving the com-

plete Navier Stokes equations is exceptionally complex, and only numerical

techniques can be used. An example is the Direct Numerical Simulation ap-

proach (DNS), where no turbulence model is applied, and the fluid dynamics

at all time and space scales is solved. To use DNS, the grid mesh should

be small enough to capture all the dissipation phenomenon that takes place

in the Kolmogorov scale[64]. For that condition, the computation required

means an extremely long time for solution, making the algorithms inapplica-

ble for industrial applications[1]. For that reason, different approaches were

developed to reduce the amount of computational effort required[65]. Even

if these approaches are getting more and more accurate, the schemes still

require significant time to solve and convergence is not always guaranteed.

The Reynolds Averaged Navier Stokes (RANS), simplify the equations and

time-average the turbulence phenomenon. In other words, the turbulence

term is decoupled into steady and fluctuating quantities. On the other hand,

Large Eddy Simulation (LES) applies a spatial filter to solve for the turbu-

lence. However, all of these methodologies need substantial time to reach

46
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the solution. In the case of multiphase flow, the complexity is increased

and requires further computational resourses. However, for fluid flowing in

a duct, a one-dimensional formulation can be used with reasonable accu-

racy. This approach simplifies the system without compromising the global

description of the fluid dynamics. In addition, with this strategy, a more

extensive analysis of different phenomena may be undertaken thanks to its

versatility. Therefore, in this section, the system of equations to evaluate

the wave formulation for transient fluid flow in one-dimension is given.

4.1 One dimensional model

In a hydraulic system, the changing of the fluid properties due to variations

of speed, pressure or density, creates a wave which propagates through the

domain. Mathematically, problems that are transient in nature are classified

as hyperbolic. The most common transient phenomenon described in one di-

mension is the so-called water hammer, which is caused by a sudden stop of

the fluid. Under this condition, the perturbated fluid creates a high-pressure

wave that can potentially damage the entire system. For this reason, water

hammer has been studied extensively since the beginning of the twentieth

century. Joukowsky[28] gives the most straightforward formulation to eval-

uate the peak pressure from the fluid velocity variation. The equation is

a direct consequence of the continuity equation, and it relates the pressure

increase to the speed of sound and the density, as shown in equation 4.1.

∆p = ρc∆u (4.1)

From the Joukowsky formulation, it is possible to evaluate two essential

characteristics. The pressure response depends on the property of the fluid

in terms of the density and the speed of sound. For instance, comparing the

peak pressure variation with a fluid speed equal to one meter per second
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for water and for mineral oil, the pressure rises ≈ 15 bar and ≈ 11 bar

respectively[18]. However to describe the full physics of the phenomenon,

a more accurate model is required. Referring to the control volume in the

figure 4.1, the continuity equation and the momentum equation are obtained.

Figure 4.1: Contiuity equation for Water Hammer.

The continuity equation is expressed as equation 4.2. The parameter

δUC(t) is the rate of increase of mass in time and equal to the flux mass

δFC(t). These parameters are defined by equations 4.3 and 4.4 respectively.

δUC(t0 + δt)− δUC(t0) = δFC(x0 + δx)− δFC(x0) (4.2)

δUC(t) =

∫ x0+δx

x0

ρ(x, t)A(x, t)dx (4.3)

δFC(t) =

∫ t0+δt

t0

ρ(x, t)u(x, t)A(x, t)dt (4.4)

The velocity of the fluid is u, whereas ρ is the fluid density and A the

cross-sectional area. By differentiating equation 4.2 in time and space, the

final continuity equation in one dimension is obtained (equation 4.5).

∂(ρA)

∂t
+
∂(ρuA)

∂x
= 0 (4.5)
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Regarding the momentum equation, Newton’s second law is applied to

the system, given by equation 4.6.

δUM (t0+δt)−δUM (t0) = δFM (x0+δx)−δFM (x0)+δP (x0)−δP (x0+δx)+δFE+δFP

(4.6)

Where the terms are:

• δUM (t) the overall fluid momentum given by the equation 4.7.

• δFM (t) the momentum of the fluid that passes position x over the time

interval calculated with equation 4.8.

• δFP the pressure force given by 4.9.

• δFE the external forces acting on the fluid control volume.

δUM (t) =

∫ x0+δx

x0

ρ(x, t)u(x, t)A(x, t)dx (4.7)

δFM (t) =

∫ x0+δx

x0

ρ(x, t)u2(x, t)A(x, t)dx (4.8)

δFP (t) =

∫ t0+δt

t0

p(x, t)A(x, t)dt (4.9)

The complete momentum equation is given by combining all the integral

formulations and differentiating with respect to space and time, yielding

equation 4.10.

∂(ρuA)

∂t
+
∂(ρu2A)

∂x
+
∂(pA)

∂x
= Fext (4.10)

Summarizing, the complete fluid transient system in one dimension is

given by the system of equations 4.11.
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
∂(ρA)
∂t + ∂(ρuA)

∂x = 0

∂(ρuA)
∂t + ∂(ρu2A)

∂x + ∂(pA)
∂x = Fext

(4.11)

In this form, it is required to solve three different variables: pressure,

density and velocity. Normally this can be done by the introduction of the

energy equation or by iterative methods. However, it is easier to use the

mechanical description of the speed of sound to couple the pressure and

density variation. Using the form c2 = ∂p
∂ρ , a further simplification can be

obtained. In this condition, the system of equations becomes a function of

only the pressure and the mass flow rate [p, ρuA], as shown in the system of

equations 4.12.


∂(pA)
∂t + c2 ∂(ρuA)

∂x = 0

∂(ρuA)
∂t + ∂(ρu2A)

∂x + ∂(pA)
∂x = Fext

(4.12)

4.1.1 External force

The system of equations 4.12 does not include the dissipation term directly

in the formulation. The viscous effect is neglected, and hence dissipation is

introduced only from the source term. Referring to Guinot[66] the external

force can be considered as the sum of two phenomena. The first is given

by the variation in the cross sectional area, namely the ∂A
∂x term, while the

second term is the dissipation that takes place between the fluid and the

wall in the form of friction. Therefore, the overall formulation is given by

equation 4.13.

Fext =

∫ t0+δt

t0

(∫ x0+δx

x0

(
FP (x, t) + Fw(x, t)

)
dx (4.13)

The wall friction force Fw(x, t) is opposite to the flow, and it can be

considered as proportional to the velocity by the relation 4.14[27, 67].
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Fw = f̃ = −1

2
φπρ|u|u (4.14)

The overall expression of the source term is then rewritten as a function

of the wall stress and the variation of the area. In addition, for simplicity,

the pipe angle is neglected considering only horizontal ducts and no gravity

forces. The complete description of the transient flow is hence given in the

system of equations 4.15.


∂(pA)
∂t + c2 ∂(ρuA)

∂x = 0

∂(ρuA)
∂t + ∂(ρu2A)

∂x + ∂(pA)
∂x = p∂A∂x − f̃

(4.15)

4.2 Linearised and characteristic form

The formulation 4.15 is the complete formulation that takes into account:

• the advective term,

• the variation of the area, and

• the wall friction dissipation.

In a pipeline network and in pump systems, the cross sectional area

is usually constant. Therefore the system can be further simplified in the

system of equations 4.16.


∂p
∂t + c2

A
∂(ρQ)
∂x = 0

∂(ρQ)
∂t + ∂(uρQ)

∂x +A ∂p
∂x = −f̃

(4.16)

To obtain a linearized formulation, the Riemann formulation is used.

The system is written in the form of variable U and its flux, as shown in

equation 4.17.

∂U

∂t
+
∂f(U)

∂x
= s(U) (4.17)



CHAPTER 4 THEORY OF PRESSURE WAVES 52

Introducing the Jacobian matrix [J ] = ∂f(U)
∂U , given as a partial derivative

of the flux, ∂f(U)
∂x = ∂f(U)

∂U
∂U
∂x , the system becomes a function only of the

primitive variable U . In this specific case, the Jacobian formulation of the

system 4.15 is equal to the matrix 4.18.

[J ] =

0 c2

A

A u

 (4.18)

Therefore, using the variable column vector [p, ρQ]T the system can be

rewritten in the extended version 4.19.

 p

ρQ


t

+

0 c2

A

A u

 p

ρQ


x

=

0

f̃

 (4.19)

This system is non-homogeneous due to the source term. However, it is

possible to use the Godunov splitting algorithms, described in section 4.4, to

decouple the system into homogeneous and ordinary differential equations.

Hyperbolic homogeneous systems are easier to solve thanks to their prop-

erties. However, to be classified as hyperbolic the Jacobian matrix must be

diagonalizable. This means that the eigenvalues Λ1,...,n of the system 4.19

must be real. With this condition, the system can be decoupled into n in-

dependent advection equations[25] which are resolvable independently. The

eigenvalues of the system 4.16 are given in the system of equations 4.20. At

the same time, the corresponding eigenvectors are shown in equations 4.21.


Λ1 = u−

√
u2+4c2

2

Λ2 = u+
√
u2+4c2

2

(4.20)


[
1; A

c2
u−
√
u2+4c2

2

]
[
1; A

c2
u+
√
u2+4c2

2

] (4.21)

The eigenvalues are always real ∀c, therefore each advective function
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can be described in characteristic form equal to the function 4.22. Further

description of the algorithm may be found in[25] and[26].

∂Ω

∂t
+ Λ

∂Ω

∂t
= K−1S (4.22)

In equation 4.22, Λ is the transformation matrix given by Λ = K−1JK.

Λ is a matrix with the eigenvalues on its diagonal, while K−1 is the inverse

matrix with the eigenvector as column, given by the equations 4.23 and 4.24

respectively.

Λ =

Λ1 0

0 Λ2

 (4.23)

[K]−1 =

− Λ2
Λ1−Λ2

− c2

A(Λ2−Λ1)

λ1
λ1−λ2

c2

A(λ2−λ1)

 (4.24)

Introducing a new set of variables defined as Ω = K−1U , it easier to

handle the transformation process. Moreover, the function can be expressed

in terms of eigenvalues by equation 4.25.

[Ω] =

− Λ2
Λ1−Λ2

p− c2

A(Λ2−Λ1)ρQ

Λ1
Λ1−Λ2

p+ c2

A(Λ2−Λ1)ρQ

 (4.25)

The primitive variables can be obtained by inverting the characteristic

formulation as shown in the system of equations 4.26.


p = Ω1 + Ω2

ρQ = AΛ2
c2

(
Ω2 + Λ1

Λ2
Ω1

) (4.26)

The benefit of this approach is given in the numerical solution for the cell

interface calculations. In detail, thanks to the equations 4.26 the interface

Riemann problem can be solved analytically as explained in chapter 5.
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4.3 Water Hammer

The system of equations 4.12 developed for the transient fluid motion de-

scription, reduces to the common water hammer formulation with the fol-

lowing assumptions:

• small variation of the fluid speed compared with that of the pressure;

• the compressibility of the fluid can be neglected, introducing a lin-

earised equation form.

With these conditions and using the piezometric head pressure, H = p
ρg

the system of equations becomes equal to that shown in 4.27 given in [27].


∂H
∂t + c2

g
∂u
∂x = 0

∂u
∂t + g ∂H∂x = −fu|u|

2D

(4.27)

This system can be transformed, with the same linearisation procedure

described in section 4.2, into the the characteristic form. Two distinct char-

acteristic functions that propagate with a velocity of ±c, are generated. At

this stage, the system of equations can be solved in terms of pressure head

and flow rate by equations 4.28 extrapolated by Wylie et al.[27].


H = CP –BPQ

H = CM +BMQ

(4.28)

The parameters CM/P and BM/P in the system of equation 4.28 depend

on the numerical algorithm used and are described in section 5.5.

4.4 Source Term

To reach the solution in the linearised form of the equation, the source

term was neglected. However, in order to reintroduce its effect, the splitting
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method or fractional-step method is performed[25, 26]. The methodology

consists of dividing the problem into two subroutines that are solved consec-

utively. The system 4.17 is decoupled into a homogeneous partial differential

equation and into an ordinary differential equation, as shown in equations

4.29.


∂U
∂t + ∂f(U)

∂x = 0

∂Ũ
∂t = s(Ũ)

(4.29)

The first equation follows the procedure described in section 4.2. The

ODE, requires the results from the PDE to be solved. In terms of accuracy,

the fractional splitting method is always first-order, no matter how well

the subsystems are discretized and solved[25]. However, it is possible to

improve the accuracy of the model with a Strang[25] splitting algorithm.

The methodology consists of updating the variables two times in the same

iteration. Therefore, the calculation of the variable is performed every half

time step. Nevertheless, Leveque[25] proved that the accuracy of the first

order method is comparable with the second order method. In addition, the

boundary conditions are more easily computed with the first-order method

than with a Strang splitting algorithm. Therefore the solving method used

in this research is focused on first order theory. The solving technique could

use either standard explicit or implicit methods for the ODE. However, in

this context, the explicit Runge-Kutta method was used.

4.4.1 Frictional Term

As already highlighted, the source term can be defined as a function of the

velocity and the friction factor. The latter parameter is a non-dimensional

parameter used to describe the losses in a pipe flow. The exact value of this

term is difficult to evaluate due to its dependence on the velocity. However

three main approaches can be used:
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• constant factor

• quasi-steady factor

• unsteady factor

The first method consists of a constant value of the friction factor which

oversimplifies the dissipation. In the second method, the friction term varies

only in relation to the Reynolds number. The last method is described

in depth in[38] and evaluates the friction term with different factors. An

example is given by Brunone[39], equation 3.7. Considering the quasi-steady

formulation used in this research, the Colebrook function[68] is used. The

equation is given in 4.30 where φh is the hydraulic diameter, ε is the surface

roughness and the Re is the Reynolds number.

1

f
= −2log

( ε

3.7φh
+

2.51

Re
√
f

)
(4.30)

The formulation of the friction factor is implicitly defined and hence re-

quires an iterative solution. Figure 4.2 is a representation of the friction

factor as a Moody diagram. Two distinct behaviours are defined depending

on the Reynolds number. The laminar condition is given by a linear relation

for ReTransition < 2300. While, for Re > 4000 the turbulent condition re-

quires the solution of 4.30. However, this distinction creates a discontinuity

that could affect the solution technique. In between the laminar and tur-

bulent regimes an interpolation scheme is performed to obtain the friction

value. Nevertheless, the Reynolds number in PD pumps is commonly high,

and the transition regime is easily exceeded.
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Figure 4.2: Moody’s diagram performed with the developed friction algo-
rithm.
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4.5 Cavitation

Cavitation is difficult to describe mathematically. The main issues are re-

lated to the transformation of the liquid into vapour and vice versa. In

addition, the interaction between the bubbles and the liquid is challenging.

This issue was briefly introduced in the literature review, and for more de-

tails, the research by Brenner is cited[51]. However, in this section only the

discrete cavity model is described due to its straightforward implementation.

This method allows the vapour to be produced at a specific pipe location.

Depending on the solver strategy, these positions can be the grid points for

finite difference or the cells boundary interfaces for finite volume. Further

explanation is given in section 5 where the combination with the numerical

method is performed. Discrete cavity model consists of setting the pressure

at the vapour pressure as soon as the calculated pressure is lower or equal

to the vapour pressure. At that point, the vapour formation is calculated

as a function of the net flow rate. The net flow is the difference across two

adjacent cells. At this stage, the cell cannot accept further liquid flow due to

the fact that the pressure should be smaller than the cavitation pressure to

balance the equation. Therefore the surplus fluid is then formed as vapour,

calculated with equation 4.31.

˙Vcav = Qnet = Qout–Qin (4.31)

Furthermore, the pressure is maintained to the vapour pressure value

as long as the bubbles exists. Only when solution of equation 4.31 is zero

is the pressure allowed to increase. In addition, this method permits the

calculation of the peak pressure related to the water hammer formation due

to bubble collapse. The reason is given by the pressure gradient given by

the value that the fluid should have at the instance of bubble collapse and

the forced cavitation pressure value. In other words, the system sees a jump
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in pressure equal to pcalculated–pvapour.

4.6 Lumped Parameter model

In this section, the theory behind the lumped parameter method (LPM) is

given. The LPM condenses all the characteristics of the control volume into

one single point. Starting from the system of equations 4.15 and considering

constant density and neglecting the advective term the formulation can be

written as equation 4.32.


∂p
∂t + ρc2

A
∂Q
∂x = 0

∂Q
∂t + A

ρ
∂p
∂x = f(Q)

(4.32)

Resolving the spatial derivative as an incremental ratio, the formulation

drops into the form of equations 4.33.


∂p
∂t + ρc2

A
∆Q
∆x = 0

∂Q
∂t + A

ρ
∆p
∆x = R

(4.33)

Therefore the lumped parameter model consists of solving two separate

ordinary differential equations given in 4.34.


ṗ = ρc2

Al QNet

Q̇ = A
ρl∆p–f(Q)

(4.34)

The variation of the pressure is then related to the capacitance C = Al
ρc2

.

The value ρc2 is the inverse of the compressibility, namely the bulk modulus

E. However, the capacitance is different for liquid and gas. For the first

case, the formulation is equal to the ratio between the volume and the

bulk modulus, CLiquid = V
E . For gases it is CGas = V

pγ , where γ is the

transformation coefficient. In the case of a mixture flow, the effect is summed
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with the formulation 4.35.

1

CTot
=

N∑
i=1

1

CN
(4.35)

For the variation of the flow rate instead, the ordinary differential equa-

tion is a function of the inductance L = ρl
A .

In order to consider the losses given by the friction factor, equation 4.36

relates the pressure and the flow rate.

∆p = F (Q) ≈ fQ2 (4.36)

The lumped method is therefore a further simplification of the one-

dimensional system of equations. Also the space discretization is collapsed

to a finite difference and therefore, all the information related to the spatial

fluctuations are simplified.

4.7 Components

The response of the fluid inside a system is not only related to its fluid prop-

erties but also on the interaction that it has with the physical components.

In a positive displacement pump, there are different parts that drastically

affect the fluid behaviour. Accumulators or hydraulic dampeners, as well

as the valves, play a key role and mathematically can be seen as boundary

conditions providing information into the domain. The response in terms

of pressure and flow rate is then a function of the dynamic model of those

parts.

4.7.1 Valve

The valve description is crucial for an accurate prediction of the fluid be-

haviour, and its description is not straightforward. For instance, during the
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first instant of the opening phase, when the gap is very small, the viscous

effects are significant. This effect is not easy to model and is typically ne-

glected. Therefore, the velocity of the fluid through the gap is only related

to the pressure across the valve, the gap area, and the valve dynamics. In

order to model the mass flow rate through the valve, the Euler equation,

4.37, for incompressible fluid in one dimension is used[11].

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
–ρg = 0 (4.37)

Integrating along the streamline and neglecting the fluid weight, the

formulation can be written in the form of equation 4.38.

∫ l2

l1

(
ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x

)
ds = 0 (4.38)

The solution shown in equation 4.39 can be seen as an extension of the

Bernoulli equation, where the losses of the valve and the gap are included.

(p2 − p1) + ρ
u2

2

(
1 +

∑
ζi

)
+ ρ

∫ l2

l1

∂u

∂t
ds = 0 (4.39)

The term ζi is the loss value of each of the valve parts, while the friction

loss is given as λl
d [11]. The incompressible valve gap equation can be derived

in the form of equation 4.40.

(p2 − p1) + ρ
u2

2

(
1 +

flgap
dh

+
∑

ζi

)
+ ρ

∂u

∂t
lgap = 0 (4.40)

Although the inertia of the fluid is small, it plays an essential role during

the incipient valve lift moment. A limitation of this equation is given by the

constant density formulation. In fact, this is a big assumption for the high

cavitation regime, where the vapour can be formed in the valve gap. The use

of the simple Bernoulli equation could also be used. However, simulations

have shown this overestimates the gap velocity and is reflected in a higher
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pressure pulsation. In order to calculate the valve lift and the related gap

area, the valve equation of motion is solved. The second Newtonian law is

applied considering the following forces:

• Pressure force

• Spring force

• Preloaded force

• Viscous damping force

• Gravity force

The pressure force is affected not only by the valve area, but also by

the valve reaction itself. This behaviour is difficult to model with a one-

dimensional algorithm. Therefore a formulation that takes into account

detailed valve parameters must be embraced[20]. Two different approaches

from the literature were used, the Johnston[20] and Thiel[69] methods. Both

methods consider the pressure forces as a function of the pressure difference

multiplied by the area of the valve and a pressure coefficient Ψ. Although the

methods are similar, the first approach considers a second order formulation

given in equation 4.41.

Ψ = 1–2CD
AGap
AV

cosθ + 2
(
CD

AGap
AV

)2
= 1–2CD

x

φm
cosθ + 2

(
CD

x

φm

)2

(4.41)

Where AGap is the orifice area, namely the gap area, AV is the area of

the valve face, shown in figure 4.3, CD is the discharge coefficient, which

is experimentally estimated. Differently, the Thiel method considers three

different empirical parameters associated with the lift of the valve and the
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gap Reynolds number under the formulation 4.42.

Ψ = K0–K1
x

φm
−K2log(Regap) (4.42)

Figure 4.3: Valve and valve seat section, highlighting the valve gap area
AGap in red and the valve area AV in yellow.

4.7.2 Hydraulic dampener

Hydraulic dampeners are components that aim to reduce pressure pulsation

and prevent pressure peaks. They are challenging to model in a one di-

mensional description. Although their function is simple, the mathematical

description is not. Accumulators store the surplus fluid energy in the form

of pressure that will be released when a pressure deficit occurs. The phys-

ical function requires a two fluid interaction with different compressibility.

The compressibility of the gas works as the storage and dissipation, and the

modelling of this behaviour can be performed by the perfect gas law. In

spite of this description, there are two critical points: the maximum and

the minimum gas volume. Considering the theoretical operation, when the
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gas is compressed to the minimum volume the pressure is at the maximum

value. At that point, the gas cannot exchange any information with the

fluid, and its behaviour is similar to a boundary wall. The same behaviour

is found when the pressure is lowered to the minimum accumulator pressure,

and the volume is at the maximum value. In this case, the behaviour of the

accumulator can also be associated to a wall boundary. Therefore a sudden

stop of the fluid due to the maximum pressure or due to the maximum gas

volume being reached could create an non-physical pressure spike similar

to water hammer. In reality, this behaviour is not present. The reason

is given in the physical concept of gas compression that is not proportional

during the process. In addition, the behaviour of the accumulator is affected

by thermal hysteresis. In the research of Puddu and Paderi[70], and Pour-

movahed and Otis[71] it is shown the differences betweent the experiment

result and the ideal gas model. The differences in the results can result in

error of 20% in the case of pressure higher than 100 bar. In this research,

the issues were overcome by the introduction of an artificial function from

a matlab subroutine (detail in the mathworks website). This method di-

vides the accumulator into three volume sections, the fluid, the gas and the

dead volume. The dead volume is the minimum volume permitted in the

accumulator. The gas volume variation is calculated by the gas law equation

4.43, defining the process with the expansion coefficient γ (1 is isothermal

process).

pg = γ

√
Kgas

Vg
(4.43)

https://uk.mathworks.com/help/physmod/hydro/ref/gas-charged accumulator.html
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Figure 4.4: Hydraulic pressure response as function of the K+
s = Ksp and

K−s = Ksm values. The circle blue line is the isothermal transformation of
the gas, the black lines are the volume limits of the accumulator.

Where the Kgas is the constant gas function of the pre-charged pressure

and VG the total volume. To prevent an non-physical phenomenon, an

artificial pressure is added. The fluid pressure is then calculated as pF =

pg + pHS , the sum of the gas pressure and the artificial term given in the

relation 4.44.

PHS =


K+
s (VF − VC) +K+

d q
+
F (VF − VC), ifVF ≥ VC

K−s VF +K−d q
−
F VF , ifVF ≤ VC

0, otherwise

(4.44)
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The pHS term works only when the maximum or minimum volume is reached

by the fluid. Moreover, it is a function of two parameters that tune the fluid

pressure response in relation to the volume Ks and the flow rate Kd. An

example of the accumulator response with different parametrization is given

figure 4.4.



Chapter 5

Numerical Modelling of

pressure waves

The systems of equations and the algorithms described in chapter 4 cannot

be solved analytically. Therefore numerical techniques are required to ap-

proximate the solution. In addition, it is not guaranteed that the strategies

to solve the equations are stable and converge to the correct solution. For

these reasons, a careful analysis of the solution algorithms is required to pre-

vent drawbacks and understand their limitations. In this section, the finite

volume method is described as well as the ODE solver used to model the

PD pump. Furthermore, the solution of the water hammer equation solved

by the finite difference method is briefly introduced.

5.1 One dimensional Numerical modelling

The approach considered by the author consists of representing all parts

of the pump using a one-dimensional analysis. Therefore, to simulate the

pump behaviour using a one-dimensional analysis, it is required to represent

the original pump geometries with a series of constant area ducts. Taking

as reference the cross-section of a diaphragm pump reported in figure 2.2

67
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Figure 5.1: Representation of the PD pump in one-dimensional model.

the transition into a series of pipes can be seen in figure 5.1.

This approach is possible because the positive displacement pump itself

is composed of a series of pipes. Pipes that for the pump can be categorized

into:

• piston section,

• pre-chamber section,

• chamber section,

• suction section,

• discharge section.

Therefore the pump is simulated as a hydraulic system where the suction

and the discharge valves are the connecting boundaries with the external

hydraulic components. In fact, as it will be shown in chapter 7, multi

chamber pumps can also be modelled as a series of chambers interconnected
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Figure 5.2: Finite volume grid.

with connecting pipes. The fluid transient phenomenon is simulated in each

duct section and solved using the finite volume method, while the valve

dynamics is solved from the solution of the ordinary differential equation

ODE. In the next section, the numerical strategies to simulate the fluid

response using a finite volume one-dimensional treatment along with the

ODE solution methods.

5.2 Intro to Finite Volume method

The finite volume (FV) method is a numerical scheme used to solve partial

differential equations in the form of equation 5.1, where the s(u) is the source

term.

∂U

∂t
+
∂f(U)

∂x
= s(U) (5.1)

FV is commonly used for hyperbolic problems for its high reliability in

discontinuous behaviour. The concept is to divide the entire domain into

volumes to form a continuous grid of cells. As shown in figure 5.2, the

discretization consists of a centre variable value Unx , and two boundary flux,

f(Un
x± 1

2

).

Considering Uni as a variable spatially defined in the cell domain, the

centre value can be considered as the average of U at the time tn, expressed
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in the integral form 5.2.

Uni =
1

∆x

∫ xi+
1
2

xi− 1
2

U(t, x)dx (5.2)

The flux term is a function of the variable U , and the solution accuracy

strongly depends on the method used to calculate the centre value and at

the flux interface. The typical formulation for the finite volume strategy is

shown in equation 5.3.

Un+1
i = Uni −

∆t

∆x
(fn
i+ 1

2

− fn
i− 1

2

) + ∆ts(Ui) (5.3)

Different approaches are available in the literature, with both advan-

tages and disadvantages. For instance, the Lax-Wendroff, Lax-Friedrichs

and upwind methods are easier to compute but are more dissipative that

Godunov’s method[25].

Therefore, the algorithms differ in the discretization of the flux function

and in the calculation of the previous time step value. In this research,

the MUSCL scheme method is used, due to its versatility and less diffusive

behaviour when compared with other same order accurate methods[25, 26].

MUSCL Scheme

The Monotonic Upwind Scheme for a Conservative Law is a second order

method in time and space. It is an extension of the Godunov first order

upwind method where the constant piecewise formulation is replaced with

a linear interpolation function. To compute the solution, three steps are

required[25, 26]:

1. Data reconstruction

2. Evolution

3. Riemann solution



CHAPTER 5 NUMERICAL MODELLING OF PRESSURE WAVES 71

Figure 5.3: MUSCL grid.

Data reconstruction consists of evaluating the boundary values with the

slope ratio function given in equation 5.4. A graphic representation of the

linear extrapolation and the Godunov constant piecewise function is shown

in figure 5.3.

Ui(x) = Ui +
∆U

∆x
(x− xi), ε

[
x− 1

2
, x+

1

2

]
(5.4)

The main difference is given by the variables point values used to compute

the function. In the Godunov scheme the boundaries and the center cell have

the same values. For the MUSCL scheme instead, two interface boundary

values, different from the center cell are calculated as shown in figure 5.3.

For each cell there are respectively ULi , URi , where L is the left value and R

the right.

At this stage, the evolution step takes place for a half time step. Where

the evolved boundaries are calculated with equation 5.5.

ŪL,Ri = UL,Ri +
∆t

2∆x

[
f(uLi )− f(uRi )

]
(5.5)

The presence of two distinct values at each boundary of the cell does not

affect the conservative form of the algorithm. Schemes are defined conser-

vative if the flux of the entire domain is equal to the sum of each adjacent
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control cell[64]. This property is essential for accuracy purposes.

The two calculated values at the interface are the initial condition of the

Riemann problem. The Riemann problem, given in equation 5.6, is a spatial

initial value problem useful to understand the propagation of a discontinuity.

The analytical solution is achieved by computing the eigenvalues and the

eigenvector of the Jacobian matrix[25].

U =


UL, ifx < xi− 1

2

UR, ifx > xi− 1
2

(5.6)

In that context, the initial value corresponds to UL = ŪRi and UR = ŪLi+1.

Using the characteristic formulation, the value of the pressure and the mass

flow rate at the cell boundary can be calculated analytically by equation

5.7[25, 66].

[U ]i+ 1
2

= [J ]i[ML]i[U ]Ri + [J ]i+1[MR]i+1[U ]Li+1 (5.7)

In equation 5.7 the Jacobian matrix depends on the i cell, due to the

speed of sound variation. Each cell can have different propagation speed

due to cavity formation and pressure values. In addition, the value of the

interface at the right side of the cell uRi is multiplied by the left matrix ML
i

due to the Riemann notation. The value of the characteristic propagation

at the interfaces are defined by 5.8 and 5.9.

[
ML

]
=

 Λ1
Λ1−Λ2

c2

A(Λ2−Λ1)

A(Λ1Λ2)
c2(Λ1−Λ2)

λ2
Λ2−Λ1

 (5.8)

[
MR

]
=

 − Λ2
Λ1−Λ2

− c2

A(Λ2−Λ1)

− A(Λ1Λ2)
c2(Λ1−Λ2)

− Λ2
Λ2−Λ1

 (5.9)

In this condition, the internal boundaries are always explicitly calcu-

lated from the two adjacent cells. At the real boundaries, there is just one
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characteristic function. For that reason, it is required to define one of the

two variables and evaluate the second. For example, in the case of piston

motion, the mass flow rate is defined as: ṁ = ρAP ẋp and the pressure value

is computed by the characteristic function. In the case of the reservoir or

an accumulator system, the pressure is set, and the mass flow rate is cal-

culated. In the case of pipe connections, the boundary is calculated with

function 5.7 where different pipe component values ML
1 and MR

2 are used.

With this consideration, a multi-junction can also be defined. For instance,

a T junction is calculated from a mass flow rate continuity equation with

three different values of ML and MR.

Total Variation Diminishing algorithm

The Total Variation Diminishing scheme are algorithm that satisfy the in-

equality 5.10, where the quantity TV (U) =
∫∞
−∞ |U̇(x)|dx, .

TV (Un+1) ≤ TV (Un) (5.10)

To produce a TVD-MUSCL scheme the MUSCL scheme required a

change to the linear extrapolation of the cell boundary defined in section

5.2. For the data reconstruction, a slope function of the variable U is calcu-

lated with the slope limiter function Ψ. The use of a slope limiter reduces

noise and non-physical oscillations by computing the backward and forward

information ratio ri defined in equation 5.11.

ri =
Ui − Ui−1

Ui+1 − Ui
; (5.11)

Equation 5.11 highlights the requirement for ghost cells to evaluate the

first and the last real interface. The boundary interpolation scheme is used

to ensure the same order of accuracy even through a boundary. In order to

obtain a TVD algorithm, Sweby[72] provided the function limitation region
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Ψ where the slope formulation must be bounded. Figure 5.4 shows the

standard slope function and the TVD region in blue.

5.3 Ordinary Differential Equation

Ordinary differential equations are used in three main areas in this research.

The first is related to the splitting method, in order to reintroduce the source

term. The second is related to the valve dynamics to obtain the valve lift

(section 5.6). The third is given to the Lumped Parameters Method (section

4.6). The ODEs can be solved with different strategies and a general view

of the available approaches can be seen in figure 5.5[73].
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Figure 5.5: Scheme of ODE solver strategy.

As shown in the graph, there are three ways to categorize the ODE solver

strategies.

• Steps, where previous time steps are considered.

• Stages, where more phases at the same time step are involved.

• Derivatives, where more terms of the Taylor series are used.

The first category includes the linear multistep algorithms where the

solution is computed with a linear polynomial function of the previous time

steps. To this category belong the Adam methods. The stages formulation,

use a weight evolution formulation of the same time step. The derivative

methods, use more terms of the Taylor derivative approximation. All of these

strategies can be combined together to have a mix of algorithms. However,
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in this context, only the Runge-Kutta of the fourth-order (RK4), second-

order Adam-Bashforth (AB) and Euler (EU) methods are analysed. The

RK4 approach is used for its simplicity and computational performance.

∂Ũ

∂t
= s(Ũ) (5.12)

The algorithm evaluates the slope derivative function in four consecutive

evolution points.

Un+1 = Un +
∆t

6
(k1 + 2k2 + 2k3 + k4) (5.13)

Where the term ki is computed as:

• k1 = f(tn, Un), the derivative calculated from the slope at the previous

time step tn, equal to the Euler’s method. This value is given by the

solution of the homogeneous partial differential equation.

• k2 = f(tn + ∆t
2 , U

n + k1
2 ), the derivative calculated from the slope at

the midpoint, taking into account the increment given by half of k1;

• k3 = f(tn + ∆t
2 , U

n + k2
2 ), the derivative calculated from the slope at

the midpoint, taking into account the increment given by half of k2;

• k4 = f(tn + ∆t, Un + k3), the derivative calculated from the slope at

the end of the time interval, taking into account the overall increment

given by k3.

To simulate the valve dynamics, Adam-Bashforth or the Euler method

are used[73]. The RK4 could be used even in this case, however the required

amount of coding is not trivial, although further research in that direction

should be performed. The Euler method requires only one point of cal-

culation and in the case of the explicit method has the form of equation

5.14.
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Un = Un−1 + ∆tf(Un−1) (5.14)

Meanwhile, the explicit Adam-Bashforth method requires two previous

time steps, and the formulation is given in equation 5.15.

Un = Un−1 +
3

2
∆tf(Un−1)− 1

2
∆tf(Un−2) (5.15)

5.4 Stability criteria

The Euler and Adam-Bashforth approaches are linear multistep methods

for non-stiff problems. The common formulation of this method is given in

equation 5.16.

Un =
k∑
i

αiU
n−i + ∆t

k∑
i

(
βif(Un−i)

)
(5.16)

The Euler method has k = 1 and β1 = 1. While the Adam-Bashfort

method has k = 2 and β1 = 3
2 and β2 = −1

2 . This notation allows the

computation of a stability analysis in an efficient way. To evaluate the

algorithm response, the characteristic polynomial of the methods λ, must

be evaluated. To be stable the time step should satisfy the condition of

|λ| < 1. The linear formulation of the AB method is reported in equation

5.17 while the characteristic polynomial is shown in 5.18.

Un = Un−1 +
3

2
∆tqUn−1 − 1

2
∆tqUn−2 =

(
1 +

3

2
z
)
Un−1 − 1

2
zun−2 (5.17)

|λ| = |ω2 −
(

1 +
3

2
z
)
ω − 1

2
z| ≤ 1 (5.18)

Solving the inequality formulation gives the region where the algorithm
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is stable. Proceeding with the same method for RK4 and Euler algorithms,

the stability region is calculated and plotted in figure 5.6.

The AB method is more accurate than the Euler method, however to be

stable requires a smaller time step. This is not an issue, because the explicit

MUSCL scheme requires the satisfaction of the Courant CR condition that

is smaller than for the other algorithms. In fact, the CR condition, given in

equation 5.19, is more restrictive than the other methods stability condition.

CR =
c∆t

∆x
≤ 1 (5.19)

The mathematical prove of the stability condition for MUSCL scheme

can be found in[74] The value of the CR number play an important role in

the numerical dissipation phenomenon[25, 26].
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Figure 5.7: Characteristic grid.

5.5 Classic Water hammer formulation

Different, from the algorithm developed for the compressible FV algorithm,

the water hammer formulation is commonly solved with the finite difference

method. In this section only the theory of the solution is reported, while

for a more complete description Wylie et al.[27] is cited. The Method Of

Characteristic (MOC) is a mathematical technique to transform the partial

differential equation into an ODE, by considering an external observer view.

The water hammer system reported in equation 4.27 is then transformed

into the system 5.20.


dQ
dt

c
gA + dH

dt + f
2gDA2 |Q|Q = 0, for dxdt = c

dQ
dt

c
gA −

dH
dt + f

2gDA2 |Q|Q = 0, for dxdt = −c
(5.20)

Referring to figure 5.7 and gathering together the known magnitude

B = c
gA and R = f∆x

2gDA2 , the solution by the finite difference method allows

the solution of the linear system of equations 5.21.
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
C+ : HP = CP −BPQP

C− : HP = CM −BMQP
(5.21)

The four parameters are related to the previous time step by the relation

5.22.


CP = Hi−1 +BQi−1, BP = B +R|Qi−1|

CM = Hi+1 +BQi+1, BM = B +R|Qi−1|
(5.22)

The power of this method is the computational calculation efficiency. In

fact, the equations 5.22 show that each point is related only to the adjacent

points, i ± 1 and not to the previous i. This allows the algorithm to be

further simplified with a staggered grid, namely considering only half of the

fluid domain. However, as shown in figure 5.7 the information must be given

from the points A and B. If this condition is not respected, interpolation

schemes described in the literature review, section 3.2, must be introduced.

This methods introduce higher numerical dissipation phenomena.

5.6 Valve: numerical solution

The fluid behaviour at the valve is modelled by taking into account the

dynamic response of the valve itself. Therefore, to evaluate the valve lift and

consequently the valve seat gap area , it is required to solve the Newton’s

second law. At this stage the forces acting on the valve are all explicitly

calculated as equation 5.23.

mvẍv = FP − FK − FPre − FC − FG (5.23)

where:

• Pressure force, FP = ΨAV (pn
n+ 1

2Down
–pn1

2Up
),
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• Spring force, FK = Ksx
n
v , where K is the spring characteristic function.

• Preloaded force FPre

• Viscous damping force FC = Cdẋ
n
v

• Gravity force FG

Where the superscript n indicates the previous time step. The pressure

force coefficient, Ψ is calculated using equation 4.42. The three empirical

value reported in equation are reported in appendix A.5. Numerical instabil-

ity occurs for the case of closed valve due to the term log(Regap) in equation

4.42, that is overcome by considering a minimum value of ReGapmin = 1e−6.

The value of (pn
n+ 1

2

)Down and (pn1
2

)Up refer to the boundary pressure val-

ues at the downstream and upstream pipe that are connected to the valve.

Solving the valve dynamic equation is performed with a Leapfrog integration

method[73] where each stage is calculated with the AB method. In detail,

the valve velocity is obtained by equation 5.24 with the approximated form

given in equation 5.17 is applied.

ẋn+1
V = ẋnV +

∑
Fi
m

(5.24)

While the valve lift is calculated with the implicit formulation of the

velocity, equation 5.25.

xn+1
V = xnV + f(ẋn+1

V ) (5.25)

Once the gap area is calculated from the valve lift, the mass flow rate

is implicitly calculated. An iterative implicit solution of equation 4.40 is

solved with the Newton-Rhapson method. The algorithm consists of:

• a guess value of the mass flow rate, using a random function, is calcu-

lated.
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• calculate the function f(ρQ) (equation 4.40 ) and its derivative ḟ(ρQ)

• evaluate the value of ρQ = ρQguess–
f(ρQ)

ḟ(ρQ)

• calculate the relative error err = |ρQ− ρQguess|

• continue the iteration if the relative error has not reached the specified

value.

The implicit iterative solution of the boundary value was required to

avoid numerical instability.

5.7 Pipe fluid transient structure code

The fluid transient algorithm in a simple duct is the baseline code for the

pump simulation. In addition, the developed code was used primarily to

validate the result with the methodology available in the literature. The

code structure is shown in figure 5.8 where the steps can be described as:

1. initialize the domain with the initial data;

2. calculate the optimal time step to satisfy the Courant condition from

the speed of sound;

3. check if the time exceeds the final time;

4. calculate the boundary conditions in terms of pressure and mass flow

rate;

5. apply the MUSCL scheme and the TVD limiter;

6. check the pressure value with the cavitation model;

7. update the variables: density, volume fraction of vapour and non-

condensable gas, speed of sound and eigenvalues;
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8. goto point 2

The strategy to reach the solution, passes to the cavitation algorithm,

where an if clause is performed. The algorithm calculates the pressure at

each half cell, and the following possibilities are considered:

• pressure higher than cavitation pressure;

• pressure higher than cavitation pressure but with cavity volume bigger

than zero;

• pressure lower than cavitation pressure.

The cavitation pressure value is related with the temperature by data

available in literature that for 20 degree gives a vapour pressure equal to

2338 Pa[75].

Therefore, the cavitation algorithm consists of three different output

conditions. Where the pressure is found not to be less than the cavita-

tion pressure and the cavitation is zero, the algorithm continues with the

calculation of the fluid variables. When the pressure is lower than the cavi-

tation pressure, the pressure is imposed at the vapour pressure value. When

the pressure is higher than the cavitation pressure, but vapour bubbles are

still present, the algorithm keeps the pressure at the vapour pressure level.

When the pressure exceeds the vapour condition and all the formed bubbles

collapse, the algorithms continue with the ideal strategy.

The cavitation algorithm calculates the amount of the vapour volume

integrating the equation 4.31. The value is computed with the equation

5.26:

Vcav =

∫ tn+1

tn

(
ρQn+1

j

ρm
n+1
j

−
ρQn+1

j+1

ρm
n+1
j+1

)
dt (5.26)

Referring to figure 5.9, the algorithm allows cavitation to be formed,

grow and collapse only in between the two half cells. Therefore, in the case
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Figure 5.8: Code structure for water hammer simulation.
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Figure 5.9: Cavity grid description.

of a pressure lower than the vapour pressure in one or in both cells, the

pressure is set to the cavitation value in both.

Given the pressure, the vapour volume fraction αi and the mass flow rate

in the entire domain, the algorithm calculates the mixture density, with the

homogeneous equation 5.27.

ρm = ρL

(
1−

N∑
i

αi

)
+

N∑
i

ραiαi (5.27)

Each term of equation 5.27 is calculated with equations 5.28.


ρL = ρLRef exp

1
K

(p−pref )

ραi = p
RαiTamb

(5.28)

At this stage, the algorithm proceeds to calculate the speed of sound

of the fluid mixture with the equation 5.29 given by Brennen[51]. This

approach consider the overall behaviour of the homogeneous fluid and no

different slip velocity between the phases is computed.

1

c2
m

= ρm

(∑N
i αi
kp

+
1−

∑N
i αi

ρLc2
L

)
(5.29)

Figure 5.10 shows the effect that the second phase has on the speed of

sound. The graph consists of a three-dimensional logarithmic plot wherein
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Figure 5.10: Variation of speed of sound.

the XY plane evaluates the volume fraction of the vapour and non-condensable

gas phases. A small percentage of the second phase changes the propagation

velocity drastically. Therefore this step is a crucial point in the algorithms

to evaluate the effect of the cavitation phenomenon effectively.

Thanks to the simplicity of the system simulated, namely a straight

pipe, a further improvement in the speed of calculation is performed. A

Fluid-Structure Interaction (FSI) model is included to calculate the speed

of sound for pure liquid and corrected with the effect of the pipe elasticity.

The algorithms consists of the Korteweg formulation[76] shown in equation

5.30.
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

β = 2
[(φ+2s)2−φ2]

((1− ν)φ2 + (1 + ν)(φ+ 2s)2)

c∗L =
√

B
ρL

c2
L =

c∗
2

L

1+
ρLβc

∗2
L

E

(5.30)

where ν is the Poisson value, s the thickness, φ the diameter and B the

bulk modulus. Two different approaches for the discrete cavity algorithm

can be used: Discrete Vapour Cavity Model (DVCM) and Discrete Gas Cav-

ity Model (DGCM). The two methods are similar except that the DGCM

includes the non dissolved gas in the solution, a further phase. The con-

centration of Non dissolved gas is expressed in volume fraction αGas0. The

DGCM uses the same algorithm developed by Zhou et al.[32] where a Non

condensable gas parameter (NCGp) is used to prevent numerical instability.

This parameter has a significant effect on the numerical dampening of the

scheme. When the NCGp value is equal to one, the gas initially dissolved

in the fluid is entirely ignored making the DGCM equal to DVCM, whereas

when it is equal to zero, the cell assume that each cell has the gas pressure.

The pressure equation is then calculated with the equation 5.31[32].

pn+1
j = NCGp • pn+1

j + (1−NCGp) • pgasj (5.31)

5.8 Pump modelling approach

The structure of the code for evaluating the pump performance is slightly

different from that for a pipe. First and foremost, the FSI for the pure liquid

is not active in this context for two main reasons:

• the stiffness of the material in the pump is much higher than a simple

pipe, therefore the variation is negligible.

• the thickness of the wall is not always constant, hence the Korteweg



CHAPTER 5 NUMERICAL MODELLING OF PRESSURE WAVES 88

equations are not easily applicable.

Figure 5.11: Code structure for pump simulation.
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Therefore the bulk modulus speed of sound formulation is used for the

liquid phase.

Secondly, the system network requires to model junctions, valves and hy-

draulic dissipation systems. These parts are considered as internal bound-

aries and solved at the beginning of each time step solution. The logical

structure of the code is shown in figure 5.11.

5.9 Conclusion

In this section the numerical methods used to solve the system of equation

developed in the previous section were explained. The section included a

description of the MUSCL scheme with the TVD algorithm and the ap-

plication to the ordinary differential equations used for solving the valve

dynamics and other components. In addition the classical water hammer

formulation was shown to give a broader understanding when methods are

compared in the next section. The code structure for both pump and simple

pump duct was given for an understanding of the procedure to reach the

solution. This section is the baseline required to understand the validation

of the method given in section 6 and the simulation of the pump analysed

in section 7.



Chapter 6

Validation of pressure waves

model

Although the aim of this project is to model a positive displacement pump

including cavitation, the algorithm was initially validated for a single duct.

Therefore, in this section, the comparison of the developed model (DM) by

the author with data available from the literature is given.

Figure 6.1: Test rig of Simpson experimental data[77].

Two different experimental rig layouts were considered, and in figure 6.1

is shown the layout of the Simpson experimental test[77].

• Simpson, with a 36 m copper pipeline, connecting tanks with a height

90
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difference of 1.37 m, and an inner diameter of 0.01905 m.

• Pezzinga and Cannizzaro, with a 37.2 m copper pipeline, connecting

tanks with a height difference of 2.03 m, and inner diameter 0.0221m.

For both test rigs, the transient fluid phenomenon was created by a

sudden closure of a ball valve mounted at one end of the pipe. However,

Pezzinga and Cannizaro modelled the closure of the valve with a specific time

of closure TC , reported in table 6.1. Simpson used the exact fluid velocity

profile at the valve extrapolated from the experimental observation.

A summary of the data sources and simulation characteristics are shown

in table 6.1.

Table 6.1: Experiment cases

# Case V0 [m/s] pref [Bar] Tc [sec] D [m] L [m] c [m/s] Source

1 0.239 0.9918 - 0.01905 36 1280 Simpson[77]
2 0.332 0.9917 - 0.01905 36 1280 Simpson[77]
3 0.401 0.9939 - 0.01905 36 1280 Simpson[77]
4 0.466 0.9939 - 0.01905 36 1280 Simpson[77]
5 0.507 0.9938 - 0.01905 36 1280 Simpson[77]
6 0.596 0.9918 - 0.01905 36 1280 Simpson [77]
7 0.696 0.9918 - 0.01905 36 1280 Simpson[77]
8 0.938 0.9918 - 0.01905 36 1280 Simpson[77]
9 1.125 0.9918 - 0.01905 36 1280 Simpson[77]
10 0.300 2.1539 0.006 0.0221 37.2 1318 Pezzinga[37]
11 1.400 2.1539 0.006 0.0221 37.2 1318 Pezzinga[37]

The idea behind this two approaches is to evaluate the wave propagation

in pipe and indirectly calculate the cavitation phenomenon effect. In fact,

the amount of cavitation is extrapolated from the pressure history profile.

6.1 Experiment comparison

The solution of the partial differential equations by the finite volume method

depends on several different factors. The behaviour of the solution for the

developed model can change due to numerical or model parameters. There-

fore the models performance is evaluated in relation to:
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• Compressibility, where the compressible developed model is compared

with the constant density developed model, in finite volume treatment.

• DGCM/DVCM, where the two multi-phases fluid flow models are com-

pared.

• αGas, where the model response is studied as a function of the initial

gas in solution.

• Grid size, where different grid size values are used.

• Courant Number, where the stability condition is reduced.

• Advective Term, where the effect on the model of neglecting the ad-

vective term is assessed.

6.1.1 Compressibility

Compressibility is the capacity of the fluid to change its volume in relation

to the applied pressure. The developed algorithm consists of a homogeneous

flow, and the fluid can be a mixture of gas and liquid. For this reason, the

compressibility can play an essential role due to the different responses that

the two phases have. To investigate these two different cases the model

settings shown in table 6.2 were used.

Table 6.2: Simulation parameters for developed model vs incompressible
DM

Simulation Variable

CR 0.9

Grid size 0.14 m

Algorithm DGCM

Initial gas in solution αGas0 10−7
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(c) Pressure at 9 m.

Figure 6.2: Evaluation of the compressibility effect for the developed model
for case 7. Red line is DM, blue line is constant density developed method
and the black line is the experimental data.
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Figures 6.2 and 6.4 are respectively the pressure profile for the cases 5

and 7 in table 6.1. For Figures 6.2, a series of three wave reflections are

captures. Figure 6.2a represent the pressure history at the valve, where the

black line is the measured value captured with a pressure transducer.

Figure 6.2b and 6.2c are the pressure profiles respectively at 27 meter

and 9 meter. The high pressure wave shown in the picturs are refered to

the cavitation bubble collapse. In both cases analysed, the compressible

algorithm (DM) matches the experimental results better than a constant

density developed algorithm, where the later overestimates the maximum

pressure value. In addition, the constant density developed strategy does

not predict exactly the time of the third reflection wave for case 7, figure

6.2.

Differences are highlighted in the peak pressure where a lower value is

reached by the compressible model. For the Joukowsky formulation, the

variation in the pressure is given by the variation in velocity multiplied by

the speed of sound and the density. The compressible model has two density

variations, given by the presence of the second phase and the liquid density

variation. Albeit, the later is commonly negligible for the experiment is

pressure range. However, the second phase reduces the overall density, and

the effect can be seen in figure 6.3 where both the density and the vapour

volume fraction at the valve are given. The variation in the density is

not high, for this velocities. The maximum pressure variation is 0.5% and

reader can judge of the value of this approach. The algorithm is performed

for describing the pump behaviour where the fluid velocity around the valve

can reach dozens of meter per second and the variation due to cavitation

can change reducing the overall density. However in that condition is more

important the variation in the speed of sound related function of the density,

as shown in figure 5.10.
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(a) Vapour Volume fraction.
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Figure 6.3: Density and vapour volume fraction profile for compressibility
effect evaluation for case 7. Red line is the developed model and blue line
is the constant density developed method.

In case 5, the differences are less evident. this time the simulated time

allow to capture four wave reflection. The delay in the reflection wave is

still present although minimal as shown in figure 6.4. More evident is the

higher value of pressure reached for the constant density developed algorithm

rather than the compressible method, especially for the first peak pressure

at 9 m, figure 6.4c. In addition, the compressible method better matches the

experimental result compared to the constant density developed algorithm

in terms of time for the wave reflection. A high-frequency response is shown

in all of the pressure history profiles. This phenomenon is also present in
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(c) Pressure at 9 m

Figure 6.4: Evaluation of the compressibility effect for the developed model
for case 5. Red line is DM, blue line is constant density developed method
and the black line is the experimental data.
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the algorithms of Daude et al.[48], Pezzinga and Cannizzaro[37], and Zhou

et al.[31, 32].

6.1.2 Comparison DGCM and DVCM

In this section, a comparison of the results of the DM using the discrete gas

cavity model and the discrete vapour cavity model is given. The simulations

are shown respectively for case 2 and 8 in table 6.1, and the simulation

parameters are reported in table 6.3.

Table 6.3: Simulation parameter for DGCM and DVCM comparison

Simulation Variable

CR 0.9

Grid size 0.14 m

Initial gas in solution αGas0 10−7

The response of the algorithms are very similar as shown in figure 6.5.

The effect of the NCG is limited. However, the presence of the third fluid

changes the response of the maximum pressure peak and in the time of the

wave reflection. The pressure peak value is slightly lower for the DGCM

method, due to the reduction in density and speed of sound.

However, considering case 8, the main difference is shown in the second

wave reflection. In figure 6.5a, close to 0.5 seconds the DGCM produced

the peak pressure that is not present in the DVCM. The reason for this

behaviour is found in figure 6.5b. The cavity collapse time for the DGCM is

different from the DCVM case. Considering equation 6.1, the density in the

denominator is different for the two models. For the same mass flow rate,

the variation of the cavity volume is more relevant for the DGCM algorithm

due to the less density value.

Vcav =

∫ tn+1

tn

(
ρQn+1

j

ρm
n+1
j

−
ρQn+1

j+1

ρm
n+1
j+1

)
dt (6.1)
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Figure 6.5: Evaluation of the DGCM and the DVCM algorithms for the
developed model for case 8. Red line is DM with DGCM, blue line is the
DM with DVCM and the black line is the experimental data.
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Figure 6.6: Evaluation of the DGCM and the DVCM algorithms for the
developed model for case 2. Red line is DM with DGCM, blue line is the
DM with DVCM and the black line is the experimental data.
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The differences between the models becomes less evident when the speed

is reduced to the value of the case 2, as shown in figure 6.6. Even in this

case the amount of vapour affects the pressure value history, although barely

seen in figure 6.6a.

Summarizing, the two algorithms performed in a similar way, although

the presence of the third fluid improves the response of the model. The

same trend of behaviour can be highlighted by comparing the DGCM and

DVCM model performed by Zhou et al.[31, 32].

6.1.3 Influence of the initial dissolved gas value

In this section, the effect of non-condensable gas is studied. The simulated

parameters are reported in table 6.4. The initial gas fraction values are

αGas0 = 1−10, 1−7, 1−5. The simulation is shown for cases 6 and 3 respec-

tively.

Table 6.4: Simulation parameters of initial void fraction comparison

Simulation Variable

CR 0.9

Grid size 0.14 m

Algorithm DGCM

The variation in the pressure profile is not really significant for the sim-

ulated range. The main differences are shown in cavity formation and the

speed of sound. Both figure 6.8 and 6.7 show the same fluid behaviour, al-

though differences are shown in the figure 6.7c and 6.8c. Higher content of

NCG creates a higher speed of sound variation. Therefore, only a significant

amount of NCG changes the algorithm response, agreeing with the results

given by Wylie et al.[27].
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(b) Density at the valve
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Figure 6.7: Evaluation of the void fraction effect for the developed model for
case 6. red line is DM with αG = 1−10, green line is the DM with αG = 1−7,
blue line is the DM with in αG = 1−5 and black line is the experimental
data.
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Figure 6.8: Evaluation of the void fraction effect for the developed model for
case 3. red line is DM with αG = 1−10, green line is the DM with αG = 1−7,
blue line is the DM with in αG = 1−5 and black line is the experimental
data.
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6.1.4 Influence of the grid size

The grid size study is a crucial parameter for the model performance. The

numerical method is consistent if by decreasing the mesh grid size, the

truncation error given by the method itself decreases. This is a key factor

that in combination with stability, is necessary but not sufficient to have a

converged algorithm [25, p. 142]. The experimental results are given for the

cases 1, 3 and 9 with the parameters in table 6.5:

Table 6.5: Simulation parameter for grid refine comparison

Simulation Variable

CR 0.9

Algorithm DGCM

Initial gas in solution αGas0 10−7

The variation of the grid points are for all the experiment 32, 256 and

1024 grid cells. In case 1, cavitation did not occur; therefore the experi-

mental pressure profile is smeared out only by the dissipation term. In this

condition, the algorithm does not simulate the real dissipation. The simu-

lation results in an overestimate of the pressure profile compared with the

experiment, figure 6.9. The reason can be found in the reseach conducted

by Ghidaoui et al.[28]. During the water hammer formation, the friction

term becomes extremely important when the non-dimensional friction term

described in equation 3.6, has Γ ≥ 1. This condition is often achieved when

the simulation exceeds the second reflection cycle. In this condition, the

algorithm shows its limitation, no matter the grid size. Indeed smaller grid

sizes produce better result thanks to its higher dissipation effect.

When cavitation occurs, the algorithm performs better for smaller mesh

grids as shown in figures 6.10 and 6.11. For the case of 32 grid cells, the

pressure reflection is faster. In addition, the amount of cavity formation is

consistently less than the case of 256 or 1024 cells.
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(c) Pressure at 9 m

Figure 6.9: Evaluation of the grid size for the developed model for case 1.
red line is the DM with 1.125 m (32 cells), green line is the DM with 0.14
m (256 cells), blue line is the DM with 0.035 m (1024 cells), and the black
line is the experimental data.
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Figure 6.10: Evaluation of the grid size for the developed model for case 3.
red line is the DM with 1.125 m (32 cells), green line is the DM with 0.14
m (256 cells), blue line is the DM with 0.035 m (1024 cells), and the black
line is the experimental data.
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Figure 6.11: Evaluation of the Grid size for the developed model for case 9.
red line is the DM with 1.125 m (32 cells), green line is the DM with 0.14
m (256 cells), blue line is the DM with 0.035 m (1024 cells), and the black
line is the experimental data.
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Table 6.6: CPU time [sec] vs Grid Size

V0 [m/s]
Grid size

1024 256 32

0.239 379.1 24.8 1.1

0.401 353.5 28.48 1.33

1.125 421.1 28.16 1.4

Refining the mesh to 1024 points, increases the high-frequency noise in

the pressure profile, as a highlighted in figure 6.11a. However, the amplitude

is drastically reduced compared with the case of 256 cells. Furthermore, for

case 3, the reduction in the mesh has two beneficial effects. First and fore-

most the smoothing effect on the pressure profile and secondly by improving

the response of the algorithm for third and fourth reflected waves.

The improvement in the result given by the refined mesh is evident.

However as reported in table 6.6, the CPU time required changes signifi-

cantly. For higher speed, a variation in the grid size of 4 times increases the

CPU time by 15 times.

6.1.5 Influence of the Courant number

Investigating the stability factor gives an understanding of the dissipation

of the method as well as any behaviour that is not physically realistic. The

Courant variation is shown only for case 9 with simulated parameters re-

ported in table 6.7.

Table 6.7: Simulation parameters for Courant number simulation

Simulation Variable

Grid size 0.14 m

Algorithm DGCM

Initial gas in solution αGas0 10−7
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(c) Pressure at 9 m

Figure 6.12: Evaluation of the Courant number for the developed model for
case 9. Red line has a CR = 0.9, green line has a CR = 0.8, blue line has a
CR = 0.5, and the black line is the experimental data.
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Decreasing the Courant number increases the stability; however at the

same time the effect of numerical dissipation occurs[25]. The overall re-

sponse of the second-order compressible model does not seem to change

with the Courant number significantly. Moreover, as shown in figure 6.12,

the high-frequency pressure oscillations are drastically reduced. Considering

cavitation formation, a decrease of the Courant number does not affect the

overall cavitation result, figure 6.13.
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Figure 6.13: Evaluation of the cavity profile for the developed model for case
9. The values of the Courant factor are: red line has a CR = 0.9, green line
has a CR = 0.8, blue line has a CR = 0.5, and black line is the experimental
data.

6.1.6 Influence of the advective term

As already pointed out in the literature[28, 66], the advective term is com-

monly neglected for water hammer description.

Table 6.8: Parameters of advective model formulation

Simulation Variable

CR 0.9

Grid size 0.14 m

Algorithm DGCM

Initial gas in solution 10−7 ppm
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Figure 6.14: Evaluation of the advective term for the developed model for
case 7. Red line is the complete equation, blue line is without and the black
line is the experimental data.
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(c) Pressure at 9 m

Figure 6.15: Evaluation of the advective term for the developed model for
case 8. Red line is the complete equation, blue line is without and the black
line is the experimental data.
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However, it becomes more important as soon as the speed of sound is

of the same order of magnitude as the fluid velocity. The ratio between

the speed of sound and fluid velocity, namely the Mach number, can change

in the transient fluid phenomenon. The increase of the Mach number can

occur not only due to the increase of the fluid velocity but also in relation

to the reduction of the speed of sound.
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Figure 6.16: Comparison of the speed of sound for the developed model
at the valve. Red line is the complete equation, blue line is without the
advective term and the black line is the experimental data.

The Mach number for fluid flow in a duct is typically less than 0.01[66].

However, during the cavity formation, the speed of sound can decrease, and

the Mach number can reach a value of 0.1. The study of the effect of this



CHAPTER 6 VALIDATION OF PRESSURE WAVES MODEL 113

term is given for cases 9 and 4 with simulated parameters given in table 6.8.

In figure 6.14 and 6.15 are shown respectively the pressure profile for the

higher and lower initial fluid speed. Meanwhile, in figure 6.16 the speed of

sound at the valve is shown.
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(a) Pressure profile
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Figure 6.17: Example of pressure profile and Mach number at the valve
considering the advective term blue line, and neglecting red line.
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Although the speed of sound is drastically reduced, the effect of the

advective term is still negligible. Even in case 9 where the speed of the

fluid is 1.125m/s the Mach number only reaches a maximum value of 0.002.

The advecting term does not change the accuracy of the algorithm since

the Mach number is too small. Considering the result, it can be argued

that the value of this term inside the algorithm is negligible. However, the

main idea behind this term is related to the pump model. During valve

cavitation in the pump, the fluid speed in the valve could reach a value

of tens of meters per second. In the case of cavitation, the local Mach

number can reach a value of 0.1. Therefore the advective term is important

in the description of the dynamics of the fluid by adding more dissipation.

A simulation of a fluid with an initial velocity of 5m/s was performed to

consider the increased effect of the advective term. Figure 6.17 shows the

importance in the delay and dissipation. The variation in the fluid response

is related to the eigenvalues of the system. Neglecting the advective term the

fluid response is faster, figure 6.17b. In conclusion, for the studied velocity

range, the advective term is negligible. It is only required for higher Mach

numbers to see its effect.

6.2 Comparison with other algorithms

In this section the comparison of the model developed by the author and the

available algorithms in the literature is presented. Although, in the literature

there are different approaches to solve the water hammer equations, this

discussion is focused only on the following methods.

• Method of characteristics

• FV solution with constant density and speed of sound for DVCM

model developed by Zhou et al.[31]

• FV solution with a compressible model developed by Daude et al.[48]
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• FV solution for 2D and 1D models with a constant speed of sound and

density[37]

The method of characteristics consists of solving the classical water ham-

mer with finite difference methods reported in section 5.5. The finite volume

method designed by Zhou et al.[31] is a variation of the Wylie[27] DVCM for-

mulation where a finite volume method with second order MUSCL scheme

is performed. The other two methods are completely different in approach

and equations. Daude et al.[48] uses the system of equations shown in 6.2.



∂(ρA)
∂t + ∂(ρuA)

∂x = 0

∂(ρuA)
∂t + ∂(ρu2A+pA)

∂x –p∂A∂x = πdτw − ρAgsinθ

∂(ρeA)
∂t + ∂(ρeuA+puA)

∂x + p∂A∂t = −uρAgsinθ

(6.2)

The calculation of the vapour value is carried out by an iterative method

and calculated indirectly from the density value. The solution scheme is

based on the first order Godunov scheme[47]. The two-dimensional treat-

ment of Pezzinga and Cannizzaro[37] consists of a cylindrical coordinate

system. The pressure and the cavity volume fraction are calculated by in-

verting an auxiliary function. The overall equations are given in equation

6.3.



∂φ
∂t + c2

g
∂u
∂x = 0

∂u
∂t + g ∂H∂x + 1

ρr
∂(rτ)
∂r = 0

φ = p
ρLg

+ c2

g ln(1− αV )

p = max(ρLgφ, pv)

αv = max
[
0, 1− exp

(
ρLgφ–pv
ρLc2

)]
(6.3)

The solution scheme used was a MacCormack method with forward finite

differences for the spatial derivative. Therefore, a comparison is performed
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with all the methods: MOC, Zhou, Daude and Pezzinga, to highlight the

limitation and the opportunities of the one-dimensional compressible model.

6.2.1 Developed model comparison with Zhou model and

MOC approaches

In this section, a comparison with the Zhou and the MOC methods is shown.

The data evaluation considers case 3 of Simpson’s data. In addition, the

simulation took place for two different grid sizes, 32 and 256 cells. In figure

6.18 is shown the comparison with Simpson’s data, the developed model, the

MOC and the Zhou algorithm for 32 grid points. As expected, the classical

method of characteristics captures only the main pressure behaviour. The

MOC result overestimates the pressure peak and incurs a time delay in

relation to the experiment. The algorithm developed by Zhou, captures the

pressure behaviour with more accuracy. In contrast with the rest of the

models, the Zhou model computes high-frequency oscillations that are not

present in the developed model and MOC algorithms.
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Figure 6.18: Comparison of the pressure history for case 3 and 32 grid points.
The blue line is the developed model, green line is the Zhou’s model, dash
red line is the MOC and the black line is the experimental data.
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The same behaviour is shown in figure 6.19 where the number of grid

points is increased to 256. The developed model does not produce the non-

physical spikes that are shown for the MOC. In addition, Zhou’s algorithm

increases the high-frequency oscillation, whereas the compressible model im-

proves the quality of the result.
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Figure 6.19: Comparison of the pressure history for case 3 and 256 grid
points. The blue line is the developed model, green line is the Zhou’s model,
dash red line is the MOC and the black line is the experimental data.

The same behaviour was reported for the comparison data in figure 6.10a,

where a smoother pressure response and a better agreement was reported

for a refined mesh grid.

6.2.2 Developed model comparison with Pezzinga approach

The idea behind this comparison is to evaluate the response of one-dimensional

analysis with a multi-dimension model. Although there is research where

a three-dimensional analysis is performed,[36], the simulation time required

was extremely high. Therefore the comparison was conducted with a two

dimensional treatment given by Pezzinga and Cannizaro[37]. Two simula-
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Figure 6.20: Comparison of pressure profile for case 10, for DM compress-
ible model orange line, one dimension Pezzinga’s model red line, and two
dimension Pezzinga’s model blue line.

tions were performed for this purpose: case 10 an 11 in table 6.1. In figure

6.20 the differences are shown between the developed model with 32 grid

nodes and a one and two-dimensional model developed by Pezzinga and

Cannizaro. The developed model adds more damping than the Pezzinga

and Cannizaro one-dimensional simulation but less than the Pezzinga and

Cannizaro two-dimensional model.

Figure 6.21 shows the performance of the developed compressible model

and the Pezzinga’s models in the presence of cavitation. Both methods

anticipate the pressure reflection wave. Although Pezzinga and Cannizaro

explained the phenomenon suggesting the advective terms as a crucial fac-

tor, this should not be the case. The compressible equation considers the

advective terms, and the role that these terms play is minimal as long as

the Mach number is small. No precise explanation could be found; therefore

further investigation should be carried out in this context.
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Figure 6.21: Comparison of pressure profile for case 11 for the developed
model red line, and two dimension Pezzinga’s model, blue line.

Comparison of the volume fractions in figure 6.22 show a better agree-

ment with Pezzinga and Cannizzaro than with Daude et al.[48], as is shown

in the next section.
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Figure 6.22: Comparison of void fraction profile for case 11, for developed
model red line, and two dimension Pezzinga’s model, blue line.
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6.2.3 Developed model comparison with Daude approach

In the research carried out by Daude et al.[48] a compressible algorithm

was compared with the same Simpson data. Therefore, in this section, the

comparison for case 3 of table 6.1 is shown. The characteristic parameters

for the comparison are reported in table 6.9.

Table 6.9: Simulation parameter for compressible vs incompressible DM

Simulation Variable

CR 0.8

Grid points 1000

Algorithm DGCM

Initial gas in solution αGas0 10−7

From figure 6.23 it is possible to observe the differences between the

two models and the Simpson data. Although the two algorithms performed

equally well, the main difference is in the volume fraction value. The two

algorithms show the same time for the cavity to grow and collapse, but the

amount of vapour produced is higher in Daude’s model. It could be possible

that the Daude’s algorithms overestimate the cavity amount, due to the

delay in the pressure reflections.

The compressible model with the energy equation included by Daude et

al.[47] is an extremely powerful tool. The algorithm predicts the transient

flow with high agreement however two points were highlighted:

• The use of the energy equation for the one-dimensional analysis of the

transient fluid is not required. The temperature of the phenomenon is

simulated as almost constant as reported in the Daude’s research[48].

• In the same research the difficulty of multi-junction simulation came to

light and required a more careful treatment than a continuity equation

formulation[48].



CHAPTER 6 VALIDATION OF PRESSURE WAVES MODEL 121

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [sec]

1

2

3

4

5

6

7

8

9

10

p
re

s
s
u

re
 [

P
a

]

105

(a) Pressure at 36 m
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(b) Vapour volume fraction at 36m
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(c) Pressure at 27 m
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(d) Pressure at 9 m

Figure 6.23: Comparison of the pressure profile and speed of sound at the
valve for the developed model red line and Daude’s model blue line.
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6.3 Summary

The developed compressible model produces high fidelity results when com-

pared to the experiment. In both analysed cases, Simpson and Pezzinga, the

algorithm performed better than the MOC and comparable with the algo-

rithms from the literature. In addition, the relatively simple implementation

of the the code allow its extension to more complex systems such as those

involving positive displacement pumps. The algorithms; thanks to the de-

scription in characteristic form, can be combined to simulate multi-junction

systems in a straightforward manner. In conclusion, the developed model

shows its potential benefit also for simulating cavitation effects. In the next

section the application of the developed model to a positive displacement

pump is given.



Chapter 7

Pump Simulation

The primary object of this research was to develop an experimentally val-

idated numerical model for predicting the operation of a positive displace-

ment pump. The main idea was to predict cavitation formation and identify

the parameters that could mitigate its formation. To verify the successful

development of the model two different pump layouts were simulated and

compared with experimental data. The first test was performed in a closed

loop rig with a one-chamber diaphragm pump. Data from a three-chamber

pump were collected directly from an operational pump, where the pump

was part of a wider network. In addition, comparison with the LPM and

Opitz algorithms was performed to highlight the limitations and the advan-

tages of the finite volume algorithm developed by the author in comparison

with other algorithms.

7.1 One chamber pump description

The experiment for the one-chamber pump was conducted in the Weir Min-

eral’s test facility (Venlo, the Netherlands). The overall pump component

can be subdivided into four categories:

• Pump

123
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• Suction manifold and inlet dampeners

• Discharge manifold and outlet dampeners

• Choke station to create the pressure load.

Figure 7.1 shows the pump detail of the rig test.

Figure 7.1: Weir Minerals’s test rig in Venlo, the Netherlands.

A schematic description of the system is shown in figure 7.2. However,

the simulation were not performed for the entire system due to the com-

putational effort required. In fact, the simulation considered a structured

grid where the grid size is governed by the smallest part size. Therefore a

truncated domain is simulated and the representation is given in figure 7.3.
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Figure 7.2: One chamber test rig layout.
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The simulated rig does not consider the choke station in the discharge

line (figure 7.4) which provide the load pump pressure and the tank in the

suction line.

Figure 7.3: Hydraulic simulated scheme of Weir Minerals’s test rig (see table
7.1 for components name).

Figure 7.4: Choke station for producing the pressure chamber load.

The dimensions of the simulated component are reported in table 7.1.
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Figure 7.5 provides the CAD drawing of the simulated component.

Figure 7.5: Cad drawing of the simulated component.

The pump section consists of a piston component, hydraulically moved, a

pre-chamber section, the diaphragm housing, and the discharge and suction

valve sections. The piston motion was achieved by an external hydraulic

system governed by a high-frequency spool valve. The schematic of the

piston control system is shown in figure 7.6.

Weir Minerals chose this control method for the piston motion for its

versatility. Conveniently, it is possible to vary the piston stroke and velocity

without any mechanical variation. However, this approach was not reliable

in terms of piston velocity prediction, as shown later in this section.
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Table 7.1: Dimension of the simulated component of the pump

# Name Length [m] φ [m]

1 Piston section 0.063 0.063

2 PreChamber section 0.3 0.1

3 Chamber section 0.03 0.2

4 Discharge section 0.08 0.033

5 Suction section 0.1 0.026

6 Suction pipe 0.4 0.03

7 Suction accumulator 0.1 0.03

8 Suction inlet pipe 1.35 0.03

9 Discharge pipe 0.442 0.03

10 Discharge pipe left 0.5 0.019

11 Discharge pipe right 0.5 0.019

12 Discharge accumulator left 0.1 0.019

13 Discharge accumulator right 0.1 0.019

14 Discharge pipe left - 2 0.49 0.019

15 Discharge pipe right - 2 0.49 0.019

16 Discharge Outlet pipe 4 0.03

Figure 7.6: Piston control motion.
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The suction section consists of:

• a tank of 80 litres as a reservoir where the suction and the discharge

pipes are connected;

• one suction dampener of 10 litres, (SB330-10A1 \112U-330A manu-

factured by Hydac);

• flexible pipe;

• a pressure controller to regulate the vessel pressure, connected to an

air compressor.

The layout for the discharge section is more complex. It consists of:

• two discharge dampeners, each of 4 litres (series 400 manufactured by

Hydac);

• choke station, with a series of orifices and ball valves;

• rigid steel pipes;

• high-pressure flexible pipes.

In order to record the pressure history during the operating cycles, dif-

ferent pressure sensors were used:

• two Sensortec A-105 piezo resistant sensors mounted before the suction

and after the discharge valve;

• one Kistler 6005 piezoelectric sensor with a 5011B amplifier mounted

in the diaphragm chamber;

• pressure indicator connected before the choke station to check the

pressure load.
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Table 7.2: One-chamber pump simulation

Suction pressure

1 bar 2 bar 3 bar 4 bar

S
P

M
100 1 2 3 4

150 5 6 7 8

175 9 10 11 12

200 13 14 15 16

The data acquisition was performed by a Supervision Control and Data

Acquisition (SCADA) tool. This system was directly connected to a PC

where the software, Catman, was used to collect the following parameters:

• time;

• suction pressure;

• discharge pressure;

• chamber pressure;

• piston position;

• membrane position.

The acquisition frequency, in order to collect the cavitation dynamics,

was set to 9600 Hz. The maximum pressure operating for the test rig is 250

bar with a maximum speed of 200 SPM, with the piston length of 0.063 m.

For further details and a description of the test rig, the research of Rijswick

is mentioned[1].

In order to have a wide range of pump behaviour, sixteen experiments

were performed, as shown in table 7.2.

Although the hydraulic system for driving the piston permits a wide

range of possibilities (stroke velocity and piston length), figure 7.6, this

https://www.mccdaq.com/Software-Selection-Guide
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type of system had a significant disadvantage in the fluid response. When

high pressure variation and speed are required, the response of the control

fluid in the spool valve becomes relevant. In figures 7.7, 7.8, 7.9, 7.10 the

position of the piston as a function of theoretical crackshaft angle is given.

In the same figures a comparison with a mechanical driven piston are made.

The SCADA system does not provide the velocity of the piston but only its

displacement. Therefore the piston velocity is computed numerically from a

time derivative. Equation 7.1 is applied to calculate the velocity in relation

to the virtual crankshaft angle.

∂x

∂t
=
∂x

∂θ

∂θ

∂t
=
∂x

∂θ
ω ≈ ∆x

∆θ
ω (7.1)

Once the velocity is calculated, a filter function is applied to smooth

the numerical noise. For low pump velocity, the profile of the piston dis-

placement and its velocity can be described by the equations 2.1 and 2.2.

In this condition, the fluid inside the hydraulic system behaves like a rigid

body. For high velocity rate, figures 7.9 and 7.10, the profiles are shifted in

phase and exhibit a multi-peaks behaviour as shown. The inertia of the fluid

and the rheology response of the mineral oil inside the system are affected

by the pump system. A comparison between the velocity and the piston

displacement with the theoretical profile shows significant differences.
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Figure 7.7: Displacement and Velocity of the piston for case 1. Red line
are the response of a mechanical driven simulation, the blue line are the
response from experiment data, and green line is the raw data.
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Figure 7.8: Displacement and Velocity of the piston for case 4. Red line
are the response of a mechanical driven simulation, the blue line are the
response from experiment data, and green line is the raw data.
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Figure 7.9: Displacement and Velocity of the piston for case 13. Red line
are the response of a mechanical driven simulation, the blue line are the
response from experiment data, and green line is the raw data.
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Figure 7.10: Displacement and Velocity of the piston for case 16. Red line
are the response of a mechanical driven simulation, the blue line are the
response from experiment data, and green line is the raw data.
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7.2 Multi chamber

Data used for the three-chamber pump were collected in a measurement

campaign in an iron ore mineral facility. The system description can be

found in the publicly available Weir report[2]. The plant is designed to

provide an average of 56 million tonnes per year (MTPA) of mineral slurry.

The configuration of the pump system consists of two distinct stations of

eight and ten pumps. Although the two stations are different in terms of

pressure performance, the model of the pump used in both is the same,

namely the TZPM2000. Station one, close to the mine, has a capacity

of 301 m3/h at a rated pressure of 183 bar with a maximum speed of 63

SPM. Station two is located between the harbour and the mine site, and

its maximum capacity is 263 m3/h at 206 bar with a maximum speed of 63

SPM. The pumps are equipped with a 2100 kW electric motor, and have a

diaphragm chamber of 100 litres. The collection of the data was performed

on the first pump in station one, and the same instrumentation as described

for the single chamber rig was used. However, due to the inability to measure

the crankshaft angle, a piston proximity sensor was used. In figure 7.11 the

setup of the sensors and the layout of the pump is shown. The pump data

were collected for iron ore suspended in water as a slurry fluid. The slurry

had a density of approximately 2300 kg/m3. The fluid has a high slurry

concentration, however the exact value of the particle concentration is not

available, due to mining company restrictions. However, for validation of the

model, only measurements with water are considered. The data with the

slurry were used to increase the data set for the pump described in section

7.3.7. In figure 7.12 the comparison of the normalized pressure values for

slurry and water in similar conditions are shown for each pumps chamber.

The increase of the density and the presence of the particles changes the

overall pump response. The pressure shows a different cavitation behaviour

as well as differences in the pressure pulsation frequency.



CHAPTER 7 PUMP SIMULATION 135

Figure 7.11: Three chamber pump layout.
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Figure 7.12: Comparison of the each pump chambers pressure for slurry red
line and water blue line, for 4 bar of suction pressure and 63 SPM.
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The characteristics of the TZPM200 pumps for two distinct velocities

are reported in the table 7.3.

Table 7.3: Performance value of three chamber pump

SPM Pressure
Theoretical
Piston
Displac.

Theoretical
Flow

Effective
Flow

Volumetric
Efficiency

[bar] [m3] [m3/h] [m3/h] %

50 210 24.94 224 200 89.3

70 189 24.94 314 283 90.1

For the measurement campaign performed at the extraction site, a sum-

mary of speed, suction and discharge pressure is reported in table 7.4. The

pressure pDischarge and pSuction are the average pressure measured during the

entire data collection time. The stroke speed is defined as the percentage of

the maximum speed of 63 SPM.

Table 7.4: Three-chamber pump running value for water fluid

Low pressure High pressure

#
SPM pDischarge pSuction

#
SPM pDischarge pSuction

% [bar] [bar] % [bar] [bar]

1 100 147.406 4.105 8 100 180.487 6.908

2 90 148.428 4.096 9 90 163.027 6.970

3 80 148.343 4.093 10 80 161.243 6.604

4 70 148.167 4.091 11 70 162.651 6.604

5 60 148.399 4.0.97 12 60 162.651 6.625

6 40 153.930 4.078 13 40 164.122 6.630

7 20 159.005 4.085 14 20 162.954 6.991
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Figure 7.13: Three chamber pump dimension.
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7.3 Simulation

In the literature, there are several different approaches to simulating posi-

tive displacement pumps, even when evaluating cavitation. In this research,

the three-dimensional RANS simulation was not taken into consideration

due to computational limitations. Diaphragm pump simulation requires the

motion of the membrane to model the fluid velocity, and this approach re-

quires a fluid-structure interaction that is beyond the scope of this research.

Therefore only the simple methods like the Optiz algorithm and the lumped

parameter are considered for comparison. The calculation of the cavity

amount is made with an indirect process. The approach consists of calculat-

ing the pressure range where the cavity pressure is reached. Only the time

of vapour creation and destruction can be extimated with this approach

while the exact amount of vapour formation is not available. To obtain this

value, a direct method must be applied. Methodology that was not available

at the facilities where the tests were performed. Therefore only a pressure

pulsation comparison are available in this research.

7.3.1 Lumped Parameter model

In a wide range of research, the description of the pump was simulated

by the lumped parameter method, briefly described in section 4.6. The

model and the equation are given in section 4.6. This method collapses

the dimensions and the dynamics of the components to a single point. The

discharge and the suction fluid are typically given from a common node to

all the chambers. In this particular case, the simulations with the LPM

were performed for a three-chamber pump. Analysing the pressure history

for case 1 of table 7.4, it is possible to highlight that the LPM captures only

the initial fluid response. This behaviour is shown in figure 7.14 where the

pressure pulsation is over dampened in both suction and discharge phases.
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Figure 7.14: Pressure comparison of experimental data red line with LPM
blue line for case 1, with discharge pressure at 147 bar, suction pressure 4.1
bar and 100% of the pump speed.

The LPM does not model the reflection wave in the system. Therefore,

only the system natural frequency is modelled. Analysing the amount of

cavitation, the experimental data shows a vapour dynamics time (formation

and collapse) of 5 crankshaft degrees. A detailed comparison of with the

LPM shown in figure 7.15, shows an under estimation of this value. No flow

meter was installed during the experiments, and no real comparison of this

can be reported. However, the flow rate response shown in figure 7.16 can

be used to evaluate the pump performance. The main flow behaviour is

depicted, and also the mutual interaction between the chambers.
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Figure 7.15: Pressure detail for the cavitation condition for experimental
data red line and LPM blue line for case 1, with discharge pressure at 147
bar, suction pressure 4.1 bar and 100% of the pump speed.

Considering the volumetric efficiency, comparison between 50 and 70

SPM reported in table 7.3 shows a value of 96.8% and 97.1% respectively.

These data are calculated as ratio between the volumetric flow rate at the

discharge and the piston displacement volume. These data are much higher

than the numbers given in table 7.3. The difference is primarily due to the

simplicity of the algorithms where compressibility and volume flow reduction

are not considered. Only the pressure loss given by friction is introduced. In

addition, the valve dynamics consider the chamber pressure to be the same

as the suction and discharge pipe pressures which is not realistic.
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Figure 7.16: LPM Flow rate for case 1, with discharge pressure at 147 bar,
suction pressure 4.1 bar and 100% of the pump speed. Red line is the
discharged fluid volume by the chamber one while the dash line is the first
piston displacement volume. Blue line is the discharged fluid volume by
chamber two while the dash line is the second piston displacement volume.
Green line is the discharged fluid volume by chamber three while the dash
line is the third piston displacement volume, and the black line is the overall
discharged fluid volume.

The same computational behaviour is reported for case 5, in figure 7.17.

For the same case, the pressure cavity detail and the cavitation condition is

reported in figure 7.18. Summarizing, the LPM model can predict the main

pressure profile; however, it does not simulate the entire cycle correctly.

Limitations of this algorithm are evident, although the computational ef-

fort makes this algorithm acceptable as a first approximation to the pump

prediction.
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Figure 7.17: Pressure comparison of experimental data red line with LPM
blue line for case 5, with discharge pressure at 148 bar, suction pressure 4.1
bar and 60% of the pump speed.
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Figure 7.18: Pressure detail for the cavitation condition for experimental
data red line and LPM blue line for case 5, with discharge pressure at 148
bar, suction pressure 4.1 bar and 60% of the pump speed.



CHAPTER 7 PUMP SIMULATION 144

0 50 100 150 200 250 300 350

Crankshaft angle [deg]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Q
 [

m
3
/s

]

Figure 7.19: LPM Flow rate for case 5, with discharge pressure at 148 bar,
suction pressure 4.1 bar and 60% of the speed. Red line is the discharged
fluid volume by chamber one while the dash line is the first piston displace-
ment volume. Blue line is the discharged fluid volume by chamber two while
the dash line is the second piston displacement volume. Green line is the
discharged fluid volume by chamber three while the dash line is the third
piston displacement volume, and the black line is the overall discharged fluid
volume.

7.3.2 Opitz Method

Opitz’s method, briefly described in chapter 3 is a powerful method to pre-

dict the cavitation duration. However, it has limitations and a lack of perfor-

mance for complex or multi-chamber pumps. The method performed well in

a simple pump layout[11]. However, as is shown in section 7.3.7, limitations

constrain this method. The simulation given in figure 7.20 shows the valve

gap fluid velocity comparison for the Opitz method and the finite volume

developed method.
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Figure 7.20: Opitz model comparison with the FV developed algorithm,
where the black line is the piston displacement, the red line is the FV valve
mass flow rate, and the blue line is the Opitz model mass flow rate. In the
figure below the FV model of the vapour volume fraction is given.

The comparison shows a similar profile although differences are high-

lighted in the valve closure and the backflow formation. The reason for

the similar behaviour is given by the formulation of the valve velocity. The

valve algorithm developed in this research used a variation of the equation

developed by Opitz[11]. The behaviour of the valve in the case of closure is

not depicted by the Opitz model. In addition, the compressible developed

algorithm was simulated first to obtain the valve opening delay to use in the

Opitz method.

7.3.3 One-chamber pump developed model

As already described in the validation chapter for the water hammer phe-

nomenon, the response of the algorithm developed in this research is promis-
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Table 7.5: Water and Propelling Liquid characteristics

Water Propelling Liquid

ρ 998 kg/m3 ρ 810 kg/m3

E 2.15e9Pa E 1.37e9Pa

ν 8.94e−4 Pa ν 8.94e−4Pa

pV apour 2338 Pa pV apour 2338 Pa

αGas0 1e−11 αGas0 1e−10

ing. In this section, the description of the fluid dynamics for a one chamber

pump is analysed. The data comparison are given for the result of the test

rig in Weir, the Netherlands facility and the FV developed algorithm. All

the simulations that are shown in this section were performed with the fluid

parameters reported in table 7.5.

The parameters used in the FV simulation, are:

• Limiter, the slope limiter function used to produce a TVD scheme.

• Cavitation algorithm, where the choice can be either DVCM or DGCM.

The DGCM was seen performing better in the validation chapter, for

this reason all simulations are computed with DGCM.

• Pressure force, the methodology to describe the pressure function

across the valve, where Thiel methodology described in section 4.7.1.

• CFL, the Courant number condition.

• NCGp, the number to avoid numerical noise in the DGCM algorithm[32].

• Cavitation limits, namely the maximum value allowed in each cell in

term of cavity volume fraction.

• Advective term, if it is used.

• Liquid density, in relation to this function it is also connected to the
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Table 7.6: Simulation parameters

Solver

Limiter Minmod

Cavitation DGCM

Pressure Force Thiel

CFL 0.9

NCGp 0.9

Cavity Limits 0.85

Advective Term Yes

Liquid density Bulk

Spring force Linear

dx 0.003 m

speed of sound. The bulk modulus method does not use the Fluid

Structure Interaction algorithm.

• Spring force is dependent on the typology of the spring used. The

algorithm can allow the use of polynomian sping force coefficient for

non-linear spring response.

• dx is the space grid value.

A summury of this are re reported in table 7.6.

The choice of these parameters for all the simulations were found the

best combination for all the simulations.

Referring to table 7.2 the first analysis is shown for case 2, where the

suction pressure was set at 2 bar and the pump speed at 100 SPM. Figure

7.21 shows the second cycle of the pump pressure and the pressure profile

matches the experimental data with a high degree of accuracy. The second

cycle of the simulation was used to avoid error due to the initialization

process. At the initial condition, the algorithm has valve lift set to zero.

Therefore the suction valve is closed and no backflow is considered. In the
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real case at zero degree of crankshaft angle, the suction valve is open due to

a physical delay.
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Figure 7.21: Chamber pressure comparison of experimental data, red line
and FV model developed by the author blue line for case 2, with discharge
pressure at 60 bar, suction pressure 2 bar and 100 SPM. The green line is
the vapour volume fraction.

The pressure profile duration is accurate, matching the slope of the com-

pression and decompression phases. However, concerning the pressure pul-

sation, the simulation overestimates the fluctuation in both the suction and

the discharge sections. However, the frequency is in agreement with the ex-

periment. The cavitation duration, extrapolated from the pressure profile,

is of the same order, although in the simulation a second period of cavitation

is produced at 140 degrees, albeit very small. This discrepancy is related

to the overestimation of the reflected pressure wave. The pressure profile in

the experiment is smeared out immediately after the cavitation formation,

something that does not occur in the simulation.
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Figure 7.22: Suction line pressure comparison of experimental data red line
with FV model developed by the author blue line for case 2, with discharge
line pressure at 60 bar, suction pressure 2 bar and 100 SPM.

The main reason could be attributed to the dissipation term. The same

issues were also found in the water hammer simulation in the absence of

vapour formation. The exact same behaviour is given for the pressure in

the suction manifold line, before the suction valve. In figure 7.22 is shown

the suction pressure for both two cycles simulated. As soon as the valve

opens the pressure drops due to the increase of the fluid velocity across the

valve. This behaviour is well described from the simulation, although the

value reached is lower than the experiment. The reason can be attributed

to the valve velocity model. This model uses empirical parameters available

in the literature, that require the be better matched to the valve.

What has been described for the pressure profile can be seen in the

Fourier analysis shown in figure 7.23. The frequencies for the pressure pul-

sation in the chamber coincide with the experimental data and displays only

small differences.
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Figure 7.23: Frequency analysis of the chamber pressure for experimental
data red line and FV model developed by the author blue line for case 2,
with discharge pressure at 60 bar, suction pressure 2 bar and 100 SPM.

Figure 7.24: Frequency analysis of the suction pressure for experimental
data red line with FV model developed by the author blue line for case 2,
with discharge pressure at 60 bar, suction pressure 2 bar and 100 SPM.

In figure 7.24 the suction manifold frequency spectrum shows a good
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agreement for the first 50 frequencies. For the high-frequency values, the

amount of energy is higher for the simulation and is also reflected in the

higher peak pressures in figure 7.22. The reason can be found in the less

dissipative behaviour of the simulated pump compar with the experimental

data.
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Figure 7.25: Chamber pressure comparison of experimental data red line and
FV blue line for case 6, with discharge pressure at 60 bar, suction pressure
2 bar and 150 SPM. The green line is the vapour volume fraction.

Increasing the pump speed by 50%, the fluid response slightly changes.

Once more the overall pump behaviour is well described. However, in the

suction phase the comparison is not perfect. The experimental data shows a

pressure profile that is not depicted in the simulation, figure 7.25. The first

peak pressure as well as the duration of the cavitation, are well described by

the model. However, after the first peak, the experimental data constantly

decreases its value. In addition, close to the end of the suction phase, at 50

degree of crankshaft rotation, the experimental data shows a peak pressure

due to the cavitation collapse or a wave reflection.
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Figure 7.26: Experimental chamber pressure comparison for 12 consecutive
pump cycles for case 6, with discharge pressure at 60 bar, suction pressure
2 bar and 150 SPM.
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The differences are due to the limited number of cycles simulated. In

figure 7.26, 8 consecutive cycles of the experimental results are plotted. It

is possible to see that the test rig presents a superimposed cycle equal to

4 pump revolutions. This is the frequency response of the suction tank

that is not modelled in the system. Surprisingly, this behaviour was only

depicted for cases 10 and 6. No definitive conclusion can be made. How-

ever, it is possible that the working points excite the entire system at the

tank frequency. The pressure pulsation spectrum in figure 7.27 shows good

agreement between the experimental data and the simulation for the higher

running speed.

Figure 7.27: Frequency analysis of the chamber pressure for experimental
data red line with FV blue line for case 6, with discharge pressure at 60 bar,
suction pressure 2 bar and 150 SPM.

However, the pressure response of the simulation in the suction mani-

fold is different from the experimental as shown in figure 7.28. The same

behaviour described in the chamber is amplified in the suction manifold.
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Figure 7.28: Suction pressure comparison of experimental data red line with
LPM blue line for case 6, with discharge pressure at 60 bar, suction pressure
2 bar and 150 SPM.

Although the trough at 210 and 570 degrees is perfectly matched as soon

as the valve opens, the experimental pressure history is not well described by

the model. Therefore the first limitation due to the lack of a complete model

of the system (tank missing) is evident. In addition, when the valve closes,

at approximatively 380 crankshaft degrees, the high frequency pulsation is

not smeared out as fast as the experimental data. Once more this is related

to the domain restriction and the dissipation model. For this case, the

differences can also be seen in the frequency spectrum of the pressure in the

suction manifold, figure 7.29. The simulation captures only the principal

frequencies, but with different amplitude.

For further increases of the pump speed, the simulation performance is

still in good agreement. The pressure pulsation shows good agreement for

175 and 200 SPM, as indicated in figure 7.30 and 7.31 respectively.
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Figure 7.29: Frequency analysis of the suction pressure for experimental
data red line with FV blue line for case 6, with discharge pressure at 60 bar,
suction pressure 2 bar and 150 SPM.
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Figure 7.30: Chamber pressure comparison of experimental data red line
and FV blue line for case 11, with discharge pressure at 60 bar, suction
pressure 3 bar and 175 SPM. The green line is the vapour volume fraction
for the developed FV model.
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Figure 7.31: Chamber pressure comparison of experimental data red line and
FV blu line for case 15, with discharge pressure at 60 bar, suction pressure
3 bar and 200 SPM. The green line is the vapour volume fraction for the
developed FV model.

When low suction pressure at high velocity was tested, large differences

between the simulation and experimental results started to appear. As

shown in figure 7.32, the model is not able to simulate and evaluate the

pressure profile in fully developed cavitation conditions[11].

It is likely that the amount of cavitation produced in the algorithm is

much lower than the experimental data, and the algorithm is not able to

predict the pump response correctly. The proof of this assumption can be

seen in the pressure pulsation for the compression phase, at the beginning

of the figure 7.32. In the compression phase the piston must destroy the

formed bubbles before compressing the liquid, causing the multi-peak be-

haviour. As a further drawback, the produced cycle is shorter than the

cycles with less cavitation, producing a drastic decrease in volumetric effi-

ciency. More research in this extended cavity condition must be performed

to understand the real limit of this algorithm, although no pumps should

reach this condition because it can be seriously damaged.
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Figure 7.32: Chamber pressure comparison of experimental data red line and
FV blu line for case 13, with discharge pressure at 60 bar, suction pressure
1 bar and 200 SPM. The green line is the vapour volume fraction for the
developed FV model.

Figure 7.33: Frequency analysis of the camber pressure for experimental
data red line with FV blue line for case 11, with discharge pressure at 60
bar, suction pressure 1 bar and 200 SPM.

Even the pump frequency response is no longer the same as the exper-
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Table 7.7: Correlation factor rxy for one chamber pump

SPM
pSuction

1 2 3 4

100 0.998 0.999 0.9972 0.9984

150 0.9981 0.9975 0.9969 0.9975

175 0.9966 0.9963 0.9965 0.9015

200 0.9967 0.9964 0.9963 0.9129

iment as highlighted in 7.33. The frequencies have a completely different

energy content. In conclusion, the algorithm works well in all the cases

analysed except for the high cavitation regime. The limitation is given prin-

cipally by the system simulated, namely the absence of the tank and all

pipelines. The frequency response of the simulation data is in accord with

the experimental data in most of the cases, albeit with some differences. The

energy content is higher for the developed compressible model, especially in

the suction manifold at high frequencies. In addition, the dissipation term

does not always perform well when compared to the physical pump test.

However, considering Pearson’s correlation coefficient, rxy, defined in the

equation 7.2, to evaluate the pressure response in the chamber, the results

are reasonably accurate. In table 7.7 are reported the values of the rxy

correlation with the experiment.

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2
i −

(∑
xi

)2
√
n
∑
y2
i −

(∑
yi

)2
(7.2)

7.3.4 Parametric study

After evaluating the performance and the response of the model by compar-

ison with experimental data, in this section, a parametric study is imple-

mented. Different pump characteristics are considered in order to analyse
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their impact on the pump performance, especially for cavitation formation

and volumetric efficiency. The volumetric efficiency of the test rig pump

is low, using formula 2.4, the value calculated without backflow is 84%.

This value is affected by the dead volume present in this pump. In fact,

the simulated volumetric efficiency, taken as reference is 82.2%, which is in

agreement with Tackett’s formulation[4]. In table 7.8 are given the simu-

lation parameter values and the reference experiment. Two values of each

following parameters were assessed:

• suction valve weight,

• Discharge valve weight,

• Valve seat angle θ,

• Suction spring force,

• Discharge spring force,

• Suction preload force,

• Discharge preload force,

• φDia membrane diameter,

• propelling liquid density.

The reference data for these parameters are given in the first line of the

table 7.8.

The first analysis was performed for the suction valve weight. The sen-

sitivity analysis of this parameter shows a small impact on overall pump

behaviour. However, as expected, the reduction of the inertia of the valve

decreases the amount of cavitation, although by only a small amount, figure

7.34.
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Figure 7.34: Pressure history comparison for the suction valve variation, red
line is case 1, lighter valve; green line is case 2, heavier valve; and the black
line is the reference. The dash line refers to the vapour volume fraction.

Therefore, the suction valve should be as light as possible to reduce

the opening delay and the consequent cavitation. However, mechanically

speaking, the valve requires a structure capable of supporting the stresses

that could limit the reduction in mass. In addition, during the closure

phase, the valve should close as fast as possible to reduce the closure delay

and backflow. This behaviour is commonly achievable with an increase of

the suction valve weight which is in contradiction with the previous goal.

In figure 7.35 the opening valve dynamics are shown. No significant

difference is formed although a lower valve lift is reached with the heavier

valve.
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Figure 7.35: Valve model comparison for the suction and discharge (dash
line) valves, red line is case 1, lighter suction valve; green line is case 2,
heavier suction valve, and the black line is the reference.

No significant variation in pressure and cavitation are shown for the case

of discharge valve variation. The pressure pulsation is slightly higher for the

heavier valve at the beginning of the discharge phase. While less oscillation

is shown at the end of the cycle. The reason is the higher inertia that

increases the first pulsation and the breakdown pressure, figure 7.36 .

The effect of the valve seat angle is interesting as shown in figure 7.37.

The reference valve seat angle is 45 degree, which is the test rig valve seat

angle. The variation of this angle changes the gap area for the same valve

lift condition. For this reason, the algorithm performs better for the mid-

dle to high seat angle range. However, a limitation of this value must be

considered. Iannetti[3] in his experimental results defined a threshold for

the seat angle to be around 35 – 55 degrees, which is in contradiction with

this result. However, the algorithm developed by the author is only one-

dimensional. Therefore the radial direction and the wall interaction are not

considered in this simulation.

The sensitivity analysis of the spring preload variation does not change
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Figure 7.36: Pressure history comparison for the discharge valve variation,
red line is case 3, lighter valve; green line is case 4, heavier valve; and
the black line is the reference. The dash line refers to the vapour volume
fraction.
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Figure 7.37: Pressure history comparison for the θ angle of the valve, red
line is case 5, θ = 75, green line is case 6, θ = 15, and the black line is the
reference. The dash line refers to the vapour volume fraction.
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the pump behaviour. Hence no results for this are shown. Of more impor-

tance is the pump diaphragm size. The volume of the chamber is typically

much larger than the piston discharge volume. Figure 7.38 shows the signif-

icant impact this has on the pump performance. From an engineering point

of view, reducing the pump chamber size is critical to be optimising pump

performance.
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Figure 7.38: Pressure history comparison for the diaphragm size variation,
red line is the case 15, bigger chamber; green line is the case 16, smaller
chamber; and the black line is the reference. The dash line are refereed to
the vapour volume fraction.

Performance of the pump will benefit from chamber volume reduction.

Cavitation will be reduced due to the reduction of the fluid inertia and the

higher response rate. Moreover, flow pulsations will be reduced, although

the oscillation frequency increased as shown in figure 7.39.
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Figure 7.39: Mass flow rate history comparison for the diaphragm size vari-
ation, red line is case 15, bigger chamber; green line is case 16, smaller
chamber; and the black line is the reference.

Furthermore, the frequency response of the fluid will be improved. The

frequency spectrum shows a shift of the frequency for both suction and

discharge manifold pressure to a higher value by decreasing the diaphragm

size, figure 7.40.

The flow rate response in the suction and in the discharge manifold

will have a beneficial improvement in the case of diaphragm size reduction

as shown in figure 7.39. However, a reduction in the membrane area will

increase the local stresses and the stretch of the rubber, which could lead

to possible structural damage. Therefore, this model gives a good idea of

possible pump improvement, but the result must be carefully considered.
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Figure 7.40: Frequency spectrum analysis for the diaphragm pump size
variation, red line is the case 15, bigger chamber; green line is the case 16,
smaller chamber; and the black line is the reference.

The last parameter analysed is the propelling fluid’s property. A varia-

tion in the density of the propelling’s fluid slightly changed the behaviour

of the pump. From figure 7.41 it is possible to see the effect in terms of

cavitation where, for higher density, the cavitation marginally increases.
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Figure 7.41: Pressure history comparison for the propelling fluid variation,
red line is the case 17, less dense green line is the case 18, more dense, and
the black line is the reference.
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Figure 7.42: Pressure history comparison for the propelling fluid variation,
red line is the case 17, less dense green line is the case 18, more dense, and
the black line is the reference.
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In conclusion, where cavitation increase’s, figure 7.44, the volumetric

efficiency decrease consequently, figure 7.43. This is true for all analysed

cases except for the study of the propelling fluid density. The increase of

the propelling liquid density creates a faster response of the system. The

system follows the piston much faster than the lower density fluid case.

Therefore the effect is an increase in the flow rate figure 7.42, and therefore

an increase in the volumetric efficiency. However, cavitation increases due

to the increase in the velocity of the fluid at the valve.
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Figure 7.43: Comparison of the volumetric efficiency ηV ol for the all the
study parameters.
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Figure 7.44: Comparison of the vapour volume fraction α for all the study
parameters.

7.3.5 Three-chamber pump analysis

In this section, the three chamber pump is analysed. The simulated parame-

ters and the fluid’s characteristics are given in table 7.9 and 7.10 respectively.

Table 7.9: Slurry and Propelling Liquid characteristics for three chamber
pump

Water Propelling Liquid

ρ 998 kg/m3 ρ 810 kg/m3

E 2.15e9Pa E 1.37e9Pa

ν 8.94e−4 Pa ν 8.94e−4Pa

pV apour 2338 Pa pV apour 2338 Pa

αGas0 1e−11 αGas0 1e−10
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Table 7.10: Simulation parameters for three chamber pump

Solver

Limiter Minmod

Cavitation DGCM

Pressure Force Thiel

CFL 0.9

NCGp 0.9

Cavity Limits 0.85

Advective Term Yes

Liquid density Bulk

Spring force Linear

dx 0.031 m

At the start of the simulation an initialization problem occurred. Unlike

the one chamber pump; the initialization parameters of the multi-chamber

pump can potentially produce computational issues. The main problem

appears in the piston velocity boundary condition, due to the different phase

angles between the chambers.

Considering an initial case of steady velocity for the entire domain, as

soon as the algorithm solves the piston boundary condition, a variation in

speed profile arises. The velocity in the chamber that has a phase angle equal

to zero will increase the speed gradually. While, the other chambers with a

shifted crankshaft angle will produce a higher step in velocity. According to

the Joukowsky formula, the step in velocity produces an increase in pressure

which in the algorithm, is computed with equation 7.3.

pn+1
i = pni + ρni c

n
i (vn+1

i − vni ) (7.3)

Therefore, every chamber should have the correct value of velocity from

the previous time step, in order to prevent non-physical waves. A solution

can be to initialize all the parts with the exact initial value as a function
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Figure 7.45: Chamber pressure comparison of the experimental data, red
line and the FV developed model blue line for the case 1, with discharge
pressure at 147 bar, suction at 4 bar and 63 SPM. The green line is the
vapour volume fraction for the developed FV model.

of the crankshaft angle. This method implies that all pump components,

valves, accumulator, fluid characteristics for the entire domain, must initial-

ize correctly. This approach is impossible to apply. Another approach is to

simulate a ramp-up of the pump. In this way the initialization of the pump

is equal everywhere but the speed of the pump is not set at the steady con-

dition. The acceleration of the pump gives the model time to adjust over all

of the domain. Usually, the real pump is accelerated in less than a minute,

namely in the order of 10 cycles. This is impossible to perform in a rea-

sonable computational time. Therefore the pump acceleration took place in

only one single cycle. Mathematically, the approach consists of applying a

gradual increase in pump speed with a velocity profile shown in figure 7.46.
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Figure 7.46: Acceleration time for three chambers pump.

This procedure was applied for all the simulations, and the results are

only shown the second cycles.

Figure 7.47: Frequency analysis of the chamber pressure for the experimental
data, red line and the FV developed model blue line for the case 1, with
discharge pressure at 147 bar, suction at 4 bar and 63 SPM.
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In addition, the simulated conditions did not take into account the whole

network of the pump. In other words, the real pump is affected by the entire

connected system, that is the pipelines and the other nine pumps. The

simulated domain is truncated after the second hydraulic dampener due to

the computational effort required. This approach will affect the results in

terms of the pressure pulsation, interference and flow rate response.
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Figure 7.48: Discharge flow rate for the FV developed model for case 1, with
discharge pressure at 147 bar, suction at 4 bar and 63 SPM. Blue line is the
chamber one, red line is the chamber two, green line is the chamber three
and black line is the overall simulated discharged volume flow rate.

The pressure history of the three chamber pump for the maximum speed

and the minimum pressure, namely case 1 in table 7.4, is shown in figure

7.45. The pressure pulsation is comparable although discrepancies are high-

lighted. The interaction with the other chambers is overestimated in the

discharge phase and underestimated in the suction phase, as highlight in

the boxes of figure 7.45. Even the cavitation extent is overestimated for this

simulation case. The peak pressure due to the bubble collapse is earlier in

the experimental data than the developed model.
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Figure 7.49: Chamber pressure comparison of the experimental data, red
line and the FV developed model blue line for the case 8, with discharge
pressure at 180 bar, suction at 7 bar and 63 SPM. The green line is the
vapour volume fraction for the developed FV model.

The frequency response is comparable only for the dominant frequency

as shown in figure 7.47.

The simulated volumetric efficiency, compared with the experimental

data available in table 7.3 gives a better agreement than the LPM. In fact,

the efficiency is calculated as 88% from the mass flow rate profile in the

figure 7.48, while the actual value is equal to 89.3% reported in table 7.3.

In addition, comparison with the LPM results, figure 7.16 shows higher

variation in the flow rate profile and backflows that are not depicted by the

LPM.

Increasing the suction pressure and simulating case 8, the results improve

in performance. Figure 7.49 shows a better agreement than the previous

case. In this condition the amount of cavitation predicted is in agreement

with the experimental data as shown by the peak to peak value reported in

the box in figure 7.49. A slight delay in the valve closure is simulated by
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the algorithms, although the pressure slope, ∂p
∂x is comparable.

The frequency analysis showed a higher content of energy for the simu-

lated pump, although the harmonic response is in agreement, figure 7.51.
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Figure 7.50: Discharge flow rate for the FV developed model for case 8, with
discharge pressure at 180 bar, suction at 7 bar and 63 SPM. Blue line is the
chamber one, red line is the chamber two, green line is the chamber three
and black line is the overall discharged volume flow rate.

The same behaviour reported for the flow rate in case 1, is depicted in

figure 7.50. Backflow occurs for a value of 20 crankshaft degrees.

In the case of slow pump speed, the performance of the algorithm is

in accord with the experiment, although the hydraulic dampener in the

discharge phase is not simulated properly as shown in 7.52.

The overall description of the pump is still in agreement with the exper-

iment. However, differences in the pressure profile are highlighted and are

higher than for a one-chamber pump. In this condition, the interaction with

the system and the other pumps play an essential role that is not simulated

correctly by the algorithm. This drawback is the main difference due to the

lack of complete system simulation, although the correlation factor for the
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Figure 7.51: Frequency analysis of the chamber pressure for the experimental
data, red line and the FV developed model blue line for the case 8, with
discharge pressure at 180 bar, suction at 7 bar and 63 SPM.

Figure 7.52: Chamber pressure comparison of the experimental data, red
line and the FV developed model blue line for the case 5, with discharge
pressure at 148 bar, suction at 4 bar and 40 SPM. The green line is the
vapour volume fraction for the developed FV model.
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pressure profile is higher than 0.99 for all the simulations. In addition, in

the flow rate profile, the algorithm shows a back flow which is not described

in the LPM.

7.3.6 Pump Network effects

To consider how the FV algorithm developed by the author responds in a

network environment of two, three chamber pump interaction analysis was

performed. Each pump has three chambers with the same characteristics as

the TZPM2000. The configurations analysed are:

• symmetric in layout, where the network is a mirrored layout, namely

the pumps have precisely the same characteristic, and

• an asymmetric pump layout, where the second pump has a longer

suction and discharge line of one meter.

A picture of the layout of the network is reported in figure 7.53 where

reference pump for the simulation is reported as a left pump. While the sec-

ond pump is refered as the right pump. The simulation conditions consist of

a suction pipeline with a constant inlet pressure of 8 bar, while the discharge

condition is set to 60 bar, and the pump speed is set to 60 SPM. No accu-

mulators are simulated for this comparison. The idea behind this approach

is to evaluate the algorithm’s potential and understand if there is a specific

pump configuration that provides better network performance. The idea is

not new; Weir Group owns the “shift control“ patent to avoid beat pulsa-

tion in the discharge pipeline. As described in the Weir Minerals report[2]

the phase shift controller makes all the pumps communicate with a PLC

virtual pump machine. The strategy compares the pump behaviour with a

numerical LPM model used as a virtual master pump controller. With this

function on, the pumps in the system follows the same performance with
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feedback control, mitigating or cancelling the different frequency response

at the root of the beat effect.

Figure 7.53: Scheme of the two network layouts.
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The process described by Weir Minerals, however, presents the following

limitations:

• it is valid only for the low-frequency region up to the 9th harmonic.

• The pump is modelled as an ideal incompressible flow.

• No acoustic reflections are included.

• No interaction between the individual pumps.

• No interaction between the connected systems.

Therefore as a drawback, the model is not able to capture high-frequency

pressure pulsations that appear when the phase shift control is activated[2].

Other companies apply a different system; for instance, the master pump

is a real pump. This procedure creates a problem in the case of master

pump failure. Therefore the Weir strategy is the most rubust to be taken

into consideration due to the numerical approach. Cavitation is not easy to

avoid and the solution to reduce its formation is simple:

• increasing the suction pressure, and

• decrease the pump speed.

Both strategies are not convenient from a customer’s point of view. In a

world where high productivity is required the reduction in production can

be fatal for the market. Therefore, currently, optimization and re-design

strategies are taking place to increase pump efficiency. In this case, the

idea is to mitigate cavitation and pressure pulsation using the pump system

itself.

The idea behind the symmetric layout is to evaluate the algorithm in

a complex system where the analytical solution is known. Therefore, it is

expected to exhibit a higher pressure fluctuation and cavitation formation
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Figure 7.54: Comparison of the pressure history in the chamber and the
cavitation (dash line) formation for different crankangle phase shift in sym-
metric layout. Yellow line is the 0 degree, green line is the 60 degree, blue
line is the 90 degree, and red line is the 180 degree.
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when there is the same phase angle between the two pumps. In this con-

dition, the pumps are working in phase and sucking and discharging at the

same time. To reduce the pulsation, the two pumps should be in anti-phase.
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Figure 7.55: Comparison of the pressure history in the discharge line, where
Yellow line is the 0 degree pump shift, green line is the 60 degree pump shift,
blue line is the 90 degree pump shift, and red line is the 180 degree pump
shift.

Figure 7.54 shows the pressure history and the cavitation formation for

shift angles of 0, 60, 90, 180 crankshaft degree of difference. The graphs are

overlaid to highlight the differences, although the pressure profile for the

second pump should be shifted. Differences are highlighted in the pressure

profile where the highest fluctuation is shown for the 0 degree shift, as

expected. Cavitation formation is also shown in figure 7.54 (dash lines),

where once more the 0 degree shift shows its drawback. In figure 7.55 the

pressure pulsation at the far end of the discharge line is shown where the

mean pressure was set to 60 bar. In the same graph, the boundary values

are reported. As expected, the higher pressure pulsation is simulated for a

in-phase pump layout.
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Figure 7.56: Comparison of the mass flow rate history in the discharge
manifold for symmetric layout. Yellow line is the 0 degree pump shift, green
line is the 60 degree pump shift, blue line is the 90 degree pump shift, and
red line is the 180 degree pump shift.

The differences in the pressure values can reach 50% more for the in-

phase condition compared with the anti-phase layout. The differences are

also evident in the mass flow rate depicted in figure 7.56. Improving the

pressure pulsation response improve at the same time the flow rate fluctu-

ation inside the system. An interesting result can be seen in the frequency

analysis of the discharged mass flow rate in figure 7.57 and in the pressure

response in figure 7.58. The anti-phase configuration annihilates the multi-

ple of the third harmonics presenting only the multiple of the 6th harmonic.

Differently, the configurations of in-phase condition (no phase shift), quadra-

ture (90 degrees of shift) and 60 degrees of phase shift, present multiples of

the third harmonics. Therefore, the anti-phase condition is more suitable

for reducing the pressure pulsation in the discharge pipeline.
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Figure 7.57: Comparison of the frequency spectrum in the discharge mani-
fold for symmetric layout. Yellow line is the 0 degree pump shift, green line
is the 60 degreepump shift, blue line is the 90 degree pump shift, and red
line is the 180 degree pump shift.

Similar behaviour to that observed in the discharge manifold is also

shown in the suction manifold. The reduction in the pressure pulsation,

shown in figure 7.59, can give a general improvement for a cavitating con-

dition but may not be the best way. In fact, the reduction in the pressure

fluctuation creates a more constant value at the suction valve thereby avoid-

ing the risk of a low-pressure condition. However, further improvement could

be theoretically made by creating a higher pressure condition at the instant

of valve opening.
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Figure 7.58: Comparison of the frequency spectrum anlysis for pressure in
the discharge manifold for symmetric layout. Yellow line is the 0 degree
pump shift, green line is the 60 degree pump shift, blue line is the 90 degree
pump shift, and red line is the 180 degree pump shift.
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Figure 7.59: Comparison of the the pressure history in the suction manifold
for symmetric layout. Yellow line is the 0 degree pump shift, green line is
the 60 degree pump shift, blue line is the 90 degree pump shift, and red line
is the 180 degree pump shift.
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The reduction in the harmonics for the anti-phase layout is shown for the

pressure spectrum, in figure 7.60 and the mass flow rate in figure 7.61. The

algorithm seems to predict the variation in the frequency up to 250 Hz. This

result is important when compared with the limitations given by the LPM.

A summary of the pressure and the mass flow variation for both suction

and discharge line are given in figure 7.62. All the parameters have the

minimum value around 180 degrees. However, in figure 7.63 the variation in

the cavitation formation is shown for each pump in relation to the phase shift

value. The result shows that 180 degrees is not the best value for reducing

cavitation, although it is one of the best results. In fact, a phase shift of 60

degrees seems to be the best option for reducing cavitation formation. This

means that cavitation is reduced when the pump phase shift has the same

variation for each chambers.
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Figure 7.60: Comparison of the frequency spectrum in the suction manifold
for symmetric layout. Yellow line is the 0 degree pump shift, green line is
the 60 degree pump shift, blue line is the 90 degree pump shift, and red line
is the 180 degree pump shift.
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Figure 7.61: Comparison of the frequency spectrum in the suction manifold
for symmetric layout. Yellow line is the 0 degree pump shift, green line is
the 60 degree pump shift, blue line is the 90 degree pump shift, and red line
is the 180 degree pump shift.

The symmetric configuration had the scope to evaluate and validate

the algorithm for a known behaviour. In a real system configuration, it is

difficult to design the network as a symmetric layout. The disadvantage

of an asymmetric layout is “virtual shift” caused by the distance between

the pumps. The same simulations performed for the symmetric condition

were conducted for the asymmetric condition. To create the asymmetry, the

right pump had an additional distance of one meter from the suction and

discharge line. The analysis is given only for the 0 and 180 degree phase

shift.
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Figure 7.62: Variation of the bounded inlet and discharged pressure in blue,
and mass flow rate in red.
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Figure 7.63: Variation of the maximum cavity formation in relation on the
shift angle. The dash line are related to the second pump and red line is the
chamber three, green line is the chamber two and blue line is the chamber
one.
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Figure 7.64: Comparison of the pressure history in the chamber and the
cavity formation for 0 degree shift of symmetric layout red line and different
pipe length blue line.



CHAPTER 7 PUMP SIMULATION 189

Figure 7.64 shows the comparison between the chambers response for

the symmetric and asymmetric layout. The response is difference in terms

of cavitation and pressure pulsation. The symmetric layout performed with

less pressure fluctuation in all pump chambers.
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Figure 7.65: Comparison of the pressure history in the discharge manifold
for 0 degree shift of symmetric layout red line and different pipe length blue
line.

The same result is presented for the discharge manifold pressure in figure

7.65 and the mass flow rate, in figure 7.66.

The reason for a higher pressure pulsation in the discharge manifold is

explained in the frequency analysis, shown in figure 7.67. The asymmetric

layout presents high energy content in the same harmonics. A different

behaviour is displayed in the suction manifold. In this case the symmetric

layout produce a greater fluctuation in the pressure, figure 7.68, and in mass

flow rate, figure 7.69.
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Figure 7.66: Comparison of the mass flow rate history in the discharge
manifold for 0 degree shift of symmetric layout red line and different pipe
length blue line
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Figure 7.67: Comparison of the frequency analysis for the mass flow rate in
the discharge manifold for 0 degree shift of symmetric layout red line and
different pipe length blue line.
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Figure 7.68: Comparison of the pressure history in the suction manifold for
0 degree shift of symmetric layout red line and different pipe length blue
line.
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Figure 7.69: Comparison of the mass flow rate history in the suction man-
ifold for 0 degree shift of symmetric layout different red line and different
pipe length blue line.
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Figure 7.70: Comparison of the pressure history in the chamber and the cav-
ity formation for 180 degree shift of symmetric layout red line and different
pipe length blue line.
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Figure 7.71: Comparison of the pressure history in the discharge manifold
for 180 degree shift of symmetric layout red line and different pipe length
blue line.

The energy content in the suction frequency shows similar behaviour for

the first harmonics. However, the symmetric configuration has higher en-

ergy for frequencies above 15 Hz. Even the cavitation formation is different

depending on the chamber response and can vary as shown in figure 7.64.

In the case of 180 degree phase shift, the behaviour of the pressure and the

mass flow is even more evident. Pressure pulsation and mass flow rate in

the discharge are shown in figure 7.71 and 7.72 respectively and show the

importance of the symmetric layout. Higher pressure pulsations for both

suction and discharge manifold are shown, figure 7.71 and figure 7.74. The

same trend is shown for the mass flow rate indicated in figure 7.72 and figure

7.75.



CHAPTER 7 PUMP SIMULATION 194

400 450 500 550 600 650 700 750 800 850 900

Crankshaft angle [deg]

-220

-200

-180

-160

-140

-120
M

a
s
s
 f
lo

w
 r

a
te

 [
k
g
/s

]

Figure 7.72: Comparison of the mass flow rate history in the discharge
manifold for 180 degree shift of symmetric layout red line and different pipe
length blue line.
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Figure 7.73: Comparison of the frequency analysis for the mass flow rate in
the discharge manifold for 0 degree shift of symmetric layout red line and
different pipe length blue line.
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Figure 7.74: Comparison of the pressure history in the suction manifold for
180 degree shift of symmetric layout red line and different pipe length blue
line.
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Figure 7.75: Comparison of the Mass flow rate for the pressure in the suction
manifold for 180 degree shift of symmetric layout red line and different pipe
length blue line.
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The asymmetric condition show the multiple of the third harmonic that

are not present in the symmetric condition. In fact, the frequency analysis

in figure 7.76 shows a completly different energy content in the spectrum.
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Figure 7.76: Comparison of the frequency analysis for the pressure in the
suction manifold for 180 degree shift of symmetric layout red line and dif-
ferent pipe length blue line.

The analysis of the cavitation formation shows a completely different

behaviour than the symmetric configuration. Figure 7.77 shows a shift in

the optimal cavitation performance at 40 degrees. This result considers the

additional time for the wave to interact with the pumps. Although these

studies were performed to evaluate the potential of the algorithm, the results

are in line with theoretical result.
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Figure 7.77: Variation of the maximum cavity formation in relation on the
shift angle. The dash line are related to the second pump and red line is the
chamber three, green line is the chamber two and blue line is the chamber
one.

Therefore, this research has permitted the evaluation of the hypothet-

ical, optimal pump phase shift condition for the two network layouts with

two pumps interacting together. This approach highlights the possibility

to create a virtual boost and reduce the cavitation formation. The main

achievement of this simulation is the application of the algorithm to a com-

plex network configuration. In addition, extrapolation from this work can

also be carried out for diaphragm pump design. A three-chamber pump

layout has commonly different pre-chamber pipe lengths as shown in figure

7.78. The outer pre-chamber pipe is longer than the central. This dis-

crepancy creates a virtual phase shift between the chambers in the same

pump. Typically the three chamber pump has a 120 degree of shift phase

angle between each piston. As is shown, it is possible that this configura-

tion is not the best solution but requires small adjustment. Therefore the
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algorithms can be used to study and optimize the pump performance with

the best phase shift angle between the pistons in the same pump. However

these considerations must face the structural issues that arise due to possible

vibration to the crankshaft.

Figure 7.78: Blue print of the diaphragm pump.

7.3.7 Design Rules

In this section, another application of this algorithm is performed. The cavi-

tation pump map behaviour is developed. Using non-dimensional analysis[1],

the cavitation and crankshaft angle can be related to the following param-

eters:

• characteristics of the fluid, principally ρ density,

• the fluid velocity,

• suction pressure.

Considering the formulation of the flow rate in the lumped parameter

model, described in section 4.6 and equal to Q̇ = A
ρlp, is possible to highlight

that:
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• The time derivative of the volume flow rate is a function of the deriva-

tive of the fluid velocity multiplied by the area, namely Q̇ = u̇A.

Moreover, the fluid velocity is proportional to the piston velocity and

the stroke rate u̇ = ẍp ≈ rω2.

• the pipe area is negligible.

From these assumptions a non dimensional formulation can be written

in the form of equation 7.4. More details in appendix B.

p

SPM2ρl
= 1 (7.4)

All the experiments and the simulation with different suction pressure,

density and speed can be compared using equation 7.4. The cavitation value

is calculated at a crankshaft angle θCav. The value identified the crankshaft

rotation where cavitation occurs. This treatment permits the identification

of a correlation for the cavitaton experiments. In figure 7.79, 7.80 and 7.81

three sets of data are shown for each chamber. The first is the experimental

cavitation data (square points). The second is the simulation data with the

finite volume algorithm (the cross point) for each chamber. The third set

of data is given by the Opitz algorithm. The last algorithm is subdivided

into, black circles calculated with a guessed opening valve angle of 15 de-

grees and the cyan circles with the correct valve delay opening time for each

chamber given by the FV developed code. A power regression method of

the form y = AxB is used to interpolate the points for the treatment us-

ing a logarithmic scale. Analysing the Opitz algorithm, its limitations are

highlighted. Although the Opitz’s method is compelling, the guessed value

of the valve opening requires good pump behaviour knowledge. In addition,

the three chambers behave in the same way although the suction manifold

layout has a different length for each chamber. The finite volume method

instead, presents a response that is in a good agreement with the experimen-
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tal data. Only when the valve dynamics of the finite volume simulation are

used in the Opitz model the results of the Opitz method improve. There-

fore, the developed algorithm permits the evaluation of the pump cavitation

behaviour in terms of pressure and stroke rate with reasonable confidence.

The approach can be used to simulate the pump behaviour, and map the

pump cavitation characteristics.

Table 7.11 reports the correlation factor between the experimental data

and the conducted simulation. The developed FV algorithm is much more

accurate that the Opitz methodology for calculating the cavitation extent,

with the exception of chamber two where the FV algorithm is slightly lower

than the corrected Opitz model. This section has shown the potential of the

code to be employed for cavitation map design. Figure 7.79, 7.80 and 7.81

describe the cavitation behaviour for different condition: suction pressure,

SPM and suction pipe length, in one single graph for each chambers.

Table 7.11: Correlation factor between the power regression interpolation
and the experimental data.

FV developed model Opitz Opitz Corrected

Chamber 1 0.9998 0.9981 0.9969

Chamber 2 0.9876 0.997 0.9981

Chamber 3 0.999 0.983 0.9974

7.3.8 NPSH

The Net Positive Suction Head, NPSH, is an important parameter which the

manufacturing pump company must provide. It is the minimum pressure

head value required at the suction for no cavitation to occur. The creation of

this information can be expensive due to the number of real tests required.

The API regulation restricts the value of NPSH to 3%, NPSH3. This value

is referring to the maximum mass flow rate loss allowed during the pump

cycle. In theory, this regulation is applied to centrifugal pumps. However
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Figure 7.79: Cavitation evaluation in θcav and non-dimensional value for
chamber 1, where the square data and blue color line are the experimental
data, the cross data and red line is the simulation data with the developed
FV model, the circle data and black line are the value given by the Opitz’s
model with a opening valve value of 15 degree, and the circle data and cyan
line are the value given by the Opitz’s model adjusted with the developed
FV opening valve delay.
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Figure 7.80: Cavitation evaluation in θcav and non-dimensional value for
chamber 2, where the square data and blue color line are the experimental
data, the cross data and red line is the simulation data with the developed
FV model, the circle data and black line are the value given by the Opitz’s
model with a opening valve value of 15 degree, and the circle data and cyan
line are the value given by the Opitz’s model adjusted with the developed
FV opening valve delay.
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Figure 7.81: Cavitation evaluation in θcav and non-dimensional value for
chamber 3, where the square data and blue color line are the experimental
data, the cross data and red line is the simulation data with the developed
FV model, the circle data and black line are the value given by the Opitz’s
model with a opening valve value of 15 degree, and the circle data and cyan
line are the value given by the Opitz’s model adjusted with the developed
FV opening valve delay.
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the same regulation applied to PD pumps did not allow cavitation formation

in all working cases. As it is shown, it is impossible to satisfy this condition,

and companies use the parameter NPSH3 also for PD pumps. To map the

behaviour of a pump the company must test the pump with different speeds

and slowly decrease the suction pressure until the NPSH3 is achieved. This

value is then speed dependent. In addition, the test must be conducted

under steady state conditions, namely avoiding any transient effects that

occur in the testing system. This means that to obtain a single point in the

map pressure head-ηvol the testing may take a long time. For the company

this is translated into significant effort in terms of cost and time.

Figure 7.82 shows an example of the NPSH calculation carried out using

the FV algorithm for the TZPM2000 for 63 SPM. The NPSHR reported

in the graph, 30 m (3 bar) is in agreement with the company specification.

The graph shows an interpolation curve and the NPSH3 value calculated

from that. The calculation time to determine this value required less than

6 hours. Therefore, the FV algorithms developed by the author can be

used to simulated the NPSH condition of the pump. Thereby emulating

the factory experimental test and reducing drastically the cost. It is also

possible to simulate the real network where the pump is going to be used.

This approach should permit the evaluation of the pump performance in the

real working environment rather than the company test loop, thereby giving

more confidence and reliability. However, more experimental data must be

used to validate the algorithms for these circumstances.
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Figure 7.82: NPSH for the TZPM2000 at 63 SPM, where the blue line is
the NPSH3 value.
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7.4 Summary

In this section validation of the pump model in cavitating conditions was

performed. The results have shown good agreement with experiments even

with high levels of cavitation. However, with full cavitation the DGCM

is not able to capture the pump dynamics. In addition, the limits of the

dissipation term were highlighted, especially in the absence of cavitation

formation. The performance of the model for one and for multi-chamber

pumps was proven, showing good agreement with the experimental data.

Furthermore, a parametric analysis was performed for a macro view of the

pump response, as well as multi-pump network configurations and a NPSH

test.
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Conclusion

This thesis has presented the development of a model code for the dynamic

pressure analysis of positive displacement pumps. The available commer-

cial codes are mainly focused on two aspects: a complete three dimensional

description or a simple model. Therefore, correct simulations allow a com-

plete fluid description with cavitation, or a simple model restricted to the

Lumped parameter method. These extremes have gap has a significant im-

pact on industry. In fact, the complete three dimensional analysis can only

be applied to a specific part of the pump, if the required simulation time is

to be kept within a reasonable limit. Therefore, to describe the interaction

that occurs in a complex system, industry tends to use a simpler and less

accurate models. No commercial software to simulate a pump response accu-

rately in a reasonable time is available. Therefore, a new approach for pump

simulation was required. The model developed in this thesis focused on a

one-dimension transient model with vapour formulation and compressibil-

ity. The algorithm is based on the wave transport equation, with advective

formulation and a different discretization of the classic discrete gas cavity

model. The numerical technique developed, to evaluate the pump perfor-

mance, was the splitting method that allows the decoupling of the equations

into a homogeneous PDE and a standard ODE. This strategy allowed the

207
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use of the most suitable methods for the solution of each set of equations.

The PDE was solved with the MUSCL scheme, while the ODE was solved

with RK4. The MUSCL scheme is second order in time and space with a

slope limiter function to produce a TVD method. The splitting strategy is

only first order. The solution of the equations was first validated with well-

known algorithms from different researchers. The results from the model

were in line with, if not better than published data, especially regarding the

computational time.

It was shown that the new model performed in an equivalent manner to

the MOC for frictionless simulation. In addition, for the Courant condition

equal to one, it converged to the analytical solution. However, as soon as

friction and dissipation are included in the system, the MOC and other

available software showed their limitations. The new algorithm performed

better for these issues and showed high versatility and reliability. Cavitation

in positive displacement pumps and column separation in straight pipes were

simulated and gave good results. Limitations were shown when the amount

of the vapour/gas fluid phase was high. Simulation of a single diaphragm

pump and a three chamber pump were performed, for both a controlled loop

rig and an on-site field network. The response of the algorithm is promising

for giving a better understanding of the pump’s performance in terms of

cavitation, pressure pulsation and flow rate. Once the model had been

validated, the focus moved to a parametric study of the pump’s performance.

• Parametric studies were performed for a one chamber pump where the

code was used to analyse the volumetric efficiency and the cavitation

formation.

• Network performance. The main drawback of the previous algorithms

was the inability to model pumps interactions. The use of this al-

gorithm allowed the prediction of the pump behaviour with different

pump network configurations. The solution was created in a reason-
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able time without the loss of accuracy. In addition, use of the new

model allowed cavitation and pressure pulsation studies in a complex

system to be performed as part of an optimization strategy.

• NPSH testing. To evaluate this parameter, a significant amount of

experimental testing is required. Data are collected for different pump

speed and suction pressure. This methodology is expensive in both

time and cost, especially because the performance has to be analysed

at steady state conditions. The algorithm developed in this research

was able to perform the NPSH analysis in an efficient way. Therefore,

this code could be used to provide additional knowledge of NPSH

conditions.

• Pump cavitation map, thanks to the non-dimensional analysis of the

results of the pump simulation, they can be used to create a cavita-

tion map. The vapour formation and collapse time, with respect to

crankshaft angle can be related to the slurry properties, the speed of

the pump and the suction layout. This method allows a broader view

of the pump cavitation behaviour.

Although the experimental data and the simulation were conducted for

a diaphragm pump, the methodology can be extended to all PD pump con-

figurations. A variety of suction manifold layouts can be simulated and

studied before a more detailed CFD analysis., could be carried out if re-

quired. In addition, more accurate power requirement calculations can be

performed. Different network characteristics such as pump shut down or

leakage can also be examined. Therefore, the new model developed in this

thesis has the benefit of cost reduction and an operational understanding of

pump behaviour and system response.
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8.1 Future work

The quality of the algorithm allows the evaluation of a wide variety of pump

system simulations. However limitations have been brought to light during

the studies, therefore further improvement is possible.

• The friction model. For both water hammer phenomenon and pump

performances evaluation, the dissipation was not evaluated adequately.

Therefore, although there will be an increase in the computational

effort, transient friction model for more accurate dissipation behaviour

should be introduced.

• Valve model. The valve model is based on algorithms from the pub-

lished literature. However better analysis should be performed to im-

prove the reliability of the model for the API valve standard. In ad-

dition, a more accurate function for dampening effects as well as the

viscous regime must be introduced.

• Cavitation model. Although the cavitation models with transport

equation factors is more computationally expensive, they could allow

more flexibility in the research. The transport equation, with bubble

interaction studies, could improve the required results.

• Accumulator model. An improvement in the accumulator description

both mathematically and numerically could be introduced.

• The code structure. The logic of the algorithm was not structured in

an optimized way. The logic of the code is recursive, and functions

are not called efficiently. Therefore an optimization study for the code

could be performed to reduce tun time.

• The code language. The developed code was run in Matlab. This plat-

form allowed flexibility in the development of the algorithms. However,
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its performance is slow when compared with other coding languages.

Therefore a Python or C language could be more suitable to allow

faster solution.

• Slurry fluid. The algorithm was developed to consider only homoge-

neous liquid without particulates. However the behaviour of slurries

is different from pure water. Therefore, particle interaction should be

introduced for a better fluid description.

• Multi Slurry fluid. Positive displacement pumps are normally used

with different working fluids. A discharged fluid batch can be period-

ically be changed from water to slurry due to industrial requirements.

Therefore at the same time, the pipeline can be filled with different

fluid properties. Therefore, the introduction of this aspect could open

potentially new mineral and Oil & Gas research fields.

• Pump network. More simulation and validation data should be ob-

tained in a multi-pump network. As an example pump failure or a

mix of pumps operating at different speeds could be analysed.
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changes of bulk modulus of mineral oil – effects on the dynamic behaviour

of hydraulic actuators,” 04 2011.

[19] A. Iannetti, M. Stickland, and W. Dempster, “An investigation of the

performance of a positive displacement reciprocating pump at low pressure

npsh incorporating a three phase cavitation model,” in 11th World Congress

on Computational Mechanics, WCCMXI, July 2014. [Online]. Available:

https://strathprints.strath.ac.uk/48988/

[20] D. N. Johnston, “Numerical modelling of reciprocating pumps with self-acting

valves,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal

of Systems and Control Engineering, vol. 205, no. 2, pp. 87–96, may 1991.

[21] A. Iannetti, M. T. Stickland, and W. M. Dempster, “A computational

fluid dynamics model to evaluate the inlet stroke performance of

a positive displacement reciprocating plunger pump,” Proceedings of

the Institution of Mechanical Engineers, Part A: Journal of Power

and Energy, vol. 228, no. 5, pp. 574–584, 2014. [Online]. Available:

https://doi.org/10.1177/0957650914530295

http://www.sciencedirect.com/science/article/pii/S0360544216312579
http://www.sciencedirect.com/science/article/pii/S0360544216312579
http://www.sciencedirect.com/science/article/pii/S002074031830242X
http://www.sciencedirect.com/science/article/pii/S002074031830242X
https://strathprints.strath.ac.uk/48988/
https://doi.org/10.1177/0957650914530295


REFERENCES 215

[22] D. N. Johnston, K. A. Edge, and N. D. Vaughan, “Experimental investigation

of flow and force characteristics of hydraulic poppet and disc valves,” Proceed-

ings of the Institution of Mechanical Engineers, Part A: Journal of Power and

Energy, vol. 205, no. 3, pp. 161–171, aug 1991.

[23] D. N. Johnston and K. A. Edge, “The impedance characteristics of fluid power

components: Restrictor and flow control valves,” Proceedings of the Institution

of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,

vol. 205, no. 1, pp. 3–10, feb 1991.

[24] S. I. Bernad and R. Susan-Resiga, “Numerical model for cavitational flow in

hydraulic poppet valves,” Modelling and Simulation in Engineering, vol. 2012,

pp. 1–10, 2012. [Online]. Available: http://dx.doi.org/10.1155/2012/742162

[25] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002, iSBN: 9780511791253.

[26] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,

3rd ed. Springer Berlin Heidelberg, 2009, iSBN: 9783540498346.

[27] E. Wylie, V. Streeter, and L. Suo, Fluid transients in systems.

Prentice Hall, 1993, iSBN: 9780133221732. [Online]. Available: https:

//books.google.co.uk/books?id=Ep9RAAAAMAAJ

[28] D. H. Axworthy, M. S. Ghidaoui, and D. A. McInnis, “Extended thermody-

namics derivation of energy dissipation in unsteady pipe flow,” Journal of

Hydraulic Engineering, vol. 126, no. 4, pp. 276–287, apr 2000.

[29] J. T. Karam, Jr., “An efficient method for simulating frequency-dependent

friction in transient liquid flow,” Journal of Fluids Engineering, vol. 97, no. 1,

p. 97, 1975. [Online]. Available: http://dx.doi.org/10.1115/1.3448149

[30] V. Guinot, “Numerical simulation of two-phase flow in pipes using godunov

method,” International Journal for Numerical Methods in Engineering, vol. 50,

no. 5, pp. 1169–1189, 2001.

[31] L. Zhou, H. Wang, D. Liu, J. Ma, P. Wang, and L. Xia, “A second-order

finite volume method for pipe flow with water column separation,” Journal

http://dx.doi.org/10.1155/2012/742162
https://books.google.co.uk/books?id=Ep9RAAAAMAAJ
https://books.google.co.uk/books?id=Ep9RAAAAMAAJ
http://dx.doi.org/10.1115/1.3448149


REFERENCES 216

of Hydro-environment Research, vol. 17, no. Supplement C, pp. 47 – 55,

2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1570644316300107

[32] L. Zhou, H. Wang, A. Bergant, A. S. Tijsseling, D. Liu, and S. Guo, “Godunov-

type solutions with discrete gas cavity model for transient cavitating pipe

flow,” Journal of Hydraulic Engineering, vol. 144, no. 5, p. 04018017, may

2018.

[33] M. Zhao and M. S. Ghidaoui, “Godunov-type solutions for water hammer

flows,” Journal of Hydraulic Engineering, vol. 130, no. 4, pp. 341–348, apr

2004.

[34] J. C. P. Liou, “Numerical properties of the discrete gas cavity model for tran-

sients,” Journal of Fluids Engineering, vol. 122, no. 3, p. 636, 09 2000.

[35] V. Guinot, “Riemann solvers for water hammer simulations by

godunov method,” International Journal for Numerical Methods in

Engineering, vol. 49, no. 7, pp. 851–870, 2000. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0207%2820001110%

2949%3A7%3C851%3A%3AAID-NME978%3E3.0.CO%3B2-%23

[36] S. SaemI, M. Raisee, M. J. Cervantes, and A. Nourbakhsh, “Computation

of two- and three-dimensional water hammer flows,” Journal of Hydraulic

Research, pp. 1–19, jul 2018. [Online]. Available: https://doi.org/10.1080/

00221686.2018.1459892

[37] G. Pezzinga and D. Cannizzaro, “Analysis of transient vaporous cavitation in

pipes by a distributed 2d model,” Journal of Hydraulic Engineering, vol. 140,

no. 6, p. 04014019, jun 2014.

[38] A. Bergant, A. Simpson, and J. Vı́tkovský, “Review of unsteady friction models
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Appendix A

Matlab Code

A.1 Main Structure

1 %% Main code f o r three chamber diaphragm pump with

accumulator in the suc t i on and d i s cha rge

2 c l o s e a l l

3 c l e a r

4 c l c

5

6 %% IMPUT FILE

7 SimulationData ; % Simulat ion Data Desc r ip t i on

8 SuctionLayout ; % Suct ion Design layout

9 SuctionAccumulator ; % Suct ion Accumulator

10 ChamberLayout ; % Chamber a lgor i thms

11 DischargeLayout ; % Discharge Design layout

12 DischargeAccumulator ; % Dicharge Accumulator

13 ValveData ; % Valve d e f i n i t i o n , Suct ion and

d i s cha rge

14 Flu idS lu r ry ; % S lur ry FLuid s p e c i f i c a t i o n

p r o p e r t i e s

1



CHAPTER A MATLAB CODE 2

15 F lu i dP r o pe l l i n g ; % P r o p e l l i n g FLuid s p e c i f i c a t i o n

p r o p e r t i e s

16 S o l v e r D e f i n i t i o n ; % So lve r a lgor i thms

17 I n i t i a l i z a t i o n D a t a ; % I n i t i a l i z a t i o n value

18

19 %% I n i t i a l i z a t i o n

20 %P r e a l l o c a t i n g the computer memeory

21 % SUCTION

22 f o r idxSuc = 1 : SuctionNum

23 Name = char ( SuctionName ( idxSuc , : ) ) ;

24 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx . ’ ,Name, ’

,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] = Staggr id (0 ,

Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

25 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,Name, ’ , c

. ’ ,Name, ’ , alphaV . ’ ,Name, ’ , alphaG . ’ ,Name, ’ , u .

’ ,Name, ’ , FV. ’ ,Name, ’ ] ’ , . . .

26 ’ = Memory(NodeX . ’ ,Name, ’ , NodeT , rhoIn ,

rhoQIn , pIn , cIn , alphaVIn , uIn , alphaGIn ,

So lve r ) ; ’ ] ) ;

27 end

28 % CHAMBER

29 f o r idxCha = SuctionNum+1:ChamberNum

30 Name = char (ChamberName( idxCha , : ) ) ;

31 switch Name

32 case ’ Pis1 ’

33 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

34 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,
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Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ] = Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,

alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

35 case ’ Pis2 ’

36 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

37 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,

alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

38 case ’ Pis3 ’

39 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

40 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,
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alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

41 case ’ Pre1 ’

42 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

43 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,

alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

44 case ’ Pre2 ’

45 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

46 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,

alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

47 case ’ Pre3 ’

48 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =
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Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

49 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaPropel l ing , rhoQChaPropelling ,

pChaPropel l ing , cChaPropel l ing ,

alphaVChaPropell ing , uChaPropel l ing ,

alphaGChaPropell ing , So lve r ) ; ’ ] ) ;

50 otherwi s e

51 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx .

’ ,Name, ’ ,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] =

Staggr id (0 , Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

52 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,

Name, ’ , c . ’ ,Name, ’ , alphaV . ’ ,Name, ’ ,

alphaG . ’ ,Name, ’ , u . ’ ,Name, ’ , FV. ’ ,Name,

’ ]= Memory(NodeX . ’ ,Name, ’ , NodeT ,

rhoChaSlurry , rhoQChaSlurry , pChaSlurry

, cChaSlurry , alphaVChaSlurry ,

uChaSlurry , alphaGChaSlurry , So lve r ) ; ’

] ) ;

53 end

54 end

55 % DISCHARGE

56 f o r idxDis = ChamberNum+1:DischargeNum

57 Name = char ( DischargeName ( idxDis , : ) ) ;

58

59 eva l ( [ ’ [ NodeX . ’ ,Name, ’ , NodeI . ’ ,Name, ’ ,Dx . ’ ,Name, ’

,X. ’ ,Name, ’ , XI . ’ ,Name, ’ ] = Staggr id (0 ,
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Dimension . ’ ,Name, ’ . L , dx ) ; ’ ] )

60 eva l ( [ ’ [ rho . ’ ,Name, ’ , p . ’ ,Name, ’ , rhoQ . ’ ,Name, ’ , c

. ’ ,Name, ’ , alphaV . ’ ,Name, ’ , alphaG . ’ ,Name, ’ , u .

’ ,Name, ’ , FV. ’ ,Name, ’ ]= Memory(NodeX . ’ ,Name, ’ ,

NodeT , rhoOut , rhoQOut , pOut , cOut , alphaVOut ,

uOut , alphaGOut , So lve r ) ; ’ ] ) ;

61 end

62 % P r e a l l o c a t i n g the memory f o r the va lve s

c h a r a c t e r i s t i c s and the Piston

63 % p o s i t i o n and v e l o c i t y

64 [ xd , xdd , NetForced , Agapd ] = PreallocatedMemoryValve (

NodeT , NumOfPumps) ; % Prea l l o ca t ed the Discharge

va lve s

65 [ xs , xds , NetForces , Agaps ] = PreallocatedMemoryValve (

NodeT , NumOfPumps) ; % Prea l l o ca t ed the Suct ion

va lve s

66 [ xp , vp , ] = PreallocatedMemoryValve (

NodeT , NumOfPumps) ; % Prea l l o ca t ed the p i s ton

value

67

68 VFs = VFs ∗ ones (NodeT , 1 ) ; % P r e a l l o c a t e the

Volume f l u i d in the suc t i on accumulator

69 VFd = VFd ∗ ones (NodeT , 1 ) ; % P r e a l l o c a t e the

Volume f l u i d in the d i s cha rge accumulator

70 Angle = ze ro s (NodeT , 1 ) ; % P r e a l l o c a t e the

ang le o f the crank s h a f t f o r each chamber

71 Time = ze ro s (NodeT , 1 ) ; % P r e a l l o c a t e the

s imu la t i on time

72 wReal = ze ro s (NodeT , 1 ) ; % P r e a l l o c a t e the
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speed o f r a t a t i o n

73 TimeIndex = 1 ; % Time index s e t t i n g

74 Step = 100 ; % s c a l e o f the

p rog r e s s index

75 Vgaps = ze ro s (3 , 1 ) ; % P r e a l l o c a t e the

v e l o c i t y at the va lve gap f o r suc t i on va lve s

76 Vgapd = ze ro s (3 , 1 ) ; % P r e a l l o c a t e the

v e l o c i t y at the va lve gap f o r d i s cha rge va lve s

77 rhoQgaps = ze ro s (3 , 1 ) ; % P r e a l l o c a t e the

mass f low ra t e at the va lve gap f o r suc t i on va lve s

78 rhoQgapd = ze ro s (3 , 1 ) ; % P r e a l l o c a t e the

mass f low ra t e at the va lve gap f o r d i s cha rge

va lve s

79 %% Direc tory

80 % Create the d i r e c t o r y f o l d e r to save the s imu la t i on

data

81 Name = [ ’SPM ’ , num2str (SPM) , ’−pIn ’ , num2str ( p r e s su r e (

pIn , ’Pa ’ , ’ bar ’ ) ) , ’−pOut ’ , num2str ( p r e s su r e (pOut , ’Pa

’ , ’ bar ’ ) ) ] ;

82 NameDirectory = [ Folder , ’ \ ’ ,Name ] ; %

Locat ion and name f o l d e r

83 [ Status , Message , Messageid ] = rmdir ( NameDirectory ) ;

84 mkdir ( NameDirectory ) ; % c r e a t e the f o l d e r

85 %% FV

86 t i c

87 t = 1 ;

88 SaveIdx = 0 ;

89 w = SPM2rads (SPM) ;

90 So lve r . dt = CFL ∗ dx / max ( [ cIn cChaPropel l ing
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cChaSlurry cOut ] ) ; %Def ine the f i r s t time step

value us ing as speed o f sound the maximum value

c a l c u l a t e d from :

91 % − I n l e t cond i t i on

92 % − Outlet cond i t i on

93 % − p r o p e l l i n g f l u i d cond i t i on

94 % − Water or s l u r r y in the chamber cond i t i on

95 % The pre s su r e at the i n l e t , chamber and d i s cha rge can

be and normally are d i f f e r e n t .

96 % Although the i n i t i a l p r e s su r e and v e l o c i t y in the

chamber are equal f o r the

97 % p r o p e l l i n g l i q u i d on one diaphragm s i d e and the

water on the other , f l u i d

98 % can have d i f f e r e n t c h a r a c t e r i s t i c s .

99 whi le Time( t ) < TF

100 t = t +1;

101 Time( t ) = Time( t−1) + So lve r . dt ;

102 %% Junct ion

103 % SUCTION Junct ion

104 % r e s o l v i n g the node junc t i on in the suc t i on

s e c t i o n

105 pJSBC = Junct ion (FV.SBC, FV. In , Dimension .SBC

.A, Dimension . In .A) ;

106 pTJIn = TJunction (FV. In , FV. L , FV.R,

Dimension . In .A, Dimension . L .A, Dimension .R.

A, ’N11 ’ ) ;

107 pTJAccS = TJunction (FV. AccS , FV. L , FV. AccSC ,

Dimension . AccS .A, Dimension . L .A, Dimension .

AccSC .A, ’ 1NN’ ) ;
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108 pTJSC1 = TJunction (FV. AccSC , FV. S13 , FV. SC1 ,

Dimension . AccSC .A, Dimension . S13 .A, Dimension .

SC1 .A, ’ 1NN’ ) ;

109 pTJSC2 = TJunction (FV. S23 , FV.R, FV. SC2 ,

Dimension . S23 .A, Dimension .R.A, Dimension .

SC2 .A, ’ 1NN’ ) ;

110 pTJSC3 = TJunction (FV. S13 , FV. S23 , FV. SC3 ,

Dimension . S13 .A, Dimension . S23 .A, Dimension .

SC3 .A, ’ 1NN’ ) ;

111 % Discharge

112 % r e s o l v i n g the node junc t i on in the d i s cha rge

s e c t i o n

113 pJDBC = Junct ion (FV.DBC, FV. Out , Dimension .DBC.A

, Dimension . Out .A) ;

114 pTJAccD = TJunction (FV. Out , FV. AccD , FV. AccDC,

Dimension . Out .A, Dimension . AccD .A, Dimension

. AccDC .A, ’N11 ’ ) ;

115 pTJDC1 = TJunction (FV. End , FV. D13 , FV.DC1,

Dimension . End .A, Dimension . D13 .A, Dimension .DC1

.A, ’ 1NN’ ) ;

116 pTJDC2 = TJunction (FV. D23 , FV. AccDC, FV.DC2,

Dimension . D23 .A, Dimension . AccDC .A, Dimension .

DC2.A, ’ 1NN’ ) ;

117 pTJDC3 = TJunction (FV. D13 , FV. D23 , FV.DC3,

Dimension . D13 .A, Dimension . D23 .A, Dimension .DC3

.A, ’ 1NN’ ) ;

118 % Chamber

119 % r e s o l v i n g the node junc t i on in the d i s cha rge

s e c t i o n
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120 f o r i = 1 :NumOfPumps

121 eva l ( [ ’ pJPis ’ , num2str ( i ) , ’ = Junct ion (FV. Pis ’ ,

num2str ( i ) , ’ ,FV. Pre ’ , num2str ( i ) , ’ , Dimension

. Pis ’ , num2str ( i ) , ’ .A, Dimension . Pre ’ ,

num2str ( i ) , ’ .A) ; ’ ] ) ;

122 eva l ( [ ’ pJPre ’ , num2str ( i ) , ’ = Junct ion (FV. Pre ’ ,

num2str ( i ) , ’ ,FV. Dia ’ , num2str ( i ) , ’ , Dimension

. Pre ’ , num2str ( i ) , ’ .A, Dimension . Dia ’ ,

num2str ( i ) , ’ .A) ; ’ ] ) ;

123 eva l ( [ ’pTJC ’ , num2str ( i ) , ’ = TJunction (FV. Dia ’ ,

num2str ( i ) , ’ , FV. Suc ’ , num2str ( i ) , ’ , FV. Dis ’

, num2str ( i ) , ’ , Dimension . Dia ’ , num2str ( i ) , ’ .

A, Dimension . Suc ’ , num2str ( i ) , ’ .A, Dimension

. Dis ’ , num2str ( i ) , ’ .A, ’ , char (39) , ’N11 ’ , char

(39) , ’ ) ; ’ ] ) ;

124 end

125 %% Valve and Data

126 % Linear i n c r e a s e o f the speed o f the pump from w

(0) = 0 and

127 % w(TimeRump) = w

128 wReal ( t ) = Time( t ) . / (TimeRump + eps ) ∗ w ∗ (

Time( t ) < TimeRump) + w ∗ (Time( t ) >= TimeRump)

; %Speed rum of the pump

129 f o r i = 1 :NumOfPumps

130 %% VALVE Suct ion

131 eva l ( [ ’ rhoGaps ( i ) = rho .SC ’ , num2str ( i ) , ’ ( t

−1 ,1) ; ’ ] ) ;

132 eva l ( [ ’ [ xs ( t , i ) , xds ( t , i ) , NetForces ( t , i ) ,

Agaps ( t , i ) , CFs ] =’ , . . .
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133 ’ ValveModel (p .SC ’ , num2str ( i ) , ’ ( t−1 ,1) ,p .

Suc ’ , num2str ( i ) , ’ ( t−1,end ) , rhoGaps ( i ) ,

xs ( t−1, i ) , xds ( t−1, i ) , Vgaps ( i ) ,

SuctionValve , Solver , NetForces ( t−1, i ) , t )

; ’ ] ) ;

134 eva l ( [ ’ [ rhoQgaps ( i ) Vgaps ( i ) ]= GapFlowRev2 (

Agaps ( t , i ) , rhoGaps ( i ) , FV. Suc ’ , num2str ( i )

, ’ , Dimension . Suc ’ , num2str ( i ) , ’ .A, FV.SC ’ ,

num2str ( i ) , ’ , Dimension .SC ’ , num2str ( i ) , ’ .A,

rhoQgaps ( i ) , So lve r . dt , t o l l , Suct ionValve )

; ’ ] ) ;

135 %% VALVE Discharge

136 eva l ( [ ’ rhoGapd ( i ) = rho . Dis ’ , num2str ( i ) , ’ ( t−1,

end ) ; ’ ] ) ;

137 eva l ( [ ’ [ xd ( t , i ) , xdd ( t , i ) , NetForced ( t , i ) ,

Agapd( t , i ) , CFd ] =’ , . . .

138 ’ ValveModel (p . Dis ’ , num2str ( i ) , ’ ( t−1,end ) ,p

.DC’ , num2str ( i ) , ’ ( t−1 ,1) , rhoGapd ( i ) , xd (

t−1, i ) , xdd ( t−1, i ) ,Vgapd( i ) ,

DischargeValve , Solver , NetForced ( t−1, i ) ,

t ) ; ’ ] ) ;

139 eva l ( [ ’ [ rhoQgapd ( i ) Vgapd( i ) ]= GapFlowRev2 (

Agapd( t , i ) , rhoGapd ( i ) , FV. Dis ’ , num2str ( i )

, ’ , Dimension . Dis ’ , num2str ( i ) , ’ .A,FV.DC’ ,

num2str ( i ) , ’ , Dimension .DC’ , num2str ( i ) , ’ .A,

rhoQgapd ( i ) , So lve r . dt , t o l l ,

DischargeValve ) ; ’ ] ) ;

140 %% Piston

141 Angle ( t ) = Angle ( t−1) + So lve r . dt ∗ wReal ( t ) ;
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% Update the crank s h a f t ang le

142 eva l ( [ ’ xp ( t , i ) = Dimension . Pis ’ , num2str ( i ) , ’ . L

/ 2 ∗ (1− cos ( Angle ( t ) )+ deg2rad ( Angle0 ( i ) )

) − lambda /2∗( s i n ( Angle ( t ) + deg2rad ( Angle0

( i ) ) ) ) . ˆ 2 ; ’ ] ) ;

143 eva l ( [ ’ vp ( t , i ) = Dimension . Pis ’ , num2str ( i ) , ’ . L

/ 2 ∗ wReal ( t ) ∗( s i n ( Angle ( t )+ deg2rad (

Angle0 ( i ) ) ) − ( lambda/2 ∗ s i n (2∗ Angle ( t ) +

2∗ deg2rad ( Angle0 ( i ) ) ) ) ) ; ’ ] ) ;

144

145 eva l ( [ ’ rhoPiston ( i ) = e x t r a p o l a t i o n ( rho . Pis ’ ,

num2str ( i ) , ’ ( t −1 ,1 :2) , XI . Pis ’ , num2str ( i ) , ’

( 1 ) , X. Pis ’ , num2str ( i ) , ’ ( 1 : 2 ) , ’ , char (39) , ’

i n l e t ’ , char (39) , ’ , ’ , char (39) , ’ yes ’ , char (39)

, ’ ) ; ’ ] ) ;

146 eva l ( [ ’ rhoQpis ( i ) = rhoPiston ( i ) ∗ Dimension .

Pis ’ , num2str ( i ) , ’ .A ∗ vp ( t , i ) ; ’ ] ) ;

147 end

148 %% Solve r

149 % The number o f data reque s t to the a lgor i thms i s

the same number o f

150 % the par t s . The name o f the part , Check f o r

example SuctionLayout , i s

151 % taken a f t e r the ”Dimension . ” , f o r a l l o f those ,

the f o l l o w i n g data

152 % must be s p e c i f y :

153 % − BC.Name . Val (1 ) = the f a l u e o f the p r e s su r e or

o f the f l o w r a t e at

154 % i =1/2 namely the f i r s t i n t e r f a c e
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155 % − BC.Name . Val (2 ) = the f a l u e o f the p r e s su r e or

o f the f l o w r a t e at

156 % i= N + 1/2 namely the l a s t i n t e r f a c e

157 % − BC.Name . In = s p e c i f y i f the f i r s t i n t e r f a c e

i s p r e s su r e o f f low

158 % rate c o n s i d e r i n g the ’p ’ or ’ f r ’ as data .

159 % − BC.Name . Out = s p e c i f y i f the f i r s t i n t e r f a c e

i s p r e s su r e o f f low

160 % rate c o n s i d e r i n g the ’p ’ or ’ f r ’ as data .

161 Partname = f i e ldnames (X) ;

162 PartNum = length ( Partname ) ;

163 f o r i = 1 : PartNum

164 %% Boundary cond i t i on <−−−−−

165 Name = char ( Partname ( i , : ) ) ;

166 switch Name

167 % Suct ion

168 case ’SBC ’

169 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pIn ; ’ ] )

170 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJSBC ; ’ ] )

171 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

172 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

173 Fluid = Slur ry ; %D e f i n i t i o n o f what

kind o f f l u i d s e c t i o n i s

174 case ’ In ’

175 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJSBC ; ’ ] )

176 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJIn ; ’ ] )

177 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p



CHAPTER A MATLAB CODE 14

’ , char (39) , ’ ; ’ ] ) ;

178 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

179 Fluid = Slur ry ;

180 case ’L ’

181 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJIn ; ’ ] )

182 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJAccS ; ’

] )

183 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

184 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

185 Fluid = Slur ry ;

186 case ’ AccS ’

187 % f o r more d e t a i l s check the

AccumulatorData

188 [ pFs , VFs( t ) ] = Accumulator (VTs , VFs( t

−1) , V0s , FV. AccS , gamma, So lve r . dt

, Dimension . AccS .A, pPreS , pMaxS ,

Fluid , KDs, KSs , f i x S ) ;

189 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJAccS ; ’

] )

190 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pFs ; ’ ] )

191 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

192 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

193 Fluid = Slur ry ;

194 case ’AccSC ’
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195 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJSC1 ; ’ ] )

196 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJAccS ; ’

] )

197 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

198 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

199 Fluid = Slur ry ;

200 case ’R ’

201 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJIn ; ’ ] )

202 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC2 ; ’ ] )

203 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

204 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

205 Fluid = Slur ry ;

206 case ’ S23 ’

207 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJSC2 ; ’ ] )

208 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC3 ; ’ ] )

209 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

210 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

211 Fluid = Slur ry ;

212 case ’ S13 ’

213 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJSC3 ; ’ ] )

214 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC1 ; ’ ] )

215 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;
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216 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

217 Fluid = Slur ry ;

218 case ’SC1 ’

219 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgaps

(1 ) ; ’ ] )

220 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC1 ; ’ ] )

221 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

222 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

223 Fluid = Slur ry ;

224 case ’SC2 ’

225 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgaps

(2 ) ; ’ ] )

226 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC2 ; ’ ] )

227 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

228 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

229 Fluid = Slur ry ;

230 case ’SC3 ’

231 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgaps

(3 ) ; ’ ] )

232 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJSC3 ; ’ ] )

233 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

234 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;
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235 Fluid = Slur ry ;

236 % Discharge

237 case ’DBC’

238 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pOut ; ’ ] )

239 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJDBC; ’ ] )

240 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

241 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

242 Fluid = Slur ry ;

243 case ’Out ’

244 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJDBC; ’ ] )

245 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJAccD ; ’

] )

246 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

247 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

248 Fluid = Slur ry ;

249 case ’AccD ’

250 [ pFd , VFd( t ) ] = Accumulator (VTd, VFd( t

−1) , V0d , FV. AccD , gamma, So lve r . dt

, Dimension . AccD .A, pPreD , pMaxD,

Fluid , KDd, KSd, f ixD ) ;

251 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJAccD ; ’

] )

252 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pFd ; ’ ] )

253 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;
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254 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

255 Fluid = Slur ry ;

256 case ’AccDC ’

257 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJAccD ; ’

] )

258 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC2 ; ’ ] )

259 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

260 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

261 Fluid = Slur ry ;

262 case ’D23 ’

263 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJDC2 ; ’ ] )

264 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC3 ; ’ ] )

265 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

266 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

267 Fluid = Slur ry ;

268 case ’D13 ’

269 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJDC3 ; ’ ] )

270 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC1 ; ’ ] )

271 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

272 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

273 Fluid = Slur ry ;

274 case ’End ’
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275 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJDC1 ; ’ ] )

276 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = 0 ; ’ ] )

277 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

278 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

279 Fluid = Slur ry ;

280 case ’DC1 ’

281 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgapd

(1) ; ’ ] )

282 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC1 ; ’ ] )

283 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

284 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

285 Fluid = Slur ry ;

286 case ’DC2 ’

287 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgapd

(2) ; ’ ] )

288 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC2 ; ’ ] )

289 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

290 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

291 Fluid = Slur ry ;

292 case ’DC3 ’

293 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQgapd

(3) ; ’ ] )

294 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJDC3 ; ’ ] )
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295 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

296 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

297 Fluid = Slur ry ;

298 % Chamber 1

299 case ’ Pis1 ’

300 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQpis (1 )

; ’ ] )

301 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPis1 ; ’ ] )

302 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

303 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

304 Fluid = P r o p e l l i n g ;

305 case ’ Pre1 ’

306 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPis1 ; ’ ] )

307 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPre1 ; ’ ] )

308 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

309 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

310 Fluid = P r o p e l l i n g ;

311 case ’ Dia1 ’

312 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPre1 ; ’ ] )

313 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJC1 ; ’ ] )

314 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

315 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p
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’ , char (39) , ’ ; ’ ] ) ;

316 Fluid = Slur ry ;

317 case ’ Suc1 ’

318 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC1 ; ’ ] )

319 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgaps

(1 ) ; ’ ] )

320 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

321 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

322 Fluid = Slur ry ;

323 case ’ Dis1 ’

324 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC1 ; ’ ] )

325 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgapd

(1) ; ’ ] )

326 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

327 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

328 Fluid = Slur ry ;

329 % Chamber 2

330 case ’ Pis2 ’

331 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQpis (2 )

; ’ ] )

332 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPis2 ; ’ ] )

333 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

334 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;
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335 Fluid = P r o p e l l i n g ;

336 case ’ Pre2 ’

337 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPis2 ; ’ ] )

338 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPre2 ; ’ ] )

339 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

340 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

341 Fluid = P r o p e l l i n g ;

342 case ’ Dia2 ’

343 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPre2 ; ’ ] )

344 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJC2 ; ’ ] )

345 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

346 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

347 Fluid = Slur ry ;

348 case ’ Suc2 ’

349 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC2 ; ’ ] )

350 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgaps

(2 ) ; ’ ] )

351 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

352 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

353 Fluid = Slur ry ;

354 case ’ Dis2 ’

355 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC2 ; ’ ] )

356 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgapd
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(2 ) ; ’ ] )

357 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

358 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

359 Fluid = Slur ry ;

360 % Chamber 3

361 case ’ Pis3 ’

362 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = rhoQpis (3 )

; ’ ] )

363 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPis3 ; ’ ] )

364 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

365 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

366 Fluid = P r o p e l l i n g ;

367 case ’ Pre3 ’

368 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPis3 ; ’ ] )

369 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pJPre3 ; ’ ] )

370 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

371 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

372 Fluid = P r o p e l l i n g ;

373 case ’ Dia3 ’

374 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pJPre3 ; ’ ] )

375 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = pTJC3 ; ’ ] )

376 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;
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377 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

378 Fluid = Slur ry ;

379 case ’ Suc3 ’

380 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC3 ; ’ ] )

381 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgaps

(3 ) ; ’ ] )

382 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

383 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

384 Fluid = Slur ry ;

385 case ’ Dis3 ’

386 eva l ( [ ’BC. ’ ,Name, ’ . Val (1 ) = pTJC3 ; ’ ] )

387 eva l ( [ ’BC. ’ ,Name, ’ . Val (2 ) = rhoQgapd

(3) ; ’ ] )

388 eva l ( [ ’BC. ’ ,Name, ’ . In = ’ , char (39) , ’p

’ , char (39) , ’ ; ’ ] ) ;

389 eva l ( [ ’BC. ’ ,Name, ’ . Out = ’ , char (39) , ’

f r ’ , char (39) , ’ ; ’ ] ) ;

390 Fluid = Slur ry ;

391 otherwi s e

392 end

393 %% Solve r

394 eva l ( [ ’ [ ’ ,Name, ’ ,FV. ’ ,Name, ’ ]= MUSCL( Dimension

. ’ ,Name, ’ , X. ’ ,Name, ’ , XI . ’ ,Name, ’ , BC. ’ ,

Name, ’ . Val ,BC. ’ ,Name, ’ . In ,BC. ’ ,Name, ’ . Out ,

Solver , Fluid , FV. ’ ,Name, ’ ) ; ’ ] ) ;

395 % Update the value o f the por t i on ”Name”
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396 eva l ( [ ’ p . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 1 , : ) ; ’ ] ) ;

% pre s su r e

397 eva l ( [ ’ rhoQ . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 2 , : ) ; ’ ] ) ;

% massflow ra t e

398 eva l ( [ ’ alphaV . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 3 , : ) ; ’ ] )

; % Vapour volume Cavity

399 eva l ( [ ’ alphaG . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 4 , : ) ; ’ ] )

; % Gas volume f r a c t i o n

400 eva l ( [ ’ rho . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 5 , : ) ; ’ ] ) ;

% Density

401 eva l ( [ ’ c . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 6 , : ) ; ’ ] ) ;

% Speed o f sound

402 eva l ( [ ’ u . ’ ,Name, ’ ( t , : ) = ’ ,Name, ’ ( 7 , : ) ; ’ ] ) ;

% Ve loc i ty o f the f l u i d

403 end

404 %% MISCELANIUS

405 % plo t the p rog r e s s o f the s o l u t i o n

406 StepTime = TF / Step ;

407 i f Time( t ) > ( StepTime ∗ TimeIndex )

408 TimeIndex = TimeIndex + 1 ;

409 f p r i n t f ( [ num2str ( f l o o r (Time( t ) / TF ∗ Step ) ) , ’ /

’ , num2str ( Step ) , ’ \n ’ ] )

410 end

411 i f or ( t== NodeT , Time( t ) >= TF)

412 % Prevent the over f l ow data and save i f reach

the s imu la t i on Time

413 % or the maximum p r e a l l o c a t e d data .

414 SaveIdx = SaveIdx + 1 ;

415 p = SaveVariable (p , ’p ’ , t , NameDirectory ,
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SaveIdx ) ;

416 rhoQ = SaveVar iable ( rhoQ , ’ rhoQ ’ , t ,

NameDirectory , SaveIdx ) ;

417 alphaV = SaveVariable ( alphaV , ’ alphaV ’ , t ,

NameDirectory , SaveIdx ) ;

418 alphaG = SaveVariable ( alphaG , ’ alphaG ’ , t ,

NameDirectory , SaveIdx ) ;

419 rho = SaveVariable ( rho , ’ rho ’ , t ,

NameDirectory , SaveIdx ) ;

420 c = SaveVar iable ( c , ’ c ’ , t , NameDirectory ,

SaveIdx ) ;

421 u = SaveVariable (u , ’u ’ , t , NameDirectory ,

SaveIdx ) ;

422 Time = Time ( 1 : t ) ;

423 wReal = wReal ( 1 : t ) ;

424 save ( [ NameDirectory , ’ \x ’ , num2str ( SaveIdx ) ] , ’

xd ’ , ’ xs ’ ) ;

425 save ( [ NameDirectory , ’ \VF ’ , num2str ( SaveIdx ) ] , ’

VFd ’ , ’VFs ’ ) ;

426 save ( [ NameDirectory , ’ \Angle ’ , num2str ( SaveIdx )

] , ’ Angle ’ ) ;

427 save ( [ NameDirectory , ’ \Time ’ , num2str ( SaveIdx )

] , ’Time ’ ) ;

428 save ( [ NameDirectory , ’ \wReal ’ , num2str ( SaveIdx )

] , ’ wReal ’ ) ;

429 save ( [ NameDirectory , ’ \ S imu la t i onF i l e ’ ] , ’

SaveIdx ’ , ’SPM’ , ’ pIn ’ , ’ pOut ’ , ’X ’ , ’ Angle0 ’ , ’

lambda ’ , ’ pIn ’ , ’ pOut ’ , ’ So lve r ’ )

430
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431 % Reset ing the data

432 Time (1) = Time( t ) ;

433 Angle ( 1 , : ) = Angle ( t , : ) ;

434 % Accumulator

435 VFd(1) = VFd( t ) ;

436 VFs(1 ) = VFs( t ) ;

437 % Suct ion Valve

438 xs ( 1 , : ) = xs ( t , : ) ;

439 xds ( 1 , : ) = xds ( t , : ) ;

440 NetForces ( 1 , : ) = NetForces ( t , : ) ;

441 % Discharge Valve

442 NetForced ( 1 , : ) = NetForced ( t , : ) ;

443 xdd ( 1 , : ) = xdd ( t , : ) ;

444 xd ( 1 , : ) = xd ( t , : ) ;

445

446 t = 1 ;

447

448 f p r i n t f ( ’ saved %d \n ’ , SaveIdx )

449 end

450 %% time Step eva lua t i on

451 cMax = FindMax( c , t ) ; % Ca lcu la te the

452 So lve r . dt = So lve r . dx ∗ So lve r .CFL / cMax ;

453 end

454

455 TIME = toc

A.2 Simulation Data

1 % D e f i n i t i o n o f the s imu la t i on setup .

2 % i t i s r equ i r ed to d e f i n e :
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3 % − Folder l o c a t i o n : p lace where the data w i l l be

s to r ed

4 % − NumCic : number o f the c y c l e t h a t must be s imulated

( inc luded the rump

5 % pump c y c l e )

6 % − CFL: courant number f o r s t a b i l i t y , in case o f

uncompress ib le and

7 % n e g l e c t i n g the convec t i ve term , i f the number i s

euq l to one i t w i l l be

8 % the a n a l y t i c a l water hammer s o l u t i o n

9 % − t o l l : t o l l e r a n c e o f the Newthon−Rhapson method f o r

the va lve

10 % − Cyclerump : rum pump c y c l e that can be a l s o not

i n t e g e r number

11 % − Angle0 : vec to r o f the s h i f t phase o f the chambers

12 % − lambda : va lue o f the r a t i o rad iu s / Length

13 % − NumOfPumps : number o f chamber . ! ! i t r equ i r ed to

s e t d i f f e r e n t layout

14 % in the suc t i on abd d i s cha rge d e f i n i t i o n .

15 Folder = ToBeDefined ; % Folder l o c a t i o n to save

data

16 NumCic = ToBeDefined ; % number o f c y c l e to

s imulate , with the rump pump c y c l e i n c lude

17 CFL = ToBeDefined ; % Courant Number f o r

s t a b i l i t y should be l e s s than 1 f o r avo id ing

i n s t a b i l i t y due to i n c r e a s i n g in the p r e s su r e

h igher than the i n i t i a l p r e s su r e .

18 NodeT = 1e5 ; % number o f node to pre a l l o c a t e d

the memory , t h i s
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19 % value w i l l a f f e c t the number o f sav ing and the time

o f seav ing

20 t o l l = 1e−8; % t o l l e r a n c e value o f the Newton

rapshon method Absolute e r r o r

21 Cyclerump = ToBeDefined ; % number o f c y c l e that

w i l l be use to reach the regime value i t can be

a l s o not i n t e g e r

22 Angle0 = [ 0 240 1 2 0 ] ; % s h i f ang le o f the p i s ton

23 lambda = ToBeDefined ; % the r a t i o rad iu s /

l ength o f the crank s h a f t

24

25 NumOfPumps = 3 ; % Number o f Pump

26

27 %% Process data s imu la t i on

28 SPM = ToBeDefined ; % Stroke per minutes

29 pIn = ToBeDefined ; % Suct ion pr e s su r e [ Bar ]

30 pCha = ToBeDefined ; % Chamber p r e s su r e [ Bar ]

31 pOut = ToBeDefined ; % Discharge p r e s su r e [ Bar ]

32 TimeRump = 60/SPM ∗ Cyclerump ; % Time f o r running

the pump

33 TF = 60/SPM ∗ NumCic ; % End Time

34 g = 9 . 8 1 ; % grav i ty a c c e l e r a t i o n

A.3 Suction Layout

The same idea of layout definition was applied for the discharge and the

chamber pump part.

1 % The suc t i on l i n e w i l l c on s i d e r a l l the ducts and the

pipe that are
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2 % connected each other c r e a t i n g a network that end

with the suc t i on va lve

3 % i n t e r f a c e . The Dimension must be d e f i n e f o l l o w i n g

the c r i t e r i a o f :

4 %

5 % Dimension . ”Name” . S p e c i f i c magniture

6 %

7 % Dimension i s always r equ i r ed to con s id e r a s t r u c t

func ion where a l l the

8 % data w i l l be s to r ed .

9 % ”Name” the name that you can use f o r the part

10 % S p e c i f i c magniture , namely the c h a r a c t e r i s t i c o f the

func t i on :

11 % L −−> Length [m]

12 % d −−> Diameter [m]

13 % A −−> Area [m] To c a l c u l a t e i s p o s s i b l e to use the

func t i on Circ l eArea

14 % th −−> Thickness o f the pipe [m] in water hammer

formulat ion i t i s

15 % u s e f u l l to c a l c u l a t e the speed o f sound , but in the

pump the d i f f e r e n c e s

16 % in the speed o f sound propagat ion w i l l r e q u i r e a l s o

an i n i t i a l i z a t i o n

17 % point that sometime c r e a t e spo r i ou s o s c i l l a t i o n , f o r

t h i s reason the

18 % speed o f sound w i l l be c a l c u l a t e d as bulk moduls

fo rmulat ion in the

19 % l i q u i d phase and the brennen formulat ion f o r the two

/ three phase



CHAPTER A MATLAB CODE 31

20 % nu −−> Poisson con t ra c t i on c o e f f i c i e n t

21 % E −−> Young modulus

22 %% Dimension SBC

23 Dimension .SBC. L = . 5 ;

24 Dimension .SBC. d = . 2 5 4 ;

25 Dimension .SBC.A = Circ l eArea ( Dimension .SBC. d) ;

26 Dimension .SBC. th = 0 . 0 1 ;

27 Dimension .SBC. nu = 0 . 3 ; % Poisson

28 Dimension .SBC.E = 21 e10 ; % Young

29 %% Dimension IN

30 Dimension . In . L = . 5 ;

31 Dimension . In . d = 0 . 2 5 4 5 ;

32 Dimension . In .A = Circ l eArea ( Dimension . In . d ) ;

33 Dimension . In . th = 0 . 0 1 ;

34 Dimension . In . nu = 0 . 3 ; % Poisson

35 Dimension . In .E = 20 .5 e10 ; % Poisson

36 %% Dimension L

37 Dimension . L . L = 8 . 1 6 0 ;

38 Dimension . L . d = . 2 5 4 ;

39 Dimension . L .A = Circ l eArea ( Dimension . L . d) ;

40 Dimension . L . th = 0 . 0 1 ;

41 Dimension . L . nu = 0 . 3 ; % Poisson

42 Dimension . L .E = 21 e10 ; % Poisson

43 %% Dimension AccS

44 Dimension . AccS . L = . 5 ;

45 Dimension . AccS . d = . 2 5 4 ;

46 Dimension . AccS .A = Circ l eArea ( Dimension . AccS . d) ;

47 Dimension . AccS . th = 0 . 0 1 ;

48 Dimension . AccS . nu = 0 . 3 ; % Poisson
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49 Dimension . AccS .E = 21 e10 ; % Poisson

50 %% Dimension AccSC

51 Dimension . AccSC . L = 1 ;

52 Dimension . AccSC . d = . 2 5 4 ;

53 Dimension . AccSC .A = Circ l eArea ( Dimension . AccSC . d) ;

54 Dimension . AccSC . th = 0 . 0 1 ;

55 Dimension . AccSC . nu = 0 . 3 ; % Poisson

56 Dimension . AccSC .E = 21 e10 ; % Poisson

57 %% Dimension R

58 Dimension .R. L = 1 ;

59 Dimension .R. d = . 2 5 4 ;

60 Dimension .R.A = Circ l eArea ( Dimension .R. d) ;

61 Dimension .R. th = 0 . 0 1 ;

62 Dimension .R. nu = 0 . 3 ; % Poisson

63 Dimension .R.E = 21 e10 ; % Poisson

64 %% Dimension S13

65 Dimension . S13 . L = 1 . 1 2 5 ;

66 Dimension . S13 . d = . 2 5 4 ;

67 Dimension . S13 .A = Circ l eArea ( Dimension . S13 . d) ;

68 Dimension . S13 . th = 0 . 0 1 ;

69 Dimension . S13 . nu = 0 . 3 ; % Poisson

70 Dimension . S13 .E = 21 e10 ; % Poisson

71 %% Dimension S23

72 Dimension . S23 . L = 1 . 1 2 5 ;

73 Dimension . S23 . d = . 2 5 4 ;

74 Dimension . S23 .A = Circ l eArea ( Dimension . S23 . d) ;

75 Dimension . S23 . th = 0 . 0 1 ;

76 Dimension . S23 . nu = 0 . 3 ; % Poisson

77 Dimension . S23 .E = 21 e10 ; % Poisson
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78 %% Dimension SC1

79 Dimension . SC1 . L = . 3 4 1 ;

80 Dimension . SC1 . d = . 2 5 4 ;

81 Dimension . SC1 .A = Circ l eArea ( Dimension . SC1 . d) ;

82 Dimension . SC1 . th = 0 . 0 0 1 6 ;

83 Dimension . SC1 . nu = 0 . 3 ; % Poisson

84 Dimension . SC1 .E = 21 e10 ; % Poisson

85 %% Dimension SC2

86 Dimension . SC2 . L = . 3 4 1 ;

87 Dimension . SC2 . d = . 2 5 4 ;

88 Dimension . SC2 .A = Circ l eArea ( Dimension . SC2 . d) ;

89 Dimension . SC2 . th = 0 . 0 1 ;

90 Dimension . SC2 . nu = 0 . 3 ; % Poisson

91 Dimension . SC2 .E = 21 e10 ; % Poisson

92 %% Dimension SC3

93 Dimension . SC3 . L = . 3 4 1 ;

94 Dimension . SC3 . d = . 2 5 4 ;

95 Dimension . SC3 .A = Circ l eArea ( Dimension . SC3 . d) ;

96 Dimension . SC3 . th = 0 . 0 1 ;

97 Dimension . SC3 . nu = 0 . 3 ; % Poisson

98 Dimension . SC3 .E = 21 e10 ; % Poisson

99 %% Num

100 SuctionName = f i e ldnames ( Dimension ) ;

101 SuctionNum = length ( SuctionName ) ;

102 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

103 FileName = mfilename ;

104 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )

105 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;
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106 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;

107 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )

A.4 Suction Accumulator

The same idea of accumulator definition was applied for the discharge part.

1 % The accumulato o f the suc t i on l i n e

2 % I t i s r eque s t to s e t up d i f f e r e n t parameters and the

accumulator func t i on

3 % in the s imul ink matlab l i b r a r y was taken as primary

a lgor i thms

4 % f o r f u r t h e r d e t a i l s check the accumulator he lpe r .

5 % Three d i f f e r e n a lgor i thm can be used :

6 % Acc − accumulator

7 % pre s s − the p r e s su r e i s cons ide r ed constant at the

p r e f va lue

8 % rhoQ − no f l u i d i a l low to pass , namelly rhoQ = 0

at the i n t e r f a c e

9 %

10 % Enter manually the volume o f the accumulator in VF,

Fluid at t = 0 i n s i d e

11 % the accumulator in L i te r , and the VT, the t o t a l

volume .

12

13 %% Suct ion Accumulator

14 pPreS = pre s su r e ( ToBeDefined , ’ bar ’ , ’Pa ’ ) ; %[ Bar ] %

Pressure at the precharge Accumulator where the

volume i s VT−VF
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15 pMaxS = pre s su r e ( ToBeDefined , ’ bar ’ , ’Pa ’ ) ; %[ Bar ] %

Pressure at max , where the volume i s VD

16 KSs = [ 1 e6 , −1e5 ] ; % constant va lue that i n f l u e n c e

the behaviour when the Volume o f the accumulator i s

sma l l e r than the minimum value

17 KDs = [ 1 e6 , 1 e6 ] ; % constant value that i n f l u e n c e

the behaviour when the Volume o f the accumulator i s

b i gge r than the minimum value

18 gamma = 1 ; % transform exponent

19 VFs = L2m(60) ; % Volume o f Fluid at t =0; Conversion

L i t r e s to meters

20 VTs = L2m(150) ; % t o t a l volume

21 V0s = VTs − VFs ; % i n i t i a l volume o f the gass

22 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

23 FileName = mfilename ;

24 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )

25 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;

26 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;

27 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )

A.5 Valve Data

1 % D e f i n i t i o n o f the suc t i on and d i s cha rge va lve

c h a r a c t e r i s t i in terms o f

2 % deign layout , sp r ing f o r c e s and constant , and a l l

the parameters r eque s t

3 % to c a l c u l a t e the f o r c e s that are ac t ing a c r o s s



CHAPTER A MATLAB CODE 36

themse l f .

4 %% Suct ion Valve

5 Suct ionValve . do = . 2 5 ; %[m] Outer diameter

6 Suct ionValve . d i = . 2 0 ; %[m]

Valve Nominal diameter

7 Suct ionValve .m = 2 6 . 8 ; %[ kg ] mass

8 Suct ionValve . h = 0 . 0 2 4 ; %[m] he ight

9 Suct ionValve . theta = 25 ; %[ deg ] degree o f the Valve

10 Suct ionValve . l g = ( Suct ionValve . do+SuctionValve . d i )

/(2∗ cos ( deg2rad ( Suct ionValve . theta ) ) ) ; %[m]

Gap length

11 Suct ionValve .CDJ = 0 . 7 2 ; % Johnston C o e f f i c i e n

12 Suct ionValve .C = 50 ; % Fluid Dumper c o e f f i c i e n t [

Ns/m]

13 % Valve Spring

14 Suct ionValve . k = 12500; %[N/m] Spring cos tant

15 Suct ionValve . FS0 = 435 ; %[N] Preload Spring

16 Suct ionValve . xMax = 0 . 0 4 ; %[m] Max p o s i t i o n Valve

17 % Valve Fluid

18 Suct ionValve . fdc = [225 0 0 .9 0 ] ; %

Flow d i s cha rge cons tant s

19 Suct ionValve .Dam = [280 4 6 3 ] ; % Damping Costant

20 Suct ionValve . f f c = [ 0 . 7 2 0 .86 0 . 0 7 ] ; %

F l o w f o r c e c o n s t a n t s Thie ld

21 Suct ionValve . nu = 8 .9 e−4; % F l o w f o r c e c o n s t a n t s

22 Suct ionValve . f r i c = 0 . 0 1 ;

23 Suct ionValve . Zeta = 1 ;

24 %% Discharge Valve

25 DischargeValve . do = . 2 5 ;
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26 DischargeValve . d i = . 2 ; %[m]

Valve Nominal diameter

27 DischargeValve .m = 2 6 . 8 ; %[ kg ] mass

28 DischargeValve . h = 0 . 0 2 4 ; %[m] he ight

29 DischargeValve . theta = 25 ; %[ deg ] degree o f the Valve

30 DischargeValve . l g = ( DischargeValve . do+

DischargeValve . d i ) /(2∗ cos ( deg2rad ( DischargeValve .

theta ) ) ) ; %[m] Gap length

31 DischargeValve .CDJ = 0 . 7 2 ;

32 DischargeValve .C = 50 ; % Fluid Dumper c o e f f i c i e n t

[ Ns/m]

33 % Valve Spring

34 DischargeValve . k = 12500 ; %[N/m] Spring cos tant

35 DischargeValve . FS0 = 435 ; %[N] Preload Spring

36 DischargeValve . xMax = 0 . 0 4 ; %[m] Max p o s i t i o n

Valve

37 % Valve Fluid

38 DischargeValve . fdc = [225 0 0 .9 0 ] ; %

Flow d i s cha rge cons tant s

39 DischargeValve .Dam = [280 4 6 3 ] ; % Damping Costant

40 DischargeValve . f f c = [ 0 . 7 2 0 .86 0 . 0 7 ] ; %

F l o w f o r c e c o n s t a n t s

41 DischargeValve . nu = 8 .9 e−4; % F l o w f o r c e c o n s t a n t s

42 DischargeValve . f r i c = 0 . 0 1 ;

43 DischargeValve . Zeta = 1 ;

44 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

45 FileName = mfilename ;

46 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )
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47 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;

48 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;

49 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )

50 f p r i n t f ( ’NB check the v i s c o s i t y o f the va lve model in

the va lve Data ’ )

A.6 Fluids Characteristic

For the Slurry section:

1 % Fluid c h a r a c t e r i s t i c , c o n s i d e r i n g a l l the p r i n c i p l e

va lue o f the l i q u i d

2 % and the vapour parameters f o r the s l u r r y s e c t i o n

3 S lur ry . rho = 998 ; %[ kg/m3] dens i ty o f the l i q u i d

4 S lur ry . p = pre s su r e (1 , ’ bar ’ , ’Pa ’ ) ; %[ Bar ]

Reference p r e s su r e o f the f l u i d c h a r a c t e r i s t i c

5 S lur ry .B = 2.15 e9 ; % bulk modulus

6 S lur ry . nu = 8.94 e−4; % v i s c o s i t y

7 S lur ry . pv = 2338 ; % Vapour p r e s su r e in Pa

8 S lur ry .Temp = 281 ; % tempreature o f the s imu la t i on

in K

9 S lur ry . RVapour = 4 6 1 . 5 ; % Gas vapour cos tant va lue

10 S lur ry . RGas = 287 ; % Gas Air constan value

11 S lur ry . aGas = 1e−10; % Non condensable gas f r a c t i o n

12 S lur ry . gamma = 1 ; % 1 isotehrmal , 1 . 4 a d i a b a t i c o f

the d i s o l v e d gas

13 g = 9 . 8 1 ; % Gravity a c e l e r a t i o n value

14 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

15 FileName = mfilename ;
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16 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )

17 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;

18 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;

19 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )

For the propelling section:

1 % Fluid c h a r a c t e r i s t i c , c o n s i d e r i n g a l l the p r i n c i p l e

va lue o f the l i q u i d

2 % and the vapour parameters f o r the p r o p e l l i n g s e c t i o n

3 P r o p e l l i n g . rho = 875 ; %[ kg/m3] dens i ty o f the

l i q u i d

4 P r o p e l l i n g . p = pre s su r e (1 , ’ bar ’ , ’Pa ’ ) ; %[ Bar ]

Reference p r e s su r e o f the f l u i d c h a r a c t e r i s t i c

5 P r o p e l l i n g .B = 1.37 e9 ; % nulk modulus

6 P r o p e l l i n g . nu = 8.94 e−4; % v i s c o s i t y

7 P r o p e l l i n g . pv = 2338 ; % Vapour p r e s su r e n Pa

8 P r o p e l l i n g .Temp = 281 ; % tempreature o f the

s imu la t i on in K

9 P r o p e l l i n g . RVapour = 4 6 1 . 5 ; % Gas vapour cos tant va lue

10 P r o p e l l i n g . RGas = 287 ; % Gas Air constan value

11 P r o p e l l i n g . aGas = 1e−10; % Dissoved gas f r a c t i o n

12 P r o p e l l i n g . gamma = 1 ; % 1 isotehrmal , 1 . 4 a d i a b a t i c

13 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

14 FileName = mfilename ;

15 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )

16 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;

17 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;
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18 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )

A.7 Initialization Data

1 %% I n i t i a l i z a t i o n o f s imu la t i on parameters

2 % |−−−−−−−−−−−|

3 % | I n l e t |

4 % |−−−−−−−−−−−|

5 pIn = pre s su r e ( pIn , ’ bar ’ , ’Pa ’ ) ; %Pa

6 [ cIn , rhoIn ] = SpeedOfSound ( pIn , Solver , S lu r ry ) ;

7 uIn = 0 ;

8 rhoQIn = 0 ;

9 alphaVIn = 0 ;

10 alphaGIn = Slur ry . aGas∗( S lu r ry . p . / pIn ) . ˆ ( 1 /

S lur ry . gamma) ;

11 % |−−−−−−−−−−−−−−−−−−−−|

12 % | Chamber S lur ry |

13 % |−−−−−−−−−−−−−−−−−−−−|

14 pChaSlurry = pre s su r e (pCha , ’ bar ’ , ’Pa ’ ) ;

%Pa

15 [ cChaSlurry , rhoChaSlurry ] = SpeedOfSound ( pChaSlurry ,

Solver , S lu r ry ) ;

16 uChaSlurry = 0 ;

17 rhoQChaSlurry = 0 ;

18 alphaVChaSlurry = 0 ;

19 alphaGChaSlurry = Slur ry . aGas∗( S lu r ry . p . /

pChaSlurry ) . ˆ ( 1 / S lur ry . gamma) ;

20 % |−−−−−−−−−−−−−−−−−−−−−−−−|

21 % | Chamber P r o p e l l i n g |
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22 % |−−−−−−−−−−−−−−−−−−−−−−−−|

23 pChaPropel l ing = pre s su r e (pCha , ’

bar ’ , ’Pa ’ ) ; %Pa

24 [ cChaPropel l ing , rhoChaPropel l ing ] = SpeedOfSound (

pChaPropel l ing , Solver , P r o p e l l i n g ) ;

25 uChaPropel l ing = 0 ;

26 rhoQChaPropell ing = 0 ;

27 alphaVChaPropel l ing = 0 ;

28 alphaGChaPropel l ing = P r o p e l l i n g . aGas∗(

P r o p e l l i n g . p . / pChaPropel l ing ) . ˆ ( 1 / P r o p e l l i n g .

gamma) ;

29 % |−−−−−−−−−−−−|

30 % | Outlet |

31 % |−−−−−−−−−−−−|

32 pOut = pre s su r e (pOut , ’ bar ’ , ’Pa ’ ) ; %Pa

33 [ cOut , rhoOut ] = SpeedOfSound (pOut , Solver , S lu r ry ) ;

34 uOut = 0 ;

35 rhoQOut = 0 ;

36 alphaVOut = 0 ;

37 alphaGOut = Slur ry . aGas∗( S lu r ry . p . / pOut ) . ˆ ( 1 /

S lur ry . gamma) ;

38 %% Create Backup o f the s c r i p t in the d i r e c t o r y Back

up

39 FileName = mfilename ;

40 % newbackup = s p r i n t f ( ’% sbackup .m’ , FileName )

41 c u r r e n t f i l e = s t r c a t ( FileName , ’ .m’ ) ;

42 SimulationBackupFolder = [ d i r e c to ry , FolderName , ’ \

BackupData ’ ] ;

43 c o p y f i l e ( c u r r e n t f i l e , SimulationBackupFolder )
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A.8 Valve dynamics

1 f unc t i on [ x , xdot , NetForce , Agap , CF] = ValveModel ( p1

, p2 , rho , x0 , xdot0 , Vgap , Valve , Solver , NetForce0 , t )

2 % =========================

3 % FG <−−||

4 % | |

5 % | | /\

6 % P1 | | \ / \ P2

7 % | | \ / <−− FS

8 % | | \/ <−− FS0

9 % | |

10 % | |

11 % =========================

12 % |−−−−> x

13 dt = So lve r . dt ;

14 % For Jonhston model the maximum area p o s s i b l e i s when

CF i s equal to one

15 % then the value to not overcome i s : a = A ∗ cos ( theta

) /CD;

16 % Valve Dimension c a l c u l a t i o n ;

17 dm = 0.5 ∗( Valve . do + Valve . d i ) ;

18 AreaValve = Circ l eArea (dm) ;

19 g = 9 . 8 1 ;

20 %% Gap Ve loc i ty

21 dp = p1−p2 ;

22 % B e r n u l l i Speed Ve loc i ty

23 switch So lve r . Speed

24 case ’ B e r n u l l i ’
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25 Vgap = s q r t (2 ∗ abs (dp) / rho ) ∗ s i gn (dp) ;

26 case ’ C o e f f i c i e n t ’

27 Vgap = s q r t (2 ∗ abs (dp) /( rho ∗ Valve .CDJ) ) ∗

s i gn (dp) ;

28 case ’ Eu le r ian ’

29 otherwi s e

30 e r r o r ( ’No Method s p e c i f y ’ )

31 end

32 %% Force C o e f f i c i e n t

33 switch So lve r . Force

34 case ’ Thie l ’

35 dh = x0 ∗ 2 ∗ s i n ( deg2rad ( Valve . theta ) ) ;

36 Re = abs ( rho ∗ Vgap ∗ dh / Valve . nu ) + 1e−6;

37 CF = Valve . f f c (1 ) − Valve . f f c (2 ) ∗ x0 / dm −

Valve . f f c (3 ) ∗ l og10 (Re) ;

38 case ’ Johnston ’

39 Agap = pi ∗ dm ∗ x0 ∗ s i n ( deg2rad ( Valve . theta

) ) ∗(1−x0 /(2∗dm) ∗ s i n (2∗ ( deg2rad ( Valve . theta

) ) ) ) ;

40 CF = 1− 2 ∗ Valve .CDJ ∗ Agap / AreaValve ∗

cos ( deg2rad ( Valve . theta ) ) + 2 ∗ ( Valve .CDJ

∗ Agap / AreaValve ) ˆ2 ;

41 case ’ Constant ’

42 CF = Valve .CDJ;

43 otherwi s e

44 e r r o r ( ’No Method s p e c i f y ’ )

45 end

46 %% Damping

47 switch So lve r . Damping
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48 case ’ Constant ’

49 C = Valve .C;

50 otherwi s e

51 e r r o r ( ’No Method s p e c i f y ’ )

52 end

53 %% Forces

54 Force (1 ) = AreaValve ∗ CF ∗ dp ; % Pressure Force

55 Force (2 ) = Valve .m ∗ g + Valve . FS0 ; % Cosyant Force

56 Force (3 ) = C ∗ xdot0 ; % Damping Force

57 %% Spring Force

58 i f strcmp ( So lve r . Spring , ’ Power ’ )

59 Force (4 ) = 1370323771520 ∗ x0ˆ6 − . . .

60 185636068328 ∗ x0ˆ5 + . . .

61 9625259842.50 ∗ x0ˆ4 − . . .

62 231629611.63 ∗ x0ˆ3 + . . .

63 2512028.98 ∗ x0ˆ2 + . . .

64 1977.13 ∗ x0 + . . .

65 4 . 3 3 8 3 ; % Sproing Force

66 e l s e i f strcmp ( So lve r . Spring , ’ L inear ’ )

67 Force (4 ) = Valve . k ∗ x0 ; % Sproing Force

68 e l s e i f strcmp ( So lve r . Spring , ’ Cost−Linear ’ )

69 Force (4 ) = 209 + Valve . k ∗ x0 ; % Sproing Force

70 end

71 NetForce = Force (1 ) − sum( Force ( 2 : 4 ) ) ;

72 switch So lve r . I n t e g r a t e

73 case ’AB’

74 i f t > 3 % ADAM BASHForth

75 xdot = AdamBashforth ( xdot0 , NetForce/Valve .

m, NetForce0/Valve .m, dt ) ;
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76 x = AdamBashforth ( x0 , xdot , xdot0 , dt ) ;

77 e l s e % EULER

78 xdot = Euler ( xdot0 , NetForce/Valve .m, dt ) ;

79 x = Euler ( x0 , xdot , dt ) ;

80 end

81 case ’EU ’

82 xdot = Euler ( xdot0 , NetForce/Valve .m, dt ) ;

83 x = Euler ( x0 , xdot , dt ) ;

84 end

85 %% Limitat ion Of Valve

86 i f x >= Valve . xMax

87 x = Valve . xMax ;

88 xdot = 0 ;

89 e l s e i f x <= 0

90 x = 0 ;

91 xdot = 0 ;

92 end

93 %% GAP AREA

94 Agap = pi ∗ dm ∗ x ∗ s i n ( deg2rad ( Valve . theta ) ) ∗(1−x

/(2∗dm) ∗ s i n (2∗ ( deg2rad ( Valve . theta ) ) ) ) ;

A.9 Valve Gap Mass flow rate

1 f unc t i on [ rhoQgap , Vgap ] = GapFlow(Agap , rho , fvN , aN , fv1

, a1 , rhoQgap0 , dt , t o l l , Valve )

2 % rhoQgap =

3 % GapFlow(Agap , rho ,CF,pN, rhoqN , cN ,AN, p1 , rhoq1 , c1 , A1 ,

t o l l , Valve , s e c t i o n )

4 % The value o f the rhowQgap i s mo l t ip ly by the v lave

s ea t angle , i f t h i s i s
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5 % s e t to 0 than the f low i s d i r e c t l y p ro j e c t ed to the

a x i a l d i r e c t i o n

6 %

7 % This func t i on g i v e s the f low value a c r o s s the valve ,

eva lua ing the

8 % magniture with newton raphson method l i m i t e d to 100

s imu la t i on . I f the

9 % l i m i t a t i o n i s exceed the value o f the gap f low w i l l

be s e t to the l a s t

10 % time step and dec l a r ed in a p r in t view .

11 % The parameters r eque s t to s o l v e the func t i on are :

12 % − Agap : Area o f the gap c a l c u l a t e d with the

ValveModel

13 % − rho : the dens i ty o f the f low that goes i n s i d e the

valve , normally i s

14 % given by the Suct ion dens i ty f o r the suc t i on va lve

and chamber dens i ty

15 % f o r the d i s cha rge .

16 % − CF: c o e f f i c i e n t o f the l o s s , t i p i c a l l y c a l c u l a t e d

from the ValveModel

17 % − pN: p r e s su r e o f the innet duct ( suc t i on f o r the

suc t i on valve , Chamber

18 % f o r the d i s cha rge )

19 % − rhoqN : f l o w r a t e o f the innet duct ( suc t i on f o r the

suc t i on valve ,

20 % Chamber f o r the d i s cha rge )

21 % − cN : speed o f sound o f the inne t duct ( suc t i on f o r

the suc t i on valve ,

22 % Chamber f o r the d i s cha rge )
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23 % − AN, Area o f the inner duct ( suc t i on f o r the suc t i on

valve ,

24 % Chamber f o r the d i s cha rge )

25 % − p1 : p r e s su r e o f the Outlet duct ( suc t i on f o r the

suc t i on valve , Chamber

26 % f o r the d i s cha rge )

27 % − rhoq1 : f l o w r a t e o f the Outlet duct ( suc t i on f o r

the suc t i on valve ,

28 % Chamber f o r the d i s cha rge )

29 % − c1 : speed o f sound o f the Outlet duct ( suc t i on f o r

the suc t i on valve ,

30 % Chamber f o r the d i s cha rge )

31 % − A1 , Area o f the Outlet duct ( suc t i on f o r the

suc t i on valve ,

32 % Chamber f o r the d i s cha rge )

33 % − t o l l : t o l l e r a n c e o f the s o l v e r method

34 % − Valve : C h a r a c t e r i s t i c o f the Valve , i f use the

notat ion o f the Valve

35 % data w i l l be Suct ionValve or DischargeValve

36 % − s e c t i o n : ’ d i scharge ’ or ’ suct ion ’%

37

38 p1 = fv1 (1 , 1 ) ;

39 RQ1 = fv1 (2 , 1 ) ;

40 c1 = fv1 (6 , 1 ) ;

41 L12 = fv1 (9 , 1 ) ;

42

43 pN = fvN (1 , end ) ;

44 RQN = fvN (2 , end ) ;

45 cN = fvN (6 , end ) ;
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46 LN1 = fvN (8 , end ) ;

47

48 i f Agap > 0

49 dh = s q r t (4∗Agap/ pi ) ;

50 AK = ( Valve . f r i c ∗ Valve . l g / dh + Valve . Zeta + 1)

;

51 BK = 2 ∗ rho ∗ Agap ∗ Valve . l g ;

52 CK = 2 ∗ Agapˆ2 ∗ rho ;

53 M = BK / dt + CK ∗ ( c1 ˆ2 / ( a1∗L12 ) − cNˆ2/(aN∗LN1

) ) ;

54 W = CK ∗ ( ( p1−pN) + cNˆ2/(aN∗LN1) ∗RQN − c1 ˆ2/( a1∗

L12 ) ∗RQ1) − BK / dt ∗ rhoQgap0 ;

55 Err = 1 ;

56 rhoQguess = rand ;

57 whi le Err > t o l l

58 f = rhoQguess ∗ ( abs ( rhoQguess ) ∗ AK +

M) + W;

59 % f = rhoQguess ∗ ( abs ( rhoQguess ) + M/

AK) + W/AK;

60 df = 2 ∗ AK ∗abs ( rhoQguess ) + M;

61 % df = 2 ∗abs ( rhoQguess ) + M / AK ;

62 rhoQgap = rhoQguess − f / df ;

63 Err = abs ( rhoQguess − rhoQgap ) ;

64 rhoQguess = rhoQgap ;

65 end

66

67 rhoQgap = rhoQguess ;

68 Vgap = rhoQguess . / (Agap .∗ rho ) ;

69 e l s e
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70

71 rhoQgap = 0 ;

72 Vgap = 0 ;

73 end

A.10 Accumulator

1 f unc t i on [ pF , VF] = Accumulator (VT, VF, V0 , FV, G, dt ,

A, pPreC , pMax , Fluid , KD, KS, f i x )%

2 % The accumulator re turn the p r e s su r e pF and the

volume o f the f l u i d VF i n s i d e

3 % the accumulator i t s e l f . The a lgor i thms c o n s i s t s i n to

a pre charged gas ,

4 % and can s imulate a bladder , a p i s ton or a diaphragm

behavior .

5 %

6 % |−−−−−−−−−−−−−−−−−−−−−−−−−|

7 % | | | | |

8 % FV −−−| VF | | VG VD |

9 % | | | | |

10 % |−−−−−−−−−−−−−−−−−−−−−−−−−|

11 %

12 % The motion o f the s epara to r between the f l u i d

chamber and the gas chamber

13 % i s r e s t r i c t e d by two hard s tops that l i m i t the

expansion and con t ra c t i on

14 % of the f l u i d volume . The f l u i d volume i s l i m i t e d

when the f l u i d chamber

15 % i s at capac i ty and when the f l u i d chamber i s empty .

The hard s tops are
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16 % modeled with f i n i t e s t i f f n e s s and damping . This

means that i t i s p o s s i b l e

17 % f o r the f l u i d volume to become negat ive or g r e a t e r

than the f l u i d chamber

18 % capac i ty , depending on the va lue s o f the hard−stop

s t i f f n e s s c o e f f i c i e n t

19 % and the accumulator i n l e t p r e s su r e .

20 % However the volume can be l imi ted , caus ing numerica l

i s s u e s .

21 %

22 % PARAMETERS

23 % VT − Total volume o f the accumulator [mˆ3 ]

24 % VF − prev ious time step o f the f l u i d volume [mˆ3 ]

25 % V0 − I n i t i a l c ond i t i on o f Gas VT − VF(1) [mˆ3 ]

26 % FV − The Value o f the prev ious time step o f the pipe

connected to the

27 % Accumulator

28 % G − Gamma, p o l i t r o p i c expansion

29 % dt − d e l t a time [ s ec ]

30 % A − Area o f the pipe connected to the accumulator

31 % pRecC − PreCharge Gas pr e s su r e at V0 [ Pa ]

32 % pMax − Max pre s su r e o f the accumulator [ Pa ]

33 % Fluid − Fluid s t r u c t d e s c r i p t i o n

34 % KD − [KDmax KDmin ] Costant dampening pr e s su r e when

the volume exceed the

35 % maximum value (VF > (VT−V0) ) and the minimum Volume (

VF < 0) ;

36 % KS − [KDmax KDmin ] Costant s t i f f n e s s p r e s su r e when

the volume exceed the
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37 % maximum value (VF > (VT−V0) ) and the minimum Volume (

VF < 0) ;

38 % f i x − ’ Yes ’ the l i m i t a t i o n in the volume at minimum

0 L , ’ l im i t ed 0 . 1 ’ at

39 % 10% of the V0 and ’ l i m i t e d0 . 2 ’ at 20%

40 %

41 % f u r t h e r in fo rmat ion :

42 % https : // n l . mathworks . com/ help /physmod/hydro/ r e f /

gaschargedaccumulator . html

43 i f narg in == 10

44 KD = [ 1 e6 1e6 ] ;

45 KS = [ 1 e6 1e6 ] ;

46 e l s e i f narg in == 11

47 i f strcmp (KD, ’ Yes ’ )

48 KD = [ 1 e6 1e6 ] ;

49 KS = [ 1 e6 −1e6 ] ;

50 f i x = ’ Yes ’ ;

51 end

52 e l s e i f narg in == 12

53 f i x = ’No ’ ;

54 e l s e i f narg in < 13

55 e r r o r ( ’ Not enough input ’ )

56 end

57 Kacc = pPreC∗V0ˆG;

58 VD = ( Kacc / pMax) ˆ(1/G) ; %Volume o f dead

59 VC = VT − VD; % Max volume o f the f l u i d

60 AK = VT − VF − dt / FV(5 , end ) ∗ FV(2 , end ) + dt / FV(5 ,

end ) ∗ A ∗ FV(8 , end ) / FV(6 , end ) ˆ2 ∗ FV(1 , end ) ;

61 BK = dt / FV(5 , end ) ∗ A ∗ FV(8 , end ) / FV(6 , end ) ˆ2 ;
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62 Err = 1 ;

63 Tol = 1e−6;

64 p = rand ;

65 whi le Err > Tol

66 f = p − Kacc / (AK−BK∗p) ˆG;

67 df = 1 − BK ∗ G ∗ Kacc ∗ (AK−BK∗p)ˆ(−G−1) ;

68 pG = p − f / ( df+eps ) ;

69 Err = abs (p − pG) ;

70 p = pG;

71 end

72 rho = Fluid . rho ∗ exp (1/ Fluid .B∗(pG − Fluid . p) ) ;

73 QF = (FV(2 , end ) + A ∗ FV(8 , end ) / FV(6 , end ) ˆ2 ∗ (pG

− FV(1 , end ) ) ) / rho ;%FV(5 , end ) ;

74 VF = VF + dt ∗ QF;

75 i f strcmp ( f i x , ’ Yes ’ )

76 VF = VF ∗ (VF>0) ;

77 e l s e i f strcmp ( f i x , ’ l i m i t e d0 . 1 ’ )

78 i f VF < (−0.1∗V0)

79 VF = 0 ;

80 end

81 e l s e i f strcmp ( f i x , ’ l i m i t e d0 . 2 ’ )

82 i f VF < (−0.2∗V0)

83 VF = 0 ;

84 end

85 end

86 QFp = QF ∗ (QF > 0) ;

87 QFm = QF ∗ (QF < 0) ;

88 ps = (KS(1) ∗(VF−VC)+KD(1) ∗QFp∗(VF−VC) ) ∗ (VF>VC) + (KS

(2) ∗VF−KD(2) ∗QFm∗VF) ∗ (VF < 0) ;
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89 pF = pG + ps ;

A.11 T Junction

1 f unc t i on pTJ = TJunction (VarA , VarB , VarC , AA, AB, AC,

type )

2 % [ pT, rhoQT1 , rhoQT2 , rhoQT3 ] =

3 % TJunction ( rhoQ1 , p1 , c1 , A1 , rhoQ2 , p2 , c2 , A2 , rhoQ3 , p3 , c3 ,

A3 , type )

4 %

5 % Return the junc t i on pr e s su r e

6 % The type o f j u c t i o n must be s p e c i f y : ’1NN’ , ’NNN’ , ,

N11 ’ and ’111

7 % I f the re are 1 pipe that goes to the j u c t i o n and two

duct that s t a r t from

8 % that , the type w i l l be ’N11 ’ , always the d i f f e r e n t

value should be d e f i n e

9 % f i r s t . Also in theat func t i on i s r equ i r ed a

t o l l e r a n c e value , as d e f a u l t

10 % s e t to 1e−1 Pa , do to the numerica l problem .

11 %

12 %

13 % Type N11 | 1NN

14 % / | \

15 % A N / 1 B | B N \ 1 A

16 % −−−−−−+ | +−−−−−−

17 % \ 1 C | C N /

18 % \ | /

19 Tol l = 1e−2;

20 i f strcmp ( type , ’ 1NN’ )
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21 num = double ( ( VarA(2 , 1 ) − VarB(2 , end ) − VarC(2 , end

) ) − AA ∗ VarA(9 , 1 ) / VarA(6 , 1 ) . ˆ2 ∗ VarA

(1 , 1 ) + AB ∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2 ∗

VarB(1 , end ) + AC ∗ VarC(8 , end ) / VarC(6 , end ) . ˆ2

∗ VarC(1 , end ) ) ;

22 den = double (AB ∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2 +

AC ∗ VarC(8 , end ) / VarC(6 , end ) . ˆ2 − AA ∗ VarA

(9 , 1 ) / VarA(6 , 1 ) . ˆ2 ) ;

23 pTJ = double (num / den ) ;

24 e l s e i f strcmp ( type , ’N11 ’ )

25 num = double ( ( VarA(2 , end ) − VarB (2 , 1 ) − VarC (2 , 1 )

) − AA ∗ VarA(8 , end ) / VarA(6 , end ) . ˆ2 ∗ VarA(1 ,

end ) + AB ∗ VarB (9 , 1 ) / VarB (6 , 1 ) . ˆ2 ∗ VarB

(1 , 1 ) + AC ∗ VarC (9 , 1 ) / VarC (6 , 1 ) . ˆ2 ∗

VarC (1 , 1 ) ) ;

26 den = double (AB ∗ VarB (9 , 1 ) / VarB (6 , 1 ) . ˆ2 + AC ∗

VarC (9 , 1 ) / VarC (6 , 1 ) . ˆ2 − AA ∗ VarA(8 , end ) /

VarA(6 , end ) . ˆ2 ) ;

27 pTJ = double (num / den ) ;

28 e l s e i f strcmp ( type , ’ 111 ’ )

29 num = double ( ( VarA(2 , 1 ) − VarC (2 , 1 ) − VarB (2 , 1 ) ) −

AA ∗ VarA(9 , 1 ) / VarA(6 , 1 ) . ˆ2 ∗ VarA(9 , 1 ) + AB

∗ VarB (9 , 1 ) / VarB (6 , 1 ) . ˆ2 ∗ VarB (9 , 1 ) + AC ∗

VarC (9 , 1 ) / VarC (6 , 1 ) . ˆ2 ∗ VarC (9 , 1 ) ) ;

30 den = double (AB ∗ VarB (8 , 1 ) / VarB (6 , 1 ) . ˆ2 + AC ∗

VarC (8 , 1 ) / VarC (6 , 1 ) . ˆ2 − AA ∗ VarA(8 , 1 ) /

VarA(6 , 1 ) . ˆ 2 ) ;

31 pTJ = double (num / den ) ;

32 e l s e i f strcmp ( type , ’NNN’ )
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33 num = double ( ( VarA(2 , end ) − VarC(2 , end ) − VarB(2 ,

end ) ) − AA ∗ VarA(8 , end ) / VarA(6 , end ) . ˆ2 ∗

VarA(1 , end ) + AB ∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2

∗ VarB(1 , end ) + AC ∗ VarC(8 , end ) / VarC(6 , end )

. ˆ2 ∗ VarC(1 , end ) ) ;

34 den = double (AC ∗ VarC(8 , end ) / VarC(6 , end ) . ˆ2 +

AB ∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2 − AA ∗ VarA

(8 , end ) / VarA(6 , end ) . ˆ 2 ) ;

35 pTJ = double (num / den ) ;

36 e l s e i f strcmp ( type , ’NN1 ’ )

37 num = double ( ( VarB(2 , end ) + VarC(2 , end ) − VarA

(2 , 1 ) ) + AA ∗ VarA(9 , 1 ) / VarA(6 , 1 ) . ˆ2 ∗

VarA(1 , 1 ) − AB ∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2 ∗

VarB(1 , end ) − AC ∗ VarC(8 , end ) / VarC(6 , end )

. ˆ2 ∗ VarC(1 , end ) ) ;

38 den = double (AA ∗ VarA(9 , 1 ) / VarA(6 , 1 ) . ˆ2 − AB

∗ VarB(8 , end ) / VarB(6 , end ) . ˆ2 − AC ∗ VarC(8 ,

end ) / VarC(6 , end ) . ˆ 2 ) ;

39 pTJ = double (num / den ) ;

40 e l s e

41 e r r o r ( ’ Juct ion e r r o r d e f i n i t i o n ’ )

42 end

43 %%

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

44 FloorValue = f l o o r (pTJ) ;

45 Cei lValue = c e i l (pTJ) ;

46 i f abs ( ( pTJ − FloorValue ) ) < Tol l

47 pTJ = FloorValue ;
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48 e l s e i f abs ( ( pTJ − Cei lValue ) ) < Tol l

49 pTJ = Cei lValue ;

50 end

A.12 Junction

1 f unc t i on pTJ = Junct ion (VarA , VarB , AA, AB)

2 % pTJ = Junct ion (VarA , VarB , AA, AB)

3 %

4 % A B

5 %

−−−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % |

7 % −−− N−1 −−−|−−− N −−−|−−− 1 −−−|−−− 2 −−−

8 % |

9 %

−−−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % This func t i on r e tu rn s the value o f the p r e s su r e at

the j u c t i o n where VarA

11 % i s the end extreme and VarB i s the s t a r t i n g pipe .

12 % VarA and VarB are the Function value p r e a l l o c a t e d in

memory , namely FV

13 % meanwhile the AA and AB are the area value

14 % there i s a t o l l e r a n c e value impose at 1e−5 Pa , f o r

which lower value w i l l

15 % be s e t to c e i l or f l o o r va lue to prevent numerica l

e r r o r .

16 % I t happened that f o r some pipe value , the v a r i a t i o n
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in pres sure , even

17 % smal le r , l i k e no i s e va lue c r e a r e a water hammer

e f f e c t that v a r i a t e s tep

18 % by step the value o f the mass f low ra t e . In same

ca s e s the code d ive rge

19

20 Tol l = 1e−5; % <−−−

21 num = (VarA(2 , end ) − VarB (2 , 1 ) ) + AB ∗ VarB (9 , 1 ) /

VarB (6 , 1 ) ˆ2 ∗ VarB (1 , 1 ) − AA ∗ VarA(8 , end ) / VarA

(6 , end ) ˆ2 ∗ VarA(1 , end ) ;

22 den = AB ∗ VarB (9 , 1 ) / VarB (6 , 1 ) ˆ2 − AA ∗ VarA(8 ,

end ) / VarA(6 , end ) ˆ2 ;

23 pTJ = num / den ;

24 FloorValue = f l o o r (pTJ) ;

25 Cei lValue = c e i l (pTJ) ;

26 i f abs ( ( pTJ − FloorValue ) ) < Tol l

27 pTJ = FloorValue ;

28 e l s e i f abs ( ( pTJ − Cei lValue ) ) < Tol l

29 pTJ = Cei lValue ;

30 end

A.13 Speed of Sound

1 f unc t i on [ cL , rhoL ] = SpeedOfSound (pL , Solver , Fluid ,

Dimension )

2 % [ cL , rhoL ] = SpeedOfSound (pL , Solver , Fluid , Dimension

)

3 % g i v e s the value o f the l i q u i d speed o f sound and the

dens i ty r e l a t e d with

4 % the a lgor i thm of the So lve r d e f i n i t i o n .
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5 i f narg in == 3

6 i f or ( strcmp ( So lve r . LiquidSpeed , ’ Constant ’ ) , strcmp

( So lve r . LiquidSpeed , ’ Bulk ’ ) )

7 Dimension = 0 ;

8 e l s e

9 e r r o r ( ’Non de f ined Dimension in Speed o f Sound

’ )

10 end

11 end

12 switch So lve r . LiquidSpeed

13 case ’ Constant ’

14 rhoL = Fluid . rho ;

15 cL = Fluid . c ;

16 case ’ Korteweg ’

17 beta = 2 / ( ( Dimension . d + 2 ∗ Dimension . th )

ˆ2 − Dimension . dˆ2) ∗((1−Dimension . nu) ∗

Dimension . d ˆ2+(1+Dimension . nu ) ∗( Dimension .

d + 2 ∗ Dimension . th ) ˆ2) ;

18 rhoL = Fluid . rho ∗ exp (1/ Fluid .B∗(pL − Fluid . p

) ) ;

19 cL = s q r t ( Fluid .B/ Fluid . rho ) ;

20 cL = s q r t ( cLˆ2 /((1+ rhoL ∗ beta ∗ cLˆ2 /

Dimension .E) ) ) ;

21 case ’ Simpson ’

22 rhoL = Fluid . rho ∗ exp (1/ Fluid .B∗(pL − Fluid . p

) ) ;

23 cL = s q r t ( Fluid .B/ Fluid . rho ) ;

24 cL = cL /(1+( Fluid .B / Dimension .E ∗

Dimension . d / Dimension . th )∗(1−Dimension . nu
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ˆ2) ) ;

25 case ’ Bulk ’

26 rhoL = Fluid . rho .∗ exp (1 . / Fluid .B . ∗ ( pL −

Fluid . p) ) ;

27 cL = s q r t ( Fluid .B . / Fluid . rho ) ;

28 end

A.14 Mesh Grid

1 f unc t i on [ NodeX , NodeINT , dx , x , Xint , LF ] = Staggr id (

L0 , LF, dx )

2 %

3 %[ NodeX , NodeINT , dx , X, Xint ] = Staggr id (L0 , LF, dx )

4 %

5 % L0 |<−dx−−>|<−>|dx/2

LF

6 % |−−−x−−−|−−−x−−−|−−−x−−−|−−−x−−−|−−−x−−−|−−−x−−−|−−−

x−−−|−−−x−−−|

7 % i=1 i=2 i=3 i=N−1 i=

N−1 i=N

8 %

9 % This a lgor i thm c r e a t e only even d i v i s i o n o f the

s e c t i on , and i f the dx i s

10 % not f u l l f i l e n t i e r l y the pipe , the l ength dx w i l l be

added or removed to

11 % overcome the i s s u e s . I t w i l l be shown the amount o f

dimension changeg .

12 % Smal ler i s dx , sma l l e r w i l l be the d i f f e r e n t with

the r e a l dimension . The

13 % reason why i s b u i l t l i k e that i s the p o s s i b i l i t y to
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do not use

14 % i n t e r p o l a t i o n scheme , because everywhere w i l l be s e t

the r i g h t number o f

15 % nodes and the p o s s i b i l i t y to use the c a v i t a t i o n

a lgor i thm ( that r e q u i r e

16 % even d i v i s i o n o f the pipe )

17

18 i f LF < L0

19 e r r o r ( ’L must be b igge r than L0 ’ ) ;

20 end

21 Num dx = c e i l ( (LF − L0) / dx ) ;

22 i f mod(Num dx , 2) ˜= 0

23 temp = LF;

24 Num dx = Num dx + 1 ;

25 LF = Num dx ∗ dx ;

26 f p r i n t f ( [ ’ Length change from ’ , ’ %2.3 f ’ , ’ to ’ , ’

%2.3 f ’ , ’ [m] \n ’ ] , temp ,LF)

27 end

28 NodeX = Num dx ;

29 l 0 = L0 + dx /2 ;

30 lF = LF − dx /2 ;

31 x = l i n s p a c e ( l0 , lF , NodeX) ;

32 NodeINT = NodeX+1;

33 Xint = l i n s p a c e (L0 , LF, NodeINT) ;

34 end

A.15 MUSCL

1 f unc t i on [VAR, FV] = MUSCL( dimension , X, XI , BC,

BCinlet , BCoutlet , So lver , Fluid , FV)
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2 % [VAR, FV] =

3 % MUSCL( dimension , X, XI , BC, BCinlet , BCoutlet ,

So lver , Fluid , FV)

4 % The func t i on r equ i r ed :

5 % − Dimension : the c h a r a c t e r i s t i c o f the duct

6 % − X: the vec to r o f the node p o s i t i o n

7 % − XI : the vec to r o f the i n t e r f a c e p o s i t i o n

8 % − BC: the vec to r o f the Boundary i n t e r f a c e , the BC

(1) i s the value at the

9 % i n i t i a l boundary meanwhile the BC(2) i s the boundary

at the N+1/2

10 % − Solver , the s t r u c t o f the s o l v e r a lgor i thms

11 % − Fluid : f l u i d c h a r a c t e r i s t i c

12 % − FV, namely the value o f the parameters f o r the

prev ious time step .

13 % f o r d e t a i l s check the paper o f Zhou 2017B and

Zhou 2017

14 % to understand the MUSCL algor i thm .

15 Tol l = 1e−10;

16 SIZE = s i z e (FV) ;

17 VAR = ze ro s ( SIZE (1) , SIZE (2) ) ;

18 %% Var iab le c a l c u l a t e d

19 Area = Circ l eArea ( dimension . d) ; % c a l c u l a t e the

Area

20 %% Eingenvalue

21 % Eigenvalue c a l c u l a t e f o r the system o f the p r e s su r e

and f low ra t e

22 i f strcmp ( So lve r . Convective , ’No ’ )

23 Lambda ( 1 , : ) = −FV( 6 , : ) ; % f i r s t no ceonvec t i v e
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method e i g enva lue

24 Lambda ( 2 , : ) = FV( 6 , : ) ; % second no ceonvec t i v e

method e i g enva lue

25 e l s e

26 Lambda ( 1 , : ) = (FV( 7 , : )− s q r t (FV( 7 , : ) . ˆ2 + 4 ∗ FV

( 6 , : ) . ˆ2 ) ) /2 ; % F i r s t

27 Lambda ( 2 , : ) = (FV( 7 , : )+ s q r t (FV( 7 , : ) . ˆ2 + 4 ∗ FV

( 6 , : ) . ˆ 2 ) ) /2 ; % Second

28 end

29 %% Boundary

30 % Depending on the Value s e t as boundary ,

automat i ca l l y w i l l c a l c u l a t e the value o f the other

parameter

31 % INLET

32 i f strcmp ( BCinlet , ’ p ’ ) % Calcu la te the i n l e t boundary

cond i t i on in case o f p r e s su r e d e f i n i t i o n

33 BDI(1 ) = BC(1) ;

34 BDI(2 ) = FV(2 , 1 ) + Area ∗ Lambda (2 , 1 ) . / FV(6 , 1 )

. ˆ2 ∗ (BDI(1 ) − FV(1 ,1 ) ) ;

35 e l s e i f strcmp ( BCinlet , ’ f r ’ ) % Calcu la te the i n l e t

boundary cond i t i on in case o f Flowrate d e f i n i t i o n

36 BDI(2 ) = BC(1) ;

37 BDI(1 ) = FV(1 , 1 ) + FV(6 , 1 ) . ˆ2 . / ( Area ∗ Lambda

(2 , 1 ) ) ∗ (BDI(2 ) − FV(2 ,1 ) ) ;

38 e l s e

39 e r r o r ( ’ Error to i n l e t Boundary cond i t i on ’ )

40 end

41 % OUTLET

42 i f strcmp ( BCoutlet , ’p ’ ) % Ca lcu la te the Outlet
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boundary cond i t i on in case o f p r e s su r e d e f i n i t i o n

43 BDO(1) = BC(2) ;

44 BDO(2) = FV(2 , end ) + Area ∗ Lambda(1 , end ) . / FV

(6 , end ) . ˆ2 ∗ (BDO(1) − FV(1 , end ) ) ;

45 e l s e i f strcmp ( BCoutlet , ’ f r ’ ) % Ca lcu la te the o u t l e t

boundary cond i t i on in case o f Flowrate d e f i n i t i o n

46 BDO(2) = BC(2) ;

47 BDO(1) = FV(1 , end ) + FV(6 , end ) . ˆ 2 . / ( Area ∗

Lambda(1 , end ) ) ∗ (BDO(2) − FV(2 , end ) ) ;

48 e l s e

49 e r r o r ( ’ Error to o u t l e t Boundary cond i t i on ’ )

50 end

51 % e t r a p o l a t i o n the o the r s v a r i a b l e that are c a l c u l a t e d

by the f i r s t two

52 % I n l e t

53 BDI(3 ) = e x t r a p o l a t i o n (FV( 3 , 1 : 2 ) , XI (1 ) , X( 1 : 2 ) , ’ i n l e t

’ , ’ yes ’ ) ; % alpha

54 BDI(4 ) = e x t r a p o l a t i o n (FV( 4 , 1 : 2 ) , XI (1 ) , X( 1 : 2 ) , ’ i n l e t

’ , ’ yes ’ ) ; % alphaG

55 BDI(5 ) = e x t r a p o l a t i o n (FV( 5 , 1 : 2 ) , XI (1 ) , X( 1 : 2 ) , ’ i n l e t

’ , ’ yes ’ ) ; % rho

56 BDI(6 ) = e x t r a p o l a t i o n (FV( 6 , 1 : 2 ) , XI (1 ) , X( 1 : 2 ) , ’ i n l e t

’ , ’ yes ’ ) ; % c , speed o f sound

57 BDI(7 ) = e x t r a p o l a t i o n (FV( 7 , 1 : 2 ) , XI (1 ) , X( 1 : 2 ) , ’ i n l e t

’ , ’ n ’ ) ; % speed o f f l u i d

58 % Outlet

59 BDO(3) = e x t r a p o l a t i o n (FV(3 , end−1:end ) , XI ( end ) , X( end

−1:end ) , ’ o u t l e t ’ , ’ yes ’ ) ; % alpha

60 BDO(4) = e x t r a p o l a t i o n (FV(4 , end−1:end ) , XI ( end ) , X( end



CHAPTER A MATLAB CODE 64

−1:end ) , ’ o u t l e t ’ , ’ yes ’ ) ; % alphaG

61 BDO(5) = e x t r a p o l a t i o n (FV(5 , end−1:end ) , XI ( end ) , X( end

−1:end ) , ’ o u t l e t ’ , ’ yes ’ ) ; % rho

62 BDO(6) = e x t r a p o l a t i o n (FV(6 , end−1:end ) , XI ( end ) , X( end

−1:end ) , ’ o u t l e t ’ , ’ yes ’ ) ; % c , speed o f sound

63 BDO(7) = e x t r a p o l a t i o n (FV(7 , end−1:end ) , XI ( end ) , X( end

−1:end ) , ’ o u t l e t ’ , ’ n ’ ) ; % Speed o f f l u i d

64 %% I n t e r f a c e Exr t rapo la t i on

65 u = ze ro s ( SIZE (1) , SIZE (2) +4) ;

66 Ind = 3 : SIZE (2) +2;

67 % adding two ghost c e l l s at each edges

68 f o r i = 1 : SIZE (1)−2

69 u( i , 1 : 2 ) = BDI( i ) ; %d e f i n e the

i n l e t boundary cond i t i on

70 u( i , SIZE (2) +3:SIZE (2) +4) = BDO( i ) ; %d e f i n e the

o u t l e t boundary cond i t i on

71 u( i , Ind ) = FV( i , : ) ; %d e f i n e the

i n t e r i o r boundary cond i t i on

72 end

73 Ind = 2 : SIZE (2) +3;

74 S ize Ind = length ( Ind ) ;

75 % Slope Limiter Function

76 Di = SlopeL imite r (u , So lve r ) ;

77 uL = u ( 1 : 2 , Ind ) − So lve r . dx/2 ∗ Di ;

78 uR = u ( 1 : 2 , Ind ) + So lve r . dx/2 ∗ Di ;

79 %% Evolut ion

80 % c a l c u l a t e the Eigenvalue at a l l the g r id po in t s

81 i f strcmp ( So lve r . Convective , ’No ’ )

82 Eig ( 1 , 1 : S i ze Ind ) = − u (6 , Ind ) ;
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83 Eig ( 2 , 1 : S i ze Ind ) = u (6 , Ind ) ;

84 e l s e

85 Eig ( 1 , 1 : S i ze Ind ) = (u (7 , Ind ) − s q r t (u (7 , Ind ) . ˆ2 +

4 ∗ u (6 , Ind ) . ˆ 2 ) ) /2 ;

86 Eig ( 2 , 1 : S i ze Ind ) = (u (7 , Ind ) + s q r t (u (7 , Ind ) . ˆ2 +

4 ∗ u (6 , Ind ) . ˆ 2 ) ) /2 ;

87 end

88 % Evaluat ing the Jacobian Matrix

89 A( 1 , 1 , 1 : S i ze Ind ) = 0 ;

90 A( 1 , 2 , 1 : S i ze Ind ) = u (6 , Ind ) . ˆ2 . / Area ;

91 A( 2 , 1 , 1 : S i ze Ind ) = Area ;

92 i f strcmp ( So lve r . Convective , ’No ’ )

93 A( 1 , 1 , 1 : S i ze Ind ) = 0 ;

94 A( 1 , 2 , 1 : S i ze Ind ) = u (6 , Ind ) . ˆ2 . / Area ;

95 A( 2 , 1 , 1 : S i ze Ind ) = Area ;

96 A( 2 , 2 , 1 : S i ze Ind ) = 0 ;

97 e l s e

98 A( 1 , 1 , 1 : S i ze Ind ) = 0 ;

99 A( 1 , 2 , 1 : S i ze Ind ) = u (6 , Ind ) . ˆ2 . / Area ;

100 A( 2 , 1 , 1 : S i ze Ind ) = Area ;

101 A( 2 , 2 , 1 : S i ze Ind ) = u (7 , Ind ) ;

102 end

103 %% C a r a c t e r i s t i c s fo rmulat ion

104 ML( 1 , 1 , 1 : S i ze Ind ) = Eig ( 1 , 1 : S i ze Ind ) . / ( Eig ( 1 , 1 :

S i ze Ind ) − Eig ( 2 , 1 : S i ze Ind ) ) ;

105 ML( 1 , 2 , 1 : S i ze Ind ) = u (6 , Ind ) . ˆ2 . / ( Area .∗ ( Eig ( 2 , 1 :

S i ze Ind ) − Eig ( 1 , 1 : S i ze Ind ) ) ) ;

106 ML( 2 , 1 , 1 : S i ze Ind ) = Area .∗ Eig ( 1 , 1 : S i ze Ind ) .∗ Eig

( 2 , 1 : S i ze Ind ) . / (u (6 , Ind ) . ˆ2 .∗ ( Eig ( 1 , 1 : S i ze Ind )
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− Eig ( 2 , 1 : S i ze Ind ) ) ) ;

107 ML( 2 , 2 , 1 : S i ze Ind ) = Eig ( 2 , 1 : S i ze Ind ) . / ( Eig ( 2 , 1 : S i ze Ind

) − Eig ( 1 , 1 : S i ze Ind ) ) ;

108

109 MR( 1 , 1 , 1 : S i ze Ind ) = − Eig ( 2 , 1 : S i ze Ind ) . / ( Eig ( 1 , 1 :

S i ze Ind ) − Eig ( 2 , 1 : S i ze Ind ) ) ;

110 MR( 1 , 2 , 1 : S i ze Ind ) = − u (6 , Ind ) . ˆ2 . / ( Area .∗ ( Eig

( 2 , 1 : S i ze Ind ) − Eig ( 1 , 1 : S i ze Ind ) ) ) ;

111 MR( 2 , 1 , 1 : S i ze Ind ) = − Area .∗ Eig ( 1 , 1 : S i ze Ind ) .∗ Eig

( 2 , 1 : S i ze Ind ) . / (u (6 , Ind ) . ˆ2 .∗ ( Eig ( 1 , 1 : S i ze Ind )

− Eig ( 2 , 1 : S i ze Ind ) ) ) ;

112 MR( 2 , 2 , 1 : S i ze Ind ) = − Eig ( 1 , 1 : S i ze Ind ) . / ( Eig ( 2 , 1 :

S i ze Ind ) − Eig ( 1 , 1 : S i ze Ind ) ) ;

113 %% MUSCL

114 % i n t e r f a c e evo lu t i on o f the Boundary c e l l i n t e r f a c e

115 f o r i = 1 : l ength (uL)

116 UL( : , i ) = uL ( 1 : 2 , i ) + 0 .5 ∗ So lve r . dt/ So lve r . dx ∗

A( : , : , i ) ∗ (uL ( 1 : 2 , i ) − uR( 1 : 2 , i ) ) ;

117 UR( : , i ) = uR( 1 : 2 , i ) + 0 .5 ∗ So lve r . dt/ So lve r . dx ∗

A( : , : , i ) ∗ (uL ( 1 : 2 , i ) − uR( 1 : 2 , i ) ) ;

118 end

119 %Flux at the i n t e r f a c e

120 f o r i = 1 : l ength (UL)−1

121 fU ( : , i ) = A( : , : , i ) ∗ ML( : , : , i ) ∗ UR( : , i ) + A

( : , : , i +1) ∗ MR( : , : , i +1) ∗ UL( : , i +1) ;

122 end

123 % Evaluat ion o f the

124 f o r i = 1 :2

125 FV( i , : ) = FV( i , : ) − So lve r . dt/ So lve r . dx ∗ d i f f ( fU (
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i , : ) ) ;

126 end

127 % Pressure at the Var iab le FV cannot be lower that the

Vapour p r e s su r e

128 switch So lve r . Cav i tat ion

129 case ’DGCM’ % DISCRETE GAS CAVITY MODEL

130 [FV, VAR] = DGCM(FV,VAR, dimension , Solver , Flu id

) ;

131 case ’DVCM’% DISCRETE Vapour CAVITY MODEL

i n t e r p o l a t e d

132 [FV, VAR] = DVCM(FV,VAR, dimension , Solver , Flu id

) ;

133 otherwi s e % No Cavity eva lua t i on

134 [FV, VAR] = DGNC(FV,VAR, dimension , Solver , Flu id

) ;

135 end

136 %% F r i c t i o n

137 Re = abs (mean(FV( 7 , : ) .∗ dimension . d .∗ FV( 5 , : ) . /

Fluid . nu ) ) ; % Reynold averaged value from the

prev ious time step

138 f = f r i c t i o n (Re , dimension , So lve r ) ;

139 %% RK4

140 f termRK1 = − 1/8 ∗ f .∗ Dimension . d .∗ FV( 5 , : ) .∗ FV

( 7 , : ) .∗ abs (FV( 7 , : ) ) . / k0 ( I2 ) ;

141 g termRK1 = − 9 .81 .∗ FV( 5 , : ) .∗ Dimension .A .∗ s i n (

deg2rad ( Dimension . theta ) ) ;

142 RK1 = So lve r . dt ∗ ( f termRK1 + g termRK1 ) ;

143

144 rhoQ K2 = FV( 2 , : ) + RK1/2 ;



CHAPTER A MATLAB CODE 68

145 vRK2 = rhoQ K2 / (FV( 5 , : ) ∗ Dimension .A) ;

146 f termRK2 = − 1/8 ∗ f .∗ Dimension . d .∗ FV( 5 , : ) .∗

vRK2 .∗ abs (vRK2) . / k0 ( I2 ) ;

147 g termRK2 = − 9 .81 .∗ FV( 5 , : ) .∗ Dimension .A .∗ s i n (

deg2rad ( Dimension . theta ) ) ;

148 RK2 = So lve r . dt ∗ ( f termRK2 + g termRK2 ) ;

149

150 rhoQ K3 = FV( 2 , : ) + RK2/2 ;

151 vRK3 = rhoQ K3 / (FV( 5 , : ) ∗ Dimension .A) ;

152 f termRK3 = − 1/8 ∗ f .∗ Dimension . d .∗ FV( 5 , : ) .∗

vRK3 .∗ abs (vRK3) . / k0 ( I2 ) ;

153 g termRK3 = − 9 .81 .∗ FV( 5 , : ) .∗ Dimension .A .∗ s i n (

deg2rad ( Dimension . theta ) ) ;

154 RK3 = So lve r . dt ∗ ( f termRK3 + g termRK3 ) ;

155

156 rhoQ K4 = FV( 2 , : ) + RK3;

157 vRK4 = rhoQ K4 / (FV( 5 , : ) ∗ Dimension .A) ;

158 f termRK4 = − 1/8 ∗ f .∗ Dimension . d .∗ FV( 5 , : ) .∗

vRK4 .∗ abs (vRK4) . / k0 ( I2 ) ;

159 g termRK4 = − 9 .81 .∗ FV( 5 , : ) .∗ Dimension .A .∗ s i n (

deg2rad ( Dimension . theta ) ) ;

160 RK4 = So lve r . dt ∗ ( f termRK4 + g termRK4 ) ;

161

162

163 FV( 2 , : ) = FV( 2 , : ) + (RK1 + 2∗RK2 + 2∗RK3 + RK4) /6 ;

164 FV( 7 , : ) = FV( 2 , : ) . / ( Dimension .A .∗ FV( 5 , : ) ) ; % speed

165 %% Update data

166 % Update the mass f l o w r a t e with f r i c t i o n

167 FV( 2 , : ) = FV( 2 , : ) + So lve r . dt / 6 ∗(RK1 + 2∗ RK2 + 2∗



CHAPTER A MATLAB CODE 69

RK3 + RK4) ;

168 FV( 2 , : ) = FV( 2 , : ) .∗ ( abs (FV( 2 , : ) ) > Tol l ) ; %

Limitat ion o f the spo r i ou s o s c i l l a t i o n due to

numerica l data

169 VAR( 2 , : ) = FV( 2 , : ) ; % Flowrate

170

171 % Speed o f the Fluid

172 FV( 7 , : ) = FV( 2 , : ) . / ( Area .∗ FV( 5 , : ) ) ; % speed

173 VAR( 7 , : ) = FV( 7 , : ) ; % speed

174

175 % Eighenvalue

176 i f strcmp ( So lve r . Convective , ’No ’ )

177 FV( 8 , : ) = −FV( 6 , : ) ; % F i r s t

178 FV( 9 , : ) = FV( 6 , : ) ; % Second

179 e l s e

180 FV( 8 , : ) = (FV( 7 , : ) − s q r t (FV( 7 , : ) . ˆ2 + 4 ∗ FV( 6 , : )

. ˆ 2 ) ) /2 ; % F i r s t

181 FV( 9 , : ) = (FV( 7 , : ) + s q r t (FV( 7 , : ) . ˆ2 + 4 ∗ FV( 6 , : )

. ˆ 2 ) ) /2 ; % Second

182 end

183

184 end

A.16 Friction

1 f unc t i on f = f r i c t i o n (Re , Dimension , Solver , rough )

2 % f = f r i c t i o n (Re , Dimension , So lve r )

3 % func t i on that g i v e s back the f r i c t i o n fa c to r ,

c o n s i d e r i n g as the l i m i t o f

4 % turbo lance and laminar 2300 Re . Refered with the
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s o l v e r method , d i f f e r e n t

5 % approaches can be applyed . The roughness i s s e t as

d e f a u l t 1e−5

6 % in case o f use Darcy algor ithm , a subrout ine i s

performed when the

7 % f r i c t i o n became r e a l l y small , with i t e r a t i o n step

s e t to 0 . 0 0 0 5 .

8 % The f o l l o w i n g apprach can be used :

9 % − Constant , with f r i c t i o n value equal to 0 .1

10 % − Moody

11 % − Wood

12 % − Eck

13 % − Swamee

14 % − Church i l l

15 % − Jain

16 % − Chen

17 % − Round

18 % − Haaland

19 % − Darcy

20 i f narg in == 3

21 rough = 1e−5;

22 end

23 E = rough . / Dimension . d ;

24 i f Re == 0

25 f = 0 ;

26 e l s e i f Re < 2300

27 switch So lve r . F r i c t i o n

28 case ’ Nul l ’

29 f = 0 ;



CHAPTER A MATLAB CODE 71

30 otherwi s e

31 f = 64 / Re ;

32 end

33 e l s e

34 switch So lve r . F r i c t i o n

35 case ’ Constant ’

36 f = . 0 1 ;

37 case ’Moody ’

38 f = 0.0055 ∗ (1 + (2 e4 ∗ E + 1e6 / Re)

ˆ(1/3) ) ;

39 case ’Wood ’

40 Psi = 1 .62 ∗ Eˆ . 1 3 4 ;

41 f = 0 .094 ∗ Eˆ0.225 + 0.53 ∗ E + 88 ∗ E

ˆ.44 ∗ Reˆ(−Psi ) ;

42 case ’ Eck ’

43 f = (1/(− 2 ∗ l og10 ( E / 3 .715 + (6 .943 /

Re) ˆ . 9 ) ) ) . ˆ 2 ;

44 case ’Swamee ’

45 f = 0 .25 / ( log10 ( E/3 .7 + 5.74 / Re . ˆ

0 . 9 ) ) . ˆ 2 ;

46 case ’ Church i l l ’

47 f = ( ( 1 ) / ( − 2 ∗ l og10 (E / 3 .71 + (7 /

Re) ˆ . 9 ) ) ) . ˆ 2 ;

48 case ’ Jain ’

49 f = ( ( 1 ) / ( − 2 ∗ l og10 (E / 3 .715 +

(6 .943 / Re) ˆ . 9 ) ) ) . ˆ 2 ;

50 case ’Chen ’

51 f = ( ( 1 ) / ( − 2 ∗ l og10 (E / 3.7065 −

5 .0452 / So lve r . Re ∗ l og10 (1/2 .8257 ∗
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Eˆ1.1098 + 5.8506 / Reˆ0 .8981) ) ) ) . ˆ 2 ;

52 case ’Round ’

53 f = ( ( 1 ) / ( 1 .8 ∗ l og10 (Re / (0 . 135 ∗ Re

∗ E + 6 . 5 ) ) ) ) . ˆ 2 ;

54 case ’ Haaland ’

55 f = ( ( 1 ) / ( − 1 .8 ∗ l og ( (E / 3 . 7 ) . ˆ 1 . 1 1 +

6 .9 / Re) ) ) . ˆ 2 ;

56 case ’ Darcy ’

57 B = 2.51 / Re ;

58 Err = 1 ;

59 t o l l = 1e−8;

60 A = rough / ( 3 . 7∗ Dimension . d) ;

61 f g = 0 . 0 0 5 ;

62 temp = fg ;

63 i t = 0 ;

64 whi le Err > t o l l

65 fun = 1 / s q r t ( f g ) + 2 ∗ l og (A + B /

s q r t ( f g+eps ) ) ;

66 dfun = − 1 / (2 ∗ f g ˆ(3/2) ) − B / ( fg

ˆ(3/2) ∗ (B/( s q r t ( f g+eps ) + A) ) ) ;

67 f = fg − fun /( dfun+eps ) ;

68 i f f <= 0 % Algorithm to prevent

negat ive data

69 i t = i t +1;

70 f = temp − i t ∗0 . 0005 ;

71 end

72 Err = abs ( f g − f ) ;

73 f g = f ;

74 end
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75 otherwi s e

76 f = 0 ;

77 end

78 end

A.17 Integration

The Adam-Bashforth algorithm is:

1 f unc t i on [ x1 ] = AdamBashforth ( x0 , dxdt0 , dxdt p , dt )

2 % Adam Bashforth i n t e g r a t i o n method second order in

time

3 %

4 % [ x1 ] = AdamBashforth ( x0 , dxdt0 , dxdt p , dt )

5 %

6 % requ i r ed the the value o f the prev ious time step x0 ,

and the d e r i v a t i e v e

7 % informat ion dxdt0 , the d e r i v a t i v e o f the prev ious

time step dxdt p

8 % and the time step dt to obta in the func t i on x1

9

10 x1 = x0 + 3/2∗ dt ∗ dxdt0 − 0 .5 ∗ dt∗ dxdt p ;

11 end

The Euler algorithm is:

1 f unc t i on [ x1 ] = Euler ( x0 , dxdt , dt )

2 % Euler E x p l i c i t s o l v e r f i r s t order accuracy

3 %

4 % [ x1 ] = Euler ( x0 , dxdt , dt )

5 %

6 % requ i r ed the the value o f the prev ious time step x0 ,
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and the d e r i v a t i e v e

7 % informat ion dxdt and the time step dt to obta in the

func t i on x1

8

9 x1 = x0 + dt ∗ dxdt ;

10 end



Appendix B

Non Dimensional

formulation

The momentum equation of the water hammer formulation for incompress-

ible fluid, neglecting the source and the advective terms is given in equation

B.1

∂Q

∂t
+
A

ρ

∂p

∂x
= 0 (B.1)

Considering the spatial derivative as an incremental ratio, the equation

B.1 takes the form shown in equation B.2.

∂Q

∂t
+

A

ρ∆x
p = 0 (B.2)

The ∆x is the suction pipe length and can be defined as l. Rearranging

the equation function B.2 result in:

pA

Q̇ρl
= 1 (B.3)

This equation can be approximate with the pump parameters. In fact

the volume flow rate is directly proportional to the piston velocity profile,

75



CHAPTER B NON DIMENSIONAL FORMULATION 76

namely Q̇ ∝ v̇pA. The equation of the derivative of the piston velocity is

given by the formulation of the acceleration, reported in B.4.

ẍp ≈ rω2[cos(ωt+ θ0)− λcos(2ωt+ 2θ0)] (B.4)

The acceleration is a sinusoidal function proportional to the power of the

angular velocity that normally can be expressed as stroke rate per minute

(SPM). Therefore, it is possible to consider the variation in the volume flow

rate as Q̇ ∝ SPM2A.

Finally the formulation of non dimensional treatment can be achieved in

the form of normalized equation B.5.

p

SPM2ρl
= 1 (B.5)



Appendix C

Friction non dimensional

formulation

The momentum of equation is given in the equation C.1:

∂u

∂t
+ u

∂u

∂x
+ gsinα+

fπφ

ρA
= 0 (C.1)

Using the following scale:

• Time: t̃ = ζL
c , where ζ is a positive real parameter that takes into

account the reflection time of a wave in a duct.

• Length: x̃ = ct̃.

• Pressure: p̃ = ρ0cu0, where ρ is the density and the subscription 0 is

related to the steady condition.

• Wall stress: f̃ = ρfu2

8 .

• Density: ρ0;

• Vorticity time diffusion: TD.

The momentum equations is rewritten in the form of equation C.2

77
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∂ũ

∂t̃
+M ũ

∂ũ

∂x̃
+
ρ0

ρ

∂p̃

∂x̃
+ g

ζL

uc
sinα+

ζL

φ
M
f

2
+ ζ
( Td
L/c

)
f̃ = 0 (C.2)

The friction non dimensional term is therefore Γ = ζLMf
2φ + ζTd

L/c [78].
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