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Abstract

Shipping is a major driving force of the global economy, as seen by the 90% of

the volume of the yearly trade transported by ships. As a result, shipping has a

significant financial, environmental impact. Maritime maintenance can be used

to safeguard shipping’s impact by improving safety and avoiding accidents. This

is especially true, when considering that nearly 22% of all the accidents between

2011 and 2017 were attributed to improper maintenance. Consequently, mar-

itime maintenance can be used as a hazard mitigation tool, improve ship safety

by reducing accidents. Modern maritime maintenance is best applied through

predictive maintenance schemes, which take advantage of the developments of

Shipping 4.0. Under this scope, the goal of this thesis is the development of a com-

pound novel data-driven and reliability-based predictive maintenance framework

for ship machinery system. The novel framework tackles the areas of maritime

predictive maintenance holistically by addressing the topics of critical equipment

selection, data preparation, fault detection and diagnostics. Each of the frame-

work’s topics are developed in individual methodologies and assessed in unique

case studies demonstrating their effectiveness in the respective tasks. Initially,

the methodology for the critical equipment selection includes the novel combina-

tion of Fault Tree Analysis with data clustering for the identification of critical

equipment, as applied in the case of an LNG Carrier. As a result, the most

critical components are identified by taking into account reliability indices and

repair costs for the considered components. Identifying critical components im-
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proves safety, as it focuses the maintenance efforts in items whose failures can

have economic consequences and safety implications. Next, the methodology for

the data preparation is developed, which includes the novel integration of the

kNN and MICE algorithms for the imputation of missing data. Combining these

two algorithms allows for the novel integration a data-driven approach with do-

main knowledge in a single imputation model. The imputation methodology is

applied in the case of a Chemical Tanker, showcasing the effectiveness of the novel

method against a pure MICE and pure kNN approach. The treatment of miss-

ing values can improve ship safety, as it safeguards information contained within

datasets and leads to more accurate condition assessing models. Following that,

a novel Fault Detection methodology is established based on Expected Behaviour

models, using Machine Learning, and Exponentially Weighted Moving Average

control charts. This methodology aims at detecting developing faults in their

early stages while avoiding the shortcomings of black-box approaches and having

reasonable data requirements for training. Lastly, the diagnostics methodology

is formed, which includes the novel integration of pre-processing and Machine

Learning-based Fault detection with a diagnostic network using Bayesian Net-

works. The resulting methodology can identify the root cause of a detected

fault, without using black-box Neural Network approaches, nor complicated and

time-consuming physics-based models. Even though the Fault Detection and di-

agnostics methodologies are developed individually, they are both evaluated in

the same case of a Bulk Carrier. The use of the same case study was dictated by

restrictions in collecting additional data and by the use of the output of the Fault

Detection methodology in the diagnostics. The detection of developing faults and

the identification of their root-cause has a profound effect on ship safety, while

also allowing for targeted maintenance actions.
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Chapter 1

Introduction

1.1 Chapter Overview

This chapter presents the essential background information required for the es-

tablishment of the present thesis. Also, this chapter presents the direction of this

work in terms of the research question, the aim and objectives. A brief outline of

the different chapters alongside with an indication of their content is also given.

1.2 Maritime Industry Basics

Shipping has been crucial to the development and evolution of the global trade

and economy. It helps to transport people and commodities across the globe and

allows for the facilitation of commerce between nations. Shipping can form the

backbone of a nation’s economy, as it can create numerous streams of revenue and

employment. The performance of seaborne trade is a proxy of the performance of

the global economy, as it tends to mimic the cycles of the world’s Gross Domestic

Product (GDP) (Stopford 2018; IUMI 2018).

Seaborne transport is one of the most cost-effective ways of carrying commodi-

ties, due to the economies of scale. Notably, for the last half-century, shipping has
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been carrying approximately 90% of the volume and 70% of the value of the global

trade (UNCTAD 2018b). These values are even higher in developing countries,

where air and land transport options are as common.(UNCTAD 2018b). Dur-

ing the relatively same period, the amount of cargo carried from shipping has

increased by approximately 8’000 million tons (UNCTAD 2017). Keeping in line

with the positive overview of shipping, its future remains bright as seen by the

2.6% and 4% volume increases in 2016 and 2017 respectively (UNCTAD 2017).

The structure of the world fleet can influence its overall performance and

trends. Notably, at the beginning of 2018, the world fleet consisted of 94’171

ships, as a result of the 3.7% dead-weight increase in 2017. In terms of ship

types, the world fleet consists predominantly of dry bulk carriers and oil tankers.

In detail, in 2018 the world fleet comprised of 42.5% of dry bulk carriers, 29.2%

of oil tankers, 13% container ships, 4% cargo ships and 11% of other types, as

seen in Figure 1.1 (UNCTAD 2018b). Moreover, from the 11% of other ship

types, 37% of them were offshore vessels, 29% gas carries (e.g. Liquid Natural

Gas carriers) and 20% chemical tankers, as seen in Figure 1.2 (UNCTAD 2018b).

In terms of the vessels’ age, in 2018 the average age of the world’s fleet was

20 years, with that number being higher for developing countries. In general,

the average age of the world fleet has been increasing since 2016 as a result of a

decrease in the number of new ship deliveries (UNCTAD 2017). The prevailing

age group for bulk carriers includes vessels aged between 5 and 9 years old,

representing 41% of the bulk carrier fleet, according to Figure 1.3. Similarly,

the prevailing age group for oil tanker includes vessels aged over 20 years old,

representing 38% of the oil tanker fleet, according to Figure 1.4 (UNCTAD 2018b).

Considering the increased age of the predominant ship types, maintenance is

becoming an ever more important issue for tankers and bulk carriers, in order to

avoid failures and accidents. This principle also applies to the remaining fleet,

Chapter 1 2 Michail F Cheliotis



Ship Maintenance

29%

43%

4%

13%

11%

World Fleet Composition

Oil tanker
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General cargo ship

Container ship
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Figure 1.1: Overview of the world fleet by ship type, adopted from (UNCTAD
2018b)

Figure 1.2: Overview of the remaining ship types of the world fleet, adopted from
(UNCTAD 2018b)

considering its rising age and the already high average age of its vessels. In other

words, maintenance can be used to prevent failures and reduce the likelihood of

maintenance related accidents, especially for order vessels, as further discussed in

the following sections. Under that scope, maintenance is required to ensure that
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Figure 1.3: Bulk carriers age distribution, adopted from (UNCTAD 2018b)

Figure 1.4: Oil tankers age distribution, adopted from (UNCTAD 2018b)

the world fleet continuous its prosperous trends by maintaining its functionality

and reliability (Zhang and Wang 2014).

The development of shipping has transformed developing countries, especially

in Asia, to crucial parts of the global supply chain. Even though this has had a

positive impact on the economy of these countries, it has also increased the global
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demand for reliable shipping operations. The same requirements for increased re-

liability in shipping have also been introduced by the evolution of the just-in-time

economies of the developed world (UNCTAD 2018a). Therefore, maintenance can

safeguard reliable shipping operations by reducing the likelihoods of accidents,

which can disturb supply chains and sensitive just-in-time economies.

1.3 Impact of Shipping

1.3.1 Financial Impact

As demonstrated in the previous sections, the impact of shipping in the global

economy is unquestionable. Notably, in 2015, the European Union (EU) ship-

ping industry employed 640’000 people, with salaries above the European average.

This translates to e57 billion direct contributions to the EU’s GDP. When con-

sidering the indirect benefits, the EU shipping industry in 2015 contributed e140

billion to the EU’s GDP (Oxford Economics Ltd 2017).

Proper ship maintenance safeguards the profit-making capabilities of vessels

and improves their profitability. This is achieved by reducing the downtime

caused by accidents related to improper maintenance. Between 2017 and 2018,

the freight rates of the majority of the ship types increased, resulting in an aver-

age daily earning of $10’986 in all segments of the fleet (UNCTAD 2018b). This

positive behavior continued has continued into 2019, with bulk carriers’ earnings

reaching $31’000 per day and oil tankers $55’000 per day (one year time-charter)

(Fearnleys Research 2019b; Fearnleys Research 2019a). This positive behaviour

has even led some tankers to achieve a reported record-breaking $300’000 per day

during October of 2019 (Fearnleys Research 2019c). Therefore, the potentially

avoidable downtime of vessels due to maintenance-related accidents during highly

profitable periods could have negative implications on the financial performance

of the respective shipping companies.
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1.3.2 Environmental Impact

Apart from its economic importance, shipping can have a significant positive en-

vironmental impact. Ships in degraded physical conditions have an increased

risk of causing environmental damages. When ships and their machinery are not

appropriately maintained, their state degrades faster than the expected wear-

and-tear. Premature equipment degradation can have adverse effects, including

sub-optimal operations which can lead to increased fuel consumption and emis-

sions. Regarding emissions, the global shipping industry produces only 2.2% of

the global Greenhouse Gas (GHG) emissions, even though it carries 90% of the

world’s trade. The emissions produced by maritime transport are much lower

compared to other modes of transportation, include rail, air and road transport.

Despite the low emissions levels, the shipping industry has set goals to further

reduce its emissions by the implementation of various schemes. From a regula-

tory point of view, most of these efforts are embedded in the Maritime Pollution

(MARPOL) Convention, established by the International Maritime Organisation

(IMO). Under the same scope, the EU’s Monitoring, Reporting and Verification

(MRV) scheme aims to control the emissions of GHGs (UNFCCC 2014). To meet

the required emissions levels and reduce shipping’s impact on the environment,

the adoption of adequate maintenance schemes that ensure the proper upkeep of

the assets is encouraged (Duran, Uriondo, and Moreno-Gutiérrez 2012; Lindstad

et al. 2015).

1.3.3 Safety Impact

Poor maintenance practices can undermine the safety of ships, which in turn

increases the risk of accidents. Ship accidents can cause environmental and eco-

nomic damage, as well as lead to the loss of life. The lack of proper maintenance

can be a significant accident contributor, especially if it is combined with design
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flaws and human errors. The absence of apt maintenance can manifest itself

in the form of engine trouble, propulsion trouble, mechanical issues, generators

malfunctions, electrical problems, and plumbing failures. In detail, during the

2011-2017 period, a total of 20’616 casualties and incidents were recorded, which

resulted in 683 fatalities in total (EMSA 2017). During this period, the second

most common contributing factor to the recorded accidents is equipment failure

relating to maintenance actions. In detail, cargo ships recorded around 297 fatal-

ities corresponding to approximately 32 lost vessels. Since 20% of these accidents

were caused by equipment failures relating to maintenance actions (Figure 1.5),

approximately 59 people and 6 ships were lost due to improper maintenance.

Likewise, fishing vessels recorded around 209 fatalities corresponding to approx-

imately 111 lost vessels. As 45% of these accidents were caused by equipment

failures relating to maintenance actions (Figure 1.5), approximately 94 people and

50 ships were lost due to improper maintenance. Also, passenger ships recorded

around 97 fatalities corresponding to approximately 13 lost vessels. Since 30%

of these accidents were caused by equipment failures relating to maintenance ac-

tions (Figure 1.5), approximately 29 people and 4 ships were lost due to improper

maintenance. Lastly, service ships recorded around 50 fatalities corresponding

to approximately 16 lost vessels. Since 25% of these accidents were caused by

equipment failures relating to maintenance actions (Figure 1.5), approximately

13 people and 4 ships were lost due to improper maintenance (EMSA 2018).

For example, a high profile case of a maintenance-caused machinery failure

resulting in an incident is the case of M/V Carnival Triumph. The vessel owned

by Carnival Cruise Line, suffered from an engine room fire while sailing in the

Gulf of Mexico, carrying 3140 passengers and 1100 crew. The fire caused a total

loss of power, which lasted for several days, created numerous health hazards

to the crew and passengers, and damaged the company’s image. The initial fire

was caused by an under-maintained flexible fuel oil pipe, while the failure to
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Figure 1.5: Equipment failure, per ship type, leading into accidents percentage.
Adopted from (EMSA 2018)

contain it was attributed to a combination of failures in the main fire hydrant

and emergency generator (The Bahamas Maritime Authority 2013). Similarly,

in 2015 the container ship M/V Maersk Gunde, owned by Maersk lines, suffered

a fire in its engine room. The fire caused damages to the vessel and substantial

delays. The fire was caused by a leak in an under-maintained seal of the fuel

supply of one the generating engines (NTSB 2015).

Taking the above into account, it is apparent that maintenance can be used

as a hazard mitigation tool, as proper maintenance can reduce the likelihood of

maintenance related accidents. Well-maintained vessels can exhibit fewer failures

in their systems, thus promoting safety and reducing risk. Lastly, proper main-

tenance can safeguard the profit-making capabilities of the vessels by reducing

downtime and increasing availability.
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1.4 Research Direction

Having established the impact of maintenance and shipping, this section sets the

main direction of this research. It presents the main research question, which

translates to the main aim. Lastly, this section sets the objectives required to

meet the main aim.

1.4.1 Research Question

The research question of this thesis serves as the starting point for this work. It

represents the main research drive and it influences all the facets of this research.

This question can be expressed as following:

How can ship operators make real-time maintenance decisions based on the

actual condition of specially selected equipment, by taking advantage of the

developments in the fields of data analytics and machine learning and with the

aim of improving safety?

1.4.2 Aim and Objectives

The main aim of this research is to answer the question detailed above, thought

the development of a compound novel and data-driven reliability-based predictive

maintenance framework for machinery systems. As a result, the main aim is to

provide a complete solution ranging from the criticality evaluation of ship systems

to diagnostic tasks. In order to achieve the stated aim, the following distinct

objectives are set:

The creation will allow the answering of the research question, by providing

1. The investigation of the relevant literature regarding maintenance strate-

gies, reliability assessment and data-drive predictive modeling in a factual
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and critical manner, in order to identify gaps and direct the novelty of the

present research.

2. The proposal of a novel, data-driven and reliability-based predictive main-

tenance framework, tailor-made for the needs of the maritime industry.

3. The development of a novel methodology for the identification of the critical

equipment of ship systems, aimed at prioritising maintenance efforts.

4. The establishment of a novel data preparation methodology, specifically

concerned with handling missing values from data sets used on condition

monitoring tasks.

5. The development of a novel fault detection methodology, lessening the

amount of data-associated assumptions, and tailored to the needs of the

maritime industry.

6. The establishment of a diagnostic methodology combining in a novel way,

machine learning applications with domain knowledge for practical appli-

cations of ship systems.

7. The demonstration and validation of the effectiveness of the proposed pre-

dictive maintenance framework through different case studies, such as the

main engine of a bulk carrier.

8. The discussion of the main outcomes of the developed framework together

with suggestions for future work.

1.5 Shipping 4.0

The shipping industry is transforming under the effects of state-of-the-art tech-

nology. The applications of modern Data Analytics (DA), Artificial Intelligence

Chapter 1 10 Michail F Cheliotis



Ship Maintenance

(AI), Machine Learning (ML), cloud computing, big data analysis, cybersecu-

rity, and the Internet of Things (IoT) are pushing the shipping industry into

modernity, namely into the era of Shipping 4.0 (Lambrou 2017).

The application of these tools is transforming and affecting many of the in-

dustry’s practices, as it increases the use of automation in practices traditionally

relying on empirical knowledge and expert know-how. One of the most prominent

examples is the push of the maritime industry for unmanned and autonomous

vessels. Data-driven Fault Detection (FD), smart diagnostics, reliability and crit-

icality evaluation, and real-time route optimisation are some of the prerequisites

for unmanned and autonomous shipping (Kvamstad-lervold 2017).

Apart from autonomous shipping, another area that is pushing the maritime

industry to the 4.0 era is the advancement towards digital twins. Digital twins

can be used to create digital replicas of ships, fully modelling the physical and

functional characteristics. Digital twins are used in every stage of a ship’s life-

cycle and can help to achieve optimal ship operations and ship maintenance.

Digital twins rely on the real-time collection of performance and condition data

and their subsequent analysis in various models (Bradley and Hehenberger 2016).

Despite the changes brought upon by the digital revolution, the shipping

industry is adopting the new challenges with a rate higher than its average. There

is a rapidly expanding literature providing data-driven and ML-based solutions

on many different issues ranging from fault detection and diagnostic to marine

data pre-processing, both from individual research groups and larger research

consortia.
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1.6 Maritime Maintenance Regulatory and In-

dustrial Framework

Because of its importance, ship maintenance is a heavily regulated area. There

exists a plethora of regulations, guidelines and regulatory bodies both at national

and international levels. Ship maintenance is concerned with the performance and

condition of shipboard machinery, as well as with the ship hull and its appendages.

All the relevant regulations aim to set the minimum requirements and create a

basic structure for the implementation of maintenance.

1.6.1 The International Maritime Organisation (IMO)

The main regulatory body of the maritime industry is the International Maritime

Organisation (IMO). IMO was established in 1948 by the United Nations (UN)

with the task of improving safety at sea by developing guidelines, regulations and

treaties (IMO 2013). For that reason, IMO has developed regulations and codes

that recognise maintenance as a hazard mitigation tool and provide information

on how it should be addressed.

1.6.1.1 The International Safety Management (ISM) Code

To tackle the issue of safety in a complete way, IMO adopted the International

Safety Management (ISM) Code in 1993. The ISM Code became mandatory in

1998 and provides guidelines to increase the safety profile of the maritime indus-

try. The ISM Code is conceptualised to provide international standards for the

safety of ships with respect to the environment and human life. It provides stan-

dards for the management and operation of vessels. The ISM code is developed

by taking into account that no two shipping companies operate and manage their

assets in the same way. Therefore, the code is expressed in broad terms, and it

provides a scope for shipping companies to adopt their own Safety Management
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System (SMS). The SMS is an extensive document that each shipping company

develops based on the ISM Code. As a result, each company has its SMS.

The ISM Code is divided into 13 sections, each of which covers a different

aspect of ship management and operation. A particular section of interest is

section 10, which is concerned with the maintenance of the ship and its equipment.

In detail, it is specified that it is the responsibility of the shipping company

to make sure that their assets are maintained according to relevant rules and

regulations. The maintenance should be carried out in a structured and planned

way by appropriate personnel while having safety as a priority (IMO 2015).

1.6.1.2 The Safety Management System (SMS)

As previously mentioned, each company must create its SMS in compliance with

the ISM Code. The SMS is a document developed by a shipping company that

deals with the safety of operations in a holistic view. Each chapter of the SMS

corresponds to a chapter in the ISM Code. Consequently, chapter 10 of an SMS

deals with the maintenance of the ship and its equipment. The company’s objec-

tives are embedded on its SMS, and it has to institute measures to ensure that

its ships are maintained in conformity with classification and statutory require-

ments. It is the company’s responsibility to implement the most cost-effective

maintenance scheme while keeping high maintenance standards.

Chapter 10 contains the appropriate information that links the safety of oper-

ations with maintenance. More specifically, the SMS addresses the maintenance

strategy, maintenance management, planned maintenance schedule and mainte-

nance actions of ship systems including the lifesaving appliances, electrical and

electronic devices and engine room equipment (IMO 2015).
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1.6.2 Classification Societies

Apart from IMO’s ISM code, there are industry bodies that regulate the issue

maritime of maintenance. Classification societies, like the American Bureau of

Shipping (ABS), Lloyd’s Register (LR) and Bureau Veritas (BV) together with

the International Association of Classification Societies (IACS) are bodies which

produce regulations, guidelines and recommendations for maritime maintenance.

The purpose of the classification societies, and consequently IACS, is to confirm

the reliability of ship systems and to verify that systems and components are

maintained appropriately. Therefore, such organisations develop their own rules

and standards. However, classification societies and IACS are not guarantors of

safety, as they do not have control over how a ship is crewed and operated. IMO

recognises the role of the class societies and their contribution to maritime safety

through the International Convention for the Safety of Life at Sea (SOLAS) in

1988 (IACS 2015).

Over the years, IACS members have agreed on a set of Unified Requirements

(URs) that each class society has to adapt on its own rules. URs set minimum

standards for important topics that the rules of each class must cover. More

specifically, an area of interest is the UR-Z which deals with issues ranging from

survey requirements to PMS requirements (IACS 2017). Class surveys are es-

sential, as their findings can help to schedule maintenance tasks. Additionally,

surveys can be used as a tool to assess the effectiveness of the companies PMS.

As a result, UR Z sets minimum survey periods that shipping companies must

comply with (IACS 2017).

Apart from the URs, the different classification societies provide guidelines

and recommendations for specialised topics, including ConMon, ProMon, PeMon

and PdM. Indicatively, LR has published recommended procedures for the inte-

gration of ConMon and PdM in the design and construction of vessels (Lloyd’s

Register 2007). Similarly, ABS has available guidelines and recommendations for
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the selection of the appropriate ConMon and PdM techniques for ship systems

(ABS 2016).

1.6.3 The Tanker Management Self Assessment (TMSA)

A major contributor to maritime safety is the use of various self-assessment

schemes for ship operators. The Tanker Management Self Assessment (TMSA) is

an example of such programs. The TMSA is tailor-made for tanker operators, and

it was introduced by the Oil Companies International Marine Forum (OCIMF)

in 2004. It aims to improve safety through the promotion of self-regulation and

constant improvement among tanker operators. One of the TMSA’s aims is to

improve the reliability of ships and increase their safety. The TMSA provides

a basic framework for the assessment of a ship operator’s safety management

systems. It is structured in 13 distinct elements, each of which deals with a

specific topic. Of particular interest is the TMSA Element 4, which deals with

issues surrounding reliability and maintenance standards. In detail, Element 4

describes the best practices that ship operators should adopt to increase the reli-

ability of their assets, adhere to high maintenance standards and identify critical

equipment (OCIMF 2004).

1.7 Thesis Layout

The presented thesis consists of seven individual main chapters. Each chapter is

included in the following synopsis, along with a brief description of its content.

In the following synopsis, along with the brief description of each chapter, the

generated novelty of each chapter is also shown.

Chapter 1 .

This chapter includes the essential background information required to establish
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this thesis and provides a necessary introduction to the maritime industry. It

establishes how shipping can affect the economy and the environment and explores

the use of maintenance as a hazard mitigation tool. Moreover, the regulatory

framework surrounding maritime maintenance is presented before concluding with

some of the future challenges the industry will face.

Chapter 2 .

Chapter 2 sets the main direction for the research presented in this thesis. It

includes the main research question that prompted the developed work and sets

out the main aim mapped-out through a series of clear objectives.

Chapter 3 .

Chapter 3 includes a review of the relevant literature. This chapter aims to

uncover gaps in the current literature so that the novelty of this work can be

directed. For that reason, the review is not only factual, but also critical. Ini-

tially, the current practices and state-of-the-art regarding the identification and

selection of critical equipment are examined. This leads to the conclusion that

the status quo is lacking in the incorporation of cost elements of components, to-

gether with the traditional reliability indices. Afterwards, the literature regarding

the preparation of data (pre-processing) for fault detection and other maritime

applications is examined, resulting in the identification of a gap for tailor-made

tools for maritime applications. Lastly, the bibliography of fault detection and

diagnostic tools for engineering applications is examined, resulting in a profound

gap for maritime applications.

Chapter 4 .

This chapter details the proposed framework that was developed during this

work. The proposed framework generates novelty by addressing the gaps that are

uncovered during the critical review of the examined literature. In this chapter
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each methodological component of the framework is examined in detail in order

to establish its theoretical background and intended functionality.

Chapter 5 .

Chapter 5 describes the case studies that are used to apply the developed frame-

work. This chapter provides the introductory information regarding the different

case studies and presents and generalised outline.

Chapter 6 .

Chapter 6 includes the results of the developed framework, as applied in several

cases studies. The case studies demonstrate the effectiveness of the framework

and its methodological components, to assure that the desired functionality is

achieved.

Chapter 7 .

This final chapter provides an in-depth summary of the key learning outcomes

and conclusions of the submitted work. In this chapter, the manner in which the

proposed novelty covers the identified gaps in the pertinent literature is examined.

Furthermore, the shortcomings of this work are presented together with possible

future research efforts required to address them.

1.8 Chapter Summary

In this chapter, the importance of shipping in terms of the global economy was

established. Also, the use of maintenance as a hazard mitigation tool was exam-

ined. In addition, the research question, the aim and objectives were presented.

Lastly, some of the challenges facing the maritime industry were presented before

presenting an overall layout for the rest of the thesis.
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Literature Review

2.1 Chapter Overview

This chapter includes the examination of the relevant literature in terms of main-

tenance concepts, frameworks, predictive maintenance tools and predictive main-

tenance processes. The main aim is to perform a factual and critical review to

uncover several gaps and orient the novelty of this work. To this end, this chap-

ter gives a detailed explanation of all the aspects required to tackle the main

research question, presented in Section 2.2. Initially, the different maintenance

concepts and different maintenance frameworks are presented and subsequently,

compared. Then, the tools that are required for predictive maintenance are pre-

sented into two categories, including Reliability Assessment (RA) tools and Data

Science (DS) tools. Following that, the predictive maintenance processes that

can be attained by using DS and RA tools are described. These processes include

the identification of critical equipment, preparation of data, fault detection, and

diagnostics and are further examined under the scope of the maritime industry.

Lastly, by comparing the advancements of the maritime predictive maintenance

processes with those from other industries, the existing gaps are identified. These

gaps are then used to orient the novelty of this work.
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2.2 Maintenance Introduction

Modern society is a complex functioning system comprising of many different

components, each of which carries out a specific task. The condition of these

components is directly related to the state of the broader system they belong

to. This description applies to almost any physical system, including economic,

communication and transportation systems. Another common link that all these

systems share is the unavoidable failures, which may take different forms de-

pending on the system. All systems are inherently unreliable to some extent, as

all components suffer from age-based degradation, usage-based fatigue and other

design flaws. Eventually, when a component is no longer able to perform its

intended task, it fails.

The failure of a component can affect its wider system in many different ways.

On the context of this work and according to the British Standards (BS) failure

is defined as “the termination of the ability of an item to perform a required

function” (BSI Standards Publication 2010). A failure can have little or no effect

on the system’s operation and safety, or it can trigger disastrous chain reactions

that can even include loss of life (Kobbacy 2008).

Following the failure of a component, its wider system can be restored to its

original state of operation by replacing or repairing the failed part. This process

is known as corrective maintenance and forms the starting point for the develop-

ment of more complex and elaborate maintenance frameworks. Components and

systems failures can never be eliminated, due to their inherent unreliability and

the plethora of operational and performance variables. Nonetheless, their occur-

rences can be controlled through the implementation of maintenance frameworks.

These frameworks can include actions ranging from visual inspections to the use of

advanced performance and condition monitoring tools. It should be noted that

the maintenance needs of different systems may vary. Different systems have
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different maintenance requirements depending on their operational environment

and the relevant regulatory framework. Choosing an appropriate maintenance

scheme can reduce the likelihood and consequences of failures and breakdowns

(Kobbacy 2008). According to the British Standards(BS) maintenance is defined

as “the combination of all technical and administrative actions, including super-

vision actions, intended to retain an item in, or restore it to, a state in which it

can perform a required action” (BSI Standards Publication 2010). In more detail,

when maintenance is performed effectively, it can extend the lifespan of systems,

sub-systems and components.

Currently, the maintenance practices in many sectors, including the maritime,

are rapidly advancing. Maintenance is currently adopting practices from the fields

of modern data analytics and AI. Recognising the above, the submitted work

examines maintenance as an ensemble of different activities. Therefore, in this

work maintenance is not only limited to upkeeping tasks, but is also combined

with the identification of critical components, the processing of relevant data and

the early identification of developing faults.

During the review of the relevant literature, the maintenance concepts and

frameworks are presented first, followed by the predictive maintenance tools and

processes. Then, the focus is directed in the area of maritime predictive mainte-

nance which yields the identified gaps regarding maritime predictive maintenance.

2.3 Maintenance Concepts

Maintenance concepts represent the most basic approaches used in the maritime

and other sectors and define how maintenance tasks are perceived and addressed.

The discussed maintenance concepts were developed in chronological order and

were driven by technological advancements and increased requirements for safety

(Kobbacy 2008; Mohanty 2015). The basic maintenance concepts are shown in
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Figure 2.1, and they are Corrective Maintenance (CM), Preventive Maintenance

(PM) and Predictive Maintenance (PdM).

Time,	Complexity	&	Safety

Basic	Maintenance	Concepts

Corrective
Maintenance

(CM)

Preventive
Maintenance	

(PM)

Predictive
Maintenance

(PdM)	

Figure 2.1: Basic maintenance concepts

2.3.1 Corrective Maintenance

Corrective maintenance, also known as reactive or unplanned maintenance, is

the oldest and simplest maintenance concept. The predominant CM approach

is known as run-to-failure, were machinery operate until they fail, exploiting the

entirety of their useful life (Shreve 2003). According to BS corrective maintenance

can be defined as “maintenance carried out after fault recognition and intended

to put an item into a state in which it can perform a required function” (BSI

Standards Publication 2010). In the run-to-failure approach, any repairing or

replacing actions take place by the available personnel following a machinery’s

failure (Wang 2002). Due to its simplicity, CM poses a logical starting point

when dealing with maintenance in many industries (Arunraj and Maiti 2007).

The fact that some failures are unavoidable, due to the aforementioned in-

herent unreliability, makes CM a popular choice. Nonetheless, current proactive

approaches, such as predictive maintenance, are usually more effective (Wang et

al. 2014). In that sense, proactive approaches can avoid failures by maintaining

systems based on their actual condition, prior to a failure. Modern maintenance
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approaches can significantly reduce the possibility of critical failures with dis-

astrous effects (loss of life, pollution etc.), which is the biggest shortcoming of

reactive maintenance (Prajapati, Bechtel, and Ganesan 2012). For that reason,

CM can be used on non-critical auxiliary systems, where the risk of failure is low.

Viable candidates for CM can include ship entertainment systems, lighting sys-

tems, secondary air conditioning systems, pipe filters, sealing gaskets and various

other minor components (Mobley, Higgins, and Wikoff 2008).

One of the biggest challenges CM approaches face is the identification of the

components to replace, given a system’s failure (Fedele 2011). Complex systems

have many different failure modes that can lead to a breakdown (Zhou, Xi, and

Lee 2007). The challenge of corrective maintenance lies with its ability to identify

the causes of each failure and consequently, relies heavily on acquired empirical

knowledge. Moreover, CM relies heavily on the availability of spare parts, as any

rectifying actions depend on the available spare parts inventory (Kobbacy 2008;

Dikis 2017).

Another major disadvantage of CM, compared with other approaches is its

associated cost. CM can result in increased operational expenses, primarily if it

is used in all the systems of an asset (e.g. ship) (Fang and Zhaodong 2015). The

increased cost can include downtime cost, cost of the repair and cost of cascaded

damages. When using CM, there is an increased probability that a failure can

cascade and cause damages to subsequent systems (Stenström et al. 2016). The

probability of this can be reduced by identifying components that link different

systems and failures can propagate through them. This process can be part of the

critical equipment selection and under the scope of this work, it is considered as

part of more advanced maintenance concepts(Polotski, Kenne, and Gharbi 2019).

Despite the above, CM is still applied in the maritime industry due to its

simplicity and minimal maintenance planning cost. When CM is used, it is sub-

jected to regulations and standards. Any use of CM must ensure that the shipping
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company complies with requirements set by the International Management Code

for the Safe Operation of Ships and for Pollution Prevention (ISM Code) (IACS

2017). Lastly, the advantages and disadvantages of CM are summarised in Table

2.1.

Table 2.1: Corrective maintenance advantages and disadvantages

Corrective Maintenance
Advantages Disadvantages

Simple for operators Failures can cascade in other systems
Simple maintenance plan No information for fault-finding

Ideal for non-critical items More failures than proactive concepts
Exploits the entire life of the equipment Heavily relies on available spare parts

Minimal maintenance planning cost Can be very costly for the operator

2.3.2 Preventive Maintenance

Preventive Maintenance (PM) represents a more advanced maintenance concept

compared to CM. PM was developed shortly after WWII, at the beginning of

the 1950s, and is a concept that aims in minimising failures, moving beyond the

reactive character of CM (Garg and Deshmukh 2006). According to BS preven-

tive maintenance can be defined as “maintenance carried out at predetermined

intervals or according to prescribed criteria and intended to reduce the probability

of failure or the degradation of the functioning of an item” (BSI Standards Pub-

lication 2010). In its core, PM is a task-oriented approach with tasks that are

embedded in the everyday duties of the relevant personnel. PM is a structured

maintenance concept and allows preemptive actions and planning of the mainte-

nance. These tasks aim to prevent the equipment’s degradation and can include

visual inspections, testing, servicing and replacements (Smith and Mobley 2008).

Stepping away from CM can have a positive financial impact on companies and

organisation. Notably, replacing CM with non-reactive approaches that sched-

ule maintenance actions based on the actual needs of the asset (i.e. dynamic
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approaches) can have up to a 50% reduction in the overall maintenance cost

(Stenström et al. 2016). This reduction arises from the increased reliability of

the assets, which reduces the number of unexpected failures. This, in turn, re-

duces emergency expenses and allows companies to plan maintenance and take

preemptive measures (Prajapati, Bechtel, and Ganesan 2012). The minimisation

of unexpected failures also requires fewer spare parts to be stocked by companies.

Having a reduced spare parts inventory allows for more efficient operations and

reduces unnecessary parts procurement costs (Mobley, Higgins, and Wikoff 2008).

In PM, maintenance efforts occur when the system under examination is still

operational. Several PM approaches are divided on usage-based and management-

based (Wang 2002). In general, the usage-based approaches specify criteria which

determine when the repair or replacement of a system’s component will take place.

A popular usage-based approach is an age-dependent PM. In this approach, a sys-

tem’s component is replaced at a predefined age, T , assuming that a failure has

not occurred (Kuboki and Takata 2019). Another popular usage-based approach

is calendar-dependent PM. In the calendar-dependent PM, components are main-

tained at fixed time intervals (i.e. every Z hours of operation) or after a set usage

(i.e. every X kWh) (Goossens and Basten 2015).

Despite the above, the successful implementation of PM can be heavily depen-

dent on experience, practical and empirical knowledge. PM may be more dynamic

than CM, as it is non-reactive and aims to schedule maintenance actions based

on the actual needs of the asset. However, PM is not the most accurate approach

for predicting the actual maintenance needs of the asset (Gandhare and Akarte

2012). In other words, the operational wear and various environmental factors

are not taken into account. Therefore, systems can be unnecessarily maintained

too often (over-maintained) or maintained too seldom (under-maintained); both

of these situations can lead to unnecessary expenses or unexpected failures. Over-

maintaining can increase operational expenses, as the full operational life of the
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Table 2.2: Preventive maintenance advantages and disadvantages

Preventive Maintenance
Advantages Disadvantages

Structured and organised approach Can over-maintain or under-maintain
Aims at the minimisation of failures Failures can still occur

Allows for preemptive actions Relies heavily on empirical knowledge
More advanced than CM Not as dynamic as possible

More efficient use of spare parts Can increase operational costs

equipment is not exploited (Lin et al. 2019). Similarly, under-maintaining can

result in failures and downtime. This can directly affect the profit-making capa-

bility of the asset in question, as the operational costs can increase (Yang et al.

2019). More dynamic maintenance concepts (based on the condition of the asset)

can be used to maintain systems based on evidence of developing faults, prior

to a failure taking place, as seen by the developments of this work. Lastly, the

advantages and disadvantages of PM can be summarised in Table 2.2.

2.3.3 Predictive Maintenance

Predictive Maintenance (PdM) represents one of the most recent maintenance

concepts. PdM was established around 1970 and represents a more dynamic and

complex approach compared with CM and PM. PdM tries to minimise failures

by scheduling the maintenance actions when the machinery and components are

still operational (Sullivan et al. 2010a). As defined by the U.S Office of Energy

Efficiency and Renewable Energy “Predictive maintenance attempts to detect the

onset of a degradation mechanism with the goal of correcting that degradation

prior to significant deterioration in the component or equipment” (Sullivan et al.

2010b).

PdM approaches aim at determining an equipment’s state and condition based

on data collection and non-destructive testing. The underlying philosophy of PdM

is that equipment failures are the result of a gradual deterioration. Therefore, the
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use of appropriate, and real-time, condition-describing data could detect signs of

degradation and identify developing faults before breakdowns occur (De Faria,

Costa, and Olivas 2015). The successful implementation of PdM is based on the

integration of condition-describing data with data-processing modules to achieve

Fault Detection (FD) and possibly even proceed with diagnostic and prognostic

tasks. It is becoming apparent that PdM can be used as a starting for additional

innovation and further advancements (Niu 2016).

What sets PdM apart from PM, is the use of the equipment’s actual con-

dition for maintenance and inspection, instead of predefined and arbitrary age-

based and use-based thresholds. Moreover, PdM can overcome the PM issues

of over-maintaining and under-maintaining equipment while also moving beyond

the reactive character of CM (Tian et al. 2011). In addition, PdM allows for bet-

ter planning of maintenance, as the condition of the equipment can be assessed

in real-time (Sharma, Yadava, and Deshmukh 2011). Regarding the maintenance

cost, PdM can be up to 35% more cost-efficient than CM and up to 10% than

PM. This is attributed to the improved efficiency of the spare parts use, viewed

as part of the optimisation of the operational costs of the asset (Dikis 2017; Dikis

and Lazakis 2019).

Despite the above merits, the implementation of PdM requires a shift in the

culture of the company. Maintenance needs to be viewed as a hazard mitigation

tool and not as a simple technical task. PdM requires an extra capital expense

for its initiation, as it depends upon further training of personnel and the pro-

curement of the appropriate equipment (sensors, communication relays, etc.).

Moreover, PdM depends on additional expertise and know-how to accurately as-

sess the various collected parameter (Lughofer and Sayed-Mouchaweh 2019). In

summary, the advantages and disadvantages of PdM can be found in Table 2.3.

Chapter 2 26 Michail F Cheliotis



Ship Maintenance

Table 2.3: Predictive maintenance advantages and disadvantages

Predictive Maintenance
Advantages Disadvantages

Real-time condition assessment Requires cultural change
Dynamic nature Associated capital costs

Reduced long-term maintenance cost Additional expertise
Optimisation of maintenance Additional crew training
Starting point for innovation Added complexity

2.4 Maintenance Frameworks

The different maintenance concepts have given rise to several different mainte-

nance frameworks. Maintenance frameworks address the concept of maintenance

under a broader scope and often in conjunction with the management and prof-

itability of a company. Maintenance frameworks do not only specify criteria for a

component’s maintenance but layout broader strategies that involve the entire or-

ganisation (Smith and Mobley 2008; Cheliotis and Lazakis 2015; Azadeh and Ab-

dolhossein Zadeh 2016). Such frameworks usually involve more than one depart-

ment of a company and can include both technical and managerial levels (Lazakis

and Ölçer 2015). There are many different maintenance frameworks applicable to

the maritime and other industries, for which there are a plethora of available liter-

ature (Eruguz, Tan, and Houtum 2017; Borjalilu and Ghambari 2018). However,

this work focuses on Total Productive Maintenance (TPM), Business Centered

Maintenance (BCM), Reliability Centered Maintenance (RCM) and Condition

Based Maintenance (CBM) as these frameworks are found to be the most popu-

lar in terms of application.

2.4.1 Total Productive Maintenance

TPM is a maintenance framework that originated in Japan’s automotive sector in

the 1970s and has since then expanded in other sectors, including the manufactur-
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ing and nuclear. Nonetheless, TPM has very limited applicability in the maritime

sector. TPM aims at maximising the equipment’s effectiveness by maintaining

components in their optimal state (Chan et al. 2005; Venkatesh 2003). This is

achieved by minimising unnecessary breakdowns, downtime, defects and accidents

and in general, by increasing the Overall Equipment Effectiveness (OEE) (Singh

et al. 2013).

TPM is considered by many as a more advanced version of PM (Shafiee et

al. 2019). In TPM, the maintenance actions are based on productivity-based

criteria, as opposed to age-based and use-based thresholds (Deepak Prabhakar

and Jagathy Raj 2014). TPM’s advanced character stems from the belief that

equipment degradation is accelerated when upkeeping efforts are not efficient

(Sherwin 2000).

An essential characteristic of TPM is that it tries to involve all the depart-

ments of a company for its implementation. TPM is a highly structured frame-

work and requires detailed preparation and planning for its fruition. It is essential

for the successful use of TPM that an effective communication and collabora-

tion system between different departments of a company is present (Ahuja and

Khamba 2008). The requirements of TPM are summarised by the presence of

five main pillars, as discussed in Braglia, Castellano, and Gallo (2019). The first

pillar is the increase of the OEE. This is achieved by the minimisation of break-

downs, set-up and adjustment times, small stops, reduced speed, quality defects

and start-up losses. The second pillar is the establishment of a comprehensive

PM system, implemented for the entirety of the assets life cycle. The third pillar

includes the involvement of different departments within a company for the imple-

mentation of TPM. The fourth pillar is centred around the participation of both

white-collar and blue-collar employs. Finally, the fifth pillar is the promotion of

PM through autonomous and self-motivated small groups.

Eruguz, Tan, and Houtum (2017) distilled from the above that TPM’s pri-
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mary advantage is the promotion of synergy within a company, which can have a

positive effect on the quality of the maintenance. Along the same lines, Azadeh

and Abdolhossein Zadeh (2016) discussed that TPM promotes the efficient use of

the machinery, which can help to optimise the production process and improve

profitability. Despite the above merits, TPM has several shortcomings. First

of all, it is a resource-expensive framework that can be cumbersome to perform

and implement, as discussed by Arca and Prado (2008). Moreover, any benefits

from TPM can take a long time to manifest, creating an illusion of ineffectiveness.

Lastly, according to Alsyouf (2009), TPM lacks on the technical aspect, as it does

not specify detailed maintenance measures, and it does not set engineering-related

goals.

2.4.2 Business Centered Maintenance

BCM is a framework that incorporates the optimal maintenance of assets in the

overall strategy of the company, and hence it can be considered as a maintenance

optimisation framework. BCM is considered to be an evolved form of TPM with

an added emphasis on the company’s productivity (Fedele 2011). Currently, BCM

has applications in production-oriented organisation, including the manufacturing

and automotive sectors, in various industrial processes and healthcare systems

(Kelly 2006; Salim, Mazlan, and Salim 2019). Regarding the maritime industry,

there are limited instances of BCM especially compared to the other discussed

frameworks. Taher, Lazakis, and Turan (2014) established a BCM influenced

framework for marine control systems based on probabilistic networks. Even

thought this framework represents one of the few examples of maritime BCM, it

does not address several issues. For instance, the effects of the data requirements

of the maritime industry are not discussed and the topic of data preparation is

also omitted. Similarly, the areas such as fault detection and diagnostics are not

thoroughly elaborated.
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The main aim of BCM is the continuous improvement of the maintenance

quality and the various maintenance-related tasks (Kelly 2006). In BCM, the ob-

jectives of a company are considered as a function of the company’s profitability.

Moreover, BCM examines the specific inputs of the objectives of the business in

its wider framework (Braglia, Castellano, and Gallo 2019).

Salim, Mazlan, and Salim (2019) stated that when BCM is applied correctly,

it can have a positive influence on the profitability of the company. In the same

publication, the authors stated that BCM is best suited for complex organisations

with various complicated internal structures. As presented by Waeyenbergh and

Pintelon (2002), a point of criticism for BCM is that it can quickly become

very complicated and cumbersome, if it is not appropriately managed. Similarly,

Gandhare and Akarte (2012) described that BCM is resource expensive both in

terms of resources and human capital and that the positive results require a long

time to manifest.

2.4.3 Reliability Centered Maintenance

RCM is a maintenance framework that originated from the aviation industry and

more specifically, during the development of the Boeing 747 aircraft (Ten-Wolde

and Ghobbar 2013). RCM has also spread in many other industries, including the

offshore renewable and the maritime. More specifically, there are numerous RCM

implementations for the maritime industry. For instance, Mokashi, Wang, and

Vermar (2002) developed and RCM framework applied in the fuel purification

system of a ship. However, the developed approach was based on qualitative

methods and lacked quantitative aspects. Also, Vorkapic, Kralj, and Martinovic

(2017) proposed an RCM framework for petroleum gas carriers, however, the

work was qualitative and did not discuss technical aspects in-depth. RCM was

conceptualised to improve the safety of systems by examining maintenance from

a reliability improving viewpoint (Ten-Wolde and Ghobbar 2013). According
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to Moubray (1991) RCM can be defined as “A process used to determine what

must be done to ensure that any physical asset continues to fulfil its intended

functions in its present operating context”. Unlike TPM and BCM, RCM is

a more technical oriented framework. Instead of involving all the facets of a

company, RCM is contained in the technical and maintenance departments. As

a result, RCM requires more technical expertise and a deeper understanding of

the functions of a system (Manzini et al. 2010).

A unique characteristic of RCM is its focus on the reliability of the compo-

nents, as a function of their condition. Simply put, failures that do not reduce the

reliability of a system are given a lower priority, under an RCM framework. For

that reason, RCM can also be viewed as a maintenance prioritisation framework

(Selvik and Aven 2011). As a result, the main aim of RCM is two-fold. This

framework tries to increase safety and reliability while minimising maintenance

costs (Kobbacy 2008).

For RCM to fulfil its aim, a sequence of processes must be followed. Initially,

the examined system must be functionally decomposed and studied. Then, the

mapping of the reliability of the components must take place, which allows for

the selection of critical and non-critical components (Selvik and Aven 2011). The

selection of critical components can take place either through the use of Failure

Modes, Effects and Criticality Analysis (FMECA) or by using alternative data-

driven methods (Takata et al. 2004). Finally, appropriate maintenance tasks are

assigned to the different components, and a comprehensive maintenance plan is

created (Cheliotis and Lazakis 2018).

As it can be inferred, RCM combines different maintenance concepts. Several

non-critical components can be maintained under run-to-failure approaches, fol-

lowing the CM concept. Also, PM approaches can be used in components with

low, to intermediate, effects on the system’s reliability and safety. Lastly, critical

components can be maintained using PdM concepts to optimise their reliability
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and minimise the probabilities of failures. However, this requires additional steps

in terms of fault mapping and subsequent analysis. The use of multiple mainte-

nance concepts in a single maintenance framework requires the combination of

different areas of expertise. This can be a challenging task during the mainte-

nance planning and requires a degree of coordination within the company (Fedele

2011; Ben-Daya et al. 2009).

An important advantage of RCM is its technical orientation. As discussed

by Eruguz, Tan, and Houtum (2017) and Borjalilu and Ghambari (2018), the

performed maintenance actions are a function of the technical requirements of

the equipment. Moreover, RCM can be used to prioritise upkeeping tasks, which

can help to streamline operations and minimise costs, as discussed by Smith and

Mobley (2008). RCM is a framework that proactively addresses maintenance, and

as such, it can be used as a stepping stone for more advanced approaches. Despite

the above merits, RCM is a maintenance framework that is sometimes viewed with

scepticism in the industry. Afzali, Keynia, and Rashidinejad (2019) explained

that this is due to the resource-demanding nature of RCM, both in terms of

its planning and implementation. In addition to that, RCM requires significant

involvement from managerial levels, which can lead to complex systems (Lazakis

2011). Moreover, RCM requires the use of additional expertise and knowledge,

which can also increase costs, as discussed by Mokashi, Wang, and Vermar (2002)

and Cheliotis and Lazakis (2015).

2.4.4 Condition Based Maintenance

CBM is a maintenance framework that was developed at the same time as PdM

and traces its origins in the railway sector. The concept behind CBM is the

minimisation of failures through the assessment of the condition of the examined

equipment (Prajapati, Bechtel, and Ganesan 2012). According to the BS, CBM

can be defined as “the maintenance policy carried out in response to a significant
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deterioration in a machine as indicated by a change in a monitored parameter of

the machine condition” (BSI Standards Publication 2010).

As it can be seen, CBM follows a proactive approach in maintenance, utilis-

ing relevant real-time condition-describing parameters (Prajapati, Bechtel, and

Ganesan 2012). In CBM, maintenance actions are a function of the equipment’s

actual condition and are not based on arbitrary age and usage thresholds. A

successful CBM framework should not only be able to identify the failure of

equipment, but also to capture its degradation and even make predictions on its

development and underlying cause (Bengtsson 2004). Therefore, CBM requires

the integration of data collection techniques with fault detection, diagnostic and

prognostic modules (Sullivan and Andridge 2015).

There are numerous publications discussing in detail all the different ap-

proaches of CBM. For instance, Jardine, Lin, and Banjevic (2006) performed

a comprehensive review of the advancements in machinery CBM with emphasis

on the diagnostic and prognostic tasks. Similarly, Liu et al. (2018) examined the

use of AI for CBM applications in rotating machinery (e.g. pumps and turbines).

Moreover, Hong et al. (2007) discussed and reviewed the developments in CBM,

with an emphasis in fault detection, under the scope of offshore wind turbines.

Lastly, Bernal, Spiryagin, and Cole (2019) elaborated on the advancements of

real-time CBM in the freight railway sector. In this publication, the advance-

ments in the enabling sensor technology and the developments in the available

fault detection algorithms are discussed. It can be inferred from the above, that

the area of CBM is under intensive development from a plethora of different sec-

tors. CBM is taking advantage of modern technological advancements (e.g. ML,

AI and advanced data analytics) with a high rate. It is also seen that CBM

frameworks can easily integrate different models and algorithms for the comple-

tion of a single task. For example, different ML algorithms can be deployed in

series in a single FD model, as seen in Liu et al. (2018).
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Based on the selection of the monitored parameters, CBM, and be classi-

fied into Condition Monitoring (ConMon), Performance Monitoring (PeMon) and

Process Monitoring (ProMon) (Garćıa Márquez et al. 2012). ConMon includes

the use of condition-describing parameters. Such parameters can include vibra-

tion levels, Lubricating Oil (LO) characteristics, temperature distributions (ther-

mography), acoustic emissions and electrical signature analysis (Wiggelinkhuizen

et al. 2008; Mohanty 2015). For instance, ConMon can be used in various pumps,

motors and engines (Liu and Zhang 2019). On the other hand, PeMon uses pa-

rameters that are directly related to the performance and output of the equip-

ment. An example of such parameters can include the power output, torque

output and rotational speed (Papagiannakis and Hountalas 2004; Rakopoulos et

al. 2006). For example, PeMon can be used for the generating and Main Engine

(ME) of a ship (Tsitsilonis and Theotokatos 2018; Baldi, Theotokatos, and An-

dersson 2015). Lastly, ProMon uses parameters that are related to the internal

processes of the equipment. For example, the Exhaust Gas (EG) temperature,

injection pressure, cooling temperature and oil viscosity can be used in ProMon

(Zaher and McArthur 2007). ME, Turbochargers (TCs) and various other sys-

tems are typical candidates for ProMon (Garćıa Márquez et al. 2012). Apart from

the different types of parameters used, ConMon, PeMon and ProMon have the

same aim of describing, in real-time, the condition of the equipment (Kobbacy

2008).

An important decision in any CBM framework is the selection of the equip-

ment that will be subjected to this approach. In addition to that, the examination

of the failure modes of the equipment and a fault mapping must be conducted.

Both of these tasks are based on domain knowledge and require additional ex-

pertise (Mobley, Higgins, and Wikoff 2008).

The successful implementation of CBM can have many benefits within a com-

pany. As discussed by Logan (2015), the proactive character of CBM can reduce
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maintenance costs for up to 30% and reduce unexpected failures by up to 70%.

Also, CBM can allow for better planning of the maintenance and allocation of

the available resources.

The advantages of CBM are numerous, as seen through the examination of the

relevant literature. As deducted by examining Lazakis, Raptodimos, and Varelas

(2018b), an advantage of CBM is that takes into account the real-time condition

of the equipment in the maintenance decision making process. Consequently,

operational efficiency and cost can be optimised dynamically, as confirmed by

Dikis and Lazakis (2019). Even though CBM can offer significant benefits, there

are still some limitations and issues that need to be addressed. Firstly, there is

an associated capital cost regarding the procurement and installation of the data

gathering equipment (Azadeh and Abdolhossein Zadeh 2016). Moreover, if the

data gathering is continuous, there needs to be infrastructure for the storage of

the data. In addition, the analysis of the data for the detection, diagnostic and

prognostic tasks requires additional expertise, as presented by Bae et al. (2019).

Lastly, the transition to CBM frameworks may require a cultural change within

companies which can prove challenging (Jardine, Lin, and Banjevic 2006).

CBM has many applications in the maritime industry, and as seen through

the evaluation of the literature, it is amongst the frameworks with the most

maritime applications. For instance, Wang, Hussin, and Jefferis (2012) developed

a CBM framework for marine main engines based on metal contamination analysis

of the lubricating oil. A shortcoming of this framework is that it is based on

periodic sampling and as such, it may not be the best option for continuous real-

time monitoring. Also, Anantharaman (2013) applied a CBM framework for the

propulsion plants of ships. This framework is focused on the use of a specific tool

without emphasis on data preparation, fault detection or diagnostics. Similarly,

Giorgio, Guida, and Pulcini (2015) deployed a CBM framework applicable to

cylinder liners of marine main engines. However, the way in which this framework
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can be expanded to include other components or systems is not clear. Moreover,

Lorencin et al. (2019) also used an ML based CBM framework with applications to

marine propulsion plants. This developed framework displayed promising results,

even thought data preparation was not addressed and the developed model was

compared with the status quo.

2.4.5 Comparison of Frameworks

The previous sections presented the basic maintenance framework, detailing qual-

itatively their respective benefits and shortcomings. This section aims to perform

a side-by-side qualitative comparison of the identified frameworks, as seen in Fig-

ure 2.2. Through the examination of the relevant literature, six criteria are dis-

tilled for the comparison of the different frameworks. These are simplicity, ease of

application, fast results, required expertise, required training and sustainability.

As seen, the criteria are selected based on their ability to assess the performance

of the different frameworks broadly and inclusively, covering both technical and

managerial criteria. Lastly, the selection of the discussed criteria is validated as in

Deepak Prabhakar and Jagathy Raj (2014) and Lazakis and Ölçer (2015) report

similar findings.

In detail, the simplicity criterion examines the overall complexity of the differ-

ent frameworks. As seen in Figure 2.2, CBM outperforms the remaining frame-

works. More specifically, RCM requires the additional mapping of the compo-

nents’ reliability, which increases its complexity, as also observed by Deepak Prab-

hakar and Jagathy Raj (2014). Similarly, both TPM and BCM include the incor-

poration of business-based and productivity-based considerations which results

in more complex frameworks.

The ease of application criterion examines the required time to set-up and im-

plement the various frameworks. Since CBM does not include additional reliabil-

ity analysis, or business-oriented objectives it outperforms the other frameworks.
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Figure 2.2: Maintenance frameworks qualitative comparison

Similarly, RCM is found to be easier to apply compared to TPM and BCM due

to their additional business-oriented objectives.

The fast results criterion considers the required time to improve the effective-

ness of maintenance by improving safety. As seen in Figure 2.2, CBM has the

highest score since it can assess in real-time the condition of assets, mitigating

the risks of failures.

The required expertise criterion gauges the requirements for additional know-

how, or expert knowledge, necessary to implement the frameworks. As demon-

strated in Figure 2.2, RCM and CBM are the best performing frameworks, since

these frameworks are isolated to the technical and maintenance departments. As

a result, there is no need for managerial expertise that is required to coordi-
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nate and manage the complex functions of TPM and BCM frameworks, as also

discussed by Shafiee et al. (2019) and Borjalilu and Ghambari (2018).

The required training criterion considers the need for supplementary training

of the maintenance staff. As presented in in Figure 2.2, CBM and RCM are the

lowest performing frameworks. This is caused by the additional skills that are

required for the reliability analysis of RCM and for the handling and interpreta-

tion of the condition describing parameters of CBM. On the other hand, TPM

and BCM are more focused on the communication and synergy of the different

departments, rather than the development of new technical skills.

Finally, the sustainability criterion examines the potential for effective long-

term application of the different frameworks. As discussed by Shafiee et al. (2019)

and Azadeh and Abdolhossein Zadeh (2016), the sustainability of CBM is prefer-

able, followed by RCM, TPM and BCM.

2.5 Predictive Maintenance Tools

When adopting a PdM concept, implemented through any PdM-based framework,

numerous tools can be used. These tools are broadly divided into Reliability

Assessment (RA) tools and Data Science (DS) tools. Each of these categories can

be used for different tasks, and their selection depends on the specific application

at hand. Moreover, the RA and DS tools represent the building blocks based on

which different tasks and processes performed.

2.5.1 Reliability Assessment (RA) Tools

RA tools are extensively used in PdM concepts and especially in RCM. These

tools are used to analyse the risk, safety, reliability and criticality of systems.

Commonly, RA tools can be classified as qualitative or quantitative and as top-

down or bottom-up approaches. Qualitative RA tools address the issues of risk,
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safety, reliability and criticality descriptively, whereas quantitative RA tools try to

quantify these issues numerically. Similarly, top-down tools, focus on the broader

context of risk, safety, reliability and criticality by analysing the causes of specific

events. On the other hand, bottom-up approaches examine the behaviour of a

system subjected to disturbances (Raptodimos 2018; Lazakis 2011).

2.5.1.1 Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) is one of the most common and widely recognised

RA tools. FTA was conceptualised in 1962 by the US Air Force and was quickly

adopted by the wider aviation industry (Haasl et al. 1981). Nowadays, FTA is

applied in many industries, including the manufacturing, nuclear, automotive,

maritime and offshore sectors (Kabir 2017).

FTA utilises logic-gates and events to represent an engineering system (e.g.

fuel supply system) and to create a visual model with interconnected pathways

that can lead to an undesirable failure within the system (Kang, Sun, and Guedes

Soares 2019). The logic-gates simulate the functional dependencies within the

examined system, and they are usually employed to represents sub-systems and

sub-assemblies. On the other hand, events are used to model components, and

they are located at the lower level of the system’s model architecture. The events

are also used to quantify the Fault Tree, as they require the input of failure

statistics (e.g. failure rate, probability of failure) for each component (e.g. fuel

injector) (Henriques de Gusmão et al. 2018a). Once a Fault Tree is quantified,

the failure statistics of each event are used for reliability calculations in the mod-

elled gates. As a result, the failure statistics propagate through the Fault Tree’s

structure, leading to the investigation of the examined top-event. FTA is a top-

down approach and initiates by stating an undesirable event, which is referred

to as a top-event. Common undesirable top-events can include software failure,

machinery failures and structural failures. The examination of the top event is a
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function of the fault tree’s structure and a set of logical rules represented through

Boolean Logic and more recently, Fuzzy Logic, as seen in Yazdi, Nikfar, and

Nasrabadi (2017) and Kabir et al. (2016). From an analytical perspective, FTA

can be considered both as a qualitative and a quantitative method (Ruijters and

Stoelinga 2015). Qualitatively, FTA can be used to represent functional depen-

dencies within a system. For quantitative tasks, FTA can be used to compute

the reliability of systems and other metrics, including failure rates and reliability

Importance Measures (IM).

As previously mentioned, FTA can be used to identify paths to failures. To

achieve this goal, the scope of the analysis must be set, through the system defi-

nition step. Following this, the top-level faults are selected to define the failure of

interest, leading to the investigation of their possible causes. Then, the next level

of events is investigated, as the causes of the top-events also have precipitating

events. Following this top-down approach, the root-causes are identified, and they

represent the lowest level of the Fault Tree. The root-causes are the initiating

points of the different sequences that lead to the different failures (Haasl et al.

1981; Vesely 2002). Figure 2.3 demonstrates a rudimentary Fault Tree structure

that is derived using the above approach, comprising of two root-causes and a

single top-level fault. In this case, the presented Fault Tree examines how two

basic events (Input A, Input B) influence the occurrence of a top-event (Output

A), through a Boolean AND-gate. With the AND-gate, the Output A occurs

when Input A and Input B occur at the same time (Relex Software Corporation

2003). For example, the presented figure could be used to examine the loss of

function in a redundant power generation systems with two generating engines

operating in parallel (Kabir 2017). Alternatively, OR-gates can be used, where

the examined output occurs if any of the inputs occur. For instance, an OR-gate

can be used to model the loss of function of a propulsion system with only one

ME (Vesely 2002). There are more gates available, apart from OR-gates and
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AND-gates, which are used for different applications. For a detailed accounting

of the available gates, the reader is referred to Relex Software Corporation (2003)

and Rausan and Hoyland (2004).

Input
A

Input
B

AND

Output
A

Figure 2.3: Representation of a basic fault tree structure

As previously mentioned, FTA has widespread applicability. Whiteley, Dun-

nett, and Jackson (2016) employed FTA for the qualitative and quantitative

reliability assessment of a Polymer Electrolyte Membrane Fuel Cell. Yazdi, Nik-

far, and Nasrabadi (2017) developed a methodology for the assessment of failure

probabilities in components of chemical plants, aiming at reducing the number

of accidents. Also, Henriques de Gusmão et al. (2018b) used FTA in conjunc-

tion with fuzzy theory under the context of cybersecurity. More specifically, the

developed methodology was used to manage cybersecurity risks and investigate

the vulnerability of systems. Lastly, Khare, Nema, and Baredar (2019) used

FTA for the reliability assessment of renewable energy systems. The developed

methodology used weather data and power-consumption information to control

the occurrence of critical faults.

FTA is a well-established and widely recognised RA tool. Also, as concluded

from this research, FTA is easy to learn and offers quick and interoperable results.

Moreover, FTA can be used both as a qualitative and a quantitative tool, sig-

nificantly improving its flexibility. Despite the above merits, FTA cannot model
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effectively multiple functional dependencies and can become cumbersome when

modelling large systems (Fussell 1975; Vesely 2002). Moreover, obtaining the re-

quired failure statistics for quantitative analysis can sometimes be difficult (Jiang

et al. 2018).

2.5.1.2 Bayesian Networks (BN)

Bayesian Networks (BN) is a popular RA tool that traces their origin in computer

science, where they were developed in 1985 by Judea Pearl (Pearl 1985; Pearl

1988). Like FTA, BNs have a widespread recognition with applications in many

industries including the nuclear, manufacturing and recently maritime sector (Cai

et al. 2019).

BNs are probabilistic Directed Acyclic Graphical (DAG) models that depict

functional and causal dependencies between random variables. In other words,

BN represent a joint probability distribution of a set of random variables. Like

FTA, BN consist of a qualitative part and a quantitative part. The qualitative

part is defined by a DAG model where each variable is depicted as a node. De-

pending on how the nodes are connected, they can be subdivided into parent,

child, leaf and root nodes (Ruggeri, Faltin, and Kenett 2007). The qualitative

part also includes directed links between the nodes to define causal relationships

and functional dependencies. Similarly, the quantitative part is defined by the

conditional probability distribution in the Conditional Probability Table (CPT)

of each node (variable).

Figure 2.4 represents an indicative BN. In the presented network, the four

random variables X1, X2, X3 and X4 are represented as nodes and complete

the qualitative part of the network. The directed links demonstrate the causal

relationships between the nodes. In more detail, the X1 node is the parent node

for nodes X2 and X3. Also, the X1 node is a root node, as it only has child

nodes. Similarly, the X4 node is the child node of nodes X1 and X2, and it is
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also a leaf node as it only has parent nodes. BNs are based on Baye’s theorem,

with the goal of calculating the posterior conditional probability distribution of

a fault, state, or condition given some observable evidence.

X1

X2

X4

X3

Figure 2.4: Representation of a basic Bayesian Network

Due to the causal dependencies, BNs are widely used for a variety of diagnostic

tasks ranging from medical to engine diagnostics (Langseth and Portinale 2007;

Borunda et al. 2016). Yuan et al. (2015) developed a methodology for the risk

analysis of dust explosions based on BNs. The methodology also examined the re-

lationship between causing factors and consequences. Shin et al. (2015) employed

BNs to evaluate cybersecurity risks in the nuclear industry by incorporating pro-

cedural and technical aspects. Also, Hosseini and Barker (2016) used BNs to

examine resilience-building strategies in infrastructure systems. Moreover, Cai,

Liu, and Xie (2016a) developed a methodology for probabilistic reasoning and

real-time root-cause analysis in industrial processes based on BNs. Lastly, Cai,

Huang, and Xie (2017a) provided an extensive literature review of the application

of BNs for FD and diagnostics in engineering systems.

In general, BN can accurately model very complex systems, which makes them

ideal candidates for diagnostic tasks. However, as noted from this research, di-

agnostic BN require a plethora of failure statistics which are not always readily

available. Similarly, with FTA, BNs can be used both as qualitative and quan-

titative tools. The structure of the network can give a qualitative description
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of a system and the functional dependencies within. Also, BNs can perform

powerful reliability calculations by integration information from different sources

(i.e. sensor fusion) (Zhang and Thai 2016; Mittal and Kassim 2007). Despite the

above merits, BNs can become too complicated. As also noted from this research,

when modelling complex networks, attention needs to be paid to avoid unneces-

sary connections between nodes. Since the number of connections between each

node increases to complexity of the CPTs, the network must not have unneeded

connections, so that the CPTs are manageable Similar results regarding the com-

plexity of the BNs as a function of their size are noted by Horný (2014) and Cai,

Huang, and Xie (2017b).

2.5.1.3 Failure Modes Event Analysis (FMEA) and Failure Modes

Event and Criticality Analysis (FMECA)

FMEA and FMECA are two very similar RA tools that are widely used in many

different sectors (Ben-Daya et al. 2009). FMEA and FMECA can be used to

foresee possible failures during the design of a system, by identifying all of the

potential failure modes, through the examination of engineering hazards (Mobley,

Higgins, and Wikoff 2008). The main philosophy of these two RA tools is the

anticipation and prevention of failures in a system by examining the different

ways a system can fail (CDNSWC 2010).

FMEA and FMECA were developed around 1950 and represent some of the

earliest structured reliability improvement methods (Mohanty 2015). Both tools

require extensive engineering knowledge of the studied system, and their results

are presented in a tabulated format (Lughofer and Sayed-Mouchaweh 2019).

FMEA can be considered as a qualitative tool, which is developed by using

chained ”what-if?” questions (Kobbacy 2008; Isermann 2006). On the other

hand, FMECA is quantitative as it tries to quantify the criticality of each failure,

caused by the different hazards. In other words, FMEA can be performed first,
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and after, a criticality analysis through FMECA can follow (Bertsche 2007).

As previously mentioned, FMEA and FMECA have applications in many in-

dustries. Lazakis, Turan, and Aksu (2010a) used FMECA in a ship reliability

improvement methodology, aimed at minimising downtime and improving oper-

ability. Dinmohammadi and Shafiee (2013) developed an integrated methodology

combining FMEA with fuzzy logic for the reliability assessment of wind turbines.

More recently, Peeters, Basten, and Tinga (2018) combined FTA with FMEA for

failures analysis for the manufacturing sector. Lastly, Balaraju, Govinda Raj,

and Murthy (2019) used FMECA for reliability modelling in the mining sector

to improve productivity by examining failure behaviours.

Both FMEA and FMECA are widely applicable tools, as they provide a struc-

tured approach to reliability improvement (Mobley, Higgins, and Wikoff 2008).

These tools address in detail the technical issues of the examined system, provide

a starting point for mitigating risk (Spreafico, Russo, and Rizzi 2017). FMEA and

FMECA can also be used for the prioritisation of maintenance, which enhances

their functionality (Peeters, Basten, and Tinga 2018). Despite the above merits,

these approaches face several shortcomings. Initially, they require a substantial

amount of resource for their completion (Alsyouf 2009). Moreover, they can be

very complex and cumbersome, primarily when used in extended systems (Tixier

et al. 2002; Verma, Ajit, and Karanki 2010). Lastly, FMEA and FMECA may

need to be re-initiated after extensive repairs or alterations of the specific system

(Joshi and Joshi 2014). This may be required, since significant alterations to a

system can either introduce new hazards (i.e. through the addition of new com-

ponents) or alter the significance of existing ones (i.e. through the change of the

system’s architecture). In either case, the criticality and importance of compo-

nents and hazards need to be reconsidered, and FMEA and FMECA re-initiated.
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2.5.1.4 Event Tree Analysis (ETA)

Event Tree Analysis (ETA) is a popular RA tool that examines the possible out-

comes in a system resulting from an initiating event, usually a failure (Ben-Daya

et al. 2009). ETA is often used to identify the potential chains of events and re-

sulting outcomes by examining the response of a system to a disturbance (Tixier

et al. 2002). Moreover, it can be used to identify procedural and technical weak-

nesses and to manage risks by calculating the probabilities of different scenarios,

(Dikis, Lazakis, and Theotokatos 2015). ETA was conceptualised around 1970 in

the nuclear sector and currently is used in many industries and for different ap-

plications (Jankovsky, Denman, and Aldemir 2018; Mobley, Higgins, and Wikoff

2008).

ETA is a quantitative approach and requires the input of failure statistics,

to assess, through binary logic, the probabilities of different possible outcomes

(Mohanty 2015). In more detail, each of the different events are represented in

individual branches that also include the probability of the different events. ETA

is performed sequentially and initiates by stating an examined event (e.g. failure).

The consequences of the initiating event are examined through a series of differ-

ent outcomes, with each different outcome represented in its branch (Smith and

Mobley 2008; Rausan and Hoyland 2004). As the ETA progresses, the scenarios

represented by the structure of the Event Tree are considered and the different

chains of events are investigated. Completing an ETA results in quantified chains

of events with computed probabilities for the different branches.

ETA is used in many different application from different sectors. Ramzali,

Lavasani, and Ghodousi (2015) assessed the effectiveness of safety barriers in oil

and gas drilling systems by using ETA, to minimise the impact and occurrence

of accidents. Fu and Zhang (2016), combine ETA with fuzzy logic for the inves-

tigation of accident scenarios and related consequences of ships stuck in ice in

Arctic waters. Also, Raiyan, Das, and Islam (2017) examined the root-cause of
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maritime accidents by using ETA. Aziz et al. (2019) developed a methodology for

the quantification of risks related to ship systems, under different failure scenar-

ios. Lastly, Mares, Nagy, and Radu (2020) focused on the investigation of work

accidents in the construction sector by applying ETA to identify procedural and

technical weaknesses.

ETA is a widely recognised RA tool that is accepted in many industries and

for a variety of purposes. It is instrumental in modelling successive events and

analysing the propagation of hazards. Moreover, ETA can identify both procedu-

ral and technical problems (Ben-Daya et al. 2009; Mokashi, Wang, and Vermar

2002). However, ETA is limited in the analysis of only one initiating event at

a time. As a result, it can be pervasive when trying to study multiple initiat-

ing events (Mobley, Higgins, and Wikoff 2008). Lastly, ETA operates under the

premise that the modelled events are independent, which can lead to inaccurate

results when this assumption is violated (Fu and Zhang 2016; Raiyan, Das, and

Islam 2017).

2.5.1.5 Comparison of RA tools

The previous sections presented some of the necessary RA tools, describing their

characteristics and discussing their respective shortcoming and benefits qualita-

tively. The main goal of this section is to complete a qualitative assessment of

the discussed RA tools.

The RA tools are assessed against five criteria, which were identified in the

previous sections. These criteria summarise the performance of the RA tools

transparently and range from user-based to more technical ones. More specifically,

the used criteria include how well established and flexible each tool is, the different

applications of each tool and the ability to model functional dependencies and

sophisticated systems. In detail, the flexibility criterion examines the ability of

each tool to be used in both qualitative and quantitative manners. Also, the
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applications criterion assess the variety of applications each tool can be used.

The functional dependencies criterion explores the ability of each tool to model

systems with intricately interconnected components. Lastly, the complex systems

criterion considers the ability of each tool to model complex systems by also

incorporating information from different sources (i.e. sensor fusion).

Figure 2.5 shows the performance of the examined RA tools against the dis-

tilled criteria from the previous sections. FTA is a well-established tool with high

Well established

Flexibility

Applications
Functional

Dependencies

Complex Systems

Fault Tree Analysis (FTA)

Well established

Flexibility

Applications
Functional

Dependencies

Complex Systems

Bayesian Networks (BNs)
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Applications
Functional

Dependencies

Complex Systems

Failure Modes Event Analysis (FMEA) and 

Failure Modes Event and Criticality Analysis 

(FMECA) Well established

Flexibility

Applications
Functional

Dependencies

Complex Systems

Event Tree Analysis (ETA)

Figure 2.5: RA tools qualitative comparison

flexibility, as it can be used for both qualitative and quantitative tasks. It can

be used in several sectors; however, it is usually restricted with reliability-related

tasks (e.g. reliability analysis, criticality analysis). FTA is also limited in its
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ability to model functional dependencies in examined systems. Lastly, FTA can

model complex systems and could use information from different sensors. Sim-

ilarly, BNs are well established; however, they are not suitable for quantitative

analysis. BNs can be used in many applications, ranging from diagnostics and

FD to decision support, and they can also model functional dependencies effec-

tively. Lastly, BNs are suitable for modelling complex systems and are very good

at integrating information from different sources. FMEA and FMECA are also

well-established tools which can be used both for qualitative (FMEA) and quan-

titative (FMECA) purposes. These tools are limited to reliability analysis and

cannot model functional dependencies. Lastly, FMEA and FMECA can model

complex systems; however, the process of doing that can be time consuming, due

to its exhaustive tabulated format. ETA is also a very well established RA tool.

Its flexibility is limited to only quantitative analysis; however, the structure of

the Event Tree may give a rudimentary understanding of the chain of causality.

ETA is limited in its applications, with most examples from the areas of acci-

dents investigations and reliability analysis. Lastly, ETA cannot model complex

systems and situations, as the resulting Event Tree can become too complex and

cumbersome.

It is seen that BNs demonstrate well-rounded behaviour. They are useful in

modelling functional dependencies and have a vast range of applications, with

many examples from the area of FD and diagnostics. As a result, they are good

in modelling complex systems, provided that the required data are available. Sim-

ilarly, FTA is very flexible and can be used both for qualitative and quantitative

tasks, which makes it an ideal tool for the initial steps of an analysis. FTA is a

good candidate for reliability analysis and can provide more precise results than

FMEA or FMECA.
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2.5.2 Data Science (DS) Tools

DS tools represent another set of tools and methods that are frequently used in

PdM-based schemes. As described by Han, Kamber, and Pei (2012), the aim

DS tools are to provide the means with which to analyse data and extract useful

information about a studied system. DS tools are used when the PdM-based

framework is heavily based on the use of data. That could include cases where

the reliability of equipment is calculated based on collected data (e.g. RCM),

or when the condition of the equipment is inferred by process, performance or

condition describing parameters (e.g. CBM).

DS tools represent a different approach to tackling problems in PdM schemes.

Apart from that, there are several practical differences between DS and RA tools.

Firstly, DS tools have a larger degree of utilisation of data than RA tools. In

more detail, DS tools may require a substantial amount of data to train different

algorithms, as further discussed in the following section (Bishop 2006). Also, RA

tools are usually employed for reliability and risk assessment tasks. In contrast,

DS tools tend to have wider applicability, with applications ranging from condi-

tion assessment to fault detection and diagnostics. In other words, DS tools offer

a higher degree of modularity between the different approaches. Lastly, DS tools

do not have qualitative aspects, as they are purely quantitative, which places a

greater emphasis on the requirements for data.

PdM-based frameworks can be developed by using traditional analytic tools

and methodologies from DS. For example, statistical models have been employed

in the nuclear sector as seen in Hoseyni, Di Maio, and Zio (2019), in the offshore

sector as seen in Taylor and Jeon (2018), in the coastal engineering sector as seen

in Chen and Mehrabani (2019) and in the maritime sector as seen inDikis and

Lazakis (2019). Additional maintenance frameworks based on other DS tools,

and more specifically on control charts, have also been proposed. For instance,

Salmasnia, Kaveie, and Namdar (2018) examined the use of the Hotelling control
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chart in an application for production plants. Also, Boullosa-Falces et al. (2019)

used the Cumulative Sum (CUMSUM) control chart for the optimal maintenance

of heat exchangers. Moreover, Holmes and Mergen (2000) examined the appli-

cation of the Exponentially Weighted Moving Average (EWMA) control chart

for fault detection, while Badodkar and Dwarakanath (2017) focused its use for

detecting developing cracks in mechanical gears.

There are also numerous PdM-based frameworks that are developed using ML.

ML is a sub-field of DS with increasing applicability not only in PdM frameworks

but in most of the aspects of modern society. The primary purpose of ML is to

extract knowledge from data in the same way as humans do. ML is unique in

its ability to learn from data and even improve certain processes, without being

explicitly programmed to do so (Kirk 2017). In the core of ML are the various

algorithms which can be broadly divided into three categories: a) supervised

learning and b) unsupervised learning Müller and Guido (2015).

2.5.2.1 Supervised Learning

Supervised learning is one of the most common categories of ML algorithms.

The main objective of supervised learning is to fit a function to the available

data, to automate a specific process by generalising from provided samples (Kirk

2017). In supervised learning, the algorithms are given sets of inputs and known

outputs, (Bishop 2006). Based on that information, the algorithm tries to uncover

patterns and relationships between the input/output pairs (mapping) so that it

can later produce outputs based on previously unseen inputs. This process is

called training, as the algorithm is trained (i.e. learns) based on the given data.

Nonetheless, the training of an algorithm can be a laborious and challenging task.

As observed from this work, training algorithms has many intricacies that can

lead to inaccurate models if overlooked. Similarly, assessing the accuracy of the

training is a crucial task that can be prone to misinterpretation with negative
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consequences. Similar findings are also reported by Müller and Guido (2015).

Supervised learning algorithms can be further subdivided in regression and

classification algorithms, both of which aim at predicting the value of a vari-

able. Regression algorithms aim at predicting the value of a continuous variable,

whereas classification algorithms are concerned with the value of discrete variables

(Ayodele 2010).

There are a plethora of supervised learning algorithms both for classification

and regression tasks. Notably, the most common classification algorithms include

Support Vector Machines (SVM) and Logistic Regression (Mohammed and Wag-

ner 2014). Similarly, the most widely recognised regression algorithms include

Ordinary Least Squares (OLS) Regression, Ridge Regression and Lasso Regres-

sion. Apart from these, Artificial Neural Networks (ANN), Decision Trees and

k-Nearest Neighbours (kNN) can be adapted and used for both regressive and

classifying purposes (Bishop 2006).

There are vast applications of supervised learning algorithms ranging from

facial recognition and credit card fraud detection to fault detection and diag-

nostics (Bishop 2006). King, Feng, and Sutherland (1995) provided one of the

earliest benchmark comparisons between the performance of different classifica-

tion algorithms. Caruana and Niculescu-Mizil (2006) performed a large scale

comparison of various supervised learning algorithms, including SVMs and kNN.

The comparison was facilitated by analysing the classification performance of

the different algorithms in a normalised dataset obtained from the University of

California Irvine Machine Learning Repository (Irvine 2020). Similarly, Ahmed

et al. (2010) performed a large scale comparison of regression models under the

context of time series forecasting. In the study, the most prominent ML al-

gorithms, including ANNs and kNN, were compared on a dataset obtain from

the International Institute of Forecasters (International Institute of Forecasters

2020). Also, Raczko and Zagajewski (2017) compared classification algorithms,
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including SVMs and ANNs, with emphasis on time-series forecasting and image

recognition. Lastly, Louzada, Ara, and Fernandes (2016) presented a systematic

review and evaluation of the most prominent classification algorithms under the

scope of the credit score sector.

2.5.2.2 Unsupervised learning

Unsupervised learning is another broad category of popular ML algorithms. The

main objective of unsupervised algorithms is to examine and scrutinise the data

without any feedback. Unlike supervised algorithms, unsupervised algorithms do

not have a training phase. In other words, there is no mapping between inputs and

know outputs (Bishop 2006). Instead, the various algorithms attempt to make

inference of the data without being given explicit examples. Despite the absence

of a training phase, unsupervised algorithms are useful in many applications (e.g.

market segmentation), albeit they are sometimes harder to interpret (Müller and

Guido 2015; Kirk 2017).

The primary purpose of unsupervised learning is to understand, group, and

quantify how similar, or dissimilar, the given data are. The most common unsu-

pervised learning methods is known as clustering, or segmentation analysis (Han,

Kamber, and Pei 2012; Kirk 2017). Clustering methods aim at creating groups

(i.e. clusters) of data that are used to find hidden patterns within the dataset

or to categorise the data. Data in the same cluster are considered similar, and

dissimilar with those in another cluster. In addition, distance metrics can be used

to quantify the degree of similarity (Mohammed and Wagner 2014).

There are many ways in which clustering algorithms can be categorised. Selim

and Ismail (1984) suggested that clustering algorithms can be divided between

soft and hard clusters, depending on if single data points can have partial mem-

bership between two clusters. Alternatively, as suggested by Han, Kamber, and

Pei (2012) clustering algorithms can be divided between hierarchical and parti-
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tional, depending on the underlying method for the specification of the clusters.

The most common and widely applied clustering algorithms are the k-means, c-

means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN),

and agglomerative hierarchical clustering (Schubert et al. 2017; Müller and Guido

2015; Rahmah and Sitanggang 2016).

The applicability of clustering ranges from market segmentation to anomaly

detection (Bishop 2006). Saxena et al. (2017) and Renjith, Sreekumar, and

Jathavedan (2020) presented an overall review of the different clustering algo-

rithms in terms of their characteristics, performance and applicability. Also,

Hegde and Rokseth (2020) provided an extensive review of ML tools, including

unsupervised models, applied for the quantification and control of risk in engi-

neering systems. Similarly, Fan et al. (2018) and Miller, Nagy, and Schlueter

(2018) reviewed the applications of unsupervised models for the enhancement of

the energy efficiency of large buildings. Lastly, Mukherjee et al. (2020) presented

a clustering approach streamlined for the large volume information requirements

of IoT applications.

2.6 Predictive Maintenance Processes

Based on the PdM tools discussed in Section 3.5, the main processes and ap-

plications of PdM-based frameworks are identified. These processes include the

identification of critical equipment within the examined system, the preparation

of the required data, the creation of FD and diagnostic modules.

2.6.1 Critical Equipment

The manner in which a failed component affects its system depends on the com-

ponent’s criticality. The criticality of a component denotes its overall importance

to the mission of the system it belongs. It can be a quantitative risk index that
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examines different failure modes of components and how these affect the different

systems (ABS 2016). Therefore, identifying the critical components of the system

under consideration becomes an essential task. It is a crucial first step towards

more effective management of the systems and assets under examination and also

a prevalent starting point for RCM and CBM frameworks.

In general, the critical components identification process is divided into four

broad categories, depending on the underlying identification method. These cat-

egories, as reviewed by Erozan (2019) and Sarih et al. (2018), include methods

based on Network Analysis, Expert Judgement, DA and Reliability Related Tech-

niques.

Network Analysis is a very popular critical components identification method

that is widely used in the field of electrical power distribution systems (Chen

et al. 2018). Network Analysis is often used to identify critical branches, buses

and generators of large power grids. This method is effective when examining

large interconnected, and grid-like systems. As seen in Chen et al. (2018), these

methods can be used for examining the flow of power transmission in complex

network models. Moreover, as examined by Xu et al. (2012) and expanded by

Pordanjani, Wang, and Xu (2013), electric circuit analysis based on Thevenin

circuits can be incorporated with channel components transform to detect critical

components on power grids.

Apart from Network Analysis, methods based on Expert Judgement are of-

ten used for identifying low-reliability and high-risk items. These methods are

developed as they are easier to impart domain and first-principle knowledge. In

contrast with Network Analysis, Expert Judgement methods have a wider ap-

plicability with examples in industrial machinery and offshore wind turbines.

Dehghanian et al. (2012) developed a method for the identification of critical

components for power grids by combining Fuzzy Logic with Analytical Hierar-

chy Process (AHP). Similarly, Musman and Ahmad (2018) also created an AHP
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methodology combined with Fuzzy Logic with an emphasis on autonomous main-

tenance actions. This methodology was showcased in an application for lathe

Computer Numerical Control (CNC) machines. Also, Gupta and Mishra (2018)

developed a methodology based on Analytical Network Process (ANP) for the

identification of critical parts in CNC lathes. Lastly, Özcan, Ünlüsoy, and Eren

(2017) developed an integrated framework combining the Technique for Order

of Preference by Similarity to Ideal Solution (TOPSIS) and the AHP for the

identification of critical components in large-scale hydroelectric power plants.

As mentioned earlier, critical component identification can also be based on

DA. This group of methods has received the least attention and is currently under

development. For instance, Sarih et al. (2018) created a methodology for critical

components for the media and broadcasts sector. The developed methodology was

based on recorded data from various components and used logistic regression and

Pareto analysis. Also, Erozan (2019) developed a critical component identification

methodology for the manufacturing sector. The proposed method was based on

the exponential distribution and in the safety shock and redundancy effects.

Another popular group of methods for the identification and selection of criti-

cal components are based on reliability related techniques. This group of methods

employ various RA tools and Reliability Indices (RI) with applications in many

industries, including the offshore and maritime sector. For instance, Hilber et

al. (2007) created a methodology for critical components in power grids combin-

ing the component reliability importance index calculated through Monte Carlo

simulations. In the same sector, Dehghanian and Fotuhi-Firuzabad (2012) devel-

oped a methodology based on the common load RI, which was used as part of

an RCM framework. Also, Afzali, Keynia, and Rashidinejad (2019) developed a

new weighted importance RI for the identification of critical components, used for

the maintenance prioritisation of mechanical components in distribution centres.

Two of the most common tools for critical component identification are FMEA
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and FMECA (Erozan 2019). In that respect, Narayanagounder and Gurusami

(2009) developed an improved FMEA framework, incorporating ANOVA analy-

sis for applications in industrial motors. Also, Choudhary and Sidharthan (2016)

used FMECA for critical components identification of electronic components.

Similarly, Cevasco, Collu, and Lin (2018) developed an FMECA framework for

offshore Wind Turbines (WT). The framework was developed as part of an RCM

framework aiming at minimising maintenance costs.

2.6.2 Data Preparation

Apart from the identification of critical components, another vital process of PdM

frameworks includes the preparation of data, also known as pre-processing. Data

pre-processing improves the effectiveness of PdM frameworks by improving the

quality of the used data, as extensively reviewed by Han, Kamber, and Pei (2012),

Tan, Steinbach, and Vipin Kumar (2006), Mohammed and Wagner (2014), and

Kotsiantis, Kanellopoulos, and Pintelas (2006). Under the scope of this work,

the data preparation efforts are divided into two categories, including Outlier

Detection and Imputation, presented next.

2.6.2.1 Outlier Detection

Outliers are considered as sparse data points with significantly different values

from the rest of the instances of the same variables. Outliers are usually caused

by sensor errors and other instrumental faults and are not part of a fault indica-

tive pattern. For example, negative EG temperatures and power outputs above

an engine’s rated power are considered as outliers. Consequently, outliers can

be perceived as data “anomalies” and unreliable readings, and if they are not

removed, they can skew the results and decrease the accuracy of the developed

models (Javed and Wolf 2012). The methods based on which outliers are detected

can by divided into algorithmic and domain knowledge processes (Karkouch et al.
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2016; Hodge and Jim 2004).

Domain knowledge processes are simplistic and involve the manual check of

the data to identify points that do not conform to an expected behaviour. These

processes can rely on information from the equipment’s manufacturer, by filtering

the data against alarm levels, operational limits and benchmark tests. Moreover,

visualisation tools, including scatter plots, can be used to visually check the data.

For example, Cheliotis et al. (2019) detected outliers by comparing recordings

with limits obtain from engineering principles. Similarly, Dikis and Lazakis (2019)

detected outliers from ship-system signals by comparing the available data with

the alarm limits set by the manufacturers.

Algorithmic outlier detection is suitable for faster and automated processes

and does not require domain knowledge. A common detection method is based

on the assumption that the data follow a specific distribution (e.g. Gaussian

distribution) (Maimon and Rokach n.d.). For example, Lazakis, Gkerekos, and

Theotokatos (2018) detected outliers based on the distance of each data point

from the data mean, under the normality assumption. Even though the normal-

ity assumption is a popular choice, it is frequently unrealistic for given datasets.

To counter this shortcoming, clustering algorithms can be used to detect out-

liers in an unsupervised manner. Çelik, Dadaşer-Çelik, and Dokuz (2011) used

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) al-

gorithm to detect outliers in a dataset containing daily average ambient tem-

peratures. Similarly, Chen and Li (2011) used the DBSCAN algorithm to detect

outliers under the scope of cyber-security and more specifically in detecting unau-

thorised accesses in private systems. Thang and Kim (2011) also examined the

use of DBASCAN for the detection of outliers related with cyber-security issues.

Lastly, Ijaz et al. (2018) used DBSCAN for the identification of outliers for med-

ical applications, including data for hypertension and diabetes.
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2.6.2.2 Imputation

Missing values befall in most data-driven research efforts and applications and

involve the loss of relevant information (e.g. outliers). If they are not dealt with

in a case-appropriate manner, they can reduce the power of models and skew

results. As discussed by Domingos (2012) and Cheliotis et al. (2019), reducing the

number of missing values has a positive effect on the accuracy of any subsequent

models, as it preserves the predictive power of the used datasets. Imputation is

a very popular approach in managing missing values and includes techniques for

replacing missing values with substitutes.

Understanding the underlying causes of missing data is an important step in

data imputation, as it dictates the way the missing data can be handled. In

general, three mechanisms affect how data are missing as established by Rubin

(1976), Taylor and Rubin (1996), and Little and Rubin (2002). The Missing

Completely at Random (MCAR) mechanism refers to cases where the missing-

ness is independent of the data. In that case, there is no correlation between

the missing data and the variables in the dataset, as the missingness is entirely

unsystematic. For example, in the maritime domain, a random failure of the fuel

flow meter will lead to data that are MCAR. Missing at Random (MAR) is when

missing data are related to other observations. In other words, the missingness

is conditional on another variable. Even though MCAR and MAR seem similar,

they should not be used interchangeably as the key difference lies in the condition

of the missingness. For instance, if a ME is not operational, data from dependant

systems may not be recorded, for example, the TC speed or the EG tempera-

ture. Missing Not at Random (MNAR) refers to cases where the missingness of

an observation depends only on the variable with the missing data; that is, the

missingness is conditional to itself. This is inherently a complicated mechanism

to identify. For example, MNAR could result when missing data originate from a

data collecting sensor has an established failure during the time of the recording.
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A very common imputation technique is called vertical imputation, which uses

information from the same column as the one with the missing value. In this case,

it is very common to carry forward the last value, or use mean, or mode of the

observed values (Pigott 2003). As reviewed by Donders et al. (2006) and McK-

night et al. (2007), vertical imputation is easy to implement; however, it is not

suitable for successive missing points as it artificially increases the observations’

frequency.

An alternative to vertical imputation is to impute the missing values with

ones from similar parameters, or by using other logical rules. This is commonly

known as horizontal imputation as information from the same record is used.

Indicatively, this approach could be used to treat missing values between two

identical pieces of machinery (e.g. pumps). The main drawback of this approach

is that there may not be two similar parameters in the available dataset; therefore

this approach is not always viable (Longford 2005; Gibert 2014)

Hot-deck imputation is an approach that is based on the similarity of a missing

instance with a complete one, as initially suggested by Ford (1983), Rizvi (1983),

and Roth (1994). This approach matches donors (i.e., instances with observed

values) with recipients (i.e., instances with missing values). A pool of possible

donors is formed based on the similarity between the recipient and the complete

instances. The similarity is quantified using a variety of different metrics, in-

cluding the Euclidean distance, Manhattan distance, Mahalanobis distance and

maximum deviation. The main benefit of hot-deck imputation is that it does

not rely on parameter specific models, hence the imputation is not influenced

by any parameter selection. Also, as the imputation is based on actual values,

the dataset is not completed by artificial ones. However, there is no explicit

mathematical model behind the hot-deck methodology. Taking into account the

merits of hot-deck imputation, it is worth examining in greater detail its most

useful and widespread implementation, kNN. kNN can be an effective imputation
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tool on its own, and can easily be used in hybrid models. Moreover, kNN is a

“lazy” algorithm, and as such, it does not require an explicit training phase; this

dramatically reduces the required computational cost and increases the efficiency

(Batista and Monard 2003; Armina et al. 2017). Also, the effectiveness of kNN

imputation has been demonstrated in various examples, including Zhang (2012),

Huang et al. (2017), Cheliotis et al. (2019), and Zhang et al. (2018).

Fitting a regression model to appropriate instances with recorded values is

another widely used imputation method. Regression-based imputation is more

complicated compared with vertical and horizontal imputation (Lang and Little

2016). A regression model is fitted between the target variable (i.e. variable with

missing data) and the selected independent variables. The regression model can

be linear, polynomial, or of another type, depending on the dataset. The resulting

regression equation is then used to impute instances with missing points in the

target variable (Enders 2001). As shown by Longford (2005), the general form

of regression-based imputation, between the associated variables Y (with missing

instances) and W (complete data set), is provided by:

Y = f(W ) + ε (2.1)

In Equation 2.1, f(W ) is some appropriate function (e.g. linear, polynomial,

etc.) and ε is the error term which is used to account for the uncertainty.

Multiple Imputation (MI) represents a modern and more sophisticated ap-

proach to imputation. MI can increase the accuracy of the imputation while

reducing bias. As discussed by Azur et al. (2011), MI allows for better account-

ability of the statistical uncertainty, as opposed to single imputations. MI is

based on the improved use of predominant imputation techniques. Assuming an

incomplete dataset Y, MI follows the subsequent steps:

1. Impute the missing values of Y m times.
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2. Analyse separately the m different datasets.

3. Merge the m different results into one dataset.

MI depends on certain user-specified selection steps. Initially, the imputation

method has to be specified; selection can include deterministic or stochastic meth-

ods. Next, the number of imputation cycles must be identified. Increasing the

number of cycles can improve the model’s accuracy; however, this comes at a

computational cost. The final selection involves the determination of the con-

cluding missing values from m different datasets. The selection can be facilitated

in either a deterministic (mean, median) or a stochastic (random or probabilis-

tic selection) way. All of the above choices are case- and application-dependant.

Through the recent literature, it is seen that the Multiple Imputation by Chained

Equations (MICE) approach is one of the most promising and accurate imple-

mentations of MI (Royston 2004). MICE is an effective imputation tool that can

be used both as a stand-alone solution and in hybrid models. MICE aims to

cyclically fit regression models to the different variables with missing data. This

process is repeated for a predefined number of iterations, as the predictions for

the missing data are gradually improved (Royston and White 2015). The effec-

tiveness of MICE has been demonstrated in different research efforts including

Cheliotis et al. (2019), Buuren and Oudshoorn (1999), and White, Royston, and

Wood (2011).

2.6.3 Fault Detection (FD)

Following the identification of critical components and the data preparation stages,

FD is often the subsequent process of a PdM framework. The area of FD has

been rapidly expanding in the past decades and currently is commonly facilitated

using various condition describing signals, as shown by Martinez-Guerra and Luis

Mata-Machuca (2013), Sari (2013), and Sayed-Mouchaweh (2018). As reviewed
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by Jardine, Lin, and Banjevic (2006), FD includes a variety of different methods

ranging from statistical to ML, all aimed at identifying the presence of a fault in

the examined system.

As discussed in Isermann (2006), the most basic statistical approach for FD

is through limits checking (e.g. maximum and minimum values). In contrast,

more advanced approaches are built around the identification of specific trends

(e.g. cyclic patterns, rates of change, etc.). The use of the EWMA for FD is

an approach gaining popularity due to its versatility and accuracy and based

on the identification trends in the examined signal (Garoudja et al. 2017). FD

models based on the EWMA use selected signals and plot the signals’ EWMA

in a control chart, which contains upper and lower control limits for the detec-

tion of faults (Nounou et al. 2018). This type of FD creates easy to visualise

models that can be used to detect various faults. For instance, Harrou et al.

(2015) combined partial least squares with EWMA for the detection of faults

in industrial processes. The effectiveness of this model was showcased through

its ability to detect developing faults in distillation columns. Similarly, Badod-

kar and Dwarakanath (2017) developed a methodology based on EMWA for the

detection of broken teeth in mechanical gearboxes. The EWMA analysed time-

series acceleration signals, which showed excellent performance in detecting faults

in their early stages. Awad, AlHamaydeh, and Faris (2018) developed a method

for the detection of structural damage in buildings, based on ANNs and con-

trol charts. Nounou et al. (2018) proposed a condition monitoring scheme for

grid-connected photovoltaic panels. The scheme was based on the monitoring of

environmental and performance parameters (voltage, current, and frequency) in

an EWMA control chart. Finally, Adegoke et al. (2019) proposed the use of an

EWMA-based FD methodology for the manufacturing sector. The effectiveness

of the methodology was showcased in an example of a continuous stirred tank

reactor.
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As discussed by Ma and Jiang (2011), FD based on data-driven ML approaches

are gaining popularity in a variety of applications, including the manufacturing,

nuclear and offshore sectors. ML-based approaches for FD are traditionally based

on classification algorithms, like SVM and Logistic Regression, as reviewed by Liu

et al. (2018). However, these algorithms are restricted and not easily used in FD

models trained on fault-free data only. Also, classification-based FD models are

not easy to integrate with prognostic and diagnostic task (Hong et al. 2007).

FD based on Expected Behaviour (EB) models is an alternative approach to

classification models (Hong et al. 2007). EB models are often used for FD tasks

as part of a PdM framework in a variety of applications, including the offshore,

automotive, nuclear and manufacturing sectors. The use of such models offers

several advantages, as they replicate the normal behaviour of various signals,

leveraging ML, and assesses any deviations from the normality to detect faults.

Zaher et al. (2009) examined the use of an ANN for the development of an EB

model for FD in wind turbines, based on operational data. The ANN was trained

with more than three months of operational data and was used to monitor the

condition of the turbine’s gearbox. Similarly, Schlechtingen and Ferreira Santos

(2011) examined the application of ANNs and polynomial regression models for

the development of EB-based FD for wind turbines. The examined models showed

good performance in detecting faults in the stator and gearbox of a wind turbine,

by modelling the power, speed, and various temperatures. The same authors

developed an ANN-based EB model for the detection of a variety of faults in

wind turbines based on operational data. The networks were trained by using

more than 30 months of operational data (Schlechtingen, Santos, and Achiche

2013; Schlechtingen and Santos 2014). Lastly, Bangalore and Patriksson (2018)

studied the topic of optimal maintenance planning for wind turbines by using

an ANN-based EB model for the detection of faults in critical components. As

with the previous cases, the developed models were trained on readily available
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operational data.

2.6.3.1 FD Discussion

ML classification models are the standard choice for FD and offer accurate results

when they are trained in the presence of faulty data. However, since in some cases

labelled faulty data are not available for training, EB models are developed. EB

models have a wide application for FD in many different sectors, as previously

discussed. They detect faults by assessing a signal’s deviation from an expected

normal behaviour. The majority of these models employ ANN to create models

which require large amounts of training data. Even though ANN exhibit good

predictive behaviour, models that are less reliant on large training datasets, and

are equally effective, ought to be explored. In addition, EWMA control charts

have an increasing application for FD. They create visual models that can detect

developing faults in the early stages. Moreover, EWMA-based FD can also define

an envelope of normal operation, for a selected signal, using different control lim-

its. Finally, EWMA control charts can be easily combined with other approaches

to offer enhanced detection capabilities.

2.6.4 Diagnostics

The performance of diagnostic tasks is often one of the final processes in a PdM

framework and is the following step after FD. Diagnostics aims to identify the

root cause of a detected fault, anomaly or error (i.e. localisation). In general,

diagnostic models can be divided based on either the type of data, or the types

of models used, as seen in Figure 2.6.

Diagnostic efforts, when examined in terms of the data they use for the fault

localisation, can be subdivided into a) ConMon, b) PeMon and c) ProMon, as also

mentioned in Section 3.4.4. In brief, ConMon uses condition-describing parame-

ters, including vibrations and acoustic emissions. PeMon is based on the use of
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Diagnostic	Models

Based	on	Type	of	Data Based	on	Type	of	Model

Figure 2.6: Initial division of diagnostic models

information relating to the output of the examined system, including power out-

put. Lastly, ProMon uses information which reflect the internal processes of the

examined system such as injection pressure and cooling temperature. Apart from

providing insight into the type of data used, this division of diagnostic models is

not very useful in explaining how faults are localised.

Diagnostic efforts when examined in terms of the types of models used can be

further subdivided into a) physics-based models, b) data-driven models and c)

knowledge-based models (Jardine, Lin, and Banjevic 2006; McKee et al. 2014),

as seen in Figure 2.7. This type of division can be more useful in providing an

Based	on	Type	of	Model

Physics-based	

Data-driven	

Knowledge-basedStatistical Machine	Learning	(ML)

Figure 2.7: Further division of diagnostic models based on the specific approach

understanding of the working process of fault localisation.

Physics-based models use physical principles to create mathematical equations

that describe the examined system and the respective failures (Nordmann and Ae-

nis 2004). For instance, physics-based models can include thermodynamic, iner-
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tial and fluid models; however, the majority of machinery-based diagnostic models

are based on thermodynamic principles (Jardine, Lin, and Banjevic 2006). Coc-

quempot and Izadi-zamanabadi (2006) created an inertial physics-based model for

the identification and isolation of faults in centrifugal pumps driven by induction

motors. Similarly, Murphy et al. (2015) developed a thermodynamic-based model

for the isolation of faults of marine diesel engines under the scope of reducing the

engine’s environmental impact. Lastly, Theotokatos et al. (2018) developed a

thermodynamic model based on extended mean values for the PdM of marine

two-stroke engines.

Data-driven models use data-oriented methods to uncover patterns and be-

haviours that relate to specific faults in the examined systems. Data-driven mod-

els can be further split into ML or statistical-based. Statistical approaches can be

based on hypothesis testing and other statistical tests and processes. For instance,

Trachi et al. (2017) developed a diagnostic methodology for induction machines

based on hypothesis testing and by using the likelihood ratio test. Also, Davarifar

et al. (2013) developed a fault localisation methodology for photovoltaic systems

based on statistical signal processing. Likewise, Weimer et al. (2013) employed

an invariant hypothesis testing approach for the FD and diagnostics in Heating

Ventilation and Air Conditioning (HVAC) systems. On the other hand, ML-

based approaches use a plethora of both supervised and unsupervised methods

(Galar Pascual 2015; Liu et al. 2018). Lu et al. (2001) examined the application of

back-propagating auto-associative neural networks for diagnostics in combustion

engines. Kim, Ball, and Nwadiogbu (2009) patented a methodology based on self-

organising maps clustering for diagnostics in steam and gas turbines. Radionov

et al. (2015) used subtractive clustering techniques for the diagnosis of faults in

power transformers. Also, Giorgi, Campilongo, and Ficarella (2018) developed a

PdM and diagnostic model gas turbines by using ANNs and SVMs based on the

use of synthetic machinery data.
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Lastly, knowledge-based models are examined which aim at mimicking spe-

cialists’ reasoning, while effectively handling uncertainties and having increased

modularity (Lin, Chen, and Zhou 2013; Diakaki et al. 2015; Atoui, Verron, and

Kobi 2015; Cai, Liu, and Xie 2016b). In general, knowledge-based models have

many implementations, but the more prominent approaches are based on Fuzzy

Logic or BN (Nourian, Mousavi, and Raissi 2019; Chojnacki, Plumecocq, and Au-

douin 2019). Diagnostic models based on Fuzzy Logic have many applications,

but they can be less modular and fast to set-up, compared with BNs (Nourian

and Mousavi 2019; Wang et al. 2019; McKee et al. 2014). Riascos, Simoes, and

Miyagi (2007) developed a diagnostic network, based on BN, for the diagnosis

of different faults in a proton exchange membrane fuel cell. Also, Diakaki et al.

(2015) developed a decision support system for merchant ships. This system

addressed the issues of route optimisation and fault localisation leveraging BN.

Atoui, Verron, and Kobi (2015) examined the use of a BN-based classifier for the

detection and diagnosis of three different faults present in chemical process plants.

Moreover, Zhao, Wen, and Wang (2015) and Zhao et al. (2017) created a multi-

mode BN for the diagnosis of more than 27 faults in industrial air handling units.

The developed networks demonstrate the versatility of BN, as they make use of

data fusion. Similarly, the versatility and accuracy of BNs are demonstrated in

the work of Wang et al. (2017), through the development of a diagnostic network

for chiller units which can also handle classification problems. Amin, Khan, and

Imtiaz (2018) looked at the development of dynamic BN for FD and root-cause

analysis for chemical process plants, generating evidence for collected data under

the assumption of a Gaussian distribution.

2.6.4.1 Diagnostics Discussion

Diagnostic methods can be divided either based on the type of data they use

or based on the models they employ, with the latter categorisation providing
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more insight into the working process of the fault localisation tasks. Regarding

the different types of diagnostic models, the majority of physics-based models

for machinery diagnostics are based on thermodynamic modelling. Even though

these models are accurate, they are time expensive, both in terms of the set-up

time and the required maintenance of the models. Data-driven models, both

statistical and ML, have good performance; however, they can employ black-

box tools (e.g. ANNs). Moreover, statistical diagnostic models have reduced

modularity and interoperability. Lastly, knowledge-based models are developed to

counter the difficulties of building mathematical models while providing accurate

results. Knowledge-based BN is a versatile diagnostic tool that can effectively

handle uncertainty. They are extremely popular in diagnostic tasks due to their

compact nature, consistency, and modularity.

2.7 Maritime Predictive Maintenance

Maritime maintenance is a continually evolving dynamic area. Technological ad-

vancements, complex managerial schemes and strict safety and reliability criteria,

are all factors that contribute to the development of marine maintenance (Bor-

jalilu and Ghambari 2018). In addition, advancements in maintenance in other

industries (e.g. manufacturing, nuclear, automotive and renewables) are hav-

ing a positive influence on the development of maritime maintenance (Lazakis

and Ölçer 2015; Cheliotis et al. 2019). The following sections will present the

maritime predictive maintenance processes, summarising the state-of-the-art and

presenting in detail the relevant developments.

This section will discuss the status quo in the maritime industry in terms

of critical equipment selection, data preparation, FD and diagnostics. Regard-

ing the identification or selection of critical equipment, the available literature

is limited, especially when comparing to other industries. In general, the identi-
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fication of critical equipment is most often performed using FTA and FMECA,

and in some cases based on BN. However, there are some cases that are based on

accident’s report analysis. In more detail, Ersdal and Kvitrud (2000) identified

critical equipment with respect to green-water ingress in product carriers. The

critical equipment was identified as a result of a post-hoc analysis of green water

ingress reported in the studied ships. Next, Lazakis, Turan, and Aksu (2010a)

combined the use of FMECA with FTA in a methodology for critical components

identification, applied in the electric generation system of a cruise ship. More-

over, Anantharaman et al. (2014) developed a methodology for the identification

of critical components in the main propulsion system of a merchant ship. The

methodology was applied in the lubrication sub-system and was based on the

use of FTA. Also, Dikis, Lazakis, and Turan (2014a) developed a methodology

for the identification of critical equipment in ship systems as a part of a broader

risk assessment framework for ships. The developed methodology was based on

reliability analysis using FTA and BN. Lastly, and most recently, Lazakis, Rap-

todimos, and Varelas (2018a) identified critical components in ship systems by

also using FMECA and FTA.

Regarding the imputation of missing data, applications in the maritime do-

main also have limited literature. In general, imputation in the maritime indus-

try is predominantly examined under the scope of maritime operations, including

traffic management, logistics and situational awareness. As a result, most appli-

cations really on operational, non-dense datasets. In detail, Iphar, Napoli, and

Ray (2015) used an imputation method for maritime data originating from Au-

tomated Identification Systems (AIS). The treatment of the missing data is part

of a broad data-driven methodology aimed at increasing situational awareness in

sea-passages. Similarly, Claramunt et al. (2017) used the imputation of missing

data as part of a traffic management methodology aiming to increase ship safety

and security. Also, Fruth and Teuteberg (2017) used data imputation under the
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scope of optimising maritime logistics to improve safety. Lastly, Dobrkovic, Ia-

cob, and Hillegersberg (2018) also used imputation on AIS data in a methodology

to improve barge logistics.

In contrast with critical components identification and data imputation, the

literature on maritime FD is much richer. The state-of-the-art of maritime FD

can be divided into EB models based on ML, ML models based on classifica-

tion, methods leveraging RA tools (e.g. BN, FTA) and physics-based models.

For example, the benefits of predictive maintenance have been addressed under

a decision support framework using fuzzy–sets enhanced with AHP (Lazakis and

Ölçer 2015). Also, Ahn et al. (2017), examined the use of a fuzzy-based FMEA

approach to study the risk profile of the gas turbine system of specialised tankers.

Similarly, Cem Kuzu, Akyuz, and Arslan (2019) proposed the use of a fuzzy-based

FTA to analyse the inherent risks of ship mooring operations. Dikis, Lazakis, and

Turan (2014b) examined the use of data-driven dynamic BN for the maintenance

prioritisation of multiple ship systems. Expanding on this, the coupling of BN

with data mining and Markov Chains (MC) has been studied for the development

of a predictive maintenance scheme of marine ME and their supporting systems

(Dikis and Lazakis 2019). The application of a regularised feed-forward ANN

classifier for the monitoring of the EG valve of a marine two-stroke engine, using

acoustic emissions signals, has also been examined (Fog et al. 1999). Also, Li et

al. (2011) examined the use of a back-propagating ANN classifier for the condi-

tion monitoring a marine gearbox, based on the spectrum analysis of a vibration

signal. Similarly, the use of a three-layer feed-forward ANN for the condition

monitoring of the air intake and fuel injection system of a medium speed marine

engine has been examined (Basurko and Uriondo 2015). Raptodimos and Lazakis

(2018) and Lazakis, Raptodimos, and Varelas (2018b) examined the application

of ANNs and their combination with Self Organising Maps (SOM) and inter-

clustering for the monitoring, prediction and healthiness assessment of a marine
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ME. Lazakis, Gkerekos, and Theotokatos (2018) demonstrated the use of SVMs

for the classification of faults and the development of a data-driven normality

index for a marine generating engine. Similarly, Zhan et al. (2007) and Zhan,

Shi, and Liu (2007) examined the use of a multi-class SVM for the fault diagnosis

of marine ME cylinder covers, based on vibration analysis and Principal Com-

ponents Analysis (PCA). Lastly, the combination of data simulation, through

physical modelling, with both supervised and unsupervised ML algorithms has

been examined with application to system decay in naval vessels (Cipollini et al.

2018; Coraddu et al. 2016).

Moving away from FD, the area of maritime diagnostics for shipboard sys-

tems is minimal and underdeveloped. The state-of-the-art of maritime diag-

nostics can be divided into approaches based on thermodynamic modelling and

simulations and on ML-based approaches. For instance, Silva et al. (2018) de-

veloped a methodology for the diagnosis of faults in the electric drive system

of electric-powered ships by employing two-dimensional wavelet transforms from

sensor data. Moreover, Campora, Cravero, and Zaccone (2018) combined an

ANN with thermodynamic modelling, for data simulation, in order to diagnose

faults of a naval gas turbine. Korczewski (2016) investigated the use of the ME

EG Temperature (EGT) in thermal engine models for the diagnosis of internal en-

gine faults. Also, Homik (2010) developed a methodology for FD and diagnostics

of torsional vibration dampers and marine ME crankshafts. The methodology is

based on the combination of vibration analysis with statistical testing. Lastly,

Ranachowski and Bejger (2005) used a wavelet analysis in acoustic signals to di-

agnose the most common faults of the fuel injection sub-system of a marine diesel

engine.
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2.8 Identified Gaps

From the previously cited literature, and mainly by comparing the maritime pre-

dictive maintenance status quo with other industries, the following conclusions

regarding maritime critical equipment selection, data preparation, FD and di-

agnostics can be made. Based on these gaps, the contribution of this work is

developed and the novelty is directed. The contribution of this work, concerning

maritime predictive maintenance processes, is summarised in Table 2.4. To high-

light the discussed contribution, Table 2.4 also summarises the state-of-the-art

(status quo) of the maritime predictive maintenance processes, also detailed in

the previous section.

Firstly, predictive maintenance, in the maritime sector, is at its infancy and

is severely lagging compared to other industries. There is a gap in a complete

predictive maintenance framework taking into account the particular needs of

the maritime industry and providing data-driven and knowledge-based solutions.

However, data-driven solutions are heavily influenced by the characteristics of

the available data (i.e. size, density and quality). In more detail, the age of the

examined vessel plays a vital role in the data characteristics. Older vessels tend

to have sparser data, due to the absence of modern DAQ systems, in contrast to

newer ships which are fitted with DAQ systems during their newbuilding stage.

Also, the operating environment of ships can reduce the quality of the gathered

data, due to loss of sensor calibration, the loss of sensor connectivity, and the

inherent difficulty to replace failed sensors. Lastly, the lack of proper data storage

facilities, coupled with the possible confidentiality of the data, create issues unique

to the maritime sector.

Critical equipment selection methods in the maritime industry are very sim-

plistic, as seen from the presented literature. They typically rely on some com-

bination of RA tools, including FTA, FMEA, or FMECA. Consequently, there
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is a gap in the incorporation of data-driven tools for the identification of crit-

ical components. Similarly, there is also a gap in combining cost aspects with

reliability characteristics for identifying critical components. As a result, the

contribution of this work includes the combination of ML approaches with FTA

and the incorporation of costs with reliability IMs for the identification of critical

equipment (Table 2.4). This ensures that critical equipment are selected based

on a subjective and multi-criteria approach.

Regarding data preparation, there is a substantial lack of a formalised ap-

proach in the maritime industry. Despite the growing popularity of modern data

analytics, attempts for outliers detection and imputation based on modern ML

are scarce. The lack of a formalised and modern imputation approach for the

maritime industry is very concerning, as datasets used for maritime predictive

maintenance contain from 4.4% to 26% missing values, depending on the appli-

cation (Lazakis, Gkerekos, and Theotokatos 2018; Tsitsilonis and Theotokatos

2018). The same need is demonstrated when considering the increased use of

ML algorithms which are sensitive or restrictive to missing values, as discussed

in Cheliotis et al. (2019). Lastly, the urgency for the above can be seen from sim-

ilar attempts in other sectors, including the offshore wind industry, as discussed

by Martinez-Luengo, Shafiee, and Kolios (2019). A major gap in the maritime

industry is the lack of a formalised and accurate approach for the imputation of

missing data that includes all necessary imputation preparatory steps, and any

further post-imputation processes have not yet been suggested. Consequently,

this work contributes with the development of an imputation approach for mar-

itime ProMon data, combining data-driven and knowledge-based approaches (Ta-

ble 2.4). This safeguards ProMon datasets, as otherwise missing information is

preserved.

In terms of FD, there is a gap in the application and use of FD models

addressing the particular needs and requirements of maritime predictive mainte-
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nance. Moreover, it is seen that the majority of the EB models for FD are based

on ANNs. Even though ANNs offer good prediction results, they require large

datasets for training, which usually are not always available within the maritime

industry, and have a more complex model development phase. In addition to

that, ANNs are black-box approaches, which makes it difficult to impart domain

knowledge as there is no insight into how outputs are produced. Also, despite the

numerous applications of ANNs, there is an upcoming trend among data science

practitioners to increase the applications of white-box approaches, as discussed by

Loyola-Gonzalez (2019). Consequently, the selection of the underlying approach

for the EB models should serve the application, the data available and take into

account the above issues. In cases of limited data and when accurate and fast

results are required, regression-based EB models should be examined. Regression-

based models, such as the ones presented in this work, offer a white-box approach

to EB modelling. This allows for the creation of models that are easy to explain,

interpret and impart domain and previous knowledge. This is achieved as the

form of models allows the examination of the influence each predictor has on the

output. The selection of the EB model approach for the detection of faults is also

beneficial when compared to the alternative classification approaches. Firstly,

with EB models, there is more flexibility in the selection of the underlying al-

gorithms used. With classification approaches, in the absence of observed faulty

data, one-class SVM is the standard choice, with limited alternatives. In con-

trast with classification, EB models have greater flexibility in the selection of the

algorithm (e.g. ANNs, polynomial regression). Moreover, the output of the EB

models (i.e. a time-series) is more interpretable and useful for future tasks (e.g.

diagnostics), when compared to the output of classification approaches (i.e. de-

cision space). Therefore, the contribution of this work includes the investigation

for the optimal regression model, used for EB modelling combined with EWMA

control charts for FD (Table 2.4). This creates FD models that can be devel-
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oped without labelled faulty data, improving their flexibility and bypassing the

discussed issues of black-box ANN modelling.

Concerning diagnostics, it is observed that most such attempts are physics-

based. Even though these models are well-performing, they are time-consuming

to develop and apply. Likewise, data-driven diagnostic models also exhibit good

behaviour, but they depend on extensive training datasets, which are scarce in the

maritime industry. On the contrary, knowledge-based diagnostics, including BN,

offer accurate performance, as seen in this work, without requiring lengthy set-up

times. Also, knowledge-based diagnostics do not require dedicated training phase,

which simplifies their development. Moreover, knowledge-based diagnostics are

modular, which improves their compatibility with FD modules and makes it easier

to expand in other engineering systems. As a result, the contribution of this work

is the integration of ML-based FD model with a BN for diagnostics (Table 2.4).

This allows for the investigation of the root-case of a detected fault.
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Table 2.4: Status quo and added contribution

Critical Equipment Selection

Status quo
Based on RA tools (FTA, BN, FMECA)
No combination of costs with reliability metrics

Added Contribution
Combination of ML clustering with FTA
Examination of costs with reliability IMs

Data Preparation

Status quo
Developed for ship operations application
Majority of purely data-driven models

Added Contribution
Imputation of ProMon data
Combination of data-driven and knowledge-based
approaches

Fault Detection

Status quo
Based on ML classification and ML EB models
Thermodynamic models and RA tools
are also used

Added Contribution
Combination of ML-based EB models with EWMA
control charts
Investigation of optimal regression model

Diagnostics

Status quo
Based on ML approaches
Thermodynamic models and simulations
are also used

Added Contribution
Integration of ML-based FD with BN for diagnostics
Combination of data-driven with knowledge-based
approches

2.9 Chapter Summary

This chapter presented the factual and critical review of the relevant literature.

Initially, the fundamental maintenance concepts and maintenance frameworks

were presented. Afterwards, the reliability assessment and data science tools used

in predictive maintenance together with the resulting processes were examined.

Then, the predictive maintenance processes of critical equipment selection, data

preparation, FD and diagnostics in the maritime field were compared with those

in other domains. Consequently, this comparison allowed to uncover several gaps
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for maritime applications which then oriented the novelty of the present thesis.
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Methodology

3.1 Chapter Overview

After the gaps of the literature are identified, through the critical examination of

the relevant literature, this chapter aims to present in detail the overall frame-

work, while highlighting the generated novelty. The framework aims to address

maritime predictive maintenance holistically, by including topics ranging from

critical equipment selection to system diagnostics. Section 4.2 gives a detailed

outline of the generated novelty, and Section 4.3 provides a high-level description

of the overall framework. The methodology addressing the critical equipment

selection is presented first. Then, the data preparation methodology is shown.

Finally, the methodologies for the FD and diagnostics are presented in turn.

3.2 Novelty

By considering the gaps in Section 3.9, this thesis aims to propose a novel frame-

work, holistically addressing the requirements of maritime predictive mainte-

nance. Thus, the proposed framework combines in a novel manner the identi-

fication of critical equipment, data preparation, FD and diagnostics. In more
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detail, the novelty of this work is listed below:

• This work is based on the novel combination of the developed methodologies

to address the issues of maritime PdM. This work combines FTA and data

mining for the identification of critical components, with the development

of a kNN and MICE-based imputation approach, coupled with the use of

regression and EWMA based FD which leads into a BN-based diagnostic

tool. The developed novel methodologies, addressing the different needs of

maritime PdM, can be used in series and in a single vessel, conditional on

the availability of the required data.

• To address the limitations regarding the selection of critical equipment, a

novel methodology is developed. The methodology combines proven RA

tools with data-driven efforts. In more detail, FTA analysis is performed

to obtain specific reliability Importance Measures (IM). Then, the IMs are

clustered together with repair and replacement costs, using the k-means

algorithm, to obtain the resulting critical components.

• To tackle the gaps regarding data preparation, the novelty of this study

lies within the proposal of a new hybrid imputation method that combines

data-driven solutions with valuable First Principles (FP) domain knowl-

edge. This approach is shown to yield more accurate results compared to

traditional, application-agnostic, imputation methods, as it will be shown in

the following sections. Moreover, alongside the hybrid imputation method,

all the needed pre-imputation and post-imputation steps are presented.

• In terms of FD, the novelty of this thesis lies in the combination of the

pre-processing steps, with the regression-based EB modelling and EWMA

control charts for FD. Moreover, the novelty includes a systematic and

structured examination for the selection of the optimum regression model.

This encompasses the selection of the ideal predictor variable and types
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of training datasets (recorded data vs shop test data). The developed FD

methodology also includes the combination of data-driven models with en-

gineering analysis, resulting in interpretable and effective models using real

data.

• Lastly, with respect to diagnostics, the novelty of this work lies in the

development of a novel framework that combines an ML-based FD module

with a BN-based diagnostic module. The FD module is combined in a novel

way with the diagnostic module which includes the mapping of faults and

the construction of a BN. Evidence of detected faults is propagated in a BN

network. The output of the BN diagnostic is the quantified probabilities

of the mapped faults, together with the fault profiles of different failure

modes.

3.3 Overview of the Novel Framework

This section gives a detailed account of the proposed novel framework. As men-

tioned above, the main aim of this framework is to address the topic of maritime

predictive maintenance in a comprehensive and robust manner, by individually

addressing the topics of critical equipment selection, data preparation, fault de-

tection and system diagnostics. Each of these methodologies is developed and

assessed individually, as described in detail in Chapter 5.0. Despite this sequen-

tial development, all of these methodologies are integral parts of the proposed

PdM framework.

Figure 3.1, illustrates the overall novel framework by specifying the sequence

of the developed methodologies together with the required inputs and expected

output in each case. The first step of the framework is the identification of

the critical equipment of ship systems. This is a crucial first step, and forms

the starting point of the proposed novel framework, as it allows to focus the
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maintenance efforts on components which have the maximum impact on safety,

reliability and availability. As seen in Figure 3.1, this methodology requires the

use of the maintenance schedule and repair costs to identify the critical equipment

by using the novel combination of FTA with k-means clustering. Once the critical

equipment selection methodology is developed, the topic of data preparation is

addressed. The data preparation methodology is developed to ensure that the

knowledge extracting potential of the used data is maximised. As depicted in

Figure 3.1, this methodology is based on the use of ship performance data to

detect outliers and impute missing values by employing the novel combination

of the MICE and kNN ML algorithms. Then, the FD part of the framework

is developed, which aims at the early detection of developing faults. The FD

is facilitated by using shop tests and ProMon data in a novel combination of

regression-based EB models with residuals-based EWMA control charts. The

last part of the framework includes the development of a diagnostics methodology.

This methodology is developed to identify the root-cause of detect faults, as shown

Section 5.5. As seen in Figure 3.1, the diagnostics are based on aggregated results

from the FD part, operating manuals and data banks. This novel methodology

also requires a fault mapping process to create a diagnostic BN, which is used to

calculate the probabilities of mapped faults, based on evidence of faults from the

FD part.

3.4 Critical Equipment Selection

The critical equipment selection is the first part of the proposed framework. This

first part of the proposed novel framework includes a novel methodology for the

identification and selection of critical ship equipment. This is a process that

takes into account both criticality indices and cost-related information. The aim

is to create a methodology that allows for the systematic identification of critical
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Figure 3.1: Layout of the novel work, depicting the different methodologies, the
required inputs and the derived outputs of each part.

components of ship systems. The developed methodology, not only examines

components with respect to their importance on the mission of the system they

belong to (criticality), but also with respect to the financial implications of their

failure on the ship operation.

3.4.1 Overview

The critical equipment methodology initiates with a data collection effort, which

aims at fulfilling the methodology’s data requirements, as seen in Figure 3.2. The

collected data include information regarding the maintenance schedule (i.e. main-

tenance interval) of the examined vessel and the repair costs of the machinery.

These data were selected for collection after examining the data requirements of

similar research efforts, such as in Lazakis, Turan, and Aksu (2010a) and Lazakis,

Raptodimos, and Varelas (2018b).
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After the required data are collected, the ship system analysis step initiates.

This step allows the examination of the ship in terms of its systems, sub-systems

and components, a process which is based on first-principle knowledge. This is

also the stepping-stone for the FTA, as the structure of the Fault Tree (FT) is

based on the analysis of the ship systems.

The FT is quantified by using the Mean Time Between Failures (MTBF)

of each of the components. The MTBFs are extracted from the maintenance

schedule of the vessel, and they represent one of the most common ways for

quantifying FTs. Once the FT is quantified the analysis initiates by selecting

a calculation method, as further explained in Section 4.4.4.3. As a result, the

Birnbaum IM (IB), Criticality IM (ICR) and Fussel-Vesely IM(IFV ) for each

component are obtained. The IMs for the depicted components are analysed,

and the most appropriate are selected for the next step of the methodology.

Then, the cut-sets of the FT are obtained and the events in the lower order

cut-sets (i.e. the smallest sets of events that can lead into failures) are identi-

fied for the next step of the analysis. The selected IMs for these components,

together with the associated repair costs are clustered using the k-means algo-

rithm. The use of the k-means clustering algorithm allows for the creation of a

visually descriptive model that categorises the data based on their criticality and

cost. Therefore, to avoid added complexity and to maintain the model’s practical

application, the clustering algorithm is limited to three dimensions. This allows

the identification of the critical components, which belong to the cluster of com-

ponents that have the highest values for the selected IMs and the highest repair

costs. The critical components selection methodology of the proposed framework

is demonstrated in Figure 3.2 and are presented in detail in the following sections.
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Figure 3.2: Layout of the critical components selection methodology of the pro-
posed framework

3.4.2 Data Collection

Data collection is the initiating step of the critical equipment methodology. This

step ensures that the required data to quantify the FT (i.e. MTBF) are available.

To this end, the entire maintenance schedule and maintenance plan of the studied

vessel is obtained. Moreover, the repair costs for the various ship components are

collected, as required for the identification of the cluster of critical components.

Such data are usually available from ship owners and ship operators.

3.4.3 Ship Systems Analysis

Following the data collection, the ship systems analysis step takes place. This

step allows the examination of the ship in terms of its systems, sub-systems

and components. Also, the identified systems, sub-systems and components are
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organised in a table format, which helps with the determination of the structure

of the Fault Tree (FT). This is a very common starting step when performing

FTA in engineering systems, as discussed in Bertsche (2007). As also mentioned

above, the ship systems analysis is the stepping-stone for the creation of the

structure of the FT.

3.4.4 Fault Tree Analysis (FTA)

FTA is a well-established and flexible RA tool that can effectively model com-

plex systems, as described in Section 3.5.1.5. The use of FTA in the developed

methodology serves two functionalities. First, the qualitative part of the FTA

(i.e. the FT structure) gives a clear depiction of the reliability dependencies be-

tween different systems and sub-systems of the ship. Then, the calculation of the

different IMs (i.e. the quantitative part) allows for the numerical assessment of

the criticality of the various components. In summary, the FTA aims to perform

a pictorial and quantified representation of how sub-systems (intermediate-gates)

and components (basic-events) can lead into the loss of the reliability of the

broader systems they influence (top-gate) (Verma, Ajit, and Karanki 2010).

3.4.4.1 Examined Gates and Events

As mentioned above, the structure of the FT was derived as a result of the

ship system analysis, as demonstrated in Figure 3.3. The identified systems and

sub-systems are represented in the FTA using gates, and the components are de-

scribed as basic events. The gates used to connect the systems with their respec-

tive sub-systems and components were selected based on the different functional

dependencies (Verma, Ajit, and Karanki 2010).

One of the most common gates is the “OR” gate, which requires a minimum

of two inputs. When used, the outcome of the gate occurs if any of the inputs

occur. In other words, the “OR” gate is represented as a Boolean union. In
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engineering systems, “OR” gates are used to represents systems and sub-systems

which are prone to failures and have limited fail-safe capabilities. Assuming an

examined output A with a probability of occurrence P (A), connect through an

“OR” gate with n inputs A1, A2...An, then P (A) is obtained by Equation 3.2

(Relex Software Corporation 2003).

P (A) = P (A1) · · ·P (An) (3.1)

Another very common gate is the “AND” gate, which also requires a minimum

of two inputs. If only one input is given to an “AND” gate, the gate’s logic is

negated as there are not enough inputs for comparison and the output of the

gate is conditional only to the single input. In other words, single-input “AND”

gates behave like “OR” gates. The outcome of an “AND” gate occurs only if all

the inputs occur at the same time. In terms of Boolean logic, “AND” gates are

represented as sets intersection. In engineering systems, “AND” gates are used

to model systems and sub-systems which are less prone to single-point failures,
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commonly by having redundant components. Assuming a different examined

output A with a probability of occurrence P (A), connect through an “AND”

gate with different n inputs A1, A2...An, then P (A) is obtained by Equation 3.1

(Relex Software Corporation 2003).

P (A) = 1− [1− P (A1)][1− P (A2)] · · · [1− P (An)] (3.2)

The “VOTING” gate represents another widely used way of modelling sys-

tems and sub-systems with partial fail-safe capabilities. In engineering systems,

“VOTING” gates are used to model systems which are tolerant to single-point

failures but are not as robust as the systems modelled with “AND” gates. The

output of a “VOTING” gate occurs when a predefined number, J , of the Y

inputs occur. When J = 1 the “VOTING” gate behaves like an “OR” gate,

whereas when J = Y the “VOTING” gates acts like an “AND gate”. Assuming

an examined output A with a probability of occurrence P (A), connect through

a “VOTING” gate requiring two of the three inputs A1, A2, A3, then P (A) is

obtained by Equation 3.3 (Relex Software Corporation 2003).

P (A) = P (A1 ∩ A2) ∪ P (A1 ∩ A3) ∪ P (A2 ∩ A3) (3.3)

The identified components are represented as “BASIC” events. These events

are located at the lowest level of the FT structure, and they represent software,

hardware and component failures. “BASIC” events are the most common way

of representing component-based failures and have the widest applicability (PTC

Windchill 2019). The “BASIC” events are quantified by using failure statistics

for the respective components. This information is supplied prior to the initiation

of the analysis, and they are in the form of MTBFs, failure rates or probabilities

of failures (Relex Software Corporation 2003). During this work, the events are

quantified using the MTBFs as they are obtained from the collected maintenance
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schedule. More information on the available gates and events is available in

Appendix A.

3.4.4.2 Qualitative Analysis

As soon as the structure of the FT is specified and the “BASIC” events are

populated with their MTBFs, the main analysis initiates. The analysis can be

performed both qualitatively and quantitatively, depending on the application

and the availability of data.

Quantitative analysis is based on Minimal Cut-Sets (MCS), which are ob-

tained by leveraging gate logic (Ruilin and Lowndes 2010). A cut-set is a set of

“BASIC” events, the occurrence of which can cause the top-event to occur. The

use of cut-sets allows for the identification of weak points in large and complex

systems and is based solely on gate logic. In other words, cut-sets can order and

prioritise the examination of different events. A basic event that belongs in a

cut-set can provide information regarding single point of failures. An MCS is the

smallest set of events which must co-occur for the top-event to occur (Lazakis,

Raptodimos, and Varelas 2018b). In general, MCS can be used as a starting

point for the analysis of the examined system. Assuming a rudimentary FT with

a single “OR” gate and inputs the events A1, A2, A3, then three MCS are obtain.

The first is C1 which includes event A1, the second one is C2 which includes event

A2 and the third one is C3 which includes event A3. Lastly, cut-sets can be or-

ganised in terms of their order, indicating the number of events in each cut-set.

In general, cut-sets of lower order are more important and which also reflects to

the individual events in them (Shafiee, Enjema, and Kolios 2019).

3.4.4.3 Quantitative Analysis

Quantitative analysis can be performed when all the “BASIC” events are pop-

ulated with their respective failure statistics. In quantitative analysis, there are
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different calculation methods available. Each calculation method influences how

the probabilities of the different gates are calculated.

The first option is the use of simulations by using Monte Carlo models. Simu-

lation models are intuitively easy to understand, but they can be time-consuming

(Relex Software Corporation 2003). Simulations generate random numbers as-

sociated with each event and then determine whether that event has occurred

or not. Based on that, the status of the top-event is calculated. Simulation

models are robust in their performance; however, they are time-consuming, and

their performance may be comparable with less expensive models (PTC Windchill

2019).

Another approach for performing the reliability calculations of different gates

is the cut-set summation method. The reliability calculations for each gate are

obtained by adding the probabilities of the cut-sets of that gate (Relex Software

Corporation 2003). In more detail, the probabilities of each cut-set are calculated

as the product of the respective events. This approach is fast and accurate;

however, its use is only recommended in FTs with low failure rates quantifying

the “BASIC” events (Lazakis 2011).

Another calculation approach based on cut-sets information is the Esary-

Proschan (EP) method. This method performs the reliability calculations for

the top-event by defining an upper and lower reliability limit (Relex Software

Corporation 2003). Since the EP method is based on the cut-sets, it has reduced

computational times. Nonetheless, the application of this method is based on

the assumption that each failure is the result of a gradual degradation (PTC

Windchill 2019). As a result, failures affected by external influences cannot be

modelled. Also, this method requires that every “BASIC” event appears at least

in one MCS (Lazakis 2011).

Another calculation method that is based on cut-sets is the cross-product

approach, which is very similar to the cut-set summation method (Relex Software
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Corporation 2003). This approach performs the reliability calculations by using

the summation and product terms of the cut-set probabilities of the FT(Lazakis

2011). Since the cross-product is based on cut-sets, it has reduced computational

time. However, it is based on the assumption that the simultaneous occurrence

of multiple cut-sets is not probable (PTC Windchill 2019).

Finally, the exact calculation method is examined, which is purely based on

gate-logic and does not use cut-sets information (Relex Software Corporation

2003). This approach performs the reliability calculations in all the gates on

the FT. The main advantage of this approach is its accuracy due to the limited

assumptions; however, this comes at the expense of the required computational

time (PTC Windchill 2019).

From the presented quantitative calculation methods, the latter is applied.

The main benefit of the exact calculation method is the minimal assumptions it

uses and its accurate performance. Also, since this work did not have strict time

constraints, the increased computational time of this method was not a concern.

3.4.4.4 Importance Measures (IMs)

The reliability IMs represent another useful functionality of FTA. Unlike the

quantitative calculation methods, which examine the reliability of the top and

intermediate gates, and the MCS which group different events based on the influ-

ence to the top-gate, the IMs examine each of the event individually. The main

goal of the IMs is to identify the events whose improvement will have the most

positive influence on the top-event and the intermediate gates. In other words,

IMs can identify the critical components by ranking the different “BASIC” events

in the FTA. In the present thesis, the IB, ICR and IFV are examined.

The IB was first introduced in 1969 as a method of numerically ranking the

importance of a system’s components and remains as one of the most widely used

IMs. The IB measures the probability of a component (event) being reliable from
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the failure of its system. It must be clarified that the Birnbaum IM of a component

is not a function of the reliability of the components. The IB measures the rate

of change of the probability of the top-gate as a function of the availability of the

examined “BASIC” event. The result of the Birnbaum IM is a ranking of events

which can be used to decide which end-events need to be improved (Lazakis,

Turan, and Aksu 2010b). Assuming a top-gate X and a ”BASIC” event A, the

IB for A can be calculated as the difference of the probability of X given that

the event A did occur minus the probability of X given that the event A did not

occur (Equation 3.4).

IB(A) = P (X|A)− P (X|A′
) (3.4)

The criticality IM is another method for ranking the events of an FT. The goal

of the ranking process is to assess how much the failure of an event influences the

gate they participate in. The ICR examines the global probability of the top-gate

occurring due to the occurrence of the considered event. In other words, the ICR

calculates the probability that an examined event is critical for the entire system

and will occur if the top-gate occurs. Assuming a top-gate X and a “BASIC”

event A, the ICR for A can be calculated according to Equation 3.5.

ICR(A) = P (X|A)− P (X|A′
)
P (A)

P (X)
(3.5)

As can be seen from Equation 3.4 and Equation 3.5, the criticality IM is a modified

version of the Birnbaum IM, as it is adjusted for the relative probability of the

basic event A. This is done to reflect the possibility of occurrence of event A and

at the same time how possible it is to improve it. Consequently, in contradiction

with the Birnbaum IM, the criticality IM focuses only on the link between the

event A and its gate. It is not necessarily tied with the failure of the top event,

even though the occurrence of A may affect it (Lazakis, Turan, and Aksu 2010b).
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The last importance measure that is considered is the IFV , which measures

the overall percent contribution of cut sets containing an event of interest to

the top-gate failure. The event under consideration is not the most critical one;

however, it can cause the entire system to fail. The Fussell-Vesely IM is expressed

as the ratio of the probability of occurrence of any cut sets containing the event

A and the probability of the top-gate. The IFV is calculated based on Equation

3.6

IFV
i (A) =

1− ∩m
j=1[1− P (Mj(t))]

1−Rs[r(t)]
(3.6)

where:

mi: the number of MCS containing i

∩mj=1: a MCS

Mj(t): the jth MCS of those containing i, at a time t

Rs: the system reliability

r(t): an end event occurring at time t

As briefly mentioned in Section 4.4.1, the selected clustering algorithm is re-

stricted to three dimensions, to preserve the model’s practical application, visual

interpretability, while controlling the model’s complexity. Therefore, from the

calculated IMs, two of them are selected and combined with the repair costs for

the clustering analysis. The use of two IMs provides a more detailed understand-

ing of the criticality of each component, compared with the use of only one IM.

The selection of the IMs is based on the theoretical background of each IM. A

disadvantage of the IFV , compared with the other ones, is its usage of MCS.

Even though MCS offer good qualitative results, they do not take into account

the failure statistics of each component. On the contrary, the IB and ICR are not

based on MCS and instead take into account the failure statistics of each event.

Even though this process may increase the required computational time, it can

have a positive influence on the accuracy of the analysis. As a result, from the

presented IMs, the IB and ICR propagate to the clustering analysis.
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3.4.5 Clustering Analysis

The clustering analysis is the final step of the critical equipment selection. As

mentioned above, the critical equipment are identified based on cut-sets, the

selected IMs and the repair costs for the components modelled in the FTA. To

control the complexity of the clustering analysis, while maintaining the visual

interpretability, the analysis is restricted to three dimensions. In that way, the

selected components are items with both high criticality and high repair costs.

The failure of these items would cost the most, both in terms of their replacement

and the resulting unavailability of the system.

The clustering analysis uses three inputs, two of the calculated IMs and the

repair costs for the components. The resulting three-dimensional plot is used to

identify the cluster whose centroid has the biggest distance from the origin of

the axes. The components in that cluster are identified as critical. This visual

representation of the critical components creates a model that is easy to interpret.

For that purpose, the k-means clustering algorithm is used, which is one of

the most popular unsupervised ML algorithms. The k-means algorithm has the

widest applicability of all the clustering algorithms due to its performance and

simplicity (Yu et al. 2018). This clustering algorithm is optimum when the data

are divided into distinct groups. This assumption is present in this methodology

since the components can be divided based on their ranging criticality (Dikis

and Lazakis 2019). Lastly, the k-means algorithm was selected as it is the most

common option when dealing with non-oddly shaped data (Müller and Guido

2015).

K-means groups similar points together by looking for a fixed number of k

clusters in the data. This algorithm iterative assigns the data into the best suited

of the k clusters (Wu 2012). The aim of k-means is to minimise the intra-cluster

variance of the data, as seen in Equation 3.7, where k is the number of clusters,
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µi is the mean values of the ith cluster and xj is the jth data-point.

J =
k∑

i=1

n∑
j=1

‖xj − µi‖2 (3.7)

To initiate this algorithm, the number of clusters, k, is selected. Then, k points

are randomly selected to act as µi for the first iteration of the algorithm. All

the data-points are then assigned to a cluster, based on their proximity to the

clusters’ centroids (Equations 3.7). Lastly, the new centroids of the k clusters are

calculated according to Equation 3.8, where Si is the set of all the points assigned

to the iith cluster.

µi =
1

|Si|
∑
xi∈Si

xi (3.8)

This process is repeated, until there is no change in the data-points assigned in

each clusters in consecutive iterations of the algorithm.

3.5 Data Preparation

Once the critical equipment selection methodology is developed, the data prepa-

ration methodology of the proposed framework follows. This methodology is

developed independently and as explained in Section 5.3, is tested on a different

case study with different data. This part of the proposed novel framework, in-

cludes the development of a novel hybrid imputation method based on data-driven

efforts and FP knowledge, as discussed in Section 3.8.1. The data preparation

methodology ensures that the data used in the subsequent FD and diagnostic

tasks are pre-treated and have reached their full knowledge-extracting potential.

This mainly includes the imputation of any missing data, together with the nec-

essary pre-and post-imputation steps. In the maritime industry, and especially

regarding PdM, missing data can cause many problems. Notably, missing data
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can lead to inaccurate maintenance scheduling, which can cause machinery fail-

ures and possibly accidents. Data collection sensors, in shipboard systems, are

prone to generating missing values due to a plethora of factors. Such factors can

include the loss of calibration of the sensors due to external influences, sensor

anomalies, the loss of sensors’ connectivity, and the difficulty to replace failed

sensors due to environmental complications. Consequently, the preparation of

data and the imputation of the missing values is of paramount importance in

PdM frameworks.

3.5.1 Overview

The data preparation methodology is initiated with the data collection step,

which differs from the previous methodology. As with the critical equipment

methodology, the data collection step ensures that the required data for the de-

velopment of the methodology are available. The next step is the preliminary

analysis of the gathered data. This step includes four processes which are de-

signed to prepare the collected data for imputation. These four processes include

the form handling, synchronisation, filtering and correlation examination of the

data. Once the preliminary analysis is completed, the imputation process, which

is the main focus of the data preparation methodology, takes place. The imputa-

tion process includes the imputation of missing values through the use of the novel

hybrid method based on kNN and MICE. Moreover, the imputation performance

of the novel hybrid method is assessed through the use of the Mean Absolute

Percentage Error (MAPE), Absolute Percentage Error (APE) and standard de-

viation (σ) and compared with the kNN and MICE imputation methods. Once

the novel hybrid imputation method is established, the operational analysis step

concludes the data preparation methodology. The data preparation methodology

of the proposed framework is demonstrated in Figure 3.4.
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Figure 3.4: Layout of the data preparation methodology of the proposed frame-
work, demonstrating the main steps and process.

3.5.2 Data Collection

The data collection step encompasses the necessary actions to collect the data

used in the methodology. For that purpose, a commercial Data Acquisition

(DAQ) system installed on board a merchant navy vessel was used. The data

collected during the data preparation methodology differ from the similar step of

the critical equipment selection methodology. In detail and as seen in Figure 3.1,
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instead of collecting repair costs and MTBFs, ship system performance data were

gathered. The collected data are used to test the performance of the developed

novel hybrid imputation tool. Lastly, performance data are collected, as simi-

lar research efforts are tested on performance data from their respective systems

(Martinez-Luengo, Shafiee, and Kolios 2019).

3.5.3 Preliminary Analysis

The preliminary analysis is the step that follows the data collection step. The

preliminary analysis serves the essential task of preparing the collected data for

the imputation process. The four processes of this step are the form handling,

synchronisation, filtering and correlation examination of the collected data and

variables.

As seen in Figure 3.4, the first process is the form handling of the data. Form

handling is a simple starting point for the preliminary analysis, yet its importance

is paramount. This process ensures that the collected data are in tabulated form,

ready for the next step of the methodology. Form handling is a process that is

often the starting point of data-driven research efforts that contain unstructured

data, collected from various sources.

As soon as the collected data are in a clear and tabulated format, the data

synchronisation process takes place. Data synchronisation is needed as the differ-

ent variables from the collected data may not be recorded uniformly. This may

occur for two main reasons: a) the data collection sensors may not have the same

sampling rate, and b) not all data collection sensors begin recording at the same

time. Consequently, the synchronisation of the data warrants the consistency and

the harmonisation of the data over time. Having all the variables synchronised

over time can be very useful, especially when using similarity-based imputation

approaches, or when trying to correlate variables for FD and diagnostic purposes.

For the synchronisation of a variable, a timestamp is selected, and then, the times-
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tamps before and after the selected one are also used. The synchronisation of the

data is based on linear interpolation and is performed according to Equation 3.9

y2 =
(x2 − x1)(y3 − y1)

(x3 − x1)
+ y1 (3.9)

where:

x1: the time before the timestamp of the synchronisation

x2: the timestamp of the synchronisation

x3: the time after the timestamp of the synchronisation

y1: the variable before the timestamp of the synchronisation

y2: the variable at the timestamp of the synchronisation

y3: the variable after the timestamp of the synchronisation

The next process of the preliminary analysis step is the data filtering. This

process is used to identify the points that need to be imputed, by determining if a

sensor reading is missing, or it has an illogical value. The assessment of whether

a recorded value is logical, or not, depends on the engineering knowledge of the

variable being measured. As discussed in Section 3.6.2, domain knowledge is used

to identify points that do not conform to an expected behaviour. The working

process of the data filtering phase is shown in Algorithm 1.

Algorithm 1 Data filtering working process

Require: the upper limit (UL) and lower limit(LL) for each variable (v) in the
collected data
for v in variables do

for i in v do
if i is NaN then

Flag i as a missing reading
else if i > UL or i < LL then

Flag i as illogical
end if

end for
end for
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Lastly, the final process of the preliminary analysis is the examination of the

correlation of the variables. This is a common step in most data-driven research

efforts, as it helps with the examination of the data. The identification of the

correlation between the variables from the collected data helps with imparting FP

knowledge during the imputation process. The correlation between the collected

variables was examined by using the Pearson correlation coefficient, as seen in

Han, Kamber, and Pei (2012), and cross-referencing the results with FP domain

knowledge. The Pearson correlation coefficient ranges between -1 (perfect nega-

tive linear correlation) and 1 (perfect positive linear correlation) while 0 denotes

no linear correlation.

3.5.4 Imputation Process

Following the completion of the four processes of the preliminary analysis step, the

imputation of the missing data takes place. This step includes the implementation

of the novel hybrid imputation method. Specifically, the novelty includes the

comparison of the state-of-the-art MICE against the widely used kNN imputation

algorithms and the combination of these two methods in a single, new, imputation

method. The comparison of the hybrid, kNN and MICE imputation algorithms

include their application to the points identified during the data filtering process

of the preliminary analysis. Finally, their imputation performance is assessed by

using the APE, MAPE and σ error metrics.

The kNN algorithm is a very popular ML tool with widespread applicabil-

ity in imputation applications. The popularity of this tool is due to its easy

learning curve and ability to produce accurate results (Zhang 2012; Huang et al.

2017; Zhang et al. 2018). As also presented in Section 3.6.2.2, kNN does not

require an explicit training phase, which increases its overall efficiency. Lastly,

kNN is very easy to integrate into hybrid models. Similarly, the MICE impu-

tation algorithm is also a very useful tool in predicting values in multivariate
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datasets, albeit it is relatively new compared to the more traditional imputation

approaches. Nonetheless, the MICE algorithm has the advantage of incorporat-

ing the benefits of MI with regression-based imputation. As also discussed in

Section 3.6.2.2, MICE can easily be incorporated into hybrid models. The novel

hybrid imputation method that is proposed combines the benefits of the kNN

and MICE imputation algorithms while avoiding their respective shortcomings.

In more detail, the benefits of the hybrid imputation method are listed below:

1. Provides realistic imputations due to the use of the kNN algorithm

2. Provides easy incorporation of FP knowledge due to the use of the kNN

algorithm

3. Is based on the widely accepted kNN algorithm

4. Takes advantage of the non-artificial replication of values offered by MICE

5. Takes advantage of the flexible implementation of MICE

MICE is a flexible and state-of-the-art imputation algorithm that works by

fitting a series of regression models in the data (Shah et al. 2014). As previously

mentioned, MICE is used to assess the effectiveness of the hybrid imputation

method. This approach is considered as an implementation of MI which uses

linear regressions to help in the estimate of the missing values. For the rest of

the section, assume two random variables Y and K with observed (Yobs, Kobs)

and missing points (Ymiss, Kmiss). Also, assume a set of complete variables Z

with Zobs and Zmiss corresponding to the observed and missing points of Y and

K. MICE uses a Bayesian approach to calculate the missing points by updating

the prior distributions of the random variables. The steps for the application of

MICE are the following:

1. Impute all the missing points of Y and K with the averages of the Yobs and

Kobs (Equation 3.11 and 3.10). In addition, nY obs and nKobs represent the
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total number of observations for the Y and K variables respectively.

Ŷmiss,i =

∑
Yobs,i

nY obs

(3.10)

K̂miss,i =

∑
Kobs,i

nKobs

(3.11)

The initial estimates (Ŷmiss,i, K̂miss,i) are placeholders and are only used to

initiate the process.

2. Set the placeholders of one of the variables (e.g. Ŷmiss,i) back to missing.

3. Fit a linear regression model (Equation 3.12) between the observed points

of the target variable (e.g. Yobs) and the appropriate independent variables

(either all, or a subset of Z).

Ŷmiss,i = θTZ (3.12)

In equation 3.12, Z is a column vector of the independent variables and θ is

row vector of the regression parameters. The Ŷmiss,i parameter represents

the imputation estimates produced by the regression model, to replace the

original placeholders.

4. Find the row vector θ by minimising the mean squared error (Equation

3.13).

MSE =
1

nY obs

nY obs∑
i=1

(Yobs,i − Ŷobs,i)2 (3.13)

The row vector θ can be calculated based on two different approaches. If the

dataset is large, then an optimasation approach can be used (e.g. gradient

decent) to fit the regression model and find the row vector θ. However, due

to the size of the dataset used, an algebraic method was employed to fit

the regression model and find the row vector θ. Generally, if the dataset
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is relatively small algebraic methods can be used, as they offer greater

simplicity. As the size of the dataset increases, optimisation approaches

are used as they offer a significant reduction in the required computational

time.

5. Having found θ, use Equation 3.12 to impute the missing points of the Y

variable (Ymiss).

6. Repeat steps 2, 3, 4, and 5 for every variable with missing points in the

dataset

7. Reaching step 6 is one cycle. The entire process is repeated for a predeter-

mined number of cycles (usually 10 repetitions is an empirically accepted

number).

To summarise, MICE uses linear regression in an iterative manner. The process

initiates by using mean (vertical) imputation. Every variable with missing values

is used in a regression model to update the initial mean imputation.

Apart from MICE, kNN is also used individually to examine the effectiveness

of the proposed novel hybrid imputation method. In kNN, k represents a user-

defined number of instances (i.e. nearest neighbours) that are considered for the

hot-deck imputation. This is a non-parametric and lazy algorithm as it does not

take into account the distribution of the data in the examined vectors, and it

has no explicit training phase, as presented in Zhang and Zhou (2007). As with

any hot-deck approach, kNN is based on the similarity between features, which

is assessed by the Minkowski distance (Equation 3.14).

D = (
n∑

i=1

| xi − yi |p)1/p (3.14)

In equation 3.14 the p hyperparameter is set to 2, which transforms D to the

Euclidean distance. The Euclidean distance is the most common and widely used
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distance metric, with implementations in many different applications (Groenen

and Jajuga 2001; Dikis and Lazakis 2019). Similarly, xi and yi represent the

examined instances. In addition to the distance metric, a weight is also assigned to

each possible donor based on its distance. By doing so, closer neighbouring points

(i.e. similar and most recent operating conditions) have a more considerable

influence over the instance to be predicted. This is a vital feature as it allows

taking into account the actual operation of the system under examination. The

number for the k hyperparameter is not standardised. It depends on the field of

application, and its selection lies with the researcher. In general, a small k will

restrict the algorithm to a small region of the data, and as a result, it will produce

results with low bias and high variance. A very small value for k (e.g. k = 1)

can create models sensitive to outliers, noise and anomalous data, as the model is

overfitted and not generalised enough for use in out-of-sample data. On the other

hand, a high k (e.g. k = 30) can create overgeneralised models, as it averages more

possible donors, generating results with low variance and an increased bias.

Lastly, the hybrid approach integrating kNN and MICE is applied and as-

sessed against the previously discussed algorithms. The kNN component of the

hybrid approach is based on FP knowledge. This approach initiates with the cor-

relation analysis, where the systemic correlations between the collected variables

are determined. In the hybrid approach, each vector in the dataset is examined in

turn. When an instance with a missing value is identified, the kNN imputation

algorithm is used. However, kNN looks for possible donors only in correlated

variables; as determined during the correlation analysis. This has the following

two benefits:

• The imputation process is expedited as only certain vectors of the dataset

are examined.

• The predictive power of the model is improved as only correlated variables
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are used to predict missing points.

This process is repeated until no further changes occur to the data set. In this

case, the suspension of the kNN algorithm signifies its inability to impute any

more missing points, as points from the correlated vectors may be missing si-

multaneously. Therefore, the remaining missing points are predicted using the

aforementioned MICE approach. The structure of the proposed novel hybrid

methodology is demonstrated in Algorithm 2 (Cheliotis et al. 2019).

Algorithm 2 Hybrid novel imputation method using a combination of kNN and
MICE

Require: filtered dataset x of dimension m× n
modify flag ← 1
while modify flag == 1 do
modify flag ← 0 {Check x was updated in prev. loop}
for i = 1, 2 . . . n do
temp column← ithcolumnofx
corr columns← columns correlated with temp column
for j = 1, 2 . . . n do

if jth element of temp column does not exist then
if jth element of corr columns exists then
jth element of temp column← kNN imputation
modify flag ← 1

end if
ith column of x← temp column

end if
end for

end for
end while
x← MICE imputation
return x

For the comparison of the mentioned imputation tools the APE (Equation

3.15), MAPE (Equation 3.16) and σ (Equation 3.17) are used. The aim is to

choose the imputation approach with minimum MAPE and σ. The MAPE is

selected as it is a popular and easy to understand metric for the evaluation

of the model’s imputation performance (Byrne 2012). Moreover, MAPE has
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widespread applicability for predictive models and is commonly used in impu-

tation (Martinez-Luengo, Shafiee, and Kolios 2019; Cheliotis et al. 2019). The

MAPE is expressed as the percentage difference between an actual and forecast

value. The standard deviation of the error is used to evaluate the sparsity of

the errors and to determine the possibility of introducing outliers within the pre-

dictions. In the following equations, xi and x̂i represent the actual value of the

variable and the predicted value, respectively.

APE =| xi − x̂i
xi

| (3.15)

MAPE =
100

n

n∑
i=1

APE (3.16)

σ =

√∑
(APEi −MAPE)2

n
(3.17)

In summary, three different approaches are implemented, compared and as-

sessed. The first one is MICE, which is applied to the entire dataset until no

missing points were left. The second approach that is tried is the kNN. This

approach is applied to the entire dataset, without taking into consideration any

systemic correlations, until all the missing points in the dataset are imputed.

Lastly, the hybrid approach is tested, which combines kNN with FP analysis and

MICE. The kNN algorithm is deployed by taking into account systemic inter-

dependencies between variables. Then, the MICE algorithm is used to impute

any missing points that the kNN cannot predict. These three approaches are

verified by testing them in the collected data. A sample of the data are removed

and the approaches are evaluated in their ability to predict the removed values,

simulating the imputation of missing data, as detailed in Section 5.3.2.
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3.5.5 Operational Analysis

The data preparation methodology concludes with the operational analysis. This

step includes the correction of the variables to account for ambient conditions

and ensures that the data are prepared for the following FD and diagnostic tasks.

To account for the ambient conditions, various sources are taken into considera-

tion, including international standards and the manufacturers’ recommendations.

Accounting for ambient conditions is a common step in many applications, as it

ensures that the affected variables are adjusted accordingly.

3.6 Fault Detection (FD)

After the preparation of the data, the FD methodology of the framework fol-

lows. The FD methodology includes the novel combination of data checking

steps, with regression-based EB modelling and the use of EWMA control charts

for FD in ship systems. Moreover, the types of the different predictor variables

are investigated, as mentioned in Section 3.8.1. The FD methodology ensures

that developing faults are captured in a timely manner. In more detail, this

methodology examines the detection of faults that result from gradual degrada-

tion of components. Such faults can include fouling, corrosion and wear-and-tear

of components. Faults that are caused by a sudden shock or breakage are not

considered. By developing the proposed methodology, the ability to capture pre-

viously unseen anomalies based on an EB model is enhanced. Besides, there is

also the advantage of examining how signals evolve in real-time, based on con-

tributing factors and uncoupled from operating conditions, due to the use of an

EB approach. Also, the use of the EWMA control charts allows for the accurate

detection of developing faults. Similarly, the superior performance of EWMA

control charts in filtering-out noise compared to traditional control charts (e.g.

Hotelling’s T2 statistic), as seen in Cheliotis, Lazakis, and Theotokatos (2020),
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is also beneficial. For clarification, noise is considered as systematic unwanted

disturbances to the signal occurring from the system’s interference with the en-

vironment. This is contrary to faults resulting from degradation which have

measurable and observable trends (Guo et al. 2018).

3.6.1 Overview

As with the previous methodologies of the framework, the FD methodology ini-

tiates with its data collection step, as seen in Figure 3.5. As discussed in Section

5.4, the FD methodology is developed individually, and it uses different data

from the previous methodologies. This step gathers data from multiple sources,

including operating companies and data banks, to enable the development of this

methodology. Once the data are collected, the data checking step follows, a step

which prepares the collected data for subsequent FD steps. The data checking

steps includes the application of the DBSCAN algorithm for outlier detection,

and data filtering for the isolation of non-operational data points. Then, the

model development step follows, which is based on historic ProMon data and

shop tests and yields the developed EB model. During this step, the feasibility

of different regression techniques and predictor variables is assessed in terms of

their suitability for an EB model. Once this model is established, it is used for

a comparison between the recorded and the expected values of a target variable,

generating the residuals. In detail, once the predictor variables from the incoming

data are checked, they are used as input to the EB model to produce the expected

values of the target variables. These values are compared with the target vari-

able from the incoming data, as demonstrated by the dotted lines of Figure 3.5.

Thereupon, the obtained residuals are assessed in an EWMA control chart for

FD.
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Figure 3.5: Layout of the fault detection methodology of the proposed framework
presenting the main steps and process.

3.6.2 Data Collection

The data collection is the first of the FD methodology. The output of the data

collection step is the creation of a database with historical information, which

is used for both model development and methodology verification purposes. As

also seen in Figure 3.5, data collection includes the gathering of three different

types of information. Initially, the shop tests of the ship’s main engine are col-

lected. The shop tests are machinery tests and represent a form of benchmark
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and commissioning test. Even though shop tests are widely used in the mar-

itime industry, their role in condition monitoring and PdM is limited. This is

caused, as the actual operating conditions of the ship change throughout its life

and differ from the conditions during the shop tests. Nonetheless, shop tests can

be used to obtain initial estimates on limits of operation. Then, a DAQ system

installed on board a merchant vessel is employed to gather historic ProMon data,

The same system is also used to collect incoming ProMon data which are used

to simulate different faults to evaluate the capabilities of the FD and diagnostic

methodologies. Since the historic and incoming ProMon data are obtained from

the same DAQ system, both of these datasets have the same sampling charac-

teristics. In addition, any required pre-processing is the same between the two

datasets. Typically, DAQ signals for FD tasks of engineering systems include

power output, rotational speed, injection and scavenging pressure and EG, cool-

ing medium, and LO temperature. Due to the nature of the FD methodology

and unlike the data preparation methodology, the selected data must meet spe-

cific criteria regarding their diagnostic powers. In detail, developing faults must

be able to manifest through the behaviour of the collected variables. Lastly, the

data frequency usually ranges from one sample per second to one sample per five

minutes, depending on the application.

3.6.3 Data Checking

Data checking is the next step following data collection and is concerned with

ensuring that the collected datasets reach their full knowledge-extracting poten-

tial. Data checking, including the removal of outliers, is a standard step in most

data-driven research efforts (Martinez-Guerra and Luis Mata-Machuca 2013; Sari

2013; Sayed-Mouchaweh 2018). The output of the data checking step is the cre-

ation of a checked dataset, ready for model development. There are four processes

that are included in this step.
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The first process is a data formatting step, where the units of the collected

data are checked, and their form is altered if needed. By doing so, it is ensured

that the data are tabulated and placed in a suitable format for the next steps

of the methodology. This process is very similar to the preliminary analysis,

discussed in Section 4.4.3.

In the next process, the DBSCAN algorithm is used to identify and remove

outliers and transient states of operation, which are out of scope in the present

work. As mentioned in Section 3.6.2, outliers are considered as sparse data points

with significantly different values from the rest of the instances of the same vari-

ables. They are often caused by sensor errors and other instrumental faults and

are not part of a fault indicative pattern. For instance, negative EG temperatures

and power output above an engine’s rated power are considered as outliers. Thus,

outliers can be considered as data “anomalies”, and if they are not removed, they

can have a negative impact on the developed models.

DBSCAN algorithm is very effective in detecting outliers and does not rely on

domain knowledge, which offers several advantages. It is a density-based spatial

algorithm that works by examining each point in the dataset and identifying

dense areas of points (clusters). The DBSCAN algorithm requires the use of the

user-defined minP hyperparameter. The minP defines the minimum number of

points that are required to form a cluster. The minP is simple to specify as it

is a function of the dimensionality of the dataset. Larger values are preferable,

with an exclusive global lower bound of 3 (Schubert et al. 2017). Lastly, the value

minP should be close to the number of dimensions of the dataset (Chen and Li

2011; Ester et al. 1996). As suggested in the literature, the minP hyperparameter

is selected by combining the above restrictions with domain knowledge (Thang

and Kim 2011; Schubert et al. 2017). Also, the ε hyperparameter is required,

which defines the maximum distance between points for them to be considered

to be in the same cluster. If ε is too small, the majority of the data points will be
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clustered as noise, whereas if it is too big, all the data points will be in the same

cluster. In general, smaller values are preferred. An approach for calculating the

ε hyperparameter is by considering the rate of change of the distance of each point

to the nearest neighbour (k-nearest neighbour graph), as shown in the relevant

literature (Rahmah and Sitanggang 2016; Gaonkar and Sawant 2013). However,

this approach is not usable when using space data (i.e. time-series with constant

sampling rate) evenly. As a result, the value of ε is obtained after iterative

attempts.

Given these hyperparameters, the data are categorised in three groups. Core

points are considered as data points with more than minP points within a radius

of ε. Border points are defined as data points with fewer than minP points

within a radius of ε. The remaining points are considered as outliers or noise.

Moreover, a point q is directly density-reachable from a point p, if p is a core point

and q is within a radius ε from p. Assuming another point q1 which is directly

density-reachable from point q only, it is said that points p and q1 are indirectly

density-reachable (Thang and Kim 2011; Chen and Li 2011; Çelik, Dadaşer-Çelik,

and Dokuz 2011). The working process of the DBSCAN algorithm, as used in

this methodology is shown below:

1. Find all core points

2. Assign all points that are directly density-reachable and indirectly density-

reachable in the same cluster

3. Mark any unassigned points as outliers.

Following the removal of the transients and outliers, the data filtering process

takes place. Specifically, the data are filtered to retain the points that represent

operational periods. Since the data collection took place over an extended period,

some points could have been recorded when the ship and its main engine were

not operational. The data filtering is performed by using a value-based approach.
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Therefore, this process removes non-operational points while retaining the rest.

The last process of the data checking step is the correction of the data to ref-

erence conditions, according to the ISO 3046-1:2002 international standards and

the original engine’s manufacturer recommendations, as also discussed in Section

4.4.5.

3.6.4 Model Development

The model development step follows the data checking step and uses as input

the checked data, as seen in Figure 3.6. The aim is the development of an EB

model that can predict the ideal (expected) behaviour of a selected variable of

a system based on appropriately selected inputs. EB models are often used in

for FD tasks, as they can model the expected behaviour of a variable subject to

changing operating conditions. As discussed in Section 3.6.3.1, EB models are also

ideal in the absence of faulty labelled data, as they can detect developing faults

by defining a range of normal operation. The output of this step is the developed

EB model which is in turn used for the FD step. It should be noted that the

model development step includes iterations for the identification of the optimal

predictor variables. Throughout this step, the used data are divided for training,

validation and testing, based on empirical rules and common practices. The

training sample of the data is used to fit the different models. It is said amongst

practitioners, that the models “see” and “learns” for the training data. The

validation sample of the data is then used to tune the models’ hyperparameters.

The validation set is withheld from the models during the training phase, but it

can still affect the models’ performance, albeit in a more limited manner than

training. Ultimately, the appropriate model is selected based on its performance

on the validation set. Lastly, the test sample of the data is used to evaluate

the overall performance of the selected model, after they are trained, and their

hyperparameters are tuned. The test sample is also withheld from the models
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during both training and validation.

k-Fold	cross
validation
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Incoming
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Testing	score

Examined	models

Development Deployment

Figure 3.6: Working process of the model development step, demonstrating the
different process, including the selection of the different predictor variables.

3.6.4.1 Training and Validation

The training and validation process is used to fit and fine-tune the different models

and is structured around the use of historic ProMon data collected during the

ship’s operation. The aim is to use a training set to fit the different models, and a

validation set to fine-tune and ultimately select the best performing model, prior

to the evaluation of its generalisation capabilities in a test set. This process uses

training and validation datasets, which are a portion of the historic ProMon data.

Finally, it must be stressed, that the recorded ProMon data represent “healthy”

ship operation, as established by the ship’s operators.
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During the EB model development, four regression models are generated in-

cluding Ordinary Least Squares (OLS) single linear regression, multiple linear

ridge regression, OLS single polynomial regression and Multiple polynomial ridge

regression. As discussed in Section 3.6.3.1, regression-based EB models do not

depend on extremely large training datasets and offer greater flexibility in impart-

ing domain knowledge, as they are not black-box approaches. This is achieved

by the selection of the inputs and by observing and influencing the weight each

input has (i.e. the coefficients) on the output. These models are used to produce

an estimated output for a selected target variable by relying on the use of ap-

propriately selected inputs (predictor variables). The examined EB models are

trained and validated, using the R2 metric, for both the shop tests and the his-

torical data. Linear and polynomial regression models are developed to examine

the best type of fit, given the acquired data. There are several advantages for

each type of model; however, the selection is application-specific and a function

of the available data, as discussed by Müller and Guido (2015). Single-input

OLS regression models, both linear and polynomial, are produced as a basis for

comparison with the more accurate ridge regression models, as seen through the

work of Lepore et al. (2017), Erto et al. (2015), Naik, Bisoi, and Dash (2018),

and Assaf, Tsionas, and Tasiopoulos (2019). Lastly, the specific inputs (i.e. the

used predictor variables) for the EB models are investigated separately.

In general, the developed linear regression models have a form as shown in

Equation 3.18, where ŷ represents an estimate for the target variable, w0 to wp

are the regression coefficients, b is the axis intercept and x0 to xp represent the p

different predictors (inputs).

ŷ = w0x0 + . . . wpxp + b =

p∑
i=0

wixi + b (3.18)

On the other hand, the developed polynomial regression models have a form as
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shown below. This equation represents the general form of kth order polynomial

based on two predictors (x1,x2) and including the interaction terms between the

predictors (Bowerman, O’Connell, and Murphree 2015; Olive 2005).

ŷ = w0x1 + w1x2 + w2x1x2 + . . . wpx
k
1 + wpx

k
2 + b (3.19)

During the training phase, sets of known predictors (x0 to xp) and target vari-

ables (y) are used as input in either the linear or polynomial regression models to

obtain ŷ. Then, the objective functions in either Equation 3.20 (OLS regression)

or Equation 3.21 (ridge regression) are minimised. As a result, the estimates for

the coefficients (w) and intercept (b) are obtained.

When OLS regression is used, the coefficients and intercept are estimated

by minimising the sum of the squared difference between the predicted and the

actual values of the target variable (residuals). The minimisation of this objective

function is enabled since both y and ŷ are available during the training phase.

OLS : ‖ŷ − y‖22 (3.20)

When ridge regression is used, the coefficients and intercept are estimated by

minimising an objective function similar to the OLS. In addition to the sum of the

squared residuals, an additional term is included. The additional term is called

L2 regularisation and limits the magnitude of the coefficients. L2 regularisation

explicitly restricts the model to avoid overfitting. The limiting capability of the

regularisation term is attributed by the user-specified hyperparameter α. This

hyperparameter limits the influence of the predictors to the target, given that

α is appropriately selected. When α is equal to zero, the objective function

becomes OLS, and on the other hand, if α is very large, the model will underfit

the data. During this research effort, k-fold cross-validation was used to estimate

the optimal α value (Olive 2005; Bowerman, O’Connell, and Murphree 2015;
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Bishop 2006).

Ridge : ‖ŷ − y‖22 + α‖w‖22 with α ∈ [0,∞) (3.21)

K-fold cross-validation is a process which iteratively trains and validates the

examined models by using all the possible combinations of training and validating

sets. The working principle of this process is demonstrated in Figure 3.7, which

is a common example with k = 3 folds. In essence, the k-fold cross validation is

Training	and	Validation

Fold	1
(Training)

Fold	2
(Training)

Fold	3
(Validation)

Fold	1
(Training)

Fold	2
(Validation)

Fold	3
(Training)

Fold	1
(Validation)

Fold	2
(Training)

Fold	3
(Training)

k-folds

Iteration	1

Iteration	2

Iteration	3

Testing

Data

Figure 3.7: Training and validation process using k-fold cross validation, with
k = 3 folds.

used to evaluate the performance of the trained models and select the best per-

forming approach for testing. This process trains and validates as many models

as there are different combinations of model hyperparameters. The different hy-

perparameters included in this work are parameters of the learning methods (e.g.

α regularization term), and the different inputs used (e.g. predictor variables).

The k-fold cross-validation partitions the data in k different folds. Each fold is

set aside once, and the examined models are trained on the remaining k−1 folds.

Then, the fold withheld from training is used, to obtain the validation score the
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trained models. This sequence is repeated until every fold is used for validation

once. For each model, the mean validation score is calculated, and the model

with the highest mean score is selected. Finally, the identified model is trained

with all the training and validation data before its generalisation capabilities are

assessed in the test set.

Moreover, the general working process that is followed as part of the devel-

opment of the EB model is shown in Algorithm 3. Algorithm 3 requires as input

the predictor (X) and target (Y ) variables. Also, it requires the number of folds

(k) for the k-fold cross-validation and the size of the test set. Lastly, the set

of the considered values for the model’s hyperparameters is given. Algorithm 3

represents the generalised process for the development of the supervised model,

including the optimisation of the α hyperparameter.

Algorithm 3 Model development and hyperparameter optimisation

Require: X, Y , k and a list of hyperparameters hi for i between 1 and n
Xpolynomial ← derive the polynomial features of X
Augment X with Xpolynomial

XTrainV alidate, XTest, YTrainV alidate, YTest ← Split and normalise X and Y based
on TrainingSet
Best score← 0
Best parameter ← 0
for i = 1 . . . n do

Model ← model with hi hyperparameter
Scores ← k-fold cross-val. scores using XTrainV alidate, YTrainV alidate, Model
Score ← average of Scores for the iit iteration
if Score > Best score then
Best score← Score
Best parameter ← hi

end if
end for
Model ← model with Best parameter
return Model
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3.6.4.2 Testing

As mentioned above, four different types of regression models are used, namely

OLS single linear regression, multiple linear ridge regression, OLS single polyno-

mial regression and multiple polynomial ridge regression. Also, during the train-

ing and validation, the value of α, the different predictor variables are assessed in

the required cased. After the k-fold cross-validation, the mean validation score

for each examined model is obtained. The validation performance is assessed

using the R2 score, and the model with the highest R2 is selected for testing.

The model selected for testing is fully defined in terms of the regression type,

the predictor variables and the value of α. That model is then retrained using the

training and validation datasets, and its testing performance is evaluated using

the R2 score. Once the testing performance of the selected model is analysed the

model is finalised (Figure 3.6).

3.6.5 Fault Detection

Following the selection of the ideal regression model and the identification of the

optimum predictor variables, the FD step ensues. The output of the EB model

is a prediction (for the EB) of a specifically selected variable of an engineering

system. To facilitate fault detection, the aim is to monitor specific variables

(y) and gauge any deviations from their expected value (ŷ), as produced by the

EB model. Moreover, any deviations are assessed as a function of the ship’s

operational profile. As shown in Figure 3.5, the fault detection process has two

inputs. It uses incoming, previously unseen data and the EB estimate from the

model for the monitored variable.

For each instance of the incoming database, the residuals (r) between the
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expected value and the recorded value is calculated according to Equation 3.22.

rk = ŷk − yk for k = 1, . . . N (3.22)

Analysing the residuals is an effective method for detecting faults in engineering

systems, as the comparison between the actual and the expected behaviour can

uncover developing faults at an early stage. The residuals quantify the deviation

of a variable from its expected value, given an operating profile (Harrou et al.

2015; Awad, AlHamaydeh, and Faris 2018; Holmes and Mergen 2000).

After the residuals are calculated, the EWMA control chart is constructed,

which allows for the creation of visual models that enable the accurate detection

of developing faults in their early stages. In Equation 3.23, z refers to the EWMA

statistic, which is calculated for all of the k instances. For the particular case of

z0, the mean value of the variable in the incoming data is used. The smoothing

effect of the EWMA is attributed to the user-defined smoothing parameter, λ.

The smoothing parameter is defined according to common practices. Lastly, the

residual at each instance (rk) is used.

zk = λrk + (1− λ)zk−1

for k = 1

and λ ∈ [0, 1)

(3.23)

A crucial component of the EWMA fault detection is the Upper Control Limit

(UCL) and Lower Control Limit (LCL). These two limits provide the basis for

the detection of faults, as any point above the UCL or below the LCL signifies

faults. These limits are calculated according to the following Equations 3.24 and

3.25.

UCL = µ0 + Lσ

√
λ

2− λ
[1− (1− λ)2i] (3.24)
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LCL = µ0 − Lσ
√

λ

2− λ
[1− (1− λ)2i] (3.25)

In these equations, µ0 is the mean value of the variable in the incoming data and σ

is the standard deviation. Lastly, L represents the width of the control chart, and

its value is assigned based on the application, discussed in more detail in Section

6.4. In essence, the UCL and LCL form the envelope of normal operations for the

selected variable. As the choice of L affects this envelope, it must be appropriately

selected so that it can correctly classify normal and faulty operating points. If

the recorded data represent “healthy” operating points, the resulting UCL and

LCL envelope must fully encase all the data points. On the other hand, if a

known fault exists in the data, the ULC or LCL must be exceed at the point of

the failure. If the resulting envelope does not exhibit this behaviour, the value

of L must be altered. Consequently, assigning L, its value can be an iterative

process.

3.7 Diagnostics

The diagnosis of faults is the concluding step of the methodology. The aim is

to propagate the evidence of developing faults in a diagnostic network that al-

lows the determination of the root cause of the detected fault. Consequently,

any diagnostic efforts must utilise to some degree, a fault detection methodology.

Moreover, the diagnostic methodology can be used to summarise the condition

of the ship effectively. This part of the framework focuses on the creation of a

knowledge-based diagnostic network which is integrated with the FD method-

ology described in the previous section. In more detail, the integration of the

knowledge-based diagnostic network with the ML-driven EB-based FD model is

novel. The use of the knowledge-based diagnostic offers several advantages com-

pared to the physics-based and data-driven alternatives. As discussed in Section
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3.6.4, knowledge-based diagnostics offer accurate performance without requiring

lengthy set-up times or a large amount of data for training. Besides, they are

modular and easier to expand in multiple engineering systems.

3.7.1 Overview

The diagnostics methodology commences with the collection of the appropriate

data, as seen in Figure 3.8. During this part of the framework, operating manu-

als from the ME’s manufacturer are collected together with failure statistics from

reliability data banks. Also, ProMon data collected during the FD methodology

are used in this part of the framework too. This is due to the lack of additional

required data, as explained further in Section 5.4. Once the required data are

gathered, the fault mapping, which is of paramount importance to this diag-

nostic methodology, is developed. Fault mapping is a process that pairs certain

faults with the variables they can affect. Moreover, the behaviour of the affected

variables is also described. Then, the results from the FD step, mainly from

the EWMA control chart, are aggregated. The objective of the aggregation is to

classify the condition of the described system in its appropriate operational state.

The FD and diagnostic steps are closely developed, as the trigger for the diagnos-

tic tasks is a function of the output of the FD step. The next process is the set-up

of the diagnostic network. In this work, a BN is employed due to the advantages

detailed in Section 3.6.4. The BN integrates the results of the FD with the iden-

tification of the root cause of the detected faults. The structure of the network is

specified by combining the results of the fault-mapping process with engineering

knowledge of the examined system. At this stage, the failure statistics collected

from data banks are used to quantify part of the BN. Once the structure of the

BN is specified, the BN is used to combine the results from FD, with inputs from

the data banks to pinpoint the root-causes of specific faults. Also, the final BN

can be used to summarise the condition of a ship, quantifying the probabilities
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of different faults and summarising the condition of each cylinder.

Input	from	FD

4.	Diagnostics

Data	Collection Operating
Manuals

Data	Banks

FD	Result
Aggregation

Fault	Mapping

Network	Set-up

Evidence
Propagation

Figure 3.8: Layout of the diagnostic methodology of the proposed framework
showing the different steps and demonstrating the input from the FD methodol-
ogy

3.7.2 Data Collection

The data collection step of the diagnostic methodology supplements the data col-

lected in the previous parts of the framework. Due to limited access to additional

sources for the required ProMon data, the data gathered in the FD methodology

are also used for the diagnostics. These data are supplemented with the operating

manuals of a ME of a merchant ship together with detailed failure statistics from

data banks. The operating manuals are collected from ship operators and include

details regarding the baseline operation, maintenance and troubleshooting of the

ship’s ME. To that end, these manuals include alarm limits for various variables

at different operating points and include detailed accounts of functional depen-

dencies between different systems. However, the alarm limits in the operating
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manuals are single points and represent hard limits aimed at preventing very se-

vere equipment damages. The overall aim of the FD and diagnostic methodology

is to detect ship degradation or the development of a fault before the alarm limits

are reached. Data banks, on the other hand, offers failure statistic for a plethora

of shipboard equipment. They can include the failure rates of all the possible

failure modes for shipboard systems, sub-systems and components.

3.7.3 Diagnostic Set-Up

Diagnostic set-up is the next phase of the methodology and follows the data

collection. There are three processes that form the diagnostic set-up step. These

processes include the mapping of faults, the aggregation of the results from the

FD and finally, the network set-up. The goal of this phase is the ability to

use real-time information to produce accurate probabilities, of different faults,

occurring in the selected system.

3.7.3.1 Fault Mapping

Fault mapping is a crucial task as it identifies the potential faults that can be

diagnosed in a selected system, together with the variables required for their di-

agnosis. Therefore, this step examines the diagnostic potential of the ProMon

data gathered during the FD. This step essentially justifies the variables that are

monitored in the EWMA control chart. Alongside with the required variables,

the acceptable range of operation and the behaviour of each variable are specified.

Lastly, any additional tests required for the diagnosis of specific faults are spec-

ified in this phase. Fault mapping is based on domain knowledge and by taking

into consideration the operating manuals of the selected systems, provided after

personal communications with the ship operator.
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3.7.3.2 FD Results Aggregation

The first examined process of the diagnostic set-up step is the aggregation of the

results from the FD step. The goal of this process is to classify the condition of

a system to its appropriate operation state (i.e. normal, degraded, failed) based

on the behaviour of an appropriate variable. The behaviour of the variable is

assessed in the FD step and mainly during the EWMA control chart.

As discussed in Section 4.5.5, the EWMA makes use of the L hyperparame-

ter, which forms the envelope of normal operation. Any data points positioned

outside of that envelope represent a fault. Moreover, Equations 3.26 and 3.27

are used to define the UCLdeg and LCLdeg which define the envelope of degraded

operation. Similarly, any points between the failed and degraded envelopes rep-

resent degraded operations. The degraded limits use the Ld hypeparameter, such

that L > Ld. Laslty, any other points represent normal operations.

UCLdeg = µ0 + Ldσ

√
λ

2− λ
[1− (1− λ)2i] (3.26)

LCLdeg = µ0 − Ldσ

√
λ

2− λ
[1− (1− λ)2i] (3.27)

3.7.3.3 Network Set-up

Once the pairing between monitored variables and corresponding faults is com-

pleted, the structure of the diagnostic knowledge-based BN is determined. As

discussed in Section 3.6.4, knowledge-based diagnostic models have the advan-

tage of mimicking the reasoning of a specialist, while avoiding the restrictions

of black-box approaches. Similarly, diagnostic BNs have high modularity and

are easier to set-up and interpret, compared to the alternative knowledge-based

approaches. The identified faults are represented in the primary and secondary

fault nodes of the network. Depending on the application, the states of these
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nodes can vary between Normal and Abnormal, Working and Failed, etc. The

variables required for the monitoring are used in the observable nodes. These vari-

ables are selected so that the primary and secondary faults can manifest through

the behaviour of these variables. Also depending on the application, the states

of the observable nodes can vary between Normal, Degraded, and Failed. Any

additional tests required for the investigation of a fault are inserted in the test

nodes. The states of the tests nodes can vary between Pass and Fail, Normal

and Abnormal, etc. Lastly, any other nodes concerned with the inner-workings

of the diagnostic tool can be inserted in the control nodes section (Figure 3.9).

The states of the control nodes can very between True and False, Pass and Fail,

etc.

Var	1 Var	2

Node	1

Observable	Nodes

Control	Nodes

Fault	1 Fault	2 Primary	Faults

Fault	4 Fault	5 Fault	6 Secondary	Faults

Test	1 Test	2 Test	3 Test	Nodes

Figure 3.9: General diagnostic network structure

BNs represent a joint probability distribution of a set of random variables.

They consist of a qualitative part and a quantitative part. The qualitative part is

defined by a probabilistic Directed Acyclic Graphical (DAG) model, where each

variable is depicted as a node. The qualitative part also includes directed links

between the nodes to define a causal relationship. Similarly, the quantitative
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part is defined by the conditional probability distribution in the Conditional

Probability Table (CPT) of each node (variable) (Ruggeri, Faltin, and Kenett

2007). The observable nodes of Figure 3.9 are the parent nodes of the control

nodes. The control nodes can also be called the child nodes of the observable

nodes. Moreover, leaf nodes are defined as nodes with parent nodes and no

child nodes (e.g. test nodes), whereas root nodes have child nodes but no parent

nodes (e.g. observable nodes) (Pearl 1985). BNs are based on Baye’s theorem,

with the goal of calculating the posterior conditional probability distribution of a

fault given some observable evidence, as shown in Equation 3.28 (Langseth and

Portinale 2007; Horný 2014; Cai, Huang, and Xie 2017b).

P (A|B) =
P (B|A)P (A)

P (B)
⇐⇒

P (fault|evidence) =
P (evidence|fault)P (fault)

P (evidence)

(3.28)

Assuming a set (U) of n random variables U = (X1, . . . Xj, . . . Xn), a BN with

n-nodes can be constructed. Moreover, Xj represents the jth variable. The BN

for the n variables can be represented by Equation 3.29, where pa(Xj) denotes

all the parent nodes of Xj.

P (X1, X2, . . . Xj, . . . Xn) =
n∏

j=1

P (Xj|pa(Xj)) (3.29)

For example, the case of a simple network is considered in Figure 3.10.

X1X2

X3

Figure 3.10: sample of a basic BN
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In that network, we assume that each variable (X1, X2, X3) has only two states,

True (t) and False (f). Therefore, Equation 3.29 takes the form of Equation

3.30, by using the chain rule of probabilities and a conditional independence

assumption. The conditional independence assumption dictates that a child node

(Xj) is statistically dependent only to its parents (pa(Xj)).

P (X1, X2, X3) = P (X1)P (X2)P (X3|X1, X2) (3.30)

Therefore, the probability P (X3 = t) is represented in Equation 3.31, which is

also referred to as the prior probability of X3.

P (X3 = t) = P (X3 = t,X1, X2) = P (X1)P (X2)P (X3 = t|X1, X2) (3.31)

In addition, assuming that X3 is observed to be at its True state, then the prob-

ability of X2 occurring (P (X2 = t|X3 = t)) can be found by using Equation

3.32.

P (X2 = t|X3 = t) = P (X2 = t,X1|X3 = t) =

P (X3 = t|X2 = t,X1)P (X2 = t)

P (X3 = t)
P (X1)

(3.32)

Equation 3.32 is also referred to as the posterior probability, and the first part

of the product is due to Equation 3.28, while the second term i due to the joint

probability distribution (Pearl 1988).

For this study, two types of evidence were used, namely Hard Evidence (HE)

and Virtual Evidence (VE). HE represent the traditional type of evidence used

in BNs. They are used to dictate the value or state of a variable. For example,

HE shows that a variable Xj has a value xj, with mathematical certainty, or

that the variable X1 = True. Under the premise of this thesis, HE was used

for strict diagnostic tasks, to obtain the probabilities of examined faults based

on monitored variables. However, HE can introduce troublesome assumptions,
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especially when the value of a variable is very close to a state’s decision boundary.

In other words, when the value of Xj is such that the variable could be in either of

its states. To counter this issue, and to extend the capabilities of the diagnostic

network, VE was used. VE represent evidence with uncertainty and was used

to also obtain the fault profiles of the examined faults (Bilmes 2004; Korb and

Nicholson 2010; Mrad et al. 2012). For instance, X1 = 0.7 True is considered as

VE and represents that X1 is almost in its true state. For instance, VE can be

used to describe the deteriorating state of a variable.

The fully defined diagnostic BN can be used for two main applications. Ini-

tially, it is used to carry-out “pure” diagnostic tasks, following the detection of a

developed fault. Once the aggregated results from FD indicate the presence of a

fault, HEs are used in the appropriate nodes (observable and tests nodes). As a

result, the probabilities of different faults are investigated until the root cause of

the detected fault is identified. In addition, the BN can be used to summarise the

condition of the modelled system by characterising the condition of the observable

nodes and assessing the probabilities of different faults developing. This process

is also performed aggregating results from the FD and by using Equations 3.26

and 3.27. In this application, the BN is used proactively, as it does not relly on

a detected fault, rather than the overall condition of the observable nodes.

3.8 Chapter Summary

This chapter presented the proposed framework, together with its novel method-

ological components. This includes the novel combination of FTA with k-means

clustering for the identification of critical components, the novel hybrid imputa-

tion method based on MICE and kNN, the novel EB and EWMA-based FD model

and the novel combination of an ML-driven FD with a BN-based diagnostic net-

work. The framework targets the concept of maritime predictive maintenance in
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a complete and holistic way while generating novelty in all of its methodological

components. The framework initiates with the critical components identification

methodology, which is based on the used of FTA and the k-means clustering al-

gorithm. Then, the data preparation methodology is presented, which aims at

controlling the impact of missing values in the data. As a result, an imputation

methodology is developed by combining the benefits of kNN and MICE impu-

tation algorithms. Subsequently, the FD methodology is presented, which aims

at developing models for the detection of developing faults in ship systems. The

FD methodology includes the application of the DBSCAN clustering algorithm

for the identification of outliers. Afterwards, an EB model is developed by ex-

amining the use of different regression models and assessing different predictor

variables and training datasets. Once the EB model is developed, it is used to

obtain the residuals, which are finally analysed in an EWMA control chart for FD

tasks. Finally, the diagnostics methodology is developed. This methodology uses

as input the evidence of developing faults, using the FD methodology, and tries

to identify their root cause. This diagnostic task is performed in a BN, which

is developed by combing the results of a fault mapping process with engineering

knowledge. In conclusion, this chapter established the theoretical background

of the proposed framework, which is required prior to the presentation of the

different case studies.

Chapter 3 130 Michail F Cheliotis



Chapter 4

Case Studies

4.1 Chapter Overview

Following the presentation of the novel maritime predictive maintenance frame-

work, this chapter aims at presenting the case studies used. The case studies

give a description of the systems and data used for the application of each part

of the framework and they present the necessary inputs. As a result, the case

studies describe the technical details of the application of each methodological

component.

In total, three different vessels were used for the case studies. The use of three

different vessels for the different parts of the framework is justified based on three

main reasons. Firstly, the different parts of the framework are developed inde-

pendently. Secondly, each part of the framework has different data requirements

and therefore, different sources of data and information are used. Lastly, it is not

practical to find a single source that can fulfil the data requirements of all the

parts of the framework.

Despite the three different case studies, the developed methodologies can be

evaluated as a single framework in a unique case study. To that end, it should

be clarified that the evaluation of the methodologies in a single case study does
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not negate their verification, as achieved by the individual case studies. Instead,

the single case study can act supplementary to showcase further the developed

methodologies. However, for this to be achieved, all the data requirements, dis-

cussed in the following sections, must be met by a single vessel. Initially, the

maintenance schedule and repair costs would need to be collected. From that

point, the ship systems analysis would take place to identify the main systems of

the ship. This step would be performed with assistance from the vessel’s operator.

Then, the remaining steps of the critical equipment selection would be performed

to identify the critical equipment. Subsequently, parameters from the critical

equipment would be collected. Once they are identified and collected, the data

preparation methodology would be deployed to identify and impute missing data.

As soon as the missing values are treated, the FD and diagnostic methodologies

would be applied. However, the fault mapping process and the diagnostic network

would be a function of the available data and the identified critical equipment.

Initially, the case study applied for the selection of the critical equipment is

given. Afterwards, the case study for the data preparation methodology is pre-

sented. Lastly, the case study for the FD and diagnostic methodologies is shown.

Even though the FD and diagnostic methodologies are developed separately, they

are applied in the same system of the same vessel, due to limitations of the re-

quired data. Despite this, both methodologies focus on different goals and they

are evaluated independently.

4.2 Critical Equipment Selection

This section describes the case study in which the critical equipment selection

methodology is applied. In more detail, this section gives general information on

the type of ship used, the collection of the required data, the analysis of the ship

systems and the resulting FT structure This methodology was applied in a case
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study of a Liquefied Natural Gas (LNG) carrier. The LNG carrier was selected

for the case study due to the availability of the required data, obtained by the

ship’s operating company.

4.2.1 Data Collection

The collection of the required data is the first step of the critical equipment

selection methodology. As seen in Figure 3.2, the methodology requires a main-

tenance schedule and a list of repair costs, both representing the same equipment

and components of the LNG carrier. The maintenance schedule is used to obtain

the numerical inputs for the FTA, in the form of MTBF for different compo-

nents. On the other hand, the repair costs are used to identify the cluster of

critical components.

The vessel studied in this part of the framework is an electric powered LNG

carrier, referred to as vessel “A”. Vessel “A” is a 162000 m3 carrier with a con-

tinuous deck, sunken stern, bulbous bow, transom stern, single rudder and single

screw propeller. The cargo area has a double deck, double hull and double bot-

tom with cofferdams between each cargo tank. It also has four cargo tanks with

the GTT MARK III membrane system directly supported on the inner hull. Ves-

sel “A” has four Main Generating Engines (MGEs) in two different generating

sets, providing propulsive and ship service power. Two main propulsion motors

connected via a single output gearbox drive the propeller. The main features of

vessel “A” are shown in the following table.

For the maintenance schedule, the PMS of the examined LNG carrier, supplied

by the ship’s operator, was used. The PMS details the different tasks that need

to be performed, while identifying various parameters, requirements and con-

strains. In detail, each task from the collected PMS included the following: task

identification information (number, code, creator), involved components, tasks

description, type of action (inspection, testing, maintenance), calendar related
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Table 4.1: Main features of vessel “A”

Characteristic Value Unit
LBP 275 m
LOA 289 m
BMLD 45.6 m
DMLD 33.2 m
TDESIGN 11.2 m
VSERV ICE 19.5 knots
Capacity 163700 m3

DWT 81000 tons
2 MGEs - 12V50DF 11700@514 kW, rpm
2 MGEs - 8L50DF 7800@514 kW, rpm

information (start date, finish date, task frequency, last performed date), re-

sponsibility related information (responsible department and position) and other

identifiers. After careful examination only the following information were kept

for each task: involved component, type of action, task description and details

and frequency of task. The selection was based on the usefulness of the informa-

tion and its applicability for the quantification of the Fault Tree. Table 4.2 is a

sample of the used PMS, providing information for some of the components of

the examined LNG carrier. The information obtained from the PMS is found in

Appendix C.
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Table 4.2: Sample of the PMS of vessel “A”

Involved

Compo-

nent

Type of

Action

Task Description and Details Frequency Unit

Main En-

gine No.1

High Tem-

perature

Air Cooler

Maintenance 1)Clean the charge air cool-

ers. 2)Perform the pressure test.

3)Look for corrosion. 4)Measure

the pressure difference over the

charge air cooler before and after

cleaning.

4000 Hours

Main Gen-

erator

Engine

No.1 High

Temper-

ature

Circulat-

ing Pump

Maintenance 1)Carry out external inspec-

tion (check for vibration, bear-

ing temperature, performance of

the pump and obvious defects).

2)Grease bearings as per maker’s

intervals. 3)Check that holding-

down and end-cover bolts are

correctly tightened. 4)Check

starter/control box. 5)Check cou-

pling wear/backlash. 6)Clean

suction filter if necessary and pos-

sible.

3 Months

Continued on next page
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Table 4.2 – Continued from previous page

Involved

Compo-

nent

Type of

Action

Task Description and Details Frequency Unit

Main

Engine

No.1 Lu-

bricating

Oil Puri-

fier Feed

Pump

Maintenance 1)Carry out external inspec-

tion (check for vibration, bear-

ing temperature, performance of

the pump and obvious defects).

2)Grease bearings as per maker’s

intervals. 3)Check that holding-

down and end-cover bolts are

correctly tightened. 4)Check

starter/control box. 5)Check cou-

pling wear/backlash. 6)Clean

suction filter if necessary and pos-

sible.

3 Months

Main Gen-

erator

Engine

No.1 Con-

necting

Rod and

Big End

Bearing

Overhauling 1)Inspect big end bearing,

one/bank 2)Dismantle the big

end bearing 3)Inspect the mating

surfaces, if defects are found

open all big end bearings and

renew bearing shells if necessary

4)Check small end bearing and

piston pin, one/bank. If defects

are found, open all and renew if

needed.

12000 Hours
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After this preliminary screening of the PMS, the frequency of the different

tasks is formatted in different units. Since the PMS represents the frequency

of the tasks either in hours, months or years, a common unit must be selected.

Consequently, all the frequencies are converted to operational hours, to ensure

uniformity and compatibility with the FTA (PTC Windchill 2019).

Apart from the PMS, cost information regarding various ship components are

obtained. This information includes the repair costs of the components presented

in the PMS. A sample table containing the used repair costs is shown in Table

4.3. The table with all the costs used is located in Appendix B.

Table 4.3: Table of repair costs of components shown in Table 4.2

Component Repair Cost (US Dollars)
Main Engine No.1 High Temper-
ature Air Cooler

15000

Main Engine No.1 High Temper-
ature Circulating Pump

5000

Main Engine No.1 Lub Oil Puri-
fier Feed Pump

2500

Main Engine No.1 Connecting
Rod and Big End Bearing

2500

4.2.2 Ship System Analysis

The ship system analysis follows the data collection and its main aim is the

examination of the case study vessel in terms of its systems, sub-systems and

components. Moreover, the ship system analysis assists with the specification of

the structure of the FTA.

After examining the specifications and engineering drawings of vessel “A”, the

main systems of the vessel are identified. Moreover, the systems were identified

with supplementary meetings and interactions with the superintendent engineer

of vessel “A”. Figure 4.1 shows the main identified systems, as identified in five
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main groups. The essential machinery group includes the MGEs, the steering

gear and the steam generation system. The fuel group includes the Fuel Oil

(FO) transfer system, the FO purification system, the FO feed system for the

MGEs and the gas fuel system. Also, the Lubricating Oil (LO) group covers

the LO services system and the LO purification system. Moreover, the cooling

group describes the central cooling system for the MGEs and the auxiliary cooling

system. Finally, the various group encompasses the inter gas generation system,

the LNG cargo equipment and the bilge, fire and ballast system.

Central	MGE
Cooling	System

Auxiliary	Cooling
System

LO	Purification
System

LO	Services
System

MGE	FO	System

FO	Purification
System

Fuel	Oil	(FO)
Transfer	System

Bilge,	Fire	and
Ballast	System

Inert	Gas
Generation	(IGG)

System

Cargo	Equipment

Steam	Generation
System

Main	Generating
Engine	(MGE)

	System

Steering	Gear

Vessel	A	Systems

Essential
Machinery Fuel Lubricating	Oil

(LO) Cooling Various

Gas	Fuel	System

Figure 4.1: Identified systems for the studied vessel

4.2.2.1 Essential Machinery

The essential machinery group includes the most essential machinery of vessel

“A”. The MGE system includes the two 12V50DF and the two 8L50DF engines.

These engines are Dual Fuel (DF) and as such they can burn both FO and gas

fuel. These engines are used to generate the required electric output to cover all
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the electric loads of the vessel. The steering gear covers the equipment needed

to steer the vessel along predefined routes. Lastly, the steam generation system

includes the two auxiliary boilers that are responsible for generating the steam

required for the various heaters and heat-exchangers.

4.2.2.2 Fuel

The fuel group includes the various oil and gas systems within the vessel. The

FO transfer system includes various pumps which ensure that the different FO

tanks are properly supplied. The FO purification system comprises of different

pumps and purifiers that clean (purify) the FO onboard prior to its use in the

various consumers. The MGE FO system consists of several pumps tasked with

delivering purified FO to the MGEs. Lastly, the gas fuel system uses various

different components (pumps, compressors, heaters) to deliver gas from the ship’s

cargo tanks to the DF MGEs for consumption.

4.2.2.3 Lubricating Oil (LO)

The LO group includes two main systems, the LO services and the LO purification

systems. The former system includes different pumps tasked with delivering LO to

various components in the ship, including the MGEs and the reduction gearboxes.

The latter system includes pumps and purifiers which clean (purify) the LO prior

to consumption.

4.2.2.4 Cooling

The cooling group includes the central cooling system for the MGEs and the

auxiliary cooling system. The central MGE cooling system has Sea Water (SW)

cooling pumps which transfer cooling SW to the central coolers. From the central

coolers the cooled Fresh Water (FW) is circulated in the required components.

The auxiliary cooling systems SW cooling pumps which transfer cooling water to
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auxiliary coolers. From there, the cooled FW is circulated to the various locations

through different circulating and booster pumps.

4.2.2.5 Various

The last identified group includes the remaining systems of the vessel. One of

these systems is the Inert Gas Generation (IGG) system, which creates and dis-

tributes inert gas to void and cargo spaces. This is done for safety reasons to

mitigate the risks of fire and explosions. Another system listed in this group is

the cargo equipment of the ship. The cargo equipment includes various pumps,

heaters and compressors. The main aim of this system is to handle the loading

and unloading of the cargo, as well as maintain it during passages. The last

identified system is the bilge, fire and ballast system, which has several differ-

ent pumps (ballast, bilge and fire), firefighting equipment and a ballast water

treatment facility.

4.2.3 Fault Tree Analysis

To perform a FTA, the structure of the FT first needs to be identified. This

process is based on the results of the ship systems analysis, and is a necessary

step in order to obtain the required reliability IMs.

As identified in the previous section, the five main machinery groups are the

essential machinery, fuel system, LO system, cooling system and the various re-

maining systems. In the following figures, each gate examines the failure of the

modelled system. For the purpose of this work, a failure is considered the loss of

a system’s function, similarly with the failures considered in Lazakis, Turan, and

Aksu (2010a). All the gates, apart from the top event, do not state this explicitly

for simplicity reasons. Moreover, transfer gates (denoted as blue triangles) are

used to group together extensive parts of the FT. These gates are used for rep-

resentation reasons only and are not related with any calculations. The gates at
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the lower levels, and the events are identified by taking into account the results

of the ship systems analysis and input from the operating company of vessel “A”,

creating the ideal FT structure. However, certain basic events may be omitted

in case of failure data limitations.

The resulting FT structure is shown in Figure 4.2, where the failure of vessel

“A” is modelled as an “OR” gate (top event). In this structure, the systems

in essential machinery group are modelled together under the common “essential

machinery” gate and form an input to the top event. Also, the remaining systems

(i.e. fuel, LO, cooling and various) are modelled under the common “auxiliary”

gate and form the final input to the top event. The systems in the essential

machinery group are modelled under the same gate, as they represent systems

that are crucial for the operation of the vessel. Similarly, the auxiliary gate

represents a larger set of systems that collectively have a high criticality for the

vessel. Finally, the top event is modelled as an “OR” gate, as a loss of function

in either the essential machinery, or the auxiliary gate will cause the ship to loss

its functionality.

Figure 4.2: FTA representation of the systems of vessel “A”

Figure 4.3 shows the structure of the FT which models the essential machinery

group. The failure of the essential machinery group is represented with an “OR”

gate, having as input the steering gear, generating engines and steam generation
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systems. The “OR” gate is selected as a failure in any of the three input systems

will cause the failure of the essential machinery group and will cascade, triggering

the “ship failure” gate.

Figure 4.3: FTA representation of the essential machinery group

Similarly, Figure 4.4 shows the FT structure for the fuel, LO, cooling and

various systems represented as inputs to the These systems are connected through

a “VOTING” gate, which requires two of the six inputs to occur for the“auxiliary”

gate to fail. The use of the “VOTING” gate represents a set of systems that are

less likely to cause the entire ship to fail. In more detail, the “VOTING” gates

is used as the failure of the cargo equipment would not cause the ship to stop its

operation if the ship was sailing without cargo.

Figure 4.4: FTA representation of the remaining machinery groups

Figure 4.5 represents the FT structure that models the steering gear system.
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This section of the FT has as inputs the machinery components and the control

components of the system. The failure of the steering gear system is modelled

with an “OR” gate, as any failures in either the machinery, or control components

can cause the system to cease operating.

Figure 4.5: FTA representation of steering gear system

Figure 4.6 represents the FT structure of one of the four MGEs. Each MGE

has as inputs the assembly of the engine (cylinders, liners, etc.) and the support-

ing systems of the engine (FO, LO and cooling system). The failure of each MGE

is modelled with an “OR” gate, as a failure in either the assembly or the sup-

porting systems will cause the engine to stop operating. As can be inferred from

Figure 4.3, the system of the generating engines is modelled with a “VOTING”

gate. The four MGEs offer a higher degree of redundancy and consequently, the

vessel can still operate, albeit with a reduced performance, with only one MGE.

Figure 4.7 shows the FT structure for the steam generation system. This sys-

tem includes the fuel and feed-water systems together with the internal compo-

nents as inputs. The steam generation system comprises of two boilers, resulting

in enhanced operability. The steam generation system is modelled as an “OR”

gate, as any failure in its sub-system will stop steam generation.

Figure 4.8 shows the FT structure for the IGG system, comprising of the

blowers and the various other sub-systems. The IGG system is also modelled
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Figure 4.6: FTA representation of one of the four MGEs
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Figure 4.7: FTA representation of the steam generation system
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with an “OR” gate, as it is sensitive to failures.

Figure 4.8: FTA representation of the IGG system

Also, Figure 4.9 shows the FT representation for the cargo equipment system.

This system has as input the cargo spray pumps, high duty compressors and

the other various components. As with the previous cases, the cargo equipment

system is modelled with an “OR” gate, as it sensitive to failures.

Next, Figure 4.10 presents the FT representation of the bilge, fire and ballast

system. This system comprises mainly of pumps, a water treatment system and

various firefighting systems. Due to its nature, the bilge, fire and ballast system

has high redundancy and each of the respective sub-systems has multiple redun-

dant pumps which increase the system’s operability. For instance, the duties of a

failed bilge pump can be replaced by a ballast pump. Even though this functional

relationship exists, modelling it in FTA is a challenge. This is due, as the rep-

resentation of multiple functional dependencies between different systems is an

inherent limitation of FTA (Vesely 2002). As a result the bilge, fire and ballast

system is modelled with a “VOTING” gate, failing when either two of the bilge,

fire and ballast systems fail.

Figure 4.11 shows the FT representation of the cooling system. As can be
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Figure 4.9: FTA representation of the cargo equipment
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Figure 4.10: FTA representation of the bilge, fire and ballast systems

seen, this system comprises of the auxiliary cooling and the central MGE cooling

sub-systems, shown in Figure 4.12 and Figure 4.13 respectively. The cooling

system is modelled with an “OR” gate, as a failure in either of the inputs will

cascade.

Figure 4.11: FTA representation of the cooling system and the two sub-systems

Similarly, Figure 4.14 shows the LO system, as modelled in a FT. This system

comprises of the LO purification and the LO services systems, as seen in Figure

4.15 and Figure 4.16 respectively. The LO system is modelled using an “OR”
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Figure 4.12: FTA representation of the auxiliary cooling systems

gate, as it will fail if either of its inputs fail.

Lastly, Figure 4.17 shows the FT representation of the fuel system. This

system has four inputs (sub-systems) including, the gas fuel, MGE FO, FO pu-
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Figure 4.13: FTA representation of the central MGE cooling system

rification and the FO transfer systems. The fuel system is modelled with a “VOT-

ING” gate requiring two of the four inputs to fail. This due to the fact that the

vessel may be able to operate even if the gas fuel system fails, since the MGE
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Figure 4.14: FTA representation of the LO systems

can operate with FO only (dual fuel). However, the use of this “VOTING” gate

represents the best possible representation of the system, without increasing the

model’s complexity which is limited by the available computational power. For

instance, the FO purification and FO transfer systems may fail and the system

could still be operational for a while, due to the existing fuel in the service tanks.

Nonetheless, this may not always be the case, as purified oil may be required

when the service tanks are almost depleted. Therefore, the ability to model such

cases is traded for a more manageable model.
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Figure 4.15: FTA representation of the LO purification systems
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Figure 4.16: FTA representation of the LO services system

Figure 4.17: FTA representation of the fuel systems
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Figure 4.18: FTA representation of the gas fuel system
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Figure 4.19: FTA representation of the MGE FO system
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Figure 4.20: FTA representation of the FO purification systems

Figure 4.21: FTA representation of the FO transfer system
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4.3 Data Preparation

This section describes the case study in which the data preparation methodology

is applied. Consequently, the vessel and the data used for the application of

the data preparation methodology are described. Since the operating company

for the LNG carrier was only able to provide the PMS and repair costs of the

vessel, alternative sources were sought. Instead of vessel “A”, this methodology

is applied in the case of a chemical tanker. Consequently, the operator of the

chemical tanker was able to provide general information about the vessel, together

with the required performance and process describing data.

As discussed in Section 4.1, the implementation of the data preparation method-

ology would be slightly altered if a single case study is used to evaluate all the

methodologies. In detail, this methodology would be applied to parameters col-

lected from the critical equipment, before they are used in the FD and diagnostic

methodologies.

The vessel used in this case study is a diesel powered chemical tanker, referred

to as vessel “B”. Vessel “B” is a 38396 tons carrier with a continuous deck, bulbous

bow, transom stern, single rudder and single screw propeller. This vessel is also

double hulled and has five pure epoxy coated cargo tanks. Vessel “B” has a single

ME for the generation of propulsive power and three diesel-powered generating

sets for electric services. The main features of this vessel are summarised in Table

4.4.

4.3.1 Data Collection

Data collection is the first step of the data preparation methodology, as presented

in Section 4.4. As shown in Figure 3.4, this methodology is structured on the

use of performance data and on various operational limits from vessel “B”. This

case study is applied in the TC and ME system of vessel “B”, a selection based
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Table 4.4: Main features of vessel “B”

Characteristic Value Unit
LBP 173 m
LOA 183 m
BMLD 27 m
DMLD 16.8 m
TDESIGN 11.6 m
VSERV ICE 10.0 knots
DWT 38396 tons
ME - 6S50MC 9611@127 kW, rpm

on the criticality and overall importance of the system (Theotokatos et al. 2018;

Baldi, Theotokatos, and Andersson 2015), together with the input of the vessel’s

operator. A schematic of the studied system, together with the various available

parameters is shown in Figure 4.22.

C T

Air	Filter
(AF)

Air	Cooler
(AC)

Air	Receiver

Main	Engine
(ME)

Turbocharger
(TC)	

Power
ME	Speed

Scavenging	Air
Pressure

EG	Inlet
Temperature

EG	Outlet
Temperature

LO	Inlet	Pressure
LO	Outlet	Temperature

Figure 4.22: Diagram of a Main Engine (ME) system showing the physical in-
terconnections between the measured parameters (the compressor is represented
with C and the turbine with T)

The required performance data are collected from a DAQ system installed

onboard vessel “B”. The installed DAQ system records one sample every ten
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minutes from the ME power, ME speed, ME scavenging air pressure, TC EG

inlet temperature, TC EG outlet temperature, TC LO inlet pressure, TC LO

outlet temperature and the TC speed. These variables are recorded for nine days

during the first two weeks of February of 2018, resulting in 1336 instances per

variable. The descriptive statistics of these variables are shown in Figure 4.5.

Table 4.5: Descriptive statistics of the collected dataset used in the data prepa-
ration methodology

ME
Power
(kW)

ME
Speed
(rpm)

ME
Scav.
Air
Press.
(bar)

TC
EG
Inlet
Temp.
(oC)

TC
EG
Out-
let
Temp.
(oC)

TC
LO
Inlet
Press.
(bar)

TC
LO
Out-
let
Temp.
(oC)

TC
Speed
(rpm)

count 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.00 1336.0
mean 4029.0 98.0 0.9 325.0 290.0 2.0 55.0 9494.0
std 1004.0 13.3 0.3 32.0 26.0 0.1 4.0 1995.0
min 9.0 5.0 0.0 54.0 142.0 1.6 35.0 68.0
25% 3810.0 96.8 0.7 319.0 279.0 1.9 53.00 9088.0
50% 4264.0 102.0 0.9 334.0 293.0 2.1 55.0 9879.0
75% 4680.20 105.0 1.2 340.0 305.0 2.2 59.0 10897.0
max 5876.0 126.0 1.6 365.0 346.0 2.8 63.00 12258.0

Moreover, the aforementioned operational limits are aggregated from various

sources including the shop tests (commissioning tests) of the ME and technical

information from the Original Equipment Manufacturers (OEM) of the ship’s

equipment, as seen in Table 4.6. The operational limits define the range of plau-

sible operating values for the collected variables on Table 4.5. The operational

limits are used to scan and filter the data to determine the points for imputation,

as described in Section 4.4.3.
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Table 4.6: Ship system parameter limits used in the data preparation methodol-
ogy

Parameter Units Lower
Limit

Upper
Limit

Source

ME Power kW 0 10600 100% load from ME shop test
ME Speed rpm 0 131 100% load from ME shop test
ME Scav. Air Press. bar 0 3.14 100% load from ME shop test
TC EG Inlet Temp. oC 35 650 From ambient temperature and

130% of the TC OEM limit
TC EG Outlet Temp. oC 35 650 From ambient temperature and

130% of the TC OEM limit
TC LO Inlet Press. bar 0 3.6 150% of the ME shop test
TC LO Outlet Temp. oC 35 123 130% of the TC OEM limit
TC Speed rpm 0 17600 110% of the TC OEM limit

4.4 Fault Detection (FD) and Diagnostics

This section describes the case study in which the FD and diagnostics methodolo-

gies are applied. Even though these two methodologies are independent, they are

applied in the same vessel and systems, due to restricted accesses to additional

required data. Since the operator of vessel “A” could not supply any ProMon

data, and the operator of vessel “B” could not provide the needed parameters for

meaningful FD and diagnostics, an additional ship operator was selected. As a

result, the FD and diagnostic methodologies are applied in a case study of a bulk

carrier.

The ship used is a 64000 tons bulk carrier, referred to as vessel “C”. Vessel

“C” is a diesel-powered and self-loading carrier with a continuous deck, bulbous

bow, transom stern, single rudder and single screw propeller. This ship has five

cargo holds and four cranes for the loading and unloading of its cargo. Lastly,

vessel “C” has a double-bottom, a single ME for the generation of propulsive

power and three diesel-powered generating sets for electric services. The main

features of this vessel are presented in Table 4.7.
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Table 4.7: Main features of vessel “C”

Characteristic Value Unit
LBP 194.5 m
LOA 199.9 m
BMLD 32.26 m
DMLD 18.5 m
TDESIGN 11.3 m
VSERV ICE 13.2 knots
DWT 64000 tons
ME - 5S60ME 8050@89 kW, rpm

Both of the methodologies are applied in the ME and TC system of vessel “C”.

Similarly to Section 5.3.1, the selection of this system was based on its overall

importance, criticality and the input the ship’s operator. The schematic of the

studied system, depicting the various components and measurable variables is

shown in Figure 4.23.

Air	Filter	(AF)

Air	Cooler	(AC)

T

ΔPF

...

ΔPT
ΔPC

Main	Engine	(ME)

Cylinder
1

Cylinder
5

Compressor

Turbine

TCS

SCAV_AIR_PRESS
SCAV_AIR_TEMP ME_RPM_RM

SHAFT_PWR

ME	CYL	1-5	EGT

C

Figure 4.23: Diagram of a Main Engine (ME) system showing the physical in-
terconnections between the measured parameters (the compressor is represented
with C and the turbine with T)

There are numerous monitored parameters in the selected system, including

pressure and temperature drop across the Air Filter (AF) and Air Cooler (AC),

speed of the TC, scavenging air temperature and pressure for the ME, power

and rotational speed of the ME and EG temperature from each cylinder of the
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ME, as seen in Table 4.8. From these parameters, the EG temperature of each

cylinder of the ME is monitored and used for FD. This selection was based on

the variables importance in performance and process monitoring. In detail, mon-

itoring the ME cylinder EG temperature can help a) control the ME’s emissions,

b) understand the cylinders’ combustion performance c) identify underlying and

developing faults. More specifically, faults in the AC, TC and gas passages of

the ME can manifest through the ME EG temperature, as further described in

Chapter 6 (Woodyard 2009; MAN B&W 20017). Apart from the ME cylinder

EG temperature, the ME speed, power, scavenging air temperature and pressure

are used as predictor variables and also for the identification of the root-cause of

detected faults, as further described in Chapter 6. Also, the pressure and tem-

perature drop across the AF and AC and the speed of the TC are used for the

identification of the root-cause of detected faults.

4.4.1 Data Collection

The application of the FD and diagnostic methodologies in this case study re-

quires the collection of several different types of data. As shown in Figure 3.5 and

Figure 3.8 these methodologies require the use of historic and incoming ProMon

data from vessel “C”, information from the vessel’s ME shop tests, the ship’s ME

operating manual and information from data banks.

4.4.1.1 Historic Process Monitoring (ProMon) Data

Historic ProMon data from the vessel’s system are used in both methodologies.

In more detail, they are employed to train, validate and test the developed EB

model used for FD. Moreover, since the same FD model triggers the diagnostic

methodology (i.e. the diagnostic tasks initiate after the detection of a fault),

the historic ProMon data influence the diagnostic methodology. These data are

collected from the beginning April of 2017 until the end of June of 2017, with a
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Table 4.8: Information for the variables used in the FD and diagnostics method-
ologies

Variable Name Description Units System Role
ME CYL 1 EGT ME cylinder 1

EG temperature

oC Main Engine (ME) Target variable

ME CYL 2 EGT ME cylinder 2
EG temperature

oC Main Engine (ME) Target variable

ME CYL 3 EGT ME cylinder 3
EG temperature

oC Main Engine (ME) Target variable

ME CYL 4 EGT ME cylinder 4
EG temperature

oC Main Engine (ME) Target variable

ME CYL 5 EGT ME cylinder 5
EG temperature

oC Main Engine (ME) Target variable

SHAFT PWR ME shaft power kW Main Engine (ME) Diagnostic and Predictor
ME RPM TM ME shaft speed rpm Main Engine (ME) Diagnostic and Predictor
SCAV AIR PRESS ME scavenging

air pressure
bar Main Engine (ME) Diagnostic and Predictor

SCAV AIR TEMP ME scavenging
air temperature

bar Main Engine (ME) Diagnostic and Predictor

∆PC Scavenging air
pressure drop
across air cooler

mmWC Air Cooler (AC) Diagnostic Test

∆PT Temperature
difference be-
tween air cooler
air outlet and
air cooler water
inlet

oC Air Cooler (AC) Diagnostic Test

TCS Turbocharger
speed

rpm Turbocharger (TC) Diagnostic Test

∆PF Pressure drop
across tur-
bocharger air
filter

mmWC Air Filter (AF) Diagnostic Test

5-minutes sampling rate and their descriptive statistics are shown in Table 4.9.

Lastly, these data are randomly split into 80% for training and validation and

20% for testing, according to common practices and empirical knowledge.

4.4.1.2 Incoming Process Monitoring (ProMon) Data

Once the EB-based FD model is established through the use of the historic

ProMon data, incoming ProMon data are used to simulate different faults to

evaluate the capabilities of the FD and diagnostic methodologies. As mention in
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Table 4.9: Descriptive statistics of the historic ProMon data used in the FD and
diagnostic methodologies

SCAV
AIR
TEMP
(oC)

SCAV
AIR
PRESS
(bar)

SHAFT
PWR
(kW)

ME
RPM
TM
(rpm)

ME
CYL 1
EGT
(oC)

ME
CYL 2
EGT
(oC)

ME
CYL 3
EGT
(oC)

ME
CYL 4
EGT
(oC)

ME
CYL 5
EGT
(oC)

count 26205 26205 26205 26205 26205 26205 26205 26205 26205
mean 44.9 0.8 2750.0 279.0 212.0 197.0 211.0 210.0 220.0
std 3.1 0.7 3066.0 2783.0 112.0 100.0 109.0 108.0 114.0
min 0 0 0 0 0 0 0 0 0
25% 41.5 0 0 0 51.8 52.2 52.7 54.1 53.3
50% 43.7 0.7 2710 59.8 285.0 261.0 280.0 280.0 294.0
75% 46.0 1.5 4624 74.9 296.0 271.0 295.0 292.0 304.0
max 55.3 2.6 32768 65509 364.0 336.0 357.0 354.0 360.0

the previous section, the historic data were supplied first. Once they were anal-

ysed and used for model development, additional data were requested from the

operating company. However, only data from before April 2017 were available,

and to avoid unnecessary repetitions of the work, they were used for the faults

simulation. Therefore, before the newly supplied, incoming data, were used for

the simulated faults different checks had to be performed. This was necessary

due to the unconventional chronological order of the data sets. To avoid issues,

the distributions of the two datasets were checked to ensure their similarity. As

a result, it was observed that both datasets have similar distributions, validating

their order of use. The accurate results from the verification of the methodologies

also verify that the chronological order did not have a negative impact.

The use of simulated fault is necessary due to the fault-free nature of the used

data, which is a very common problem in applications from merchant vessels.

The maritime industry can be reluctant in sharing performance and condition

datasets, even more so when they contain faulty data. Even though the same

incoming ProMon data are used for the evaluation of the two methodologies,

each methodology is assessed in different faults. These data are recorded from

the beginning of January of 2017 until the end of March of 2017 and they are

recorded with a 5-minutes sampling rate. The descriptive statistics of the incom-
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ing ProMon data are shown in Table 4.10

Table 4.10: Descriptive statistics of the incoming ProMon data used in FD and
diagnostic methodologies

SCAV
AIR
TEMP
(oC)

SCAV
AIR
PRESS
(bar)

SHAFT
PWR
(kW)

ME
RPM
TM
(rpm)

ME
CYL 1
EGT
(oC)

ME
CYL 2
EGT
(oC)

ME
CYL 3
EGT
(oC)

ME
CYL 4
EGT
(oC)

ME
CYL 5
EGT
(oC)

count 9960 9960 9960 9960 9960 9960 9960 9960 9960
mean 40.8 0.7 2876.0 64.8 292.0 272.0 286.0 285.0 282.0
std 1.0 0.1 140.0 0.7 6.3 7.6 4.7 5.9 17.7
min 39.3 0.6 2474.0 58.2 256.0 235.0 255.0 247.0 247.0
25% 40.4 0.7 2794.0 64.5 288.0 267.0 283.0 282.0 269.0
50% 40.8 0.7 2852.0 64.7 292.0 274.0 286.0 286.0 277.0
75% 41.1 0.7 2928.0 64.9 296.0 277.0 288.0 289.0 299.0
max 49.9 1.3 4101.0 72.3 310.0 287.0 298.0 303.0 314.0

4.4.1.3 Main Engine (ME) Shop Tests

The ME shop tests represent another source of data used during the development

(training, validation and testing) of the EB-based FD model. The shop tests

are machinery tests and represent a form of benchmark and commissioning test,

which is widely used in the maritime industry for setting the standards of normal

operations for each ship. During these tests, the ME operates at different pre-

defined loads and several parameters are recorded. Since these tests are performed

at the manufacturer’s facilities, the recorded values are intended to represent a

baseline for normal operations. A sample of the shop tests of the ME of vessel

“C” is shown in Table 4.11

Table 4.11: Shop test sample for the ME of vessel “C”

ME
Power(kW)

ME Speed
(rpm)

EG Tempera-
ture (oC)

ME Scaveng-
ing Air Pres-
sure (bar)

ME Scaveng-
ing Air Tem-
perature (oC)

2013 56.1 215.0 0.4 34
4025 70.6 246.0 1.2 30
6038 80.9 281.0 2.1 32
6843 84.3 308.0 2.5 34
8050 89 346.0 3.0 36
8855 91.9 364.0 3.3 38
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4.4.1.4 Data Banks

The last source of information that was used during this case study is the OREDA

data bank. In the context of reliability and PdM, data banks are repositories that

contain failure information that is difficult, or too detailed, to obtain from other

sources (e.g.ship operators).

OREDA is a major data bank that originated from the offshore oil and gas sec-

tor after the collaboration of major industrial stakeholder. It contains a plethora

of failure information for most shipboard systems, including mechanical and elec-

trical components. Moreover, it is one of the most extensive and detailed data

banks for machinery and is commonly employed in PdM and reliability related

projects (Goble, Bukowski, and Loren 2016).

In OREDA, each of the examined systems (e.g. generating engines) is divided

in sub-systems and components and the failure rate of each component is given.

Moreover, OREDA specifies the different failure rates for the various failure modes

of each subsystem and component. Failure rates of the different components were

used to quantify the BN that was developed for the diagnostic methodology, as

further discussed in Chapter 6.

4.4.2 Chapter Summary

This chapter presented the different case studies of the methodological compo-

nents of the proposed framework. The main goal was to describe the different in-

puts required for the developed methodologies. In more detail, the critical equip-

ment selection methodology is applied in the case study of an LNG carrier, as

allowed by the access to the ship’s maintenance schedule and repair costs. Then,

a chemical tanker is used for the case study of the data preparation methodology.

This is facilitated through the use of the available information from the OEM and

from access to data collected from a DAQ system. Lastly, the case study of the
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FD and diagnostic methodologies is shown. These methodologies are applied in

the same case study, but are developed and assessed independently. This required

access to different ProMon data, the ME’s shop tests and information from data

banks.

Chapter 4 167 Michail F Cheliotis



Chapter 5

Case Studies Results

5.1 Chapter Overview

This chapter describes the results of the novel maritime PdM framework as ap-

plied in different case studies. Initially, the results from the critical equipment

selection methodology, applied in the case study of an LNG carrier (vessel “A”),

are presented. These results include the FTA and the resulting IMs, together

with the application of k-means for the clustering analysis. Subsequently, the

results from the data preparation methodology are presented, as applied in the

case study of a chemical tanker (vessel “B”). The results include the preliminary

analysis, the imputation process and the operational analysis. Finally, the results

of the FD and diagnostics methodologies are presented, which originate from the

bulk carrier case study (vessel “C”). The results from these two methodologies

include data checking, model development, FD and diagnostic network set-up

and use.
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5.2 Critical Equipment Selection

The selection of critical equipment is the initiating methodology of the proposed

novel predictive maintenance framework. This process of the framework is per-

formed through the developed methodology presented in Section 4.4. The main

aim of the critical equipment selection methodology is to enhance maritime pre-

dictive maintenance by establishing of a novel methodology for the identification

systems with high functional and economic risk. To quantify the functional risks,

the IB and ICR for each component are used. Similarly, the economic risks are

gauged by using the repair and replacement costs for the modelled components

As outlined in Figure 3.2, this methodology initiates with the data collection,

ship system analysis and FT structure specification; steps which are applied in

vessel “A’, as earlier presented in Section 5.2. The IMs, together with the repair

costs, are then clustered using the k-means algorithm, to identify the cluster with

the critical equipment.

5.2.1 Reliability Importance Measures (IM)

After the structure of the FT is specified, as seen in Figures 4.2-4.21, the modelled

“BASIC” events are quantified using MTBFs. Table 5.1 shows a sample of the

MTBFs used for the bilge, fire and ballast system. The particular MTBFs used

for each “BASIC” event are detailed in Appendix C.

Table 5.1: Table of MTBFs used for the bilge, fire and ballast systems

Bilge, Fire and Ballast
Component MTBF (Hours)
Ballast Pumps 2190
BWTS 6048
Fire Pumps 2190
Bilge Pumps 2190
CO2 System 6132
Dry Powder System 6132

Chapter 5 169 Michail F Cheliotis



Ship Maintenance

Once all the “BASIC” events are quantified, the exact calculation method is

specified, as described in Section 4.4.4.3, and the analysis is performed. In this

work, the output of the FTA is the calculation of the IB and ICR IMs. The

calculated IMs measure how the failure of each “BASIC” event influences the

occurrence of the modelled top-event. As discussed in Section 4.4.4.4, the IB

measures the probability of a component being reliable for the occurrence of the

top-event, without taking into account the component’s reliability. Similarly, the

ICR evaluates the probability of the top-event occurring due to the failure of an

examined component.

A sample of events with the highest IB is shown in Table 5.2. The IB for all

of these components, show the probability of the component being reliable for the

occurrence of the top-event, by only taking into account functional and systemic

dependencies.

Table 5.2: Sample of the obtained IB for vessel “A”

Component IB (Probability)
MGE 4 Cylinder Head 3.0307
MGE 1 FO Injector 2.0
FO Feed Pump 1 2.7061
MGE 3 LO Pump 2.02

As observed, the MGE Cylinder Head of vessel “A” has a very high IB.

Consequently, the MGE Cylinder Head has the biggest influence on the rate of

change of the probability of the top-event. From a practical point of view, the

failure of a cylinder head could cause either a slow-down or a shut-down of the

MGE of the ship, crippling the operation of the vessel. Likewise, a failure in

either a FO Injector or a FO Feed Pump could restrict the supply of FO to

the engine, negatively influencing the ship’s operation. The same adverse effects

can be caused by a failure in an MGE LO pump, as the absence of LO can be

disastrous for an engine. The IB for all the modelled components can be found

in Appendix C.
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Table 5.3 gives a sample of the events with the highest ICR. The ICR measures

how critical each component is to the system, by also taking into consideration its

reliability. Therefore, as it can be observed, the events in Table 5.3 are different

from those in Table 5.2. This originates from the different formula each IM has,

showcases their difference and further solidifies the need to examine both of them

for the selection of the critical equipment. Therefore, the MGE FO Injection

Pump and MGE FO Injector have the highest probability of causing a ship-wide

failure. This is followed by the MGE LO Pump and the FO Feed Pump. The

ICR for all the modelled components can be found in Appendix C.

Table 5.3: Sample of the obtained ICR for vessel “A”

Component ICR (Probability)
MGE 2 FO Injection Pump 0.18
MGE 3 FO Injector 0.15
MGE 1 LO Pump 0.13
FO Feed Pump 0.0874

By observing Tables 5.2 and 5.3, it is becoming apparent that even though

both of the examined IMs assess the importance of components, the results can

be different. For instance, according to the IB, the most important is the MGE

Cylinder Head. However, the most critical component, according to the ICR,

is the MGE FO Injection Pump. Also, this discrepancy between the ranked

components is repeated. Therefore, additional analysis is required to select the

most critical equipment of the modelled systems subjectively.

5.2.2 Clustering Analysis

The clustering analysis is the final step of the critical equipment selection method-

ology, developed as an integral part of the proposed novel predictive maintenance

framework. During this step, the obtained IMs and repair costs are clustered to-

gether, using the k-means algorithm. Combining both of the obtained IMs with
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the repair costs allows for a more systematic selection of critical equipment.

Before the initiation of the clustering analysis, the k hyperparameter of the

k-means algorithm must be specified. As discussed in Section 4.4.5, the k hyper-

parameter controls the ultimate number of the clusters; in this work is assumed

that k = 3. As a result, the clustering algorithm will group components, based on

their functional and economic risks, in three groups. In this work, it is assumed

that the overall criticality of the equipment ranges. Therefore, the equipment can

be divided into critical, partially critical and not critical components. The value

of k is also a function of the shape of the data. In detail, the selected k value

must correspond with distinct groups of the dataset. If the value of k = 3 doe

not correspond to the number of groups in the data, its value should be reduced.

Figure 5.1 shows the modelled components in a three-dimensional scatter plot,

including the obtained IMs and repair costs detailed in Section 5.2.1 (data-space).

The left plot of this Figure presents the modelled components in the examined

data-space (IMs and repair costs). As also observed, the k value fits the shape of

the data-space. In addition, the used axes are scaled, in accordance with standard

practices, and to create an unbiased model. In this work, the common min-max

scaling approach is used, as described in Necoara et al. (2008) , resulting in a

dimensionless analysis. All of the axes range from 0 to 1, with 0 denoting the

smallest value of the respective axis prior to the scaling and 1 indicating the

largest values prior to the scaling. The right plot of this Figure shows the result

of the k-means algorithm. In that plot, the different clusters are marked with

green, blue and orange colours. Moreover, the centroids of the different clustered

are denoted with an x-mark.
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Figure 5.1: Three dimensional scatter plot showing the initial data-space (left)
and the results of the k-mean algorithm (right).

As mentioned in Section 4.5.5, the critical equipment is defined as the com-

ponents that belong in the cluster, which has the greatest distance from the

beginning of the axes. That cluster contains components that have high IB, ICR

and repair costs. As a result, the identified critical equipment has all of the

following characteristics:

• They have the biggest influence on the rate of change of the probability of

a ship failure, due to systemic dependencies.

• They are the most critical in the modelled system, by also considering the

components’ reliability and failure rate.

• They are the most costly to maintain after a failure, as they have the highest

repair and replacement costs.

The cluster that contains the critical equipment is coloured in orange and is shown

in Figure 5.2. On the other hand the green cluster in Figure 5.2 contains the least

critical (i.e. safest) components.
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Figure 5.2: Three dimensional scatter plot showing the least critical components
(left) and the most critical components (right).

It is interesting to note that the green cluster includes the two most expensive

components, including the BWTS and the CO2 fire containment system. Espe-

cially in the case of the later, there are safety barriers and redundant systems

in place (e.g. localised fire fighting systems), which reduce the overall risk of

the system. On the other hand, it is observed that the orange cluster contains

components with high IMs and relatively small costs.

In detail, the identified critical components are FO Feed Pump 1, FO Feed

Pump 2, FO Feed Pump 3, FO Feed Pump 4, MGE 1 FO Injection Pump, MGE

2 FO Injection Pump, MGE 3 FO Injection Pump, MGE 4 FO Injection Pump,

MGE 1 Injector, MGE 2 Injector, MGE 3 Injector, MGE 4 Injector, MGE 1 LO

Pump, MGE 2 LO Pump, MGE 3 LO Pump and MGE 4 LO Pump. The IB

and ICR of the identified critical equipment are shown in Figure 5.3 and Figure

5.4 respectively. Interestingly, even though the FO Feed Pumps and MGE FO

Injectors have a relatively low ICR they are included in the critical equipment.

As previously discussed, the presented critical components belong in low order

cut-sets (i.e. the smallest set of events that can lead to a failure). This justifies
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the absence of main engine components from the critical equipment, as these

belong in cut-sets of higher order (i.e. more events required for a failure). Also,

the failure statistics used to quantify the FT (provided by the ship operator)

may have affected this outcome. This demonstrates the need for considering

more than one IMs and taking into account both systemic interdependencies and

individual failure statistics. Lastly, Figure 5.5 shows the Euclidean distance of
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Figure 5.3: Bar chart showing the IB of the identified critical equipment.

the critical equipment to the origin of the axes. This distance can consolidate and

quantify the overall performance of the critical equipment in the used data-space.

Figure 5.5 also shows for reference, denoted with a dotted line, the distance of

the centroid of the critical equipment cluster.
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5.3 Data Preparation

Following the completion of the critical equipment selection methodology, the

proposed predictive maintenance framework addresses the issue of data prepara-

tion. The data preparation part of the proposed framework is performed through

the methodology presented in Section 4.5. The main aim of the data preparation

methodology is to enhance maritime predictive maintenance by establishing a

systematic and novel approach that ensures datasets reach their full knowledge-

extracting potential. This is achieved by identifying and filtering-out missing and

illogical values and subsequently using imputation to replace them. As outlined

in Figure 3.4, this methodology initiates with the collection data from vessel “B”,

as described in Section 5.3. Following the data collection, the preliminary analy-

sis follows, which includes the form handling, data synchronisation, data filtering

and correlation examination processes. Then, the imputation step is performed,

which includes the implementation of a novel imputation method and its compar-

ison with other prominent algorithms. Lastly, an operational analysis is applied,

which adjusts variables to account for ambient conditions.

5.3.1 Preliminary Analysis

The first process in the preliminary analysis is the form handling of the data,

which ensures that data are in tabulated formats. Afterwards, the tabulated data

are synchronised according to Equation 3.9 and filtered according to Algorithm

1. The final process of the preliminary analysis is the correlation examination

of the variables. For that reason, the Pearson correlation coefficient is used.

The Pearson correlation coefficient is selected due to its simplicity and universal

applicability (Hastie, Tibshirani, and Friedman 2006). Figure 5.6 shows a heat-

map of the correlation coefficient between the examined variables. Finally, the

results of the Figure 5.6 are cross-referenced with the engineering knowledge of

Chapter 5 177 Michail F Cheliotis



Ship Maintenance

the ME and TC systems.
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Figure 5.6: Heat-map showing the Pearson correlation coefficient of the ME and
TC variables.

From an engineering point of view, it is known that the TC LO inlet pressure

and TC LO outlet temperature are amongst the uncorrelated variables. This is

due to the fact that the TC LO system is independent and does not come in

contact with areas of the ME or the TC where the ignition processes occurs. On

the other hand, the TC speed and the ME power have the largest correlation.

More specifically, the TC speed is influenced by many factors. It is correlated

with the temperature drop of the exhaust gases in the TC. The TC speed is

also correlated with the ME power and ME speed, which in turn influences the

temperature of the exhaust gases. It should be noted that there are other variables

that influence the TC speed, ME power and the temperature of the exhaust gases.

For example, such variables are the combustion pressure and the back-pressure of

the TC. The combustion pressure influences the power output and subsequently,
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the temperature of the exhaust gases. On the other hand, the back-pressure of

the TC can affect (reduce) the TC speed, as the back-pressure can restrict the

flow of the gases (Hountalas et al. 2014; Guan, Theotokatos, and Chen 2015).

Even though these parameters are identified for their importance, they are not

included in the selected dataset for the analysis. This is due to the fact that

the DAQ used for the measuring of the parameters is not capable of recording

them. Comparing the results from Figure 5.6 and the engineering knowledge

of the ME and TC systems, the final correlation between variables is obtained.

(Table 5.4). Table 5.4 presents in a concise manner the presence of correlation

Table 5.4: Resulting correlation based on the integration of the data-driven Pear-
son coefficient and the first-principle domain knowledge.

Main Engine parameters TC parameters
Power
(kW)

Speed
(rpm)

Scav. air
press.
(bar)

EG inlet
temp.
(◦C)

EG
outlet
temp.
(◦C)

LO inlet
press.
(bar)

LO outlet
temp.
(◦C)

Speed
(rpm)

ME Power (kW) 3 3 3 7 7 7 3

ME Speed (rpm) 3 7 3 7 7 7 3

ME Scav. air press. (bar) 3 7 7 7 7 7 3

TC EG inlet temp. (◦C) 3 3 7 3 7 7 7

TC EG outlet temp. (◦C) 7 7 7 3 7 7 3

TC LO inlet press. (bar) 7 7 7 7 7 7 7

TC LO outlet temp. (◦C) 7 7 7 7 7 7 7

TC Speed (rpm) 3 3 3 3 3 7 7

between the collected variables (Cheliotis et al. 2019). This Table is also used

in the application of the novel hybrid imputation approach, as described in the

following sections.

5.3.2 Imputation Process

Following the completion of the preliminary analysis, the imputation process

takes place. The filtered values from each of the collected variables from vessel

“B”, are replaced with predictions obtained by applying the MICE, and the kNN

algorithms and the hybrid novel imputation approach. The imputation perfor-

mance of the different algorithms is assessed with simulated missing values. More
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specifically, random points from the used dataset (150 instances) are removed and

the imputation algorithms predict the missing (removed) value. As a result, the

comparison of the removed values with the predicted values evaluates the differ-

ent algorithms (Cheliotis et al. 2019). The results from the discussed imputation

approaches are presented in Figures 5.7-5.14. To evaluate the performance of the

different imputation approaches and according to common practices of similar

research, two graphs are generated for each variable. Initially, a scatter plot is

provided, which presents the performance of each prediction. The x-axes of each

scatter plot show the actual values of each prediction, whereas the y-axis shows

the predicted values. Lastly, each scatter plot includes a dashed y = x line, which

represents perfect accuracy and is provided to help determine the performance

of each prediction. Also, a histogram is supplemented, which depicts the APE

of each prediction. The histogram enumerates the APE of each prediction (dis-

tance from y = x) and is used to visualise the performance of each imputation

approach. This representation of the results offers and concise and descriptive

way of visualising the performance of the different imputation algorithms. These

two graphs include the information that would be presented in a simple table

format, however, they create a more engaging visualisation.

Figure 5.7 shows the imputed (predicted) values and APE for the TC LO inlet

pressure. Observing the histogram, it is noted that all the imputation approaches

produce equally good predictions. Also from the histogram, it is observed that

the approaches produce predictions with APE ranging from 0-35%. This is a large

range for the APE, indicating the probability of a model predicting inaccurate

values. Through the scatter plot, it is observed that the kNN algorithm produces

the results with the biggest standard deviation (sparsity), which can introduce

outliers in the dataset. As aforementioned, all three approaches produce results

with errors. This behaviour is attributed to the fact that TC LO inlet pressure

does not have a substantial correlation with the other variables, as discussed in
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the previous section, and all of the imputation approaches are correlation-based.

The errors produced are justified, as the TC LO inlet pressure is a variable with

low correlation (Figure 5.6).
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Figure 5.7: TC LO inlet pressure imputation performance comparing the MICE,
kNN and hybrid methods.

Figure 5.8 shows the imputed values and APE for the TC LO outlet tem-

perature. Observing the histogram, it is noted that the hybrid method has the

best performance, as the majority of the predictions have less than 1% APE. The

low APE of the hybrid method demonstrates its consistency in predicting very

accurate results. Also from the histogram, it is observed that all the approaches

produce predictions with APE ranging from 0-8%. This range of the APE in-

dicates the relatively low probability of a model making inaccurate predictions.

Through the scatter plot, it is observed that both kNN and MICE algorithms

produce results with large sparsity, which can introduce outliers in the dataset.

The hybrid approach performs the best, as it closely follows the y = x line.
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Figure 5.8: TC LO outlet temperature imputation performance comparing the
MICE, kNN and hybrid methods.

Figure 5.9 shows the imputed values and APE for the ME power. Observing

the histogram, it is noted that the hybrid method has the best performance

with the majority of the predictions having less than 1% APE. The low APE

of the hybrid method demonstrates its consistency in predicting very accurate

results. Also from the histogram, it is observed that all the approaches produce

predictions with APE ranging from 0-12%. This range of the APE indicates the

relatively low probability of a model making inaccurate predictions. Through

the scatter plot, it is observed that the MICE algorithm produces results with

large sparsity, which can introduce outliers in the dataset. It is observed that

the hybrid approach performs the best, as it closely follows the y = x line. As

the ME power is a highly correlated variable, the FP component of the hybrid

method contributes to its overall positive performance.
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Figure 5.9: ME Power imputation performance comparing the MICE, kNN and
hybrid methods.

Figure 5.10 shows the imputed values and APE for the ME speed. Observing

the histogram, it is noted that the hybrid method has the best performance with

the majority of the predictions having less than 1% APE. The low APE of the

hybrid method demonstrates its consistency in making very accurate predictions.

Also from the histogram, it is observed that all the approaches produce predictions

with APE ranging from 0-8%. This range of the APE indicates the low probability

of a model making inaccurate predictions. Through the scatter plot, we observe

that the MICE algorithm produces results with large sparsity, which can introduce

outliers in the dataset. It is observed that all the tools produce more accurate

predictions from 100 rpm and above. At lower speeds, many of the predictions

are relatively inaccurate, with the MICE tool predicting possible outliers. As

with the previous cases, the hybrid approach follows the y = x line the closest.

Since the ME speed is also a highly correlated variable, the FP component of the

hybrid approach has a positive effect.
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Figure 5.10: ME Speed imputation performance comparing the MICE, kNN and
hybrid methods.

Figure 5.11 show the imputed values and APE for the ME scavenging air pres-

sure. Observing the histogram, it is noted that the hybrid method has the best

performance with the majority of the predictions having less than 1% APE. The

low APE of the hybrid method demonstrates its consistency in making very accu-

rate predictions. Also from the histogram, it is observed that all the approaches

produce predictions with APE ranging from 0-35%. This is a large range for

the APE, indicating the probability of a model making inaccurate predictions.

Interestingly, the ME scavenging air pressure and TC LO inlet pressure have the

largest range for APE. This is attributed to the uncorrelated nature of the TC

LO inlet pressure and the poor performance of the kNN algorithm. Through

the scatter plot, it is noted that the kNN algorithm produces results with large

sparsity, which can introduce outliers in the dataset. In this variable, all of the

imputation methods produce results very close to the actual values. It is also ob-

served that both the MICE algorithm and the hybrid approach have comparable
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performance and both follow the y = x line closely.
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Figure 5.11: ME scavenging air pressure imputation performance comparing the
ME, kNN and hybrid methods.

Figure 5.12 shows the imputed values and APE for the TC EG inlet temper-

ature. Observing the histogram, it is noted that the hybrid method has the best

performance with the majority of the predictions having less than 1% APE. The

low APE of the hybrid method demonstrates its consistency in making very accu-

rate predictions. Also from the histogram, it is observed that all the approaches

produce predictions with APE ranging from 0-10%. This range of the APE in-

dicates the relatively low probability of a model making inaccurate predictions.

Through the scatter plot, it is observed that the Multiple Imputation by Chained

Equations (MICE) algorithm produces results with large sparsity, which can in-

troduce outliers in the dataset. The TC EG inlet temperature exhibits similar

behaviour with the ME Speed. The predictions of all the tools are relatively

inaccurate at lower temperatures. However, this behaviour is reverted at higher

temperatures, with the hybrid method following the y = x line the closest.
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Figure 5.12: TC EG inlet temperature imputation performance comparing the
MICE, kNN and hybrid methods.

Figure 5.13 shows the imputed values and APE for the TC EG outlet tem-

perature. Observing the histogram, it is noted that the hybrid method has the

best performance with the majority of the predictions having less than 1% APE.

The low APE of the hybrid method demonstrates its consistency in making very

accurate predictions. Also from the histogram, it is observed that the approaches

produce predictions with APE ranging from 0-10%. This range of the APE in-

dicates the relatively low probability of a model making inaccurate predictions.

Through the scatter plot, it is noted that the MICE algorithm produces results

with large sparsity, which can introduce outliers in the dataset. In general, the

hybrid method displays consistently good predictions in the temperature range

following the y = x line the closest.
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Figure 5.13: TC EG outlet temperature imputation performance comparing the
MICE, kNN and hybrid method.

Finally, Figure 5.14 shows the imputed values and APE for the TC speed.

Observing the histogram, it is noted that the hybrid method has the best perfor-

mance with the majority of the predictions having less than 1% APE. The low

APE of the hybrid method demonstrates its consistency in making very accurate

predictions. Also from the histogram, it is observed that all the approaches pro-

duce predictions with APE ranging from 0-18%. This range of the APE indicates

the moderate probability of a model making inaccurate predictions. Through

the scatter plot, it is noted that the MICE algorithm produces results with large

sparsity, which can introduce outliers in the dataset. Similarly with the previ-

ous cases, the hybrid method displays consistently good predictions in the speed

range following the y = x line closely.
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Figure 5.14: TC Speed imputation performance comparing the MICE, kNN and
hybrid methods.

Summarising the above, Table 5.5 encapsulates the overall performance of the

three imputation approaches for the examined variables. Table 5.5 shows the

MAPE and mean σ for each approach and for each variable. Also, an overall

MAPE and mean σ are shown to summarise the general performance of each

approach. As it is observed, even though the MICE and kNN approaches perform

relatively well, the hybrid method outperforms them. It has the lowest overall

mean error of 2.21% and the smallest overall σ of 2.64%. The hybrid tool makes

accurate predictions without running the risk of generating outliers. The worst

performing tool is the kNN with an overall mean error of 5.55% and an overall

σ of 8.9%. In addition, Figure 5.15 provides a graphical representation of the

MAPE and mean σ of the different approaches across the examined variables. As

visually confirmed, the hybrid approach tends to have the lowest error metrics

(MAPE, mean σ). Observing the results, it becomes clear that in correlated

variables (ME power, ME speed, TC speed, TC EG inlet temperature, TC EG
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outlet temperature, ME scavenging air pressure, TC LO outlet temperature) the

novel imputation method has superior performance. It is observed that the FP

component of the hybrid model makes a positive influence on the prediction. By

understanding the systemic interdependencies of the system under examination,

the performance of the predictions is enhanced. Therefore, the integration of the

knowledge of the system to any predictive effort is encouraged and should be

preferred to purely data driven approaches.

Table 5.5: Summary table of imputation approaches performance

Case MAPE Mean σ
kNN MICE Hybrid kNN MICE Hybrid

ME Power 3.16% 2.44% 2.29% 5.48% 4.06% 4.98%
ME Speed 1.15% 1.02% 0.65% 1.12% 1.23% 1.05%
ME Scav. Air Press. 17.15% 2.34% 1.92% 23.72% 3.63% 3.60%
ME TC EG Inlet Temp. 1.63% 2.15% 0.92% 1.69% 1.96% 1.16%
TC EG Outlet Temp. 2.25% 3.08% 1.19% 1.96% 2.60% 1.64%
TC LO Inlet Press. 14.92% 8.46% 7.97% 32.11% 5.24% 4.96%
TC LO Outlet Temp. 2.25% 2.33% 1.29% 3.65% 2.31% 1.73%
TC Speed 1.96% 1.92% 1.42% 1.49% 2.61% 1.97%

Average 5.55% 2.97% 2.21% 8.9% 2.96% 2.64%
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Figure 5.15: Summary plot of imputation approaches performance
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5.3.3 Operational Analysis

Following the imputation process step, the resulting dataset is adjusted to ac-

count for the influence of the environmental conditions. As also mentioned in

Section 3.5.5, this is a common step in similar research efforts as it accounts for

the influence ambient conditions have on the collected data. In general, account-

ing for ambient conditions improves the accuracy of the subsequent developed

models (Sodré and Soares n.d.). For that reason, the TC speed, ME scavenging

air pressure and the TC EG inlet temperature were corrected (MAN B&W 2014;

Tsitsilonis and Theotokatos 2018) according to the manufactures guides and the

ISO 3046-1:2002 standards (ISO 2008). The measured ME scavenging air pres-

sure, Pscav, was adjusted to its corrected figure, Pscav,corr according to Equation

5.1. In Equations 5.1, 5.2 and 5.3 K, F1 and F2 are correction constants, while

Tair and Tsea are the ambient temperatures of the air and the sea respectively.

Pscav,corr = Pscva + (Tair − 25)F1(K + Pscav) + (Tsea − 25)F2(K + Pscav) (5.1)

The measured TC speed, N , was adjusted to its corrected value, Ncorr according

to equation 5.2.

Ncorr =
N√

(K+Tair)
(K+25)

(5.2)

The measured TC EG inlet temperature, Tegin, was adjusted to its corrected

value, Tegin,corr according to equation 5.3.

Tegin,corr = Tegin + (Tair − 25)F1(K + Tegin) + (Tsea − 25)F2(K + Tegin) (5.3)
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5.4 Fault Detection (FD)

Following the completion of the data preparation methodology, the proposed

predictive maintenance framework addresses the issue of FD. The FD part of the

proposed framework is performed through the methodology presented in Section

4.6. The FD methodology aims to enhance maritime predictive maintenance

by establishing a novel approach for the early detection of developing faults.

During this work, the considered faults are the result of gradual degradation

and wear-and-tear. In other words, sudden breakages and shock loads are not

considered. As outlined in Figure 3.5, the FD methodology initiates with data

collection, described in Section 5.4. Then, it proceeds with the development

of a regression-based EB model, which uses as input the pre-processed historic

ProMon data. The selected model is the optimal result from a systematic model

evaluation process, which examines different regression types, model inputs and

model hyperparameters. Once the generalisation performance of the selected

model is evaluated, the fault detection steps proceeds, utilising the pre-processed

incoming ProMon data. For FD, the residuals between the predicted values and

the actual values of the target variable (ME EG temperature of each cylinder)

are assessed in an EWMA control chart. Lastly, as discussed in Section 5.4.1, the

performance of the FD process is evaluated using simulated faults. The simulated

faults are divided into four different cases, with each case representing groups of

different possible faults.

5.4.1 Data Checking

The first process of the data checking step is to ensure that the units of the data

are in the correct form and that the dataset is in a tabulated form. Following

that, the DBSCAN algorithm is deployed to remove transient states of operation

and outliers from each variable.
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The application of the DBSCAN algorithm requires the specification of the

ε and minP hyperparameters. The ε hyperparameter dictates the maximum

distance between points for them to be considered in the same cluster. Also, the

minP hyperparameter controls the number of neighbouring points required to

form a cluster. As discussed in Section 4.6.3, the value of ε is determined after

iterative attempts. Different values are iteratively used until the transient states

are removed, and consequently, the outliers are filtered out. Finally, the selected

value was ε = 0.25. Considering the dataset used in the FD methodology has 9

dimensions, as seen in Table 4.9, and keeping in mind the restrictions suggested

by Chen and Li (2011) the final value for minP was determined to by 9. As the

sampling rate of the data is 1 recording per 5 minutes and minP = 9, samples

from 45 minutes are required to form a cluster. This is realistic and reasonable

time-frame for the operation of the ME when the ship in on voyage, as confirmed

by the operators of vessel “B”.

The last process of the data checking step is to filter-out any points collected

when the ship was not operational. For that purpose a simple value-based filter

was created, as seen in Equation 5.4.

PowerME > 10kW (5.4)

Figure 5.16 shows two plots depicting the initial state and the result of the

data checking process for the ME shaft power and ME shaft speed variables

respectively. In each of the two plots, the top graph represents the “checked

data”, whereas the bottom graph represents the “raw” data, as supplied by the

DAQ system of vessel “C”. As observed, the spikes and dips int the “raw” data

graph are filtered out by the DBSCAN clustering algorithm, while the flat-lines

are removed by Equation 5.4. The data checking results for all the variables of

vessel “C’ ’ are shown in Appendix D.
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Figure 5.16: Data checking result for ME shaft power (top) and ME shaft speed
(bottom)
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5.4.2 Model Development

The purpose of model development is to identify the optimum EB model, which is

then used to predict the ideal behaviour of a selected target variable. The target

variable that is used in this part of the methodology is the ME EG temperature

for each cylinder. This variable was selected due to its great importance in per-

formance and process monitoring. Monitoring the ME cylinder EG temperature

can help 1) control the ME’s emissions, 2) understand the cylinders’ combustion

performance 2) identify underlying and developing faults. In more detail, faults

in the air cooler, turbocharger and gas passages of the ME can manifest through

the ME EG temperature.

During the model development, the available historical data are divided into

a training and validation set and a testing set. The former is used to fit the dif-

ferent models, tune the different hyperparameters, compare and ultimately select

the best performing model. The best model is selected by primarily assessing

the validation score and taking into account the standard deviation (σ) of the

prediction errors. Once the best performing model is selected, its generalisation

capabilities are assessed in the training set.

In total, four different types of regression models are examined, including OLS

single linear regression, multiple linear ridge regression, OLS single polynomial

regression and multiple polynomial ridge regression, discussed in Section 4.6.4.

Apart from the different types of models, different inputs (predictor variables)

are considered for each model. For each of the ridge regression models, the α

hyperparameter ranges from 0.1 to 0.6. Also, the examined polynomial models are

assumed to be of 6th order. The value of α and the order of the polynomial models

depends purely on each application, and there is no standard guide on their

selection. Instead, different ranges of α and different values for the polynomial

order can be examined. In case none of the models exhibits good behaviour with

the selected α and order, these values are changed, and the analysis is repeated.

Chapter 5 195 Michail F Cheliotis



Ship Maintenance

The various resulting models are detailed in Tables 5.6-5.8. These tables de-

tail the different models with their IDs together with the inputs used in each case.

The inputs refer to the predictor variables used in each model and can include the

ME power, ME speed, scavenging air pressure and scavenging air temperature.

Table 5.6 contains the different models based on multiple linear ridge regression

and Table 5.7 contains the models based on multiple polynomial ridge regression.

For instance, model M1 uses as predictors the ME power, ME speed, scaveng-

ing air pressure and scavenging air temperature and has the α hyperparameter

ranging from 0.1 to 0.6 with 0.1 increments. Consequently, model M16 has the

predictors of model M1, and the α hyperparameter has a value of 0.6. Lastly,

Table 5.8 has the single input OLS models that are used as a benchmark.

Table 5.6: List of examined multiple linear ridge regression models.

Multiple Linear Ridge Regression
Variables Model ID

Power, Pressure, Temperature, Speed M1
Power, Pressure, Temperature M2
Speed, Pressure, Temperature M3
Speed, Power, Temperature M4
Power, Pressure, Speed M5
Power, Pressure M6
Pressure, Temperature M7
Power, Temperature M8
Speed, Temperature M9
Speed, Power M10
Speed Pressure M11
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Table 5.7: List of examined multiple polynomial ridge regression models

Multiple Polynomial Ridge Regression
Variables Model ID

Power, Pressure, Temperature Speed N1
Power, Pressure, Temperature N2
Speed, Pressure, Temperature N3
Speed, Power, Temperature N4
Power, Pressure, Speed N5
Power, Pressure N6
Pressure, Temperature N7
Power, Temperature N8
Speed, Temperature N9
Speed, Power N10
Speed Pressure N11

Table 5.8: List of examined single regression models

Remaining Models
Mode Model ID

OLS Single Linear Regression L
OLS Single Polynomial Regression P

5.4.2.1 Training and Validation

From the historic ProMon data, 80% of them are randomly selected for training

and validation, according to empirical knowledge and common practices. The

different models need a substantial amount of the collected data (e.g. 80%)

in order to identify patterns and develop good generalisation capabilities. The

random selection of the data controls the variance of the model, and it enhances

its generalisation capabilities, as during the training, data from the entirety of

the operational profile are used (Kirk 2017).

During this stage, k-fold cross-validation is used to train and validate the

different models discussed above. For this work, the value of k = 7 was assumed.

Similarly with the previous hyperparameters (e.g. α), the selection of k was

based on empirical knowledge, as its value is application-specific. Consequently,
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each model is trained and validated 7 times, each time using a different segment

of the data for validation. The validation performance of each model is then

assessed by averaging the 7 different validation scores resulting from the 7-fold

cross-validation.

Figure 5.17 shows the validation performance of the different models in terms

of their average R2 score during the k-fold cross-validation. This Figure examines

different regression models and with varying inputs and ranging α values. The

upper bar chart examines the average score of each model (multiple linear ridge

regression) shown in Table 5.6. To further evaluate the performance of the dif-

ferent models, the maximum score is shown as a dashed blue line. Similarly, the

performance of the single OLS linear regression, using the ME power as an input,

is shown as a solid black line. Models M11, M12 and M13 which use as inputs

the ME power, speed, scavenging air temperature and pressure with α = 0.1,

α = 0.2 and α = 0.3 respectively have the best validation score of nearly 0.93.

The performance of the OLS linear regression is lower than the other multiple

linear ridge regression models. The lower bar chart examines the average score

of each model (multiple polynomial ridge regression) shown in Table 5.7. The

maximum score and the performance of the OLS single polynomial regression are

also shown as a dashed and a solid line respectively. Models N53, N54, N55 and

N56 which use as inputs ME power, speed, scavenging air pressure with α = 0.3,

α = 0.4, α = 0.5 and α = 0.6 respectively have the best validation score of nearly

0.96. Interestingly, the performance of the OLS single polynomial regression is

preferable to most of the multiple polynomial ridge regression models, as seen

by the high R2 score. Finally, it is observed that the polynomial models have

a superior performance in terms of the mean validation score. As summarised

in Table 5.9, the polynomial models have a higher mean validation score and a

smaller range compared to the linear models.
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Figure 5.17: R2 validation performance of the linear (upper chart) and polynomial
models (lower chart)

Table 5.9: Performance of linear and polynomial models in terms of R2

Linear Models Polynomial Models
Mean Validation Score 0.83 0.94
Validation Score Range 0.11 0.091

Figure 5.18 shows the validation performance of the different models in terms

of the standard deviation (σ) of the average R2 scores during the k-fold cross-

validation. This Figure examines the same models as Figure 5.17 and is sup-
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plementary for the evaluation of the different models. Similarly, the minimum

σ of the average R2 scores is shown as a solid line and the σ of the R2 scores

from the single linear and single polynomial models are shown as dashed lines.

The standard deviation of the validation performance describes the consistency of

each model in their predictions during the k-fold cross-validation. It is observed

that the linear models have a superior performance in terms of the σ of the mean

validation score. As summarised in Table 5.10, the linear models have a lower

mean σ and a smaller range compared to the polynomial models.

Table 5.10: Performance of linear and polynomial models in terms of σ

Linear Models Polynomial Models
σ of Mean Validation Score 0.046 0.07
σ of Mean Validation Score Range 0.07 0.24
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Figure 5.18: σ of the performance of the linear (upper chart) and polynomial
models (lower chart)

As previously discussed, the model development aims to identify the model

with the highest R2 and a small σ. For that reason, the models with the highest

R2 and the models with the lowest σ are identified and compared. The identified

models are presented in Table 5.11. As highlighted in the Table, model N54 has

the best mean validation R2 and a σ comparable with the remaining models and

for these reasons is identified as the optimum choice. In summary model N54

uses multiple polynomial ridge regression has α = 0.4 and uses as input the ME
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Power, pressure, and speed.

Table 5.11: Performance of models with the highestR2 and performance of models
with lowest σ

Mean Validation R2 σ of Mean Validation R2

N54 0.96 0.03
M31 0.89 0.01
M32 0.89 0.01
M33 0.89 0.01
M34 0.89 0.01
M35 0.89 0.01
M36 0.89 0.01
M91 0.88 0.01
M92 0.88 0.01
M93 0.88 0.01
M94 0.88 0.01
M95 0.88 0.01
M96 0.88 0.01

Finally, Figure 5.19 shows the learning curves of model N54 having as target

variable the EG temperature of the cylinders of the ME and the average EG

temperature of all the cylinders of the ME. These curves show the training (red)

and validation (black) scores for each case as a function of the number of folds

in k-fold cross-validation. In effect, increasing the number of folds also increases

the training data. Thus, the learning curves aim to evaluate if the model is

either overfitting or underfitting the data. In other words, the learning curves

are used to gauge the model’s generalisation capabilities. In Figure 5.19, across

all the graphs, as the number of fold increases the training performance reaches

a plateau, indicating that the training performance can no longer improve by

increasing the amount of training data. Similarly, the validation score increases,

indicating that the generalisation capabilities of the model are satisfactory. In

general, the convergence of the training and validation learning curves indicate

the presence of a model with a good fit on the data. For example, the upper

left chart of Figure 5.19 shows the learning curves for the model predicting the
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average EG temperature of all the cylinders of the ME. As seen, the training score

reaches a plateau of around 0.977, and the validation score reaches a maximum

value of nearly 0.968.
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Figure 5.19: Learning curves of model N54 showing the training and validation
scores as a function of increasing folds during the cross-validation process
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5.4.2.2 Testing

Model N54 is identified as the optimal and fully defined choice for the prediction

of the EG temperature of the cylinders of the ME. Following the completion of the

training and validation process, model N54 is trained using the whole training set

(no validation set is used). The trained model is then evaluated on the previously

unseen test set. Figure 5.20 shows the training and testing scores of this process.

As observed, the testing performance is satisfactory as the R2 ranges from 0.93

to 0.966.
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Figure 5.20: Final training and testing scores of the selected model
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5.4.3 Fault Detection

This step of the methodology uses the incoming ProMon data, which are checked

according to the process described in Section 4.6.3. The identified and evaluated

model (N54) is used to obtain the expected (predicted) values for the ME EG

temperature of each cylinder of vessel “C”. Once these values are calculated, they

are compared with the actual EG temperature from the incoming ProMon data,

resulting in the residuals.

Once the calculation of the residuals is completed, the EWMA control chart

is constructed, which requires the specification of the λ and L hyperparameters.

The former is the smoothing parameter and is obtained according to common

practices. In this work, it is assumed that λ = 0.3, according to Badodkar

and Dwarakanath (2017). On the other hand, the L hyperparameter controls

the width of the control chart (distance between UCL and LCL), and its value

is assigned after iterations. As discussed in Section 5.4.1, the incoming data

represent healthy operating conditions, as confirmed by the operator of vessel

“C”. Therefore, the value of L was selected so that the residuals on the control

chart do not exceed the UCL and LCL. Figure 5.21 shows the residuals of

the average EG temperature of cylinders of the ME of vessel “C”, plotted in an

EWMA control chart. The average EG temperature is used for simplicity reasons,

as it summarises the behaviour of the individual cylinders. In this Figure, the

obtained residuals are shown with grey, and the EWMA statistic for each residual

is shown as blue. Lastly, the UCL, LCL and the Center Line (CL) are also

shown. In Figure 5.21, L = 3 was used, since the resulting EWMA statistic for

the residuals lie between UCL and LCL. It should be specified that L = 3 is the

first value correctly classifying the EWMA residuals.
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Figure 5.21: EWMA control chart for the selection of the L hyperparameter

The evaluation of the methodology transpires by using the developed EB

model and analysing the residuals in an EWMA chart for fault detection. To

examine the detection capabilities of the methodology, and by considering the

fault-free nature of the available data, four different fault cases are examined

through simulated data in the form of a sensitivity analysis (Law 2009; Saltelli

2004)

These four cases are presented in Table 5.12 and represent failure modes that

can affect the target variable. In detail, according to domain knowledge and by

considering the publications from Hountalas (2000) and Theotokatos and Tzelepis

(2015), the examined cases represent specific failure modes in a ship, further

explained in the remaining section. In addition, the limits presented in Table 5.12

are selected from the ME manufacturer guide (MAN B&W 20017) and represent

the alarm limits set by the manufacturer. In each case, the appropriate variables
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in the incoming ProMon data are adjusted linearly, to reach and exceed the

presented limits, simulating the faulty conditions.

Table 5.12: Verification cases description

Case ID Variable Alteration Limit Value
Case 1 ME scavenging air pressure Increased Upper 3.3 bar
Case 2 ME scavenging air pressure Decreased Lower 0.4 bar
Case 3 ME cylinder EG temperature Increased Upper 420 oC
Case 4 ME cylinder EG temperature Decreased Lower 214 oC

These adjustments take place, across all cases, from 10/01/2017 to 11/01/2017

and is assumed that after this period, rectifying actions take place. Figures 5.22

-5.25 show the EWMA fault detection results for case 1 to case 4 respectively. All

cases show the residuals of the average EG temperature across all the cylinders.

This is due to simplicity reasons, as the examples of the examined faults affect

the EG temperature of all the cylinders.

Figure 5.22 shows the EWMA smoothed residuals signal for case 1. As it can

be observed, the points from the first few days have residuals with an error close

to 0oC. However, from the 10/01/2017 the residuals begin to increase and reach

more than 200oC. This surge is attributed to the increase of the ME scavenging

air pressure to more than 3.20 bar. The residuals (as defined in Equation 3.22)

increase, as the expected value of the target variable, increases with a higher

rate. As it can be observed, the simulated fault is successfully detected as the

EWMA exceeds the UCL. A typical example of a fault described in case 1 is the

overloading of the ME caused by fouling of the ship’s hull.
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Figure 5.22: EWMA control chart of the average EG temperature for case 1

Figure 5.23 shows the EWMA smoothed residuals signal for case 2. Similarly

with the previous case, the residuals from the first few days fluctuate around

0oC. However, from 10/01/2017 the residuals begin to drop and reach a value of

more than -350oC. This decrease is attributed to the controlled drop of the ME

scavenging air pressure to nearly 0.20bar. In this case, the residuals drop, as the

expected value of the target variable declines with a sharper rate. As it can be

observed, the simulated fault is successfully detected by the LCL. For instance,

such behaviour can be attributed to fouling and corrosion in the TC of the ship,

and fouling and corrosion in the nozzle ring of the TC.
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Figure 5.23: EWMA control chart of the average EG temperature for case 2

Figure 5.24 shows the EWMA smoothed residuals signal for case 3. As it can

be observed, the points from the first few days fluctuate around 0oC. However,

from 10/01/2017 the residuals begin to decrease and reach a value of approxi-

mately 150oC. This drop is attributed to the simulated rise in the ME cylinder

EG temperature to nearly 420oC. The residuals in case 3 decline, as the actual

value of the EG temperature drops decoupled from the expected value. As it can

be observed, the simulated fault is successfully detected, as the LCL is success-

fully exceeded. Typical examples of fault described in case 3 include the fouling

of the main cooler of the ship and fouling in the AC of the ME (both air and

water sides).
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Figure 5.24: EWMA control chart of the average EG temperature for case 3

Figure 5.25 shows the EWMA smoothed residuals signal for case 4. As it

can be observed, the points from the first few days fluctuate around 0oC. How-

ever, from 10/01/2017 the residuals begin to increase and exceed the value of

approximately 200oC. This surge is attributed to the simulated drop in the ME

cylinder EG temperature to nearly 214oC. Following the same underlying reason-

ing as case 3, the decoupled decrease of the actual values of the target variable

increases the residuals. As it can be observed, the simulated fault is successfully

detected by the UCL. A typical example of a fault described in case 4 includes

the improperly maintained or improperly configured engine room conditions.
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Figure 5.25: EWMA control chart of the average EG temperature for case 4
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5.5 Diagnostics

Following the completion of the FD methodology, the proposed predictive main-

tenance framework addresses the issue of diagnostics. The diagnostics part of the

proposed framework is performed through the methodology presented in Section

4.7. The diagnostics methodology aims to enhance maritime predictive main-

tenance by developing a novel approach to pinpoint the root cause of certain

detected fault. More specifically, this methodology includes the novel integration

of an ML-based EB model (multiple polynomial ridge regression) for FD with a

knowledge-based BN for diagnostics. As discussed in Section 5.4, the diagnostic

methodology uses the same data as the FD methodology, due to restrictions in ob-

taining additional required data. The FD and the diagnostics methodologies were

developed sequentially, as any diagnostic efforts must initiate after the detection

of a fault. As a result, the diagnostic methodology uses the identified EB model

(model N54) as input. As outlined in Figure 3.8, the diagnostics methodology

initiates with data collection, described in Section 5.4. The next step includes

the fault mapping process, which allows the determination of the different possi-

ble causes of the faults identified with model N54. Then, model N54 is used to

detect developing faults, and the results are subsequently aggregated. After the

different fault causes are identified, the structure of the BN is determined, and

the resulting network is used for diagnostic tasks.

5.5.1 Diagnostic Set-up

The diagnostic set-up is the primary step of this methodology and forms the link

between the FD and the diagnostics methodologies. This step includes the fault

mapping, the FD results aggregation process and the network set-up.
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5.5.1.1 Fault Mapping

Fault mapping is a crucial task as it identifies the potential faults that can be

diagnosed in a selected system, together with the variables required for their

diagnosis. During this step, faults are paired-up with incoming ProMon variables

and also with additional required tests. The monitored variables are selected so

that any deviations indicate the development of a specific fault.

As previously discussed, the main monitored variables are the ME CYL 1-6

EGT (Table 4.8) The behaviour of these variables is accessed in terms of any

abnormal increments in all of the cylinders simultaneously. Such behaviour in-

dicates faults in the supporting systems of the ME, namely the AC and Air and

Gas (AG) handling system. Table 5.13 shows the outcome of the fault map-

ping process, assuming a simultaneous increase in the EG temperature of all the

cylinders.

Table 5.13: Mapped faults for increases in EG temperature in all cylinders,
adapted from (MAN B&W 20017)

Primary Fault Secondary
Fault

Diagnostic Parameters Diagnostic Test

AC AC air-side foul-
ing

∆PC, SCAV AIR PRESS Pressure drop test

AC AC water-side
fouling

∆PT , SCAV AIR PRESS Temperature drop test

AG handling
system

AF fouling ∆PF , SCAV AIR PRESS Pressure drop test

AG handling
system

Corroded TC
mechanical
components

TCS, SCAV AIR PRESS Speed drop test

AG handling
system

TC Fouling SHAFT PWR, SCAV AIR PRESS Scavenge air pressure drop test

The faults in Table 5.13 are divided into primary and secondary. The primary

faults refer to the system in which a fault is developing. The secondary faults

refer to the specific components of a system in which the fault is developing.

Moreover, each fault is given a specific diagnostic test to assist with its identifica-

tion. The diagnostic tests are used once a simultaneous abnormal increase in the

EG temperature is detected, in order to pinpoint the specific root cause of the

Chapter 5 213 Michail F Cheliotis



Ship Maintenance

detected fault. The fault-mapping process and the diagnostic tests were identi-

fied by taking into account the operating manuals of the ME (MAN B&W 20017;

Woodyard 2009). The diagnostic tests are shown in Figures 5.26 - 5.30. Figure

5.26 shows the diagnostic test (chart) used to identify fouling in the air-side of

the AC. The ∆PC is examined in terms of the SCAV AIR PRESS, and if its

value is beyond the highlighted envelope, the test is failed. If this tests fails and

all the cylinders have increased EG temperature fouling in the air-side of the AC

is detected.
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Figure 5.26: Diagnostic test for the detection of AC air-side fouling

Similarly, Figure 5.27 shows the diagnostic test identified from the ME man-

ufacturer, used to identify fouling in the water-side of the AC. The ∆PT is

examined in terms of the SCAV AIR PRESS, and if its value is beyond the

highlighted envelope, the test is failed. If this tests fails and all the cylinders

have increased EG temperature fouling in the water-side of the AC is detected.
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Figure 5.27: Diagnostic test the detection of AC water-side fouling

Likewise, Figure 5.28 shows the diagnostic test (chart) used to identify fouling

in the AF of the ME. The ∆PF is examined in terms of the SCAV AIR PRESS,

and if its value is beyond the highlighted envelope, the test is failed. If this tests

fails and all the cylinders have increased EG temperature fouling in the AF of

the ME is detected.
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Figure 5.28: Diagnostic test for the detection of ME AF fouling

Figure 5.29 shows the diagnostic chart used to identify fouling in the mechan-

ical components of the TC (turbine blades, nozzle ring). The TCS is examined in

terms of the SCAV AIR PRESS, and if its value is beyond the highlighted en-

velope, the test is failed. If this test fails and all the cylinders have increased EG

temperature fouling in the turbine blades, or nozzle ring of the TC is detected.

Chapter 5 215 Michail F Cheliotis



Ship Maintenance

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Scavange air pressure (bar)

9000

10000

11000

12000
TC

 S
pe

ed
 (r

pm
)

Mechanical Components

Figure 5.29: Diagnostic test for the detection of fouling in the mechanical com-
ponents of the TC

Lastly, Figure 5.30 provides the diagnostic chart used to identify fouling in the

turbine or compressor of the TC. The SCAV AIR PRESS is examined in terms

of the ME power, and if its value is beyond the highlighted envelope, the test is

failed. If this tests fails and all the cylinders have increased EG temperature

fouling in either the compressor,or the turbine is detected.
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Figure 5.30: Diagnostic test for the fouling in the turbine or compressor of the
TC

Apart from the simultaneous increase in the EG temperature in all the cylin-

ders, it is possible to observe increased EGs in only one cylinder. This behaviour

alters the fault-mapping shown in Table 5.13 and instead the faults in Table 5.14
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are investigated. An isolated increase in the EG temperature indicates the pres-

ence of faults within that specific cylinder, as demonstrated by the primary and

secondary faults in Table 5.14.

Table 5.14: Mapped faults for increase in EG temperature of one cylinder,
adapted from (MAN B&W 20017)

Primary
Fault

Secondary Fault Diagnostic Param-
eters

Diagnostic Test

Cylinder
head

Leaking Exhaust
Gas Valve (EGV)

SHAFT PWR, Pmax Power drop and Pmax

drop
Cylinder
head

Blocked fuel valve
or fuel injector

SHAFT PWR, Pmax Power drop and Pmax

drop
Combustion
chamber

Chamber blow-by Pcomp, Pmax,
SCAV AIR TEMP

Pcomp drop,
Pmax drop and
SCAV AIR TEMP
increase

For instance, to investigate whether an isolated EG temperature increase is

caused by a leaking Exhaust Gas Valve (EGV), the power output and the max-

imum combustion pressure (Pmax) of the suspected cylinder are examined. If

the power output and Pmax are reduced, a leak in the EGV of the cylinder is

possible (Papagiannakis and Hountalas 2004). However, the same behaviour can

be observed when the temperature rise is caused by a blocked fuel valve or fuel

injector. It is often challenging to distinguish these two faults without visually

inspecting the cylinders. However, the drops in the power output and Pmax are

more prominent in the former cases (Hountalas 2000). Lastly, the case of a

blow-by, as defined by (Mobley, Higgins, and Wikoff 2008), is mapped. If the

Pmax and compression pressure Pcomp are reduced, and the SCAV AIR TEMP

is increased, the presence of a blow-by is detected (Woodyard 2009).

Based on the above, it is becoming apparent the faults diagnostics are heavily

reliant on a variety of data. To successfully identify the faults mapped in Tables

5.13 and 5.14, both ProMon and PeMon data are required. Since the DAQ system

installed onboard vessel “C” is not able to record PeMon data, only the faults
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shown in Tables 5.13 are pursued.
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5.5.1.2 FD Results Aggregation

Once the fault-mapping process is completed, the results from the FD are aggre-

gated to summarise the condition of each cylinder. During this step, the incoming

ProMon data are used, together with the residuals obtained by using model N54

(described in Section 6.4.3). To evaluate the diagnostic capabilities of the de-

veloped methodology and since the incoming ProMon data represent fault-free

operations, artificial faults are also used. The artificial fault is introduced in terms

of increased residuals for each cylinder, which are caused by a gradual increase

in the ME scavenging air pressure (predictor variable) until the alarm limit (3.30

bar) for the variable is exceeded (Table 5.12).

The FD results aggregation aims to introduce the necessary artificial faults,

reflected on each cylinder. Then, the residuals of each cylinder are plotted in an

EWMA control chart, covering in duration up until the end of the introduced

fault. Once the EWMA control chart is plotted, the states of each cylinder

are summarised (aggregated) in Failed, Degraded and Normal states. In detail,

points situated above the UCL, or below the LCL, contribute to the Failed state.

Point between the UCLdeg and UCL, or between the LCL and LCLdeg (Section

4.7.3.1), contribute to the Degraded state. The remaining points contribute to

the Normal state.

Figures 5.31 - 5.35 show the resulting EWMA control charts for the introduced

faults, for all the cylinders (cylinder 1 - cylinder 5). From these figures, it is

observed that the artificial faults that are introduced on the 18th of January

2017 are successfully detected, as the EWMA of the residuals for all cylinders

exceed the UCLs. Similarly, Figure 5.36 shows the produced aggregated results,

in terms of Normal, Degraded and Failed states for each cylinder.
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Figure 5.31: EWMA control chart for Cylinder 1 during the simulated fault
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Figure 5.32: EWMA control chart for Cylinder 2 during the simulated fault
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Figure 5.33: EWMA control chart for Cylinder 3 during the simulated fault
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Figure 5.34: EWMA control chart for Cylinder 4 during the simulated fault
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Figure 5.35: EWMA control chart for Cylinder 5 during the simulated fault
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Figure 5.36: Aggregated results during the simulated fault for the ME cylinders
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5.5.1.3 Network Set-Up

Once the fault-mapping is concluded and the aggregated results for each cylinder

(under the effects of the introduced faults) are obtained, the network set-up

process takes place. The network set-up includes the specification of the structure

of the BN, as discussed in Section 4.7.3.3, and the quantification of the BN using

the aggregated results for each cylinder. For the period of interest, the CPTs

of the network are populated. Afterwards, evidence (VE and HE) regarding the

states of the observable and test nodes are used as input, and the probabilities

of the primary and secondary faults, together with the profile of each fault are

obtained.

In Figure 5.37, the resulting layout of the diagnostic BN is shown. The top

nodes (i.e. Cyl 1- Cyl 5) represent the state of each cylinder (Failed, Degraded,

Normal), based on the residuals’ location in the EWMA control chart for that

cylinder. For example, during the period of interest the condition of cylinder 1

is summarised as 26% in the Failed state, 2% in the Degraded state and 73%

in the Normal state, as also summarised in the upper left chart of Figure 5.36.

The nodes representing the cylinders are the observable nodes, as discussed in

Section 4.7.3.3. The next layer represents the control nodes, which are tasked

with accessing if a simultaneous increase in the ME EGT of all the cylinders

takes place. The state of these nodes is binary (True or False) and their purpose

is to propagate and evaluate the information from the observable nodes. The next

two layers represent the primary and secondary fault nodes, each of which has

a Normal or Abnormal state. Lastly, the lowest layer represents the test nodes

which help to quantify the probability of a specific fault occurring and have Pass

or Fail states. The CPTs of the test and the control nodes are populated based

on logical rules depicting functional dependencies in the network. Lastly, the

CPTs of the primary and secondary nodes are populated by obtaining failure

statistics from the OREDA data-bank and using logical rules. For instance,
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using the OREDA statistics and without using evidence in the test nodes, it is

observed that the AC function is 97% normal. The 3% abnormal state of the

AC is attributed to the propagation of the increased Failed state of the cylinders,

demonstrating the network’s ability in evaluating the condition of certain ship

systems. The structure of the BN in Figure 5.37 corresponds to output of the

fault-mapping process shown in Table 5.13 As can be observed, the BN in Figure
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Figure 5.37: Initial diagnostic BN

5.37 creates a visual model summarising the condition of the vessel. This graph

covers the period up until the end of the introduced artificial fault. Without

using evidence to specify the presence of a fault, the condition of the cylinders is

shown in the observable nodes. Each cylinder has a high percentage in the Failed

state, which is attributed to the presence of the artificial fault.

However, on the 23rd of January 2017, the EWMA control charts indicate that
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the ME cylinders are on the “Failed” state, as presented in Figures 5.31 - 5.35,

due to the presence of the simulated fault. Consequently, HEs are used to specify

the Failed state in each observable (cylinder) node. As a result, each cylinder is

100% at the failed state. Comparing Figures 5.37 and 5.38, this has a great effect

in the probabilities of primary and secondary fault nodes. For example, using the

information from above and without utilising the test nodes the abnormal state

of the AC increases to 20%.
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Figure 5.38: Diagnostic BN with with observable nodes at Failed state

To investigate the root-cause of the detected fault, the diagnostic tests must

be performed and their outcomes used as input in the test nodes. Assuming

a simultaneous increase in the EG temperature and a failed pressure drop test

(Table 5.13) in the AC, fouling in the air-side of the AC is detected (Figure 5.39).
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Using HE, the state of the DP test node is specified at 100% Failed. Therefore, the
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Figure 5.39: Fully investigated diagnostic BN

network identifies that the air-side of the AC is at 100% Abnormal state, whilst

also increasing the abnormal state of the AC to 86% Abnormal, identifying the

root-cause of the abnormal simultaneous increase in the EG temperature.

To further investigate the behaviour of the mapped faults (fault profile), the

gradual transitions between each state of the observable and test nodes take

place. The gradual transition between states is represented using VE, whereas

the fully observed states are described using HE. This transition concludes at the

Failed state in all the observable nodes and the Fail state in the test nodes. In

more detail, HEs are used to demonstrate the ability of the BN to calculate the

probability of each fault. To achieve this, the following two conditions are met:

a) the observable nodes are at the Failed state, due to the artificial fault and b)

Chapter 5 229 Michail F Cheliotis



Ship Maintenance

Table 5.15: Failure modes summary for the primary faults

Case Number Failure Modes
AC Fault 1 AC Water-side fouling
AC Fault 2 AC Air-side fouling

AC Fault 3
AC Air-side fouling and
AC Water-side fouling

AG Handling System Fault 1 AF Fouling
AG Handling System Fault 2 Corroded TC mechanical components
AG Handling System Fault 3 TC fouling

AG Handling System Fault 4
AF Fouling Corroded and
TC mechanical components and
TC fouling

AG Handling System Fault 5
AF Fouling and
Corroded TC mechanical components

AG Handling System Fault 6
Corroded TC mechanical components and
TC fouling

AG Handling System Fault 7
AF Fouling and
TC fouling

appropriate test nodes are set to the Fail state which simulates the cause for the

artificial fault. The application of the VE follows the same principle, but their

use allows to capture the profile of each fault and examine the rate with which it

develops.

The resulting fault profiles for the primary and secondary faults are shown

in Figure 5.40 and Figure 5.42 respectively. Moreover, the primary faults are

examined in terms of all the different failure modes. These failure modes are

shown in Table 5.15, and represent different combinations which can cause either

the AC or the AG handling systems to fail.

Regarding the primary faults, Figure 5.40 shows their fault profiles based on

all the possible causing combinations (failure modes), as detailed in Table 5.15.

In this case, the lower three lines represent failure modes of the AC, whereas

the remaining represent the failure modes of the AG handling system. As it

can be observed, the failure of the AG handling system is more likely than the

failure of the AC. As a consequence, any simultaneous deviation in the ME EG
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temperature is more likely to be caused by a fault in the AG handling system. In

particular, the most likely failure mode corresponds to the simultaneous failure

of all the components of the AG handling system. Figure 5.41 shows the average

rate of change of the primary faults. In that plot the y-axis denotes the average

rate of change of the probability of a fault and the x-axis shows the considered

faults. The faults of the AC are colour-coded in teal and the faults of the AG

handling system in blue. From that chart, it is observed that the simultaneous

fouling in both the air-side and the water-side of the AC has the largest rate of

increase and therefore can develop the quickest.
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Figure 5.40: Fault profiles for the primary faults

In Figure 5.42, the fault profiles for the secondary faults are shown. In that

case, it can be observed that the highest fault profiles belongs to the corroded

TC mechanical components, which is then followed by the AF fouling. Therefore,

the most likely secondary fault is the corrosion in the mechanical components of

the TC. Consequently, any faults manifested through the simultaneous increase

of the ME EGT, are most likely attributed to the corrosion of the mechanical

components of the TC. Figure 5.43 shows the average rate of change of the sec-
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Figure 5.41: Average rate of change of primary faults

ondary faults. From that chart, it is observed that the corrosion of the mechanical

components of the TC has the largest rate of increase and therefore, can develop

the quickest.
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Figure 5.42: Fault profiles for the secondary faults
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Figure 5.43: Average rate of change of secondary faults
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5.6 Discussion of Results

This section aims to summarise the primary outcomes of the case studies and

discuss the impact of the proposed framework. The different methodologies of

the proposed predictive maintenance framework are applied in different case-

studies, each aiming at demonstrating the effectiveness of the different parts of

the framework.

The proposed predictive maintenance framework enhances maritime mainte-

nance by combining reliability-based and data-driven tools in a novel way. The

proposed framework examines the areas of critical equipment selection, data

preparation, FD and diagnostics in unique methodologies, assessed in the pre-

sented case studies.

The first case study that is considered is the critical equipment selection part

of the framework, which is applied in vessel “A”. During this case study, a ship

system analysis is performed, which creates a useful base for the implementation

of the FTA. Translating the ship systems analysis in an FT structure creates a

visual model demonstrating various functional and systemic interdependencies.

Quantifying the resulting FT structure and using the exact calculation method,

the IB and ICR are obtained, which allow the ranking of the modelled components

based on two different metrics. Calculating both the IB and the ICR enables the

criticality examination of the components both in terms of their reliability and

in terms of their functional dependencies.

By combining the obtained IMs with the repair costs of the modelled compo-

nents, an initial scatter plot of the data-space is created. Then, the use of the

k-means clustering algorithm allows for the segmentation of plotted components

in three groups, including a) critical components, b) medium criticality com-

ponents and c) safest components. The critical components are located in the

cluster whose centroid has the biggest distance from the beginning of the axes.
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Based on the above, it is suggested that the maintenance actions are focused

on the critical components, as they have the following characteristics. They have

the biggest influence on the rate of change of the probability of a ship failure,

due to systemic dependencies. Also, they are the most critical in the modelled

system, by considering the components’ reliability and failure rate. Lastly, they

are the most costly to maintain after a failure, as they have the highest repair

and replacement costs. Focusing maintenance actions on the critical components

have a positive effect on the daily operations of ships, by improving their overall

availability and reliability. Similarly, this part of the framework can be used as a

maintenance prioritisation tool for ship owners and operators.

Once the critical equipment is identified, the case study of the data prepara-

tion methodology of the proposed framework is applied. This part of the frame-

work focuses on imputations from a holistic view, including all the necessary pre-

and post-imputation steps. The drive of the data preparation methodology of the

framework is to improve the quality and knowledge extracting potential of data.

The data preparation methodology establishes a hybrid imputation approach

based on the MICE and kNN imputation algorithms. The superior performance

of the proposed novel imputation method is compared against the existing kNN

and MICE methods. It is demonstrated in the case of a ME and TC system

of vessel “B”. In total, eight variables are examined including the ME power,

ME speed, ME scavenging air pressure, TC EG inlet temperature, TC EG outlet

temperature, TC LO outlet temperature, TC LO inlet pressure and TC speed.

A key outcome of this case study is the investigative comparison between the

kNN, MICE and the proposed hybrid method for imputation purposes, which ex-

hibits superior performance. In detail, the proposed approach has a mean error

of 2.21% compared to the MICE, kNN algorithms with errors of 3.3% and 5.6%,

respectively, highlighting that the small error of the proposed hybrid method im-

proves the quality of data. Since the proposed approach is based on a combination
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of data-driven tools and FP knowledge, the small error of the method highlights

the importance of using FP knowledge in the prediction of measurements from

an engineering system, compared to pure data-driven approaches.

The use of the data preparation methodology of the developed framework can

enhance the accuracy of maritime predictive maintenance. Ensuring the quality of

data, while maximising their knowledge extracting potential can improve various

aspects of ship operation. It can improve maintenance planning by providing

accurate estimates for the condition of the vessel, which also has a positive effect

on ship safety.

Following the data preparation case study, the results FD part of the frame-

work applied on vessel “C” are presented. This case study provides an application

for an ML and data-driven FD methodology, based on EB modelling and EWMA

control charts. The ultimate goal of the FD is to allow for preemptive rectifying

actions and maintenance scheduling. The EB modelling approach is used to pre-

dict the EB of the ME cylinder EG temperature. The ME EG temperature is

selected, as several faults in the ME’s supporting systems can manifest through

this variable. Then, the residuals between the expected and recorded ME cylinder

EG temperature are analysed in an EWMA control chart to detect developing

faults by means of the UCL and LCL.

During the development of the EB model, several regression models are ex-

amined, and the optimal model is selected, using k-fold cross-validation. In more

detail, multiple linear ridge regression and multiple polynomial ridge regression

models are compared. In addition to that, the optimal value of the α hyperpa-

rameter is examined, together with different predictor variables, including the ME

power, speed, scavenging air pressure and scavenging air temperature. From the

analysis, it is seen that on average, the polynomial models have mean validation

R2 score of 0.94 and linear models have a mean validation R2 of 0.83. Lastly, the

identified optimal model is based on multiple polynomial ridge regression with
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α = 0.4 and inputs the ME power, speed and scavenging air pressure.

The identified model is used to obtain the residuals of the target variable,

which are then analysed in an EWMA control chart. Healthy operating data are

used to fine-tune the L hyperparameter of the control chart before 4 different

artificial faults are simulated to assess the detection capabilities of the proposed

method.

The use of the FD methodology of the developed framework can improve

maritime predictive maintenance. The early detection of developing faults has

a profound effect on the safety of vessels, their availability and operational ef-

ficiency. By identifying faults, extensive failures are avoided while allowing for

efficient maintenance planning. Also, this part of the framework can mitigate the

risk of inefficient ship operations, as degraded machinery operations are detected.

The last case study that is presented is on the developed diagnostics method-

ology of the proposed framework. This part of the framework is also applied

on vessel “C”. The developed methodology combines the use of ML for FD and

BNs for diagnostics. As seen in this case study, the diagnostic network uses the

evidence of detected faults in the ME cylinders and seeks possible root-causes in

the AC and AG handling system of the ME.

The diagnostics case study demonstrated the creation of a practical diagnostic

network which allows for the real-time assessment of operational data to compute

accurate probabilities of different faults. Moreover, fault probabilities are used

to better understand the operation state of the ME cylinders, ME AC and ME

AG handling system.

The case study of the diagnostics frameworks results that the fastest devel-

oping faults (largest mean rate of change) are the simultaneous fouling in both

the air-side and the water-side of the AC and the corrosion of the mechanical

components of the TC. Similarly, the most likely faults are the simultaneous fail-

ure of all the components of the AG handling system and the corrosion in the
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mechanical components of the TC.

The use of the diagnostics methodology of the developed framework can aug-

ment maritime predictive maintenance. The diagnostics of developing faults has a

positive effect on the operational efficiency of ships. By identifying the root-cause

of a fault, targeted maintenance actions are enabled, reducing the downtime of

ship systems. Also, this part of the framework can mitigate the risk of inefficient

ship operations, as degraded machinery operations are detected.

5.7 Chapter Summary

This chapter discusses the main results of the novel predictive maintenance frame-

work applied in the cases studies of vessels “A”, “B” and “C”. Initially, the results

of the critical equipment selection methodology are presented. This methodology

is applied in vessel “A”, and combines FTA with k-means clustering. In more de-

tail, the methodology integrates reliability IMs repair costs to select critical com-

ponents systematically. Then, the outcomes of the data preparation methodology

are presented. This methodology is applied in the case of vessel “B” and show-

cases the effectiveness of a hybrid imputation method, based on MICE and kNN,

in predicting values from missing instances. The results from the FD method-

ology then follow, which are obtained from vessel “C”. The FD methodology

combines the DBSCAN algorithm for data checking, with a regression-based EB

model and the use of EWMA control charts for FD. This methodology includes

the systematic investigation for the optimal regression model, which results in a

multiple polynomial ridge regression model using as inputs the ME power, speed

and scavenging air pressure. Lastly, the results of the diagnostic methodology

are shown. This methodology is also applied in vessel “C” and demonstrates the

integration of ML-based FD with BN diagnostics.
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Discussion and Conclusions

6.1 Chapter Overview

This is the final chapter of this thesis and discusses the conclusions drawn from

the establishment of the novel predictive maintenance framework. The fulfilment

of the aim and objectives is deliberated first, before presenting the generated

novelty. Then, the concluding remarks and reflections are presented, followed by

recommendations for future work and the discussion of the main assumptions and

challenges.

6.2 Fulfilment of Aim and Objectives

The main drive of this research is to enrich, in a practical and theoretical manner,

the area of maritime predictive maintenance for ship machinery systems. This

was accomplished by focusing on the research question presented in Section 2. As

a result, this work was directed towards developing a framework encompassing the

areas of critical equipment selection, data preparation, detection and diagnostics

of developing faults. In detail, the set objectives of this work and how they were

fulfilled are discussed in depth in this Section.
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Objective 1: The investigation of the relevant literature regarding maintenance

strategies, reliability assessment and data-drive predictive modelling in a factual

and critical manner, in order to identify gaps and direct the novelty of the present

research. This objective was achieved through the factual and critical review of

the relevant literature, presented in Section 3, and the generation of the novel-

ties, detailed in Section 4.2 and summarised in Section 7.3. The review of the

literature identified several gaps in the maritime industry regarding the appli-

cations of PdM. It was uncovered that there is a gap in addressing the topics

of critical equipment selection, data imputation, FD and diagnostics in a single

research effort. In more detail, maintenance concepts and frameworks are exam-

ined. Then, the different categories of tools used in predictive maintenance are

presented, including reliability assessment and data-driven approaches. Based on

the identified tools, the resulting predictive maintenance process are explored,

which are aligned with the remaining objectives. Lastly, by comparing the pre-

dictive maintenance status quo between the maritime sector and other industries,

several gaps are identified. These gaps are presented in detail in Section 3.9 and

stem from the limitations of the maritime predictive maintenance process, in

terms of data preparation, fault detection and diagnostics. Moreover, the main

identified gap is the absence of a complete predictive maintenance framework

taking into account the particular needs of the maritime industry and providing

data-driven and knowledge-based solutions. The identified gaps are subsequently

used to direct the novelty of this research.

Objective 2: The proposal of a novel, data-driven and reliability-based predic-

tive maintenance framework, tailor-made for the needs of the maritime indus-

try. The completion of the objective was based on the development of the novel

compound framework, together with its methodological components. The novel

framework is presented in Section 4, and its flow is illustrated in Figure 3.1. The

development of this novel framework addresses the gap for a complete predictive
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maintenance framework taking into account the particular needs of the maritime

industry. In more detail, it includes the novel integration critical selection, data

preparation, fault detection and diagnostic methodologies in a single framework.

From a holistic point of view, this work initiates by identifying high-risk (func-

tional and economical) ship equipment, which can be used as a starting point

for predictive maintenance framework. Then, the data preparation methodology

improves the quality and knowledge extracting potential of the data used in the

fault detection and diagnostic tasks. Lastly, the fault detection and diagnostic

methodologies identify developing anomalies, together with their root causes, by

using treated data from specially identified equipment.

Objective 3: The development of a novel methodology for the identification of

the critical equipment of ship systems, aimed at prioritising maintenance efforts.

This objective was completed by developing a novel methodology for the iden-

tification and selection of critical equipment and components of ship systems.

Through this objective, it was uncovered that it is necessary to combine different

reliability metrics for the identification of critical components, as the same items

rank differently with different metrics. Also, reliability metrics must be com-

bined with cost information for practical maintenance prioritisation. Moreover,

this objective highlighted the importance of clustering different components as

it can effectively group and summarise them based on their importance. This

methodology is detailed in Section 4.4 and illustrated in Figure 3.2. The nov-

elty of this part of the frameworks stems from addressing the gap of combining

data-driven and reliability-based tools for the identification of critical compo-

nents. Similarly, it also stems from addressing the gap in combining cost aspects

with reliability characteristics for identifying critical components. Following the

collection maintenance and repair cost data, this methodology performs a ship

systems analysis which leads to a fault tree analysis. The results from the fault

tree analysis are combined with additional cost information in a clustering anal-
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ysis which leads to the identification and selection of the critical equipment. The

creation of a methodology able to identify high-risk ship equipment allows for

targeted and efficient maintenance prioritisation.

Objective 4: The establishment of a novel data preparation methodology, con-

cerned explicitly with handling missing values from data sets used on condition

monitoring tasks. The completion of the objective was based on the development

of a novel data preparation methodology, aiming at improving the quality and

value of data. This objective uncovered that the performance of the developed

hybrid imputation approach (2.2% mean error) is superior compared against the

state-of-the-art MICE (3.3% mean error) and widely used kNN (5.6% mean er-

ror) algorithms. Also, it was concluded that imputation methods that take into

account the correlation between variable perform better. Moreover, a major ad-

vantage of the developed imputation approach is that it can be used as a virtual

sensor enhancing the accuracy of data-driven models and preserving otherwise

lost information from DAQ systems. This methodology is detailed in Section 4.5

and illustrated in Figure 3.4. The novelty of this part of the framework origi-

nates from establishing a formalised data preparation approach for the maritime

industry. Also, the novelty of this part of the framework stems from the novel

combination of data-driven solutions with domain knowledge for the imputation

of missing values. The starting point of this methodology is the form handling,

synchronisation and filtering of the data. Then, a new imputation approach is

used to predict missing values from the dataset. The effectiveness of the new im-

putation approach is established through the comparison with prominent MICE

and kNN imputations algorithms. Enhancing the quality of data can have a pos-

itive effect on the resulting predictive maintenance framework, as misdirecting

information are removed and missing trend-describing points are restored.

Objective 5: The development of a novel fault detection methodology, lessening

the amount of data-associated assumptions, and tailored to the needs of the mar-
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itime industry. This objective was completed by establishing an innovative fault

detection methodology by modelling and monitoring the expected behaviour of

systems. This objective resulted in the creation of an FD model that can allow

for preemptive rectifying actions and maintenance scheduling, greatly improving

ship operations. Also, another benefit for the created model is that the selected

monitored parameter (ME EG temperature) can be used to detect various faults

from different systems. Similarly, the completion of this objective required the

investigation of the optimal regression EB model, resulting in an optimised mul-

tiple polynomial ridge regression model with a testing R2 score of 0.96. This

methodology is detailed in Section 4.6 and illustrated in Figure 3.5 and Figure

3.6. The novelty of this part of the framework stems from addressing the gap of

the application of an FD model taking into account the particular needs of the

maritime industry and addressing the limitations imposed by the available data.

The fault detection process starts with a supplementary data filtering and outlier

detection process, exploiting the benefits of application-agnostic tools. Then, the

optimal expected-behaviour model is identified through a structured comparison

of different regression models, under the effect of different inputs. The resulting

model is used to gauge the deviation between the expected behaviour of a se-

lected signal and its recorder behaviour from an incoming dataset. To facilitate

this comparison, a signal-smoothing control chart is used. The early detection

of developing faults can significantly enhance safety and operational efficiency,

through monitoring specially selected signals with fault indicative potential.

Objective 6: The establishment of a diagnostic methodology combining in a

novel way, machine learning applications with domain knowledge for practical ap-

plications of ship systems. This objective is accomplished by developing a novel

diagnostic methodology, integrated with a fault detection module, for practical

applications of ship systems. This objective resulted in one of the few diagnostic

models that are integrated with ML-based FD for ship applications. Another
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benefit is that the resulting model uses evidence of developed faults to identify

potential root-cause, thus improving ship operations This results in a practical

network that allows for the real-time assessment of the condition of specific sys-

tems. Also, this objective examined the rate of change of the probabilities of

different faults, proving insight on how certain faults develop. This methodology

is detailed in Section 4.7 and is illustrated in Figure 3.8. The novelty of this part

of the framework originates from addressing the gap in the application of a diag-

nostic module combining ML-based FD, with knowledge-based BN diagnostics.

A detrimental step in this methodology is the fault-mapping process, in which

monitored variables are paired with potential faults that can manifest through

trends in their signal. Once the monitored signals are paired with potential faults,

the method for summarising the results from the FD step is developed. The last

step of the diagnostic methodology is the specification of a diagnostic network,

which draws as input the outcome of the fault-mapping process. The creation of

the diagnostic network allows for the creation of a visual model that is easy to

interpret. It provides with the capability of assessing in real-time the operational

status of the examined model.

Objective 7: The demonstration and validation of the effectiveness of the pro-

posed predictive maintenance framework through different case studies, such as

the main engine of a bulk carrier. The requirements of this objective are met

by evaluating the performance of the different methodologies in different case

studies. These case studies are described in Section 5, and their outcomes are

presented in detail throughout Section 6. The different case studies relate to

various vessels, but in each case, they are mainly structured around the main en-

gine of the respective ship. Moreover, all the case studies aim at showcasing the

capabilities of the different methodologies by also taking into account potential

limitations during development. In detail, the case studies evaluate the frame-

work’s capabilities in a) identifying critical equipment, b) adequately preparing
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data for subsequent analysis, c) detecting in a timely manner developing faults

and d) identifying the root-cause of detected faults. The case study for the criti-

cal equipment selection is described in Section 5.2, expanded in Section 6.2 and

applied in an 81000 DWT LNG carrier. During this case study, maintenance

information is used to quantify the developed fault tree. The obtained reliabil-

ity IMs together with repair costs are clustered together to identify the critical

equipment. The case study for the data preparation is described in Section 5.3,

expanded in Section 6.3 and is applied in a 38000 DWT chemical tanker. During

this case study operating parameters from the vessel’s ME are used to develop an

imputation approach and compare it against common practices. The developed

approach, based on domain knowledge and data-driven approaches, can predict

missing values with the biggest accuracy and consistency. The fault detection

case study is described in Section 5.4, detailed in Section 6.4 and is applied in a

64000 DWT bulk carrier. Throughout this case study, variables from the vessel’s

ME are used. The collected variables are used to develop and select the optimal

regression model, from a pool of compared models. The selected model is used

to produce the expected behaviour of a selected variable, which is then compared

with its recorded behaviour. Analysing the deviation between these two values,

a signal-smoothing control chart allows for the detection of developing faults.

Lastly, the case study for the diagnostics is described in Section 5.5, detailed in

Section 6.5 and is applied in the same 64000 DWT bulk carrier. In this case

study, variables from the vessel’s ME are also used. Combing domain knowledge

with information for the ship’s ME manufacturer a fault mapping process is car-

ried, which heavily influences the developed Bayesian diagnostic network. The

developed diagnostic network is used to evaluate in real-time the condition of the

ship by examining the probabilities of different faults in the supporting systems

of the ME.

Objective 8: The discussion of the main outcomes of the developed framework

Chapter 6 245 Michail F Cheliotis



Ship Maintenance

together with suggestions for future work. This objective is fulfilled in the current

chapter, which outlines the generated novelty, provides the main reflections and

conclusions of this research and directs any potential future work.

6.3 Generated Novelty

The novelty of the present research stems from the development of the compound

maritime predictive maintenance framework. Keeping in line with the stated re-

search aim, the research and development related objectives are summarised in

four distinct categories, including critical equipment selection, data preparation,

fault detection, and diagnostics. The established maritime predictive mainte-

nance framework introduces novel aspects in the areas of critical equipment se-

lection of ship systems, data preparation for maritime applications, and fault

detection and diagnostics of ship systems and components. Similarly, the estab-

lished framework combines, in a novel manner, reliability-based and data-driven

models. The novel combination of these tools is innovative and address practical

problems of the maritime industry. Due to the use of established reliability tools,

the developed framework benefits in terms of robustness. Similarly, the data-

driven aspects incorporate innovative applications which future-proof the devel-

oped framework. The data-driven methodologies of the proposed framework can

be implemented in a variety of different settings. They can be integrated with

different applications due to the inherent interoperable nature of these tools.

A novel aspect of this work is the combination of fault tree analysis with k-

means clustering for the identification of critical components. This methodology

uses as input maintenance information from vessel “A” to obtain reliability IMs,

by performing a fault tree analysis. Then, the obtained IMs are clustered together

with cost information to identify critical equipment. This methodology combines

in a novel manner the use of fault tree analysis with k-means clustering. Moreover,
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the consideration of cost information for the identification of critical equipment is

ship systems is also novel. In general, the application of this methodology in LNG

ship systems represents a novel application. Apart from the generated novelties,

this methodology has a practical impact on the shipping industry. It can be used

to prioritise maintenance actions in high-risk equipment, improving the ship’s

availability and mitigating the risks of breakdowns. From a similar standpoint,

this framework can be used to optimise the procurement and distribution of spare

parts, to reduce the risks of breakdowns further. Lastly, this methodology can

provide a starting point for more in-depth reliability analysis of ship systems.

Another novel part of the present research is the implementation of a hybrid

imputation approach, developed as a part of the data preparation methodology.

This methodology uses as input performance and process variables from vessel’s

“B” ME. The collected data pass through a basic pre-processing step before they

are used to develop the hybrid imputation tool, which is based on the MICE and

kNN algorithms. Using these two algorithms enables the combination of data-

driven solutions with domain knowledge in a single approach. Once the hybrid

imputation approach is developed, its performance is evaluated against the MICE

and kNN imputation algorithms. This methodology integrates in a novel way the

MICE and kNN imputation algorithms in an approach with superior performance.

From a theoretical point of view, this methodology includes the novel combination

of data-driven models with domain knowledge in a single imputation approach.

Moreover, the application of this methodology in ship systems is also novel. Apart

from the discussed novel aspects, this methodology has practical significance in

shipping. Initially, it can be used as a virtual sensor, ensuring the continuous

collection of required data. It enriches the literature and addresses a practical

problem encounter by maintenance planners. This methodology can be used to

improve the quality of data sets used in predictive maintenance, enhancing the

accuracy of subsequent models. As a result, decision-making processes are more
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accurate and lead to more effective actions.

Another novel aspect of this work is the combination of regression-based ex-

pected behaviour modelling with the exponential moving average control chart

for fault detection. This particular combination allows for the creation accurate

regression models that are not depend on very large training sets and detect

developing faults while filtering out noise (Cheliotis, Lazakis, and Theotokatos

2020). This part of the framework considers the use of performance and process

variables from vessel’s “C” ME. The DBSCAN algorithm is deployed to remove

outliers from the dataset before the data are used to train and validate different

regression models. Once the optimal model is selected and tested, the residuals

of a chosen variable are obtained and analysed in the exponential moving average

control chart for fault detection. This methodology combines in a novel way the

investigation of different regression models for expected behaviour modelling with

control charts for fault detection. Moreover, the use of the DBSCAN algorithm

for outlier detection, coupled with the presented fault detection approach for ship

applications is also novel. The expected behaviour approach has the distinct ad-

vantage of detecting faulty operating conditions without requiring scarce faulty

labelled data for model training. Also, this approach has enhanced applicabil-

ity when compared with traditional classification approaches. This is due to the

time-series output of the expected behaviour approach, which is more useful and

interpretable. From a practical point of view, this model can be used to improve

the safety of ship systems and to reduce the number of breakdowns.

The final novel part of this research is the combination of machine learning-

based fault detection with a Bayesian diagnostic network. This part of the frame-

work also uses as input performance and process variables from vessel’s “C” ME.

By aggregating the results from fault detection and by carrying out a fault-

mapping process, the structure of the Bayesian diagnostic network is specified.

This methodology includes the novel combination of a machine learning-based
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fault detection module with a Bayesian diagnostic network, in a novel application

for ship systems. From a theoretical point of view, this methodology combines in

a novel manner, data-driven approaches with knowledge-based models in an inte-

grated diagnostics application. The use of this methodology has several practical

benefits for the maritime industry. It can enable ship operators to get a real-

time assessment of the condition of their vessels. As a result, better maintenance

planning is allowed, which increase the safety of ships and ship systems.

6.4 Reflections

The following statements contain the concluding reflections of this work:

• The presented framework is established through the examination of the

relevant literature investigating trends and common practices of predictive

maintenance in the maritime and other sectors. The established require-

ments for a holistic framework encompassing the individual methodologies

strengthen the framework presented in this work.

• In line with the above, this thesis presented a reliability-based and data-

driven framework addressing a multitude of issues of predictive mainte-

nance. The resulting framework combines different data-driven and relia-

bility based tools in a practical schema with proven accuracy. Maritime

predictive maintenance issues can be tackled by either using the framework

as a stand-alone solution or by employing the individual methodologies.

• The developed maritime predictive maintenance framework initiates with

the critical equipment selection methodology. The methodology includes

a ship system analysis, fault tree analysis, reliability IMs assessment and

data clustering. It is possible to identify critical equipment systematically,

using objective criteria and incorporating various aspects. This method-
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ology enhances the manner in which critical components are identified by

combining reliability indices with cost information. The use of additional

criteria is enabled by using easy to expanded partitioning algorithms. As

a result, ship operators can identify critical components in a tailor-made

manner, by including parameters and metrics based on their requirements

and goals.

• The data preparation methodology is the subsequent step in tackling mar-

itime predictive maintenance. The steps of this methodology include data

form handling and synchronisation, data filtering, imputation of missing

values and correction to ambient conditions. The development of the data

preparation methodology enriches the relevant literature, which is very lim-

ited for maritime applications. Imputation in shipping is overlooked, but

it remains essential. This is particularly true with the increasing applica-

tion of machine learning algorithms, which are sensitive to missing values.

In essence, the proposed imputation approach acts as a virtual sensor, en-

suring the uninterrupted collection of required data. From the developed

methodology, it is observed that when attempting to predict missing val-

ues from highly correlated variables, imparting domain knowledge in data-

driven modes can have a positive effect. On the other hand, when perform-

ing imputation of uncorrelated values, increasing the model’s complexity

can have a limited influence.

• The fault detection methodology is the following step in addressing mar-

itime predictive maintenance. This methodology incorporates the inves-

tigation of the optimum expected behaviour model, the evaluation of the

identified model, the calculation of the residuals of a target variable, and

the analysis of the residuals in a signal-smoothing control chart. The de-

veloped methodology allows for the prediction of faults without requiring
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faulty labelled data during model training. However, the selection of the

model’s inputs should be thoroughly and systematically investigated. This

expedites the developing process, resulting in models that are quicker to

deploy and can offer accurate predictions decoupled from operating condi-

tions. By detection faults using an expected behaviour approach, the need

for traditional one-class classifiers is bypassed. This increases flexibility

and eases the model’s integration with subsequent diagnostic tasks. Due

to the reduced number of assumptions, the developed methodology can be

expanded and implemented in different engineering systems, increasing the

framework’s impact on safety.

• The developed diagnostics methodology is the final step of maritime predic-

tive maintenance framework. The steps of this methodology are, the aggre-

gation of the results from fault detection, the fault mapping structure, the

specification of the structure of the diagnostic network, and the investiga-

tion of different faults. This methodology demonstrates the integration of

a machine learning-based fault detection module, with a knowledge-based

diagnostic network. As a result, this methodology enriches limited mar-

itime literature regarding integrated fault detection and diagnostics. The

developed network is also expandable and can be used to model additional

systems; however, this process depends heavily on additional failure statis-

tics which can be hard to obtain. Shipowners and operators can use the

developed diagnostic network in order to improve their understanding, in

real-time, in terms of the condition of their vessels.

6.5 Recommendation for future work

The developed framework, together with the different methodologies contained

within, contribute to the area of maritime predictive maintenance. Future re-
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search directions that can further enhance the impact of this work are presented

below. These directions reflect both to the individual methodologies and the

framework as a whole:

• The fault tree structure developed for the critical equipment selection can be

expanded to account for greater modelling detail and include dynamic gates.

These gates can model with greater accuracy the dynamic dependencies

between components. Moreover, additional gates and events can be used to

model with greater accuracy the ship systems, by incorporating additional

components, currently omitted for simplicity reasons. However, this process

should always be a function of the available computational power.

• The reliability and cost criteria used to identify the critical equipment can

be expanded to include additional information, both from a practical and

from a theoretical standpoint. For example, the availability of spares could

be factored in order to provide application-specific maintenance prioritisa-

tion.

• Additional clustering algorithms can be explored when partitioning the crit-

ical equipment data-space. The used k-means algorithm creates hard clus-

ters, where each component has a binary membership in each cluster. Ex-

ploring algorithms which create soft clusters, where each component has a

gradual membership in different clusters could be beneficial. For instance,

the c-means clustering algorithm can be used to improve the representa-

tion of components which are currently located near the boundary of each

cluster.

• To further establish the effectiveness of the developed imputation approach,

it would be beneficial to compare it with additional imputation methods,

apart from the MICE and kNN algorithms. For instance, vertical imputa-

tion approaches, or additional machine learning tools (e.g. random forests)
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can provide an extended basis for comparison. Similarly, the effectiveness

of the developed approach can be evaluated through the use of additional

variables during the comparison of the different imputation approaches.

• The data filtering process used during the data preparation methodology

can be replaced with application-agnostic tools. For example, instead of

using a value-based filter, the DBSCAN algorithm, or other similar algo-

rithms, could be employed.

• Regarding the data preparation methodology, it would be beneficial to holis-

tically assess its impact on ship condition monitoring (e.g. fault detection,

diagnostics). In more detail, this would involve performing condition mon-

itoring tasks with treated and untreated datasets and evaluating the ob-

tained results.

• The fault detection methodology could be enhanced by exploring additional

expected behaviour models. Even though the selected expected behaviour

model obtained excellent training, validation and testing scores, its perfor-

mance could be compared with random forest, or support vector machine

regression models.

• The outlier detection algorithm used during the fault detection methodol-

ogy (DBSCAN) could be compared with additional density-based clustering

techniques (e.g. OPTICS algorithm).

• Since the aim of the expected behaviour models is to classify each point in

terms of its state, a direct comparison between this approach and the tradi-

tional classification approach would be beneficial. For example, comparing

the regression-based expected behaviour model with a one-class classifier

(e.g. support vector machine) would offer an insight into the performance

of these two approaches.
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• The effectiveness of the expected behaviour model could be expanded in

predicting additional signals (e.g. ME speed).

• The effectiveness of the exponentially weighted moving average in analysing

the residuals, during fault detection, could be compared with additional

control charts (e.g. cumulative sum charts).

• The structure of the diagnostic Bayesian Network can be expanded in future

research to include additional observable nodes (e.g. ME speed and ME

power). However, this process is a function of the available data.

• Future research efforts could also compare the performance of the developed

diagnostic network with alternative knowledge-based approaches.

• Future research efforts could bypass the use of data banks for the non-

observable nodes. Instead, combining reliability tools with Monte Carlo

simulations could be used as an alternative.

• Finally, future research efforts could examine the overall effectiveness of the

developed framework in a single, continuous, case study.

6.6 Assumptions and Challenges

To meet the main research objectives and establish the novelties of this thesis,

several assumptions were made, and different challenges had to be overcome.

These two topics are presented and discussed in this Section.

The main assumptions of this thesis represent the basic premises based on

which this work is developed. The first assumption reflects the manner in which

the various methodologies of the framework are evaluated. Due to the data

limitations discussed in Section 5, different case studies are used to evaluate the
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capabilities of the individual parts of the framework. Also, the individual method-

ologies of the proposed framework were not developed simultaneously. Regarding

the critical equipment selection aspect of the framework, it is assumed that the

maintenance schedule of the examined vessel is used to obtain information for the

quantification of the FT structure. Similarly, regarding the data preparation part

of the framework, operating manual supplied for ship operators are used for data

filtering. The main assumption of the FD methodology of the proposed frame-

work is based on the retraining of the EB models after major modifications and

repairs on the examined vessel. Lastly, the diagnostics methodology is based on

the assumption that data banks can be used for failure statistics in the absence

of required data.

The majority of the challenges of this thesis are relating to the required re-

sources. Initially, there was an absence of a single dataset containing all the

required information necessary to develop and evaluate the different components

of the framework in a single case study. Moreover, some of the individual datasets

were still missing some information, resulting in the use of alternative sources (e.g.

data banks). Lastly, the size of the analysis is some parts of the framework (e.g.

during the FTA) was restricted due to the limited computational power.

6.7 Chapter Summary

This chapter presented concluding remarks and reflections for the established pre-

dictive maintenance framework. Initially, the fulfilment of the main aim and ob-

jectives is elaborated. Then, the novelty generated from this work is summarised

and outlined before presenting concluding reflections and remarks. Lastly, this

chapter presented recommendations and directions for future work and discussed

the main assumptions and challenges. List of references and appendices are pro-

vided next, supplementing this work.
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Erozan, İhsan (July 2019). “A fuzzy decision support system for managing main-

tenance activities of critical components in manufacturing systems”. In: Jour-

nal of Manufacturing Systems 52, pp. 110–120. issn: 02786125. doi: 10.1016/

j.jmsy.2019.06.002.

Ersdal, Gerhard and Arne Kvitrud (2000). “Green water on Norwegian produc-

tion ships”. In: Proceedings of the International Offshore and Polar Engineer-

ing Conference 4, pp. 211–218.

Erto, Pasquale, Antonio Lepore, Biagio Palumbo, and Luigi Vitiello (2015). “A

Procedure for Predicting and Controlling the Ship Fuel Consumption: Its Im-

plementation and Test”. In: Quality and Reliability Engineering International

31.7, pp. 1177–1184. issn: 10991638. doi: 10.1002/qre.1864.

Eruguz, Ayse Sena, Tarkan Tan, and Geert Jan van Houtum (Sept. 2017). A

survey of maintenance and service logistics management: Classification and

research agenda from a maritime sector perspective. doi: 10.1016/j.cor.

2017.03.003.

Ester, Martin, Hans-Peter Kriegel, Jiirg Sander, and Xiaowei Xu (1996). A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. Tech. rep. url: www.aaai.org.

Chapter 6 269 Michail F Cheliotis



Ship Maintenance

Fan, Cheng, Fu Xiao, Zhengdao Li, and Jiayuan Wang (Jan. 2018). Unsupervised

data analytics in mining big building operational data for energy efficiency

enhancement: A review. doi: 10.1016/j.enbuild.2017.11.008.

Fang, Liu and Huang Zhaodong (2015). “System Dynamics Based Simulation Ap-

proach on Corrective Maintenance Cost of Aviation Equipments”. In: Procedia

Engineering. Vol. 99. Elsevier Ltd, pp. 150–155. doi: 10.1016/j.proeng.

2014.12.519.

Fearnleys Research (2019a). Fearnleys Weekly Report Week 48 2019. Tech. rep.

London: Astrup Fearnley, p. 7.

— (2019b). Fearnleys Weekly Report Week 9 2019. Tech. rep. London: Astrup

Fearnley, p. 3.

— (2019c). Fearnleys Weekly Week 41 2019. Tech. rep. London: Astrup Fearnley,

p. 7.

Fedele, Lorenzo (2011). Methodologies and Techniques for Advanced Maintenance.

Ed. by Lorenzo Fedele. 1st. Vol. 1. 4. London: Springer, p. 228. isbn: 9780857291028.

doi: 10.1007/978-0-85729-103-5.

Fog, T. L., L. K. Hansen, J. Larsen, H. S. Hansen, L. B. Madsen, P. Sorensen,

E. R. Hansen, and P. S. Pedersen (1999). “On condition monitoring of exhaust

valves in marine diesel engines”. In: Neural Networks for Signal Processing -

Proceedings of the IEEE Workshop. IEEE, pp. 554–564. isbn: 0-7803-5673-X.

doi: 10.1109/nnsp.1999.788175. url: http://ieeexplore.ieee.org/

document/788175/.

Ford, B. L. (1983). “An overview of hot-deck procedures.” In: Incomplete Data

in Sample Surveys. Ed. by W.G Madow, I Olkin, and DB Rubin. Vol. 2. 1st.

New York Academic Press, pp. 185–207.

Fruth, Markus and Frank Teuteberg (2017). “Digitization in maritime logis-

tics—What is there and what is missing?” In: Cogent Business and Manage-

Chapter 6 270 Michail F Cheliotis



Ship Maintenance

ment 4.1, pp. 1–40. issn: 23311975. doi: 10.1080/23311975.2017.1411066.

url: http://doi.org/10.1080/23311975.2017.1411066.

Fu, Shanshan and Di Zhang (2016). “A Fuzzy Event Tree Model for Acciden

Scenario Analysis of Ship Stuck in Ice in Arctic Waters”. In: International

Conference on Ocean, Offshore and Arctic Engineering. Busan: ASME, pp. 1–

8.

Fussell, J B (1975). A Review of Fault Tree Analysis with Emphasis on Limita-

tions. Idaho.

Galar Pascual, Diego (2015). Artificial Intelligence Tools: Decision Support Sys-

tems in Condition Monitoring and Diagnosis. 1st. Boca Raton: CRC Press,

p. 136. isbn: 9781466584068. doi: 10.1201/b18384.

Gandhare, Balasaheb S and Milind Akarte (2012). “Maintenance strategy selec-

tion”. In: Proc. of Ninth AIMS Int. Conf. on Management April, pp. 1330–

1336.

Gaonkar, MN and K Sawant (2013). “Auto Eps DBSCAN: DBSCAN with Eps

automatic for large dataset”. In: International Journal on Advanced Computer

Theory and Engineering 2.2, pp. 11–16.
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FTA Gates and Events

A.1 FTA Gates

AND Gate

The AND gate is used to indicate that the output occurs if and only if all the

input events occur. The output of an AND gate can be the top event or any

intermediate event. The input events can be basic events, intermediate events

(outputs of other gates) or a combination of both (PTC Windchill 2019).

OR Gate

The OR gate is used to indicate that the output occurs if and only if at least one

of the input events occur. The output of an OR gate can be the top event or any

intermediate event. The input events can be basic events, intermediate events or

a combination of both. There should be at least two inputs to an OR gate (PTC

Windchill 2019).

Voting Gate

The Voting (M/n) gate is used to indicate that the output occurs if and only if M
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out of the n input events occur. The output occurs when at least m input events

occur. When M = 1, the Voting gate behaves like an OR gate. The output of a

Voting gate can be a top event or an intermediate event. The input events can be

basic events, intermediate events or a combination of both (PTC Windchill 2019).

Inhibit Gate

The Inhibit gate is used to indicate that the output occurs when the input events

(l1 and l2) occur and the input condition (C) is satisfied. The output of an In-

hibit gate can be a top event or an intermediate event. The input events can be

basic events, intermediate events or a combination of both (PTC Windchill 2019).

Exclusive OR Gate

The Exclusive OR (XOR) gate is used to indicate that the output occurs if and

only if one of the two input events occurs and the other input event does not

occur. An XOR gate can only have two inputs. The output of an Exclusive OR

gate can be the top event or an intermediate event. The input events can be

basic events, intermediate events or a combination of both. The presence of an

XOR gate may give rise to non-coherent trees, where the non-occurrence of an

event causes the top event to occur (PTC Windchill 2019).

NOT Gate

The NOT gate is used to indicate that the output occurs when the input event

does not occur. The presence of a NOT gate may give rise to non-coherent trees,

where the non-occurrence of an event causes the top event to occur. There is

only one input to a NOT gate (PTC Windchill 2019).

NOR Gate
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The NOR gate functions like a combination of an OR gate and a NOT gate. The

NOR gate is used to indicate that the output occurs when all the input events are

absent. The output of a NOR gate can be the top event or an intermediate event.

The input events can be basic events, intermediate events or a combination of

both. The presence of a NOR gate may give rise to non-coherent trees, where

the lack of one or more events causes the top event to occur (PTC Windchill 2019).

NAND Gate

The NAND gate functions like a combination of an AND gate and a NOT gate.

The NAND gate is used to indicate that the output occurs when at least one of

the input events is absent. The output of a NAND gate can be the top event

or an intermediate event. The input events can be basic events, intermediate

events or a combination of both. The presence of a NAND gate may give rise to

non-coherent trees, where the non-occurrence of an event causes the top event to

occur (PTC Windchill 2019).

Priority AND Gate

The Priority AND (PAND) gate is used to indicate that the output occurs if and

only if all input events occur in a particular order. The order is the same as that

in which the inputs events are connected to the PAND gate from left to right.

The PAND gate is a dynamic gate, which means that the order of the occurrence

of input events is important to determining the output.

The output of a PAND gate can be the top event or an intermediate event.

The inputs can be basic events or outputs of any AND gate, OR gate, or dy-

namic gate, which includes the SPARE gate, PAND gate, sequence-enforcing

(SEQ) gate and functional dependency (FDEP) gate. (These gates should have

the inputs from basic events or other AND gates and OR gates.) The items that

enter a PAND gate need to fail in temporal order from left to right to trigger the
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event. The PAND gate also supports a single input. When only a single input

exists, then occurrence of that input will trigger the event (PTC Windchill 2019).

Functional Dependency Gate

The Functional Dependency (FDEP) gate is used to indicate that all dependent

basic events are forced to occur whenever the trigger event occurs. The separate

occurrence of any of the dependent basic events has no effect on the trigger event.

The FDEP gate has one trigger event and can have one or more dependent events.

All dependent events are either basic events or spare events. The trigger event

can be a terminal event or output of any AND gate, OR gate or dynamic gate,

which includes the SPARE gate, PAND gate, Sequence-Enforcing gate (SEQ)

and FDEP gate.

Dependent events are repeated events that are present in other parts of the

fault tree. The FDEP gate is a dynamic gate, which means the temporal order of

the occurrence of events is important to analyse this gate. Generally, the output

of the FDEP gate is not that important; however, it is equivalent to the status

of its trigger event.

The FDEP gate can also be used to set the priorities for SPARE gates. For

example, if multiple spares are connected to a FDEP gate, after the occurrence of

the trigger event, all spares that are connected to the FDEP gate will fail. Upon

failure of these spares, the next available good spares in those SPARE gates will

replace the failed spares. If there exists a conflict in choosing the next available

spare between multiple SPARE gates, the priority will be based on the order of

the connection of these spares in the FDEP gate from left to right (PTC Wind-

chill 2019).

Sequence Enforcing Gate

The Sequence-Enforcing (SEQ) gate forces events to occur in a particular order.
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The input events are constrained to occur in the left-to-right order in which

they appear under the gate. That means that the left-most event must occur

before the event on its immediate right, which must occur before the event on its

immediate right is allowed to occur. The SEQ gate is used to indicate that the

output occurs if and only if all input events occurs, when the input events are

constraint to occur in a particular order.

The SEQ gate is a dynamic gate, which means the occurrence of the inputs

follows a sequential order. In other words, an event connected to a SEQ gate

will be initiated immediately after occurrence of its immediate left event. There-

fore, if the left-most input is a basic event, then the SEQ gate works like a cold

SPARE gate. The SEQ gate can be contrasted with the PAND gate in that the

PAND gate detects whether events occur in a particular order (but the events

can occur in any order), whereas the SEQ gate allows the events to occur only

in the specified order. The first input (left-most input) to a SEQ gate can be

a terminal event or outputs of any AND gate, OR gate or dynamic gate, which

includes the SPARE gate, PAND gate, FDEP gate or SEQ gate). Only basic

events are allowed for all other inputs (PTC Windchill 2019).

SPARE Gate

The SPARE gate is used to model the behaviour of spares in the system. The

SPARE gate is used to indicate that the output occurs if and only if all input

spare events occur. All inputs of a SPARE gate are spare events. A SPARE

gate can have multiple inputs. The first event (left-most event) is known as the

primary input, and all other inputs are known as alternative inputs. The primary

event is the one that is initially powered on, and the alternative inputs and are

initially in standby mode.

After a failure, the active/powered unit that is the first available spare from

left to right will be chosen to be active. If all units are failed, then the spare will
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be considered as failed (output occurred). Depending on the dormancy factor of

spares, spares can fail even in standby mode.

If the dormancy factor of all spares connected to a SPARE gate are 0, then

the spare acts like a cold spare. If the dormancy factor of all spares connected to

a SPARE gate is 1, then the spare acts like a hot spare. If the dormancy factor

of all spares connected to a SPARE gate are the same (and are between 0 and 1),

then the spare acts like a warm spare. If the dormancy factors of its inputs are

different, then it handles generalised situations. The SPARE gate is a dynamic

gate, which means the temporal order of the occurrence of events is important to

analyse this gate (PTC Windchill 2019).
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A.2 FTA Events

Basic Event

A basic event is either a component level event that is not further resolved. A

basic event is at the lowest level in a tree branch and terminates a fault tree path.

Component level events can include hardware or software failures, human errors

and sub-system failures (PTC Windchill 2019).

House Event

A house event is used to represent an event that is normally expected to occur. A

house event can be turned on or off. When a house event is turned on (TRUE),

that event is presumed to have occurred, and the probability of that event is set

to 1. When a house event is turned off (FALSE), that event is presumed not to

have occurred, and the probability is set to 0. House events are useful in making

parts of a fault tree functional or non-functional. House events are also referred

to as trigger events or switching events (PTC Windchill 2019).

House Event

A conditional event is used to indicate specific conditions or restrictions that ap-

ply to any logic gate, although they are most often used with Inhibit gates (PTC

Windchill 2019).

Undeveloped Event

An undeveloped event is used if further resolution of that event does not improve

the understanding of the problem or if further resolution is not necessary for

proper evaluation of the fault tree. It is similar to a basic event, but is shown

as a different symbol to signify that it could be developed further but that the

analysis has not yet been done or need not be done for the sake of the analysis
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in question. Undeveloped events may changed to some other event type and bro-

ken down into associated gates and events if it is later deemed necessary (PTC

Windchill 2019).

Spare Event

A spare event is used to specify spares in dynamic fault trees. Spare events are

similar to basic events in functionality; however, they allow only rates as inputs.

The dormancy factor of the spare indicates the ratio of failure rate in the spare

mode and the failure rate in the operational mode. Spare events can have a spares

pool, which represents the number of identical instances of that event. For exam-

ple, if a spares pool of an event is two, there are two identical spare components

of that spare event. Spare events are restricted to use as either spares to SPARE

gates or as dependent events to Functional Dependency gates (PTC Windchill

2019).
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Ship Components Cost

B.1 Costs

Table B.1: Repair and replacement costs for the components of vessel “A”

Component Cost (US Dollars)

BWTS 90000

CO2 System 90000

Central Cooler 1 30000

Central Cooler 2 30000

Central Cooler 3 30000

High Duty Compressor 1 17000

High Duty Compressor 2 17000

Auxiliary Cooler 1 15000

Auxiliary Cooler 2 15000

Cargo Pumps 15000

FO Purifier 1 15000

FO Purifier 2 15000

FO Purifier 3 15000

Continued on next page
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Table B.1 – Continued from previous page

Component Cost (US Dollars)

Low Duty Compressor 1 15000

Low Duty Compressor 2 15000

Ballast Pump 1 15000

Ballast Pump 2 15000

Ballast Pump 3 15000

LO Purifier 1 14000

LO Purifier 2 14000

LO Purifier 3 14000

LO Purifier 4 14000

Bilge Pumps 12000

Steering Gear Cylinder Ram 12000

Dry Powder System 12000

Fire Pump 1 12000

Fire Pump 2 12000

MGE LO Pump 1 10000

MGE LO Pump 2 10000

MGE LO Pump 3 10000

MGE LO Pump 4 10000

Boiler Burner 1 8000

Boiler Burner 2 8000

IGG Burner 8000

Gas Combustion Unit 8000

MGE 1 LO Pump 6500

MGE 2 LO Pump 6500

MGE 3 LO Pumps 6500

Continued on next page
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Table B.1 – Continued from previous page

Component Cost (US Dollars)

MGE 4 Lubricating Pumps 6500

Blower 1 6000

Blower 2 6000

MGE 1 Cyl. Head 5500

MGE 2 Cylinder Head 8000

MGE 3 Cylinder Head 8000

MGE 4 Cylinder Head 12000

Boiler Feedwater Pump 1 5000

Boiler Feedwater Pump 2 5000

FO Feed Pump 1 5000

FO Feed Pump 2 5000

FO Feed Pump 3 5000

FO Feed Pump 4 5000

High Duty Heater 5000

LNG Vaporiser 5000

Reduction Gear LO Pump 1 5000

Reduction Gear LO Pump 2 5000

FO Circulating Pump 1 4000

FO Circulating Pump 2 4000

FO Circulating Pump 3 4000

FO Circulating Pump 4 4000

Forcing Vaporiser 4000

Fuel Gas Pump 1 4000

Fuel Gas Pump 2 4000

IGG Fuel Pump 4000

Continued on next page
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Table B.1 – Continued from previous page

Component Cost (US Dollars)

HFO Transfer Pump 1 4000

HFO Transfer Pump 2 4000

MGE 1 Coolers 4000

MGE 3 Coolers 4000

MGE 4 Coolers 4000

MGE 2 Coolers 4000

Pilot Fuel Feed Pump 1 4000

Pilot Fuel Feed Pump 2 4000

MGE 1 Rod 3500

MGE 2 Rod 3500

MGE 3 Rod 3500

MGE 4 Rod 3500

FW Booster Pump 1 3000

FW Booster Pump 2 3000

LO Transfer Pump 1 3000

LO Transfer Pump 2 3000

MGE 1 Cylinder Liner 3000

MGE 1 Piston 3000

MGE 2 Cylinder Liner 3500

MGE 2 Piston 3000

MGE 3 Cylinder Liner 3500

MGE 3 Pistons 3000

MGE 4 Cylinder Liner 3000

MGE 4 Piston 3000

SWC Pump 1 3000

Continued on next page
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Table B.1 – Continued from previous page

Component Cost (US Dollars)

SWC Pump 2 3000

SWC Pump 3 3000

Boiler Water Circulating Pumps 3000

Aux SWC Pump 1 2500

Aux SWC Pump 2 2500

Boiler Fuel Pump 1 2500

Boiler Fuel Pump 2 2500

FWC Pump 1 2500

FWC Pump 2 2500

LO Purifier Supply Pump 1 2500

LO Purifier Supply Pump 2 2500

LO Purifier Supply Pump 3 2500

LO Purifier Supply Pump 4 2500

MDO Transfer Pump 2500

MGE 1 FO Injection Pump 2500

MGE 2 FO Injection Pump 2500

MGE 3 FO Injection Pump 2500

MGE 4 FO Injection Pump 2500

MGO Transfer Pump 2500

Steering Gear Oil Pump 2500

Spray Pump 1 2500

Spray Pump 2 2500

Spray Pump 3 2500

Spray Pump 4 2500

Steering Gear Control And Repeat Back Leaver 2000

Continued on next page
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Table B.1 – Continued from previous page

Component Cost (US Dollars)

FO Purifier Supply Pump 1 2000

FO Purifier Supply Pump 2 2000

FO Purifier Supply Pump 3 2000

Steering Gear Remote Controller 2000

Steering Gear Angle Transmitter 1500

IGG Safety Equipment 1000

Fuel Injector 1 300

Fuel Injector 2 300

MGE 1 Main Bearing 200

MGE 2 Main Bearing 200

MGE 3 Main Bearing 200

MGE 4 Main Bearing 200

Boiler Refractory Area 1 200

Boiler Refractory Area 2 200

MGE 1 FO Injector 150

MGE 2 FO Injector 300

MGE 3 FO Injector 300

MGE 4 FO Injector 150
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Critical Equipment Selection

C.1 MTBFs

Table C.1: Table of MTBFs used for the inert gas generation system

Inert Gas Generation
Component MTBF (Hours)
Blower 30240
Fuel Pump 12264
Burner 6132
Safety Equipment 15120

Table C.2: Table of MTBFs used for the cargo equipment system

Cargo Equipment
Component MTBF (Hours)
Cargo Pumps 1540
Spray Pumps 1540
LNG Vaporiser 1512
High Duty Compressor 2190
High Duty Heater 2190
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Table C.3: Table of MTBFs used for the bilge, fire and ballast systems

Bilge, Fire and Ballast
Component MTBF (Hours)
Ballast Pumps 2190
BWTS 6048
Fire Pumps 2190
Bilge Pumps 2190
CO2 System 6132
Dry Powder System 6132

Table C.4: Table of MTBFs used for the steering gear system

Steering Gear
Component MTBF (Hours)
Cylinder Ram 61320
Oil Pump 12264
Control and Repeat Back Lever 30660
Angle Transmitter 18396
Remote Controller 18396

Table C.5: Table of MTBFs used for the steam generation system

Steam Generation
Component MTBF (Hours)
Pilot Fuel Injector 3100
Fuel Pump 3100
Water Circulating Pump 3000
Feed-water Pump 3000
Burner 6132
Refractory Area 1226
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Table C.6: Table of MTBFs used for the main generating engines system

Main Generating Engines
Component MTBF (Hours)
Piston Rod 61320
Cylinder Head 61320
Fuel Oil Injector 12264
Main Bearing 61320
Cylinder Liner 61320
Piston 30660
Cooling Pumps 3000
Coolers 2190
Lubricating Pumps 12264
Fuel Oil Injection Pumps 2200

Table C.7: Table of MTBFs used for the gas fuel system

Gas Fuel
Component MTBF (Hours)
Fuel Gas Pumps 3100
Low Duty Compressor 2190
Forcing Vaporiser 1512
Gas Combustion Unit 12264

Table C.8: Table of MTBFs used for the fuel oil feed system

Fuel Oil Feed
Component MTBF (Hours)
Fuel Oil Feed Pump 2200
Fuel Oil Circulating Pump 2200
Pilot Fuel Feed Pump 3100

Table C.9: Table of MTBFs used for the fuel oil purification system

Fuel Oil Purification
Component MTBF (Hours)
Fuel Oil Purifiers 8400
Fuel Oil Purifiers Supply Pump 2200
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Table C.10: Table of MTBFs used for the fuel oil transfer system

Fuel Oil Transfer
Component MTBF (Hours)
Heavy Fuel Oil Transfer Pumps 2200
Marine Diesel Oil Transfer
Pumps

3100

Marine Gas Oil Transfer Pumps 3100

Table C.11: Table of MTBFs used for the lubricating oil purification system

Lubricating Oil Purification
Component MTBF (Hours)
Lubricating Oil Purifiers 12000
Lubricating Oil Purifier Supply
Pumps

12264

Table C.12: Table of MTBFs used for the lubricating oil service system

Lubricating Oil Service
Component MTBF (Hours)
Lubricating Oil Transfer Pumps 12264
Reduction Gear Lubricating Oil
Pumps

12264

MGE Lubricating Oil Pumps 12264

Table C.13: Table of MTBFs used for the central MGE cooling system

Central MGE Cooling
Component MTBF (Hours)
Sea Water Cooling Pumps 2190
Central Cooler 2190

Table C.14: Table of MTBFs used for the auxiliary cooling system

Auxiliary Cooling
Component MTBF (Hours)
Fresh Water Cooling Pumps 3000
Sea Water Cooling Pumps 2190
Fresh Water Booster Pumps 3000
Auxiliary Cooler 2190
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C.2 IMs

Table C.15: Obtained IB for the components of vessel “A”

Component IB

MGE 4 Cylinder Head 3.0307

MGE 4 Cylinder Liner 3.0307

MGE 4 Main Bearing 3.0307

MGE 4 Piston 3.0307

MGE 4 Rod 3.0307

MGE 1 FO Injection Pump 2.8700

MGE 2 FO Injection Pump 2.8700

MGE 3 FO Injection Pump 2.8700

MGE 4 FO Injection Pump 2.8700

MGE 1 FO Injector 2.8000

MGE 2 FO Injector 2.8000

MGE 3 FO Injector 2.8000

MGE 4 FO Injector 2.8000

FO Feed Pump 1 2.7061

FO Feed Pump 2 2.7061

FO Feed Pump 3 2.7061

FO Feed Pump 4 2.7061

MGE 1 Cyl. Head 2.7061

MGE 1 Cylinder Liner 2.7061

MGE 1 Main Bearing 2.7061

MGE 1 Piston 2.7061

MGE 1 Rod 2.7061

MGE 2 Cylinder Head 2.7061

Continued on next page
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Table C.15 – Continued from previous page

Component IB

MGE 2 Cylinder Liner 2.7061

MGE 2 Main Bearing 2.7061

MGE 2 Piston 2.7061

MGE 2 Rod 2.7061

MGE 3 Cylinder Head 2.7061

MGE 3 Cylinder Liner 2.7061

MGE 3 Main Bearing 2.7061

MGE 3 Pistons 2.7061

MGE 3 Rod 2.7061

MGE 1 LO Pump 2.0200

MGE 2 LO Pump 2.0200

MGE 3 LO Pumps 2.0200

MGE 4 Lubricating Pumps 2.0200

IGG Burner 1.8525

IGG Fuel Pump 1.8525

IGG Safety Equipment 1.8525

Steering Gear Control And Repeat Back Leaver 1.0000

Steering Gear Cylinder Ram 1.0000

Boiler Feedwater Pump 1 1.0000

Boiler Feedwater Pump 2 1.0000

Steering Gear Oil Pump 1.0000

Boiler Water Circulating Pumps 1.0000

BWTS 0.8750

Cargo Pumps 0.6318

High Duty Heater 0.6318

Continued on next page
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Table C.15 – Continued from previous page

Component IB

LNG Vaporiser 0.6318

Bilge Pumps 0.5392

CO2 System 0.3296

Dry Powder System 0.3296

Central Cooler 1 0.2661

Central Cooler 2 0.2661

Central Cooler 3 0.2661

SWC Pump 1 0.2661

SWC Pump 2 0.2661

SWC Pump 3 0.2661

High Duty Compressor 1 0.2316

High Duty Compressor 2 0.2316

Boiler Burner 1 0.2288

Boiler Burner 2 0.2288

Boiler Refractory Area 1 0.2288

Boiler Refractory Area 2 0.2288

FO Purifier Supply Pump 1 0.2198

FO Purifier Supply Pump 2 0.2198

FO Purifier Supply Pump 3 0.2198

Aux SWC Pump 1 0.2142

Aux SWC Pump 2 0.2142

Auxiliary Cooler 1 0.2142

Auxiliary Cooler 2 0.2142

FW Booster Pump 1 0.1960

FW Booster Pump 2 0.1960

Continued on next page
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Table C.15 – Continued from previous page

Component IB

FWC Pump 1 0.1960

FWC Pump 2 0.1960

LO Transfer Pump 1 0.1671

LO Transfer Pump 2 0.1671

Reduction Gear LO Pump 1 0.1671

Reduction Gear LO Pump 2 0.1671

Forcing Vaporiser 0.1327

Gas Combustion Unit 0.1327

Fire Pump 1 0.1277

Fire Pump 2 0.1277

Ballast Pump 1 0.1176

Ballast Pump 2 0.1176

Ballast Pump 3 0.1176

Spray Pump 1 0.0688

Spray Pump 2 0.0688

Spray Pump 3 0.0688

Spray Pump 4 0.0688

MDO Transfer Pump 0.0637

MGO Transfer Pump 0.0637

Blower 1 0.0603

Blower 2 0.0603

Steering Gear Angle Transmitter 0.0529

Steering Gear Remote Controller 0.0529

Low Duty Compressor 1 0.0487

Low Duty Compressor 2 0.0487

Continued on next page
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Table C.15 – Continued from previous page

Component IB

HFO Transfer Pump 1 0.0481

HFO Transfer Pump 2 0.0481

Fuel Gas Pump 1 0.0366

Fuel Gas Pump 2 0.0366

Boiler Fuel Pump 1 0.0210

Boiler Fuel Pump 2 0.0210

Fuel Injector 1 0.0210

Fuel Injector 2 0.0210

FO Purifier 1 0.0208

FO Purifier 2 0.0208

FO Purifier 3 0.0208

Pilot Fuel Feed Pump 1 0.0171

Pilot Fuel Feed Pump 2 0.0171

FO Circulating Pump 1 0.0080

FO Circulating Pump 2 0.0080

FO Circulating Pump 3 0.0080

FO Circulating Pump 4 0.0080

MGE 1 Coolers 0.0050

MGE 3 Coolers 0.0050

MGE 4 Coolers 0.0050

MGE 2 Coolers 0.0050

LO Purifier 1 0.0011

LO Purifier 2 0.0011

LO Purifier 3 0.0011

LO Purifier 4 0.0011

Continued on next page
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Table C.15 – Continued from previous page

Component IB

LO Purifier Supply Pump 1 0.0010

LO Purifier Supply Pump 2 0.0010

LO Purifier Supply Pump 3 0.0010

LO Purifier Supply Pump 4 0.0010

MGE LO Pump 1 0.0010

MGE LO Pump 2 0.0010

MGE LO Pump 3 0.0010

MGE LO Pump 4 0.0010

Table C.16: Obtained ICR for the components of vessel “A”

Component ICR

MGE 1 FO Injection Pump 0.1800

MGE 2 FO Injection Pump 0.1800

MGE 3 FO Injection Pump 0.1800

MGE 4 FO Injection Pump 0.1800

MGE 1 FO Injector 0.1500

MGE 2 FO Injector 0.1500

MGE 3 FO Injector 0.1500

MGE 4 FO Injector 0.1500

MGE 1 LO Pump 0.1300

MGE 2 LO Pump 0.1300

MGE 3 LO Pumps 0.1300

MGE 4 Lubricating Pumps 0.1300

Continued on next page
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Table C.16 – Continued from previous page

Component IICR

FO Feed Pump 1 0.0874

FO Feed Pump 2 0.0874

FO Feed Pump 3 0.0874

FO Feed Pump 4 0.0874

LNG Vaporiser 0.0545

Cargo Pumps 0.0538

Boiler Feedwater Pump 1 0.0505

Boiler Feedwater Pump 2 0.0505

Boiler Water Circulating Pumps 0.0505

IGG Burner 0.0497

Steering Gear Cylinder Ram 0.0475

High Duty Heater 0.0413

Bilge Pumps 0.0352

Steering Gear Oil Pump 0.0290

IGG Fuel Pump 0.0259

BWTS 0.0238

IGG Safety Equipment 0.0211

Central Cooler 1 0.0174

Central Cooler 2 0.0174

Central Cooler 3 0.0174

SWC Pump 1 0.0174

SWC Pump 2 0.0174

SWC Pump 3 0.0174

MGE 4 Cylinder Liner 0.0173

MGE 1 Piston 0.0155

Continued on next page
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Table C.16 – Continued from previous page

Component IICR

MGE 2 Cylinder Liner 0.0155

MGE 3 Cylinder Liner 0.0155

High Duty Compressor 1 0.0151

High Duty Compressor 2 0.0151

FO Purifier Supply Pump 1 0.0143

FO Purifier Supply Pump 2 0.0143

FO Purifier Supply Pump 3 0.0143

Aux SWC Pump 1 0.0140

Aux SWC Pump 2 0.0140

Auxiliary Cooler 1 0.0140

Auxiliary Cooler 2 0.0140

Forcing Vaporiser 0.0115

FW Booster Pump 1 0.0099

FW Booster Pump 2 0.0099

FWC Pump 1 0.0099

FWC Pump 2 0.0099

CO2 System 0.0088

Dry Powder System 0.0088

MGE 4 Cylinder Head 0.0087

MGE 4 Main Bearing 0.0087

MGE 4 Piston 0.0087

MGE 4 Rod 0.0087

Fire Pump 1 0.0083

Fire Pump 2 0.0083

MGE 1 Cyl. Head 0.0078

Continued on next page
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Table C.16 – Continued from previous page

Component IICR

MGE 1 Cylinder Liner 0.0078

MGE 1 Main Bearing 0.0078

MGE 1 Rod 0.0078

MGE 2 Cylinder Head 0.0078

MGE 2 Main Bearing 0.0078

MGE 2 Piston 0.0078

MGE 2 Rod 0.0078

MGE 3 Cylinder Head 0.0078

MGE 3 Main Bearing 0.0078

MGE 3 Pistons 0.0078

MGE 3 Rod 0.0078

Ballast Pump 1 0.0077

Ballast Pump 2 0.0077

Ballast Pump 3 0.0077

MGE 1 Coolers 0.0062

MGE 3 Coolers 0.0062

MGE 4 Coolers 0.0062

MGE 2 Coolers 0.0062

Boiler Burner 1 0.0061

Boiler Burner 2 0.0061

Spray Pump 1 0.0059

Spray Pump 2 0.0059

Spray Pump 3 0.0059

Spray Pump 4 0.0059

Steering Gear Control And Repeat Back Leaver 0.0050

Continued on next page
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Table C.16 – Continued from previous page

Component IICR

Boiler Refractory Area 1 0.0032

Boiler Refractory Area 2 0.0032

Low Duty Compressor 1 0.0032

Low Duty Compressor 2 0.0032

HFO Transfer Pump 1 0.0031

HFO Transfer Pump 2 0.0031

MDO Transfer Pump 0.0031

MGO Transfer Pump 0.0031

LO Transfer Pump 1 0.0023

LO Transfer Pump 2 0.0023

Reduction Gear LO Pump 1 0.0023

Reduction Gear LO Pump 2 0.0023

Gas Combustion Unit 0.0019

Fuel Gas Pump 1 0.0018

Fuel Gas Pump 2 0.0018

Boiler Fuel Pump 1 0.0010

Boiler Fuel Pump 2 0.0010

Fuel Injector 1 0.0010

Fuel Injector 2 0.0010

Pilot Fuel Feed Pump 1 0.0008

Pilot Fuel Feed Pump 2 0.0008

FO Circulating Pump 1 0.0005

FO Circulating Pump 2 0.0005

FO Circulating Pump 3 0.0005

FO Circulating Pump 4 0.0005

Continued on next page
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Table C.16 – Continued from previous page

Component IICR

Steering Gear Angle Transmitter 0.0005

Steering Gear Remote Controller 0.0005

FO Purifier 1 0.0004

FO Purifier 2 0.0004

FO Purifier 3 0.0004

Blower 1 0.0003

Blower 2 0.0003

LO Purifier 1 0.0000

LO Purifier 2 0.0000

LO Purifier 3 0.0000

LO Purifier 4 0.0000

LO Purifier Supply Pump 1 0.0000

LO Purifier Supply Pump 2 0.0000

LO Purifier Supply Pump 3 0.0000

LO Purifier Supply Pump 4 0.0000

MGE LO Pump 1 0.0000

MGE LO Pump 2 0.0000

MGE LO Pump 3 0.0000

MGE LO Pump 4 0.0000
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Fault Detection

D.1 Data Checking Results
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Figure D.1: Data checking result for ME scavenging air temperature
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Figure D.2: Data checking result for ME scavenging air pressure
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Figure D.3: Data checking result for ME cylinder 1 EG temperature

Chapter D 338 Michail F Cheliotis



Ship Maintenance

2017-01-01 2017-01-15 2017-01-29 2017-02-12 2017-02-26 2017-03-12 2017-03-26 2017-04-09

220

230

240

250

260

270

280

290

M
E 

Cy
lin

de
r 5

 E
G 

Te
m

pe
ra

tu
re

 (C
)

Pre-processed Data

2017-01-01 2017-01-15 2017-01-29 2017-02-12 2017-02-26 2017-03-12 2017-03-26 2017-04-09
0

250

500

750

1000

1250

1500

1750

2000

M
E 

Cy
lin

de
r 5

 E
G 

Te
m

pe
ra

tu
re

  (
C)

Raw Data

Figure D.4: Data checking result for ME cylinder 2 EG temperature
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Figure D.5: Data checking result for ME cylinder 3 EG temperature
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Figure D.6: Data checking result for ME cylinder 4 EG temperature
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Figure D.7: Data checking result for ME cylinder 5 EG temperature
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